Theory of superconductivity in oxides. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, P.W.
1988-05-18
Progress was made towards a final theory of high-Tc superconductivity. The key elements are the work on normal-state properties and the actual mechanism for Tc. With the understanding (ZA) of the large anisotropy and other transport properties in the normal state, the model is uniquely determined: one must have one version or another of a holon-spinon quantum-fluid state, which is not a normal Fermi liquid. And with the recognition (HWA) of the large-repulsion holon-holon interactions, the author has the first way of thinking quantitatively about the superconducting state. Work on the pure Heisenberg system, which is related but not necessarilymore » crucial to understanding the superconducting properties is described.« less
Multiple normalized solutions for a planar gauged nonlinear Schrödinger equation
NASA Astrophysics Data System (ADS)
Luo, Xiao
2018-06-01
We study the existence, multiplicity, quantitative property and asymptotic behavior of normalized solutions for a gauged nonlinear Schrödinger equation arising from the Chern-Simons theory Δ u + ω u +|x|^2u+ λ ( {{h^2}(| x | )}/{{{| x | ^2}}} + \\int \\limits _{| x | }^{ + ∞} {{h(s)}/s} {u^2}(s)ds) u = {| u | ^{p - 2}}u,\\quad x\\in R^2, where ω \\in R, λ >0, p>4 and h(s) = 1/2\\int \\limits _0^s {r{u^2}(r)dr} . Combining constraint minimization method and minimax principle, we prove that the problem possesses at least two normalized solutions: One is a ground state and the other is an excited state. Furthermore, the asymptotic behavior and quantitative property of the ground state are analyzed.
Phase-incoherent superconducting pairs in the normal state of Ba(Fe(1-x)Co(x))₂As₂.
Sheet, Goutam; Mehta, Manan; Dikin, D A; Lee, S; Bark, C W; Jiang, J; Weiss, J D; Hellstrom, E E; Rzchowski, M S; Eom, C B; Chandrasekhar, V
2010-10-15
The normal state properties of the recently discovered ferropnictide superconductors might hold the key to understanding their exotic superconductivity. Using point-contact spectroscopy we show that Andreev reflection between an epitaxial thin film of Ba(Fe(0.92)Co(0.08))₂As₂ and a silver tip can be seen in the normal state of the film up to temperature T∼1.3T(c), where T(c) is the critical temperature of the superconductor. Andreev reflection far above T(c) can be understood only when superconducting pairs arising from strong fluctuation of the phase of the complex superconducting order parameter exist in the normal state. Our results provide spectroscopic evidence of phase-incoherent superconducting pairs in the normal state of the ferropnictide superconductors.
Atomic force microscopy studies on cellular elastic and viscoelastic properties.
Li, Mi; Liu, Lianqing; Xi, Ning; Wang, Yuechao
2018-01-01
In this work, a method based on atomic force microscopy (AFM) approach-reside-retract experiments was established to simultaneously quantify the elastic and viscoelastic properties of single cells. First, the elastic and viscoelastic properties of normal breast cells and cancerous breast cells were measured, showing significant differences in Young's modulus and relaxation times between normal and cancerous breast cells. Remarkable differences in cellular topography between normal and cancerous breast cells were also revealed by AFM imaging. Next, the elastic and viscoelasitc properties of three other types of cell lines and primary normal B lymphocytes were measured; results demonstrated the potential of cellular viscoelastic properties in complementing cellular Young's modulus for discerning different states of cells. This research provides a novel way to quantify the mechanical properties of cells by AFM, which allows investigation of the biomechanical behaviors of single cells from multiple aspects.
Decoherence induced deformation of the ground state in adiabatic quantum computation.
Deng, Qiang; Averin, Dmitri V; Amin, Mohammad H; Smith, Peter
2013-01-01
Despite more than a decade of research on adiabatic quantum computation (AQC), its decoherence properties are still poorly understood. Many theoretical works have suggested that AQC is more robust against decoherence, but a quantitative relation between its performance and the qubits' coherence properties, such as decoherence time, is still lacking. While the thermal excitations are known to be important sources of errors, they are predominantly dependent on temperature but rather insensitive to the qubits' coherence. Less understood is the role of virtual excitations, which can also reduce the ground state probability even at zero temperature. Here, we introduce normalized ground state fidelity as a measure of the decoherence-induced deformation of the ground state due to virtual transitions. We calculate the normalized fidelity perturbatively at finite temperatures and discuss its relation to the qubits' relaxation and dephasing times, as well as its projected scaling properties.
Decoherence induced deformation of the ground state in adiabatic quantum computation
Deng, Qiang; Averin, Dmitri V.; Amin, Mohammad H.; Smith, Peter
2013-01-01
Despite more than a decade of research on adiabatic quantum computation (AQC), its decoherence properties are still poorly understood. Many theoretical works have suggested that AQC is more robust against decoherence, but a quantitative relation between its performance and the qubits' coherence properties, such as decoherence time, is still lacking. While the thermal excitations are known to be important sources of errors, they are predominantly dependent on temperature but rather insensitive to the qubits' coherence. Less understood is the role of virtual excitations, which can also reduce the ground state probability even at zero temperature. Here, we introduce normalized ground state fidelity as a measure of the decoherence-induced deformation of the ground state due to virtual transitions. We calculate the normalized fidelity perturbatively at finite temperatures and discuss its relation to the qubits' relaxation and dephasing times, as well as its projected scaling properties. PMID:23528821
Earthquake Nucleation on Faults With Heterogeneous Frictional Properties, Normal Stress
NASA Astrophysics Data System (ADS)
Ray, Sohom; Viesca, Robert C.
2017-10-01
We examine the development of an instability of fault slip rate. We consider a slip rate and state dependence of fault frictional strength, in which frictional properties and normal stress are functions of position. We pose the problem for a slip rate distribution that diverges quasi-statically within finite time in a self-similar fashion. Scenarios of property variations are considered and the corresponding self-similar solutions found. We focus on variations of coefficients, a and b, respectively, controlling the magnitude of a direct effect on strength due to instantaneous changes in slip rate and of strength evolution due to changes in a state variable. These results readily extend to variations in fault-normal stress, σ, or the characteristic slip distance for state evolution, Dc. We find that heterogeneous properties lead to a finite number of self-similar solutions, located about critical points of the distributions: maxima, minima, and between them. We examine the stability of these solutions and find that only a subset is asymptotically stable, occurring at just one of the critical point types. Such stability implies that during instability development, slip rate and state evolution can be attracted to develop in the manner of the self-similar solution, which is also confirmed by solutions to initial value problems for slip rate and state. A quasi-static slip rate divergence is ultimately limited by inertia, leading to the nucleation of an outward expanding dynamic rupture: asymptotic stability of self-similar solutions then implies preferential sites for earthquake nucleation, which are determined by distribution of frictional properties.
Ushakou, Dzmitryi V; Tomin, Vladimir I
2018-06-07
We report spectroscopic properties of 3-hydroxyflavone (3-HF) and 4'-N,N-dimethylamino-3-hydroxyflavone (DMA3HF) in acetonitrile and ethyl acetate at different temperatures in the range from 10 °C to about 67 °C. These compounds are characterized by excited-state intramolecular proton transfer (ESIPT) which leads to occurrence of two forms of these molecules. For this reason their fluorescence spectra have two bands which correspond to emission of normal and photoproduct (tautomer) forms. The correlation between ratio of integrated intensity of these two bands and inverse absolute temperature (the Arrhenius plot) have been applied to estimate energetic properties, such as difference between energy levels of excited states as well ground states for normal and tautomer forms for each molecule. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sun, Shanshan; Wang, Shaohua; Yu, Rong; Lei, Hechang
2017-08-01
We report the growth of heavily electron doped Li-NH3 intercalated FeSe single crystals that are free of material complexities and allow access to the intrinsic superconducting properties. Lix(NH3)yFe2Se2 single crystals show extremely large electronic anisotropy in both normal and superconducting states. They also exhibit anomalous transport properties in the normal state, which are believed to possibly be related to the anisotropy of relaxation time and/or temperature-dependent electron carrier concentration. Taking into account the great chemical flexibility of intercalants in the system, our findings provide a platform to understanding the origin of superconductivity in FeSe-related superconductors.
NASA Astrophysics Data System (ADS)
Wang, Qijiang; Zhou, Yedong; Zhang, Qinglian
Production technical process of BaoSteel-produced 9Cr1Mo (P9) seamless pipe is presented, and creep property of isothermal annealed state of that steel is studied under the temperatures of 550 °C, 600 °C, 650 °C, 700 °C. Also, isothermal extrapolation method and Larson-Miller method are employed to extrapolate creep rupture strength of the steel at the creep time of 20000h, 40000h, 60000h and 100000h. The results show that high temperature properties of BaoSteel-produced 9Cr1Mo (P9) seamless pipe meets the API 530 standard of USA and the SH/T3037 standard of China's petrochemical industry, and the steel can be used in large scale petroleum cracking equipment. Meantime, the comparison of creep properties at 650 °C and transient elevated temperature properties at different temperatures between isothermal annealed state and normalized + tempered state of 9Cr1Mo (P9) seamless pipe as well as the microstructure analysis show that the normalized + tempered 9Cr1Mo (P9) seamless pipe presents better high temperature properties.
Fluorescence Spectroscopic Properties of Normal and Abnormal Biomedical Materials
NASA Astrophysics Data System (ADS)
Pradhan, Asima
Steady state and time-resolved optical spectroscopy and native fluorescence is used to study the physical and optical properties occurring in diseased and non-diseased biological human tissue, in particular, cancer of the human breast, artery and the dynamics of a photosensitizer useful in photodynamic therapy. The main focus of the research is on the optical properties of cancer and atherosclerotic tissues as compared to their normal counterparts using the different luminescence based spectroscopic techniques such as steady state fluorescence, time-resolved fluorescence, excitation spectroscopy and phosphorescence. The excitation and steady-state spectroscopic fluorescence using visible excitation wavelength displays a difference between normal and malignant tissues. This difference is attributed to absorption of the emission by hemoglobin in normal tissues. This method using 488nm fails to distinguish neoplastic tissue such as benign tissues and tumors from malignant tumors. The time-resolved fluorescence at visible, near -uv and uv excitation wavelengths display non-exponential profiles which are significantly different for malignant tumors as compared to non-malignant tissues only with uv excitation. The differences observed with visible and near-uv excitation wavelengths are not as significant. The non-exponential profiles are interpreted as due to a combination of fluorophores along with the action of non-radiative processes. Low temperature luminescence studies confirm the occurrence of non-radiative decay processes while temporal studies of various relevant biomolecules indicate the probable fluorophores responsible for the observed signal in tissues. Phosphorescence from human tissues have been observed for the first time and lifetimes of a few hundred nanoseconds are measured for malignant and benign tissues. Time-resolved fluorescence studies of normal artery and atherosclerotic plaque have shown that a combination of two excitation wavelengths can distinguish fibrous and calcified atherosclerotic plaque from normal artery. A minor effort of the study involves the high intensity effects on the optical properties of the dye, doxycycline (a particular photosensitizer of the tetracycline group) occurring during relaxation when excited at different laser intensities. This study has been performed by observing the fluorescence lifetimes and quantum yields of DOTC at different excitation intensities. The results obtained support the sequential excited state absorption model.
Thermodynamics of an Attractive 2D Fermi Gas
NASA Astrophysics Data System (ADS)
Fenech, K.; Dyke, P.; Peppler, T.; Lingham, M. G.; Hoinka, S.; Hu, H.; Vale, C. J.
2016-01-01
Thermodynamic properties of matter are conveniently expressed as functional relations between variables known as equations of state. Here we experimentally determine the compressibility, density, and pressure equations of state for an attractive 2D Fermi gas in the normal phase as a function of temperature and interaction strength. In 2D, interacting gases exhibit qualitatively different features to those found in 3D. This is evident in the normalized density equation of state, which peaks at intermediate densities corresponding to the crossover from classical to quantum behavior.
Lipid immiscibility and biophysical properties: Molecular order within and among unit cell volumes
USDA-ARS?s Scientific Manuscript database
Saturated and unsaturated fatty acids clearly have a discrete chemical structure in the solid state. In a saturated solution, the solid state and solution state are in chemical equilibrium. The lipid stearic acid packs in unit cell volumes in the liquid state as well as in the solid state. Normal...
NASA Astrophysics Data System (ADS)
Jin, Kui; Hu, Wei; Zhu, Beiyi; Kim, Dohun; Yuan, Jie; Sun, Yujie; Xiang, Tao; Fuhrer, Michael S.; Takeuchi, Ichiro; Greene, Richard. L.
2016-05-01
The occurrence of electrons and holes in n-type copper oxides has been achieved by chemical doping, pressure, and/or deoxygenation. However, the observed electronic properties are blurred by the concomitant effects such as change of lattice structure, disorder, etc. Here, we report on successful tuning the electronic band structure of n-type Pr2-xCexCuO4 (x = 0.15) ultrathin films, via the electric double layer transistor technique. Abnormal transport properties, such as multiple sign reversals of Hall resistivity in normal and mixed states, have been revealed within an electrostatic field in range of -2 V to + 2 V, as well as varying the temperature and magnetic field. In the mixed state, the intrinsic anomalous Hall conductivity invokes the contribution of both electron and hole-bands as well as the energy dependent density of states near the Fermi level. The two-band model can also describe the normal state transport properties well, whereas the carrier concentrations of electrons and holes are always enhanced or depressed simultaneously in electric fields. This is in contrast to the scenario of Fermi surface reconstruction by antiferromagnetism, where an anti-correlation is commonly expected.
Fratino, L.; Sémon, P.; Charlebois, M.; ...
2017-06-06
The properties of a phase with large correlation length can be strongly influenced by the underlying normal phase. Here, we illustrate this by studying the half-filled two-dimensional Hubbard model using cellular dynamical mean-field theory with continuous-time quantum Monte Carlo. Sharp crossovers in the mechanism that favors antiferromagnetic correlations and in the corresponding local density of states are observed. We found that these crossovers occur at values of the interaction strength U and temperature T that are controlled by the underlying normal-state Mott transition.
Incoherent vs. coherent behavior in the normal state of copper oxide superconductors
NASA Technical Reports Server (NTRS)
Tesanovic, Zlatko
1991-01-01
The self-consistent quantum fluctuations around the mean-field Hartree-Fock state of the Hubbard model provide a very good description of the ground state and low temperature properties of a 2-D itinerant antiferromagnet. Very good agreement with numerical calculations and experimental data is obtained by including the one- and two-loop spin wave corrections to various physical quantities. In particular, the destruction of the long-range order above the Neel temperature can be understood as a spontaneous generation of a length-scale epsilon(T), which should be identified as the spin correlation length. For finite doping, the question of the Hartree-Fock starting point becomes a more complex one since an extra hole tends to self-trap in antiferromagnetic background. Such quantum defects in an underlying antiferromagnetic state can be spin-bags or vortex-like structures and tend to suppress the long-range order. If motion of the holes occurs on a time-scale shorter than the one associated with the motion of these quantum defects of a spin background, one obtains several important empirical features of the normal state of CuO superconductors like linear T-dependence of resistivity, the cusp in the tunneling density of states, etc. As opposed to a familiar Fermi-liquid behavior, the phenomenology of the above system is dominated by a large incoherent piece of a single hole propagator, resulting in many unusual normal state properties.
NASA Astrophysics Data System (ADS)
Kaplun, A. B.; Meshalkin, A. B.
2013-08-01
Using methods and approaches developed by the authors, a new low-parametric state equation for describing the thermal properties of normal substances is obtained that allows us to describe the thermal properties of gases, liquids, and fluids over a range of densities from the ideal gas state to the triple point, except for a critical region, with a high degree of accuracy close to that of an experiment. The caloric properties and speed of sound are calculated for argon, nitrogen, and carbon dioxide without using any caloric data except for the enthalpy of an ideal gas. It is established that the calculated values of enthalpy, heat capacity, the speed of speed of sound, etc., are in good agreement with the experimental (reliably tabulated) data.
Hidden Fermi liquid: Self-consistent theory for the normal state of high-Tc superconductors
NASA Astrophysics Data System (ADS)
Casey, Philip A.
The anomalous "strange metal" properties of the normal, non-superconducting state of the high-Tc cuprate superconductors have been extensively studied for over two decades. The resistivity is robustly T-linear at high temperatures, while at low T it appears to maintain linearity near optimal doping and is T2 at higher doping. The inverse Hall angle is strictly T2 and hence has a distinct scattering lifetime from the resistivity. The transport scattering lifetime is highly anisotropic as directly measured by angle-dependent magnetoresistance (ADMR) and indirectly in more traditional transport experiments. The IR conductivity exhibits a non-integer power-law in frequency, which we take as a defining characteristic of the "strange metal". A phenomenological theory of the transport and spectroscopic properties at a self-consistent and predictive level has been much sought after, yet elusive. Hidden Fermi liquid theory (HFL) explicitly accounts for the effects of Gutzwiller projection in the t-J Hamiltonian, widely believed to contain the essential physics of the high-Tc superconductors. We show this theory to be the first self-consistent description for the normal state of the cuprates based on transparent, fundamental assumptions. Our well-defined formalism also serves as a guide for further experimental confirmation. Chapter 1 reviews the "strange metal" properties and the relevant aspects of competing models. Chapter 2 presents the theoretical foundations of the formalism. Chapters 3 and 4 derive expressions for the entire normal state relating many of the properties, for example: angle-resolved photoemission, IR conductivity, resistivity, Hall angle, and by generalizing the formalism to include the Fermi surface topology---ADMR. Self-consistency is demonstrated with experimental comparisons, including the most recent laser-ARPES and ADMR. Chapter 5 discusses entropy transport, as in the thermal conductivity, thermal Hall conductivity, and consequent metrics of non-Fermi liquid behavior such as the Wiedemann-Franz and Kadowaki-Woods ratios.
NASA Astrophysics Data System (ADS)
Reinink, Shawn K.; Yaras, Metin I.
2015-06-01
Forced-convection heat transfer in a heated working fluid at a thermodynamic state near its pseudocritical point is poorly predicted by correlations calibrated with data at subcritical temperatures and pressures. This is suggested to be primarily due to the influence of large wall-normal thermophysical property gradients that develop in proximity of the pseudocritical point on the concentration of coherent turbulence structures near the wall. The physical mechanisms dominating this influence remain poorly understood. In the present study, direct numerical simulation is used to study the development of coherent vortical structures within a turbulent spot under the influence of large wall-normal property gradients. A turbulent spot rather than a fully turbulent boundary layer is used for the study, for the coherent structures of turbulence in a spot tend to be in a more organized state which may allow for more effective identification of cause-and-effect relationships. Large wall-normal gradients in thermophysical properties are created by heating the working fluid which is near the pseudocritical thermodynamic state. It is found that during improved heat transfer, wall-normal gradients in density accelerate the growth of the Kelvin-Helmholtz instability mechanism in the shear layer enveloping low-speed streaks, causing it to roll up into hairpin vortices at a faster rate. It is suggested that this occurs by the baroclinic vorticity generation mechanism which accelerates the streamwise grouping of vorticity during shear layer roll-up. The increased roll-up frequency leads to reduced streamwise spacing between hairpin vortices in wave packets. The density gradients also promote the sinuous instability mode in low-speed streaks. The resulting oscillations in the streaks in the streamwise-spanwise plane lead to locally reduced spanwise spacing between hairpin vortices forming over adjacent low-speed streaks. The reduction in streamwise and spanwise spacing between hairpin vortices causes them to interact more frequently by merging together and by breaking apart into smaller turbulence structures.
NASA Astrophysics Data System (ADS)
Abanov, Ar.; Chubukov, Andrey V.; Schmalian, J.
2003-03-01
We present the full analysis of the normal state properties of the spin-fermion model near the antiferromagnetic instability in two dimensions. The model describes low-energy fermions interacting with their own collective spin fluctuations, which soften at the antiferromagnetic transition. We argue that in 2D, the system has two typical energies-an effective spin-fermion interaction bar g and an energy ysf below which the system behaves as a Fermi liquid. The ratio of the two determines the dimensionless coupling constant for spin-fermion interaction lambda (2) alpha /line g /omega _{sf} . We show that u scales with the spin correlation length and diverges at criticality. This divergence implies that the conventional perturbative expansion breaks down. We develop a novel approach to the problem-the expansion in either the inverse number of hot spots in the Brillouin zone, or the inverse number of fermionic flavours-which allows us to explicitly account for all terms which diverge as powers of u, and treat the remaining, O(logu) terms in the RG formalism. We apply this technique to study the properties of the spin-fermion model in various frequency and temperature regimes. We present the results for the fermionic spectral function, spin susceptibility, optical conductivity and other observables. We compare our results in detail with the normal state data for the cuprates, and argue that the spin-fermion model is capable of explaining the anomalous normal state properties of the high Tc materials. We also show that the conventional Ӓ theory of the quantum-critical behaviour is inapplicable in 2D due to the singularity of the Ӓ vertex.
Thermodynamic properties and equation of state of liquid lead and lead bismuth eutectic
NASA Astrophysics Data System (ADS)
Sobolev, V. P.; Schuurmans, P.; Benamati, G.
2008-06-01
Since the 1950s, liquid lead (Pb) and lead-bismuth eutectic (Pb-Bi) have been studied in the USA, Canada and in the former-USSR as potential coolants for nuclear installations due to their very attractive thermophysical and neutronic properties. However, experimental data on the thermal properties of these coolants in the temperature range of interest are still incomplete and often contradictory. This makes it very difficult to perform design calculations and to analyse the normal and abnormal behaviour of nuclear installations where these coolants are expected to be used. Recently, a compilation of heavy liquid metal (HLM) properties along with recommendations for its use was prepared by the OECD/NEA Working Party on Fuel Cycle (WPFC) Expert Group on Lead-Bismuth Eutectic Technology. A brief review of this compilation and some new data are presented in this article. A set of correlations for the temperature dependence of the main thermodynamic properties of Pb and Pb-Bi(e) at normal pressure, and a set of simplified thermal and caloric equations of state for the liquid phase are proposed.
Iron chalcogenide superconductors at high magnetic fields
Lei, Hechang; Wang, Kefeng; Hu, Rongwei; Ryu, Hyejin; Abeykoon, Milinda; Bozin, Emil S; Petrovic, Cedomir
2012-01-01
Iron chalcogenide superconductors have become one of the most investigated superconducting materials in recent years due to high upper critical fields, competing interactions and complex electronic and magnetic phase diagrams. The structural complexity, defects and atomic site occupancies significantly affect the normal and superconducting states in these compounds. In this work we review the vortex behavior, critical current density and high magnetic field pair-breaking mechanism in iron chalcogenide superconductors. We also point to relevant structural features and normal-state properties. PMID:27877518
Pancreatic tissue assessment using fluorescence and reflectance spectroscopy
NASA Astrophysics Data System (ADS)
Chandra, Malavika; Heidt, David; Simeone, Diane; McKenna, Barbara; Scheiman, James; Mycek, Mary-Ann
2007-07-01
The ability of multi-modal optical spectroscopy to detect signals from pancreatic tissue was demonstrated by studying human pancreatic cancer xenografts in mice and freshly excised human pancreatic tumor tissue. Measured optical spectra and fluorescence decays were correlated with tissue morphological and biochemical properties. The measured spectral features and decay times correlated well with expected pathological differences in normal, pancreatitis and adenocarcinoma tissue states. The observed differences between the fluorescence and reflectance properties of normal, pancreatitis and adenocarcinoma tissue indicate a possible application of multi-modal optical spectroscopy to differentiating between the three tissue classifications.
Superconducting and Normal State Properties of OsB2*
NASA Astrophysics Data System (ADS)
Singh, Yogesh; Niazi, A.; Zong, X.; Suh, B. J.; Vannette, M. W.; Prozorov, R.; Johnston, D. C.
2007-03-01
OsB2 is a layered superhard metallic material that was found to superconduct below Tc= 2.1 K.^1 We report the first detailed measurements of the static and dynamic magnetic susceptibilities χ, electrical resistivity, heat capacity Cp, penetration depth, and ^11B NMR on OsB2 to characterize its superconducting and normal state properties. The results confirm that OsB2 is a bulk superconductor below Tc= 2.1 K@. Its properties can be described by a close to weak-coupling s-wave BCS model with an electron-phonon coupling constant λ= 0.4--0.5, δ(0)/(kBTc) 1.9, a small Ginzburg-Landau parameter κ of order 5 or less, and a small zero-temperature critical magnetic field of roughly 500 Oe. The ^11B NMR measurements in the normal state show a nuclear spin-lattice relaxation time T1= 2.1 s at room temperature and a Korringa law with T1T = 610 s.K at lower T, and a correspondingly small T-independent Knight shift. These results indicate a small s character of the conduction electron wave function at the B site at the Fermi level. Our results will be compared to corresponding data for MgB2.1. J. K. Vandenberg et al., Mater. Res. Bull. 10, 889 (1975).^*Supported by the USDOE under Contract No. W-7405-Eng-82. Permanent address: Dept. Phys., The Catholic Univ. Korea.
Zhang, Lingling; Liu, Bin; Xu, Yangwen; Yang, Ming; Feng, Yuan; Huang, Yaqing; Huan, Zhichun; Hou, Zhaorui
2015-02-03
To investigate the topological properties of the functional brain network in unilateral sensorineural hearing loss patients. In this study, we acquired resting-state BOLD- fMRI data from 19 right-sided SNHL patients and 31 healthy controls with normal hearing and constructed their whole brain functional networks. Two-sample two-tailed t-tests were performed to investigate group differences in topological parameters between the USNHL patients and the controls. Partial correlation analysis was conducted to determine the relationships between the network metrics and USNHL-related variables. Both USNHL patients and controls exhibited small-word architecture in their brain functional networks within the range 0. 1 - 0. 2 of sparsity. Compared to the controls, USNHL patients showed significant increase in characteristic path length and normalized characteristic path length, but significant decrease in global efficiency. Clustering coefficient, local efficiency and normalized clustering coefficient demonstrated no significant difference. Furthermore, USNHL patients exhibited no significant association between the altered network metrics and the duration of USNHL or the severity of hearing loss. Our results indicated the altered topological properties of whole brain functional networks in USNHL patients, which may help us to understand pathophysiologic mechanism of USNHL patients.
NASA Astrophysics Data System (ADS)
Kaplun, A. B.; Meshalkin, A. B.
2017-07-01
A new fundamental low-parametric equation of state in the form of reduced Helmholtz function for describing thermodynamic properties of normal substances was obtained using the methods and approaches developed earlier by the authors. It allows us to describe the thermal properties of gas, liquid, and fluid in the range from the density in ideal-gas state to the density at a triple point (except the critical region) with sufficiently high accuracy close to the accuracy of experiment. The caloric properties and sound velocity of argon, nitrogen, and carbon dioxide are calculated without involving any caloric data, except the ideal gas enthalpy. The obtained values of isochoric heat capacity, sound velocity, and other thermodynamic properties are in good agreement with experimental (reliable tabular) data.
NASA Technical Reports Server (NTRS)
Yu, Jaejun; Freeman, A. J.
1991-01-01
Predictions of local density functional (LDF) calculations of the electronic structure and transport properties of high T(sub c) superconductors are presented. As evidenced by the excellent agreement with both photoemission and positron annihilation experiments, a Fermi liquid nature of the 'normal' state of the high T(sub c) superconductors become clear for the metallic phase of these oxides. In addition, LDF predictions on the normal state transport properties are qualitatively in agreement with experiments on single crystals. It is emphasized that the signs of the Hall coefficients for the high T(sub c) superconductors are not consistent with the types of dopants (e.g., electron-doped or hole-doped) but are determined by the topology of the Fermi surfaces obtained from the LDF calculations.
Carhart-Harris, Robin L; Leech, Robert; Hellyer, Peter J; Shanahan, Murray; Feilding, Amanda; Tagliazucchi, Enzo; Chialvo, Dante R; Nutt, David
2014-01-01
Entropy is a dimensionless quantity that is used for measuring uncertainty about the state of a system but it can also imply physical qualities, where high entropy is synonymous with high disorder. Entropy is applied here in the context of states of consciousness and their associated neurodynamics, with a particular focus on the psychedelic state. The psychedelic state is considered an exemplar of a primitive or primary state of consciousness that preceded the development of modern, adult, human, normal waking consciousness. Based on neuroimaging data with psilocybin, a classic psychedelic drug, it is argued that the defining feature of "primary states" is elevated entropy in certain aspects of brain function, such as the repertoire of functional connectivity motifs that form and fragment across time. Indeed, since there is a greater repertoire of connectivity motifs in the psychedelic state than in normal waking consciousness, this implies that primary states may exhibit "criticality," i.e., the property of being poised at a "critical" point in a transition zone between order and disorder where certain phenomena such as power-law scaling appear. Moreover, if primary states are critical, then this suggests that entropy is suppressed in normal waking consciousness, meaning that the brain operates just below criticality. It is argued that this entropy suppression furnishes normal waking consciousness with a constrained quality and associated metacognitive functions, including reality-testing and self-awareness. It is also proposed that entry into primary states depends on a collapse of the normally highly organized activity within the default-mode network (DMN) and a decoupling between the DMN and the medial temporal lobes (which are normally significantly coupled). These hypotheses can be tested by examining brain activity and associated cognition in other candidate primary states such as rapid eye movement (REM) sleep and early psychosis and comparing these with non-primary states such as normal waking consciousness and the anaesthetized state.
Computation of Thermally Perfect Properties of Oblique Shock Waves
NASA Technical Reports Server (NTRS)
Tatum, Kenneth E.
1996-01-01
A set of compressible flow relations describing flow properties across oblique shock waves, derived for a thermally perfect, calorically imperfect gas, is applied within the existing thermally perfect gas (TPG) computer code. The relations are based upon a value of cp expressed as a polynomial function of temperature. The updated code produces tables of compressible flow properties of oblique shock waves, as well as the original properties of normal shock waves and basic isentropic flow, in a format similar to the tables for normal shock waves found in NACA Rep. 1135. The code results are validated in both the calorically perfect and the calorically imperfect, thermally perfect temperature regimes through comparisons with the theoretical methods of NACA Rep. 1135, and with a state-of-the-art computational fluid dynamics code. The advantages of the TPG code for oblique shock wave calculations, as well as for the properties of isentropic flow and normal shock waves, are its ease of use, and its applicability to any type of gas (monatomic, diatomic, triatomic, polyatomic, or any specified mixture thereof).
Carhart-Harris, Robin L.; Leech, Robert; Hellyer, Peter J.; Shanahan, Murray; Feilding, Amanda; Tagliazucchi, Enzo; Chialvo, Dante R.; Nutt, David
2014-01-01
Entropy is a dimensionless quantity that is used for measuring uncertainty about the state of a system but it can also imply physical qualities, where high entropy is synonymous with high disorder. Entropy is applied here in the context of states of consciousness and their associated neurodynamics, with a particular focus on the psychedelic state. The psychedelic state is considered an exemplar of a primitive or primary state of consciousness that preceded the development of modern, adult, human, normal waking consciousness. Based on neuroimaging data with psilocybin, a classic psychedelic drug, it is argued that the defining feature of “primary states” is elevated entropy in certain aspects of brain function, such as the repertoire of functional connectivity motifs that form and fragment across time. Indeed, since there is a greater repertoire of connectivity motifs in the psychedelic state than in normal waking consciousness, this implies that primary states may exhibit “criticality,” i.e., the property of being poised at a “critical” point in a transition zone between order and disorder where certain phenomena such as power-law scaling appear. Moreover, if primary states are critical, then this suggests that entropy is suppressed in normal waking consciousness, meaning that the brain operates just below criticality. It is argued that this entropy suppression furnishes normal waking consciousness with a constrained quality and associated metacognitive functions, including reality-testing and self-awareness. It is also proposed that entry into primary states depends on a collapse of the normally highly organized activity within the default-mode network (DMN) and a decoupling between the DMN and the medial temporal lobes (which are normally significantly coupled). These hypotheses can be tested by examining brain activity and associated cognition in other candidate primary states such as rapid eye movement (REM) sleep and early psychosis and comparing these with non-primary states such as normal waking consciousness and the anaesthetized state. PMID:24550805
Interocular suppression in normal and amblyopic vision: spatio-temporal properties.
Huang, Pi-Chun; Baker, Daniel H; Hess, Robert F
2012-10-31
We measured the properties of interocular suppression in strabismic amblyopes and compared these to dichoptic masking in binocularly normal observers. We used a dichoptic version of the well-established probed-sinewave paradigm that measured sensitivity to a brief target stimulus (one of four letters to be discriminated) in the amblyopic eye at different times relative to a suppression-inducing mask in the fixing eye. This was done using both sinusoidal steady state and transient approaches. The suppression-inducing masks were either modulations of luminance or contrast (full field, just overlaying the target, or just surrounding the target). Our results were interpreted using a descriptive model that included contrast gain control and spatio-temporal filtering prior to excitatory binocular combination. The suppression we measured, other than in magnitude, was not fundamentally different from normal dichoptic masking: lowpass spatio-temporal properties with similar contributions from both surround and overlay suppression.
Jin, Rui; Zhang, Bing; Liu, Xiao-Qing; Liu, Sen-Mao; Liu, Xin; Li, Lian-Zhen; Zhang, Qian; Xue, Chun-Miao
2011-07-01
The properties of Chinese materia medica are believed to be the summarization of the effects of biological performance on the various body states. Systemic discussion of chemical-factor elements, body-condition elements, biological-performance elements and their interrelationships is needed for research into the properties of Chinese materia medica. Following the practical characteristics of Chinese medicine, the three-element mathematical model was formed by introducing some mathematical concepts and methods and was used to study the cold or hot property of Chinese medicine, and to investigate the difference in biological performances of the two properties. By using the concept of different functionality of Chinese medicine on abnormal states and the idea of interaction in mathematics, the effects of chemical-factor elements and body-condition elements were normalized to the amount of biological performance which was represented by some important indicators. The three-element mathematical model was formed with scatter plots through four steps, including effect separation, intensity calculation, frequency statistics and relevance analysis. A comparison pharmacology experiment of administration of hot property medicines, Fuzi (Radix Aconiti Lateralis Preparata) and Rougui (Cortex Cinnamomi), and cold property medicines, Huangbai (Cortex Phellodendri) and Zhizi (Fructus Gardeniae) on normal and glucocorticoid-induced yang-deficiency and yin-deficiency states was designed. The results were analyzed by the mathematical model. The scatter plots were the main output of model analysis. The expression of cold property and hot property was able to be quantified by frequency distribution of biological indexes of administrations on yang-deficiency and yin-deficiency states in the "efficacy zone" and "toxicity zone" of the plots and by the relevance analysis. The ratios of biological indicator frequency in the "efficacy zone" of administrations on yang-deficiency state and yin-deficiency state were 7:3 for Fuzi, 3:3 for Rougui, 4:4 for Huangbai and 1:5 for Zhizi. The sums of the biological indicator frequency in the "toxicity zone" of administration on the two states were 4 for Fuzi, 0 for Rougui, 2 for Huangbai and 4 for Zhizi. The relevance analysis showed that the order from Fuzi, Rougui, Huangbai to Zhizi was proportional to the change from "be true of yang-deficiency state" to "be true of yin-deficiency state". The extent of the hot property decreased while that of the cold property increased in the order of Fuzi, Rougui, Huangbai and Zhizi. The stronger the efficacy of above medicines is, the more obvious the toxicity displayed. The three-element mathematical model employed in this study is effectively capable of explaining the different biological expressions between hot property medicines and cold property medicines. This suggests that it may provide a mathematical tool and theoretical basis for the modern interpretation of cold property and hot property of Chinese medicine, and provide new ideas for further studing into the essence of Chinese medicine property theory.
Stewart, Daniel C; Rubiano, Andrés; Dyson, Kyle; Simmons, Chelsey S
2017-01-01
While mechanical properties of the brain have been investigated thoroughly, the mechanical properties of human brain tumors rarely have been directly quantified due to the complexities of acquiring human tissue. Quantifying the mechanical properties of brain tumors is a necessary prerequisite, though, to identify appropriate materials for surgical tool testing and to define target parameters for cell biology and tissue engineering applications. Since characterization methods vary widely for soft biological and synthetic materials, here, we have developed a characterization method compatible with abnormally shaped human brain tumors, mouse tumors, animal tissue and common hydrogels, which enables direct comparison among samples. Samples were tested using a custom-built millimeter-scale indenter, and resulting force-displacement data is analyzed to quantify the steady-state modulus of each sample. We have directly quantified the quasi-static mechanical properties of human brain tumors with effective moduli ranging from 0.17-16.06 kPa for various pathologies. Of the readily available and inexpensive animal tissues tested, chicken liver (steady-state modulus 0.44 ± 0.13 kPa) has similar mechanical properties to normal human brain tissue while chicken crassus gizzard muscle (steady-state modulus 3.00 ± 0.65 kPa) has similar mechanical properties to human brain tumors. Other materials frequently used to mimic brain tissue in mechanical tests, like ballistic gel and chicken breast, were found to be significantly stiffer than both normal and diseased brain tissue. We have directly compared quasi-static properties of brain tissue, brain tumors, and common mechanical surrogates, though additional tests would be required to determine more complex constitutive models.
United States-Cuba Normalization Act of 2013
Rep. Rush, Bobby L. [D-IL-1
2013-05-09
House - 06/14/2013 Referred to the Subcommittee on Courts, Intellectual Property, and the Internet. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
Electron localization mechanism in the normal state of high- T c superconductors
NASA Astrophysics Data System (ADS)
Yamani, Z.; Akhavan, M.
The ceramic compounds Gd 1- xPr xCu 3O 7- y (GdPr-123) with 0.0 ≤ x≤1.0, were synthesized by standard solid state reaction technique. XRD analysis shows a predominantly single phase perovskite structure with the orthorhombic Pmmm symmetry. The samples have been examined for superconductivity by measuring electrical resistivity within the temperature range 10-300 K. These measurements show a suppression of superconductivity with increasing x. It is observed that the critical Pr concentration ( x cr) required to suppress superconductivity is about 0.45, the samples with x < 0.45 become superconducting and are metallic in their normal state, the samples with x ≥ 0.45 do not become superconducting and show a semiconducting behavior above 10 K. To interpret the normal state properties of the samples, the quantum percolation theory based on localized states is applied. A cross-over between variable-range hopping (VRH) and Coulomb gap (CG) mechanisms is observed as a result of decreasing the Pr content.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinink, Shawn K.; Yaras, Metin I., E-mail: Metin.Yaras@carleton.ca
2015-06-15
Forced-convection heat transfer in a heated working fluid at a thermodynamic state near its pseudocritical point is poorly predicted by correlations calibrated with data at subcritical temperatures and pressures. This is suggested to be primarily due to the influence of large wall-normal thermophysical property gradients that develop in proximity of the pseudocritical point on the concentration of coherent turbulence structures near the wall. The physical mechanisms dominating this influence remain poorly understood. In the present study, direct numerical simulation is used to study the development of coherent vortical structures within a turbulent spot under the influence of large wall-normal propertymore » gradients. A turbulent spot rather than a fully turbulent boundary layer is used for the study, for the coherent structures of turbulence in a spot tend to be in a more organized state which may allow for more effective identification of cause-and-effect relationships. Large wall-normal gradients in thermophysical properties are created by heating the working fluid which is near the pseudocritical thermodynamic state. It is found that during improved heat transfer, wall-normal gradients in density accelerate the growth of the Kelvin-Helmholtz instability mechanism in the shear layer enveloping low-speed streaks, causing it to roll up into hairpin vortices at a faster rate. It is suggested that this occurs by the baroclinic vorticity generation mechanism which accelerates the streamwise grouping of vorticity during shear layer roll-up. The increased roll-up frequency leads to reduced streamwise spacing between hairpin vortices in wave packets. The density gradients also promote the sinuous instability mode in low-speed streaks. The resulting oscillations in the streaks in the streamwise-spanwise plane lead to locally reduced spanwise spacing between hairpin vortices forming over adjacent low-speed streaks. The reduction in streamwise and spanwise spacing between hairpin vortices causes them to interact more frequently by merging together and by breaking apart into smaller turbulence structures.« less
Jeon, I.; Huang, K.; Yazici, D.; ...
2016-03-07
We report a study of the superconducting and normal-state properties of the filled-skutterudite system PrPt 4Ge 12 - x Sb x. Polycrystalline samples with Sb concentrations up to x = 5 were synthesized and investigated by means of x-ray diffraction, electrical resistivity, magnetic susceptibility, and specific heat measurements. We observed a suppression of superconductivity with increasing Sb substitution up to x = 4 , above which no signature of superconductivity was observed down to 140 mK. The Sommerfeld coefficient, γ , of superconducting specimens decreases with increasing x up to x = 3 , suggesting that superconductivity may depend onmore » the density of electronic states in this system. Finally, the specific heat for x = 0.5 exhibits an exponential temperature dependence in the superconducting state, reminiscent of a nodeless superconducting energy gap. Here we observed evidence for a weak “rattling” mode associated with the Pr ions, characterized by an Einstein temperature Θ E ~ 60 K for 0 ≤ x ≤ 5 ; however, the rattling mode may not play any role in suppressing superconductivity.« less
NASA Technical Reports Server (NTRS)
Kresin, V. Z.; Wolf, S. A.
1991-01-01
We present a unified approach based on the Fermi liquid picture which allows us to describe the normal as well as the superconducting properties of the doped cuprates. The theory that is presented is for the doped compounds which are metallic. One can distinguish two interrelated, but nevertheless, different directions in the physics of high T(sub c): one involving the problem of carrier doping and the transition to the metallic state, and the second being the description of the metallic state. It is important that this metallic phase undergoes the transition into the superconducting state; as a result, our analysis is directly related to the origin of high T(sub c). We are using a quasi-2D Fermi liquid model to estimate the fundamental parameters of these very interesting materials. We find that this description is able to describe these materials and also that phonons and plasmons play a major role in the mechanism of high T(sub c).
NASA Astrophysics Data System (ADS)
Xu, Xue-Xiang; Yuan, Hong-Chun; Wang, Yan
2014-07-01
We investigate the nonclassical properties of arbitrary number photon annihilation-then-creation operation (AC) and creation-then-annihilation operation (CA) to the thermal state (TS), whose normalization factors are related to the polylogarithm function. Then we compare their quantum characters, such as photon number distribution, average photon number, Mandel Q-parameter, purity and the Wigner function. Because of the noncommutativity between the annihilation operator and the creation operator, the ACTS and the CATS have different nonclassical properties. It is found that nonclassical properties are exhibited more strongly after AC than after CA. In addition we also examine their non-Gaussianity. The result shows that the ACTS can present a slightly bigger non-Gaussianity than the CATS.
Laser diode package with enhanced cooling
Deri, Robert J; Kotovsky, Jack; Spadaccini, Christopher M
2012-06-26
This invention provides a new method for rapidly analyzing single bioparticles to assess their material condition and state of health. The method is enabled by use of a resonant cavity apparatus to measure an optical property related to the bioparticle size and refractive index. Measuring the refractive index is useful for determining material properties of the bioparticle. The material properties depend on the biomolecular composition of the bioparticle. The biomolecular composition is, in turn, dependent on the state of health of the bioparticle. Thus, measured optical properties can be used to differentiate normal (healthy) and abnormal (diseased) states of bioparticles derived from cells or tissues. The method is illustrated with data obtained from a resonator with a gain medium. The invention also provides new methods for making multiple measurements in a single device and detecting, analyzing, and manipulating bioparticles that are much smaller than the wavelength of light.
Gourley, Paul L
2012-06-26
This invention provides a new method for rapidly analyzing single bioparticles to assess their material condition and state of health. The method is enabled by use of a resonant cavity apparatus to measure an optical property related to the bioparticle size and refractive index. Measuring the refractive index is useful for determining material properties of the bioparticle. The material properties depend on the biomolecular composition of the bioparticle. The biomolecular composition is, in turn, dependent on the state of health of the bioparticle. Thus, measured optical properties can be used to differentiate normal (healthy) and abnormal (diseased) states of bioparticles derived from cells or tissues. The method is illustrated with data obtained from a resonator with a gain medium. The invention also provides new methods for making multiple measurements in a single device and detecting, analyzing, and manipulating bioparticles that are much smaller than the wavelength of light.
Rubiano, Andrés; Dyson, Kyle; Simmons, Chelsey S.
2017-01-01
While mechanical properties of the brain have been investigated thoroughly, the mechanical properties of human brain tumors rarely have been directly quantified due to the complexities of acquiring human tissue. Quantifying the mechanical properties of brain tumors is a necessary prerequisite, though, to identify appropriate materials for surgical tool testing and to define target parameters for cell biology and tissue engineering applications. Since characterization methods vary widely for soft biological and synthetic materials, here, we have developed a characterization method compatible with abnormally shaped human brain tumors, mouse tumors, animal tissue and common hydrogels, which enables direct comparison among samples. Samples were tested using a custom-built millimeter-scale indenter, and resulting force-displacement data is analyzed to quantify the steady-state modulus of each sample. We have directly quantified the quasi-static mechanical properties of human brain tumors with effective moduli ranging from 0.17–16.06 kPa for various pathologies. Of the readily available and inexpensive animal tissues tested, chicken liver (steady-state modulus 0.44 ± 0.13 kPa) has similar mechanical properties to normal human brain tissue while chicken crassus gizzard muscle (steady-state modulus 3.00 ± 0.65 kPa) has similar mechanical properties to human brain tumors. Other materials frequently used to mimic brain tissue in mechanical tests, like ballistic gel and chicken breast, were found to be significantly stiffer than both normal and diseased brain tissue. We have directly compared quasi-static properties of brain tissue, brain tumors, and common mechanical surrogates, though additional tests would be required to determine more complex constitutive models. PMID:28582392
1992-03-14
overdoped Lal. 66 Sr0 34 CuO4 . 1. Introduction Understanding the normal state charge and spin dynamics of cuprates is closely tied to an explanation of high...frequency of the tank circuit of 160 MHz. As predicted by theory [191, the SQUID noise is reduced significantly when using the higher frequency. This...emphasized that the spin excitation gap is not decreasing with temperature as expected in the classical BCS theory . An other astonishing result is
NASA Astrophysics Data System (ADS)
Azih, Chukwudi; Yaras, Metin I.
2018-01-01
The current literature suggests that large spatial gradients of thermophysical properties, which occur in the vicinity of the pseudo-critical thermodynamic state, may result in significant variations in forced-convection heat transfer rates. Specifically, these property gradients induce inertia- and buoyancy-driven phenomena that may enhance or deteriorate the turbulence-dominated heat convection process. Through direct numerical simulations, the present study investigates the role of coherent flow structures in channel geometries for non-buoyant and buoyant flows of supercritical water, with buoyant configurations involving wall-normal oriented gravitational acceleration and downstream-oriented gravitational acceleration. This sequence of simulations enables the evaluation of the relative contributions of inertial and buoyancy phenomena to heat transfer variations. In these simulations, the state of the working fluid is in the vicinity of the pseudo-critical point. The uniform wall heat flux and the channel mass flux are specified such that the heat to mass flux ratio is 3 kJ/kg, with an inflow Reynolds number of 12 000 based on the channel hydraulic diameter, the area-averaged inflow velocity, and fluid properties evaluated at the bulk temperature and pressure of the inflow plane. In the absence of buoyancy forces, notable reductions in the density and viscosity in close proximity of the heated wall are observed to promote generation of small-scale vortices, with resultant breakdown into smaller scales as they interact with preexisting larger near-wall vortices. This interaction results in a reduction in the overall thermal mixing at particular wall-normal regions of the channel. Under the influence of wall-normal gravitational acceleration, the wall-normal density gradients are noted to enhance ejection motions due to baroclinic vorticity generation on the lower wall, thus providing additional wall-normal thermal mixing. Along the upper wall, the same mechanism generates streamwise vorticity of the opposing sense of rotation in the close vicinity to the respective legs of the hairpin vortices causing a net reduction in thermal mixing. Finally, in the case of downstream-oriented gravitational acceleration, baroclinic vorticity generation as per spanwise density gradients causes additional wall-normal thermal mixing by promoting larger-scale ejection and sweep motions.
Quantum strain sensor with a topological insulator HgTe quantum dot
Korkusinski, Marek; Hawrylak, Pawel
2014-01-01
We present a theory of electronic properties of HgTe quantum dot and propose a strain sensor based on a strain-driven transition from a HgTe quantum dot with inverted bandstructure and robust topologically protected quantum edge states to a normal state without edge states in the energy gap. The presence or absence of edge states leads to large on/off ratio of conductivity across the quantum dot, tunable by adjusting the number of conduction channels in the source-drain voltage window. The electronic properties of a HgTe quantum dot as a function of size and applied strain are described using eight-band Luttinger and Bir-Pikus Hamiltonians, with surface states identified with chirality of Luttinger spinors and obtained through extensive numerical diagonalization of the Hamiltonian. PMID:24811674
Superconducting and normal-state anisotropy of the doped topological insulator Sr 0.1Bi 2Se 3
Smylie, M. P.; Willa, K.; Claus, H.; ...
2018-05-16
Sr xBi 2Se 3 and the related compounds Cu xBi 2Se 3 and Nb xBi 2Se 3 have attracted considerable interest, as these materials may be realizations of unconventional topological superconductors. Superconductivity with T c ~3 K in Sr xBi 2Se 3 arises upon intercalation of Sr into the layered topological insulator Bi 2Se 3. Here we elucidate the anisotropy of the normal and superconducting state of Sr 0.1Bi 2Se 3 with angular dependent magnetotransport and thermodynamic measurements. High resolution x-ray diffraction studies underline the high crystalline quality of the samples. We demonstrate that the normal state electronic and magneticmore » properties of Sr 0.1Bi 2Se 3 are isotropic in the basal plane while we observe a large two-fold in-plane anisotropy of the upper critical field in the superconducting state. In conclusion, our results support the recently proposed odd-parity nematic state characterized by a nodal gap of Eu symmetry in Sr xBi 2Se 3.« less
Superconducting and normal-state anisotropy of the doped topological insulator Sr 0.1Bi 2Se 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smylie, M. P.; Willa, K.; Claus, H.
Sr xBi 2Se 3 and the related compounds Cu xBi 2Se 3 and Nb xBi 2Se 3 have attracted considerable interest, as these materials may be realizations of unconventional topological superconductors. Superconductivity with T c ~3 K in Sr xBi 2Se 3 arises upon intercalation of Sr into the layered topological insulator Bi 2Se 3. Here we elucidate the anisotropy of the normal and superconducting state of Sr 0.1Bi 2Se 3 with angular dependent magnetotransport and thermodynamic measurements. High resolution x-ray diffraction studies underline the high crystalline quality of the samples. We demonstrate that the normal state electronic and magneticmore » properties of Sr 0.1Bi 2Se 3 are isotropic in the basal plane while we observe a large two-fold in-plane anisotropy of the upper critical field in the superconducting state. In conclusion, our results support the recently proposed odd-parity nematic state characterized by a nodal gap of Eu symmetry in Sr xBi 2Se 3.« less
Superconducting and normal-state anisotropy of the doped topological insulator Sr0.1Bi2Se3.
Smylie, M P; Willa, K; Claus, H; Koshelev, A E; Song, K W; Kwok, W-K; Islam, Z; Gu, G D; Schneeloch, J A; Zhong, R D; Welp, U
2018-05-16
Sr x Bi 2 Se 3 and the related compounds Cu x Bi 2 Se 3 and Nb x Bi 2 Se 3 have attracted considerable interest, as these materials may be realizations of unconventional topological superconductors. Superconductivity with T c ~3 K in Sr x Bi 2 Se 3 arises upon intercalation of Sr into the layered topological insulator Bi 2 Se 3 . Here we elucidate the anisotropy of the normal and superconducting state of Sr 0.1 Bi 2 Se 3 with angular dependent magnetotransport and thermodynamic measurements. High resolution x-ray diffraction studies underline the high crystalline quality of the samples. We demonstrate that the normal state electronic and magnetic properties of Sr 0.1 Bi 2 Se 3 are isotropic in the basal plane while we observe a large two-fold in-plane anisotropy of the upper critical field in the superconducting state. Our results support the recently proposed odd-parity nematic state characterized by a nodal gap of Eu symmetry in Sr x Bi 2 Se 3 .
75 FR 44901 - Qualified Zone Academy Bonds; Obligations of States and Political Subdivisions
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-30
... remedial actions for QZABs. A public hearing was scheduled for July 21, 2004. The public hearing was...) Retirement from service. The retirement from service of financed property due to normal wear or obsolescence...
Environmental Containment Property Estimation Using QSARs in an Expert System
1991-10-15
economical method to estimate aqueous solubility, octanol/ water partition coefficients, vapor pressures, organic carbon, normalized soil sorption...PROPERTY ESTIMATION USING QSARs IN AN EXPERT SYSTEM William J. Doucette Mark S. Holt Doug J. Denne Joan E. McLean Utah State University Utah Water ...persistence of a chemical are aqueous solubility, octanol/ water partition coefficient, soil/ water sorption coefficient, Henry’s Law constant
Simple display system of mechanical properties of cells and their dispersion.
Shimizu, Yuji; Kihara, Takanori; Haghparast, Seyed Mohammad Ali; Yuba, Shunsuke; Miyake, Jun
2012-01-01
The mechanical properties of cells are unique indicators of their states and functions. Though, it is difficult to recognize the degrees of mechanical properties, due to small size of the cell and broad distribution of the mechanical properties. Here, we developed a simple virtual reality system for presenting the mechanical properties of cells and their dispersion using a haptic device and a PC. This system simulates atomic force microscopy (AFM) nanoindentation experiments for floating cells in virtual environments. An operator can virtually position the AFM spherical probe over a round cell with the haptic handle on the PC monitor and feel the force interaction. The Young's modulus of mesenchymal stem cells and HEK293 cells in the floating state was measured by AFM. The distribution of the Young's modulus of these cells was broad, and the distribution complied with a log-normal pattern. To represent the mechanical properties together with the cell variance, we used log-normal distribution-dependent random number determined by the mode and variance values of the Young's modulus of these cells. The represented Young's modulus was determined for each touching event of the probe surface and the cell object, and the haptic device-generating force was calculated using a Hertz model corresponding to the indentation depth and the fixed Young's modulus value. Using this system, we can feel the mechanical properties and their dispersion in each cell type in real time. This system will help us not only recognize the degrees of mechanical properties of diverse cells but also share them with others.
Simple Display System of Mechanical Properties of Cells and Their Dispersion
Shimizu, Yuji; Kihara, Takanori; Haghparast, Seyed Mohammad Ali; Yuba, Shunsuke; Miyake, Jun
2012-01-01
The mechanical properties of cells are unique indicators of their states and functions. Though, it is difficult to recognize the degrees of mechanical properties, due to small size of the cell and broad distribution of the mechanical properties. Here, we developed a simple virtual reality system for presenting the mechanical properties of cells and their dispersion using a haptic device and a PC. This system simulates atomic force microscopy (AFM) nanoindentation experiments for floating cells in virtual environments. An operator can virtually position the AFM spherical probe over a round cell with the haptic handle on the PC monitor and feel the force interaction. The Young's modulus of mesenchymal stem cells and HEK293 cells in the floating state was measured by AFM. The distribution of the Young's modulus of these cells was broad, and the distribution complied with a log-normal pattern. To represent the mechanical properties together with the cell variance, we used log-normal distribution-dependent random number determined by the mode and variance values of the Young's modulus of these cells. The represented Young's modulus was determined for each touching event of the probe surface and the cell object, and the haptic device-generating force was calculated using a Hertz model corresponding to the indentation depth and the fixed Young's modulus value. Using this system, we can feel the mechanical properties and their dispersion in each cell type in real time. This system will help us not only recognize the degrees of mechanical properties of diverse cells but also share them with others. PMID:22479595
Corneal polarimetry after LASIK refractive surgery
NASA Astrophysics Data System (ADS)
Bueno, Juan M.; Berrio, Esther; Artal, Pablo
2006-01-01
Imaging polarimetry provides spatially resolved information on the polarization properties of a system. In the case of the living human eye, polarization could be related to the corneal biomechanical properties, which vary from the normal state as a result of surgery or pathologies. We have used an aberro-polariscope, which we recently developed, to determine and to compare the spatially resolved maps of polarization parameters across the pupil between normal healthy and post-LASIK eyes. The depolarization distribution is not uniform across the pupil, with post-surgery eyes presenting larger levels of depolarization. While retardation increases along the radius in normal eyes, this pattern becomes irregular after LASIK refractive surgery. The maps of slow axis also differ in normal and post-surgery eyes, with a larger disorder in post-LASIK eyes. Since these changes in polarization indicate subtle structural modifications of the cornea, this approach can be useful in a clinical environment to follow the biomechanical and optical changes of the cornea after refractive surgery or for the early diagnosis of different corneal pathologies.
NASA Astrophysics Data System (ADS)
Anderson, Philip W.; Casey, Philip A.
2010-04-01
We present a formalism for dealing directly with the effects of the Gutzwiller projection implicit in the t-J model which is widely believed to underlie the phenomenology of the high-Tc cuprates. We suggest that a true Bardeen-Cooper-Schrieffer condensation from a Fermi liquid state takes place, but in the unphysical space prior to projection. At low doping, however, instead of a hidden Fermi liquid one gets a 'hidden' non-superconducting resonating valence bond state which develops hole pockets upon doping. The theory which results upon projection does not follow conventional rules of diagram theory and in fact in the normal state is a Z = 0 non-Fermi liquid. Anomalous properties of the 'strange metal' normal state are predicted and compared against experimental findings.
Stress Modulus of Cancer Cells
NASA Astrophysics Data System (ADS)
Bonin, Keith; Guthold, Martin; Guo, Xinyi; Sigley, Justin
2012-02-01
Our main goal is to study the different physical and mechanical properties of cells as they advance through different stages of neoplastic transformation from normal to the metastatic state. Since recent reports indicate there is significant ambiguity about how these properties change for different cancer cells, we plan to measure these properties for a single line of cells, and to determine whether the changes vary for different cellular components: i.e. whether the change in physical properties is due to a change in the cytoskeleton, the cell membrane, the cytoplasm, or a combination of these elements. Here we expect to present data on the stress modulus of cancer cells at different stages: normal, mortal cancerous, immortal cancerous, and tumorigenic. The cells are Weinberg cell line Human Mammary Epithelial (HME) cells. Atomic force microscope (AFM) probes with different diameters are used to push on the cell membrane to measure the local, regional and global cell stress modulus. Preliminary results on normal HME cells suggests a stress modulus of 1.5 ± 0.8 kPa when pushing with 7 μm spherical probes. We anticipate reporting an improved value for the modulus as well as results for some of the Weinberg cancer cells.
Diagonal ordering operation technique applied to Morse oscillator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popov, Dušan, E-mail: dusan_popov@yahoo.co.uk; Dong, Shi-Hai; Popov, Miodrag
2015-11-15
We generalize the technique called as the integration within a normally ordered product (IWOP) of operators referring to the creation and annihilation operators of the harmonic oscillator coherent states to a new operatorial approach, i.e. the diagonal ordering operation technique (DOOT) about the calculations connected with the normally ordered product of generalized creation and annihilation operators that generate the generalized hypergeometric coherent states. We apply this technique to the coherent states of the Morse oscillator including the mixed (thermal) state case and get the well-known results achieved by other methods in the corresponding coherent state representation. Also, in the lastmore » section we construct the coherent states for the continuous dynamics of the Morse oscillator by using two new methods: the discrete–continuous limit, respectively by solving a finite difference equation. Finally, we construct the coherent states corresponding to the whole Morse spectrum (discrete plus continuous) and demonstrate their properties according the Klauder’s prescriptions.« less
Superconducting and normal-state properties of the layered boride OsB2
NASA Astrophysics Data System (ADS)
Singh, Yogesh; Niazi, A.; Vannette, M. D.; Prozorov, R.; Johnston, D. C.
2007-12-01
OsB2 crystallizes in an orthorhombic structure (Pmmn) which contains alternate boron and osmium layers stacked along the c axis. The boron layers consist of puckered hexagons as opposed to the flat graphite-like boron layers in MgB2 . OsB2 is reported to become superconducting below 2.1K . We report results of the dynamic and static magnetic susceptibilities, electrical resistivity, Hall effect, heat capacity, and penetration depth measurements on arc-melted polycrystalline samples of OsB2 to characterize its superconducting and normal-state properties. These measurements confirmed that OsB2 becomes a bulk superconductor below Tc=2.1K . Our results indicate that OsB2 is a moderate-coupling type-II superconductor with an electron-phonon coupling constant λep≈0.4-0.5 , a small Ginzburg-Landau parameter κ˜1-2 , and an upper critical magnetic field Hc2(0.5K)˜420Oe for an unannealed sample and Hc2(1K)˜330Oe for an annealed sample. The temperature dependence of the superfluid density ns(T) for the unannealed sample is consistent with an s -wave superconductor with a slightly enhanced zero temperature gap Δ(0)=1.9kBTc and a zero temperature London penetration depth λ(0)=0.38(2)μm . The ns(T) data for the annealed sample show deviations from the predictions of the single-band s -wave BCS model. The magnetic, transport, and thermal properties in the normal state of isostructural and isoelectronic RuB2 , which is reported to become superconducting below 1.6K , are also reported.
Lagrangian formulation of irreversible thermodynamics and the second law of thermodynamics.
Glavatskiy, K S
2015-05-28
We show that the equations which describe irreversible evolution of a system can be derived from a variational principle. We suggest a Lagrangian, which depends on the properties of the normal and the so-called "mirror-image" system. The Lagrangian is symmetric in time and therefore compatible with microscopic reversibility. The evolution equations in the normal and mirror-imaged systems are decoupled and describe therefore independent irreversible evolution of each of the systems. The second law of thermodynamics follows from a symmetry of the Lagrangian. Entropy increase in the normal system is balanced by the entropy decrease in the mirror-image system, such that there exists an "integral of evolution" which is a constant. The derivation relies on the property of local equilibrium, which states that the local relations between the thermodynamic quantities in non-equilibrium are the same as in equilibrium.
Lagrangian formulation of irreversible thermodynamics and the second law of thermodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glavatskiy, K. S.
We show that the equations which describe irreversible evolution of a system can be derived from a variational principle. We suggest a Lagrangian, which depends on the properties of the normal and the so-called “mirror-image” system. The Lagrangian is symmetric in time and therefore compatible with microscopic reversibility. The evolution equations in the normal and mirror-imaged systems are decoupled and describe therefore independent irreversible evolution of each of the systems. The second law of thermodynamics follows from a symmetry of the Lagrangian. Entropy increase in the normal system is balanced by the entropy decrease in the mirror-image system, such thatmore » there exists an “integral of evolution” which is a constant. The derivation relies on the property of local equilibrium, which states that the local relations between the thermodynamic quantities in non-equilibrium are the same as in equilibrium.« less
Bell-correlated activable bound entanglement in multiqubit systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bandyopadhyay, Somshubhro; Chattopadhyay, Indrani; Roychowdhury, Vwani
2005-06-15
We show that the Hilbert space of even number ({>=}4) of qubits can always be decomposed as a direct sum of four orthogonal subspaces such that the normalized projectors onto the subspaces are activable bound entangled (ABE) states. These states also show a surprising recursive relation in the sense that the states belonging to 2N+2 qubits are Bell correlated to the states of 2N qubits; hence, we refer to these states as Bell-correlated ABE (BCABE) states. We also study the properties of noisy BCABE states and show that they are very similar to that of two qubit Bell-diagonal states.
Effects of neutron irradiation on carbon doped MgB2 wire segments
NASA Astrophysics Data System (ADS)
Wilke, R. H. T.; Bud'ko, S. L.; Canfield, P. C.; Finnemore, D. K.; Suplinskas, Raymond J.; Farmer, J.; Hannahs, S. T.
2006-06-01
We have studied the evolution of superconducting and normal state properties of neutron irradiated Mg(B0.962C0.038)2 wire segments as a function of post-exposure annealing time and temperature. The initial fluence fully suppressed superconductivity and resulted in an anisotropic expansion of the unit cell. Superconductivity was restored by post-exposure annealing. The upper critical field, Hc2(T = 0), approximately scales with Tc, starting with an undamaged Tc near 37 K and Hc2(T = 0) near 32 T. Up to an annealing temperature of 400 °C the recovery of Tc tends to coincide with a decrease in the normal state resistivity and a systematic recovery of the lattice parameters. Above 400 °C a decrease in ordering along the c-direction coincides with an increase in resistivity, but no apparent change in the evolution of Tc and Hc2. To a first order approximation, it appears that carbon doping and neutron damage affect the superconducting properties of MgB2 independently.
Normal state above the upper critical field in Fe 1 + y Te 1 - x ( Se , S ) x
Wang, Aifeng; Kampert, Erik; Saadaoui, H.; ...
2017-05-03
Here, we have investigated the magnetotransport above the upper critical field ( H c 2 ) in Fe 1.14 Te 0.7 Se 0.3 , Fe 1.02 Te 0.61 Se 0.39 , Fe 1.05 Te 0.89 Se 0.11 , and Fe 1.06 Te 0.86 S 0.14 . The μ SR measurements confirm electronic phase separation in Fe 1.06 Te 0.86 S 0.14 , similar to Fe 1 + y Te 1 - x Se x . We found that superconductivity is suppressed in high magnetic fields above 60 T, allowing us to gain insight into the normal-state properties below the zero-fieldmore » superconducting transition temperature ( T c ). We also show that the resistivity of Fe 1.14 Te 0.7 Se 0.3 and Fe 1.02 Te 0.61 Se 0.39 above H c 2 is metallic as T → 0 , just like the normal-state resistivity above T c . On the other hand, the normal-state resistivity in Fe 1.05 Te 0.89 Se 0.11 and Fe 1.06 Te 0.86 S 0.14 is nonmetallic down to lowest temperatures, reflecting the superconductor-insulator transition due to electronic phase separation.« less
Superconducting properties of NbN film, bridge and meanders
NASA Astrophysics Data System (ADS)
Joshi, Lalit M.; Verma, Apoorva; Gupta, Anurag; Rout, P. K.; Husale, Sudhir; Budhani, R. C.
2018-05-01
The transport properties of superconducting NbN nanostructures in the form of thin film, bridge of width (w) = 50 μm and three meanders of w = 500, 250 and 100 nm have been investigated by resistance (R) measurements in temperature (T) range = 2 -300 K and magnetic field (B) range = 0 - 7 Tesla. The nanostructuring was carried out using Focused Ion Beam (FIB) milling. Reduction of sample width results in significant changes in the normal and superconducting state properties. For instance, the observed metallic behavior in the thin film sample is lost and the normal state resistance increases drastically from 2.4 Ω to 418 kΩ for the 100 nm meander. In the superconducting state, the value of critical temperature Tc (upper critical field Bc2 at T = 0 K) reduces gradually with width reduction, it changes from 13.15 K (42.8 Tesla) in the case of thin film sample to 5.7 K (12.7 Tesla) for the 100 nm meander sample. The superconducting transitions are found to get broader for the bridge sample and the meanders additionally show low-temperature resistive tails. In case of all the samples with reduced width, the transition onsets are found to be rounded at surprisingly high values of T ˜ 25 K >> Tc. These results are discussed in terms of the possible effects of FIB processing and weak localization in our samples.
Annealing Effects on the Normal-State Resistive Properties of Underdoped Cuprates
NASA Astrophysics Data System (ADS)
Vovk, R. V.; Khadzhai, G. Ya.; Nazyrov, Z. F.; Kamchatnaya, S. N.; Feher, A.; Dobrovolskiy, O. V.
2018-05-01
The influence of room-temperature annealing on the parameters of the basal-plane electrical resistance of underdoped YBa_2Cu_3O_{7-δ } and HoBa_2Cu_3O_{7-δ } single crystals in the normal and superconducting states is investigated. The form of the derivatives dρ (T)/dT makes it possible to determine the onset temperature of the fluctuation conductivity and indicates a nonuniform distribution of the labile oxygen. Annealing has been revealed to lead to a monotonic decrease in the oxygen deficiency, that primarily manifests itself as a decrease in the residual resistance, an increase of T_c, and a decrease in the Debye temperature.
Extensions of the Theory of the Electron-Phonon Interaction in Metals: A Collection.
1983-11-03
accepted The measured zero -field susceptibility is given 50 . . . . 26 GENERALIZATION OF THE THEORY OF THE ELECTRON-... 1199 JP by X.P_ IM T V.IM 0... Generalization of the Theory of the Electron-Phonon Inter- action: Thermodynamic Formulation of Superconducting- and Normal-State Properties...A microscopic treatment of the consequences for supercon- ductivity of a nonconstant electronic density of states is presented. Generalized
Lovibond, P F; Lovibond, S H
1995-03-01
The psychometric properties of the Depression Anxiety Stress Scales (DASS) were evaluated in a normal sample of N = 717 who were also administered the Beck Depression Inventory (BDI) and the Beck Anxiety Inventory (BAI). The DASS was shown to possess satisfactory psychometric properties, and the factor structure was substantiated both by exploratory and confirmatory factor analysis. In comparison to the BDI and BAI, the DASS scales showed greater separation in factor loadings. The DASS Anxiety scale correlated 0.81 with the BAI, and the DASS Depression scale correlated 0.74 with the BDI. Factor analyses suggested that the BDI differs from the DASS Depression scale primarily in that the BDI includes items such as weight loss, insomnia, somatic preoccupation and irritability, which fail to discriminate between depression and other affective states. The factor structure of the combined BDI and BAI items was virtually identical to that reported by Beck for a sample of diagnosed depressed and anxious patients, supporting the view that these clinical states are more severe expressions of the same states that may be discerned in normals. Implications of the results for the conceptualisation of depression, anxiety and tension/stress are considered, and the utility of the DASS scales in discriminating between these constructs is discussed.
NASA Astrophysics Data System (ADS)
Gkillas (Gillas), Konstantinos; Vortelinos, Dimitrios I.; Saha, Shrabani
2018-02-01
This paper investigates the properties of realized volatility and correlation series in the Indian stock market by employing daily data converting to monthly frequency of five different stock indices from January 2, 2006 to November 30, 2014. Using non-parametric estimation technique the properties examined include normality, long-memory, asymmetries, jumps, and heterogeneity. The realized volatility is a useful technique which provides a relatively accurate measure of volatility based on the actual variance which is beneficial for asset management in particular for non-speculative funds. The results show that realized volatility and correlation series are not normally distributed, with some evidence of persistence. Asymmetries are also evident in both volatilities and correlations. Both jumps and heterogeneity properties are significant; whereas, the former is more significant than the latter. The findings show that properties of volatilities and correlations in Indian stock market have similarities as that show in the stock markets in developed countries such as the stock market in the United States which is more prevalent for speculative business traders.
Stick-slip as a monitor of rates, states and frictional properties along thrusts in sand wedges
NASA Astrophysics Data System (ADS)
Rosenau, Matthias; Santimano, Tasca; Ritter, Malte; Oncken, Onno
2014-05-01
We developed a sandbox setup which allows monitoring the push of the moving backwall indenting a layer of sand. Depending on the ratio between indenter compliancy versus strain weakening of the granular material, wedge deformation shows unstable slip marked by force drops of various sizes and at multiple temporal scales. Basically we observe long-period slip instabilities related to strain localization during the formation of new thrusts, intermediate-period slip instabilities related to reactivation of existing thrusts and short-period slip instabilities related to the stick-slip mechanism of slip accumulation along "seismic" faults. Observed stick-slip is characterized by highly correlated size and frequency ("regular stick-slip") and is sensitive to integrated normal load, slip rate and frictional properties along the active thrust(s). By independently constraining the frictional properties using a ring-shear tester, we infer the integrated normal loads on the active faults from the stick-slip events and benchmark the results against a model calculating the normal loads from the wedge geometry. This way we are able to monitor rates, states and frictional properties along thrusts in sand wedges at unprecedented detail. As an example of application, a kinematic analysis of the stick slip events in the sandbox demonstrates how slip rates along thrusts vary systematically within accretion cycles although the kinematic boundary condition is stationary. Accordingly transient fault slip rates may accelerate up to twice the long-term convergence rate during formation of new thrusts and decelerate in the post-thrust formation stage in a non-linear way. Applied to nature this suggests that fault slip rate variations at the thousand-year time scale might be attributable to the elasticity of plates and material weakening rather than changes in plate velocities.
Li, Yuan; Jalil, Mansoor B. A.; Tan, S. G.; Zhao, W.; Bai, R.; Zhou, G. H.
2014-01-01
Time-periodic perturbation can be used to modify the transport properties of the surface states of topological insulators, specifically their chiral tunneling property. Using the scattering matrix method, we study the tunneling transmission of the surface states of a topological insulator under the influence of a time-dependent potential and finite gate bias voltage. It is found that perfect transmission is obtained for electrons which are injected normally into the time-periodic potential region in the absence of any bias voltage. However, this signature of Klein tunneling is destroyed when a bias voltage is applied, with the transmission probability of normally incident electrons decreasing with increasing gate bias voltage. Likewise, the overall conductance of the system decreases significantly when a gate bias voltage is applied. The characteristic left-handed helicity of the transmitted spin polarization is also broken by the finite gate bias voltage. In addition, the time-dependent potential modifies the large-angle transmission profile, which exhibits an oscillatory or resonance-like behavior. Finally, time-dependent transport modes (with oscillating potential in the THz frequency) can result in enhanced overall conductance, irrespective of the presence or absence of the gate bias voltage. PMID:24713634
Parameter retrieval of chiral metamaterials based on the state-space approach.
Zarifi, Davoud; Soleimani, Mohammad; Abdolali, Ali
2013-08-01
This paper deals with the introduction of an approach for the electromagnetic characterization of homogeneous chiral layers. The proposed method is based on the state-space approach and properties of a 4×4 state transition matrix. Based on this, first, the forward problem analysis through the state-space method is reviewed and properties of the state transition matrix of a chiral layer are presented and proved as two theorems. The formulation of a proposed electromagnetic characterization method is then presented. In this method, scattering data for a linearly polarized plane wave incident normally on a homogeneous chiral slab are combined with properties of a state transition matrix and provide a powerful characterization method. The main difference with respect to other well-established retrieval procedures based on the use of the scattering parameters relies on the direct computation of the transfer matrix of the slab as opposed to the conventional calculation of the propagation constant and impedance of the modes supported by the medium. The proposed approach allows avoiding nonlinearity of the problem but requires getting enough equations to fulfill the task which was provided by considering some properties of the state transition matrix. To demonstrate the applicability and validity of the method, the constitutive parameters of two well-known dispersive chiral metamaterial structures at microwave frequencies are retrieved. The results show that the proposed method is robust and reliable.
Physics and chemistry of MoS2 intercalation compounds
NASA Technical Reports Server (NTRS)
Woollam, J. A.; Somoano, R. B.
1977-01-01
An investigation is made of the physics and chemistry of MoS2 intercalation compounds. These compounds may be separated into two groups according to their stoichiometry, structure and superconducting properties. The first group consists of Na, Ca, and Sr intercalates, and the second group consists of K, Rb, and Cs intercalates. Particular attention is given to the structure of the electronic energy band and to the normal state and superconducting properties of these compounds.
Wave Phenomena in an Acoustic Resonant Chamber
ERIC Educational Resources Information Center
Smith, Mary E.; And Others
1974-01-01
Discusses the design and operation of a high Q acoustical resonant chamber which can be used to demonstrate wave phenomena such as three-dimensional normal modes, Q values, densities of states, changes in the speed of sound, Fourier decomposition, damped harmonic oscillations, sound-absorbing properties, and perturbation and scattering problems.…
[Melatonin as a universal stabilizing factor of mental activity].
Arushanian, Ē B
2011-01-01
Pineal hormone melatonin stabilizes mental activity of man and animals due to its somnogenic, anxiolytic, antidepressant and nootropic properties. Melatonin effects are based on the synchronization of biological rhythms via the influence on the cerebral structures which control biological rhythms and emotions and normalize endocrine and immune state.
Interfacial properties at the organic-metal interface probed using quantum well states
NASA Astrophysics Data System (ADS)
Lin, Meng-Kai; Nakayama, Yasuo; Wang, Chin-Yung; Hsu, Jer-Chia; Pan, Chih-Hao; Machida, Shin-ichi; Pi, Tun-Wen; Ishii, Hisao; Tang, S.-J.
2012-10-01
Using angle-resolved photoemission spectroscopy, we investigated the interfacial properties between the long-chain normal-alkane molecule n-CH3(CH2)42CH3 [tetratetracontane (TTC)] and uniform Ag films using the Ag quantum well states. The entire quantum well state energy band dispersions were observed to shift toward the Fermi level with increasing adsorption coverage of TTC up to 1 monolayer (ML). However, the energy shifts upon deposition of 1 ML of TTC are approximately inversely dependent on the Ag film thickness, indicating a quantum-size effect. In the framework of the pushback and image-force models, we applied the Bohr-Sommerfeld quantization rule with the modified Coulomb image potential for the phase shift at the TTC/Ag interface to extract the dielectric constant for 1 ML of TTC.
Normal state of metallic hydrogen sulfide
NASA Astrophysics Data System (ADS)
Kudryashov, N. A.; Kutukov, A. A.; Mazur, E. A.
2017-02-01
A generalized theory of the normal properties of metals in the case of electron-phonon (EP) systems with a nonconstant density of electron states has been used to study the normal state of the SH3 and SH2 phases of hydrogen sulfide at different pressures. The frequency dependence of the real Re Σ (ω) and imaginary ImΣ (ω) parts of the self-energy Σ (ω) part (SEP) of the Green's function of the electron Σ (ω), real part Re Z (ω), and imaginary part Im Z (ω) of the complex renormalization of the mass of the electron; the real part Re χ (ω) and the imaginary part Imχ (ω) of the complex renormalization of the chemical potential; and the density of electron states N (ɛ) renormalized by strong electron-phonon interaction have been calculated. Calculations have been carried out for the stable orthorhombic structure (space group Im3¯ m) of the hydrogen sulfide SH3 for three values of the pressure P = 170, 180, and 225 GPa; and for an SH2 structure with a symmetry of I4/ mmm ( D4 h1¯7) for three values of pressure P = 150, 180, and 225 GP at temperature T = 200 K.
NASA Astrophysics Data System (ADS)
Yang, Shuangming; Deng, Bin; Wang, Jiang; Li, Huiyan; Liu, Chen; Fietkiewicz, Chris; Loparo, Kenneth A.
2017-01-01
Real-time estimation of dynamical characteristics of thalamocortical cells, such as dynamics of ion channels and membrane potentials, is useful and essential in the study of the thalamus in Parkinsonian state. However, measuring the dynamical properties of ion channels is extremely challenging experimentally and even impossible in clinical applications. This paper presents and evaluates a real-time estimation system for thalamocortical hidden properties. For the sake of efficiency, we use a field programmable gate array for strictly hardware-based computation and algorithm optimization. In the proposed system, the FPGA-based unscented Kalman filter is implemented into a conductance-based TC neuron model. Since the complexity of TC neuron model restrains its hardware implementation in parallel structure, a cost efficient model is proposed to reduce the resource cost while retaining the relevant ionic dynamics. Experimental results demonstrate the real-time capability to estimate thalamocortical hidden properties with high precision under both normal and Parkinsonian states. While it is applied to estimate the hidden properties of the thalamus and explore the mechanism of the Parkinsonian state, the proposed method can be useful in the dynamic clamp technique of the electrophysiological experiments, the neural control engineering and brain-machine interface studies.
Thermophysical properties of Helium-4 from 0.8 to 1500 K with pressures to 2000 MPa
NASA Technical Reports Server (NTRS)
Arp, Vincent D.; Mccarty, Robert D.
1989-01-01
Tabular summary data of the thermophysical properties of fluid helium are given for temperatures from 0.8 to 1500 K, with pressures to 2000 MPa between 75 and 300 K, or to 100 MPa outside of this temperature band. Properties include density, specific heats, enthalpy, entropy, internal energy, sound velocity, expansivity, compressibility, thermal conductivity, and viscosity. The data are calculated from a computer program which is available from the National Institute of Standards and Technology. The computer program is based on carefully fitted state equations for both normal and superfluid helium.
Superstatistics analysis of the ion current distribution function: Met3PbCl influence study.
Miśkiewicz, Janusz; Trela, Zenon; Przestalski, Stanisław; Karcz, Waldemar
2010-09-01
A novel analysis of ion current time series is proposed. It is shown that higher (second, third and fourth) statistical moments of the ion current probability distribution function (PDF) can yield new information about ion channel properties. The method is illustrated on a two-state model where the PDF of the compound states are given by normal distributions. The proposed method was applied to the analysis of the SV cation channels of vacuolar membrane of Beta vulgaris and the influence of trimethyllead chloride (Met(3)PbCl) on the ion current probability distribution. Ion currents were measured by patch-clamp technique. It was shown that Met(3)PbCl influences the variance of the open-state ion current but does not alter the PDF of the closed-state ion current. Incorporation of higher statistical moments into the standard investigation of ion channel properties is proposed.
Electronic disorder and magnetic-field-induced superconductivity enhancement in Fe1+y(Te1-xSex)
NASA Astrophysics Data System (ADS)
Hu, Jin; Liu, Tijiang; Qian, Bin; Mao, Zhiqiang
2012-02-01
The iron chalcogenide Fe1+y(Te1-xSex) superconductor system exhibits a unique electronic and magnetic phase diagram distinct from those seen in iron pnictides: bulk superconductivity does not appear immediately following the suppression of long-range (π,0) AFM order. Instead, an intermediate phase with weak charge carrier localization appears between AFM order and bulk superconductivity (Liu et al., Nat. Mater. 9, 719 (2010)). In this talk, we report our recent studies on the relationship between the normal state and superconducting properties in Fe1+y(Te1-xSex). We show that the superconducting volume fraction VSC and normal state metallicity significantly increase while the normal state Sommerfeld coefficient γ and Hall coefficient RH drop drastically with increasing Se content in the underdoped superconducting region. Additionally, VSC is surprisingly enhanced by magnetic field in heavily underdoped superconducting samples. The implications of these results will be discussed. Our analyses suggest that the suppression of superconductivity in the underdoped region is associated with electronic disorder caused by incoherent magnetic scattering arising from (π,0) magnetic fluctuations.
Entanglement and quantum teleportation via decohered tripartite entangled states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metwally, N., E-mail: nmohamed31@gmail.com
2014-12-15
The entanglement behavior of two classes of multi-qubit system, GHZ and GHZ like states passing through a generalized amplitude damping channel is discussed. Despite this channel causes degradation of the entangled properties and consequently their abilities to perform quantum teleportation, one can always improve the lower values of the entanglement and the fidelity of the teleported state by controlling on Bell measurements, analyzer angle and channel’s strength. Using GHZ-like state within a generalized amplitude damping channel is much better than using the normal GHZ-state, where the decay rate of entanglement and the fidelity of the teleported states are smaller thanmore » those depicted for GHZ state.« less
Surface magnetism in a chiral d -wave superconductor with hexagonal symmetry
NASA Astrophysics Data System (ADS)
Goryo, Jun; Imai, Yoshiki; Rui, W. B.; Sigrist, Manfred; Schnyder, Andreas P.
2017-10-01
Surface properties are examined in a chiral d -wave superconductor with hexagonal symmetry, whose one-body Hamiltonian possesses intrinsic spin-orbit coupling identical to the one characterizing the topological nature of the Kane-Mele honeycomb insulator. In the normal state, spin-orbit coupling gives rise to spontaneous surface spin currents, whereas in the superconducting state, besides the spin currents, there exist also charge surface currents, due to chiral pairing symmetry. Interestingly, the combination of these two currents results in a surface spin polarization, whose spatial dependence is markedly different on the zigzag and armchair surfaces. We discuss various potential candidate materials, such as SrPtAs, which may exhibit these surface properties.
Pressure induced change in the electronic state of Ta 4 Pd 3 Te 16
Jo, Na Hyun; Xiang, Li; Kaluarachchi, Udhara S.; ...
2017-04-24
Here, we present measurements of superconducting transition temperature, resistivity, magnetoresistivity, and temperature dependence of the upper critical field of Ta 4 Pd 3 Te 16 under pressures up to 16.4 kbar. All measured properties have an anomaly at ~ 2 $-$ 4 kbar pressure range; in particular there is a maximum in T c and upper critical field, H c2 ( 0 ), and minimum in low temperature, normal state resistivity. Qualitatively, the data can be explained considering the density of state at the Fermi level as a dominant parameter.
Meson properties in asymmetric matter
NASA Astrophysics Data System (ADS)
Mammarella, Andrea; Mannarelli, Massimo
2018-03-01
In this work we study dynamic and thermodynamic (at T = 0) properties of mesons in asymmetric matter in the framework of Chiral Perturbation Theory. We consider a system at vanishing temperature with nonzero isospin chemical potential and strangeness chemical potential; meson masses and mixing in the normal phase, the pion condensation phase and the kaon condensation phase are described. We find differences with previous works, but the results presented here are supported by both theory group analysis and by direct calculations. Some pion decay channels in the normal and the pion condensation phases are studied, finding a nonmonotonic behavior of the decay width as a function of µ I . Furthermore, pressure, density and equation of state of the system at T = 0 are studied, finding remarkable agreement with analogue studies performed by lattice calculations.
Astroseismology of neutron stars from gravitational waves in the limit of perfect measurement
NASA Astrophysics Data System (ADS)
Suvorov, A. G.
2018-04-01
The oscillation spectrum of a perturbed neutron star is intimately related to the physical properties of the star, such as the equation of state. Observing pulsating neutron stars therefore allows one to place constraints on these physical properties. However, it is not obvious exactly how much can be learnt from such measurements. If we observe for long enough, and precisely enough, is it possible to learn everything about the star? A classical result in the theory of spectral geometry states that one cannot uniquely `hear the shape of a drum'. More formally, it is known that an eigenfrequency spectrum may not uniquely correspond to a particular geometry; some `drums' may be indistinguishable from a normal-mode perspective. In contrast, we show that the drum result does not extend to perturbations of simple neutron stars within general relativity - in the case of axial (toroidal) perturbations of static, perfect fluid stars, a quasi-normal mode spectrum uniquely corresponds to a stellar profile. We show in this paper that it is not possible for two neutron stars, with distinct fluid profiles, to oscillate in an identical manner. This result has the information-theoretic consequence that gravitational waves completely encode the properties of any given oscillating star: unique identifications are possible in the limit of perfect measurement.
Astroseismology of neutron stars from gravitational waves in the limit of perfect measurement
NASA Astrophysics Data System (ADS)
Suvorov, A. G.
2018-07-01
The oscillation spectrum of a perturbed neutron star is intimately related to the physical properties of the star, such as the equation of state. Observing pulsating neutron stars therefore allows one to place constraints on these physical properties. However, it is not obvious exactly how much can be learnt from such measurements. If we observe for long enough, and precisely enough, is it possible to learn everything about the star? A classical result in the theory of spectral geometry states that one cannot uniquely `hear the shape of a drum'. More formally, it is known that an eigenfrequency spectrum may not uniquely correspond to a particular geometry; some `drums' may be indistinguishable from a normal-mode perspective. In contrast, we show that the drum result does not extend to perturbations of simple neutron stars within general relativity - in the case of axial (toroidal) perturbations of static, perfect fluid stars, a quasi-normal mode spectrum uniquely corresponds to a stellar profile. We show in this paper that it is not possible for two neutron stars, with distinct fluid profiles, to oscillate in an identical manner. This result has the information-theoretic consequence that gravitational waves completely encode the properties of any given oscillating star: unique identifications are possible in the limit of perfect measurement.
NASA Technical Reports Server (NTRS)
Mehhtz, Peter
2005-01-01
JPF is an explicit state software model checker for Java bytecode. Today, JPF is a swiss army knife for all sort of runtime based verification purposes. This basically means JPF is a Java virtual machine that executes your program not just once (like a normal VM), but theoretically in all possible ways, checking for property violations like deadlocks or unhandled exceptions along all potential execution paths. If it finds an error, JPF reports the whole execution that leads to it. Unlike a normal debugger, JPF keeps track of every step how it got to the defect.
Strong cooperative coupling of pressure-induced magnetic order and nematicity in FeSe
Kothapalli, K.; Bohmer, A. E.; Jayasekara, W. T.; ...
2016-09-01
A hallmark of the iron-based superconductors is the strong coupling between magnetic, structural and electronic degrees of freedom. However, a universal picture of the normal state properties of these compounds has been confounded by recent investigations of FeSe where the nematic (structural) and magnetic transitions appear to be decoupled. Here, using synchrotron-based high-energy x-ray diffraction and time-domain Mossbauer spectroscopy, we show that nematicity and magnetism in FeSe under applied pressure are indeed strongly coupled. Distinct structural and magnetic transitions are observed for pressures between 1.0 and 1.7 GPa and merge into a single first-order transition for pressures ≳1.7 GPa, reminiscentmore » of what has been found for the evolution of these transitions in the prototypical system Ba(Fe 1–xCo x) 2As 2. Lastly, our results are consistent with a spin-driven mechanism for nematic order in FeSe and provide an important step towards a universal description of the normal state properties of the iron-based superconductors.« less
Aspects of the RVB Luttinger Liquid Theory of the High Temperature Superconductivity
NASA Astrophysics Data System (ADS)
Ren, Yong
1992-01-01
This thesis describes work on a large-U Hubbard model theory for high temperature superconductors. After an introduction to the Hubbard model and the normal state properties of the high T_{rm c} superconductors, we briefly examine the definition of the Fermi liquid and its breakdown. Then we explain why the 1D Hubbard model is the best starting point to approach our problem. In one dimension, the exact Lieb-Wu solution is available. We discuss the Lieb-Wu solution, and calculate various asymptotic correlation functions in the ground state. This clarifies the nature of the ground state which has not been known before. Instead of simply getting the exponents of the correlation functions from the Bethe Ansatz integral equations, we establish the connection between phase shifts at different Fermi points and the asymptotic correlation functions. We believe that this connection contains the most important physics and it can be readily generalized into higher dimensions. We then discuss bosonization in two dimensions and define the 2D RVB-Luttinger liquid theory, proposing that the ground state of the 2D Hubbard model belongs to a different fixed point than the Landau Fermi liquid-Luttinger liquid. Finally we apply the understanding of the 1D result to explain the normal state properties of the high T_ {c} superconductors, putting emphasis on how the non-Fermi liquid correlation functions explain the "anomalous" experimental results. In the Appendix, several issues related to the 1D and 2D Hubbard model are discussed.
Pressure effect on the superconducting and the normal state of β -B i2Pd
NASA Astrophysics Data System (ADS)
Pristáš, G.; Orendáč, Mat.; Gabáni, S.; Kačmarčík, J.; Gažo, E.; Pribulová, Z.; Correa-Orellana, A.; Herrera, E.; Suderow, H.; Samuely, P.
2018-04-01
The pressure effect up to 24.0 kbar on superconducting and normal-state properties of β -B i2Pd single crystal (Tc≈4.98 K at ambient pressure) has been investigated by measurements of the electrical resistivity. In addition, we have performed the heat capacity measurements in the temperature range 0.7-300 K at ambient pressure. The recent calculations of electronic density of states, electron-phonon interaction spectral function, and phonon density of states of β -B i2Pd [Zheng and Margine, Phys. Rev. B 95, 014512 (2017), 10.1103/PhysRevB.95.014512], are used to fit the resistivity and the heat capacity data. In the superconducting state we have focused on the influence of pressure on the superconducting transition temperature Tc and upper critical field Hc 2 and a negative effect with d Tc/d p =-0.025 K /kbar and d Hc 2/d p =-8 mT /kbar is found. A simplified Bloch-Grüneisen model was used to analyze the pressure effect on the temperature dependence of the normal-state resistivity. The obtained results point to a decrease of the electron-phonon coupling parameter λ and to a shift of phonon frequencies to higher values with pressure. Moreover, the temperature dependence of the normal-state resistivity follows a T2 dependence above Tc up to about 25 K. Together with the enhanced value of Sommerfeld coefficient γ =13.23 mJ mo l-1K-2 these results point to a certain role of the electron-electron interaction in the superconducting pairing mechanism in β -B i2Pd .
Oxide films state analysis by IR spectroscopy based on the simple oscillator approximation
NASA Astrophysics Data System (ADS)
Volkov, N. V.; Yakutkina, T. V.; Karpova, V. V.
2017-05-01
Stabilization of structure-phase state in a wide temperature range is one of the most important problems of improving properties of oxide compounds. As such, the search of new effective methods for obtaining metal oxides with desired physic-chemical, electro-physical and thermal properties and their control is important and relevant. The aim of this work is identification features state of the oxide films of some metals Be, Al, Fe, Cu, Zr on the metal surface of the polycrystalline samples by infrared spectroscopy. To identify the resonance emission bands the algorithm of IR-spectra processing was developed and realized on the basis of table processor EXCEL-2010, which allow revealing characteristic resonance bands successfully and identification of inorganic chemical compounds. In the frame of simple oscillator model, resonance frequencies of normal vibrations of water and some inorganic compounds: metal oxides - Be, Al, Fe, Cu, Zr were calculated and characteristic frequencies for different states (aggregate, deformation, phase) were specified. By means of IR-spectroscopy fundamental possibility of revealing oxides films on metal substrate features state is shown, that allow development and optimization of the technology for production of the oxide films with desired properties.
a Study of High Transition Temperature Superconductors: Mercury-Copper Oxide Systems
NASA Astrophysics Data System (ADS)
Kirven, Paul Douglas
1995-01-01
The Hg-based copper-oxides viz., HgBa _2Ca_{n-1}Cu_ nO _{2n+2+delta}, were discovered in 1993. A system consisting of many different, but related, compounds can be synthesized by including or substituting one or more elements in the original compound (e.g. Hg _{1-x}Pb_ x). In this thesis, the superconducting and normal state properties of several of these compounds were investigated. In the normal state electrical resistivity rho(T) is a linear function of temperature (T) and the magnetic susceptibility, X(T), is weakly paramagnetic. Many were observed to superconduct at very high temperatures. At 5 K up to 80% perfect diamagnetic X(T) was measured. The onset transition temperature (T_ c), where a specimen starts to superconduct, is observed to be as high as 135 K. Although T_ c is about 10 K higher than that of any previously known material, in many respects the properties of this new system are similar to that of other type II superconductors. Flux flow behavior and the nature of these type II superconductors was investigated via SQUID measurements and high field longitudinal magneto-resistance R(T,H) as a function of field and temperature. The study of flux motion allows one to observe Anderson-Kim type logarithimic flux creep at low temperature and field (T < 80K and B < 2T) and giant -flux flow at high temperature and field (80 < T < 130; B < 17T). Key parameters were determined. Some of which include reversibility temperature T*(H), critical field Hc, and pinning potential, Uo. Normal state properties which were also measured include the following: Curie constant, Curie-Weiss temperature (15-25 K), temperature independent susceptibility, and Sommerfeld constant (10-25 mJ/mol.Cu K^2). The values of these parameters of the Hg-based superconductors were compared to those of other superconductors. The results of this investigation are expected to yield a better understanding of this newest family of high temperature superconductors.
Schierbaum, Nicolas; Rheinlaender, Johannes; Schäffer, Tilman E
2017-06-01
Malignant transformation drastically alters the mechanical properties of the cell and its response to the surrounding cellular environment. We studied the influence of the physical contact between adjacent cells in an epithelial monolayer on the viscoelastic behavior of normal MCF10A, non-invasive cancerous MCF7, and invasive cancerous MDA-MB-231 human breast cells. Using an atomic force microscopy (AFM) imaging technique termed force clamp force mapping (FCFM) to record images of the viscoelastic material properties, we found that normal MCF10A cells are stiffer and have a lower fluidity at confluent than at sparse density. Contrarily, cancerous MCF7 and MDA-MB-231 cells do not stiffen and do not decrease their fluidity when progressing from sparse to confluent density. The behavior of normal MCF10A cells appears to be governed by the formation of stable cell-cell contacts, because their disruption with a calcium-chelator (EGTA) causes the stiffness and fluidity values to return to those at sparse density. In contrast, EGTA-treatment of MCF7 and MDA-MB-231 cells does not change their viscoelastic properties. Confocal fluorescence microscopy showed that the change of the viscoelastic behavior in MCF10A cells when going from sparse to confluent density is accompanied by a remodeling of the actin cytoskeleton into thick stress fiber bundles, while in MCF7 and MDA-MB-231 cells the actin cytoskeleton is only composed of thin and short fibers, regardless of cell density. While the observed behavior of normal MCF10A cells might be crucial for providing mechanical stability and thus in turn integrity of the epithelial monolayer, the dysregulation of this behavior in cancerous MCF7 and MDA-MB-231 cells is possibly a central aspect of cancer progression in the epithelium. We measured the viscoelastic properties of normal and cancerous human breast epithelial cells in different states of confluency using atomic force microscopy. We found that confluent normal cells are stiffer and have lower fluidity than sparse normal cells, which appears to be governed by the formation of cell-cell contacts. Contrarily, confluent cancer cells do not stiffen and not have a decreased fluidity compared to sparse cancer cells and their viscoelastic properties are independent of cell-cell contact formation. While the observed behavior of normal cells appears to be crucial for providing the mechanical stability and therefore the integrity of the epithelial monolayer, the dysregulation of this behavior in cancer cells might be a central aspect of early stage cancer progression and metastasis in the epithelium. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Liu, Rui; Mao, Ziliang; Matthews, Dennis L; Li, Chin-Shang; Chan, James W; Satake, Noriko
2013-07-01
Laser tweezers Raman spectroscopy was used to characterize the oxygenation response of single normal adult, sickle, and cord blood red blood cells (RBCs) to an applied mechanical force. Individual cells were subjected to different forces by varying the laser power of a single-beam optical trap, and the intensities of several oxygenation-specific Raman spectral peaks were monitored to determine the oxygenation state of the cells. For all three cell types, an increase in laser power (or mechanical force) induced a greater deoxygenation of the cell. However, sickle RBCs deoxygenated more readily than normal RBCs when subjected to the same optical forces. Conversely, cord blood RBCs were able to maintain their oxygenation better than normal RBCs. These results suggest that differences in the chemical or mechanical properties of fetal, normal, and sickle cells affect the degree to which applied mechanical forces can deoxygenate the cell. Populations of normal, sickle, and cord RBCs were identified and discriminated based on this mechanochemical phenomenon. This study demonstrates the potential application of laser tweezers Raman spectroscopy as a single-cell, label-free analytical tool to characterize the functional (e.g., mechanical deformability, oxygen binding) properties of normal and diseased RBCs. Copyright © 2013 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.
Transport properties of ultrathin YBa2Cu3O7 -δ nanowires: A route to single-photon detection
NASA Astrophysics Data System (ADS)
Arpaia, Riccardo; Golubev, Dmitri; Baghdadi, Reza; Ciancio, Regina; Dražić, Goran; Orgiani, Pasquale; Montemurro, Domenico; Bauch, Thilo; Lombardi, Floriana
2017-08-01
We report on the growth and characterization of ultrathin YBa2Cu3O7 -δ (YBCO) films on MgO (110) substrates, which exhibit superconducting properties at thicknesses down to 3 nm. YBCO nanowires, with thicknesses down to 10 nm and widths down to 65 nm, have also been successfully fabricated. The nanowires protected by a Au capping layer show superconducting properties close to the as-grown films and critical current densities, which are limited by only vortex dynamics. The 10-nm-thick YBCO nanowires without the Au capping present hysteretic current-voltage characteristics, characterized by a voltage switch which drives the nanowires directly from the superconducting to the normal state. We associate such bistability to the presence of localized normal domains within the superconductor. The presence of the voltage switch in ultrathin YBCO nanostructures, characterized by high sheet resistance values and high critical current values, makes our nanowires very attractive devices to engineer single-photon detectors.
A first principles study of the mechanical, electronic, and vibrational properties of lead oxide
NASA Astrophysics Data System (ADS)
Zhuravlev, Yu. N.; Korabel'nikov, D. V.
2017-11-01
The first principles study of the crystal structure, chemical bonds, elastic and mechanical properties, electron energy band structure and density, and normal long-wave vibrations of nine phases of lead monoxide, dioxide, and tetraoxide has been performed under normal and external pressure within the framework of density functional theory (DFT) with the Perdew-Becke-Ernzerhof (PBE) gradient exchange-correlation functional and its hybrid version with a 25-% Hartree-Fock (HF) exchange contribution in the basis of localized atom orbitals. The behavior of physical parameters has been studied using the cold four- and threeparameter equations of state. The parameters of the crystal structures are in satisfactory agreement with experimental data, and elastic constants indicate their mechanical stability and anisotropy in the elastic properties. The elasticity, shear, and Young moduli, hardness, acoustic velocities, and Debye temperature of dioxide on the one hand and monoxide and tetraoxide on the other hand appreciably differ from each other. The difference between electron properties may be explained by the character of hybridization in the upper filled and lower empty energy bands as evident from the density of states. In monoxide, the indirect band gap width decreases with increasing pressure at a rate of 0.16 eV/GPa, and the direct band gap width increases at a rate of 0.13 eV/GPa. To identify crystalline phases, the frequencies and intensities of long-wave modes active in IR and Raman spectra have been calculated.
A normal ano-genital exam: sexual abuse or not?
Hornor, Gail
2010-01-01
Sexual abuse is a problem of epidemic proportions in the United States. Pediatric nurse practitioners (PNPs) are at the forefront of providing care to children and families. The PNP is in a unique position to educate patients and families regarding sexual abuse and dispel common myths associated with sexual abuse. One such myth is that a normal ano-genital examination is synonymous with the absence of sexual abuse. This article will provide primary care providers, including PNPs, with a framework for understanding why a normal ano-genital examination does not negate the possibility of sexual abuse/assault. Normal ano-genital anatomy, changes that occur with puberty, and physical properties related to the genitalia and anus will be discussed. Photos will provide visualization of both normal variants of the pre-pubertal hymen and genitalia as well as changes that occur with puberty. Implications for practice for PNPs will be discussed.
The Dream as a Model for Psychosis: An Experimental Approach Using Bizarreness as a Cognitive Marker
Scarone, Silvio; Manzone, Maria Laura; Gambini, Orsola; Kantzas, Ilde; Limosani, Ivan; D'Agostino, Armando; Hobson, J. Allan
2008-01-01
Many previous observers have reported some qualitative similarities between the normal mental state of dreaming and the abnormal mental state of psychosis. Recent psychological, tomographic, electrophysiological, and neurochemical data appear to confirm the functional similarities between these 2 states. In this study, the hypothesis of the dreaming brain as a neurobiological model for psychosis was tested by focusing on cognitive bizarreness, a distinctive property of the dreaming mental state defined by discontinuities and incongruities in the dream plot, thoughts, and feelings. Cognitive bizarreness was measured in written reports of dreams and in verbal reports of waking fantasies in 30 schizophrenics and 30 normal controls. Seven pictures of the Thematic Apperception Test (TAT) were administered as a stimulus to elicit waking fantasies, and all participating subjects were asked to record their dreams upon awakening. A total of 420 waking fantasies plus 244 dream reports were collected to quantify the bizarreness features in the dream and waking state of both subject groups. Two-way analysis of covariance for repeated measures showed that cognitive bizarreness was significantly lower in the TAT stories of normal subjects than in those of schizophrenics and in the dream reports of both groups. The differences between the 2 groups indicated that, under experimental conditions, the waking cognition of schizophrenic subjects shares a common degree of formal cognitive bizarreness with the dream reports of both normal controls and schizophrenics. Though very preliminary, these results support the hypothesis that the dreaming brain could be a useful experimental model for psychosis. PMID:17942480
NASA Astrophysics Data System (ADS)
Ye, Lin; Majoros, M.; Campbell, A. M.; Coombs, T.; Harrison, S.; Sargent, P.; Haslett, M.; Husband, M.
2007-04-01
A laboratory scale desktop test system including a cryogenic system, an AC pulse generation system and a real time data acquisition program in LabView/DAQmx, has been developed to evaluate the quench properties of MgB2 wires as an element in a superconducting fault current limiter under pulse overcurrents at 25 K in self-field conditions. The MgB2 samples started from a superconducting state and demonstrated good current limiting properties characterized by a fast transition to the normal state during the first half of the cycle and a continuously limiting effect in the subsequent cycles without burnouts. The experimental and numerical simulation results on the quench behaviour indicate the feasibility of using MgB2 for future superconducting fault current limiter (SFCL) applications. This work is supported by Rolls-Royce Plc and the UK Department of Trade & Industry (DTI).
Normal modes of weak colloidal gels
NASA Astrophysics Data System (ADS)
Varga, Zsigmond; Swan, James W.
2018-01-01
The normal modes and relaxation rates of weak colloidal gels are investigated in calculations using different models of the hydrodynamic interactions between suspended particles. The relaxation spectrum is computed for freely draining, Rotne-Prager-Yamakawa, and accelerated Stokesian dynamics approximations of the hydrodynamic mobility in a normal mode analysis of a harmonic network representing several colloidal gels. We find that the density of states and spatial structure of the normal modes are fundamentally altered by long-ranged hydrodynamic coupling among the particles. Short-ranged coupling due to hydrodynamic lubrication affects only the relaxation rates of short-wavelength modes. Hydrodynamic models accounting for long-ranged coupling exhibit a microscopic relaxation rate for each normal mode, λ that scales as l-2, where l is the spatial correlation length of the normal mode. For the freely draining approximation, which neglects long-ranged coupling, the microscopic relaxation rate scales as l-γ, where γ varies between three and two with increasing particle volume fraction. A simple phenomenological model of the internal elastic response to normal mode fluctuations is developed, which shows that long-ranged hydrodynamic interactions play a central role in the viscoelasticity of the gel network. Dynamic simulations of hard spheres that gel in response to short-ranged depletion attractions are used to test the applicability of the density of states predictions. For particle concentrations up to 30% by volume, the power law decay of the relaxation modulus in simulations accounting for long-ranged hydrodynamic interactions agrees with predictions generated by the density of states of the corresponding harmonic networks as well as experimental measurements. For higher volume fractions, excluded volume interactions dominate the stress response, and the prediction from the harmonic network density of states fails. Analogous to the Zimm model in polymer physics, our results indicate that long-ranged hydrodynamic interactions play a crucial role in determining the microscopic dynamics and macroscopic properties of weak colloidal gels.
Interband coupling and transport interband scattering in s ± superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kogan, Vladimir; Prozorov, Ruslan
A two-band model with repulsive interband coupling and interband transport (potential) scattering is considered to elucidate their effects on material properties. In agreement with previous work, we find that the bands order parameters Δ 1,2 differ and the large is at the band with a smaller normal density of states (DOS), N n2 < N n1. However, the bands energy gaps, as determined by the energy dependence of the DOS, are equal due to scattering. For each temperature, the gaps turn zero at a certain critical interband scattering rate, i.e. for strong enough scattering the model material becomes gappless. Inmore » the gapless state, the DOS at the band 2 is close to the normal state value, whereas at the band 1 it has a V-shape with non-zero minimum. When the normal bands DOS' are mismatched, N n1 6= N n2, the critical temperature T c is suppressed even in the absence of interband scattering, T c(N n1) has a dome-like shape. With increasing interband scattering, the London penetration depth at low temperatures evolves from being exponentially at to the powerlaw and even to near linear behavior in the gapless state, the latter being easily misinterpreted as caused by order parameter nodes.« less
Breakup effects on alpha spectroscopic factors of 16O
NASA Astrophysics Data System (ADS)
Adhikari, S.; Basu, C.; Sugathan, P.; Jhinghan, A.; Behera, B. R.; Saneesh, N.; Kaur, G.; Thakur, M.; Mahajan, R.; Dubey, R.; Mitra, A. K.
2017-01-01
The triton angular distribution for the 12C(7Li,t)16O* reaction is measured at 20 MeV, populating discrete states of 16O. Continuum discretized coupled reaction channel calculations are used to to extract the alpha spectroscopic properties of 16O states instead of the distorted wave born approximation theory to include the effects of breakup on the transfer process. The alpha reduced width, spectroscopic factors and the asymptotic normalization constant (ANC) of 16O states are extracted. The error in the spectroscopic factor is about 35% and in that of the ANC about 27%.
Flat-band superconductivity in strained Dirac materials
NASA Astrophysics Data System (ADS)
Kauppila, V. J.; Aikebaier, F.; Heikkilä, T. T.
2016-06-01
We consider superconducting properties of a two-dimensional Dirac material such as graphene under strain that produces a flat-band spectrum in the normal state. We show that in the superconducting state, such a model results in a highly increased critical temperature compared to the case without the strain, inhomogeneous order parameter with two-peak shaped local density of states and yet a large and almost uniform and isotropic supercurrent. This model could be realized in strained graphene or ultracold atom systems and could be responsible for unusually strong superconductivity observed in some graphite interfaces and certain IV-VI semiconductor heterostructures.
EXTREME ULTRAVIOLET EXPLORER OBSERVATIONS OF HERCULES X-1 OVER A 35 DAY CYCLE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leahy, D. A.; Dupuis, Jean, E-mail: leahy@ucalgary.c
2010-06-01
Observations of Hercules X-1 by the Extreme Ultraviolet Explorer covering most of the 35 day cycle are reported here. This is the only long extreme ultraviolet (EUV) observation of Her X-1. Simultaneous X-ray observations with the Rossi X-ray Timing Explorer All-Sky Monitor (RXTE/ASM) X-ray show that Her X-1 is in an X-ray anomalous low state. The first 4 days are also observed with the RXTE proportional counter array (PCA), which shows that the X-ray properties are nearly the same as for normal low states in Her X-1 with flux reduced by a factor of 2. In contrast, the EUV emissionmore » from Her X-1 is reduced by a factor of {approx}4 compared to normal low states. The twisted-tilted accretion disk responsible for the normal 35 day X-ray cycle can be modified to explain this behavior. An increased disk twist reduces the X-ray illumination of HZ Her by a factor of {approx}2 and of the disk surface by a somewhat larger factor, leading to a larger reduction in EUV flux compared to X-ray flux.« less
NASA Astrophysics Data System (ADS)
Arratia, Cristobal
2014-11-01
A simple construction will be shown, which reveals a general property satisfied by the evolution in time of a state vector composed by a superposition of orthogonal eigenmodes of a linear dynamical system. This property results from the conservation of the inner product between such state vectors evolving forward and backwards in time, and it can be simply evaluated from the state vector and its first and second time derivatives. This provides an efficient way to characterize, instantaneously along any specific phase-space trajectory of the linear system, the relevance of the non-normality of the linearized Navier-Stokes operator on the energy (or any other norm) gain or decay of small perturbations. Examples of this characterization applied to stationary or time dependent base flows will be shown. CONICYT, Concurso de Apoyo al Retorno de Investigadores del Extranjero, folio 821320055.
Influence of flow constraints on the properties of the critical endpoint of symmetric nuclear matter
NASA Astrophysics Data System (ADS)
Ivanytskyi, A. I.; Bugaev, K. A.; Sagun, V. V.; Bravina, L. V.; Zabrodin, E. E.
2018-06-01
We propose a novel family of equations of state for symmetric nuclear matter based on the induced surface tension concept for the hard-core repulsion. It is shown that having only four adjustable parameters the suggested equations of state can, simultaneously, reproduce not only the main properties of the nuclear matter ground state, but the proton flow constraint up its maximal particle number densities. Varying the model parameters we carefully examine the range of values of incompressibility constant of normal nuclear matter and its critical temperature, which are consistent with the proton flow constraint. This analysis allows us to show that the physically most justified value of nuclear matter critical temperature is 15.5-18 MeV, the incompressibility constant is 270-315 MeV and the hard-core radius of nucleons is less than 0.4 fm.
Pressure-induced phase transition in titanium alloys
NASA Astrophysics Data System (ADS)
Murugeswari, R.; Rajeswarapalanichamy, R.; Benial, A. Milton Franklin
2018-05-01
The structural, elastic, magnetic and electronic properties of titanium-based ferromagnetic (FM) TiX (X = Fe, Co, Ni) alloys are investigated by the first principles calculations based on density functional theory using the Vienna ab initio simulation code. At ambient pressure, all the three alloys TiFe, TiCo and TiNi are highly stable in CsCl structure. The calculated lattice parameters and ground state properties are in good agreement with the available theoretical and experimental results. The density of states explains that these alloys possess the metallic nature at normal and high pressures. A pressure-induced structural phase transitions from CsCl to NaCl phase at 46 GPa and NaCl to ZB phase at 49 GPa in TiFe, CsCl to ZB phase in TiCo at 52 GPa, CsCl to hexagonal phase at 22 GPa and hexagonal to ZB phase at 66 GPa in TiNi are observed. The calculated Debye temperatures of TiX (X = Fe, Co, Ni) alloys are in good agreement with earlier reports. Binding energy shows that the TiCo is the most stable alloy. The magnetic property of TiX (X = Fe, Co, Ni) alloys reveals that TiFe is stable in nonmagnetic phase and the other two alloys, TiCo and TiNi, are stable in FM phase at normal pressure.
Influence of color on dielectric properties of marinated poultry breast meat.
Samuel, D; Trabelsi, S
2012-08-01
The dielectric behavior of foods when exposed to radio-frequency and microwave electric fields is highly influenced by moisture content and the degree of water binding with constituents of the food materials. The ability to correlate specific food quality characteristics with the dielectric properties can lead to the development of rapid, nondestructive techniques for such quality measurements. Water-holding capacity is a critical attribute in meat quality. Up to 50% of raw poultry meat in the United States is marinated with mixtures of water, salts, and phosphates. The objective of this study was to determine if variations in breast meat color would affect the dielectric properties of marinated poultry meat over a broad frequency range from 500 MHz to 50 GHz. Poultry meat was obtained from a local commercial plant in Georgia (USA). Color and pH measurements were taken on the breast filets. Groups of breast filets were sorted into classes of pale and normal before adding marination pickup percentages of 0, 5, 10, and 15. Breast filets were vacuum-tumbled and weighed for pickup percentages. Dielectric properties of the filets were measured with a coaxial open-ended probe on samples equilibrated to 25°C. Samples from pale meat exhibited higher dielectric properties than samples from normal meat. No differences could be observed between samples from pale and normal meat after marination of the samples. Overall, dielectric properties increased as the marination pickup increased (α=0.05). Marination pickup strongly influenced the dielectric loss factor. Differences between samples marinated at different pickup levels were more pronounced at lower frequencies for the dielectric loss factor. As frequency increased, the differences between samples decreased. Differences in dielectric constant between samples were not as consistent as those seen with the dielectric loss factor.
1952-05-01
needed work lies in the ultra low- temperature range available only through use of the demagnetization cycle. SUPERCONDUCTIVITY BELOW 10 ABSOLUTE In...In Figure 1 is plotted, as a function of temperature, the magnetic field required to change hafnium from the superconducting to the normal state. For...fields of crystal physics, properties of metals, and magnetism and magnetic resonance. This article discusses the work of one group, the Cryogenics
NASA Astrophysics Data System (ADS)
Sales, Brian; Sefat, Athena; McGuire, Michael; Mandrus, David
2010-03-01
A simple two-band 3D model of a semimetal is constructed to see which normal state features of the Ba(Fe1-xCox)2As2 superconductors can be qualitatively understood within this framework. The model is able to account in a semiquantitative fashion for the measured magnetic susceptibility, Hall, and Seebeck data, and the low temperature Sommerfeld coefficient for 0
[The state of carotid arteries in young men with arterial hypertension].
Safarova, A F; Iurtaeva, V R; Kotovskaia, Iu V; Kobalava, Zh D
2012-01-01
To study elastic properties of carotid arteries in young men with arterial hypertension (AH). We examined men aged 18-25 years (mean 21.1+/-0.14 years): 36 with normal blood pressure (BP), 123 with stable and 51 with unstable AH. Parameters studied comprised intima-media thickness (IMT) of carotid arteries, their M-mode measured maximal systolic and minimal diastolic diameters (Ds and Dd), stiffness of common carotid artery (CCA) wall determined on the basis of analysis of elasticity and distensibility coefficients (CC and DC), Peterson's and Young's modules of elasticity (Ep and E), and index of flow deformation (CS). Compared with young men with normal BP and unstable AH patients with stable AH had abnormal elastic properties of CCA and increased IMT. Stable AH in young men is associated with signs of remodeling of CCA walls and increase of their rigidity.
NASA Astrophysics Data System (ADS)
Wen, Yong-Mei; Wen, De-Hua
2017-06-01
By employing four typical equation of states (EOSs) of nuclear matter in the inner crust, the properties of low-mass neutron stars are investigated theoretically. Based on the well-known fact that there is a big gap between the neutron stars and white dwarfs in the mass-radius sequence of compact stars, according to the mass-radius relations of the four adopted EOSs, we conclude that there is a rough forbidden region for the central density and stellar radius to form a compact star; that is, there is no compact star in nature having central density in the region from about 1012kgm-3 to 1017kgm-3 , and there is also no compact star having a radius in the region from about 400 km to 2000 km. Moreover, the properties of the low-mass neutron stars are also explored. It is shown that for a stable neutron star near the minimum mass point, the stellar size (with radius >200 km) is much larger than that of normal neutron stars, and there is a compact "core" concentrated at about 95% of the stellar mass in the inner core with a radius of about 13 km and density higher than the neutron-drip point (4.3 ×1014kgm-3) . This property totally differs from that of normal neutron stars and white dwarfs. Furthermore, the Keplerian period, the moment of inertia, and the surface gravitational redshift of the star near the minimum-mass point are also investigated.
Siyah Mansoory, Meysam; Oghabian, Mohammad Ali; Jafari, Amir Homayoun; Shahbabaie, Alireza
2017-01-01
Graph theoretical analysis of functional Magnetic Resonance Imaging (fMRI) data has provided new measures of mapping human brain in vivo. Of all methods to measure the functional connectivity between regions, Linear Correlation (LC) calculation of activity time series of the brain regions as a linear measure is considered the most ubiquitous one. The strength of the dependence obligatory for graph construction and analysis is consistently underestimated by LC, because not all the bivariate distributions, but only the marginals are Gaussian. In a number of studies, Mutual Information (MI) has been employed, as a similarity measure between each two time series of the brain regions, a pure nonlinear measure. Owing to the complex fractal organization of the brain indicating self-similarity, more information on the brain can be revealed by fMRI Fractal Dimension (FD) analysis. In the present paper, Box-Counting Fractal Dimension (BCFD) is introduced for graph theoretical analysis of fMRI data in 17 methamphetamine drug users and 18 normal controls. Then, BCFD performance was evaluated compared to those of LC and MI methods. Moreover, the global topological graph properties of the brain networks inclusive of global efficiency, clustering coefficient and characteristic path length in addict subjects were investigated too. Compared to normal subjects by using statistical tests (P<0.05), topological graph properties were postulated to be disrupted significantly during the resting-state fMRI. Based on the results, analyzing the graph topological properties (representing the brain networks) based on BCFD is a more reliable method than LC and MI.
Dynamic Rupture Simulations of 11 March 2011 Tohoku Earthquake
NASA Astrophysics Data System (ADS)
Kozdon, J. E.; Dunham, E. M.
2012-12-01
There is strong observational evidence that the 11 March 2011 Tohoku earthquake rupture reached the seafloor. This was unexpected because the shallow portion of the plate interface is believed to be frictionally stable and thus not capable of sustaining coseismic rupture. In order to explore this seeming inconsistency we have developed a two-dimensional dynamic rupture model of the Tohoku earthquake. The model uses a complex fault, seafloor, and material interface structure as derived from seismic surveys. We use a rate-and-state friction model with steady state shear strength depending logarithmically on slip velocity, i.e., there is no dynamic weakening in the model. The frictional parameters are depth dependent with the shallowest portions of the fault beneath the accretionary prism being velocity strengthening. The total normal stress on the fault is taken to be lithostatic and the pore pressure is hydrostatic until a maximum effective normal stress is reached (40 MPa in our preferred model) after which point the pore pressure follows the lithostatic gradient. We also account for poroelastic buffering of effective normal stress changes on the fault. The off-fault response is linear elastic. Using this model we find that large stress changes are dynamically transmitted to the shallowest portions of the fault by waves released by deep slip that are reflected off the seafloor. These stress changes are significant enough to drive the rupture through a velocity strengthening region that is tens of kilometers long. Rupture to the trench is therefore consistent with standard assumptions about depth-dependence of subduction zone properties, and does not require extreme dynamic weakening, shallow high stress drop asperities, or other exceptional processes. We also make direct comparisons with measured seafloor deformation and onshore 1-Hz GPS data from the Tohoku earthquake. Through these comparisons we are able to determine the sensitivity of these data to several dynamic source parameters (prestress, seismogenic depth, and the extent and frictional properties of the shallow plate interface). We find that there is a trade-off between the near-trench frictional properties and effective normal stress, particularly for onshore measurements. That is, the data can be equally well fit by either a velocity strengthening or velocity weakening near-trench fault segment, provided that compensating adjustments are also made to the maximum effective normal stress on the fault. On the other hand, the seismogenic depth is fairly well constrained from the static displacement field, independent of effective normal stress and near-trench properties. Finally, we show that a water layer (modeled as an isotropic linear acoustic material) has a negligible effect on the rupture process. That said, the inclusion of a water layer allows us to make important predictions concerning hydroacoustic signals that were observed by ocean bottom pressure sensors.
NASA Astrophysics Data System (ADS)
Kharga, D.; Inotani, D.; Hanai, R.; Ohashi, Y.
2017-06-01
We theoretically investigate the normal state properties of a Bose-Fermi mixture with a strong attractive interaction between Fermi and Bose atoms. We extend the ordinary T-matrix approximation (TMA) with respect to Bose-Fermi pairing fluctuations, to include the Hugenholtz-Pines' relation for all Bose Green's functions appearing in TMA self-energy diagrams. This extension is shown to be essentially important to correctly describe the physical properties of the Bose-Fermi mixture, especially near the Bose-Einstein condensation instability. Using this improved TMA, we clarify how the formation of composite fermions affects Bose and Fermi single-particle excitation spectra, over the entire interaction strength.
Odd-frequency pairing in superconducting heterostructures .
NASA Astrophysics Data System (ADS)
Golubov, A. A.; Tanaka, Y.; Yokoyama, T.; Asano, Y.
2007-03-01
We present a general theory of the proximity effect in junctions between unconventional superconductors and diffusive normal metals (DN) or ferromagnets (DF). We consider all possible symmetry classes in a superconductor allowed by the Pauli principle: even-frequency spin-singlet even-parity state, even-frequency spin-triplet odd-parity state, odd-frequency spin-triplet even-parity state and odd-frequency spin-singlet odd-parity state. For each of the above states, symmetry and spectral properties of the induced pair amplitude in the DN (DF) are determined. The cases of junctions with spin-singlet s- and d-wave superconductors and spin-triplet p-wave superconductors are adressed in detail. We discuss the interplay between the proximity effect and midgap Andreev bound states arising at interfaces in unconventional (d- or p-wave) junctions. The most striking property is the odd-frequency symmetry of the pairing amplitude induced in DN (DF) in contacts with p-wave superconductors. This leads to zero-energy singularity in the density of states and to anomalous screening of an external magnetic field. Peculiarities of Josephson effect in d- or p-wave junctions are discussed. Experiments are suggested to detect an order parameter symmetry using heterostructures with unconventional superconductors.
2010-03-01
Iodide or Cesium Iodide are the benchmarks for ease of use and quick identification of isotope species. This research aims to explore Cesium Bromide doped...oxidation states of 3+, 4+, 5+ and 6+ were used to identify the Pu pollution in the Rocky Flats area. The identification of the Pu4+ oxidation state...point was causing the normalization of the spectra to be much higher than what it should be. The XANES structures lineup showing the Sn in the CsSnBr3
NASA Astrophysics Data System (ADS)
Lazebnik, Mariya; Popovic, Dijana; McCartney, Leah; Watkins, Cynthia B.; Lindstrom, Mary J.; Harter, Josephine; Sewall, Sarah; Ogilvie, Travis; Magliocco, Anthony; Breslin, Tara M.; Temple, Walley; Mew, Daphne; Booske, John H.; Okoniewski, Michal; Hagness, Susan C.
2007-10-01
The development of microwave breast cancer detection and treatment techniques has been driven by reports of substantial contrast in the dielectric properties of malignant and normal breast tissues. However, definitive knowledge of the dielectric properties of normal and diseased breast tissues at microwave frequencies has been limited by gaps and discrepancies across previously published studies. To address these issues, we conducted a large-scale study to experimentally determine the ultrawideband microwave dielectric properties of a variety of normal, malignant and benign breast tissues, measured from 0.5 to 20 GHz using a precision open-ended coaxial probe. Previously, we reported the dielectric properties of normal breast tissue samples obtained from reduction surgeries. Here, we report the dielectric properties of normal (adipose, glandular and fibroconnective), malignant (invasive and non-invasive ductal and lobular carcinomas) and benign (fibroadenomas and cysts) breast tissue samples obtained from cancer surgeries. We fit a one-pole Cole-Cole model to the complex permittivity data set of each characterized sample. Our analyses show that the contrast in the microwave-frequency dielectric properties between malignant and normal adipose-dominated tissues in the breast is considerable, as large as 10:1, while the contrast in the microwave-frequency dielectric properties between malignant and normal glandular/fibroconnective tissues in the breast is no more than about 10%.
NASA Technical Reports Server (NTRS)
Sawyer, J. W.; Waters, W. A., Jr.
1981-01-01
Tests were conducted at room temperature to determine the shear properties of the strain isolator pad (SIP) material used in the thermal protection system of the space shuttle. Tests were conducted on both the .23 cm and .41 cm thick SIP material in the virgin state and after fifty fully reversed shear cycles. The shear stress displacement relationships are highly nonlinear, exhibit large hysteresis effects, are dependent on material orientation, and have a large low modulus region near the zero stress level where small changes in stress can result in large displacements. The values at the higher stress levels generally increase with normal and shear force load conditioning. Normal forces applied during the shear tests reduces the low modulus region for the material. Shear test techniques which restrict the normal movement of the material give erroneous stress displacement results. However, small normal forces do not significantly effect the shear modulus for a given shear stress. Poisson's ratio values for the material are within the range of values for many common materials. The values are not constant but vary as a function of the stress level and the previous stress history of the material. Ultimate shear strengths of the .23 cm thick SIP are significantly higher than those obtained for the .41 cm thick SIP.
The g Factors of Ground State of Ruby and Their Pressure-Induced Shifts
NASA Astrophysics Data System (ADS)
Ma, Dongping; Zhang, Hongmei; Chen, Jurong; Liu, Yanyun
1998-12-01
By using the theory of pressure-induced shifts and the eigenfunctions at normal and various pressures obtained from the diagonalization of the complete d3 energy matrix adopting C3v symmetry, g factors of the ground state of ruby and their pressure-induced shifts have been calculated. The results are in very good agreement with the experimental data. For the precise calculation of properties of the ground skate, it is necessary to take into account the effects of all the excited states by the diagonalization of the complete energy matrix. The project (Grant No. 19744001) supported by National Natural Science Foundation of China
Specific heat and Knight shift of cuprates within the van Hove scenario
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, S.; Das, A.N.
1996-12-01
The jump in the specific heat at {ital T}{sub {ital c}}, the specific heat in both the superconducting and normal states, and the Knight shift in the superconducting state are studied within the van Hove singularity scenario considering density of states for a two-dimensional tight-binding system and with an extended saddle-point singularity. The role of the electron-phonon interaction strength, band narrowing, second-nearest-neighbor hopping, and orthorhombic distortion on such properties is investigated. The experimental results on the specific heat and Knight shift of the Y-123 system are compared with the theoretical predictions. {copyright} {ital 1996 The American Physical Society.}
NASA Astrophysics Data System (ADS)
Itoh, Tamitake; Yamamoto, Yuko S.; Tamaru, Hiroharu; Biju, Vasudevanpillai; Murase, Norio; Ozaki, Yukihiro
2013-06-01
We find unique properties accompanying surface-enhanced fluorescence (SEF) from dye molecules adsorbed on Ag nanoparticle aggregates, which generate surface-enhanced Raman scattering. The properties are observed in excitation laser energy dependence of SEF after excluding plasmonic spectral modulation in SEF. The unique properties are large blue shifts of fluorescence spectra, deviation of ratios between anti-Stokes SEF intensity and Stokes from those of normal fluorescence, super-broadening of Stokes spectra, and returning to original fluorescence by lower energy excitation. We elucidate that these properties are induced by electromagnetic enhancement of radiative decay rates exceeding the vibrational relaxation rates within an electronic excited state, which suggests that molecular electronic dynamics in strong plasmonic fields can be largely deviated from that in free space.
Majorana bound states from exceptional points in non-topological superconductors
San-Jose, Pablo; Cayao, Jorge; Prada, Elsa; Aguado, Ramón
2016-01-01
Recent experimental efforts towards the detection of Majorana bound states have focused on creating the conditions for topological superconductivity. Here we demonstrate an alternative route, which achieves fully localised zero-energy Majorana bound states when a topologically trivial superconductor is strongly coupled to a helical normal region. Such a junction can be experimentally realised by e.g. proximitizing a finite section of a nanowire with spin-orbit coupling, and combining electrostatic depletion and a Zeeman field to drive the non-proximitized (normal) portion into a helical phase. Majorana zero modes emerge in such an open system without fine-tuning as a result of charge-conjugation symmetry, and can be ultimately linked to the existence of ‘exceptional points’ (EPs) in parameter space, where two quasibound Andreev levels bifurcate into two quasibound Majorana zero modes. After the EP, one of the latter becomes non-decaying as the junction approaches perfect Andreev reflection, thus resulting in a Majorana dark state (MDS) localised at the NS junction. We show that MDSs exhibit the full range of properties associated to conventional closed-system Majorana bound states (zero-energy, self-conjugation, 4π-Josephson effect and non-Abelian braiding statistics), while not requiring topological superconductivity. PMID:26865011
"Antelope": a hybrid-logic model checker for branching-time Boolean GRN analysis
2011-01-01
Background In Thomas' formalism for modeling gene regulatory networks (GRNs), branching time, where a state can have more than one possible future, plays a prominent role. By representing a certain degree of unpredictability, branching time can model several important phenomena, such as (a) asynchrony, (b) incompletely specified behavior, and (c) interaction with the environment. Introducing more than one possible future for a state, however, creates a difficulty for ordinary simulators, because infinitely many paths may appear, limiting ordinary simulators to statistical conclusions. Model checkers for branching time, by contrast, are able to prove properties in the presence of infinitely many paths. Results We have developed Antelope ("Analysis of Networks through TEmporal-LOgic sPEcifications", http://turing.iimas.unam.mx:8080/AntelopeWEB/), a model checker for analyzing and constructing Boolean GRNs. Currently, software systems for Boolean GRNs use branching time almost exclusively for asynchrony. Antelope, by contrast, also uses branching time for incompletely specified behavior and environment interaction. We show the usefulness of modeling these two phenomena in the development of a Boolean GRN of the Arabidopsis thaliana root stem cell niche. There are two obstacles to a direct approach when applying model checking to Boolean GRN analysis. First, ordinary model checkers normally only verify whether or not a given set of model states has a given property. In comparison, a model checker for Boolean GRNs is preferable if it reports the set of states having a desired property. Second, for efficiency, the expressiveness of many model checkers is limited, resulting in the inability to express some interesting properties of Boolean GRNs. Antelope tries to overcome these two drawbacks: Apart from reporting the set of all states having a given property, our model checker can express, at the expense of efficiency, some properties that ordinary model checkers (e.g., NuSMV) cannot. This additional expressiveness is achieved by employing a logic extending the standard Computation-Tree Logic (CTL) with hybrid-logic operators. Conclusions We illustrate the advantages of Antelope when (a) modeling incomplete networks and environment interaction, (b) exhibiting the set of all states having a given property, and (c) representing Boolean GRN properties with hybrid CTL. PMID:22192526
NASA Astrophysics Data System (ADS)
Balasis, G.; Daglis, I. A.; Papadimitriou, C.; Kalimeri, M.; Anastasiadis, A.; Eftaxias, K.
2008-12-01
Dynamical complexity detection for output time series of complex systems is one of the foremost problems in physics, biology, engineering, and economic sciences. Especially in magnetospheric physics, accurate detection of the dissimilarity between normal and abnormal states (e.g. pre-storm activity and magnetic storms) can vastly improve space weather diagnosis and, consequently, the mitigation of space weather hazards. Herein, we examine the fractal spectral properties of the Dst data using a wavelet analysis technique. We show that distinct changes in associated scaling parameters occur (i.e., transition from anti- persistent to persistent behavior) as an intense magnetic storm approaches. We then analyze Dst time series by introducing the non-extensive Tsallis entropy, Sq, as an appropriate complexity measure. The Tsallis entropy sensitively shows the complexity dissimilarity among different "physiological" (normal) and "pathological" states (intense magnetic storms). The Tsallis entropy implies the emergence of two distinct patterns: (i) a pattern associated with the intense magnetic storms, which is characterized by a higher degree of organization, and (ii) a pattern associated with normal periods, which is characterized by a lower degree of organization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, Eric D; Mitchell, Jeremy N; Booth, C H
2009-01-01
The effects of various chemical substitutions and induced lattice disorder in the Ce- and Pu-based 115 superconductors are reviewed, with particular emphasis on results from x-ray absorption fine structure (XAFS) measurements. The competition between spin, charge, and lattice interactions is at the heart of many of the strongly-correlated ground states in materials of current interest, such as in colossal magnetoresistors and high-temperature superconductors. This relationship is particularly strong in the CeTIn{sub 5} and PuTGa{sub 5} series (T = Co, Rh, Ir) of heavy-fermion superconductors. In these systems (figure 1), competition between bulk magnetic and non-magnetic ground states, as well asmore » between superconducting and normal states, are directly related to local properties around the lanthanide or actinide ion, such as the nearest-neighbor bond lengths and the local density of states at the Fermi level. Tiny changes in the latter values can easily tip the balance from one ground state to another. This paper reviews recent work by the authors exploring the relationship between local crystal and electronic structure and ground state magnetic and conducting properties in the Ce- and Pu-based 115 materials.« less
Free flux flow: a probe into the field dependence of vortex core size in clean single crystals
NASA Astrophysics Data System (ADS)
Gapud, A. A.; Gafarov, O.; Moraes, S.; Thompson, J. R.; Christen, D. K.; Reyes, A. P.
2012-02-01
The free-flux-flow (FFF) phase has been attained successfully in a number of clean, weak-pinning, low-anisotropy, low-Tc, single-crystal samples as a unique probe into type II superconductivity that is independent of composition. The ``clean'' quality of the samples have been confirmed by reversible magnetization, high residual resistivity ratio, and low critical current densities Jc with a re-entrant ``peak'' effect in Jc(H) just below the critical field Hc2. The necessity of high current densities presented technical challenges that had been successfully addressed, and FFF is confirmed by a field-dependent ohmic state that is also well below the normal state. In these studies, the FFF resistivity ρf(H) has been measured in order to observe the field-dependent core size of the quantized magnetic flux vortices as modeled recently by Kogan and Zelezhina (KZ) who predicted a specific deviation from Bardeen-Stephen flux flow, dependent on normalized temperature and scattering parameter λ. The compounds studied are: V3Si, LuNi2B2C, and NbSe2, and results have shown consistency with the KZ model. Other applications of this method could also be used to probe normal-state properties, especially for the new iron arsenides, as will be discussed.
A micromechanical model of rate and state friction: 2. Effect of shear and normal stress changes
NASA Astrophysics Data System (ADS)
Molinari, A.; Perfettini, H.
2017-04-01
In this paper we analyze the influence of shear and normal stress changes on frictional properties. This problem is fundamental as, for instance, sudden stress changes are naturally induced on active faults by nearby earthquakes. As any stress changes can be seen as resulting from a succession of infinitesimal stress steps, the role of sudden stress changes is crucial to our understanding of fault dynamics. Laboratory experiments carried out by Linker and Dieterich (1992) and Nagata et al. (2012), considering steps in normal and shear stress, respectively, show an instantaneous response of the state variable (a proxy for the evolution of contact surface in our model) to a sudden stress change. We interpret this response as being due to an (instantaneous) elastic response of the plastic and elastic contacts. We assume that the anelastic response of the plastic contacts is frozen during sudden stress changes. The contacts, which were driven by plasticity before the stress change, are elastically accommodated during the sudden variation of the load. On the contrary, when the loading is slowly varying, elastic deformation of plastic contacts can be neglected. Our model is able to explain the evolution law for the state variable reported by Linker and Dieterich (1992).
Vilmercati, Paolo; Mo, Sung -Kwan; Fedorov, Alexei; ...
2016-11-28
Here, we report systematic angle-resolved photoemission (ARPES) experiments using different photon polarizations and experimental geometries and find that the doping evolution of the normal state of Ba(Fe 1–xCo x) 2As 2 deviates significantly from the predictions of a rigid band model. The data reveal a nonmonotonic dependence upon doping of key quantities such as band filling, bandwidth of the electron pocket, and quasiparticle coherence. Our analysis suggests that the observed phenomenology and the inapplicability of the rigid band model in Co-doped Ba122 are due to electronic correlations, and not to the either the strength of the impurity potential, or self-energymore » effects due to impurity scattering. Our findings indicate that the effects of doping in pnictides are much more complicated than currently believed. More generally, they indicate that a deep understanding of the evolution of the electronic properties of the normal state, which requires an understanding of the doping process, remains elusive even for the 122 iron-pnictides, which are viewed as the least correlated of the high-T C unconventional superconductors.« less
The broad-band SEDs of four `hypervariable' AGN
NASA Astrophysics Data System (ADS)
Collinson, James S.; Ward, Martin J.; Lawrence, Andy; Bruce, Alastair; MacLeod, Chelsea L.; Elvis, Martin; Gezari, Suvi; Marshall, Philip J.; Done, Chris
2018-03-01
We present an optical-to-X-ray spectral analysis of four `hypervariable' AGN (HVAs) discovered by comparing Pan-STARRS data to that from the Sloan Digital Sky Survey over a 10 yr baseline (Lawrence et al.). There is some evidence that these objects are X-ray loud for their corresponding UV luminosities, but given that we measured them in a historic high state, it is not clear whether to take the high state or low state as typical of the properties of these HVAs. We estimate black hole masses based on Mg II and H α emission line profiles, and either the high- or low-state luminosities, finding mass ranges log (MBH/M⊙) = 8.2-8.8 and log (MBH/M⊙) = 7.9-8.3, respectively. We then fit energy-conserving models to the spectral energy distributions (SEDs), obtaining strong constraints on the bolometric luminosity and αOX. We compare the SED properties with a larger, X-ray selected AGN sample for both of these scenarios, and observe distinct groupings in spectral shape versus luminosity parameter space. In general, the SED properties are closer to normal if we assume that the low state is representative. This supports the idea that the large slow outbursts may be due to extrinsic effects (for example microlensing) as opposed to accretion rate changes, but a larger sample of HVAs is needed to be confident of this conclusion.
NASA Astrophysics Data System (ADS)
Luque-Ceballos, Jonathan C.; Posada-Borbón, Alvaro; Herrera-Urbina, Ronaldo; Aceves, R.; Juárez-Sánchez, J. Octavio; Posada-Amarillas, Alvaro
2018-03-01
Spectroscopic properties of gas-phase copper sulfide clusters (CuS)n (n = 2-6) are calculated using Density Functional Theory (DFT) and time-dependent (TD) DFT approaches. The energy landscape of the potential energy surface is explored through a basin-hopping DFT methodology. Ground-state and low-lying isomer structures are obtained. The global search was performed at the B3PW91/SDD level of theory. Normal modes are calculated to validate the existence of optimal cluster structures. Energetic properties are obtained for the ground-state and isomer clusters and their relative energies are evaluated for probing isomerization. This is a few tenths of an eV, except for (CuS)2 cluster, which presents energy differences of ∼1 eV. Notable differences in the infrared spectra exist between the ground-state and first isomer structures, even for the (CuS)5 cluster, which has in both configurations a core copper pyramid. TDDFT provides the simulated absorption spectrum, presenting a theoretical description of optical absorption bands in terms of electronic excitations in the UV and visible regions. Results exhibit a significant dependence of the calculated UV/vis spectra on clusters size and shape regarding the ground state structures. Optical absorption is strong in the UV region, and weak or forbidden in the visible region of the spectrum.
46 CFR 386.1 - Hours of admission to property.
Code of Federal Regulations, 2010 CFR
2010-10-01
.... Academy property shall be closed to the public during other than normal working hours, as well as during... not apply where the Superintendent has approved the after normal working hours use of buildings or athletic facilities for authorized activities. During normal working hours, property shall be closed to the...
Comparative studies of '1212' superconductors
NASA Astrophysics Data System (ADS)
Gapud, Albert Agcaoili
Several properties of highly isomorphic species of HgBa2CaCu 2O6+delta (Hg-1212) and TlBa2CaCu2O 7-delta (Tl-1212) were compared. The samples used were high-quality, c-oriented thin films with epitaxial growth. In particular, the Hg-1212 films were made from either Tl-2212 or Tl-1212 films using a novel method in which the Tl cations were surgically replaced by Hg cations, during which the 1212 structure was retained. Properties studied were: the irreversibility line, critical current density, the magnetic phase diagram, the normal-state Hall effect, and the mixed-state Hall effect. There are several indications that the most significant difference between the 1212 species is mostly in their superconducting charge carrier density. However, the subtle differences in their electronic band structure may have also been discerned.
Hybrid sp2+sp3 carbon phases created from carbon nanotubes
NASA Astrophysics Data System (ADS)
Tingaev, M. I.; Belenkov, E. A.
2017-11-01
Using the density functional theory in the gradient approximation (DFT-GGA) methods was calculated the geometrically optimized structure and electronic properties for six new hybrid carbon phases. These hybrid phases consists of atoms in three - and four-coordinated (sp2+sp3-hybridized) states. The initial structure of the carbon phases was constructed by partial cross-linking of (8,0) carbon nanotube bundles. Sublimation energies calculated for hybrid phases above the sublimation energy of cubic diamond, however, fall into the range of values typical for carbon materials, which are stable under normal conditions. The density of electronic states at the Fermi energy for the two phases is non-zero and these phases should have metallic properties. The other hybrid phases should be semiconductors with a band gap from 0.5 to 1.1 eV.
1972-01-01
Coatings - Normal Spectral Reflectance 67 32 Boron Nitride + Diatomaceous Earth Pigmented Coatings - Normal Spectral Reflectance 69 Notet Figure...Absorptance 106 53* Clay + Titanium Dioxide Plgmented Coatings - Normal Solar Absorptance 107 54 Dlatomaceous Earth ...Plgmented Coatings - Normal Spectral Reflectance 112 55* Dlatomaceous Earth Plgmented Coatings - Normal Solar Absorptance 116 56
Effect of Li 2O on the microstructure, magnetic and transport properties of Tl-2223 superconductor
Shipra, R.; Sefat, Athena Safa
2015-10-08
Here, the present study gives an account of the effect of addition of Li 2O on the ease of phase formation and superconducting properties of Tl 2Ba 2Ca 2Cu 3O 10 + δ (Tl-2223) material. Li 2O slightly decreases the superconducting transition temperature, while an optimal concentration of 20% Li 2O improves the critical current density (J c) by about two fold. We also found substantial effects on the synthesis temperature, microstructure and normal state transport properties of Tl-2223 with Li 2O addition. Short-time annealing under flowing Ar + 4%H 2 (1 h) further improves the superconducting volume fractions, asmore » well as J c.« less
Multiphonon: Phonon Density of States tools for Inelastic Neutron Scattering Powder Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Y. Y. Lin, Jiao; Islam, Fahima; Kresh, Max
The multiphonon python package calculates phonon density of states, a reduced representation of vibrational property of condensed matter (see, for example, Section “Density of Normal Modes” in Chapter 23 “Quantum Theory of the Harmonic Crystal” of (Ashcroft and Mermin 2011)), from inelastic neutron scattering (see, for example (B. Fultz et al. 2006–2016)) spectrum from a powder sample. Inelastic neutron spectroscopy (INS) is a probe of excitations in solids of vibrational or magnetic origins. In INS, neutrons can lose(gain) energy to(from) the solid in the form of quantized lattice vibrations – phonons. Measuring phonon density of states is usually the firstmore » step in determining the phonon properties of a material experimentally. Phonons play a very important role in understanding the physical properties of a solid, including thermal conductivity and electrical conductivity. Hence, INS is an important tool for studying thermoelectric materials (Budai et al. 2014, Li et al. (2015)), where low thermal conductivity and high electrical conductivity are desired. Study of phonon entropy also made important contributions to the research of thermal dynamics and phase stability of materials (B. Fultz 2010, bogdanoff2002phonon, swan2006vibrational).« less
Multiphonon: Phonon Density of States tools for Inelastic Neutron Scattering Powder Data
Y. Y. Lin, Jiao; Islam, Fahima; Kresh, Max
2018-01-29
The multiphonon python package calculates phonon density of states, a reduced representation of vibrational property of condensed matter (see, for example, Section “Density of Normal Modes” in Chapter 23 “Quantum Theory of the Harmonic Crystal” of (Ashcroft and Mermin 2011)), from inelastic neutron scattering (see, for example (B. Fultz et al. 2006–2016)) spectrum from a powder sample. Inelastic neutron spectroscopy (INS) is a probe of excitations in solids of vibrational or magnetic origins. In INS, neutrons can lose(gain) energy to(from) the solid in the form of quantized lattice vibrations – phonons. Measuring phonon density of states is usually the firstmore » step in determining the phonon properties of a material experimentally. Phonons play a very important role in understanding the physical properties of a solid, including thermal conductivity and electrical conductivity. Hence, INS is an important tool for studying thermoelectric materials (Budai et al. 2014, Li et al. (2015)), where low thermal conductivity and high electrical conductivity are desired. Study of phonon entropy also made important contributions to the research of thermal dynamics and phase stability of materials (B. Fultz 2010, bogdanoff2002phonon, swan2006vibrational).« less
Biophoton research in blood reveals its holistic properties.
Voeikov, V L; Asfaramov, R; Bouravleva, E V; Novikov, C N; Vilenskaya, N D
2003-05-01
Monitoring of spontaneous and luminophore amplified photon emission (PE) from non-diluted human blood under resting conditions and artificially induced immune reaction revealed that blood is a continuous source of biophotons indicating that it persists in electronically excited state. This state is pumped through generation of electron excitation produced in reactive oxygen species (ROS) reactions. Excited state of blood and of neutrophil suspensions (primary sources of ROS in blood) is an oscillatory one suggesting of interaction between individual sources of electron excitation. Excited state of blood is extremely sensitive to the tiniest fluctuations of external photonic fields but resistant to temperature variations as reflected in hysteresis of PE in response to temperature variations. These data suggest that blood is a highly cooperative non-equilibrium and non-linear system, whose components unceasingly interact in time and space. At least in part this property is provided by the ability of blood to store energy of electron excitation that is produced in course of its own normal metabolism. From a practical point of view analysis of these qualities of blood may be a basement of new approach to diagnostic procedures.
O'Rourke, Ann P; Lazebnik, Mariya; Bertram, John M; Converse, Mark C; Hagness, Susan C; Webster, John G; Mahvi, David M
2007-08-07
Hepatic malignancies have historically been treated with surgical resection. Due to the shortcomings of this technique, there is interest in other, less invasive, treatment modalities, such as microwave hepatic ablation. Crucial to the development of this technique is the accurate knowledge of the dielectric properties of human liver tissue at microwave frequencies. To this end, we characterized the dielectric properties of in vivo and ex vivo normal, malignant and cirrhotic human liver tissues from 0.5 to 20 GHz. Analysis of our data at 915 MHz and 2.45 GHz indicates that the dielectric properties of ex vivo malignant liver tissue are 19 to 30% higher than normal tissue. The differences in the dielectric properties of in vivo malignant and normal liver tissue are not statistically significant (with the exception of effective conductivity at 915 MHz, where malignant tissue properties are 16% higher than normal). Also, the dielectric properties of in vivo normal liver tissue at 915 MHz and 2.45 GHz are 16 to 43% higher than ex vivo. No statistically significant differences were found between the dielectric properties of in vivo and ex vivo malignant tissue (with the exception of effective conductivity at 915 MHz, where malignant tissue properties are 28% higher than normal). We report the one-pole Cole-Cole parameters for ex vivo normal, malignant and cirrhotic liver tissue in this frequency range. We observe that wideband dielectric properties of in vivo liver tissue are different from the wideband dielectric properties of ex vivo liver tissue, and that the in vivo data cannot be represented in terms of a Cole-Cole model. Further work is needed to uncover the mechanisms responsible for the observed wideband trends in the in vivo liver data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gasparov, V. A., E-mail: vgasparo@issp.ac.r
Experimental data are presented on the superconducting and electronic properties of iron-based high-temperature superconductors in the normal and superconducting states. The following topics are discussed: lattice structure; structure of magnetic vortices; magnetic penetration depth; Fermi surface; isotope effect; and critical magnetic fields both in oxide compounds of 1111 type and oxide-free compounds of 122, 111, and 011 types as a function of the doping level, temperature, and external pressure.
Matsumoto, Atsushi; Tobias, Irwin; Olson, Wilma K
2005-01-01
Fine structural and energetic details embedded in the DNA base sequence, such as intrinsic curvature, are important to the packaging and processing of the genetic material. Here we investigate the internal dynamics of a 200 bp closed circular molecule with natural curvature using a newly developed normal-mode treatment of DNA in terms of neighboring base-pair "step" parameters. The intrinsic curvature of the DNA is described by a 10 bp repeating pattern of bending distortions at successive base-pair steps. We vary the degree of intrinsic curvature and the superhelical stress on the molecule and consider the normal-mode fluctuations of both the circle and the stable figure-8 configuration under conditions where the energies of the two states are similar. To extract the properties due solely to curvature, we ignore other important features of the double helix, such as the extensibility of the chain, the anisotropy of local bending, and the coupling of step parameters. We compare the computed normal modes of the curved DNA model with the corresponding dynamical features of a covalently closed duplex of the same chain length constructed from naturally straight DNA and with the theoretically predicted dynamical properties of a naturally circular, inextensible elastic rod, i.e., an O-ring. The cyclic molecules with intrinsic curvature are found to be more deformable under superhelical stress than rings formed from naturally straight DNA. As superhelical stress is accumulated in the DNA, the frequency, i.e., energy, of the dominant bending mode decreases in value, and if the imposed stress is sufficiently large, a global configurational rearrangement of the circle to the figure-8 form takes place. We combine energy minimization with normal-mode calculations of the two states to decipher the configurational pathway between the two states. We also describe and make use of a general analytical treatment of the thermal fluctuations of an elastic rod to characterize the motions of the minicircle as a whole from knowledge of the full set of normal modes. The remarkable agreement between computed and theoretically predicted values of the average deviation and dispersion of the writhe of the circular configuration adds to the reliability in the computational approach. Application of the new formalism to the computed modes of the figure-8 provides insights into macromolecular motions which are beyond the scope of current theoretical treatments.
NASA Astrophysics Data System (ADS)
Bellot, P.-V.; Trokiner, A.; Zhdanov, Yu.; Yakubovskii, A.
1998-02-01
In this paper we show that 43Ca is a suitable NMR probe to study the properties of high-Tc superconducting oxides. In the normal state, we report the temperature and doping dependencies of the spin susceptibility measured by 43Ca NMR. In the superconducting state and more exactly in the mixed state, by analysing 43Ca NMR linewidth, we have studied the magnetic induction distribution due to the presence of vortices and deduced λ, the penetration depth. Dans cet article, on montre que l'isotope 43 du calcium est une bonne sonde RMN pour l'étude des propriétés des oxydes supraconducteurs à haute température. Dans l'état normal, par la détermination du déplacement de la raie, en fonction de la température, on accède à la variation thermique de la susceptibilité de spin. Dans l'état supraconducteur et plus particulièrement dans l'état mixte, la largeur de raie RMN permet d'étudier la distribution d'induction magnétique due à la présence des vortex et de déterminer λ, la longueur de pénétration.
An optimal state estimation model of sensory integration in human postural balance
NASA Astrophysics Data System (ADS)
Kuo, Arthur D.
2005-09-01
We propose a model for human postural balance, combining state feedback control with optimal state estimation. State estimation uses an internal model of body and sensor dynamics to process sensor information and determine body orientation. Three sensory modalities are modeled: joint proprioception, vestibular organs in the inner ear, and vision. These are mated with a two degree-of-freedom model of body dynamics in the sagittal plane. Linear quadratic optimal control is used to design state feedback and estimation gains. Nine free parameters define the control objective and the signal-to-noise ratios of the sensors. The model predicts statistical properties of human sway in terms of covariance of ankle and hip motion. These predictions are compared with normal human responses to alterations in sensory conditions. With a single parameter set, the model successfully reproduces the general nature of postural motion as a function of sensory environment. Parameter variations reveal that the model is highly robust under normal sensory conditions, but not when two or more sensors are inaccurate. This behavior is similar to that of normal human subjects. We propose that age-related sensory changes may be modeled with decreased signal-to-noise ratios, and compare the model's behavior with degraded sensors against experimental measurements from older adults. We also examine removal of the model's vestibular sense, which leads to instability similar to that observed in bilateral vestibular loss subjects. The model may be useful for predicting which sensors are most critical for balance, and how much they can deteriorate before posture becomes unstable.
Granular mechanics of normally consolidated fine soils
NASA Astrophysics Data System (ADS)
Yanqui, Calixtro
2017-06-01
In this paper, duality is demonstrated to be one of the inherent properties of granular packings, by mapping the stress-strain curve into the diagram that relates the pore ratio and the localization of the contact point. In this way, it is demonstrated that critical state is not related to the maximum void ratio, but to a unique value related to two different angles of packing, one limiting the domain of the dense state, and other limiting the domain of the loose state. As a consequence, packings can be dilative or contractive, as mutually exclusive states, except by the critical state point, where equations for both granular packings are equally valid. Further analysis shows that stresses, in a dilative packing, are transmitted by chains of contact forces, and, in a contractive packing, by shear forces. So that, stresses, for the first case, depend on the initial void ratio, and, for the second case, are independent. As it is known, normally consolidated and lightly overconsolidated fine soils are in loose state, and, hence, their strength is constant, because it does not depend on their initial void ratio; except at the critical state, for which, the consolidated-drained angle of friction is related to the plasticity index or the liquid limit. In this fashion, experimental results reported by several authors around the world are confronted with the theory, showing a good agreement.
Einstein-Podolsky-Rosen steering: Its geometric quantification and witness
NASA Astrophysics Data System (ADS)
Ku, Huan-Yu; Chen, Shin-Liang; Budroni, Costantino; Miranowicz, Adam; Chen, Yueh-Nan; Nori, Franco
2018-02-01
We propose a measure of quantum steerability, namely, a convex steering monotone, based on the trace distance between a given assemblage and its corresponding closest assemblage admitting a local-hidden-state (LHS) model. We provide methods to estimate such a quantity, via lower and upper bounds, based on semidefinite programming. One of these upper bounds has a clear geometrical interpretation as a linear function of rescaled Euclidean distances in the Bloch sphere between the normalized quantum states of (i) a given assemblage and (ii) an LHS assemblage. For a qubit-qubit quantum state, these ideas also allow us to visualize various steerability properties of the state in the Bloch sphere via the so-called LHS surface. In particular, some steerability properties can be obtained by comparing such an LHS surface with a corresponding quantum steering ellipsoid. Thus, we propose a witness of steerability corresponding to the difference of the volumes enclosed by these two surfaces. This witness (which reveals the steerability of a quantum state) enables one to find an optimal measurement basis, which can then be used to determine the proposed steering monotone (which describes the steerability of an assemblage) optimized over all mutually unbiased bases.
Non-local electron transport through normal and topological ladder-like atomic systems
NASA Astrophysics Data System (ADS)
Kurzyna, Marcin; Kwapiński, Tomasz
2018-05-01
We propose a locally protected ladder-like atomic system (nanoconductor) on a substrate that is insensitive to external perturbations. The system corresponds to coupled atomic chains fabricated on different surfaces. Electron transport properties of such conductors are studied theoretically using the model tight-binding Su-Schriffer-Hegger (SSH) Hamiltonian and Green's function formalism. We have found that the conductance of the system is almost insensitive to single adatoms and oscillates as a function of the side chain length with very large periods. Non-local character of the electron transport was observed also for topological SSH chains where nontrivial end states survive in the presence of disturbances as well as for different substrates. We have found that the careful inspection of the density of states or charge waves can provide the information about the atom energy levels and hopping amplitudes. Moreover, the ladder-like geometry allows one to distinguish between normal and topological zero-energy states. It is important that topological chains do not reveal Friedel oscillations which are observed in non-topological chains.
NASA Astrophysics Data System (ADS)
Rish, Irina; Bashivan, Pouya; Cecchi, Guillermo A.; Goldstein, Rita Z.
2016-03-01
The objective of this study is to investigate effects of methylphenidate on brain activity in individuals with cocaine use disorder (CUD) using functional MRI (fMRI). Methylphenidate hydrochloride (MPH) is an indirect dopamine agonist commonly used for treating attention deficit/hyperactivity disorders; it was also shown to have some positive effects on CUD subjects, such as improved stop signal reaction times associated with better control/inhibition,1 as well as normalized task-related brain activity2 and resting-state functional connectivity in specific areas.3 While prior fMRI studies of MPH in CUDs have focused on mass-univariate statistical hypothesis testing, this paper evaluates multivariate, whole-brain effects of MPH as captured by the generalization (prediction) accuracy of different classification techniques applied to features extracted from resting-state functional networks (e.g., node degrees). Our multivariate predictive results based on resting-state data from3 suggest that MPH tends to normalize network properties such as voxel degrees in CUD subjects, thus providing additional evidence for potential benefits of MPH in treating cocaine addiction.
Simulation study of overtaking in pedestrian flow using floor field cellular automaton model
NASA Astrophysics Data System (ADS)
Fu, Zhijian; Xia, Liang; Yang, Hongtai; Liu, Xiaobo; Ma, Jian; Luo, Lin; Yang, Lizhong; Chen, Junmin
Properties of pedestrian may change along the moving path, for example, as a result of fatigue or injury, which has never been properly investigated in the past research. The paper attempts to study tactical overtaking in pedestrian flow. That is difficult to be modeled using a microscopic discrete model because of the complexity of the detailed overtaking behavior, and crossing/overlaps of pedestrian routes. Thus, a multi-velocity floor field cellular automaton model explaining the detailed psychical process of overtaking decision was proposed. Pedestrian can be either in normal state or in tactical overtaking state. Without tactical decision, pedestrians in normal state are driven by the floor field. Pedestrians make their tactical overtaking decisions by evaluating the walking environment around the overtaking route (the average velocity and density around the route, visual field of pedestrian) and obstructing conditions (the distance and velocity difference between the overtaking pedestrian and the obstructing pedestrian). The effects of tactical overtaking ratio, free velocity dispersion, and visual range on fundamental diagram, conflict density, and successful overtaking ratio were explored. Besides, the sensitivity analysis of the route factor relative intensity was performed.
Hanes, Michael C; Weinzweig, Jeffrey; Panter, Kip E; McClellan, W Thomas; Caterson, Stefanie A; Buchman, Steven R; Faulkner, John A; Yu, Deborah; Cederna, Paul S; Larkin, Lisa M
2008-02-01
Inherent differences in the levator veli palatini (LVP) muscle of cleft palates before palatoplasty may play a role in persistent postrepair velopharyngeal insufficiency (VPI). Contractile properties of LVP muscle fibers were analyzed from young (2-month) normal (YNP), young congenitally cleft (YCP) and again on the same YCP subjects 6 months after palatoplasty, mature repaired palate (MRP). The cross-sectional area and rate of force development (ktr) were measured. Specific force (sF(0)) and normalized power (nP(max)) were calculated. Using k(tr) to determine fiber type composition, YNP was 44% type 1 and 56% type 2, while YCP was 100% type 2. Two MRP subjects shifted to 100% type 1; 1 demonstrated increased resistance to fatigue. No differences in sF(0) were observed. nP(max) increased with presence of type 2 fibers. The persistent state of type 2 fibers following palatoplasty leads to increased fatigue in the LVP of MRP subjects and may cause VPI symptoms.
Modelling of steady state erosion of CFC actively water-cooled mock-up for the ITER divertor
NASA Astrophysics Data System (ADS)
Ogorodnikova, O. V.
2008-04-01
Calculations of the physical and chemical erosion of CFC (carbon fibre composite) monoblocks as outer vertical target of the ITER divertor during normal operation regimes have been done. Off-normal events and ELM's are not considered here. For a set of components under thermal and particles loads at glancing incident angle, variations in the material properties and/or assembly of defects could result in different erosion of actively-cooled components and, thus, in temperature instabilities. Operation regimes where the temperature instability takes place are investigated. It is shown that the temperature and erosion instabilities, probably, are not a critical point for the present design of ITER vertical target if a realistic variation of material properties is assumed, namely, the difference in the thermal conductivities of the neighbouring monoblocks is 20% and the maximum allowable size of a defect between CFC armour and cooling tube is +/-90° in circumferential direction from the apex.
Wang, Kun; Wang, Wenhang; Ye, Ran; Liu, Anjun; Xiao, Jingdong; Liu, Yaowei; Zhao, Yana
2017-02-01
This study investigated the possibility of enhancing the properties of collagen with three different maize starches: waxy maize starch, normal starch, and high amylose starch. Scanning electron microscopy images revealed that starch-collagen films had a rougher surface compared to pure collagen films which became smoother upon heating. Amylose starch and normal starch increased the tensile strength of unheated collagen films in both dry and wet states, while all starches increased tensile strength of collagen film by heating. Depending upon the amylose content and starch concentrations, film solubility in water decreased with the addition of starch. DSC thermograms demonstrated that addition of all starches improved the thermal stability of the collagen film. Moreover, X-ray diffraction results indicated that except for high amylose starch, the crystallinity of both starch and collagen was significantly decreased when subject to heating. FTIR spectra indicated that intermolecular interactions between starch and collagen were enhanced upon heating. Copyright © 2016 Elsevier Ltd. All rights reserved.
Castro-Ramírez, Rodrigo; Ortiz-Pastrana, Naytzé; Caballero, Ana B; Zimmerman, Matthew T; Stadelman, Bradley S; Gaertner, Andrea A E; Brumaghim, Julia L; Korrodi-Gregório, Luís; Pérez-Tomás, Ricardo; Gamez, Patrick; Barba-Behrens, Norah
2018-05-23
Novel tinidazole (tnz) coordination compounds of different geometries were synthesised, whose respective solid-state packing appears to be driven by inter- and intramolecular lone pairπ interactions. The copper(ii) compounds exhibit interesting redox properties originating from both the tnz and the metal ions. These complexes interact with DNA through two distinct ways, namely via electrostatic interactions or/and groove binding, and they can mediate the generation of ROS that damage the biomolecule. Cytotoxic studies revealed an interesting activity of the dinuclear compound [Cu(tnz)2(μ-Cl)Cl]2 7, which is further more efficient towards cancer cells, compared with normal cells.
Microwave control of the superconducting proximity effect and minigap in magnetic and normal metals
Linder, Jacob; Amundsen, Morten; Ouassou, Jabir Ali
2016-01-01
We demonstrate theoretically that microwave radiation applied to superconducting proximity structures controls the minigap and other spectral features in the density of states of normal and magnetic metals, respectively. Considering both a bilayer and Josephson junction geometry, we show that microwaves with frequency ω qualitatively alters the spectral properties of the system: inducing a series of resonances, controlling the minigap size Emg, and even replacing the minigap with a strong peak of quasiparticle accumulation at zero energy when ω = Emg. The interaction between light and Cooper pairs may thus open a route to active control of quantum coherent phenomena in superconducting proximity structures. PMID:27982128
NASA Astrophysics Data System (ADS)
Ellinwood, Nicholas; Dobrev, Dobromir; Morotti, Stefano; Grandi, Eleonora
2017-09-01
The KV1.5 potassium channel, which underlies the ultra-rapid delayed-rectifier current (IKur) and is predominantly expressed in atria vs. ventricles, has emerged as a promising target to treat atrial fibrillation (AF). However, while numerous KV1.5-selective compounds have been screened, characterized, and tested in various animal models of AF, evidence of antiarrhythmic efficacy in humans is still lacking. Moreover, current guidelines for pre-clinical assessment of candidate drugs heavily rely on steady-state concentration-response curves or IC50 values, which can overlook adverse cardiotoxic effects. We sought to investigate the effects of kinetics and state-dependent binding of IKur-targeting drugs on atrial electrophysiology in silico and reveal the ideal properties of IKur blockers that maximize anti-AF efficacy and minimize pro-arrhythmic risk. To this aim, we developed a new Markov model of IKur that describes KV1.5 gating based on experimental voltage-clamp data in atrial myocytes from patient right-atrial samples in normal sinus rhythm. We extended the IKur formulation to account for state-specificity and kinetics of KV1.5-drug interactions and incorporated it into our human atrial cell model. We simulated 1- and 3-Hz pacing protocols in drug-free conditions and with a [drug] equal to the IC50 value. The effects of binding and unbinding kinetics were determined by examining permutations of the forward (kon) and reverse (koff) binding rates to the closed, open, and inactivated states of the KV1.5 channel. We identified a subset of ideal drugs exhibiting anti-AF electrophysiological parameter changes at fast pacing rates (effective refractory period prolongation), while having little effect on normal sinus rhythm (limited action potential prolongation). Our results highlight that accurately accounting for channel interactions with drugs, including kinetics and state-dependent binding, is critical for developing safer and more effective pharmacological anti-AF options.
?-BiPd: a clean noncentrosymmetric superconductor
NASA Astrophysics Data System (ADS)
Ramakrishnan, Srinivasan; Joshi, Bhanu; Thamizhavel, A.
2017-12-01
We present a comprehensive review of the normal and superconducting state properties of a high-quality single crystal of monoclinic BiPd (?-BiPd, space group ?). The superconductivity of this crystal below 3.8 K is established by measuring its properties using bulk as well as spectroscopic techniques. BiPd is one of the cleanest noncentrosymmetric superconductors that display superconductivity with multiple energy gaps. Evidence of multiple energy gaps was found in heat capacity, point contact (PC) spectroscopy, penetration depth, muon spin rotation, small angle neutron scattering and NMR/NQR measurements. Moreover, Muon spin rotation measurements also suggest strong field dependence of the penetration depth of this superconductor. Unusual superconducting properties due to possible s and p wave mixing are shown by the observation of Andreev bound state in PC measurements as well as the suppressed coherence peak in the temperature dependence of the spin-lattice relaxation in the NQR measurements. This surmise is at variance with the recent STM measurements (different crystal). The observed unusual properties and multiband superconductivity are extremely sensitive to disorder in BiPd. Finally, there is a possibility of tuning the electron correlations by selective substitution in BiPd, thus making it an important system for further investigations.
NASA Astrophysics Data System (ADS)
Lazo, Edmundo; Saavedra, Eduardo; Humire, Fernando; Castro, Cristobal; Cortés-Cortés, Francisco
2015-09-01
We study the localization properties of direct transmission lines when we distribute two values of inductances LA and LB according to a generalized Thue-Morse aperiodic sequence generated by the inflation rule: A → ABm-1, B → BAm-1, m ≥ 2 and integer. We regain the usual Thue-Morse sequence for m = 2. We numerically study the changes produced in the localization properties of the I (ω) electric current function with increasing m values. We demonstrate that the m = 2 case does not belong to the family m ≥ 3, because when m changes from m = 2 to m = 3, the number of extended states decreases significantly. However, for m ≫ 3, the localization properties become similar to the m = 2 case. Also, the
Semi-empirical device model for Cu2ZnSn(S,Se)4 solar cells
NASA Astrophysics Data System (ADS)
Gokmen, Tayfun; Gunawan, Oki; Mitzi, David B.
2014-07-01
We present a device model for the hydrazine processed kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cell with a world record efficiency of ˜12.6%. Detailed comparison of the simulation results, performed using wxAMPS software, to the measured device parameters shows that our model captures the vast majority of experimental observations, including VOC, JSC, FF, and efficiency under normal operating conditions, and temperature vs. VOC, sun intensity vs. VOC, and quantum efficiency. Moreover, our model is consistent with material properties derived from various techniques. Interestingly, this model does not have any interface defects/states, suggesting that all the experimentally observed features can be accounted for by the bulk properties of CZTSSe. An electrical (mobility) gap that is smaller than the optical gap is critical to fit the VOC data. These findings point to the importance of tail states in CZTSSe solar cells.
Stress Corrosion Cracking of Basalt/Epoxy Composites under Bending Loading
NASA Astrophysics Data System (ADS)
Shokrieh, Mahmood M.; Memar, Mahdi
2010-04-01
The purpose of this research is to study the stress corrosion behavior of basalt/epoxy composites under bending loading and submerged in 5% sulfuric acid corrosive medium. There are limited numbers of research in durability of fiber reinforced polymer composites. Moreover, studies on basalt fibers and its composites are very limited. In this research, mechanical property degradation of basalt/epoxy composites under bending loading and submerged in acidic corrosive medium is investigated. Three states of stress, equal to 30%, 50% and 70% of the ultimate strength of composites, are applied on samples. High stress states are applied to the samples to accelerate the testing procedure. Mechanical properties degradation consists of bending strength, bending modulus of elasticity and fracture energy of samples are examined. Also, a normalized strength degradation model for stress corrosion condition is presented. Finally, microscopic images of broken cross sections of samples are examined.
NASA Astrophysics Data System (ADS)
Ikegaya, Satoshi; Kobayashi, Shingo; Asano, Yasuhiro
2018-05-01
We discuss the symmetry property of a nodal superconductor that hosts robust flat-band zero-energy states at its surface under potential disorder. Such robust zero-energy states are known to induce the anomalous proximity effect in a dirty normal metal attached to a superconductor. A recent study has shown that a topological index NZES describes the number of zero-energy states at the dirty surface of a p -wave superconductor. We generalize the theory to clarify the conditions required for a superconductor that enables NZES≠0 . Our results show that NZES≠0 is realized in a topological material that belongs to either the BDI or CII class. We also present two realistic Hamiltonians that result in NZES≠0 .
Chai, Hann-Juang; Kiew, Lik-Voon; Chin, Yunni; Norazit, Anwar; Mohd Noor, Suzita; Lo, Yoke-Lin; Looi, Chung-Yeng; Lau, Yeh-Siang; Lim, Tuck-Meng; Wong, Won-Fen; Abdullah, Nor Azizan; Abdul Sattar, Munavvar Zubaid; Johns, Edward J; Chik, Zamri; Chung, Lip-Yong
2017-01-01
Poly-l-glutamic acid (PG) has been used widely as a carrier to deliver anticancer chemotherapeutics. This study evaluates PG as a selective renal drug carrier. 3 H-deoxycytidine-labeled PGs (17 or 41 kDa) and 3 H-deoxycytidine were administered intravenously to normal rats and streptozotocin-induced diabetic rats. The biodistribution of these compounds was determined over 24 h. Accumulation of PG in normal kidneys was also tracked using 5-(aminoacetamido) fluorescein (fluoresceinyl glycine amide)-labeled PG (PG-AF). To evaluate the potential of PGs in ferrying renal protective anti-oxidative stress compounds, the model drug 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF) was conjugated to 41 kDa PG to form PG-AEBSF. PG-AEBSF was then characterized and evaluated for intracellular anti-oxidative stress efficacy (relative to free AEBSF). In the normal rat kidneys, 17 kDa radiolabeled PG (PG-Tr) presents a 7-fold higher, while 41 kDa PG-Tr shows a 15-fold higher renal accumulation than the free radiolabel after 24 h post injection. The accumulation of PG-AF was primarily found in the renal tubular tissues at 2 and 6 h after an intravenous administration. In the diabetic (oxidative stress-induced) kidneys, 41 kDa PG-Tr showed the greatest renal accumulation of 8-fold higher than the free compound 24 h post dose. Meanwhile, the synthesized PG-AEBSF was found to inhibit intracellular nicotinamide adenine dinucleotide phosphate oxidase (a reactive oxygen species generator) at an efficiency that is comparable to that of free AEBSF. This indicates the preservation of the anti-oxidative stress properties of AEBSF in the conjugated state. The favorable accumulation property of 41 kDa PG in normal and oxidative stress-induced kidneys, along with its capabilities in conserving the pharmacological properties of the conjugated renal protective drugs, supports its role as a potential renal targeting drug carrier.
Chai, Hann-Juang; Kiew, Lik-Voon; Chin, Yunni; Norazit, Anwar; Mohd Noor, Suzita; Lo, Yoke-Lin; Looi, Chung-Yeng; Lau, Yeh-Siang; Lim, Tuck-Meng; Wong, Won-Fen; Abdullah, Nor Azizan; Abdul Sattar, Munavvar Zubaid; Johns, Edward J; Chik, Zamri; Chung, Lip-Yong
2017-01-01
Background and purpose Poly-l-glutamic acid (PG) has been used widely as a carrier to deliver anticancer chemotherapeutics. This study evaluates PG as a selective renal drug carrier. Experimental approach 3H-deoxycytidine-labeled PGs (17 or 41 kDa) and 3H-deoxycytidine were administered intravenously to normal rats and streptozotocin-induced diabetic rats. The biodistribution of these compounds was determined over 24 h. Accumulation of PG in normal kidneys was also tracked using 5-(aminoacetamido) fluorescein (fluoresceinyl glycine amide)-labeled PG (PG-AF). To evaluate the potential of PGs in ferrying renal protective anti-oxidative stress compounds, the model drug 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF) was conjugated to 41 kDa PG to form PG-AEBSF. PG-AEBSF was then characterized and evaluated for intracellular anti-oxidative stress efficacy (relative to free AEBSF). Results In the normal rat kidneys, 17 kDa radiolabeled PG (PG-Tr) presents a 7-fold higher, while 41 kDa PG-Tr shows a 15-fold higher renal accumulation than the free radiolabel after 24 h post injection. The accumulation of PG-AF was primarily found in the renal tubular tissues at 2 and 6 h after an intravenous administration. In the diabetic (oxidative stress-induced) kidneys, 41 kDa PG-Tr showed the greatest renal accumulation of 8-fold higher than the free compound 24 h post dose. Meanwhile, the synthesized PG-AEBSF was found to inhibit intracellular nicotinamide adenine dinucleotide phosphate oxidase (a reactive oxygen species generator) at an efficiency that is comparable to that of free AEBSF. This indicates the preservation of the anti-oxidative stress properties of AEBSF in the conjugated state. Conclusion/Implications The favorable accumulation property of 41 kDa PG in normal and oxidative stress-induced kidneys, along with its capabilities in conserving the pharmacological properties of the conjugated renal protective drugs, supports its role as a potential renal targeting drug carrier. PMID:28144140
Pilot clinical study for quantitative spectral diagnosis of non-melanoma skin cancer.
Rajaram, Narasimhan; Reichenberg, Jason S; Migden, Michael R; Nguyen, Tri H; Tunnell, James W
2010-12-01
Several research groups have demonstrated the non-invasive diagnostic potential of diffuse optical spectroscopy (DOS) and laser-induced fluorescence (LIF) techniques for early cancer detection. By combining both modalities, one can simultaneously measure quantitative parameters related to the morphology, function and biochemical composition of tissue and use them to diagnose malignancy. The objective of this study was to use a quantitative reflectance/fluorescence spectroscopic technique to determine the optical properties of normal skin and non-melanoma skin cancers and the ability to accurately classify them. An additional goal was to determine the ability of the technique to differentiate non-melanoma skin cancers from normal skin. The study comprised 48 lesions measured from 40 patients scheduled for a biopsy of suspected non-melanoma skin cancers. White light reflectance and laser-induced fluorescence spectra (wavelength range = 350-700 nm) were collected from each suspected lesion and adjacent clinically normal skin using a custom-built, optical fiber-based clinical instrument. After measurement, the skin sites were biopsied and categorized according to histopathology. Using a quantitative model, we extracted various optical parameters from the measured spectra that could be correlated to the physiological state of tissue. Scattering from cancerous lesions was significantly lower than normal skin for every lesion group, whereas absorption parameters were significantly higher. Using numerical cut-offs for our optical parameters, our clinical instrument could classify basal cell carcinomas with a sensitivity and specificity of 94% and 89%, respectively. Similarly, the instrument classified actinic keratoses and squamous cell carcinomas with a sensitivity of 100% and specificity of 50%. The measured optical properties and fluorophore contributions of normal skin and non-melanoma skin cancers are significantly different from each other and correlate well with tissue pathology. A diagnostic algorithm that combines these extracted properties holds promise for the potential non-invasive diagnosis of skin cancer. Copyright © 2010 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Arouca, R.; Silva Neto, M. B.; Chaves, C. M.; Nagao, M.; Watauchi, S.; Tanaka, I.; ElMassalami, M.
2017-09-01
Layered BiS 2 -based series, such as LaO 1-x F x BiS 2 and Sr 1-x La x FBiS 2 , offer ideal examples for studying normal and superconducting phase diagram of a solid solution that evolves from a nonmagnetic band-insulator parent. We constructed typical x-T phase diagrams of these systems based on events occurring in thermal evolution of their electrical resistivity, ρ(x, T) . Overall evolution of these diagrams can be rationalized in terms of (i) Mott-Efros-Shklovskii scenario which, within the semiconducting x regime (x_MIT = Mott metal-insulator transition), describes the doping influence on the thermally activated hopping conductivity. (ii) A granular metal (superconductor) scenario which, within x_MIT< x < x_solubility , describes the evolution of normal and superconducting properties in terms of conductance g, Coulomb charging energy E c and Josephson coupling J; their joint influence is usually captured within a g-\\frac{gE_c}{J}-T phase diagram. Based on analysis of the granular character of ρ(x, T) , we converted the x-T diagrams into projected g - T diagrams which, being fundamental, allow a better understanding of evolution of various granular-related properties (in particular the hallmarks of normal-state \\partialρ/\\partial T<0 feature and superconductor-insulator transition) and how such properties are influenced by x, pressure or heat treatment.
Closed-Loop Concepts for the Army: Water Conservation, Recycle, and Reuse.
1984-11-01
generally small parcels of land used for out- door instruction and field maneuvers. Normally, no permanent improvements are made to the property . Contract...avoid the use of flush toilets. In many situations, this procedure may be necessary because of the physical difficulties with sewage disposal. Several...monitoring of the chemical-biological- physical treatment process, however, it may be prudent to limit their use to locations in the United States where
NASA Astrophysics Data System (ADS)
Borah, Mukunda Madhab; Devi, Th. Gomti
2017-05-01
In the present work, L-phenylalanine is studied using the experimental and theoretical methods. The spectral characterization of the molecule has been done using Raman, FTIR, Hartee-Fock(HF), density functional theory (DFT) and vibrational energy distribution analysis (VEDA) calculation. The optimization of the molecule has been studied using basis set HF/6-31G(d,p) and B3LYP/6-31G(d,p) for Hartree Fock and density functional theory calculation. The complete vibrational assignment of the molecule in monomer and dimer states have been attempted. The potential energy distribution and normal mode analysis are also carried out to determine the contributions of bond oscillators in each normal mode. The molecular geometry, HOMO-LUMO energy gap, molecular hardness (η), ionization energy (IE), electron affinity (EA), total energy and dipole moment were determined from the calculated data. The observed experimental and the scaled theoretical results are compared and found to be in good agreement. The vibrational assignment of molecule in different dimer states has also been done using SERS data and better correlated Raman peaks are observed as compare to normal Raman technique.
Tropical Ocean Surface Energy Balance Variability: Linking Weather to Climate Scales
NASA Technical Reports Server (NTRS)
Roberts, J. Brent; Clayson, Carol Anne
2013-01-01
Radiative and turbulent surface exchanges of heat and moisture across the atmosphere-ocean interface are fundamental components of the Earth s energy and water balance. Characterizing the spatiotemporal variability of these exchanges of heat and moisture is critical to understanding the global water and energy cycle variations, quantifying atmosphere-ocean feedbacks, and improving model predictability. These fluxes are integral components to tropical ocean-atmosphere variability; they can drive ocean mixed layer variations and modify the atmospheric boundary layer properties including moist static stability, thereby influencing larger-scale tropical dynamics. Non-parametric cluster-based classification of atmospheric and ocean surface properties has shown an ability to identify coherent weather regimes, each typically associated with similar properties and processes. Using satellite-based observational radiative and turbulent energy flux products, this study investigates the relationship between these weather states and surface energy processes within the context of tropical climate variability. Investigations of surface energy variations accompanying intraseasonal and interannual tropical variability often use composite-based analyses of the mean quantities of interest. Here, a similar compositing technique is employed, but the focus is on the distribution of the heat and moisture fluxes within their weather regimes. Are the observed changes in surface energy components dominated by changes in the frequency of the weather regimes or through changes in the associated fluxes within those regimes? It is this question that the presented work intends to address. The distribution of the surface heat and moisture fluxes is evaluated for both normal and non-normal states. By examining both phases of the climatic oscillations, the symmetry of energy and water cycle responses are considered.
NASA Astrophysics Data System (ADS)
Castillo, Martin
2016-07-01
Screens and displays consume tremendous amounts of power. Global trends to significantly consume less power and increase battery life have led to the reinvestigation of electroluminescent materials. The state of the art in ZnS materials has not been furthered in the past 30 years and there is much potential in improving electroluminescent properties of these materials with advanced processing techniques. Self-propagating high temperature synthesis (SHS) utilises a rapid exothermic process involving high energy and nonlinearity coupled with a high cooling rate to produce materials formed outside of normal equilibrium boundaries thus possessing unique properties. The elimination of gravity during this process allows capillary forces to dominate mixing of the reactants which results in a superior and enhanced homogeneity in the product materials. ZnS type materials have been previously conducted in reduced gravity and normal gravity. It has been claimed in literature that a near perfect phases of ZnS wurtzite was produced. Although, the SHS of this material is possible at high pressures, there has been no quantitative information on the actual crystal structures and lattice parameters that were produced in this work. Utilising this process with ZnS doped with Cu, Mn, or rare earth metals such as Eu and Pr leads to electroluminescence properties, thus making this an attractive electroluminescent material. The work described here will revisit the synthesis of ZnS via high pressure SHS and will re-examine the work performed in both normal gravity and in reduced gravity within the ZARM drop tower facility. Quantifications in the lattice parameters, crystal structures, and phases produced will be presented to further explore the unique structure-property performance relationships produced from the SHS of ZnS materials.
NASA Astrophysics Data System (ADS)
Debnath, Bimal; Sarkar, Utpal; Debbarma, Manish; Bhattacharjee, Rahul; Chattopadhyaya, Surya
2018-02-01
The band gaps and optoelectronic properties of binary calcium chalcogenide semiconductors have been modified theoretically by doping magnesium atom(s) into their respective rock-salt unit cells at some specific concentrations x = 0.0, 0.25, 0.50, 0.75 and 1.0 and confirmed such modifications by studying their structural, electronic and optical properties using DFT based FP-LAPW approach. The WC-GGA functional is used to calculate structural properties, while mBJ, B3LYP and WC-GGA are used for calculating electronic and optical properties. The concentration dependences of lattice parameter, bulk modulus and fundamental band gap for each alloy system exhibit nonlinearity. The atomic and orbital origin of different electronic states in the band structure of each compound are explored from its density of states (DOS). The microscopic origin of band gap bowing for each of the alloy systems is explored in terms of volume deformation, charge exchange and structural relaxation. The chemical bonds between the constituent atoms in each compound are found as ionic in nature. Optical properties of each specimen are calculated from its computed spectra of dielectric function, refractive index, extinction coefficient, normal incidence reflectivity, optical conductivity, optical absorption and energy loss function. Several calculated results have been compared with available experimental and other theoretical data.
Li, Zhou; Deng, Guanhua; Li, Zhe; Xin, Sherman Xuegang; Duan, Song; Lan, Maoying; Zhang, Sa; Gao, Yixin; He, Jun; Zhang, Songtao; Tang, Hongming; Wang, Weiwei; Han, Shuai; Yang, Qing X; Zhuang, Ling; Hu, Jiani; Liu, Feng
2016-11-01
Knowledge of dielectric properties of malignant human tissues is necessary for the recently developed magnetic resonance (MR) technique called MR electrical property tomography. This technique may be used in early tumor detection based on the obvious differentiation of the dielectric properties between normal and malignant tissues. However, the dielectric properties of malignant human tissues in the scale of the Larmor frequencies are not completely available in the literature. In this study, the authors focused only on the dielectric properties of colorectal tumor tissue. The dielectric properties of 504 colorectal malignant samples excised from 85 patients in the scale of the Larmor frequencies were measured using the precision open-ended coaxial probe method. The obtained complex-permittivity data were fitted to the single-pole Cole-Cole model. The median permittivity and conductivity for the malignant tissue sample were 79.3 and 0.881 S/m at 128 MHz, which were 14.6% and 17.0% higher, respectively, than those of normal tissue samples. Significant differences between normal and malignant tissues were found for the dielectric properties (p < 0.05). Experimental results indicated that the dielectric properties were significantly different between normal and malignant tissues for colorectal tissue. This large-scale clinical measurement provides more subtle base data to validate the technique of MR electrical property tomography.
Electronic properties and optical absorption of a phosphorene quantum dot
NASA Astrophysics Data System (ADS)
Liang, F. X.; Ren, Y. H.; Zhang, X. D.; Jiang, Z. T.
2018-03-01
Using the tight-binding Hamiltonian approach, we theoretically study the electronic and optical properties of a triangular phosphorene quantum dot (PQD) including one normal zigzag edge and two skewed armchair edges (ZAA-PQD). It is shown that the energy spectrum can be classified into the filled band (FB), the zero-energy band (ZB), and the unfilled band (UB). Numerical calculations of the FB, ZB, and UB probability distributions show that the FB and the UB correspond to the bulk states, while the ZB corresponds to the edge states, which appear on all of the three edges of the ZAA-PQD sharply different from the other PQDs. We also find that the strains and the electric fields can affect the energy levels inhomogeneously. Then the optical properties of the ZAA-PQD are investigated. There appear some strong low-energy optical absorption peaks indicating its sensitive low-energy optical response that is absent in other PQDs. Moreover, the strains and the electric fields can make inhomogeneous influences on the optical spectrum of the ZAA-PQD. This work may provide a useful reference for designing the electrical, mechanical, and optical PQD devices.
Planar Tunneling Spectroscopy of Graphene Nanodevices
NASA Astrophysics Data System (ADS)
Wang, Joel I.-Jan; Bretheau, Landry; Pisoni, Riccardo; Watanabe, Kenji; Taniguchi, Takashi; Jarillo-Herrero, Pablo
2-D Van-der-Waals mesoscopic physics have seen a rapid development in the last 10 years, with new materials each year added to the toolbox. Stacking them like Lego enables the combination of their individual electronic properties. In particular, hexagonal boron nitride, which is an insulator, gives the possibility to perform planar (2-D to 2-D) tunneling spectroscopy within this type of heterostructures. Unlike standard transport measurements, tunneling spectroscopy enables to probe the electronic properties in the energy domain. Moreover, since planar tunneling probes a large area of the system, global quantum features such as quantum Hall effect, superconducting proximity effect or quantum confinement can be investigated. In this talk, we will present implementation of heterostructures consisting of graphene, hexagonal boron nitride, and graphite, fabricated for planar tunneling spectroscopy. In order to reveal the intrinsic properties of materials, the fabrication scheme aims at preserving the pristine nature of the 2-DEGS as well as minimizing the doping introduced by external probes. As a demonstration, measurements of these devices in normal states, high magnetic field environment, and induced superconducting state will be presented.
Chemical Properties of Elements 99 and 100 [Einsteinium and Fermium
DOE R&D Accomplishments Database
Seaborg, G. T.; Thompson, S. G.; Harvey, B. G.; Choppin, G. R.
1954-07-23
A description of some of the chemical properties and of the methods used in the separations of elements 99 [Einsteinium] and 100 [Fermium] are given. The new elements exhibit the properties expected for the tenth and eleventh actinide elements. Attempts to produce an oxidation state greater than III of element 99 have been unsuccessful. In normal aqueous media only the III state of element 100 appears to exist. The relative spacings of the elution peaks of the new elements in some separations with ion exchange resin columns are the same as the relative spacings of the homologous lanthanide elements. The results of experiments involving cation exchange resins with very concentrated hydrochloric acid eluant show that the new elements, like the earlier actinides, are more strongly complexed than the lanthanides. The new elements also exist partially as anions in concentrated hydrochloric acid, as do earlier actinide elements, and they may be partially separated from each other by means of ion exchange resins. With some eluants interesting reversals of elution positions are observed in the region Bk-Cf-99-100, indicating complex ion formation involving unusual factors.
Gating of the late Na+ channel in normal and failing human myocardium.
Undrovinas, Albertas I; Maltsev, Victor A; Kyle, John W; Silverman, Norman; Sabbah, Hani N
2002-11-01
We previously reported an ultraslow inactivating late Na+ current (INaL) in left ventricular cardiomyocytes (VC) isolated from normal (NVC) and failing (FVC) human hearts. This current could play a role in heart failure-induced repolarization abnormalities. To identify properties of NaCh contributing to INaL, we examined early and late openings in cell-attached patches of HEK293 cells expressing human cardiac NaCh alpha-subunit (alpha-HEK) and in VC of one normal and three failing human hearts. Two types of the late NaCh openings underlay INaL in all three preparations: scattered late (SLO) and bursts (BO). Amplitude analysis revealed that slope conductance for both SLO and BO was the same compared to the main level of early openings (EO) in both VC (21 vs 22.7pS, NVC; 22.7 vs 22.6pS, FVC) and alpha-HEK (23.2 vs 23pS), respectively. Analysis of SLO latencies revealed voltage-independent ultraslow inactivation in all preparations with tendency to be slower in FVC compared to NCV. EO and SLO render one open voltage-independent state (tau approximately 0.4ms) for NVC and FVC. One open (voltage-dependent) and two closed states (one voltage-dependent and another voltage-independent) were found in BO of both specimens. Burst duration tend to be longer in FVC ( approximately 50ms) than in NVC ( approximately 30ms). In FVC we found both modes SLO and BO at membrane potential of -10mV that is attribute for take-off voltages (from -18 to -2mV) for early afterdepolarizations (EAD's) in FVC. In conclusions, we found a novel gating mode SLO that manifest slow (hundreds of ms), voltage-independent inactivation in both NVC and FVC. We were unable to reliably demonstrate any differences in the properties of the late NaCh in failing vs a normal human heart. Accordingly, the late current appears to be generated by a single population of channels in normal and failing human ventricular myocardium. Both SLO and BO could be implicated in EADs in HF.
Sadeghi, S M
2014-09-01
When a hybrid system consisting of a semiconductor quantum dot and a metallic nanoparticle interacts with a laser field, the plasmonic field of the metallic nanoparticle can be normalized by the quantum coherence generated in the quantum dot. In this Letter, we study the states of polarization of such a coherent-plasmonic field and demonstrate how these states can reveal unique aspects of the collective molecular properties of the hybrid system formed via coherent exciton-plasmon coupling. We show that transition between the molecular states of this system can lead to ultrafast polarization dynamics, including sudden reversal of the sense of variations of the plasmonic field and formation of circular and elliptical polarization.
Superconductivity and Magnetism in LaO1-xFxFeAs
NASA Astrophysics Data System (ADS)
Buechner, Bernd
2009-03-01
Measuring ^75As, ^139La, and ^57Fe Nuclear Magnetic Resonance (NMR) as well as μSR, transport and thermodynamic properties we have determined the phase diagram of LaO1-xFxAsFe superconductors [1-6]. In my talk, I will show experimental studies of the magnetic ordering [2, 5], properties of the superconducting state [1, 3, 5] and the normal state properties [1, 4, 6] in the superconducting regions of the phase diagram. While the temperature dependence of the London penetration as determined from μSR points to an isotropic s wave state [3], our early NMR data suggest singlet pairing and nodes of the order parameter [1]. Extending the NMR work to lower temperatures we find evidence for a deviation of the T^3 behaviour of the spin lattice relaxation, which would agree with the extended s-wave symmetry suggested in recent theoretical work. In the paramagnetic normal state, NMR on all three nuclei shows that the local electronic susceptibility rises with increasing temperature. This had led to suggest the presence of a pseudogap, which I will discuss in detail. The scaling of all NMR shifts with respect to the macroscopic susceptibility indicates that there is no apparent multiband effect through preferential hyperfine couplings. Relaxation measurements indicate a similar temperature-dependence for (T1T)-1, and suggest that the dynamical susceptibility changes uniformly in q space with varying temperature. The transport properties show some striking similarities to the findings in cuprates [6] and, finally, susceptibility [4] as well as NMR studies point to the antiferromagnetic fluctuations, whose relevance is also discussed in many theoretical models of the superconducting pairing mechanism. In collaboration with Hans-Joachim Grafe, Christian Hess, R"udiger Klingeler, G"unter Behr, Agnieszka Kondrat, Norman Leps, and Guillaume Lang, IFW Dresden; Hans-Henning Klauss, TU Dresden; and Hubertus Luetkens, PSI Villigen. [4pt] References: [0pt] [1] H.-J. Grafe et al., Phys. Rev. Lett. 101, 047003 (2008) [0pt] [2] H.-H. Klauss et al., Phys. Rev. Lett. 101, 077005 (2008) [0pt] [3] H. Luetkens et al., Phys- Rev. Lett. 101, 097009 (2008) [0pt] [4] R. Klingeler et al., arXiv: 0808.0708 (2008) [0pt] [5] H. Luetkens et al., arXiv: 0806.3533 (2008) [0pt] [6] C. Hess et al., arXiv: 0811.1601 (2008)
Negative magnetoresistance of ultra-narrow superconducting nanowires in the resistive state
NASA Astrophysics Data System (ADS)
Arutyunov, K. Yu.
2008-02-01
We present a phenomenological model that qualitatively explains negative magnetoresistance in quasi-one-dimensional superconducting channels in the resistive state. The model is based on the assumption that fluctuations of the order parameter (phase slips) are responsible for the finite effective resistance of a narrow superconducting wire sufficiently close to the critical temperature. Each fluctuation is accompanied by an instantaneous formation of a quasi-normal region, of the order of the non-equilibrium quasiparticle relaxation length, ‘pinned’ to the core of the phase slip. The effective time-averaged voltage measured in experiments is a sum of two terms. The first is the conventional contribution associated with the rate of the fluctuations via the Josephson relation. The second term is the Ohmic contribution of this quasi-normal region. Depending on the material properties of the wire, there might be a range of magnetic fields where the first term is not significantly affected, while the second term is effectively suppressed, contributing to the experimentally observed negative magnetoresistance.
Anomalous Normal State and Quasi Particle Transport in High-Tc Superconductors
NASA Astrophysics Data System (ADS)
Ong, N. P.
1997-03-01
The quasi-particles (qp) below Tc are much less studied compared to excitations of the normal state. The thermal conductivity tensor κ_ij provides a window on their transport properties. In YBaCuO, the large thermal Hall response allows the qp mean-free-path l to be estimated. l rises rapidly from 90 Åat Tc to over 6,000 Åat 20 K in untwinned crystals. The intense scattering rate above Tc is rapidly suppressed, leaving qp's that travel great distances at low T. In LaSrCuO, where there is substantial disorder, κ_xx varies logarithmically with field B. While the field dependence is entirely electronic, it is incompatible with scattering from vortices. κ_xx fits well to the digamma function form ψ(1/2+ fracB_0B) + ln(fracBB_0), with a T-linear field-scale B_0. Possible field destruction of a quantum interference effect or depairing effects in a d-wave superconductor will be discussed.
Rotating magnetic field experiments in a pure superconducting Pb sphere
NASA Astrophysics Data System (ADS)
Vélez, Saül; García-Santiago, Antoni; Hernandez, Joan Manel; Tejada, Javier
2009-10-01
The magnetic properties of a sphere of pure type-I superconducting lead (Pb) under rotating magnetic fields have been investigated in different experimental conditions by measuring the voltage generated in a set of detection coils by the response of the sample to the time variation in the magnetic field. The influence of the frequency of rotation of the magnet, the time it takes to record each data point and the temperature of the sample during the measuring process is explored. A strong reduction in the thermodynamic critical field and the onset of hysteretical effects in the magnetic field dependence of the amplitude of the magnetic susceptibility are observed for large frequencies and large values of the recording time. Heating of the sample during the motion of normal zones in the intermediate state and the dominance of a resistive term in the contribution of the Lenz’s law to the magnetic susceptibility in the normal state under time varying magnetic fields are suggested as possible explanations for these effects.
Simulating the impact of dust cooling on the statistical properties of the intra-cluster medium
NASA Astrophysics Data System (ADS)
Pointecouteau, Etienne; da Silva, Antonio; Catalano, Andrea; Montier, Ludovic; Lanoux, Joseph; Roncarelli, Mauro; Giard, Martin
2009-08-01
From the first stages of star and galaxy formation, non-gravitational processes such as ram pressure stripping, SNs, galactic winds, AGNs, galaxy-galaxy mergers, etc. lead to the enrichment of the IGM in stars, metals as well as dust, via the ejection of galactic material into the IGM. We know now that these processes shape, side by side with gravitation, the formation and the evolution of structures. We present here hydrodynamic simulations of structure formation implementing the effect of the cooling by dust on large scale structure formation. We focus on the scale of galaxy clusters and study the statistical properties of clusters. Here, we present our results on the TX-M and the LX-M scaling relations which exhibit changes on both the slope and normalization when adding cooling by dust to the standard radiative cooling model. For example, the normalization of the TX-M relation changes only by a maximum of 2% at M=1014M⊙ whereas the normalization of the LX-TX changes by as much as 10% at TX=1keV for models that including dust cooling. Our study shows that the dust is an added non-gravitational process that contributes shaping the thermodynamical state of the hot ICM gas.
Schroeder, H E; Schroeder, U; Santibánez-H, G
1986-01-01
This study analyzes so-called hopeless gaggers, i.e., patients in whom dental treatment and wearing of a prosthesis produced a retching or vomiting reaction, in order to investigate the sources and properties of this pathologic reaction. In 35 patients, an anamnestic inquiry, a determination of the reflexogenic zone, a recording of the peripheral pattern of the pathologic reflex, and extinction training were performed. A group of six normal persons served as a comparison group. It was shown that patients, in comparison with normals, had an enlarged receptive field, were sensitive to a broader population of stimuli, and showed precursors and aftereffects of the retching-vomiting not found in normals. This pathologic reaction was the symptom of different psychopathologic processes, such as specific fear, repugnance-fear-based disturbances, diffuse anxiety, goal-directed behavior, depressive states and, at least in one case, visceral pathology. The various patients differed with respect to properties of the reaction as well as in the sensitivity to the extinction procedure. It is discussed that different integrative nervous processes play a role in the origin and development of the syndrome: activation of unconditional reflexes, activation of classic and instrumental conditional reflexes, activation of such reflexes by an increase of the reactivity level of specific and unspecific structures of the brain, generalization of stimuli, etc.
Harijan, Rajesh K.; Zoi, Ioanna; Antoniou, Dimitri; Schwartz, Steven D.; Schramm, Vern L.
2017-01-01
Heavy-enzyme isotope effects (15N-, 13C-, and 2H-labeled protein) explore mass-dependent vibrational modes linked to catalysis. Transition path-sampling (TPS) calculations have predicted femtosecond dynamic coupling at the catalytic site of human purine nucleoside phosphorylase (PNP). Coupling is observed in heavy PNPs, where slowed barrier crossing caused a normal heavy-enzyme isotope effect (kchem light/kchem heavy > 1.0). We used TPS to design mutant F159Y PNP, predicted to improve barrier crossing for heavy F159Y PNP, an attempt to generate a rare inverse heavy-enzyme isotope effect (kchem light/kchem heavy < 1.0). Steady-state kinetic comparison of light and heavy native PNPs to light and heavy F159Y PNPs revealed similar kinetic properties. Pre–steady-state chemistry was slowed 32-fold in F159Y PNP. Pre–steady-state chemistry compared heavy and light native and F159Y PNPs and found a normal heavy-enzyme isotope effect of 1.31 for native PNP and an inverse effect of 0.75 for F159Y PNP. Increased isotopic mass in F159Y PNP causes more efficient transition state formation. Independent validation of the inverse isotope effect for heavy F159Y PNP came from commitment to catalysis experiments. Most heavy enzymes demonstrate normal heavy-enzyme isotope effects, and F159Y PNP is a rare example of an inverse effect. Crystal structures and TPS dynamics of native and F159Y PNPs explore the catalytic-site geometry associated with these catalytic changes. Experimental validation of TPS predictions for barrier crossing establishes the connection of rapid protein dynamics and vibrational coupling to enzymatic transition state passage. PMID:28584087
NASA Astrophysics Data System (ADS)
Schneider, A. M.; Flanner, M.; Yang, P.; Yi, B.; Huang, X.; Feldman, D.
2016-12-01
The Snow Grain Size and Pollution (SGSP) algorithm is a method applied to Moderate Resolution Imaging Spectroradiometer data to estimate snow grain size from space-borne measurements. Previous studies validate and quantify potential sources of error in this method, but because it assumes flat snow surfaces, however, large scale variations in surface normals can cause biases in its estimates due to its dependence on solar and observation zenith angles. To address these variations, we apply the Monte Carlo method for photon transport using data containing the single scattering properties of different ice crystals to calculate polarization states of reflected monochromatic light at 1500nm from modeled snow surfaces. We evaluate the dependence of these polarization states on solar and observation geometry at 1500nm because multiple scattering is generally a mechanism for depolarization and the ice crystals are relatively absorptive at this wavelength. Using 1500nm thus results in a higher number of reflected photons undergoing fewer scattering events, increasing the likelihood of reflected light having higher degrees of polarization. In evaluating the validity of the model, we find agreement with previous studies pertaining to near-infrared spectral directional hemispherical reflectance (i.e. black-sky albedo) and similarities in measured bidirectional reflectance factors, but few studies exist modeling polarization states of reflected light from snow surfaces. Here, we present novel results pertaining to calculated polarization states and compare dependences on solar and observation geometry for different idealized snow surfaces. If these dependencies are consistent across different ice particle shapes and sizes, then these findings could inform the SGSP algorithm by providing useful relationships between measurable physical quantities and solar and observation geometry to better understand variations in snow surface normals from remote sensing observations.
Monte Carlo simulation of aorta autofluorescence
NASA Astrophysics Data System (ADS)
Kuznetsova, A. A.; Pushkareva, A. E.
2016-08-01
Results of numerical simulation of autofluorescence of the aorta by the method of Monte Carlo are reported. Two states of the aorta, normal and with atherosclerotic lesions, are studied. A model of the studied tissue is developed on the basis of information about optical, morphological, and physico-chemical properties. It is shown that the data obtained by numerical Monte Carlo simulation are in good agreement with experimental results indicating adequacy of the developed model of the aorta autofluorescence.
Xu, Lin; Wang, Hai-Xiao; Xu, Ya-Dong; Chen, Huan-Yang; Jiang, Jian-Hua
2016-08-08
A simple core-shell two-dimensional photonic crystal is studied where the triangular lattice symmetry and the C6 point group symmetry give rich physics in accidental touching points of photonic bands. We systematically evaluate different types of accidental nodal points at the Brillouin zone center for transverse-magnetic harmonic modes when the geometry and permittivity of the core-shell material are continuously tuned. The accidental nodal points can have different dispersions and topological properties (i.e., Berry phases). These accidental nodal points can be the critical states lying between a topological phase and a normal phase of the photonic crystal. They are thus very important for the study of topological photonic states. We show that, without breaking time-reversal symmetry, by tuning the geometry of the core-shell material, a phase transition into the photonic quantum spin Hall insulator can be achieved. Here the "spin" is defined as the orbital angular momentum of a photon. We study the topological phase transition as well as the properties of the edge and bulk states and their application potentials in optics.
Electronic state and superconductivity of YBa2Cu3-xO7-y (M=Al,Zn and Sn) systems
NASA Technical Reports Server (NTRS)
Zhao, Y.; Zhang, Q. R.; Zhang, H.
1990-01-01
A series of YBa2Cu(3-x)MxO(7-y) (M=Al,Zn and Sn) single phase samples were prepared, and the measurements of the crystal structure, oxygen content, electric resistivity, thermoelectric power, Mossbauer spectrum, XPS and superconductivity were performed. The experimental results of X ray powder diffraction, Mossbauer spectrum and oxygen content show that the Zn(2+) and the Al(3+) occupy the Cu(2) site in Cu-O planes and the Cu(1) site in Cu-O chains respectively, but the Sn(4+) occupies both the Cu(1) sites. As regards the properties in superconducting state, both the Zn(2+) and the Al(3+) depress T(sub c) strongly, but the Sn(4+) does not. As for the electronic transport properties in normal state, the system doped by Al(3+) displays a rapid increase of resistivity and some electron localization-like effects, and the thermoelectric power enhances obviously; the series contained Zn(2+) almost shows no changes of electric resistivity but the sign of the thermoelectric power is reversed. Other results are given and briefly discussed.
Disturbed resting state EEG synchronization in bipolar disorder: A graph-theoretic analysis☆
Kim, Dae-Jin; Bolbecker, Amanda R.; Howell, Josselyn; Rass, Olga; Sporns, Olaf; Hetrick, William P.; Breier, Alan; O'Donnell, Brian F.
2013-01-01
Disruption of functional connectivity may be a key feature of bipolar disorder (BD) which reflects disturbances of synchronization and oscillations within brain networks. We investigated whether the resting electroencephalogram (EEG) in patients with BD showed altered synchronization or network properties. Resting-state EEG was recorded in 57 BD type-I patients and 87 healthy control subjects. Functional connectivity between pairs of EEG channels was measured using synchronization likelihood (SL) for 5 frequency bands (δ, θ, α, β, and γ). Graph-theoretic analysis was applied to SL over the electrode array to assess network properties. BD patients showed a decrease of mean synchronization in the alpha band, and the decreases were greatest in fronto-central and centro-parietal connections. In addition, the clustering coefficient and global efficiency were decreased in BD patients, whereas the characteristic path length increased. We also found that the normalized characteristic path length and small-worldness were significantly correlated with depression scores in BD patients. These results suggest that BD patients show impaired neural synchronization at rest and a disruption of resting-state functional connectivity. PMID:24179795
Absolute Steady-State Thermal Conductivity Measurements by Use of a Transient Hot-Wire System.
Roder, H M; Perkins, R A; Laesecke, A; Nieto de Castro, C A
2000-01-01
A transient hot-wire apparatus was used to measure the thermal conductivity of argon with both steady-state and transient methods. The effects of wire diameter, eccentricity of the wire in the cavity, axial conduction, and natural convection were accounted for in the analysis of the steady-state measurements. Based on measurements on argon, the relative uncertainty at the 95 % level of confidence of the new steady-state measurements is 2 % at low densities. Using the same hot wires, the relative uncertainty of the transient measurements is 1 % at the 95 % level of confidence. This is the first report of thermal conductivity measurements made by two different methods in the same apparatus. The steady-state method is shown to complement normal transient measurements at low densities, particularly for fluids where the thermophysical properties at low densities are not known with high accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondo, Takeshi; Palczewski, Ari; Hamaya, Yoichiro
We use angle-resolved photoemission spectroscopy and a new quantitative approach based on the partial density of states to study properties of seemingly disconnected portions of the Fermi surface (FS) that are present in the pseudogap state of cuprates called Fermi arcs. We find that the normal state FS collapses very abruptly into Fermi arcs at the pseudogap temperature (T*). Surprisingly, the length of the Fermi arcs remains constant over an extended temperature range between (T*) and T pair, consistent with the presence of an ordered state below T*. These arcs collapse again at the temperature below which pair formation occursmore » (T pair) either to a point or a very short arc, whose length is limited by our experimental resolution. The tips of the arcs span between points defining a set of wave vectors in momentum space, which are the fingerprints of the ordered state that causes the pseudogap.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kondo, Takeshi; Palczewski, Ari D.; Hamaya, Yoichiro
We use angle-resolved photoemission spectroscopy and a new quantitative approach based on the partial density of states to study properties of seemingly disconnected portions of the Fermi surface (FS) that are present in the pseudogap state of cuprates called Fermi arcs. We find that the normal state FS collapses very abruptly into Fermi arcs at the pseudogap temperature (T*). Surprisingly, the length of the Fermi arcs remains constant over an extended temperature range between T* and Tpair, consistent with the presence of an ordered state below T*. These arcs collapse again at the temperature below which pair formation occurs (Tpair)more » either to a point or a very short arc, whose length is limited by our experimental resolution. The tips of the arcs span between points defining a set of wave vectors in momentum space, which are the fingerprints of the ordered state that causes the pseudogap.« less
Mueller matrix spectroscopic ellipsometry study of chiral nanocrystalline cellulose films
NASA Astrophysics Data System (ADS)
Mendoza-Galván, Arturo; Muñoz-Pineda, Eloy; Ribeiro, Sidney J. L.; Santos, Moliria V.; Järrendahl, Kenneth; Arwin, Hans
2018-02-01
Chiral nanocrystalline cellulose (NCC) free-standing films were prepared through slow evaporation of aqueous suspensions of cellulose nanocrystals in a nematic chiral liquid crystal phase. Mueller matrix (MM) spectroscopic ellipsometry is used to study the polarization and depolarization properties of the chiral films. In the reflection mode, the MM is similar to the matrices reported for the cuticle of some beetles reflecting near circular left-handed polarized light in the visible range. The polarization properties of light transmitted at normal incidence for different polarization states of incident light are discussed. By using a differential decomposition of the MM, the structural circular birefringence and dichroism of a NCC chiral film are evaluated.
Anisotropic dielectric properties of two-dimensional matrix in pseudo-spin ferroelectric system
NASA Astrophysics Data System (ADS)
Kim, Se-Hun
2016-10-01
The anisotropic dielectric properties of a two-dimensional (2D) ferroelectric system were studied using the statistical calculation of the pseudo-spin Ising Hamiltonian model. It is necessary to delay the time for measurements of the observable and the independence of the new spin configuration under Monte Carlo sampling, in which the thermal equilibrium state depends on the temperature and size of the system. The autocorrelation time constants of the normalized relaxation function were determined by taking temperature and 2D lattice size into account. We discuss the dielectric constants of a two-dimensional ferroelectric system by using the Metropolis method in view of the Slater-Takagi defect energies.
Adeniran, Ismail; MacIver, David H; Garratt, Clifford J; Ye, Jianqiao; Hancox, Jules C; Zhang, Henggui
2015-01-01
Atrial stunning, a loss of atrial mechanical contraction, can occur following a successful cardioversion. It is hypothesized that persistent atrial fibrillation-induced electrical remodeling (AFER) on atrial electrophysiology may be responsible for such impaired atrial mechanics. This simulation study aimed to investigate the effects of AFER on atrial electro-mechanics. A 3D electromechanical model of the human atria was developed to investigate the effects of AFER on atrial electro-mechanics. Simulations were carried out in 3 conditions for 4 states: (i) the control condition, representing the normal tissue (state 1) and the tissue 2-3 months after cardioversion (state 2) when the atrial tissue recovers its electrophysiological properties after completion of reverse electrophysiological remodelling; (ii) AFER-SR condition for AF-remodeled tissue with normal sinus rhythm (SR) (state 3); and (iii) AFER-AF condition for AF-remodeled tissue with re-entrant excitation waves (state 4). Our results indicate that at the cellular level, AFER (states 3 & 4) abbreviated action potentials and reduced the Ca2+ content in the sarcoplasmic reticulum, resulting in a reduced amplitude of the intracellular Ca2+ transient leading to decreased cell active force and cell shortening as compared to the control condition (states 1 & 2). Consequently at the whole organ level, atrial contraction in AFER-SR condition (state 3) was dramatically reduced. In the AFER-AF condition (state 4) atrial contraction was almost abolished. This study provides novel insights into understanding atrial electro-mechanics illustrating that AFER impairs atrial contraction due to reduced intracellular Ca2+ transients.
PINK1 heterozygous mutations induce subtle alterations in dopamine-dependent synaptic plasticity
Madeo, G.; Schirinzi, T.; Martella, G.; Latagliata, E.C.; Puglisi, F.; Shen, J.; Valente, E.M.; Federici, M.; Mercuri, N.B.; Puglisi-Allegra, S.; Bonsi, P.; Pisani, A.
2014-01-01
Background Homozygous or compound heterozygous mutations in the PTEN-induced kinase 1 (PINK1) gene are causative of autosomal recessive, early onset PD. Single heterozygous mutations have been repeatedly detected in a subset of patients as well as in non-affected subjects, and their significance has long been debated. Several neurophysiological studies from non-manifesting PINK1 heterozygotes have shown the existence of neural plasticity abnormalities, indicating the presence of specific endophenotypic traits in the heterozygous state. Methods In the present study, we performed a functional analysis of corticostriatal synaptic plasticity in heterozygous PINK1 knock-out (PINK1+/−) mice by a multidisciplinary approach. Results We found that, despite a normal motor behavior, repetitive activation of cortical inputs to striatal neurons failed to induce long-term potentiation (LTP), whereas long-term depression (LTD) was normal. Although nigral dopaminergic neurons exhibited normal morphological and electrophysiological properties with normal responses to dopamine receptor activation, we measured a significantly lower dopamine release in the striatum of PINK1+/−, compared to control mice, suggesting that a decrease in stimulus-evoked dopamine overflow acts as a major determinant for the LTP deficit. Accordingly, pharmacological agents capable of increasing the availability of dopamine in the synaptic cleft restored a normal LTP in heterozygous mice. Moreover, MAO-B inhibitors rescued a physiological LTP and a normal dopamine release. Conclusions Our results provide novel evidence for striatal plasticity abnormalities even in the heterozygous disease state. These alterations might be considered an endophenotype to this monogenic form of PD, and a valid tool to characterize early disease stage and design possible disease-modifying therapies. PMID:24167038
Prediction of the association state of insulin using spectral parameters.
Uversky, Vladimir N; Garriques, Liza Nielsen; Millett, Ian S; Frokjaer, Sven; Brange, Jens; Doniach, Sebastian; Fink, Anthony L
2003-04-01
Human insulin exists in different association states, from monomer to hexamer, depending on the conditions. In the presence of zinc the "normal" state is a hexamer. The structural properties of 20 variants of human insulin were studied by near-UV circular dichroism, fluorescence spectroscopy, and small-angle X-ray scattering (SAXS). The mutants showed different degrees of association (monomer, dimers, tetramers, and hexamers) at neutral pH. A correlation was shown between the accessibility of tyrosines to acrylamide quenching and the degree of association of the insulin mutants. The near-UV CD spectra of the insulins were affected by protein association and by mutation-induced structural perturbations. However, the shape and intensity of difference CD spectra, obtained by subtraction of the spectra measured in 20% acetic acid (where all insulin species were monomeric) from the corresponding spectra measured at neutral pH, correlate well with the degree of insulin association. In fact, the near-UV CD difference spectra for monomeric, dimeric, tetrameric, and hexameric insulin are very distinctive, both in terms of intensity and shape. The results show that the spectral properties of the insulins reflect their state of association, and can be used to predict their oligomeric state. Copyright 2003 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 92:847-858, 2003
Björkström, S; Goldie, I F
1982-06-01
The hardness of bone is its property of withstanding the impact of a penetrating agent. It has been found that articular degenerative changes in, for example, the tibia (knee) are combined with a decrease in the hardness of the subchondral bone. In this investigation the hardness of subchondral bone in chondromalacia and osteoarthrosis of the patella has been analysed and compared with normal subchondral bone. Using an indentation method originally described by Brinell the hardness of the subchondral bone was evaluated in 7 normal patellae, in 20 with chondromalacia and in 33 with osteoarthrosis. A microscopic and microradiographic study of the subchondral bone was carried out simultaneously. Hardness was lowest in the normal material. The mean hardness value beneath the degenerated cartilage differed only slightly from that of the normal material, but the variation of values was increased. The hardness in bone in the chondromalacia area was lower than the hardness in bone covered by surrounding normal cartilage. The mean hardness value in bone beneath normal parts of cartilage in specimens with chondromalacia was higher than the mean hardness value of the normal material. In the microscopic and microradiographic examination it became evident that there was a relationship between trabecular structure and subchondral bone hardness; high values: coarse and solid structure; low values: slender and less regular structure.
Effect of two-stage sintering on dielectric properties of BaTi0.9Zr0.1O3 ceramics
NASA Astrophysics Data System (ADS)
Rani, Rekha; Rani, Renu; Kumar, Parveen; Juneja, J. K.; Raina, K. K.; Prakash, Chandra
2011-09-01
The effect of two-stage sintering on the dielectric properties of BaTi0.9Zr0.1O3 ceramics prepared by solid state route was investigated and is presented here. It has been found that under suitable two-stage sintering conditions, dense BaTi0.9Zr0.1O3 ceramics with improved electrical properties can be synthesized. The density was found to have a value of 5.49 g cc-1 for normally sintered samples, whereas in the case of the two-stage sintered sample it was 5.85 g cc-1. Dielectric measurements were done as a function of frequency and temperature. A small decrease in the Curie temperature was observed with modification in dielectric loss for two-stage sintered ceramic samples.
Lazebnik, Mariya; McCartney, Leah; Popovic, Dijana; Watkins, Cynthia B; Lindstrom, Mary J; Harter, Josephine; Sewall, Sarah; Magliocco, Anthony; Booske, John H; Okoniewski, Michal; Hagness, Susan C
2007-05-21
The efficacy of emerging microwave breast cancer detection and treatment techniques will depend, in part, on the dielectric properties of normal breast tissue. However, knowledge of these properties at microwave frequencies has been limited due to gaps and discrepancies in previously reported small-scale studies. To address these issues, we experimentally characterized the wideband microwave-frequency dielectric properties of a large number of normal breast tissue samples obtained from breast reduction surgeries at the University of Wisconsin and University of Calgary hospitals. The dielectric spectroscopy measurements were conducted from 0.5 to 20 GHz using a precision open-ended coaxial probe. The tissue composition within the probe's sensing region was quantified in terms of percentages of adipose, fibroconnective and glandular tissues. We fit a one-pole Cole-Cole model to the complex permittivity data set obtained for each sample and determined median Cole-Cole parameters for three groups of normal breast tissues, categorized by adipose tissue content (0-30%, 31-84% and 85-100%). Our analysis of the dielectric properties data for 354 tissue samples reveals that there is a large variation in the dielectric properties of normal breast tissue due to substantial tissue heterogeneity. We observed no statistically significant difference between the within-patient and between-patient variability in the dielectric properties.
Lee, Ae-Ri Cho; Moon, Hee Kyung
2007-11-01
A thermal gravimetric analysis (TGA) and a differential scanning calorimetry (DSC) were carried out to characterize the water property and an alteration of lipid phase transition of stratum corneum (SC) by glycerin. In addition, the relationship between steady state skin permeation rate and skin hydration in various concentrations of glycerin was investigated. Water vapor absorption-desorption was studied in the hairless mouse stratum corneum. Dry SC samples were exposed to different conc. of glycerin (0-50%) followed by exposure to dry air and the change in weight property was monitored over time by use of TGA. In DSC study, significant decrease in DeltaH of the lipid transition in 10% glycerin and water treated sample: the heat of lipid transition of normal, water, 10% glycerin treated SC were 6.058, 4.412 and 4.316 mJ/mg, respectively. In 10% glycerin treated SCs, the Tc of water shifts around 129 degrees C, corresponding to the weakly bound secondary water. In 40% glycerin treated SC, the Tc of water shifts to 144 degrees C corresponding to strongly bound primary water. There was a good correlation between the hydration property of the skin and the steady state skin flux with the correlation coefficient (r2=0.94). As the hydration increased, the steady state flux increased. As glycerin concentration increased, hydration property decreased. High diffusivity induced by the hydration effect of glycerin and water could be the major contributing factor for the enhanced skin permeation of nicotinic acid (NA).
Rojas-Carrasco, Karmina Elena
2010-01-01
Anxiety is a normal response in everyday life, when a person has a crisis like to have an ill child, when normality is altered and it could become a mental pathology. The purpose was to obtain the validity and standardization of the STAI (State-Trait Anxiety Inventory) for parents who had a hospitalized child in an intensive care unit (ICU). The STAI was applied to a group of 120 mothers and 90 fathers who had a hospitalized child in the ICU in a pediatric hospital. The analysis consisted of the assessment of the structural properties of the test through the construct validity found in the factorial analysis with a varimax rotation by the principal component methods and reliability by the Cronbach's alpha. Adequate factorial burdens were obtained for both state and trait anxiety factors, initially proposed by the authors. The Cronbach's alpha coefficients in each subgroup and in the global were established over 0.83: so the percentiles also were reported. The structural validity was confirmed. In this way the inventory and new standards can be used with better reliability in this type of sampling in subsequent and different clinical research condition.
Khoo, Nicholas K.H.; Hebbar, Sachin; Zhao, Weiling; Moore, Steven A.; Domann, Frederick E.; Robbins, Mike E.
2013-01-01
Glioma survival is dismal, in part, due to an imbalance in antioxidant expression and activity. Peroxisome proliferator-activated receptor (PPAR) agonists have antineoplastic properties which present new redox-dependent targets for glioma anticancer therapies. Herein, we demonstrate that treatment of primary cultures of normal rat astrocytes with PPAR agonists increased the expression of catalase mRNA protein, and enzymatic activity. In contrast, these same agonists had no effect on catalase expression and activity in malignant rat glioma cells. The increase in steady-state catalase mRNA observed in normal rat astrocytes was due, in part, to de novo mRNA synthesis as opposed to increased catalase mRNA stability. Moreover, pioglitazone-mediated induction of catalase activity in normal rat astrocytes was completely blocked by transfection with a PPARγ-dominant negative plasmid. These data suggest that defects in PPAR-mediated signaling and gene expression may represent a block to normal catalase expression and induction in malignant glioma. The ability of PPAR agonists to differentially increase catalase expression and activity in normal astrocytes but not glioma cells suggests that these compounds might represent novel adjuvant therapeutic agents for the treatment of gliomas. PMID:24024139
Effect of altered thyroid state on the in situ mechanical properties of adult cat soleus
NASA Technical Reports Server (NTRS)
Roy, R. R.; Zhong, H.; Hodgson, J. A.; Grossman, E. J.; Edgerton, V. R.
2003-01-01
To determine the responsiveness of cat hindlimb muscles to thyroid manipulation, adult female cats were made hypothyroid (thyroidectomy plus tapazole treatment), hyperthyroid (synthroid pellets), or maintained euthyroid. After 4 months, the hypothyroid soleus had slower time-to-peak (TPT, 80%) and half-relaxation (HRT) times, whereas the hyperthyroid soleus had faster TPT (20%) and HRT than euthyroid cats. The tension at low stimulation frequencies (5-15 Hz) was higher in hypothyroid and lower in hyperthyroid cats compared to euthyroid cats. Muscle weight, maximum twitch and tetanic (Po) tensions, and maximum rates of shortening (Vmax) were similar across groups. The soleus of hypothyroid cats was more fatigable than normal. The myosin heavy chain (MHC) composition, based on gel electrophoresis, was unaffected by thyroid hormone manipulation. Based on the reaction of monoclonal antibodies for specific MHCs, some fast fibers in the hypothyroid cats coexpressed developmental MHC. These data indicate that 4 months of an altered thyroid state result in changes in the isometric twitch speed properties of the cat soleus, but not the tension-related or isotonic properties. Further, a chronic decrease in thyroid hormone had a greater impact than a chronic increase in thyroid hormone on the mechanical properties of the adult cat soleus. Copyright 2003 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Debnath, Bimal; Sarkar, Utpal; Debbarma, Manish; Bhattacharjee, Rahul; Chattopadhyaya, Surya
2018-02-01
First principle based theoretical initiative is taken to tune the optoelectronic properties of binary strontium chalcogenide semiconductors by doping magnesium atom(s) into their rock-salt unit cells at specific concentrations x = 0.0, 0.25, 0.50, 0.75 and 1.0 and such tuning is established by studying structural, electronic and optical properties of designed binary compounds and ternary alloys employing WC-GGA, B3LYP and mBJ exchange-correlation functionals. Band structure of each compound is constructed and respective band gaps under all the potential schemes are measured. The band gap bowing and its microscopic origin are calculated using quadratic fit and Zunger's approach, respectively. The atomic and orbital origins of electronic states in the band structure of any compound are explored from its density of states. The nature of chemical bonds between the constituent atoms in each compound is explored from the valence electron density contour plots. Optical properties of any specimen are explored from the computed spectra of its dielectric function, refractive index, extinction coefficient, normal incidence reflectivity, optical conductivity optical absorption and energy loss function. Several calculated results are compared with available experimental and earlier theoretical data.
Lin, Shiang-Tai; Maiti, Prabal K; Goddard, William A
2010-06-24
Presented here is the two-phase thermodynamic (2PT) model for the calculation of energy and entropy of molecular fluids from the trajectory of molecular dynamics (MD) simulations. In this method, the density of state (DoS) functions (including the normal modes of translation, rotation, and intramolecular vibration motions) are determined from the Fourier transform of the corresponding velocity autocorrelation functions. A fluidicity parameter (f), extracted from the thermodynamic state of the system derived from the same MD, is used to partition the translation and rotation modes into a diffusive, gas-like component (with 3Nf degrees of freedom) and a nondiffusive, solid-like component. The thermodynamic properties, including the absolute value of entropy, are then obtained by applying quantum statistics to the solid component and applying hard sphere/rigid rotor thermodynamics to the gas component. The 2PT method produces exact thermodynamic properties of the system in two limiting states: the nondiffusive solid state (where the fluidicity is zero) and the ideal gas state (where the fluidicity becomes unity). We examine the 2PT entropy for various water models (F3C, SPC, SPC/E, TIP3P, and TIP4P-Ew) at ambient conditions and find good agreement with literature results obtained based on other simulation techniques. We also validate the entropy of water in the liquid and vapor phases along the vapor-liquid equilibrium curve from the triple point to the critical point. We show that this method produces converged liquid phase entropy in tens of picoseconds, making it an efficient means for extracting thermodynamic properties from MD simulations.
Biomechanical remodeling of obstructed guinea pig jejunum
Zhao, Jingbo; Liao, Donghua; Yang, Jian; Gregersen, Hans
2010-01-01
Data on morphological and biomechanical remodeling are needed to understand the mechanisms behind intestinal obstruction. The effect of partial obstruction on mechanical properties with reference to the zero-stress state and on the histomorphological properties of the guinea pig small intestine was determined in this study. Partial obstruction and sham operation were surgically created in mid-jejunum of guinea pigs. The animals survived 2, 4, 7, and 14 days respectively. The age-matched guinea pigs that were not operated served as normal controls. The segment proximal to the obstruction site was used for histological analysis, no-load state and zero-stress state data, and distension test. The segment for distension was immersed in an organ bath and inflated to 10 cmH20. The outer diameter change during the inflation was monitored using a microscope with CCD camera. Circumferential stresses and strains were computed from the diameter, pressure and the zero-stress state data. The opening angle and absolute value of residual strain decreased (P<0.01 and P<0.001) whereas the wall thickness, wall cross-sectional area, and the wall stiffness increased after 7 days obstruction (P<0.05, P<0.01). Histologically, the muscle and submucosa layers, especially the circumferential muscle layer increased in thickness after obstruction. The opening angle and residual strain mainly depended on the thickness of the muscle layer whereas the wall stiffness mainly depended on the thickness of the submucosa layer. In conclusion, the histomorphological and biomechanical properties of small intestine (referenced for the first time to the zero-stress state) remodel proximal to the obstruction site in a time-dependent manner. PMID:20189575
First-principles study of the structural properties of Ge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, K.J.; Cohen, M.L.
1986-12-15
With the use of an ab initio pseudopotential method, the structural properties of Ge are investigated at normal and high pressures. The pressure-induced structural phase transitions from cubic diamond to ..beta..-Sn, to simple hexagonal (sh), and to double hexagonal close packed (dhcp) are examined. With the possible exception of the dhcp structure, the calculated transition pressures, transition volumes, and axial ratios are in good agreement with experimental results. We find that sh Ge has characteristics similar to those of sh Si; the bonds between hexagonal layers are stronger than intralayer bonds and the transverse phonon modes become soft near themore » transitions from the sh to ..beta..-Sn and the sh to hcp structures. At normal pressures, we compare the crystal energies for the cubic diamond, hexagonal 2H, and hexagonal 4H structures. Because of the similar sp/sup 3/ bonds in these structures, the structural energy differences are less than about 14 meV, and the 2H and 4H phases are metastable with respect to the cubic diamond structure. The equation of state is also presented and compared with experiment.« less
NASA Astrophysics Data System (ADS)
Zhang, M. Y.; Chen, R. Y.; Dong, T.; Wang, N. L.
2017-04-01
YbInCu4 undergoes a first-order structural phase transition near Tv=40 K associated with an abrupt change of Yb valence state. We perform an ultrafast pump-probe measurement on YbInCu4 and find that the expected heavy-fermion properties arising from the c -f hybridization exist only in a limited temperature range above Tv. Below Tv, the compound behaves as a normal metal though a prominent hybridization energy gap is still present in the infrared measurement. We elaborate that those seemingly controversial phenomena could be well explained by assuming that the Fermi level suddenly shifts up and moves away from the flat f -electron band as well as the indirect hybridization energy gap in the intermediate valence state below Tv.
Co-evolutionary constraints of globular proteins correlate with their folding rates.
Mallik, Saurav; Kundu, Sudip
2015-08-04
Folding rates (lnkf) of globular proteins correlate with their biophysical properties, but relationship between lnkf and patterns of sequence evolution remains elusive. We introduce 'relative co-evolution order' (rCEO) as length-normalized average primary chain separation of co-evolving pairs (CEPs), which negatively correlates with lnkf. In addition to pairs in native 3D contact, indirectly connected and structurally remote CEPs probably also play critical roles in protein folding. Correlation between rCEO and lnkf is stronger in multi-state proteins than two-state proteins, contrasting the case of contact order (co), where stronger correlation is found in two-state proteins. Finally, rCEO, co and lnkf are fitted into a 3D linear correlation. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Xin; Samil Yetik, Imam
2012-04-01
Use of multispectral magnetic resonance imaging has received a great interest for prostate cancer localization in research and clinical studies. Manual extraction of prostate tumors from multispectral magnetic resonance imaging is inefficient and subjective, while automated segmentation is objective and reproducible. For supervised, automated segmentation approaches, learning is essential to obtain the information from training dataset. However, in this procedure, all patients are assumed to have similar properties for the tumor and normal tissues, and the segmentation performance suffers since the variations across patients are ignored. To conquer this difficulty, we propose a new iterative normalization method based on relative intensity values of tumor and normal tissues to normalize multispectral magnetic resonance images and improve segmentation performance. The idea of relative intensity mimics the manual segmentation performed by human readers, who compare the contrast between regions without knowing the actual intensity values. We compare the segmentation performance of the proposed method with that of z-score normalization followed by support vector machine, local active contours, and fuzzy Markov random field. Our experimental results demonstrate that our method outperforms the three other state-of-the-art algorithms, and was found to have specificity of 0.73, sensitivity of 0.69, and accuracy of 0.79, significantly better than alternative methods.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Are there certain types of excess personal property that must be disposed of differently from normal disposal procedures? 102... types of excess personal property that must be disposed of differently from normal disposal procedures...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Are there certain types of excess personal property that must be disposed of differently from normal disposal procedures? 102... types of excess personal property that must be disposed of differently from normal disposal procedures...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Are there certain types of excess personal property that must be disposed of differently from normal disposal procedures? 102... types of excess personal property that must be disposed of differently from normal disposal procedures...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Are there certain types of excess personal property that must be disposed of differently from normal disposal procedures? 102... types of excess personal property that must be disposed of differently from normal disposal procedures...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Are there certain types of excess personal property that must be disposed of differently from normal disposal procedures? 102... types of excess personal property that must be disposed of differently from normal disposal procedures...
Ge photocapacitive MIS infrared detectors
NASA Technical Reports Server (NTRS)
Binari, S. C.; Miller, W. E.; Tsuo, Y. H.; Miller, W. E.
1979-01-01
An undoped Ge photocapacitive detector is reported which has peak normalized detectivities at wavelengh 1.4 microns and chopping frequencies 13-1000 Hz of 9 x 10 to the 12th, 4 x 10 to the 9th cm Hz to the 1/2th/W operating respectively at temperatures 77, 195, and 295 K. The observed temperature, spectral, and frequency response of the signal and noise are explained in terms of the measured space charge and interface state properties of the device.
NASA Astrophysics Data System (ADS)
Bhattacharjee, Rahul; Chattopadhyaya, Surya
2017-09-01
The effects of doping of Ca atom(s) on structural, electronic and optical properties of binary strontium chalcogenide semiconductor compounds have been investigated theoretically using DFT based FP-LAPW approach by modeling the rock-salt (B1) ternary alloys CaxSr1-xS, CaxSr1-xSe and CaxSr1-xTe at some specific concentrations 0 ≤ x ≤ 1 and studying their aforesaid properties. The exchange-correlation potentials for their structural properties have been computed using the Wu-Cohen generalized-gradient approximation (WC-GGA) scheme, while those for the electronic and optical properties have been computed using recently developed Tran-Blaha modified Becke-Johnson (TB-mBJ) scheme. In addition, we have computed the electronic and optical properties with the traditional BLYP and PBE-GGA schemes for comparison. The atomic and orbital origin of different electronic states in the band structure of each of the compounds have been identified from the respective density of states (DOS). Using the approach of Zunger and co-workers, the microscopic origin of band gap bowing has been discussed in term of volume deformation, charge exchange and structural relaxation. Bonding characteristics among the constituent atoms of each of the specimens have been discussed from their charge density contour plots. Optical properties of the binary compounds and ternary alloys have been investigated theoretically in terms of their respective dielectric function, refractive index, normal incidence reflectivity and optical conductivity. Several calculated results have been compared with available experimental and other theoretical data.
Design of crystal-like aperiodic solids with selective disorder–phonon coupling
Overy, Alistair R.; Cairns, Andrew B.; Cliffe, Matthew J.; Simonov, Arkadiy; Tucker, Matthew G.; Goodwin, Andrew L.
2016-01-01
Functional materials design normally focuses on structurally ordered systems because disorder is considered detrimental to many functional properties. Here we challenge this paradigm by showing that particular types of strongly correlated disorder can give rise to useful characteristics that are inaccessible to ordered states. A judicious combination of low-symmetry building unit and high-symmetry topological template leads to aperiodic ‘procrystalline' solids that harbour this type of disorder. We identify key classes of procrystalline states together with their characteristic diffraction behaviour, and establish mappings onto known and target materials. The strongly correlated disorder found in these systems is associated with specific sets of modulation periodicities distributed throughout the Brillouin zone. Lattice dynamical calculations reveal selective disorder-driven phonon broadening that resembles the poorly understood ‘waterfall' effect observed in relaxor ferroelectrics. This property of procrystalline solids suggests a mechanism by which strongly correlated topological disorder might allow independently optimized thermal and electronic transport behaviour, such as required for high-performance thermoelectrics. PMID:26842772
High-velocity frictional properties of gabbro
NASA Astrophysics Data System (ADS)
Tsutsumi, Akito; Shimamoto, Toshihiko
High-velocity friction experiments have been performed on a pair of hollow-cylindrical specimens of gabbro initially at room temperature, at slip rates from 7.5 mm/s to 1.8 m/s, with total circumferential displacements of 125 to 174 m, and at normal stresses to 5 MPa, using a rotary-shear high-speed friction testing machine. Steady-state friction increases slightly with increasing slip rate at slip rates to about 100 mm/s (velocity strengthening) and it decreases markedly with increasing slip rate at higher velocities (velocity weakening). Steady-state friction in the velocity weakening regime is lower for the non-melting case than the frictional melting case, due perhaps to severe thermal fracturing. A very large peak friction is always recognized upon the initiation of visible frictional melting, presumably owing to the welding of fault surfaces upon the solidification of melt patches. Frictional properties thus change dramatically with increasing displacement at high velocities, and such a non-linear effect must be incorporated into the analysis of earthquake initiation processes.
Observation of the spin-polarized surface state in a noncentrosymmetric superconductor BiPd
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neupane, Madhab; Alidoust, Nasser; Hosen, M. Mofazzel
Recently, noncentrosymmetric superconductor BiPd has attracted considerable research interest due to the possibility of hosting topological superconductivity. Here in this paper we report a systematic high-resolution angle-resolved photoemission spectroscopy (ARPES) and spin-resolved ARPES study of the normal state electronic and spin properties of BiPd. Our experimental results show the presence of a surface state at higher-binding energy with the location of Dirac point at around 700 meV below the Fermi level. The detailed photon energy, temperature-dependent and spin-resolved ARPES measurements complemented by our first-principles calculations demonstrate the existence of the spin-polarized surface states at high-binding energy. The absence of suchmore » spin-polarized surface states near the Fermi level negates the possibility of a topological superconducting behaviour on the surface. Our direct experimental observation of spin-polarized surface states in BiPd provides critical information that will guide the future search for topological superconductivity in noncentrosymmetric materials.« less
Observation of the spin-polarized surface state in a noncentrosymmetric superconductor BiPd
Neupane, Madhab; Alidoust, Nasser; Hosen, M. Mofazzel; ...
2016-11-07
Recently, noncentrosymmetric superconductor BiPd has attracted considerable research interest due to the possibility of hosting topological superconductivity. Here in this paper we report a systematic high-resolution angle-resolved photoemission spectroscopy (ARPES) and spin-resolved ARPES study of the normal state electronic and spin properties of BiPd. Our experimental results show the presence of a surface state at higher-binding energy with the location of Dirac point at around 700 meV below the Fermi level. The detailed photon energy, temperature-dependent and spin-resolved ARPES measurements complemented by our first-principles calculations demonstrate the existence of the spin-polarized surface states at high-binding energy. The absence of suchmore » spin-polarized surface states near the Fermi level negates the possibility of a topological superconducting behaviour on the surface. Our direct experimental observation of spin-polarized surface states in BiPd provides critical information that will guide the future search for topological superconductivity in noncentrosymmetric materials.« less
Madan, I.; Kurosawa, T.; Toda, Y.; Oda, M.; Mertelj, T.; Mihailovic, D.
2015-01-01
A ‘pseudogap' was introduced by Mott to describe a state of matter that has a minimum in the density of states at the Fermi level, deep enough for states to become localized. It can arise either from Coulomb repulsion between electrons, and/or incipient charge or spin order. Here we employ ultrafast spectroscopy to study dynamical properties of the normal to pseudogap state transition in the prototype high-temperature superconductor Bi2Sr2CaCu2O8+δ. We perform a systematic temperature and doping dependence study of the pseudogap photodestruction and recovery in coherent quench experiments, revealing marked absence of critical behaviour of the elementary excitations, which implies an absence of collective electronic ordering beyond a few coherence lengths on short timescales. The data imply ultrafast carrier localization into a textured polaronic state arising from a competing Coulomb interaction and lattice strain, enhanced by a Fermi surface instability. PMID:25891310
Analysis of membrane fusion as a two-state sequential process: evaluation of the stalk model.
Weinreb, Gabriel; Lentz, Barry R
2007-06-01
We propose a model that accounts for the time courses of PEG-induced fusion of membrane vesicles of varying lipid compositions and sizes. The model assumes that fusion proceeds from an initial, aggregated vesicle state ((A) membrane contact) through two sequential intermediate states (I(1) and I(2)) and then on to a fusion pore state (FP). Using this model, we interpreted data on the fusion of seven different vesicle systems. We found that the initial aggregated state involved no lipid or content mixing but did produce leakage. The final state (FP) was not leaky. Lipid mixing normally dominated the first intermediate state (I(1)), but content mixing signal was also observed in this state for most systems. The second intermediate state (I(2)) exhibited both lipid and content mixing signals and leakage, and was sometimes the only leaky state. In some systems, the first and second intermediates were indistinguishable and converted directly to the FP state. Having also tested a parallel, two-intermediate model subject to different assumptions about the nature of the intermediates, we conclude that a sequential, two-intermediate model is the simplest model sufficient to describe PEG-mediated fusion in all vesicle systems studied. We conclude as well that a fusion intermediate "state" should not be thought of as a fixed structure (e.g., "stalk" or "transmembrane contact") of uniform properties. Rather, a fusion "state" describes an ensemble of similar structures that can have different mechanical properties. Thus, a "state" can have varying probabilities of having a given functional property such as content mixing, lipid mixing, or leakage. Our data show that the content mixing signal may occur through two processes, one correlated and one not correlated with leakage. Finally, we consider the implications of our results in terms of the "modified stalk" hypothesis for the mechanism of lipid pore formation. We conclude that our results not only support this hypothesis but also provide a means of analyzing fusion time courses so as to test it and gauge the mechanism of action of fusion proteins in the context of the lipidic hypothesis of fusion.
Entanglement of coherent superposition of photon-subtraction squeezed vacuum
NASA Astrophysics Data System (ADS)
Liu, Cun-Jin; Ye, Wei; Zhou, Wei-Dong; Zhang, Hao-Liang; Huang, Jie-Hui; Hu, Li-Yun
2017-10-01
A new kind of non-Gaussian quantum state is introduced by applying nonlocal coherent superposition ( τa + sb) m of photon subtraction to two single-mode squeezed vacuum states, and the properties of entanglement are investigated according to the degree of entanglement and the average fidelity of quantum teleportation. The state can be seen as a single-variable Hermitian polynomial excited squeezed vacuum state, and its normalization factor is related to the Legendre polynomial. It is shown that, for τ = s, the maximum fidelity can be achieved, even over the classical limit (1/2), only for even-order operation m and equivalent squeezing parameters in a certain region. However, the maximum entanglement can be achieved for squeezing parameters with a π phase difference. These indicate that the optimal realizations of fidelity and entanglement could be different from one another. In addition, the parameter τ/ s has an obvious effect on entanglement and fidelity.
Angular particle impingement studies of thermoplastic materials at normal incidence
NASA Technical Reports Server (NTRS)
Rao, P. V.; Buckley, D. H.
1985-01-01
Scanning electron microscope studies were conducted to characterize the erosion resistance of polymethyl methacrylate (PMMA), polycarbonate (PC), polytetrafluorethylene (PTFE), and ultra-high-molecular-weight polyethylene (UHMWPE). Erosion was caused by a jet of angular microparticles of crushed glass at normal incidence. Material built up above the original surface on all of the materials. As erosion progressed, this buildup disappeared. UHMWPE was the most resistant material and PMMA the least. The most favorable properties for high erosion resistance were high values of ultimate elongation, maximum service temperature, and strain energy and a low value of the modulus of elasticity. Erosion-rate-versus-time curves of PC and PTFE exhibited incubation, acceleration, and steady-state periods. PMMA also exhibited a deceleration period, and an incubation period with deposition was observed for UHMWPE.
Quantification of tissue oxygenation levels using diffuse reflectance spectroscopy
NASA Astrophysics Data System (ADS)
B. S., Suresh Anand; N., Sujatha
2011-08-01
Tumor growth is characterized by increased metabolic activity. The light absorption profile of hemoglobin in dysplastic tissue is different from a normal tissue. Neovascularization is a hallmark of many diseases and can serve as a predictive biomarker for the detection of cancers. Spectroscopic techniques can provide information about the metabolic and morphological changes related to the progression of neoplasia. Diffuse reflectance spectroscopy (DRS) measures the absorption and scattering properties of a biological tissue and this method can provide clinically useful information for the early diagnosis of epithelial precancers. We used tissue simulating phantoms with absorbing and scattering molecules for the determination of total hemoglobin concentration, hemoglobin oxygen saturation and intensity difference between the deoxy and oxy hemoglobin bands. The results show promising approach for the differentiating normal and malignant states of a tissue.
Dhumal, Nilesh R; Kim, Hyung J; Kiefer, Johannes
2011-04-21
Electronic and structural properties of the ion pair 1-ethyl-3-methylimidazolium ethyl sulfate are studied using density functional methods. Three locally stable conformers of the ion pair complex are considered to analyze molecular interactions between its cation and anion. Manifestations of these interactions in the vibrational spectra are discussed and compared with experimental IR and Raman spectroscopy data. NBO analysis and difference electron density coupled with molecular electron density topography are used to interpret the frequency shifts of the normal vibrations of the ion pair, compared to the free anion and cation. Excitation energies of low-lying singlet excited states of the conformers are also studied. The density functional theory results are found to be in a reasonable agreement with experimental UV/vis absorption spectra.
Measurement theory in local quantum physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okamura, Kazuya, E-mail: okamura@math.cm.is.nagoya-u.ac.jp; Ozawa, Masanao, E-mail: ozawa@is.nagoya-u.ac.jp
In this paper, we aim to establish foundations of measurement theory in local quantum physics. For this purpose, we discuss a representation theory of completely positive (CP) instruments on arbitrary von Neumann algebras. We introduce a condition called the normal extension property (NEP) and establish a one-to-one correspondence between CP instruments with the NEP and statistical equivalence classes of measuring processes. We show that every CP instrument on an atomic von Neumann algebra has the NEP, extending the well-known result for type I factors. Moreover, we show that every CP instrument on an injective von Neumann algebra is approximated bymore » CP instruments with the NEP. The concept of posterior states is also discussed to show that the NEP is equivalent to the existence of a strongly measurable family of posterior states for every normal state. Two examples of CP instruments without the NEP are obtained from this result. It is thus concluded that in local quantum physics not every CP instrument represents a measuring process, but in most of physically relevant cases every CP instrument can be realized by a measuring process within arbitrary error limits, as every approximately finite dimensional von Neumann algebra on a separable Hilbert space is injective. To conclude the paper, the concept of local measurement in algebraic quantum field theory is examined in our framework. In the setting of the Doplicher-Haag-Roberts and Doplicher-Roberts theory describing local excitations, we show that an instrument on a local algebra can be extended to a local instrument on the global algebra if and only if it is a CP instrument with the NEP, provided that the split property holds for the net of local algebras.« less
Manipulating topological-insulator properties using quantum confinement
NASA Astrophysics Data System (ADS)
Kotulla, M.; Zülicke, U.
2017-07-01
Recent discoveries have spurred the theoretical prediction and experimental realization of novel materials that have topological properties arising from band inversion. Such topological insulators are insulating in the bulk but have conductive surface or edge states. Topological materials show various unusual physical properties and are surmised to enable the creation of exotic Majorana-fermion quasiparticles. How the signatures of topological behavior evolve when the system size is reduced is interesting from both a fundamental and an application-oriented point of view, as such understanding may form the basis for tailoring systems to be in specific topological phases. This work considers the specific case of quantum-well confinement defining two-dimensional layers. Based on the effective-Hamiltonian description of bulk topological insulators, and using a harmonic-oscillator potential as an example for a softer-than-hard-wall confinement, we have studied the interplay of band inversion and size quantization. Our model system provides a useful platform for systematic study of the transition between the normal and topological phases, including the development of band inversion and the formation of massless-Dirac-fermion surface states. The effects of bare size quantization, two-dimensional-subband mixing, and electron-hole asymmetry are disentangled and their respective physical consequences elucidated.
Effect of corona discharge on cadmium sulphide and lead sulphide films
NASA Astrophysics Data System (ADS)
Koul Chaku, Anemone; Singh, Pramod K.; Bhattacharya, Bhaskar
2018-03-01
This paper describes the effect of corona discharge on cadmium sulphide (CdS) and lead sulphide (PbS) films prepared using the chemical route. The property of films before and after exposure to corona has been described in detail. The electronic properties of the CdS and PbS films have been studied by current-voltage (I-V), capacitance-voltage (C-V) measurements. The structural properties and surface morphology were studied by using X-ray diffraction and scanning electron microscopy before and after exposing to Corona discharge. The films displayed the change in surface morphology after exposure to the corona discharge. It has been found that the films showed an increase in resistivity after exposure. This change in property has been attributed to modification in surface states. Time-dependent recovery indicated that room temperature annealing is sufficient to regain the normal resistivity of the films. The experiment was carried with the aim of studying the effect of the interaction of corona discharge on the semiconductor films and its subsequent effects.
Magnetically Sleepy Stars: An X-ray Survey of Candidate Stars in Extended Magnetic Minima
NASA Astrophysics Data System (ADS)
Saar, Steven
2010-09-01
The Sun occasionally slips into periods of extended magnetic quiescence where the normal magnetic cycle largely ceases (e.g., the Maunder minimum). Understanding these episodes is important for understanding non-linear magnetic dynamos and the Earth's radiation budget. We have developed a new method for determining which stars may be in the stellar analog of these magnetic minima. We propose to study five such stars with Chandra ACIS-S. Combined with archival spectra of more stars, we can 1) explore (by proxy) properties of the solar corona in a Maunder-like minimum, 2) determine what stellar properties affect this state, and 3) investigate the coronal product of the residual turbulent dynamo in a solar mass star.
Paulechka, Yauheni U; Kabo, Gennady J; Emel'yanenko, Vladimir N
2008-12-11
Energies, geometries, and frequencies of normal vibrations have been calculated by quantum-chemical methods for different conformers of a bis(trifluoromethylsulfonyl)imide anion (NTf2-), 1-alkyl-3-methylimidazolium cations ([C(n)mim]+, n = 2, 4, 6, 8), and [C(n)mim]NTf2 ionic pairs. The assignment of frequencies for NTf2-, [C2mim]+, and [C4mim]+ in the vibrational spectra of ionic liquids have been performed. Thermodynamic properties of [C(n)mim]NTf2, [C(n)mim]+, and NTf2- in the gas state have been calculated by the statistical thermodynamic methods. The resulting entropies are in satisfactory agreement with the values obtained from the experimental data previously reported in literature.
Consciousness: a neural capacity for objectivity, especially pronounced in humans
Dijker, Anton J. M.
2014-01-01
Consciousness tends to be viewed either as subjective experience of sensations and feelings, or as perception and internal representation of objects. This paper argues that neither view sufficiently acknowledges that consciousness may refer to the brain’s most adaptive property: its capacity to produce states of objectivity. It is proposed that this capacity relies on multiple sensorimotor networks for internally representing objects and their properties in terms of expectancies, as well as on motivational and motor mechanisms involved in exploration, play, and care for vulnerable living and non-living objects. States of objectivity are associated with a very special phenomenal aspect; the experience that subjective aspects are absent and one is “just looking” at the world as it really is and can be. However, these states are normally closely preceded and followed by (and tend to be combined or fused with) sensations and feelings which are caused by activation of sensory and motivational mechanisms. A capacity for objectivity may have evolved in different species and can be conceived as a common basis for other elusive psychological properties such as intelligence, conscience, and esthetic experience; all three linked to crucial behaviors in human evolution such as tool making, cooperation, and art. The brain’s pervasive tendency to objectify may be responsible for wrongly equating consciousness with feelings and wrongly opposing it to well-learned or habitual (“unconscious”) patterns of perception and behavior. PMID:24672506
Adeniran, Ismail; MacIver, David H.; Garratt, Clifford J.; Ye, Jianqiao; Hancox, Jules C.; Zhang, Henggui
2015-01-01
Aims Atrial stunning, a loss of atrial mechanical contraction, can occur following a successful cardioversion. It is hypothesized that persistent atrial fibrillation-induced electrical remodeling (AFER) on atrial electrophysiology may be responsible for such impaired atrial mechanics. This simulation study aimed to investigate the effects of AFER on atrial electro-mechanics. Methods and Results A 3D electromechanical model of the human atria was developed to investigate the effects of AFER on atrial electro-mechanics. Simulations were carried out in 3 conditions for 4 states: (i) the control condition, representing the normal tissue (state 1) and the tissue 2–3 months after cardioversion (state 2) when the atrial tissue recovers its electrophysiological properties after completion of reverse electrophysiological remodelling; (ii) AFER-SR condition for AF-remodeled tissue with normal sinus rhythm (SR) (state 3); and (iii) AFER-AF condition for AF-remodeled tissue with re-entrant excitation waves (state 4). Our results indicate that at the cellular level, AFER (states 3 & 4) abbreviated action potentials and reduced the Ca2+ content in the sarcoplasmic reticulum, resulting in a reduced amplitude of the intracellular Ca2+ transient leading to decreased cell active force and cell shortening as compared to the control condition (states 1 & 2). Consequently at the whole organ level, atrial contraction in AFER-SR condition (state 3) was dramatically reduced. In the AFER-AF condition (state 4) atrial contraction was almost abolished. Conclusions This study provides novel insights into understanding atrial electro-mechanics illustrating that AFER impairs atrial contraction due to reduced intracellular Ca2+ transients. PMID:26606047
Temporal integration property of stereopsis after higher-order aberration correction
Kang, Jian; Dai, Yun; Zhang, Yudong
2015-01-01
Based on a binocular adaptive optics visual simulator, we investigated the effect of higher-order aberration correction on the temporal integration property of stereopsis. Stereo threshold for line stimuli, viewed in 550nm monochromatic light, was measured as a function of exposure duration, with higher-order aberrations uncorrected, binocularly corrected or monocularly corrected. Under all optical conditions, stereo threshold decreased with increasing exposure duration until a steady-state threshold was reached. The critical duration was determined by a quadratic summation model and the high goodness of fit suggested this model was reasonable. For normal subjects, the slope for stereo threshold versus exposure duration was about −0.5 on logarithmic coordinates, and the critical duration was about 200 ms. Both the slope and the critical duration were independent of the optical condition of the eye, showing no significant effect of higher-order aberration correction on the temporal integration property of stereopsis. PMID:26601010
NASA Astrophysics Data System (ADS)
Pannipara, Mehboobali; Al-Sehemi, Abdullah G.; Kalam, Abul; Asiri, Abdullah M.
2017-10-01
Organic molecules having extended π-conjugated moieties is useful for creating 'dynamic' functional materials by modulating the photophysical properties and molecular packing through non-covalent interactions. Herein, we report the photoluminescence properties of a luminogen, NBA, exhibiting aggregation-induced emission (AIE) characteristics, synthesized by Knoevenagel condensation reaction between 2-Hydroxy naphthaldehyde and malononitrile. NBA emits strongly upon aggregation and in solid state with large Stokes shift whereas it is non emissive in pure solvents. The aggregation induced emission behavior of the compound was carried out in DMSO (good solvent)-water mixture (poor solvent) with water fraction (fw) ranging from 0% to 98%. The AIE property of the luminogen were further exploited for fabricating rewritable fluorescent paper substrates that found applications in security printing and data storage where the written images or letters stored on the filter paper are invisible under normal light.
Vértes, Petra E.; Stidd, Reva; Lalonde, François; Clasen, Liv; Rapoport, Judith; Giedd, Jay; Bullmore, Edward T.; Gogtay, Nitin
2013-01-01
The human brain is a topologically complex network embedded in anatomical space. Here, we systematically explored relationships between functional connectivity, complex network topology, and anatomical (Euclidean) distance between connected brain regions, in the resting-state functional magnetic resonance imaging brain networks of 20 healthy volunteers and 19 patients with childhood-onset schizophrenia (COS). Normal between-subject differences in average distance of connected edges in brain graphs were strongly associated with variation in topological properties of functional networks. In addition, a club or subset of connector hubs was identified, in lateral temporal, parietal, dorsal prefrontal, and medial prefrontal/cingulate cortical regions. In COS, there was reduced strength of functional connectivity over short distances especially, and therefore, global mean connection distance of thresholded graphs was significantly greater than normal. As predicted from relationships between spatial and topological properties of normal networks, this disorder-related proportional increase in connection distance was associated with reduced clustering and modularity and increased global efficiency of COS networks. Between-group differences in connection distance were localized specifically to connector hubs of multimodal association cortex. In relation to the neurodevelopmental pathogenesis of schizophrenia, we argue that the data are consistent with the interpretation that spatial and topological disturbances of functional network organization could arise from excessive “pruning” of short-distance functional connections in schizophrenia. PMID:22275481
Effect of stacking sequence on the coefficients of mutual influence of composite laminates
NASA Astrophysics Data System (ADS)
Dupir (Hudișteanu, I.; Țăranu, N.; Axinte, A.
2016-11-01
Fiber reinforced polymeric (FRP) composites are nowadays widely used in engineering applications due to their outstanding features, such as high specific strength and specific stiffness as well as good corrosion resistance. A major advantage of fibrous polymeric composites is that their anisotropy can be controlled through suitable choice of the influencing parameters. The unidirectional fiber reinforced composites provide much higher longitudinal mechanical properties compared to the transverse ones. Therefore, composite laminates are formed by stacking two or more laminas, with different fiber orientations, as to respond to complex states of stresses. These laminates experience the effect of axial-shear coupling, which is caused by applying normal or shear stresses, implying shear or normal strains, respectively. The normal-shear coupling is expressed by the coefficients of mutual influence. They are engineering constants of primary interest for composite laminates, since the mismatch of the material properties between adjacent layers can produce interlaminar stresses and/or plies delamination. The paper presents the variation of the in-plane and flexural coefficients of mutual influence for three types of multi-layered composites, with different stacking sequences. The results are obtained using the Classical Lamination Theory (CLT) and are illustrated graphically in terms of fiber orientations, for asymmetric, antisymmetric and symmetric laminates. Conclusions are formulated on the variation of these coefficients, caused by the stacking sequence.
Building a medical image processing algorithm verification database
NASA Astrophysics Data System (ADS)
Brown, C. Wayne
2000-06-01
The design of a database containing head Computed Tomography (CT) studies is presented, along with a justification for the database's composition. The database will be used to validate software algorithms that screen normal head CT studies from studies that contain pathology. The database is designed to have the following major properties: (1) a size sufficient for statistical viability, (2) inclusion of both normal (no pathology) and abnormal scans, (3) inclusion of scans due to equipment malfunction, technologist error, and uncooperative patients, (4) inclusion of data sets from multiple scanner manufacturers, (5) inclusion of data sets from different gender and age groups, and (6) three independent diagnosis of each data set. Designed correctly, the database will provide a partial basis for FDA (United States Food and Drug Administration) approval of image processing algorithms for clinical use. Our goal for the database is the proof of viability of screening head CT's for normal anatomy using computer algorithms. To put this work into context, a classification scheme for 'computer aided diagnosis' systems is proposed.
Qi, Ji; Zhang, Lei; Chen, Chao; Mondal, Shubhro; Ping, Kaike; Chen, Yili
2017-01-01
Objective. To investigate the effects of one of the Chinese massage therapies, cervical rotatory manipulation (CRM), on uniaxial tensile properties of rabbit atherosclerotic internal carotid artery (ICA). Methods. 40 male purebred New Zealand white rabbits were randomly divided into CRM-Model group, Non-CRM-Model group, CRM-Normal group, and Non-CRM-Normal group. After modeling (atherosclerotic model) and intervention (CRM or Non-CRM), uniaxial tensile tests were performed on the ICAs to assess the differences in tensile mechanical properties between the four groups. Results. Both CRM and modeling were the main effects affecting physiological elastic modulus (PEM) of ICA. PEM in CRM-Model group was 1.81 times as much as Non-CRM-Model group, while the value in CRM-Model group was 1.34 times as much as CRM-Normal group. Maximum elastic modulus in CRM-Model group was 1.80 times as much as CRM-Normal group. Max strains in CRM-Model group and Non-CRM-Model group were 30.98% and 28.71% lower than CRM-Normal group and Non-CRM-Normal group, respectively. However, whether treated with CRM or not, the uniaxial tensile properties of healthy ICAs were not statistically different. Conclusion. CRM may decrease the uniaxial tensile properties of rabbit arteriosclerotic ICA, but with no effect on normal group. The study will aid in the meaningful explanation of the controversy about the harmfulness of CRM and the suitable population of CRM. PMID:28303160
On the nature of seizure dynamics
Stacey, William C.; Quilichini, Pascale P.; Ivanov, Anton I.
2014-01-01
Seizures can occur spontaneously and in a recurrent manner, which defines epilepsy; or they can be induced in a normal brain under a variety of conditions in most neuronal networks and species from flies to humans. Such universality raises the possibility that invariant properties exist that characterize seizures under different physiological and pathological conditions. Here, we analysed seizure dynamics mathematically and established a taxonomy of seizures based on first principles. For the predominant seizure class we developed a generic model called Epileptor. As an experimental model system, we used ictal-like discharges induced in vitro in mouse hippocampi. We show that only five state variables linked by integral-differential equations are sufficient to describe the onset, time course and offset of ictal-like discharges as well as their recurrence. Two state variables are responsible for generating rapid discharges (fast time scale), two for spike and wave events (intermediate time scale) and one for the control of time course, including the alternation between ‘normal’ and ictal periods (slow time scale). We propose that normal and ictal activities coexist: a separatrix acts as a barrier (or seizure threshold) between these states. Seizure onset is reached upon the collision of normal brain trajectories with the separatrix. We show theoretically and experimentally how a system can be pushed toward seizure under a wide variety of conditions. Within our experimental model, the onset and offset of ictal-like discharges are well-defined mathematical events: a saddle-node and homoclinic bifurcation, respectively. These bifurcations necessitate a baseline shift at onset and a logarithmic scaling of interspike intervals at offset. These predictions were not only confirmed in our in vitro experiments, but also for focal seizures recorded in different syndromes, brain regions and species (humans and zebrafish). Finally, we identified several possible biophysical parameters contributing to the five state variables in our model system. We show that these parameters apply to specific experimental conditions and propose that there exists a wide array of possible biophysical mechanisms for seizure genesis, while preserving central invariant properties. Epileptor and the seizure taxonomy will guide future modeling and translational research by identifying universal rules governing the initiation and termination of seizures and predicting the conditions necessary for those transitions. PMID:24919973
48 CFR 52.245-9 - Use and Charges.
Code of Federal Regulations, 2010 CFR
2010-10-01
... the property to its condition prior to rental (less normal wear and tear). (b) Use of Government... property to its pre-rental condition (less normal wear and tear), or both. (h) Unauthorized use. The...
Takahashi, Kota Z; Stanhope, Steven J
2013-09-01
Over the last half-century, the field of prosthetic engineering has continuously evolved with much attention being dedicated to restoring the mechanical energy properties of ankle joint musculatures during gait. However, the contributions of 'distal foot structures' (e.g., foot muscles, plantar soft tissue) have been overlooked. Therefore, the purpose of this study was to quantify the total mechanical energy profiles (e.g., power, work, and work-ratio) of the natural ankle-foot system (NAFS) by combining the contributions of the ankle joint and all distal foot structures during stance in level-ground steady state walking across various speeds (0.4, 0.6, 0.8 and 1.0 statures/s). The results from eleven healthy subjects walking barefoot indicated ankle joint and distal foot structures generally performed opposing roles: the ankle joint performed net positive work that systematically increased its energy generation with faster walking speeds, while the distal foot performed net negative work that systematically increased its energy absorption with faster walking speeds. Accounting for these simultaneous effects, the combined ankle-foot system exhibited increased work-ratios with faster walking. Most notably, the work-ratio was not significantly greater than 1.0 during the normal walking speed of 0.8 statures/s. Therefore, a prosthetic design that strategically exploits passive-dynamic properties (e.g., elastic energy storage and return) has the potential to replicate the mechanical energy profiles of the NAFS during level-ground steady-state walking. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chu, C. S.; Nykyri, K.; Dimmock, A. P.
2017-12-01
In this paper we test a hypothesis that magnetotail reconnection in the thin current sheet could be initiated by external fluctuations. Kelvin-Helmholtz instability (KHI) has been observed during southward IMF and it can produce, cold, dense plasma transport and compressional fluctuations that can move further into the magnetosphere. The properties of the KHI depend on the magnetosheath seed fluctuation spectrum (Nykyri et al., JGR, 2017). In this paper we present a statistical correlation study between Solar Wind, Magnetosheath and Plasma sheet fluctuation properties using 9+ years of THEMIS data in aberrated GSM frame, and in a normalized coordinate system that takes into account the changes of the magnetopause and bow shock location with respect to changing solar wind conditions. We present statistical results of the plasma sheet fluctuation properties (dn, dV and dB) and their dependence on IMF orientation and fluctuation properties and resulting magnetosheath state. These statistical maps are compared with spatial distribution of magnetotail Bursty Bulk Flows to study possible correlations with magnetotail reconnection and these fluctuations.
Disorder effects in topological states: Brief review of the recent developments
NASA Astrophysics Data System (ADS)
Wu, Binglan; Song, Juntao; Zhou, Jiaojiao; Jiang, Hua
2016-11-01
Disorder inevitably exists in realistic samples, manifesting itself in various exotic properties for the topological states. In this paper, we summarize and briefly review the work completed over the last few years, including our own, regarding recent developments in several topics about disorder effects in topological states. For weak disorder, the robustness of topological states is demonstrated, especially for both quantum spin Hall states with Z 2 = 1 and size induced nontrivial topological insulators with Z 2 = 0. For moderate disorder, by increasing the randomness of both the impurity distribution and the impurity induced potential, the topological insulator states can be created from normal metallic or insulating states. These phenomena and their mechanisms are summarized. For strong disorder, the disorder causes a metal-insulator transition. Due to their topological nature, the phase diagrams are much richer in topological state systems. Finally, the trends in these areas of disorder research are discussed. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374219, 11474085, and 11534001) and the Natural Science Foundation of Jiangsu Province, China (Grant No BK20160007).
Attractive Hubbard model with disorder and the generalized Anderson theorem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuchinskii, E. Z., E-mail: kuchinsk@iep.uran.ru; Kuleeva, N. A., E-mail: strigina@iep.uran.ru; Sadovskii, M. V., E-mail: sadovski@iep.uran.ru
Using the generalized DMFT+Σ approach, we study the influence of disorder on single-particle properties of the normal phase and the superconducting transition temperature in the attractive Hubbard model. A wide range of attractive potentials U is studied, from the weak coupling region, where both the instability of the normal phase and superconductivity are well described by the BCS model, to the strong-coupling region, where the superconducting transition is due to Bose-Einstein condensation (BEC) of compact Cooper pairs, formed at temperatures much higher than the superconducting transition temperature. We study two typical models of the conduction band with semi-elliptic and flatmore » densities of states, respectively appropriate for three-dimensional and two-dimensional systems. For the semi-elliptic density of states, the disorder influence on all single-particle properties (e.g., density of states) is universal for an arbitrary strength of electronic correlations and disorder and is due to only the general disorder widening of the conduction band. In the case of a flat density of states, universality is absent in the general case, but still the disorder influence is mainly due to band widening, and the universal behavior is restored for large enough disorder. Using the combination of DMFT+Σ and Nozieres-Schmitt-Rink approximations, we study the disorder influence on the superconducting transition temperature T{sub c} for a range of characteristic values of U and disorder, including the BCS-BEC crossover region and the limit of strong-coupling. Disorder can either suppress T{sub c} (in the weak-coupling region) or significantly increase T{sub c} (in the strong-coupling region). However, in all cases, the generalized Anderson theorem is valid and all changes of the superconducting critical temperature are essentially due to only the general disorder widening of the conduction band.« less
Ventral frontal satiation-mediated responses to food aromas in obese and normal-weight women123
Eiler, William JA; Dzemidzic, Mario; Case, K Rose; Armstrong, Cheryl LH; Mattes, Richard D; Cyders, Melissa A; Considine, Robert V; Kareken, David A
2014-01-01
Background: Sensory properties of foods promote and guide consumption in hunger states, whereas satiation should dampen the sensory activation of ingestive behaviors. Such activation may be disordered in obese individuals. Objective: Using functional magnetic resonance imaging (fMRI), we studied regional brain responses to food odor stimulation in the sated state in obese and normal-weight individuals targeting ventral frontal regions known to be involved in coding for stimulus reward value. Design: Forty-eight women (25 normal weight; 23 obese) participated in a 2-day (fed compared with fasting) fMRI study while smelling odors of 2 foods and an inedible, nonfood object. Analyses were conducted to permit an examination of both general and sensory-specific satiation (satiation effects specific to a given food). Results: Normal-weight subjects showed significant blood oxygen level–dependent responses in the ventromedial prefrontal cortex (vmPFC) to food aromas compared with responses induced by the odor of an inedible object. Normal-weight subjects also showed general (but not sensory-specific) satiation effects in both the vmPFC and orbitofrontal cortex. Obese subjects showed no differential response to the aromas of food and the inedible object when fasting. Within- and between-group differences in satiation were driven largely by changes in the response to the odor of the inedible stimulus. Responses to food aromas in the obese correlated with trait negative urgency, the tendency toward negative affect-provoked impulsivity. Conclusions: Ventral frontal signaling of reward value may be disordered in obesity, with negative urgency heightening responses to food aromas. The observed nature of responses to food and nonfood stimuli suggests that future research should independently quantify each to fully understand brain reward signaling in obesity. This trial was registered at clinicaltrials.gov as NCT02041039. PMID:24695888
Sousa, Ludmilla Monfort Oliveira; Araújo, Edna Maria de; Miranda, José Garcia Vivas
2017-12-18
Origin-destination flow is a phenomenon that can be modeled as a network. Graph theory is a mathematical tool to characterize a network and thus allows studying the topological properties and temporal and spatial development of a set of related elements. The article aims to estimate the topological evolution of an inter-municipal network of normal deliveries. We selected the admissions for normal deliveries in the Hospital Information System of the Brazilian Unified National Health System, from 2008 to 2014, for women residing in Bahia State, Brazil. The following indices were applied: entry degree (from how many municipalities the women came for childbirth), exit degree (to how many municipalities they left), entry flow (how many women came), exit flow (how many women left), and the mean size of the exit edge (distance traveled). Analyses between macro-regions used the following indicators: proportion of normal deliveries performed outside the municipality of residence and mean size of the exit edge. The results indicate an increase in deliveries performed outside the municipality of residence, in addition to the persistence of concentration of deliveries in the hub municipalities in the Health Regions, and an increase in the distance between the municipality of residence and the municipality where the delivery took place. The organization of networks for normal childbirth poses an on-going challenge. It is important to analyze the flow of women for childbirth care in order to support the establishment of inter-municipal references to guarantee safe labor and childbirth. In conclusion, it is necessary to develop a regionalized network to meet the demand by pregnant women in the territory with universal and equitable coverage.
Ventral frontal satiation-mediated responses to food aromas in obese and normal-weight women.
Eiler, William J A; Dzemidzic, Mario; Case, K Rose; Armstrong, Cheryl L H; Mattes, Richard D; Cyders, Melissa A; Considine, Robert V; Kareken, David A
2014-06-01
Sensory properties of foods promote and guide consumption in hunger states, whereas satiation should dampen the sensory activation of ingestive behaviors. Such activation may be disordered in obese individuals. Using functional magnetic resonance imaging (fMRI), we studied regional brain responses to food odor stimulation in the sated state in obese and normal-weight individuals targeting ventral frontal regions known to be involved in coding for stimulus reward value. Forty-eight women (25 normal weight; 23 obese) participated in a 2-day (fed compared with fasting) fMRI study while smelling odors of 2 foods and an inedible, nonfood object. Analyses were conducted to permit an examination of both general and sensory-specific satiation (satiation effects specific to a given food). Normal-weight subjects showed significant blood oxygen level-dependent responses in the ventromedial prefrontal cortex (vmPFC) to food aromas compared with responses induced by the odor of an inedible object. Normal-weight subjects also showed general (but not sensory-specific) satiation effects in both the vmPFC and orbitofrontal cortex. Obese subjects showed no differential response to the aromas of food and the inedible object when fasting. Within- and between-group differences in satiation were driven largely by changes in the response to the odor of the inedible stimulus. Responses to food aromas in the obese correlated with trait negative urgency, the tendency toward negative affect-provoked impulsivity. Ventral frontal signaling of reward value may be disordered in obesity, with negative urgency heightening responses to food aromas. The observed nature of responses to food and nonfood stimuli suggests that future research should independently quantify each to fully understand brain reward signaling in obesity. © 2014 American Society for Nutrition.
Single-pulse observations of the Galactic centre magnetar PSR J1745-2900 at 3.1 GHz
NASA Astrophysics Data System (ADS)
Yan, W. M.; Wang, N.; Manchester, R. N.; Wen, Z. G.; Yuan, J. P.
2018-05-01
We report on single-pulse observations of the Galactic centre magnetar PSR J1745-2900 that were made using the Parkes 64-m radio telescope with a central frequency of 3.1 GHz at five observing epochs between 2013 July and August. The shape of the integrated pulse profiles was relatively stable across the five observations, indicating that the pulsar was in a stable state between MJDs 56475 and 56514. This extends the known stable state of this pulsar to 6.8 months. Short-term pulse shape variations were also detected. It is shown that this pulsar switches between two emission modes frequently and that the typical duration of each mode is about 10 min. No giant pulses or subpulse drifting were observed. Apparent nulls in the pulse emission were detected on MJD 56500. Although there are many differences between the radio emissions of magnetars and normal radio pulsars, they also share some properties. The detection of mode changing and pulse nulling in PSR J1745-2900 suggests that the basic radio emission process for magnetars and normal pulsars is the same.
Spherical microglass particle impingement studies of thermoplastic materials at normal incidence
NASA Technical Reports Server (NTRS)
Veerabhadra Rao, P.; Buckley, D. H.
1984-01-01
Light optical and scanning electron microscope studies were conducted to characterize the erosion resistance of polymethyl methacrylate (PMMA), polycarbonate (PC), polytetrafluoroethylene (PTFE) and ultra-high-molecular-weight-polyethylene (UHMWPE). Erosion was caused by a jet of spherical micro-glass beads at normal impact. During the initial stages of damage, the surfaces of these materials were studied using a profilometer. Material buildup above the original surface was observed on PC and PMMA. As erosion progressed, this buildup disappeared as the pit became deeper. Little or no buildup was observed on PTFE and on UHMWPE. UHMWPE and PTFE are the most resistant materials and PMMA the least. Favorable properties for high erosion resistance seem to be high values of ultimate elongation, and strain energy and a low value of the modulus of elasticity. Erosion-rate-versus-time curves of PC and PTFE exhibit incubation, acceleration and steady state periods. A continuously increasing erosion rate period was observed however for PMMA instead of a steady state period. At early stages of damage and at low impact pressure material removal mechanisms appear to be similar to those for metallic materials.
Spherical micro-glass particle impingement studies of thermoplastic materials at normal incidence
NASA Technical Reports Server (NTRS)
Rao, P. V.; Buckley, D. H.
1983-01-01
Light optical and scanning electron microscope studies were conducted to characterize the erosion resistance of polymethyl methacrylate (PMMA), polycarbonate (PC), polytetrafluoroethylene (PTFE) and ultra-high-molecular-weight-polyethylene (UHMWPE). Erosion was caused by a jet of spherical micro-glass beads at normal impact. During the initial stages of damage, the surfaces of these materials were studied using a profilometer. Material buildup above the original surface was observed on PC and PMMA. As erosion progressed, this buildup disappeared as the pit became deeper. Little or no buildup was observed on PTFE and on UHMWPE. UHMWPE and PTFE are the most resistant materials and PMMA the least. Favorable properties for high erosion resistance seem to be high values of ultimate elongation, and strain energy and a low value of the modulus of elasticity. Erosion-rate-versus-time curves of PC and PTFE exhibit incubation, acceleration and steady state periods. A continuously increasing erosion rate period was observed however for PMMA instead of a steady state period. At early stages of damage and at low impact pressure material removal mechanisms appear to be similar to those for metallic materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vilmercati, Paolo; Mo, Sung -Kwan; Fedorov, Alexei
Here, we report systematic angle-resolved photoemission (ARPES) experiments using different photon polarizations and experimental geometries and find that the doping evolution of the normal state of Ba(Fe 1–xCo x) 2As 2 deviates significantly from the predictions of a rigid band model. The data reveal a nonmonotonic dependence upon doping of key quantities such as band filling, bandwidth of the electron pocket, and quasiparticle coherence. Our analysis suggests that the observed phenomenology and the inapplicability of the rigid band model in Co-doped Ba122 are due to electronic correlations, and not to the either the strength of the impurity potential, or self-energymore » effects due to impurity scattering. Our findings indicate that the effects of doping in pnictides are much more complicated than currently believed. More generally, they indicate that a deep understanding of the evolution of the electronic properties of the normal state, which requires an understanding of the doping process, remains elusive even for the 122 iron-pnictides, which are viewed as the least correlated of the high-T C unconventional superconductors.« less
Detecting coupling of Majorana bound states with an Aharonov-Bohm interferometer
NASA Astrophysics Data System (ADS)
Ramos-Andrade, J. P.; Orellana, P. A.; Ulloa, S. E.
2018-01-01
We study the transport properties of an interferometer composed by a quantum dot (QD) coupled with two normal leads and two one-dimensional topological superconductor nanowires (TNWs) hosting Majorana bound states (MBS) at their ends. The geometry considered is such that one TNW has both ends connected with the QD, forming an Aharonov-Bohm (AB) interferometer threaded by an external magnetic flux, while the other TNW is placed near the interferometer TNW. This geometry can alternatively be seen as a long wire contacted across a local defect, with possible coupling between independent-MBS. We use the Green’s function formalism to calculate the conductance across normal current leads on the QD. We find that the conductance exhibits a half-quantum value regardless of the AB phase and location of the dot energy level, whenever the interferometer configuration interacts with the neighboring TNW. These findings suggest that such a geometry could be used for a sensitive detection of MBS interactions across TNWs, exploiting the high sensitivity of conductance to the AB phase in the interferometer.
Effects of shear coupling on shear properties of wood
Jen Y. Liu
2000-01-01
Under pure shear loading, an off-axis element of orthotropic material such as pure wood undergoes both shear and normal deformations. The ratio of the shear strain to a normal strain is defined as the shear coupling coefficient associated with the direction of the normal strain. The effects of shear coupling on shear properties of wood as predicted by the orthotropic...
Wang, Yimin; Bowman, Joel M; Huang, Xinchuan
2010-09-21
We report the properties of two novel transition states of the bimolecular hydrogen exchange reaction in the water dimer, based on an ab initio water dimer potential [A. Shank et al., J. Chem. Phys. 130, 144314 (2009)]. The realism of the two transition states is assessed by comparing structures, energies, and harmonic frequencies obtained from the potential energy surface and new high-level ab initio calculations. The rate constant for the exchange is obtained using conventional transition state theory with a tunneling correction. We employ a one-dimensional approach for the tunneling calculations using a relaxed potential from the full-dimensional potential in the imaginary-frequency normal mode of the saddle point, Q(im). The accuracy of this one-dimensional approach has been shown for the ground-state tunneling splittings for H and D-transfer in malonaldehyde and for the D+H(2) reaction [Y. Wang and J. M. Bowman, J. Chem. Phys. 129, 121103 (2008)]. This approach is applied to calculate the rate constant for the H(2)O+H(2)O exchange and also for H(2)O+D(2)O→2HOD. The local zero-point energy is also obtained using diffusion Monte Carlo calculations in the space of real-frequency-saddle-point normal modes, as a function of Q(im).
Doping-induced change of optical properties in underdoped cuprate superconductors
NASA Astrophysics Data System (ADS)
Liu, H. L.; Quijada, M. A.; Zibold, A. M.; Yoon, Y.-D.; Tanner, D. B.; Cao, G.; Crow, J. E.; Berger, H.; Margaritondo, G.; Forró, L.; O, Beom-Hoan; Markert, J. T.; Kelly, R. J.; Onellion, M.
1999-01-01
We report on the ab-plane optical reflectance measurements of single crystals of Y-doped 0953-8984/11/1/020/img15 and Pr-doped 0953-8984/11/1/020/img16 over a wide frequency range from 80 to 0953-8984/11/1/020/img17 (10 meV-5 eV) and at temperatures between 20 and 300 K. Y and Pr doping both decrease the hole concentration in the 0953-8984/11/1/020/img18 planes. This has allowed us to investigate the evolution of ab-plane charge dynamics at doping levels ranging from heavily underdoped to nearly optimally doped. Our results of the low-frequency optical conductivity and spectral weight do not show any features associated with the normal-state pseudogap. Instead, one-component analysis for the optical conductivity shows the low-frequency depression in the scattering rate at 0953-8984/11/1/020/img19, signalling entry into the pseudogap state. Alternatively, no clear indications of the normal-state pseudogap are detected in the temperature-dependent zero-frequency free-carrier scattering rate by using two-component analysis. In the superconducting state, there is also no convincing evidence of superconducting gap absorption in all spectra. We find that there is a `universal correlation' between the numbers of carriers and the transition temperature. This correlation holds whether one considers the number of carriers in the superfluid or the total number of carriers.
Far infrared spectra of solid state aliphatic amino acids in different protonation states
NASA Astrophysics Data System (ADS)
Trivella, Aurélien; Gaillard, Thomas; Stote, Roland H.; Hellwig, Petra
2010-03-01
Far infrared spectra of zwitterionic, cationic, and anionic forms of aliphatic amino acids in solid state have been studied experimentally. Measurements were done on glycine, L-alanine, L-valine, L-leucine, and L-isoleucine powder samples and film samples obtained from dried solutions prepared at pH ranging from 1 to 13. Solid state density functional theory calculations were also performed, and detailed potential energy distributions were obtained from normal mode results. A good correspondence between experimental and simulated spectra was achieved and this allowed us to propose an almost complete band assignment for the far infrared spectra of zwitterionic forms. In the 700-50 cm-1 range, three regions were identified, each corresponding to a characteristic set of normal modes. A first region between 700 and 450 cm-1 mainly contained the carboxylate bending, rocking, and wagging modes as well as the ammonium torsional mode. The 450-250 cm-1 region was representative of backbone and sidechain skeletal bending modes. At last, the low wavenumber zone, below 250 cm-1, was characteristic of carboxylate and skeletal torsional modes and of lattice modes. Assignments are also proposed for glycine cationic and anionic forms, but could not be obtained for all aliphatic amino acids due to the lack of structural data. This work is intended to provide fundamental information for the understanding of peptides vibrational properties.
41 CFR 102-74.375 - What is the policy on admitting persons to Government property?
Code of Federal Regulations, 2010 CFR
2010-07-01
... permitted, close property to the public during other than normal working hours. In those instances where a Federal agency has approved the after-normal-working-hours use of buildings or portions thereof for... portions thereof) to the public; (b) Close property to the public during working hours only when situations...
Bifurcation analysis of a delay reaction-diffusion malware propagation model with feedback control
NASA Astrophysics Data System (ADS)
Zhu, Linhe; Zhao, Hongyong; Wang, Xiaoming
2015-05-01
With the rapid development of network information technology, information networks security has become a very critical issue in our work and daily life. This paper attempts to develop a delay reaction-diffusion model with a state feedback controller to describe the process of malware propagation in mobile wireless sensor networks (MWSNs). By analyzing the stability and Hopf bifurcation, we show that the state feedback method can successfully be used to control unstable steady states or periodic oscillations. Moreover, formulas for determining the properties of the bifurcating periodic oscillations are derived by applying the normal form method and center manifold theorem. Finally, we conduct extensive simulations on large-scale MWSNs to evaluate the proposed model. Numerical evidences show that the linear term of the controller is enough to delay the onset of the Hopf bifurcation and the properties of the bifurcation can be regulated to achieve some desirable behaviors by choosing the appropriate higher terms of the controller. Furthermore, we obtain that the spatial-temporal dynamic characteristics of malware propagation are closely related to the rate constant for nodes leaving the infective class for recovered class and the mobile behavior of nodes.
Spin State Equilibria of Asteroids due to YORP Effects
NASA Astrophysics Data System (ADS)
Golubov, Oleksiy; Scheeres, Daniel J.; Lipatova, Veronika
2016-05-01
Spins of small asteroids are controlled by the Yarkovsky--O'Keefe--Radzievskii--Paddack (YORP) effect. The normal version of this effect has two components: the axial component alters the rotation rate, while the obliquity component alters the obliquity. Under this model the rotation state of an asteroid can be described in a phase plane with the rotation rate along the polar radius and the obliquity as the polar angle. The YORP effect induces a phase flow in this plane, which determines the distribution of asteroid rotation rates and obliquities.We study the properties of this phase flow for several typical cases. Some phase flows have stable attractors, while in others all trajectories go to very small or large rotation rates. In the simplest case of zero thermal inertia approximate analytical solutions to dynamics equations are possible. Including thermal inertia and the Tangential YORP effect makes the possible evolutionary scenarios much more diverse. We study possible evolution paths and classify the most general trends. Also we discuss possible implications for the distribution of asteroid rotation rates and obliquities.A special emphasis is put on asteroid (25143) Itokawa, whose shape model is well determined, but who's measured YORP acceleration does not agree with the predictions of normal YORP. We show that Itokawa's rotational state can be explained by the presence of tangential YORP and that it may be in or close to a stable spin state equilibrium. The implications of such states will be discussed.
Stoops, Janelle; Byrd, Samantha; Hasegawa, Haruki
2012-10-01
Russell bodies are intracellular aggregates of immunoglobulins. Although the mechanism of Russell body biogenesis has been extensively studied by using truncated mutant heavy chains, the importance of the variable domain sequences in this process and in immunoglobulin biosynthesis remains largely unknown. Using a panel of structurally and functionally normal human immunoglobulin Gs, we show that individual immunoglobulin G clones possess distinctive Russell body inducing propensities that can surface differently under normal and abnormal cellular conditions. Russell body inducing predisposition unique to each immunoglobulin G clone was corroborated by the intrinsic physicochemical properties encoded in the heavy chain variable domain/light chain variable domain sequence combinations that define each immunoglobulin G clone. While the sequence based intrinsic factors predispose certain immunoglobulin G clones to be more prone to induce Russell bodies, extrinsic factors such as stressful cell culture conditions also play roles in unmasking Russell body propensity from immunoglobulin G clones that are normally refractory to developing Russell bodies. By taking advantage of heterologous expression systems, we dissected the roles of individual subunit chains in Russell body formation and examined the effect of non-cognate subunit chain pair co-expression on Russell body forming propensity. The results suggest that the properties embedded in the variable domain of individual light chain clones and their compatibility with the partnering heavy chain variable domain sequences underscore the efficiency of immunoglobulin G biosynthesis, the threshold for Russell body induction, and the level of immunoglobulin G secretion. We propose that an interplay between the unique properties encoded in variable domain sequences and the state of protein homeostasis determines whether an immunoglobulin G expressing cell will develop the Russell body phenotype in a dynamic cellular setting. Copyright © 2012 Elsevier B.V. All rights reserved.
Quantum metallicity on the high-field side of the superconductor-insulator transition.
Baturina, T I; Strunk, C; Baklanov, M R; Satta, A
2007-03-23
We investigate ultrathin superconducting TiN films, which are very close to the localization threshold. Perpendicular magnetic field drives the films from the superconducting to an insulating state, with very high resistance. Further increase of the magnetic field leads to an exponential decay of the resistance towards a finite value. In the limit of low temperatures, the saturation value can be very accurately extrapolated to the universal quantum resistance h/e2. Our analysis suggests that at high magnetic fields a new ground state, distinct from the normal metallic state occurring above the superconducting transition temperature, is formed. A comparison with other studies on different materials indicates that the quantum metallic phase following the magnetic-field-induced insulating phase is a generic property of systems close to the disorder-driven superconductor-insulator transition.
Shimizu, Yusei; Kittaka, Shunichiro; Sakakibara, Toshiro; Haga, Yoshinori; Yamamoto, Etsuji; Amitsuka, Hiroshi; Tsutsumi, Yasumasa; Machida, Kazushige
2015-04-10
Low-energy quasiparticle excitations in the superconducting (SC) state of UBe_{13} were studied by means of specific-heat (C) measurements in a rotating field. Quite unexpectedly, the magnetic-field dependence of C(H) is linear in H with no angular dependence at low fields in the SC state, implying that the gap is fully open over the Fermi surfaces, in stark contrast to previous expectations. In addition, a characteristic cubic anisotropy of C(H) was observed above 2 T with a maximum (minimum) for H∥[001] ([111]) within the (11[over ¯]0) plane, in the normal as well as in the SC states. This oscillation possibly originates from the anisotropic response of the heavy quasiparticle bands, and might be a key to understand the unusual properties of UBe_{13}.
NASA Astrophysics Data System (ADS)
Ismail, Ismayadi; Hashim, Mansor; Kanagesan, Samikannu; Ibrahim, Idza Riati; Nazlan, Rodziah; Wan Ab Rahman, Wan Norailiana; Abdullah, Nor Hapishah; Mohd Idris, Fadzidah; Bahmanrokh, Ghazaleh; Shafie, Mohd Shamsul Ezzad; Manap, Masni
2014-02-01
We report on an investigation to unravel the dependence of magnetic properties on microstructure while they evolve in parallel under the influence of sintering temperature of a single sample of Ni0.5Zn0.5Fe2O4 synthesized via mechanical alloying. A single sample, instead of the normally practiced approach of using multiple samples, was sintered at various sintering temperatures from 500 °C to 1400 °C. The morphology of the samples was studied by means of scanning electron microscopy (SEM) equipped with EDX; density measurement was conducted using the Archimedes principle; and hysteresis measurement was carried out using a B-H hysteresisgraph system. XRD data showed that the first appearance of a single phase was at 800 °C and an amorphous phase was traced at lower sintering temperatures. We correlated the microstructure and the magnetic properties and showed that the important grain-size threshold for the appearance of significant ordered magnetism (mainly ferromagnetism) was about ≥0.3 µm. We found that there were three stages of magnetic phase evolution produced via the sintering process with increasing temperatures. The first stage was dominated by paramagnetic states with some superparamagnetic behavior; the second stage was influenced by moderately ferromagnetic states and some paramagnetic states; and the third stage consisted of strongly ferromagnetic states with negligible paramagnetic states. We found that three factors sensitively influenced the sample's content of ordered magnetism—the ferrite-phase crystallinity degree, the number of grains above the critical grain size and the number of large enough grains for domain wall accommodation.
NASA Astrophysics Data System (ADS)
Fakhri, H.; Sayyah-Fard, M.
The normalized even and odd q-cat states corresponding to Arik-Coon q-oscillator on the noncommutative complex plane ℂq-1 are constructed as the eigenstates of the lowering operator of a q-deformed su(1, 1) algebra with the left eigenvalues. We present the appropriate noncommutative measures in order to realize the resolution of the identity condition by the even and odd q-cat states. Then, we obtain the q-Bargmann-Fock realizations of the Fock representation of the q-deformed su(1, 1) algebra as well as the inner products of standard states in the q-Bargmann representations of the even and odd subspaces. Also, the Euler’s formula of the q-factorial and the Gaussian integrals based on the noncommutative q-integration are obtained. Violation of the uncertainty relation, photon antibunching effect and sub-Poissonian photon statistics by the even and odd q-cat states are considered in the cases 0 < q < 1 and q > 1.
ERIC Educational Resources Information Center
Finch, A. J., Jr.; And Others
1976-01-01
Responses of emotionally disturbed and normal children to the State-Trait Anxiety Inventory for Children were factor analyzed separately. Two A-State and two A-Trait factors were found, with A-State factors accounting for significantly more variance. Four A-State and two A-Trait factors were found for the normal group, with no significant…
Effect of friction on vibrotactile sensation of normal and dehydrated skin.
Chen, S; Ge, S; Tang, W; Zhang, J
2016-02-01
Vibrotactile sensation mediated is highly dependent on surface mechanical and frictional properties. Dehydration of skin could change these properties. To investigate the relationship between friction and vibrotactile sensation of normal and dehydrated skin. Vibrations were firstly measured during surface exploration using a biomimetic sensor. Piglet skin was used as human skin model to study frictional properties for both normal and dehydrated skin using an atomic force microscope on nanoscale and a pin-on-disk tribometer on macroscale. Effect of vibrational frequency on friction and vibrotactile perception was also observed on nano and macro scale for normal and dehydrated skin. The result indicated that dehydrated skin was less sensitive than normal skin. The coefficient of friction of dehydrated skin is smaller than that of normal skin on both nano and macro scale. The coefficient of friction increases as increasing scanning frequencies. There is a positive correlation between coefficient of friction and vibrotactile sensation on nanoscale and macroscale. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Electrostatic Levitation for Studies of Additive Manufactured Materials
NASA Technical Reports Server (NTRS)
SanSoucie, Michael P.; Rogers, Jan R.; Tramel, Terri
2014-01-01
The electrostatic levitation (ESL) laboratory at NASA's Marshall Space Flight Center is a unique facility for investigators studying high temperature materials. The laboratory boasts two levitators in which samples can be levitated, heated, melted, undercooled, and resolidified. Electrostatic levitation minimizes gravitational effects and allows materials to be studied without contact with a container or instrumentation. The lab also has a high temperature emissivity measurement system, which provides normal spectral and normal total emissivity measurements at use temperature. The ESL lab has been instrumental in many pioneering materials investigations of thermophysical properties, e.g., creep measurements, solidification, triggered nucleation, and emissivity at high temperatures. Research in the ESL lab has already led to the development of advanced high temperature materials for aerospace applications, coatings for rocket nozzles, improved medical and industrial optics, metallic glasses, ablatives for reentry vehicles, and materials with memory. Modeling of additive manufacturing materials processing is necessary for the study of their resulting materials properties. In addition, the modeling of the selective laser melting processes and its materials property predictions are also underway. Unfortunately, there is very little data for the properties of these materials, especially of the materials in the liquid state. Some method to measure thermophysical properties of additive manufacturing materials is necessary. The ESL lab is ideal for these studies. The lab can provide surface tension and viscosity of molten materials, density measurements, emissivity measurements, and even creep strength measurements. The ESL lab can also determine melting temperature, surface temperatures, and phase transition temperatures of additive manufactured materials. This presentation will provide background on the ESL lab and its capabilities, provide an approach to using the ESL in supporting the development and modeling of the selective laser melting process for metals, and provide an overview of the results to date.
Conic Sections and the Discovery of a Novel Curve Using Differential Equations
ERIC Educational Resources Information Center
de Alwis, Amal
2013-01-01
We began by observing a variety of properties related to the tangent and normal lines of three conic sections: a parabola, an ellipse, and a hyperbola. Some of these properties include specific relationships between the x- and y-intercepts of the tangent and normal lines. Using these properties, we were able to form several differential equations.…
Effect of the Intermittent Hypoxia on the Bone Tissue State After Microgravitation Modeling
NASA Astrophysics Data System (ADS)
Berezovskiy, V. A.; Litovka, I. G.; Chaka, H. G.; Magomedov, S.; Mehed, N. V.
The authors studied the influence of low PO2 under normal atmospheric pressure on the Ca and P metabolism, bone remodeling markers, and biomechanical properties of the femura bone in rats with their hind limbs unloaded. A hypoxic gas mixture (HGM) was given in intermittent regime A and B for 8 hours/day during 28 days. It was shown that regime A slows down the development of osteopenia and may be used in complex with other rehabilitation procedures for preventing the unloading osteopenia.
2014-08-01
transistors, solar cells , and light emitting diodes. Be they highest voltage blocking normally-off switches for hybrid cars, ultralow cost solar ...Albertus (U.S. Department of Energy) "Introduction" 9:20 am - 9:50 am Yanfa Yan (University of Toledo) "Fundamental Limits to CdTe Solar Cell ...Efficiency" 9:50 am - 10:00 am Discussion 10:00 am Coffee Break 10:30 am - 11:00 am Steve Ringel (Ohio State University) "Defects in Solar Cells " 11
Electronic phase diagram of disordered Co doped BaFe2As2-δ
NASA Astrophysics Data System (ADS)
Kurth, F.; Iida, K.; Trommler, S.; Hänisch, J.; Nenkov, K.; Engelmann, J.; Oswald, S.; Werner, J.; Schultz, L.; Holzapfel, B.; Haindl, S.
2013-02-01
Superconducting and normal state transport properties in iron pnictides are sensitive to disorder and impurity scattering. By investigation of Ba(Fe1-xCox)2As2-δ thin films with varying Co concentrations we demonstrate that in the dirty limit the superconducting dome in the electronic phase diagram of Ba(Fe1-xCox)2As2-δ shifts towards lower doping concentrations, which differs significantly from observations in single crystals. We show that especially in the underdoped regime superconducting transition temperatures higher than 27 K are possible.
Evaluation and diagnosis of brain death by functional near-infrared spectroscopy
NASA Astrophysics Data System (ADS)
Pan, Boan; Zhong, Fulin; Huang, Xiaobo; Pan, Lingai; Lu, Sen; Li, Ting
2017-02-01
Brain death, the irreversible and permanent loss of the brain and brainstem functions, is hard to be judged precisely for some clinical reasons. The traditional diagnostic methods are time consuming, expensive and some are even dangerous. Functional near infrared spectroscopy (FNIRS), using the good scattering properties of major component of blood to NIR, is capable of noninvasive monitoring cerebral hemodynamic responses. Here, we attempt to use portable FNIRS under patients' natural state for brain death diagnosis. Ten brain death patients and seven normal subjects participated in FNIRS measurements. All of them were provided different fractional concentration of inspired oxygen (FIO2) in different time periods. We found that the concentration variation of deoxyhemoglobin concentration (Δ[Hb]) presents the trend of decrease in the both brain death patients and normal subjects with the raise of the FIO2, however, the data in the normal subjects is more significant. And the concentration variation of oxyhemoglobins concentration (Δ[HbO2]) emerges the opposite trends. Thus Δ[HbO2]/Δ[Hb] in brain death patients is significantly higher than normal subjects, and emerges the rising trend as time went on. The findings indicated the potential of FNIRS-measured hemodynamic index in diagnosing brain death.
Lourderaj, Upakarasamy; Martínez-Núñez, Emilio; Hase, William L
2007-10-18
Linear molecules with degenerate bending modes have states, which may be represented by the quantum numbers N and L. The former gives the total energy for these modes and the latter identifies their vibrational angular momentum jz. In this work, the classical mechanical analog of the N,L-quantum states is reviewed, and an algorithm is presented for selecting initial conditions for these states in quasiclassical trajectory chemical dynamics simulations. The algorithm is illustrated by choosing initial conditions for the N = 3 and L = 3 and 1 states of CO2. Applications of this algorithm are considered for initial conditions without and with zero-point energy (zpe) included in the vibrational angular momentum states and the C-O stretching modes. The O-atom motions in the x,y-plane are determined for these states from classical trajectories in Cartesian coordinates and are compared with the motion predicted by the normal-mode model. They are only in agreement for the N = L = 3 state without vibrational angular momentum zpe. For the remaining states, the Cartesian O-atom motions are considerably different from the elliptical motion predicted by the normal-mode model. This arises from bend-stretch coupling, including centrifugal distortion, in the Cartesian trajectories, which results in tubular instead of elliptical motion. Including zpe in the C-O stretch modes introduces considerable complexity into the O-atom motions for the vibrational angular momentum states. The short-time O-atom motions for these trajectories are highly irregular and do not appear to have any identifiable characteristics. However, the O-atom motions for trajectories integrated for substantially longer period of times acquire unique properties. With C-O stretch zpe included, the long-time O-atom motion becomes tubular for trajectories integrated to approximately 14 ps for the L = 3 states and to approximately 44 ps for the L = 1 states.
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.; Tanaka, K.
1985-01-01
Wear experiments and electron microscopy and diffraction studies were conducted to examine the wear and deformed layers in single-crystal Mn-Zn (ceramic) ferrite magnetic head material in contact with magnetic tape and the effects of that contact on magnetic properties. The crystalline state of the single-crystal magnetic head was changed drastically during the sliding process. A nearly amorphous structure was produced on its wear surface. Deformation in the surficial layer of the magnetic head was a critical factor in readback signal loss above 2.5 dB. The signal output level was reduced as applied normal load was increased. Considerable plastic flow occurred on the magnetic tape surface with sliding, and the signal loss due to the tape wear was approximately 1 dB.
NASA Astrophysics Data System (ADS)
Puthanmadam Subramaniyam, Narayan; Hyttinen, Jari
2014-10-01
In this letter, we study the influence of observational noise on recurrence network (RN) measures, the global clustering coefficient (C) and average path length (L) using the Rössler system and propose the application of RN measures to analyze the structural properties of electroencephalographic (EEG) data. We find that for an appropriate recurrence rate (RR>0.02) the influence of noise on C can be minimized while L is independent of RR for increasing levels of noise. Indications of structural complexity were found for healthy EEG, but to a lesser extent than epileptic EEG. Furthermore, C performed better than L in case of epileptic EEG. Our results show that RN measures can provide insights into the structural properties of EEG in normal and pathological states.
Crossover from impurity-controlled to granular superconductivity in (TMTSF) 2ClO4
NASA Astrophysics Data System (ADS)
Yonezawa, Shingo; Marrache-Kikuchi, Claire A.; Bechgaard, Klaus; Jérome, Denis
2018-01-01
Using a proper cooling procedure, a controllable amount of nonmagnetic structural disorder can be introduced at low temperature in (TMTSF) 2ClO4 . Here we performed simultaneous measurements of transport and magnetic properties of (TMTSF) 2ClO4 in its normal and superconducting states, while finely covering three orders of magnitude of the cooling rate around the anion ordering temperature. Our result reveals, with increasing density of disorder, the existence of a crossover between homogeneous defect-controlled d -wave superconductivity and granular superconductivity. At slow cooling rates, with small amount of disorder, the evolution of superconducting properties is well described with the Abrikosov-Gorkov theory, providing further confirmation of non-s -wave pairing in this compound. In contrast, at fast cooling rates, zero resistance and diamagnetic shielding are achieved through a randomly distributed network of superconducting puddles embedded in a normal conducting background and interconnected by proximity effect coupling. The temperature dependence of the ac complex susceptibility reveals features typical for a network of granular superconductors. This makes (TMTSF) 2ClO4 a model system for granular superconductivity where the grain size and their concentration are tunable within the same sample.
Sexual dysfunction with antihypertensive and antipsychotic agents.
Smith, P J; Talbert, R L
1986-05-01
The physiology of the normal sexual response, epidemiology of sexual dysfunction, and the pharmacologic mechanisms involved in antihypertensive- and antipsychotic-induced problems with sexual function are discussed, with recommendations for patient management. The physiologic mechanisms involved in the normal sexual response include neurogenic, psychogenic, vascular, and hormonal factors that are coordinated by centers in the hypothalamus, limbic system, and cerebral cortex. Sexual dysfunction is frequently attributed to antihypertensive and antipsychotic agents and is a cause of noncompliance. Drug-induced effects include diminished libido, delayed orgasm, ejaculatory disturbances, gynecomastia, impotence, and priapism. The pharmacologic mechanisms proposed to account for these adverse effects include adrenergic inhibition, adrenergic-receptor blockade, anticholinergic properties, and endocrine and sedative effects. The most frequently reported adverse effect on sexual function with the antihypertensive agents is impotence. It is seen most often with methyldopa, guanethidine, clonidine, and propranolol. In contrast, the most common adverse effect on sexual function with the antipsychotic agents involves ejaculatory disturbances. Thioridazine, with its potent anticholinergic and alpha-blocking properties, is cited most often. Drug-induced sexual dysfunction may be alleviated by switching to agents with dissimilar mechanisms to alter the observed adverse effect while maintaining adequate control of the patient's disease state.
Nakanishi, S T; Whelan, P J
2010-05-01
During early postnatal development, between birth and postnatal days 8-11, mice start to achieve weight-bearing locomotion. In association with the progression of weight-bearing locomotion there are presumed developmental changes in the intrinsic electrical properties of spinal -motoneurons. However, these developmental changes in the properties of -motoneuron properties have not been systematically explored in mice. Here, data are presented documenting the developmental changes of selected intrinsic motoneuron electrical properties, including statistically significant changes in action potential half-width, intrinsic excitability and diversity (quantified as coefficient of variation) of rheobase current, afterhyperpolarization half-decay time, and input resistance. In various adult mammalian preparations, the maintenance of intrinsic motoneuron electrical properties is dependent on activity and/or transmission-sensitive motoneuron-muscle interactions. In this study, we show that botulinum toxin-induced muscle paralysis led to statistically significant changes in the normal development of intrinsic motoneuron electrical properties in the postnatal mouse. This suggests that muscle activity during early neonatal life contributes to the development of normal motoneuron electrical properties.
Physical Properties of Normal Grade Biodiesel and Winter Grade Biodiesel
Sadrolhosseini, Amir Reza; Moksin, Mohd Maarof; Nang, Harrison Lau Lik; Norozi, Monir; Yunus, W. Mahmood Mat; Zakaria, Azmi
2011-01-01
In this study, optical and thermal properties of normal grade and winter grade palm oil biodiesel were investigated. Surface Plasmon Resonance and Photopyroelectric technique were used to evaluate the samples. The dispersion curve and thermal diffusivity were obtained. Consequently, the variation of refractive index, as a function of wavelength in normal grade biodiesel is faster than winter grade palm oil biodiesel, and the thermal diffusivity of winter grade biodiesel is higher than the thermal diffusivity of normal grade biodiesel. This is attributed to the higher palmitic acid C16:0 content in normal grade than in winter grade palm oil biodiesel. PMID:21731429
Grossberg, Stephen
2017-01-01
Adaptive Resonance Theory, or ART, is a neural model that explains how normal and abnormal brains may learn to categorize and recognize objects and events in a changing world, and how these learned categories may be remembered for a long time. This article uses ART to propose and unify the explanation of diverse data about normal and abnormal modulation of learning and memory by acetylcholine (ACh). In ART, vigilance control determines whether learned categories will be general and abstract, or specific and concrete. ART models how vigilance may be regulated by ACh release in layer 5 neocortical cells by influencing after-hyperpolarization (AHP) currents. This phasic ACh release is mediated by cells in the nucleus basalis (NB) of Meynert that are activated by unexpected events. The article additionally discusses data about ACh-mediated tonic control of vigilance. ART proposes that there are often dynamic breakdowns of tonic control in mental disorders such as autism, where vigilance remains high, and medial temporal amnesia, where vigilance remains low. Tonic control also occurs during sleep-wake cycles. Properties of Up and Down states during slow wave sleep arise in ACh-modulated laminar cortical ART circuits that carry out processes in awake individuals of contrast normalization, attentional modulation, decision-making, activity-dependent habituation, and mismatch-mediated reset. These slow wave sleep circuits interact with circuits that control circadian rhythms and memory consolidation. Tonic control properties also clarify how Alzheimer’s disease symptoms follow from a massive structural degeneration that includes undermining vigilance control by ACh in cortical layers 3 and 5. Sleep disruptions before and during Alzheimer’s disease, and how they contribute to a vicious cycle of plaque formation in layers 3 and 5, are also clarified from this perspective. PMID:29163063
Graph-based network analysis of resting-state functional MRI.
Wang, Jinhui; Zuo, Xinian; He, Yong
2010-01-01
In the past decade, resting-state functional MRI (R-fMRI) measures of brain activity have attracted considerable attention. Based on changes in the blood oxygen level-dependent signal, R-fMRI offers a novel way to assess the brain's spontaneous or intrinsic (i.e., task-free) activity with both high spatial and temporal resolutions. The properties of both the intra- and inter-regional connectivity of resting-state brain activity have been well documented, promoting our understanding of the brain as a complex network. Specifically, the topological organization of brain networks has been recently studied with graph theory. In this review, we will summarize the recent advances in graph-based brain network analyses of R-fMRI signals, both in typical and atypical populations. Application of these approaches to R-fMRI data has demonstrated non-trivial topological properties of functional networks in the human brain. Among these is the knowledge that the brain's intrinsic activity is organized as a small-world, highly efficient network, with significant modularity and highly connected hub regions. These network properties have also been found to change throughout normal development, aging, and in various pathological conditions. The literature reviewed here suggests that graph-based network analyses are capable of uncovering system-level changes associated with different processes in the resting brain, which could provide novel insights into the understanding of the underlying physiological mechanisms of brain function. We also highlight several potential research topics in the future.
Superconducting Proximity Effect in Graphene Nanodevices: A Transport and Tunneling Study
NASA Astrophysics Data System (ADS)
Wang, I.-Jan
Provided that it is in good electrical contact with a superconductor, a normal metal can acquire superconducting properties when the temperature is low enough. Known as the superconducting proximity effect, this phenomenon has been studied for more than 50 years and, because of the richness of its physics, continues to fascinate many scientists. In this thesis, we present our study of the superconducting proximity effect in a hybrid system made by bringing graphene, a mono- layer of carbon atoms arranged in a hexagonal lattice, into contact with metallic BCS superconductors. Here graphene plays two roles: First it is a truly 2-dimensional crystal whose electron gas can be accessed on the surface easily. This property allows both transparent electrical contact with superconductors and direct observation of electronic properties made by a variety of probing schemes. Second, with its unique gapless band structure and linear energy dispersion, graphene provides a platform for the study of superconductivity carried by Dirac fermions. Graphene's first role may facilitate endeavors to reach a deeper understanding of proximity effects. However, it is predicted that in its second role graphene may give rise to exotic phenomena in superconducting regime. In order to realize these potentials, it is crucial to have good control of this material in regard to both fabrication and characterization. Two key elements have been recognized as necessary in fabrication: a graphene device with low disorder and a large induced gap in the normal region. In addition, a deeper understanding of the microscopic mechanism of supercurrent transport in graphene or any 2-dimensional system in general, is bound to provide a basis for abundant insights or may even produce surprises. The research discussed in this thesis has been shaped by this overall approach. An introduction to the basic electronic properties of graphene is given in Chapter 1, which presents the band structure of graphene based on a tight-binding model. In addition, gate-tunability and the chiral nature of Dirac fermions in graphene, both of which are essential in our experiments, are also discussed. Chapter 2 provides a theoretical background to superconductivity, with an emphasis on its manifestation in inhomogeneous systems at the mesoscopic scale. The Andreev reflection, the phase-coherent transport of particles coupled by superconductors, and the corresponding energy bound states (Andreev bound states) are studied in long- and short-junction limits. We will also show how the existence of impurity affects the physics presented in our experiments. Chapter 3 demonstrates the first graphene-based superconducting devices that we investigated. Fabrication and low-temperature measurement techniques of SGS junctions made of graphene and NbN, a type II superconductor with a large gap (TC ~ 12K) and a large critical field (HC2 > 9T ) are also discussed. Chapter 4 focuses on the development of h-BN-encapsulated graphene Josephson junctions. The pick-up and transfer techniques for the 2- dimensional Van der Waals materials that we used to make these heterostructures are described in details. The device we fabricated in this way exhibits ballistic transport characteristics, i.e. the signs of low disorder in graphene, in both normal and superconducting regimes. In Chapter 5, the tunneling spectroscopy of supercurrent-carrying Andreev states is presented. In order to study the intrinsic properties of the sample, we developed a new fabrication scheme aiming at preserving the pristine nature of the 2-DEGS as well as to minimize the doping introduced by external probes. The tunneling spectroscopy of graphene in superconducting regime reveals not only the Andreev bound states in the 2-dimensional limit, but also what we call the "Andreev scattering state" in the energy continuum.
A Study of Dielectric Properties of Proteinuria between 0.2 GHz and 50 GHz
Mun, Peck Shen; Ting, Hua Nong; Ong, Teng Aik; Wong, Chew Ming; Ng, Kwan Hong; Chong, Yip Boon
2015-01-01
This paper investigates the dielectric properties of urine in normal subjects and subjects with chronic kidney disease (CKD) at microwave frequency of between 0.2 GHz and 50 GHz. The measurements were conducted using an open-ended coaxial probe at room temperature (25°C), at 30°C and at human body temperature (37°C). There were statistically significant differences in the dielectric properties of the CKD subjects compared to those of the normal subjects. Statistically significant differences in dielectric properties were observed across the temperatures for normal subjects and CKD subjects. Pearson correlation test showed the significant correlation between proteinuria and dielectric properties. The experimental data closely matched the single-pole Debye model. The relaxation dispersion and relaxation time increased with the proteinuria level, while decreasing with the temperature. As for static conductivity, it increased with proteinuria level and temperature. PMID:26066351
Directional detection of dark matter in universal bound states
Laha, Ranjan
2015-10-06
It has been suggested that several small-scale structure anomalies in Λ CDM cosmology can be solved by strong self-interaction between dark matter particles. It was shown in Ref. [1] that the presence of a near threshold S-wave resonance can make the scattering cross section at nonrelativistic speeds come close to saturating the unitarity bound. This can result in the formation of a stable bound state of two asymmetric dark matter particles (which we call darkonium). Ref. [2] studied the nuclear recoil energy spectrum in dark matter direct detection experiments due to this incident bound state. Here we study the angularmore » recoil spectrum, and show that it is uniquely determined up to normalization by the S-wave scattering length. Furthermore, observing this angular recoil spectrum in a dark matter directional detection experiment will uniquely determine many of the low-energy properties of dark matter independent of the underlying dark matter microphysics.« less
Cáceres-Cortés, J R
1997-01-01
Mice bearing mutations at either of two loci, dominant White spotting(W) or Steel(Sl), exhibit development defects in hematopoietic, melanocytic and germ cells. Genetics studies have shown that the SI locus encodes the Steel factor (SF), which is the ligand for the tyrosine kinase receptor c-kit, the product of the W locus. SF is synthesized in membrane-bound form and can be processed to produce a soluble form. Cell-cell interaction is important in the production of normal blood cells in vivo and in vitro and in the cellular expansion of leukemic cells. We discuss here how SF decreases the requirements in cell interaction for blast colony formation in acute myeloblastic leukemia (AML) and the presence of membrane-bound SF possibly contributes to the density-dependent growth of the AML blasts. We explain that SF is mainly a survival factor for hematopoietic cells, of little proliferative effect, which maintains CD34+ hematopoietic cells in an undifferentiated state. These properties would potentially allow the maintenance of hematopoietic cells in culture for the purpose of marrow purging or gene therapy. The activation of the c-kit signal transduction pathway may play a significant role in the development of many types of non-hematological malignancies by disrupting normal cell-cell interactions and allowing the growth of cancer cell populations. In summary, the properties of the SF indicate it has a role for survival signals during the process of normal differentiation, AML proliferation and in the maintenance of many c-kit+ tumors.
NASA Astrophysics Data System (ADS)
Gramajo Feijoo, M.; Fernández-Liencres, M. P.; Gil, D. M.; Gómez, M. I.; Ben Altabef, A.; Navarro, A.; Tuttolomondo, M. E.
2018-03-01
Density Functional Theory (DFT) calculations were performed with the aim of investigating the vibrational, electronic and structural properties of [Cu(uracilato-N1)2 (NH3)2]ṡ2H2O complex. The IR and Raman spectra were recorded leading to a complete analysis of the normal modes of vibration of the metal complex. A careful study of the intermolecular interactions observed in solid state was performed by using the Hirshfeld surface analysis and their associated 2D fingerprint plots. The results indicated that the crystal packing is stabilized by Nsbnd H⋯O hydrogen bonds and π-stacking interactions. In addition, Csbnd H···π interactions were also observed. Time-dependent density functional theory (TD-DFT) calculations revealed that all the low-lying electronic states correspond to a mixture of intraligand charge transfer (ILCT) and ligand-to-metal charge transfer (LMCT) transitions. Finally, Natural Bond Orbital (NBO) and Atoms in Molecules (AIM) analysis were performed to shed light on the intermolecular interactions in the coordination sphere.
Electrical and magnetic properties of superconducting-insulating Pr-doped GdBa2Cu3O7-y
NASA Astrophysics Data System (ADS)
Yamani, Z.; Akhavan, M.
1997-10-01
An extensive study of magnetic, electrical transport, and structural properties of the normal and superconducting states of Gd1-xPrxBa2Cu3O7-y (GdPr-123) are presented. Ceramic compounds have been synthesized by the solid-state reaction technique, and characterized by x-ray-diffraction, scanning-electron-microscopy, thermogravimetric, and differential-thermal analyses. The superconducting transition temperature is reduced with increasing Pr content x in a nonlinear manner, in contrast to Abrikosov-Gor'kov pair-breaking theory. Magnetic susceptibility measurements show that the nominal Pr valence is 3.86+, independently of x. A metal-insulator transition is observed at xcr~0.45, similar to that in the oxygen-deficient RBa2Cu3O7-y (R-123) system. Based on this resemblance, we suggest that both Pr doping and oxygen deficiency act through the same mechanism. Hence, the environment surrounding the CuO2 layers is important to high-Tc superconductivity (HTSC). In this sense, HTSC cannot completely be a two-dimentional feature. A chain-plane-correlation effect is plausible.
NASA Astrophysics Data System (ADS)
Hecher, J.; Ishida, S.; Song, D.; Ogino, H.; Iyo, A.; Eisaki, H.; Nakajima, M.; Kagerbauer, D.; Eisterer, M.
2018-01-01
The phase diagram of iron-based superconductors exhibits structural transitions, electronic nematicity, and magnetic ordering, which are often accompanied by an electronic in-plane anisotropy and a sharp maximum of the superconducting critical current density (Jc) near the phase boundary of the tetragonal and the antiferromagnetic-orthorhombic phase. We utilized scanning Hall-probe microscopy to visualize the Jc of twinned and detwinned Ba (Fe1-xCox) 2As2 (x =5 %-8 % ) crystals to compare the electronic normal state properties with superconducting properties. We find that the electronic in-plane anisotropy continues into the superconducting state. The observed correlation between the electronic and the Jc anisotropy agrees qualitatively with basic models, however, the Jc anisotropy is larger than predicted from the resistivity data. Furthermore, our measurements show that the maximum of Jc at the phase boundary does not vanish when the crystals are detwinned. This shows that twin boundaries are not responsible for the large Jc, suggesting an exotic pinning mechanism.
NASA Astrophysics Data System (ADS)
Dzhumanov, S.; Karimboev, E. X.
2014-07-01
In this paper, we show that the pseudogap in the excitation spectra of high-Tc cuprates together with the impurity phase and charge inhomogeneity plays key roles in determining the essential features of their anomalous specific heat properties observed above Tc. We consider the doped cuprate superconductor as a multi-carrier model system (which consists of intrinsic and extrinsic polarons and pre-formed bosonic Cooper pairs) and study the competing pseudogap and impurity effects on the normal-state electronic specific heat of high-Tc cuprates taking into account charge inhomogeneities. We argue that unconventional electron-phonon interactions are responsible for the precursor Cooper pairing in the polaronic band below a mean-field temperature T∗ and the existence of a pseudogap above Tc in the cuprates. The electronic specific heat Ce(T) of doped cuprates below T∗ is calculated taking into account three contributions coming from the excited components of Cooper pairs, the ideal Bose-gas of incoherent Cooper pairs and the unpaired carriers in the impurity band. Above T∗, two contributions to Ce(T) coming from the unpaired intrinsic and extrinsic polarons are calculated within the two-component degenerate Fermi-gas model. By comparing our results with the experimental Ce(T) data obtained for La- and Y-based cuprates, we find that the observed behaviors of Ce(T) (below and above T∗) are similar to the calculated results for Ce(T) and the BCS-type jumps of Ce(T) at T∗ may be depressed by the impurity effects and may become more or less pronounced BCS-type anomalies in Ce(T) .
NASA Astrophysics Data System (ADS)
Wei, T.; Dong, Z.; Zhao, C. Z.; Guo, Y. Y.; Zhou, Q. J.; Li, Z. P.
2016-03-01
New unfilled tetragonal tungsten bronze (TTB) oxides, Ba5-5xSm5xTi5xNb10-5xO30 (BSTN-x), where 0.10 ≤ x ≤ 0.35, have been synthesized in this work. Their crystal structure was determined and analyzed based on Rietveld structural refinement. It is found that single TTB phase can be formed in a particular x range (i.e., 0.15 ≤ x ≤ 0.3) due to the competition interaction between tolerance factor and electronegativity difference. Furthermore, dielectric and ferroelectric results indicate that phase transitions and ferroelectric states are sensitive to x. Referring to the local chemistry, we suggest that the raise of vacancies at the A2-site compared with that of A1-site will intensely depress the normal ferroelectric phase and is in favor of relaxor ferroelectric state. Macroscopically, previous A-site size difference standpoint on fill TTB compounds cannot give a reasonable explanation about the variation of dielectric maximum temperature (Tm) for present BSTN-x compounds. Alternatively, tetragonality (c/a) is adopted which can well describe the variation of Tm in whole x range. In addition, one by one correspondence between tetragonality and electrical features can be found, and the compositions involving high c/a are usually stabilized in normal ferroelectric phase. It is believed that c/a is a more appropriate parameter to illustrate the variation of ferroelectric properties for unfilled TTB system.
Sridharan, Niyanth; Gussev, Maxim; Seibert, Rachel; ...
2016-09-01
Ultrasonic additive manufacturing (UAM) is a solid-state process, which uses ultrasonic vibrations at 20 kHz along with mechanized tape layering and intermittent milling operation, to build fully functional three-dimensional parts. In the literature, UAM builds made with low power (1.5 kW) exhibited poor tensile properties in Z-direction, i.e., normal to the interfaces. This reduction in properties is often attributed to the lack of bonding at faying interfaces. The generality of this conclusion is evaluated further in 6061 aluminum alloy builds made with very high power UAM (9 kW). Tensile deformation behavior along X and Z directions were evaluated with small-scalemore » in-situ mechanical testing equipped with high-resolution digital image correlation, as well as, multi-scale characterization of builds. Interestingly, even with complete metallurgical bonding across the interfaces without any discernable voids, poor Z-direction properties were observed. This reduction is correlated to coalescence of pre-existing shear bands at interfaces into micro voids, leading to strain localization and spontaneous failure on tensile loading.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andraka, Bohdan
2015-05-14
The main goal of this program was to explore the possibility of novel states and behaviors in Pr-based system exhibiting quantum critical behavior, PrOs₄Sb₁₂. Upon small changes of external parameter, such as magnetic field, physical properties of PrOs₄Sb₁₂ are drastically altered from those corresponding to a superconductor, to heavy fermion, to field-induced ordered phase with primary quadrupolar order parameter. All these states are highly unconventional and not understood in terms of current theories thus offer an opportunity to expand our knowledge and understanding of condensed matter. At the same time, these novel states and behaviors are subjects to intense internationalmore » controversies. In particular, two superconducting phases with different transition temperatures were observed in some samples and not observed in others leading to speculations that sample defects might be partially responsible for these exotic behaviors. This work clearly established that crystal disorder is important consideration, but contrary to current consensus this disorder suppresses exotic behavior. Superconducting properties imply unconventional inhomogeneous state that emerges from unconventional homogeneous normal state. Comprehensive structural investigations demonstrated that upper superconducting transition is intrinsic, bulk, and unconventional. The high quality of in-house synthesized single crystals was indirectly confirmed by de Haas-van Alphen quantum oscillation measurements. These measurements, for the first time ever reported, spanned several different phases, offering unprecedented possibility of studying quantum oscillations across phase boundaries.« less
2D Larkin-Imry-Ma state of deformed ABM phase of superfluid 3He in ``ordered'' aerogel
NASA Astrophysics Data System (ADS)
Dmitriev, Vladimir; Senin, Andrey; Yudin, Alexey
2014-03-01
We report NMR studies of high temperature superfluid phase of 3He in so called ``ordered'' aerogel1 which strands are almost parallel to each other. Previously, it was found that the NMR properties of this phase depend on whether it is obtained on cooling from the normal phase or on warming from the low temperature phase2. These two types of high temperature phase (called as ESP1 and ESP2) correspond to Anderson-Brinkman-Morel (ABM) phase with large polar distortion and with orbital vector being in 2D Larkin-Imry-Ma (LIM) state. Here we present results which show that the observed difference in NMR signatures of the ESP1 and the ESP2 states is due to that the corresponding 2D LIM states can be anisotropic. In the ESP1 phase the anisotropy is absent or small, while in the ESP2 phase the anisotropy is large. NMR data have allowed us to estimate values of these anisotropies.
Stability switches and multistability coexistence in a delay-coupled neural oscillators system.
Song, Zigen; Xu, Jian
2012-11-21
In this paper, we present a neural network system composed of two delay-coupled neural oscillators, where each of these can be regarded as the dynamical system describing the average activity of neural population. Analyzing the corresponding characteristic equation, the local stability of rest state is studied. The system exhibits the switch phenomenon between the rest state and periodic activity. Furthermore, the Hopf bifurcation is analyzed and the bifurcation curve is given in the parameters plane. The stability of the bifurcating periodic solutions and direction of the Hopf bifurcation are exhibited. Regarding time delay and coupled weight as the bifurcation parameters, the Fold-Hopf bifurcation is investigated in detail in terms of the central manifold reduction and normal form method. The neural system demonstrates the coexistence of the rest states and periodic activities in the different parameter regions. Employing the normal form of the original system, the coexistence regions are illustrated approximately near the Fold-Hopf singularity point. Finally, numerical simulations are performed to display more complex dynamics. The results illustrate that system may exhibit the rich coexistence of the different neuro-computational properties, such as the rest states, periodic activities, and quasi-periodic behavior. In particular, some periodic activities can evolve into the bursting-type behaviors with the varying time delay. It implies that the coexistence of the quasi-periodic activity and bursting-type behavior can be obtained if the suitable value of system parameter is chosen. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bhattacharjee, Rahul; Chattopadhyaya, Surya
2017-11-01
Density functional theory (DFT) based full-potential linearized augmented plane wave (FP-LAPW) methodology has been employed to investigate theoretically the structural, electronic and optical properties of MgxBa1-xS, MgxBa1-xSe and MgxBa1-xTe ternary alloys for 0 ≤ x ≤ 1 in their rock-salt (B1) crystallographic phase. The exchange-correlation potentials for the structural properties have been computed using the Wu-Cohen generalized-gradient approximation (WC-GGA) scheme, while those for the electronic and optical properties have been computed using both the WC-GGA and the recently developed Tran-Blaha modified Becke-Johnson (TB-mBJ) schemes. The thermodynamic stability of all the ternary alloys have been investigated by calculating their respective enthalpy of formation. The atomic and orbital origin of different electronic states in the band structure of the compounds have been identified from the respective density of states (DOS). Using the approach of Zunger and co-workers, the microscopic origin of band gap bowing has been discussed in term of volume deformation, charge exchange and structural relaxation. Bonding characteristics among the constituent atoms of each of the specimens have been discussed from their charge density contour plots. Optical properties of the binary compounds and ternary alloys have been investigated theoretically in terms of their respective dielectric function, refractive index, normal incidence reflectivity and optical conductivity. Several calculated results have been compared with available experimental and other theoretical data.
Biophysical properties of normal and diseased renal glomeruli.
Wyss, Hans M; Henderson, Joel M; Byfield, Fitzroy J; Bruggeman, Leslie A; Ding, Yaxian; Huang, Chunfa; Suh, Jung Hee; Franke, Thomas; Mele, Elisa; Pollak, Martin R; Miner, Jeffrey H; Janmey, Paul A; Weitz, David A; Miller, R Tyler
2011-03-01
The mechanical properties of tissues and cells including renal glomeruli are important determinants of their differentiated state, function, and responses to injury but are not well characterized or understood. Understanding glomerular mechanics is important for understanding renal diseases attributable to abnormal expression or assembly of structural proteins and abnormal hemodynamics. We use atomic force microscopy (AFM) and a new technique, capillary micromechanics, to measure the elastic properties of rat glomeruli. The Young's modulus of glomeruli was 2,500 Pa, and it was reduced to 1,100 Pa by cytochalasin and latunculin, and to 1,400 Pa by blebbistatin. Cytochalasin or latrunculin reduced the F/G actin ratios of glomeruli but did not disrupt their architecture. To assess glomerular biomechanics in disease, we measured the Young's moduli of glomeruli from two mouse models of primary glomerular disease, Col4a3(-/-) mice (Alport model) and Tg26(HIV/nl) mice (HIV-associated nephropathy model), at stages where glomerular injury was minimal by histopathology. Col4a3(-/-) mice express abnormal glomerular basement membrane proteins, and Tg26(HIV/nl) mouse podocytes have multiple abnormalities in morphology, adhesion, and cytoskeletal structure. In both models, the Young's modulus of the glomeruli was reduced by 30%. We find that glomeruli have specific and quantifiable biomechanical properties that are dependent on the state of the actin cytoskeleton and nonmuscle myosins. These properties may be altered early in disease and represent an important early component of disease. This increased deformability of glomeruli could directly contribute to disease by permitting increased distension with hemodynamic force or represent a mechanically inhospitable environment for glomerular cells.
El-Badawy, Ahmed; Ghoneim, Nehal I; Nasr, Mohamed A; Elkhenany, Hoda; Ahmed, Toka A; Ahmed, Sara M; El-Badri, Nagwa
2018-06-15
Telomerase and its core component, telomerase reverse transcriptase (hTERT), are critical for stem cell compartment integrity. Normal adult stem cells have the longest telomeres in a given tissue, a property mediated by high hTERT expression and high telomerase enzymatic activity. In contrast, cancer stem cells (CSCs) have short telomeres despite high expression of hTERT, indicating that the role of hTERT in CSCs is not limited to telomere elongation and/or maintenance. The function of hTERT in CSCs remains poorly understood. Here, we knocked down hTERT expression in CSCs and observed a morphological shift to a more epithelial phenotype, suggesting a role for hTERT in the epithelial-to-mesenchymal transition (EMT) of CSCs. Therefore, in this study, we systematically explored the relationship between hTERT and EMT and identified a reciprocal, bidirectional feedback loop between hTERT and EMT in CSCs. We found that hTERT expression is mutually exclusive to the mesenchymal phenotype and that, reciprocally, loss of the mesenchymal phenotype represses hTERT expression. We also showed that hTERT plays a critical role in the expression of key CSC markers and nuclear β-catenin localization, increases the percentage of cells with side-population properties, and upregulates the CD133 expression. hTERT also promotes chemoresistance properties, tumorsphere formation and other important functional CSC properties. Subsequently, hTERT knockdown leads to the loss of the above advantages, indicating a loss of CSC properties. Our findings suggest that targeting hTERT might improve CSCs elimination by transitioning them from the aggressive mesenchymal state to a more steady epithelial state, thereby preventing cancer progression. © 2018. Published by The Company of Biologists Ltd.
Lu, Feng; Matsushita, Yasuyuki; Sato, Imari; Okabe, Takahiro; Sato, Yoichi
2015-10-01
We propose an uncalibrated photometric stereo method that works with general and unknown isotropic reflectances. Our method uses a pixel intensity profile, which is a sequence of radiance intensities recorded at a pixel under unknown varying directional illumination. We show that for general isotropic materials and uniformly distributed light directions, the geodesic distance between intensity profiles is linearly related to the angular difference of their corresponding surface normals, and that the intensity distribution of the intensity profile reveals reflectance properties. Based on these observations, we develop two methods for surface normal estimation; one for a general setting that uses only the recorded intensity profiles, the other for the case where a BRDF database is available while the exact BRDF of the target scene is still unknown. Quantitative and qualitative evaluations are conducted using both synthetic and real-world scenes, which show the state-of-the-art accuracy of smaller than 10 degree without using reference data and 5 degree with reference data for all 100 materials in MERL database.
Characterising the biophysical properties of normal and hyperkeratotic foot skin.
Hashmi, Farina; Nester, Christopher; Wright, Ciaran; Newton, Veronica; Lam, Sharon
2015-01-01
Plantar foot skin exhibits unique biophysical properties that are distinct from skin on other areas of the body. This paper characterises, using non-invasive methods, the biophysical properties of foot skin in healthy and pathological states including xerosis, heel fissures, calluses and corns. Ninety three people participated. Skin hydration, elasticity, collagen and elastin fibre organisation and surface texture was measured from plantar calluses, corns, fissured heel skin and xerotic heel skin. Previously published criteria were applied to classify the severity of each skin lesion and differences in the biophysical properties compared between each classification. Calluses, corns, xerotic heel skin and heel fissures had significantly lower levels of hydration; less elasticity and greater surface texture than unaffected skin sites (p < 0.01). Some evidence was found for a positive correlation between hydration and elasticity data (r ≤ 0.65) at hyperkeratotic sites. Significant differences in skin properties (with the exception of texture) were noted between different classifications of skin lesion. This study provides benchmark data for healthy and different severities of pathological foot skin. These data have applications ranging from monitoring the quality of foot skin, to measuring the efficacy of therapeutic interventions.
Cancer cell redirection biomarker discovery using a mutual information approach.
Roche, Kimberly; Feltus, F Alex; Park, Jang Pyo; Coissieux, Marie-May; Chang, Chenyan; Chan, Vera B S; Bentires-Alj, Mohamed; Booth, Brian W
2017-01-01
Introducing tumor-derived cells into normal mammary stem cell niches at a sufficiently high ratio of normal to tumorous cells causes those tumor cells to undergo a change to normal mammary phenotype and yield normal mammary progeny. This phenomenon has been termed cancer cell redirection. We have developed an in vitro model that mimics in vivo redirection of cancer cells by the normal mammary microenvironment. Using the RNA profiling data from this cellular model, we examined high-level characteristics of the normal, redirected, and tumor transcriptomes and found the global expression profiles clearly distinguish the three expression states. To identify potential redirection biomarkers that cause the redirected state to shift toward the normal expression pattern, we used mutual information relationships between normal, redirected, and tumor cell groups. Mutual information relationship analysis reduced a dataset of over 35,000 gene expression measurements spread over 13,000 curated gene sets to a set of 20 significant molecular signatures totaling 906 unique loci. Several of these molecular signatures are hallmark drivers of the tumor state. Using differential expression as a guide, we further refined the gene set to 120 core redirection biomarker genes. The expression levels of these core biomarkers are sufficient to make the normal and redirected gene expression states indistinguishable from each other but radically different from the tumor state.
Cancer cell redirection biomarker discovery using a mutual information approach
Roche, Kimberly; Feltus, F. Alex; Park, Jang Pyo; Coissieux, Marie-May; Chang, Chenyan; Chan, Vera B. S.; Bentires-Alj, Mohamed
2017-01-01
Introducing tumor-derived cells into normal mammary stem cell niches at a sufficiently high ratio of normal to tumorous cells causes those tumor cells to undergo a change to normal mammary phenotype and yield normal mammary progeny. This phenomenon has been termed cancer cell redirection. We have developed an in vitro model that mimics in vivo redirection of cancer cells by the normal mammary microenvironment. Using the RNA profiling data from this cellular model, we examined high-level characteristics of the normal, redirected, and tumor transcriptomes and found the global expression profiles clearly distinguish the three expression states. To identify potential redirection biomarkers that cause the redirected state to shift toward the normal expression pattern, we used mutual information relationships between normal, redirected, and tumor cell groups. Mutual information relationship analysis reduced a dataset of over 35,000 gene expression measurements spread over 13,000 curated gene sets to a set of 20 significant molecular signatures totaling 906 unique loci. Several of these molecular signatures are hallmark drivers of the tumor state. Using differential expression as a guide, we further refined the gene set to 120 core redirection biomarker genes. The expression levels of these core biomarkers are sufficient to make the normal and redirected gene expression states indistinguishable from each other but radically different from the tumor state. PMID:28594912
36 CFR 907.8 - Actions that normally require an EIS.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Actions that normally require an EIS. 907.8 Section 907.8 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT... prepare or have prepared the environmental impact statement. To assist in determining if a proposal or...
36 CFR 1010.8 - Actions that normally require an EIS.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Actions that normally require an EIS. 1010.8 Section 1010.8 Parks, Forests, and Public Property PRESIDIO TRUST ENVIRONMENTAL... an EIS without preparing or completing the preparation of an EA. To assist the NEPA Compliance...
36 CFR 1010.8 - Actions that normally require an EIS.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Actions that normally require an EIS. 1010.8 Section 1010.8 Parks, Forests, and Public Property PRESIDIO TRUST ENVIRONMENTAL... an EIS without preparing or completing the preparation of an EA. To assist the NEPA Compliance...
36 CFR 1010.8 - Actions that normally require an EIS.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Actions that normally require an EIS. 1010.8 Section 1010.8 Parks, Forests, and Public Property PRESIDIO TRUST ENVIRONMENTAL... an EIS without preparing or completing the preparation of an EA. To assist the NEPA Compliance...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sridharan, Niyanth; Gussev, Maxim; Seibert, Rachel
Ultrasonic additive manufacturing (UAM) is a solid-state process, which uses ultrasonic vibrations at 20 kHz along with mechanized tape layering and intermittent milling operation, to build fully functional three-dimensional parts. In the literature, UAM builds made with low power (1.5 kW) exhibited poor tensile properties in Z-direction, i.e., normal to the interfaces. This reduction in properties is often attributed to the lack of bonding at faying interfaces. The generality of this conclusion is evaluated further in 6061 aluminum alloy builds made with very high power UAM (9 kW). Tensile deformation behavior along X and Z directions were evaluated with small-scalemore » in-situ mechanical testing equipped with high-resolution digital image correlation, as well as, multi-scale characterization of builds. Interestingly, even with complete metallurgical bonding across the interfaces without any discernable voids, poor Z-direction properties were observed. This reduction is correlated to coalescence of pre-existing shear bands at interfaces into micro voids, leading to strain localization and spontaneous failure on tensile loading.« less
Hypoxia alters the physical properties of the tumor microenvironment
NASA Astrophysics Data System (ADS)
Gilkes, Daniele
Of all the deaths attributed to cancer, 90% are due to metastasis, or the spread of cancer cells from a primary tumor to distant organs, and treatments that prevent or cure metastasis remain elusive. Emerging data indicate that low oxygen states within a tumor, termed hypoxia, can alter the chemical and physical parameters of the extracellular matrix (ECM), or scaffold of the tumor tissue. These changes generate a microenvironment that may be more conducive for promoting metastasis. During tumor evolution, changes in the composition and the overall content of the ECM reflect both its biophysical and biological properties and these strongly influence the cells properties, such as cellular proliferation and cell motility. The talk will cover how hypoxia arises within normal tissue and also in tumors. We will cover the role of hypoxia in collagen biogenesis which influences compositional changes to the tumor microenvironment and discuss how these changes lead to a stiffer tumor stroma. The challenges in determining the influence of chemical versus physical cues on cancer progression will also be considered.
Free energy and entropy of a dipolar liquid by computer simulations
NASA Astrophysics Data System (ADS)
Palomar, Ricardo; Sesé, Gemma
2018-02-01
Thermodynamic properties for a system composed of dipolar molecules are computed. Free energy is evaluated by means of the thermodynamic integration technique, and it is also estimated by using a perturbation theory approach, in which every molecule is modeled as a hard sphere within a square well, with an electric dipole at its center. The hard sphere diameter, the range and depth of the well, and the dipole moment have been calculated from properties easily obtained in molecular dynamics simulations. Connection between entropy and dynamical properties is explored in the liquid and supercooled states by using instantaneous normal mode calculations. A model is proposed in order to analyze translation and rotation contributions to entropy separately. Both contributions decrease upon cooling, and a logarithmic correlation between excess entropy associated with translation and the corresponding proportion of imaginary frequency modes is encountered. Rosenfeld scaling law between reduced diffusion and excess entropy is tested, and the origin of its failure at low temperatures is investigated.
Fundamentals of poly(lactic acid) microstructure, crystallization behavior, and properties
NASA Astrophysics Data System (ADS)
Kang, Shuhui
Poly(lactic acid) is an environmentally-benign biodegradable and sustainable thermoplastic material, which has found broad applications as food packaging films and as non-woven fibers. The crystallization and deformation mechanisms of the polymer are largely determined by the distribution of conformation and configuration. Knowledge of these mechanisms is needed to understand the mechanical and thermal properties on which processing conditions mainly depend. In conjunction with laser light scattering, Raman spectroscopy and normal coordinate analysis are used in this thesis to elucidate these properties. Vibrational spectroscopic theory, Flory's rotational isomeric state (RIS) theory, Gaussian chain statistics and statistical mechanics are used to relate experimental data to molecular chain structure. A refined RIS model is proposed, chain rigidity recalculated and chain statistics discussed. A Raman spectroscopic characterization method for crystalline and amorphous phase orientation has been developed. A shrinkage model is also proposed to interpret the dimensional stability for fibers and uni- or biaxially stretched films. A study of stereocomplexation formed by poly(l-lactic acid) and poly(d-lactic acid) is also presented.
Tunable Electronic and Topological Properties of Germanene by Functional Group Modification
Ren, Ceng-Ceng; Zhang, Shu-Feng; Ji, Wei-Xiao; Zhang, Chang-Wen; Li, Ping; Wang, Pei-Ji
2018-01-01
Electronic and topological properties of two-dimensional germanene modified by functional group X (X = H, F, OH, CH3) at full coverage are studied with first-principles calculation. Without considering the effect of spin-orbit coupling (SOC), all functionalized configurations become semiconductors, removing the Dirac cone at K point in pristine germanene. We also find that their band gaps can be especially well tuned by an external strain. When the SOC is switched on, GeX (X = H, CH3) is a normal insulator and strain leads to a phase transition to a topological insulator (TI) phase. However, GeX (X = F, OH) becomes a TI with a large gap of 0.19 eV for X = F and 0.24 eV for X = OH, even without external strains. More interestingly, when all these functionalized monolayers form a bilayer structure, semiconductor-metal states are observed. All these results suggest a possible route of modulating the electronic properties of germanene and promote applications in nanoelectronics. PMID:29509699
Magnetic Properties and the Giant Magnetoimpedance of Amorphous Co-Based Wires with a Carbon Coating
NASA Astrophysics Data System (ADS)
Golubeva, E. V.; Stepanova, E. A.; Balymov, K. G.; Volchkov, S. O.; Kurlyandskaya, G. V.
2018-04-01
A comparative analysis of the magnetic properties and specific features of the giant magnetoimpedance has been carried out for amorphous rapidly quenched wires with a composition of (Co0.94Fe0.06)72.5Si12.5B15 in the initial state and after the deposition of a carbon coating. The deposition of the defective graphene-like carbon layer was carried out under normal conditions during the exposure in toluene (methylbenzene). The method of the energy-dispersive X-ray spectroscopy made it possible to reliably show that after the modification in toluene, the carbon content on the surface significantly exceeds the natural amount of carbon. The deposition of the carbon coating induced changes in the distribution of the initial quenching stresses in the near-surface layer of amorphous wires. A comparative analysis of the magnetic and magnetoimpedance properties of the samples before and after exposure in the aromatic solvent confirms the occurrence of changes in the effective magnetic anisotropy as a result of this surface treatment.
NASA Astrophysics Data System (ADS)
Diveyev, Bohdan; Konyk, Solomija; Crocker, Malcolm J.
2018-01-01
The main aim of this study is to predict the elastic and damping properties of composite laminated plates. This problem has an exact elasticity solution for simple uniform bending and transverse loading conditions. This paper presents a new stress analysis method for the accurate determination of the detailed stress distributions in laminated plates subjected to cylindrical bending. Some approximate methods for the stress state predictions for laminated plates are presented here. The present method is adaptive and does not rely on strong assumptions about the model of the plate. The theoretical model described here incorporates deformations of each sheet of the lamina, which account for the effects of transverse shear deformation, transverse normal strain-stress and nonlinear variation of displacements with respect to the thickness coordinate. Predictions of the dynamic and damping values of laminated plates for various geometrical, mechanical and fastening properties are presented. Comparison with the Timoshenko beam theory is systematically made for analytical and approximation variants.
The way to uncover community structure with core and diversity
NASA Astrophysics Data System (ADS)
Chang, Y. F.; Han, S. K.; Wang, X. D.
2018-07-01
Communities are ubiquitous in nature and society. Individuals that share common properties often self-organize to form communities. Avoiding the shortages of computation complexity, pre-given information and unstable results in different run, in this paper, we propose a simple and efficient method to deepen our understanding of the emergence and diversity of communities in complex systems. By introducing the rational random selection, our method reveals the hidden deterministic and normal diverse community states of community structure. To demonstrate this method, we test it with real-world systems. The results show that our method could not only detect community structure with high sensitivity and reliability, but also provide instructional information about the hidden deterministic community world and the real normal diverse community world by giving out the core-community, the real-community, the tide and the diversity. Thizs is of paramount importance in understanding, predicting, and controlling a variety of collective behaviors in complex systems.
Tan, Chih-Shan; Huang, Michael Hsuan-Yi
2018-05-21
To find out if germanium should also possess facet-dependent electrical conductivity properties, surface state density functional theory (DFT) calculations were performed on 1-6 layers of Ge (100), (110), (111), and (211) planes. Tunable Ge (100) and (110) planes always present the same semiconducting band structure with a band gap of 0.67 eV expected of bulk germanium. In contrast, 1, 2, 4, and 5 layers of Ge (111) and (211) plane models show metal-like band structures with continuous density of states (DOS) throughout the entire band. For 3 and 6 layers of Ge (111) and (211) plane models, the normal semiconducting band structure was obtained. The plane layers with metal-like band structures also show Ge-Ge bond length deviations and bond distortions, as well as significantly different 4s and 4p frontier orbital electron count and their relative percentages integrated over the valence and conduction bands from those of the semiconducting state. These differences should contribute to strikingly dissimilar band structures. The calculation results suggest observation of facet-dependent electrical conductivity properties of germanium materials, and transistors made of germanium may also need to consider the facet effects with shrinking dimensions approaching 3 nm. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Superconducting cuprate heterostructures for hot electron bolometers
NASA Astrophysics Data System (ADS)
Wen, B.; Yakobov, R.; Vitkalov, S. A.; Sergeev, A.
2013-11-01
Transport properties of the resistive state of quasi-two dimensional superconducting heterostructures containing ultrathin La2-xSrxCuO4 layers synthesized using molecular beam epitaxy are studied. The electron transport exhibits strong deviation from Ohm's law, δV ˜γI3, with a coefficient γ(T) that correlates with the temperature variation of the resistivity dρ /dT. Close to the normal state, analysis of the nonlinear behavior in terms of electron heating yields an electron-phonon thermal conductance per unit area ge -ph≈1 W/K cm2 at T = 20 K, one-two orders of magnitude smaller than in typical superconductors. This makes superconducting LaSrCuO heterostructures to be attractive candidate for the next generation of hot electron bolometers with greatly improved sensitivity.
Monitoring the state of the human airways by analysis of respiratory sound
NASA Technical Reports Server (NTRS)
Hardin, J. C.; Patterson, J. L., Jr.
1978-01-01
A mechanism whereby sound is generated by the motion of vortices in the human lung is described. This mechanism is believed to be responsible for most of the sound which is generated both on inspiration and expiration in normal lungs. Mathematical expressions for the frequencies of sound generated, which depend only upon the axial flow velocity and diameters of the bronchi, are derived. This theory allows the location within the bronchial tree from which particular sounds emanate to be determined. Redistribution of pulmonary blood volume following transition from earth gravity to the weightless state probably alters the caliber of certain airways and doubtless alters sound transmission properties of the lung. We believe that these changes can be monitored effectively and non-invasively by spectral analysis of pulmonary sound.
Monitoring the state of the human airways by analysis of respiratory sound
NASA Technical Reports Server (NTRS)
Hardin, J. C.; Patterson, J. L. Jr
1979-01-01
A mechanism whereby sound is generated by the motion of vortices in the human lung is described. This mechanism is believed to be responsible for most of the sound which is generated both on inspiration and expiration in normal lungs. Mathematical expressions for the frequencies of sound generated, which depend only upon the axial flow velocity and diameters of the bronchi, are derived. This theory allows the location within the bronchial tree from which particular sounds emanate to be determined. Redistribution of pulmonary blood volume following transition from Earth gravity to the weightless state probably alters the caliber of certain airways and doubtless alters sound transmission properties of the lung. We believe that these changes can be monitored effectively and non-invasively by spectral analysis of pulmonary sound.
NASA Astrophysics Data System (ADS)
Khodas, M.; Levchenko, A.; Catelani, G.
2012-06-01
We study the transport in ultrathin disordered film near the quantum critical point induced by the Zeeman field. We calculate corrections to the normal state conductivity due to quantum pairing fluctuations. The fluctuation-induced transport is mediated by virtual rather than real quasiparticle excitations. We find that at zero temperature, where the corrections come from purely quantum fluctuations, the Aslamazov-Larkin paraconductivity term, the Maki-Thompson interference contribution, and the density of states effects are all of the same order. The total correction leads to the negative magnetoresistance. This result is in qualitative agreement with the recent transport observations in the parallel magnetic field of the homogeneously disordered amorphous films and superconducting two-dimensional electron gas realized at the oxide interfaces.
NASA Astrophysics Data System (ADS)
Barański, J.; Kobiałka, A.; Domański, T.
2017-02-01
We investigate the subgap spectrum and transport properties of the quantum dot on the interface between the metallic and superconducting leads and additionally side-coupled to the edge of the topological superconducting (TS) chain, hosting the Majorana quasiparticle. Due to the chiral nature of the Majorana states only one spin component of the quantum dot electrons (say \\uparrow ) is directly affected, however the proximity induced on-dot pairing transmits its influence on the opposite spin as well. We investigate the unique interferometric patterns driven by the Majorana quasiparticle that are different for each spin component. We also address the spin-sensitive interplay with the Kondo effect manifested at the same zero-energy and we come to the conclusion that quantum interferometry can unambiguously identify the Majorana quasiparticle.
Impact, Spreading and Splashing of Superfluid Drops
NASA Astrophysics Data System (ADS)
Taborek, Peter; Wallace, Mattew; Mallin, David; Aguirre, Andres; Langley, Kenneth; Thoroddsen, Sigurdur
2017-11-01
We investigate the impact of superfluid and normal liquid helium drops onto glass plates, in a custom-made optical cryostat, over a temperature range from 1.3 - 5 K. The unusual properties of liquid helium allow us to explore ranges of parameters that are difficult to obtain in conventional systems. Even in the normal state with T >2.17K, the viscosity and surface tension of liquid helium are unusually low, so it is easy to prepare drops with Re >30,000 and We >500. We track the spreading radius of the fluid rim, which initially grows as a power law in time with an exponent of 0.5 , while transitioning to Tanner's law at later times. In the superfluid state the rim velocity can exceed 4 m/s, which is significantly higher than the superfluid critical velocity. Here we see no splashing even at Re >100,000. Our experiments take place in an atmosphere of helium gas. In conventional impact splashing the exterior air is incondensable, while our impacts in helium involve a condensable exterior phase, so the dynamics can be expected to be quite different. We study how these differences affect the splashing.
Rukmini, J. N.; Manasa, Sunkari; Rohini, Chenna; Sireesha, Lavanya Putchla; Ritu, Sachan; Umashankar, G. K.
2017-01-01
Objective: The antibacterial property of coconut, the presence of lauric acid, and the ability to extract antimicrobial peptides Cn-AMP (1, 2, and 3) from tender coconut water has drawn attention on its effectiveness in normal consumption. An in-vitro experimental study was conducted to evaluate the antimicrobial efficacy of tender coconut water in its natural state on Streptococcus mutans. Materials and Methods: Fresh tender coconut water and pasteurized tender coconut water were taken as test samples, dimethyl formamide was used as the negative control, and 0.2% chlorhexidine was used as the positive control. Pure strain of S. mutans (MTCC 890) was used for determining the antibacterial effects. The test samples along with the controls were subjected to antimicrobial sensitivity test procedure and the zone of inhibition was examined. Kruskal–Wallis test was used to check for any significant differences in the antibacterial efficacy between the samples. Result: There was no zone of inhibition with the tender coconut water, fresh and pasteurised, and negative control (dimethyl formamide). Zone of inhibition was seen in positive control (0.2% Chlorhexidine). Conclusion: No antimicrobial activity was demonstrated with tender coconut water in its normal state (in vitro). PMID:28462183
Rukmini, J N; Manasa, Sunkari; Rohini, Chenna; Sireesha, Lavanya Putchla; Ritu, Sachan; Umashankar, G K
2017-01-01
The antibacterial property of coconut, the presence of lauric acid, and the ability to extract antimicrobial peptides Cn-AMP (1, 2, and 3) from tender coconut water has drawn attention on its effectiveness in normal consumption. An in-vitro experimental study was conducted to evaluate the antimicrobial efficacy of tender coconut water in its natural state on Streptococcus mutans . Fresh tender coconut water and pasteurized tender coconut water were taken as test samples, dimethyl formamide was used as the negative control, and 0.2% chlorhexidine was used as the positive control. Pure strain of S. mutans (MTCC 890) was used for determining the antibacterial effects. The test samples along with the controls were subjected to antimicrobial sensitivity test procedure and the zone of inhibition was examined. Kruskal-Wallis test was used to check for any significant differences in the antibacterial efficacy between the samples. There was no zone of inhibition with the tender coconut water, fresh and pasteurised, and negative control (dimethyl formamide). Zone of inhibition was seen in positive control (0.2% Chlorhexidine). No antimicrobial activity was demonstrated with tender coconut water in its normal state ( in vitro ).
Transport properties of kA class QMG current limiting elements
NASA Astrophysics Data System (ADS)
Morita, M.; Miura, O.; Ito, D.
2001-09-01
In order to estimate the feasibility of a resistive type fault current limiter made of QMG, transport properties of QMG current limiting elements which can transport about 1 kA continuously in a superconducting state were studied. QMG is a rare earth based bulk superconductor that has high Jc properties and relatively high electrical resistivity in a normal state. Because of these properties, QMG is a promising bulk material for superconducting fault current limiter applications. A bar-shaped sample in which the cross-section and the effective length were 2.2×0.8 mm2 and 30 mm, respectively, was prepared. Bypass resistance of 7 mΩ was connected in parallel with the sample. A field assist mechanism that can apply a magnetic field of about 0.9 T to the sample was installed. A half cycle of AC current up to about 3 kA was applied to the samples at 77 K. In the case when applied current ( I) was less than 1000 A in a self-field, flux flow voltage was less than 0.5 mV. The n-value was about 6. In the applied field of 0.9 T, a rapid increase of voltage (quench) was observed around I=1820 A. The quench phenomena reproduced without degradation in the case of I>1820 A. From these results, it was found that QMG fault current elements can endure the thermal shock of the quench by the optimization of bypass resistance and the applied field.
NASA Astrophysics Data System (ADS)
Chaitanya, K.
2012-02-01
The FT-IR (4000-450 cm -1) and FT-Raman spectra (3500-100 cm -1) of benzophenone 2,4-dicarboxylic acid (2,4-BDA) have been recorded in the condensed state. Density functional theory calculation with B3LYP/6-31G(d,p) basis set have been used to determine ground state molecular geometries (bond lengths and bond angles), harmonic vibrational frequencies, infrared intensities, Raman activities and bonding features of the title compounds. The assignments of the vibrational spectra have been carried out with the help of normal co-ordinate analysis (NCA) following the scaled quantum mechanical force field (SQMFF) methodology. The first order hyperpolarizability ( β0) and related properties ( β, α0 and Δ α) of 2,4-BDA is calculated using HF/6-31G(d,p) method on the finite-field approach. The stability of molecule has been analyzed by using NBO analysis. The calculated first hyperpolarizability shows that the molecule is an attractive molecule for future applications in non-linear optics. The calculated HOMO and LUMO energies show that charge transfer occurs within these molecules. Mulliken population analysis on atomic charges is also calculated. Because of vibrational analyses, the thermodynamic properties of the title compound at different temperatures have been calculated. Finally, the UV-vis spectra and electronic absorption properties were explained and illustrated from the frontier molecular orbitals.
Impurity bound states in fully gapped d-wave superconductors with subdominant order parameters
Mashkoori, Mahdi; Björnson, Kristofer; Black-Schaffer, Annica M.
2017-01-01
Impurities in superconductors and their induced bound states are important both for engineering novel states such as Majorana zero-energy modes and for probing bulk properties of the superconducting state. The high-temperature cuprates offer a clear advantage in a much larger superconducting order parameter, but the nodal energy spectrum of a pure d-wave superconductor only allows virtual bound states. Fully gapped d-wave superconducting states have, however, been proposed in several cuprate systems thanks to subdominant order parameters producing d + is- or d + id′-wave superconducting states. Here we study both magnetic and potential impurities in these fully gapped d-wave superconductors. Using analytical T-matrix and complementary numerical tight-binding lattice calculations, we show that magnetic and potential impurities behave fundamentally different in d + is- and d + id′-wave superconductors. In a d + is-wave superconductor, there are no bound states for potential impurities, while a magnetic impurity produces one pair of bound states, with a zero-energy level crossing at a finite scattering strength. On the other hand, a d + id′-wave symmetry always gives rise to two pairs of bound states and only produce a reachable zero-energy level crossing if the normal state has a strong particle-hole asymmetry. PMID:28281570
NASA Astrophysics Data System (ADS)
Molteni, Elena; Onida, Giovanni; Cappellini, Giancarlo
2016-04-01
We study the electronic properties of the Si(001):Uracil, Si(001):Thymine, and Si(001):5-Fluorouracil systems, focusing on the Si dimer-bridging configuration with adsorption governed by carbonyl groups. While the overall structural and electronic properties are similar, with small differences due to chemical substitutions, much larger effects on the surface band dispersion and bandgap show up as a function of the molecular orientation with respect to the surface. An off-normal orientation of the molecular planes is favored, showing larger bandgap and lower total energy than the upright position. We also analyze the localization of gap-edge occupied and unoccupied surface states. Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjb/e2016-70011-1
Real gas flow parameters for NASA Langley 22-inch Mach 20 helium tunnel
NASA Technical Reports Server (NTRS)
Hollis, Brian R.
1992-01-01
A computational procedure was developed which can be used to determine the flow properties in hypersonic helium wind tunnels in which real gas behavior is significant. In this procedure, a three-coefficient virial equation of state and the assumption of isentropic nozzle flow are employed to determine the tunnel reservoir, nozzle, throat, freestream, and post-normal shock conditions. This method was applied to a range of conditions which encompasses the operational capabilities of the LaRC 22-Inch Mach 20 Helium Tunnel. Results are presented graphically in the form of real gas correction factors which can be applied to perfect gas calculations. Important thermodynamic properties of helium are also plotted versus pressure and temperature. The computational scheme used to determine the real-helium flow parameters was incorporated into a FORTRAN code which is discussed.
Intrinsic superconducting transport properties of ultra-thin Fe1+ y Te0.6Se0.4 microbridges
NASA Astrophysics Data System (ADS)
Sun, HanCong; Lv, YangYang; Lu, DaChuan; Yang, ZhiBao; Zhou, XianJing; Hao, LuYao; Xing, XiangZhuo; Zou, Wei; Li, Jun; Shi, ZhiXiang; Xu, WeiWei; Wang, HuaBing; Wu, PeiHeng
2017-11-01
We investigated the superconducting properties of Fe1+ y Te0.6Se0.4 single-crystalline microbridges with a width of 4 μm and thicknesses ranging from 20.8 to 136.2 nm. The temperature-dependent in-plane resistance of the bridges exhibited a type of metal-insulator transition in the normal state. The critical current density ( J c) of the microbridge with a thickness of 136.2 nm was 82.3 kA/cm2 at 3K and reached 105 kA/cm2 after extrapolation to T = 0 K. The current versus voltage characteristics of the microbridges showed a Josephson-like behavior with an obvious hysteresis. These results demonstrate the potential application of ultra-thin Fe-based microbridges in superconducting electronic devices such as bolometric detectors.
NASA Astrophysics Data System (ADS)
Zhang, Hui; Li, Zhifang; Li, Hui
2012-12-01
In order to study scattering properties of normal and cancerous tissues from human stomach, we collect images for human gastric specimens by using phase-contrast microscope. The images were processed by the way of mathematics morphology. The equivalent particle size distribution of tissues can be obtained. Combining with Mie scattering theory, the scattering properties of tissues can be calculated. Assume scattering of light in biological tissue can be seen as separate scattering events by different particles, total scattering properties can be equivalent to as scattering sum of particles with different diameters. The results suggest that scattering coefficient of the cancerous tissue is significantly higher than that of normal tissue. The scattering phase function is different especially in the backscattering area. Those are significant clinical benefits to diagnosis cancerous tissue
Feed-Forward Neural Network Prediction of the Mechanical Properties of Sandcrete Materials
Asteris, Panagiotis G.; Roussis, Panayiotis C.; Douvika, Maria G.
2017-01-01
This work presents a soft-sensor approach for estimating critical mechanical properties of sandcrete materials. Feed-forward (FF) artificial neural network (ANN) models are employed for building soft-sensors able to predict the 28-day compressive strength and the modulus of elasticity of sandcrete materials. To this end, a new normalization technique for the pre-processing of data is proposed. The comparison of the derived results with the available experimental data demonstrates the capability of FF ANNs to predict with pinpoint accuracy the mechanical properties of sandcrete materials. Furthermore, the proposed normalization technique has been proven effective and robust compared to other normalization techniques available in the literature. PMID:28598400
Exploring variations of earthquake moment on patches with heterogeneous strength
NASA Astrophysics Data System (ADS)
Lin, Y. Y.; Lapusta, N.
2016-12-01
Finite-fault inversions show that earthquake slip is typically non-uniform over the ruptured region, likely due to heterogeneity of the earthquake source. Observations also show that events from the same fault area can have the same source duration but different magnitude ranging from 0.0 to 2.0 (Lin et al., GJI, 2016). Strong heterogeneity in strength over a patch could provide a potential explanation of such behavior, with the event duration controlled by the size of the patch and event magnitude determined by how much of the patch area has been ruptured. To explore this possibility, we numerically simulate earthquake sequences on a rate-and-state fault, with a seismogenic patch governed by steady-state velocity-weakening friction surrounded by a steady-state velocity-strengthening region. The seismogenic patch contains strong variations in strength due to variable normal stress. Our long-term simulations of slip in this model indeed generate sequences of earthquakes of various magnitudes. In some seismic events, dynamic rupture cannot overcome areas with higher normal strength, and smaller events result. When the higher-strength areas are loaded by previous slip and rupture, larger events result, as expected. Our current work is directed towards exploring a range of such models, determining the variability in the seismic moment that they can produce, and determining the observable properties of the resulting events.
Geospatiotemporal Data Mining of Remotely Sensed Phenology for Unsupervised Forest Threat Detection
NASA Astrophysics Data System (ADS)
Mills, R. T.; Hoffman, F. M.; Kumar, J.; Vulli, S. S.; Hargrove, W. W.; Spruce, J.
2010-12-01
Hargrove and Hoffman have previously developed and applied a scalable geospatiotemporal data mining approach to define a set of categorical, multivariate classes or states for describing and tracking the behavior of ecosystem properties through time within a multi-dimensional phase or state space. The method employs a standard k-means cluster analysis with enhancements that reduce the number of required comparisons, dramatically accelerating iterative convergence. In support of efforts by the USDA Forest Service to develop a National Early Warning System for Forest Disturbances, we have applied this geospatiotemporal cluster analysis procedure to annual phenology patterns derived from Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) for unsupervised change detection. We will present initial results from the analysis of seven years of 250-m MODIS NDVI data for the conterminous United States. While determining what constitutes a "normal" phenological pattern for any given location is challenging due to interannual climate variability, a spatially varying climate change trend, and the relatively short record of MODIS NDVI observations, these results demonstrate the utility of the method for detecting significant mortality events, like the progressive damage from mountain pine beetle, and suggest that the technique may be successfully implemented as a key component in an early warning system for identifying forest threats from natural and anthropogenic disturbances at a continental scale.
Local switching of two-dimensional superconductivity using the ferroelectric field effect
NASA Astrophysics Data System (ADS)
Takahashi, K. S.; Gabay, M.; Jaccard, D.; Shibuya, K.; Ohnishi, T.; Lippmaa, M.; Triscone, J.-M.
2006-05-01
Correlated oxides display a variety of extraordinary physical properties including high-temperature superconductivity and colossal magnetoresistance. In these materials, strong electronic correlations often lead to competing ground states that are sensitive to many parameters-in particular the doping level-so that complex phase diagrams are observed. A flexible way to explore the role of doping is to tune the electron or hole concentration with electric fields, as is done in standard semiconductor field effect transistors. Here we demonstrate a model oxide system based on high-quality heterostructures in which the ferroelectric field effect approach can be studied. We use a single-crystal film of the perovskite superconductor Nb-doped SrTiO3 as the superconducting channel and ferroelectric Pb(Zr,Ti)O3 as the gate oxide. Atomic force microscopy is used to locally reverse the ferroelectric polarization, thus inducing large resistivity and carrier modulations, resulting in a clear shift in the superconducting critical temperature. Field-induced switching from the normal state to the (zero resistance) superconducting state was achieved at a well-defined temperature. This unique system could lead to a field of research in which devices are realized by locally defining in the same material superconducting and normal regions with `perfect' interfaces, the interface being purely electronic. Using this approach, one could potentially design one-dimensional superconducting wires, superconducting rings and junctions, superconducting quantum interference devices (SQUIDs) or arrays of pinning centres.
Charge carrier thermalization in organic diodes
van der Kaap, N. J.; Koster, L. J. A.
2016-01-01
Charge carrier mobilities of organic semiconductors are often characterized using steady-state measurements of space charge limited diodes. These measurements assume that charge carriers are in a steady-state equilibrium. In reality, however, energetically hot carriers are introduces by photo-excitation and injection into highly energetic sites from the electrodes. These carriers perturb the equilibrium density of occupied states, and therefore change the overall charge transport properties. In this paper, we look into the effect of energetically hot carriers on the charge transport in organic semiconductors using steady state kinetic Monte Carlo simulations. For injected hot carriers in a typical organic semiconductor, rapid energetic relaxation occurs in the order of tens of nanoseconds, which is much faster than the typical transit time of a charge carrier throught the device. Furthermore, we investigate the impact of photo-generated carriers on the steady-state mobility. For a typical organic voltaic material, an increase in mobility of a factor of 1.1 is found. Therefore, we conclude that the impact of energetically hot carriers on normal device operation is limited. PMID:26791095
Effects of premature stimulation on HERG K+ channels
Lu, Yu; Mahaut-Smith, Martyn P; Varghese, Anthony; Huang, Christopher L-H; Kemp, Paul R; Vandenberg, Jamie I
2001-01-01
The unusual kinetics of human ether-à-go-go-related gene (HERG) K+ channels are consistent with a role in the suppression of arrhythmias initiated by premature beats. Action potential clamp protocols were used to investigate the effect of premature stimulation on HERG K+ channels, transfected in Chinese hamster ovary cells, at 37 °C. HERG K+ channel currents peaked during the terminal repolarization phase of normally paced action potential waveforms. However, the magnitude of the current and the time point at which conductance was maximal depended on the type of action potential waveform used (epicardial, endocardial, Purkinje fibre or atrial). HERG K+ channel currents recorded during premature action potentials consisted of an early transient outward current followed by a sustained outward current. The magnitude of the transient current component showed a biphasic dependence on the coupling interval between the normally paced and premature action potentials and was maximal at a coupling interval equivalent to 90% repolarization (APD90) for ventricular action potentials. The largest transient current response occurred at shorter coupling intervals for Purkinje fibre (APD90– 20 ms) and atrial (APD90– 30 ms) action potentials. The magnitude of the sustained current response following premature stimulation was similar to that recorded during the first action potential for ventricular action potential waveforms. However, for Purkinje and atrial action potentials the sustained current response was significantly larger during the premature action potential than during the normally paced action potential. A Markov model that included three closed states, one open and one inactivated state with transitions permitted between the pre-open closed state and the inactivated state, successfully reproduced our results for the effects of premature stimuli, both during square pulse and action potential clamp waveforms. These properties of HERG K+ channels may help to suppress arrhythmias initiated by early afterdepolarizations and premature beats in the ventricles, Purkinje fibres or atria. PMID:11744759
Multi-band description of the specific heat and thermodynamic critical field in MgB2 superconductor
NASA Astrophysics Data System (ADS)
Szcześniak, R.; Jarosik, M. W.; Tarasewicz, P.; Durajski, A. P.
2018-05-01
The thermodynamic properties of MgB2 superconductor can be explained using the multi-band models. In the present paper we have examined the experimental data available in literature and we have found out that it is possible to reproduce the measured values of the superconducting energy gaps, the thermodynamic critical magnetic field and specific heat jump within the framework of two-band Eliashberg formalism and appropriate defined free energy difference between superconducting and normal state. Moreover, we found that the obtained results differ significantly from the predictions of the conventional Bardeen-Cooper-Schrieffer theory.
Members of the genus Burkholderia: good and bad guys
Eberl, Leo; Vandamme, Peter
2016-01-01
In the 1990s several biocontrol agents on that contained Burkholderia strains were registered by the United States Environmental Protection Agency (EPA). After risk assessment these products were withdrawn from the market and a moratorium was placed on the registration of Burkholderia-containing products, as these strains may pose a risk to human health. However, over the past few years the number of novel Burkholderia species that exhibit plant-beneficial properties and are normally not isolated from infected patients has increased tremendously. In this commentary we wish to summarize recent efforts that aim at discerning pathogenic from beneficial Burkholderia strains. PMID:27303639
Superconducting properties of Pb-Sn-In alloys directionally solidified aboard Skylab
NASA Technical Reports Server (NTRS)
Anderson, W. T., Jr.; Reger, J. L.
1975-01-01
Superconducting alloys of Pb-Sn-In were directionally solidified in the absence of gravity-induced convection and segregation by processing in a near weightless condition aboard Skylab. Lead-rich and tin-rich lamellar structures were obtained with both high and low G/R (temperature gradient/solidification rate) samples processed at 0-g and at 1-g in a ground-based laboratory. Thinner, higher density lamellae were found with the 0-g specimens. Magnetization curves at 4.2 K showed hysteresis effects with large areas under the curves indicating magnetic flux pinning by the normal state tin-rich phase.
Effects influencing the grain connectivity in ex-situ MgB 2 wires
NASA Astrophysics Data System (ADS)
Kováč, P.; Hušek, I.; Kulich, M.; Melišek, T.; Hušeková, K.; Dobročka, E.
2010-03-01
Single-core MgB 2/Fe ex-situ wires have been made by powder-in-tube (PIT) using: (i) commercial Alfa Aesar (AA) powder deformed by variable modes, (ii) AA powder oxidized by air milling and heat treatment and (iii) AA powder chemically treated by acetic and benzoic acid. All samples were finally annealed at 950 °C/0.5 h in Argon. The effect of deformation, oxidation and chemical treatment on the transport properties of MgB 2 wires was tested. Differences in critical currents, transition temperatures and normal state resistivity are shown and discussed.
Properties of MgB 2 superconductor chemically treated by acetic acid
NASA Astrophysics Data System (ADS)
Hušeková, K.; Hušek, I.; Kováč, P.; Kulich, M.; Dobročka, E.; Štrbík, V.
2010-03-01
Commercial Alfa Aesar MgB 2 powder was chemically treated by acetic acid with the aim of MgO removing. Single-core MgB 2/Fe ex situ wires have been made by powder-in-tube (PIT) process using the powders treated with different acid concentration. All samples were annealed in argon at 950 °C/0.5 h. Differences in transition temperatures and critical currents of acetic acid treated MgB 2 are related to the normal state resistivity, effective carbon substitution from the organic solvent and the active area fraction (grain-connectivity).
Crystallization features of normal alkanes in confined geometry.
Su, Yunlan; Liu, Guoming; Xie, Baoquan; Fu, Dongsheng; Wang, Dujin
2014-01-21
How polymers crystallize can greatly affect their thermal and mechanical properties, which influence the practical applications of these materials. Polymeric materials, such as block copolymers, graft polymers, and polymer blends, have complex molecular structures. Due to the multiple hierarchical structures and different size domains in polymer systems, confined hard environments for polymer crystallization exist widely in these materials. The confined geometry is closely related to both the phase metastability and lifetime of polymer. This affects the phase miscibility, microphase separation, and crystallization behaviors and determines both the performance of polymer materials and how easily these materials can be processed. Furthermore, the size effect of metastable states needs to be clarified in polymers. However, scientists find it difficult to propose a quantitative formula to describe the transition dynamics of metastable states in these complex systems. Normal alkanes [CnH2n+2, n-alkanes], especially linear saturated hydrocarbons, can provide a well-defined model system for studying the complex crystallization behaviors of polymer materials, surfactants, and lipids. Therefore, a deeper investigation of normal alkane phase behavior in confinement will help scientists to understand the crystalline phase transition and ultimate properties of many polymeric materials, especially polyolefins. In this Account, we provide an in-depth look at the research concerning the confined crystallization behavior of n-alkanes and binary mixtures in microcapsules by our laboratory and others. Since 2006, our group has developed a technique for synthesizing nearly monodispersed n-alkane containing microcapsules with controllable size and surface porous morphology. We applied an in situ polymerization method, using melamine-formaldehyde resin as shell material and nonionic surfactants as emulsifiers. The solid shell of microcapsules can provide a stable three-dimensional (3-D) confining environment. We have studied multiple parameters of these microencapsulated n-alkanes, including surface freezing, metastability of the rotator phase, and the phase separation behaviors of n-alkane mixtures using differential scanning calorimetry (DSC), temperature-dependent X-ray diffraction (XRD), and variable-temperature solid-state nuclear magnetic resonance (NMR). Our investigations revealed new direct evidence for the existence of surface freezing in microencapsulated n-alkanes. By examining the differences among chain packing and nucleation kinetics between bulk alkane solid solutions and their microencapsulated counterparts, we also discovered a mechanism responsible for the formation of a new metastable bulk phase. In addition, we found that confinement suppresses lamellar ordering and longitudinal diffusion, which play an important role in stabilizing the binary n-alkane solid solution in microcapsules. Our work also provided new insights into the phase separation of other mixed system, such as waxes, lipids, and polymer blends in confined geometry. These works provide a profound understanding of the relationship between molecular structure and material properties in the context of crystallization and therefore advance our ability to improve applications incorporating polymeric and molecular materials.
Properties of the electrostatically driven helical plasma state
NASA Astrophysics Data System (ADS)
Akçay, Cihan; Finn, John M.; Nebel, Richard A.; Barnes, Daniel C.; Martin, Neal
2018-02-01
A novel plasma state has been found [Akçay et al., Phys. Plasmas 24, 052503 (2017)] in the presence of a uniform applied axial magnetic field in periodic cylindrical geometry. This state is driven by external electrostatic fields provided by helical electrodes with a (m =1 ,n =1 ) (helical) symmetry where m and n represent the poloidal and axial harmonics. The resulting plasma is a function of the cylinder radius r
36 CFR 1010.10 - Actions that normally require an EA.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Actions that normally require an EA. 1010.10 Section 1010.10 Parks, Forests, and Public Property PRESIDIO TRUST ENVIRONMENTAL.... An EA assists the Trust in complying with NEPA when no EIS is necessary, and it facilitates the...
36 CFR 1010.10 - Actions that normally require an EA.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Actions that normally require an EA. 1010.10 Section 1010.10 Parks, Forests, and Public Property PRESIDIO TRUST ENVIRONMENTAL.... An EA assists the Trust in complying with NEPA when no EIS is necessary, and it facilitates the...
36 CFR 1010.10 - Actions that normally require an EA.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Actions that normally require an EA. 1010.10 Section 1010.10 Parks, Forests, and Public Property PRESIDIO TRUST ENVIRONMENTAL.... An EA assists the Trust in complying with NEPA when no EIS is necessary, and it facilitates the...
36 CFR 1010.10 - Actions that normally require an EA.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Actions that normally require an EA. 1010.10 Section 1010.10 Parks, Forests, and Public Property PRESIDIO TRUST ENVIRONMENTAL.... An EA assists the Trust in complying with NEPA when no EIS is necessary, and it facilitates the...
36 CFR 907.11 - Actions that normally require an environmental assessment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Actions that normally require an environmental assessment. 907.11 Section 907.11 Parks, Forests, and Public Property PENNSYLVANIA...) Street closures and other rearrangements of public space which were not covered in the Plan or the Final...
36 CFR 907.11 - Actions that normally require an environmental assessment.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Actions that normally require an environmental assessment. 907.11 Section 907.11 Parks, Forests, and Public Property PENNSYLVANIA...) Street closures and other rearrangements of public space which were not covered in the Plan or the Final...
Corticocortical feedback increases the spatial extent of normalization.
Nassi, Jonathan J; Gómez-Laberge, Camille; Kreiman, Gabriel; Born, Richard T
2014-01-01
Normalization has been proposed as a canonical computation operating across different brain regions, sensory modalities, and species. It provides a good phenomenological description of non-linear response properties in primary visual cortex (V1), including the contrast response function and surround suppression. Despite its widespread application throughout the visual system, the underlying neural mechanisms remain largely unknown. We recently observed that corticocortical feedback contributes to surround suppression in V1, raising the possibility that feedback acts through normalization. To test this idea, we characterized area summation and contrast response properties in V1 with and without feedback from V2 and V3 in alert macaques and applied a standard normalization model to the data. Area summation properties were well explained by a form of divisive normalization, which computes the ratio between a neuron's driving input and the spatially integrated activity of a "normalization pool." Feedback inactivation reduced surround suppression by shrinking the spatial extent of the normalization pool. This effect was independent of the gain modulation thought to mediate the influence of contrast on area summation, which remained intact during feedback inactivation. Contrast sensitivity within the receptive field center was also unaffected by feedback inactivation, providing further evidence that feedback participates in normalization independent of the circuit mechanisms involved in modulating contrast gain and saturation. These results suggest that corticocortical feedback contributes to surround suppression by increasing the visuotopic extent of normalization and, via this mechanism, feedback can play a critical role in contextual information processing.
Corticocortical feedback increases the spatial extent of normalization
Nassi, Jonathan J.; Gómez-Laberge, Camille; Kreiman, Gabriel; Born, Richard T.
2014-01-01
Normalization has been proposed as a canonical computation operating across different brain regions, sensory modalities, and species. It provides a good phenomenological description of non-linear response properties in primary visual cortex (V1), including the contrast response function and surround suppression. Despite its widespread application throughout the visual system, the underlying neural mechanisms remain largely unknown. We recently observed that corticocortical feedback contributes to surround suppression in V1, raising the possibility that feedback acts through normalization. To test this idea, we characterized area summation and contrast response properties in V1 with and without feedback from V2 and V3 in alert macaques and applied a standard normalization model to the data. Area summation properties were well explained by a form of divisive normalization, which computes the ratio between a neuron's driving input and the spatially integrated activity of a “normalization pool.” Feedback inactivation reduced surround suppression by shrinking the spatial extent of the normalization pool. This effect was independent of the gain modulation thought to mediate the influence of contrast on area summation, which remained intact during feedback inactivation. Contrast sensitivity within the receptive field center was also unaffected by feedback inactivation, providing further evidence that feedback participates in normalization independent of the circuit mechanisms involved in modulating contrast gain and saturation. These results suggest that corticocortical feedback contributes to surround suppression by increasing the visuotopic extent of normalization and, via this mechanism, feedback can play a critical role in contextual information processing. PMID:24910596
NASA Astrophysics Data System (ADS)
Agostini, Lionel; Leschziner, Michael
2017-01-01
Direct numerical simulation data for channel flow at a friction Reynolds number of 4200, generated by Lozano-Durán and Jiménez [J. Fluid Mech. 759, 432 (2014), 10.1017/jfm.2014.575], are used to examine the properties of near-wall turbulence within subranges of eddy-length scale. Attention is primarily focused on the intermediate layer (mesolayer) covering the logarithmic velocity region within the range of wall-scaled wall-normal distance of 80-1500. The examination is based on a number of statistical properties, including premultiplied and compensated spectra, the premultiplied derivative of the second-order structure function, and three scalar parameters that characterize the anisotropic or isotropic state of the various length-scale subranges. This analysis leads to the delineation of three regions within the map of wall-normal-wise premultiplied spectra, each characterized by distinct turbulence properties. A question of particular interest is whether the Townsend-Perry attached-eddy hypothesis (AEH) can be shown to be valid across the entire mesolayer, in contrast to the usual focus on the outer portion of the logarithmic-velocity layer at high Reynolds numbers, which is populated with very-large-scale motions. This question is addressed by reference to properties in the premultiplied scalewise derivative of the second-order structure function (PMDS2) and joint probability density functions of streamwise-velocity fluctuations and their streamwise and spanwise derivatives. This examination provides evidence, based primarily on the existence of a plateau region in the PMDS2, for the qualified validity of the AEH right down the lower limit of the logarithmic velocity range.
MR elastography of hydrocephalus
NASA Astrophysics Data System (ADS)
Pattison, Adam J.; Lollis, S. Scott; Perrinez, Phillip R.; Weaver, John B.; Paulsen, Keith D.
2009-02-01
Hydrocephalus occurs due to a blockage in the transmission of cerebrospinal fluid (CSF) in either the ventricles or subarachnoid space. Characteristics of this condition include increased intracranial pressure, which can result in neurologic deterioration [1]. Magnetic resonance elastography (MRE) is an imaging technique that estimates the mechanical properties of tissue in vivo. While some investigations of brain tissue have been performed using MRE [2,3,4,5], the effects due to changes in interstitial pressure and fluid content on the mechanical properties of the brain remain unknown. The purpose of this work is to assess the potential of MRE to differentiate between the reconstructed properties of normal and hydrocephalic brains. MRE data was acquired in 18 female feline subjects, 12 of which received kaolin injections resulting in an acute form of hydrocephalus. In each animal, four MRE scans were performed during the process including one pre-injection and three post-injection scans. The elastic parameters were obtained using a subzone-based reconstruction algorithm that solves Navier's equations for linearly elastic materials [6]. The remaining cats were used as controls, injected with saline instead of kaolin. To determine the state of hydrocephalus, ventricular volume was estimated from segmenting anatomical images. The mean ventricular volume of hydrocephalic cats significantly increased (P <~ 0.0001) between the first and second scans. The mean volume was not observed to increase (P >~ 0.5) for the control cats. Also, there was an observable increase in the recorded elastic shear modulus of brain tissue in the normal and hydrocephalic acquisitions. Results suggest that MRE is able to detect changes in the mechanical properties of brain tissue resulting from kaolin-induced hydrocephalus, indicating the need for further study.
Advances in our understanding of the Reinke space.
Thibeault, Susan L
2005-06-01
Normal vocal fold vibration depends critically upon the composition of the Reinke space or the lamina propria extracellular matrix. Alterations in the normal composition of the extracellular matrix result in a loss of normal vibratory function. In this article, the present literature on the Reinke space in normal and disease states is reviewed including publications in the multidisciplinary fields of biomechanics, histology, molecular biology, and tissue engineering. With recent technology advances, the etiology for benign lesions has been investigated with computer models and bioreactors. Particular extracellular matrix constituents in various benign vocal fold lesions--fibronectin, fibromodulin and hyaluronan--appear to be involved in altering the viscoelastic properties of the Reinke space. Significant basic science approaches to the investigation of the characterization of the Reinke space in vocal fold scarring has produced several potential future treatment avenues. Tissue-engineering approaches for regeneration of the Reinke space are the most recent addition to the literature showing promising research directions. Voice disorders represent a significant clinical problem. Research attempting to discover the underlying molecular and genetic regulation and homeostasis of the extracellular matrix of the Reinke space are essential. Effective future clinical interventions must be based upon the knowledge of how genetic and biologic features are disturbed in vocal diseases and how they relate to vocal symptoms.
Mechanical properties of normal versus cancerous breast cells
Smelser, Amanda M.; Macosko, Jed C.; O’Dell, Adam P.; Smyre, Scott; Bonin, Keith
2016-01-01
A cell’s mechanical properties are important in determining its adhesion, migration, and response to the mechanical properties of its microenvironment and may help explain behavioral differences between normal and cancerous cells. Using fluorescently labeled peroxisomes as microrheological probes, the interior mechanical properties of normal breast cells were compared to a metastatic breast cell line, MDA-MB-231. To estimate the mechanical properties of cell cytoplasms from the motions of their peroxisomes, it was necessary to reduce the contribution of active cytoskeletal motions to peroxisome motion. This was done by treating the cells with blebbistatin, to inhibit myosin II, or with sodium azide and 2-deoxy-D-glucose, to reduce intracellular ATP. Using either treatment, the peroxisomes exhibited normal diffusion or subdiffusion, and their mean squared displacements (MSDs) showed that the MDA-MB-231 cells were significantly softer than normal cells. For these two cell types, peroxisome MSDs in treated and untreated cells converged at high frequencies, indicating that cytoskeletal structure was not altered by the drug treatment. The MSDs from ATP-depleted cells were analyzed by the generalized Stokes–Einstein relation to estimate the interior viscoelastic modulus G* and its components, the elastic shear modulus G′ and viscous shear modulus G″, at angular frequencies between 0.126 and 628rad/s. These moduli are the material coefficients that enter into stress–strain relations and relaxation times in quantitative mechanical models such as the poroelastic model of the interior regions of cancerous and non-cancerous cells. PMID:25929519
BISON Fuel Performance Analysis of FeCrAl cladding with updated properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sweet, Ryan; George, Nathan M.; Terrani, Kurt A.
2016-08-30
In order to improve the accident tolerance of light water reactor (LWR) fuel, alternative cladding materials have been proposed to replace zirconium (Zr)-based alloys. Of these materials, there is a particular focus on iron-chromium-aluminum (FeCrAl) alloys due to much slower oxidation kinetics in high-temperature steam than Zr-alloys. This should decrease the energy release due to oxidation and allow the cladding to remain integral longer in the presence of high temperature steam, making accident mitigation more likely. As a continuation of the development for these alloys, suitability for normal operation must also be demonstrated. This research is focused on modeling themore » integral thermo-mechanical performance of FeCrAl-cladded fuel during normal reactor operation. Preliminary analysis has been performed to assess FeCrAl alloys (namely Alkrothal 720 and APMT) as a suitable fuel cladding replacement for Zr-alloys, using the MOOSE-based, finite-element fuel performance code BISON and the best available thermal-mechanical and irradiation-induced constitutive properties. These simulations identify the effects of the mechanical-stress and irradiation response of FeCrAl, and provide a comparison with Zr-alloys. In comparing these clad materials, fuel rods have been simulated for normal reactor operation and simple steady-state operation. Normal reactor operating conditions target the cladding performance over the rod lifetime (~4 cycles) for the highest-power rod in the highest-power fuel assembly under reactor power maneuvering. The power histories and axial temperature profiles input into BISON were generated from a neutronics study on full-core reactivity equivalence for FeCrAl using the 3D full core simulator NESTLE. Evolution of the FeCrAl cladding behavior over time is evaluated by using steady-state operating conditions such as a simple axial power profile, a constant cladding surface temperature, and a constant fuel power history. The fuel rod designs and operating conditions used are based off the Peach Bottom BWR and design consideration was given to minimize the neutronic penalty of the FeCrAl cladding by changing fuel enrichment and cladding thickness. As this study progressed, systematic parametric analysis of the fuel and cladding creep responses were also performed.« less
Acoustic properties of naturally produced clear speech at normal speaking rates
NASA Astrophysics Data System (ADS)
Krause, Jean C.; Braida, Louis D.
2004-01-01
Sentences spoken ``clearly'' are significantly more intelligible than those spoken ``conversationally'' for hearing-impaired listeners in a variety of backgrounds [Picheny et al., J. Speech Hear. Res. 28, 96-103 (1985); Uchanski et al., ibid. 39, 494-509 (1996); Payton et al., J. Acoust. Soc. Am. 95, 1581-1592 (1994)]. While producing clear speech, however, talkers often reduce their speaking rate significantly [Picheny et al., J. Speech Hear. Res. 29, 434-446 (1986); Uchanski et al., ibid. 39, 494-509 (1996)]. Yet speaking slowly is not solely responsible for the intelligibility benefit of clear speech (over conversational speech), since a recent study [Krause and Braida, J. Acoust. Soc. Am. 112, 2165-2172 (2002)] showed that talkers can produce clear speech at normal rates with training. This finding suggests that clear speech has inherent acoustic properties, independent of rate, that contribute to improved intelligibility. Identifying these acoustic properties could lead to improved signal processing schemes for hearing aids. To gain insight into these acoustical properties, conversational and clear speech produced at normal speaking rates were analyzed at three levels of detail (global, phonological, and phonetic). Although results suggest that talkers may have employed different strategies to achieve clear speech at normal rates, two global-level properties were identified that appear likely to be linked to the improvements in intelligibility provided by clear/normal speech: increased energy in the 1000-3000-Hz range of long-term spectra and increased modulation depth of low frequency modulations of the intensity envelope. Other phonological and phonetic differences associated with clear/normal speech include changes in (1) frequency of stop burst releases, (2) VOT of word-initial voiceless stop consonants, and (3) short-term vowel spectra.
NASA Astrophysics Data System (ADS)
Hopmann, Ch.; Schöngart, M.; Weber, M.; Klein, J.
2015-05-01
Thermoplastic materials are more and more used as a light weight replacement for metal, especially in the automotive industry. Since these materials do not provide the mechanical properties, which are required to manufacture supporting elements like an auto body or a cross bearer, plastics are combined with metals in so called hybrid structures. Normally, the plastics components are joined to the metal structures using different technologies like welding or screwing. Very often, the hybrid structures are made of flat metal parts, which are stiffened by a reinforcement structure made of thermoplastic materials. The loads on these structures are very often impulsive, for example in the crash situation of an automobile. Due to the large stiffness variation of metal and thermoplastic materials, complex states of stress and very high local strain rates occur in the contact zone under impact conditions. Since the mechanical behavior of thermoplastic materials is highly dependent on these types of load, the crash failure of metal plastic hybrid parts is very complex. The problem is that the normally used strain rate dependent elastic/plastic material models are not capable to simulate the mechanical behavior of thermoplastic materials depended on the state of stress. As part of a research project, a method to simulate the mechanical behavior of hybrid structures under impact conditions is developed at the IKV. For this purpose, a specimen for the measurement of mechanical properties dependet on the state of stress and a method for the strain rate depended characterization of thermoplastic materials were developed. In the second step impact testing is performed. A hybrid structure made from a metal sheet and a reinforcement structure of a Polybutylenterephthalat Polycarbonate blend is tested under impact conditions. The measured stress and strain rate depended material data are used to simulate the mechanical behavior of the hybrid structure under highly dynamic load with impact velocities up to 5 m/s. The mechanical behavior of the plastics structure is simulated using a quadratic yield surface, which takes the state of stress and the strain rate into account. The FE model is made from mid surface elements to reduce the computing time.
Carbonell, Felix; Nagano-Saito, Atsuko; Leyton, Marco; Cisek, Paul; Benkelfat, Chawki; He, Yong; Dagher, Alain
2014-09-01
Spatial patterns of functional connectivity derived from resting brain activity may be used to elucidate the topological properties of brain networks. Such networks are amenable to study using graph theory, which shows that they possess small world properties and can be used to differentiate healthy subjects and patient populations. Of particular interest is the possibility that some of these differences are related to alterations in the dopamine system. To investigate the role of dopamine in the topological organization of brain networks at rest, we tested the effects of reducing dopamine synthesis in 13 healthy subjects undergoing functional magnetic resonance imaging. All subjects were scanned twice, in a resting state, following ingestion of one of two amino acid drinks in a randomized, double-blind manner. One drink was a nutritionally balanced amino acid mixture, and the other was tyrosine and phenylalanine deficient. Functional connectivity between 90 cortical and subcortical regions was estimated for each individual subject under each dopaminergic condition. The lowered dopamine state caused the following network changes: reduced global and local efficiency of the whole brain network, reduced regional efficiency in limbic areas, reduced modularity of brain networks, and greater connection between the normally anti-correlated task-positive and default-mode networks. We conclude that dopamine plays a role in maintaining the efficient small-world properties and high modularity of functional brain networks, and in segregating the task-positive and default-mode networks. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'. Copyright © 2014 Elsevier Ltd. All rights reserved.
Statistical mechanics of monatomic liquids
NASA Astrophysics Data System (ADS)
Wallace, Duane C.
1997-10-01
Two key experimental properties of elemental liquids, together with an analysis of the condensed-system potential-energy surface, lead us logically to the dynamical theory of monatomic liquids. Experimentally, the ion motional specific heat is approximately 3Nk for N ions, implying the normal modes of motion are approximately 3N independent harmonic oscillators. This implies the potential surface contains nearly harmonic valleys. The equilibrium configuration at the bottom of each valley is a ``structure.'' Structures are crystalline or amorphous, and amorphous structures can have a remnant of local crystal symmetry, or can be random. The random structures are by far the most numerous, and hence dominate the statistical mechanics of the liquid state, and their macroscopic properties are uniform over the structure class, for large-N systems. The Hamiltonian for any structural valley is the static structure potential, a sum of harmonic normal modes, and an anharmonic correction. Again from experiment, the constant-density entropy of melting contains a universal disordering contribution of NkΔ, suggesting the random structural valleys are of universal number wN, where lnw=Δ. Our experimental estimate for Δ is 0.80. In quasiharmonic approximation, the liquid theory for entropy agrees with experiment, for all currently analyzable experimental data at elevated temperatures, to within 1-2% of the total entropy. Further testable predictions of the theory are mentioned.
Quantifying the underlying landscape and paths of cancer
Li, Chunhe; Wang, Jin
2014-01-01
Cancer is a disease regulated by the underlying gene networks. The emergence of normal and cancer states as well as the transformation between them can be thought of as a result of the gene network interactions and associated changes. We developed a global potential landscape and path framework to quantify cancer and associated processes. We constructed a cancer gene regulatory network based on the experimental evidences and uncovered the underlying landscape. The resulting tristable landscape characterizes important biological states: normal, cancer and apoptosis. The landscape topography in terms of barrier heights between stable state attractors quantifies the global stability of the cancer network system. We propose two mechanisms of cancerization: one is by the changes of landscape topography through the changes in regulation strengths of the gene networks. The other is by the fluctuations that help the system to go over the critical barrier at fixed landscape topography. The kinetic paths from least action principle quantify the transition processes among normal state, cancer state and apoptosis state. The kinetic rates provide the quantification of transition speeds among normal, cancer and apoptosis attractors. By the global sensitivity analysis of the gene network parameters on the landscape topography, we uncovered some key gene regulations determining the transitions between cancer and normal states. This can be used to guide the design of new anti-cancer tactics, through cocktail strategy of targeting multiple key regulation links simultaneously, for preventing cancer occurrence or transforming the early cancer state back to normal state. PMID:25232051
Mirbeik-Sabzevari, Amir; Ashinoff, Robin; Tavassolian, Negar
2018-06-01
Millimeter waves have recently gained attention for the evaluation of skin lesions and the detection of skin tumors. Such evaluations heavily rely on the dielectric contrasts existing between normal and malignant skin tissues at millimeter-wave frequencies. However, current studies on the dielectric properties of normal and diseased skin tissues at these frequencies are limited and inconsistent. In this study, a comprehensive dielectric spectroscopy study is conducted for the first time to characterize the ultra-wideband dielectric properties of freshly excised normal and malignant skin tissues obtained from skin cancer patients having undergone Mohs micrographic surgeries at Hackensack University Medical Center. Measurements are conducted using a precision slim-form open-ended coaxial probe in conjunction with a millimeter-wave vector network analyzer over the frequency range of 0.5-50 GHz. A one-pole Cole-Cole model is fitted to the complex permittivity dataset of each sample. Statistically considerable contrasts are observed between the dielectric properties of malignant and normal skin tissues over the ultra-wideband millimeter-wave frequency range considered.
Affective Properties of Mothers' Speech to Infants with Hearing Impairment and Cochlear Implants
ERIC Educational Resources Information Center
Kondaurova, Maria V.; Bergeson, Tonya R.; Xu, Huiping; Kitamura, Christine
2015-01-01
Purpose: The affective properties of infant-directed speech influence the attention of infants with normal hearing to speech sounds. This study explored the affective quality of maternal speech to infants with hearing impairment (HI) during the 1st year after cochlear implantation as compared to speech to infants with normal hearing. Method:…
36 CFR § 1010.8 - Actions that normally require an EIS.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Actions that normally require an EIS. § 1010.8 Section § 1010.8 Parks, Forests, and Public Property PRESIDIO TRUST ENVIRONMENTAL... an EIS without preparing or completing the preparation of an EA. To assist the NEPA Compliance...
36 CFR § 1010.10 - Actions that normally require an EA.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Actions that normally require an EA. § 1010.10 Section § 1010.10 Parks, Forests, and Public Property PRESIDIO TRUST ENVIRONMENTAL.... An EA assists the Trust in complying with NEPA when no EIS is necessary, and it facilitates the...
ERIC Educational Resources Information Center
Zimmerman, Donald W.
2011-01-01
This study investigated how population parameters representing heterogeneity of variance, skewness, kurtosis, bimodality, and outlier-proneness, drawn from normal and eleven non-normal distributions, also characterized the ranks corresponding to independent samples of scores. When the parameters of population distributions from which samples were…
Recent advances of high voltage AlGaN/GaN power HFETs
NASA Astrophysics Data System (ADS)
Uemoto, Yasuhiro; Ueda, Tetsuzo; Tanaka, Tsuyoshi; Ueda, Daisuke
2009-02-01
We review our recent advances of GaN-based high voltage power transistors. These are promising owing to low on-state resistance and high breakdown voltage taking advantages of superior material properties. However, there still remain a couple of technical issues to be solved for the GaN devices to replace the existing Si-based power devices. The most critical issue is to achieve normally-off operation which is strongly desired for the safety operation, however, it has been very difficult because of the built-in polarization electric field. Our new device called GIT (Gate Injection Transistor) utilizing conductivity modulation successfully achieves the normally-off operation keeping low on-state resistance. The fabricated GIT on a Si substrate exhibits threshold voltage of +1.0V. The obtained on-state resistance and off-state breakdown voltage were 2.6mΩ•cm2 and 800V, respectively. Remaining technical issue is to further increase the breakdown voltage. So far, the reported highest off-state breakdown voltage of AlGaN/GaN HFETs has been 1900V. Overcoming these issues by a novel device structure, we have demonstrated the world highest breakdown voltages of 10400V using thick poly-crystalline AlN as a passivation film and Via-holes through sapphire which enable very efficient layout of the lateral HFET array avoiding any undesired breakdown of passivation films. Since conventional wet or dry etching cannot be used for chemically stable sapphire, high power pulsed laser is used to form the via-holes. The presented GaN power devices demonstrate that GaN is advantageous for high voltage power switching applications replacing currently used Si-based power MOSFETs and IGBTs.
Fast, automatically darkening welding filter offering an improved level of safety.
Palmer, S
1996-03-01
A mode of operation is introduced for the standard 90° twisted nematic (TN) liquid-crystal cell when placed together with an interference filter and positioned between crossed polarizers such that a small stimulating voltage of between ±2.0 and ±13.0 V is required in order to attain the light state. Further incrementation of the driving electronics reverts the system back to a darker phase. Such cells offer advantages over those of the standard 90° TN device operating in the normally white mode, in that the unit maintains the fast response time from the light to the dark state associated with the employment of TN cells placed between crossed polarizers. In addition, a low transmittance state is achieved when the unit is in the inactivated phase; this is an effect usually correlated with the normally black mode of operation. These cells are therefore ideal candidates for incorporation into fast, automatically darkening, welding filters that are designed to change rapidly from the light to the dark protective state, while offering an improved level of safety by not holding in a potentially hazardous light state should the controlling electronics malfunction. The requirement for this phenomenon to be observed is that the cell displays a low optical transmittance over the green wavelengths of the visible spectrum when in the inactivated phase and placed between crossed polarizers. The presence of an interference filter that possesses a peak transmittance over the central part of the visible spectrum is also necessary. It is shown that there are only two possible cell types that satisfy this criteria, and the optical properties of such cells are analyzed in some detail.
Assessing the biocompatibility of NiTi shape memory alloys used for medical applications.
Es-Souni, Mohammed; Es-Souni, Martha; Fischer-Brandies, Helge
2005-02-01
The present paper reviews aspects related to the biocompatibility of NiTi shape memory alloys used for medical applications. These smart metallic materials, which are characterised by outstanding mechanical properties, have been gaining increasing importance over the last two decades in many minimal invasive surgery and diagnostic applications, as well as for other uses, such as in orthodontic appliances. Due to the presence of high amounts of Ni, the cytotoxicity of such alloys is under scrutiny. In this review paper we analyse work published on the biocompatibility of NiTi alloys, considering aspects related to: (1) corrosion properties and the different methods used to test them, as well as specimen surface states; (2) biocompatibility tests in vitro and in vivo; (3) the release of Ni ions. It is shown that NiTi shape memory alloys are generally characterised by good corrosion properties, in most cases superior to those of conventional stainless steel or Co-Cr-Mo-based biomedical materials. The majority of biocompatibility studies suggest that these alloys have low cytotoxicity (both in vitro and in vivo) as well as low genotoxicity. The release of Ni ions depends on the surface state and the surface chemistry. Smooth surfaces with well-controlled structures and chemistries of the outermost protective TiO2 layer lead to negligible release of Ni ions, with concentrations below the normal human daily intake.
Development of a new family of normalized modulus reduction and material damping curves
NASA Astrophysics Data System (ADS)
Darendeli, Mehmet Baris
2001-12-01
As part of various research projects [including the SRS (Savannah River Site) Project AA891070, EPRI (Electric Power Research Institute) Project 3302, and ROSRINE (Resolution of Site Response Issues from the Northridge Earthquake) Project], numerous geotechnical sites were drilled and sampled. Intact soil samples over a depth range of several hundred meters were recovered from 20 of these sites. These soil samples were tested in the laboratory at The University of Texas at Austin (UTA) to characterize the materials dynamically. The presence of a database accumulated from testing these intact specimens motivated a re-evaluation of empirical curves employed in the state of practice. The weaknesses of empirical curves reported in the literature were identified and the necessity of developing an improved set of empirical curves was recognized. This study focused on developing the empirical framework that can be used to generate normalized modulus reduction and material damping curves. This framework is composed of simple equations, which incorporate the key parameters that control nonlinear soil behavior. The data collected over the past decade at The University of Texas at Austin are statistically analyzed using First-order, Second-moment Bayesian Method (FSBM). The effects of various parameters (such as confining pressure and soil plasticity) on dynamic soil properties are evaluated and quantified within this framework. One of the most important aspects of this study is estimating not only the mean values of the empirical curves but also estimating the uncertainty associated with these values. This study provides the opportunity to handle uncertainty in the empirical estimates of dynamic soil properties within the probabilistic seismic hazard analysis framework. A refinement in site-specific probabilistic seismic hazard assessment is expected to materialize in the near future by incorporating the results of this study into state of practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, T., E-mail: weitong.nju@gmail.com, E-mail: weitong-nju@163.com; Dong, Z.; Zhou, Q. J.
2016-03-28
New unfilled tetragonal tungsten bronze (TTB) oxides, Ba{sub 5−5x}Sm{sub 5x}Ti{sub 5x}Nb{sub 10−5x}O{sub 30} (BSTN-x), where 0.10 ≤ x ≤ 0.35, have been synthesized in this work. Their crystal structure was determined and analyzed based on Rietveld structural refinement. It is found that single TTB phase can be formed in a particular x range (i.e., 0.15 ≤ x ≤ 0.3) due to the competition interaction between tolerance factor and electronegativity difference. Furthermore, dielectric and ferroelectric results indicate that phase transitions and ferroelectric states are sensitive to x. Referring to the local chemistry, we suggest that the raise of vacancies at the A{sub 2}-site compared with that of A{sub 1}-sitemore » will intensely depress the normal ferroelectric phase and is in favor of relaxor ferroelectric state. Macroscopically, previous A-site size difference standpoint on fill TTB compounds cannot give a reasonable explanation about the variation of dielectric maximum temperature (T{sub m}) for present BSTN-x compounds. Alternatively, tetragonality (c/a) is adopted which can well describe the variation of T{sub m} in whole x range. In addition, one by one correspondence between tetragonality and electrical features can be found, and the compositions involving high c/a are usually stabilized in normal ferroelectric phase. It is believed that c/a is a more appropriate parameter to illustrate the variation of ferroelectric properties for unfilled TTB system.« less
A model of the normal and null states of pulsars
NASA Astrophysics Data System (ADS)
Jones, P. B.
1981-12-01
A solvable three-dimensional polar cap model of pair creation and charged particle acceleration has been derived. There are no free parameters of significance apart from the polar surface magnetic flux density. The parameter determining the acceleration potential difference has been obtained by calculation of elementary nuclear and electromagnetic processes. Solutions of the model exist for both normal and null states of a pulsar, and the instability in the normal state leading to the normal to null transition has been identified. The predicted necessary condition for the transition is entirely consistent with observation.
A model of the normal and null states of pulsars
NASA Astrophysics Data System (ADS)
Jones, P. B.
A solvable three dimensional polar cap model of pair creation and charged particle acceleration is derived. There are no free parameters of significance apart from the polar surface magnetic flux density. The parameter CO determining the acceleration potential difference was obtained by calculation of elementary nuclear and electromagnetic processes. Solutions of the model exist for both normal and null states of a pulsar, and the instability in the normal state leading to the normal to null transition is identified. The predicted necessary condition for the transition is entirely consistent with observation.
Resting state brain networks in the prairie vole.
Ortiz, Juan J; Portillo, Wendy; Paredes, Raul G; Young, Larry J; Alcauter, Sarael
2018-01-19
Resting state functional magnetic resonance imaging (rsfMRI) has shown the hierarchical organization of the human brain into large-scale complex networks, referred as resting state networks. This technique has turned into a promising translational research tool after the finding of similar resting state networks in non-human primates, rodents and other animal models of great value for neuroscience. Here, we demonstrate and characterize the presence of resting states networks in Microtus ochrogaster, the prairie vole, an extraordinary animal model to study complex human-like social behavior, with potential implications for the research of normal social development, addiction and neuropsychiatric disorders. Independent component analysis of rsfMRI data from isoflurane-anestethized prairie voles resulted in cortical and subcortical networks, including primary motor and sensory networks, but also included putative salience and default mode networks. We further discuss how future research could help to close the gap between the properties of the large scale functional organization and the underlying neurobiology of several aspects of social cognition. These results contribute to the evidence of preserved resting state brain networks across species and provide the foundations to explore the use of rsfMRI in the prairie vole for basic and translational research.
NASA Technical Reports Server (NTRS)
Hanson, R. K.; Presley, L. L.; Williams, E. V.
1972-01-01
The method of characteristics for a chemically reacting gas is used in the construction of the time-dependent, one-dimensional flow field resulting from the normal reflection of an incident shock wave at the end wall of a shock tube. Nonequilibrium chemical reactions are allowed behind both the incident and reflected shock waves. All the solutions are evaluated for oxygen, but the results are generally representative of any inviscid, nonconducting, and nonradiating diatomic gas. The solutions clearly show that: (1) both the incident- and reflected-shock chemical relaxation times are important in governing the time to attain steady state thermodynamic properties; and (2) adjacent to the end wall, an excess-entropy layer develops wherein the steady state values of all the thermodynamic variables except pressure differ significantly from their corresponding Rankine-Hugoniot equilibrium values.
Developments in new aircraft tire tread materials. [fatigue life of elastomeric materials
NASA Technical Reports Server (NTRS)
Yager, T. J.; Mccarty, J. L.; Riccitiello, S. R.; Golub, M. A.
1976-01-01
Comparative laboratory and field tests were conducted on experimental and state-of-the-art aircraft tire tread materials in a program aimed at seeking new elastomeric materials which would provide improved aircraft tire tread wear, traction, and blowout resistance in the interests of operational safety and economy. The experimental stock was formulated of natural rubber and amorphous vinyl polybutadiene to provide high thermal-oxidative resistance, a characteristic pursued on the premise that thermal oxidation is involved both in the normal abrasion or wear of tire treads and probably in the chain of events leading to blowout failures. Results from the tests demonstrate that the experimental stock provided better heat buildup (hysteresis) and fatigue properties, at least equal wet and dry traction, and greater wear resistance than the state-of-the-art stock.
Nyman, Jeffry S.; Even, Jesse L.; Jo, Chan-Hee; Herbert, Erik G.; Murry, Matthew R.; Cockrell, Gael E.; Wahl, Elizabeth C.; Bunn, R. Clay; Lumpkin, Charles K.; Fowlkes, John L.; Thrailkill, Kathryn M.
2011-01-01
Type 1 diabetes (T1DM) increases the likelihood of a fracture. Despite serious complications in the healing of fractures among those with diabetes, the underlying causes are not delineated for the effect of diabetes on the fracture resistance of bone. Therefore, in a mouse model of T1DM, we have investigated the possibility that a prolonged state of diabetes perturbs the relationship between bone strength and structure (i.e., affects tissue properties). At 10, 15, and 18 weeks following injection of streptozotocin to induce diabetes, diabetic male mice and age-matched controls were examined for measures of skeletal integrity. We assessed 1) the moment of inertia (IMIN) of the cortical bone within diaphysis, trabecular bone architecture of the metaphysis, and mineralization density of the tissue (TMD) for each compartment of the femur by microcomputed tomography and 2) biomechanical properties by three point bending test (femur) and nanoindentation (tibia). In the metaphysis, a significant decrease in trabecular bone volume fraction and trabecular TMD was apparent after 10 weeks of diabetes. For cortical bone, type 1 diabetes was associated with decreased cortical TMD, IMIN, rigidity, and peak moment as well as a lack of normal age-related increases in the biomechanical properties. However, there were only modest differences in material properties between diabetic and normal mice at both whole bone and tissue-levels. As the duration of diabetes increased, bone toughness decreased relative to control. If the sole effect of diabetes on bone strength was due to a reduction in bone size, then IMIN would be the only significant variable explaining the variance in the maximum moment. However, general linear modeling found that the relationship between peak moment and IMIN depended on whether the bone was from a diabetic mouse and the duration of diabetes. Thus, these findings suggest that the elevated fracture risk among diabetics is impacted by complex changes in tissue properties that ultimately reduce the fracture resistance of bone. PMID:21185416
Silver, Nicholas; Cotroneo, Emanuele; Proctor, Gordon; Osailan, Samira; Paterson, Katherine L; Carpenter, Guy H
2008-01-01
Background Real-time PCR is a reliable tool with which to measure mRNA transcripts, and provides valuable information on gene expression profiles. Endogenous controls such as housekeeping genes are used to normalise mRNA levels between samples for sensitive comparisons of mRNA transcription. Selection of the most stable control gene(s) is therefore critical for the reliable interpretation of gene expression data. For the purpose of this study, 7 commonly used housekeeping genes were investigated in salivary submandibular glands under normal, inflamed, atrophic and regenerative states. Results The program NormFinder identified the suitability of HPRT to use as a single gene for normalisation within the normal, inflamed and regenerative states, and GAPDH in the atrophic state. For normalisation to multiple housekeeping genes, for each individual state, the optimal number of housekeeping genes as given by geNorm was: ACTB/UBC in the normal, ACTB/YWHAZ in the inflamed, ACTB/HPRT in the atrophic and ACTB/GAPDH in the regenerative state. The most stable housekeeping gene identified between states (compared to normal) was UBC. However, ACTB, identified as one of the most stably expressed genes within states, was found to be one of the most variable between states. Furthermore we demonstrated that normalising between states to ACTB, rather than UBC, introduced an approximately 3 fold magnitude of error. Conclusion Using NormFinder, our studies demonstrated the suitability of HPRT to use as a single gene for normalisation within the normal, inflamed and regenerative groups and GAPDH in the atrophic group. However, if normalising to multiple housekeeping genes, we recommend normalising to those identified by geNorm. For normalisation across the physiological states, we recommend the use of UBC. PMID:18637167
NASA Astrophysics Data System (ADS)
Lucier, A. M.; Heesakkers, V.; Zoback, M. D.; Reches, Z.
2006-12-01
As part of the Natural Earthquake Laboratory in South African Mines (NELSAM) project, we are investigating the far-field in-situ stress state around the TauTona gold mine. The far-field stress state is used as a boundary condition to quantify the stresses within the active mining area, and to evaluate the potential for reactivation of existing faults (or creation of new faults) in the NELSAM study area. Our main goals are to gain insight into earthquake processes under induced faulting conditions and to guide mining practices in improving underground seismic safety. To characterize in-situ stresses, we use an integrated stress measurement strategy that incorporates rock properties with breakout and drilling-induced tensile fracture observations from camera log images of several boreholes in the NELSAM study area at a depth of 3.5 km below the ground surface. The quantification of the far-field in-situ stress state is based on breakouts observed in a sub-horizontal borehole that extends 418 m away from the mined region and intersects the Pretorius fault, the largest fault-zone in the mine. The location, width and orientation of these breakouts were interpreted along the length of the borehole. Breakouts occur along most of the length of the borehole, with widths ranging from 25-95 deg and orientations fluctuating up to 45 deg around the sidewalls of the borehole. The fluctuations in breakout orientations are presumably due to slip on fault segments, and modeling these fluctuations provides constraints on the far-field stress state. Rock properties (uniaxial compressive strength, Young's modulus and Poisson's ratio) from on-going laboratory experiments will further constrain the stress magnitudes. The results of the stress characterization in this long borehole have been compared with independent stress determinations made in several 10-40 m long boreholes within the mined region to ensure consistency between the modeled far-field stress magnitudes and the observed near-field stresses. Our preliminary results indicate a normal faulting to normal/strike-slip stress state. Once a final stress model has been obtained, we will use it to assess the potential for fault reactivation and to predict future stress changes associated with further mining operations. The study was supported by NSF Continental Dynamics grant 0409605.
A comparison of the effects of caffeine following abstinence and normal caffeine use.
Addicott, Merideth A; Laurienti, Paul J
2009-12-01
Caffeine typically produces positive effects on mood and performance. However, tolerance may develop following habitual use, and abrupt cessation can result in withdrawal symptoms, such as fatigue. This study investigated whether caffeine has a greater stimulant effect in a withdrawn state compared to a normal caffeinated state, among moderate daily caffeine consumers. Using a within-subjects design, 17 caffeine consumers (mean +/- sd = 375 +/- 101 mg/day) ingested placebo or caffeine (250 mg) following 30-h of caffeine abstention or normal dietary caffeine use on four separate days. Self-reported mood and performance on choice reaction time, selective attention, and memory tasks were measured. Caffeine had a greater effect on mood and choice reaction time in the abstained state than in the normal caffeinated state, but caffeine improved selective attention and memory in both states. Although improvements in mood and reaction time may best explained as relief from withdrawal symptoms, other performance measures showed no evidence of withdrawal and were equally sensitive to an acute dose of caffeine in the normal caffeinated state.
A comparison of the effects of caffeine following abstinence and normal caffeine use
Addicott, Merideth A.
2010-01-01
Rationale Caffeine typically produces positive effects on mood and performance. However, tolerance may develop following habitual use, and abrupt cessation can result in withdrawal symptoms, such as fatigue. This study investigated whether caffeine has a greater stimulant effect in a withdrawn state compared to a normal caffeinated state, among moderate daily caffeine consumers. Materials and methods Using a within-subjects design, 17 caffeine consumers (mean±sd=375±101 mg/day) ingested placebo or caffeine (250 mg) following 30-h of caffeine abstention or normal dietary caffeine use on four separate days. Self-reported mood and performance on choice reaction time, selective attention, and memory tasks were measured. Results Caffeine had a greater effect on mood and choice reaction time in the abstained state than in the normal caffeinated state, but caffeine improved selective attention and memory in both states. Conclusions Although improvements in mood and reaction time may best explained as relief from withdrawal symptoms, other performance measures showed no evidence of withdrawal and were equally sensitive to an acute dose of caffeine in the normal caffeinated state. PMID:19777214
Qian, Wen; Zhang, Weibin; Zong, Hehou; Gao, Guofang; Zhou, Yang; Zhang, Chaoyang
2016-01-01
The vibrational spectrum, phonon dispersion curve, and phonon density of states (DOS) of β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (β-HMX) crystal were obtained by molecular simulation and calculations. As results, it was found that the peaks at low frequency (0-2.5 THz) are comparable with the experimental Terahertz absorption and the molecular vibrational modes are in agreement with previous reports. Thermodynamic properties including Gibbs free energy, enthalpy, and heat capacity as functions of temperature were obtained based on the calculated phonon spectrum. The heat capacity at normal temperature was calculated using linear fitting method, with a result consistent with experiments. Graphical Abstract Phonon spectrum and heat capacity of β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine from DFT calculation.
Ballistic superconductivity in semiconductor nanowires.
Zhang, Hao; Gül, Önder; Conesa-Boj, Sonia; Nowak, Michał P; Wimmer, Michael; Zuo, Kun; Mourik, Vincent; de Vries, Folkert K; van Veen, Jasper; de Moor, Michiel W A; Bommer, Jouri D S; van Woerkom, David J; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P A M; Quintero-Pérez, Marina; Cassidy, Maja C; Koelling, Sebastian; Goswami, Srijit; Watanabe, Kenji; Taniguchi, Takashi; Kouwenhoven, Leo P
2017-07-06
Semiconductor nanowires have opened new research avenues in quantum transport owing to their confined geometry and electrostatic tunability. They have offered an exceptional testbed for superconductivity, leading to the realization of hybrid systems combining the macroscopic quantum properties of superconductors with the possibility to control charges down to a single electron. These advances brought semiconductor nanowires to the forefront of efforts to realize topological superconductivity and Majorana modes. A prime challenge to benefit from the topological properties of Majoranas is to reduce the disorder in hybrid nanowire devices. Here we show ballistic superconductivity in InSb semiconductor nanowires. Our structural and chemical analyses demonstrate a high-quality interface between the nanowire and a NbTiN superconductor that enables ballistic transport. This is manifested by a quantized conductance for normal carriers, a strongly enhanced conductance for Andreev-reflecting carriers, and an induced hard gap with a significantly reduced density of states. These results pave the way for disorder-free Majorana devices.
Microwave properties of Ni-based ferromagnetic inverse opals
NASA Astrophysics Data System (ADS)
Kostylev, M.; Stashkevich, A. A.; Roussigné, Y.; Grigoryeva, N. A.; Mistonov, A. A.; Menzel, D.; Sapoletova, N. A.; Napolskii, K. S.; Eliseev, A. A.; Lukashin, A. V.; Grigoriev, S. V.; Samarin, S. N.
2012-11-01
Investigations of microwave properties of Ni-based inverse ferromagnetic opal-like film with the [111] axis of the fcc structure along the normal direction to the film have been carried out in the 2-18 GHz frequency band. We observed multiple spin wave resonances for the magnetic field applied perpendicular to the film, i.e., along the [111] axis of this artificial crystal. For the field applied in the film plane, a broad band of microwave absorption is observed, which does not contain a fine structure. The field ranges of the responses observed are quite different for these two magnetization directions. This suggests a collective magnetic ground state or shape anisotropy and collective microwave dynamics for this foam-like material. This result is in agreement with SQUID measurements of hysteresis loops for the material. Two different models for this collective behavior are suggested that satisfactorily explain the major experimental results.
NASA Astrophysics Data System (ADS)
Maletz, J.; Zabolotnyy, V. B.; Evtushinsky, D. V.; Yaresko, A. N.; Kordyuk, A. A.; Shermadini, Z.; Luetkens, H.; Sedlak, K.; Khasanov, R.; Amato, A.; Krzton-Maziopa, A.; Conder, K.; Pomjakushina, E.; Klauss, H.-H.; Rienks, E. D. L.; Büchner, B.; Borisenko, S. V.
2013-10-01
In this study, we investigate the electronic and magnetic properties of Rb0.77Fe1.61Se2 (Tc = 32.6 K) in normal and superconducting states by means of photoemission and μSR spectroscopies as well as band-structure calculations. We demonstrate that the unusual behavior of these materials is the result of separation into metallic (˜12%) and insulating (˜88%) phases. Only the former becomes superconducting and has a usual electronic structure of electron-doped FeSe slabs. Our results thus imply that the antiferromagnetic insulating phase is just a by-product of Rb intercalation and its magnetic properties have no direct relation to the superconductivity. Instead, we find that also in this class of iron-based compounds, the key ingredient for superconductivity is a certain proximity of a Van Hove singularity to the Fermi level.
Global Dynamics of Proteins: Bridging Between Structure and Function
Bahar, Ivet; Lezon, Timothy R.; Yang, Lee-Wei; Eyal, Eran
2010-01-01
Biomolecular systems possess unique, structure-encoded dynamic properties that underlie their biological functions. Recent studies indicate that these dynamic properties are determined to a large extent by the topology of native contacts. In recent years, elastic network models used in conjunction with normal mode analyses have proven to be useful for elucidating the collective dynamics intrinsically accessible under native state conditions, including in particular the global modes of motions that are robustly defined by the overall architecture. With increasing availability of structural data for well-studied proteins in different forms (liganded, complexed, or free), there is increasing evidence in support of the correspondence between functional changes in structures observed in experiments and the global motions predicted by these coarse-grained analyses. These observed correlations suggest that computational methods may be advantageously employed for assessing functional changes in structure and allosteric mechanisms intrinsically favored by the native fold. PMID:20192781
Global dynamics of proteins: bridging between structure and function.
Bahar, Ivet; Lezon, Timothy R; Yang, Lee-Wei; Eyal, Eran
2010-01-01
Biomolecular systems possess unique, structure-encoded dynamic properties that underlie their biological functions. Recent studies indicate that these dynamic properties are determined to a large extent by the topology of native contacts. In recent years, elastic network models used in conjunction with normal mode analyses have proven to be useful for elucidating the collective dynamics intrinsically accessible under native state conditions, including in particular the global modes of motions that are robustly defined by the overall architecture. With increasing availability of structural data for well-studied proteins in different forms (liganded, complexed, or free), there is increasing evidence in support of the correspondence between functional changes in structures observed in experiments and the global motions predicted by these coarse-grained analyses. These observed correlations suggest that computational methods may be advantageously employed for assessing functional changes in structure and allosteric mechanisms intrinsically favored by the native fold.
Development of lightweight concrete mixes for construction industry at the state of Arkansas
NASA Astrophysics Data System (ADS)
Almansouri, Mohammed Abdulwahab
As the construction industry evolved, the need for more durable, long lasting infrastructure increased. Therefore, more efforts have been put to find new methods to improve the properties of the concrete to prolong the service life of the structural elements. One of these methods is the use of lightweight aggregate as an internal curing agent to help reducing self-desiccation and shrinkage. This research studied the effects of using locally available lightweight aggregate (expanded clay), as a partial replacement of normal weight aggregate in the concrete matrix. The concrete mixtures contained lightweight aggregate with a replacement percentage of 12.5, 25, 37.5, and 50 percent by volume. Fresh properties as well as compressive strength, modulus of rupture, and drying shrinkage were measured. While was effective in reducing drying shrinkage, the use of lightweight aggregate resulted in slightly reducing both the compressive strength and modulus of rupture.
NASA Astrophysics Data System (ADS)
Oudry, Jennifer; Lynch, Ted; Vappou, Jonathan; Sandrin, Laurent; Miette, Véronique
2014-10-01
Elastographic techniques used in addition to imaging techniques (ultrasound, resonance magnetic or optical) provide new clinical information on the pathological state of soft tissues. However, system-dependent variation in elastographic measurements may limit the clinical utility of these measurements by introducing uncertainty into the measurement. This work is aimed at showing differences in the evaluation of the elastic properties of phantoms performed by four different techniques: quasi-static compression, dynamic mechanical analysis, vibration-controlled transient elastography and hyper-frequency viscoelastic spectroscopy. Four Zerdine® gel materials were tested and formulated to yield a Young’s modulus over the range of normal and cirrhotic liver stiffnesses. The Young’s modulus and the shear wave speed obtained with each technique were compared. Results suggest a bias in elastic property measurement which varies with systems and highlight the difficulty in finding a reference method to determine and assess the elastic properties of tissue-mimicking materials. Additional studies are needed to determine the source of this variation, and control for them so that accurate, reproducible reference standards can be made for the absolute measurement of soft tissue elasticity.
Oudry, Jennifer; Lynch, Ted; Vappou, Jonathan; Sandrin, Laurent; Miette, Véronique
2014-10-07
Elastographic techniques used in addition to imaging techniques (ultrasound, resonance magnetic or optical) provide new clinical information on the pathological state of soft tissues. However, system-dependent variation in elastographic measurements may limit the clinical utility of these measurements by introducing uncertainty into the measurement. This work is aimed at showing differences in the evaluation of the elastic properties of phantoms performed by four different techniques: quasi-static compression, dynamic mechanical analysis, vibration-controlled transient elastography and hyper-frequency viscoelastic spectroscopy. Four Zerdine® gel materials were tested and formulated to yield a Young's modulus over the range of normal and cirrhotic liver stiffnesses. The Young's modulus and the shear wave speed obtained with each technique were compared. Results suggest a bias in elastic property measurement which varies with systems and highlight the difficulty in finding a reference method to determine and assess the elastic properties of tissue-mimicking materials. Additional studies are needed to determine the source of this variation, and control for them so that accurate, reproducible reference standards can be made for the absolute measurement of soft tissue elasticity.
Vallone, Giuseppe
2015-04-15
Circular beams were introduced as a very general solution to the paraxial wave equation carrying orbital angular momentum. Here, we study their properties by looking at their normalization and their expansion in terms of Laguerre-Gauss modes. We also study their far-field divergence and, for particular cases of the beam parameters, their possible experimental generation.
NASA Astrophysics Data System (ADS)
Yan, Ying; Zhang, Shen; Tang, Jinjun; Wang, Xiaofei
2017-07-01
Discovering dynamic characteristics in traffic flow is the significant step to design effective traffic managing and controlling strategy for relieving traffic congestion in urban cities. A new method based on complex network theory is proposed to study multivariate traffic flow time series. The data were collected from loop detectors on freeway during a year. In order to construct complex network from original traffic flow, a weighted Froenius norm is adopt to estimate similarity between multivariate time series, and Principal Component Analysis is implemented to determine the weights. We discuss how to select optimal critical threshold for networks at different hour in term of cumulative probability distribution of degree. Furthermore, two statistical properties of networks: normalized network structure entropy and cumulative probability of degree, are utilized to explore hourly variation in traffic flow. The results demonstrate these two statistical quantities express similar pattern to traffic flow parameters with morning and evening peak hours. Accordingly, we detect three traffic states: trough, peak and transitional hours, according to the correlation between two aforementioned properties. The classifying results of states can actually represent hourly fluctuation in traffic flow by analyzing annual average hourly values of traffic volume, occupancy and speed in corresponding hours.
Planetary Interiors: Parametric Modeling of Global Geophysical Properties
NASA Astrophysics Data System (ADS)
Montgomery, W.; Jeanloz, R.
2004-12-01
Taking into account a realistic form of equation of state, we parameterize the degree to which bulk geophysical properties of planets are sensitive to gravitational self-compression. For example, the normalized moment of mass of a uniform-composition planet is C/Ma2 = 0.40 only in the limit of zero planetary size or incompressible material, and decreases toward 0.32 for finite compressibility as the planetary radius increases toward a = 104 km (M is planetary mass). Central density correspondingly increases from ρ 0, the surface density, toward 10 * ρ 0. Our calculations, based on the Eulerian finite-strain equation of state, make it possible to distinguish the effects of self-compression from the effects of non-uniformity (due either to changes in bulk composition or in phase with depth) as these influence planetary mass and moment of inertia relative to size. As observations of extra-solar planets can provide estimates of their mass and diameter (hence mean density), our formulation can account for the effects of compression in modeling the internal constitution and evolution of these objects. The effects of compression are especially important for giant and super-giant planets, such as the majority that have been observed to date.
Nagel, Thomas; Kelly, Daniel J
2013-04-01
The biomechanical functionality of articular cartilage is derived from both its biochemical composition and the architecture of the collagen network. Failure to replicate this normal Benninghoff architecture in regenerating articular cartilage may in turn predispose the tissue to failure. In this article, the influence of the maturity (or functionality) of a tissue-engineered construct at the time of implantation into a tibial chondral defect on the likelihood of recapitulating a normal Benninghoff architecture was investigated using a computational model featuring a collagen remodeling algorithm. Such a normal tissue architecture was predicted to form in the intact tibial plateau due to the interplay between the depth-dependent extracellular matrix properties, foremost swelling pressures, and external mechanical loading. In the presence of even small empty defects in the articular surface, the collagen architecture in the surrounding cartilage was predicted to deviate significantly from the native state, indicating a possible predisposition for osteoarthritic changes. These negative alterations were alleviated by the implantation of tissue-engineered cartilage, where a mature implant was predicted to result in the formation of a more native-like collagen architecture than immature implants. The results of this study highlight the importance of cartilage graft functionality to maintain and/or re-establish joint function and suggest that engineering a tissue with a native depth-dependent composition may facilitate the establishment of a normal Benninghoff collagen architecture after implantation into load-bearing defects.
Buhs, Sophia; Nollau, Peter
2017-01-01
Among posttranslational modifications, the phosphorylation of tyrosine residues is a key modification in cell signaling. Because of its biological importance, characterization of the cellular state of tyrosine phosphorylation is of great interest. Based on the unique properties of endogenously expressed SH2 domains recognizing tyrosine phosphorylated signaling proteins with high specificity we have developed an alternative approach, coined SH2 profiling, enabling us to decipher complex patterns of tyrosine phosphorylation in various normal and cancerous tissues. So far, SH2 profiling has largely been applied for the analysis of protein extracts with the limitation that information on spatial distribution and intensity of tyrosine phosphorylation within a tissue is lost. Here, we describe a novel SH2 domain based strategy for differential characterization of the state of tyrosine phosphorylation in formaldehyde-fixed and paraffin-embedded tissues. This approach demonstrates that SH2 domains may serve as very valuable tools for the analysis of the differential state of tyrosine phosphorylation in primary tissues fixed and processed under conditions frequently applied by routine pathology laboratories.
Parametric excitation of multiple resonant radiations from localized wavepackets
Conforti, Matteo; Trillo, Stefano; Mussot, Arnaud; Kudlinski, Alexandre
2015-01-01
Fundamental physical phenomena such as laser-induced ionization, driven quantum tunneling, Faraday waves, Bogoliubov quasiparticle excitations, and the control of new states of matter rely on time-periodic driving of the system. A remarkable property of such driving is that it can induce the localized (bound) states to resonantly couple to the continuum. Therefore experiments that allow for enlightening and controlling the mechanisms underlying such coupling are of paramount importance. We implement such an experiment in a special optical fiber characterized by a dispersion oscillating along the propagation coordinate, which mimics “time”. The quasi-momentum associated with such periodic perturbation is responsible for the efficient coupling of energy from the localized wave-packets (solitons in anomalous dispersion and shock fronts in normal dispersion) sustained by the fiber nonlinearity, into free-running linear dispersive waves (continuum) at multiple resonant frequencies. Remarkably, the observed resonances can be explained by means of a unified approach, regardless of the fact that the localized state is a soliton-like pulse or a shock front. PMID:25801054
Anomalous Behavior of Electronic Heat Capacity of Strongly Correlated Iron Monosilicide
NASA Astrophysics Data System (ADS)
Povzner, A. A.; Volkov, A. G.; Nogovitsyna, T. A.
2018-04-01
The paper deals with the electronic heat capacity of iron monosilicide FeSi subjected to semiconductor-metal thermal transition during which the formation of its spintronic properties is observed. The proposed model which considers pd-hybridization of strongly correlated d-electrons with non-correlated p-electrons, demonstrates a connection of their contribution to heat capacity in the insulator phase with paramagnon effects and fluctuations of occupation numbers for p- and d-states. In a slitless state, the temperature curve of heat capacity is characterized by a maximum appeared due to normalization of the electron density of states using fluctuating exchange fields. At higher temperatures, a linear growth in heat capacity occurs due to paramagnon effects. The correlation between the model parameters and the first-principles calculation provides the electron contribution to heat capacity, which is obtained from the experimental results on phonon heat capacity. Anharmonicity of phonons is connected merely with the thermal expansion of the crystal lattice.
Magnetic preferential orientation of metal oxide superconducting materials
Capone, D.W.; Dunlap, B.D.; Veal, B.W.
1990-07-17
A superconductor comprised of a polycrystalline metal oxide such as YBa[sub 2]Cu[sub 3]O[sub 7[minus]X] (where 0 < X < 0.5) exhibits superconducting properties and is capable of conducting very large current densities. By aligning the two-dimensional Cu-O layers which carry the current in the superconducting state in the a- and b-directions, i.e., within the basal plane, a high degree of crystalline axes alignment is provided between adjacent grains permitting the conduction of high current densities. The highly anisotropic diamagnetic susceptibility of the polycrystalline metal oxide material permits the use of an applied magnetic field to orient the individual crystals when in the superconducting state to substantially increase current transport between adjacent grains. In another embodiment, the anisotropic paramagnetic susceptibility of rare-earth ions substituted into the oxide material is made use of as an applied magnetic field orients the particles in a preferential direction. This latter operation can be performed with the material in the normal (non-superconducting) state. 4 figs.
Magnetic preferential orientation of metal oxide superconducting materials
Capone, Donald W.; Dunlap, Bobby D.; Veal, Boyd W.
1990-01-01
A superconductor comprised of a polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0
Raloxifene improves skeletal properties in an animal model of cystic chronic kidney disease
Newman, Christopher L.; Creecy, Amy; Granke, Mathilde; Nyman, Jeffry S.; Tian, Nannan; Hammond, Max A.; Wallace, Joseph M.; Brown, Drew M.; Chen, Neal; Moe, Sharon M.; Allen, Matthew R.
2015-01-01
Patients with chronic kidney disease (CKD) have an increased risk of fracture. Raloxifene is a mild anti-resorptive agent that reduces fracture risk in the general population. Here we assessed the impact of raloxifene on the skeletal properties of animals with progressive CKD. Male Cy/+ rats that develop autosomal dominant cystic kidney disease were treated with either vehicle or raloxifene for five weeks. They were assessed for changes in mineral metabolism and skeletal parameters (microCT, histology, whole bone mechanics, and material properties). Their normal littermates served as controls. Animals with CKD had significantly higher parathyroid hormone levels compared to normal controls as well as inferior structural and mechanical skeletal properties. Raloxifene treatment resulted in lower bone remodeling rates and higher cancellous bone volume in the rats with CKD. While it had little effect on cortical bone geometry it resulted in higher energy to fracture and modulus of toughness values than vehicle-treated rats with CKD, achieving levels equivalent to normal controls. Animals treated with raloxifene had superior tissue-level mechanical properties as assessed by nanoindentation and higher collagen D-periodic spacing as assessed by atomic force microscopy. Thus, raloxifene can positively impact whole bone mechanical properties in CKD through its impact on skeletal material properties. PMID:26489025
NASA Astrophysics Data System (ADS)
Kavousi Sisi, A.; Mirsalehi, S. E.
2015-04-01
In the present paper, influences of normalization heat treatment on microstructural and mechanical properties of high-frequency induction welded (HFIW) joints of X52 steel have been investigated. HFIW joints were post-weld heat treated at different times and temperatures. The microstructure and mechanical properties of the heat treated joints were then comprehensively investigated. Based on the results, a proper normalization of the primary fine grain steel caused the grain size to increase; but because of converting brittle microstructure into ductile microstructure, it caused the toughness to increase also. In addition, the ductility of the joints was enhanced. Nevertheless, tensile strength, yield strength, and hardness were reduced. The results showed that 950 °C was the optimum normalization temperature from the standpoint of fracture toughness for the X52 steel joints. At 1050 °C, the carbides and/or nitrides in the steel dissolved, and excessive grain growth occurred. Hence, the maximum allowable temperature for normalization was found to be 1000 °C.
Assessing Analytical Similarity of Proposed Amgen Biosimilar ABP 501 to Adalimumab.
Liu, Jennifer; Eris, Tamer; Li, Cynthia; Cao, Shawn; Kuhns, Scott
2016-08-01
ABP 501 is being developed as a biosimilar to adalimumab. Comprehensive comparative analytical characterization studies have been conducted and completed. The objective of this study was to assess analytical similarity between ABP 501 and two adalimumab reference products (RPs), licensed by the United States Food and Drug Administration (adalimumab [US]) and authorized by the European Union (adalimumab [EU]), using state-of-the-art analytical methods. Comprehensive analytical characterization incorporating orthogonal analytical techniques was used to compare products. Physicochemical property comparisons comprised the primary structure related to amino acid sequence and post-translational modifications including glycans; higher-order structure; primary biological properties mediated by target and receptor binding; product-related substances and impurities; host-cell impurities; general properties of the finished drug product, including strength and formulation; subvisible and submicron particles and aggregates; and forced thermal degradation. ABP 501 had the same amino acid sequence and similar post-translational modification profiles compared with adalimumab RPs. Primary structure, higher-order structure, and biological activities were similar for the three products. Product-related size and charge variants and aggregate and particle levels were also similar. ABP 501 had very low residual host-cell protein and DNA. The finished ABP 501 drug product has the same strength with regard to protein concentration and fill volume as adalimumab RPs. ABP 501 and the RPs had a similar stability profile both in normal storage and thermal stress conditions. Based on the comprehensive analytical similarity assessment, ABP 501 was found to be similar to adalimumab with respect to physicochemical and biological properties.
Chan, J T Y; Omana, D A; Betti, M
2011-05-01
Functional and rheological properties of proteins from frozen turkey breast meat with different ultimate pH at 24 h postmortem (pH(24)) have been studied. Sixteen breast fillets from Hybrid Tom turkeys were initially selected based on lightness (L*) values for each color group (pale, normal, and dark), with a total of 48 breast fillets. Further selection of 8 breast samples was made within each class of meat according to the pH(24). The average L* and pH values of the samples were within the following range: pale (L* >52; pH ≤5.7), normal (46 < L* < 52; 5.9 < pH <6.1), and dark (L* <46; pH ≥6.3), referred to as low, normal, and high pH meat, respectively. Ultimate pH did not cause major changes in the emulsifying and foaming properties of the extracted sarcoplasmic and myofibrillar proteins. An SDS-PAGE profile of proteins from low and normal pH meat was similar, which revealed that the extent of protein denaturation was the same. Low pH meat had the lowest water-holding capacity compared with normal and high pH meat as shown by the increase in cooking loss, which can be explained by factors other than protein denaturation. Gel strength analysis and folding test revealed that gel-forming ability was better for high pH meat compared with low and normal pH meat.Dynamic viscoelastic behavior showed that myosin denaturation temperature was independent of pH(24). Normal and high pH meat had similar hardness, springiness, and chewiness values as revealed by texture profile analysis. The results from this study indicate that high pH meat had similar or better functional properties than normal pH meat. Therefore, high pH meat is suitable for further processed products, whereas low pH meat may need additional treatment or ingredient formulations to improve its functionality.
First-principles study of strain-induced ferromagnetism in LaCoO3
NASA Astrophysics Data System (ADS)
Seo, Hosung; Demkov, Alexander
2011-03-01
We study theoretically the effect of biaxial strain on magnetic properties of LaCo O3 (LCO) using density functional theory combined with the Hubbard U method. LCO is normally a non-magnetic insulator with trivalent cobalt ions in low-spin state (t 2g 6) . Owing to close interplay between orbital, spin, and lattice degrees of freedom, it shows rich magnetic behavior such as temperature-induced spin state transition. Recently, the ferromagnetic tensile-strained LCO films have been reported. The underlying physics of the ferromagnetic state is, however, unclear. Using a large tetragonal cell we calculate full structural response of the system to applied strain for non-magnetic and magnetic solutions. We show that beyond tensile strain of 3.8% the ferromagnetic solution with Co ions in intermediate-spin state (t 2g 5 e g 1) is stabilized accompanied by partial untilting of Co O6 octahedral network. We also perform the calculation for compressive-strained structures and the difference between these and the tensile strained structures will be presented.
Changes in interhemispheric motor connectivity after muscle fatigue
NASA Astrophysics Data System (ADS)
Peltier, Scott; LaConte, Stephen M.; Niyazov, Dmitriy; Liu, Jing; Sahgal, Vinod; Yue, Guang; Hu, Xiaoping
2005-04-01
Synchronized oscillations in resting state timecourses have been detected in recent fMRI studies. These oscillations are low frequency in nature (< 0.08 Hz), and seem to be a property of symmetric cortices. These fluctuations are important as a potential signal of interest, which could indicate connectivity between functionally related areas of the brain. It has also been shown that the synchronized oscillations decrease in some spontaneous pathological states. Thus, detection of these functional connectivity patterns may help to serve as a gauge of normal brain activity. The cognitive effects of muscle fatigue are not well characterized. Sustained fatigue has the potential to dynamically alter activity in brain networks. In this work, we examined the interhemispheric correlations in the left and right primary motor cortices and how they change with muscle fatigue. Resting-state functional MRI imaging was done before and after a repetitive unilateral fatigue task. We find that the number of significant correlations in the bilateral motor network decreases with fatigue. These results suggest that resting-state interhemispheric motor cortex functional connectivity is affected by muscle fatigue.
Spherically symmetric Einstein-aether perfect fluid models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coley, Alan A.; Latta, Joey; Leon, Genly
We investigate spherically symmetric cosmological models in Einstein-aether theory with a tilted (non-comoving) perfect fluid source. We use a 1+3 frame formalism and adopt the comoving aether gauge to derive the evolution equations, which form a well-posed system of first order partial differential equations in two variables. We then introduce normalized variables. The formalism is particularly well-suited for numerical computations and the study of the qualitative properties of the models, which are also solutions of Horava gravity. We study the local stability of the equilibrium points of the resulting dynamical system corresponding to physically realistic inhomogeneous cosmological models and astrophysicalmore » objects with values for the parameters which are consistent with current constraints. In particular, we consider dust models in (β−) normalized variables and derive a reduced (closed) evolution system and we obtain the general evolution equations for the spatially homogeneous Kantowski-Sachs models using appropriate bounded normalized variables. We then analyse these models, with special emphasis on the future asymptotic behaviour for different values of the parameters. Finally, we investigate static models for a mixture of a (necessarily non-tilted) perfect fluid with a barotropic equations of state and a scalar field.« less
NASA Astrophysics Data System (ADS)
Tiwari, Nivedan; Chabra, Sanjay; Mehdi, Sheherbano; Sweet, Paula; Krasieva, Tatiana B.; Pool, Roy; Andrews, Brian; Peavy, George M.
2010-09-01
An estimated 1.3 million people in the United States suffer from rheumatoid arthritis (RA). RA causes profound changes in the synovial membrane of joints, and without early diagnosis and intervention, progresses to permanent alterations in joint structure and function. The purpose of this study is to determine if nonlinear optical microscopy (NLOM) can utilize the natural intrinsic fluorescence properties of tissue to generate images that would allow visualization of the structural and cellular composition of fresh, unfixed normal and pathologic synovial tissue. NLOM is performed on rabbit knee joint synovial samples using 730- and 800-nm excitation wavelengths. Less than 30 mW of excitation power delivered with a 40×, 0.8-NA water immersion objective is sufficient for the visualization of synovial structures to a maximum depth of 70 μm without tissue damage. NLOM imaging of normal and pathologic synovial tissue reveals the cellular structure, synoviocytes, adipocytes, collagen, vascular structures, and differential characteristics of inflammatory infiltrates without requiring tissue processing or staining. Further study to evaluate the ability of NLOM to assess the characteristics of pathologic synovial tissue and its potential role for the management of disease is warranted.
Decrease of cardiac chaos in congestive heart failure
NASA Astrophysics Data System (ADS)
Poon, Chi-Sang; Merrill, Christopher K.
1997-10-01
The electrical properties of the mammalian heart undergo many complex transitions in normal and diseased states. It has been proposed that the normal heartbeat may display complex nonlinear dynamics, including deterministic chaos,, and that such cardiac chaos may be a useful physiological marker for the diagnosis and management, of certain heart trouble. However, it is not clear whether the heartbeat series of healthy and diseased hearts are chaotic or stochastic, or whether cardiac chaos represents normal or abnormal behaviour. Here we have used a highly sensitive technique, which is robust to random noise, to detect chaos. We analysed the electrocardiograms from a group of healthy subjects and those with severe congestive heart failure (CHF), a clinical condition associated with a high risk of sudden death. The short-term variations of beat-to-beat interval exhibited strongly and consistently chaotic behaviour in all healthy subjects, but were frequently interrupted by periods of seemingly non-chaotic fluctuations in patients with CHF. Chaotic dynamics in the CHF data, even when discernible, exhibited a high degree of random variability over time, suggesting a weaker form of chaos. These findings suggest that cardiac chaos is prevalent in healthy heart, and a decrease in such chaos may be indicative of CHF.
NASA Astrophysics Data System (ADS)
Cole, Jacqueline M.; Bürgi, Hans-Beat; McIntyre, Garry J.
2011-06-01
The solid-state molecular disorder of pentachloronitrobenzene (PCNB) and its role in causing anomalous dielectric properties are investigated. Normal coordinate analysis (NCA) of atomic mean-square displacement parameters (ADPs) is employed to distinguish disorder contributions from classical and quantum-mechanical vibrational contributions. The analysis relies on multitemperature (5-295 K) single-crystal neutron-diffraction data. Vibrational frequencies extracted from the temperature dependence of the ADPs are in good agreement with THz spectroscopic data. Aspects of the static disorder revealed by this work, primarily tilting and displacement of the molecules, are compared with corresponding results from previous, much more in-depth and time-consuming Monte Carlo simulations; their salient findings are reproduced by this work, demonstrating that the faster NCA approach provides reliable constraints for the interpretation of diffuse scattering. The dielectric properties of PCNB can thus be rationalized by an interpretation of the temperature-dependent ADPs in terms of thermal motion and molecular disorder. The use of atomic displacement parameters in the NCA approach is nonetheless hostage to reliable neutron data. The success of this study demonstrates that state-of-the-art single-crystal Laue neutron diffraction affords sufficiently fast the accurate data for this type of study. In general terms, the validation of this work opens up the field for numerous studies of solid-state molecular disorder in organic materials.
Bastolla, Ugo
2014-01-01
The properties of biomolecules depend both on physics and on the evolutionary process that formed them. These two points of view produce a powerful synergism. Physics sets the stage and the constraints that molecular evolution has to obey, and evolutionary theory helps in rationalizing the physical properties of biomolecules, including protein folding thermodynamics. To complete the parallelism, protein thermodynamics is founded on the statistical mechanics in the space of protein structures, and molecular evolution can be viewed as statistical mechanics in the space of protein sequences. In this review, we will integrate both points of view, applying them to detecting selection on the stability of the folded state of proteins. We will start discussing positive design, which strengthens the stability of the folded against the unfolded state of proteins. Positive design justifies why statistical potentials for protein folding can be obtained from the frequencies of structural motifs. Stability against unfolding is easier to achieve for longer proteins. On the contrary, negative design, which consists in destabilizing frequently formed misfolded conformations, is more difficult to achieve for longer proteins. The folding rate can be enhanced by strengthening short-range native interactions, but this requirement contrasts with negative design, and evolution has to trade-off between them. Finally, selection can accelerate functional movements by favoring low frequency normal modes of the dynamics of the native state that strongly correlate with the functional conformation change. PMID:24970217
The JRC-ITU approach to the safety of advanced nuclear fuel cycles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fanghaenel, T.; Rondinella, V.V.; Somers, J.
2013-07-01
The JRC-ITU safety studies of advanced fuels and cycles adopt two main axes. First the full exploitation of still available and highly relevant knowledge and samples from past fuel preparation and irradiation campaigns (complementing the limited number of ongoing programmes). Secondly, the shift of focus from simple property measurement towards the understanding of basic mechanisms determining property evolution and behaviour of fuel compounds during normal, off-normal and accident conditions. The final objective of the second axis is the determination of predictive tools applicable to systems and conditions different from those from which they were derived. State of the art experimentalmore » facilities, extensive networks of partnerships and collaboration with other organizations worldwide, and a developing programme for training and education are essential in this approach. This strategy has been implemented through various programs and projects. The SUPERFACT programme constitutes the main body of existing knowledge on the behavior in-pile of MOX fuel containing minor actinides. It encompassed all steps of a closed fuel cycle. Another international project investigating the safety of a closed cycle is METAPHIX. In this case a U-Pu19-Zr10 metal alloy containing Np, Am and Cm constitutes the fuel. 9 test pins have been prepared and irradiated. In addition to the PIE (Post Irradiation Examination), pyrometallurgical separation of the irradiated fuel has been performed, to demonstrate all the steps of a multiple recycling closed cycle and characterize their safety relevant aspects. Basic studies like thermodynamic fuel properties, fuel-cladding-coolant interactions have also been carried out at JRC-ITU.« less
NASA Astrophysics Data System (ADS)
Davoodi, M.; Norouzi, M.
2016-10-01
In the present study, an investigation of the motion and shape deformation of drops is carried out in creeping flow to highlight the effect of viscoelastic properties on the problem. A perturbation method is employed to derive an analytical solution for the general case that both interior and exterior fluids are viscoelastic, both fluids obeying the Giesekus model. An experiment is also performed for the limiting case of an immiscible drop of a 0.03% (w/w) polyacrylamide in an 80:20 glycerol/water solution falling through a viscous Newtonian silicon oil (410 cP polydimethylsiloxane oil) in order to check the accuracy of the analytical solution. It is shown that the addition of elastic properties to the interior fluid may cause a decrease in the terminal velocity of the droplet while an increase in the elastic properties of the exterior fluid results in the opposite behavior and increases the terminal velocity. The well-known spherical shape of creeping drops for Newtonian fluids is modified by elasticity into either prolate or oblate shapes. Using the analytical solution, it is shown that normal stresses play a key role on the final steady-state shape of the drops. To keep the drops spherical in viscoelastic phases, it is shown that the effect of normal stresses on the interior and exterior media can cancel out under certain conditions. The results presented here may be of interest to industries dealing with petroleum and medicine processing, paint and power-plant related fields where knowledge of the shape and terminal velocity of descending droplets is of great importance.
NASA Astrophysics Data System (ADS)
Shahidan, Shahiron; Tayeh, Bassam A.; Jamaludin, A. A.; Bahari, N. A. A. S.; Mohd, S. S.; Zuki Ali, N.; Khalid, F. S.
2017-11-01
The development of concrete technology shows a variety of admixtures in concrete to produce special concrete. This includes the production of self-compacting concrete which is able to fill up all spaces, take formwork shapes and pass through congested reinforcement bars without vibrating or needing any external energy. In this study, the main objective is to compare the physical and mechanical properties of self-compacting concrete containing metakaolin with normal concrete. Four types of samples were produced to study the effect of metakaolin towards the physical and mechanical properties of self-compacting concrete where 0%, 5%, 10% and 15% of metakaolin were used as cement replacement. The physical properties were investigated using slump test for normal concrete and slump flow test for self-compacting concrete. The mechanical properties were tested for compressive strength and tensile strength. The findings of this study show that the inclusion of metakaolin as cement replacement can increase both compressive and tensile strength compared to normal concrete. The highest compressive strength was found in self-compacting concrete with 15% metakaolin replacement at 53.3 MPa while self-compacting concrete with 10% metakaolin replacement showed the highest tensile strength at 3.6 MPa. On top of that, the finishing or concrete surface of both cube and cylinder samples made of self-compacting concrete produced a smooth surface with the appearance of less honeycombs compared to normal concrete.
Suki, Béla; Stamenovic, Dimitrije; Hubmayr, Rolf
2014-01-01
The lung parenchyma comprises a large number of thin-walled alveoli, forming an enormous surface area, which serves to maintain proper gas exchange. The alveoli are held open by the transpulmonary pressure, or prestress, which is balanced by tissues forces and alveolar surface film forces. Gas exchange efficiency is thus inextricably linked to three fundamental features of the lung: parenchymal architecture, prestress, and the mechanical properties of the parenchyma. The prestress is a key determinant of lung deformability that influences many phenomena including local ventilation, regional blood flow, tissue stiffness, smooth muscle contractility, and alveolar stability. The main pathway for stress transmission is through the extracellular matrix. Thus, the mechanical properties of the matrix play a key role both in lung function and biology. These mechanical properties in turn are determined by the constituents of the tissue, including elastin, collagen, and proteoglycans. In addition, the macroscopic mechanical properties are also influenced by the surface tension and, to some extent, the contractile state of the adherent cells. This article focuses on the biomechanical properties of the main constituents of the parenchyma in the presence of prestress and how these properties define normal function or change in disease. An integrated view of lung mechanics is presented and the utility of parenchymal mechanics at the bedside as well as its possible future role in lung physiology and medicine are discussed. PMID:23733644
Hydrogen technology survey: Thermophysical properties
NASA Technical Reports Server (NTRS)
Mccarty, R. D.
1975-01-01
The thermodynamic functions, transport properties, and physical properties of both liquid and gaseous hydrogen are presented. The low temperature regime is emphasized. The tabulation of the properties of normal hydrogen in both Si and engineering units is given along with the tabulation of parahydrogen.
Earthquakes triggered by fluid extraction
Segall, P.
1989-01-01
Seismicity is correlated in space and time with production from some oil and gas fields where pore pressures have declined by several tens of megapascals. Reverse faulting has occurred both above and below petroleum reservoirs, and normal faulting has occurred on the flanks of at least one reservoir. The theory of poroelasticity requires that fluid extraction locally alter the state of stress. Calculations with simple geometries predict stress perturbations that are consistent with observed earthquake locations and focal mechanisms. Measurements of surface displacement and strain, pore pressure, stress, and poroelastic rock properties in such areas could be used to test theoretical predictions and improve our understanding of earthquake mechanics. -Author
Rozhkova, E A; Ordzhonikidze, Z G; Druzhinin, A E; Seĭfulla, N R; Paniushkin, V V; Kuznetsov, Iu M
2007-01-01
The effects of a submaximum single physical load with a mixed aerobic-anaerobic character (combined rowing test) on the intensity of lipid peroxidation (LPO) processes, antioxidant state of the organism, and rheological properties of blood have been studied in a group of athletes. The administration of natural antioxidants significantly decreased the LPO stress induced by the physical load, reduced the suppression of the antioxidant system of the organism, and normalized the LPO-disturbed hemorheological parameters. Antioxidants such as carnosine, cytamine, and apilac can be used as non-doping means for the accelerated recovery and increase in the physical work capacity in athletes.
NASA Astrophysics Data System (ADS)
Wu, Yihong; Wang, Haomin; Choong, Catherine
2011-01-01
We report on a systematic electrical transport study of carbon nanowalls using both the normal metal and superconducting electrodes. The nonlinear transport and corresponding anomalous dI/dV versus bias curves below ˜2 K observed in samples with both Ti and Nb electrodes is accounted for by the formation of charge density waves due to enhanced density of states at the Fermi level at edges or extended defects. This phase competes with superconducting instability at very low temperature, as manifested by distinctive resistance-temperature behaviors and associated dV/dI characteristics observed in different samples.
Modulation of superconducting transition temperature in LaAlO3/SrTiO3 by SrTiO3 structural domains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noad, Hilary; Moler, Kathryn
2018-01-01
The tetragonal domain structure in SrTiO3 (STO) is known to modulate the normal-state carrier density in LaAlO3/SrTiO3 (LAO/STO) heterostructures, among other electronic properties, but the effect of STO domains on the superconductivity in LAO/STO has not been fully explored. Using a scanning SQUID susceptometer microscope to map the superconducting response as a function of temperature in LAO/STO, we find that the superconducting transition temperature is spatially inhomogeneous and modulated in a pattern that is characteristic of structural domains in the STO.
Tuning optical properties of opal photonic crystals by structural defects engineering
NASA Astrophysics Data System (ADS)
di Stasio, F.; Cucini, M.; Berti, L.; Comoretto, D.; Abbotto, A.; Bellotto, L.; Manfredi, N.; Marinzi, C.
2009-06-01
We report on the preparation and optical characterization of three dimensional colloidal photonic crystal (PhC) containing an engineered planar defect embedding photoactive push-pull dyes. Free standing polystyrene films having thickness between 0.6 and 3 mm doped with different dipolar chromophores were prepared. These films were sandwiched between two artificial opals creating a PhC structure with planar defect. The system was characterized by reflectance at normal incidence angle (R), variable angle transmittance (T) and photoluminescence spectroscopy (PL) Evidence of defect states were observed in T and R spectra which allow the light to propagate for selected frequencies within the pseudogap (stop band).
Correlation between size distribution and luminescence properties of spool-shaped InAs quantum dots
NASA Astrophysics Data System (ADS)
Xie, H.; Prioli, R.; Torelly, G.; Liu, H.; Fischer, A. M.; Jakomin, R.; Mourão, R.; Kawabata, R.; Pires, M. P.; Souza, P. L.; Ponce, F. A.
2017-05-01
InAs QDs embedded in an AlGaAs matrix have been produced by MOVPE with a partial capping and annealing technique to achieve controllable QD energy levels that could be useful for solar cell applications. The resulted spool-shaped QDs are around 5 nm in height and have a log-normal diameter distribution, which is observed by TEM to range from 5 to 15 nm. Two photoluminescence peaks associated with QD emission are attributed to the ground and the first excited states transitions. The luminescence peak width is correlated with the distribution of QD diameters through the diameter dependent QD energy levels.
Transgenic FingRs for Live Mapping of Synaptic Dynamics in Genetically-Defined Neurons
Son, Jong-Hyun; Keefe, Matthew D.; Stevenson, Tamara J.; Barrios, Joshua P.; Anjewierden, Scott; Newton, James B.; Douglass, Adam D.; Bonkowsky, Joshua L.
2016-01-01
Tools for genetically-determined visualization of synaptic circuits and interactions are necessary to build connectomics of the vertebrate brain and to screen synaptic properties in neurological disease models. Here we develop a transgenic FingR (fibronectin intrabodies generated by mRNA display) technology for monitoring synapses in live zebrafish. We demonstrate FingR labeling of defined excitatory and inhibitory synapses, and show FingR applicability for dissecting synapse dynamics in normal and disease states. Using our system we show that chronic hypoxia, associated with neurological defects in preterm birth, affects dopaminergic neuron synapse number depending on the developmental timing of hypoxia. PMID:26728131
NASA Astrophysics Data System (ADS)
Lapusta, N.; Liu, Y.
2007-12-01
Heterogeneity in fault properties can have significant effect on dynamic rupture propagation and aseismic slip. It is often assumed that a fixed heterogeneity would have similar effect on fault slip throughout the slip history. We investigate dynamic rupture interaction with a fault patch of higher normal stress over several earthquake cycles in a three-dimensional model. We find that the influence of the heterogeneity on dynamic events has significant variation and depends on prior slip history. We consider a planar strike-slip fault governed by rate and state friction and driven by slow tectonic loading on deeper extension of the fault. The 30 km by 12 km velocity-weakening region, which is potentially seismogenic, is surrounded by steady-state velocity-strengthening region. The normal stress is constant over the fault, except in a circular patch of 2 km in diameter located in the seismogenic region, where normal stress is higher than on the rest of the fault. Our simulations employ the methodology developed by Lapusta and Liu (AGU, 2006), which is able to resolve both dynamic and quasi-static stages of spontaneous slip accumulation in a single computational procedure. The initial shear stress is constant on the fault, except in a small area where it is higher and where the first large dynamic event initiates. For patches with 20%, 40%, 60% higher normal stress, the first event has significant dynamic interaction with the patch, creating a rupture speed decrease followed by a supershear burst and larger slip around the patch. Hence, in the first event, the patch acts as a seismic asperity. For the case of 100% higher stress, the rupture is not able to break the patch in the first event. In subsequent dynamic events, the behavior depends on the strength of heterogeneity. For the patch with 20% higher normal stress, dynamic rupture in subsequent events propagates through the patch without any noticeable perturbation in rupture speed or slip. In particular, supershear propagation and additional slip accumulation around the patch are never repeated in the simulated history of the fault, and the patch stops manifesting itself as a seismic asperity. This is due to higher shear stress that is established at the patch after the first earthquake cycle. For patches with higher normal stress, shear stress redistribution also occurs, but it is less effective. The patches with 40% and 60% higher normal stress continue to affect rupture speed and fault slip in some of subsequent events, although the effect is much diminished with respect to the first event. For example, there are no supershear bursts. The patch with 100% higher normal stress is first broken in the second large event, and it retains significant influence on rupture speed and slip throughout the fault history, occasionally resulting in supershear bursts. Additional slip complexity emerges for patches with 40% and higher normal stress contrast. Since higher normal stress corresponds to a smaller nucleation size, nucleation of some events moves from the rheological transitions (where nucleation occurs in the cases with no stronger patch and with the patch of 20% higher normal stress) to the patches of higher normal stress. The patches nucleate both large, model-spanning, events, and small events that arrest soon after exiting the patch. Hence not every event that originates at the location of a potential seismic asperity is destined to be large, as its subsequent propagation is significantly influenced by the state of stress outside the patch.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nadeem, M., E-mail: mnadeemsb@gmail.com; Iqbal, M. Javid; Farhan, M. Arshad
2016-08-15
Highlights: • Concept of normalized magnetization is introduced to explain relative magnetic transitions. • Coexistence of two magnetic modes is correlated with the magnetic transitions and MIT. • Field induced melting and collapse of charge ordered antiferromagnetic (CO-AFM) state into ferromagnetic (FM) state is conferred. - Abstract: The magnetic properties of polycrystalline La{sub 0.5-x}Pr{sub x}Ca{sub 0.5}MnO{sub 3} material are investigated at different temperatures. The existence of magnetically diverse phases associated with various relaxation modes and their modulation with temperature and doping is analyzed. La{sub 0.5}Ca{sub 0.5}MnO{sub 3} exhibited field induced melting and collapse of charge ordered antiferromagnetic (CO-AFM) phase intomore » ferromagnetic (FM) state. This phenomenon results in lowering of Neel’s temperature (T{sub N}) along with changes in the slope of magnetic moment with temperature. Using normalized M(T) curves, the variation and interplay of charge ordered temperature (T{sub CO}), Curie temperature (T{sub C}) and T{sub N} is conferred. The coexistence of two magnetic modes is explained as major ingredient for the magnetic transitions as well as metal to insulator transition (MIT); where melting and collapse of charge ordering is conversed as basic feature in these Praseodymium (Pr) doped La{sub 0.5}Ca{sub 0.5}MnO{sub 3} materials.« less
Earth's Outer Core Properties Estimated Using Bayesian Inversion of Normal Mode Eigenfrequencies
NASA Astrophysics Data System (ADS)
Irving, J. C. E.; Cottaar, S.; Lekic, V.
2016-12-01
The outer core is arguably Earth's most dynamic region, and consists of an iron-nickel liquid with an unknown combination of lighter alloying elements. Frequencies of Earth's normal modes provide the strongest constraints on the radial profiles of compressional wavespeed, VΦ, and density, ρ, in the outer core. Recent great earthquakes have yielded new normal mode measurements; however, mineral physics experiments and calculations are often compared to the Preliminary reference Earth model (PREM), which is 35 years old and does not provide uncertainties. Here we investigate the thermo-elastic properties of the outer core using Earth's free oscillations and a Bayesian framework. To estimate radial structure of the outer core and its uncertainties, we choose to exploit recent datasets of normal mode centre frequencies. Under the self-coupling approximation, centre frequencies are unaffected by lateral heterogeneities in the Earth, for example in the mantle. Normal modes are sensitive to both VΦ and ρ in the outer core, with each mode's specific sensitivity depending on its eigenfunctions. We include a priori bounds on outer core models that ensure compatibility with measurements of mass and moment of inertia. We use Bayesian Monte Carlo Markov Chain techniques to explore different choices in parameterizing the outer core, each of which represents different a priori constraints. We test how results vary (1) assuming a smooth polynomial parametrization, (2) allowing for structure close to the outer core's boundaries, (3) assuming an Equation-of-State and adiabaticity and inverting directly for thermo-elastic parameters. In the second approach we recognize that the outer core may have distinct regions close to the core-mantle and inner core boundaries and investigate models which parameterize the well mixed outer core separately from these two layers. In the last approach we seek to map the uncertainties directly into thermo-elastic parameters including the bulk modulus, its pressure derivative, and molar mass and volume, with particular attention paid to the (inherent) trade-offs between the different coefficients. We discuss our results in terms of added uncertainty to the light element composition of the outer core and the potential existence of anomalous structure near the outer core's boundaries.
Groll, Nickolas; Pellin, Michael J.; Zasadzinksi, John F.; ...
2015-09-18
In this paper, we describe the design and testing of a point contact tunneling spectroscopy device that can measure material surface superconducting properties (i.e., the superconducting gap Δ and the critical temperature T C) and density of states over large surface areas with size up to mm 2. The tip lateral (X,Y) motion, mounted on a (X,Y,Z) piezo-stage, was calibrated on a patterned substrate consisting of Nb lines sputtered on a gold film using both normal (Al) and superconducting (PbSn) tips at 1.5 K. The tip vertical (Z) motion control enables some adjustment of the tip-sample junction resistance that canmore » be measured over 7 orders of magnitudes from a quasi-ohmic regime (few hundred Ω) to the tunnel regime (from tens of kΩ up to few GΩ). The low noise electronic and LabVIEW program interface are also presented. Finally, the point contact regime and the large-scale motion capabilities are of particular interest for mapping and testing the superconducting properties of macroscopic scale superconductor-based devices.« less
Thermophysical Properties of Solid and Liquid Ti-6Al-4V (TA6V) Alloy
NASA Astrophysics Data System (ADS)
Boivineau, M.; Cagran, C.; Doytier, D.; Eyraud, V.; Nadal, M.-H.; Wilthan, B.; Pottlacher, G.
2006-03-01
Ti-6Al-4V (TA6V) titanium alloy is widely used in industrial applications such as aeronautic and aerospace due to its good mechanical properties at high temperatures. Experiments on two different resistive pulse heating devices (CEA Valduc and TU-Graz) have been carried out in order to study thermophysical properties (such as electrical resistivity, volume expansion, heat of fusion, heat capacity, normal spectral emissivity, thermal diffusivity, and thermal conductivity) of both solid and liquid Ti-6Al-4V. Fast time-resolved measurements of current, voltage, and surface radiation and shadowgraphs of the volume have been undertaken. At TU-Graz, a fast laser polarimeter has been used for determining the emissivity of liquid Ti-6Al-4V at 684.5 nm and a differential scanning calorimeter (DSC) for measuring the heat capacity of solid Ti-6Al-4V. This study deals with the specific behavior of the different solid phase transitions (effect of heating rate) and the melting region, and emphasizes the liquid state ( T > 2000 K).
Seeing the Invisible: Embedding Tests in Code That Cannot be Modified
NASA Technical Reports Server (NTRS)
O'Malley, Owen; Mansouri-Samani, Masoud; Mehlitz, Peter; Penix, John
2005-01-01
The difficulty of characterizing and observing valid software behavior during testing can be very difficult in flight systems. To address this issue, we evaluated several approaches to increasing test observability on the Shuttle Abort Flight Management (SAFM) system. To increase test observability, we added probes into the running system to evaluate the internal state and analyze test data. To minimize the impact of the instrumentation and reduce manual effort, we used Aspect-Oriented Programming (AOP) tools to instrument the source code. We developed and elicited a spectrum of properties, from generic to application specific properties, to be monitored via the instrumentation. To evaluate additional approaches, SAFM was ported to Linux, enabling the use of gcov for measuring test coverage, Valgrind for looking for memory usage errors, and libraries for finding non-normal floating point values. An in-house C++ source code scanning tool was also used to identify violations of SAFM coding standards, and other potentially problematic C++ constructs. Using these approaches with the existing test data sets, we were able to verify several important properties, confirm several problems and identify some previously unidentified issues.
Tome-Garcia, Jessica; Tejero, Rut; Nudelman, German; Yong, Raymund L; Sebra, Robert; Wang, Huaien; Fowkes, Mary; Magid, Margret; Walsh, Martin; Silva-Vargas, Violeta; Zaslavsky, Elena; Friedel, Roland H; Doetsch, Fiona; Tsankova, Nadejda M
2017-05-09
Characterization of non-neoplastic and malignant human stem cell populations in their native state can provide new insights into gliomagenesis. Here we developed a purification strategy to directly isolate EGFR +/- populations from human germinal matrix (GM) and adult subventricular zone autopsy tissues, and from de novo glioblastoma (GBM) resections, enriching for cells capable of binding EGF ligand ( LB EGFR + ), and uniquely compared their functional and molecular properties. LB EGFR + populations in both GM and GBM encompassed all sphere-forming cells and displayed proliferative stem cell properties in vitro. In xenografts, LB EGFR + GBM cells showed robust tumor initiation and progression to high-grade, infiltrative gliomas. Whole-transcriptome sequencing analysis confirmed enrichment of proliferative pathways in both developing and neoplastic freshly isolated EGFR + populations, and identified both unique and shared sets of genes. The ability to prospectively isolate stem cell populations using native ligand-binding capacity opens new doors onto understanding both normal human development and tumor cell biology. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Maquer, Ghislain; Laurent, Marc; Brandejsky, Vaclav; Pretterklieber, Michael L; Zysset, Philippe K
2014-06-01
Disc degeneration, usually associated with low back pain and changes of intervertebral stiffness, represents a major health issue. As the intervertebral disc (IVD) morphology influences its stiffness, the link between mechanical properties and degenerative grade is partially lost without an efficient normalization of the stiffness with respect to the morphology. Moreover, although the behavior of soft tissues is highly nonlinear, only linear normalization protocols have been defined so far for the disc stiffness. Thus, the aim of this work is to propose a nonlinear normalization based on finite elements (FE) simulations and evaluate its impact on the stiffness of human anatomical specimens of lumbar IVD. First, a parameter study involving simulations of biomechanical tests (compression, flexion/extension, bilateral torsion and bending) on 20 FE models of IVDs with various dimensions was carried out to evaluate the effect of the disc's geometry on its compliance and establish stiffness/morphology relations necessary to the nonlinear normalization. The computed stiffness was then normalized by height (H), cross-sectional area (CSA), polar moment of inertia (J) or moments of inertia (Ixx, Iyy) to quantify the effect of both linear and nonlinear normalizations. In the second part of the study, T1-weighted MRI images were acquired to determine H, CSA, J, Ixx and Iyy of 14 human lumbar IVDs. Based on the measured morphology and pre-established relation with stiffness, linear and nonlinear normalization routines were then applied to the compliance of the specimens for each quasi-static biomechanical test. The variability of the stiffness prior to and after normalization was assessed via coefficient of variation (CV). The FE study confirmed that larger and thinner IVDs were stiffer while the normalization strongly attenuated the effect of the disc geometry on its stiffness. Yet, notwithstanding the results of the FE study, the experimental stiffness showed consistently higher CV after normalization. Assuming that geometry and material properties affect the mechanical response, they can also compensate for one another. Therefore, the larger CV after normalization can be interpreted as a strong variability of the material properties, previously hidden by the geometry's own influence. In conclusion, a new normalization protocol for the intervertebral disc stiffness in compression, flexion, extension, bilateral torsion and bending was proposed, with the possible use of MRI and FE to acquire the discs' anatomy and determine the nonlinear relations between stiffness and morphology. Such protocol may be useful to relate the disc's mechanical properties to its degree of degeneration.
NASA Astrophysics Data System (ADS)
Nazemi, Nima; Pezeshk, Shahram; Sedaghati, Farhad
2017-08-01
Unique properties of coda waves are employed to evaluate the frequency dependent quality factor of Lg waves using the coda normalization method in the New Madrid seismic zone of the central United States. Instrument and site responses are eliminated and source functions are isolated to construct the inversion problem. For this purpose, we used 121 seismograms from 37 events with moment magnitudes, M, ranging from 2.5 to 5.2 and hypocentral distances from 120 to 440 km recorded by 11 broadband stations. A singular value decomposition (SVD) algorithm is used to extract Q values from the data, while the geometric spreading exponent is assumed to be a constant. Inversion results are then fitted with a power law equation from 3 to 12 Hz to derive the frequency dependent quality factor function. The final results of the analysis are QVLg (f) = (410 ± 38) f0.49 ± 0.05 for the vertical component and QHLg (f) = (390 ± 26) f0.56 ± 0.04 for the horizontal component, where the term after ± sign represents one standard error. For stations within the Mississippi embayment with an average sediment depth of 1 km around the Memphis metropolitan area, estimation of quality factor using the coda normalization method is not well-constrained at low frequencies (f < 3 Hz). There may be several reasons contributing to this issue, such as low frequency surface wave contamination, site effects, or even a change in coda wave scattering regime which can exacerbate the scatter of the data.
Tunnelling spectroscopy of Andreev states in graphene
NASA Astrophysics Data System (ADS)
Bretheau, Landry; Wang, Joel I.-Jan; Pisoni, Riccardo; Watanabe, Kenji; Taniguchi, Takashi; Jarillo-Herrero, Pablo
2017-08-01
A normal conductor placed in good contact with a superconductor can inherit its remarkable electronic properties. This proximity effect microscopically originates from the formation in the conductor of entangled electron-hole states, called Andreev states. Spectroscopic studies of Andreev states have been performed in just a handful of systems. The unique geometry, electronic structure and high mobility of graphene make it a novel platform for studying Andreev physics in two dimensions. Here we use a full van der Waals heterostructure to perform tunnelling spectroscopy measurements of the proximity effect in superconductor-graphene-superconductor junctions. The measured energy spectra, which depend on the phase difference between the superconductors, reveal the presence of a continuum of Andreev bound states. Moreover, our device heterostructure geometry and materials enable us to measure the Andreev spectrum as a function of the graphene Fermi energy, showing a transition between different mesoscopic regimes. Furthermore, by experimentally introducing a novel concept, the supercurrent spectral density, we determine the supercurrent-phase relation in a tunnelling experiment, thus establishing the connection between Andreev physics at finite energy and the Josephson effect. This work opens up new avenues for probing exotic topological phases of matter in hybrid superconducting Dirac materials.
Richard, F; Villars, M; Thibaud, S
2013-08-01
The viscoelastic behavior of articular cartilage changes with progression of osteoarthritis. The objective of this study is to quantify this progression and to propose a viscoelastic model of articular cartilage taking into account the degree of osteoarthritis that which be easily used in predictive numerical simulations of the hip joint behavior. To quantify the effects of osteoarthritis (OA) on the viscoelastic behavior of human articular cartilage, samples were obtained from the hip arthroplasty due to femoral neck fracture (normal cartilage) or advanced coxarthrosis (OA cartilage). Experimental data were obtained from instrumented indentation tests on unfrozen femoral cartilage collected and studied in the day following the prosthetic hip surgery pose. By using an inverse method coupled with a numerical modeling (FEM) of all experimental data of the indentation tests, the viscoelastic properties of the two states were quantified. Mean values of viscoelastic parameters were significantly lower for OA cartilage than normal (instantaneous and relaxed tension moduli, viscosity coefficient). Based on the results and in the thermodynamic framework, a constitutive viscoelastic model taking into account the degree of osteoarthritis as an internal variable of damage is proposed. The isotropic phenomenological viscoelastic model including degradation provides an accurate prediction of the mechanical response of the normal human cartilage and OA cartilage with advanced coxarthrosis but should be further validated for intermediate degrees of osteoarthritis. Copyright © 2013 Elsevier Ltd. All rights reserved.
Dynamical analysis of Parkinsonian state emulated by hybrid Izhikevich neuron models
NASA Astrophysics Data System (ADS)
Liu, Chen; Wang, Jiang; Yu, Haitao; Deng, Bin; Wei, Xile; Li, Huiyan; Loparo, Kenneth A.; Fietkiewicz, Chris
2015-11-01
Computational models play a significant role in exploring novel theories to complement the findings of physiological experiments. Various computational models have been developed to reveal the mechanisms underlying brain functions. Particularly, in the development of therapies to modulate behavioral and pathological abnormalities, computational models provide the basic foundations to exhibit transitions between physiological and pathological conditions. Considering the significant roles of the intrinsic properties of the globus pallidus and the coupling connections between neurons in determining the firing patterns and the dynamical activities of the basal ganglia neuronal network, we propose a hypothesis that pathological behaviors under the Parkinsonian state may originate from combined effects of intrinsic properties of globus pallidus neurons and synaptic conductances in the whole neuronal network. In order to establish a computational efficient network model, hybrid Izhikevich neuron model is used due to its capacity of capturing the dynamical characteristics of the biological neuronal activities. Detailed analysis of the individual Izhikevich neuron model can assist in understanding the roles of model parameters, which then facilitates the establishment of the basal ganglia-thalamic network model, and contributes to a further exploration of the underlying mechanisms of the Parkinsonian state. Simulation results show that the hybrid Izhikevich neuron model is capable of capturing many of the dynamical properties of the basal ganglia-thalamic neuronal network, such as variations of the firing rates and emergence of synchronous oscillations under the Parkinsonian condition, despite the simplicity of the two-dimensional neuronal model. It may suggest that the computational efficient hybrid Izhikevich neuron model can be used to explore basal ganglia normal and abnormal functions. Especially it provides an efficient way of emulating the large-scale neuron network and potentially contributes to development of improved therapy for neurological disorders such as Parkinson's disease.
A Markov model for the temporal dynamics of balanced random networks of finite size
Lagzi, Fereshteh; Rotter, Stefan
2014-01-01
The balanced state of recurrent networks of excitatory and inhibitory spiking neurons is characterized by fluctuations of population activity about an attractive fixed point. Numerical simulations show that these dynamics are essentially nonlinear, and the intrinsic noise (self-generated fluctuations) in networks of finite size is state-dependent. Therefore, stochastic differential equations with additive noise of fixed amplitude cannot provide an adequate description of the stochastic dynamics. The noise model should, rather, result from a self-consistent description of the network dynamics. Here, we consider a two-state Markovian neuron model, where spikes correspond to transitions from the active state to the refractory state. Excitatory and inhibitory input to this neuron affects the transition rates between the two states. The corresponding nonlinear dependencies can be identified directly from numerical simulations of networks of leaky integrate-and-fire neurons, discretized at a time resolution in the sub-millisecond range. Deterministic mean-field equations, and a noise component that depends on the dynamic state of the network, are obtained from this model. The resulting stochastic model reflects the behavior observed in numerical simulations quite well, irrespective of the size of the network. In particular, a strong temporal correlation between the two populations, a hallmark of the balanced state in random recurrent networks, are well represented by our model. Numerical simulations of such networks show that a log-normal distribution of short-term spike counts is a property of balanced random networks with fixed in-degree that has not been considered before, and our model shares this statistical property. Furthermore, the reconstruction of the flow from simulated time series suggests that the mean-field dynamics of finite-size networks are essentially of Wilson-Cowan type. We expect that this novel nonlinear stochastic model of the interaction between neuronal populations also opens new doors to analyze the joint dynamics of multiple interacting networks. PMID:25520644
Indentation stiffness does not discriminate between normal and degraded articular cartilage.
Brown, Cameron P; Crawford, Ross W; Oloyede, Adekunle
2007-08-01
Relative indentation characteristics are commonly used for distinguishing between normal healthy and degraded cartilage. The application of this parameter in surgical decision making and an appreciation of articular cartilage biomechanics has prompted us to hypothesise that it is difficult to define a reference stiffness to characterise normal articular cartilage. This hypothesis is tested for validity by carrying out biomechanical indentation of articular cartilage samples that are characterised as visually normal and degraded relative to proteoglycan depletion and collagen disruption. Compressive loading was applied at known strain rates to visually normal, artificially degraded and naturally osteoarthritic articular cartilage and observing the trends of their stress-strain and stiffness characteristics. While our results demonstrated a 25% depreciation in the stiffness of individual samples after proteoglycan depletion, they also showed that when compared to the stiffness of normal samples only 17% lie outside the range of the stress-strain behaviour of normal samples. We conclude that the extent of the variability in the properties of normal samples, and the degree of overlap (81%) of the biomechanical properties of normal and degraded matrices demonstrate that indentation data cannot form an accurate basis for distinguishing normal from abnormal articular cartilage samples with consequences for the application of this mechanical process in the clinical environment.
NASA Astrophysics Data System (ADS)
Urata, Yumi; Kuge, Keiko; Kase, Yuko
2015-02-01
Phase transitions of pore water have never been considered in dynamic rupture simulations with thermal pressurization (TP), although they may control TP. From numerical simulations of dynamic rupture propagation including TP, in the absence of any water phase transition process, we predict that frictional heating and TP are likely to change liquid pore water into supercritical water for a strike-slip fault under depth-dependent stress. This phase transition causes changes of a few orders of magnitude in viscosity, compressibility, and thermal expansion among physical properties of water, thus affecting the diffusion of pore pressure. Accordingly, we perform numerical simulations of dynamic ruptures with TP, considering physical properties that vary with the pressure and temperature of pore water on a fault. To observe the effects of the phase transition, we assume uniform initial stress and no fault-normal variations in fluid density and viscosity. The results suggest that the varying physical properties decrease the total slip in cases with high stress at depth and small shear zone thickness. When fault-normal variations in fluid density and viscosity are included in the diffusion equation, they activate TP much earlier than the phase transition. As a consequence, the total slip becomes greater than that in the case with constant physical properties, eradicating the phase transition effect. Varying physical properties do not affect the rupture velocity, irrespective of the fault-normal variations. Thus, the phase transition of pore water has little effect on dynamic ruptures. Fault-normal variations in fluid density and viscosity may play a more significant role.
Gate tunable parallel double quantum dots in InAs double-nanowire devices
NASA Astrophysics Data System (ADS)
Baba, S.; Matsuo, S.; Kamata, H.; Deacon, R. S.; Oiwa, A.; Li, K.; Jeppesen, S.; Samuelson, L.; Xu, H. Q.; Tarucha, S.
2017-12-01
We report fabrication and characterization of InAs nanowire devices with two closely placed parallel nanowires. The fabrication process we develop includes selective deposition of the nanowires with micron scale alignment onto predefined finger bottom gates using a polymer transfer technique. By tuning the double nanowire with the finger bottom gates, we observed the formation of parallel double quantum dots with one quantum dot in each nanowire bound by the normal metal contact edges. We report the gate tunability of the charge states in individual dots as well as the inter-dot electrostatic coupling. In addition, we fabricate a device with separate normal metal contacts and a common superconducting contact to the two parallel wires and confirm the dot formation in each wire from comparison of the transport properties and a superconducting proximity gap feature for the respective wires. With the fabrication techniques established in this study, devices can be realized for more advanced experiments on Cooper-pair splitting, generation of Parafermions, and so on.
Suppression of seizures based on the multi-coupled neural mass model.
Cao, Yuzhen; Ren, Kaili; Su, Fei; Deng, Bin; Wei, Xile; Wang, Jiang
2015-10-01
Epilepsy is one of the most common serious neurological disorders, which affects approximately 1% of population in the world. In order to effectively control the seizures, we propose a novel control methodology, which combines the feedback linearization control (FLC) with the underlying mechanism of epilepsy, to achieve the suppression of seizures. The three coupled neural mass model is constructed to study the property of the electroencephalographs (EEGs). Meanwhile, with the model we research on the propagation of epileptiform waves and the synchronization of populations, which are taken as the foundation of our control method. Results show that the proposed approach not only yields excellent performances in clamping the pathological spiking patterns to the reference signals derived under the normal state but also achieves the normalization of the pathological parameter, where the parameters are estimated from EEGs with Unscented Kalman Filter. The specific contribution of this paper is to treat the epilepsy from its pathogenesis with the FLC, which provides critical theoretical basis for the clinical treatment of neurological disorders.
High-throughput linear optical stretcher for mechanical characterization of blood cells.
Roth, Kevin B; Neeves, Keith B; Squier, Jeff; Marr, David W M
2016-04-01
This study describes a linear optical stretcher as a high-throughput mechanical property cytometer. Custom, inexpensive, and scalable optics image a linear diode bar source into a microfluidic channel, where cells are hydrodynamically focused into the optical stretcher. Upon entering the stretching region, antipodal optical forces generated by the refraction of tightly focused laser light at the cell membrane deform each cell in flow. Each cell relaxes as it flows out of the trap and is compared to the stretched state to determine deformation. The deformation response of untreated red blood cells and neutrophils were compared to chemically treated cells. Statistically significant differences were observed between normal, diamide-treated, and glutaraldehyde-treated red blood cells, as well as between normal and cytochalasin D-treated neutrophils. Based on the behavior of the pure, untreated populations of red cells and neutrophils, a mixed population of these cells was tested and the discrete populations were identified by deformability. © 2015 International Society for Advancement of Cytometry. © 2015 International Society for Advancement of Cytometry.
Enhanced Sidescan-Sonar Imagery Offshore of Southeastern Massachusetts
Poppe, Lawrence J.; McMullen, Kate Y.; Williams, S. Jeffress; Ackerman, Seth D.; Glomb, K.A.; Forfinski, N.A.
2008-01-01
The U.S. Geological Survey (USGS), National Oceanic and Atmospheric Administration (NOAA), and Massachusetts Office of Coastal Zone Management (CZM) have been working cooperatively to map and study the coastal sea floor. The sidescan-sonar imagery collected during NOAA hydrographic surveys has been included as part of these studies. However, the original sonar imagery contains tonal artifacts from environmental noise (for example, sea state), equipment settings (for example, power and gain changes), and processing (for example, inaccurate cross-track and line-to-line normalization), which impart a quilt-like patchwork appearance to the mosaics. These artifacts can obscure the normalized backscatter properties of the sea floor. To address this issue, sidescan-sonar imagery from surveys H11076 and H11079 offshore of southeastern Massachusetts was enhanced by matching backscatter tones of adjacent sidescan-sonar lines. These mosaics provide continuous grayscale perspectives of the backscatter, more accurately reveal the sea-floor geologic trends, and minimize the environment-, acquisition-, and processing-related noise.
Quantum transport through 3D Dirac materials
NASA Astrophysics Data System (ADS)
Salehi, M.; Jafari, S. A.
2015-08-01
Bismuth and its alloys provide a paradigm to realize three dimensional materials whose low-energy effective theory is given by Dirac equation in 3+1 dimensions. We study the quantum transport properties of three dimensional Dirac materials within the framework of Landauer-Büttiker formalism. Charge carriers in normal metal satisfying the Schrödinger equation, can be split into four-component with appropriate matching conditions at the boundary with the three dimensional Dirac material (3DDM). We calculate the conductance and the Fano factor of an interface separating 3DDM from a normal metal, as well as the conductance through a slab of 3DDM. Under certain circumstances the 3DDM appears transparent to electrons hitting the 3DDM. We find that electrons hitting the metal-3DDM interface from metallic side can enter 3DDM in a reversed spin state as soon as their angle of incidence deviates from the direction perpendicular to interface. However the presence of a second interface completely cancels this effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salehi, M.; Jafari, S.A., E-mail: jafari@physics.sharif.edu; Center of Excellence for Complex Systems and Condensed Matter
Bismuth and its alloys provide a paradigm to realize three dimensional materials whose low-energy effective theory is given by Dirac equation in 3+1 dimensions. We study the quantum transport properties of three dimensional Dirac materials within the framework of Landauer–Büttiker formalism. Charge carriers in normal metal satisfying the Schrödinger equation, can be split into four-component with appropriate matching conditions at the boundary with the three dimensional Dirac material (3DDM). We calculate the conductance and the Fano factor of an interface separating 3DDM from a normal metal, as well as the conductance through a slab of 3DDM. Under certain circumstances themore » 3DDM appears transparent to electrons hitting the 3DDM. We find that electrons hitting the metal-3DDM interface from metallic side can enter 3DDM in a reversed spin state as soon as their angle of incidence deviates from the direction perpendicular to interface. However the presence of a second interface completely cancels this effect.« less
Patra, Shinjan; Biswas, Sugata Narayan; Datta, Joydip; Chakraborty, Partha Pratim
2017-12-07
A young man with subtle clinical features suggestive of hypersomatotropism presented with acute-onset severe headache. Relevant investigations confirmed polycythaemia and growth hormone (GH)-secreting pituitary macroadenoma with apoplexy. Secondary polycythaemia and myeloproliferative disorders were ruled out. At follow-up after 3 months, resolution of polycythaemia and acromegaly was observed, evident on normal haemoglobin levels, a normocellular marrow, and normal insulin-like growth factor-1 (IGF-1) with glucose-suppressed GH levels. Direct mitogenic properties of GH-IGF-1 axis on bone marrow progenitor cells may very rarely lead to erythroid hyperplasia and subsequent polycythaemia, reversible with successful therapy of acromegaly. In this case, polycythaemia secondary to hypersomatotropism likely resulted in pituitary apoplexy with subsequent remission of both acromegaly and resultant polycythaemia. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurapov, Denis; Reiss, Jennifer; Trinh, David H.
2007-07-15
Alumina thin films were deposited onto tempered hot working steel substrates from an AlCl{sub 3}-O{sub 2}-Ar-H{sub 2} gas mixture by plasma-assisted chemical vapor deposition. The normalized ion flux was varied during deposition through changes in precursor content while keeping the cathode voltage and the total pressure constant. As the precursor content in the total gas mixture was increased from 0.8% to 5.8%, the deposition rate increased 12-fold, while the normalized ion flux decreased by approximately 90%. The constitution, morphology, impurity incorporation, and the elastic properties of the alumina thin films were found to depend on the normalized ion flux. Thesemore » changes in structure, composition, and properties induced by normalized ion flux may be understood by considering mechanisms related to surface and bulk diffusion.« less
Ex vivo characterization of normal and adenocarcinoma colon samples by Mueller matrix polarimetry.
Ahmad, Iftikhar; Ahmad, Manzoor; Khan, Karim; Ashraf, Sumara; Ahmad, Shakil; Ikram, Masroor
2015-05-01
Mueller matrix polarimetry along with polar decomposition algorithm was employed for the characterization of ex vivo normal and adenocarcinoma human colon tissues by polarized light in the visible spectral range (425-725 nm). Six derived polarization metrics [total diattenuation (DT ), retardance (RT ), depolarization(ΔT ), linear diattenuation (DL), retardance (δ), and depolarization (ΔL)] were compared for normal and adenocarcinoma colon tissue samples. The results show that all six polarimetric properties for adenocarcinoma samples were significantly higher as compared to the normal samples for all wavelengths. The Wilcoxon rank sum test illustrated that total retardance is a good candidate for the discrimination of normal and adenocarcinoma colon samples. Support vector machine classification for normal and adenocarcinoma based on the four polarization properties spectra (ΔT , ΔL, RT ,and δ) yielded 100% accuracy, sensitivity, and specificity, while both DTa nd DL showed 66.6%, 33.3%, and 83.3% accuracy, sensitivity, and specificity, respectively. The combination of polarization analysis and given classification methods provides a framework to distinguish the normal and cancerous tissues.
Magnetic measurements on human erythrocytes: Normal, beta thalassemia major, and sickle
NASA Astrophysics Data System (ADS)
Sakhnini, Lama
2003-05-01
In this article magnetic measurements were made on human erythrocytes at different hemoglobin states (normal and reduced hemoglobin). Different blood samples: normal, beta thalassemia major, and sickle were studied. Beta thalassemia major and sickle samples were taken from patients receiving lifelong blood transfusion treatment. All samples examined exhibited diamagnetic behavior. Beta thalassemia major and sickle samples showed higher diamagnetic susceptibilities than that for the normal, which was attributed to the increase of membrane to hemoglobin volume ratio of the abnormal cells. Magnetic measurements showed that the erythrocytes in the reduced state showed less diamagnetic response in comparison with erythrocytes in the normal state. Analysis of the paramagnetic component of magnetization curves gave an effective magnetic moment of μeff=7.6 μB per reduced hemoglobin molecule. The same procedure was applied to sickle and beta thalassemia major samples and values for μeff were found to be comparable to that of the normal erythrocytes.
Chen, Bingan; Zhong, Guofang; Oppenheimer, Pola Goldberg; Zhang, Can; Tornatzky, Hans; Esconjauregui, Santiago; Hofmann, Stephan; Robertson, John
2015-02-18
We have systematically studied the macroscopic adhesive properties of vertically aligned nanotube arrays with various packing density and roughness. Using a tensile setup in shear and normal adhesion, we find that there exists a maximum packing density for nanotube arrays to have adhesive properties. Too highly packed tubes do not offer intertube space for tube bending and side-wall contact to surfaces, thus exhibiting no adhesive properties. Likewise, we also show that the surface roughness of the arrays strongly influences the adhesion properties and the reusability of the tubes. Increasing the surface roughness of the array strengthens the adhesion in the normal direction, but weakens it in the shear direction. Altogether, these results allow progress toward mimicking the gecko's vertical mobility.
Peristeri, Eleni; Andreou, Maria; Tsimpli, Ianthi M.
2017-01-01
Although language impairment is commonly associated with the autism spectrum disorder (ASD), the Diagnostic Statistical Manual no longer includes language impairment as a necessary component of an ASD diagnosis (American Psychiatric Association, 2013). However, children with ASD and no comorbid intellectual disability struggle with some aspects of language whose precise nature is still outstanding. Narratives have been extensively used as a tool to examine lexical and syntactic abilities, as well as pragmatic skills in children with ASD. This study contributes to this literature by investigating the narrative skills of 30 Greek-speaking children with ASD and normal non-verbal IQ, 16 with language skills in the upper end of the normal range (ASD-HL), and 14 in the lower end of the normal range (ASD-LL). The control group consisted of 15 age-matched typically-developing (TD) children. Narrative performance was measured in terms of both microstructural and macrostructural properties. Microstructural properties included lexical and syntactic measures of complexity such as subordinate vs. coordinate clauses and types of subordinate clauses. Macrostructure was measured in terms of the diversity in the use of internal state terms (ISTs) and story structure complexity, i.e., children's ability to produce important units of information that involve the setting, characters, events, and outcomes of the story, as well as the characters' thoughts and feelings. The findings demonstrate that high language ability and syntactic complexity pattern together in ASD children's narrative performance and that language ability compensates for autistic children's pragmatic deficit associated with the production of Theory of Mind-related ISTs. Nevertheless, both groups of children with ASD (high and low language ability) scored lower than the TD controls in the production of Theory of Mind-unrelated ISTs, modifier clauses and story structure complexity. PMID:29209258
GlycReSoft: A Software Package for Automated Recognition of Glycans from LC/MS Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maxwell, Evan; Tan, Yan; Tan, Yuxiang
2012-09-26
Glycosylation modifies the physicochemical properties and protein binding functions of glycoconjugates. These modifications are biosynthesized in the endoplasmic reticulum and Golgi apparatus by a series of enzymatic transformations that are under complex control. As a result, mature glycans on a given site are heterogeneous mixtures of glycoforms. This gives rise to a spectrum of adhesive properties that strongly influences interactions with binding partners and resultant biological effects. In order to understand the roles glycosylation plays in normal and disease processes, efficient structural analysis tools are necessary. In the field of glycomics, liquid chromatography/mass spectrometry (LC/MS) is used to profile themore » glycans present in a given sample. This technology enables comparison of glycan compositions and abundances among different biological samples, i.e. normal versus disease, normal versus mutant, etc. Manual analysis of the glycan profiling LC/MS data is extremely time-consuming and efficient software tools are needed to eliminate this bottleneck. In this work, we have developed a tool to computationally model LC/MS data to enable efficient profiling of glycans. Using LC/MS data deconvoluted by Decon2LS/DeconTools, we built a list of unique neutral masses corresponding to candidate glycan compositions summarized over their various charge states, adducts and range of elution times. Our work aims to provide confident identification of true compounds in complex data sets that are not amenable to manual interpretation. This capability is an essential part of glycomics work flows. We demonstrate this tool, GlycReSoft, using an LC/MS dataset on tissue derived heparan sulfate oligosaccharides. The software, code and a test data set are publically archived under an open source license.« less
Peristeri, Eleni; Andreou, Maria; Tsimpli, Ianthi M
2017-01-01
Although language impairment is commonly associated with the autism spectrum disorder (ASD), the Diagnostic Statistical Manual no longer includes language impairment as a necessary component of an ASD diagnosis (American Psychiatric Association, 2013). However, children with ASD and no comorbid intellectual disability struggle with some aspects of language whose precise nature is still outstanding. Narratives have been extensively used as a tool to examine lexical and syntactic abilities, as well as pragmatic skills in children with ASD. This study contributes to this literature by investigating the narrative skills of 30 Greek-speaking children with ASD and normal non-verbal IQ, 16 with language skills in the upper end of the normal range (ASD-HL), and 14 in the lower end of the normal range (ASD-LL). The control group consisted of 15 age-matched typically-developing (TD) children. Narrative performance was measured in terms of both microstructural and macrostructural properties. Microstructural properties included lexical and syntactic measures of complexity such as subordinate vs. coordinate clauses and types of subordinate clauses. Macrostructure was measured in terms of the diversity in the use of internal state terms (ISTs) and story structure complexity, i.e., children's ability to produce important units of information that involve the setting, characters, events, and outcomes of the story, as well as the characters' thoughts and feelings. The findings demonstrate that high language ability and syntactic complexity pattern together in ASD children's narrative performance and that language ability compensates for autistic children's pragmatic deficit associated with the production of Theory of Mind-related ISTs. Nevertheless, both groups of children with ASD (high and low language ability) scored lower than the TD controls in the production of Theory of Mind-unrelated ISTs, modifier clauses and story structure complexity.
Specific heat and Nernst effect of electron-doped cuprate superconductors
NASA Astrophysics Data System (ADS)
Balci, Hamza
This thesis consists of two separate studies on Pr2- xCexCuO4 (PCCO), a member of the electron-doped high temperature cuprate superconductor family: specific heat and the Nernst effect. We measured the specific heat of PCCO single crystals in order to probe the symmetry of the superconducting order parameter, to study the effect of oxygen reduction (annealing) on bulk properties of the crystals, and to determine proper ties like the condensation energy and the thermodynamic critical field. The order parameter symmetry has been established to be d-wave in the hole-doped cuprates. Experiments performed on electron-doped cuprates show conflicting results. Different experiments suggest s-wave symmetry, d-wave symmetry, or a transition from d-wave to s-wave symmetry with increasing cerium doping. However, most of these experiments are surface sensitive experiments. Specific heat, as a bulk method of probing the gap symmetry is essential in order to convincingly determine the gap symmetry. Our data proposes a way to reconcile all these conflicting results regarding the gap symmetry. In addition, prior specific heat measurements attempting to determine thermodynamic properties like the condensation energy were not successful due to inefficient methods of data analysis or poor sample quality. With improvements on sample quality and data analysis, we reliably determined these properties. The second part of this thesis is a study of the Nernst effect in PCCO thin films with different cerium dopings. We probed the superconducting fluctuations, studied transport phenomena in the normal state, and accurately measured H c2 by using the Nernst effect. After the discovery of the anomalous Nernst effect in the normal state of the hole-doped cuprates, many alternative explanations have been proposed. Vortex-like excitations above Tc, superconducting fluctuations, AFM fluctuations, and preformed Cooper pairs are some of these proposals. The electron-doped cuprates, due to their significant differences from the hole-doped cuprates in terms of coherence length and the phase stiffness temperature (a measure of superfluid density) are the ideal materials to test these ideas. Our data on the electron-doped cuprates does not show any anomalous Nernst effect, and hence it supports the superconducting fluctuations picture among the various proposals.
Ding, Q. -P.; Wiecki, P.; Anand, V. K.; ...
2016-04-07
The electronic and magnetic properties of the collapsed-tetragonal CaPd 2As 2 superconductor (SC) with a transition temperature of 1.27 K have been investigated by 75As nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements. The temperature (T) dependence of the nuclear spin lattice relaxation rates (1/T 1) and the Knight shifts indicate the absence of magnetic correlations in the normal state. In the SC state, 1/T 1 measured by 75As NQR shows a clear Hebel-Slichter (HS) peak just below T c and decreases exponentially at lower T, confirming a conventional s-wave SC. Additionally, the Volovik effect, also known asmore » the Doppler shift effect, has been clearly evidenced by the observation of the suppression of the HS peak with applied magnetic field.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J. T.; Inosov, D. S.; Sun, G. L.
2009-03-20
Here we present a combined study of the slightly underdoped novel pnictide superconductor Ba{sub 1-x}K{sub x}Fe{sub 2}As{sub 2} by means of x-ray powder diffraction, neutron scattering, muon-spin rotation ({mu}SR), and magnetic force microscopy (MFM). Static antiferromagnetic order sets in below T{sub m}{approx_equal}70 K as inferred from the neutron scattering and zero-field-{mu}SR data. Transverse-field {mu}SR below T{sub c} shows a coexistence of magnetically ordered and nonmagnetic states, which is also confirmed by MFM imaging. We explain such coexistence by electronic phase separation into antiferromagnetic and superconducting- or normal-state regions on a lateral scale of several tens of nanometers. Our findings indicatemore » that such mesoscopic phase separation can be considered an intrinsic property of some iron pnictide superconductors.« less
NASA Astrophysics Data System (ADS)
Mertes, Kevin Mathias
I present the results of an experimental investigation of quantum tunneling of magnetization in the single molecule magnet, Mn12-acetate, for magnetic fields applied along the easy c-axis of the crystal. Magnetization measurements for temperatures below 2 Kelvin reveal new properties of the nature of tunneling in Mn12-acetate: an abrupt cross-over from thermally-assisted tunneling to pure ground state tunneling, strong suppression of ground state tunneling for temperatures corresponding to the thermally activated regime and the unexpected dependence of the tunnel splitting determined from the Landau-Zener-Stueckelberg formalism on the magnetic field sweep rate. It is shown that the measured data is inconsistent with a system of identical molecules. The data is shown to be consistent with the presence of a broad log-normal distribution of second order transverse anisotropy which drives the tunneling process. A general method of determining the distribution is developed.
Non-Fermi-liquid nature and exotic thermoelectric power in the heavy-fermion superconductor UBe13
NASA Astrophysics Data System (ADS)
Shimizu, Yusei; Pourret, Alexandre; Knebel, Georg; Palacio-Morales, Alexandra; Aoki, Dai
2015-12-01
We report quite exotic thermoelectric power S in UBe13. At 0 T, the negative S /T continues to strongly enhance down to the superconducting transition temperature with no Fermi-liquid behavior. |S /T | is dramatically suppressed and becomes rather modest with increasing field. We have also obtained precise field dependencies of (i) an anomaly in S due to an exotic Kondo effect and (ii) a field-induced anomaly in S /T associated with the anomalous upward Hc 2(T ) . In contrast to the field-sensitive transport property, the normal-state specific heat is magnetically robust, indicating that the largeness of the 5 f density of states remains in high fields. This unusual behavior in UBe13 can be explained by a considerable change in the energy derivative of the conduction-electron lifetime τc(ɛ ) at the Fermi level under magnetic fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Q. -P.; Wiecki, P.; Anand, V. K.
The electronic and magnetic properties of the collapsed-tetragonal CaPd 2As 2 superconductor (SC) with a transition temperature of 1.27 K have been investigated by 75As nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements. The temperature (T) dependence of the nuclear spin lattice relaxation rates (1/T 1) and the Knight shifts indicate the absence of magnetic correlations in the normal state. In the SC state, 1/T 1 measured by 75As NQR shows a clear Hebel-Slichter (HS) peak just below T c and decreases exponentially at lower T, confirming a conventional s-wave SC. Additionally, the Volovik effect, also known asmore » the Doppler shift effect, has been clearly evidenced by the observation of the suppression of the HS peak with applied magnetic field.« less
Burn severity mapping in Australia 2009
McKinley, Randy; Clark, J.; Lecker, Jennifer
2012-01-01
In 2009, the Victoria Department of Sustainability and Environment estimated approximately 430,000 hectares of Victoria Australia were burned by numerous bushfires. Burned Area Emergency Response (BAER) teams from the United States were deployed to Victoria to assist local fire managers. The U.S. Geological Survey Earth Resources Observation and Science Center (USGS/EROS) and U.S. Forest Service Remote Sensing Applications Center (USFS/RSAC) aided the support effort by providing satellite-derived "soil burn severity " maps for over 280,000 burned hectares. In the United States, BAER teams are assembled to make rapid assessments of burned lands to identify potential hazards to public health and property. An early step in the assessment process is the creation of a soil burn severity map used to identify hazard areas and prioritize treatment locations. These maps are developed primarily using Landsat satellite imagery and the differenced Normalized Burn Ratio (dNBR) algorithm.
Analytic study of 1D diffusive relativistic shock acceleration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keshet, Uri, E-mail: ukeshet@bgu.ac.il
2017-10-01
Diffusive shock acceleration (DSA) by relativistic shocks is thought to generate the dN / dE ∝ E{sup −p} spectra of charged particles in various astronomical relativistic flows. We show that for test particles in one dimension (1D), p {sup −1}=1−ln[γ{sub d}(1+β{sub d})]/ln[γ{sub u}(1+β{sub u})], where β{sub u}(β{sub d}) is the upstream (downstream) normalized velocity, and γ is the respective Lorentz factor. This analytically captures the main properties of relativistic DSA in higher dimensions, with no assumptions on the diffusion mechanism. Unlike 2D and 3D, here the spectrum is sensitive to the equation of state even in the ultra-relativistic limit, andmore » (for a J(üttner-Synge equation of state) noticeably hardens with increasing 1« less
Adaptation responses to increasing drought frequency
NASA Astrophysics Data System (ADS)
Loch, A. J.; Adamson, D. C.; Schwabe, K.
2016-12-01
Using state contingent analysis we discuss how and why irrigators adapt to alternative water supply signals. This analysis approach helps to illustrate how and why producers currently use state-general and state-allocable inputs to adapt and respond to known and possible future climatic alternative natures. Focusing on the timing of water allocations, we explore inherent differences in the demand for water by two key irrigation sectors: annual and perennial producers which in Australia have allowed a significant degree of risk-minimisation during droughts. In the absence of land constraints, producers also had a capacity to respond to positive state outcomes and achieve super-normal profits. In the future, however, the probability of positive state outcomes is uncertain; production systems may need to adapt to minimise losses and/or achieve positive returns under altered water supply conditions that may arise as a consequence of more frequent drought states. As such, producers must assess whether altering current input/output choice sets in response to possible future climate states will enhance their long-run competitive advantage for both expected new normal and extreme water supply outcomes. Further, policy supporting agricultural sector climate change resilience must avoid poorly-designed strategies that increase producer vulnerability in the face of drought. Our analysis explores the reliability of alternative water property right bundles and how reduced allocations across time influence alternative responses by producers. We then extend our analysis to explore how management strategies could adapt to two possible future drier state types: i) where an average reduction in water supply is experienced; and ii) where the frequency of droughts increase. The combination of these findings are subsequently used to discuss the role water reform policy has to deal with current and future climate scenarios. We argue current policy strategies could drive producers to more homogeneous production systems over time, which ultimately entail risky adaptation options under future water supply availability or increased drought frequency scenarios. Lastly, our analysis has shown the flexibility of applying SCA toward examining uncertainty surrounding future states of nature under climate change.
NASA Technical Reports Server (NTRS)
Smith, O. E.
1976-01-01
The techniques are presented to derive several statistical wind models. The techniques are from the properties of the multivariate normal probability function. Assuming that the winds can be considered as bivariate normally distributed, then (1) the wind components and conditional wind components are univariate normally distributed, (2) the wind speed is Rayleigh distributed, (3) the conditional distribution of wind speed given a wind direction is Rayleigh distributed, and (4) the frequency of wind direction can be derived. All of these distributions are derived from the 5-sample parameter of wind for the bivariate normal distribution. By further assuming that the winds at two altitudes are quadravariate normally distributed, then the vector wind shear is bivariate normally distributed and the modulus of the vector wind shear is Rayleigh distributed. The conditional probability of wind component shears given a wind component is normally distributed. Examples of these and other properties of the multivariate normal probability distribution function as applied to Cape Kennedy, Florida, and Vandenberg AFB, California, wind data samples are given. A technique to develop a synthetic vector wind profile model of interest to aerospace vehicle applications is presented.
A viscoelastic damage rheology and rate- and state-dependent friction
NASA Astrophysics Data System (ADS)
Lyakhovsky, Vladimir; Ben-Zion, Yehuda; Agnon, Amotz
2005-04-01
We analyse the relations between a viscoelastic damage rheology model and rate- and state-dependent (RS) friction. Both frameworks describe brittle deformation, although the former models localization zones in a deforming volume while the latter is associated with sliding on existing surfaces. The viscoelastic damage model accounts for evolving elastic properties and inelastic strain. The evolving elastic properties are related quantitatively to a damage state variable representing the local density of microcracks. Positive and negative changes of the damage variable lead, respectively, to degradation and recovery of the material in response to loading. A model configuration having an existing narrow zone with localized damage produces for appropriate loading and temperature-pressure conditions an overall cyclic stick-slip motion compatible with a frictional response. Each deformation cycle (limit cycle) can be divided into healing and weakening periods associated with decreasing and increasing damage, respectively. The direct effect of the RS friction and the magnitude of the frictional parameter a are related to material strengthening with increasing rate of loading. The strength and residence time of asperities (model elements) in the weakening stage depend on the rates of damage evolution and accumulation of irreversible strain. The evolutionary effect of the RS friction and overall change in the friction parameters (a-b) are controlled by the duration of the healing period and asperity (element) strengthening during this stage. For a model with spatially variable properties, the damage rheology reproduces the logarithmic dependency of the steady-state friction coefficient on the sliding velocity and the normal stress. The transition from a velocity strengthening regime to a velocity weakening one can be obtained by varying the rate of inelastic strain accumulation and keeping the other damage rheology parameters fixed. The developments unify previous damage rheology results on deformation localization leading to formation of new fault zones with detailed experimental results on frictional sliding. The results provide a route for extending the formulation of RS friction into a non-linear continuum mechanics framework.
Thermal boundary resistance between sapphire and aluminum monocrystals at low temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahling, S.; Engert, J.; Gladun, A.
1981-12-01
The thermal boundary resistance at boundaries between monocrystalline sapphire and monocrystalline aluminum and between monocrystalline sapphire and polycrystalline aluminum has been measured in the temperature range from 0.1 to 6 K with aluminum in the superconducting and normal states. The ratio of the thermal boundary resistance of the aluminum monocrystals in the superconducting state to that in the normal state increases as the temperature is lowered, reaches a maximum at about 0.13 K, and decreases at still lower temperatures. At the maximum, the thermal boundary resistance in the superconducting state is two orders of magnitude larger than the resistance inmore » the normal state.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, Matthew; Constable, Steve; Ing, Christopher
2014-06-21
We developed and studied the implementation of trial wavefunctions in the newly proposed Langevin equation Path Integral Ground State (LePIGS) method [S. Constable, M. Schmidt, C. Ing, T. Zeng, and P.-N. Roy, J. Phys. Chem. A 117, 7461 (2013)]. The LePIGS method is based on the Path Integral Ground State (PIGS) formalism combined with Path Integral Molecular Dynamics sampling using a Langevin equation based sampling of the canonical distribution. This LePIGS method originally incorporated a trivial trial wavefunction, ψ{sub T}, equal to unity. The present paper assesses the effectiveness of three different trial wavefunctions on three isotopes of hydrogen formore » cluster sizes N = 4, 8, and 13. The trial wavefunctions of interest are the unity trial wavefunction used in the original LePIGS work, a Jastrow trial wavefunction that includes correlations due to hard-core repulsions, and a normal mode trial wavefunction that includes information on the equilibrium geometry. Based on this analysis, we opt for the Jastrow wavefunction to calculate energetic and structural properties for parahydrogen, orthodeuterium, and paratritium clusters of size N = 4 − 19, 33. Energetic and structural properties are obtained and compared to earlier work based on Monte Carlo PIGS simulations to study the accuracy of the proposed approach. The new results for paratritium clusters will serve as benchmark for future studies. This paper provides a detailed, yet general method for optimizing the necessary parameters required for the study of the ground state of a large variety of systems.« less
NASA Astrophysics Data System (ADS)
Schultz, R. A.; Soliva, R.; Fossen, H.
2013-12-01
Deformation bands in porous rocks tend to develop into spatially organized arrays that display a variety of lengths and thicknesses, and their geometries and arrangements are of interest with respect to fluid flow in reservoirs. Field examples of deformation band arrays in layered clastic sequences suggest that the development of classic deformation band arrays, such as ladders and conjugate sets, and the secondary formation of through-going faults appear to be related to the physical properties of the host rock, the orientation of stratigraphic layers relative to the far-field stress state, and the evolution of the local stress state within the developing array. We have identified several field examples that demonstrate changes in band properties, such as type and orientation, as a function of one or more of these three main factors. Normal-sense deformation-band arrays such as those near the San Rafael Swell (Utah) develop three-dimensional ladder-style arrays at a high angle to the maximum compression direction; these cataclastic shear bands form at acute angles to the maximum compression not very different from that of the optimum frictional sliding plane, thus facilitating the eventual nucleation of a through-going fault. At Orange quarry (France), geometrically conjugate sets of reverse-sense compactional shear bands form with angles to the maximum compression direction that inhibit fault nucleation within them; the bands in this case also form at steep enough angles to bedding that stratigraphic heterogeneities within the deforming formation were apparently not important. Two exposures of thrust-sense ladders at Buckskin Gulch (Utah) demonstrate the importance of host-rock properties, bedding-plane involvement, and local stress perturbations on band-array growth. In one ladder, thrust-sense shear deformation bands nucleated along suitably oriented bedding planes, creating overprinting sets of compaction bands that can be attributed to layer properties and local stress changes near the shear-band tips. Two other ladder exposures preserve compaction bands having nearly perpendicular orientations relative the bounding shear bands that define contractional stepovers that also nucleated on bedding planes. These cases suggest that local stress changes within a deformation-band stepover may lead to either rotation of bands or changes in band type relative to bands formed outside the stepover. The development of the common geometries of deformation band arrays, such as ladders, and the deformation paths to faulting thus depend on a combination of stress state, stress orientation, and rock properties.
Superconducting Polarons and Bipolarons
NASA Astrophysics Data System (ADS)
Alexandrov, A. S.
The seminal work by Bardeen, Cooper and Schrieffer (BCS) extended further by Eliashberg to the intermediate coupling regime solved one of the major scientific problems of Condensed Matter Physics in the last century. The BCS theory provides qualitative and in many cases quantitative descriptions of low-temperature superconducting metals and their alloys, and some novel high-temperature superconductors like magnesium diboride. The theory has been extended by us to the strong-coupling regime where carriers are small lattice polarons and bipolarons. Here I review the multi-polaron strong-coupling theory of superconductivity. Attractive electron correlations, prerequisite to any superconductivity, are caused by an almost unretarded electron-phonon (e-ph) interaction sufficient to overcome the direct Coulomb repulsion in this regime. Low energy physics is that of small polarons and bipolarons, which are real-space electron (hole) pairs dressed by phonons. They are itinerant quasiparticles existing in the Bloch states attemperatures below the characteristic phonon frequency. Since there is almost no retardation (i.e. no Tolmachev-Morel-Anderson logarithm) reducing the Coulomb repulsion, e-ph interactions should be relatively strong to overcome the direct Coulomb repulsion, so carriers mustbe polaronic to form pairs in novel superconductors. I identify the long-range Fröhlich electron-phonon interaction as the most essential for pairing in superconducting cuprates. A number of key observations have been predicted or explained with polarons and bipolarons including unusual isotope effects and upper critical fields, normal state (pseudo)gaps and kinetic properties, normal state diamagnetism, and giant proximity effects. These and many other observations provide strong evidence for a novel state of electronic matter in layered cuprates, which is a charged Bose-liquid of small mobile bipolarons.
Hysteresis, phase transitions, and dangerous transients in electrical power distribution systems.
Duclut, Charlie; Backhaus, Scott; Chertkov, Michael
2013-06-01
The majority of dynamical studies in power systems focus on the high-voltage transmission grids where models consider large generators interacting with crude aggregations of individual small loads. However, new phenomena have been observed indicating that the spatial distribution of collective, nonlinear contribution of these small loads in the low-voltage distribution grid is crucial to the outcome of these dynamical transients. To elucidate the phenomenon, we study the dynamics of voltage and power flows in a spatially extended distribution feeder (circuit) connecting many asynchronous induction motors and discover that this relatively simple 1+1 (space+time) dimensional system exhibits a plethora of nontrivial spatiotemporal effects, some of which may be dangerous for power system stability. Long-range motor-motor interactions mediated by circuit voltage and electrical power flows result in coexistence and segregation of spatially extended phases defined by individual motor states, a "normal" state where the motors' mechanical (rotation) frequency is slightly smaller than the nominal frequency of the basic ac flows and a "stalled" state where the mechanical frequency is small. Transitions between the two states can be initiated by a perturbation of the voltage or base frequency at the head of the distribution feeder. Such behavior is typical of first-order phase transitions in physics, and this 1+1 dimensional model shows many other properties of a first-order phase transition with the spatial distribution of the motors' mechanical frequency playing the role of the order parameter. In particular, we observe (a) propagation of the phase-transition front with the constant speed (in very long feeders) and (b) hysteresis in transitions between the normal and stalled (or partially stalled) phases.
Comprehensive Study of Pr-Doped GdBa2Cu3O7 - y System
NASA Astrophysics Data System (ADS)
Yamani, Z.; Akhavan, M.
1997-09-01
An extensive study of the magnetic, electrical transport, and structural properties of the normal and superconducting states of Gd1 - xPrxBa2Cu3O7 - y (GdPr-123) is presented. Ceramic compounds have been synthesized by the solid state reaction technique, and characterized by XRD, SEM, TGA, and DT techniques. The parent compound GdBa2Cu3O7 - y (Gd-123) is a high-Tc superconductor and the endpoint compound, PrBa2Cu3O7 - y (Pr-123) is a magnetic insulator, both having the crystal structures isomorphic to the 123 phase structure. The superconducting transition temperature is reduced with increasing Pr content in a non-linear manner, in contrast to the Abrikosov-Gorkov pair breaking theory. A metal-insulator transition is observed at the critical Pr content, xcr 0.45, at which superconductivity completely disappears. Magnetic susceptibility measurements show that the nominal Pr valence is 3.86+, independent of the Pr content. The metal-insulator transition in this system is similar to that in the oxygen-deficient RBa2Cu3O7 - y (R-123) system. Based on this resemblance, we suggest that Pr doping reduces the carrier concentration (either by hole filling/localization or changes in the band structure) similar to the deoxygenated case. Hence, the environment surrounding the Cu-O layers is important to high-Tc superconductivity (HTSC). In this sense, HTSC cannot completely be two dimensional feature. A chain-plane correlation (CPC) effect is plausible. The normal state conduction mechanism has been interpreted by the quantum percolation theory based on localized states. Localization is probably caused by the Pr valence fluctuations in the GdPr-123 system.
Prabhu, Gurpur Rakesh D; Witek, Henryk A; Urban, Pawel L
2018-05-31
Most analytical methods are based on "analogue" inputs from sensors of light, electric potentials, or currents. The signals obtained by such sensors are processed using certain calibration functions to determine concentrations of the target analytes. The signal readouts are normally done after an optimised and fixed time period, during which an assay mixture is incubated. This minireview covers another-and somewhat unusual-analytical strategy, which relies on the measurement of time interval between the occurrences of two distinguishable states in the assay reaction. These states manifest themselves via abrupt changes in the properties of the assay mixture (e.g. change of colour, appearance or disappearance of luminescence, change in pH, variations in optical activity or mechanical properties). In some cases, a correlation between the time of appearance/disappearance of a given property and the analyte concentration can be also observed. An example of an assay based on time measurement is an oscillating reaction, in which the period of oscillations is linked to the concentration of the target analyte. A number of chemo-chronometric assays, relying on the existing (bio)transformations or artificially designed reactions, were disclosed in the past few years. They are very attractive from the fundamental point of view but-so far-only few of them have be validated and used to address real-world problems. Then, can chemo-chronometric assays become a practical tool for chemical analysis? Is there a need for further development of such assays? We are aiming to answer these questions.
A State-trait Analysis of Alpha Density and Personality Variables in a Normal Population
ERIC Educational Resources Information Center
Degood, Douglas E.; Valle, Ronald S.
1975-01-01
This paper examined the relationship of some selected trait measures of personality with resting samples of alpha density in a normal population and the implications of such data for a state-trait approach to alpha and the experiential states associated with alpha. (Author/RK)
Discovery of Photon Index Saturation in the Black Hole Binary GRS 1915+105
NASA Technical Reports Server (NTRS)
Titarchuk, Lev; Seifina, Elena
2009-01-01
We present a study of the correlations between spectral, timing properties and mass accretion rate observed in X-rays from the Galactic Black Hole (BH) binary GRS 1915+105 during the transition between hard and soft states. We analyze all transition episodes from this source observed with Rossi X-ray Timing Explorer (RXTE), coordinated with Ryle Radio Telescope (RT) observations. We show that broad-band energy spectra of GRS 1915+105 during all these spectral states can be adequately presented by two Bulk Motion Comptonization (BMC) components: a hard component (BMC1, photon index Gamma(sub 1) = 1.7 -- 3.0) with turnover at high energies and soft thermal component (BMC2, Gamma(sub 2) = 2.7 -- 4.2) with characteristic color temperature < or = 1 keV, and the red-skewed iron line (LAOR) component. We also present observable correlations between the index and the normalization of the disk "seed" component. The use of "seed" disk normalization, which is presumably proportional to mass accretion rate in the disk, is crucial to establish the index saturation effect during the transition to the soft state. We discovered the photon index saturation of the soft and hard spectral components at values of < or approximately equal 4.2 and 3 respectively. We present a physical model which explains the index-seed photon normalization correlations. We argue that the index saturation effect of the hard component (BMC1) is due to the soft photon Comptonization in the converging inflow close to 1311 and that of soft component is due to matter accumulation in the transition layer when mass accretion rate increases. Furthermore we demonstrate a strong correlation between equivalent width of the iron line and radio flux in GRS 1915+105. In addition to our spectral model components we also find a strong feature of "blackbody-like" bump which color temperature is about 4.5 keV in eight observations of the intermediate and soft states. We discuss a possible origin of this "blackbody-like" emission.
NASA Astrophysics Data System (ADS)
Silva, Hector O.; Yunes, Nicolás
2018-01-01
Certain bulk properties of neutron stars, in particular their moment of inertia, rotational quadrupole moment and tidal Love number, when properly normalized, are related to one another in a nearly equation of state independent way. The goal of this paper is to test these relations with extreme equations of state at supranuclear densities constrained to satisfy only a handful of generic, physically sensible conditions. By requiring that the equation of state be (i) barotropic and (ii) its associated speed of sound be real, we construct a piecewise function that matches a tabulated equation of state at low densities, while matching a stiff equation of state parametrized by its sound speed in the high-density region. We show that the I-Love-Q relations hold to 1 percent with this class of equations of state, even in the extreme case where the speed of sound becomes superluminal and independently of the transition density. We also find further support for the interpretation of the I-Love-Q relations as an emergent symmetry due to the nearly constant eccentricity of isodensity contours inside the star. These results reinforce the robustness of the I-Love-Q relations against our current incomplete picture of physics at supranuclear densities, while strengthening our confidence in the applicability of these relations in neutron star astrophysics.
Time-delayed transition of normal-to-abnormal glow in pin-to-water discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, S.-Y.; Byeon, Y.-S.; Yoo, S.
2016-08-15
Time-delayed transition of normal-to-abnormal glow was investigated in discharge between spoke-like pins and ultrapure water by applying AC-driven power at a frequency of 14.3 kHz at atmospheric pressure. The normal-to-abnormal transition can be recognized from the slope changes of current density, gas temperature, electrode temperature, and OH density. The slope changes took place in tens of minutes rather than just after discharge, in other words, the transition was delayed. The time-delay of the transition was caused by the interaction between the plasma and water. The plasma affected water properties, and then the water affected plasma properties.
22 CFR 102.19 - Protection of United States property.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Protection of United States property. 102.19... States Aircraft Accidents Abroad Foreign Aircraft Accidents Involving United States Persons Or Property § 102.19 Protection of United States property. The local Foreign Service office shall follow...
22 CFR 102.19 - Protection of United States property.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Protection of United States property. 102.19... States Aircraft Accidents Abroad Foreign Aircraft Accidents Involving United States Persons Or Property § 102.19 Protection of United States property. The local Foreign Service office shall follow...
22 CFR 102.19 - Protection of United States property.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Protection of United States property. 102.19... States Aircraft Accidents Abroad Foreign Aircraft Accidents Involving United States Persons Or Property § 102.19 Protection of United States property. The local Foreign Service office shall follow...
Active Region Photospheric Magnetic Properties Derived from Line-of-Sight and Radial Fields
NASA Astrophysics Data System (ADS)
Guerra, J. A.; Park, S.-H.; Gallagher, P. T.; Kontogiannis, I.; Georgoulis, M. K.; Bloomfield, D. S.
2018-01-01
The effect of using two representations of the normal-to-surface magnetic field to calculate photospheric measures that are related to the active region (AR) potential for flaring is presented. Several AR properties were computed using line-of-sight (B_{los}) and spherical-radial (Br) magnetograms from the Space-weather HMI Active Region Patch (SHARP) products of the Solar Dynamics Observatory, characterizing the presence and features of magnetic polarity inversion lines, fractality, and magnetic connectivity of the AR photospheric field. The data analyzed correspond to {≈ }4{,}000 AR observations, achieved by randomly selecting 25% of days between September 2012 and May 2016 for analysis at 6-hr cadence. Results from this statistical study include: i) the Br component results in a slight upwards shift of property values in a manner consistent with a field-strength underestimation by the B_{los} component; ii) using the Br component results in significantly lower inter-property correlation in one-third of the cases, implying more independent information as regards the state of the AR photospheric magnetic field; iii) flaring rates for each property vary between the field components in a manner consistent with the differences in property-value ranges resulting from the components; iv) flaring rates generally increase for higher values of properties, except the Fourier spectral power index that has flare rates peaking around a value of 5/3. These findings indicate that there may be advantages in using Br rather than B_{los} in calculating flare-related AR magnetic properties, especially for regions located far from central meridian.
NASA Astrophysics Data System (ADS)
Arponen, J. S.; Bishop, R. F.
1993-11-01
In this third paper of a series we study the structure of the phase spaces of the independent-cluster methods. These phase spaces are classical symplectic manifolds which provide faithful descriptions of the quantum mechanical pure states of an arbitrary system. They are "superspaces" in the sense that the full physical many-body or field-theoretic system is described by a point of the space, in contrast to "ordinary" spaces for which the state of the physical system is described rather by the whole space itself. We focus attention on the normal and extended coupled-cluster methods (NCCM and ECCM). Both methods provide parametrizations of the Hilbert space which take into account in increasing degrees of completeness the connectivity properties of the associated perturbative diagram structure. This corresponds to an increasing incorporation of locality into the description of the quantum system. As a result the degree of nonlinearity increases in the dynamical equations that govern the temporal evolution and determine the equilibrium state. Because of the nonlinearity, the structure of the manifold becomes geometrically complicated. We analyse the neighbourhood of the ground state of the one-mode anharmonic bosonic field theory and derive the nonlinear expansion beyond the linear response regime. The expansion is given in terms of normal-mode amplitudes, which provide the best local coordinate system close to the ground state. We generalize the treatment to other nonequilibrium states by considering the similarly defined normal coordinates around the corresponding phase space point. It is pointed out that the coupled-cluster method (CCM) maps display such features as (an)holonomy, or geometric phase. For example, a physical state may be represented by a number of different points on the CCM manifold. For this reason the whole phase spaces in the NCCM or ECCM cannot be covered by a single chart. To account for this non-Euclidean nature we introduce a suitable pseudo-Riemannian metric structure which is compatible with an important subset of all canonical transformations. It is then shown that the phase space of the configuration-interaction method is flat, namely the complex Euclidean space; that the NCCM manifold has zero curvature even though its Reimann tensor does not vanish; and that the ECCM manifold is intrinsically curved. It is pointed out that with the present metrization many of the dimensions of the ECCM phase space are effectively compactified and that the overall topological structure of the space is related to the distribution of the zeros of the Bargmann wave function.
Novel optical-based methods and analyses for elucidating cellular mechanics and dynamics
NASA Astrophysics Data System (ADS)
Koo, Peter K.
Resolving distinct biochemical interaction states by analyzing the diffusive behaviors of individual protein trajectories is challenging due to the limited statistics provided by short trajectories and experimental noise sources, which are intimately coupled into each proteins localization. In the first part of this thesis, we introduce a novel, a machine-learning based classification methodology, called perturbation expectation-maximization (pEM), which simultaneously analyzes a population of protein trajectories to uncover the system of short-time diffusive behaviors which collectively result from distinct biochemical interactions. We then discuss an experimental application of pEM to Rho GTPase, an integral regulator of cytoskeletal dynamics and cellular homeostasis, inside live cells. We also derive the maximum likelihood estimator (MLE) for driven diffusion, confined diffusion, and fractional Brownian motion. We demonstrate that MLE yields improved estimates in comparison with traditional diffusion analysis, namely mean squared displacement analysis. In addition, we also introduce mleBayes, which is an empirical Bayesian model selection scheme to classify an individual protein trajectory to a given diffusion mode. By employing mleBayes on simulated data, we demonstrate that accurate determination of the underlying diffusive properties, beyond normal diffusion, remains challenging when analyzing particle trajectories on an individual basis. To improve upon the statistical limitations of classification from analyzing trajectories on an individual basis, we extend pEM with a new version (pEMv2) to simultaneously analyzing a collection of particle trajectories to uncover the system of interactions which give rise to unique normal or non-normal diffusive states. We test the performance of pEMv2 on various sets of simulated particle trajectories which transition between various modes of normal and non-normal diffusive states to highlight considerations when employing pEMv2 analysis. We envision the presented methodologies will be applicable to a wide range of single protein tracking data where different interactions result in distinct diffusive behaviors. More generally, this study brings us an important step closer to the possibility of monitoring the endogenous biochemistry of diffusing proteins within live cells with single molecule resolution. In the second part of this thesis, the role of chromatin association to the nuclear envelope in nuclear mechanics is explored. Changes in the mechanical properties of the nucleus are increasingly found to be critical for development and disease. However, relatively little is known about the variables that cells modulate to define nuclear mechanics. The best understood player is lamin A, a protein linked to a diverse set of genetic diseases termed laminopathies. The properties of lamin A that are compromised in these diseases (and therefore underlie their pathology) remains poorly understood. One model focuses on a mechanical role for a polymeric network of lamins associated with the nuclear envelope (NE), which supports nuclear integrity. However, because heterochromatin is strongly associated with lamina, it remains unclear whether it is the lamin polymer, the associated chromatin, or both that allow the lamina to mechanically stabilize nuclei. Decoupling the impact of the lamin polymer itself from that of the associated chromatin has proven very challenging. Here, we take advantage of the model organism, S pombe, which does not express lamies, as an experimental framework in which to address the impact of chromatin and its association with the nuclear periphery on nuclear mechanics. Using a combination of new image analysis tools for in vivo imaging of nuclear dynamics and a novel optical tweezers assay capable of directly probing nuclear mechanics, we find that the association of chromatin with the NE through integral membrane proteins plays a critical role in supporting nuclear integrity. When chromatin is decoupled from the NE, nuclei are softer, undergo much larger nuclear fluctuations in vivo in response to microtubule forces, and are defective at resolving nuclear deformations. Our data further suggest that association of chromatin with the NE attenuates the flow of chromatin into nuclear fluctuations thereby preventing permanent changes in nuclear shape.
First-Principles Correlated Approach to the Normal State of Strontium Ruthenate
Acharya, S.; Laad, M. S.; Dey, Dibyendu; Maitra, T.; Taraphder, A.
2017-01-01
The interplay between multiple bands, sizable multi-band electronic correlations and strong spin-orbit coupling may conspire in selecting a rather unusual unconventional pairing symmetry in layered Sr2RuO4. This mandates a detailed revisit of the normal state and, in particular, the T-dependent incoherence-coherence crossover. Using a modern first-principles correlated view, we study this issue in the actual structure of Sr2RuO4 and present a unified and quantitative description of a range of unusual physical responses in the normal state. Armed with these, we propose that a new and important element, that of dominant multi-orbital charge fluctuations in a Hund’s metal, may be a primary pair glue for unconventional superconductivity. Thereby we establish a connection between the normal state responses and superconductivity in this system. PMID:28220879
Cammarata, Martha L.; Dhaher, Yasin Y.
2012-01-01
Background Gender differences in passive frontal plane knee stiffness may contribute to the increased anterior cruciate ligament injury rate in females. Gender-based stiffness differences have been attributed to anthropometric variations, but little data exist describing this relationship. Furthermore, sex hormone levels appear to influence joint stiffness, but the differential effects of instantaneous and prior hormonal concentrations remain unknown. This study sought to explore the effect of gender, prior hormonal status, and anthropometry on passive frontal plane knee joint stiffness. Methods Twelve males and 31 females participated. Females were grouped by hormonal contraceptive use (non users [n=11], monophasic contraceptive users [n=11], and triphasic contraceptive users [n=9]) and tested at the same point in the menstrual cycle. Subjects’ right knee was passively stretched ±7° in the frontal plane at 3°/s. Stiffness was estimated at three loading levels and normalized by body size to minimize anthropometric biases. A 4 (group) × 3 (load) repeated measures analysis of variance was performed for both raw and normalized stiffness. Linear regression analyses were preformed between stiffness estimates and knee diameter and quadriceps femoris angle. Findings Males displayed significantly greater (P<0.05) frontal plane stiffness than females. When normalized, males displayed significantly greater stiffness in valgus (P<0.05), but not varus (P>0.05) than females. No significant effect (P>0.05) of prior hormonal state was found; however, when normalized, varus stiffness was significantly less for triphasic contraceptive users than the other female groups (P<0.05). Quadriceps femoris angle was negatively correlated and knee diameter was positively correlated to knee stiffness. Interpretation Consistent with earlier in vitro findings, our data may indicate that ligament material properties are gender specific. A deficit in passive knee joint stiffness may place a larger burden on the neuromuscular system to resist frontal plane loading in females. PMID:18479791
Latent binocular function in amblyopia.
Chadnova, Eva; Reynaud, Alexandre; Clavagnier, Simon; Hess, Robert F
2017-11-01
Recently, psychophysical studies have shown that humans with amblyopia do have binocular function that is not normally revealed due to dominant suppressive interactions under normal viewing conditions. Here we use magnetoencephalography (MEG) combined with dichoptic visual stimulation to investigate the underlying binocular function in humans with amblyopia for stimuli that, because of their temporal properties, would be expected to bypass suppressive effects and to reveal any underlying binocular function. We recorded contrast response functions in visual cortical area V1 of amblyopes and normal observers using a steady state visually evoked responses (SSVER) protocol. We used stimuli that were frequency-tagged at 4Hz and 6Hz that allowed identification of the responses from each eye and were of a sufficiently high temporal frequency (>3Hz) to bypass suppression. To characterize binocular function, we compared dichoptic masking between the two eyes in normal and amblyopic participants as well as interocular phase differences in the two groups. We observed that the primary visual cortex responds less to the stimulation of the amblyopic eye compared to the fellow eye. The pattern of interaction in the amblyopic visual system however was not significantly different between the amblyopic and fellow eyes. However, the amblyopic suppressive interactions were lower than those observed in the binocular system of our normal observers. Furthermore, we identified an interocular processing delay of approximately 20ms in our amblyopic group. To conclude, when suppression is greatly reduced, such as the case with our stimulation above 3Hz, the amblyopic visual system exhibits a lack of binocular interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shreedharan, S.; Riviere, J.; Marone, C.
2017-12-01
We report on a suite of laboratory friction experiments conducted on saw-cut Westerly Granite surfaces to probe frictional response to step changes in normal stress and loading rate. The experiments are conducted to illuminate the fundamental processes that yield friction rate and state dependence. We quantify the microphysical frictional response of the simulated fault surfaces to normal stress steps, in the range of 1% - 600% step increases and decreases from a nominal baseline normal stress. We measure directly the fault slip rate and account for changes in slip rate with changes in normal stress and complement mechanical data acquisition by continuously probing the faults with ultrasonic pulses. We conduct the experiments at room temperature and humidity conditions in a servo controlled biaxial testing apparatus in the double direct shear configuration. The samples are sheared over a range of velocities, from 0.02 - 100 μm/s. We report observations of a transient shear stress and friction evolution with step increases and decreases in normal stress. Specifically, we show that, at low shear velocities and small increases in normal stress (<5% increase), the shear stress on the fault does not increase instantaneously with the normal stress step while the ultrasonic wave amplitude and normal displacement do. In other words, the shear stress does not follow the load point stiffness curve. At high shear velocities and larger normal stress steps (> 5% increases), the shear stress evolves immediately with normal stress. We show that the excursions in slip rate resulting from the changes in normal stress must be accounted for in order to predict fault strength evolution. Ultrasonic wave amplitudes which first increase immediately in response to normal stress steps, then decrease approximately linearly to a new steady state value, in part due to changes in fault slip rate. Previous descriptions of frictional state evolution during normal stress perturbations have not adequately accounted for the effect of large slip velocity excursions. Here, we attempt to do so by using the measured ultrasonic amplitudes as a proxy for frictional state during transient shear stress evolution. Our work aims to improve understanding of induced and triggered seismicity with focus on simulating static triggering using rate and state friction.
I Vivo Characterization of Ultrasonic Backscattering from Normal and Abnormal Lungs.
NASA Astrophysics Data System (ADS)
Jafari, Farhad
The primary goal of this project has been to characterize the lung tissue in its in vivo ultrasonic backscattering properties in normal human subjects, and study the changes in the lung echo characteristics under various pathological conditions. Such a characterization procedure is used to estimate the potential of ultrasound for providing useful diagnostic information about the superficial region of the lung. The results of this study may be divided into three categories: (1) This work has resulted in the ultrasonic characterization of lung tissue, in vivo, and has investigated the various statistical features of the lung echo properties in normal human subjects. The echo properties of the lungs are characterized with respect to the mean echo amplitude relative to a perfect reflector and the mean autocorrelation of normalized echo signals. (2) A theoretical model is developed to simulate the ultrasonic backscattering properties of the lung under normal and various simulated abnormal conditions. This model has been tested on various phantoms simulating the strong acoustic interactions of the lung. When applied to the lung this model has shown excellent agreement to experimental data gathered on a population of normal human subjects. By varying a few of the model parameters, the effect of changes in the lung structural parameters on the detected ultrasonic echoes is investigated. It is found that alveoli size changes of about 50 percent and concentration changes of 40 percent may produce spectral changes exceeding the variability exhibited by normal lungs. (3) Ultrasonic echoes from the lungs of 4 groups of patients were studied. The groups included patients with edema, emphysema, pneumothorax, and patients undergoing radiation therapy for treatment of lung cancer. Significant deviations from normal lung echo characteristics is observed in more than 80 percent of the patients studied. These deviations are intercompared and some qualitative associations between the echo characteristics on each patient group and their pulmonary pathology is made. It is concluded that the technique may provide a potential tool in detecting pulmonary abnormalities. More controlled patient studies, however, are indicated as necessary to determine the sensitivity of the ultrasound technique.
NASA Astrophysics Data System (ADS)
Lipinska, Marta; Chrominski, Witold; Olejnik, Lech; Golinski, Jacek; Rosochowski, Andrzej; Lewandowska, Malgorzata
2017-10-01
In this study, an Al-Mg-Si alloy was processed using via incremental equal channel angular pressing (I-ECAP) in order to obtain homogenous, ultrafine-grained plates with low anisotropy of the mechanical properties. This was the first attempt to process an Al-Mg-Si alloy using this technique. Samples in the form of 3 mm-thick square plates were subjected to I-ECAP with the 90 deg rotation around the axis normal to the surface of the plate between passes. Samples were investigated first in their initial state, then after a single pass of I-ECAP, and finally after four such passes. Analyses of the microstructure and mechanical properties demonstrated that the I-ECAP method can be successfully applied in Al-Mg-Si alloys. The average grain size decreased from 15 to 19 µm in the initial state to below 1 µm after four I-ECAP passes. The fraction of high-angle grain boundaries in the sample subjected to four I-ECAP passes lay within 53 to 57 pct depending on the examined plane. The mechanism of grain refinement in Al-Mg-Si alloy was found to be distinctly different from that in pure aluminum with the grain rotation being more prominent than the grain subdivision, which was attributed to lower stacking fault energy and the reduced mobility of dislocations in the alloy. The ultimate tensile strength increased more than twice, whereas the yield strength was more than threefold. Additionally, the plates processed by I-ECAP exhibited low anisotropy of mechanical properties (in plane and across the thickness) in comparison to other SPD processing methods, which makes them attractive for further processing and applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lynch, Ryan S.; Archibald, Robert F.; Kaspi, Victoria M.
We present results from eight months of Green Bank Telescope 8.7 GHz observations and nearly 18 months of Swift X-ray telescope observations of the radio magnetar SGR J1745–2900. We tracked the radio and X-ray flux density, polarization properties, profile evolution, rotation, and single-pulse behavior. We identified two main periods of activity. The first is characterized by approximately 5.5 months of relatively stable evolution in radio flux density, rotation, and profile shape, while in the second these properties varied substantially. Specifically, a third profile component emerged and the radio flux also became more variable. The single pulse properties also changed, mostmore » notably with a larger fraction of pulses with pulse widths ∼5–20 ms in the erratic state. Bright single pulses are well described by a log-normal energy distribution at low energies, but with an excess at high energies. The 2–10 keV flux decayed steadily since the initial X-ray outburst, while the radio flux remained stable to within ∼20% during the stable state. A joint pulsar timing analysis of the radio and X-ray data shows a level of timing noise unprecedented in a radio magnetar, though during the time covered by the radio data alone the timing noise was at a level similar to that observed in other radio magnetars. While SGR J1745–2900 is similar to other radio magnetars in many regards, it differs by having experienced a period of relative stability in the radio that now appears to have ended, while the X-ray properties evolved independently.« less
Baek, K; Morris, L S; Kundu, P; Voon, V
2017-03-01
The efficient organization and communication of brain networks underlie cognitive processing and their disruption can lead to pathological behaviours. Few studies have focused on whole-brain networks in obesity and binge eating disorder (BED). Here we used multi-echo resting-state functional magnetic resonance imaging (rsfMRI) along with a data-driven graph theory approach to assess brain network characteristics in obesity and BED. Multi-echo rsfMRI scans were collected from 40 obese subjects (including 20 BED patients) and 40 healthy controls and denoised using multi-echo independent component analysis (ME-ICA). We constructed a whole-brain functional connectivity matrix with normalized correlation coefficients between regional mean blood oxygenation level-dependent (BOLD) signals from 90 brain regions in the Automated Anatomical Labeling atlas. We computed global and regional network properties in the binarized connectivity matrices with an edge density of 5%-25%. We also verified our findings using a separate parcellation, the Harvard-Oxford atlas parcellated into 470 regions. Obese subjects exhibited significantly reduced global and local network efficiency as well as decreased modularity compared with healthy controls, showing disruption in small-world and modular network structures. In regional metrics, the putamen, pallidum and thalamus exhibited significantly decreased nodal degree and efficiency in obese subjects. Obese subjects also showed decreased connectivity of cortico-striatal/cortico-thalamic networks associated with putaminal and cortical motor regions. These findings were significant with ME-ICA with limited group differences observed with conventional denoising or single-echo analysis. Using this data-driven analysis of multi-echo rsfMRI data, we found disruption in global network properties and motor cortico-striatal networks in obesity consistent with habit formation theories. Our findings highlight the role of network properties in pathological food misuse as possible biomarkers and therapeutic targets.
Adejumobi, M A; Awe, G O; Abegunrin, T P; Oyetunji, O M; Kareem, T S
2016-12-01
Irrigated agriculture is one of the significant contributors to the food security of the millennium development goals (MDGs); however, the modification of soil matrix by irrigation could alter the overall soil health due to changes in soil properties and processes. The objective of the study was to evaluate the effect of irrigation on soil quality status of the Ikere center pivot irrigation project site in Oyo State, southwest Nigeria. Disturbed soil samples were collected from 0 to 30, 30 to 60, and 60 to 90-cm layers from four different sites in three replicates, within the project location for the determination of soil bio-chemical properties. The average values of sodium adsorption ratio (SAR) < 13, electrical conductivity (EC) <4 μS/cm, and pH < 8.5 showed that the soil condition is normal in relation to salinity and sodicity hazards. The effective cation exchange capacity (ECEC), soil organic matter (SOM), total nitrogen (TN), and calcium ion (Ca 2+ ) concentrations were low while the available phosphorus (P) was moderate. The principal component analysis showed EC, ECEC, SAR, SOM, and TN as the minimum data set (MDS) for monitoring and assessing the soil quality status of this irrigation field. In terms of bio-chemical properties, the soil quality index (SQI) of the field was average (about 0.543) while the sampling locations were ranked as site 2 > site 4 > site 3 > site 1 in terms of SQI. The results of this study are designated as baseline for future evaluation of soil quality status of this irrigation field and further studies should incorporate soil physical and more biological properties when considering overall soil quality status.
Superconductivity driven by pairing of the coherent parts of the physical electrons
NASA Astrophysics Data System (ADS)
Su, Yuehua; Zhang, Chao
2018-03-01
How the superconductivity in unconventional superconductors emerges from the diverse mother normal states is still a big puzzle. Whatever the mother normal states are the superconductivity is normal with BCS-like behaviours of the paired quasiparticles in condensation. To reconcile the diverse mother normal states and the normal superconductivity in unconventional superconductors, we revisit a proposal that the emergence of the low-energy coherent parts of the physical electrons, which survive from the interaction correlations, is an essential prerequisite for superconductivity. The superconductivity is driven by the pair condensation of these coherent parts of the physical electrons. Moreover the incoherent parts of the physical electrons can enhance the superconducting transition temperature Tc although they are not in driving role in the emergence of the superconductivity. Some experimental responses of the coherent parts of the physical electrons are predicted.
Quantum Properties of the Superposition of Two Nearly Identical Coherent States
NASA Astrophysics Data System (ADS)
Othman, Anas; Yevick, David
2018-04-01
In this paper, we examine the properties of the state obtained when two nearly identical coherent states are superimposed. We found that this state exhibits many nonclassical properties such as sub-Poissonian statistics, squeezing and a partially negative Wigner function. These and other properties indicate that such states, here termed near coherent states, are significantly closer to coherent states more than the generalized Schrördinger cat states. We finally provide an experimental procedure for generating the near coherent states.
NASA Astrophysics Data System (ADS)
Wang, Xinchang; Shen, Xiaotian; Zhao, Tianqi; Sun, Fanghong; Shen, Bin
2016-04-01
Micro-crystalline diamond (MCD) films are deposited on reactive sintering SiC substrates by the bias enhanced hot filament chemical vapor deposition (BE-HFCVD) method, respectively using the methane, acetone, methanol and ethanol as the carbon source. Two sets of standard tribotests are conducted, adopting Si3N4 balls as the counterpart balls, respectively with the purpose of clarifying differences among tribological properties of different MCD films, and studying detailed effects of the carbon source C, normal load Fn and sliding velocity v based on orthogonal analyses. It is clarified that the methane-MCD film presents the lowest growth rate, the highest film quality, the highest hardness and the best adhesion, in consequence, it also performs the best tribological properties, including the lowest coefficient of friction (COF) and wear rate Id, while the opposite is the methanol-MCD film. Under a normal load Fn of 7 N and at a sliding velocity v of 0.4183 m/s, for the methane-MCD film, the maximum COF (MCOF) is 0.524, the average COF during the relatively steady-state regime (ACOF) is 0.144, and the Id is about 1.016 × 10-7 mm3/N m; and for the methanol-MCD film, the MCOF is 0.667, the ACOF is 0.151, and the Id is 1.448 × 10-7 mm3/N m. Moreover, the MCOF, ACOF, Id and the wear rate of the Si3N4 ball Ib will all increase with the Fn, while the v only has significant effect on the ACOF, which shows a monotone increasing trend with the v.
NASA Astrophysics Data System (ADS)
Gerig, Lee Harvey
The purpose of this work was to investigate the electrical impedance properties of Human Erythrocytes suspended in normal saline and specifically how radiation and temperature affected these properties. The cells were obtained by venepuncture from normal adult volunteers, washed three times and resuspended in phosphate buffered saline. The cells were irradiated by ('60)Co gamma rays to doses varying from 500 to 20,000 rads. The electrical impedance was measured using a computerized measurement and data acquisition system developed in the Biophysics Laboratory, School of Physics, University of New South Wales. The measurements were performed employing a four terminal technique and a digitally synthesized sine wave. The measurements revealed that nonirradiated blood from any specific individual had reproducible electrical properties from day to day and that there were only small differences in the electrical properties of blood from the various individuals sampled. This data displayed complex structure in both the capacitance versus frequency and conductance versus frequency curves. Of great interest was the dependence on the time post venesection, indicating a continual change in the state of the cells after removal from their natural environment. The experiments also revealed a non linear temperature dependence and a significant change in the suspension impedance as a function of absorbed dose. A model of the system was introduced which was able to emulate most of the measured phenomena. Studies of how the model can be adapted to fit the measured data for various cases (eg. time, temperature, radiation dose) suggested various physiological processes occurring within the membrane. The results were indicative of effects such as radiation induced changes in the lipid hydrocarbon region, the presence of a complex protein structure, the dissociation of charge within the protein, the presence of electrogenic pumps, and the destruction of the lipid matrix by radiation induced lipid peroxidation.
Zhang, Sa; Li, Zhou; Xin, Xue-Gang
2017-12-20
To achieve differential diagnosis of normal and malignant gastric tissues based on discrepancies in their dielectric properties using support vector machine. The dielectric properties of normal and malignant gastric tissues at the frequency ranging from 42.58 to 500 MHz were measured by coaxial probe method, and the Cole?Cole model was used to fit the measured data. Receiver?operating characteristic (ROC) curve analysis was used to evaluate the discrimination capability with respect to permittivity, conductivity, and Cole?Cole fitting parameters. Support vector machine was used for discriminating normal and malignant gastric tissues, and the discrimination accuracy was calculated using k?fold cross? The area under the ROC curve was above 0.8 for permittivity at the 5 frequencies at the lower end of the measured frequency range. The combination of the support vector machine with the permittivity at all these 5 frequencies combined achieved the highest discrimination accuracy of 84.38% with a MATLAB runtime of 3.40 s. The support vector machine?assisted diagnosis is feasible for human malignant gastric tissues based on the dielectric properties.
NASA Astrophysics Data System (ADS)
García-Morales, Vladimir; Manzanares, José A.; Mafe, Salvador
2017-04-01
We present a weakly coupled map lattice model for patterning that explores the effects exerted by weakening the local dynamic rules on model biological and artificial networks composed of two-state building blocks (cells). To this end, we use two cellular automata models based on (i) a smooth majority rule (model I) and (ii) a set of rules similar to those of Conway's Game of Life (model II). The normal and abnormal cell states evolve according to local rules that are modulated by a parameter κ . This parameter quantifies the effective weakening of the prescribed rules due to the limited coupling of each cell to its neighborhood and can be experimentally controlled by appropriate external agents. The emergent spatiotemporal maps of single-cell states should be of significance for positional information processes as well as for intercellular communication in tumorigenesis, where the collective normalization of abnormal single-cell states by a predominantly normal neighborhood may be crucial.
García-Morales, Vladimir; Manzanares, José A; Mafe, Salvador
2017-04-01
We present a weakly coupled map lattice model for patterning that explores the effects exerted by weakening the local dynamic rules on model biological and artificial networks composed of two-state building blocks (cells). To this end, we use two cellular automata models based on (i) a smooth majority rule (model I) and (ii) a set of rules similar to those of Conway's Game of Life (model II). The normal and abnormal cell states evolve according to local rules that are modulated by a parameter κ. This parameter quantifies the effective weakening of the prescribed rules due to the limited coupling of each cell to its neighborhood and can be experimentally controlled by appropriate external agents. The emergent spatiotemporal maps of single-cell states should be of significance for positional information processes as well as for intercellular communication in tumorigenesis, where the collective normalization of abnormal single-cell states by a predominantly normal neighborhood may be crucial.
Theory and computer simulation of relaxor ferroelectrics doped by off-center impurities
NASA Astrophysics Data System (ADS)
Su, Chin-Cheng
A family of ferroelectric materials have relaxation type dynamics. These materials, called relaxor ferroelectrics, show remarkable dielectric and electromechanical properties important for many practical applications that are different from those of normal ferroelectrics. Despite of the engineering importance of relaxor ferroelectrics, the physical origin of the relaxor behavior is not fully understood. A purpose of this thesis is to advance the theory of relaxor ferroelectrics and to develop the model, which could be used for a computer simulation of the static dielectric and dynamic properties and their relation to the concentration of dopant ions. In this thesis, a Ginzburg-Landau type theory of interaction of randomly distributed local dipoles immersed in a paraelectric crystal is developed. The interaction is caused by the polarization of the host lattice generated by these dipoles. It is long-ranged and decays proportionally to the inverse distance between the local dipoles. The obtained effective Hamiltonian of the dipole-dipole interaction is employed for both the Monte Carlo and the Master Equation simulations of the dielectric and ferroelectric properties of a system with off-center dopant ions producing local dipoles. The computer simulation shows that at low concentration of dopant ions the paraelectric state transforms into a macroscopically paraelectric state consisting of randomly oriented polar clusters. The behavior of the system is similar to that of a spin-glass system. The polar clusters amplify the effective dipole moment and significantly increase the dielectric constant. It is shown that the interaction between the clusters results in a spectrum of relaxation times and the transition to the relaxor state. The real and imaginary parts of the susceptibility of this state are calculated. The slim hysteresis loop in the polarization, which usually appears in the high temperature non-polarized relaxor ferroelectrics, is also obtained for our doped system under similar physical conditions. At intermediate dopant concentration, the material undergoes a diffuse phase transition smeared within a temperature range to a ferroelectric state. A further increase in the dopant concentration makes the transition sharper and closer to the conventional ferroelectric transition. The results obtained are compared with the behavior of the K1-xLixTaO 3 relaxor ferroelectric.
NASA Astrophysics Data System (ADS)
Helgeson, Harold C.; Owens, Christine E.; Knox, Annette M.; Richard, Laurent
1998-03-01
Calculation of the thermodynamic properties of organic solids, liquids, and gases at high temperatures and pressures is a requisite for characterizing hydrothermal metastable equilibrium states involving these species and quantifying the chemical affinities of irreversible reactions of organic molecules in natural gas, crude oil, kerogen, and coal with minerals and organic, inorganic, and biomolecular aqueous species in interstitial waters in sedimentary basins. To facilitate calculations of this kind, coefficients for the Parameters From Group Contributions (PFGC) equation of state have been compiled for a variety of groups in organic liquids and gases. In addition, molecular weights, critical temperatures and pressures, densities at 25°C and 1 bar, transition, melting, and boiling temperatures ( Tt,Pr, Tm,Pr, and Tv,Pr, respectively) and standard molal enthalpies of transition (Δ H° t,Pr), melting (Δ H° m,Pr), and vaporization (Δ H° v,Pr) of organic species at 1 bar ( Pr) have been tabulated, together with an internally consistent and comprehensive set of standard molal Gibbs free energies and enthalpies of formation from the elements in their stable state at 298.15 K ( Tr) and Pr (Δ G° f and Δ H° f, respectively). The critical compilation also includes standard molal entropies ( S°) and volumes ( V°) at Tr and Pr, and standard molal heat capacity power function coefficients to compute the standard molal thermodynamic properties of organic solids, liquids, and gases as a function of temperature at 1 bar. These properties and coefficients have been tabulated for more than 500 crystalline solids, liquids, and gases, and those for many more can be computed from the equations of state group additivity algorithms. The crystalline species correspond to normal alkanes (C nH 2( n+1) ) with carbon numbers ( n, which is equal to the number of moles of carbon atoms in one mole of the species) ranging from 5 to 100, and 23 amino acids including glycine (C 2H 5NO 2), alanine (C 3H 7NO 2), valine (C 5H 11NO 2), leucine (C 6H 13NO 2), isoleucine (C 6H 13NO 2), aspartic acid (C 4H 7NO 4), glutamic acid (C 5H 9NO 4), asparagine (C 4H 8N 2O 3), glutamine (C 5H 10N 2O 3), proline (C 5H 9NO 2), phenylalanine (C 9H 11NO 2), tryptophan (C 11H 12N 2O 2), methionine (C 5H 11SNO 2), serine (C 3H 7NO 3), threonine (C 4H 9NO 3), cysteine (C 3H 7SNO 2), tyrosine (C 9H 11NO 3), lysine (C 6H 14N 2O 2), lysine:HCl (C 6H 15N 2O 2Cl), arginine (C 6H 14N 4O 2), arginine:HCl (C 6H 15N 4O 2Cl), histidine (C 6H 9N 3O 2), and histidine:HCl (C 6H 10N 3O 2Cl). The data for the latter compounds permit calculation of the standard molal thermodynamic properties of protein unfolding in biogeochemical processes (Helgeson et al 1998). The liquids and gases considered in the present study include normal alkanes (C nH 2( n+1) ) for carbon numbers ranging from 1 to 100, 2- and 3-methylalkanes (C nH 2( n+1) ) for 4 ≤ n ≤ 20 and 6 ≤ n ≤ 20, respectively, 2,3-dimethylpentane (C 7H 16), 4-methylheptane (C 8H 18), cycloalkanes (C nH 2 n) for 3 ≤ n ≤ 8, methylated benzenes (C nH 2( n-3) ) for 7 ≤ n ≤ 12, normal alkylbenzenes (C nH 2( n-3) ) for 6 ≤ n ≤ 20, normal 1-alcohols (C nH 2( n+1) O) for 1 ≤ n ≤ 20, ethylene glycol (C 2H 6O 2), glycerol (C 3H 8O 3), normal 1-alkanethiols (C nH 2( n+1) S) for 1 ≤ n ≤ 20, normal carboxylic acids (C nH 2 nO 2) for 2 ≤ n ≤ 20, and the following miscellaneous species: 2-thiabutane (C 3H 8S), thiophene (C 4H 4S), thiophenol (C 6H 6S), acetone (C 3H 6O), 2-butanone (C 4H 8O), ethyl acetate (C 4H 8O 2), pyridine (C 5H 5N), 3-methylpyridine (C 6H 7N), and quinoline (C 9H 7N). One additional liquid (2-methylthiacyclopentane (C 5H 10S)) was also considered along with crystalline and gaseous carbazole (C 12H 9N). The thermodynamic data and equations summarized below can be used together with the standard molal thermodynamic properties of high molecular weight organic compounds ( Richard and Helgeson 1995, Richard and Helgeson 1998a, Richard and Helgeson 1998b) and minerals, inorganic gases, and aqueous species, including biomolecules ( Johnson et al 1992; Shock 1992a, Shock 1994, Shock 1995; Shock et al 1997; Shock and Koretsky 1993, Shock and Koretsky 1995; Sassani and Shock 1992, Sassani and Shock 1994; Schulte and Shock 1993, Schulte and Shock 1995; Oelkers et al 1995; Amend and Helgeson 1997a, Amend and Helgeson 1997b, Amend and Helgeson 1997c, Amend and Helgeson 1998; Sverjensky et al 1997) to compute equilibrium constants and chemical affinities for a wide variety of organic-inorganic reactions in geochemical and biochemical processes at both high and low temperatures and pressures. Unless indicated otherwise, all amino acid designations in the present communication refer to the L-α form.
NASA Astrophysics Data System (ADS)
Macriss, R. A.; Zawacki, T. S.
Development of improved data for the thermodynamic, transport and physical properties of absorption fluids were studied. A specific objective of this phase of the study is to compile, catalog and coarse screen the available US data of known absorption fluid systems and publish it as a first edition document to be distributed to manufacturers, researchers and others active in absorption heat pump activities. The methodology and findings of the compilation, cataloguing and coarse screening of the available US data on absorption fluid properties and presents current status and future work on this project are summarized. Both in house file and literature searches were undertaken to obtain available US publications with pertinent physical, thermodynamic and transport properties data for absorption fluids. Cross checks of literature searches were also made, using available published bibliographies and literature review articles, to eliminate secondary sources for the data and include only original sources and manuscripts. The properties of these fluids relate to the liquid and/or vapor state, as encountered in normal operation of absorption equipment employing such fluids, and to the crystallization boundary of the liquid phase, where applicable. The actual data were systematically classified according to the type of fluid and property, as well as temperature, pressure and concentration ranges over which data were available. Data were sought for 14 different properties: Vapor-Liquid Equilibria, Crystallization Temperature, Corrosion Characteristics, Heat of Mixing, Liquid-Phase-Densities, Vapor-Liquid-Phase Enthalpies, Specific Heat, Stability, Viscosity, Mass Transfer Rate, Heat Transfer Rate, Thermal Conductivity, Flammability, and Toxicity.
Vibrational spectra of water solutions of azoles from QM/MM calculations: effects of solvation.
Tanzi, Luana; Ramondo, Fabio; Guidoni, Leonardo
2012-10-18
Using microsolvation models and mixed quantum/classical ab initio molecular dynamics simulations, we investigate the vibrational properties of two azoles in water solution: pyrazole and oxazole. The effects of the water-azole hydrogen bonding are rationalized by an extensive comparison between structural parameters and harmonic frequencies obtained by microsolvation models. Following the effective normal-mode analysis introduced by Martinez et al. [Martinez et al., J. Chem. Phys. 2006, 125, 144106], we identify the vibrational frequencies of the solutes using the decomposition of the vibrational density of states of the gas phase and solution dynamics. The calculated shifts from gas phase to solution are fairly in agreement with the available experimental data.
Nonlinear optical waves with the second Painleve transcendent shape of envelope in Kerr media
NASA Astrophysics Data System (ADS)
Shcherbakov, Alexandre S.; Tepichin Rodriguez, Eduardo; Sanchez Sanchez, Mauro
2004-05-01
Nonlinear optical wave packets with the second Painleve transcendent shape of envelope are revealed in Kerr media, manifesting weakly focusing cubic nonlinearity, square-law dispersion, and linear losses. When the state of nonlinear optical transmission is realized, two possible types of boundary conditions turn out to be satisfied for these wave packets. The propagation of initially unchirped optical wave packets under consideration could be supported by lossless medium in both normal and anomalous dispersion regimes. At the same time initially chirped optical waves with the second Painleve transcendent shape in low-loss medium and need matching the magnitude of optical losses by the dispersion and nonlinear properties of that medium.
Visualized kinematics code for two-body nuclear reactions
NASA Astrophysics Data System (ADS)
Lee, E. J.; Chae, K. Y.
2016-05-01
The one or few nucleon transfer reaction has been a great tool for investigating the single-particle properties of a nucleus. Both stable and exotic beams are utilized to study transfer reactions in normal and inverse kinematics, respectively. Because many energy levels of the heavy recoil from the two-body nuclear reaction can be populated by using a single beam energy, identifying each populated state, which is not often trivial owing to high level-density of the nucleus, is essential. For identification of the energy levels, a visualized kinematics code called VISKIN has been developed by utilizing the Java programming language. The development procedure, usage, and application of the VISKIN is reported.