DOE Office of Scientific and Technical Information (OSTI.GOV)
HU TA
2009-10-26
Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.
A mechanical energy analysis of gait initiation
NASA Technical Reports Server (NTRS)
Miller, C. A.; Verstraete, M. C.
1999-01-01
The analysis of gait initiation (the transient state between standing and walking) is an important diagnostic tool to study pathologic gait and to evaluate prosthetic devices. While past studies have quantified mechanical energy of the body during steady-state gait, to date no one has computed the mechanical energy of the body during gait initiation. In this study, gait initiation in seven normal male subjects was studied using a mechanical energy analysis to compute total body energy. The data showed three separate states: quiet standing, gait initiation, and steady-state gait. During gait initiation, the trends in the energy data for the individual segments were similar to those seen during steady-state gait (and in Winter DA, Quanbury AO, Reimer GD. Analysis of instantaneous energy of normal gait. J Biochem 1976;9:253-257), but diminished in amplitude. However, these amplitudes increased to those seen in steady-state during the gait initiation event (GIE), with the greatest increase occurring in the second step due to the push-off of the foundation leg. The baseline level of mechanical energy was due to the potential energy of the individual segments, while the cyclic nature of the data was indicative of the kinetic energy of the particular leg in swing phase during that step. The data presented showed differences in energy trends during gait initiation from those of steady state, thereby demonstrating the importance of this event in the study of locomotion.
Absolute Steady-State Thermal Conductivity Measurements by Use of a Transient Hot-Wire System.
Roder, H M; Perkins, R A; Laesecke, A; Nieto de Castro, C A
2000-01-01
A transient hot-wire apparatus was used to measure the thermal conductivity of argon with both steady-state and transient methods. The effects of wire diameter, eccentricity of the wire in the cavity, axial conduction, and natural convection were accounted for in the analysis of the steady-state measurements. Based on measurements on argon, the relative uncertainty at the 95 % level of confidence of the new steady-state measurements is 2 % at low densities. Using the same hot wires, the relative uncertainty of the transient measurements is 1 % at the 95 % level of confidence. This is the first report of thermal conductivity measurements made by two different methods in the same apparatus. The steady-state method is shown to complement normal transient measurements at low densities, particularly for fluids where the thermophysical properties at low densities are not known with high accuracy.
Estimating Systemic Exposure to Levonorgestrel from an Oral Contraceptive
Basaraba, Cale N; Westhoff, Carolyn L; Pike, Malcolm C; Nandakumar, Renu; Cremers, Serge
2017-01-01
Objective The gold standard for measuring oral contraceptive (OC) pharmacokinetics is the 24-hour steady-state area-under-the-curve (AUC). We conducted this study to assess whether limited sampling at steady state or measurements following use of one or two OCs could provide an adequate proxy in epidemiological studies for the progestin 24-hour steady-state AUC of a particular OC. Study Design We conducted a 13-sample, 24-hour pharmacokinetic study on both day 1 and day 21 of the first cycle of a monophasic OC containing 30 μg ethinyl estradiol and 150 μg levonorgestrel (LNG) in 17 normal-weight healthy white women, and a single-dose 9-sample study of the same OC after a one-month washout. We compared the 13-sample steady-state results with several steady-state and single-dose results calculated using parsimonious sampling schemes. Results The 13-sample steady-state 24-hour LNG AUC was highly correlated with the steady-state 24-hour trough value (r = 0.95; 95% CI [0.85, 0.98]) and with the steady-state 6, 8, 12 and 16-hour values (0.92 ≤ r ≤ 0.95). The trough values after one or two doses were moderately correlated with the steady-state 24-hour AUC value (r = 0.70; 95% CI [0.27, 0.90] and 0.77; 95% CI [0.40, 0.92], respectively). Conclusions Single time-point concentrations at steady-state and after administration of one or two OCs gave highly to moderately correlated estimates of steady-state LNG AUC. Using such measures could facilitate prospective pharmaco-epidemiologic studies of the OC and its side effects. PMID:28041990
Estimating systemic exposure to levonorgestrel from an oral contraceptive.
Basaraba, Cale N; Westhoff, Carolyn L; Pike, Malcolm C; Nandakumar, Renu; Cremers, Serge
2017-04-01
The gold standard for measuring oral contraceptive (OC) pharmacokinetics is the 24-h steady-state area under the curve (AUC). We conducted this study to assess whether limited sampling at steady state or measurements following use of one or two OCs could provide an adequate proxy in epidemiological studies for the progestin 24-h steady-state AUC of a particular OC. We conducted a 13-sample, 24-h pharmacokinetic study on both day 1 and day 21 of the first cycle of a monophasic OC containing 30-mcg ethinyl estradiol and 150-mcg levonorgestrel (LNG) in 17 normal-weight healthy White women and a single-dose 9-sample study of the same OC after a 1-month washout. We compared the 13-sample steady-state results with several steady-state and single-dose results calculated using parsimonious sampling schemes. The 13-sample steady-state 24-h LNG AUC was highly correlated with the steady-state 24-h trough value [r=0.95; 95% confidence interval (0.85, 0.98)] and with the steady-state 6-, 8-, 12- and 16-h values (0.92≤r≤0.95). The trough values after one or two doses were moderately correlated with the steady-state 24-h AUC value [r=0.70; 95% CI (0.27, 0.90) and 0.77; 95% CI (0.40, 0.92), respectively]. Single time-point concentrations at steady state and after administration of one or two OCs gave highly to moderately correlated estimates of steady-state LNG AUC. Using such measures could facilitate prospective pharmaco-epidemiologic studies of the OC and its side effects. A single time-point LNG concentration at steady state is an excellent proxy for complete and resource-intensive steady-state AUC measurement. The trough level after two single doses is a fair proxy for steady-state AUC. These results provide practical tools to facilitate large studies to investigate the relationship between systemic LNG exposure and side effects in a real-life setting. Copyright © 2017 Elsevier Inc. All rights reserved.
Fan, Wei; Tsui, Kwok-Leung; Lin, Jianhui
2018-01-01
Railway axle bearings are one of the most important components used in vehicles and their failures probably result in unexpected accidents and economic losses. To realize a condition monitoring and fault diagnosis scheme of railway axle bearings, three dimensionless steadiness indexes in a time domain, a frequency domain, and a shape domain are respectively proposed to measure the steady states of bearing vibration signals. Firstly, vibration data collected from some designed experiments are pre-processed by using ensemble empirical mode decomposition (EEMD). Then, the coefficient of variation is introduced to construct two steady-state indexes from pre-processed vibration data in a time domain and a frequency domain, respectively. A shape function is used to construct a steady-state index in a shape domain. At last, to distinguish normal and abnormal bearing health states, some guideline thresholds are proposed. Further, to identify axle bearings with outer race defects, a pin roller defect, a cage defect, and coupling defects, the boundaries of all steadiness indexes are experimentally established. Experimental results showed that the proposed condition monitoring and fault diagnosis scheme is effective in identifying different bearing health conditions. PMID:29495446
Realizing steady-state tokamak operation for fusion energy
NASA Astrophysics Data System (ADS)
Luce, T. C.
2011-03-01
Continuous operation of a tokamak for fusion energy has clear engineering advantages but requires conditions beyond those sufficient for a burning plasma. The fusion reactions and external sources must support both the pressure and the current equilibrium without inductive current drive, leading to demands on stability, confinement, current drive, and plasma-wall interactions that exceed those for pulsed tokamaks. These conditions have been met individually, and significant progress has been made in the past decade to realize scenarios where the required conditions are obtained simultaneously. Tokamaks are operated routinely without disruptions near pressure limits, as needed for steady-state operation. Fully noninductive sustainment with more than half of the current from intrinsic currents has been obtained for a resistive time with normalized pressure and confinement approaching those needed for steady-state conditions. One remaining challenge is handling the heat and particle fluxes expected in a steady-state tokamak without compromising the core plasma performance.
Dopant Segregation in Earth- and Space-Grown InP Crystals
NASA Astrophysics Data System (ADS)
Danilewsky, Andreas Nikolaus; Okamoto, Yusuke; Benz, Klaus Werner; Nishinaga, Tatau
1992-07-01
Macro- and microsegregation of sulphur in InP crystals grown from In solution by the travelling heater method under microgravity and normal gravity are analyzed using spatially resolved photoluminescence. Whereas the macrosegregation in earth- as well as space-grown crystals is explained by conventional steady-state models based on the theory of Burton, Prim and Slichter (BPS), the microsegregation can only be understood in terms of the non-steady-state step exchange model.
Hydrodynamic lubrication of rigid nonconformal contacts in combined rolling and normal motion
NASA Technical Reports Server (NTRS)
Ghosh, M. K.; Hamrock, B. J.; Brewe, D. E.
1984-01-01
A numerical solution to the problem of hydrodynamic lubrication of rigid point contacts with an isoviscous, incompressible lubricant was obtained. The hydrodynamic load-carrying capacity under unsteady (or dynamic) conditions arising from the combined effects of squeeze motion superposed upon the entraining motion was determined for both normal approach and separation. Superposed normal motion considerably increases net load-carrying capacity during normal approach and substantially reduces net load-carrying capacity during separation. Geometry was also found to have a significant influence on the dynamic load-carrying capacity. The ratio of dynamic to steady state load-carrying capacity increases with increasing geometry parameter for normal approach and decreases during separation. The cavitation (film rupture) boundary is also influenced significantly by the normal motion, moving downstream during approach and upstream during separation. For sufficiently high normal separation velocity the rupture boundary may even move upstream of the minimum-film-thickness position. Sixty-three cases were used to derive a functional relationship for the ratio of the dynamic to steady state load-carrying capacity in terms of the dimensionless normal velocity parameter (incorporating normal velocity, entraining velocity, and film thickness) and the geometry parameter.
Hydrodynamic lubrication of rigid nonconformal contacts in combined rolling and normal motion
NASA Technical Reports Server (NTRS)
Ghosh, M. K.; Hamrock, B. J.; Brewe, D.
1985-01-01
A numerical solution to the problem of hydrodynamic lubrication of rigid point contacts with an isoviscous, incompressible lubricant was obtained. The hydrodynamic load-carrying capacity under unsteady (or dynamic) conditions arising from the combined effects of squeeze motion superposed upon the entraining motion was determined for both normal approach and separation. Superposed normal motion considerably increases net load-carrying capacity during normal approach and substantially reduces net load-carrying capacity during separation. Geometry was also found to have a significant influence on the dynamic load-carrying capacity. The ratio of dynamic to steady state load-carrying capacity increases with increasing geometry parameter for normal approach and decreases during separation. The cavitation (film rupture) boundary is also influenced significantly by the normal motion, moving downstream during approach and upstream during separation. For sufficiently high normal separation velocity the rupture boundary may even move upstream of the minimum-film-thickness position. Sixty-three cases were used to derive a functional relationship for the ratio of the dynamic to steady state load-carrying capacity in terms of the dimensionless normal velocity parameter (incorporating normal velocity, entraining velocity, and film thickness) and the geometry parameter.
Applicability of tungsten/EUROFER blanket module for the DEMO first wall
NASA Astrophysics Data System (ADS)
Igitkhanov, Yu.; Bazylev, B.; Landman, I.; Boccaccini, L.
2013-07-01
In this paper we analyse a sandwich-type blanket configuration of W/EUROFER for DEMO first wall under steady-state normal operation and off-normal conditions, such as vertical displacements and runaway electrons. The heat deposition and consequent erosion of the tungsten armour is modelled under condition of helium cooling of the first wall blanket module and by taking into account the conversion of the magnetic energy stored in the runaway electron current into heat through the ohmic dissipation of the return current induced in the metallic armour structure. It is shown that under steady-state DEMO operation the first wall sandwich type module will tolerate heat loads up to ˜14 MW/m2. It will also sustain the off-normal events, apart from the hot vertical displacement events, which will melt the tungsten armour surface.
CLASSICAL AREAS OF PHENOMENOLOGY: Temporal behaviour of open-circuit photovoltaic solitons
NASA Astrophysics Data System (ADS)
Zhang, Mei-Zhi; Lu, Ke-Qing; Cheng, Guang-Hua; Li, Ke-Hao; Zhang, Yi-Qi; Zhang, Yu-Hong; Zhang, Yan-Peng
2009-07-01
Based on the time-dependent band-transport model in a photorefractive medium, dark open-circuit photovoltaic (PV) solitons are investigated both theoretically and experimentally. Compared with those of the time-independent models, our theoretical results revealed that quasi-steady-state and steady-state PV solitons can both be obtained. Our results also revealed that when r < 1 (r is the normalized intensity at infinity), the full width at half maximum (FWHM) of solitons decreases monotonically to a constant value; when r > 1, however, the FWHM of solitons first decreases to a minimum before it increases to a constant value. Moreover, the FWHM of steady solitons decreases with increasing intensity ratio for r < 1, and increases with increasing intensity ratio for r > 1. We further observed dark PV solitons in experiments, and recorded their evolution. These results indicated that steady solitons can be observed at low optical power, while quasi-steady-state solitons can only be generated at higher optical power. Good agreement is found between theory and experiment.
Fully Modulated Turbulent Diffusion Flames in Microgravity*
NASA Astrophysics Data System (ADS)
Sangras, Ravikiran; Hermanson, James C.; Johari, Hamid; Stocker, Dennis P.; Hegde, Uday G.
2001-11-01
Fully modulated, turbulent diffusion flames are studied in microgravity in 2.2 s drop-tower tests with a co-flow combustor. The fuel consists of pure ethylene or a 50/50 mixture with nitrogen; the oxidizer is either normal air or up to 40% oxygen in nitrogen. A fast solenoid valve is used to fully modulate (completely shut off) the fuel flow. The injection times range from 5 to 400 ms with a duty-cycle of 0.1 - 0.5. The fuel nozzle is 2 mm in diameter with a jet Reynolds number of 5000. The shortest injection times yield compact puffs with a mean flame length as little as 20% of that of the steady-state flame. The reduction in flame length appears to be somewhat greater in microgravity than in normal gravity. As the injection time increases, elongated flames result with a mean flame length comparable to that of a steady flame. The injection time for which the steady-state flame length is approached is shorter for lower air/fuel ratios. For a given duty-cycle, the separation between puffs is greater in microgravity than in normal gravity. For compact puffs, increasing the duty-cycle appears to increase the flame length more in microgravity than in normal gravity. The microgravity flame puffs do not exhibit the vortex-ring-like structure seen in normal gravity.
NASA Technical Reports Server (NTRS)
Rogers, S. E.; Kwak, D.; Chang, J. L. C.
1986-01-01
The method of pseudocompressibility has been shown to be an efficient method for obtaining a steady-state solution to the incompressible Navier-Stokes equations. Recent improvements to this method include the use of a diagonal scheme for the inversion of the equations at each iteration. The necessary transformations have been derived for the pseudocompressibility equations in generalized coordinates. The diagonal algorithm reduces the computing time necessary to obtain a steady-state solution by a factor of nearly three. Implicit viscous terms are maintained in the equations, and it has become possible to use fourth-order implicit dissipation. The steady-state solution is unchanged by the approximations resulting from the diagonalization of the equations. Computed results for flow over a two-dimensional backward-facing step and a three-dimensional cylinder mounted normal to a flat plate are presented for both the old and new algorithms. The accuracy and computing efficiency of these algorithms are compared.
Prospective treatment planning to improve locoregional hyperthermia for oesophageal cancer.
Kok, H P; van Haaren, P M A; van de Kamer, J B; Zum Vörde Sive Vörding, P J; Wiersma, J; Hulshof, M C C M; Geijsen, E D; van Lanschot, J J B; Crezee, J
2006-08-01
In the Academic Medical Center (AMC) Amsterdam, locoregional hyperthermia for oesophageal tumours is applied using the 70 MHz AMC-4 phased array system. Due to the occurrence of treatment-limiting hot spots in normal tissue and systemic stress at high power, the thermal dose achieved in the tumour can be sub-optimal. The large number of degrees of freedom of the heating device, i.e. the amplitudes and phases of the antennae, makes it difficult to avoid treatment-limiting hot spots by intuitive amplitude/phase steering. Prospective hyperthermia treatment planning combined with high resolution temperature-based optimization was applied to improve hyperthermia treatment of patients with oesophageal cancer. All hyperthermia treatments were performed with 'standard' clinical settings. Temperatures were measured systemically, at the location of the tumour and near the spinal cord, which is an organ at risk. For 16 patients numerically optimized settings were obtained from treatment planning with temperature-based optimization. Steady state tumour temperatures were maximized, subject to constraints to normal tissue temperatures. At the start of 48 hyperthermia treatments in these 16 patients temperature rise (DeltaT) measurements were performed by applying a short power pulse with the numerically optimized amplitude/phase settings, with the clinical settings and with mixed settings, i.e. numerically optimized amplitudes combined with clinical phases. The heating efficiency of the three settings was determined by the measured DeltaT values and the DeltaT-ratio between the DeltaT in the tumour (DeltaToes) and near the spinal cord (DeltaTcord). For a single patient the steady state temperature distribution was computed retrospectively for all three settings, since the temperature distributions may be quite different. To illustrate that the choice of the optimization strategy is decisive for the obtained settings, a numerical optimization on DeltaT-ratio was performed for this patient and the steady state temperature distribution for the obtained settings was computed. A higher DeltaToes was measured with the mixed settings compared to the calculated and clinical settings; DeltaTcord was higher with the mixed settings compared to the clinical settings. The DeltaT-ratio was approximately 1.5 for all three settings. These results indicate that the most effective tumour heating can be achieved with the mixed settings. DeltaT is proportional to the Specific Absorption Rate (SAR) and a higher SAR results in a higher steady state temperature, which implies that mixed settings are likely to provide the most effective heating at steady state as well. The steady state temperature distributions for the clinical and mixed settings, computed for the single patient, showed some locations where temperatures exceeded the normal tissue constraints used in the optimization. This demonstrates that the numerical optimization did not prescribe the mixed settings, because it had to comply with the constraints set to the normal tissue temperatures. However, the predicted hot spots are not necessarily clinically relevant. Numerical optimization on DeltaT-ratio for this patient yielded a very high DeltaT-ratio ( approximately 380), albeit at the cost of excessive heating of normal tissue and lower steady state tumour temperatures compared to the conventional optimization. Treatment planning can be valuable to improve hyperthermia treatments. A thorough discussion on clinically relevant objectives and constraints is essential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umans, Stephen D; Nisley, Donald L; Melfi, Michael J
A line-start synchronous motor has a housing, a rotor shaft, and an output shaft. A soft-start coupling portion is operatively coupled to the output shaft and the rotor shaft. The soft-start coupling portion is configurable to enable the synchronous motor to obtain synchronous operation and to drive, at least near synchronous speed during normal steady state operation of the motor, a load having characteristics sufficient to prevent obtaining normal synchronous operation of the motor when the motor is operatively connected to the load in the absence of the soft-start coupling. The synchronous motor is sufficiently rated to obtain synchronous operationmore » and to drive, at least near synchronous speed during normal steady state operation of the motor, a load having characteristics sufficient to prevent obtaining normal synchronous operation of the motor when the motor is operatively connected to the load in the absence of the soft-start coupling.« less
Charge carrier thermalization in organic diodes
van der Kaap, N. J.; Koster, L. J. A.
2016-01-01
Charge carrier mobilities of organic semiconductors are often characterized using steady-state measurements of space charge limited diodes. These measurements assume that charge carriers are in a steady-state equilibrium. In reality, however, energetically hot carriers are introduces by photo-excitation and injection into highly energetic sites from the electrodes. These carriers perturb the equilibrium density of occupied states, and therefore change the overall charge transport properties. In this paper, we look into the effect of energetically hot carriers on the charge transport in organic semiconductors using steady state kinetic Monte Carlo simulations. For injected hot carriers in a typical organic semiconductor, rapid energetic relaxation occurs in the order of tens of nanoseconds, which is much faster than the typical transit time of a charge carrier throught the device. Furthermore, we investigate the impact of photo-generated carriers on the steady-state mobility. For a typical organic voltaic material, an increase in mobility of a factor of 1.1 is found. Therefore, we conclude that the impact of energetically hot carriers on normal device operation is limited. PMID:26791095
DOE Office of Scientific and Technical Information (OSTI.GOV)
Utgikar, Vivek; Sun, Xiaodong; Christensen, Richard
2016-12-29
The overall goal of the research project was to model the behavior of the advanced reactorintermediate heat exchange system and to develop advanced control techniques for off-normal conditions. The specific objectives defined for the project were: 1. To develop the steady-state thermal hydraulic design of the intermediate heat exchanger (IHX); 2. To develop mathematical models to describe the advanced nuclear reactor-IHX-chemical process/power generation coupling during normal and off-normal operations, and to simulate models using multiphysics software; 3. To develop control strategies using genetic algorithm or neural network techniques and couple these techniques with the multiphysics software; 4. To validate themore » models experimentally The project objectives were accomplished by defining and executing four different tasks corresponding to these specific objectives. The first task involved selection of IHX candidates and developing steady state designs for those. The second task involved modeling of the transient and offnormal operation of the reactor-IHX system. The subsequent task dealt with the development of control strategies and involved algorithm development and simulation. The last task involved experimental validation of the thermal hydraulic performances of the two prototype heat exchangers designed and fabricated for the project at steady state and transient conditions to simulate the coupling of the reactor- IHX-process plant system. The experimental work utilized the two test facilities at The Ohio State University (OSU) including one existing High-Temperature Helium Test Facility (HTHF) and the newly developed high-temperature molten salt facility.« less
NASA Astrophysics Data System (ADS)
Entler, S.; Duran, I.; Kocan, M.; Vayakis, G.
2017-07-01
Three vacuum vessel sectors in ITER will be instrumented by the outer vessel steady-state magnetic field sensors. Each sensor unit features a pair of metallic Hall sensors with a sensing layer made of bismuth to measure tangential and normal components of the local magnetic field. The influence of temperature and magnetic field on the Hall coefficient was tested for the temperature range from 25 to 250 oC and the magnetic field range from 0 to 0.5 T. A fit of the Hall coefficient normalized temperature function independent of magnetic field was found, and a model of the Hall coefficient functional dependence at a wide range of temperature and magnetic field was built with the purpose to simplify the calibration procedure.
Wear-Resistant, Self-Lubricating Surfaces of Diamond Coatings
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa
1995-01-01
In humid air and dry nitrogen, as-deposited, fine-grain diamond films and polished, coarse-grain diamond films have low steady-state coefficients of friction (less than 0.1) and low wear rates (less than or equal to 10(exp -6) mm(exp 3)/N-m). In an ultrahigh vacuum (10(exp -7) Pa), however, they have high steady-state coefficients of friction (greater than 0.6) and high wear rates (greater than or equal to 10(exp -4) mm(exp 3)/N-m). Therefore, the use of as-deposited, fine-grain and polished, coarse-grain diamond films as wear-resistant, self-lubricating coatings must be limited to normal air or gaseous environments such as dry nitrogen. On the other hand, carbon-ion-implanted, fine-grain diamond films and nitrogen-ion-implanted, coarse-grain diamond films have low steady-state coefficients of friction (less than 0.1) and low wear rates (less than or equal to 10(exp -6) mm(exp 3)/N-m) in all three environments. These films can be effectively used as wear-resistant, self-lubricating coatings in an ultrahigh vacuum as well as in normal air and dry nitrogen.
The Initiation of Smooth Pursuit is Delayed in Anisometropic Amblyopia.
Raashid, Rana Arham; Liu, Ivy Ziqian; Blakeman, Alan; Goltz, Herbert C; Wong, Agnes M F
2016-04-01
Several behavioral studies have shown that the reaction times of visually guided movements are slower in people with amblyopia, particularly during amblyopic eye viewing. Here, we tested the hypothesis that the initiation of smooth pursuit eye movements, which are responsible for accurately keeping moving objects on the fovea, is delayed in people with anisometropic amblyopia. Eleven participants with anisometropic amblyopia and 14 visually normal observers were asked to track a step-ramp target moving at ±15°/s horizontally as quickly and as accurately as possible. The experiment was conducted under three viewing conditions: amblyopic/nondominant eye, binocular, and fellow/dominant eye viewing. Outcome measures were smooth pursuit latency, open-loop gain, steady state gain, and catch-up saccade frequency. Participants with anisometropic amblyopia initiated smooth pursuit significantly slower during amblyopic eye viewing (206 ± 20 ms) than visually normal observers viewing with their nondominant eye (183 ± 17 ms, P = 0.002). However, mean pursuit latency in the anisometropic amblyopia group during binocular and monocular fellow eye viewing was comparable to the visually normal group. Mean open-loop gain, steady state gain, and catch-up saccade frequency were similar between the two groups, but participants with anisometropic amblyopia exhibited more variable steady state gain (P = 0.045). This study provides evidence of temporally delayed smooth pursuit initiation in anisometropic amblyopia. After initiation, the smooth pursuit velocity profile in anisometropic amblyopia participants is similar to visually normal controls. This finding differs from what has been observed previously in participants with strabismic amblyopia who exhibit reduced smooth pursuit velocity gains with more catch-up saccades.
Vortex creep and the internal temperature of neutron stars. I - General theory
NASA Technical Reports Server (NTRS)
Alpar, M. A.; Pines, D.; Anderson, P. W.; Shaham, J.
1984-01-01
The theory of a neutron star superfluid coupled to normal matter via thermal creep against pinning forces is developed in some detail. General equations of motion for a pinned rotating superfluid and their form for vortex creep are given. Steady state creep and the way in which the system approaches the steady state are discussed. The developed formalism is applied to the postglitch relaxation of a pulsar, and detailed models are developed which permit explicit calculation of the postglitch response. The energy dissipation associated with creep and glitches is considered.
A normalized model for the half-bridge series resonant converter
NASA Technical Reports Server (NTRS)
King, R.; Stuart, T. A.
1981-01-01
Closed-form steady-state equations are derived for the half-bridge series resonant converter with a rectified (dc) load. Normalized curves for various currents and voltages are then plotted as a function of the circuit parameters. Experimental results based on a 10-kHz converter are presented for comparison with the calculations.
Fuzzy cellular automata models in immunology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, E.
1996-10-01
The self-nonself character of antigens is considered to be fuzzy. The Chowdhury et al. cellular automata model is generalized accordingly. New steady states are found. The first corresponds to a below-normal help and suppression and is proposed to be related to autoimmune diseases. The second corresponds to a below-normal B-cell level.
40 CFR 265.341 - Waste analysis.
Code of Federal Regulations, 2010 CFR
2010-07-01
... incinerator to enable him to establish steady state (normal) operating conditions (including waste and auxiliary fuel feed and air flow) and to determine the type of pollutants which might be emitted. At a...
Seeing the talker's face supports executive processing of speech in steady state noise.
Mishra, Sushmit; Lunner, Thomas; Stenfelt, Stefan; Rönnberg, Jerker; Rudner, Mary
2013-01-01
Listening to speech in noise depletes cognitive resources, affecting speech processing. The present study investigated how remaining resources or cognitive spare capacity (CSC) can be deployed by young adults with normal hearing. We administered a test of CSC (CSCT; Mishra et al., 2013) along with a battery of established cognitive tests to 20 participants with normal hearing. In the CSCT, lists of two-digit numbers were presented with and without visual cues in quiet, as well as in steady-state and speech-like noise at a high intelligibility level. In low load conditions, two numbers were recalled according to instructions inducing executive processing (updating, inhibition) and in high load conditions the participants were additionally instructed to recall one extra number, which was the always the first item in the list. In line with previous findings, results showed that CSC was sensitive to memory load and executive function but generally not related to working memory capacity (WMC). Furthermore, CSCT scores in quiet were lowered by visual cues, probably due to distraction. In steady-state noise, the presence of visual cues improved CSCT scores, probably by enabling better encoding. Contrary to our expectation, CSCT performance was disrupted more in steady-state than speech-like noise, although only without visual cues, possibly because selective attention could be used to ignore the speech-like background and provide an enriched representation of target items in working memory similar to that obtained in quiet. This interpretation is supported by a consistent association between CSCT scores and updating skills.
Saeid Khalafvand, Seyed; Han, Hai-Chao
2015-06-01
It has been shown that arteries may buckle into tortuous shapes under lumen pressure, which in turn could alter blood flow. However, the mechanisms of artery instability under pulsatile flow have not been fully understood. The objective of this study was to simulate the buckling and post-buckling behaviors of the carotid artery under pulsatile flow using a fully coupled fluid-structure interaction (FSI) method. The artery wall was modeled as a nonlinear material with a two-fiber strain-energy function. FSI simulations were performed under steady-state flow and pulsatile flow conditions with a prescribed flow velocity profile at the inlet and different pressures at the outlet to determine the critical buckling pressure. Simulations were performed for normal (160 ml/min) and high (350 ml/min) flow rates and normal (1.5) and reduced (1.3) axial stretch ratios to determine the effects of flow rate and axial tension on stability. The results showed that an artery buckled when the lumen pressure exceeded a critical value. The critical mean buckling pressure at pulsatile flow was 17-23% smaller than at steady-state flow. For both steady-state and pulsatile flow, the high flow rate had very little effect (<5%) on the critical buckling pressure. The fluid and wall stresses were drastically altered at the location with maximum deflection. The maximum lumen shear stress occurred at the inner side of the bend and maximum tensile wall stresses occurred at the outer side. These findings improve our understanding of artery instability in vivo.
Saeid Khalafvand, Seyed; Han, Hai-Chao
2015-01-01
It has been shown that arteries may buckle into tortuous shapes under lumen pressure, which in turn could alter blood flow. However, the mechanisms of artery instability under pulsatile flow have not been fully understood. The objective of this study was to simulate the buckling and post-buckling behaviors of the carotid artery under pulsatile flow using a fully coupled fluid–structure interaction (FSI) method. The artery wall was modeled as a nonlinear material with a two-fiber strain-energy function. FSI simulations were performed under steady-state flow and pulsatile flow conditions with a prescribed flow velocity profile at the inlet and different pressures at the outlet to determine the critical buckling pressure. Simulations were performed for normal (160 ml/min) and high (350 ml/min) flow rates and normal (1.5) and reduced (1.3) axial stretch ratios to determine the effects of flow rate and axial tension on stability. The results showed that an artery buckled when the lumen pressure exceeded a critical value. The critical mean buckling pressure at pulsatile flow was 17–23% smaller than at steady-state flow. For both steady-state and pulsatile flow, the high flow rate had very little effect (<5%) on the critical buckling pressure. The fluid and wall stresses were drastically altered at the location with maximum deflection. The maximum lumen shear stress occurred at the inner side of the bend and maximum tensile wall stresses occurred at the outer side. These findings improve our understanding of artery instability in vivo. PMID:25761257
Harijan, Rajesh K.; Zoi, Ioanna; Antoniou, Dimitri; Schwartz, Steven D.; Schramm, Vern L.
2017-01-01
Heavy-enzyme isotope effects (15N-, 13C-, and 2H-labeled protein) explore mass-dependent vibrational modes linked to catalysis. Transition path-sampling (TPS) calculations have predicted femtosecond dynamic coupling at the catalytic site of human purine nucleoside phosphorylase (PNP). Coupling is observed in heavy PNPs, where slowed barrier crossing caused a normal heavy-enzyme isotope effect (kchem light/kchem heavy > 1.0). We used TPS to design mutant F159Y PNP, predicted to improve barrier crossing for heavy F159Y PNP, an attempt to generate a rare inverse heavy-enzyme isotope effect (kchem light/kchem heavy < 1.0). Steady-state kinetic comparison of light and heavy native PNPs to light and heavy F159Y PNPs revealed similar kinetic properties. Pre–steady-state chemistry was slowed 32-fold in F159Y PNP. Pre–steady-state chemistry compared heavy and light native and F159Y PNPs and found a normal heavy-enzyme isotope effect of 1.31 for native PNP and an inverse effect of 0.75 for F159Y PNP. Increased isotopic mass in F159Y PNP causes more efficient transition state formation. Independent validation of the inverse isotope effect for heavy F159Y PNP came from commitment to catalysis experiments. Most heavy enzymes demonstrate normal heavy-enzyme isotope effects, and F159Y PNP is a rare example of an inverse effect. Crystal structures and TPS dynamics of native and F159Y PNPs explore the catalytic-site geometry associated with these catalytic changes. Experimental validation of TPS predictions for barrier crossing establishes the connection of rapid protein dynamics and vibrational coupling to enzymatic transition state passage. PMID:28584087
Analysis of Operating Principles with S-system Models
Lee, Yun; Chen, Po-Wei; Voit, Eberhard O.
2011-01-01
Operating principles address general questions regarding the response dynamics of biological systems as we observe or hypothesize them, in comparison to a priori equally valid alternatives. In analogy to design principles, the question arises: Why are some operating strategies encountered more frequently than others and in what sense might they be superior? It is at this point impossible to study operation principles in complete generality, but the work here discusses the important situation where a biological system must shift operation from its normal steady state to a new steady state. This situation is quite common and includes many stress responses. We present two distinct methods for determining different solutions to this task of achieving a new target steady state. Both methods utilize the property of S-system models within Biochemical Systems Theory (BST) that steady-states can be explicitly represented as systems of linear algebraic equations. The first method uses matrix inversion, a pseudo-inverse, or regression to characterize the entire admissible solution space. Operations on the basis of the solution space permit modest alterations of the transients toward the target steady state. The second method uses standard or mixed integer linear programming to determine admissible solutions that satisfy criteria of functional effectiveness, which are specified beforehand. As an illustration, we use both methods to characterize alternative response patterns of yeast subjected to heat stress, and compare them with observations from the literature. PMID:21377479
Fluorescence Spectroscopic Properties of Normal and Abnormal Biomedical Materials
NASA Astrophysics Data System (ADS)
Pradhan, Asima
Steady state and time-resolved optical spectroscopy and native fluorescence is used to study the physical and optical properties occurring in diseased and non-diseased biological human tissue, in particular, cancer of the human breast, artery and the dynamics of a photosensitizer useful in photodynamic therapy. The main focus of the research is on the optical properties of cancer and atherosclerotic tissues as compared to their normal counterparts using the different luminescence based spectroscopic techniques such as steady state fluorescence, time-resolved fluorescence, excitation spectroscopy and phosphorescence. The excitation and steady-state spectroscopic fluorescence using visible excitation wavelength displays a difference between normal and malignant tissues. This difference is attributed to absorption of the emission by hemoglobin in normal tissues. This method using 488nm fails to distinguish neoplastic tissue such as benign tissues and tumors from malignant tumors. The time-resolved fluorescence at visible, near -uv and uv excitation wavelengths display non-exponential profiles which are significantly different for malignant tumors as compared to non-malignant tissues only with uv excitation. The differences observed with visible and near-uv excitation wavelengths are not as significant. The non-exponential profiles are interpreted as due to a combination of fluorophores along with the action of non-radiative processes. Low temperature luminescence studies confirm the occurrence of non-radiative decay processes while temporal studies of various relevant biomolecules indicate the probable fluorophores responsible for the observed signal in tissues. Phosphorescence from human tissues have been observed for the first time and lifetimes of a few hundred nanoseconds are measured for malignant and benign tissues. Time-resolved fluorescence studies of normal artery and atherosclerotic plaque have shown that a combination of two excitation wavelengths can distinguish fibrous and calcified atherosclerotic plaque from normal artery. A minor effort of the study involves the high intensity effects on the optical properties of the dye, doxycycline (a particular photosensitizer of the tetracycline group) occurring during relaxation when excited at different laser intensities. This study has been performed by observing the fluorescence lifetimes and quantum yields of DOTC at different excitation intensities. The results obtained support the sequential excited state absorption model.
The Initiation of Smooth Pursuit is Delayed in Anisometropic Amblyopia
Raashid, Rana Arham; Liu, Ivy Ziqian; Blakeman, Alan; Goltz, Herbert C.; Wong, Agnes M. F.
2016-01-01
Purpose Several behavioral studies have shown that the reaction times of visually guided movements are slower in people with amblyopia, particularly during amblyopic eye viewing. Here, we tested the hypothesis that the initiation of smooth pursuit eye movements, which are responsible for accurately keeping moving objects on the fovea, is delayed in people with anisometropic amblyopia. Methods Eleven participants with anisometropic amblyopia and 14 visually normal observers were asked to track a step-ramp target moving at ±15°/s horizontally as quickly and as accurately as possible. The experiment was conducted under three viewing conditions: amblyopic/nondominant eye, binocular, and fellow/dominant eye viewing. Outcome measures were smooth pursuit latency, open-loop gain, steady state gain, and catch-up saccade frequency. Results Participants with anisometropic amblyopia initiated smooth pursuit significantly slower during amblyopic eye viewing (206 ± 20 ms) than visually normal observers viewing with their nondominant eye (183 ± 17 ms, P = 0.002). However, mean pursuit latency in the anisometropic amblyopia group during binocular and monocular fellow eye viewing was comparable to the visually normal group. Mean open-loop gain, steady state gain, and catch-up saccade frequency were similar between the two groups, but participants with anisometropic amblyopia exhibited more variable steady state gain (P = 0.045). Conclusions This study provides evidence of temporally delayed smooth pursuit initiation in anisometropic amblyopia. After initiation, the smooth pursuit velocity profile in anisometropic amblyopia participants is similar to visually normal controls. This finding differs from what has been observed previously in participants with strabismic amblyopia who exhibit reduced smooth pursuit velocity gains with more catch-up saccades. PMID:27070109
Auditory steady state response in sound field.
Hernández-Pérez, H; Torres-Fortuny, A
2013-02-01
Physiological and behavioral responses were compared in normal-hearing subjects via analyses of the auditory steady-state response (ASSR) and conventional audiometry under sound field conditions. The auditory stimuli, presented through a loudspeaker, consisted of four carrier tones (500, 1000, 2000, and 4000 Hz), presented singly for behavioral testing but combined (multiple frequency technique), to estimate thresholds using the ASSR. Twenty normal-hearing adults were examined. The average differences between the physiological and behavioral thresholds were between 17 and 22 dB HL. The Spearman rank correlation between ASSR and behavioral thresholds was significant for all frequencies (p < 0.05). Significant differences were found in the ASSR amplitude among frequencies, and strong correlations between the ASSR amplitude and the stimulus level (p < 0.05). The ASSR in sound field testing was found to yield hearing threshold estimates deemed to be reasonably well correlated with behaviorally assessed thresholds.
The Opportunities of Steady State.
ERIC Educational Resources Information Center
Sillars, Malcolm O.
Recent restrictions in funds made available to higher education, reinforced by declining birth rates and slowing or falling enrollments, are forcing an adjustment of thinking by educators. The growth of the last 20 years was not the normal state of higher education. Educators have come to think that bigger is better as enrollments and faculty have…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collart, F.R.; Horio, M.; Huberman, E.
1995-05-01
We investigated the role of reactive oxygen intermediates and protein kinase C in the induction of expression of the c-jun gene in human ML-2 leukemic cells and normal human DET-551 fibroblasts by comparing the effects of exposure to either ionizing radiation or H{sub 2}O{sub 2} in the presence or absence of appropriate inhibitors. In these cell types, the radiation-and H{sub 2}O{sub 2}-mediated increase in c-jun mRNA levels could be prevented by pretreatment of the cells with N-acetylcysteine, and antioxidant, or H7, an inhibitor of protein kinase C and protein kinase A, but not by HA1004, a specific inhibitor of proteinmore » kinase A and G. These results suggest a role for protein kinase C and reactive oxygen intermediates in the induction of c-jun gene expression in both normal and tumor cells. We also investigated potential differences in c-jun gene expression induced by radiation or H{sub 2}O{sub 2} in normal and tumor cells by examining steady-state c-jun mRNA levels in a number of human fibroblast, leukemia, melanoma, sarcoma and carcinoma cell types. We observed heterogeneity in the steady-state level of c-jun mRNA in both the untreated normal and tumor cells and in such cells exposed to ionizing radiation or to H{sub 2}O{sub 2}. Exposure to radiation produced a varied response which ranged from little or no induction to an increase in the steady-state level of the c-jun mRNA of more than two orders of magnitude. Exposure to H{sub 2}O{sub 2} gave a pattern similar to that of ionizing radiation. The basis for the differential induction in response to these agents may be attributable to either cell lineage or genetic heterogeneity or a combination of these two parameters. 30 refs., 7 figs., 1 tab.« less
NASA Technical Reports Server (NTRS)
Sellers, J. F.; Daniele, C. J.
1975-01-01
The DYNGEN, a digital computer program for analyzing the steady state and transient performance of turbojet and turbofan engines, is described. The DYNGEN is based on earlier computer codes (SMOTE, GENENG, and GENENG 2) which are capable of calculating the steady state performance of turbojet and turbofan engines at design and off-design operating conditions. The DYNGEN has the combined capabilities of GENENG and GENENG 2 for calculating steady state performance; to these the further capability for calculating transient performance was added. The DYNGEN can be used to analyze one- and two-spool turbojet engines or two- and three-spool turbofan engines without modification to the basic program. A modified Euler method is used by DYNGEN to solve the differential equations which model the dynamics of the engine. This new method frees the programmer from having to minimize the number of equations which require iterative solution. As a result, some of the approximations normally used in transient engine simulations can be eliminated. This tends to produce better agreement when answers are compared with those from purely steady state simulations. The modified Euler method also permits the user to specify large time steps (about 0.10 sec) to be used in the solution of the differential equations. This saves computer execution time when long transients are run. Examples of the use of the program are included, and program results are compared with those from an existing hybrid-computer simulation of a two-spool turbofan.
Stochastic methods for analysis of power flow in electric networks
NASA Astrophysics Data System (ADS)
1982-09-01
The modeling and effects of probabilistic behavior on steady state power system operation were analyzed. A solution to the steady state network flow equations which adhere both to Kirchoff's Laws and probabilistic laws, using either combinatorial or functional approximation techniques was obtained. The development of sound techniques for producing meaningful data to serve as input is examined. Electric demand modeling, equipment failure analysis, and algorithm development are investigated. Two major development areas are described: a decomposition of stochastic processes which gives stationarity, ergodicity, and even normality; and a powerful surrogate probability approach using proportions of time which allows the calculation of joint events from one dimensional probability spaces.
Reducing Toxicity of Radiation Treatment of Advanced Prostate Cancer
2015-10-01
steady state hematopoiesis with normalization of the frequency of hematopoietic stem and progenitor cells. Moreover, hematopoietic stem cells from RTA...ongoing. 7 KEY RESEARCH ACCOMPLISHMENTS: • Identified radiation protection of different organ systems (GI tract, skin and hematopoiesis ) by RTA
Calibration of a complex activated sludge model for the full-scale wastewater treatment plant.
Liwarska-Bizukojc, Ewa; Olejnik, Dorota; Biernacki, Rafal; Ledakowicz, Stanislaw
2011-08-01
In this study, the results of the calibration of the complex activated sludge model implemented in BioWin software for the full-scale wastewater treatment plant are presented. Within the calibration of the model, sensitivity analysis of its parameters and the fractions of carbonaceous substrate were performed. In the steady-state and dynamic calibrations, a successful agreement between the measured and simulated values of the output variables was achieved. Sensitivity analysis revealed that upon the calculations of normalized sensitivity coefficient (S(i,j)) 17 (steady-state) or 19 (dynamic conditions) kinetic and stoichiometric parameters are sensitive. Most of them are associated with growth and decay of ordinary heterotrophic organisms and phosphorus accumulating organisms. The rankings of ten most sensitive parameters established on the basis of the calculations of the mean square sensitivity measure (δ(msqr)j) indicate that irrespective of the fact, whether the steady-state or dynamic calibration was performed, there is an agreement in the sensitivity of parameters.
Henry, Pierre-Gilles; Criego, Amy B.; Kumar, Anjali; Seaquist, Elizabeth R.
2009-01-01
The aim of the present study was to use 13C NMR to measure the cerebral oxidative metabolic rate of glucose (CMRglc(ox)) in patients with diabetes and to compare these measurements with those collected from matched controls. We elected to study a group with type 1 diabetes and hypoglycemia unawareness, since we had previously found such patients to have higher brain glucose concentrations than normal volunteers under steady state conditions. We sought to determine if this difference in steady-state brain concentrations could be explained by a difference in CMRglc(ox). Time courses of 13C label incorporation in brain amino acids were measured in occipital cortex during infusion of [1-13C]glucose. These time courses were fitted using a one-compartment metabolic model to determine CMRglc(ox). Our results show that the TCA cycle rate (VTCA, which is twice CMRglc(ox)) in subjects with type 1 diabetes was not significantly different from normal controls (0.84 ± 0.03 vs 0.79 ± 0.03 μmol/gm/min, n=5 in each group, mean ± SEM). We conclude that the changes in steady-state brain glucose concentrations that we observed in patients with type 1 diabetes in a previous study (1) cannot be explained by changes in oxidative glucose consumption PMID:19766263
A theoretical analysis of steady-state photocurrents in simple silicon diodes
NASA Technical Reports Server (NTRS)
Edmonds, L.
1995-01-01
A theoretical analysis solves for the steady-state photocurrents produced by a given photo-generation rate function with negligible recombination in simple silicon diodes, consisting of a uniformly doped quasi-neutral region (called 'substrate' below) adjacent to a p-n junction depletion region (DR). Special attention is given to conditions that produce 'funneling' (a term used by the single-eventeffects community) under steady-state conditions. Funneling occurs when carriers are generated so fast that the DR becomes flooded and partially or completely collapses. Some or nearly all of the applied voltage, plus built-in potential normally across the DR, is now across the substrate. This substrate voltage drop affects substrate currents. The steady-state problem can provide some qualitative insights into the more difficult transient problem. First, it was found that funneling can be induced from a distance, i.e., from carriers generated at locations outside of the DR. Secondly, it was found that the substrate can divide into two subregions, with one controlling substrate resistance and the other characterized by ambipolar diffusion. Finally, funneling was found to be more difficult to induce in the p(sup +)/n diode than in the n(sup +)/p diode. The carrier density exceeding the doping density in the substrate and at the DR boundary is not a sufficient condition to collapse a DR.
NASA Astrophysics Data System (ADS)
Mao, Hanling; Zhang, Yuhua; Mao, Hanying; Li, Xinxin; Huang, Zhenfeng
2018-06-01
This paper presents the study of applying the nonlinear ultrasonic wave to evaluate the stress state of metallic materials under steady state. The pre-stress loading method is applied to guarantee components with steady stress. Three kinds of nonlinear ultrasonic experiments based on critically refracted longitudinal wave are conducted on components which the critically refracted longitudinal wave propagates along x, x1 and x2 direction. Experimental results indicate the second and third order relative nonlinear coefficients monotonically increase with stress, and the normalized relationship is consistent with simplified dislocation models, which indicates the experimental result is logical. The combined ultrasonic nonlinear parameter is proposed, and three stress evaluation models at x direction are established based on three ultrasonic nonlinear parameters, which the estimation error is below 5%. Then two stress detection models at x1 and x2 direction are built based on combined ultrasonic nonlinear parameter, the stress synthesis method is applied to calculate the magnitude and direction of principal stress. The results show the prediction error is within 5% and the angle deviation is within 1.5°. Therefore the nonlinear ultrasonic technique based on LCR wave could be applied to nondestructively evaluate the stress of metallic materials under steady state which the magnitude and direction are included.
40 CFR 265.347 - Monitoring and inspections.
Code of Federal Regulations, 2010 CFR
2010-07-01
... minutes. Appropriate corrections to maintain steady state combustion conditions must be made immediately... would normally include those measuring waste feed, auxiliary fuel feed, air flow, in-ciner-a-tor temperature, scrubber flow, scrubber pH, and relevant level -controls. (b) The complete incinerator and...
Realizing Steady State Tokamak Operation for Fusion Energy
NASA Astrophysics Data System (ADS)
Luce, T. C.
2009-11-01
Continuous operation of a tokamak for fusion energy has obvious engineering advantages, but also presents physics challenges beyond the achievement of conditions needed for a burning plasma. The power from fusion reactions and external sources must support both the pressure and the current equilibrium without inductive current drive, leading to demands on stability, confinement, current drive, and plasma-wall interactions that exceed those for pulsed tokamaks. These conditions have been met individually in the present generation of tokamaks, and significant progress has been made in the last decade to realize scenarios where the required conditions are obtained simultaneously. Tokamaks are now operated routinely without disruptions close to the ideal MHD pressure limit, as needed for steady-state operation. Scenarios that project to high fusion gain have been demonstrated where more than half of the current is supplied by the ``bootstrap'' current generated by the pressure gradient in the plasma. Fully noninductive sustainment has been obtained for about a resistive time (the longest intrinsic time scale in the confined plasma) with normalized pressure and confinement approaching those needed for demonstration of steady-state conditions in ITER. One key challenge remaining to be addressed is how to handle the demanding heat and particle fluxes expected in a steady-state tokamak without compromising the high level of core plasma performance. Rather than attempt a comprehensive historical survey, this review will start from the plasma requirements of a steady-state tokamak powerplant, illustrate with examples the progress made in both experimental and theoretical understanding, and point to the remaining physics challenges.
Mundt, Christian; Sventitskiy, Alexander; Cehelsky, Jeffrey E.; Patters, Andrea B.; Tservistas, Markus; Hahn, Michael C.; Juhl, Gerd; DeVincenzo, John P.
2012-01-01
Background. New aerosol drugs for infants may require more efficient delivery systems, including face masks. Maximizing delivery efficiency requires tight-fitting masks with minimal internal mask volumes, which could cause carbon dioxide (CO2) retention. An RNA-interference-based antiviral for treatment of respiratory syncytial virus in populations that may include young children is designed for aerosol administration. CO2 accumulation within inhalation face masks has not been evaluated. Methods. We simulated airflow and CO2 concentrations accumulating over time within a new facemask designed for infants and young children (PARI SMARTMASK® Baby). A one-dimensional model was first examined, followed by 3-dimensional unsteady computational fluid dynamics analyses. Normal infant breathing patterns and respiratory distress were simulated. Results. The maximum average modeled CO2 concentration within the mask reached steady state (3.2% and 3% for normal and distressed breathing patterns resp.) after approximately the 5th respiratory cycle. After steady state, the mean CO2 concentration inspired into the nostril was 2.24% and 2.26% for normal and distressed breathing patterns, respectively. Conclusion. The mask is predicted to cause minimal CO2 retention and rebreathing. Infants with normal and distressed breathing should tolerate the mask intermittently delivering aerosols over brief time frames. PMID:22792479
An affine projection algorithm using grouping selection of input vectors
NASA Astrophysics Data System (ADS)
Shin, JaeWook; Kong, NamWoong; Park, PooGyeon
2011-10-01
This paper present an affine projection algorithm (APA) using grouping selection of input vectors. To improve the performance of conventional APA, the proposed algorithm adjusts the number of the input vectors using two procedures: grouping procedure and selection procedure. In grouping procedure, the some input vectors that have overlapping information for update is grouped using normalized inner product. Then, few input vectors that have enough information for for coefficient update is selected using steady-state mean square error (MSE) in selection procedure. Finally, the filter coefficients update using selected input vectors. The experimental results show that the proposed algorithm has small steady-state estimation errors comparing with the existing algorithms.
Data presentation techniques for rotating machinery malfunction diagnosis
NASA Technical Reports Server (NTRS)
Spettel, T.
1985-01-01
Baseline steady state data is excellent for documentation of vibration signals at normal operating conditions. Assuming that a set of initial data was acquired with the machinery in a good state of repair, any future changes or deterioration in mechanical condition can be easily compared to the baseline information. Often this type of comparison will yield sufficient information for evaluation of the problem. However, many malfunctions require the analysis of transient data in order to identify the malfunction. Steady-state data formats consist of: Time Base Waveform, Orbit, Spectrum. Transient data formats consist of: Polar, Bode, Cascade. Our objective is to demonstrate the use of the above formats to diagnose a machine malfunction. A turbine-driven compressor train is chosen as an example. The machine train outline drawing is shown.
Operational Characteristics of an Accelerator Driven Fissile Solution System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimpland, Robert Herbert
Operational characteristics represent the set of responses that a nuclear system exhibits during normal operation. Operators rely on this behavior to assess the status of the system and to predict the consequences of off-normal events. These characteristics largely refer to the relationship between power and system operating conditions. The static and dynamic behavior of a chain-reacting system, operating at sufficient power, is primarily governed by reactivity effects. The science of reactor physics has identified and evaluated a number of such effects, including Doppler broadening and shifts in the thermal neutron spectrum. Often these reactivity effects are quantified in the formmore » of feedback coefficients that serve as coupling coefficients relating the neutron population and the physical mechanisms that drive reactivity effects, such as fissile material temperature and density changes. The operational characteristics of such nuclear systems usually manifest themselves when perturbations between system power (neutron population) and system operating conditions arise. Successful operation of such systems requires the establishment of steady equilibrium conditions. However, prior to obtaining the desired equilibrium (steady-state) conditions, an approach from zero-power (startup) must occur. This operational regime may possess certain limiting system conditions that must be maintained to achieve effective startup. Once steady-state is achieved, a key characteristic of this operational regime is the level of stability that the system possesses. Finally, a third operational regime, shutdown, may also possess limiting conditions of operation that must be maintained. This report documents the operational characteristics of a “generic” Accelerator Driven Fissile Solution (ADFS) system during the various operational regimes of startup, steady-state operation, and shutdown. Typical time-dependent behavior for each operational regime will be illustrated, and key system parameters, such as response times, will be quantified. A generalized linear systems analysis of steady-state operations will be performed to evaluate the level of stability of ADFS systems. This information should provide a basic understanding of typical ADFS system operational behavior, and facilitate the development of monitoring procedures and operator aids.« less
Joint DIII-D/EAST Experiments Toward Steady State AT Demonstration
NASA Astrophysics Data System (ADS)
Garofalo, A. M.; Meneghini, O.; Staebler, G. M.; van Zeeland, M. A.; Gong, X.; Ding, S.; Qian, J.; Ren, Q.; Xu, G.; Grierson, B. A.; Solomon, W. M.; Holcomb, C. T.
2015-11-01
Joint DIII-D/EAST experiments on fully noninductive operation at high poloidal beta have demonstrated several attractive features of this regime for a steady-state fusion reactor. Very large bootstrap fraction (>80 %) is desirable because it reduces the demands on external noninductive current drive. High bootstrap fraction with an H-mode edge results in a broad current profile and internal transport barriers (ITBs) at large minor radius, leading to high normalized energy confinement and high MHD stability limits. The ITB radius expands with higher normalized beta, further improving both stability and confinement. Electron density ITB and large Shafranov shift lead to low AE activity in the plasma core and low anomalous fast ion losses. Both the ITB and the current profile show remarkable robustness against perturbations, without external control. Supported by US DOE under DE-FC02-04ER54698, DE-AC02-09CH11466 & DE-AC52-07NA27344 & by NMCFSP under contracts 2015GB102000 and 2015GB110001.
NASA Astrophysics Data System (ADS)
Proctor, B.; Mitchell, T. M.; Hirth, G.; Goldsby, D. L.; Di Toro, G.; Zorzi, F.
2013-12-01
High-velocity friction (HVF) experiments on bare rock surfaces have revealed various dynamic weakening processes (e.g., flash weakening, gel weakening, melt lubrication) that likely play a fundamental role in coseismic fault weakening. However, faults generally contain a thin layer of gouge separating the solid wallrocks, thus it is important to understand how the presence of gouge modifies the efficiency of these weakening processes at seismic slip rates. We explored the frictional behavior of bare surfaces and powdered samples of an antigorite-rich serpentinite (ARS) and a lizardite-rich serpentinite (LRS) at earthquake slip rates. HVF experiments were conducted with slip displacements ranging from ~0.5 to 2m, at velocities ranging from 0.002m/s to 6.5 m/s, and with normal stresses ranging from 2-22 MPa for gouge and 5-100MPa for bare surfaces. Our results demonstrate that the friction coefficient (μ) of powdered serpentine is significantly larger than that of bare surfaces under otherwise identical conditions. Bare surface friction decreases over a weakening distance of a few centimeters to a nominally steady-state value of ~0.1 at velocities greater than 0.1m/s. The nominal steady-state friction decreases non-linearly with increasing normal stress from 0.14 to 0.045 at 5 and ~100MPa respectfully at a slip velocity of 1m/s. Additionally, the recovery of frictional strength during deceleration depends on total displacement; samples slipped for ~50mm recover faster than samples slipped for ~0.5m. Microstructural analysis of bare surfaces deformed at the highest normal stresses revealed translucent glass-like material on the slip surfaces and XRD analysis of wear material revealed an increasing presence of olivine and enstatite with increasing normal stress. In contrast, gouge requires an order of magnitude higher velocity than bare surfaces to induce frictional weakening, has a larger weakening distance and higher steady state friction values for equivalent deformation conditions. Furthermore, we observe a strong normal stress dependence of the nominal steady state friction and the weakening distance of ARS and LRS gouge from 0.51 to 0.39 and from 25-10cm at 4MPa and 22MPa, respectfully, for at a slip velocity of 1m/s. Strain was localized onto a shear surface in the range of 100-300 microns wide in all gouge samples deformed at >10cm/s and XRD analyses revealed the presence of olivine and enstatite in samples with the most weakening and none in samples with no weakening. Our results indicate that dynamic weakening occurs in gouge at low normal stress in response to strain localization and shear heating of the slip surface. However, because more initial displacement is required to localize strain, weakening initiates at higher velocities and after larger weakening distances than bare surfaces. At higher normal stress, localization occurs after less displacement and the differences between gouge and bare-surface friction diminish; extrapolation of our data suggests that the behavior of serpentine gouge will approach that of bare surfaces at normal stresses ≥60 MPa.
D'haenens, Wendy; Dhooge, Ingeborg; De Vel, Eddy; Maes, Leen; Bockstael, Annelies; Vinck, Bart M
2007-08-01
The present study utilized a commercially available multiple auditory steady-state response (ASSR) system to test normal hearing adults (n=55). The primary objective was to evaluate the impact of the mixed modulation (MM) and the novel proposed exponential AM(2)/FM stimuli on the signal-to-noise ratio (SNR) and threshold estimation accuracy, through a within-subject comparison. The second aim was to establish a normative database for both stimulus types. The results demonstrated that the AM(2)/FM and MM stimulus had a similar effect on the SNR, whereas the ASSR threshold results revealed that the AM(2)/FM produced better thresholds than the MM stimulus for the 500, 1000, and 4000 Hz carrier frequency. The mean difference scores to tones of 500, 1000, 2000, and 4000 Hz were for the MM stimulus: 20+/-12, 14+/-9, 10+/-8, and 12+/-8 dB; and for the AM(2)/FM stimulus: 18+/-13, 12+/-8, 11+/-8, and 10+/-8 dB, respectively. The current research confirms that the AM(2)/FM stimulus can be used efficiently to test normal hearing adults.
Results from a scaled reactor cavity cooling system with water at steady state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lisowski, D. D.; Albiston, S. M.; Tokuhiro, A.
We present a summary of steady-state experiments performed with a scaled, water-cooled Reactor Cavity Cooling System (RCCS) at the Univ. of Wisconsin - Madison. The RCCS concept is used for passive decay heat removal in the Next Generation Nuclear Plant (NGNP) design and was based on open literature of the GA-MHTGR, HTR-10 and AVR reactor. The RCCS is a 1/4 scale model of the full scale prototype system, with a 7.6 m structure housing, a 5 m tall test section, and 1,200 liter water storage tank. Radiant heaters impose a heat flux onto a three riser tube test section, representingmore » a 5 deg. radial sector of the actual 360 deg. RCCS design. The maximum heat flux and power levels are 25 kW/m{sup 2} and 42.5 kW, and can be configured for variable, axial, or radial power profiles to simulate prototypic conditions. Experimental results yielded measurements of local surface temperatures, internal water temperatures, volumetric flow rates, and pressure drop along the test section and into the water storage tank. The majority of the tests achieved a steady state condition while remaining single-phase. A selected number of experiments were allowed to reach saturation and subsequently two-phase flow. RELAP5 simulations with the experimental data have been refined during test facility development and separate effects validation of the experimental facility. This test series represents the completion of our steady-state testing, with future experiments investigating normal and off-normal accident scenarios with two-phase flow effects. The ultimate goal of the project is to combine experimental data from UW - Madison, UI, ANL, and Texas A and M, with system model simulations to ascertain the feasibility of the RCCS as a successful long-term heat removal system during accident scenarios for the NGNP. (authors)« less
End-of-life flows of multiple cycle consumer products.
Tsiliyannis, C A
2011-11-01
Explicit expressions for the end-of-life flows (EOL) of single and multiple cycle products (MCPs) are presented, including deterministic and stochastic EOL exit. The expressions are given in terms of the physical parameters (maximum lifetime, T, annual cycling frequency, f, number of cycles, N, and early discard or usage loss). EOL flows are also obtained for hi-tech products, which are rapidly renewed and thus may not attain steady state (e.g., electronic products, passenger cars). A ten-step recursive procedure for obtaining the dynamic EOL flow evolution is proposed. Applications of the EOL expressions and the ten-step procedure are given for electric household appliances, industrial machinery, tyres, vehicles and buildings, both for deterministic and stochastic EOL exit, (normal, Weibull and uniform exit distributions). The effect of the physical parameters and the stochastic characteristics on the EOL flow is investigated in the examples: it is shown that the EOL flow profile is determined primarily by the early discard dynamics; it also depends strongly on longevity and cycling frequency: higher lifetime or early discard/loss imply lower dynamic and steady state EOL flows. The stochastic exit shapes the overall EOL dynamic profile: Under symmetric EOL exit distribution, as the variance of the distribution increases (uniform to normal to deterministic) the initial EOL flow rise becomes steeper but the steady state or maximum EOL flow level is lower. The steepest EOL flow profile, featuring the highest steady state or maximum level, as well, corresponds to skew, earlier shifted EOL exit (e.g., Weibull). Since the EOL flow of returned products consists the sink of the reuse/remanufacturing cycle (sink to recycle) the results may be used in closed loop product lifecycle management operations for scheduling and sizing reverse manufacturing and for planning recycle logistics. Decoupling and quantification of both the full age EOL and of the early discard flows is useful, the latter being the target of enacted legislation aiming at increasing reuse. Copyright © 2011 Elsevier Ltd. All rights reserved.
Fault stability under conditions of variable normal stress
Dieterich, J.H.; Linker, M.F.
1992-01-01
The stability of fault slip under conditions of varying normal stress is modelled as a spring and slider system with rate- and state-dependent friction. Coupling of normal stress to shear stress is achieved by inclining the spring at an angle, ??, to the sliding surface. Linear analysis yields two conditions for unstable slip. The first, of a type previously identified for constant normal stress systems, results in instability if stiffness is below a critical value. Critical stiffness depends on normal stress, constitutive parameters, characteristic sliding distance and the spring angle. Instability of the first type is possible only for velocity-weakening friction. The second condition yields instability if spring angle ?? <-cot-1??ss, where ??ss is steady-state sliding friction. The second condition can arise under conditions of velocity strengthening or weakening. Stability fields for finite perturbations are investigated by numerical simulation. -Authors
49 CFR 195.402 - Procedural manual for operations, maintenance, and emergencies.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., monitoring from an attended location pipeline pressure during startup until steady state pressure and flow... operating conditions by monitoring pressure, temperature, flow or other appropriate operational data and...) Increase or decrease in pressure or flow rate outside normal operating limits; (iii) Loss of communications...
49 CFR 195.402 - Procedural manual for operations, maintenance, and emergencies.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., monitoring from an attended location pipeline pressure during startup until steady state pressure and flow... operating conditions by monitoring pressure, temperature, flow or other appropriate operational data and...) Increase or decrease in pressure or flow rate outside normal operating limits; (iii) Loss of communications...
McClenaghan, Joseph; Garofalo, Andrea M.; Meneghini, Orso; ...
2017-08-03
In this study, transport modeling of a proposed ITER steady-state scenario based on DIII-D high poloidal-beta (more » $${{\\beta}_{p}}$$ ) discharges finds that ITB formation can occur with either sufficient rotation or a negative central shear q-profile. The high $${{\\beta}_{p}}$$ scenario is characterized by a large bootstrap current fraction (80%) which reduces the demands on the external current drive, and a large radius internal transport barrier which is associated with excellent normalized confinement. Modeling predictions of the electron transport in the high $${{\\beta}_{p}}$$ scenario improve as $${{q}_{95}}$$ approaches levels similar to typical existing models of ITER steady-state and the ion transport is turbulence dominated. Typical temperature and density profiles from the non-inductive high $${{\\beta}_{p}}$$ scenario on DIII-D are scaled according to 0D modeling predictions of the requirements for achieving a $Q=5$ steady-state fusion gain in ITER with 'day one' heating and current drive capabilities. Then, TGLF turbulence modeling is carried out under systematic variations of the toroidal rotation and the core q-profile. A high bootstrap fraction, high $${{\\beta}_{p}}$$ scenario is found to be near an ITB formation threshold, and either strong negative central magnetic shear or rotation in a high bootstrap fraction are found to successfully provide the turbulence suppression required to achieve $Q=5$.« less
The stably stratified internal boundary layer for steady and diurnally varying offshore flow
NASA Astrophysics Data System (ADS)
Garratt, J. R.
1987-03-01
A two-dimensional numerical mesoscale model is used to investigate the internal structure and growth of the stably stratified internal boundary layer (IBL) beneath warm, continental air flowing over a cooler sea. Two situations are studied — steady-state and diurnally varying offshore flow. In the steady-state case, vertical profiles of mean quantities and eddy diffusion coefficients ( K) within the IBL show small, but significant, changes with increasing distance from the coast. The top of the IBL is well defined, with large vertical gradients within the layer and a maximum in the coast-normal wind component near the top. Well away from the coast, turbulence, identified by non-zero K, decreases to insignificant levels near the top of the IBL; the IBL itself is characterised by a critical value of the layer-flux Richardson number equal to 0.18. The overall behaviour of the mean profiles is similar to that found in the horizontally homogeneous stable boundary layer over land. A simple physical model is used to relate the depth of the layer h to several relevant physical parameters viz., x, the distance from the coast and U, the large-scale wind (both normal to the coastline) and gδθ/θ, Δθ being the temperature difference between continental mixed-layer air and sea surface, θ is the mean potential temperature and g is the acceleration due to gravity. Excellent agreement with the numerical results is found, with h = 0.014 x 1/2 U ( gδθ/θ)-1/2. In the diurnally varying case, the mean profiles within the IBL show only small differences from the steady-state case, although diurnal variations, particularly in the wind maximum, are evident within a few hundred kilometres of the coast. A mesoscale circulation normal to the coast, and superimposed upon the mean offshore flow, develops seawards of the coastline with maximum vertical velocities about sunset, of depth about 2 km and horizontal scale ≈ 500 km. The circulation is related to the advection, and subsequent decay, of daytime convective turbulence over the sea.
Thermal Vacuum Testing of a Helium Loop Heat Pipe for Large Area Cryocooling
NASA Technical Reports Server (NTRS)
Ku, Jentung; Robinson, Franklin
2016-01-01
Future NASA space telescopes and exploration missions require cryocooling of large areas such as optics, detector arrays, and cryogenic propellant tanks. One device that can potentially be used to provide closed-loop cryocooling is the cryogenic loop heat pipe (CLHP). A CLHP has many advantages over other devices in terms of reduced mass, reduced vibration, high reliability, and long life. A helium CLHP has been tested extensively in a thermal vacuum chamber using a cryocooler as the heat sink to characterize its transient and steady performance and to verify its ability to cool large areas or components in the 3 degrees Kelvin temperature range. The helium CLHP thermal performance test included cool-down from the ambient temperature, startup, capillary limit, heat removal capability, rapid power changes, and long duration steady state operation. The helium CLHP demonstrated robust operation under steady state and transient conditions. The loop could be cooled from the ambient temperature to subcritical temperatures very effectively, and could start successfully by simply applying power to both the capillary pump and the evaporator plate without pre-conditioning. It could adapt to a rapid heat load change and quickly reach a new steady state. Heat removal between 10 megawatts and 140 megawatts was demonstrated, yielding a power turn down ratio of 14. When the CLHP capillary limit was exceeded, the loop could resume its normal function by reducing the power to the capillary pump. Steady state operations up to 17 hours at several heat loads were demonstrated. The ability of the helium CLHP to cool large areas was therefore successfully verified.
Permeation of Comite through protective gloves.
Zainal, Hanaa; Que Hee, Shane S
2006-09-01
The goal of the study was to assess how protective disposable (Safeskin) and chemical protective (Sol-Vex) nitrile gloves were against Comite emulsifiable concentrate formulation containing propargite (PROP) as active pesticidal ingredient, because there were no explicit recommendations for the gloves that should be worn for hand protection. The glove material was exposed in ASTM-type I-PTC-600 permeation cells at 30.0+/-0.5 degrees C, and gas chromatography-mass spectrometry used for PROP analysis. Aqueous solutions of Comite at 40.4 mg/mL permeated both Safeskin and Sol-Vex nitrile by 8h. Safeskin showed a mean PROP mass permeated of 176+/-27 microg after 8h compared with a mean mass permeated for Sol-Vex of 3.17+/-4.08 microg. Thus, Sol-Vex was about 56 times more protective than Safeskin for an 8-h exposure. However, the kinetics of the permeation revealed that Safeskin can be worn for at least 200 min before disposal. When undiluted Comite challenged both types of nitrile, much faster permeation was observed. Safeskin gloves showed two steady state periods. The first had lag times (t(l)) values of about 1h, although normalized breakthrough times (t(b)) were < 10 min. The second steady state rate (P(s)) was on average four times the rate of the first period, and the second steady state period t(l) was about three times as long as that of the first steady state period, and about the same t(l) as for the aqueous solution. Sol-Vex gloves exposed continuously to undiluted Comite permeated above the normalized breakthrough threshold beyond 2.7h. A risk assessment revealed that the PROP skin permeation rate of 7.1 ng cm(-2)h(-1) was much slower than the first steady state Safeskin glove P(s) of 62,000 ng cm(-2)h(-1). Infrared analysis showed that the glove surfaces were not degraded by the Comite challenge. The chemically protective Sol-Vex gloves protected adequately against undiluted formulation for about 2.7h, whereas they provided protection for nearly 8h when the formulation was diluted with water to the highest concentration for field application. In contrast, the disposable Safeskin gloves did not protect at all for the undiluted formulation, but did for 200 min when the formulation was diluted with water to the highest concentration for spraying.
NASA Astrophysics Data System (ADS)
McClenaghan, J.; Garofalo, A. M.; Meneghini, O.; Smith, S. P.
2016-10-01
Transport modeling of a proposed ITER steady-state scenario based on DIII-D high βP discharges finds that the core confinement may be improved with either sufficient rotation or a negative central shear q-profile. The high poloidal beta scenario is characterized by a large bootstrap current fraction( 80%) which reduces the demands on the external current drive, and a large radius internal transport barrier which is associated with improved normalized confinement. Typical temperature and density profiles from the non-inductive high poloidal beta scenario on DIII-D are scaled according to 0D modeling predictions of the requirements for achieving Q=5 steady state performance in ITER with ``day one'' H&CD capabilities. Then, TGLF turbulence modeling is carried out under systematic variations of the toroidal rotation and the core q-profile. Either strong negative central magnetic shear or rotation are found to successfully provide the turbulence suppression required to maintain the temperature and density profiles. This work supported by the US Department of Energy under DE-FC02-04ER54698.
NASA Technical Reports Server (NTRS)
Subrahmanyam, K. B.; Kaza, K. R. V.
1985-01-01
The effects of pretwist, precone, setting angle, Coriolis forces and second degree geometric nonlinearities on the natural frequencies, steady state deflections and mode shapes of rotating, torsionally rigid, cantilevered beams were studied. The governing coupled equations of flap lag extensional motion are derived including the effects of large precone and retaining geometric nonlinearities up to second degree. The Galerkin method, with nonrotating normal modes, is used for the solution of both steady state nonlinear equations and linear perturbation equations. Parametric indicating the individual and collective effects of pretwist, precone, Coriolis forces and second degree geometric nonlinearities on the steady state deflection, natural frequencies and mode shapes of rotating blades are presented. It is indicated that the second degree geometric nonlinear terms, which vanish for zero precone, can produce frequency changes of engineering significance. Further confirmation of the validity of including those generated by MSC NASTRAN. It is indicated that the linear and nonlinear Coriolis effects must be included in analyzing thick blades. The Coriolis effects are significant on the first flatwise and the first edgewise modes.
NASA Astrophysics Data System (ADS)
Meissner, Mirosław
2007-09-01
The acoustical properties of an irregularly shaped room consisting of two connected rectangular subrooms were studied. An eigenmode method supported by a numerical implementation has been used to predict acoustic characteristics of the coupled system, such as the distribution of the sound pressure in steady-state and the reverberation time. In the theoretical model a low-frequency limit was considered. In this case the eigenmodes are lightly damped, thusthey were approximated by normal acoustic modes of a hard-walled room. The eigenfunctions and eigenfrequencies were computed numerically via application of a forced oscillator method with a finite difference algorithm. The influence of coupling between subrooms on acoustic parameters of the enclosure was demonstrated in numerical simulations where different distributions of absorbing materials on the walls of the subrooms and various positions of the sound source were assumed. Calculation results have shown that for large differences in the absorption coefficient in the subrooms the effect of modal localization contributes to peaks of RMS pressure in steady-state and a large increase in the reverberation time.
Ma, Yonggang; Mouton, Alan J.; Lindsey, Merry L.
2018-01-01
Macrophages play critical roles in homeostatic maintenance of the myocardium under normal conditions and in tissue repair after injury. In the steady-state heart, resident cardiac macrophages remove senescent and dying cells and facilitate electrical conduction. In the aging heart, the shift in macrophage phenotype to a proinflammatory subtype leads to inflammaging. Following myocardial infarction (MI), macrophages recruited to the infarct produce both proinflammatory and anti-inflammatory mediators (cytokines, chemokines, matrix metalloproteinases, and growth factors), phagocytize dead cells, and promote angiogenesis and scar formation. These diverse properties are attributed to distinct macrophage subtypes and polarization status. Infarct macrophages exhibit a proinflammatory M1 phenotype early and become polarized toward an anti-inflammatory M2 phenotype later post- MI. Although this classification system is oversimplified and needs to be refined to accommodate the multiple different macrophage subtypes that have been recently identified, general concepts on macrophage roles are independent of subtype classification. This review summarizes current knowledge about cardiac macrophage origins, roles, and phenotypes in the steady state, with aging, and after MI, as well as highlights outstanding areas of investigation. PMID:29106912
Progress toward steady-state tokamak operation exploiting the high bootstrap current fraction regime
Ren, Q. L.; Garofalo, A. M.; Gong, X. Z.; ...
2016-06-20
Recent DIII-D experiments have increased the normalized fusion performance of the high bootstrap current fraction tokamak regime toward reactor-relevant steady state operation. The experiments, conducted by a joint team of researchers from the DIII-D and EAST tokamaks, developed a fully noninductive scenario that could be extended on EAST to a demonstration of long pulse steady-state tokamak operation. Improved understanding of scenario stability has led to the achievement of very high values of β p and β N despite strong ITBs. Good confinement has been achieved with reduced toroidal rotation. These high β p plasmas challenge the energy transport understanding, especiallymore » in the electron energy channel. A new turbulent transport model, named 2 TGLF-SAT1, has been developed which improves the transport prediction. Experiments extending results to long pulse on EAST, based on the physics basis developed at DIII-D, have been conducted. Finally, more investigations will be carried out on EAST with more additional auxiliary power to come online in the near term.« less
Role of back stress in the creep behavior of particle strengthened alloys
NASA Technical Reports Server (NTRS)
Purushothaman, S.; Tien, J. K.
1978-01-01
Recent developments in the interpolation of high-temperature steady-state creep results have introduced the concept that the stress dependence of the creep rate should be in terms of the effective stress referred to as the applied stress minus a back stress. This paper reports on back stresses taken from data on a gamma-prime-strengthened wrought nickel-base superalloy, an oxide dispersion-strengthened ODS nickel-base solid solution alloy, and an ODS nickel-base superalloy. The effect of air versus vacuum environments and the effect of dynamic changes in the strengthening microstructures on the magnitude of the back stress are assessed. The role of modulus normalization and the back stress correction in determining the true creep activation energy are examined. It is shown that the high values of the apparent stress exponent 'n' of the steady-state creep equation can be easily explained through a relationship between n, the true stress exponent of steady-state creep, and the stress which when subtracted from the applied stress results in the effective driving stress acting on the mobile dislocations during creep.
Characteristics of dioxin emissions at startup and shutdown of MSW incinerators.
Tejima, Hajime; Nishigaki, Masahide; Fujita, Yasuyuki; Matsumoto, Akihiro; Takeda, Nobuo; Takaoka, Masaki
2007-01-01
Dioxin concentrations from municipal waste incinerators in Japan and elsewhere often show low concentrations that comply with legal limits (in this paper, the term "dioxin" designates WHO-TEQ: PCDD/Fs+dioxin-like PCB). However, such data is usually generated under normal steady state operational conditions, and there has been little investigation of releases occurring during startup and shutdown. It is important, therefore, to ascertain quantitatively emissions in an unsteady state (startup and shutdown) in order to correctly evaluate the relationship between emissions from a facility and the surrounding environment. The present study aimed to examine dioxin emissions of a continuously operated incinerator at startup and shutdown, and estimating the time period of greatest emission, and the processes causing dioxin generation. The startup process was divided into five stages and the shutdown into two; at each stage, dioxins in the flue gas were measured at the boiler outlet and the stack. From the concentration of dioxins and the flue gas volume at each stage, the amount of dioxins at startup and shutdown were calculated, and these were compared with that under steady state conditions. Dioxin concentration at the stack under steady state conditions was a very low level, while those at startup and shutdown were higher. In the case where dioxin concentration under a steady state is a low level like in this study, it is indicated that the total annual dioxin emission from a facility could be attributed to the startup periods.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-16
... Facility Operating License Involving Proposed No Significant Hazards Consideration Determination; San... Operating License No. NPF-10, issued to Southern California Edison (SCE, the licensee), for operation of the... operating conditions'' and ``normal steady state full power operation'' and restricts operation to 70...
40 CFR Appendix D to Subpart S of... - Steady-State Short Test Equipment
Code of Federal Regulations, 2011 CFR
2011-07-01
... range of low scale, for five minutes without adjustment. (7) Electromagnetic isolation and interference. Electromagnetic signals found in an automotive service environment shall not cause malfunctions or changes in the... vary as a result of electromagnetic radiation and induction devices normally found in the automotive...
40 CFR Appendix D to Subpart S of... - Steady-State Short Test Equipment
Code of Federal Regulations, 2013 CFR
2013-07-01
... range of low scale, for five minutes without adjustment. (7) Electromagnetic isolation and interference. Electromagnetic signals found in an automotive service environment shall not cause malfunctions or changes in the... vary as a result of electromagnetic radiation and induction devices normally found in the automotive...
40 CFR Appendix D to Subpart S of... - Steady-State Short Test Equipment
Code of Federal Regulations, 2014 CFR
2014-07-01
... range of low scale, for five minutes without adjustment. (7) Electromagnetic isolation and interference. Electromagnetic signals found in an automotive service environment shall not cause malfunctions or changes in the... vary as a result of electromagnetic radiation and induction devices normally found in the automotive...
40 CFR Appendix D to Subpart S of... - Steady-State Short Test Equipment
Code of Federal Regulations, 2010 CFR
2010-07-01
... range of low scale, for five minutes without adjustment. (7) Electromagnetic isolation and interference. Electromagnetic signals found in an automotive service environment shall not cause malfunctions or changes in the... vary as a result of electromagnetic radiation and induction devices normally found in the automotive...
40 CFR Appendix D to Subpart S of... - Steady-State Short Test Equipment
Code of Federal Regulations, 2012 CFR
2012-07-01
... range of low scale, for five minutes without adjustment. (7) Electromagnetic isolation and interference. Electromagnetic signals found in an automotive service environment shall not cause malfunctions or changes in the... vary as a result of electromagnetic radiation and induction devices normally found in the automotive...
LAND-COVER CHARACTERIZATION AND CHANGE DETECTION USING MULTI-TEMPORAL MODIS NDVI DATA
The purpose of this research and development effort is to investigate the feasibility of using MODIS derived Normalized Difference Vegetation Index (NDVI) data to delineate areas of LC change on an annual basis and identify the outcome of LC conversions (i.e., new steady state). ...
Speech-evoked auditory brainstem responses in children with hearing loss.
Koravand, Amineh; Al Osman, Rida; Rivest, Véronique; Poulin, Catherine
2017-08-01
The main objective of the present study was to investigate subcortical auditory processing in children with sensorineural hearing loss. Auditory Brainstem Responses (ABRs) were recorded using click and speech/da/stimuli. Twenty-five children, aged 6-14 years old, participated in the study: 13 with normal hearing acuity and 12 with sensorineural hearing loss. No significant differences were observed for the click-evoked ABRs between normal hearing and hearing-impaired groups. For the speech-evoked ABRs, no significant differences were found for the latencies of the following responses between the two groups: onset (V and A), transition (C), one of the steady-state wave (F), and offset (O). However, the latency of the steady-state waves (D and E) was significantly longer for the hearing-impaired compared to the normal hearing group. Furthermore, the amplitude of the offset wave O and of the envelope frequency response (EFR) of the speech-evoked ABRs was significantly larger for the hearing-impaired compared to the normal hearing group. Results obtained from the speech-evoked ABRs suggest that children with a mild to moderately-severe sensorineural hearing loss have a specific pattern of subcortical auditory processing. Our results show differences for the speech-evoked ABRs in normal hearing children compared to hearing-impaired children. These results add to the body of the literature on how children with hearing loss process speech at the brainstem level. Copyright © 2017 Elsevier B.V. All rights reserved.
Tests of a Lightweight 200 kW MHD Channel and Diffuser.
1980-03-01
used for measuring differential electrode voltages. The difference electrode voltage was determined by subtracting voltages that were picked up in...transients, instantaneous accelerations as high as 75 g were recorded. The acceleration peaks during steady-state firing were normally in the 15 g...normally in the range of 0.01 g2/Hz except for narrow peaks at 2-3 kHz which reach 0.05 - 0.1 g /Hz. The highest spectrum measured was accelerometer
2013-01-01
Background Cardiovascular magnetic resonance (CMR) steady state free precession (SSFP) cine sequences with high temporal resolution and improved post-processing can accurately measure RA dimensions. We used this technique to define ranges for normal RA volumes and dimensions normalized, when necessary, to the influence of gender, body surface area (BSA) and age, and also to define the best 2D images-derived predictors of RA enlargement. Methods For definition of normal ranges of RA volume we studied 120 healthy subjects (60 men, 60 women; 20 subjects per age decile from 20 to 80 years), after careful exclusion of cardiovascular abnormality. We also studied 120 patients (60 men, 60 women; age range 20 to 80 years) with a clinical indication for CMR in order to define the best 1D and 2D predictors of RA enlargement. Data were generated from SSFP cine CMR, with 3-dimensional modeling, including tracking of the atrioventricular ring motion and time-volume curves analysis. Results In the group of healthy individuals, age influenced RA 2-chamber area and transverse diameter. Gender influenced most absolute RA dimensions and volume. Interestingly, right atrial volumes did not change with age and gender when indexed to body surface area. New CMR normal ranges for RA dimensions were modeled and displayed for clinical use with normalization for BSA and gender and display of parameter variation with age. Finally, the best 2D images-derived independent predictors of RA enlargement were indexed area and indexed longitudinal diameter in the 2-chamber view. Conclusion Reference RA dimensions and predictors of RA enlargement are provided using state-of-the-art CMR techniques. PMID:23566426
A Kinetic Approach to Propagation and Stability of Detonation Waves
NASA Astrophysics Data System (ADS)
Monaco, R.; Bianchi, M. Pandolfi; Soares, A. J.
2008-12-01
The problem of the steady propagation and linear stability of a detonation wave is formulated in the kinetic frame for a quaternary gas mixture in which a reversible bimolecular reaction takes place. The reactive Euler equations and related Rankine-Hugoniot conditions are deduced from the mesoscopic description of the process. The steady propagation problem is solved for a Zeldovich, von Neuman and Doering (ZND) wave, providing the detonation profiles and the wave thickness for different overdrive degrees. The one-dimensional stability of such detonation wave is then studied in terms of an initial value problem coupled with an acoustic radiation condition at the equilibrium final state. The stability equations and their initial data are deduced from the linearized reactive Euler equations and related Rankine-Hugoniot conditions through a normal mode analysis referred to the complex disturbances of the steady state variables. Some numerical simulations for an elementary reaction of the hydrogen-oxygen chain are proposed in order to describe the time and space evolution of the instabilities induced by the shock front perturbation.
Many-Body Spectral Functions from Steady State Density Functional Theory.
Jacob, David; Kurth, Stefan
2018-03-14
We propose a scheme to extract the many-body spectral function of an interacting many-electron system from an equilibrium density functional theory (DFT) calculation. To this end we devise an ideal scanning tunneling microscope (STM) setup and employ the recently proposed steady-state DFT formalism (i-DFT) which allows one to calculate the steady current through a nanoscopic region coupled to two biased electrodes. In our setup, one of the electrodes serves as a probe ("STM tip"), which is weakly coupled to the system we want to measure. In the ideal STM limit of vanishing coupling to the tip, the system is restored to quasi-equilibrium and the normalized differential conductance yields the exact equilibrium many-body spectral function. Calculating this quantity from i-DFT, we derive an exact relation expressing the interacting spectral function in terms of the Kohn-Sham one. As illustrative examples, we apply our scheme to calculate the spectral functions of two nontrivial model systems, namely the single Anderson impurity model and the Constant Interaction Model.
Fluctuations and discrete particle noise in gyrokinetic simulation of drift waves
NASA Astrophysics Data System (ADS)
Jenkins, Thomas G.; Lee, W. W.
2007-03-01
The relevance of the gyrokinetic fluctuation-dissipation theorem (FDT) to thermal equilibrium and nonequilibrium states of the gyrokinetic plasma is explored, with particular focus being given to the contribution of weakly damped normal modes to the fluctuation spectrum. It is found that the fluctuation energy carried in the normal modes exhibits the proper scaling with particle count (as predicted by the FDT in thermal equilibrium) even in the presence of drift waves, which grow linearly and attain a nonlinearly saturated steady state. This favorable scaling is preserved, and the saturation amplitude of the drift wave unaffected, for parameter regimes in which the normal modes become strongly damped and introduce a broad spectrum of discreteness-induced background noise in frequency space.
Progress Toward Steady State Tokamak Operation Exploiting the high bootstrap current fraction regime
NASA Astrophysics Data System (ADS)
Ren, Q.
2015-11-01
Recent DIII-D experiments have advanced the normalized fusion performance of the high bootstrap current fraction tokamak regime toward reactor-relevant steady state operation. The experiments, conducted by a joint team of researchers from the DIII-D and EAST tokamaks, developed a fully noninductive scenario that could be extended on EAST to a demonstration of long pulse steady-state tokamak operation. Fully noninductive plasmas with extremely high values of the poloidal beta, βp >= 4 , have been sustained at βT >= 2 % for long durations with excellent energy confinement quality (H98y,2 >= 1 . 5) and internal transport barriers (ITBs) generated at large minor radius (>= 0 . 6) in all channels (Te, Ti, ne, VTf). Large bootstrap fraction (fBS ~ 80 %) has been obtained with high βp. ITBs have been shown to be compatible with steady state operation. Because of the unusually large ITB radius, normalized pressure is not limited to low βN values by internal ITB-driven modes. βN up to ~4.3 has been obtained by optimizing the plasma-wall distance. The scenario is robust against several variations, including replacing some on-axis with off-axis neutral beam injection (NBI), adding electron cyclotron (EC) heating, and reducing the NBI torque by a factor of 2. This latter observation is particularly promising for extension of the scenario to EAST, where maximum power is obtained with balanced NBI injection, and to a reactor, expected to have low rotation. However, modeling of this regime has provided new challenges to state-of-the-art modeling capabilities: quasilinear models can dramatically underpredict the electron transport, and the Sauter bootstrap current can be insufficient. The analysis shows first-principle NEO is in good agreement with experiments for the bootstrap current calculation and ETG modes with a larger saturated amplitude or EM modes may provide the missing electron transport. Work supported in part by the US DOE under DE-FC02-04ER54698, DE-AC52-07NA27344, DE-AC02-09CH11466, and the NMCFP of China under 2015GB110000 and 2015GB102000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beylot, M.; Martin, C.; Beaufrere, B.
1987-04-01
Using deuterium-labeled glycerol as tracer and gas-liquid chromatography-mass spectrometry techniques for the determination of isotopic enrichment, we have developed a simple and ethically acceptable method of determining glycerol appearance rate in humans under steady-state and nonsteady-state conditions. In normal subjects, the appearance rate of glycerol in the post-absorptive state was 2.22 +/- 0.20 mumol X kg-1 X min-1, a value in agreement with those reported in studies with radioactively labeled tracers. The ratio nonesterified fatty acid (NEFA) appearance rate/glycerol appearance rate ranged from 1.95 to 3.40. In insulin-dependent diabetic patients with a mild degree of metabolic control, the appearance ratemore » of glycerol was 2.48 +/- 0.29 mumol X kg-1 X min-1. The volume of distribution of glycerol, determined by the bolus injection technique, was (mean) 0.306 l X kg-1 in normal subjects and 0.308 l X kg-1 in insulin-independent diabetic patients. To evaluate the usefulness of the method for determination of glycerol kinetics in nonsteady-state conditions, we infused six normal subjects with natural glycerol and calculated the isotopically determined glycerol appearance rate using a single compartment model (volume of distribution 0.31 l X kg-1). During these tests, the expected glycerol appearance rates were successively 5.03 +/- 0.33, 7.48 +/- 0.39, 9.94 +/- 0.34, 7.48 +/- 0.39, and 5.03 +/- 0.33 mumol +/- kg-1 X min-1, whereas the corresponding isotopically determined appearance rates were 4.62 +/- 0.45, 6.95 +/- 0.56, 10.85 +/- 0.51, 7.35 +/- 0.34, and 5.28 +/- 0.12 mumol X kg-1 X min-1.« less
Heat-Conducting Anchors for Thermocouples
NASA Technical Reports Server (NTRS)
Macdavid, Kenton S.
1987-01-01
Metal particles in adhesive aid heat transfer. Aluminum caps containing silver-filled epoxy used as high-thermal-conductance anchors for thermocouples, epoxy providing thermal path between mounting surfaces and thermocouple measuring junctions. Normally, epoxy-filled aluminum caps used when measuring steady-state temperatures. Silver-filled epoxy used when thermocouple not isolated electrically from surface measured.
Spherical microglass particle impingement studies of thermoplastic materials at normal incidence
NASA Technical Reports Server (NTRS)
Veerabhadra Rao, P.; Buckley, D. H.
1984-01-01
Light optical and scanning electron microscope studies were conducted to characterize the erosion resistance of polymethyl methacrylate (PMMA), polycarbonate (PC), polytetrafluoroethylene (PTFE) and ultra-high-molecular-weight-polyethylene (UHMWPE). Erosion was caused by a jet of spherical micro-glass beads at normal impact. During the initial stages of damage, the surfaces of these materials were studied using a profilometer. Material buildup above the original surface was observed on PC and PMMA. As erosion progressed, this buildup disappeared as the pit became deeper. Little or no buildup was observed on PTFE and on UHMWPE. UHMWPE and PTFE are the most resistant materials and PMMA the least. Favorable properties for high erosion resistance seem to be high values of ultimate elongation, and strain energy and a low value of the modulus of elasticity. Erosion-rate-versus-time curves of PC and PTFE exhibit incubation, acceleration and steady state periods. A continuously increasing erosion rate period was observed however for PMMA instead of a steady state period. At early stages of damage and at low impact pressure material removal mechanisms appear to be similar to those for metallic materials.
Spherical micro-glass particle impingement studies of thermoplastic materials at normal incidence
NASA Technical Reports Server (NTRS)
Rao, P. V.; Buckley, D. H.
1983-01-01
Light optical and scanning electron microscope studies were conducted to characterize the erosion resistance of polymethyl methacrylate (PMMA), polycarbonate (PC), polytetrafluoroethylene (PTFE) and ultra-high-molecular-weight-polyethylene (UHMWPE). Erosion was caused by a jet of spherical micro-glass beads at normal impact. During the initial stages of damage, the surfaces of these materials were studied using a profilometer. Material buildup above the original surface was observed on PC and PMMA. As erosion progressed, this buildup disappeared as the pit became deeper. Little or no buildup was observed on PTFE and on UHMWPE. UHMWPE and PTFE are the most resistant materials and PMMA the least. Favorable properties for high erosion resistance seem to be high values of ultimate elongation, and strain energy and a low value of the modulus of elasticity. Erosion-rate-versus-time curves of PC and PTFE exhibit incubation, acceleration and steady state periods. A continuously increasing erosion rate period was observed however for PMMA instead of a steady state period. At early stages of damage and at low impact pressure material removal mechanisms appear to be similar to those for metallic materials.
Zeng, Xi-Lei; Thumati, Naresh R.; Fleisig, Helen B.; Hukezalie, Kyle R.; Savage, Sharon A.; Giri, Neelam; Alter, Blanche P.; Wong, Judy M.Y.
2012-01-01
X-linked dyskeratosis congenita (X-DC) is caused by mutations in the housekeeping nucleolar protein dyskerin. Amino acid changes associated with X-DC are remarkably heterogeneous. Peripheral mononuclear blood cells and fibroblasts isolated from X-DC patients harbor lower steady-state telomerase RNA (TER) levels and shorter telomeres than healthy age-matched controls. Previously, we showed that retroviral expression of recombinant TER, together with expression of recombinant telomerase reverse transcriptase, restored telomere maintenance and proliferative capacity in X-DC patient cells. Using rare X-DC isoforms (▵L37 and A386T dyskerin), we showed that telomere maintenance defects observed in X-DC are solely due to decreased steady-state levels of TER. Disease-associated reductions in steady-state TER levels cause deficiencies in telomere maintenance. Here, we confirm these findings in other primary X-DC patient cell lines coding for the most common (A353V dyskerin) and more clinically severe (K314R and A353V dyskerin) X-DC isoforms. Using cell lines derived from these patients, we also examined the steady-state levels of other hinge-ACA motif RNAs and did not find differences in their in vivo accumulations. We show, for the first time, that purified telomerase holoenzyme complexes from different X-DC cells have normal catalytic activity. Our data confirm that dyskerin promotes TER stability in vivo, endorsing the development of TER supplementation strategies for the treatment of X-DC. PMID:22058290
Testing of a Helium Loop Heat Pipe for Large Area Cryocooling
NASA Technical Reports Server (NTRS)
Ku, Jentung; Robinson, Franklin
2016-01-01
Future NASA space telescopes and exploration missions require cryocooling of large areas such as optics, detector arrays, and cryogenic propellant tanks. One device that can potentially be used to provide closed-loop cryocooling is the cryogenic loop heat pipe (CLHP). A CLHP has many advantages over other devices in terms of reduced mass, reduced vibration, high reliability, and long life. A helium CLHP has been tested extensively in a thermal vacuum chamber using a cryocooler as the heat sink to characterize its transient and steady performance and verify its ability to cool large areas or components in the 3K temperature range. A copper plate with attached electrical heaters was used to simulate the heat source, and heat was collected by the CLHP evaporator and transferred to the cryocooler for ultimate heat rejection. The helium CLHP thermal performance test included cool-down from the ambient temperature, startup, capillary limit, heat removal capability, rapid power changes, and long duration steady state operation. The helium CLHP demonstrated robust operation under steady state and transient conditions. The loop could be cooled from the ambient temperature to subcritical temperatures very effectively, and could start successfully without pre-conditioning by simply applying power to both the capillary pump and the evaporator plate. It could adapt to rapid changes in the heat load, and reach a new steady state very quickly. Heat removal between 10mW and 140mW was demonstrated, yielding a power turn down ratio of 14. When the CLHP capillary limit was exceeded, the loop could resume its normal function by reducing the power to the capillary pump. Steady state operations up to 17 hours at several heat loads were demonstrated. The ability of the helium CLHP to cool large areas was therefore successfully verified.
Testing of a Helium Loop Heat Pipe for Large Area Cryocooling
NASA Technical Reports Server (NTRS)
Ku, Jentung; Robinson, Franklin Lee
2015-01-01
Future NASA space telescopes and exploration missions require cryocooling of large areas such as optics, detector arrays, and cryogenic propellant tanks. One device that can potentially be used to provide closed-loop cryocooling is the cryogenic loop heat pipe (CLHP). A CLHP has many advantages over other devices in terms of reduced mass, reduced vibration, high reliability, and long life. A helium CLHP has been tested extensively in a thermal vacuum chamber using a cryocooler as the heat sink to characterize its transient and steady performance and verify its ability to cool large areas or components in the 3K temperature range. A copper plate with attached electrical heters was used to simulate the heat source, and heat was collected by the CLHP evaporator and transferred to the cryocooler for ultimate heat rejection. The helium CLHP thermal performance test included cool-down from the ambient temperature, startup, capillary limit, heat removal capability, rapid power changes, and long duration steady state operation. The helium CLHP demonstrated robust operation under steady state and transient conditions. The loop could be cooled from the ambient temperature to subcritical temperatures very effectively, and could start successfully without pre-conditioning by simply applying power to both the capillary pump and the evaporator plate. It could adapt to rapid changes in the heat load, and reach a new steady state very quickly. Heat removal between 10mW and 140mW was demonstrated, yielding a power turn down ratio of 14. When the CLHP capillary limit was exceeded, the loop could resume its normal function by reducing the power to the capillary pump. Steady state operations up to 17 hours at several heat loads were demonstrated. The ability of the helium CLHP to cool large areas was therefore successfully verified.
Stewart, Daniel C; Rubiano, Andrés; Dyson, Kyle; Simmons, Chelsey S
2017-01-01
While mechanical properties of the brain have been investigated thoroughly, the mechanical properties of human brain tumors rarely have been directly quantified due to the complexities of acquiring human tissue. Quantifying the mechanical properties of brain tumors is a necessary prerequisite, though, to identify appropriate materials for surgical tool testing and to define target parameters for cell biology and tissue engineering applications. Since characterization methods vary widely for soft biological and synthetic materials, here, we have developed a characterization method compatible with abnormally shaped human brain tumors, mouse tumors, animal tissue and common hydrogels, which enables direct comparison among samples. Samples were tested using a custom-built millimeter-scale indenter, and resulting force-displacement data is analyzed to quantify the steady-state modulus of each sample. We have directly quantified the quasi-static mechanical properties of human brain tumors with effective moduli ranging from 0.17-16.06 kPa for various pathologies. Of the readily available and inexpensive animal tissues tested, chicken liver (steady-state modulus 0.44 ± 0.13 kPa) has similar mechanical properties to normal human brain tissue while chicken crassus gizzard muscle (steady-state modulus 3.00 ± 0.65 kPa) has similar mechanical properties to human brain tumors. Other materials frequently used to mimic brain tissue in mechanical tests, like ballistic gel and chicken breast, were found to be significantly stiffer than both normal and diseased brain tissue. We have directly compared quasi-static properties of brain tissue, brain tumors, and common mechanical surrogates, though additional tests would be required to determine more complex constitutive models.
NASA Technical Reports Server (NTRS)
Intrator, T.; Hershkowitz, N.; Chan, C.
1984-01-01
Counterstreaming large-diameter electron beams in a steady-state laboratory experiment are observed to generate transverse radiation at twice the upper-hybrid frequency (2omega-UH) with a quadrupole radiation pattern. The electromagnetic wave power density is nonlinearly enhanced over the power density obtained from a single beam-plasma system. Electromagnetic power density scales exponentially with beam energy and increases with ion mass. Weak turbulence theory can predict similar (but weaker) beam energy scaling but not the high power density, or the predominance of the 2omega-UH radiation peak over the omega-UH peak. Significant noise near the upper-hybrid and ion plasma frequencies is also measured, with normalized electrostatic wave energy density W(ES)/n(e)T(e) approximately 0.01.
Non-steady state modelling of wheel-rail contact problem
NASA Astrophysics Data System (ADS)
Guiral, A.; Alonso, A.; Baeza, L.; Giménez, J. G.
2013-01-01
Among all the algorithms to solve the wheel-rail contact problem, Kalker's FastSim has become the most useful computation tool since it combines a low computational cost and enough precision for most of the typical railway dynamics problems. However, some types of dynamic problems require the use of a non-steady state analysis. Alonso and Giménez developed a non-stationary method based on FastSim, which provides both, sufficiently accurate results and a low computational cost. However, it presents some limitations; the method is developed for one time-dependent creepage and its accuracy for varying normal forces has not been checked. This article presents the required changes in order to deal with both problems and compares its results with those given by Kalker's Variational Method for rolling contact.
NASA Technical Reports Server (NTRS)
Sargent, N. B.
1980-01-01
The steady state test results on a breadboard version of the General Electric Near Term Electric Vehicle (ETV-1) are discussed. The breadboard was built using exact duplicate vehicle propulsion system components with few exceptions. Full instrumentation was provided to measure individual component efficiencies. Tests were conducted on a 50 hp dynamometer in a road load simulator facility. Characterization of the propulsion system over the lower half of the speed-torque operating range has shown the system efficiency to be composed of a predominant motor loss plus a speed dependent transaxle loss. At the lower speeds with normal road loads the armature chopper loss is also a significant factor. At the conditions corresponding to a cycle for which the vehicle system was specifically designed, the efficiencies are near optimum.
Testing of a Neon Loop Heat Pipe for Large Area Cryocooling
NASA Technical Reports Server (NTRS)
Ku, Jentung; Robinson, Franklin Lee
2014-01-01
Cryocooling of large areas such as optics, detector arrays, and cryogenic propellant tanks is required for future NASA missions. A cryogenic loop heat pipe (CLHP) can provide a closed-loop cooling system for this purpose and has many advantages over other devices in terms of reduced mass, reduced vibration, high reliability, and long life. A neon CLHP was tested extensively in a thermal vacuum chamber using a cryopump as the heat sink to characterize its transient and steady performance and verify its ability to cool large areas or components. Tests conducted included loop cool-down from the ambient temperature, startup, power cycle, heat removal capability, loop capillary limit and recovery from a dry-out, low power operation, and long duration steady state operation. The neon CLHP demonstrated robust operation. The loop could be cooled from the ambient temperature to subcritical temperatures very effectively, and could start successfully by applying power to both the pump and evaporator without any pre-conditioning. It could adapt to changes in the pump power andor evaporator power, and reach a new steady state very quickly. The evaporator could remove heat loads between 0.25W and 4W. When the pump capillary limit was exceeded, the loop could resume its normal function by reducing the pump power. Steady state operations were demonstrated for up to 6 hours. The ability of the neon loop to cool large areas was therefore successfully verified.
Nimmo, J.R.; Rubin, J.; Hammermeister, D.P.
1987-01-01
A method has been developed to establish steady state flow of water in an unsaturated soil sample spinning in a centrifuge. Theoretical analysis predicts moisture conditions in the sample that depend strongly on soil type and certain operating parameters. For Oakley sand, measurements of flux, water content, and matric potential during and after centrifugation verify that steady state flow can be achieved. Experiments have confirmed the theoretical prediction of a nearly uniform moisture distribution for this medium and have demonstrated that the flow can be effectively one-dimensional. The method was used for steady state measurements of hydraulic conductivity K for relatively dry soil, giving values as low as 7.6 × 10−11 m/s with data obtained in a few hours. Darcy's law was tested by measuring K for different centrifugal driving forces but with the same water content. For the sand at a bulk density of 1.82 Mg/m3 and 27% saturation, results were consistent with Darcy's law for K equal to 5.22 × 10−10 m/s and forces ranging from 216 to 1650 times normal gravity.
NASA Technical Reports Server (NTRS)
Baumeister, K. J.; Kreider, K. L.
1996-01-01
An explicit finite difference iteration scheme is developed to study harmonic sound propagation in ducts. To reduce storage requirements for large 3D problems, the time dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both explicit and stable, time is introduced into the Fourier transformed (steady-state) acoustic potential field as a parameter. Under a suitable transformation, the time dependent governing equation in frequency space is simplified to yield a parabolic partial differential equation, which is then marched through time to attain the steady-state solution. The input to the system is the amplitude of an incident harmonic sound source entering a quiescent duct at the input boundary, with standard impedance boundary conditions on the duct walls and duct exit. The introduction of the time parameter eliminates the large matrix storage requirements normally associated with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is applied to sound propagation in a 2D hard wall duct with plug flow.
Modeling the Role of Dislocation Substructure During Class M and Exponential Creep. Revised
NASA Technical Reports Server (NTRS)
Raj, S. V.; Iskovitz, Ilana Seiden; Freed, A. D.
1995-01-01
The different substructures that form in the power-law and exponential creep regimes for single phase crystalline materials under various conditions of stress, temperature and strain are reviewed. The microstructure is correlated both qualitatively and quantitatively with power-law and exponential creep as well as with steady state and non-steady state deformation behavior. These observations suggest that creep is influenced by a complex interaction between several elements of the microstructure, such as dislocations, cells and subgrains. The stability of the creep substructure is examined in both of these creep regimes during stress and temperature change experiments. These observations are rationalized on the basis of a phenomenological model, where normal primary creep is interpreted as a series of constant structure exponential creep rate-stress relationships. The implications of this viewpoint on the magnitude of the stress exponent and steady state behavior are discussed. A theory is developed to predict the macroscopic creep behavior of a single phase material using quantitative microstructural data. In this technique the thermally activated deformation mechanisms proposed by dislocation physics are interlinked with a previously developed multiphase, three-dimensional. dislocation substructure creep model. This procedure leads to several coupled differential equations interrelating macroscopic creep plasticity with microstructural evolution.
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.; Kreider, Kevin L.
1996-01-01
An explicit finite difference iteration scheme is developed to study harmonic sound propagation in aircraft engine nacelles. To reduce storage requirements for large 3D problems, the time dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both explicit and stable, time is introduced into the Fourier transformed (steady-state) acoustic potential field as a parameter. Under a suitable transformation, the time dependent governing equation in frequency space is simplified to yield a parabolic partial differential equation, which is then marched through time to attain the steady-state solution. The input to the system is the amplitude of an incident harmonic sound source entering a quiescent duct at the input boundary, with standard impedance boundary conditions on the duct walls and duct exit. The introduction of the time parameter eliminates the large matrix storage requirements normally associated with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is applied to sound propagation in a 2D hard wall duct with plug flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimmich, G.A.; Randles, J.
1975-01-01
A monosaccharide transport system in addition to the active Na/sup +/-dependent system characteristic of the brush border surface of vertebrate intestinal tissue has been identified in isolated chick intestinal epithelial cells. The newly described system differs in several characteristics from the Na/sup +/-dependent process, including function in the absence of Na/sup +/; a high sensitivity to phloretin, relative insensitivity to phlorizin; different substrate specificity; and a very high K/sub T/ and V/sub max/. The system apparently functions only in a facilitated diffusion manner so that it serves to move monosaccharide across the cell membrane down its chemical gradient. An appreciablemore » fraction of total sugar efflux occurs via the Na/sup +/-independent carrier from cells which have accumulated sugar to a steady state. Phloretin selectively blocks this efflux so that a normal steady-state sugar gradient of seven- to eightfold is transformed to a new steady-state gradient which is greater than 14-fold. Locus of the new system is tentatively ascribed to the serosal cell surface where it would serve for monosaccharide transfer between enterocyte and lamina propria of the villus. (auth)« less
Effect of Mild Cognitive Impairment and Alzheimer Disease on Auditory Steady-State Responses
Shahmiri, Elaheh; Jafari, Zahra; Noroozian, Maryam; Zendehbad, Azadeh; Haddadzadeh Niri, Hassan; Yoonessi, Ali
2017-01-01
Introduction: Mild Cognitive Impairment (MCI), a disorder of the elderly people, is difficult to diagnose and often progresses to Alzheimer Disease (AD). Temporal region is one of the initial areas, which gets impaired in the early stage of AD. Therefore, auditory cortical evoked potential could be a valuable neuromarker for detecting MCI and AD. Methods: In this study, the thresholds of Auditory Steady-State Response (ASSR) to 40 Hz and 80 Hz were compared between Alzheimer Disease (AD), MCI, and control groups. A total of 42 patients (12 with AD, 15 with MCI, and 15 elderly normal controls) were tested for ASSR. Hearing thresholds at 500, 1000, and 2000 Hz in both ears with modulation rates of 40 and 80 Hz were obtained. Results: Significant differences in normal subjects were observed in estimated ASSR thresholds with 2 modulation rates in 3 frequencies in both ears. However, the difference was significant only in 500 Hz in the MCI group, and no significant differences were observed in the AD group. In addition, significant differences were observed between the normal subjects and AD patients with regard to the estimated ASSR thresholds with 2 modulation rates and 3 frequencies in both ears. A significant difference was observed between the normal and MCI groups at 2000 Hz, too. An increase in estimated 40 Hz ASSR thresholds in patients with AD and MCI suggests neural changes in auditory cortex compared to that in normal ageing. Conclusion: Auditory threshold estimation with low and high modulation rates by ASSR test could be a potentially helpful test for detecting cognitive impairment. PMID:29158880
Boundary Layer Model for Air Pollutant Concentrations Due to Highway Traffic
ERIC Educational Resources Information Center
Ragland, Kenneth W.; Peirce, J. Jeffrey
1975-01-01
A numerical solution of the three-dimensional steady-state diffusion equation for a finite width line source is presented. The wind speed and eddy diffusivity as a function of height above the roadway are obtained. Normalized ground level and elevated concentrations near a highway are obtained for winds perpendicular, parallel, and at 45 degrees.…
Modeling the full-bridge series-resonant power converter
NASA Technical Reports Server (NTRS)
King, R. J.; Stuart, T. A.
1982-01-01
A steady state model is derived for the full-bridge series-resonant power converter. Normalized parametric curves for various currents and voltages are then plotted versus the triggering angle of the switching devices. The calculations are compared with experimental measurements made on a 50 kHz converter and a discussion of certain operating problems is presented.
Suda, Kayo; Terazima, Masahide; Sato, Hirofumi; Kimura, Yoshifumi
2013-10-17
Excited state intramolecular proton transfer reactions (ESIPT) of 4'-N,N-diethylamino-3-hydroxyflavone (DEAHF) in ionic liquids have been studied by steady-state and time-resolved fluorescence measurements at different excitation wavelengths. Steady-state measurements show the relative yield of the tautomeric form to the normal form of DEAHF decreases as excitation wavelength is increased from 380 to 450 nm. The decrease in yield is significant in ionic liquids that have cations with long alkyl chains. The extent of the decrease is correlated with the number of carbon atoms in the alkyl chains. Time-resolved fluorescence measurements using optical Kerr gate spectroscopy show that ESIPT rate has a strong excitation wavelength dependence. There is a large difference between the spectra at a 200 ps delay from different excitation wavelengths in each ionic liquid. The difference is pronounced in ionic liquids having a long alkyl chain. The equilibrium constant in the electronic excited state obtained at a 200 ps delay and the average reaction rate are also correlated with the alkyl chain length. Considering the results of the steady-state fluorescence and time-resolved measurements, the excitation wavelength dependence of ESIPT is explained by state selective excitation due to the difference of the solvation, and the number of alkyl chain carbon atoms is found to be a good indicator of the effect of inhomogeneity for this reaction.
NASA Technical Reports Server (NTRS)
Tseng, K.; Morino, L.
1975-01-01
A general theory for study, oscillatory or fully unsteady potential compressible aerodynamics around complex configurations is presented. Using the finite-element method to discretize the space problem, one obtains a set of differential-delay equations in time relating the potential to its normal derivative which is expressed in terms of the generalized coordinates of the structure. For oscillatory flow, the motion consists of sinusoidal oscillations around a steady, subsonic or supersonic flow. For fully unsteady flow, the motion is assumed to consist of constant subsonic or supersonic speed for time t or = 0 and of small perturbations around the steady state for time t 0.
Bifurcation Analysis of 1D Steady States of the Bénard Problem in the Long Wavelength Limit
NASA Astrophysics Data System (ADS)
Zhou, Chengzhe; Troian, Sandra
2015-11-01
We investigate the character and stability of stationary states of the (1 + 1) D evolution equation ∂t h +
Restitution slope is principally determined by steady-state action potential duration.
Shattock, Michael J; Park, Kyung Chan; Yang, Hsiang-Yu; Lee, Angela W C; Niederer, Steven; MacLeod, Kenneth T; Winter, James
2017-06-01
The steepness of the action potential duration (APD) restitution curve and local tissue refractoriness are both thought to play important roles in arrhythmogenesis. Despite this, there has been little recognition of the apparent association between steady-state APD and the slope of the restitution curve. The objective of this study was to test the hypothesis that restitution slope is determined by APD and to examine the relationship between restitution slope, refractoriness and susceptibility to VF. Experiments were conducted in isolated hearts and ventricular myocytes from adult guinea pigs and rabbits. Restitution curves were measured under control conditions and following intervention to prolong (clofilium, veratridine, bretylium, low [Ca]e, chronic transverse aortic constriction) or shorten (catecholamines, rapid pacing) ventricular APD. Despite markedly differing mechanisms of action, all interventions that prolonged the action potential led to a steepening of the restitution curve (and vice versa). Normalizing the restitution curve as a % of steady-state APD abolished the difference in restitution curves with all interventions. Effects on restitution were preserved when APD was modulated by current injection in myocytes pre-treated with the calcium chelator BAPTA-AM - to abolish the intracellular calcium transient. The non-linear relation between APD and the rate of repolarization of the action potential is shown to underpin the common influence of APD on the slope of the restitution curve. Susceptibility to VF was found to parallel changes in APD/refractoriness, rather than restitution slope. Steady-state APD is the principal determinant of the slope of the ventricular electrical restitution curve. In the absence of post-repolarization refractoriness, factors that prolong the action potential would be expected to steepen the restitution curve. However, concomitant changes in tissue refractoriness act to reduce susceptibility to sustained VF. Dependence on steady-state APD may contribute to the failure of restitution slope to predict sudden cardiac death. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Cardiology
Restitution slope is principally determined by steady-state action potential duration
Shattock, Michael J.; Park, Kyung Chan; Yang, Hsiang-Yu; Lee, Angela W. C.; Niederer, Steven; MacLeod, Kenneth T.
2017-01-01
Aims The steepness of the action potential duration (APD) restitution curve and local tissue refractoriness are both thought to play important roles in arrhythmogenesis. Despite this, there has been little recognition of the apparent association between steady-state APD and the slope of the restitution curve. The objective of this study was to test the hypothesis that restitution slope is determined by APD and to examine the relationship between restitution slope, refractoriness and susceptibility to VF. Methods and results Experiments were conducted in isolated hearts and ventricular myocytes from adult guinea pigs and rabbits. Restitution curves were measured under control conditions and following intervention to prolong (clofilium, veratridine, bretylium, low [Ca]e, chronic transverse aortic constriction) or shorten (catecholamines, rapid pacing) ventricular APD. Despite markedly differing mechanisms of action, all interventions that prolonged the action potential led to a steepening of the restitution curve (and vice versa). Normalizing the restitution curve as a % of steady-state APD abolished the difference in restitution curves with all interventions. Effects on restitution were preserved when APD was modulated by current injection in myocytes pre-treated with the calcium chelator BAPTA-AM – to abolish the intracellular calcium transient. The non-linear relation between APD and the rate of repolarization of the action potential is shown to underpin the common influence of APD on the slope of the restitution curve. Susceptibility to VF was found to parallel changes in APD/refractoriness, rather than restitution slope. Conclusion(s) Steady-state APD is the principal determinant of the slope of the ventricular electrical restitution curve. In the absence of post-repolarization refractoriness, factors that prolong the action potential would be expected to steepen the restitution curve. However, concomitant changes in tissue refractoriness act to reduce susceptibility to sustained VF. Dependence on steady-state APD may contribute to the failure of restitution slope to predict sudden cardiac death. PMID:28371805
Rahnama'i, Mohammad S; van Koeveringe, Gommert A; van Kerrebroeck, Philip E V; de Wachter, Stefan G G
2013-02-07
To investigate the effect of prostaglandin depletion by means of COX-inhibition on cholinergic enhanced spontaneous contractions. The urethra and bladder of 9 male guinea pigs (weight 270-300 g) were removed and placed in an organ bath with Krebs' solution. A catheter was passed through the urethra through which the intravesical pressure was measured. The muscarinic agonist arecaidine, the non-selective COX inhibitor indomethacin, and PGE2 were subsequently added to the organ bath. The initial average frequency and amplitude of spontaneous contractions in the first 2 minutes after arecaidine application were labelled F(ini) and P(ini), respectively. The steady state frequency (F(steady)) and amplitude (P(steady)) were defined as the average frequency and amplitude during the 5 minutes before the next wash out. Application of 1 μM PGE2 increased the amplitude of spontaneous contractions without affecting frequency. 10 μM of indomethacin reduced amplitude but not frequency.The addition of indomethacin did not alter F(ini) after the first application (p = 0.7665). However, after the second wash, F(ini) was decreased (p = 0.0005). F(steady), P(steady) and P(ini) were not significantly different in any of the conditions. These effects of indomethacin were reversible by PGE2 addition.. Blocking PG synthesis decreased the cholinergically stimulated autonomous contractions in the isolated bladder. This suggests that PG could modify normal cholinergically evoked response. A combination of drugs inhibiting muscarinic receptors and PG function or production can then become an interesting focus of research on a treatment for overactive bladder syndrome.
Mimicking Nonequilibrium Steady States with Time-Periodic Driving
2016-08-29
nonequilibrium steady states, and vice versa, within the theoretical framework of discrete-state stochastic thermodynamics . Nonequilibrium steady states...equilibrium [2], spontaneous relaxation towards equilibrium [3], nonequilibrium steady states generated by fixed thermodynamic forces [4], and stochastic pumps...paradigm, a system driven by fixed thermodynamic forces—such as temperature gradients or chemical potential differences— reaches a steady state in
Evaporation effect on two-dimensional wicking in porous media.
Benner, Eric M; Petsev, Dimiter N
2018-03-15
We analyze the effect of evaporation on expanding capillary flow for losses normal to the plane of a two-dimensional porous medium using the potential flow theory formulation of the Lucas-Washburn method. Evaporation induces a finite steady state liquid flux on capillary flows into fan-shaped domains which is significantly greater than the flux into media of constant cross section. We introduce the evaporation-capillary number, a new dimensionless quantity, which governs the frontal motion when multiplied by the scaled time. This governing product divides the wicking behavior into simple regimes of capillary dominated flow and evaporative steady state, as well as the intermediate regime of evaporation influenced capillary driven motion. We also show flow dimensionality and evaporation reduce the propagation rate of the wet front relative to the Lucas-Washburn law. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Bogdanoff, J. L.; Kayser, K.; Krieger, W.
1977-01-01
The paper describes convergence and response studies in the low frequency range of complex systems, particularly with low values of damping of different distributions, and reports on the modification of the relaxation procedure required under these conditions. A new method is presented for response estimation in complex lumped parameter linear systems under random or deterministic steady state excitation. The essence of the method is the use of relaxation procedures with a suitable error function to find the estimated response; natural frequencies and normal modes are not computed. For a 45 degree of freedom system, and two relaxation procedures, convergence studies and frequency response estimates were performed. The low frequency studies are considered in the framework of earlier studies (Kayser and Bogdanoff, 1975) involving the mid to high frequency range.
NASA Technical Reports Server (NTRS)
Hanson, R. K.; Presley, L. L.; Williams, E. V.
1972-01-01
The method of characteristics for a chemically reacting gas is used in the construction of the time-dependent, one-dimensional flow field resulting from the normal reflection of an incident shock wave at the end wall of a shock tube. Nonequilibrium chemical reactions are allowed behind both the incident and reflected shock waves. All the solutions are evaluated for oxygen, but the results are generally representative of any inviscid, nonconducting, and nonradiating diatomic gas. The solutions clearly show that: (1) both the incident- and reflected-shock chemical relaxation times are important in governing the time to attain steady state thermodynamic properties; and (2) adjacent to the end wall, an excess-entropy layer develops wherein the steady state values of all the thermodynamic variables except pressure differ significantly from their corresponding Rankine-Hugoniot equilibrium values.
Horn, Folkert K; Selle, Franziska; Hohberger, Bettina; Kremers, Jan
2016-02-01
To investigate whether a conventional, monitor-based multifocal visual evoked potential (mfVEP) system can be used to record steady-state mfVEP (ssmfVEP) in healthy subjects and to study the effects of temporal frequency, electrode configuration and alpha waves. Multifocal pattern reversal VEP measurements were performed at 58 dartboard fields using VEP recording equipment. The responses were measured using m-sequences with four pattern reversals per m-step. Temporal frequencies were varied between 6 and 15 Hz. Recordings were obtained from nine normal subjects with a cross-shaped, four-electrode device (two additional channels were derived). Spectral analyses were performed on the responses at all locations. The signal to noise ratio (SNR) was computed for each response using the signal amplitude at the reversal frequency and the noise at the neighbouring frequencies. Most responses in the ssmfVEP were significantly above noise. The SNR was largest for an 8.6-Hz reversal frequency. The individual alpha electroencephalogram (EEG) did not strongly influence the results. The percentage of the records in which each of the 6 channels had the largest SNR was between 10.0 and 25.2 %. Our results in normal subjects indicate that reliable mfVEP responses can be achieved by steady-state stimulation using a conventional dartboard stimulator and multi-channel electrode device. The ssmfVEP may be useful for objective visual field assessment as spectrum analysis can be used for automated evaluation of responses. The optimal reversal frequency is 8.6 Hz. Alpha waves have only a minor influence on the analysis. Future studies must include comparisons with conventional mfVEP and psychophysical visual field tests.
Rubiano, Andrés; Dyson, Kyle; Simmons, Chelsey S.
2017-01-01
While mechanical properties of the brain have been investigated thoroughly, the mechanical properties of human brain tumors rarely have been directly quantified due to the complexities of acquiring human tissue. Quantifying the mechanical properties of brain tumors is a necessary prerequisite, though, to identify appropriate materials for surgical tool testing and to define target parameters for cell biology and tissue engineering applications. Since characterization methods vary widely for soft biological and synthetic materials, here, we have developed a characterization method compatible with abnormally shaped human brain tumors, mouse tumors, animal tissue and common hydrogels, which enables direct comparison among samples. Samples were tested using a custom-built millimeter-scale indenter, and resulting force-displacement data is analyzed to quantify the steady-state modulus of each sample. We have directly quantified the quasi-static mechanical properties of human brain tumors with effective moduli ranging from 0.17–16.06 kPa for various pathologies. Of the readily available and inexpensive animal tissues tested, chicken liver (steady-state modulus 0.44 ± 0.13 kPa) has similar mechanical properties to normal human brain tissue while chicken crassus gizzard muscle (steady-state modulus 3.00 ± 0.65 kPa) has similar mechanical properties to human brain tumors. Other materials frequently used to mimic brain tissue in mechanical tests, like ballistic gel and chicken breast, were found to be significantly stiffer than both normal and diseased brain tissue. We have directly compared quasi-static properties of brain tissue, brain tumors, and common mechanical surrogates, though additional tests would be required to determine more complex constitutive models. PMID:28582392
Rodgers, Edmund W; Fu, Jing Jing; Krenz, Wulf-Dieter C; Baro, Deborah J
2011-11-09
The phases at which network neurons fire in rhythmic motor outputs are critically important for the proper generation of motor behaviors. The pyloric network in the crustacean stomatogastric ganglion generates a rhythmic motor output wherein neuronal phase relationships are remarkably invariant across individuals and throughout lifetimes. The mechanisms for maintaining these robust phase relationships over the long-term are not well described. Here we show that tonic nanomolar dopamine (DA) acts at type 1 DA receptors (D1Rs) to enable an activity-dependent mechanism that can contribute to phase maintenance in the lateral pyloric (LP) neuron. The LP displays continuous rhythmic bursting. The activity-dependent mechanism was triggered by a prolonged decrease in LP burst duration, and it generated a persistent increase in the maximal conductance (G(max)) of the LP hyperpolarization-activated current (I(h)), but only in the presence of steady-state DA. Interestingly, micromolar DA produces an LP phase advance accompanied by a decrease in LP burst duration that abolishes normal LP network function. During a 1 h application of micromolar DA, LP phase recovered over tens of minutes because, the activity-dependent mechanism enabled by steady-state DA was triggered by the micromolar DA-induced decrease in LP burst duration. Presumably, this mechanism restored normal LP network function. These data suggest steady-state DA may enable homeostatic mechanisms that maintain motor network output during protracted neuromodulation. This DA-enabled, activity-dependent mechanism to preserve phase may be broadly relevant, as diminished dopaminergic tone has recently been shown to reduce I(h) in rhythmically active neurons in the mammalian brain.
Mimicking Nonequilibrium Steady States with Time-Periodic Driving (Open Source)
2016-05-18
nonequilibrium steady states, and vice versa, within the theoretical framework of discrete-state stochastic thermodynamics . Nonequilibrium steady states...equilibrium [2], spontaneous relaxation towards equilibrium [3], nonequilibrium steady states generated by fixed thermodynamic forces [4], and stochastic pumps...paradigm, a system driven by fixed thermodynamic forces—such as temperature gradients or chemical potential differences— reaches a steady state in
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inugami, A.; Kanno, I.; Uemura, K.
1988-12-01
The radioisotope distribution following intravenous injection of 99mTc-labeled hexamethylpropyleneamine oxime (HM-PAO) in the brain was measured by single photon emission computed tomography (SPECT) and corrected for the nonlinearity caused by differences in net extraction. The linearization correction was based on a three compartment model, and it required a region of reference to normalize the SPECT image in terms of regional cerebral blood flow distribution. Two different regions of reference, the cerebellum and the whole brain, were tested. The uncorrected and corrected HM-PAO images were compared with cerebral blood flow (CBF) image measured by the C VO2 inhalation steady state methodmore » and positron emission tomography (PET). The relationship between uncorrected HM-PAO and PET-CBF showed a correlation coefficient of 0.85 but tended to saturate at high CBF values, whereas it was improved to 0.93 after the linearization correction. The whole-brain normalization worked just as well as normalization using the cerebellum. This study constitutes a validation of the linearization correction and it suggests that after linearization the HM-PAO image may be scaled to absolute CBF by employing a global hemispheric CBF value as measured by the nontomographic TTXe clearance method.« less
Measurement and Characterization of Helicopter Noise in Steady-State and Maneuvering Flight
NASA Technical Reports Server (NTRS)
Schmitz, Fredric H.; Greenwood, Eric; Sickenberger, Richard D.; Gopalan, Gaurav; Sim, Ben Well-C; Conner, David; Moralez, Ernesto; Decker, William A.
2007-01-01
A special acoustic flight test program was performed on the Bell 206B helicopter outfitted with an in-flight microphone boom/array attached to the helicopter while simultaneous acoustic measurements were made using a linear ground array of microphones arranged to be perpendicular to the flight path. Air and ground noise measurements were made in steady-state longitudinal and steady turning flight, and during selected dynamic maneuvers. Special instrumentation, including direct measurement of the helicopter s longitudinal tip-path-plane (TPP) angle, Differential Global Positioning System (DGPS) and Inertial Navigation Unit (INU) measurements, and a pursuit guidance display were used to measure important noise controlling parameters and to make the task of flying precise operating conditions and flight track easier for the pilot. Special care was also made to test only in very low winds. The resulting acoustic data is of relatively high quality and shows the value of carefully monitoring and controlling the helicopter s performance state. This paper has shown experimentally, that microphones close to the helicopter can be used to estimate the specific noise sources that radiate to the far field, if the microphones are positioned correctly relative to the noise source. Directivity patterns for steady, turning flight were also developed, for the first time, and connected to the turning performance of the helicopter. Some of the acoustic benefits of combining normally separated flight segments (i.e. an accelerated segment and a descending segment) were also demonstrated.
Competitive Dynamics on Complex Networks
Zhao, Jiuhua; Liu, Qipeng; Wang, Xiaofan
2014-01-01
We consider a dynamical network model in which two competitors have fixed and different states, and each normal agent adjusts its state according to a distributed consensus protocol. The state of each normal agent converges to a steady value which is a convex combination of the competitors' states, and is independent of the initial states of agents. This implies that the competition result is fully determined by the network structure and positions of competitors in the network. We compute an Influence Matrix (IM) in which each element characterizing the influence of an agent on another agent in the network. We use the IM to predict the bias of each normal agent and thus predict which competitor will win. Furthermore, we compare the IM criterion with seven node centrality measures to predict the winner. We find that the competitor with higher Katz Centrality in an undirected network or higher PageRank in a directed network is most likely to be the winner. These findings may shed new light on the role of network structure in competition and to what extent could competitors adjust network structure so as to win the competition. PMID:25068622
Van Dun, Bram; Wouters, Jan; Moonen, Marc
2009-07-01
Auditory steady-state responses (ASSRs) are used for hearing threshold estimation at audiometric frequencies. Hearing impaired newborns, in particular, benefit from this technique as it allows for a more precise diagnosis than traditional techniques, and a hearing aid can be better fitted at an early age. However, measurement duration of current single-channel techniques is still too long for clinical widespread use. This paper evaluates the practical performance of a multi-channel electroencephalogram (EEG) processing strategy based on a detection theory approach. A minimum electrode set is determined for ASSRs with frequencies between 80 and 110 Hz using eight-channel EEG measurements of ten normal-hearing adults. This set provides a near-optimal hearing threshold estimate for all subjects and improves response detection significantly for EEG data with numerous artifacts. Multi-channel processing does not significantly improve response detection for EEG data with few artifacts. In this case, best response detection is obtained when noise-weighted averaging is applied on single-channel data. The same test setup (eight channels, ten normal-hearing subjects) is also used to determine a minimum electrode setup for 10-Hz ASSRs. This configuration allows to record near-optimal signal-to-noise ratios for 80% of subjects.
A new rat model of portal hypertension induced by intraportal injection of microspheres
Li, Xiang-Nong; Benjamin, IS; Alexander, B
1998-01-01
AIM: To produce a new rat model of portal hypertension by intraportal injection of microspheres. METHODS: Measured aliquots of single or different-sized microspheres (15, 40, 80μm) were injected into the portal vein to block intrahepatic portal radicals. The resultant changes in arterial,portal,hepatic venous and splenic pulp pressures were monitored. The liver and lungs were excised for histological examination. RESULTS: Portal venous pressure was elevated from basal value of 0.89-1.02 kPa to a steady-state of 1.98-3.19 kPa following the sequential injections of single- or different-sized microspheres, with a markedly lowered mean arterial pressure. However, a small-dose injection of 80 μm microspheres (1.8 × 105) produced a steady-state portal venous pressure of 2.53 × 0.17 kPa, and all rats showed normal arterial pressures. In addition, numerous microspheres were found in the lungs in all experimental groups. CONCLUSION: Portal hypertension can be reproduced in rats by intraportal injection of microspheres at a small dose of 80 μm (1.8 × 105). Intrahepatic portal-systemic shunts probably exist in the normal rat liver. PMID:11819236
Dynamics of ferrofluidic flow in the Taylor-Couette system with a small aspect ratio
Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng
2017-01-01
We investigate fundamental nonlinear dynamics of ferrofluidic Taylor-Couette flow - flow confined be-tween two concentric independently rotating cylinders - consider small aspect ratio by solving the ferro-hydrodynamical equations, carrying out systematic bifurcation analysis. Without magnetic field, we find steady flow patterns, previously observed with a simple fluid, such as those containing normal one- or two vortex cells, as well as anomalous one-cell and twin-cell flow states. However, when a symmetry-breaking transverse magnetic field is present, all flow states exhibit stimulated, finite two-fold mode. Various bifurcations between steady and unsteady states can occur, corresponding to the transitions between the two-cell and one-cell states. While unsteady, axially oscillating flow states can arise, we also detect the emergence of new unsteady flow states. In particular, we uncover two new states: one contains only the azimuthally oscillating solution in the configuration of the twin-cell flow state, and an-other a rotating flow state. Topologically, these flow states are a limit cycle and a quasiperiodic solution on a two-torus, respectively. Emergence of new flow states in addition to observed ones with classical fluid, indicates that richer but potentially more controllable dynamics in ferrofluidic flows, as such flow states depend on the external magnetic field. PMID:28059129
2010-01-01
Background Left atrial (LA) size is related to cardiovascular morbidity and mortality. Cardiovascular magnetic resonance (CMR) provides high quality images of the left atrium with high temporal resolution steady state free precession (SSFP) cine sequences. We used SSFP cines to define normal ranges for LA volumes and dimensions relative to gender, age and body surface area (BSA), and examine the relative value of 2D atrial imaging techniques in patients. For definition of normal ranges of LA volume we studied 120 healthy subjects after careful exclusion of cardiovascular abnormality (60 men, 60 women; 20 subjects per age decile from 20 to 80 years). Data were generated from 3-dimensional modeling, including tracking of the atrioventricular ring motion and time-volume curves analysis. For definition of the best 2D images-derived predictors of LA enlargement, we studied 120 patients (60 men, 60 women; age range 20 to 80 years) with a clinical indication for CMR. Results In the healthy subjects, age was associated with LA 4-chamber transverse and 3-chamber anteroposterior diameters, but not with LA volume. Gender was an independent predictor of most absolute LA dimensions and volume, but following normalization to BSA, some associations became non-significant. CMR normal ranges were modeled and are tabled for clinical use with normalization, where appropriate, for BSA and gender and display of parameter variation with age. The best 2D predictors of LA volume were the 2-chamber area and 3-chamber area (both r = 0.90, p < 0.001). Conclusions These CMR data show that LA dimensions and volume in healthy, individuals vary significantly by BSA, with lesser effects of age and gender. PMID:21070636
Pseudo Steady-State Free Precession for MR-Fingerprinting.
Assländer, Jakob; Glaser, Steffen J; Hennig, Jürgen
2017-03-01
This article discusses the signal behavior in the case the flip angle in steady-state free precession sequences is continuously varied as suggested for MR-fingerprinting sequences. Flip angle variations prevent the establishment of a steady state and introduce instabilities regarding to magnetic field inhomogeneities and intravoxel dephasing. We show how a pseudo steady state can be achieved, which restores the spin echo nature of steady-state free precession. Based on geometrical considerations, relationships between the flip angle, repetition and echo time are derived that suffice to the establishment of a pseudo steady state. The theory is tested with Bloch simulations as well as phantom and in vivo experiments. A typical steady-state free precession passband can be restored with the proposed conditions. The stability of the pseudo steady state is demonstrated by comparing the evolution of the signal of a single isochromat to one resulting from a spin ensemble. As confirmed by experiments, magnetization in a pseudo steady state can be described with fewer degrees of freedom compared to the original fingerprinting and the pseudo steady state results in more reliable parameter maps. The proposed conditions restore the spin-echo-like signal behavior typical for steady-state free precession in fingerprinting sequences, making this approach more robust to B 0 variations. Magn Reson Med 77:1151-1161, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Yongky, Andrew; Lee, Jongchan; Le, Tung; Mulukutla, Bhanu Chandra; Daoutidis, Prodromos; Hu, Wei-Shou
2015-07-01
Continuous culture for the production of biopharmaceutical proteins offers the possibility of steady state operations and thus more consistent product quality and increased productivity. Under some conditions, multiplicity of steady states has been observed in continuous cultures of mammalian cells, wherein with the same dilution rate and feed nutrient composition, steady states with very different cell and product concentrations may be reached. At those different steady states, cells may exhibit a high glycolysis flux with high lactate production and low cell concentration, or a low glycolysis flux with low lactate and high cell concentration. These different steady states, with different cell concentration, also have different productivity. Developing a mechanistic understanding of the occurrence of steady state multiplicity and devising a strategy to steer the culture toward the desired steady state is critical. We establish a multi-scale kinetic model that integrates a mechanistic intracellular metabolic model and cell growth model in a continuous bioreactor. We show that steady state multiplicity exists in a range of dilution rate in continuous culture as a result of the bistable behavior in glycolysis. The insights from the model were used to devise strategies to guide the culture to the desired steady state in the multiple steady state region. The model provides a guideline principle in the design of continuous culture processes of mammalian cells. © 2015 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Wasynczuk, O.; Krause, P. C.; Biess, J. J.; Kapustka, R.
1990-01-01
A detailed computer simulation was used to illustrate the steady-state and dynamic operating characteristics of a 20-kHz resonant spacecraft power system. The simulated system consists of a parallel-connected set of DC-inductor resonant inverters (drivers), a 440-V cable, a node transformer, a 220-V cable, and a transformer-rectifier-filter (TRF) AC-to-DC receiver load. Also included in the system are a 1-kW 0.8-pf RL load and a double-LC filter connected at the receiving end of the 20-kHz AC system. The detailed computer simulation was used to illustrate the normal steady-state operating characteristics and the dynamic system performance following, for example, TRF startup. It is shown that without any filtering the given system exhibits harmonic resonances due to an interaction between the switching of the source and/or load converters and the AC system. However, the double-LC filter at the receiving-end of the AC system and harmonic traps connected in series with each of the drivers significantly reduce the harmonic distortion of the 20-kHz bus voltage. Significant additional improvement in the waveform quality can be achieved by including a double-LC filter with each driver.
Stability of Elevated-qmin Steady-State Scenarios on DIII-D
NASA Astrophysics Data System (ADS)
Holcomb, C. T.; Victor, B.; Ferron, J. R.; Luce, T. C.; Schuster, E.
2016-10-01
Limits to high performance steady-state operation with qmin >1.4 and βN <= 3.5 are identified and explained. Various βN and q-profile histories were produced while testing feedback control of these profiles. Ten pulses had no core MHD at βN=3.4-3.5, with qmin=1.4-1.8, and q95=5-5.8. These have predicted ideal-wall kink βN limits between 4 and 5. One pulse had an n=1 tearing mode (TM) at βN=3.5 with no clear trigger. Five pulses developed n=1 TMs when βN=2, qmin=2, and q95=4.7. Stability calculations for these latter cases will be shown. In seven other shots, additional NBI power from sources with more normal injection was used, and these had off-axis fishbone (OAFB) modes at βN=3.5. These sources produce more large-radius trapped ions whose precession can drive OAFB. Preliminary analysis suggests a threshold power or voltage exists. In some cases OAFB appear to trigger n=1 TMs. These studies seek to clarify the operational limits of a steady-state scenario for next step devices. Supported by US DOE under DE-AC52-07NA27344, DE-FC02-04ER54698, DE-FG02-09ER55064.
High-beta, steady-state hybrid scenario on DIII-D
Petty, C. C.; Kinsey, J. E.; Holcomb, C. T.; ...
2015-12-17
Here, the potential of the hybrid scenario (first developed as an advanced inductive scenario for high fluence) as a regime for high-beta, steady-state plasmas is demonstrated on the DIII-D tokamak. These experiments show that the beneficial characteristics of hybrids, namely safety factor ≥1 with low central magnetic shear, high stability limits and excellent confinement, are maintained when strong central current drive (electron cyclotron and neutral beam) is applied to increase the calculated non-inductive fraction to ≈100% (≈50% bootstrap current). The best discharges achieve normalized beta of 3.4, IPB98(y,2) confinement factor of 1.4, surface loop voltage of 0.01 V, and nearlymore » equal electron and ion temperatures at low collisionality. A zero-dimensional physics model shows that steady-state hybrid operation with Q fus ~ 5 is feasible in FDF and ITER. The advantage of the hybrid scenario as an Advanced Tokamak regime is that the external current drive can be deposited near the plasma axis where the efficiency is high; additionally, good alignment between the current drive and plasma current profiles is not necessary as the poloidal magnetic flux pumping self-organizes the current density profile in hybrids with an m/n=3/2 tearing mode.« less
Pang, Zunyu; Li, Ming; Yu, Dongshuai; Yan, Zhang; Liu, Xinyi; Ji, Xinglai; Yang, Yang; Hu, Jiansheng; Luo, Kaijun
2015-09-01
Insect cellular immune responses include encapsulation, nodule formation, and phagocytosis. Hemichannels and gap junctions are involved in these cellular actions. Innexins (Inxs: analogous to the vertebrate connexins) form hemichannels and gap junctions, but the molecular mechanisms underlying their biology is still unclear. In this article, we reported a steady-state level of Inxs (SpliInxs) in hemocytes of Spodoptera litura, which formed nonfunctional hemichannels on the cell surface to maintain normal metabolism. We also reported that two innnexins (SpliInx2 and SpliInx3) were expressed significantly higher in hemocytes compared to other tissues, suggesting that they play important roles in hemocytes. Amino acid analysis found that two cysteine residues in two extracellular loops provided the capability for SpliInx2 and SpliInx3 hemichannels to dock into gap junctions. Western blotting demonstrated that both extracellular and intracellular loops of SpliInx3 and the extracellular loops of SpliInx2 might undergo posttranslational modification during the formation of a steady-state hemichannel. During hemichannel formation, SpliInx2 presented as one isoform, while SpliInx3 presented as three isoforms. These results provide fundamental knowledge for further study of how steady-state levels of SpliInxs are dynamically adjusted to perform cellular immune responses under immune challenge. © 2015 Wiley Periodicals, Inc.
Analysis of rig test data for an axial/centrifugal compressor in the 12 kg/sec
NASA Technical Reports Server (NTRS)
Owen, A. K.
1994-01-01
Extensive testing was done on a T55-L-712 turboshaft engine compressor in a compressor test rig at TEXTRON/Lycoming. These rig tests will be followed by a series of engine tests to occur at the NASA Lewis Research Center beginning in the last quarter of 1993. The goals of the rig testing were: (1) map the steady state compressor operation from 20 percent to 100 percent design speed, (2) quantify the effects of compressor bleed on the operation of the compressor, and (3) explore and measure the operation of the compressor in the flow ranges 'beyond' the normal compressor stall line. Instrumentation consisted of 497 steady state pressure sensors, 153 temperature sensors and 34 high response transducers for transient analysis in the pre- and post-stall operating regime. These measurements allow for generation of detailed stage characteristics as well as overall mapping. Transient data is being analyzed for the existence of modal disturbances at the front face of the compression system ('stall precursors'). This paper presents some preliminary results of the ongoing analysis and a description of the current and future program plans. It will primarily address the unsteady events at the front face of the compression system that occur as the system transitions from steady state to unsteady (stall/surge) operation.
Time effect of erosion by solid particle impingement on ductile materials
NASA Technical Reports Server (NTRS)
Rao, P. V.; Buckley, D. H.
1983-01-01
Erosion and morphological studies of several metals and alloys eroded by normal impingement jets of spherical glass beads and angular crushed-glass erodent particles were conducted. Erosion morphology (the width, depth, and width-depth ratio of the pit) was studied in order to fully investigate the effect of time on erosion rate. The eroded surfaces were studied with a scanning electron microscope, and surface profiles were measured with a profilometer. A large amount of experimental data reported in the literature was also analyzed in order to understand the effect of variables such as the type of device, the erodent particle size and shape, the impact velocity, and the abrasive charge on erosion-rate-versus-time curves. In the present experiments the pit-width-versus-time or pit-depth-versus-time curves were similar to erosion-versus-time curves for glass-bead impingement. The pit-depth-rate-versus-time curves were similar to erosion-rate-versus-time curves for crushed-glass impingement. Analysis of experimental data with two forms of glass resulted in four types of erosion-rate-versus-time curves: (1) incubation, acceleration, and steady-state periods (type I), (2) incubation, acceleration, deceleration, and steady-state periods (type III), (3) incubation, acceleration, peak rate, and deceleration periods (type IV), and (4) incubation, acceleration, steady-state, and deceleration periods (type V).
Al Najjar, Salwa; Adam, Soheir; Ahmed, Nessar; Qari, Mohamed
2017-01-01
Sickle cell disease (SCD) is an autosomal recessive inherited hemoglobinopathy, characterized by chronic hemolysis and recurrent vaso-occlusive crisis (VOC). This study investigates changes in leucocyte subsets and the relationship between cell adhesion molecule expression and disease manifestations in patients during steady state and acute VOC. We compared soluble E-selectin and P-selectin levels in 84 SCD patients, in steady state and during VOC to 84 healthy controls. Using immunophenotyping, we also compared lymphocyte subsets in these three groups. Further, we compared E-selectin and P-selectin levels in patients of Saudi ethnicity to non-Saudi patients, in all three groups. Lymphocyte subsets showed high percentages of total T lymphocytes, T helper and suppressor lymphocytes, B lymphocytes as well as NK cells in patients with SCD during steady state, while B lymphocytes and NK cells were significantly higher during acute VOC crisis. High levels of both soluble E-selectin (sE-selectin) and soluble P-selectin (sP-selectin) markers were demonstrated in the serum of patients with SCD during both steady state and acute VOC. Levels of selectins were significantly higher in acute VOC. The immunophenotypic expression of L-selectin, on leucocytes, was high in SCD both during steady state and during acute VOC in comparison to normal control subjects. There was no significant difference in all three study groups between Saudi and non-Saudi patients. These findings suggest that patients with SCD have increased expression of adhesion molecules: E-selectin and P-selectin, which play an important role in the pathogenesis of VOC. Despite the distinct phenotype of Saudi patients with SCD, there was no significant difference in levels of soluble E-selectin and soluble P-selectin between Saudi and non-Saudi patients in all three groups. While sickle cell disease is a well-recognized state of chronic inflammation, the role of specific adhesion molecules is steadily unraveling. Studies are underway to investigate the potential role of selectin antagonists, for prevention and reversal of acute vascular occlusions in SCD patients.
Yuste, S Bravo; Borrego, R; Abad, E
2010-02-01
We consider various anomalous d -dimensional diffusion problems in the presence of an absorbing boundary with radial symmetry. The motion of particles is described by a fractional diffusion equation. Their mean-square displacement is given by r(2) proportional, variant t(gamma)(0
Heidbrink, William W.; Ferron, John R.; Holcomb, Christopher T.; ...
2014-08-21
Here, analysis of neutron and fast-ion D α data from the DIII-D tokamak shows that Alfvén eigenmode activity degrades fast-ion confinement in many high β N, high q min, steady-state scenario discharges. (β N is the normalized plasma pressure and q min is the minimum value of the plasma safety factor.) Fast-ion diagnostics that are sensitive to the co-passing population exhibit the largest reduction relative to classical predictions. The increased fast-ion transport in discharges with strong AE activity accounts for the previously observed reduction in global confinement with increasing q min; however, not all high q min discharges show appreciablemore » degradation. Two relatively simple empirical quantities provide convenient monitors of these effects: (1) an 'AE amplitude' signal based on interferometer measurements and (2) the ratio of the neutron rate to a zero-dimensional classical prediction.« less
Perceived noisiness under anechoic, semi-reverberant and earphone listening conditions
NASA Technical Reports Server (NTRS)
Clarke, F. R.; Kryter, K. D.
1972-01-01
Magnitude estimates by each of 31 listeners were obtained for a variety of noise sources under three methods of stimuli presentation: loudspeaker presentation in an anechoic chamber, loudspeaker presentation in a normal semi-reverberant room, and earphone presentation. Comparability of ratings obtained in these environments were evaluated with respect to predictability of ratings from physical measures, reliability of ratings, and to the scale values assigned to various noise stimuli. Acoustic environment was found to have little effect upon physical predictive measures and ratings of perceived noisiness were little affected by the acoustic environment in which they were obtained. The need for further study of possible differing interactions between judged noisiness of steady state sound and the methods of magnitude estimation and paired comparisons is indicated by the finding that in these tests the subjects, though instructed otherwise, apparently judged the maximum rather than the effective magnitude of steady-state noises.
Anisotropic magnetotail equilibrium and convection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hau, L.N.
This paper reports on self-consistent two-dimensional equilibria with anisotropic plasma pressure for the Earth's magnetotail. These configurations are obtained by numerically solving the generalized Grad-Shafranov equation, describing anisotropic plasmas with p[parallel] [ne] p[perpendicular], including the Earth's dipolar field. Consistency between these new equilibria and the assumption of steady-state, sunward convection, described by the double-adiabatic laws, is examined. As for the case of isotropic pressure [Erickson and Wolf, 1980], there exists a discrepancy between typical quite-time magnetic field models and the assumption of steady-state double-adiabatic lossless plasma sheet convection. However, unlike that case, this inconsistency cannot be removed by the presencemore » of a weak equatorial normal magnetic field strength in the near tail region: magnetic field configurations of this type produce unreasonably large pressure anisotropies, p[parallel] > p[perpendicular], in the plasma sheet. 16 refs., 5 figs.« less
Flexas, Jaume; Escalona, José Mariano; Evain, Sebastian; Gulías, Javier; Moya, Ismaël; Osmond, Charles Barry; Medrano, Hipólito
2002-02-01
Water stress experiments were performed with grapevines (Vitis vinifera L.) and other C3 plants in the field, in potted plants in the laboratory, and with detached leaves. It was found that, in all cases, the ratio of steady state chlorophyll fluorescence (Fs) normalized to dark-adapted intrinsic fluorescence (Fo) inversely correlated with non-photochemical quenching (NPQ). Also, at high irradiance, the ratio Fs/Fo was positively correlated with CO2 assimilation in air, with electron transport rate calculated from fluorescence, and with stomatal conductance, but no clear correlation was observed with qP. The significance of these relationships is discussed. The ratio Fs/Fo, measured with a portable instrument (PAM-2000) or with a remote sensing FIPAM system, provides a good method for the early detection of water stress, and may become a useful guide to irrigation requirements.
Observations on autoregulation in skeletal muscle - The effects of arterial hypoxia
NASA Technical Reports Server (NTRS)
Pohost, G. M.; Newell, J. B.; Hamlin, N. P.; Powell, W. J., Jr.
1976-01-01
An experimental study was carried out on 25 mongrel dogs of both sexes to re-evaluate autoregulation of blood flow in skeletal muscle, with particular reference to the steady-state resistance and transient response in muscle blood flow following a square wave increase in arterial perfusion pressure and to the examination of the effect of arterial hypoxia on this transient response. The data emphasize the importance of considering the transient changes in blood flow in evaluating the autoregulatory response in skeletal muscle. For quantification purposes, a parameter termed alpha is introduced which represents the ratio between the increase in blood flow from baseline to peak and the return of blood flow from the peak to the new steady-state. Such a quantification of the transient response in flow with step increases in perfusion pressure demonstrates substantial transient responses under conditions of normal oxygenation and progressive attenuation of flow transients with increasing hypoxia.
Interfacial exciplex formation in bilayers of conjugated polymers
NASA Astrophysics Data System (ADS)
Nobuyasu, R. S.; Araujo, K. A. S.; Cury, L. A.; Jarrosson, T.; Serein-Spirau, F.; Lère-Porte, J.-P.; Dias, F. B.; Monkman, A. P.
2013-10-01
The donor-acceptor interactions in sequential bilayer and blend films are investigated. Steady-state and time-resolved photoluminescence (PL) were measured to characterize the samples at different geometries of photoluminescence collection. At standard excitation, with the laser incidence at 45° of the normal direction of the sample surface, a band related to the aggregate states of donor molecules appears for both blend and bilayer at around 540 nm. For the PL spectra acquired from the edge of the bilayer, with the laser incidence made at normal direction of the sample surface (90° geometry), a new featureless band emission, red-shifted from donor and acceptor emission regions was observed and assigned as the emission from interfacial exciplex states. The conformational complexity coming from donor/acceptor interactions at the heterojunction interface of the bilayer is at the origin of this interfacial exciplex emission.
On the nature of liquid junction and membrane potentials.
Perram, John W; Stiles, Peter J
2006-09-28
Whenever a spatially inhomogeneous electrolyte, composed of ions with different mobilities, is allowed to diffuse, charge separation and an electric potential difference is created. Such potential differences across very thin membranes (e.g. biomembranes) are often interpreted using the steady state Goldman equation, which is usually derived by assuming a spatially constant electric field. Through the fundamental Poisson equation of electrostatics, this implies the absence of free charge density that must provide the source of any such field. A similarly paradoxical situation is encountered for thick membranes (e.g. in ion-selective electrodes) for which the diffusion potential is normally interpreted using the Henderson equation. Standard derivations of the Henderson equation appeal to local electroneutrality, which is also incompatible with sources of electric fields, as these require separated charges. We analyse self-consistent solutions of the Nernst-Planck-Poisson equations for a 1 : 1-univalent electrolyte to show that the Goldman and Henderson steady-state membrane potentials are artefacts of extraneous charges created in the reservoirs of electrolyte solution on either side of the membrane, due to the unphysical nature of the usual (Dirichlet) boundary conditions assumed to apply at the membrane-electrolyte interfaces. We also show, with the aid of numerical simulations, that a transient electric potential difference develops in any confined, but initially non-uniform, electrolyte solution. This potential difference ultimately decays to zero in the real steady state of the electrolyte, which corresponds to thermodynamic equilibrium. We explain the surprising fact that such transient potential differences are well described by the Henderson equation by using a computer algebra system to extend previous steady-state singular perturbation theories to the time-dependent case. Our work therefore accounts for the success of the Henderson equation in analysing experimental liquid-junction potentials.
Endogenous Thrombin Potential Changes during the First Cycle of Oral Contraceptive Use
Westhoff, Carolyn L.; Pike, Malcolm C.; Cremers, Serge; Eisenberger, Andrew; Thomassen, Stella; Rosing, Jan
2017-01-01
Objectives Venous thromboembolism (VTE) risk increases within months of combination oral contraceptive (COC) initiation. Because elevated endogenous thrombin potential (ETP) has been found in several studies to be a VTE risk factor, we evaluated the extent of ETP changes during the initial cycle of an ethinyl estradiol (EE) and levonorgestrel (LNG) COC. We also assessed the relationship between ETP changes and systemic EE and LNG concentrations. Study Design Participants provided multiple blood samples during a first 21-day cycle of a 30 µg EE/150 µg LNG COC and after a further 7 days without an active COC. Thrombin generation measured with and without addition of activated protein C (APC) yielded ETP+APC and ETP−APC and the normalized APC sensitivity ratio (nAPCsr). EE and LNG pharmacokinetic analyses were conducted over 24 hours after the first COC tablet and again at steady state. Results Thrombin generation was determined in 16 of the 17 women who completed the study. Mean ETP−APC increased steadily to 21% above baseline at 24 hours after the 6th COC tablet (COC624; p < 0.001) and to 28% above baseline at steady state (COC21; p < 0.001). Mean ETP+APC increased considerably more – by 54% at COC624 and by 79% at steady state. Mean nAPCsr increased by 28% at COC624 and by 41% at steady state. Higher concentrations of EE or LNG were not correlated with greater increases in ETP. Conclusions ETP increases during the first COC cycle were substantial. Implications The early increases in ETP may provide biological support for the rapid increase in VTE risk during initial COC use. The lack of association between this clotting system perturbation and the systemic EE concentration is surprising and deserves further study. PMID:28088496
Li, Xiaogai; von Holst, Hans; Kleiven, Svein
2013-01-01
A 3D finite element (FE) model has been developed to study the mean intracranial pressure (ICP) response during constant-rate infusion using linear poroelasticity. Due to the uncertainties in the poroelastic constants for brain tissue, the influence of each of the main parameters on the transient ICP infusion curve was studied. As a prerequisite for transient analysis, steady-state simulations were performed first. The simulated steady-state pressure distribution in the brain tissue for a normal cerebrospinal fluid (CSF) circulation system showed good correlation with experiments from the literature. Furthermore, steady-state ICP closely followed the infusion experiments at different infusion rates. The verified steady-state models then served as a baseline for the subsequent transient models. For transient analysis, the simulated ICP shows a similar tendency to that found in the experiments, however, different values of the poroelastic constants have a significant effect on the infusion curve. The influence of the main poroelastic parameters including the Biot coefficient α, Skempton coefficient B, drained Young's modulus E, Poisson's ratio ν, permeability κ, CSF absorption conductance C(b) and external venous pressure p(b) was studied to investigate the influence on the pressure response. It was found that the value of the specific storage term S(ε) is the dominant factor that influences the infusion curve, and the drained Young's modulus E was identified as the dominant parameter second to S(ε). Based on the simulated infusion curves from the FE model, artificial neural network (ANN) was used to find an optimised parameter set that best fit the experimental curve. The infusion curves from both the FE simulation and using ANN confirmed the limitation of linear poroelasticity in modelling the transient constant-rate infusion.
NASA Astrophysics Data System (ADS)
Van Zandt, James R.
2012-05-01
Steady-state performance of a tracking filter is traditionally evaluated immediately after a track update. However, there is commonly a further delay (e.g., processing and communications latency) before the tracks can actually be used. We analyze the accuracy of extrapolated target tracks for four tracking filters: Kalman filter with the Singer maneuver model and worst-case correlation time, with piecewise constant white acceleration, and with continuous white acceleration, and the reduced state filter proposed by Mookerjee and Reifler.1, 2 Performance evaluation of a tracking filter is significantly simplified by appropriate normalization. For the Kalman filter with the Singer maneuver model, the steady-state RMS error immediately after an update depends on only two dimensionless parameters.3 By assuming a worst case value of target acceleration correlation time, we reduce this to a single parameter without significantly changing the filter performance (within a few percent for air tracking).4 With this simplification, we find for all four filters that the RMS errors for the extrapolated state are functions of only two dimensionless parameters. We provide simple analytic approximations in each case.
van Schie, H T; Bakker, E M; Jonker, A M; van Weeren, P R
2001-07-01
To evaluate effectiveness of computerized discrimination between structure-related and non-structure-related echoes in ultrasonographic images for quantitative evaluation of tendon structural integrity in horses. 4 superficial digital flexor tendons (2 damaged tendons, 2 normal tendons). Transverse ultrasonographic images that precisely matched histologic sections were obtained in fixed steps along the long axis of each tendon. Distribution, intensity, and delineation of structure-related echoes, quantitatively expressed as the correlation ratio and steadiness ratio , were compared with histologic findings in tissue that was normal or had necrosis, early granulation, late granulation, early fibrosis, or inferior repair. In normal tendon, the even distribution of structure-related echoes with high intensity and sharp delineation yielded high correlation ratio and steadiness ratio. In areas of necrosis, collapsed endotendon septa yielded solid but blurred structure-related echoes (high correlation ration and low steadiness ratio). In early granulation tissue, complete lack of organization caused zero values for both ratios. In late granulation tissue, reorganization and swollen endotendon septa yielded poorly delineated structure-related echoes (high correlation ratio, low steadiness ratio). In early fibrosis, rearrangement of bundles resulted in normal correlation ration and slightly low steadiness ratio. In inferior repair, the almost complete lack of structural reorganization resulted in heterogeneous poorly delineated low-intensity echoes (low correlation ratio and steadiness ratio). The combination of correlation ratio and steadiness ratio accurately reflects histopathologic findings, making computerized correlation of ultrasonographic images an efficient tool for quantitative evaluation of tendon structural integrity.
Neu, C P; Hull, M L
2003-04-01
Recent magnetic resonance imaging (MRI) techniques have shown potential for measuring non-uniform deformations throughout the volume (i.e. three-dimensional (3D) deformations) in small orthopedic tissues such as articular cartilage. However, to analyze cartilage deformation using MRI techniques, a system is required which can construct images from multiple acquisitions of MRI signals from the cartilage in both the underformed and deformed states. The objectives of the work reported in this article were to 1) design an apparatus that could apply highly repeatable cyclic compressive loads of 400 N and operate in the bore of an MRI scanner, 2) demonstrate that the apparatus and MRI scanner can be successfully integrated to observe 3D deformations in a phantom material, 3) use the apparatus to determine the load cycle necessary to achieve a steady-state deformation response in normal bovine articular cartilage samples using a flat-surfaced and nonporous indentor in unconfined compression. Composed of electronic and pneumatic components, the apparatus regulated pressure to a double-acting pneumatic cylinder so that (1) load-controlled compression cycles were applied to cartilage samples immersed in a saline bath, (2) loading and recovery periods within a cycle varied in time duration, and (3) load magnitude varied so that the stress applied to cartilage samples was within typical physiological ranges. In addition the apparatus allowed gating for MR image acquisition, and operation within the bore of an MRI scanner without creating image artifacts. The apparatus demonstrated high repeatability in load application with a standard deviation of 1.8% of the mean 400 N load applied. When the apparatus was integrated with an MRI scanner programmed with appropriate pulse sequences, images of a phantom material in both the underformed and deformed states were constructed by assembling data acquired through multiple signal acquisitions. Additionally, the number of cycles to reach a steady-state response in normal bovine articular cartilage was 49 for a total cycle duration of 5 seconds, but decreased to 33 and 27 for increasing total cycle durations of 10 and 15 seconds, respectively. Once the steady-state response was achieved, 95% of all displacements were within +/- 7.42 microns of the mean displacement, indicating that the displacement response to the cyclic loads was highly repeatable. With this performance, the MRI-loading apparatus system meets the requirements to create images of articular cartilage from which 3D deformation can be determined.
Exploring variations of earthquake moment on patches with heterogeneous strength
NASA Astrophysics Data System (ADS)
Lin, Y. Y.; Lapusta, N.
2016-12-01
Finite-fault inversions show that earthquake slip is typically non-uniform over the ruptured region, likely due to heterogeneity of the earthquake source. Observations also show that events from the same fault area can have the same source duration but different magnitude ranging from 0.0 to 2.0 (Lin et al., GJI, 2016). Strong heterogeneity in strength over a patch could provide a potential explanation of such behavior, with the event duration controlled by the size of the patch and event magnitude determined by how much of the patch area has been ruptured. To explore this possibility, we numerically simulate earthquake sequences on a rate-and-state fault, with a seismogenic patch governed by steady-state velocity-weakening friction surrounded by a steady-state velocity-strengthening region. The seismogenic patch contains strong variations in strength due to variable normal stress. Our long-term simulations of slip in this model indeed generate sequences of earthquakes of various magnitudes. In some seismic events, dynamic rupture cannot overcome areas with higher normal strength, and smaller events result. When the higher-strength areas are loaded by previous slip and rupture, larger events result, as expected. Our current work is directed towards exploring a range of such models, determining the variability in the seismic moment that they can produce, and determining the observable properties of the resulting events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rest, J.; Zawadzki, S.A.
The primary physical/chemical models that form the basis of the FASTGRASS mechanistic computer model for calculating fission-product release from nuclear fuel are described. Calculated results are compared with test data and the major mechanisms affecting the transport of fission products during steady-state and accident conditions are identified.
Experimental Rock-on-Rock Abrasive Wear Under Aqueous Conditions: its Role in Subglacial Abrasion
NASA Astrophysics Data System (ADS)
Rutter, E. H.; Lee, A. G.
2003-12-01
We have determined experimentally the rate of abrasive wear of rock on rock for a range of rock types as a function of normal stress and shear displacement. Unlike abrasive wear in fault zones, where wear products accumulate as a thickening gouge zone, in our experiments wear particles were removed by flowing water. The experiments are thus directly pertinent to one of the most important processes in subglacial erosion, and to some extent in river incision. Wear was produced between rotating discs machined from rock samples and measured from the progressive approach of the disc axes towards each other under various levels of normal load. Shear displacements of several km were produced. Optical and scanning electron microscopy were used to study the worn rock surfaces, and particle size distributions in wear products were characterized using a laser particle size analyzer. Rock types studied were sandstones of various porosities and cement characteristics, schists and a granite. In all cases abrasion rate decreased logarithmically with displacement by up to 2 orders of magnitude until a steady state was approached, but only after at least 1 km displacement. The more porous, less-well cemented rocks wore fastest. Amount of abrasion could be characterized quantitatively using an exponentially decaying plus a steady-state term. Wear rate increased non-linearly with normal contact stress, apparently to an asymptote defined by the unconfined compressive strength. Microstructural study showed that the well-cemented and/or lowest porosity rocks wore by progressive abrasion of grains without plucking, whereas whole grains were plucked out of weakly-cemented and/or more porous rocks. This difference in behavior was reflected in wear-product particle size distributions. Where whole-grain plucking was possible, wear products were dominated by particles of the original grain size rather than finer rock flour. Comparison of our results to glacier basal abrasive wear estimated from suspended sediment load (Findeln Glacier, Switzerland) showed the steady-state experimental data seriously to underestimate the natural wear rate. This suggests continuous resetting of the subglacial surface occurs, so that wear is continuously in the 'running-in' stage.
Quasi-steady state conditions in heterogeneous aquifers during pumping tests
NASA Astrophysics Data System (ADS)
Zha, Yuanyuan; Yeh, Tian-Chyi J.; Shi, Liangsheng; Huang, Shao-Yang; Wang, Wenke; Wen, Jet-Chau
2017-08-01
Classical Thiem's well hydraulic theory, other aquifer test analyses, and flow modeling efforts often assume the existence of ;quasi-steady; state conditions. That is, while drawdowns due to pumping continue to grow, the hydraulic gradient in the vicinity of the pumping well does not change significantly. These conditions have built upon two-dimensional and equivalent homogeneous conceptual models, but few field data have been available to affirm the existence of these conditions. Moreover, effects of heterogeneity and three-dimensional flow on this quasi-steady state concept have not been thoroughly investigated and discussed before. In this study, we first present a quantitative definition of quasi-steady state (or steady-shape conditions) and steady state conditions based on the analytical solution of two- or three-dimensional flow induced by pumping in unbounded, homogeneous aquifers. Afterward, we use a stochastic analysis to investigate the influence of heterogeneity on the quasi-steady state concept in heterogeneous aquifers. The results of the analysis indicate that the time to reach an approximate quasi-steady state in a heterogeneous aquifer could be quite different from that estimated based on a homogeneous model. We find that heterogeneity of aquifer properties, especially hydraulic conductivity, impedes the development of the quasi-steady state condition before the flow reaching steady state. Finally, 280 drawdown-time data from the hydraulic tomographic survey conducted at a field site corroborate our finding that the quasi-steady state condition likely would not take place in heterogeneous aquifers unless pumping tests last a long period. Research significance (1) Approximate quasi-steady and steady state conditions are defined for two- or three-dimensional flow induced by pumping in unbounded, equivalent homogeneous aquifers. (2) Analysis demonstrates effects of boundary condition, well screen interval, and heterogeneity of parameters on the existence of the quasi-steady, and validity of approximate quasi-steady concept. (3) Temporal evaluation of information content about heterogeneity in head observations are analyzed in heterogeneous aquifer. (4) 280 observed drawdown-time data corroborate the stochastic analysis that quasi-steady is difficult to reach in highly heterogeneous aquifers.
Enhancing emotional-based target prediction
NASA Astrophysics Data System (ADS)
Gosnell, Michael; Woodley, Robert
2008-04-01
This work extends existing agent-based target movement prediction to include key ideas of behavioral inertia, steady states, and catastrophic change from existing psychological, sociological, and mathematical work. Existing target prediction work inherently assumes a single steady state for target behavior, and attempts to classify behavior based on a single emotional state set. The enhanced, emotional-based target prediction maintains up to three distinct steady states, or typical behaviors, based on a target's operating conditions and observed behaviors. Each steady state has an associated behavioral inertia, similar to the standard deviation of behaviors within that state. The enhanced prediction framework also allows steady state transitions through catastrophic change and individual steady states could be used in an offline analysis with additional modeling efforts to better predict anticipated target reactions.
Steady- and non-steady-state carbonate-silicate controls on atmospheric CO2
Sundquist, E.T.
1991-01-01
Two contrasting hypotheses have recently been proposed for the past long-term relation between atmospheric CO2 and the carbonate-silicate geochemical cycle. One approach (Berner, 1990) suggests that CO2 levels have varied in a manner that has maintained chemical weathering and carbonate sedimentation at a steady state with respect to tectonically controlled decarbonation reactions. A second approach (Raymo et al., 1988), applied specificlly to the late Cenozoic, suggests a decrease in CO2 caused by an uplift-induced increase in chemical weathering, without regard to the rate of decarbonation. According to the steady-state (first) hypothesis, increased weathering and carbonate sedimentation are generally associated with increasing atmospheric CO2, whereas the uplift (second) hypothesis implies decreasing CO2 under the same conditions. An ocean-atmosphere-sediment model has been used to assess the response of atmospheric CO2 and carbonate sedimentation to global perturbations in chemical weathering and decarbonation reactions. Although this assessment is theoretical and cannot yet be related to the geologic record, the model simulations compare steady-state and non-steady-state carbonate-silicate cycle response. The e-fold response time of the 'CO2-weathering' feedback mechanism is between 300 and 400 ka. The response of carbonate sedimentation is much more rapid. These response times provide a measure of the strength of steady-state assumptions, and imply that certain systematic relations are sustained throughout steady-state and non-steady-state scenarios for the carbonate-silicate cycle. The simulations suggest that feedbacks can maintain the system near a steady state, but that non-steady-state effects may contribute to long-term trends. The steady-state and uplift hypotheses are not necessarily incompatible over time scales of a few million years. ?? 1991.
Influence of insulin on beta-endorphin plasma levels in obese and normal weight subjects.
Brunani, A; Pincelli, A I; Pasqualinotto, L; Tibaldi, A; Baldi, G; Scacchi, M; Fatti, L M; Cavagnini, F
1996-08-01
To establish the possible role of hyperinsulinemia in the elevation of plasma beta-endorphin (beta-EP) levels observed in obese patients after an oral glucose load. Oral glucose tolerance test (OGTT) and euglycemic-hyperinsulinemic clamp. Two groups of six (age: 22-39 y, BMI: 30-48 kg/m2) and eight obese men (age: 18-37 y, BMI: 35-45 kg/m2), respectively, and five normal weight healthy men (age: 22-30 y, BMI 22-23 kg/m2). Glucose, insulin and beta-EP levels at baseline and every 30 min until 180 min during the OGTT; glucose, insulin, C-peptide and beta-EP concentrations at baseline and in steady state condition (i.e. during the last 30 min of insulin infusion) in the euglycemic-hyperinsulinemic clamp studies. In the six obese patients undergoing the OGTT a significant elevation of beta-EP plasma levels was observed between 60 and 90 min after glucose ingestion. In the clamp studies no significant differences in beta-EP plasma levels, blood glucose and serum insulin were observed between obese and normal weight subjects both at baseline and at steady state. A markedly diminished insulin sensitivity along with a lower inhibition of C-peptide during insulin infusion was observed in obese patients compared to control subjects. A rise in serum insulin levels unaccompanied by a concomitant increase in blood glucose concentration is unable to elicit a beta-EP response in obese patients.
NASA Astrophysics Data System (ADS)
Mathieu, P.; Piatnitski, A.
2018-04-01
Prolongating our previous paper on the Einstein relation, we study the motion of a particle diffusing in a random reversible environment when subject to a small external forcing. In order to describe the long time behavior of the particle, we introduce the notions of steady state and weak steady state. We establish the continuity of weak steady states for an ergodic and uniformly elliptic environment. When the environment has finite range of dependence, we prove the existence of the steady state and weak steady state and compute its derivative at a vanishing force. Thus we obtain a complete `fluctuation-dissipation Theorem' in this context as well as the continuity of the effective variance.
Steady state volcanism - Evidence from eruption histories of polygenetic volcanoes
NASA Technical Reports Server (NTRS)
Wadge, G.
1982-01-01
Cumulative volcano volume curves are presented as evidence for steady-state behavior at certain volcanoes and to develop a model of steady-state volcanism. A minimum criteria of five eruptions over a year was chosen to characterize a steady-state volcano. The subsequent model features a constant head of magmatic pressure from a reservoir supplied from depth, a sawtooth curve produced by the magma arrivals or discharge from the subvolcanic reservoir, large volume eruptions with long repose periods, and conditions of nonsupply of magma. The behavior of Mts. Etna, Nyamuragira, and Kilauea are described and show continuous levels of plasma output resulting in cumulative volume increases. Further discussion is made of steady-state andesitic and dacitic volcanism, long term patterns of the steady state, and magma storage, and the lack of a sufficient number of steady-state volcanoes in the world is taken as evidence that further data is required for a comprehensive model.
Stone, Philip A; Waleffe, Fabian; Graham, Michael D
2002-11-11
Nontrivial steady flows have recently been found that capture the main structures of the turbulent buffer layer. We study the effects of polymer addition on these "exact coherent states" (ECS) in plane Couette flow. Despite the simplicity of the ECS flows, these effects closely mirror those observed experimentally: Structures shift to larger length scales, wall-normal fluctuations are suppressed while streamwise ones are enhanced, and drag is reduced. The mechanism underlying these effects is elucidated. These results suggest that the ECS are closely related to buffer layer turbulence.
Phasic Dopaminergic Signaling and the Presymptomatic Phase of Parkinson’s Disease
2005-07-01
provides an ambient , steady- state level of extracellular dopamine, whereas phasic signaling results in a transient increase (i.e., a short-lived...certain ambient extracellular level of dopamine is essential for movement to occur [116]. Phasic signaling involves synchronized high frequency firing of...microdialysis. A measurement of the ambient level of dopamine by microdialysis in animal studies shows that extracellular dopamine levels are normal
Effects of External Loads on Human Head Movement Control Systems
NASA Technical Reports Server (NTRS)
Nam, M. H.; Choi, O. M.
1984-01-01
The central and reflexive control strategies underlying movements were elucidated by studying the effects of external loads on human head movement control systems. Some experimental results are presented on dynamic changes weigh the addition of aviation helmet (SPH4) and lead weights (6 kg). Intended time-optimal movements, their dynamics and electromyographic activity of neck muscles in normal movements, and also in movements made with external weights applied to the head were measured. It was observed that, when the external loads were added, the subject went through complex adapting processes and the head movement trajectory and its derivatives reached steady conditions only after transient adapting period. The steady adapted state was reached after 15 to 20 seconds (i.e., 5 to 6 movements).
Léger, Agnès C.; Reed, Charlotte M.; Desloge, Joseph G.; Swaminathan, Jayaganesh; Braida, Louis D.
2015-01-01
Consonant-identification ability was examined in normal-hearing (NH) and hearing-impaired (HI) listeners in the presence of steady-state and 10-Hz square-wave interrupted speech-shaped noise. The Hilbert transform was used to process speech stimuli (16 consonants in a-C-a syllables) to present envelope cues, temporal fine-structure (TFS) cues, or envelope cues recovered from TFS speech. The performance of the HI listeners was inferior to that of the NH listeners both in terms of lower levels of performance in the baseline condition and in the need for higher signal-to-noise ratio to yield a given level of performance. For NH listeners, scores were higher in interrupted noise than in steady-state noise for all speech types (indicating substantial masking release). For HI listeners, masking release was typically observed for TFS and recovered-envelope speech but not for unprocessed and envelope speech. For both groups of listeners, TFS and recovered-envelope speech yielded similar levels of performance and consonant confusion patterns. The masking release observed for TFS and recovered-envelope speech may be related to level effects associated with the manner in which the TFS processing interacts with the interrupted noise signal, rather than to the contributions of TFS cues per se. PMID:26233038
Sharzehee, Mohammadali; Khalafvand, Seyed Saeid; Han, Hai-Chao
2018-02-01
Tortuous aneurysmal arteries are often associated with a higher risk of rupture but the mechanism remains unclear. The goal of this study was to analyze the buckling and post-buckling behaviors of aneurysmal arteries under pulsatile flow. To accomplish this goal, we analyzed the buckling behavior of model carotid and abdominal aorta with aneurysms by utilizing fluid-structure interaction (FSI) method with realistic waveforms boundary conditions. FSI simulations were done under steady-state and pulsatile flow for normal (1.5) and reduced (1.3) axial stretch ratios to investigate the influence of aneurysm, pulsatile lumen pressure and axial tension on stability. Our results indicated that aneurysmal artery buckled at the critical buckling pressure and its deflection nonlinearly increased with increasing lumen pressure. Buckling elevates the peak stress (up to 118%). The maximum aneurysm wall stress at pulsatile FSI flow was (29%) higher than under static pressure at the peak lumen pressure of 130 mmHg. Buckling results show an increase in lumen shear stress at the inner side of the maximum deflection. Vortex flow was dramatically enlarged with increasing lumen pressure and artery diameter. Aneurysmal arteries are more susceptible than normal arteries to mechanical instability which causes high stresses in the aneurysm wall that could lead to aneurysm rupture.
Interfacial exciplex formation in bilayers of conjugated polymers.
Nobuyasu, R S; Araujo, K A S; Cury, L A; Jarrosson, T; Serein-Spirau, F; Lère-Porte, J-P; Dias, F B; Monkman, A P
2013-10-28
The donor-acceptor interactions in sequential bilayer and blend films are investigated. Steady-state and time-resolved photoluminescence (PL) were measured to characterize the samples at different geometries of photoluminescence collection. At standard excitation, with the laser incidence at 45° of the normal direction of the sample surface, a band related to the aggregate states of donor molecules appears for both blend and bilayer at around 540 nm. For the PL spectra acquired from the edge of the bilayer, with the laser incidence made at normal direction of the sample surface (90° geometry), a new featureless band emission, red-shifted from donor and acceptor emission regions was observed and assigned as the emission from interfacial exciplex states. The conformational complexity coming from donor/acceptor interactions at the heterojunction interface of the bilayer is at the origin of this interfacial exciplex emission.
Multimode optical fibers: steady state mode exciter.
Ikeda, M; Sugimura, A; Ikegami, T
1976-09-01
The steady state mode power distribution of the multimode graded index fiber was measured. A simple and effective steady state mode exciter was fabricated by an etching technique. Its insertion loss was 0.5 dB for an injection laser. Deviation in transmission characteristics of multimode graded index fibers can be avoided by using the steady state mode exciter.
Enhancement pattern of the normal facial nerve at 3.0 T temporal MRI.
Hong, H S; Yi, B-H; Cha, J-G; Park, S-J; Kim, D H; Lee, H K; Lee, J-D
2010-02-01
The purpose of this study was to evaluate the enhancement pattern of the normal facial nerve at 3.0 T temporal MRI. We reviewed the medical records of 20 patients and evaluated 40 clinically normal facial nerves demonstrated by 3.0 T temporal MRI. The grade of enhancement of the facial nerve was visually scaled from 0 to 3. The patients comprised 11 men and 9 women, and the mean age was 39.7 years. The reasons for the MRI were sudden hearing loss (11 patients), Méniàre's disease (6) and tinnitus (7). Temporal MR scans were obtained by fluid-attenuated inversion-recovery (FLAIR) and diffusion-weighted imaging of the brain; three-dimensional (3D) fast imaging employing steady-state acquisition (FIESTA) images of the temporal bone with a 0.77 mm thickness, and pre-contrast and contrast-enhanced 3D spoiled gradient record acquisition in the steady state (SPGR) of the temporal bone with a 1 mm thickness, were obtained with 3.0 T MR scanning. 40 nerves (100%) were visibly enhanced along at least one segment of the facial nerve. The enhanced segments included the geniculate ganglion (77.5%), tympanic segment (37.5%) and mastoid segment (100%). Even the facial nerve in the internal auditory canal (15%) and labyrinthine segments (5%) showed mild enhancement. The use of high-resolution, high signal-to-noise ratio (with 3 T MRI), thin-section contrast-enhanced 3D SPGR sequences showed enhancement of the normal facial nerve along the whole course of the nerve; however, only mild enhancement was observed in areas associated with acute neuritis, namely the canalicular and labyrinthine segment.
Varanasi, Lakshman; Hosler, Jonathan
2011-01-01
In order to characterize protein structures that control proton uptake, forms of cytochrome c oxidase (CcO) containing a carboxyl or a thiol group in line with the initial, internal waters of the D pathway for proton transfer have been assayed in the presence and absence of subunit III. Subunit III provides approximately half of the protein surrounding the entry region of the D pathway. The mutant N139D-D132N contains a carboxyl group 6Å within the D pathway and lacks the normal, surface-exposed proton acceptor, Asp-132. With subunit III, the steady-state activity of this mutant is slow but once subunit III is removed its activity is the same as wild-type CcO lacking subunit III (∼1800 H+ s-1). Thus, a carboxyl group ∼25% within the pathway enhances proton uptake even though the carboxyl has no direct contact with bulk solvent. Protons from solvent apparently move to internal Asp-139 through a short file of waters, normally blocked by subunit III. Cysteine-139 also supports rapid steady-state proton uptake, demonstrating that an anion other than a carboxyl can attract and transfer protons into the D pathway. When both Asp-132 and Asp/Cys-139 are present, the removal of subunit III increases CcO activity to rates greater than that of normal CcO due to simultaneous proton uptake by two initial acceptors. The results show how the environment of the initial proton acceptor for the D pathway in these CcO forms dictates the pH range of CcO activity, with implications for the function of Asp-132, the normal proton acceptor. PMID:21344856
Hsu, Ruey-Fen; Ho, Chi-Kung; Lu, Sheng-Nan; Chen, Shun-Sheng
2010-10-01
An objective investigation is needed to verify the existence and severity of hearing impairments resulting from work-related, noise-induced hearing loss in arbitration of medicolegal aspects. We investigated the accuracy of multiple-frequency auditory steady-state responses (Mf-ASSRs) between subjects with sensorineural hearing loss (SNHL) with and without occupational noise exposure. Cross-sectional study. Tertiary referral medical centre. Pure-tone audiometry and Mf-ASSRs were recorded in 88 subjects (34 patients had occupational noise-induced hearing loss [NIHL], 36 patients had SNHL without noise exposure, and 18 volunteers were normal controls). Inter- and intragroup comparisons were made. A predicting equation was derived using multiple linear regression analysis. ASSRs and pure-tone thresholds (PTTs) showed a strong correlation for all subjects (r = .77 ≈ .94). The relationship is demonstrated by the equationThe differences between the ASSR and PTT were significantly higher for the NIHL group than for the subjects with non-noise-induced SNHL (p < .001). Mf-ASSR is a promising tool for objectively evaluating hearing thresholds. Predictive value may be lower in subjects with occupational hearing loss. Regardless of carrier frequencies, the severity of hearing loss affects the steady-state response. Moreover, the ASSR may assist in detecting noise-induced injury of the auditory pathway. A multiple linear regression equation to accurately predict thresholds was shown that takes into consideration all effect factors.
Kirby, Lyndon C; Johnson, Brendan M; Adams, Laurel M; Eberwein, Derek J; Zhang, Ke; Murray, Sharon C; Lates, Christian D; Blum, Robert A; Morris, Shannon R
2010-05-01
Casopitant, a novel NK-1 receptor antagonist under investigation for the prevention of postoperative and chemotherapy-induced nausea and vomiting, is a weak to moderate inhibitor of CYP3A and a moderate inducer of CYP2C9 in vitro. Furthermore, both CYP enzymes are involved in the metabolism of R- and S-warfarin, respectively. This clinical study was conducted to explore the potential drug-drug interaction between casopitant and warfarin. In total, 97 healthy participants were enrolled and 54 completed the study. Participants received individualized daily dosing of warfarin to an international normalized ratio (INR) of 1.3 to 2.3 over a 14-day period (period 1). Immediately following period 1, participants entered period 2 and were randomized to receive either regimen A (oral casopitant [150 mg day 1, 50 mg days 2 and 3] and warfarin [days 1-10]) or regimen B (oral casopitant 60 mg and warfarin [days 1-14]). INR assessments were performed daily. The steady-state C(max) and AUC of R- and S-warfarin were not altered by regimen A, but R-warfarin AUC was increased 1.31-fold (90% confidence interval [CI]: 1.22, 1.41), and S-warfarin AUC was increased 1.27-fold (90% CI: 1.18, 1.38) on day 14 in regimen B. Steady-state INR values were not affected by either casopitant regimen.
NASA Technical Reports Server (NTRS)
Hannan, Mike R.; Jurenko, Robert J.; Bush, Jason; Ottander, John
2014-01-01
A method for transitioning linear time invariant (LTI) models in time varying simulation is proposed that utilizes a hybrid approach for determining physical displacements by augmenting the original quadratically constrained least squares (LSQI) algorithm with Direct Shape Mapping (DSM) and modifying the energy constraints. The approach presented is applicable to simulation of the elastic behavior of launch vehicles and other structures that utilize discrete LTI finite element model (FEM) derived mode sets (eigenvalues and eigenvectors) that are propagated throughout time. The time invariant nature of the elastic data presents a problem of how to properly transition elastic states from the prior to the new model while preserving motion across the transition and ensuring there is no truncation or excitation of the system. A previous approach utilizes a LSQI algorithm with an energy constraint to effect smooth transitions between eigenvector sets with no requirement that the models be of similar dimension or have any correlation. This approach assumes energy is conserved across the transition, which results in significant non-physical transients due to changing quasi-steady state energy between mode sets, a phenomenon seen when utilizing a truncated mode set. The computational burden of simulating a full mode set is significant so a subset of modes is often selected to reduce run time. As a result of this truncation, energy between mode sets may not be constant and solutions across transitions could produce non-physical transients. In an effort to abate these transients an improved methodology was developed based on the aforementioned approach, but this new approach can handle significant changes in energy across mode set transitions. It is proposed that physical velocities due to elastic behavior be solved for using the LSQI algorithm, but solve for displacements using a two-step process that independently addresses the quasi-steady-state and non-steady-state contributions to the elastic displacement. For structures subject to large external forces, such as thrust or atmospheric drag, it is imperative to capture these forces when solving for elastic displacement. To simplify the mathematical formulation, assumptions are made regarding mass matrix normalization, constant external forcing, and constant viscous damping. These simplifications allow for direct solutions to the quasi-steady-state displacements through a process titled Direct Shape Mapping. DSM solves for the displacements using the eigenvalues of the elastic modes and the external forcing and returns a set of elastic displacements dictated by the eigenvectors of the post-transition mode set. For the non-steady-state contributions to displacement we formulate a LSQI problem that is constrained by energy of the non-steady state terms. The contributions from the quasi-steady-state and non-steady state solutions are then combined to obtain the physical displacements associated with the new set of eigenvectors. Results for the LSQI-DSM approach show significant reduction/complete removal of transients across mode set transitions while maintaining elastic motion from the prior state. For time propagation applications employing discrete elastic models that need to be transitioned in time and where running with full a full mode set is not feasible, the method developed offers a practical solution to simulating vehicle elasticity.
Moreau, Didier; Artaud, J. F.; Ferron, John R.; ...
2015-05-01
This paper shows that semi-empirical data-driven models based on a twotime- scale approximation for the magnetic and kinetic control of advanced tokamak (AT) scenarios can be advantageously identified from simulated rather than real data, and used for control design. The method is applied to the combined control of the safety factor profile, q(x), and normalized pressure parameter, β N, using DIII-D parameters and actuators (on-axis co-current neutral beam injection (NBI) power, off axis co-current NBI power, electron cyclotron current drive power, and ohmic coil). The approximate plasma response model was identified from simulated data obtained using a rapidly converging plasmamore » transport code, METIS, which includes an MHD equilibrium and current diffusion solver, and combines plasma transport nonlinearity with 0-D scaling laws and 1.5-D ordinary differential equations. A number of open loop simulations were performed, in which the heating and current drive (H&CD) sources were randomly modulated around the typical values of a reference AT discharge on DIIID. Using these simulated data, a two-time-scale state space model was obtained for the coupled evolution of the poloidal flux profile and βN parameter, and a controller was synthesized based on the near-optimal ARTAEMIS algorithm [D. Moreau et al., Nucl. Fusion 53 (2013) 063020]. The paper discusses the results of closed-loop nonlinear simulations, using this controller for steady state AT operation. With feedforward plus feedback control, the steady state target q-profile and β N are satisfactorily tracked with a time scale of about ten seconds, despite large disturbances applied to the feedforward powers and plasma parameters. The effectiveness of the control algorithm is thus demonstrated for long pulse and steady state high-β N AT discharges. Its robustness with respect to disturbances of the H&CD actuators and of plasma parameters such as the H-factor, plasma density and effective charge, is also shown.« less
Femtosecond parabolic pulse shaping in normally dispersive optical fibers.
Sukhoivanov, Igor A; Iakushev, Sergii O; Shulika, Oleksiy V; Díez, Antonio; Andrés, Miguel
2013-07-29
Formation of parabolic pulses at femtosecond time scale by means of passive nonlinear reshaping in normally dispersive optical fibers is analyzed. Two approaches are examined and compared: the parabolic waveform formation in transient propagation regime and parabolic waveform formation in the steady-state propagation regime. It is found that both approaches could produce parabolic pulses as short as few hundred femtoseconds applying commercially available fibers, specially designed all-normal dispersion photonic crystal fiber and modern femtosecond lasers for pumping. The ranges of parameters providing parabolic pulse formation at the femtosecond time scale are found depending on the initial pulse duration, chirp and energy. Applicability of different fibers for femtosecond pulse shaping is analyzed. Recommendation for shortest parabolic pulse formation is made based on the analysis presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhowal, Arup Jyoti, E-mail: arupjyoti.bhowal@heritageit.edu; Mandal, Bijan Kumar, E-mail: bkm375@yahoo.co.in
An effort has been made for a quantitative assessment of the soot formed under steady state in a methane air co flow diffusion flame by a numerical simulation at normal gravity and at lower gravity levels of 0.5 G, 0.1 G and 0.0001 G (microgravity). The peak temperature at microgravity is reduced by about 50 K than that at normal gravity level. There is an augmentation of soot formation at lower gravity levels. Peak value at microgravity multiplies by a factor of ∼7 of that at normal gravity. However, if radiation is not considered, soot formation is found to bemore » much more.« less
ERIC Educational Resources Information Center
Kosman, Daniel J.
2009-01-01
The steady-state is a fundamental aspect of biochemical pathways in cells; indeed, the concept of steady-state is a definition of life itself. In a simple enzyme kinetic scheme, the steady-state condition is easy to define analytically but experimentally often difficult to capture because of its evanescent quality; the initial, constant velocity…
Steady state and a general scale law of deformation
NASA Astrophysics Data System (ADS)
Huang, Yan
2017-07-01
Steady state deformation has been characterized based on the experimental results for dilute single-phase aluminium alloys. It was found that although characteristic properties such as flow stress and grain size remained constant with time, a continuous loss of grain boundaries occurred as an essential feature at steady state. A physical model, which takes into account the activity of grain boundary dislocations, was developed to describe the kinetics of steady state deformation. According to this model, the steady state as a function of strain rate and temperature defines the limit of the conventional grain size and strength relationship, i.e., the Hall-Petch relation holds when the grain size is larger than that at the steady state, and an inverse Hall-Petch relation takes over if grain size is smaller than the steady state value. The transition between the two relationships relating grain size and strength is a phenomenon that depends on deformation conditions, rather than an intrinsic property as generally perceived. A general scale law of deformation is established accordingly.
Kretzschmar, M; Bieri, O; Miska, M; Wiewiorski, M; Hainc, N; Valderrabano, V; Studler, U
2015-04-01
The purpose of this study was to characterize the collagen component of repair tissue (RT) of the talus after autologous matrix-induced chondrogenesis (AMIC) using quantitative T2 and diffusion-weighted imaging. Mean T2 values and diffusion coefficients of AMIC-RT and normal cartilage of the talus of 25 patients with posttraumatic osteochondral lesions and AMIC repair were compared in a cross-sectional design using partially spoiled steady-state free precession (pSSFP) for T2 quantification, and diffusion-weighted double-echo steady-state (dwDESS) for diffusion measurement. RT and cartilage were graded with modified Noyes and MOCART scores on morphological sequences. An association between follow-up interval and quantitative MRI measures was assessed using multivariate regression, after stratifying the cohort according to time interval between surgery and MRI. Mean T2 of the AMIC-RT and cartilage were 43.1 ms and 39.1 ms, respectively (p = 0.26). Mean diffusivity of the RT (1.76 μm(2)/ms) was significantly higher compared to normal cartilage (1.46 μm(2)/ms) (p = 0.0092). No correlation was found between morphological and quantitative parameters. RT diffusivity was lowest in the subgroup with follow-up >28 months (p = 0.027). Compared to T2-mapping, dwDESS demonstrated greater sensitivity in detecting differences in the collagen matrix between AMIC-RT and cartilage. Decreased diffusivity in patients with longer follow-up times may indicate an increased matrix organization of RT. • MRI is used to assess morphology of the repair tissue during follow-up. • Quantitative MRI allows an estimation of biochemical properties of the repair tissue. • Differences between repair tissue and cartilage were more significant with dwDESS than T2 mapping.
Phased array ghost elimination (PAGE) for segmented SSFP imaging with interrupted steady-state.
Kellman, Peter; Guttman, Michael A; Herzka, Daniel A; McVeigh, Elliot R
2002-12-01
Steady-state free precession (SSFP) has recently proven to be valuable for cardiac imaging due to its high signal-to-noise ratio and blood-myocardium contrast. Data acquired using ECG-triggered, segmented sequences during the approach to steady-state, or return to steady-state after interruption, may have ghost artifacts due to periodic k-space distortion. Schemes involving several preparatory RF pulses have been proposed to restore steady-state, but these consume imaging time during early systole. Alternatively, the phased-array ghost elimination (PAGE) method may be used to remove ghost artifacts from the first several frames. PAGE was demonstrated for cardiac cine SSFP imaging with interrupted steady-state using a simple alpha/2 magnetization preparation and storage scheme and a spatial tagging preparation.
Control of cancer-related signal transduction networks
NASA Astrophysics Data System (ADS)
Albert, Reka
2013-03-01
Intra-cellular signaling networks are crucial to the maintenance of cellular homeostasis and for cell behavior (growth, survival, apoptosis, movement). Mutations or alterations in the expression of elements of cellular signaling networks can lead to incorrect behavioral decisions that could result in tumor development and/or the promotion of cell migration and metastasis. Thus, mitigation of the cascading effects of such dysregulations is an important control objective. My group at Penn State is collaborating with wet-bench biologists to develop and validate predictive models of various biological systems. Over the years we found that discrete dynamic modeling is very useful in molding qualitative interaction information into a predictive model. We recently demonstrated the effectiveness of network-based targeted manipulations on mitigating the disease T cell large granular lymphocyte (T-LGL) leukemia. The root of this disease is the abnormal survival of T cells which, after successfully fighting an infection, should undergo programmed cell death. We synthesized the relevant network of within-T-cell interactions from the literature, integrated it with qualitative knowledge of the dysregulated (abnormal) states of several network components, and formulated a Boolean dynamic model. The model indicated that the system possesses a steady state corresponding to the normal cell death state and a T-LGL steady state corresponding to the abnormal survival state. For each node, we evaluated the restorative manipulation consisting of maintaining the node in the state that is the opposite of its T-LGL state, e.g. knocking it out if it is overexpressed in the T-LGL state. We found that such control of any of 15 nodes led to the disappearance of the T-LGL steady state, leaving cell death as the only potential outcome from any initial condition. In four additional cases the probability of reaching the T-LGL state decreased dramatically, thus these nodes are also possible control targets. Our collaborators validated two of these predicted control mechanisms experimentally. Our work suggests that external control of a single node can be a fruitful therapeutic strategy.
Glucose kinetics in infants of diabetic mothers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cowett, R.M.; Susa, J.B.; Giletti, B.
1983-08-01
Glucose kinetic studies were performed to define the glucose turnover rate with 78% enriched D-(U-13C) glucose by the prime constant infusion technique at less than or equal to 6 hours of age in nine infants of diabetic mothers (four insulin-dependent and five chemical diabetic patients) at term. Five normal infants were studied as control subjects. All infants received 0.9% saline intravenously during the study with the tracer. Fasting plasma glucose, insulin, and glucose13/12C ratios were measured during the steady state, and the glucose turnover rate was derived. The average plasma glucose concentration was similar during the steady state in themore » infants of the diabetic mothers and in the control infants, and the glucose turnover rate was not significantly different among the groups: 2.3 +/- 0.6 mg . kg-1 min-1 in infants of insulin-dependent diabetic patients; 2.4 +/- 0.4 mg . kg-1 min-1 in infants of chemical diabetic patients; and 3.2 +/- 0.3 mg . kg-1 min-1 in the control subjects. Good control of maternal diabetes evidenced by the normal maternal hemoglobin A1c and plasma glucose concentration at delivery and cord plasma glucose concentration resulted in glucose kinetic values in the infants of diabetic mothers that were indistinguishable from those of control subjects. The data further support the importance of good control of the diabetic state in the pregnant woman to minimize or prevent neonatal hypoglycemia.« less
Rowan, D J
2013-07-01
Steady state approaches, such as transfer coefficients or bioaccumulation factors, are commonly used to model the bioaccumulation of (137)Cs in aquatic foodwebs from routine operations and releases from nuclear generating stations and other nuclear facilities. Routine releases from nuclear generating stations and facilities, however, often consist of pulses as liquid waste is stored, analyzed to ensure regulatory compliance and then released. The effect of repeated pulse releases on the steady state assumption inherent in the bioaccumulation factor approach has not been evaluated. In this study, I examine the steady state assumption for aquatic biota by analyzing data for two cesium isotopes in the same biota, one isotope in steady state (stable (133)Cs) from geologic sources and the other released in pulses ((137)Cs) from reactor operations. I also compare (137)Cs bioaccumulation factors for similar upstream populations from the same system exposed solely to weapon test (137)Cs, and assumed to be in steady state. The steady state assumption appears to be valid for small organisms at lower trophic levels (zooplankton, rainbow smelt and 0+ yellow perch) but not for older and larger fish at higher trophic levels (walleye). Attempts to account for previous exposure and retention through a biokinetics approach had a similar effect on steady state, upstream and non-steady state, downstream populations of walleye, but were ineffective in explaining the more or less constant deviation between fish with steady state exposures and non-steady state exposures of about 2-fold for all age classes of walleye. These results suggest that for large, piscivorous fish, repeated exposure to short duration, pulse releases leads to much higher (137)Cs BAFs than expected from (133)Cs BAFs for the same fish or (137)Cs BAFs for similar populations in the same system not impacted by reactor releases. These results suggest that the steady state approach should be used with caution in any situation where reactor releases are episodic or pulse in nature, even if the magnitude of these releases is small. Copyright © 2012. Published by Elsevier Ltd.
Helicon normal modes in Proto-MPEX
NASA Astrophysics Data System (ADS)
Piotrowicz, P. A.; Caneses, J. F.; Green, D. L.; Goulding, R. H.; Lau, C.; Caughman, J. B. O.; Rapp, J.; Ruzic, D. N.
2018-05-01
The Proto-MPEX helicon source has been operating in a high electron density ‘helicon-mode’. Establishing plasma densities and magnetic field strengths under the antenna that allow for the formation of normal modes of the fast-wave are believed to be responsible for the ‘helicon-mode’. A 2D finite-element full-wave model of the helicon antenna on Proto-MPEX is used to identify the fast-wave normal modes responsible for the steady-state electron density profile produced by the source. We also show through the simulation that in the regions of operation in which core power deposition is maximum the slow-wave does not deposit significant power besides directly under the antenna. In the case of a simulation where a normal mode is not excited significant edge power is deposited in the mirror region. ).
Helicon normal modes in Proto-MPEX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piotrowicz, Pawel A.; Caneses, Juan F.; Green, David L.
Here, the Proto-MPEX helicon source has been operating in a high electron density 'helicon-mode'. Establishing plasma densities and magnetic field strengths under the antenna that allow for the formation of normal modes of the fast-wave are believed to be responsible for the 'helicon-mode'. A 2D finite-element full-wave model of the helicon antenna on Proto-MPEX is used to identify the fast-wave normal modes responsible for the steady-state electron density profile produced by the source. We also show through the simulation that in the regions of operation in which core power deposition is maximum the slow-wave does not deposit significant power besidesmore » directly under the antenna. In the case of a simulation where a normal mode is not excited significant edge power is deposited in the mirror region.« less
Helicon normal modes in Proto-MPEX
Piotrowicz, Pawel A.; Caneses, Juan F.; Green, David L.; ...
2018-05-22
Here, the Proto-MPEX helicon source has been operating in a high electron density 'helicon-mode'. Establishing plasma densities and magnetic field strengths under the antenna that allow for the formation of normal modes of the fast-wave are believed to be responsible for the 'helicon-mode'. A 2D finite-element full-wave model of the helicon antenna on Proto-MPEX is used to identify the fast-wave normal modes responsible for the steady-state electron density profile produced by the source. We also show through the simulation that in the regions of operation in which core power deposition is maximum the slow-wave does not deposit significant power besidesmore » directly under the antenna. In the case of a simulation where a normal mode is not excited significant edge power is deposited in the mirror region.« less
Steady shape analysis of tomographic pumping tests for characterization of aquifer heterogeneities
Bohling, Geoffrey C.; Zhan, Xiaoyong; Butler, James J.; Zheng, Li
2002-01-01
Hydraulic tomography, a procedure involving the performance of a suite of pumping tests in a tomographic format, provides information about variations in hydraulic conductivity at a level of detail not obtainable with traditional well tests. However, analysis of transient data from such a suite of pumping tests represents a substantial computational burden. Although steady state responses can be analyzed to reduce this computational burden significantly, the time required to reach steady state will often be too long for practical applications of the tomography concept. In addition, uncertainty regarding the mechanisms driving the system to steady state can propagate to adversely impact the resulting hydraulic conductivity estimates. These disadvantages of a steady state analysis can be overcome by exploiting the simplifications possible under the steady shape flow regime. At steady shape conditions, drawdown varies with time but the hydraulic gradient does not. Thus transient data can be analyzed with the computational efficiency of a steady state model. In this study, we demonstrate the value of the steady shape concept for inversion of hydraulic tomography data and investigate its robustness with respect to improperly specified boundary conditions.
Steady states and stability in metabolic networks without regulation.
Ivanov, Oleksandr; van der Schaft, Arjan; Weissing, Franz J
2016-07-21
Metabolic networks are often extremely complex. Despite intensive efforts many details of these networks, e.g., exact kinetic rates and parameters of metabolic reactions, are not known, making it difficult to derive their properties. Considerable effort has been made to develop theory about properties of steady states in metabolic networks that are valid for any values of parameters. General results on uniqueness of steady states and their stability have been derived with specific assumptions on reaction kinetics, stoichiometry and network topology. For example, deep results have been obtained under the assumptions of mass-action reaction kinetics, continuous flow stirred tank reactors (CFSTR), concordant reaction networks and others. Nevertheless, a general theory about properties of steady states in metabolic networks is still missing. Here we make a step further in the quest for such a theory. Specifically, we study properties of steady states in metabolic networks with monotonic kinetics in relation to their stoichiometry (simple and general) and the number of metabolites participating in every reaction (single or many). Our approach is based on the investigation of properties of the Jacobian matrix. We show that stoichiometry, network topology, and the number of metabolites that participate in every reaction have a large influence on the number of steady states and their stability in metabolic networks. Specifically, metabolic networks with single-substrate-single-product reactions have disconnected steady states, whereas in metabolic networks with multiple-substrates-multiple-product reactions manifolds of steady states arise. Metabolic networks with simple stoichiometry have either a unique globally asymptotically stable steady state or asymptotically stable manifolds of steady states. In metabolic networks with general stoichiometry the steady states are not always stable and we provide conditions for their stability. In order to demonstrate the biological relevance we illustrate the results on the examples of the TCA cycle, the mevalonate pathway and the Calvin cycle. Copyright © 2016 Elsevier Ltd. All rights reserved.
Regulation of landslide motion by dilatancy and pore pressure feedback
Iverson, R.M.
2005-01-01
A new mathematical model clarifies how diverse styles and rates of landslide motion can result from regulation of Coulomb friction by dilation or contraction of water-saturated basal shear zones. Normalization of the model equations shows that feedback due to coupling between landslide motion, shear zone volume change, and pore pressure change depends on a single dimensionless parameter ??, which, in turn, depends on the dilatancy angle ?? and the intrinsic timescales for pore pressure generation and dissipation. If shear zone soil contracts during slope failure, then ?? 0, and negative feedback permits slow, steady landslide motion to occur while positive pore pressure is supplied by rain infiltration. Steady state slip velocities v0 obey v0 = -(K/??) p*e, where K is the hydraulic conductivity and p*e is the normalized (dimensionless) negative pore pressure generated by dilation. If rain infiltration and attendant pore pressure growth continue unabated, however, their influence ultimately overwhelms the stabilizing influence of negative p*e. Then, unbounded landslide acceleration occurs, accentuated by an instability that develops if ?? diminishes as landslide motion proceeds. Nonetheless, numerical solutions of the model equations show that slow, nearly steady motion of a clay-rich landslide may persist for many months as a result of negative pore pressure feedback that regulates basal Coulomb friction. Similarly stabilized motion is less likely to occur in sand-rich landslides that are characterized by weaker negative feedback.
Nonequilibrium Tuning of the Thermal Casimir Effect.
Dean, David S; Lu, Bing-Sui; Maggs, A C; Podgornik, Rudolf
2016-06-17
In net-neutral systems correlations between charge fluctuations generate strong attractive thermal Casimir forces and engineering these forces to optimize nanodevice performance is an important challenge. We show how the normal and lateral thermal Casimir forces between two plates containing Brownian charges can be modulated by decorrelating the system through the application of an electric field, which generates a nonequilibrium steady state with a constant current in one or both plates, reducing the ensuing fluctuation-generated normal force while at the same time generating a lateral drag force. This hypothesis is confirmed by detailed numerical simulations as well as an analytical approach based on stochastic density functional theory.
Thermal and hydraulic analysis of a cylindrical blanket module design for a tokamak reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, A.Y.
1978-10-01
Various existing blanket design concepts for a tokamak fusion reactor were evaluated and assessed. These included the demonstration power reactors of ORNL, GA and others. As a result of this study, a cylindrical, modularized blanket design concept was developed. The module is a double-walled, stainless steel 316 cylinder containing liquid lithium for tritium breeding and is cooled by pressurized helium. Steady state and transient thermal conditions under normal and some off-design conditions were analyzed and presented. At the steady state reference operating point the maximum structure temperature is 452/sup 0/C at the maximum stressed location and is 495/sup 0/C atmore » the less stressed location. The coolant inlet pressure is 54.4 atm, the inlet temperature is 200/sup 0/C and the exit temperature is 435/sup 0/C. The coolant could be utilized with a helium/steam turbine power conversion system with a cycle thermal efficiency of 30.8%.« less
Immune privilege of the CNS is not the consequence of limited antigen sampling
NASA Astrophysics Data System (ADS)
Harris, Melissa G.; Hulseberg, Paul; Ling, Changying; Karman, Jozsef; Clarkson, Benjamin D.; Harding, Jeffrey S.; Zhang, Mengxue; Sandor, Adam; Christensen, Kelsey; Nagy, Andras; Sandor, Matyas; Fabry, Zsuzsanna
2014-03-01
Central nervous system (CNS) immune privilege is complex, and it is still not understood how CNS antigens are sampled by the peripheral immune system under steady state conditions. To compare antigen sampling from immune-privileged or nonprivileged tissues, we created transgenic mice with oligodendrocyte or gut epithelial cell expression of an EGFP-tagged fusion protein containing ovalbumin (OVA) antigenic peptides and tested peripheral anti-OVA peptide-specific sentinel OT-I and OT-II T cell activation. We report that oligodendrocyte or gut antigens are sampled similarly, as determined by comparable levels of OT-I T cell activation. However, activated T cells do not access the CNS under steady state conditions. These data show that afferent immunity is normally intact as there is no barrier at the antigen sampling level, but that efferent immunity is restricted. To understand how this one-sided surveillance contributes to CNS immune privilege will help us define mechanisms of CNS autoimmune disease initiation.
Quantal basis of vesicle growth and information content, a unified approach.
Nitzany, Eyal; Hammel, Ilan; Meilijson, Isaac
2010-09-07
Secretory vesicles express a periodic multimodal size distribution. The successive modes are integral multiples of the smallest mode (G(1)). The vesicle content ranges from macromolecules (proteins, mucopolysaccharides and hormones) to low molecular weight molecules (neurotransmitters). A steady-state model has been developed to emulate a mechanism for the introduction of vesicles of monomer size, which grow by a unit addition mechanism, G(1)+G(n)-->G(n+1) which, at a later stage are eliminated from the system. We describe a model of growth and elimination transition rates which adequately illustrates the distributions of vesicle population size at steady-state and upon elimination. Consequently, prediction of normal behavior and pathological perturbations is feasible. Careful analysis of spontaneous secretion, as compared to short burst-induced secretion, suggests that the basic character-code for reliable communication should be within a range of only 8-10 vesicles' burst which may serve as a yes/no message. Copyright 2010 Elsevier Ltd. All rights reserved.
High-velocity frictional properties of gabbro
NASA Astrophysics Data System (ADS)
Tsutsumi, Akito; Shimamoto, Toshihiko
High-velocity friction experiments have been performed on a pair of hollow-cylindrical specimens of gabbro initially at room temperature, at slip rates from 7.5 mm/s to 1.8 m/s, with total circumferential displacements of 125 to 174 m, and at normal stresses to 5 MPa, using a rotary-shear high-speed friction testing machine. Steady-state friction increases slightly with increasing slip rate at slip rates to about 100 mm/s (velocity strengthening) and it decreases markedly with increasing slip rate at higher velocities (velocity weakening). Steady-state friction in the velocity weakening regime is lower for the non-melting case than the frictional melting case, due perhaps to severe thermal fracturing. A very large peak friction is always recognized upon the initiation of visible frictional melting, presumably owing to the welding of fault surfaces upon the solidification of melt patches. Frictional properties thus change dramatically with increasing displacement at high velocities, and such a non-linear effect must be incorporated into the analysis of earthquake initiation processes.
Ho, Pang-Yen; Chuang, Guo-Syong; Chao, An-Chong; Li, Hsing-Ya
2005-05-01
The capacity of complex biochemical reaction networks (consisting of 11 coupled non-linear ordinary differential equations) to show multiple steady states, was investigated. The system involved esterification of ethanol and oleic acid by lipase in an isothermal continuous stirred tank reactor (CSTR). The Deficiency One Algorithm and the Subnetwork Analysis were applied to determine the steady state multiplicity. A set of rate constants and two corresponding steady states are computed. The phenomena of bistability, hysteresis and bifurcation are discussed. Moreover, the capacity of steady state multiplicity is extended to the family of the studied reaction networks.
An Intuitive Approach to Steady-State Kinetics.
ERIC Educational Resources Information Center
Raines, Ronald T.; Hansen, David E.
1988-01-01
Attempts to provide an intuitive understanding of steady state kinetics. Discusses the meaning of steady state and uses free energy profiles to illustrate and follow complex kinetic and thermodynamic relationships. Provides examples with explanations. (MVL)
NASA Astrophysics Data System (ADS)
Blasi, Thomas; Buettner, Florian; Strasser, Michael K.; Marr, Carsten; Theis, Fabian J.
2017-06-01
Accessing gene expression at a single-cell level has unraveled often large heterogeneity among seemingly homogeneous cells, which remains obscured when using traditional population-based approaches. The computational analysis of single-cell transcriptomics data, however, still imposes unresolved challenges with respect to normalization, visualization and modeling the data. One such issue is differences in cell size, which introduce additional variability into the data and for which appropriate normalization techniques are needed. Otherwise, these differences in cell size may obscure genuine heterogeneities among cell populations and lead to overdispersed steady-state distributions of mRNA transcript numbers. We present cgCorrect, a statistical framework to correct for differences in cell size that are due to cell growth in single-cell transcriptomics data. We derive the probability for the cell-growth-corrected mRNA transcript number given the measured, cell size-dependent mRNA transcript number, based on the assumption that the average number of transcripts in a cell increases proportionally to the cell’s volume during the cell cycle. cgCorrect can be used for both data normalization and to analyze the steady-state distributions used to infer the gene expression mechanism. We demonstrate its applicability on both simulated data and single-cell quantitative real-time polymerase chain reaction (PCR) data from mouse blood stem and progenitor cells (and to quantitative single-cell RNA-sequencing data obtained from mouse embryonic stem cells). We show that correcting for differences in cell size affects the interpretation of the data obtained by typically performed computational analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anandakumar, U.; Webb, J.E.; Singh, R.N.
The matrix cracking behavior of a zircon matrix - uniaxial SCS 6 fiber composite was studied as a function of initial flaw size and temperature. The composites were fabricated by a tape casting and hot pressing technique. Surface flaws of controlled size were introduced using a vicker`s indenter. The composite samples were tested in three point flexure at three different temperatures to study the non steady state and steady state matrix cracking behavior. The composite samples exhibited steady state and non steady matrix cracking behavior at all temperatures. The steady state matrix cracking stress and steady state crack size increasedmore » with increasing temperature. The results of the study correlated well with the results predicted by the matrix cracking models.« less
Differences between automatically detected and steady-state fractional flow reserve.
Härle, Tobias; Meyer, Sven; Vahldiek, Felix; Elsässer, Albrecht
2016-02-01
Measurement of fractional flow reserve (FFR) has become a standard diagnostic tool in the catheterization laboratory. FFR evaluation studies were based on pressure recordings during steady-state maximum hyperemia. Commercially available computer systems detect the lowest Pd/Pa ratio automatically, which might not always be measured during steady-state hyperemia. We sought to compare the automatically detected FFR and true steady-state FFR. Pressure measurement traces of 105 coronary lesions from 77 patients with intermediate coronary lesions or multivessel disease were reviewed. In all patients, hyperemia had been achieved by intravenous adenosine administration using a dosage of 140 µg/kg/min. In 42 lesions (40%) automatically detected FFR was lower than true steady-state FFR. Mean bias was 0.009 (standard deviation 0.015, limits of agreement -0.02, 0.037). In 4 lesions (3.8%) both methods lead to different treatment recommendations, in all 4 cases instantaneous wave-free ratio confirmed steady-state FFR. Automatically detected FFR was slightly lower than steady-state FFR in more than one-third of cases. Consequently, interpretation of automatically detected FFR values closely below the cutoff value requires special attention.
On the time to steady state: insights from numerical modeling
NASA Astrophysics Data System (ADS)
Goren, L.; Willett, S.; McCoy, S. W.; Perron, J.
2013-12-01
How fast do fluvial landscapes approach steady state after an application of tectonic or climatic perturbation? While theory and some numerical models predict that the celerity of the advective wave (knickpoint) controls the response time for perturbations, experiments and other landscape evolution models demonstrate that the time to steady state is much longer than the theoretically predicted response time. We posit that the longevity of transient features and the time to steady state are controlled by the stability of the topology and geometry of channel networks. Evolution of a channel network occurs by a combination of discrete capture events and continuous migration of water divides, processes, which are difficult to represent accurately in landscape evolution models. We therefore address the question of the time to steady state using the DAC landscape evolution model that solves accurately for the location of water divides, using a combination of analytical solution for hillslopes and low-order channels together with a numerical solution for higher order channels. DAC also includes an explicit capture criterion. We have tested fundamental predictions from DAC and show that modeled networks reproduce natural network characteristics such as the Hack's exponent and coefficient and the fractal dimension. We define two steady-state criteria: a topographic steady state, defined by global, pointwise steady elevation, and a topological steady state defined as the state in which no further reorganization of the drainage network takes place. Analyzing block uplift simulations, we find that the time to achieve either topographic or topological steady state exceeds by an order of magnitude the theoretical response time of the fluvial network. The longevity of the transient state is the result of the area feedback, by which, migration of a divide changes the local contributing area. This change propagates downstream as a slope adjustment, forcing further divide migrations and area change in adjacent tributaries and basins. In order to characterize the evolution of the drainage network on its way to steady state, we define a proxy to steady state elevation, χ, which is also the characteristic parameter of the transient stream power PDE. Through simulations of tectonic tilting we find that reorganization tends to minimize moments of the χ distribution of the landscape and of Δχ across divides.
Tromberg, Bruce J [Irvine, CA; Berger, Andrew J [Rochester, NY; Cerussi, Albert E [Lake Forest, CA; Bevilacqua, Frederic [Costa Mesa, CA; Jakubowski, Dorota [Irvine, CA
2008-09-23
A technique for measuring broadband near-infrared absorption spectra of turbid media that uses a combination of frequency-domain and steady-state reflectance methods. Most of the wavelength coverage is provided by a white-light steady-state measurement, whereas the frequency-domain data are acquired at a few selected wavelengths. Coefficients of absorption and reduced scattering derived from the frequency-domain data are used to calibrate the intensity of the steady-state measurements and to determine the reduced scattering coefficient at all wavelengths in the spectral window of interest. The absorption coefficient spectrum is determined by comparing the steady-state reflectance values with the predictions of diffusion theory, wavelength by wavelength. Absorption spectra of a turbid phantom and of human breast tissue in vivo, derived with the combined frequency-domain and steady-state technique, agree well with expected reference values.
NASA Astrophysics Data System (ADS)
Chen, Aixi; Nie, Wenjie; Li, Ling; Zeng, Wei; Liao, Qinghong; Xiao, Xianbo
2017-11-01
We investigate the steady-state entanglement in an optomechanical system with a levitated dielectric nanosphere and a higher order excited atomic ensemble. The single nanosphere is trapped by an external harmonic dipole trap and coupled to the single-mode cavity field by the effective optomechanical coupling, which depends on the steady-state position of the nanosphere. We show that the steady-state optomechanical entanglement can be generated via the effective optomechanical interaction between the mechanical motion and the cavity mode. Further, these exist an optimal effective cavity detuning that maximizes the optomechanical entanglement. We also analyze in detail the influences of the excitation number of atoms, the radius of the nanosphere and the thermal noise strength on the steady-state optomechanical entanglement. It is found that the steady-state entanglement can be enhanced by increasing the excitation number of atoms and the radius of the nanosphere.
Schaefer, Carina; Cawello, Willi; Waitzinger, Josef; Elshoff, Jan-Peer
2015-04-01
Age- and sex-related differences in body composition could affect the pharmacokinetic parameters of administered drugs. The purpose of this post hoc analysis was to investigate the influences of age and sex on the pharmacokinetics of lacosamide. This post hoc analysis used pharmacokinetic data taken at steady state from (i) two phase I studies of oral lacosamide in healthy adult subjects (n = 66), and (ii) a population pharmacokinetic analysis carried out using data from two phase III studies of adjunctive oral lacosamide in adults (n = 565) with focal epilepsy taking 1-3 concomitant anti-epileptic drugs. Phase I data were stratified by age and sex as 'younger female' (aged 18-40 years), 'younger male' (aged 18-45 years) or 'elderly male/female' (aged ≥65 years), then normalized by body weight (lean body weight or fat-free mass), height or volume of distribution, and analysed using non-compartmental analysis. Population pharmacokinetic data were stratified by sex and analysed using a one-compartment model. Minor numerical differences between lacosamide exposure [the area under the concentration-time curve at steady state over the dosage interval (AUCτ,ss)] and the maximum plasma concentration at steady state (C max,ss) in subjects of different ages or sexes were noted. The differences could be explained by a scaling factor between the drug applied and the plasma concentration. Following normalization by lean body weight or volume of distribution, an analysis of relative bioavailability resulted in 90 % confidence intervals of the ratios for AUCτ,ss and C max,ss for age (elderly to younger) or sex (male to female) falling within the range accepted for equivalence (80-125 %); without normalization, the 90 % confidence intervals were outside this range. Minor numerical differences in lacosamide plasma concentrations were noted in the comparison between male and female patients (aged 16-71 years) with focal epilepsy. Simulations using different body weights demonstrated a minimal effect of body weight on lacosamide plasma concentrations in adult patients with focal epilepsy. Age and sex had no relevant effects on the rates of absorption and elimination of lacosamide in this post hoc analysis, as the minor numerical differences could be explained by the main scaling factor for body weight or volume of distribution. The pharmacokinetic profile of lacosamide was unaffected by age or sex in adults with focal epilepsy.
Model-Based Therapeutic Correction of Hypothalamic-Pituitary-Adrenal Axis Dysfunction
Ben-Zvi, Amos; Vernon, Suzanne D.; Broderick, Gordon
2009-01-01
The hypothalamic-pituitary-adrenal (HPA) axis is a major system maintaining body homeostasis by regulating the neuroendocrine and sympathetic nervous systems as well modulating immune function. Recent work has shown that the complex dynamics of this system accommodate several stable steady states, one of which corresponds to the hypocortisol state observed in patients with chronic fatigue syndrome (CFS). At present these dynamics are not formally considered in the development of treatment strategies. Here we use model-based predictive control (MPC) methodology to estimate robust treatment courses for displacing the HPA axis from an abnormal hypocortisol steady state back to a healthy cortisol level. This approach was applied to a recent model of HPA axis dynamics incorporating glucocorticoid receptor kinetics. A candidate treatment that displays robust properties in the face of significant biological variability and measurement uncertainty requires that cortisol be further suppressed for a short period until adrenocorticotropic hormone levels exceed 30% of baseline. Treatment may then be discontinued, and the HPA axis will naturally progress to a stable attractor defined by normal hormone levels. Suppression of biologically available cortisol may be achieved through the use of binding proteins such as CBG and certain metabolizing enzymes, thus offering possible avenues for deployment in a clinical setting. Treatment strategies can therefore be designed that maximally exploit system dynamics to provide a robust response to treatment and ensure a positive outcome over a wide range of conditions. Perhaps most importantly, a treatment course involving further reduction in cortisol, even transient, is quite counterintuitive and challenges the conventional strategy of supplementing cortisol levels, an approach based on steady-state reasoning. PMID:19165314
Kapitza, Christoph; Nosek, Leszek; Jensen, Lene; Hartvig, Helle; Jensen, Christine B; Flint, Anne
2015-01-01
The effect of semaglutide, a once-weekly human glucagon-like peptide-1 (GLP-1) analog in development for type 2 diabetes (T2D), on the bioavailability of a combined oral contraceptive was investigated. Postmenopausal women with T2D (n = 43) on diet/exercise ± metformin received ethinylestradiol (0.03 mg)/levonorgestrel (0.15 mg) once daily for 8 days before (semaglutide-free) and during (steady-state 1.0 mg) semaglutide treatment (subcutaneous once weekly; dose escalation: 0.25 mg 4 weeks; 0.5 mg 4 weeks; 1.0 mg 5 weeks). Bioequivalence of oral contraceptives was established if 90%CI for the ratio of pharmacokinetic parameters during semaglutide steady-state and semaglutide-free periods was within prespecified limits (0.80–1.25). The bioequivalence criterion was met for ethinylestradiol area under the curve (AUC0–24 h) for semaglutide steady-state/semaglutide-free; 1.11 (1.06–1.15). AUC0–24 h was 20% higher for levonorgestrel at semaglutide steady-state vs. semaglutide-free (1.20 [1.15–1.26]). Cmax was within bioequivalence criterion for both contraceptives. Reductions (mean ± SD) in HbA1c (–1.1 ± 0.6%) and weight (–4.3 ± 3.1 kg) were observed. Semaglutide pharmacokinetics were compatible with once-weekly dosing; the semaglutide dose and dose-escalation regimen were well tolerated. Adverse events, mainly gastrointestinal, were mild to moderate in severity. Asymptomatic increases in mean amylase and lipase were observed. Three subjects had elevated alanine aminotransferase levels ≥3x the upper limit of normal during semaglutide/oral contraceptive coadministration, which were reported as adverse events, but resolved during follow-up. Semaglutide did not reduce the bioavailability of ethinylestradiol and levonorgestrel. PMID:25475122
Kapitza, Christoph; Nosek, Leszek; Jensen, Lene; Hartvig, Helle; Jensen, Christine B; Flint, Anne
2015-05-01
The effect of semaglutide, a once-weekly human glucagon-like peptide-1 (GLP-1) analog in development for type 2 diabetes (T2D), on the bioavailability of a combined oral contraceptive was investigated. Postmenopausal women with T2D (n = 43) on diet/exercise ± metformin received ethinylestradiol (0.03 mg)/levonorgestrel (0.15 mg) once daily for 8 days before (semaglutide-free) and during (steady-state 1.0 mg) semaglutide treatment (subcutaneous once weekly; dose escalation: 0.25 mg 4 weeks; 0.5 mg 4 weeks; 1.0 mg 5 weeks). Bioequivalence of oral contraceptives was established if 90%CI for the ratio of pharmacokinetic parameters during semaglutide steady-state and semaglutide-free periods was within prespecified limits (0.80-1.25). The bioequivalence criterion was met for ethinylestradiol area under the curve (AUC0-24 h ) for semaglutide steady-state/semaglutide-free; 1.11 (1.06-1.15). AUC0-24 h was 20% higher for levonorgestrel at semaglutide steady-state vs. semaglutide-free (1.20 [1.15-1.26]). Cmax was within bioequivalence criterion for both contraceptives. Reductions (mean ± SD) in HbA1c (-1.1 ± 0.6%) and weight (-4.3 ± 3.1 kg) were observed. Semaglutide pharmacokinetics were compatible with once-weekly dosing; the semaglutide dose and dose-escalation regimen were well tolerated. Adverse events, mainly gastrointestinal, were mild to moderate in severity. Asymptomatic increases in mean amylase and lipase were observed. Three subjects had elevated alanine aminotransferase levels ≥3x the upper limit of normal during semaglutide/oral contraceptive coadministration, which were reported as adverse events, but resolved during follow-up. Semaglutide did not reduce the bioavailability of ethinylestradiol and levonorgestrel. © 2015 The Authors. The Journal of Clinical Pharmacology Published by Wiley Periodicals, Inc. on behalf of American College of Clinical Pharmacology.
Projecting High Beta Steady-State Scenarios from DIII-D Advanced Tokamk Discharges
NASA Astrophysics Data System (ADS)
Park, J. M.
2013-10-01
Fusion power plant studies based on steady-state tokamak operation suggest that normalized beta in the range of 4-6 is needed for economic viability. DIII-D is exploring a range of candidate high beta scenarios guided by FASTRAN modeling in a repeated cycle of experiment and modeling validation. FASTRAN is a new iterative numerical procedure coupled to the Integrated Plasma Simulator (IPS) that integrates models of core transport, heating and current drive, equilibrium and stability self-consistently to find steady state (d / dt = 0) solutions, and reproduces most features of DIII-D high beta discharges with a stationary current profile. Separately, modeling components such as core transport (TGLF) and off-axis neutral beam current drive (NUBEAM) show reasonable agreement with experiment. Projecting forward to scenarios possible on DIII-D with future upgrades, two self-consistent noninductive scenarios at βN > 4 are found: high qmin and high internal inductance li. Both have bootstrap current fraction fBS > 0 . 5 and rely on the planned addition of a second off-axis neutral beamline and increased electron cyclotron heating. The high qmin > 2 scenario achieves stable operation at βN as high as 5 by a very broad current density profile to improve the ideal-wall stabilization of low-n instabilities along with confinement enhancement from low magnetic shear. The li near 1 scenario does not depend on ideal-wall stabilization. Improved confinement from strong magnetic shear makes up for the lower pedestal needed to maintain li high. The tradeoff between increasing li and reduced edge pedestal determines the achievable βN (near 4) and fBS (near 0.5). This modeling identifies the necessary upgrades to achieve target scenarios and clarifies the pros and cons of particular scenarios to better inform the development of steady-state fusion. Supported by the US Department of Energy under DE-AC05-00OR22725 & DE-FC02-04ER54698.
Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel
2016-01-01
Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization. PMID:27243005
Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel
2016-01-01
Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization.
NASA Astrophysics Data System (ADS)
Breden, Maxime; Castelli, Roberto
2018-05-01
In this paper, we present and apply a computer-assisted method to study steady states of a triangular cross-diffusion system. Our approach consist in an a posteriori validation procedure, that is based on using a fixed point argument around a numerically computed solution, in the spirit of the Newton-Kantorovich theorem. It allows to prove the existence of various non homogeneous steady states for different parameter values. In some situations, we obtain as many as 13 coexisting steady states. We also apply the a posteriori validation procedure to study the linear stability of the obtained steady states, proving that many of them are in fact unstable.
Low-dimensional Representation of Error Covariance
NASA Technical Reports Server (NTRS)
Tippett, Michael K.; Cohn, Stephen E.; Todling, Ricardo; Marchesin, Dan
2000-01-01
Ensemble and reduced-rank approaches to prediction and assimilation rely on low-dimensional approximations of the estimation error covariances. Here stability properties of the forecast/analysis cycle for linear, time-independent systems are used to identify factors that cause the steady-state analysis error covariance to admit a low-dimensional representation. A useful measure of forecast/analysis cycle stability is the bound matrix, a function of the dynamics, observation operator and assimilation method. Upper and lower estimates for the steady-state analysis error covariance matrix eigenvalues are derived from the bound matrix. The estimates generalize to time-dependent systems. If much of the steady-state analysis error variance is due to a few dominant modes, the leading eigenvectors of the bound matrix approximate those of the steady-state analysis error covariance matrix. The analytical results are illustrated in two numerical examples where the Kalman filter is carried to steady state. The first example uses the dynamics of a generalized advection equation exhibiting nonmodal transient growth. Failure to observe growing modes leads to increased steady-state analysis error variances. Leading eigenvectors of the steady-state analysis error covariance matrix are well approximated by leading eigenvectors of the bound matrix. The second example uses the dynamics of a damped baroclinic wave model. The leading eigenvectors of a lowest-order approximation of the bound matrix are shown to approximate well the leading eigenvectors of the steady-state analysis error covariance matrix.
Antioxidant pool in beer and kinetics of EPR spin-trapping.
Kocherginsky, Nikolai M; Kostetski, Yuri Yu; Smirnov, Alex I
2005-08-24
The kinetics of spin-trap adduct formation in beer oxidation exhibits an induction period if the reaction is carried out at elevated temperatures and in the presence of air. This lag period lasts until the endogenous antioxidants are almost completely depleted, and its duration is used as an indicator of the flavor stability and shelf life of beer. This paper demonstrates that the total kinetics of the process can be characterized by three parameters-the lag period, the rate of spin-trap adduct formation, and, finally, the steady-state spin-adduct concentration. A steady-state chain reaction mechanism is described, and quantitative estimates of the main kinetic parameters such as the initiation rate, antioxidant pool, effective content of organic molecules participating in the chain reactions, and the rate constant of the 1-hydroxyethyl radical EtOH(*) spin-adduct disappearance are given. An additional new dimensionless parameter is suggested to characterize the antioxidant pool-the product of the lag time and the rate of spin-trap radical formation immediately after the lag time, normalized by the steady-state concentration of the adducts. The results of spin-tapping EPR experiments are compared with the nitroxide reduction kinetics measured in the same beer samples. It is shown that although the kinetics of nitroxide reduction in beer can be used to evaluate the reducing power of beer, the latter parameter does not correlate with the antioxidant pool. The relationship of free radical processes, antioxidant pool, reducing power, and beer staling is discussed.
Guo, Zhi-Ping; Wang, Tao; Xu, Lan-Ping; Zhang, Xiao-Hui; Wang, Yu; Huang, Xiao-Jun; Chang, Ying-Jun
2016-12-01
A second allogeneic hematopoietic stem-cell transplantation and donor lymphocyte infusion using cells from the same donor is a therapeutic option in the case of stem-cell graft failure or disease relapse, but little is known about the factors associated with the CD34 + cell yields from second donations. One-hundred healthy donors who underwent a second mobilization treatment and peripheral blood stem-cell (PBSC) collection were studied. For both mobilization processes, 5 µg of granulocyte colony-stimulating factor per kg per day was administered. The blood counts of the donors were monitored during the processes. The second donations from the same donors provided lower apheresis yields than did the initial collections. The number of CD34 + cells collected from normal donors after a second cycle of PBSC mobilization was associated with their steady-state lymphocyte counts and the intertransplantation interval. Female sex negatively affected the CD34 + cell yields. The cutoff value for the steady-state absolute lymphocyte count was 2.055 × 10 9 /L. To harvest greater numbers of CD34 + cells from second collections, male donors and those with intervals of longer than 9 months between donations should be selected. The lymphocyte counts prior to the first donations may predict the content of CD34 + cells in the allografts prepared using the second donations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lee, Ae-Ri Cho; Moon, Hee Kyung
2007-11-01
A thermal gravimetric analysis (TGA) and a differential scanning calorimetry (DSC) were carried out to characterize the water property and an alteration of lipid phase transition of stratum corneum (SC) by glycerin. In addition, the relationship between steady state skin permeation rate and skin hydration in various concentrations of glycerin was investigated. Water vapor absorption-desorption was studied in the hairless mouse stratum corneum. Dry SC samples were exposed to different conc. of glycerin (0-50%) followed by exposure to dry air and the change in weight property was monitored over time by use of TGA. In DSC study, significant decrease in DeltaH of the lipid transition in 10% glycerin and water treated sample: the heat of lipid transition of normal, water, 10% glycerin treated SC were 6.058, 4.412 and 4.316 mJ/mg, respectively. In 10% glycerin treated SCs, the Tc of water shifts around 129 degrees C, corresponding to the weakly bound secondary water. In 40% glycerin treated SC, the Tc of water shifts to 144 degrees C corresponding to strongly bound primary water. There was a good correlation between the hydration property of the skin and the steady state skin flux with the correlation coefficient (r2=0.94). As the hydration increased, the steady state flux increased. As glycerin concentration increased, hydration property decreased. High diffusivity induced by the hydration effect of glycerin and water could be the major contributing factor for the enhanced skin permeation of nicotinic acid (NA).
NASA Astrophysics Data System (ADS)
Moreau, D.; Artaud, J. F.; Ferron, J. R.; Holcomb, C. T.; Humphreys, D. A.; Liu, F.; Luce, T. C.; Park, J. M.; Prater, R.; Turco, F.; Walker, M. L.
2015-06-01
This paper shows that semi-empirical data-driven models based on a two-time-scale approximation for the magnetic and kinetic control of advanced tokamak (AT) scenarios can be advantageously identified from simulated rather than real data, and used for control design. The method is applied to the combined control of the safety factor profile, q(x), and normalized pressure parameter, βN, using DIII-D parameters and actuators (on-axis co-current neutral beam injection (NBI) power, off-axis co-current NBI power, electron cyclotron current drive power, and ohmic coil). The approximate plasma response model was identified from simulated open-loop data obtained using a rapidly converging plasma transport code, METIS, which includes an MHD equilibrium and current diffusion solver, and combines plasma transport nonlinearity with 0D scaling laws and 1.5D ordinary differential equations. The paper discusses the results of closed-loop METIS simulations, using the near-optimal ARTAEMIS control algorithm (Moreau D et al 2013 Nucl. Fusion 53 063020) for steady state AT operation. With feedforward plus feedback control, the steady state target q-profile and βN are satisfactorily tracked with a time scale of about 10 s, despite large disturbances applied to the feedforward powers and plasma parameters. The robustness of the control algorithm with respect to disturbances of the H&CD actuators and of plasma parameters such as the H-factor, plasma density and effective charge, is also shown.
The study of dynamic response to acute hemorrhage by pulse spectrum analysis.
Chang, Yu Hsin; Tsai, Chia I; Lin, Jaung Geng; Lin, Yue Der; Li, Tsai Chung; Su, Yi Chang
2006-01-01
Traditional Chinese Medicine (TCM) holds that blood and qi are fundamental substances in the human body for sustaining normal vital activity. The theory of qi, blood and zang-fu contribute the most important theoretical basis of human physiology in TCM. An animal model using conscious rats was employed in this study to further comprehend how organisms survive during acute hemorrhage by maintaining the functionalities of qi and blood through dynamically regulating visceral physiological conditions. Pulse waves of arterial blood pressure before and after the hemorrhage were taken in parallel to pulse spectrum analysis. Percentage differences of mean arterial blood pressure and harmonics were recorded in subsequent 5-minute intervals following the hemorrhage. Data were analyzed using a one-way analysis of variance (ANOVA) with Duncan's test for pairwise comparisons. Results showed that, within 30 minutes following the onset of acute hemorrhage,the reduction of mean arterial blood pressure was improved from 62% to 20%. Throughout the process, changes to the pulse spectrum appeared to result in a new balance over time. The percentage differences of the second and third harmonics, which were related to kidney and spleen, both increased significantly than baseline and towards another steady state. Apart from the steady state resulting from the previous stage, the percentage difference of the 4th harmonic decreased significantly to another steady state. The observed change could be attributed to the induction of functional qi, and is a result of qi-blood balancing activity that organisms hold to survive against acute bleeding.
Size effect and cylinder test on several commercial explosives
NASA Astrophysics Data System (ADS)
Souers, P. Clark; Lauderbach, Lisa; Moua, Kou; Garza, Raul
2012-03-01
Some size (diameter) effect and the Cylinder test results for Kinepak (ammonium nitrate/nitromethane), Semtex 1, Semtex H and urea nitrate are presented. Cylinder test data appears normal despite faster sound speeds in the copper wall. Most explosives come to steady state in the Cylinder test as expected, but Kinepak shows a steadily increasing wall velocity with distance down the cylinder. Some data on powder densities as a function of loading procedure are also given.
A 100-kW metal wind turbine blade basic data, loads and stress analysis
NASA Technical Reports Server (NTRS)
Cherritt, A. W.; Gaidelis, J. A.
1975-01-01
A rotor loads computer program was used to define the steady state and cyclic loads acting on 60 ft long metal blades designed for the ERDA/NASA 100 kW wind turbine. Blade load and stress analysis used to support the structural design are presented. For the loading conditions examined, the metal blades are structurally adequate for use, within the normal operating range, as part of the wind turbine system.
Waugh, W. H.; Daeschner, C. W.; Files, B. A.; McConnell, M. E.; Strandjord, S. E.
2001-01-01
L-Arginine may be a conditionally essential amino acid in children and adolescents with sickle cell disease, particularly as required substrate in the arginine-nitric oxide pathway for endogenous nitrovasodilation and vasoprotection. Vasoprotection by arginine is mediated partly by nitric oxide-induced inhibition of endothelial damage and inhibition of adhesion and activation of leukocytes. Activated leukocytes may trigger many of the complications, including vasoocclusive events and intimal hyperplasias. High blood leukocyte counts during steady states in the absence of infection are significant laboratory risk factors for adverse complications. L-Citrulline as precursor amino acid was given orally twice daily in daily doses of approximately 0.1 g/kg in a pilot Phase II clinical trial during steady states in four homozygous sickle cell disease subjects and one sickle cell-hemoglobin C disease patient (ages 10-18). There soon resulted dramatic improvements in symptoms of well-being, raised plasma arginine levels, and reductions in high total leukocyte and high segmented neutrophil counts toward or to within normal limits. Continued L-citrulline supplementation in compliant subjects continued to lessen symptomatology, to maintain plasma arginine concentrations greater than control levels, and to maintain nearly normal total leukocyte and neutrophil counts. Side effects or toxicity from citrulline were not experienced. Oral L-citrulline may portend very useful for palliative therapy in sickle cell disease. Placebo-controlled, long-term trials are now indicated. PMID:11688916
Waugh, W H; Daeschner, C W; Files, B A; McConnell, M E; Strandjord, S E
2001-10-01
L-Arginine may be a conditionally essential amino acid in children and adolescents with sickle cell disease, particularly as required substrate in the arginine-nitric oxide pathway for endogenous nitrovasodilation and vasoprotection. Vasoprotection by arginine is mediated partly by nitric oxide-induced inhibition of endothelial damage and inhibition of adhesion and activation of leukocytes. Activated leukocytes may trigger many of the complications, including vasoocclusive events and intimal hyperplasias. High blood leukocyte counts during steady states in the absence of infection are significant laboratory risk factors for adverse complications. L-Citrulline as precursor amino acid was given orally twice daily in daily doses of approximately 0.1 g/kg in a pilot Phase II clinical trial during steady states in four homozygous sickle cell disease subjects and one sickle cell-hemoglobin C disease patient (ages 10-18). There soon resulted dramatic improvements in symptoms of well-being, raised plasma arginine levels, and reductions in high total leukocyte and high segmented neutrophil counts toward or to within normal limits. Continued L-citrulline supplementation in compliant subjects continued to lessen symptomatology, to maintain plasma arginine concentrations greater than control levels, and to maintain nearly normal total leukocyte and neutrophil counts. Side effects or toxicity from citrulline were not experienced. Oral L-citrulline may portend very useful for palliative therapy in sickle cell disease. Placebo-controlled, long-term trials are now indicated.
Janky, Kristen L.; Zuniga, M. Geraldine; Schubert, Michael C; Carey, John P
2014-01-01
Objective To determine if vestibular evoked myogenic potential (VEMP) responses change during inversion in patients with superior canal dehiscence syndrome (SCDS) compared to controls. Methods Sixteen subjects with SCDS (mean: 43, range 30–57 years) and 15 age-matched, healthy subjects (mean: 41, range 22–57 years) completed cervical VEMP (cVEMP) in response to air conduction click stimuli and ocular VEMP (oVEMP) in response to air conduction 500 Hz tone burst stimuli and midline tap stimulation. All VEMP testing was completed in semi-recumbent and inverted conditions. Results SCDS ears demonstrated significantly larger oVEMP peak-to-peak amplitudes in comparison to normal ears in semi-recumbency. While corrected cVEMP peak-to-peak amplitudes were larger in SCDS ears; this did not reach significance in our sample. Overall, there was not a differential change in o- or cVEMP amplitude with inversion between SCDS and normal subjects. Conclusions Postural-induced changes in o- and cVEMP responses were measured in the steady state regardless of whether the labyrinth was intact or dehiscent. Significance VEMP responses are blunted during inversion. Although steady-state measurements of VEMPs during inversion do not increase diagnostic accuracy for SCDS, the findings suggest that inversion may provide more general insights into the equilibration of pressures between intracranial and intralabyrinthine fluids. PMID:25103787
Cerebral regulatory T cells restrain microglia/macrophage-mediated inflammatory responses via IL-10
Xie, Luokun; Choudhury, Gourav Roy; Winters, Ali; Yang, Shao-Hua; Jin, Kunlin
2014-01-01
Forkhead box P3 (Foxp3)+ regulatory T (Treg) cells maintain the immune tolerance and prevent inflammatory responses in the periphery. However, the presence of Treg cells in the central nervous system under steady state has not been studied. Here, for the first time, we show a substantial TCRαβ+CD4+Foxp3+ T-cell population (cerebral Treg cells) in the normal rat cerebrum, constituting more than 15% of the cerebral CD4+ T-cell compartment. Cerebral Treg cells showed an activated/memory phenotype and expressed many Treg-cell signature genes at higher levels than peripheral Treg cells. Consistent with their activated/memory phenotype, cerebral Treg cells robustly restrained the LPS-induced inflammatory responses of brain microglia/macrophages, suggesting a role in maintaining the cerebral homeostasis by inhibiting the neuroinflammation. In addition, brain astrocytes were the helper cells that sustained Foxp3 expression in Treg cells through IL-2/STAT5 signaling, showing that the interaction between astrocytes and Treg cells contributes to the maintenance of Treg-cell identity in the brain. Taken together, our work represents the first study to characterize the phenotypic and functional features of Treg cells in the normal rat cerebrum. Our data have provided a novel insight for the contribution of Treg cells to the immunosurveillance and immunomodulation in the cerebrum under steady state. PMID:25329858
Contribution of highway capital to industry and national productivity growth
DOT National Transportation Integrated Search
1973-10-01
The report contains the authors initial efforts aimed at extending the steady state freeway model for optimizing freeway traffic flow to a non-steady state model. The steady-state model does not allow reaction to continuously changing conditions whic...
Kinetic parameters of rubidium transport pathways are normal in cystic fibrosis red cells.
Joiner, C H
1988-10-01
The abnormalities in ion transport in cystic fibrosis (CF) respiratory and sweat duct epithelia have prompted studies of ion permeability in CF red blood cells (RBC) although previous reports have been contradictory. In this study, the kinetic characteristics of the three major cation transport systems in RBC were evaluated by measuring rubidium (Rb) uptake at various external Rb concentrations. The maximal velocity and affinity for external Rb (K1/2) of the NaK pump were normal in CF RBC, as were the maximal velocity and Km for Rb of the NaK cotransport system. Residual (ouabain and bumetanide insensitive) Rb uptake, and steady state RBC Na and K contents were also normal. These data indicate the NaK pump and cotransport system do not exhibit primary or secondary perturbations in CF RBC, and suggest that the noncarrier-mediated membrane permeability to cations is also normal in these cells.
NASA Technical Reports Server (NTRS)
Pellett, G.; Kabaria, A.; Panigrahi, B.; Sammons, K.; Convery, J.; Wilson, L.
2005-01-01
This study of laminar non-premixed HC-air flames used an Oscillatory-input Opposed Jet Burner (OOJB) system developed from a previously well-characterized 7.2-mm Pyrex-nozzle OJB system. Over 600 dynamic Flame Strength (FS) measurements were obtained on unanchored (free-floating) laminar Counterflow Diffusion Flames (CFDF's). Flames were stabilized using plug inflows having steady-plus-sinusoidal axial velocities of varied magnitude, frequency, f, up to 1600 Hz, and phase angle from 0 (most data) to 360 degrees. Dynamic FS is defined as the maximum average air input velocity (U(sub air), at nozzle exit) a CFDF can sustain before strain-induced extinction occurs due to prescribed oscillatory peak-to-peak velocity inputs superimposed on steady inputs. Initially, dynamic flame extinction data were obtained at low f, and were supported by 25-120 Hz Hot-Wire cold-flow velocity data at nozzle exits. Later, expanded extinction data were supported by 4-1600 Hz Probe Microphone (PM) pk/pk P data at nozzle exits. The PM data were first obtained without flows, and later with cold stagnating flows, which better represent speaker-diaphragm dynamics during runs. The PM approach enabled characterizations of Dynamic Flame Weakening (DFW) of CFDF's from 8 to 1600 Hz. DFW was defined as % decrease in FS per Pascal of pk/pk P oscillation, namely, DFW = - 100 d(U(sub air) / U(sub air),0Hz) / d(pkpk P). The linear normalization with respect to acoustic pressure magnitude (and steady state (SS) FS) led to a DFW unaffected by strong internal resonances. For the C2H4/N2-air system, from 8 to 20 Hz, DFW is constant at 8.52 plus or minus 0.20 (% weakening)/Pa. This reflects a quasi-steady flame response to an acoustically induced dU(sub air)/dP. Also, it is surprisingly independent of C2H4/N2 mole fraction due to normalization by SS FS. From 20 to approximately 150 Hz, the C2H4/N2 air-flames weakened progressively less, with an inflection at approximately 70 Hz, and became asymptotically insensitive (DFW approximately 0) at approximately 300 Hz, which continued to 1600 Hz. The DFW of CH4-air flames followed a similar pattern, but showed much greater weakening than C2H4/N2-air flames; i.e., the quasi-steady DFW (8 to approximately 15 Hz) was 44.3 %/Pa, or approximately 5x larger, even though the 0 Hz (SS) FS was only 3.0 x smaller. The quasi-steady DFW's of C3H8-air and C2H6-air were intermediate at 34.8 and 20.9 %Pa, respectively. The DFW profiles of all four fuels, at various frequencies, correlated well but non-linearly with respective SS FS's. Notably, the DFW profile for C3H8 air fell more rapidly in the range greater than 15 to 60 Hz, compared with the 1- and 2-carbon fuels. This may indicate a shift in chemical kinetics, and/or O2 transport to a flame that moved closer to the fuel-side. In conclusion, Dynamic Flame Weakening limits appear significant and unique for each fuel, and correlate closely, but non-linearly, with Steady-State Flame Strengths at any given frequency. For reasons unknown, the dynamic flames didn't weaken more at intermediate frequencies (e.g., at 20-50 Hz) than they did at low frequencies (less than 15 Hz), where quasi-steady weakening appears to dominate. Quasi-steady flame weakening ostensibly represents a transient input strain rate maximum that just exceeds the steady-state strain-rate-limited extinction limit for a few cycles. Clearly, further detailed mechanistic understanding is needed in the fall-off region.
Entropy considerations applied to shock unsteadiness in hypersonic inlets
NASA Astrophysics Data System (ADS)
Bussey, Gillian Mary Harding
The stability of curved or rectangular shocks in hypersonic inlets in response to flow perturbations can be determined analytically from the principle of minimum entropy. Unsteady shock wave motion can have a significant effect on the flow in a hypersonic inlet or combustor. According to the principle of minimum entropy, a stable thermodynamic state is one with the lowest entropy gain. A model based on piston theory and its limits has been developed for applying the principle of minimum entropy to quasi-steady flow. Relations are derived for analyzing the time-averaged entropy gain flux across a shock for quasi-steady perturbations in atmospheric conditions and angle as a perturbation in entropy gain flux from the steady state. Initial results from sweeping a wedge at Mach 10 through several degrees in AEDC's Tunnel 9 indicates the bow shock becomes unsteady near the predicted normal Mach number. Several curved shocks of varying curvature are compared to a straight shock with the same mean normal Mach number, pressure ratio, or temperature ratio. The present work provides analysis and guidelines for designing an inlet robust to off- design flight or perturbations in flow conditions an inlet is likely to face. It also suggests that inlets with curved shocks are less robust to off-design flight than those with straight shocks such as rectangular inlets. Relations for evaluating entropy perturbations for highly unsteady flow across a shock and limits on their use were also developed. The normal Mach number at which a shock could be stable to high frequency upstream perturbations increases as the speed of the shock motion increases and slightly decreases as the perturbation size increases. The present work advances the principle of minimum entropy theory by providing additional validity for using the theory for time-varying flows and applying it to shocks, specifically those in inlets. While this analytic tool is applied in the present work for evaluating the stability of shocks in hypersonic inlets, it can be used for an arbitrary application with a shock.
NASA Technical Reports Server (NTRS)
Haut, R. C.; Adcock, J. B.
1976-01-01
The steady normal shock wave solutions of parahydrogen at various total pressures and total temperatures were numerically determined by iterating the upstream Mach number and by using a modified interval halving technique. The results obtained are compared with the ideal diatomic gas values and are presented in tabulated form.
Critical threshold behavior for steady-state internal transport barriers in burning plasmas.
García, J; Giruzzi, G; Artaud, J F; Basiuk, V; Decker, J; Imbeaux, F; Peysson, Y; Schneider, M
2008-06-27
Burning tokamak plasmas with internal transport barriers are investigated by means of integrated modeling simulations. The barrier sustainment in steady state, differently from the barrier formation process, is found to be characterized by a critical behavior, and the critical number of the phase transition is determined. Beyond a power threshold, alignment of self-generated and noninductively driven currents occurs and steady state becomes possible. This concept is applied to simulate a steady-state scenario within the specifications of the International Thermonuclear Experimental Reactor.
Shaparin, Naum; Mehta, Neel; Kunkel, Frank; Stripp, Richard; Borg, Damon; Kolb, Elizabeth
2017-11-01
Interpretation limitations of urine drug testing and the invasiveness of blood toxicology have motivated the desire for the development of simpler methods to assess biologically active drug levels on an individualized patient basis. Oral fluid is a matrix well-suited for the challenge because collections are based on simple noninvasive procedures and drug concentrations better correlate to blood drug levels as oral fluid is a filtrate of the blood. Well-established pharmacokinetic models were utilized to generate oral fluid steady state concentration ranges to assess the interpretive value of the alternative matrix to monitor steady state plasma oxycodone levels. Paired oral fluid and plasma samples were collected from patients chronically prescribed oxycodone and quantitatively analyzed by liquid chromatography tandem mass spectrometry. Steady state plasma concentration ranges were calculated for each donor and converted to an equivalent range in oral fluid. Measured plasma and oral fluid oxycodone concentrations were compared with respective matrix-matched steady state ranges, using each plasma steady state classification as the control. A high degree of correlation was observed between matrices when classifying donors according to expected steady state oxycodone concentration. Agreement between plasma and oral fluid steady state classifications was observed in 75.6% of paired samples. This study supports novel application of basic pharmacokinetic knowledge to the pain management industry, simplifying and improving individualized drug monitoring and risk assessment through the use of oral fluid drug testing. Many benefits of established therapeutic drug monitoring in plasma can be realized in oral fluid for patients chronically prescribed oxycodone at steady state. © 2017 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Changes in aerodynamics during vocal cord dysfunction.
Frank-Ito, Dennis O; Schulz, Kristine; Vess, Gina; Witsell, David L
2015-02-01
Changes in laryngeal airflow dynamics during episodes of vocal cord dysfunction (VCD) have not been well described. Very little is known about how inspiratory airflow is impacted when the vocal cords transition from normal inhalation state to a paradoxical adducted state; and how much change in laryngeal airflow and resistance occur before symptoms of stridor and air hunger emerge. This study provides new insight on the effects of VCD on respiratory airflow using computational fluid dynamics (CFD) techniques. Computed tomography images of a subject with normal vocal cords opening at the time of scanning were digitally modified to mimic an episode of VCD. To quantify and compare changes in inspiratory flow during VCD attack and normal inhalation, steady-state, laminar simulations were performed for three different breathing rates. Pressure-flow analysis during VCD revealed that increasing inspiratory effort is not as efficient as in normal inhalation. Airflow resistance at the epiglottis was higher in the normal state (0.04Pa.s/mL versus 0.02Pa.s/mL) than in VCD; while resistance at the glottis and trachea remained roughly the same (0.04Pa.s/mL) during normal inhalation, it escalated during VCD (0.11Pa.s/mL and 0.13Pa.s/mL at the glottis and trachea, respectively). Peak airflow velocity and vorticity occurred around the glottis during VCD, and at the epiglottis during normal inhalation. This pilot study demonstrates that attempting to force more inspired air will yield greater glottal resistance during VCD. Furthermore, there were evidence of abrupt laryngeal pressure gradient, chaotic airflow and high concentration of shear stresses in the glottal region. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Litt, Jonathan S.
2010-01-01
This paper presents an algorithm that automatically identifies and extracts steady-state engine operating points from engine flight data. It calculates the mean and standard deviation of select parameters contained in the incoming flight data stream. If the standard deviation of the data falls below defined constraints, the engine is assumed to be at a steady-state operating point, and the mean measurement data at that point are archived for subsequent condition monitoring purposes. The fundamental design of the steady-state data filter is completely generic and applicable for any dynamic system. Additional domain-specific logic constraints are applied to reduce data outliers and variance within the collected steady-state data. The filter is designed for on-line real-time processing of streaming data as opposed to post-processing of the data in batch mode. Results of applying the steady-state data filter to recorded helicopter engine flight data are shown, demonstrating its utility for engine condition monitoring applications.
Transformer induced instability of the series resonant converter
NASA Technical Reports Server (NTRS)
King, R. J.; Stuart, T. A.
1983-01-01
It is shown that the common series resonant power converter is subject to a low frequency oscillation that can lead to the loss of cyclic stability. This oscillation is caused by a low frequency resonant circuit formed by the normal L and C components in series with the magnetizing inductance of the output transformer. Three methods for eliminating this oscillation are presented and analyzed. One of these methods requires a change in the circuit topology during the resonance cycle. This requires a new set of steady state equations which are derived and presented in a normalized form. Experimental results are included which demonstrate the nature of the low frequency oscillation before cyclic stability is lost.
Fiedler, Anna; Raeth, Sebastian; Theis, Fabian J; Hausser, Angelika; Hasenauer, Jan
2016-08-22
Ordinary differential equation (ODE) models are widely used to describe (bio-)chemical and biological processes. To enhance the predictive power of these models, their unknown parameters are estimated from experimental data. These experimental data are mostly collected in perturbation experiments, in which the processes are pushed out of steady state by applying a stimulus. The information that the initial condition is a steady state of the unperturbed process provides valuable information, as it restricts the dynamics of the process and thereby the parameters. However, implementing steady-state constraints in the optimization often results in convergence problems. In this manuscript, we propose two new methods for solving optimization problems with steady-state constraints. The first method exploits ideas from optimization algorithms on manifolds and introduces a retraction operator, essentially reducing the dimension of the optimization problem. The second method is based on the continuous analogue of the optimization problem. This continuous analogue is an ODE whose equilibrium points are the optima of the constrained optimization problem. This equivalence enables the use of adaptive numerical methods for solving optimization problems with steady-state constraints. Both methods are tailored to the problem structure and exploit the local geometry of the steady-state manifold and its stability properties. A parameterization of the steady-state manifold is not required. The efficiency and reliability of the proposed methods is evaluated using one toy example and two applications. The first application example uses published data while the second uses a novel dataset for Raf/MEK/ERK signaling. The proposed methods demonstrated better convergence properties than state-of-the-art methods employed in systems and computational biology. Furthermore, the average computation time per converged start is significantly lower. In addition to the theoretical results, the analysis of the dataset for Raf/MEK/ERK signaling provides novel biological insights regarding the existence of feedback regulation. Many optimization problems considered in systems and computational biology are subject to steady-state constraints. While most optimization methods have convergence problems if these steady-state constraints are highly nonlinear, the methods presented recover the convergence properties of optimizers which can exploit an analytical expression for the parameter-dependent steady state. This renders them an excellent alternative to methods which are currently employed in systems and computational biology.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-state duty cycles, including ramped-modal testing? 1039.505 Section 1039.505 Protection of Environment... duty cycles, including ramped-modal testing? This section describes how to test engines under steady-state conditions. In some cases, we allow you to choose the appropriate steady-state duty cycle for an...
The Markov process admits a consistent steady-state thermodynamic formalism
NASA Astrophysics Data System (ADS)
Peng, Liangrong; Zhu, Yi; Hong, Liu
2018-01-01
The search for a unified formulation for describing various non-equilibrium processes is a central task of modern non-equilibrium thermodynamics. In this paper, a novel steady-state thermodynamic formalism was established for general Markov processes described by the Chapman-Kolmogorov equation. Furthermore, corresponding formalisms of steady-state thermodynamics for the master equation and Fokker-Planck equation could be rigorously derived in mathematics. To be concrete, we proved that (1) in the limit of continuous time, the steady-state thermodynamic formalism for the Chapman-Kolmogorov equation fully agrees with that for the master equation; (2) a similar one-to-one correspondence could be established rigorously between the master equation and Fokker-Planck equation in the limit of large system size; (3) when a Markov process is restrained to one-step jump, the steady-state thermodynamic formalism for the Fokker-Planck equation with discrete state variables also goes to that for master equations, as the discretization step gets smaller and smaller. Our analysis indicated that general Markov processes admit a unified and self-consistent non-equilibrium steady-state thermodynamic formalism, regardless of underlying detailed models.
A NURBS-enhanced finite volume solver for steady Euler equations
NASA Astrophysics Data System (ADS)
Meng, Xucheng; Hu, Guanghui
2018-04-01
In Hu and Yi (2016) [20], a non-oscillatory k-exact reconstruction method was proposed towards the high-order finite volume methods for steady Euler equations, which successfully demonstrated the high-order behavior in the simulations. However, the degeneracy of the numerical accuracy of the approximate solutions to problems with curved boundary can be observed obviously. In this paper, the issue is resolved by introducing the Non-Uniform Rational B-splines (NURBS) method, i.e., with given discrete description of the computational domain, an approximate NURBS curve is reconstructed to provide quality quadrature information along the curved boundary. The advantages of using NURBS include i). both the numerical accuracy of the approximate solutions and convergence rate of the numerical methods are improved simultaneously, and ii). the NURBS curve generation is independent of other modules of the numerical framework, which makes its application very flexible. It is also shown in the paper that by introducing more elements along the normal direction for the reconstruction patch of the boundary element, significant improvement in the convergence to steady state can be achieved. The numerical examples confirm the above features very well.
Aeroelastic Stability of Rotor Blades Using Finite Element Analysis
NASA Technical Reports Server (NTRS)
Chopra, I.; Sivaneri, N.
1982-01-01
The flutter stability of flap bending, lead-lag bending, and torsion of helicopter rotor blades in hover is investigated using a finite element formulation based on Hamilton's principle. The blade is divided into a number of finite elements. Quasi-steady strip theory is used to evaluate the aerodynamic loads. The nonlinear equations of motion are solved for steady-state blade deflections through an iterative procedure. The equations of motion are linearized assuming blade motion to be a small perturbation about the steady deflected shape. The normal mode method based on the coupled rotating natural modes is used to reduce the number of equations in the flutter analysis. First the formulation is applied to single-load-path blades (articulated and hingeless blades). Numerical results show very good agreement with existing results obtained using the modal approach. The second part of the application concerns multiple-load-path blades, i.e. bearingless blades. Numerical results are presented for several analytical models of the bearingless blade. Results are also obtained using an equivalent beam approach wherein a bearingless blade is modelled as a single beam with equivalent properties. Results show the equivalent beam model.
Macroscopic response in active nonlinear photonic crystals.
Alagappan, Gandhi; John, Sajeev; Li, Er Ping
2013-09-15
We derive macroscopic equations of motion for the slowly varying electric field amplitude in three-dimensional active nonlinear optical nanostructures. We show that the microscopic Maxwell equations and polarization dynamics can be simplified to a macroscopic one-dimensional problem in the direction of group velocity. For a three-level active material, we derive the steady-state equations for normal mode frequency, threshold pumping, nonlinear Bloch mode amplitude, and lasing in photonic crystals. Our analytical results accurately recapture the results of exact numerical methods.
Regulating billions of blood platelets: glycans and beyond
Grozovsky, Renata; Giannini, Silvia; Falet, Hervé
2015-01-01
The human body produces and removes 1011 platelets daily to maintain a normal steady state platelet count. Platelet production must be regulated to avoid spontaneous bleeding or arterial occlusion and organ damage. Multifaceted and complex mechanisms control platelet production and removal in physiological and pathological conditions. This review will focus on different mechanisms of platelet senescence and clearance with specific emphasis on the role of posttranslational modifications. It will also briefly address platelet transfusion and the role of glycans in the clearance of stored platelets. PMID:26330242
Cold starting of fluorescent lamps - part I: a description of the transient regime
NASA Astrophysics Data System (ADS)
Langer, Reinhard; Garner, Richard; Paul, Irina; Horn, Siegfried; Tidecks, Reinhard
2016-10-01
In this paper we give a proposal for the transient behaviour of a cold-started fluorescent lamp, from the generation of the first conductive channel over the normal and abnormal glow discharge and the glow-to-arc (GTA) transition to the arc discharge in the steady state. Starting from the equilibrium voltage-current characteristics of the lamp and considering recent experimental results a qualitative description of the transient regime is developed, which was so far not available in the literature.
Stabilization of a spatially uniform steady state in two systems exhibiting Turing patterns
NASA Astrophysics Data System (ADS)
Konishi, Keiji; Hara, Naoyuki
2018-05-01
This paper deals with the stabilization of a spatially uniform steady state in two coupled one-dimensional reaction-diffusion systems with Turing instability. This stabilization corresponds to amplitude death that occurs in a coupled system with Turing instability. Stability analysis of the steady state shows that stabilization does not occur if the two reaction-diffusion systems are identical. We derive a sufficient condition for the steady state to be stable for any length of system and any boundary conditions. Our analytical results are supported with numerical examples.
Pseudo-compressibility methods for the incompressible flow equations
NASA Technical Reports Server (NTRS)
Turkel, Eli; Arnone, A.
1993-01-01
Preconditioning methods to accelerate convergence to a steady state for the incompressible fluid dynamics equations are considered. The analysis relies on the inviscid equations. The preconditioning consists of a matrix multiplying the time derivatives. Thus the steady state of the preconditioned system is the same as the steady state of the original system. The method is compared to other types of pseudo-compressibility. For finite difference methods preconditioning can change and improve the steady state solutions. An application to viscous flow around a cascade with a non-periodic mesh is presented.
Quantum thermodynamics of nanoscale steady states far from equilibrium
NASA Astrophysics Data System (ADS)
Taniguchi, Nobuhiko
2018-04-01
We develop an exact quantum thermodynamic description for a noninteracting nanoscale steady state that couples strongly with multiple reservoirs. We demonstrate that there exists a steady-state extension of the thermodynamic function that correctly accounts for the multiterminal Landauer-Büttiker formula of quantum transport of charge, energy, or heat via the nonequilibrium thermodynamic relations. Its explicit form is obtained for a single bosonic or fermionic level in the wide-band limit, and corresponding thermodynamic forces (affinities) are identified. Nonlinear generalization of the Onsager reciprocity relations are derived. We suggest that the steady-state thermodynamic function is also capable of characterizing the heat current fluctuations of the critical transport where the thermal fluctuations dominate. Also, the suggested nonequilibrium steady-state thermodynamic relations seemingly persist for a spin-degenerate single level with local interaction.
Wang, Yi Kan; Hurley, Daniel G.; Schnell, Santiago; Print, Cristin G.; Crampin, Edmund J.
2013-01-01
We develop a new regression algorithm, cMIKANA, for inference of gene regulatory networks from combinations of steady-state and time-series gene expression data. Using simulated gene expression datasets to assess the accuracy of reconstructing gene regulatory networks, we show that steady-state and time-series data sets can successfully be combined to identify gene regulatory interactions using the new algorithm. Inferring gene networks from combined data sets was found to be advantageous when using noisy measurements collected with either lower sampling rates or a limited number of experimental replicates. We illustrate our method by applying it to a microarray gene expression dataset from human umbilical vein endothelial cells (HUVECs) which combines time series data from treatment with growth factor TNF and steady state data from siRNA knockdown treatments. Our results suggest that the combination of steady-state and time-series datasets may provide better prediction of RNA-to-RNA interactions, and may also reveal biological features that cannot be identified from dynamic or steady state information alone. Finally, we consider the experimental design of genomics experiments for gene regulatory network inference and show that network inference can be improved by incorporating steady-state measurements with time-series data. PMID:23967277
Oxidation and Volatilization of Silica-Formers in Water Vapor
NASA Technical Reports Server (NTRS)
Opila, E. J.; Gray, Hugh R. (Technical Monitor)
2002-01-01
At high temperatures SiC and Si3N4 react with water vapor to form a silica scale. Silica scales also react with water vapor to form a volatile Si(OH)4 species. These simultaneous reactions, one forming silica and the other removing silica, are described by paralinear kinetics. A steady state, in which these reactions occur at the same rate, is eventually achieved, After steady state is achieved, the oxide found on the surface is a constant thickness and recession of the underlying material occurs at a linear rate. The steady state oxide thickness, the time to achieve steady state, and the steady state recession rate can all be described in terms of the rate constants for the oxidation and volatilization reactions. In addition, the oxide thickness, the time to achieve steady state, and the recession rate can also be determined from parameters that describe a water vapor-containing environment. Accordingly, maps have been developed to show these steady state conditions as a function of reaction rate constants, pressure, and gas velocity. These maps can be used to predict the behavior of silica formers in water-vapor containing environments such as combustion environments. Finally, these maps are used to explore the limits of the paralinear oxidation model for SiC and Si3N4
X-Ray Spectral Analysis of the Steady States of GRS1915+105
NASA Astrophysics Data System (ADS)
Peris, Charith S.; Remillard, Ronald A.; Steiner, James F.; Vrtilek, Saeqa D.; Varnière, Peggy; Rodriguez, Jerome; Pooley, Guy
2016-05-01
We report on the X-ray spectral behavior within the steady states of GRS1915+105. Our work is based on the full data set of the source obtained using the Proportional Counter Array (PCA) on the Rossi X-ray Timing Explorer (RXTE) and 15 GHz radio data obtained using the Ryle Telescope. The steady observations within the X-ray data set naturally separated into two regions in the color-color diagram and we refer to these regions as steady-soft and steady-hard. GRS1915+105 displays significant curvature in the coronal component in both the soft and hard data within the RXTE/PCA bandpass. A majority of the steady-soft observations displays a roughly constant inner disk radius ({R}{{in}}), while the steady-hard observations display an evolving disk truncation which is correlated to the mass accretion rate through the disk. The disk flux and coronal flux are strongly correlated in steady-hard observations and very weakly correlated in the steady-soft observations. Within the steady-hard observations, we observe two particular circumstances when there are correlations between the coronal X-ray flux and the radio flux with log slopes η ˜ 0.68+/- 0.35 and η ˜ 1.12+/- 0.13. They are consistent with the upper and lower tracks of Gallo et al. (2012), respectively. A comparison of the model parameters to the state definitions shows that almost all of the steady-soft observations match the criteria of either a thermal or steep power-law state, while a large portion of the steady-hard observations match the hard-state criteria when the disk fraction constraint is neglected.
Influence of hepatic impairment on the pharmacokinetics of the dopamine agonist rotigotine.
Cawello, Willi; Fichtner, Andreas; Boekens, Hilmar; Braun, Marina
2014-09-01
The transdermally applied dopamine receptor agonist rotigotine is extensively metabolized in the liver. An open-label, parallel-group study was conducted to evaluate the effects of moderate hepatic impairment on the pharmacokinetics, safety and tolerability of rotigotine. Eight subjects with normal hepatic function and nine with moderate hepatic impairment (Child-Pugh class B) received one rotigotine transdermal patch (providing a dose of 2 mg/24 h) daily for 3 days with a 24-h patch-on period. Blood and urine samples were collected to evaluate pharmacokinetic parameters characterizing drug bioavailability and elimination. Primary variables included plasma and urine concentrations of unconjugated rotigotine (active parent compound) and total rotigotine (unconjugated rotigotine plus sulfate and glucuronide conjugates) under steady-state (SS) conditions. For unconjugated rotigotine, point estimates for the ratios of AUC(0-24)SS and C max,SS between the two groups (normal vs. impaired hepatic function) were near 1: AUC(0-24)SS, 0.90 (90 % CI 0.59, 1.38) and C max,SS, 0.94 (90 % CI 0.66, 1.35); t max,SS and t 1/2 were lower in subjects with hepatic impairment, while renal clearance was unaffected and overall clearance was higher. For total rotigotine, C max,SS was higher in subjects with hepatic impairment compared with those with normal hepatic function (P = 0.0239, ANOVA). A tendency to reduced non-renal clearance was observed in subjects with hepatic impairment, consistent with their higher plasma concentrations of total rotigotine. Thus, moderate hepatic impairment did not influence the pharmacokinetics of unconjugated rotigotine under steady-state conditions suggesting that dose adjustment will not be required for patients with mild or moderate hepatic insufficiency. In addition, the rotigotine patch was well tolerated in subjects with moderate hepatic impairment.
Human body thermal images generated by conduction or radiation heat
NASA Astrophysics Data System (ADS)
Gavriloaia, Gheorghe; Sofron, Emil; Fumarel, Radu
2009-01-01
Humans and animals in general, are usually in a thermal steady state with respect to their surroundings. The tissues heat, generated at normal or diseases states, is lost to environment though several mechanisms: radiation, conduction, convection, evaporation, etc. Skin temperature is not the same on the entire body and a thermal body signature can be got. The temperature at skin level was measured by a thermistor, conduction component and by an IR camera, radiation component. A theoretical analysis using Weinhaum and JIJI model was done. The three images are investigated in order to get a cheap method for the early cancer diagnosis.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-state duty cycles, including ramped-modal testing? 1048.505 Section 1048.505 Protection of Environment... SPARK-IGNITION ENGINES Test Procedures § 1048.505 How do I test engines using steady-state duty cycles... some cases, we allow you to choose the appropriate steady-state duty cycle for an engine. In these...
NASA Technical Reports Server (NTRS)
Liu, N. S.; Shamroth, S. J.; Mcdonald, H.
1983-01-01
The multidimensional ensemble averaged compressible time dependent Navier Stokes equations in conjunction with mixing length turbulence model and shock capturing technique were used to study the terminal shock type of flows in various flight regimes occurring in a diffuser/inlet model. The numerical scheme for solving the governing equations is based on a linearized block implicit approach and the following high Reynolds number calculations were carried out: (1) 2 D, steady, subsonic; (2) 2 D, steady, transonic with normal shock; (3) 2 D, steady, supersonic with terminal shock; (4) 2 D, transient process of shock development and (5) 3 D, steady, transonic with normal shock. The numerical results obtained for the 2 D and 3 D transonic shocked flows were compared with corresponding experimental data; the calculated wall static pressure distributions agree well with the measured data.
X-ray spectral analysis of the steady states of GRS 1915+105
NASA Astrophysics Data System (ADS)
Peris, Charith; Remillard, Ronald A.; Steiner, James F.; Vrtilek, Saeqa Dil; Varniere, Peggy; Rodriguez, Jerome; Pooley, Guy G.
2016-04-01
Of the black hole binaries (BHBs) discovered thus far, GRS 1915+105 stands out as an exceptional source primarily due to its wild X-ray variability, the diversity of which has not been replicated in any other stellar-mass black hole. Although extreme variability is commonplace in its light-curve, about half of the observations of GRS1915+105 show fairly steady X-ray intensity. We report on the X-ray spectral behavior within these steady observations. Our work is based on a vast RXTE/PCA data set obtained on GRS 1915+105 during the course of its entire mission and 10 years of radio data from the Ryle Telescope, which overlap the X-ray data. We find that the steady observations within the X-ray data set naturally separate into two regions in a color-color diagram, which we refer to as steady-soft and steady-hard. GRS 1915+105 displays significant curvature in the Comptonization component within the PCA band pass suggesting significantly heating from a hot disk present in all states. A new Comptonization model 'simplcut' was developed in order to model this curvature to best effect. A majority of the steady-soft observations display a roughly constant inner disk radius, remarkably reminiscent of canonical soft state black hole binaries. In contrast, the steady-hard observations display a growing disk truncation that is correlated to the mass accretion rate through the disk, which suggests a magnetically truncated disk. A comparison of X-ray model parameters to the canonical state definitions show that almost all steady-soft observations match the criteria of either thermal or steep power law state, while the thermal state observations dominate the constant radius branch. A large portion 80 % of the steady-hard observations matches the hard state criteria when the disk fraction constraint is neglected. These results combine to suggest that within the complexity of this source is a simpler underlying basis of states, which map to those observed in canonical BHBs.
Strand, Janne M; Scheffler, Katja; Bjørås, Magnar; Eide, Lars
2014-06-01
The cellular genomes are continuously damaged by reactive oxygen species (ROS) from aerobic processes. The impact of DNA damage depends on the specific site as well as the cellular state. The steady-state level of DNA damage is the net result of continuous formation and subsequent repair, but it is unknown to what extent heterogeneous damage distribution is caused by variations in formation or repair of DNA damage. Here, we used a restriction enzyme/qPCR based method to analyze DNA damage in promoter and coding regions of four nuclear genes: the two house-keeping genes Gadph and Tbp, and the Ndufa9 and Ndufs2 genes encoding mitochondrial complex I subunits, as well as mt-Rnr1 encoded by mitochondrial DNA (mtDNA). The distribution of steady-state levels of damage varied in a site-specific manner. Oxidative stress induced damage in nDNA to a similar extent in promoter and coding regions, and more so in mtDNA. The subsequent removal of damage from nDNA was efficient and comparable with recovery times depending on the initial damage load, while repair of mtDNA was delayed with subsequently slower repair rate. The repair was furthermore found to be independent of transcription or the transcription-coupled repair factor CSB, but dependent on cellular ATP. Our results demonstrate that the capacity to repair DNA is sufficient to remove exogenously induced damage. Thus, we conclude that the heterogeneous steady-state level of DNA damage in promoters and coding regions is caused by site-specific DNA damage/modifications that take place under normal metabolism. Copyright © 2014 Elsevier B.V. All rights reserved.
40 CFR 86.1363-2007 - Steady-state testing with a discrete-mode cycle.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Steady-state testing with a discrete-mode cycle. 86.1363-2007 Section 86.1363-2007 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Exhaust Test Procedures § 86.1363-2007 Steady-state testing with a discrete-mode cycle. This section...
An analytical solution for the steady-state aerosol size distribution achieved in a steady-state, continuous flow chamber is derived, where particle growth is occurring by gas-to-particle conversion and particle loss is occurring by deposition to the walls of the chamber. The s...
Analytical Solution of Steady State Equations for Chemical Reaction Networks with Bilinear Rate Laws
Halász, Ádám M.; Lai, Hong-Jian; McCabe, Meghan M.; Radhakrishnan, Krishnan; Edwards, Jeremy S.
2014-01-01
True steady states are a rare occurrence in living organisms, yet their knowledge is essential for quasi-steady state approximations, multistability analysis, and other important tools in the investigation of chemical reaction networks (CRN) used to describe molecular processes on the cellular level. Here we present an approach that can provide closed form steady-state solutions to complex systems, resulting from CRN with binary reactions and mass-action rate laws. We map the nonlinear algebraic problem of finding steady states onto a linear problem in a higher dimensional space. We show that the linearized version of the steady state equations obeys the linear conservation laws of the original CRN. We identify two classes of problems for which complete, minimally parameterized solutions may be obtained using only the machinery of linear systems and a judicious choice of the variables used as free parameters. We exemplify our method, providing explicit formulae, on CRN describing signal initiation of two important types of RTK receptor-ligand systems, VEGF and EGF-ErbB1. PMID:24334389
Unperturbed vs. post-transplantation hematopoiesis: both in vivo but different.
Busch, Katrin; Rodewald, Hans-Reimer
2016-07-01
Hematopoietic stem cell (HSC) transplantation has yielded tremendous information on experimental properties of HSCs. Yet, it remains unclear whether transplantation reflects the physiology of hematopoiesis. A limitation is the difficulty in accessing HSC functions without isolation, in-vitro manipulation and readout for potential. New genetic fate mapping and clonal marking techniques now shed light on hematopoiesis under physiological conditions. Transposon-based genetic marks were introduced across the entire hematopoietic system to follow the clonal dynamics of these tags over time. A polyclonal source downstream from stem cells was found responsible for the production of at least granulocytes. In independent experiments, HSCs were genetically marked in adult mice, and the kinetics of label emergence throughout the system was followed over time. These experiments uncovered that during physiological steady-state hematopoiesis large numbers of HSCs yield differentiated progeny. Individual HSCs were active only rarely, indicating their very slow periodicity of differentiation rather than quiescence. Noninvasive genetic experiments in mice have identified a major role of stem and progenitor cells downstream from HSCs as drivers of adult hematopoiesis, and revealed that post-transplantation hematopoiesis differs quantitatively from normal steady-state hematopoiesis.
Xu, Y; Li, Y F; Zhang, D; Dockendorf, M; Tetteh, E; Rizk, M L; Grobler, J A; Lai, M-T; Gobburu, J; Ankrom, W
2016-08-01
We applied model-based meta-analysis of viral suppression as a function of drug exposure and in vitro potency for short-term monotherapy in human immunodeficiency virus type 1 (HIV-1)-infected treatment-naïve patients to set pharmacokinetic targets for development of nonnucleoside reverse transcriptase inhibitors (NNRTIs) and integrase strand transfer inhibitors (InSTIs). We developed class-specific models relating viral load kinetics from monotherapy studies to potency normalized steady-state trough plasma concentrations. These models were integrated with a literature assessment of doses which demonstrated to have long-term efficacy in combination therapy, in order to set steady-state trough concentration targets of 6.17- and 2.15-fold above potency for NNRTIs and InSTIs, respectively. Both the models developed and the pharmacokinetic targets derived can be used to guide compound selection during preclinical development and to predict the dose-response of new antiretrovirals to inform early clinical trial design. © 2016 The Authors. Clinical and Translational Science published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.
c-Myb is required for progenitor cell homeostasis in colonic crypts
Malaterre, Jordane; Carpinelli, Marina; Ernst, Matthias; Alexander, Warren; Cooke, Michael; Sutton, Susan; Dworkin, Sebastian; Heath, Joan K.; Frampton, Jon; McArthur, Grant; Clevers, Hans; Hilton, Douglas; Mantamadiotis, Theo; Ramsay, Robert G.
2007-01-01
The colonic crypt is the functional unit of the colon mucosa with a central role in ion and water reabsorption. Under steady-state conditions, the distal colonic crypt harbors a single stem cell at its base that gives rise to highly proliferative progenitor cells that differentiate into columnar, goblet, and endocrine cells. The role of c-Myb in crypt homeostasis has not been elucidated. Here we have studied three genetically distinct hypomorphic c-myb mutant mouse strains, all of which show reduced colonic crypt size. The mutations target the key domains of the transcription factor: the DNA binding, transactivation, and negative regulatory domains. In vivo proliferation and cell cycle marker studies suggest that these mice have a progenitor cell proliferation defect mediated in part by reduced Cyclin E1 expression. To independently assess the extent to which c-myb is required for colonic crypt homeostasis we also generated a novel tissue-specific mouse model to allow the deletion of c-myb in adult colon, and using these mice we show that c-Myb is required for crypt integrity, normal differentiation, and steady-state proliferation. PMID:17360438
Avoid problems during distillation column startups
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sloley, A.W.
1996-07-01
The startup of a distillation column is the end product of the design process. Indeed, startup is the culmination of the theory and practice of designing the column to meet the process objectives. The author will direct most of this discussion towards column revamps due to their inherent complexity; however, the points apply equally to new columns, as well. The most important question that must be answered prior to a startup is how will the distillation system changes affect initial startup, process control of the system, and normal day-to-day operations? How will the operators run the system? Steady-state distillation-column simulationsmore » alone cannot provide an authoritative answer and, indeed, engineers` over-reliance on software too often has led them to ignore many practical aspects. Computer modeling, while an important engineering tool, is not reality. Distillation columns are real functioning pieces of equipment that require practical skills to successfully modify. They are not steady-state solutions that result from converged computer simulations. Early planning, coupled with thorough inspections and comprehensive reviews of instrumentation and procedures, can play a key role in assuring smooth startups.« less
Mechanism-based modeling of solute strengthening: application to thermal creep in Zr alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tome, Carlos; Wen, Wei; Capolungo, Laurent
2017-08-01
This report focuses on the development of a physics-based thermal creep model aiming to predict the behavior of Zr alloy under reactor accident condition. The current models used for this kind of simulations are mostly empirical in nature, based generally on fits to the experimental steady-state creep rates under different temperature and stress conditions, which has the following limitations. First, reactor accident conditions, such as RIA and LOCA, usually take place in short times and involve only the primary, not the steady-state creep behavior stage. Moreover, the empirical models cannot cover the conditions from normal operation to accident environments. Formore » example, Kombaiah and Murty [1,2] recently reported a transition between the low (n~4) and high (n~9) power law creep regimes in Zr alloys depending on the applied stress. Capturing such a behavior requires an accurate description of the mechanisms involved in the process. Therefore, a mechanism-based model that accounts for the evolution with time of microstructure is more appropriate and reliable for this kind of simulation.« less
Equilibrium and stability of flow-dominated Plasmas in the Big Red Ball
NASA Astrophysics Data System (ADS)
Siller, Robert; Flanagan, Kenneth; Peterson, Ethan; Milhone, Jason; Mirnov, Vladimir; Forest, Cary
2017-10-01
The equilibrium and linear stability of flow-dominated plasmas are studied numerically using a spectral techniques to model MRI and dynamo experiments in the Big Red Ball device. The equilibrium code solves for steady-state magnetic fields and plasma flows subject to boundary conditions in a spherical domain. It has been benchmarked with NIMROD (non-ideal MHD with rotation - open discussion), Two different flow scenarios are studied. The first scenario creates a differentially rotating toroidal flow that is peaked at the center. This is done to explore the onset of the magnetorotational instability (MRI) in a spherical geometry. The second scenario creates a counter-rotating von Karman-like flow in the presence of a weak magnetic field. This is done to explore the plasma dynamo instability in the limit of a weak applied field. Both scenarios are numerically modeled as axisymmetric flow to create a steady-state equilibrium solution, the stability and normal modes are studied in the lowest toroidal mode number. The details of the observed flow, and the structure of the fastest growing modes will be shown. DoE, NSF.
Integrated modelling of steady-state scenarios and heating and current drive mixes for ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murakami, Masanori; Park, Jin Myung; Giruzzi, G.
2011-01-01
Recent progress on ITER steady-state (SS) scenario modelling by the ITPA-IOS group is reviewed. Code-to-code benchmarks as the IOS group's common activities for the two SS scenarios (weak shear scenario and internal transport barrier scenario) are discussed in terms of transport, kinetic profiles, and heating and current drive (CD) sources using various transport codes. Weak magnetic shear scenarios integrate the plasma core and edge by combining a theory-based transport model (GLF23) with scaled experimental boundary profiles. The edge profiles (at normalized radius rho = 0.8-1.0) are adopted from an edge-localized mode-averaged analysis of a DIII-D ITER demonstration discharge. A fullymore » noninductive SS scenario is achieved with fusion gain Q = 4.3, noninductive fraction f(NI) = 100%, bootstrap current fraction f(BS) = 63% and normalized beta beta(N) = 2.7 at plasma current I(p) = 8MA and toroidal field B(T) = 5.3 T using ITER day-1 heating and CD capability. Substantial uncertainties come from outside the radius of setting the boundary conditions (rho = 0.8). The present simulation assumed that beta(N)(rho) at the top of the pedestal (rho = 0.91) is about 25% above the peeling-ballooning threshold. ITER will have a challenge to achieve the boundary, considering different operating conditions (T(e)/T(i) approximate to 1 and density peaking). Overall, the experimentally scaled edge is an optimistic side of the prediction. A number of SS scenarios with different heating and CD mixes in a wide range of conditions were explored by exploiting the weak-shear steady-state solution procedure with the GLF23 transport model and the scaled experimental edge. The results are also presented in the operation space for DT neutron power versus stationary burn pulse duration with assumed poloidal flux availability at the beginning of stationary burn, indicating that the long pulse operation goal (3000s) at I(p) = 9 MA is possible. Source calculations in these simulations have been revised for electron cyclotron current drive including parallel momentum conservation effects and for neutral beam current drive with finite orbit and magnetic pitch effects.« less
ZHENG, ZHENZHEN; CHOU, CHING-SHAN; YI, TAU-MU; NIE, QING
2013-01-01
Cell polarization, in which substances previously uniformly distributed become asymmetric due to external or/and internal stimulation, is a fundamental process underlying cell mobility, cell division, and other polarized functions. The yeast cell S. cerevisiae has been a model system to study cell polarization. During mating, yeast cells sense shallow external spatial gradients and respond by creating steeper internal gradients of protein aligned with the external cue. The complex spatial dynamics during yeast mating polarization consists of positive feedback, degradation, global negative feedback control, and cooperative effects in protein synthesis. Understanding such complex regulations and interactions is critical to studying many important characteristics in cell polarization including signal amplification, tracking dynamic signals, and potential trade-off between achieving both objectives in a robust fashion. In this paper, we study some of these questions by analyzing several models with different spatial complexity: two compartments, three compartments, and continuum in space. The step-wise approach allows detailed characterization of properties of the steady state of the system, providing more insights for biological regulations during cell polarization. For cases without membrane diffusion, our study reveals that increasing the number of spatial compartments results in an increase in the number of steady-state solutions, in particular, the number of stable steady-state solutions, with the continuum models possessing infinitely many steady-state solutions. Through both analysis and simulations, we find that stronger positive feedback, reduced diffusion, and a shallower ligand gradient all result in more steady-state solutions, although most of these are not optimally aligned with the gradient. We explore in the different settings the relationship between the number of steady-state solutions and the extent and accuracy of the polarization. Taken together these results furnish a detailed description of the factors that influence the tradeoff between a single correctly aligned but poorly polarized stable steady-state solution versus multiple more highly polarized stable steady-state solutions that may be incorrectly aligned with the external gradient. PMID:21936604
NASA Technical Reports Server (NTRS)
Pogorzelski, Ronald J.
2004-01-01
When electronic oscillators are coupled to nearest neighbors to form an array on a hexagonal lattice, the planar phase distributions desired for excitation of a phased array antenna are not steady state solutions of the governing non-linear equations describing the system. Thus the steady state phase distribution deviates from planar. It is shown to be possible to obtain an exact solution for the steady state phase distribution and thus determine the deviation from the desired planar distribution as a function of beam steering angle.
Preconditioning and the limit to the incompressible flow equations
NASA Technical Reports Server (NTRS)
Turkel, E.; Fiterman, A.; Vanleer, B.
1993-01-01
The use of preconditioning methods to accelerate the convergence to a steady state for both the incompressible and compressible fluid dynamic equations are considered. The relation between them for both the continuous problem and the finite difference approximation is also considered. The analysis relies on the inviscid equations. The preconditioning consists of a matrix multiplying the time derivatives. Hence, the steady state of the preconditioned system is the same as the steady state of the original system. For finite difference methods the preconditioning can change and improve the steady state solutions. An application to flow around an airfoil is presented.
Theoretical studies of solar-pumped lasers
NASA Technical Reports Server (NTRS)
Harries, W. L.
1982-01-01
Solar-pumped lasers were investigated by comparing experimental results from pulse experiments with steady state calculations. The time varying behavior of an IBr laser is studied. The analysis is only approximate, but indicates that conditions occurring in a pulsed experiment are quite different from those at steady state. The possibility of steady-state lasing in an IBr laser is determined. The effects of high temperatures on the quenching and recombination rates are examined. Although uncertainties in the values of the rate coefficients make it difficult to draw firm conclusions, it seems steady state running may be possible at high temperatures.
The orbital distribution of Near-Earth Objects inside Earth's orbit
NASA Astrophysics Data System (ADS)
Greenstreet, Sarah; Ngo, Henry; Gladman, Brett
2012-01-01
Canada's Near-Earth Object Surveillance Satellite (NEOSSat), set to launch in early 2012, will search for and track Near-Earth Objects (NEOs), tuning its search to best detect objects with a < 1.0 AU. In order to construct an optimal pointing strategy for NEOSSat, we needed more detailed information in the a < 1.0 AU region than the best current model (Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.M., Levison, H.F., Michel, P., Metcalfe, T.S. [2002]. Icarus 156, 399-433) provides. We present here the NEOSSat-1.0 NEO orbital distribution model with larger statistics that permit finer resolution and less uncertainty, especially in the a < 1.0 AU region. We find that Amors = 30.1 ± 0.8%, Apollos = 63.3 ± 0.4%, Atens = 5.0 ± 0.3%, Atiras (0.718 < Q < 0.983 AU) = 1.38 ± 0.04%, and Vatiras (0.307 < Q < 0.718 AU) = 0.22 ± 0.03% of the steady-state NEO population. Vatiras are a previously undiscussed NEO population clearly defined in our integrations, whose orbits lie completely interior to that of Venus. Our integrations also uncovered the unexpected production of retrograde orbits from main-belt asteroid sources; this retrograde NEA population makes up ≃0.1% of the steady-state NEO population. The relative NEO impact rate onto Mercury, Venus, and Earth, as well as the normalized distribution of impact speeds, was calculated from the NEOSSat-1.0 orbital model under the assumption of a steady-state. The new model predicts a slightly higher Mercury impact flux.
NASA Astrophysics Data System (ADS)
Lai, Chen-Yen; Chien, Chih-Chun
2017-09-01
Dynamics of a system in general depends on its initial state and how the system is driven, but in many-body systems the memory is usually averaged out during evolution. Here, interacting quantum systems without external relaxations are shown to retain long-time memory effects in steady states. To identify memory effects, we first show quasi-steady-state currents form in finite, isolated Bose- and Fermi-Hubbard models driven by interaction imbalance and they become steady-state currents in the thermodynamic limit. By comparing the steady-state currents from different initial states or ramping rates of the imbalance, long-time memory effects can be quantified. While the memory effects of initial states are more ubiquitous, the memory effects of switching protocols are mostly visible in interaction-induced transport in lattices. Our simulations suggest that the systems enter a regime governed by a generalized Fick's law and memory effects lead to initial-state-dependent diffusion coefficients. We also identify conditions for enhancing memory effects and discuss possible experimental implications.
40 CFR Appendix C to Subpart S of... - Steady-State Short Test Standards
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Steady-State Short Test Standards C Appendix C to Subpart S of Part 51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED.../Maintenance Program Requirements Pt. 51, Subpt. S, App. C Appendix C to Subpart S of Part 51—Steady-State...
40 CFR Appendix II to Part 1039 - Steady-State Duty Cycles
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Steady-State Duty Cycles II Appendix... Appendix II to Part 1039—Steady-State Duty Cycles (a) The following duty cycles apply for constant-speed engines: (1) The following duty cycle applies for discrete-mode testing: D2 mode number Engine speed...
40 CFR Appendix C to Subpart S of... - Steady-State Short Test Standards
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 2 2014-07-01 2014-07-01 false Steady-State Short Test Standards C Appendix C to Subpart S of Part 51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED.../Maintenance Program Requirements Pt. 51, Subpt. S, App. C Appendix C to Subpart S of Part 51—Steady-State...
40 CFR Appendix C to Subpart S of... - Steady-State Short Test Standards
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 2 2012-07-01 2012-07-01 false Steady-State Short Test Standards C Appendix C to Subpart S of Part 51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED.../Maintenance Program Requirements Pt. 51, Subpt. S, App. C Appendix C to Subpart S of Part 51—Steady-State...
40 CFR Appendix II to Part 1039 - Steady-State Duty Cycles
Code of Federal Regulations, 2011 CFR
2011-07-01
... Appendix II to Part 1039—Steady-State Duty Cycles (a) The following duty cycles apply for constant-speed engines: (1) The following duty cycle applies for discrete-mode testing: D2 mode number Engine speed...(seconds) Engine speed Torque(percent) 1, 2 1a Steady-state 53 Engine governed 100. 1b Transition 20 Engine...
Loss of RUNX1/AML1 arginine-methylation impairs in peripheral T cell homeostasis
Mizutani, Shinsuke; Yoshida, Tatsushi; Zhao, Xinyang; Nimer, Stephen D.; Taniwaki, Masafumi; Okuda, Tsukasa
2016-01-01
Summary RUNX1 (previously termed AML1) is a frequent target of human leukaemia-associated gene aberrations, and it encodes the DNA-binding subunit of the Core-Binding Factor transcription factor complex. RUNX1 expression is essential for the initiation of definitive haematopoiesis, for steady-state thrombopoiesis, and for normal lymphocytes development. Recent studies revealed that protein arginine methyltransferase 1 (PRMT1), which accounts for the majority of the type I PRMT activity in cells, methylates two arginine residues in RUNX1 (R206 and R210), and these modifications inhibit corepressor-binding to RUNX1 thereby enhancing its transcriptional activity. In order to elucidate the biological significance of these methylations, we established novel knock-in mouse lines with non-methylable, double arginine-to-lysine (RTAMR-to-KTAMK) mutations in RUNX1. Homozygous Runx1KTAMK/KTAMK mice are born alive and appear normal during adulthood. However, Runx1KTAMK/KTAMK mice showed a reduction in CD3+ T lymphoid cells and a decrease in CD4+ T cells in peripheral lymphoid organs, in comparison to their wild-type littermates, leading to a reduction in the CD4+ to CD8+ T-cell ratio. These findings suggest that arginine-methylation of RUNX1 in the RTAMR-motif is dispensable for the development of definitive haematopoiesis and for steady-state platelet production, however this modification affects the role of RUNX1 in the maintenance of the peripheral CD4+ T-cell population. PMID:26010396
Frictional melt and seismic slip
NASA Astrophysics Data System (ADS)
Nielsen, S.; di Toro, G.; Hirose, T.; Shimamoto, T.
2008-01-01
Frictional melt is implied in a variety of processes such as seismic slip, ice skating, and meteorite combustion. A steady state can be reached when melt is continuously produced and extruded from the sliding interface, as shown recently in a number of laboratory rock friction experiments. A thin, low-viscosity, high-temperature melt layer is formed resulting in low shear resistance. A theoretical solution describing the coupling of shear heating, thermal diffusion, and extrusion is obtained, without imposing a priori the melt thickness. The steady state shear traction can be approximated at high slip rates by the theoretical form τss = σn1/4 (A/?) ? under a normal stress σn, slip rate V, radius of contact area R (A is a dimensional normalizing factor and W is a characteristic rate). Although the model offers a rather simplified view of a complex process, the predictions are compatible with experimental observations. In particular, we consider laboratory simulations of seismic slip on earthquake faults. A series of high-velocity rotary shear experiments on rocks, performed for σn in the range 1-20 MPa and slip rates in the range 0.5-2 m s-1, is confronted to the theoretical model. The behavior is reasonably well reproduced, though the effect of radiation loss taking place in the experiment somewhat alters the data. The scaling of friction with σn, R, and V in the presence of melt suggests that extrapolation of laboratory measures to real Earth is a highly nonlinear, nontrivial exercise.
Lamming, Christopher E D; Augustin, Lance; Blackstad, Mark; Lund, Troy C; Hebbel, Robert P; Verfaillie, Catherine M
2003-03-01
The only curative therapy for sickle cell disease (SCD) is allogeneic hematopoietic stem cell (HSC) transplantation. Gene therapy approaches for autologous HSC transplantation are being developed. Although earlier engraftment is seen when cells from GCSF-mobilized blood are transplanted than when bone marrow is transplanted, administration of GCSF to patients with SCD can cause significant morbidity. We tested whether primitive hematopoietic progenitors are spontaneously mobilized in the blood of patients with SCD during acute crisis (AC-SCD patients). The frequency of myeloid-lymphoid-initiating cells (ML-ICs) and SCID-repopulating cells (SRCs) was significantly higher in blood from AC-SCD patients than in blood from patients with steady-state SCD or from normal donors. The presence of SRCs in peripheral blood was not associated with detection of long-term culture-initiating cells, consistent with the notion that SRCs are more primitive than long-term culture-initiating cells. As ML-ICs and SRCs were both detected in blood of AC-SCD patients only, these assays may both measure primitive progenitors. The frequency of ML-ICs also correlated with increases in stem cell factor, GCSF, and IL-8 levels in AC-SCD compared with steady-state SCD and normal-donor sera. Because significant numbers of ML-ICs and SRCs are mobilized in the blood without exogenous cytokine treatment during acute crisis of SCD, collection of peripheral blood progenitors during crisis may yield a source of autologous HSCs suitable for ex-vivo correction by gene therapy approaches and subsequent transplantation.
Takahashi, Kota Z; Stanhope, Steven J
2013-09-01
Over the last half-century, the field of prosthetic engineering has continuously evolved with much attention being dedicated to restoring the mechanical energy properties of ankle joint musculatures during gait. However, the contributions of 'distal foot structures' (e.g., foot muscles, plantar soft tissue) have been overlooked. Therefore, the purpose of this study was to quantify the total mechanical energy profiles (e.g., power, work, and work-ratio) of the natural ankle-foot system (NAFS) by combining the contributions of the ankle joint and all distal foot structures during stance in level-ground steady state walking across various speeds (0.4, 0.6, 0.8 and 1.0 statures/s). The results from eleven healthy subjects walking barefoot indicated ankle joint and distal foot structures generally performed opposing roles: the ankle joint performed net positive work that systematically increased its energy generation with faster walking speeds, while the distal foot performed net negative work that systematically increased its energy absorption with faster walking speeds. Accounting for these simultaneous effects, the combined ankle-foot system exhibited increased work-ratios with faster walking. Most notably, the work-ratio was not significantly greater than 1.0 during the normal walking speed of 0.8 statures/s. Therefore, a prosthetic design that strategically exploits passive-dynamic properties (e.g., elastic energy storage and return) has the potential to replicate the mechanical energy profiles of the NAFS during level-ground steady-state walking. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shreedharan, S.; Riviere, J.; Marone, C.
2017-12-01
We report on a suite of laboratory friction experiments conducted on saw-cut Westerly Granite surfaces to probe frictional response to step changes in normal stress and loading rate. The experiments are conducted to illuminate the fundamental processes that yield friction rate and state dependence. We quantify the microphysical frictional response of the simulated fault surfaces to normal stress steps, in the range of 1% - 600% step increases and decreases from a nominal baseline normal stress. We measure directly the fault slip rate and account for changes in slip rate with changes in normal stress and complement mechanical data acquisition by continuously probing the faults with ultrasonic pulses. We conduct the experiments at room temperature and humidity conditions in a servo controlled biaxial testing apparatus in the double direct shear configuration. The samples are sheared over a range of velocities, from 0.02 - 100 μm/s. We report observations of a transient shear stress and friction evolution with step increases and decreases in normal stress. Specifically, we show that, at low shear velocities and small increases in normal stress (<5% increase), the shear stress on the fault does not increase instantaneously with the normal stress step while the ultrasonic wave amplitude and normal displacement do. In other words, the shear stress does not follow the load point stiffness curve. At high shear velocities and larger normal stress steps (> 5% increases), the shear stress evolves immediately with normal stress. We show that the excursions in slip rate resulting from the changes in normal stress must be accounted for in order to predict fault strength evolution. Ultrasonic wave amplitudes which first increase immediately in response to normal stress steps, then decrease approximately linearly to a new steady state value, in part due to changes in fault slip rate. Previous descriptions of frictional state evolution during normal stress perturbations have not adequately accounted for the effect of large slip velocity excursions. Here, we attempt to do so by using the measured ultrasonic amplitudes as a proxy for frictional state during transient shear stress evolution. Our work aims to improve understanding of induced and triggered seismicity with focus on simulating static triggering using rate and state friction.
Steady-state and quench-dependent relaxation of a quantum dot coupled to one-dimensional leads
NASA Astrophysics Data System (ADS)
Nuss, Martin; Ganahl, Martin; Evertz, Hans Gerd; Arrigoni, Enrico; von der Linden, Wolfgang
2013-07-01
We study the time evolution and steady state of the charge current in a single-impurity Anderson model, using matrix product states techniques. A nonequilibrium situation is imposed by applying a bias voltage across one-dimensional tight-binding leads. Focusing on particle-hole symmetry, we extract current-voltage characteristics from universal low-bias up to high-bias regimes, where band effects start to play a dominant role. We discuss three quenches, which after strongly quench-dependent transients yield the same steady-state current. Among these quenches we identify those favorable for extracting steady-state observables. The period of short-time oscillations is shown to compare well to real-time renormalization group results for a simpler model of spinless fermions. We find indications that many-body effects play an important role at high-bias voltage and finite bandwidth of the metallic leads. The growth of entanglement entropy after a certain time scale ∝Δ-1 is the major limiting factor for calculating the time evolution. We show that the magnitude of the steady-state current positively correlates with entanglement entropy. The role of high-energy states for the steady-state current is explored by considering a damping term in the time evolution.
Amarasekera, Dilru C; Resende, Arthur F; Waisbourd, Michael; Puri, Sanjeev; Moster, Marlene R; Hark, Lisa A; Katz, L Jay; Fudemberg, Scott J; Mantravadi, Anand V
2018-01-01
This study evaluates two rapid electrophysiological glaucoma diagnostic tests that may add a functional perspective to glaucoma diagnosis. This study aimed to determine the ability of two office-based electrophysiological diagnostic tests, steady-state pattern electroretinogram and short-duration transient visual evoked potentials, to discern between glaucomatous and healthy eyes. This is a cross-sectional study in a hospital setting. Forty-one patients with glaucoma and 41 healthy volunteers participated in the study. Steady-state pattern electroretinogram and short-duration transient visual evoked potential testing was conducted in glaucomatous and healthy eyes. A 64-bar-size stimulus with both a low-contrast and high-contrast setting was used to compare steady-state pattern electroretinogram parameters in both groups. A low-contrast and high-contrast checkerboard stimulus was used to measure short-duration transient visual evoked potential parameters in both groups. Steady-state pattern electroretinogram parameters compared were MagnitudeD, MagnitudeD/Magnitude ratio, and the signal-to-noise ratio. Short-duration transient visual evoked potential parameters compared were amplitude and latency. MagnitudeD was significantly lower in glaucoma patients when using a low-contrast (P = 0.001) and high-contrast (P < 0.001) 64-bar-size steady-state pattern electroretinogram stimulus. MagnitudeD/Magnitude ratio and SNR were significantly lower in the glaucoma group when using a high-contrast 64-bar-size stimulus (P < 0.001 and P = 0.010, respectively). Short-duration transient visual evoked potential amplitude and latency were not significantly different between the two groups. Steady-state pattern electroretinogram was effectively able to discern between glaucomatous and healthy eyes. Steady-state pattern electroretinogram may thus have a role as a clinically useful electrophysiological diagnostic tool. © 2017 Royal Australian and New Zealand College of Ophthalmologists.
Time density curve analysis for C-arm FDCT PBV imaging.
Kamran, Mudassar; Byrne, James V
2016-04-01
Parenchymal blood volume (PBV) estimation using C-arm flat detector computed tomography (FDCT) assumes a steady-state contrast concentration in cerebral vasculature for the scan duration. Using time density curve (TDC) analysis, we explored if the steady-state assumption is met for C-arm CT PBV scans, and how consistent the contrast-material dynamics in cerebral vasculature are across patients. Thirty C-arm FDCT datasets of 26 patients with aneurysmal-SAH, acquired as part of a prospective study comparing C-arm CT PBV with MR-PWI, were analysed. TDCs were extracted from the 2D rotational projections. Goodness-of-fit of TDCs to a steady-state horizontal-line-model and the statistical similarity among the individual TDCs were tested. Influence of the differences in TDC characteristics on the agreement of resulting PBV measurements with MR-CBV was calculated. Despite identical scan parameters and contrast-injection-protocol, the individual TDCs were statistically non-identical (p < 0.01). Using Dunn's multiple comparisons test, of the total 435 individual comparisons among the 30 TDCs, 330 comparisons (62%) reached statistical significance for difference. All TDCs deviated significantly (p < 0.01) from the steady-state horizontal-line-model. PBV values of those datasets for which the TDCs showed largest deviations from the steady-state model demonstrated poor agreement and correlation with MR-CBV, compared with the PBV values of those datasets for which the TDCs were closer to steady-state. For clinical C-arm CT PBV examinations, the administered contrast material does not reach the assumed 'ideal steady-state' for the duration of scan. Using a prolonged injection protocol, the degree to which the TDCs approximate the ideal steady-state influences the agreement of resulting PBV measurements with MR-CBV. © The Author(s) 2016.
NASA Technical Reports Server (NTRS)
Dietrich, D. L.; Ross, H. D.; Tien, J. S.
1995-01-01
The candle flame in both normal and microgravity is non-propagating. In microgravity, however, the candle flame is also non-convective where (excepting Stefan flow) pure diffusion is the only transport mode. It also shares many characteristics with another classical problem, that of isolated droplet combustion. Given their qualitatively similar flame shapes and the required heat feedback to condensed-phase fuels, the gas-phase flow and temperature fields should be relatively similar for a droplet and a candle in reduced gravity. Unless the droplet diameter is maintained somehow through non-intrusive replenishment of fuel, the quasi-steady burning characteristics of a droplet can be maintained for only a few seconds. In contrast, the candle flame in microgravity may achieve a nearly steady state over a much longer time and is therefore ideal for examining a number of combustion-related phenomena. In this paper, we examine candle flame behavior in both short-duration and long-duration, quiescent, microgravity environments. Interest in this type of flame, especially 'candle flames in weightlessness', is demonstrated by very frequent public inquiries. The question is usually posed as 'will a candle flame burn in zero gravity', or, 'will a candle burn indefinitely (or steadily) in zero gravity in a large volume of quiescent air'. Intuitive speculation suggests to some that, in the absence of buoyancy, the accumulation of products in the vicinity of the flame will cause flame extinction. The classical theory for droplet combustion with its spherically-shaped diffusion flame, however, shows that steady combustion is possible in the absence of buoyancy if the chemical kinetics are fast enough. Previous experimental studies of candle flames in reduced and microgravity environments showed the flame could survive for at least 5 seconds, but did not reach a steady state in the available test time.
Prediction of elemental creep. [steady state and cyclic data from regression analysis
NASA Technical Reports Server (NTRS)
Davis, J. W.; Rummler, D. R.
1975-01-01
Cyclic and steady-state creep tests were performed to provide data which were used to develop predictive equations. These equations, describing creep as a function of stress, temperature, and time, were developed through the use of a least squares regression analyses computer program for both the steady-state and cyclic data sets. Comparison of the data from the two types of tests, revealed that there was no significant difference between the cyclic and steady-state creep strains for the L-605 sheet under the experimental conditions investigated (for the same total time at load). Attempts to develop a single linear equation describing the combined steady-state and cyclic creep data resulted in standard errors of estimates higher than obtained for the individual data sets. A proposed approach to predict elemental creep in metals uses the cyclic creep equation and a computer program which applies strain and time hardening theories of creep accumulation.
Quasi steady-state aerodynamic model development for race vehicle simulations
NASA Astrophysics Data System (ADS)
Mohrfeld-Halterman, J. A.; Uddin, M.
2016-01-01
Presented in this paper is a procedure to develop a high fidelity quasi steady-state aerodynamic model for use in race car vehicle dynamic simulations. Developed to fit quasi steady-state wind tunnel data, the aerodynamic model is regressed against three independent variables: front ground clearance, rear ride height, and yaw angle. An initial dual range model is presented and then further refined to reduce the model complexity while maintaining a high level of predictive accuracy. The model complexity reduction decreases the required amount of wind tunnel data thereby reducing wind tunnel testing time and cost. The quasi steady-state aerodynamic model for the pitch moment degree of freedom is systematically developed in this paper. This same procedure can be extended to the other five aerodynamic degrees of freedom to develop a complete six degree of freedom quasi steady-state aerodynamic model for any vehicle.
Technical challenges in the construction of the steady-state stellarator Wendelstein 7-X
NASA Astrophysics Data System (ADS)
Bosch, H.-S.; Wolf, R. C.; Andreeva, T.; Baldzuhn, J.; Birus, D.; Bluhm, T.; Bräuer, T.; Braune, H.; Bykov, V.; Cardella, A.; Durodié, F.; Endler, M.; Erckmann, V.; Gantenbein, G.; Hartmann, D.; Hathiramani, D.; Heimann, P.; Heinemann, B.; Hennig, C.; Hirsch, M.; Holtum, D.; Jagielski, J.; Jelonnek, J.; Kasparek, W.; Klinger, T.; König, R.; Kornejew, P.; Kroiss, H.; Krom, J. G.; Kühner, G.; Laqua, H.; Laqua, H. P.; Lechte, C.; Lewerentz, M.; Maier, J.; McNeely, P.; Messiaen, A.; Michel, G.; Ongena, J.; Peacock, A.; Pedersen, T. S.; Riedl, R.; Riemann, H.; Rong, P.; Rust, N.; Schacht, J.; Schauer, F.; Schroeder, R.; Schweer, B.; Spring, A.; Stäbler, A.; Thumm, M.; Turkin, Y.; Wegener, L.; Werner, A.; Zhang, D.; Zilker, M.; Akijama, T.; Alzbutas, R.; Ascasibar, E.; Balden, M.; Banduch, M.; Baylard, Ch.; Behr, W.; Beidler, C.; Benndorf, A.; Bergmann, T.; Biedermann, C.; Bieg, B.; Biel, W.; Borchardt, M.; Borowitz, G.; Borsuk, V.; Bozhenkov, S.; Brakel, R.; Brand, H.; Brown, T.; Brucker, B.; Burhenn, R.; Buscher, K.-P.; Caldwell-Nichols, C.; Cappa, A.; Cardella, A.; Carls, A.; Carvalho, P.; Ciupiński, Ł.; Cole, M.; Collienne, J.; Czarnecka, A.; Czymek, G.; Dammertz, G.; Dhard, C. P.; Davydenko, V. I.; Dinklage, A.; Drevlak, M.; Drotziger, S.; Dudek, A.; Dumortier, P.; Dundulis, G.; Eeten, P. v.; Egorov, K.; Estrada, T.; Faugel, H.; Fellinger, J.; Feng, Y.; Fernandes, H.; Fietz, W. H.; Figacz, W.; Fischer, F.; Fontdecaba, J.; Freund, A.; Funaba, T.; Fünfgelder, H.; Galkowski, A.; Gates, D.; Giannone, L.; García Regaña, J. M.; Geiger, J.; Geißler, S.; Greuner, H.; Grahl, M.; Groß, S.; Grosman, A.; Grote, H.; Grulke, O.; Haas, M.; Haiduk, L.; Hartfuß, H.-J.; Harris, J. H.; Haus, D.; Hein, B.; Heitzenroeder, P.; Helander, P.; Heller, R.; Hidalgo, C.; Hildebrandt, D.; Höhnle, H.; Holtz, A.; Holzhauer, E.; Holzthüm, R.; Huber, A.; Hunger, H.; Hurd, F.; Ihrke, M.; Illy, S.; Ivanov, A.; Jablonski, S.; Jaksic, N.; Jakubowski, M.; Jaspers, R.; Jensen, H.; Jenzsch, H.; Kacmarczyk, J.; Kaliatk, T.; Kallmeyer, J.; Kamionka, U.; Karaleviciu, R.; Kern, S.; Keunecke, M.; Kleiber, R.; Knauer, J.; Koch, R.; Kocsis, G.; Könies, A.; Köppen, M.; Koslowski, R.; Koshurinov, J.; Krämer-Flecken, A.; Krampitz, R.; Kravtsov, Y.; Krychowiak, M.; Krzesinski, G.; Ksiazek, I.; Kubkowska, M.; Kus, A.; Langish, S.; Laube, R.; Laux, M.; Lazerson, S.; Lennartz, M.; Li, C.; Lietzow, R.; Lohs, A.; Lorenz, A.; Louche, F.; Lubyako, L.; Lumsdaine, A.; Lyssoivan, A.; Maaßberg, H.; Marek, P.; Martens, C.; Marushchenko, N.; Mayer, M.; Mendelevitch, B.; Mertens, Ph.; Mikkelsen, D.; Mishchenko, A.; Missal, B.; Mizuuchi, T.; Modrow, H.; Mönnich, T.; Morizaki, T.; Murakami, S.; Musielok, F.; Nagel, M.; Naujoks, D.; Neilson, H.; Neubauer, O.; Neuner, U.; Nocentini, R.; Noterdaeme, J.-M.; Nührenberg, C.; Obermayer, S.; Offermanns, G.; Oosterbeek, H.; Otte, M.; Panin, A.; Pap, M.; Paquay, S.; Pasch, E.; Peng, X.; Petrov, S.; Pilopp, D.; Pirsch, H.; Plaum, B.; Pompon, F.; Povilaitis, M.; Preinhaelter, J.; Prinz, O.; Purps, F.; Rajna, T.; Récsei, S.; Reiman, A.; Reiter, D.; Remmel, J.; Renard, S.; Rhode, V.; Riemann, J.; Rimkevicius, S.; Riße, K.; Rodatos, A.; Rodin, I.; Romé, M.; Roscher, H.-J.; Rummel, K.; Rummel, Th.; Runov, A.; Ryc, L.; Sachtleben, J.; Samartsev, A.; Sanchez, M.; Sano, F.; Scarabosio, A.; Schmid, M.; Schmitz, H.; Schmitz, O.; Schneider, M.; Schneider, W.; Scheibl, L.; Scholz, M.; Schröder, G.; Schröder, M.; Schruff, J.; Schumacher, H.; Shikhovtsev, I. V.; Shoji, M.; Siegl, G.; Skodzik, J.; Smirnow, M.; Speth, E.; Spong, D. A.; Stadler, R.; Sulek, Z.; Szabó, V.; Szabolics, T.; Szetefi, T.; Szökefalvi-Nagy, Z.; Tereshchenko, A.; Thomsen, H.; Thumm, M.; Timmermann, D.; Tittes, H.; Toi, K.; Tournianski, M.; Toussaint, U. v.; Tretter, J.; Tulipán, S.; Turba, P.; Uhlemann, R.; Urban, J.; Urbonavicius, E.; Urlings, P.; Valet, S.; Van Eester, D.; Van Schoor, M.; Vervier, M.; Viebke, H.; Vilbrandt, R.; Vrancken, M.; Wauters, T.; Weissgerber, M.; Weiß, E.; Weller, A.; Wendorf, J.; Wenzel, U.; Windisch, T.; Winkler, E.; Winkler, M.; Wolowski, J.; Wolters, J.; Wrochna, G.; Xanthopoulos, P.; Yamada, H.; Yokoyama, M.; Zacharias, D.; Zajac, J.; Zangl, G.; Zarnstorff, M.; Zeplien, H.; Zoletnik, S.; Zuin, M.
2013-12-01
The next step in the Wendelstein stellarator line is the large superconducting device Wendelstein 7-X, currently under construction in Greifswald, Germany. Steady-state operation is an intrinsic feature of stellarators, and one key element of the Wendelstein 7-X mission is to demonstrate steady-state operation under plasma conditions relevant for a fusion power plant. Steady-state operation of a fusion device, on the one hand, requires the implementation of special technologies, giving rise to technical challenges during the design, fabrication and assembly of such a device. On the other hand, also the physics development of steady-state operation at high plasma performance poses a challenge and careful preparation. The electron cyclotron resonance heating system, diagnostics, experiment control and data acquisition are prepared for plasma operation lasting 30 min. This requires many new technological approaches for plasma heating and diagnostics as well as new concepts for experiment control and data acquisition.
De Wilde, David; Trachet, Bram; De Meyer, Guido; Segers, Patrick
2016-09-06
Low and oscillatory wall shear stresses (WSS) near aortic bifurcations have been linked to the onset of atherosclerosis. In previous work, we calculated detailed WSS patterns in the carotid bifurcation of mice using a Fluid-structure interaction (FSI) approach. We subsequently fed the animals a high-fat diet and linked the results of the FSI simulations to those of atherosclerotic plaque location on a within-subject basis. However, these simulations were based on boundary conditions measured under anesthesia, while active mice might experience different hemodynamics. Moreover, the FSI technique for mouse-specific simulations is both time- and labor-intensive, and might be replaced by simpler and easier Computational Fluid Dynamics (CFD) simulations. The goal of the current work was (i) to compare WSS patterns based on anesthesia conditions to those representing active resting and exercising conditions; and (ii) to compare WSS patterns based on FSI simulations to those based on steady-state and transient CFD simulations. For each of the 3 computational techniques (steady state CFD, transient CFD, FSI) we performed 5 simulations: 1 for anesthesia, 2 for conscious resting conditions and 2 more for conscious active conditions. The inflow, pressure and heart rate were scaled according to representative in vivo measurements obtained from literature. When normalized by the maximal shear stress value, shear stress patterns were similar for the 3 computational techniques. For all activity levels, steady state CFD led to an overestimation of WSS values, while FSI simulations yielded a clear increase in WSS reversal at the outer side of the sinus of the external carotid artery that was not visible in transient CFD-simulations. Furthermore, the FSI simulations in the highest locomotor activity state showed a flow recirculation zone in the external carotid artery that was not present under anesthesia. This recirculation went hand in hand with locally increased WSS reversal. Our data show that FSI simulations are not necessary to obtain normalized WSS patterns, but indispensable to assess the oscillatory behavior of the WSS in mice. Flow recirculation and WSS reversal at the external carotid artery may occur during high locomotor activity while they are not present under anesthesia. These phenomena might thus influence plaque formation to a larger extent than what was previously assumed. Copyright © 2016 Elsevier Ltd. All rights reserved.
El Sayed, Salah Mohamed; Mahmoud, Ahmed Alamir; El Sawy, Samer Ahmed; Abdelaal, Esam Abdelrahim; Fouad, Amira Murad; Yousif, Reda Salah; Hashim, Marwa Shaban; Hemdan, Shima Badawy; Kadry, Zainab Mahmoud; Abdelmoaty, Mohamed Ahmed; Gabr, Adel Gomaa; Omran, Faten M; Nabo, Manal Mohamed Helmy; Ahmed, Nagwa Sayed
2013-11-01
Cancer cells undergo an increased steady-state ROS condition compared to normal cells. Among the major metabolic differences between cancer cells and normal cells is the dependence of cancer cells on glycolysis as a major source of energy even in the presence of oxygen (Warburg effect). In Warburg effect, glucose is catabolized to lactate that is extruded through monocarboxylate transporters to the microenvironment of cancer cells, while in normal cells, glucose is metabolized into pyruvate that is not extruded. Pyruvate is a potent antioxidant, while lactate has no antioxidant effect. Pyruvate in normal cells may be further metabolized to acetyl CoA and then through Krebs cycle with production of antioxidant intermediates e.g. citrate, malate and oxaloacetate together with the reducing equivalents (NADH.H+). Through activity of mitochondrial transhydrogenase, NADH.H+ replenishes NADPH.H+, coenzyme of glutathione reductase which replenishes reduced form of glutathione (potent antioxidant). This enhances antioxidant capacities of normal cells, while cancer cells exhibiting Warburg effect may be deprived of all that antioxidant capabilities due to loss of extruded lactate (substrate for Krebs cycle). Although intrinsic oxidative stress in cancer cells is high, it may be prevented from reaching progressively increasing levels that are cytotoxic to cancer cells. This may be due to some antioxidant effects exerted by hexokinase II (HK II) and NADPH.H+ produced through HMP shunt. Glycolytic phenotype in cancer cells maintains a high non-toxic oxidative stress in cancer cells and may be responsible for their malignant behavior. Through HK II, glycolysis fuels the energetic arm of malignancy, the mitotic arm of malignancy (DNA synthesis through HMP shunt pathway) and the metastatic arm of malignancy (hyaluronan synthesis through uronic acid pathway) in addition to the role of phosphohexose isomerase (autocrine motility factor). All those critical three arms start with the substrate G6P that is a direct product of HK II. 3-bromopyruvate (3BP, inhibitor of HK II) may prove as a promising anticancer and antimetastatic agent based on antagonizing the Warburg effect and disturbing the malignant behavior in cancer cells. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saint-Michel, B.; Aix Marseille Université, CNRS, Centrale Marseille, IRPHE UMR 7342, 13384 Marseille; Herbert, E.
2014-12-15
We report measurements of the dissipation in the Superfluid helium high REynold number von Kármán flow experiment for different forcing conditions. Statistically steady flows are reached; they display a hysteretic behavior similar to what has been observed in a 1:4 scale water experiment. Our macroscopical measurements indicate no noticeable difference between classical and superfluid flows, thereby providing evidence of the same dissipation scaling laws in the two phases. A detailed study of the evolution of the hysteresis cycle with the Reynolds number supports the idea that the stability of the steady states of classical turbulence in this closed flow ismore » partly governed by the dissipative scales. It also supports the idea that the normal and the superfluid components at these temperatures (1.6 K) are locked down to the dissipative length scale.« less
40 CFR Appendix II to Part 1042 - Steady-State Duty Cycles
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Steady-State Duty Cycles II Appendix..., App. II Appendix II to Part 1042—Steady-State Duty Cycles (a) The following duty cycles apply as specified in § 1042.505(b)(1): (1) The following duty cycle applies for discrete-mode testing: E3 mode No...
ERIC Educational Resources Information Center
Weltman, Arthur; Katch, Victor
1976-01-01
No statistically meaningful differences in steady-state vo2 uptake for high and low max vo2 groups was indicated in this study, but a clear tendency was observed for the high max vo2 group to reach the steady-state at a faster rate. (MB)
Quantitative controls on submarine slope failure morphology
Lee, H.J.; Schwab, W.C.; Edwards, B.D.; Kayen, R.E.
1991-01-01
The concept of the steady-state of deformation can be applied to predicting the ultimate form a landslide will take. The steady-state condition, defined by a line in void ratio-effective stress space, exists at large levels of strain and remolding. Conceptually, if sediment initially exists with void ratio-effective stress conditions above the steady-state line, the sediment shear strength will decrease during a transient loading event, such as an earthquake or storm. If the reduced shear strength existing at the steady state is less than the downslope shear stress induced by gravity, then large-scale internal deformation, disintegration, and flow will occur. -from Authors
Simonin, Kevin A; Roddy, Adam B; Link, Percy; Apodaca, Randy; Tu, Kevin P; Hu, Jia; Dawson, Todd E; Barbour, Margaret M
2013-12-01
During daylight hours, the isotope composition of leaf water generally approximates steady-state leaf water isotope enrichment model predictions. However, until very recently there was little direct confirmation that isotopic steady-state (ISS) transpiration in fact exists. Using isotope ratio infrared spectroscopy (IRIS) and leaf gas exchange systems we evaluated the isotope composition of transpiration and the rate of change in leaf water isotopologue storage (isostorage) when leaves were exposed to variable environments. In doing so, we developed a method for controlling the absolute humidity entering the gas exchange cuvette for a wide range of concentrations without changing the isotope composition of water vapour. The measurement system allowed estimation of (18)O enrichment both at the evaporation site and for bulk leaf water, in the steady state and the non-steady state. We show that non-steady-state effects dominate the transpiration isoflux even when leaves are at physiological steady state. Our results suggest that a variable environment likely prevents ISS transpiration from being achieved and that this effect may be exacerbated by lengthy leaf water turnover times due to high leaf water contents. © 2013 John Wiley & Sons Ltd.
Detection-enhanced steady state entanglement with ions.
Bentley, C D B; Carvalho, A R R; Kielpinski, D; Hope, J J
2014-07-25
Driven dissipative steady state entanglement schemes take advantage of coupling to the environment to robustly prepare highly entangled states. We present a scheme for two trapped ions to generate a maximally entangled steady state with fidelity above 0.99, appropriate for use in quantum protocols. Furthermore, we extend the scheme by introducing detection of our dissipation process, significantly enhancing the fidelity. Our scheme is robust to anomalous heating and requires no sympathetic cooling.
Accretion disk dynamics in X-ray binaries
NASA Astrophysics Data System (ADS)
Peris, Charith Srian
Accreting X-ray binaries consist of a normal star which orbits a compact object with the former transferring matter onto the later via an accretion disk. These accretion disks emit radiation across the entire electromagnetic spectrum. This thesis exploits two regions of the spectrum, exploring the (1) inner disk regions of an accreting black hole binary, GRS1915+105, using X-ray spectral analysis and (2) the outer accretion disks of a set of neutron star and black hole binaries using Doppler Tomography applied on optical observations. X-ray spectral analysis of black hole binary GRS1915+105: GRS1915+105 stands out as an exceptional black hole primarily due to the wild variability exhibited by about half of its X-ray observations. This study focused on the steady X-ray observations of the source, which were found to exhibit significant curvature in the harder coronal component within the RXTE/PCA band-pass. The roughly constant inner-disk radius seen in a majority of the steady-soft observations is strongly reminiscent of canonical soft state black-hole binaries. Remarkably, the steady-hard observations show the presence of growing truncation in the inner-disk. A majority of the steady observations of GRS1915+105 map to the states observed in canonical black hole binaries which suggests that within the complexity of this source is a simpler underlying basis of states. Optical tomography of X-ray binary systems: Doppler tomography was applied to the strong line features present in the optical spectra of X-ray binaries in order to determine the geometric structure of the systems' emitting regions. The point where the accretion stream hits the disk, also referred to as the "hotspot'', is clearly identified in the neutron star system V691 CrA and the black hole system Nova Muscae 1991. Evidence for stream-disk overflows exist in both systems, consistent with relatively high accretion rates. In contrast, V926 Sco does not show evidence for the presence of a hotspot which is consistent with its lower accretion state. The donor stars in V691 CrA and Nova Muscae 1991 were also detected.
NASA Astrophysics Data System (ADS)
Hand, K. P.; Carlson, R. W.
2007-12-01
The presence of hydrogen peroxide and condensed phase molecular oxygen on the surface of Europa is now well established [1,2] and laboratory experiments have repeatedly demonstrated the viability of various radiolytic processes for explaining the observations [see e.g. 3, 4]. To date, however, both the Europa observations and the laboratory work have been limited to only the upper few, or few tens of microns, of ice. The spectrum of charged particles incident on the surface of Europa penetrates deeper, and deposits energy over a much greater range, than any laboratory experiment has aimed to replicate [5, 6]. Here we present results from laboratory work on hydrogen peroxide production using energetic electrons (4 keV - 16 keV) and couple these results with a numerical model for the integrated steady-state density of hydrogen peroxide as a function of depth into the ice. Production rates and steady-state peroxide levels for a range of initial electron energies are used to generate functions for the number of peroxide molecules produced per initial electron as it penetrates through the ice. We examined the electron energy spectrum from 0.01 MeV to 10 MeV and accounted for electrons incident to the surface over the solid angle from cosine(theta) = 0.3-1.0, where theta is the angle from the normal to the surface. We found that, accounting for production and destruction as a function of energy deposition, steady-state hydrogen peroxide concentrations resulting from electron radiolysis likely increases by a factor of a few to an order of magnitude at a depth of a few hundred microns. In other words, the 0.13 percent by number abundance of peroxide observed by NIMS [1] may be a low-end value; at depth the peroxide concentration could increase to a few percent by number relative to water. [1] Carlson et al. 1999. [2] Spencer and Calvin, 2002. [3] Moore and Hudson, 2000. [4] Loeffler et al., 2006. [5] Cooper et al., 2001 [6] Paranicas et al., 2001.
Core temperature rhythms in normal and tumor-bearing mice.
Griffith, D J; Busot, J C; Lee, W E; Djeu, D J
1993-01-01
The core temperature temporal behavior of DBA/2 mice (11 normal and 13 with an ascites tumor) was studied using surgically implanted radio telemetry transmitters. Normal mice continuously displayed a stable 24 hour temperature rhythm. Tumor-bearers displayed a progressive deterioration of the temperature rhythm following inoculation with tumor cells. While such disruptions have been noted by others, details on the dynamics of the changes have been mostly qualitative, often due to time-averaging or steady-state analysis of the data. The present study attempts to quantify the dynamics of the disruption of temperature rhythm (when present) by continuously monitoring temperatures over periods up to a month. Analysis indicated that temperature regulation in tumor-bearers was adversely affected during the active period only. Furthermore, it appears that the malignancy may be influencing temperature regulation via pathways not directly attributable to the energy needs of the growing tumor.
Purfication kinetics of beryllium during vacuum induction melting
NASA Technical Reports Server (NTRS)
Mukherjee, J. L.; Gupta, K. P.; Li, C. H.
1972-01-01
The kinetics of evaporation in binary alloys were quantitatively treated. The formalism so developed works well for several systems studied. The kinetics of purification of beryllium was studied through evaporation data actually acquired during vacuum induction melting. Normal evaporation equations are shown to be generally valid and useful for understanding the kinetics of beryllium purification. The normal evaporation analysis has been extended to cover cases of limited liquid diffusion. It was shown that under steady-state evaporation, the solute concentration near the surface may be up to six orders of magnitude different from the bulk concentration. Corrections for limited liquid diffusion are definitely needed for the highly evaporative solute elements, such as Zn, Mg, and Na, for which the computed evaporation times are improved by five orders of magnitude. The commonly observed logarithmic relation between evaporation time and final concentration further supports the validity of the normal evaporation equations.
Interocular suppression in normal and amblyopic vision: spatio-temporal properties.
Huang, Pi-Chun; Baker, Daniel H; Hess, Robert F
2012-10-31
We measured the properties of interocular suppression in strabismic amblyopes and compared these to dichoptic masking in binocularly normal observers. We used a dichoptic version of the well-established probed-sinewave paradigm that measured sensitivity to a brief target stimulus (one of four letters to be discriminated) in the amblyopic eye at different times relative to a suppression-inducing mask in the fixing eye. This was done using both sinusoidal steady state and transient approaches. The suppression-inducing masks were either modulations of luminance or contrast (full field, just overlaying the target, or just surrounding the target). Our results were interpreted using a descriptive model that included contrast gain control and spatio-temporal filtering prior to excitatory binocular combination. The suppression we measured, other than in magnitude, was not fundamentally different from normal dichoptic masking: lowpass spatio-temporal properties with similar contributions from both surround and overlay suppression.
Steady-state MR imaging sequences: physics, classification, and clinical applications.
Chavhan, Govind B; Babyn, Paul S; Jankharia, Bhavin G; Cheng, Hai-Ling M; Shroff, Manohar M
2008-01-01
Steady-state sequences are a class of rapid magnetic resonance (MR) imaging techniques based on fast gradient-echo acquisitions in which both longitudinal magnetization (LM) and transverse magnetization (TM) are kept constant. Both LM and TM reach a nonzero steady state through the use of a repetition time that is shorter than the T2 relaxation time of tissue. When TM is maintained as multiple radiofrequency excitation pulses are applied, two types of signal are formed once steady state is reached: preexcitation signal (S-) from echo reformation; and postexcitation signal (S+), which consists of free induction decay. Depending on the signal sampled and used to form an image, steady-state sequences can be classified as (a) postexcitation refocused (only S+ is sampled), (b) preexcitation refocused (only S- is sampled), and (c) fully refocused (both S+ and S- are sampled) sequences. All tissues with a reasonably long T2 relaxation time will show additional signals due to various refocused echo paths. Steady-state sequences have revolutionized cardiac imaging and have become the standard for anatomic functional cardiac imaging and for the assessment of myocardial viability because of their good signal-to-noise ratio and contrast-to-noise ratio and increased speed of acquisition. They are also useful in abdominal and fetal imaging and hold promise for interventional MR imaging. Because steady-state sequences are now commonly used in MR imaging, radiologists will benefit from understanding the underlying physics, classification, and clinical applications of these sequences.
Quasi One-Dimensional Unsteady Modeling of External Compression Supersonic Inlets
NASA Technical Reports Server (NTRS)
Kopasakis, George; Connolly, Joseph W.; Kratz, Jonathan
2012-01-01
The AeroServoElasticity task under the NASA Supersonics Project is developing dynamic models of the propulsion system and the vehicle in order to conduct research for integrated vehicle dynamic performance. As part of this effort, a nonlinear quasi 1-dimensional model of an axisymmetric external compression supersonic inlet is being developed. The model utilizes compressible flow computational fluid dynamics to model the internal inlet segment as well as the external inlet portion between the cowl lip and normal shock, and compressible flow relations with flow propagation delay to model the oblique shocks upstream of the normal shock. The external compression portion between the cowl-lip and the normal shock is also modeled with leaking fluxes crossing the sonic boundary, with a moving CFD domain at the normal shock boundary. This model has been verified in steady state against tunnel inlet test data and it s a first attempt towards developing a more comprehensive model for inlet dynamics.
Earthquake Clustering on Normal Faults: Insight from Rate-and-State Friction Models
NASA Astrophysics Data System (ADS)
Biemiller, J.; Lavier, L. L.; Wallace, L.
2016-12-01
Temporal variations in slip rate on normal faults have been recognized in Hawaii and the Basin and Range. The recurrence intervals of these slip transients range from 2 years on the flanks of Kilauea, Hawaii to 10 kyr timescale earthquake clustering on the Wasatch Fault in the eastern Basin and Range. In addition to these longer recurrence transients in the Basin and Range, recent GPS results there also suggest elevated deformation rate events with recurrence intervals of 2-4 years. These observations suggest that some active normal fault systems are dominated by slip behaviors that fall between the end-members of steady aseismic creep and periodic, purely elastic, seismic-cycle deformation. Recent studies propose that 200 year to 50 kyr timescale supercycles may control the magnitude, timing, and frequency of seismic-cycle earthquakes in subduction zones, where aseismic slip transients are known to play an important role in total deformation. Seismic cycle deformation of normal faults may be similarly influenced by its timing within long-period supercycles. We present numerical models (based on rate-and-state friction) of normal faults such as the Wasatch Fault showing that realistic rate-and-state parameter distributions along an extensional fault zone can give rise to earthquake clusters separated by 500 yr - 5 kyr periods of aseismic slip transients on some portions of the fault. The recurrence intervals of events within each earthquake cluster range from 200 to 400 years. Our results support the importance of stress and strain history as controls on a normal fault's present and future slip behavior and on the characteristics of its current seismic cycle. These models suggest that long- to medium-term fault slip history may influence the temporal distribution, recurrence interval, and earthquake magnitudes for a given normal fault segment.
Time density curve analysis for C-arm FDCT PBV imaging
Byrne, James V
2016-01-01
Introduction Parenchymal blood volume (PBV) estimation using C-arm flat detector computed tomography (FDCT) assumes a steady-state contrast concentration in cerebral vasculature for the scan duration. Using time density curve (TDC) analysis, we explored if the steady-state assumption is met for C-arm CT PBV scans, and how consistent the contrast-material dynamics in cerebral vasculature are across patients. Methods Thirty C-arm FDCT datasets of 26 patients with aneurysmal-SAH, acquired as part of a prospective study comparing C-arm CT PBV with MR-PWI, were analysed. TDCs were extracted from the 2D rotational projections. Goodness-of-fit of TDCs to a steady-state horizontal-line-model and the statistical similarity among the individual TDCs were tested. Influence of the differences in TDC characteristics on the agreement of resulting PBV measurements with MR-CBV was calculated. Results Despite identical scan parameters and contrast-injection-protocol, the individual TDCs were statistically non-identical (p < 0.01). Using Dunn's multiple comparisons test, of the total 435 individual comparisons among the 30 TDCs, 330 comparisons (62%) reached statistical significance for difference. All TDCs deviated significantly (p < 0.01) from the steady-state horizontal-line-model. PBV values of those datasets for which the TDCs showed largest deviations from the steady-state model demonstrated poor agreement and correlation with MR-CBV, compared with the PBV values of those datasets for which the TDCs were closer to steady-state. Conclusion For clinical C-arm CT PBV examinations, the administered contrast material does not reach the assumed ‘ideal steady-state’ for the duration of scan. Using a prolonged injection protocol, the degree to which the TDCs approximate the ideal steady-state influences the agreement of resulting PBV measurements with MR-CBV. PMID:26769736
Dynamics of static friction between steel and silicon
Yang, Zhiping; Zhang, H. P.; Marder, M.
2008-01-01
We conducted experiments in which steel and silicon or quartz are clamped together. Even with the smallest tangential forces we could apply, we always found reproducible sliding motions on the nanometer scale. The velocities we study are thousands of times smaller than in previous investigations. The samples first slide and then lock up even when external forces hold steady. One might call the result “slip-stick” friction. We account for the results with a phenomenological theory that results from considering the rate and state theory of dynamic friction at low velocities. Our measurements lead us to set the instantaneous coefficient of static friction that normally enters rate and state theories to zero. PMID:18768792
Analytical Study of Gravity Effects on Laminar Diffusion Flames
NASA Technical Reports Server (NTRS)
Edelman, R. B.; Fortune, O.; Weilerstein, G.
1972-01-01
A mathematical model is presented for the description of axisymmetric laminar-jet diffusion flames. The analysis includes the effects of inertia, viscosity, diffusion, gravity and combustion. These mechanisms are coupled in a boundary layer type formulation and solutions are obtained by an explicit finite difference technique. A dimensional analysis shows that the maximum flame width radius, velocity and thermodynamic state characterize the flame structure. Comparisons with experimental data showed excellent agreement for normal gravity flames and fair agreement for steady state low Reynolds number zero gravity flames. Kinetics effects and radiation are shown to be the primary mechanisms responsible for this discrepancy. Additional factors are discussed including elipticity and transient effects.
Pressure Distribution and Performance Impacts of Aerospike Nozzles on Rotating Detonation Engines
2017-06-01
design methodology at both on- and off-design conditions anticipated throughout the combustion cycle. Steady-state, non -reacting computational fluid...operation. Therefore, the nozzle contour was designed using a traditional, steady-state design methodology at both on- and off-design conditions...anticipated throughout the combustion cycle. Steady-state, non -reacting computational fluid dynamics (CFD) simulations were performed on various nozzle
NASA Technical Reports Server (NTRS)
Parzen, Benjamin
1992-01-01
The theory of oscillator analysis in the immittance domain should be read in conjunction with the additional theory presented here. The combined theory enables the computer simulation of the steady state oscillator. The simulation makes the calculation of the oscillator total steady state performance practical, including noise at all oscillator locations. Some specific precision oscillators are analyzed.
Veliz-Cuba, Alan; Aguilar, Boris; Hinkelmann, Franziska; Laubenbacher, Reinhard
2014-06-26
A key problem in the analysis of mathematical models of molecular networks is the determination of their steady states. The present paper addresses this problem for Boolean network models, an increasingly popular modeling paradigm for networks lacking detailed kinetic information. For small models, the problem can be solved by exhaustive enumeration of all state transitions. But for larger models this is not feasible, since the size of the phase space grows exponentially with the dimension of the network. The dimension of published models is growing to over 100, so that efficient methods for steady state determination are essential. Several methods have been proposed for large networks, some of them heuristic. While these methods represent a substantial improvement in scalability over exhaustive enumeration, the problem for large networks is still unsolved in general. This paper presents an algorithm that consists of two main parts. The first is a graph theoretic reduction of the wiring diagram of the network, while preserving all information about steady states. The second part formulates the determination of all steady states of a Boolean network as a problem of finding all solutions to a system of polynomial equations over the finite number system with two elements. This problem can be solved with existing computer algebra software. This algorithm compares favorably with several existing algorithms for steady state determination. One advantage is that it is not heuristic or reliant on sampling, but rather determines algorithmically and exactly all steady states of a Boolean network. The code for the algorithm, as well as the test suite of benchmark networks, is available upon request from the corresponding author. The algorithm presented in this paper reliably determines all steady states of sparse Boolean networks with up to 1000 nodes. The algorithm is effective at analyzing virtually all published models even those of moderate connectivity. The problem for large Boolean networks with high average connectivity remains an open problem.
2014-01-01
Background A key problem in the analysis of mathematical models of molecular networks is the determination of their steady states. The present paper addresses this problem for Boolean network models, an increasingly popular modeling paradigm for networks lacking detailed kinetic information. For small models, the problem can be solved by exhaustive enumeration of all state transitions. But for larger models this is not feasible, since the size of the phase space grows exponentially with the dimension of the network. The dimension of published models is growing to over 100, so that efficient methods for steady state determination are essential. Several methods have been proposed for large networks, some of them heuristic. While these methods represent a substantial improvement in scalability over exhaustive enumeration, the problem for large networks is still unsolved in general. Results This paper presents an algorithm that consists of two main parts. The first is a graph theoretic reduction of the wiring diagram of the network, while preserving all information about steady states. The second part formulates the determination of all steady states of a Boolean network as a problem of finding all solutions to a system of polynomial equations over the finite number system with two elements. This problem can be solved with existing computer algebra software. This algorithm compares favorably with several existing algorithms for steady state determination. One advantage is that it is not heuristic or reliant on sampling, but rather determines algorithmically and exactly all steady states of a Boolean network. The code for the algorithm, as well as the test suite of benchmark networks, is available upon request from the corresponding author. Conclusions The algorithm presented in this paper reliably determines all steady states of sparse Boolean networks with up to 1000 nodes. The algorithm is effective at analyzing virtually all published models even those of moderate connectivity. The problem for large Boolean networks with high average connectivity remains an open problem. PMID:24965213
Free Body Dynamics of a Spinning Cylinder with Planar Restraint-(a.k.a. Barrel of Fun). Part 2
NASA Technical Reports Server (NTRS)
Moraru, Laurentiu; Dimofte, Florin; Hendricks, Robert C.
2011-01-01
The dynamic motion of a cylinder is analyzed based on rotation about its center of mass and is restrained by a plane normal to the axis passing through its center of mass at an angle. The first part of this work presented an analysis of the stability of the motion. In the current report, the governing equations are numerically integrated in time and the steady state is obtained as a limit of the transient numerical solution. The calculated data are compared with observed behaviors.
TRAC posttest calculations of Semiscale Test S-06-3. [PWR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ireland, J.R.; Bleiweis, P.B.
A comparison of Transient Reactor Analysis Code (TRAC) steady-state and transient results with Semiscale Test S-06-3 (US Standard Problem 8) experimental data is discussed. The TRAC model used employs fewer mesh cells than normal data comparison models so that TRAC's ability to obtain reasonable results with less computer time can be assessed. In general, the TRAC results are in good agreement with the data and the major phenomena found in the experiment are reproduced by the code with a substantial reduction in computing times.
Jones, R
1990-08-01
Objective refraction through plus fogging lenses and base-in prisms revealed that normally accommodation is not completely relaxed when the stimulus to accommodation is zero. The myopic shift in the refractive error due to this focus error of accommodation was defined as physiological pseudomyopia. Two previously established features of accommodation are responsible for this behavior: (1) accommodation acts as a proportional control system for steady-state responses; and (2) the rest focus of accommodation is nonzero. It is proposed that the hyperopic shift in refraction observed in cycloplegia is the result of elimination of physiological pseudomyopia.
NASA Technical Reports Server (NTRS)
Silas, C.; Brindeu, L.; Grosanu, I.; Cioara, T.
1974-01-01
For compacting concretes in building, vibrating beams are used. The vibrations are generated by inertial vibrators, and the beam is normally displaced by the operator by means of a handle that is elastically fastened to the beam by means of rubber pads. Considered are vibrations transmitted to the operator, taking into account the beam's shock vibration motions. The steady state motion of a dynamic beam pattern is studied, and results of experimental tests with existing equipment are presented.
NASA Technical Reports Server (NTRS)
Hall, Michael L.; Doster, Joseph M.
1986-01-01
Many proposed space reactor designs employ heat pipes as a means of conveying heat. Previous researchers have been concerned with steady state operation, but the transient operation is of interest in space reactor applications due to the necessity of remote startup and shutdown. A model is being developed to study the dynamic behavior of high temperature heat pipes during startup, shutdown and normal operation under space environments. Model development and preliminary results for a hypothetical design of the system are presented.
LANDSAT-D ground segment operations plan, revision A
NASA Technical Reports Server (NTRS)
Evans, B.
1982-01-01
The basic concept for the utilization of LANDSAT ground processing resources is described. Only the steady state activities that support normal ground processing are addressed. This ground segment operations plan covers all processing of the multispectral scanner and the processing of thematic mapper through data acquisition and payload correction data generation for the LANDSAT 4 mission. The capabilities embedded in the hardware and software elements are presented from an operations viewpoint. The personnel assignments associated with each functional process and the mechanisms available for controlling the overall data flow are identified.
Magnetic reconnection in collisionless plasmas - Prescribed fields
NASA Technical Reports Server (NTRS)
Burkhart, G. R.; Drake, J. F.; Chen, J.
1990-01-01
The structure of the dissipation region during magnetic reconnection in collisionless plasma is investigated by examining a prescribed two-dimensional magnetic x line configuration with an imposed inductive electric field E(y). The calculations represent an extension of recent MHD simulations of steady state reconnection (Biskamp, 1986; Lee and Fu, 1986) to the collisionless kinetic regime. It is shown that the structure of the x line reconnection configuration depends on only two parameters: a normalized inductive field and a parameter R which represents the opening angle of the magnetic x lines.
Controlled-release tablet formulation of isoniazid.
Jain, N K; Kulkarni, K; Talwar, N
1992-04-01
Guar (GG) and Karaya gums (KG) alone and in combination with hydroxy-propylmethylcellulose (HPMC) were evaluated as release retarding materials to formulate a controlled-release tablet dosage form of isoniazid (1). In vitro release of 1 from tablets followed non-Fickian release profile with rapid initial release. Urinary excretion studies in normal subjects showed steady-state levels of 1 for 13 h. In vitro and in vivo data correlated (r = 0.9794). The studies suggested the potentiality of GG and KG as release retarding materials in formulating controlled-release tablet dosage forms of 1.
Preliminary results of the mission profile life test of a 30 cm Hg bombardment thruster
NASA Technical Reports Server (NTRS)
Bechtel, R. T.; James, E. L.
1979-01-01
Long term tests were performed on a 30 cm Hg bombardment thruster and a power processing unit to determine lifetime characteristics. The thruster performance data and other operational characteristics taken at various times during the test segment are presented and evaluated with the life limiting mechanisms: discharge chamber erosion, deposition and spalling, external erosion, cathode degradation, and propellant isolator leakage. The control algorithms for thruster start up, steady state operation, throttle, detection and correction of off normal conditions, and shutdown are discussed.
Non-Gaussian noise-weakened stability in a foraging colony system with time delay
NASA Astrophysics Data System (ADS)
Dong, Xiaohui; Zeng, Chunhua; Yang, Fengzao; Guan, Lin; Xie, Qingshuang; Duan, Weilong
2018-02-01
In this paper, the dynamical properties in a foraging colony system with time delay and non-Gaussian noise were investigated. Using delay Fokker-Planck approach, the stationary probability distribution (SPD), the associated relaxation time (ART) and normalization correlation function (NCF) are obtained, respectively. The results show that: (i) the time delay and non-Gaussian noise can induce transition from a single peak to double peaks in the SPD, i.e., a type of bistability occurring in a foraging colony system where time delay and non-Gaussian noise not only cause transitions between stable states, but also construct the states themselves. Numerical simulations are presented and are in good agreement with the approximate theoretical results; (ii) there exists a maximum in the ART as a function of the noise intensity, this maximum for ART is identified as the characteristic of the non-Gaussian noise-weakened stability of the foraging colonies in the steady state; (iii) the ART as a function of the noise correlation time exhibits a maximum and a minimum, where the minimum for ART is identified as the signature of the non-Gaussian noise-enhanced stability of the foraging colonies; and (iv) the time delay can enhance the stability of the foraging colonies in the steady state, while the departure from Gaussian noise can weaken it, namely, the time delay and departure from Gaussian noise play opposite roles in ART or NCF.
NASA Astrophysics Data System (ADS)
Wang, Can-Jun; Wei, Qun; Mei, Dong-Cheng
2008-03-01
The associated relaxation time T and the normalized correlation function C(s) for a tumor cell growth system subjected to color noises are investigated. Using the Novikov theorem and Fox approach, the steady probability distribution is obtained. Based on them, the expressions of T and C(s) are derived by means of projection operator method, in which the effects of the memory kernels of the correlation function are taken into account. Performing the numerical computations, it is found: (1) With the cross-correlation intensity |λ|, the additive noise intensity α and the multiplicative noise self-correlation time τ increasing, the tumor cell numbers can be restrained; And the cross-correlation time τ, the multiplicative noise intensity D can induce the tumor cell numbers increasing; However, the additive noise self-correlation time τ cannot affect the tumor cell numbers; The relaxation time T is a stochastic resonant phenomenon, and the distribution curves exhibit a single-maximum structure with D increasing. (2) The cross-correlation strength λ weakens the related activity between two states of the tumor cell numbers at different time, and enhances the stability of the tumor cell growth system in the steady state; On the contrast, τ and τ enhance the related activity between two states at different time; However, τ has no effect on the related activity between two states at different time.
Liu, Da -Jiang; Evans, James W.
2015-04-02
We explore simple lattice-gas reaction models for CO-oxidation on 1D and 2D periodic arrays of surface adsorption sites. The models are motivated by studies of CO-oxidation on RuO 2(110) at high-pressures. Although adspecies interactions are neglected, the effective absence of adspecies diffusion results in kinetically-induced spatial correlations. A transition occurs from a random mainly CO-populated steady-state at high CO-partial pressure p CO, to a strongly-correlated near-O-covered steady-state for low p CO as noted. In addition, we identify a second transition to a random near-O-covered steady-state at very low p CO.
The steady-state visual evoked potential in vision research: A review
Norcia, Anthony M.; Appelbaum, L. Gregory; Ales, Justin M.; Cottereau, Benoit R.; Rossion, Bruno
2015-01-01
Periodic visual stimulation and analysis of the resulting steady-state visual evoked potentials were first introduced over 80 years ago as a means to study visual sensation and perception. From the first single-channel recording of responses to modulated light to the present use of sophisticated digital displays composed of complex visual stimuli and high-density recording arrays, steady-state methods have been applied in a broad range of scientific and applied settings.The purpose of this article is to describe the fundamental stimulation paradigms for steady-state visual evoked potentials and to illustrate these principles through research findings across a range of applications in vision science. PMID:26024451
NASA Astrophysics Data System (ADS)
Maggi, F.; Riley, W. J.
2009-12-01
The composition and location of 15N atoms on N2O isotopomers and isotopologues during isotope speciation has been used to characterize soil biological N cycling and N2O surface emissions. Although there exist few experimental observations, no attempt has been made to model N2O isotopomer speciation. The mathematical treatment of biological kinetic reactions in isotopic applications normally makes use of first-order and quasi steady-state complexation assumptions without taking into account changes in enzyme concentration, reaction stoichiometry, and isotopologue and isotopomer speciation. When multiatomic isotopically-labeled reactants are used in a multi-molecurar reaction, these assumptions may fail since they always lead to a constant fractionation factor and cannot describe speciation of isotopologues and isotopomers. We have developed a mathematical framework that is capable of describing isotopologue and isotopmer speciation and fractionation under the assumption of non-steady complexation during biological kinetic reactions that overcome the limitations mentioned above. This framework was applied to a case study of non-steady (variable and inverse) isotopic effects observed during N2O production and consumption in soils. Our mathematical treatment has led to generalized kinetic equations which replicate experimental observations with high accuracy and help interpret non-steady isotopic effects and isotopologue and isotopomer speciation. The kinetic equations introduced and applied here have general validity in describing isotopic effects in any biochemical reactions by considering: changing enzyme concentrations, mass and isotope conservation, and reaction stoichiometry. The equations also describe speciation of any isotopologue and isotopomer product from any isotopologue and isotopmer reactant.
Symmetry limit theory for cantilever beam-columns subjected to cyclic reversed bending
NASA Astrophysics Data System (ADS)
Uetani, K.; Nakamura, Tsuneyoshi
THE BEHAVIOR of a linear strain-hardening cantilever beam-column subjected to completely reversed plastic bending of a new idealized program under constant axial compression consists of three stages: a sequence of symmetric steady states, a subsequent sequence of asymmetric steady states and a divergent behavior involving unbounded growth of an anti-symmetric deflection mode. A new concept "symmetry limit" is introduced here as the smallest critical value of the tip-deflection amplitude at which transition from a symmetric steady state to an asymmetric steady state can occur in the response of a beam-column. A new theory is presented for predicting the symmetry limits. Although this transition phenomenon is phenomenologically and conceptually different from the branching phenomenon on an equilibrium path, it is shown that a symmetry limit may theoretically be regarded as a branching point on a "steady-state path" defined anew. The symmetry limit theory and the fundamental hypotheses are verified through numerical analysis of hysteretic responses of discretized beam-column models.
A general theory of kinetics and thermodynamics of steady-state copolymerization.
Shu, Yao-Gen; Song, Yong-Shun; Ou-Yang, Zhong-Can; Li, Ming
2015-06-17
Kinetics of steady-state copolymerization has been investigated since the 1940s. Irreversible terminal and penultimate models were successfully applied to a number of comonomer systems, but failed for systems where depropagation is significant. Although a general mathematical treatment of the terminal model with depropagation was established in the 1980s, a penultimate model and higher-order terminal models with depropagation have not been systematically studied, since depropagation leads to hierarchically-coupled and unclosed kinetic equations which are hard to solve analytically. In this work, we propose a truncation method to solve the steady-state kinetic equations of any-order terminal models with depropagation in a unified way, by reducing them into closed steady-state equations which give the exact solution of the original kinetic equations. Based on the steady-state equations, we also derive a general thermodynamic equality in which the Shannon entropy of the copolymer sequence is explicitly introduced as part of the free energy dissipation of the whole copolymerization system.
Molecular control of steady-state dendritic cell maturation and immune homeostasis.
Hammer, Gianna Elena; Ma, Averil
2013-01-01
Dendritic cells (DCs) are specialized sentinels responsible for coordinating adaptive immunity. This function is dependent upon coupled sensitivity to environmental signs of inflammation and infection to cellular maturation-the programmed alteration of DC phenotype and function to enhance immune cell activation. Although DCs are thus well equipped to respond to pathogens, maturation triggers are not unique to infection. Given that immune cells are exquisitely sensitive to the biological functions of DCs, we now appreciate that multiple layers of suppression are required to restrict the environmental sensitivity, cellular maturation, and even life span of DCs to prevent aberrant immune activation during the steady state. At the same time, steady-state DCs are not quiescent but rather perform key functions that support homeostasis of numerous cell types. Here we review these functions and molecular mechanisms of suppression that control steady-state DC maturation. Corruption of these steady-state operatives has diverse immunological consequences and pinpoints DCs as potent drivers of autoimmune and inflammatory disease.
Chapple, Richard H.; Tseng, Yu-Jung; Hu, Tianyuan; Kitano, Ayumi; Takeichi, Makiko; Hoegenauer, Kevin A.
2018-01-01
Characterization of hematopoietic stem cells (HSCs) has advanced largely owing to transplantation assays, in which the developmental potential of HSCs is assessed generally in nonhomeostatic conditions. These studies established that adult HSCs extensively contribute to multilineage hematopoietic regeneration upon transplantation. On the contrary, recent studies performing lineage tracing of HSCs under homeostatic conditions have shown that adult HSCs may contribute far less to steady-state hematopoiesis than would be anticipated based on transplantation assays. Here, we used 2 independent HSC-lineage–tracing models to examine the contribution of adult HSCs to steady-state hematopoiesis. We show that adult HSCs contribute robustly to steady-state hematopoiesis, exhibiting faster efflux toward the myeloid lineages compared with lymphoid lineages. Platelets were robustly labeled by HSCs, reaching the same level of labeling as HSCs by 1 year of chase. Our results support the view that adult HSCs contribute to the continuous influx of blood cells during steady-state hematopoiesis. PMID:29848758
Steady State Condition in the Measurement of VO
Cadena, M; Sacristan, E; Infante, O; Escalante, B; Rodriguez, F
2005-01-01
Resting Metabolic Rate (RMR) is computed using VO
Einstein's steady-state theory: an abandoned model of the cosmos
NASA Astrophysics Data System (ADS)
O'Raifeartaigh, Cormac; McCann, Brendan; Nahm, Werner; Mitton, Simon
2014-09-01
We present a translation and analysis of an unpublished manuscript by Albert Einstein in which he attempted to construct a `steady-state' model of the universe. The manuscript, which appears to have been written in early 1931, demonstrates that Einstein once explored a cosmic model in which the mean density of matter in an expanding universe is maintained constant by the continuous formation of matter from empty space. This model is very different to previously known Einsteinian models of the cosmos (both static and dynamic) but anticipates the later steady-state cosmology of Hoyle, Bondi and Gold in some ways. We find that Einstein's steady-state model contains a fundamental flaw and suggest that it was abandoned for this reason. We also suggest that he declined to explore a more sophisticated version because he found such theories rather contrived. The manuscript is of historical interest because it reveals that Einstein debated between steady-state and evolving models of the cosmos decades before a similar debate took place in the cosmological community.
NASA Astrophysics Data System (ADS)
Garcia, Jane Bernadette Denise M.; Esguerra, Jose Perico H.
2017-08-01
An approximate but closed-form expression for a Poisson-like steady state wealth distribution in a kinetic model of gambling was formulated from a finite number of its moments, which were generated from a βa,b(x) exchange distribution. The obtained steady-state wealth distributions have tails which are qualitatively similar to those observed in actual wealth distributions.
Gabe, Y; Osanai, O; Takema, Y
2014-08-01
Ultraweak photon emission (UPE) is one potential method to evaluate the oxidative status of the skin in vivo. However, little is known about how the daily oxidative stress of the skin is related to skin aging-related alterations in vivo. We characterized the steady state UPE and performed a skin survey. We evaluated the skin oxidative status by UPE, skin elasticity, epidermal thickness and skin color on the inner upper arm, the outer forearm, and the buttock of 70 Japanese volunteers. The steady state UPE at the three skin sites increased with age. Correlation analysis revealed that the steady state UPE only from the buttock was related to skin elasticity, which showed age-dependent changes. Moreover, analysis by age group indicated that b* values of the inner upper arm of subjects in their 20s were inversely correlated with UPE as occurred in buttock skin. In contrast, photoaged skin did not show a clear relationship with steady state UPE because the accumulation of sun-exposure might influence the sensitivity to oxidative stress. These results suggest that steady state UPE reflects not only intrinsic skin aging and cutaneous color but also the current oxidative status independent of skin aging. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Evaporation rate of nucleating clusters.
Zapadinsky, Evgeni
2011-11-21
The Becker-Döring kinetic scheme is the most frequently used approach to vapor liquid nucleation. In the present study it has been extended so that master equations for all cluster configurations are included into consideration. In the Becker-Döring kinetic scheme the nucleation rate is calculated through comparison of the balanced steady state and unbalanced steady state solutions of the set of kinetic equations. It is usually assumed that the balanced steady state produces equilibrium cluster distribution, and the evaporation rates are identical in the balanced and unbalanced steady state cases. In the present study we have shown that the evaporation rates are not identical in the equilibrium and unbalanced steady state cases. The evaporation rate depends on the number of clusters at the limit of the cluster definition. We have shown that the ratio of the number of n-clusters at the limit of the cluster definition to the total number of n-clusters is different in equilibrium and unbalanced steady state cases. This causes difference in evaporation rates for these cases and results in a correction factor to the nucleation rate. According to rough estimation it is 10(-1) by the order of magnitude and can be lower if carrier gas effectively equilibrates the clusters. The developed approach allows one to refine the correction factor with Monte Carlo and molecular dynamic simulations.
Perception of steady-state vowels and vowelless syllables by adults and children
NASA Astrophysics Data System (ADS)
Nittrouer, Susan
2005-04-01
Vowels can be produced as long, isolated, and steady-state, but that is not how they are found in natural speech. Instead natural speech consists of almost continuously changing (i.e., dynamic) acoustic forms from which mature listeners recover underlying phonetic form. Some theories suggest that children need steady-state information to recognize vowels (and so learn vowel systems), even though that information is sparse in natural speech. The current study examined whether young children can recover vowel targets from dynamic forms, or whether they need steady-state information. Vowel recognition was measured for adults and children (3, 5, and 7 years) for natural productions of /dæd/, /dUd/ /æ/, /U/ edited to make six stimulus sets: three dynamic (whole syllables; syllables with middle 50-percent replaced by cough; syllables with all but the first and last three pitch periods replaced by cough), and three steady-state (natural, isolated vowels; reiterated pitch periods from those vowels; reiterated pitch periods from the syllables). Adults scored nearly perfectly on all but first/last three pitch period stimuli. Children performed nearly perfectly only when the entire syllable was heard, and performed similarly (near 80%) for all other stimuli. Consequently, children need dynamic forms to perceive vowels; steady-state forms are not preferred.
A stability analysis of the power-law steady state of marine size spectra.
Datta, Samik; Delius, Gustav W; Law, Richard; Plank, Michael J
2011-10-01
This paper investigates the stability of the power-law steady state often observed in marine ecosystems. Three dynamical systems are considered, describing the abundance of organisms as a function of body mass and time: a "jump-growth" equation, a first order approximation which is the widely used McKendrick-von Foerster equation, and a second order approximation which is the McKendrick-von Foerster equation with a diffusion term. All of these yield a power-law steady state. We derive, for the first time, the eigenvalue spectrum for the linearised evolution operator, under certain constraints on the parameters. This provides new knowledge of the stability properties of the power-law steady state. It is shown analytically that the steady state of the McKendrick-von Foerster equation without the diffusion term is always unstable. Furthermore, numerical plots show that eigenvalue spectra of the McKendrick-von Foerster equation with diffusion give a good approximation to those of the jump-growth equation. The steady state is more likely to be stable with a low preferred predator:prey mass ratio, a large diet breadth and a high feeding efficiency. The effects of demographic stochasticity are also investigated and it is concluded that these are likely to be small in real systems.
Bipolar pulse field for magnetic refrigeration
Lubell, Martin S.
1994-01-01
A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies.
Flow through very porous screens
NASA Technical Reports Server (NTRS)
Durbin, P. A.; Muramoto, K. K.
1985-01-01
Flow through and around screens with small resistance coefficient were analyzed. Both steady and oscillatory flows are considered, however, the case of a screen normal to the flow is treated. At second order in the asymptotic expansion the steady flow normal to the screen is nonuniform along the screen, due to components induced by the wake and by tangential drag. The third order pressure drop is nonuniform and the wake contains distributed vorticity, in addition to the vortex sheet along its boundary. The unsteady drag coefficient is found as a function of frequency.
Steady State Advanced Tokamak (SSAT): The mission and the machine
NASA Astrophysics Data System (ADS)
Thomassen, K.; Goldston, R.; Nevins, B.; Neilson, H.; Shannon, T.; Montgomery, B.
1992-03-01
Extending the tokamak concept to the steady state regime and pursuing advances in tokamak physics are important and complementary steps for the magnetic fusion energy program. The required transition away from inductive current drive will provide exciting opportunities for advances in tokamak physics, as well as important impetus to drive advances in fusion technology. Recognizing this, the Fusion Policy Advisory Committee and the U.S. National Energy Strategy identified the development of steady state tokamak physics and technology, and improvements in the tokamak concept, as vital elements in the magnetic fusion energy development plan. Both called for the construction of a steady state tokamak facility to address these plan elements. Advances in physics that produce better confinement and higher pressure limits are required for a similar unit size reactor. Regimes with largely self-driven plasma current are required to permit a steady-state tokamak reactor with acceptable recirculating power. Reliable techniques of disruption control will be needed to achieve the availability goals of an economic reactor. Thus the central role of this new tokamak facility is to point the way to a more attractive demonstration reactor (DEMO) than the present data base would support. To meet the challenges, we propose a new 'Steady State Advanced Tokamak' (SSAT) facility that would develop and demonstrate optimized steady state tokamak operating mode. While other tokamaks in the world program employ superconducting toroidal field coils, SSAT would be the first major tokamak to operate with a fully superconducting coil set in the elongated, divertor geometry planned for ITER and DEMO.
Is steady-state capitalism viable? A review of the issues and an answer in the affirmative.
Lawn, Philip
2011-02-01
Most ecological economists believe that the transition to a steady-state economy is necessary to ensure ecological sustainability and to maximize a nation's economic welfare. While some observers agree with the necessity of the steady-state economy, they are nonetheless critical of the suggestion made by ecological economists-in particular, Herman Daly-that a steady-state economy is compatible with a capitalist system. First, they believe that steady-state capitalism is based on the untenable assumption that growth is an optional rather than in-built element of capitalism. Second, they argue that capitalist notions of efficient resource allocation are too restrictive to facilitate the transition to an "ecological" or steady-state economy. I believe these observers are outright wrong with their first criticism and, because they misunderstand Daly's vision of a steady-state economy, are misplaced with their second criticism. The nature of a capitalist system depends upon the institutional framework that supports and shapes it. Hence, a capitalist system can exist in a wide variety of forms. Unfortunately, many observers fail to recognize that the current "growth imperative" is the result of capitalist systems everywhere being institutionally designed to grow. They need not be designed this way to survive and thrive. Indeed, because continued growth is both existentially undesirable and ecologically unsustainable, redesigning capitalist systems through the introduction of Daly-like institutions would prove to be capitalism's savior. What's more, it would constitute humankind's best hope of achieving sustainable development. © 2011 New York Academy of Sciences.
Fast-ion transport in qmin>2, high- β steady-state scenarios on DIII-D
Holcomb, C. T.; Heidbrink, W. W.; Ferron, J. R.; ...
2015-05-22
The results from experiments on DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] aimed at developing high β steady-state operating scenarios with high-qminqmin confirm that fast-ion transport is a critical issue for advanced tokamak development using neutral beam injection current drive. In DIII-D, greater than 11 MW of neutral beam heating power is applied with the intent of maximizing β N and the noninductive current drive. However, in scenarios with q min>2 that target the typical range of q 95= 5–7 used in next-step steady-state reactor models, Alfvén eigenmodes cause greater fast-ion transport than classical models predict. Thismore » enhanced transport reduces the absorbed neutral beam heating power and current drive and limits the achievable β N. Conversely similar plasmas except with q min just above 1 have approximately classical fast-ion transport. Experiments that take q min>3 plasmas to higher β P with q 95= 11–12 for testing long pulse operation exhibit regimes of better than expected thermal confinement. Compared to the standard high-q min scenario, the high β P cases have shorter slowing-down time and lower ∇β fast, and this reduces the drive for Alfvénic modes, yielding nearly classical fast-ion transport, high values of normalized confinement, β N, and noninductive current fraction. These results suggest DIII-D might obtain better performance in lower-q 95, high-q min plasmas using broader neutral beam heating profiles and increased direct electron heating power to lower the drive for Alfvén eigenmodes.« less
Gyenge, Christina C; Tenstad, Olav; Wiig, Helge
2003-01-01
In order to estimate the magnitude of electrostatic exclusion provided by the fixed negative charges of the skin and muscle interstitia of rat in vivo we measured the distribution volumes of two differently charged albumin probes within these tissues. An implanted osmotic pump was used to reach and maintain a steady-state extracellular concentration of a mixture containing two iodine-labelled probes: a charged-modified human serum albumin, cHSA (i.e. a positive probe, isoelectirc point (pI) = 7.6) and a native human serum albumin, HSA (i.e. a normally charged, negative probe, pI = 5.0). Steady-state tissue concentrations were achieved after intravenous infusion of probes for 5–7 days. At the end of this period the animals were nephrectomized and a bolus of 51Cr-EDTA was administered for estimating the extracellular volume. Plasma volumes were measured as 5-min distribution volume of 125I-HSA in separate experiments. The steady-state interstitial fluid concentrations of all probes were determined using nylon wicks implanted postmortem. Calculations of labelled probes were made for interstitial fluid volumes (Vi), extravascular albumin distribution volumes (Vav,a) and relative interstitial excluded volume fractions (Vex,a/Vi). We found that the positive probe is excluded from a significantly smaller fraction of the interstitium. Specifically, the average relative albumin exclusion fractions obtained were: 16% and 26% in skeletal muscle and 30% and 40% in skin, for cHSA and HSA, respectively. On average, the fixed negative charges of the interstitium are responsible for about 40% of the total albumin exclusion in skeletal muscle and 25% in the whole skin tissue and thus, contribute significantly to volume exclusion in these tissues. PMID:12937287
Gyenge, Christina C; Tenstad, Olav; Wiig, Helge
2003-11-01
In order to estimate the magnitude of electrostatic exclusion provided by the fixed negative charges of the skin and muscle interstitia of rat in vivo we measured the distribution volumes of two differently charged albumin probes within these tissues. An implanted osmotic pump was used to reach and maintain a steady-state extracellular concentration of a mixture containing two iodine-labelled probes: a charged-modified human serum albumin, cHSA (i.e. a positive probe, isoelectirc point (pI) = 7.6) and a native human serum albumin, HSA (i.e. a normally charged, negative probe, pI = 5.0). Steady-state tissue concentrations were achieved after intravenous infusion of probes for 5-7 days. At the end of this period the animals were nephrectomized and a bolus of 51Cr-EDTA was administered for estimating the extracellular volume. Plasma volumes were measured as 5-min distribution volume of 125I-HSA in separate experiments. The steady-state interstitial fluid concentrations of all probes were determined using nylon wicks implanted postmortem. Calculations of labelled probes were made for interstitial fluid volumes (Vi), extravascular albumin distribution volumes (Vav,a) and relative interstitial excluded volume fractions (Vex,a/Vi). We found that the positive probe is excluded from a significantly smaller fraction of the interstitium. Specifically, the average relative albumin exclusion fractions obtained were: 16% and 26% in skeletal muscle and 30% and 40% in skin, for cHSA and HSA, respectively. On average, the fixed negative charges of the interstitium are responsible for about 40% of the total albumin exclusion in skeletal muscle and 25% in the whole skin tissue and thus, contribute significantly to volume exclusion in these tissues.
Fast-ion transport in q{sub min}>2, high-β steady-state scenarios on DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holcomb, C. T.; Heidbrink, W. W.; Collins, C.
2015-05-15
Results from experiments on DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] aimed at developing high β steady-state operating scenarios with high-q{sub min} confirm that fast-ion transport is a critical issue for advanced tokamak development using neutral beam injection current drive. In DIII-D, greater than 11 MW of neutral beam heating power is applied with the intent of maximizing β{sub N} and the noninductive current drive. However, in scenarios with q{sub min}>2 that target the typical range of q{sub 95}= 5–7 used in next-step steady-state reactor models, Alfvén eigenmodes cause greater fast-ion transport than classical models predict. Thismore » enhanced transport reduces the absorbed neutral beam heating power and current drive and limits the achievable β{sub N}. In contrast, similar plasmas except with q{sub min} just above 1 have approximately classical fast-ion transport. Experiments that take q{sub min}>3 plasmas to higher β{sub P} with q{sub 95}= 11–12 for testing long pulse operation exhibit regimes of better than expected thermal confinement. Compared to the standard high-q{sub min} scenario, the high β{sub P} cases have shorter slowing-down time and lower ∇β{sub fast}, and this reduces the drive for Alfvénic modes, yielding nearly classical fast-ion transport, high values of normalized confinement, β{sub N}, and noninductive current fraction. These results suggest DIII-D might obtain better performance in lower-q{sub 95}, high-q{sub min} plasmas using broader neutral beam heating profiles and increased direct electron heating power to lower the drive for Alfvén eigenmodes.« less
Redox homeostasis: The Golden Mean of healthy living
Ursini, Fulvio; Maiorino, Matilde; Forman, Henry Jay
2016-01-01
The notion that electrophiles serve as messengers in cell signaling is now widely accepted. Nonetheless, major issues restrain acceptance of redox homeostasis and redox signaling as components of maintenance of a normal physiological steady state. The first is that redox signaling requires sudden switching on of oxidant production and bypassing of antioxidant mechanisms rather than a continuous process that, like other signaling mechanisms, can be smoothly turned up or down. The second is the misperception that reactions in redox signaling involve “reactive oxygen species” rather than reaction of specific electrophiles with specific protein thiolates. The third is that hormesis provides protection against oxidants by increasing cellular defense or repair mechanisms rather than by specifically addressing the offset of redox homeostasis. Instead, we propose that both oxidant and antioxidant signaling are main features of redox homeostasis. As the redox shift is rapidly reversed by feedback reactions, homeostasis is maintained by continuous signaling for production and elimination of electrophiles and nucleophiles. Redox homeostasis, which is the maintenance of nucleophilic tone, accounts for a healthy physiological steady state. Electrophiles and nucleophiles are not intrinsically harmful or protective, and redox homeostasis is an essential feature of both the response to challenges and subsequent feedback. While the balance between oxidants and nucleophiles is preserved in redox homeostasis, oxidative stress provokes the establishment of a new radically altered redox steady state. The popular belief that scavenging free radicals by antioxidants has a beneficial effect is wishful thinking. We propose, instead, that continuous feedback preserves nucleophilic tone and that this is supported by redox active nutritional phytochemicals. These nonessential compounds, by activating Nrf2, mimic the effect of endogenously produced electrophiles (parahormesis). In summary, while hormesis, although globally protective, results in setting up of a new phenotype, parahormesis contributes to health by favoring maintenance of homeostasis. PMID:26820564
Effect of L-arginine supplementation on immune responsiveness in patients with sickle cell disease.
Scavella, Arnette; Leiva, Lily; Monjure, Hanh; Zea, Arnold H; Gardner, Renee V
2010-08-01
L-arginine (L-Arg) is deficient in sickle cell disease (SSD) during vasoocclusion. We investigated possible causal relationship between L-Arg deficiency and immune dysfunction in SSD in steady-state. Fifteen patients with SSD in steady-state and 13 controls were studied. Plasma L-Arg levels were measured using liquid chromatography. T cell subsets and CD3zeta (CD3zeta) chain expression were analyzed using flow cytometry. Lymphocyte proliferative response to phytohemagglutinin (PHA) and production of IL-6 and interferon-gamma (IFN-gamma) were evaluated with and without L-Arg. SSD patients had significantly lower L-Arg levels than controls. CD3 and CD19 cell populations were comparable for both groups, but SSD patients had above normal numbers of natural killer cells (P = 0.06). Patients and controls exhibited significantly increased lymphocyte blastogenesis to PHA after introduction of L-Arg to cultures; response of patients was significantly greater than values for control individuals. Proliferative response to candida in SSD patients was significantly lower than in controls; L-Arg supplementation did not increase this response. L-Arg had no effect on blastogenic response to PPD and candida albicans. No effect was likewise seen in production of IL-6 and IFN-gamma after addition of L-Arg. CD3zeta chain expression increased after addition of L-Arg in both groups; differences were insignificant. L-Arg levels in steady-state SSD are significantly lower than in controls. L-Arg supplementation enhanced lymphocyte blastogenesis to PHA for both controls and patients, but not in response to antigen. There were no significant differences in CD3zeta chain expression although upregulation of expression occurred after L-Arg supplementation for both groups. (c) 2010 Wiley-Liss, Inc.
Filipowicz, Allan; Barsade, Sigal; Melwani, Shimul
2011-09-01
Research on the interpersonal functions of emotions has focused primarily on steady-state emotion rather than on emotional transitions, the movement between emotion states. The authors examined the influence of emotional transitions on social interactions and found that emotional transitions led to consistently different outcomes than their corresponding steady-state emotions. Across 2 computer-mediated negotiations and a face-to-face negotiation, participants negotiating with partners who displayed a "becoming angry" (happy to angry) emotional transition accepted worse negotiation outcomes yet formed better relational impressions of their partners than participants negotiating with partners who displayed steady-state anger. This relationship was mediated through 2 mechanisms: attributional and emotional contagion processes. The "becoming happy" (angry to happy) emotional transition as compared with steady-state happiness was not significantly related to differences in negotiation outcomes but was significantly related to differences in relational impressions, where perceivers of the "becoming happy" emotional transition gave their partners lower relational impression ratings than perceivers of steady-state happiness. PsycINFO Database Record (c) 2011 APA, all rights reserved.
Quantized transport and steady states of Floquet topological insulators
NASA Astrophysics Data System (ADS)
Esin, Iliya; Rudner, Mark S.; Refael, Gil; Lindner, Netanel H.
2018-06-01
Robust electronic edge or surface modes play key roles in the fascinating quantized responses exhibited by topological materials. Even in trivial materials, topological bands and edge states can be induced dynamically by a time-periodic drive. Such Floquet topological insulators (FTIs) inherently exist out of equilibrium; the extent to which they can host quantized transport, which depends on the steady-state population of their dynamically induced edge states, remains a crucial question. In this work, we obtain the steady states of two-dimensional FTIs in the presence of the natural dissipation mechanisms present in solid state systems. We give conditions under which the steady-state distribution resembles that of a topological insulator in the Floquet basis. In this state, the distribution in the Floquet edge modes exhibits a sharp feature akin to a Fermi level, while the bulk hosts a small density of excitations. We determine the regimes where topological edge-state transport persists and can be observed in FTIs.
Frictional strength of wet and dry montmorillonite
Morrow, Carolyn A.; Moore, Diane E.; Lockner, David A.
2017-01-01
Montmorillonite is a common mineral in fault zones, and its low strength relative to other common gouge minerals is important in many models of fault rheology. However, the coefficient of friction, μ, varies with degree of saturation and is not well constrained in the literature due to the difficulty of establishing fully drained or fully dried states in the laboratory. We measured μ of both saturated and oven-dried montmorillonite at normal stresses up to 700 MPa. Care was taken to shear saturated samples slowly enough to avoid pore fluid overpressure. For saturated samples, μ increased from 0.10 to 0.28 with applied effective normal stress, while for dry samples μ decreased from 0.78 to 0.45. The steady state rate dependence of friction, (a − b), was positive, promoting stable sliding. The wide disparity in reported frictional strengths can be attributed to experimental procedures that promote differing degrees of partial saturation or overpressured pore fluid conditions.
Angular particle impingement studies of thermoplastic materials at normal incidence
NASA Technical Reports Server (NTRS)
Rao, P. V.; Buckley, D. H.
1985-01-01
Scanning electron microscope studies were conducted to characterize the erosion resistance of polymethyl methacrylate (PMMA), polycarbonate (PC), polytetrafluorethylene (PTFE), and ultra-high-molecular-weight polyethylene (UHMWPE). Erosion was caused by a jet of angular microparticles of crushed glass at normal incidence. Material built up above the original surface on all of the materials. As erosion progressed, this buildup disappeared. UHMWPE was the most resistant material and PMMA the least. The most favorable properties for high erosion resistance were high values of ultimate elongation, maximum service temperature, and strain energy and a low value of the modulus of elasticity. Erosion-rate-versus-time curves of PC and PTFE exhibited incubation, acceleration, and steady-state periods. PMMA also exhibited a deceleration period, and an incubation period with deposition was observed for UHMWPE.
Frictional behaviour and evolution of rough faults in limestone
NASA Astrophysics Data System (ADS)
Harbord, C. W. A.; Nielsen, S. B.; De Paola, N.; Holdsworth, R.
2017-12-01
Fault roughness is an important parameter which influences the frictional behaviour of seismically active faults, in particular the nucleation stage of earthquakes. Here we investigate frictional sliding and stability of roughened micritic limestone surfaces from the seismogenic layer in Northern-Central Apennines of Italy. Samples are roughened using #60, #220 and #400 grit and deformed in a direct shear configuration at conditions typical of the shallow upper crust (15-60 MPa normal stress). We perform velocity steps between 0.01-1 μm s-1 to obtain rate-and-state friction parameters a, b and L. At low normal stress conditions (30 MPa) and at displacements of <3-4mm there is a clear 2 state evolution of friction with two state parameters, b1 and b2, and accompanying critical slip distances L1 and L2 for all roughnesses. In some cases, on smooth faults (#400 grit), the short term evolution leads to silent slow instability which is modulated by the second state evolution. With increasing slip displacement (>2-4 mm) friction can be modelled with a single state parameter, b, as the short frictional evolution disappears. The longer term state evolution, b2, gives negative values of b, reminiscent of plastic creep experiments at high temperature, reaching a steady state at 3-4 mm displacement. Microstructural observations reveal shiny surfaces decorated by nanometric gouge particles with variable porosity. When normal stress is increased, rough faults (#60 grit) revert to a single state evolution with positive values of b, whilst smoother faults (#220 & #400 grit) retain a two state evolution with negative b2 values. These observations suggest that on carbonate hosted faults sliding may be controlled by plastic processes which can lead to slow stick-slip instability, which may be supressed by frictional wear and accompanying gouge build-up.
Spurious Numerical Solutions Of Differential Equations
NASA Technical Reports Server (NTRS)
Lafon, A.; Yee, H. C.
1995-01-01
Paper presents detailed study of spurious steady-state numerical solutions of differential equations that contain nonlinear source terms. Main objectives of this study are (1) to investigate how well numerical steady-state solutions of model nonlinear reaction/convection boundary-value problem mimic true steady-state solutions and (2) to relate findings of this investigation to implications for interpretation of numerical results from computational-fluid-dynamics algorithms and computer codes used to simulate reacting flows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qian; University of the Chinese Academy of Sciences, Beijing 100039; Li, Bincheng, E-mail: bcli@ioe.ac.cn
2015-09-28
Spatially resolved steady-state photocarrier radiometric (PCR) imaging technique is developed to characterize the electronic transport properties of silicon wafers. Based on a nonlinear PCR theory, simulations are performed to investigate the effects of electronic transport parameters (the carrier lifetime, the carrier diffusion coefficient, and the front surface recombination velocity) on the steady-state PCR intensity profiles. The electronic transport parameters of an n-type silicon wafer are simultaneously determined by fitting the measured steady-state PCR intensity profiles to the three-dimensional nonlinear PCR model. The determined transport parameters are in good agreement with the results obtained by the conventional modulated PCR technique withmore » multiple pump beam radii.« less
NASA Technical Reports Server (NTRS)
Dimofte, Florin
1993-01-01
Analysis of the waved journal bearing concept featuring a waved inner bearing diameter for use with a compressible lubricant (gas) is presented. The performance of generic waved bearings having either three or four waves is predicted for air lubricated bearings. Steady-state performance is discussed in terms of bearing load capacity, while the dynamic performance is discussed in terms of fluid film stability and dynamic coefficients. It was found that the bearing wave amplitude has an important influence on both the steady-state and the dynamic performance of the waved journal bearing. For a fixed eccentricity ratio, the bearing steady-state load capacity and direct dynamic stiffness coefficient increase as the wave amplitude increases.
Zotin, A A
2012-01-01
Realization of the principle of minimum energy dissipation (Prigogine's theorem) during individual development has been analyzed. This analysis has suggested the following reformulation of this principle for living objects: when environmental conditions are constant, the living system evolves to a current steady state in such a way that the difference between entropy production and entropy flow (psi(u) function) is positive and constantly decreases near the steady state, approaching zero. In turn, the current steady state tends to a final steady state in such a way that the difference between the specific entropy productions in an organism and its environment tends to be minimal. In general, individual development completely agrees with the law of entropy increase (second law of thermodynamics).
Kitazumi, Yuki; Hamamoto, Katsumi; Noda, Tatsuo; Shirai, Osamu; Kano, Kenji
2015-01-01
The fabrication of ultrathin-ring electrodes with a diameter of 2 mm and a thickness of 100 nm is established. The ultrathin-ring electrodes provide a large density of pseudo-steady-state currents, and realize pseudo-steady-state amperometry under quiescent conditions without a Faraday cage. Under the limiting current conditions, the current response at the ultrathin-ring electrode can be well explained by the theory of the microband electrode response. Cyclic voltammograms at the ultrathin-ring electrode show sigmoidal characteristics with some hysteresis. Numerical simulation reveals that the hysteresis can be ascribed to the time-dependence of pseudo-steady-state current. The performance of amperometry with the ultrathin-ring electrode has been verified in its application to redox enzyme kinetic measurements.
Dietetic Treatment of Diabetes Mellitus with Special Reference to High Blood-pressure
Embleton, Dennis
1938-01-01
The error in a diabetic is essentially a carbohydrate intolerance, and correction of this defect should be aimed at in treatment. Dietetic treatment of diabetes is more readily studied in early cases or cases in the pre-diabetic state, before arterial degeneration and other catastrophes have become manifest. It is suggested that such a condition exists in obese subjects with a carbohydrate intolerance. A high protein diet based on a study of these cases is brought forward. This diet has been shown to operate favourably in diabetic states. Many cases of reasonable severity can be brought to develop a normal or nearly normal glucose tolerance curve and retain this state over a period of years. Cases in this state are better able to resist concomitant infections without deterioration of their tolerance than cases imperfectly balanced with insulin. The high protein diet can be used in cases of hyperpiesia in the absence of gross kidney damage. These cases show a steady and lasting drop in blood-pressure without the necessity of employing rest. The value of the pure fruit diet in increasing tolerance of certain diabetics to carbohydrate is demonstrated. The indiscriminate use of insulin in hyperglycæmic states is deprecated on the grounds that it is frequently unnecessary, and though it may balance it does not necessarily rectify the main deficiency of carbohydrate intolerance. By the use of this simple high protein diet, where no weighing, &c., is required, a large number of diabetics at present on insulin could be readily dealt with, a return to a normal or nearly normal glucose tolerance curve being obtained and maintained. PMID:19991654
Dissipative production of a maximally entangled steady state of two quantum bits.
Lin, Y; Gaebler, J P; Reiter, F; Tan, T R; Bowler, R; Sørensen, A S; Leibfried, D; Wineland, D J
2013-12-19
Entangled states are a key resource in fundamental quantum physics, quantum cryptography and quantum computation. Introduction of controlled unitary processes--quantum gates--to a quantum system has so far been the most widely used method to create entanglement deterministically. These processes require high-fidelity state preparation and minimization of the decoherence that inevitably arises from coupling between the system and the environment, and imperfect control of the system parameters. Here we combine unitary processes with engineered dissipation to deterministically produce and stabilize an approximate Bell state of two trapped-ion quantum bits (qubits), independent of their initial states. Compared with previous studies that involved dissipative entanglement of atomic ensembles or the application of sequences of multiple time-dependent gates to trapped ions, we implement our combined process using trapped-ion qubits in a continuous time-independent fashion (analogous to optical pumping of atomic states). By continuously driving the system towards the steady state, entanglement is stabilized even in the presence of experimental noise and decoherence. Our demonstration of an entangled steady state of two qubits represents a step towards dissipative state engineering, dissipative quantum computation and dissipative phase transitions. Following this approach, engineered coupling to the environment may be applied to a broad range of experimental systems to achieve desired quantum dynamics or steady states. Indeed, concurrently with this work, an entangled steady state of two superconducting qubits was demonstrated using dissipation.
Oguntoye, Oluwatosin O; Ndububa, Dennis A; Yusuf, Musah; Bolarinwa, Rahman A; Ayoola, Oluwagbemiga O
2017-01-01
Sickle cell anaemia (SCA) is associated with structural manifestations in the hepatobiliary axis. This study aimed to investigate the hepatobiliary ultrasonographic abnormalities in adult patients with sickle cell anaemia in steady state attending the Haematology clinic of a federal tertiary health institution in Ile-Ife, Nigeria. Basic demographic data as well as right upper abdominal quadrant ultrasonography of 50 consecutive sickle cell anaemia patients were compared with those of 50 age- and sex-matched subjects with HbAA as controls. Each of the study groups (patients and controls) comprised of 21 (42%) males and 29 (58%) females. The age range of the patients was 18-45 years with a mean (±SD) of 27.6±7.607 years, while that of the controls was 21-43 years with a mean (±SD) of 28.0±5.079 years (p=0.746). Amongst the patients, 32 (64%) had hepatomegaly, 15 (30%) cholelithiasis and 3 (6%) biliary sludge. Fourteen (28%) of the patients had normal hepatobiliary ultrasound findings. In the control group, one (2%) person had cholelithiasis, one (2%) biliary sludge, one (2%) fatty liver and none hepatomegaly. Forty-seven (94%) of the controls had normal hepatobiliary ultrasound findings. There was a statistically significant difference in the prevalence of hepatomegaly and cholelithiasis between the patients and controls (p value <0.001 for both comparisons). In this study, hepatomegaly, cholelithiasis and biliary sludge were the most common hepatobiliary ultrasound findings in patients with sickle cell anaemia. Ultrasonography is a useful tool for assessing hepatobiliary abnormalities in patients with sickle cell anaemia.
Lamming, Christopher E.D.; Augustin, Lance; Blackstad, Mark; Lund, Troy C.; Hebbel, Robert P.; Verfaillie, Catherine M.
2003-01-01
The only curative therapy for sickle cell disease (SCD) is allogeneic hematopoietic stem cell (HSC) transplantation. Gene therapy approaches for autologous HSC transplantation are being developed. Although earlier engraftment is seen when cells from GCSF-mobilized blood are transplanted than when bone marrow is transplanted, administration of GCSF to patients with SCD can cause significant morbidity. We tested whether primitive hematopoietic progenitors are spontaneously mobilized in the blood of patients with SCD during acute crisis (AC-SCD patients). The frequency of myeloid-lymphoid–initiating cells (ML-ICs) and SCID-repopulating cells (SRCs) was significantly higher in blood from AC-SCD patients than in blood from patients with steady-state SCD or from normal donors. The presence of SRCs in peripheral blood was not associated with detection of long-term culture–initiating cells, consistent with the notion that SRCs are more primitive than long-term culture–initiating cells. As ML-ICs and SRCs were both detected in blood of AC-SCD patients only, these assays may both measure primitive progenitors. The frequency of ML-ICs also correlated with increases in stem cell factor, GCSF, and IL-8 levels in AC-SCD compared with steady-state SCD and normal-donor sera. Because significant numbers of ML-ICs and SRCs are mobilized in the blood without exogenous cytokine treatment during acute crisis of SCD, collection of peripheral blood progenitors during crisis may yield a source of autologous HSCs suitable for ex-vivo correction by gene therapy approaches and subsequent transplantation. PMID:12639987
Evolution of wear and friction along experimental faults
Boneh, Yeval; Chang, Jefferson C.; Lockner, David A.; Reches, Zeev
2014-01-01
We investigate the evolution of wear and friction along experimental faults composed of solid rock blocks. This evolution is analyzed through shear experiments along five rock types, and the experiments were conducted in a rotary apparatus at slip velocities of 0.002–0.97 m/s, slip distances from a few millimeters to tens of meters, and normal stress of 0.25–6.9 MPa. The wear and friction measurements and fault surface observations revealed three evolution phases: A) An initial stage (slip distances <50 mm) of wear by failure of isolated asperities associated with roughening of the fault surface; B) a running-in stage of slip distances of 1–3 m with intense wear-rate, failure of many asperities, and simultaneous reduction of the friction coefficient and wear-rate; and C) a steady-state stage that initiates when the fault surface is covered by a gouge layer, and during which both wear-rate and friction coefficient maintain quasi-constant, low levels. While these evolution stages are clearly recognizable for experimental faults made from bare rock blocks, our analysis suggests that natural faults “bypass” the first two stages and slip at gouge-controlled steady-state conditions.
Garofalo, Andrea M.; Gong, Xianzu; Grierson, Brian A.; ...
2015-11-16
Recent EAST/DIII-D joint experiments on the high poloidal beta tokamak regime in DIII-D have demonstrated fully noninductive operation with an internal transport barrier (ITB) at large minor radius, at normalized fusion performance increased by ≥30% relative to earlier work. The advancement was enabled by improved understanding of the “relaxation oscillations”, previously attributed to repetitive ITB collapses, and of the fast ion behavior in this regime. It was found that the “relaxation oscillations” are coupled core-edge modes 2 amenable to wall-stabilization, and that fast ion losses which previously dictated a large plasma-wall separation to avoid wall over-heating, can be reduced tomore » classical levels with sufficient plasma density. By using optimized waveforms of the plasma-wall separation and plasma density, fully noninductive plasmas have been sustained for long durations with excellent energy confinement quality, bootstrap fraction ≥ 80%, β N ≤ 4 , β P ≥ 3 , and β T ≥ 2%. Finally, these results bolster the applicability of the high poloidal beta tokamak regime toward the realization of a steady-state fusion reactor.« less
Unperturbed vs. post-transplantation hematopoiesis: both in vivo but different
Busch, Katrin; Rodewald, Hans-Reimer
2016-01-01
Purpose of review Hematopoietic stem cell (HSC) transplantation has yielded tremendous information on experimental properties of HSCs. Yet, it remains unclear whether transplantation reflects the physiology of hematopoiesis. A limitation is the difficulty in accessing HSC functions without isolation, in-vitro manipulation and readout for potential. New genetic fate mapping and clonal marking techniques now shed light on hematopoiesis under physiological conditions. Recent findings Transposon-based genetic marks were introduced across the entire hematopoietic system to follow the clonal dynamics of these tags over time. A polyclonal source downstream from stem cells was found responsible for the production of at least granulocytes. In independent experiments, HSCs were genetically marked in adult mice, and the kinetics of label emergence throughout the system was followed over time. These experiments uncovered that during physiological steady-state hematopoiesis large numbers of HSCs yield differentiated progeny. Individual HSCs were active only rarely, indicating their very slow periodicity of differentiation rather than quiescence. Summary Noninvasive genetic experiments in mice have identified a major role of stem and progenitor cells downstream from HSCs as drivers of adult hematopoiesis, and revealed that post-transplantation hematopoiesis differs quantitatively from normal steady-state hematopoiesis. PMID:27213498
Automated Power Assessment for Helicopter Turboshaft Engines
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Litt, Jonathan S.
2008-01-01
An accurate indication of available power is required for helicopter mission planning purposes. Available power is currently estimated on U.S. Army Blackhawk helicopters by performing a Maximum Power Check (MPC), a manual procedure performed by maintenance pilots on a periodic basis. The MPC establishes Engine Torque Factor (ETF), an indication of available power. It is desirable to replace the current manual MPC procedure with an automated approach that will enable continuous real-time assessment of available power utilizing normal mission data. This report presents an automated power assessment approach which processes data currently collected within helicopter Health and Usage Monitoring System (HUMS) units. The overall approach consists of: 1) a steady-state data filter which identifies and extracts steady-state operating points within HUMS data sets; 2) engine performance curve trend monitoring and updating; and 3) automated ETF calculation. The algorithm is coded in MATLAB (The MathWorks, Inc.) and currently runs on a PC. Results from the application of this technique to HUMS mission data collected from UH-60L aircraft equipped with T700-GE-701C engines are presented and compared to manually calculated ETF values. Potential future enhancements are discussed.
Leblanc, Lawrence A; Buckel, Jeffrey A; Conover, David O; Brownawell, Bruce J
2006-08-01
A field-based study regarding uptake of polychlorinated biphenyl compounds (PCBs) by young-of-the-year (YOY) bluefish (Pomatomus saltatrix) was initiated to test a steady-state model of bioaccumulation and trophic transfer in a rapidly growing fish. Determination of prey composition as well as size-dependent growth and specific consumption rates for YOY bluefish from separate field and laboratory studies enabled the input of these species-specific parameters into the model. Furthermore, the time and duration of the exposure of YOY bluefish to dissolved PCBs from a well-characterized system (Hudson River, USA) was well known. Patterns of accumulation of individual PCB congeners differed relative to the accumulation of total PCBs, with the greatest net accumulation occurring for the higher-molecular-weight congeners. Comparison of lipid-normalized bioaccumulation factors (BAFs) with the octanol-water partition coefficients of individual PCB congeners revealed bluefish to be above the BAFs predicted by lipid-based equilibrium partitioning, suggesting that uptake from food is an important source of PCBs in YOY bluefish. Comparison of measured BAFs with values predicted by a steady-state, food-chain model showed good first-order agreement.
NASA Technical Reports Server (NTRS)
Kreider, Kevin L.; Baumeister, Kenneth J.
1996-01-01
An explicit finite difference real time iteration scheme is developed to study harmonic sound propagation in aircraft engine nacelles. To reduce storage requirements for future large 3D problems, the time dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both explicit and stable for a harmonic monochromatic sound field, a parabolic (in time) approximation is introduced to reduce the order of the governing equation. The analysis begins with a harmonic sound source radiating into a quiescent duct. This fully explicit iteration method then calculates stepwise in time to obtain the 'steady state' harmonic solutions of the acoustic field. For stability, applications of conventional impedance boundary conditions requires coupling to explicit hyperbolic difference equations at the boundary. The introduction of the time parameter eliminates the large matrix storage requirements normally associated with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is applied to sound propagation in a 2D hard wall duct with plug flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breuker, M.S.; Braun, J.E.
This paper presents a detailed evaluation of the performance of a statistical, rule-based fault detection and diagnostic (FDD) technique presented by Rossi and Braun (1997). Steady-state and transient tests were performed on a simple rooftop air conditioner over a range of conditions and fault levels. The steady-state data without faults were used to train models that predict outputs for normal operation. The transient data with faults were used to evaluate FDD performance. The effect of a number of design variables on FDD sensitivity for different faults was evaluated and two prototype systems were specified for more complete evaluation. Good performancemore » was achieved in detecting and diagnosing five faults using only six temperatures (2 input and 4 output) and linear models. The performance improved by about a factor of two when ten measurements (three input and seven output) and higher order models were used. This approach for evaluating and optimizing the performance of the statistical, rule-based FDD technique could be used as a design and evaluation tool when applying this FDD method to other packaged air-conditioning systems. Furthermore, the approach could also be modified to evaluate the performance of other FDD methods.« less
Vestibuloocular reflex of rhesus monkeys after spaceflight
NASA Technical Reports Server (NTRS)
Cohen, Bernard; Kozlovskaia, Inessa; Raphan, Theodore; Solomon, David; Helwig, Denice; Cohen, Nathaniel; Sirota, Mikhail; Iakushin, Sergei
1992-01-01
The vestibuloocular reflex (VOR) of two rhesus monkeys was recorded before and after 14 days of spaceflight. The gain (eye velocity/head velocity) of the horizontal VOR, tested 15 and 18 h after landing, was approximately equal to preflight values. The dominant time constant of the animal tested 15 h after landing was equivalent to that before flight. During nystagmus induced by off-vertical axis rotation (OVAR), the latency, rising time constant, steady-state eye velocity, and phase of modulation in eye velocity and eye position with respect to head position were similar in both monkeys before and after flight. There were changes in the amplitude of modulation of horizontal eye velocity during steady-state OVAR and in the ability to discharge stored activity rapidly by tilting during postrotatory nystagmus (tilt dumping) after flight: OVAR modulations were larger, and tilt dumping was lost in the one animal tested on the day of landing and for several days thereafter. If the gain and time constant of the horizontal VOR exchange in microgravity, they must revert to normal soon after landing. The changes that were observed suggest that adaptation to microgravity had caused alterations in way that the central nervous system processes otolith input.
Effect of renal denervation on dynamic autoregulation of renal blood flow.
DiBona, Gerald F; Sawin, Linda L
2004-06-01
Vasoconstrictor intensities of renal sympathetic nerve stimulation elevate the renal arterial pressure threshold for steady-state stepwise autoregulation of renal blood flow. This study examined the tonic effect of basal renal sympathetic nerve activity on dynamic autoregulation of renal blood flow in rats with normal (Sprague-Dawley and Wistar-Kyoto) and increased levels of renal sympathetic nerve activity (congestive heart failure and spontaneously hypertensive rats). Steady-state values of arterial pressure and renal blood flow before and after acute renal denervation were subjected to transfer function analysis. Renal denervation increased basal renal blood flow in congestive heart failure (+35 +/- 3%) and spontaneously hypertensive rats (+21 +/- 3%) but not in Sprague-Dawley and Wistar-Kyoto rats. Renal denervation significantly decreased transfer function gain (i.e., improved autoregulation of renal blood flow) and increased coherence only in spontaneously hypertensive rats. Thus vasoconstrictor intensities of renal sympathetic nerve activity impaired the dynamic autoregulatory adjustments of the renal vasculature to oscillations in arterial pressure. Renal denervation increased renal blood flow variability in spontaneously hypertensive rats and congestive heart failure rats. The contribution of vasoconstrictor intensities of basal renal sympathetic nerve activity to limiting renal blood flow variability may be important in the stabilization of glomerular filtration rate.
NASA Astrophysics Data System (ADS)
Zaikin, A. E.; Levin, A. V.; Petrov, A. L.
1995-02-01
A surface optical-discharge plasma was formed in a metal vapour under normal conditions by steady-state irradiation with a cw CO2 laser delivering radiation of moderate (2-4.5 MW cm-2) intensity. This plasma strongly screened the irradiated surface. Under the selected experimental conditions the optical discharge was not a continuous (steady-state) process. The plasma cloud was displaced along the beam out of the waist to a region where the laser radiation intensity was almost an order of magnitude less than the threshold for excitation of the optical-discharge plasma in the vapour. A strong screening of the metal surface, which could even completely stop evaporation of the metal, was observed. Self-oscillations of the optical-discharge plasma were observed for the first time in a vapour interacting with cw CO2 radiation: this was attributed to screening of the target surface. Within one period of the self-oscillations there were additional hf plasma pulsations which led to stratification of the plasma cloud. The results obtained were interpreted.
Predicting the onset of high-frequency self-excited oscillations in a channel with an elastic wall
NASA Astrophysics Data System (ADS)
Ward, Thomas; Whittaker, Robert
2016-11-01
Flow-induced oscillations of fluid-conveying elastic-walled channels arise in many industrial and biological systems including the oscillation of the vocal cords during phonation. We derive a system of equations that describes the wall displacement in response to the steady and oscillatory components of the fluid pressure derived by Whittaker et al. (2010). We show that the steady pressure component results in a base state deformation assumed to be small in magnitude relative to the length of the channel. The oscillation frequency of the elastic wall is determined by an eigenvalue problem paramterised by the shape of the base state deformation, the strength of axial tension relative to azimuthal bending, F , and the size of non-linear stretching effects from the wall's initial deformation, K . We determine the slow growth or decay of the normal modes in each by considering the energy budget of the system. The amplitude of the oscillations grow or decay exponentially with a growth rate Λ, which may be expressed in terms of a critical Reynolds number Rec . We use numerical simulations to identify three distinct regions in parameter regimes space and determine the stability of oscillations in each.
Poiseuille flow of soft glasses in narrow channels: from quiescence to steady state.
Chaudhuri, Pinaki; Horbach, Jürgen
2014-10-01
Using numerical simulations, the onset of Poiseuille flow in a confined soft glass is investigated. Starting from the quiescent state, steady flow sets in at a time scale which increases with a decrease in applied forcing. At this onset time scale, a rapid transition occurs via the simultaneous fluidization of regions having different local stresses. In the absence of steady flow at long times, creep is observed even in regions where the local stress is larger than the bulk yielding threshold. Finally, we show that the time scale to attain steady flow depends strongly on the history of the initial state.
Bipolar pulse field for magnetic refrigeration
Lubell, M.S.
1994-10-25
A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies. 2 figs.
Steady-state kinetic modeling constrains cellular resting states and dynamic behavior.
Purvis, Jeremy E; Radhakrishnan, Ravi; Diamond, Scott L
2009-03-01
A defining characteristic of living cells is the ability to respond dynamically to external stimuli while maintaining homeostasis under resting conditions. Capturing both of these features in a single kinetic model is difficult because the model must be able to reproduce both behaviors using the same set of molecular components. Here, we show how combining small, well-defined steady-state networks provides an efficient means of constructing large-scale kinetic models that exhibit realistic resting and dynamic behaviors. By requiring each kinetic module to be homeostatic (at steady state under resting conditions), the method proceeds by (i) computing steady-state solutions to a system of ordinary differential equations for each module, (ii) applying principal component analysis to each set of solutions to capture the steady-state solution space of each module network, and (iii) combining optimal search directions from all modules to form a global steady-state space that is searched for accurate simulation of the time-dependent behavior of the whole system upon perturbation. Importantly, this stepwise approach retains the nonlinear rate expressions that govern each reaction in the system and enforces constraints on the range of allowable concentration states for the full-scale model. These constraints not only reduce the computational cost of fitting experimental time-series data but can also provide insight into limitations on system concentrations and architecture. To demonstrate application of the method, we show how small kinetic perturbations in a modular model of platelet P2Y(1) signaling can cause widespread compensatory effects on cellular resting states.
A descriptive model of resting-state networks using Markov chains.
Xie, H; Pal, R; Mitra, S
2016-08-01
Resting-state functional connectivity (RSFC) studies considering pairwise linear correlations have attracted great interests while the underlying functional network structure still remains poorly understood. To further our understanding of RSFC, this paper presents an analysis of the resting-state networks (RSNs) based on the steady-state distributions and provides a novel angle to investigate the RSFC of multiple functional nodes. This paper evaluates the consistency of two networks based on the Hellinger distance between the steady-state distributions of the inferred Markov chain models. The results show that generated steady-state distributions of default mode network have higher consistency across subjects than random nodes from various RSNs.
NASA Technical Reports Server (NTRS)
Ghosh, M. K.; Hamrock, B. J.; Brewe, D. E.
1986-01-01
The effect of inlet starvation on the hydrodynamic lubrication of lightly loaded rigid nonconformal contacts in combined rolling and normal motion is determined through a numerical solution of the Reynolds' equation for an isoviscous, incompressible lubricant. Starvation is effected by systematically reducing the fluid inlet level. The pressures are taken to be ambient at the inlet meniscus boundary and Reynolds' boundary condition is applied for film rupture in the exit region. Results are presented for the dynamic performance of the starved contacts in combined rolling and normal motion for both normal approach and separation. During normal approach the dynamic load ratio (i.e. ratio of dynamic to steady state load capacity) increases considerably with increase in the inlet starvation. The effect of starvation on the dynamic peak pressure ratio is relatively small. Further, it has been observed that with increasing starvation, film thickness effects become significant in the dynamic behavior of the nonconformal contacts. For significantly starved contacts the dynamic load ratio increases with increase in film thickness during normal approach and a similar reduction is observed during separation. A similar effect is noted for the dynamic peak pressure ratio.
Chau, Destiny F; Vasilopoulos, Terrie; Schoepf, Miriam; Zhang, Christina; Fahy, Brenda G
2016-09-01
Complex surgical and critically ill pediatric patients rely on syringe infusion pumps for precise delivery of IV medications. Low flow rates and in-line IV filter use may affect drug delivery. To determine the effects of an in-line filter to remove air and/or contaminants on syringe pump performance at low flow rates, we compared the measured rates with the programmed flow rates with and without in-line IV filters. Standardized IV infusion assemblies with and without IV filters (filter and control groups) attached to a 10-mL syringe were primed and then loaded onto a syringe pump and connected to a 16-gauge, 16-cm single-lumen catheter. The catheter was suspended in a normal saline fluid column to simulate the back pressure from central venous circulation. The delivered infusate was measured by gravimetric methods at predetermined time intervals, and flow rate was calculated. Experimental trials for initial programmed rates of 1.0, 0.8, 0.6, and 0.4 mL/h were performed in control and filter groups. For each trial, the flow rate was changed to double the initial flow rate and was then returned to the initial flow rate to analyze pump performance for titration of rates often required during medication administration. These conditions (initial rate, doubling of initial rate, and return to initial rate) were analyzed separately for steady-state flow rate and time to steady state, whereas their average was used for percent deviation analysis. Differences between control and filter groups were assessed using Student t tests with adjustment for multiplicity (using n = 3 replications per group). Mean time from 0 to initial flow (startup delay) was <1 minute in both groups with no statistical difference between groups (P = 1.0). The average time to reach steady-state flow after infusion startup or rate changes was not statistically different between the groups (range, 0.8-5.5 minutes), for any flow rate or part of the trial (initial rate, doubling of initial rate, and return to initial rate), although the study was underpowered to detect small time differences. Overall, the mean steady-state flow rate for each trial was below the programmed flow rate with negative mean percent deviations for each trial. In the 1.0-mL/h initial rate trial, the steady-state flow rate attained was lower in the filter than the control group for the initial rate (P = 0.04) and doubling of initial rate (P = 0.04) with a trend during the return to initial rate (P = 0.06), although this same effect was not observed when doubling the initial rate trials of 0.8 or 0.6 mL/h or any other rate trials compared with the control group. With low flow rates used in complex surgical and pediatric critically ill patients, the addition of IV filters did not confer statistically significant changes in startup delay, flow variability, or time to reach steady-state flow of medications administered by syringe infusion pumps. The overall flow rate was lower than programmed flow rate with or without a filter.
NASA Technical Reports Server (NTRS)
Sargent, N. B.; Dustin, M. O.
1981-01-01
Steady state tests were run to characterize the system and component efficiencies over the complete speed-torque capabilities of the propulsion system in both motoring and regenerative modes of operation. The steady state data were obtained using a battery simulator to separate the effects on efficiency caused by changing battery state-of-charge and component temperature. Transient tests were performed to determine the energy profiles of the propulsion system operating over the SAE J227a driving schedules.
Experimental investigation of cryogenic oscillating heat pipes.
Jiao, A J; Ma, H B; Critser, J K
2009-07-01
A novel cryogenic heat pipe, oscillating heat pipe (OHP), which consists of an 4 × 18.5 cm evaporator, a 6 × 18.5 cm condenser, and 10 cm length of adiabatic section, has been developed and experimental characterization conducted. Experimental results show that the maximum heat transport capability of the OHP reached 380W with average temperature difference of 49 °C between the evaporator and condenser when the cryogenic OHP was charged with liquid nitrogen at 48% (v/v) and operated in a horizontal direction. The thermal resistance decreased from 0.256 to 0.112 while the heat load increased from 22.5 to 321.8 W. When the OHP was operated at a steady state and an incremental heat load was added to it, the OHP operation changed from a steady state to an unsteady state until a new steady state was reached. This process can be divided into three regions: (I) unsteady state; (II) transient state; and (III) new steady state. In the steady state, the amplitude of temperature change in the evaporator is smaller than that of the condenser while the temperature response keeps the same frequency both in the evaporator and the condenser. The experimental results also showed that the amplitude of temperature difference between the evaporator and the condenser decreased when the heat load increased.
Experimental investigation of cryogenic oscillating heat pipes
Jiao, A.J.; Ma, H.B.; Critser, J.K.
2010-01-01
A novel cryogenic heat pipe, oscillating heat pipe (OHP), which consists of an 4 × 18.5 cm evaporator, a 6 × 18.5 cm condenser, and 10 cm length of adiabatic section, has been developed and experimental characterization conducted. Experimental results show that the maximum heat transport capability of the OHP reached 380W with average temperature difference of 49 °C between the evaporator and condenser when the cryogenic OHP was charged with liquid nitrogen at 48% (v/v) and operated in a horizontal direction. The thermal resistance decreased from 0.256 to 0.112 while the heat load increased from 22.5 to 321.8 W. When the OHP was operated at a steady state and an incremental heat load was added to it, the OHP operation changed from a steady state to an unsteady state until a new steady state was reached. This process can be divided into three regions: (I) unsteady state; (II) transient state; and (III) new steady state. In the steady state, the amplitude of temperature change in the evaporator is smaller than that of the condenser while the temperature response keeps the same frequency both in the evaporator and the condenser. The experimental results also showed that the amplitude of temperature difference between the evaporator and the condenser decreased when the heat load increased. PMID:20585410
Tso, P; Lee, T; DeMichele, S J
2001-08-01
Previously we demonstrated that the digestion, absorption and lymphatic transport of lipid and key essential fatty acids (EFA) from randomly interesterified fish oil/medium-chain structured triglycerides (STG) were significantly higher than an equivalent physical mixture (PM) in a normal lymph fistula rat model and in a rat model of lipid malabsorption caused by ischemia/reperfusion (I/R) injury. The goals of this study were to further explore the potential absorptive benefits of STG by comparing the intestinal absorption and lymphatic transport of tocopherol and retinol when delivered gastrically with either STG or PM under normal conditions and after I/R injury to the small bowel. Food-deprived male Sprague-Dawley rats were randomly assigned to two treatments (sham controls or I/R). Under halothane anesthesia, the superior mesenteric artery (SMA) was occluded for 20 min and then reperfused in I/R rats. The SMA was isolated but not occluded in control rats. In both groups, the mesenteric lymph duct was cannulated and a gastric tube was inserted. Each treatment group received 1 mL of the fish oil/MCT STG or PM (7 rats/group) along with (14)C-alpha-tocopherol and (3)H-retinol through the gastric tube followed by an infusion of PBS at 3 mL/h for 8 h. Lymph was collected hourly for 8 h. Under steady-state conditions, the amount of (14)C-alpha-tocopherol and (3)H-retinol transported into lymph was significantly higher in the STG-fed rats compared with those fed PM in both control and I/R groups. In addition, control and I/R rats given STG had earlier steady-state outputs of (14)C-alpha-tocopherol and (3)H-retinol and maintained approximately 30% higher outputs in lymph throughout the 8-h lymph collection period compared with rats given the PM. We conclude that STG provides the opportunity to potentiate improved absorption of fat-soluble vitamins under normal and malabsorptive states.
Harada, Daisuke; Asanoi, Hidetsugu; Takagawa, Junya; Ishise, Hisanari; Ueno, Hiroshi; Oda, Yoshitaka; Goso, Yukiko; Joho, Shuji; Inoue, Hiroshi
2014-10-15
Influences of slow and deep respiration on steady-state sympathetic nerve activity remain controversial in humans and could vary depending on disease conditions and basal sympathetic nerve activity. To elucidate the respiratory modulation of steady-state sympathetic nerve activity, we modeled the dynamic nature of the relationship between lung inflation and muscle sympathetic nerve activity (MSNA) in 11 heart failure patients with exaggerated sympathetic outflow at rest. An autoregressive exogenous input model was utilized to simulate entire responses of MSNA to variable respiratory patterns. In another 18 patients, we determined the influence of increasing tidal volume and slowing respiratory frequency on MSNA; 10 patients underwent a 15-min device-guided slow respiration and the remaining 8 had no respiratory modification. The model predicted that a 1-liter, step increase of lung volume decreased MSNA dynamically; its nadir (-33 ± 22%) occurred at 2.4 s; and steady-state decrease (-15 ± 5%), at 6 s. Actually, in patients with the device-guided slow and deep respiration, respiratory frequency effectively fell from 16.4 ± 3.9 to 6.7 ± 2.8/min (P < 0.0001) with a concomitant increase in tidal volume from 499 ± 206 to 1,177 ± 497 ml (P < 0.001). Consequently, steady-state MSNA was decreased by 31% (P < 0.005). In patients without respiratory modulation, there were no significant changes in respiratory frequency, tidal volume, and steady-state MSNA. Thus slow and deep respiration suppresses steady-state sympathetic nerve activity in patients with high levels of resting sympathetic tone as in heart failure. Copyright © 2014 the American Physiological Society.
Spatial variability of steady-state infiltration into a two-layer soil system on burned hillslopes
Kinner, D.A.; Moody, J.A.
2010-01-01
Rainfall-runoff simulations were conducted to estimate the characteristics of the steady-state infiltration rate into 1-m2 north- and south-facing hillslope plots burned by a wildfire in October 2003. Soil profiles in the plots consisted of a two-layer system composed of an ash on top of sandy mineral soil. Multiple rainfall rates (18.4-51.2 mm h-1) were used during 14 short-duration (30 min) and 2 long-duration simulations (2-4 h). Steady state was reached in 7-26 min. Observed spatially-averaged steady-state infiltration rates ranged from 18.2 to 23.8 mm h-1 for north-facing and from 17.9 to 36.0 mm h-1 for south-facing plots. Three different theoretical spatial distribution models of steady-state infiltration rate were fit to the measurements of rainfall rate and steady-state discharge to provided estimates of the spatial average (19.2-22.2 mm h-1) and the coefficient of variation (0.11-0.40) of infiltration rates, overland flow contributing area (74-90% of the plot area), and infiltration threshold (19.0-26 mm h-1). Tensiometer measurements indicated a downward moving pressure wave and suggest that infiltration-excess overland flow is the runoff process on these burned hillslope with a two-layer system. Moreover, the results indicate that the ash layer is wettable, may restrict water flow into the underlying layer, and increase the infiltration threshold; whereas, the underlying mineral soil, though coarser, limits the infiltration rate. These results of the spatial variability of steady-state infiltration can be used to develop physically-based rainfall-runoff models for burned areas with a two-layer soil system. ?? 2010 Elsevier B.V.
Steady states of a diode with counterstreaming electron and positron beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ender, A. Ya.; Kuznetsov, V. I., E-mail: victor.kuznetsov@mail.ioffe.ru; Gruzdev, A. A.
2016-10-15
Steady states of a plasma layer with counterstreaming beams of oppositely charged particles moving without collisions in a self-consistent electric field are analyzed. The study is aimed at clarifying the mechanism of generation and reconstruction of pulsar radiation. Such a layer also models the processes occurring in Knudsen plasma diodes with counterstreaming electron and ion beams. The steady-state solutions are exhaustively classified. The existence of several solutions at the same external parameters is established.
Steady states of a diode with counterstreaming electron and positron beams
NASA Astrophysics Data System (ADS)
Ender, A. Ya.; Kuznetsov, V. I.; Gruzdev, A. A.
2016-10-01
Steady states of a plasma layer with counterstreaming beams of oppositely charged particles moving without collisions in a self-consistent electric field are analyzed. The study is aimed at clarifying the mechanism of generation and reconstruction of pulsar radiation. Such a layer also models the processes occurring in Knudsen plasma diodes with counterstreaming electron and ion beams. The steady-state solutions are exhaustively classified. The existence of several solutions at the same external parameters is established.
NASA Technical Reports Server (NTRS)
Mccafferty, Richard J; Donlon, Richard H
1955-01-01
Acceleration and steady-state performance of a tubular combustor was evaluated at two simulated altitudes with four different fuel nozzles. Temperature response lag was observed with all the nozzles. Except for rich-limit blowout, the only combustion failures observed during acceleration were with a fuel nozzle that gave an interrupted flow delivery during the acceleration. This same nozzle, because of superior fuel atomization, gave the highest steady-state combustion efficiencies.
Lactate and Acrylate Metabolism by Megasphaera elsdenii under Batch and Steady-State Conditions
Prabhu, Rupal; Altman, Elliot
2012-01-01
The growth of Megasphaera elsdenii on lactate with acrylate and acrylate analogues was studied under batch and steady-state conditions. Under batch conditions, lactate was converted to acetate and propionate, and acrylate was converted into propionate. Acrylate analogues 2-methyl propenoate and 3-butenoate containing a terminal double bond were similarly converted into their respective saturated acids (isobutyrate and butyrate), while crotonate and lactate analogues 3-hydroxybutyrate and (R)-2-hydroxybutyrate were not metabolized. Under carbon-limited steady-state conditions, lactate was converted to acetate and butyrate with no propionate formed. As the acrylate concentration in the feed was increased, butyrate and hydrogen formation decreased and propionate was increasingly generated, while the calculated ATP yield was unchanged. M. elsdenii metabolism differs substantially under batch and steady-state conditions. The results support the conclusion that propionate is not formed during lactate-limited steady-state growth because of the absence of this substrate to drive the formation of lactyl coenzyme A (CoA) via propionyl-CoA transferase. Acrylate and acrylate analogues are reduced under both batch and steady-state growth conditions after first being converted to thioesters via propionyl-CoA transferase. Our findings demonstrate the central role that CoA transferase activity plays in the utilization of acids by M. elsdenii and allows us to propose a modified acrylate pathway for M. elsdenii. PMID:23023753
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jong, H.L.
1988-01-01
The first objective was to perform a critical evaluation of the recently proposed steady-state analysis methodology for evaluation of post-liquefaction stability of potentially liquefiable soils. This analysis procedure is based on direct comparison between the in-situ undrained residual (steady state) strength of soils in an embankment or foundation, and the driving shear stresses in these soils. A laboratory investigation was performed to investigate factors affecting steady-state strengths, and also to evaluate the validity of assumptions involved in correcting the results of laboratory steady-state strength tests on undisturbed samples for effects of sampling disturbance in order to estimate in-situ strengths. Next,more » a field case study was performed using the steady-state analysis and testing methodologies to analyze Lower San Fernando Dam, which suffered a liquefaction-induced slope failure as a results of a 1971 earthquake. This leads to the second objective which was to extend the Lower San Fernando Dam case study to consideration of analysis methods used to evaluate the likelihood of triggering liquefaction during an earthquake. Finally, a number of the high quality undisturbed samples were subjected to undrained cyclic testing in order to repeat an earlier (1973) study of the use of cyclic tests data to predict liquefaction behavior at Lower San Fernando Dam.« less
Multiple Steady States of Buoyancy Induced Flow in Cold Water and Their Stability.
NASA Astrophysics Data System (ADS)
El-Henawy, Ibrahim Mahmoud
In Chapters 1 and 2 the physical background and the literature related to buoyancy-induced flows are reviewed. An accurate representation, based upon experimental data, of the motion-causing buoyancy force, in the vicinity of maximum density in pure water at low temperatures, is used. This representation is an accurate and quite simple formulation due to Gebhart and Mollendorf (1977). Using the representation, we study, numerically, Chapter 3, a model for the laminar, boundary-layer flow arising from natural convection adjacent to a vertical isothermal flat surface submerged in quiescent cold water. The results demonstrate for the first time the existence of multiple steady-state solutions in a natural convection flow. The existence of these new multiple steady-state solutions led to an investigation of their stability. This is carried out in Chapter 4 by a mathematical method, different from that of the usual hydrodynamic stability approach, Lin (1955) and Razinand and Reid (1982). Three real eigenvalue and eigenvector pairs corresponding to the new steady-state -solutions were found. Each of these eigenvalues changes its algebraic sign at a particular limit point (point of vertical tangency, nose, knee) in the bifurcation diagrams found in Chapter 3. The results indicate that the new steady-state solutions are unstable and that the previously found steady-state solutions, Carey, Gebhart, and Mollendorf (1980), may be stable.
Campbell, Andrew; Minniti, Caterina P.; Nouraie, Mehdi; Arteta, Manuel; Rana, Sohail; Onyekwere, Onyinye; Sable, Craig; Ensing, Gregory; Dham, Niti; Luchtman-Jones, Lori; Kato, Gregory J.; Gladwin, Mark T.; Castro, Oswaldo L.; Gordeuk, Victor R.
2009-01-01
Summary Low steady state haemoglobin oxygen saturation in patients with sickle cell anaemia has been associated with the degree of anaemia and haemolysis. How much pulmonary dysfunction contributes to low saturation is not clear. In a prospective study of children and adolescents with sickle cell disease aged 3–20 years at steady state and matched controls, 52% of 391 patients versus 24% of 63 controls had steady state oxygen saturation <99% (P < 0·0001), 9% of patients versus no controls had saturation <95% (P = 0·008) and 8% of patients versus no controls had exercise-induced reduction in saturation ≥3%. Decreasing haemoglobin concentration (P ≤ 0·001) and increasing haemolysis (P ≤ 0·003) but not pulmonary function tests were independent predictors of both lower steady-state saturation and exercise-induced reduction in saturation. Neither history of stroke nor history of acute chest syndrome was significantly associated with lower steady-state oxygen saturation or exercise-induced reduction in saturation. Tricuspid regurgitation velocity was higher in patients with lower steady state haemoglobin oxygen saturation (P = 0·003) and with greater decline in oxygen saturation during the six-minute walk (P = 0·022). In conclusion, lower haemoglobin oxygen saturation is independently associated with increasing degrees of anaemia and haemolysis but not pulmonary function abnormalities among children and adolescents with sickle cell disease. PMID:19694721
Huang, Guanjun; Zhang, Qiangqiang; Wei, Xinghai; Peng, Shaobing; Li, Yong
2017-01-01
Nitrogen is one of the most important elements for plants and is closely related to photosynthesis. High temperature stress significantly inhibits photosynthesis under both steady-state and flecked irradiance. However, it is not known whether nitrogen can affect the decrease in photosynthesis caused by high temperature, especially under flecked irradiance. In the present study, a pot experiment was conducted under two nitrogen (N) supplies with rice plants, and the steady-state and dynamic photosynthesis rates were measured under 28 and 40°C. High temperature significantly increased leaf hydraulic conductance ( K leaf ) under high N supply (HN) but not under low N supply (LN). The increased K leaf maintained a constant leaf water potential (Ψ leaf ) and steady-state stomatal conductance ( g s,sat ) under HN, while the Ψ leaf and g s,sat significantly decreased under high temperature in LN conditions. This resulted in a more severe decrease in steady-state photosynthesis ( A sat ) under high temperature in the LN conditions. After shifting from low to high light, high temperature significantly delayed the recovery of photosynthesis, which resulted in more carbon loss under flecked irradiance. These effects were obtained under HN to a lesser extent than under LN supply. Therefore, it is concluded that nitrogen can alleviate the inhibition of photosynthesis caused by high temperature stress under both steady-state and flecked irradiance.
Nioradze, Nikoloz; Kim, Jiyeon; Amemiya, Shigeru
2011-02-01
We report on a novel theory and experiment for scanning electrochemical microscopy (SECM) to enable quasi-steady-state voltammetry of rapid electron transfer (ET) reactions at macroscopic substrates. With this powerful approach, the substrate potential is cycled widely across the formal potential of a redox couple while the reactant or product of a substrate reaction is amperometrically detected at the tip in the feedback or substrate generation/tip collection mode, respectively. The plot of tip current versus substrate potential features the retraceable sigmoidal shape of a quasi-steady-state voltammogram although a transient voltammogram is obtained at the macroscopic substrate. Finite element simulations reveal that a short tip-substrate distance and a reversible substrate reaction (except under the tip) are required for quasi-steady-state voltammetry. Advantageously, a pair of quasi-steady-state voltammograms is obtained by employing both operation modes to reliably determine all transport, thermodynamic, and kinetic parameters as confirmed experimentally for rapid ET reactions of ferrocenemethanol and 7,7,8,8-tetracyanoquinodimethane at a Pt substrate with ∼0.5 μm-radius Pt tips positioned at 90 nm-1 μm distances. Standard ET rate constants of ∼7 cm/s were obtained for the latter mediator as the largest determined for a substrate reaction by SECM. Various potential applications of quasi-steady-state voltammetry are also proposed.
Role of irregular otolith afferents in the steady-state nystagmus during off-vertical axis rotation
NASA Technical Reports Server (NTRS)
Angelaki, D. E.; Perachio, A. A.; Mustari, M. J.; Strunk, C. L.
1992-01-01
1. During constant velocity off-vertical axis rotations (OVAR) in the dark a compensatory ocular nystagmus is present throughout rotation despite the lack of a maintained signal from the semicircular canals. Lesion experiments and canal plugging have attributed the steady-state ocular nystagmus during OVAR to inputs from the otolith organs and have demonstrated that it depends on an intact velocity storage mechanism. 2. To test whether irregularly discharging otolith afferents play a crucial role in the generation of the steady-state eye nystagmus during OVAR, we have used anodal (inhibitory) currents bilaterally to selectively and reversibly block irregular vestibular afferent discharge. During delivery of DC anodal currents (100 microA) bilaterally to both ears, the slow phase eye velocity of the steady-state nystagmus during OVAR was reduced or completely abolished. The disruption of the steady-state nystagmus was transient and lasted only during the period of galvanic stimulation. 3. To distinguish a possible effect of ablation of the background discharge rates of irregular vestibular afferents on the velocity storage mechanism from specific contributions of the dynamic responses from irregular otolith afferents to the circuit responsible for the generation of the steady-state nystagmus, bilateral DC anodal galvanic stimulation was applied during optokinetic nystagmus (OKN) and optokinetic afternystagmus (OKAN). No change in OKN and OKAN was observed.(ABSTRACT TRUNCATED AT 250 WORDS).
2014-01-01
We propose a smooth approximation l 0-norm constrained affine projection algorithm (SL0-APA) to improve the convergence speed and the steady-state error of affine projection algorithm (APA) for sparse channel estimation. The proposed algorithm ensures improved performance in terms of the convergence speed and the steady-state error via the combination of a smooth approximation l 0-norm (SL0) penalty on the coefficients into the standard APA cost function, which gives rise to a zero attractor that promotes the sparsity of the channel taps in the channel estimation and hence accelerates the convergence speed and reduces the steady-state error when the channel is sparse. The simulation results demonstrate that our proposed SL0-APA is superior to the standard APA and its sparsity-aware algorithms in terms of both the convergence speed and the steady-state behavior in a designated sparse channel. Furthermore, SL0-APA is shown to have smaller steady-state error than the previously proposed sparsity-aware algorithms when the number of nonzero taps in the sparse channel increases. PMID:24790588
Liu, Wenlong; Zhang, Xili; He, Fuyuan; Zhang, Ping; Wang, Haiqin; Wu, Dezhi; Chen, Zuohong
2011-11-01
To establish and experimental verification the mathematical model of the balance groups that is the steady-state of traditional Chinese medicine in extraction. Using the entropy and genetic principles of statistics, and taking the coefficient of variation of GC fingerprint which is the naphtha of the Houttuynia cordata between strains in the same GAP place as a pivot to establish and verify the mathematical model was established of the balance groups that is the steady-state of traditional Chinese medicine in extraction. A mathematical model that is suitable for the balance groups of the steady-state of traditional Chinese medicine and preparation in extraction, and the balance groups which is 29 683 strains (approximately 118.7 kg) were gained with the same origin of H. cordata as the model drug. Under the GAP of quality control model, controlling the stability of the quality through further using the Hardy-Weinberg balance groups of the H. cordata between strains, the new theory and experiment foundation is established for the steady-state of traditional Chinese medicine in extraction and quality control.
Souza, Pamela; Arehart, Kathryn; Miller, Christi Wise; Muralimanohar, Ramesh Kumar
2011-02-01
Recent research suggests that older listeners may have difficulty processing information related to the fundamental frequency (F0) of voiced speech. In this study, the focus was on the mechanisms that may underlie this reduced ability. We examined whether increased age resulted in decreased ability to perceive F0 using fine-structure cues provided by the harmonic structure of voiced speech sounds or cues provided by high-rate envelope fluctuations (periodicity). Younger listeners with normal hearing and older listeners with normal to near-normal hearing completed two tasks of F0 perception. In the first task (steady state F0), the fundamental frequency difference limen (F0DL) was measured adaptively for synthetic vowel stimuli. In the second task (time-varying F0), listeners relied on variations in F0 to judge intonation of synthetic diphthongs. For both tasks, three processing conditions were created: eight-channel vocoding that preserved periodicity cues to F0; a simulated electroacoustic stimulation condition, which consisted of high-frequency vocoder processing combined with a low-pass-filtered portion, and offered both periodicity and fine-structure cues to F0; and an unprocessed condition. F0 difference limens for steady state vowel sounds and the ability to discern rising and falling intonations were significantly worse in the older subjects compared with the younger subjects. For both older and younger listeners, scores were lowest for the vocoded condition, and there was no difference in scores between the unprocessed and electroacoustic simulation conditions. Older listeners had difficulty using periodicity cues to obtain information related to talker fundamental frequency. However, performance was improved by combining periodicity cues with (low frequency) acoustic information, and that strategy should be considered in individuals who are appropriate candidates for such processing. For cochlear implant candidates, this effect might be achieved by partial electrode insertion providing acoustic stimulation in the low frequencies or by the combination of a traditional implant in one ear and a hearing aid in the opposite ear.
Non-dimensional physics of pulsatile cardiovascular networks and energy efficiency.
Yigit, Berk; Pekkan, Kerem
2016-01-01
In Nature, there exist a variety of cardiovascular circulation networks in which the energetic ventricular load has both steady and pulsatile components. Steady load is related to the mean cardiac output (CO) and the haemodynamic resistance of the peripheral vascular system. On the other hand, the pulsatile load is determined by the simultaneous pressure and flow waveforms at the ventricular outlet, which in turn are governed through arterial wave dynamics (transmission) and pulse decay characteristics (windkessel effect). Both the steady and pulsatile contributions of the haemodynamic power load are critical for characterizing/comparing disease states and for predicting the performance of cardiovascular devices. However, haemodynamic performance parameters vary significantly from subject to subject because of body size, heart rate and subject-specific CO. Therefore, a 'normalized' energy dissipation index, as a function of the 'non-dimensional' physical parameters that govern the circulation networks, is needed for comparative/integrative biological studies and clinical decision-making. In this paper, a complete network-independent non-dimensional formulation that incorporates pulsatile flow regimes is developed. Mechanical design variables of cardiovascular flow systems are identified and the Buckingham Pi theorem is formally applied to obtain the corresponding non-dimensional scaling parameter sets. Two scaling approaches are considered to address both the lumped parameter networks and the distributed circulation components. The validity of these non-dimensional number sets is tested extensively through the existing empirical allometric scaling laws of circulation systems. Additional validation studies are performed using a parametric numerical arterial model that represents the transmission and windkessel characteristics, which are adjusted to represent different body sizes and non-dimensional haemodynamic states. Simulations demonstrate that the proposed non-dimensional indices are independent of body size for healthy conditions, but are sensitive to deviations caused by off-design disease states that alter the energetic load. Sensitivity simulations are used to identify the relationship between pulsatile power loss and non-dimensional characteristics, and optimal operational states are computed. © 2016 The Author(s).
Advanced continuous cultivation methods for systems microbiology.
Adamberg, Kaarel; Valgepea, Kaspar; Vilu, Raivo
2015-09-01
Increasing the throughput of systems biology-based experimental characterization of in silico-designed strains has great potential for accelerating the development of cell factories. For this, analysis of metabolism in the steady state is essential as only this enables the unequivocal definition of the physiological state of cells, which is needed for the complete description and in silico reconstruction of their phenotypes. In this review, we show that for a systems microbiology approach, high-resolution characterization of metabolism in the steady state--growth space analysis (GSA)--can be achieved by using advanced continuous cultivation methods termed changestats. In changestats, an environmental parameter is continuously changed at a constant rate within one experiment whilst maintaining cells in the physiological steady state similar to chemostats. This increases the resolution and throughput of GSA compared with chemostats, and, moreover, enables following of the dynamics of metabolism and detection of metabolic switch-points and optimal growth conditions. We also describe the concept, challenge and necessary criteria of the systematic analysis of steady-state metabolism. Finally, we propose that such systematic characterization of the steady-state growth space of cells using changestats has value not only for fundamental studies of metabolism, but also for systems biology-based metabolic engineering of cell factories.
Effect of antacids on predicted steady-state cimetidine concentrations.
Russell, W L; Lopez, L M; Normann, S A; Doering, P L; Guild, R T
1984-05-01
The purpose of this study was to evaluate effects of antacids on predicted steady-state concentrations of cimetidine. Ten healthy volunteers received in random order one week apart, cimetidine and cimetidine and antacid suspension. Blood was obtained at specified times and analyzed for cimetidine. Bioavailability was assessed by comparison of peak concentration, time to peak concentration, area under the curve, and time spent over 0.5 micrograms/ml. Single-dose data were extrapolated to steady-state using computer simulation. Concurrent administration of antacid suspension reduced parameters of bioavailability approximately 30%. When steady-state conditions were simulated, concentrations of cimetidine greater than or equal to 0.5 micrograms/ml were maintained for the entire dosing interval in seven of 10 subjects. These data suggest that temporal separation of cimetidine and antacid suspension may be unnecessary.
Interplay of interaction and disorder in the steady state of an open quantum system
NASA Astrophysics Data System (ADS)
Xu, Xiansong; Guo, Chu; Poletti, Dario
2018-04-01
Many types of dissipative processes can be found in nature or be engineered, and their interplay with a system can give rise to interesting phases of matter. Here we study the interplay among interaction, tunneling, and disorder in the steady state of a spin chain coupled to a tailored bath. We consider a dissipation which, in contrast to disorder, tends to generate a homogeneously polarized steady state. We find that the steady state can be highly sensitive even to weak disorder. We also establish that, in the presence of such dissipation, even in the absence of interaction, a finite amount of disorder is needed for localization. Last, we show that for strong disorder the system reveals signatures of localization both in the weakly and strong interacting regimes.
NASA Astrophysics Data System (ADS)
Rubin, A. M.; Bhattacharya, P.; Tullis, T. E.; Okazaki, K.; Beeler, N. M.
2016-12-01
The popular constitutive formulations of rate-and-state friction offer two end-member views on whether friction evolves only with slip (Slip law state evolution) or with time even without slip (Aging law state evolution). While rate stepping experiments show support for the Slip law, laboratory observed frictional behavior of initially bare rock surfaces near zero slip rate has traditionally been interpreted to show support for time-dependent evolution of frictional strength. Such laboratory derived support for time-dependent evolution has been one of the motivations behind the Aging law being widely used to model earthquake cycles on natural faults.Through a combination of theoretical results and new experimental data on initially bare granite, we show stronger support for the other end member view, i.e. that friction under a wide range of sliding conditions evolves only with slip. Our dataset is unique in that it combines up to 3.5 orders of magnitude rate steps, sequences of holds up to 10000s, and 5% normal stress steps at order of magnitude different sliding rates during the same experimental run. The experiments were done on the Brown rotary shear apparatus using servo feedback, making the machine stiff enough to provide very large departures from steady-state while maintaining stable, quasi-static sliding. Across these diverse sliding conditions, and in particular for both large velocity step decreases and the longest holds, the data are much more consistent with the Slip law version of slip-dependence than the time-dependence formulated in the Aging law. The shear stress response to normal stress steps is also consistently better explained by the Slip law when paired with the Linker-Dieterich type response to normal stress perturbations. However, the remarkable symmetry and slip-dependence of the normal stress step increases and decreases suggest deficiencies in the Linker-Dieterich formulation that we will probe in future experiments.High quality measurements of interface compaction from the normal-stress steps suggest that the instantaneous changes in state and contact area are opposite in sign, indicating that state evolution might be fundamentally connected to contact quality, and not quantity alone.
Exact results for Schrödinger cats in driven-dissipative systems and their feedback control
NASA Astrophysics Data System (ADS)
Minganti, Fabrizio; Bartolo, Nicola; Lolli, Jared; Casteels, Wim; Ciuti, Cristiano
2016-05-01
In quantum optics, photonic Schrödinger cats are superpositions of two coherent states with opposite phases and with a significant number of photons. Recently, these states have been observed in the transient dynamics of driven-dissipative resonators subject to engineered two-photon processes. Here we present an exact analytical solution of the steady-state density matrix for this class of systems, including one-photon losses, which are considered detrimental for the achievement of cat states. We demonstrate that the unique steady state is a statistical mixture of two cat-like states with opposite parity, in spite of significant one-photon losses. The transient dynamics to the steady state depends dramatically on the initial state and can pass through a metastable regime lasting orders of magnitudes longer than the photon lifetime. By considering individual quantum trajectories in photon-counting configuration, we find that the system intermittently jumps between two cats. Finally, we propose and study a feedback protocol based on this behaviour to generate a pure cat-like steady state.
Mathematical Analysis of Vehicle Delivery Scale of Bike-Sharing Rental Nodes
NASA Astrophysics Data System (ADS)
Zhai, Y.; Liu, J.; Liu, L.
2018-04-01
Aiming at the lack of scientific and reasonable judgment of vehicles delivery scale and insufficient optimization of scheduling decision, based on features of the bike-sharing usage, this paper analyses the applicability of the discrete time and state of the Markov chain, and proves its properties to be irreducible, aperiodic and positive recurrent. Based on above analysis, the paper has reached to the conclusion that limit state (steady state) probability of the bike-sharing Markov chain only exists and is independent of the initial probability distribution. Then this paper analyses the difficulty of the transition probability matrix parameter statistics and the linear equations group solution in the traditional solving algorithm of the bike-sharing Markov chain. In order to improve the feasibility, this paper proposes a "virtual two-node vehicle scale solution" algorithm which considered the all the nodes beside the node to be solved as a virtual node, offered the transition probability matrix, steady state linear equations group and the computational methods related to the steady state scale, steady state arrival time and scheduling decision of the node to be solved. Finally, the paper evaluates the rationality and accuracy of the steady state probability of the proposed algorithm by comparing with the traditional algorithm. By solving the steady state scale of the nodes one by one, the proposed algorithm is proved to have strong feasibility because it lowers the level of computational difficulty and reduces the number of statistic, which will help the bike-sharing companies to optimize the scale and scheduling of nodes.
Current Pressure Transducer Application of Model-based Prognostics Using Steady State Conditions
NASA Technical Reports Server (NTRS)
Teubert, Christopher; Daigle, Matthew J.
2014-01-01
Prognostics is the process of predicting a system's future states, health degradation/wear, and remaining useful life (RUL). This information plays an important role in preventing failure, reducing downtime, scheduling maintenance, and improving system utility. Prognostics relies heavily on wear estimation. In some components, the sensors used to estimate wear may not be fast enough to capture brief transient states that are indicative of wear. For this reason it is beneficial to be capable of detecting and estimating the extent of component wear using steady-state measurements. This paper details a method for estimating component wear using steady-state measurements, describes how this is used to predict future states, and presents a case study of a current/pressure (I/P) Transducer. I/P Transducer nominal and off-nominal behaviors are characterized using a physics-based model, and validated against expected and observed component behavior. This model is used to map observed steady-state responses to corresponding fault parameter values in the form of a lookup table. This method was chosen because of its fast, efficient nature, and its ability to be applied to both linear and non-linear systems. Using measurements of the steady state output, and the lookup table, wear is estimated. A regression is used to estimate the wear propagation parameter and characterize the damage progression function, which are used to predict future states and the remaining useful life of the system.
Energy cost of isometric force production after active shortening in skinned muscle fibres.
Joumaa, Venus; Fitzowich, Alex; Herzog, Walter
2017-04-15
The steady-state isometric force after active shortening of a skeletal muscle is lower than the purely isometric force at the corresponding length. This property of skeletal muscle is known as force depression. The purpose of this study was to investigate whether the energy cost of force production at the steady state after active shortening was reduced compared with the energy cost of force production for a purely isometric contraction performed at the corresponding length (same length, same activation). Experiments were performed in skinned fibres isolated from rabbit psoas muscle. Skinned fibres were actively shortened from an average sarcomere length of 3.0 µm to an average sarcomere length of 2.4 µm. Purely isometric reference contractions were performed at an average sarcomere length of 2.4 µm. Simultaneously with the force measurements, the ATP cost was measured during the last 30 s of isometric contractions using an enzyme-coupled assay. Stiffness was calculated during a quick stretch-release cycle of 0.2% fibre length performed once the steady state had been reached after active shortening and during the purely isometric reference contractions. Force and stiffness following active shortening were decreased by 10.0±1.8% and 11.0±2.2%, respectively, compared with the isometric reference contractions. Similarly, ATPase activity per second (not normalized to the force) showed a decrease of 15.6±3.0% in the force-depressed state compared with the purely isometric reference state. However, ATPase activity per second per unit of force was similar for the isometric contractions following active shortening (28.7±2.4 mmol l -1 mN -1 s mm 3 ) and the corresponding purely isometric reference contraction (30.9±2.8 mmol l -1 mN -1 s mm 3 ). Furthermore, the reduction in absolute ATPase activity per second was significantly correlated with force depression and stiffness depression. These results are in accordance with the idea that force depression following active shortening is primarily caused by a decrease in the proportion of attached cross-bridges. Furthermore, these findings, along with previously reported results showing a decrease in ATP consumption per unit of force after active muscle stretching, suggest that the mechanisms involved in the steady-state force after active muscle shortening and active muscle lengthening are of distinctly different origin. © 2017. Published by The Company of Biologists Ltd.
Experimental demonstration of revival of oscillations from death in coupled nonlinear oscillators.
Senthilkumar, D V; Suresh, K; Chandrasekar, V K; Zou, Wei; Dana, Syamal K; Kathamuthu, Thamilmaran; Kurths, Jürgen
2016-04-01
We experimentally demonstrate that a processing delay, a finite response time, in the coupling can revoke the stability of the stable steady states, thereby facilitating the revival of oscillations in the same parameter space where the coupled oscillators suffered the quenching of oscillation. This phenomenon of reviving of oscillations is demonstrated using two different prototype electronic circuits. Further, the analytical critical curves corroborate that the spread of the parameter space with stable steady state is diminished continuously by increasing the processing delay. Finally, the death state is completely wiped off above a threshold value by switching the stability of the stable steady state to retrieve sustained oscillations in the same parameter space. The underlying dynamical mechanism responsible for the decrease in the spread of the stable steady states and the eventual reviving of oscillation as a function of the processing delay is explained using analytical results.
Pattern Formation in Keller-Segel Chemotaxis Models with Logistic Growth
NASA Astrophysics Data System (ADS)
Jin, Ling; Wang, Qi; Zhang, Zengyan
In this paper, we investigate pattern formation in Keller-Segel chemotaxis models over a multidimensional bounded domain subject to homogeneous Neumann boundary conditions. It is shown that the positive homogeneous steady state loses its stability as chemoattraction rate χ increases. Then using Crandall-Rabinowitz local theory with χ being the bifurcation parameter, we obtain the existence of nonhomogeneous steady states of the system which bifurcate from this homogeneous steady state. Stability of the bifurcating solutions is also established through rigorous and detailed calculations. Our results provide a selection mechanism of stable wavemode which states that the only stable bifurcation branch must have a wavemode number that minimizes the bifurcation value. Finally, we perform extensive numerical simulations on the formation of stable steady states with striking structures such as boundary spikes, interior spikes, stripes, etc. These nontrivial patterns can model cellular aggregation that develop through chemotactic movements in biological systems.
Experimental demonstration of revival of oscillations from death in coupled nonlinear oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Senthilkumar, D. V., E-mail: skumarusnld@gmail.com; Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401; Suresh, K.
We experimentally demonstrate that a processing delay, a finite response time, in the coupling can revoke the stability of the stable steady states, thereby facilitating the revival of oscillations in the same parameter space where the coupled oscillators suffered the quenching of oscillation. This phenomenon of reviving of oscillations is demonstrated using two different prototype electronic circuits. Further, the analytical critical curves corroborate that the spread of the parameter space with stable steady state is diminished continuously by increasing the processing delay. Finally, the death state is completely wiped off above a threshold value by switching the stability of themore » stable steady state to retrieve sustained oscillations in the same parameter space. The underlying dynamical mechanism responsible for the decrease in the spread of the stable steady states and the eventual reviving of oscillation as a function of the processing delay is explained using analytical results.« less
NASA Astrophysics Data System (ADS)
Davies, Hugh Trevor Frimston
Radionuclide ventilation perfusion lung scans now play an important part in the investigation of paediatric lung disease, providing a safe, noninvasive assessment of regional lung function in children with suspected pulmonary disease. In paediatric practice the most suitable radionuclides are Krypton 81m (Kr81m) and Technetium 99m (Tc99m), which are jointly used in the Kr81m ventilation/Tc99m macroaggregate perfusion lung scan (V/Q lung scan). The Kr81m ventilation scan involves a low radiation dose, requires little or no subject cooperation and because of the very short half life of Kr81m (13 seconds) the steady state image acquired during continuous inhalation of the radionuclide is considered to reflect regional distribution of ventilation. It is now the most important noninvasive method available for the investigation of the regional abnormalities of ventilation characteristic of many congenital and acquired paediatric respiratory diseases, such as diaphragmatic hernia, pulmonary sequestration, bronchopulmonary dysplasia, foreign body inhalation and bronchiectasis. It improves diagnostic accuracy, aids clinical decision making and is used to monitor the progress of disease and response to therapy. Theoretical analysis of the steady state Kr81m ventilation image suggests that it may only reflect regional ventilation when specific ventilation (ventilation per unit volume of lung) is within or below the normal adult range (1-3 L/L/min). At higher values such as those seen in neonates and infants (8-15 L/L/min) Kr81m activity may reflect regional lung volume rather than ventilation, a conclusion supported by the studies of Ciofetta et al. There is some controversy on this issue as animal studies have demonstrated that the Kr81m image reflects ventilation over a much wider range of specific ventilation (up to 13 L/L/min). A clinical study of sick infants and very young children is in agreement with this animal work and suggests that the steady state Kr81m image still reflects regional ventilation in this age group. The doubt cast on the interpretation of the Kr81m steady state image could limit the value of V/Q lung scans in following regional lung function through childhood, a period when specific ventilation is falling rapidly as the child grows. Therefore the first aim of this study was to examine the application of this theoretical model to children and determine whether the changing specific ventilation seen through childhood significantly alters the interpretation of the steady state Kr81m image. This is a necessary first step before conducting longitudinal studies of regional ventilation and perfusion in children. The effect of posture on regional ventilation and perfusion in the adult human lung has been extensively studied. Radiotracer studies have consistently shown that both ventilation and perfusion are preferentially distributed to dependent lung regions during tidal breathing regardless of posture. There is little published information concerning the pattern in children yet there are many differences in lung and chest wall mechanics of children and adults which, along with clinical observation, have led to the hypothesis that the pattern of regional ventilation observed in adults may not be seen in children. Recent reports of regional ventilation in infants and very young children have provided support for this theory. The paper of Heaf et al demonstrated that these differences may in certain circumstances be clinically important. It is not clear however at what age children adopt the "adult pattern of ventilation". In addition to the problems referred to above, attenuation of Kr81m activity as it passes through the chest wall and the changing geometry of the chest during tidal breathing have made quantitative analysis of the image difficult although fractional ventilation and perfusion to each lung can be calculated from the steady state image. In clinical practise, therefore, ventilation and perfusion are usually assessed by inspection of the steady state image. The aims of the present study were therefore: 1. To critically assess Kr81m ventilation and Tc99m MAA perfusion images in children. 2. To derive fractional ventilation and perfusion to each lung in children with normal chest radiography and homogeneous distribution of the radionuclides. 3. To conduct further studies into the effects of gravity on regional lung function. 4. To apply the technique in clinical practise. 5. To attempt to improve quantitation of the Kr81m ventilation image.
Determination of the Steady State Leakage Current in Structures with Ferroelectric Ceramic Films
NASA Astrophysics Data System (ADS)
Podgornyi, Yu. V.; Vorotilov, K. A.; Sigov, A. S.
2018-03-01
Steady state leakage currents have been investigated in capacitor structures with ferroelectric solgel films of lead zirconate titanate (PZT) formed on silicon substrates with a lower Pt electrode. It is established that Pt/PZT/Hg structures, regardless of the PZT film thickness, are characterized by the presence of a rectifying contact similar to p-n junction. The steady state leakage current in the forward direction increases with a decrease in the film thickness and is determined by the ferroelectric bulk conductivity.
Revelations of X-ray spectral analysis of the enigmatic black hole binary GRS 1915+105
NASA Astrophysics Data System (ADS)
Peris, Charith; Remillard, Ronald A.; Steiner, James; Vrtilek, Saeqa Dil; Varniere, Peggy; Rodriguez, Jerome; Pooley, Guy
2016-01-01
Of the black hole binaries discovered thus far, GRS 1915+105 stands out as an exceptional source primarily due to its wild X-ray variability, the diversity of which has not been replicated in any other stellar-mass black hole. Although extreme variability is commonplace in its light-curve, about half of the observations of GRS1915+105 show fairly steady X-ray intensity. We report on the X-ray spectral behavior within these steady observations. Our work is based on a vast RXTE/PCA data set obtained on GRS 1915+105 during the course of its entire mission and 10 years of radio data from the Ryle Telescope, which overlap the X-ray data. We find that the steady observations within the X-ray data set naturally separate into two regions in a color-color diagram, which we refer to as steady-soft and steady-hard. GRS 1915+105 displays significant curvature in the Comptonization component within the PCA band pass suggesting significantly heating from a hot disk present in all states. A new Comptonization model 'simplcut' was developed in order to model this curvature to best effect. A majority of the steady-soft observations display a roughly constant inner radius; remarkably reminiscent of canonical soft state black hole binaries. In contrast, the steady-hard observations display a growing disk truncation that is correlated to the mass accretion rate through the disk, which suggests a magnetically truncated disk. A comparison of X-ray model parameters to the canonical state definitions show that almost all steady-soft observations match the criteria of either thermal or steep power law state, while the thermal state observations dominate the constant radius branch. A large portion (80%) of the steady-hard observations matches the hard state criteria when the disk fraction constraint is neglected. These results suggest that within the complexity of this source is a simpler underlying basis of states, which map to those observed in canonical black hole binaries. When represented in a color-color diagram, state assignments appear to map to ``A, B and C'' (Belloni et al. 2000) regions that govern fast variability cycles in GRS 1915+105 demonstrating a compelling link between short and long time scales in its phenomenology.
Three dimensional steady subsonic Euler flows in bounded nozzles
NASA Astrophysics Data System (ADS)
Chen, Chao; Xie, Chunjing
The existence and uniqueness of three dimensional steady subsonic Euler flows in rectangular nozzles were obtained when prescribing normal component of momentum at both the entrance and exit. If, in addition, the normal component of the voriticity and the variation of Bernoulli's function at the entrance are both zero, then there exists a unique subsonic potential flow when the magnitude of the normal component of the momentum is less than a critical number. As the magnitude of the normal component of the momentum approaches the critical number, the associated flows converge to a subsonic-sonic flow. Furthermore, when the normal component of vorticity and the variation of Bernoulli function are both small, the existence and uniqueness of subsonic Euler flows with non-zero vorticity are established. The proof of these results is based on a new formulation for the Euler system, a priori estimate for nonlinear elliptic equations with nonlinear boundary conditions, detailed study for a linear div-curl system, and delicate estimate for the transport equations.
SO 2 concentrations near tall stacks
NASA Astrophysics Data System (ADS)
Lott, Robert A.
A study was conducted to investigate plume dispersion during convective (stability class A) conditions. The purpose of the study was to determine if high concentrations occur near sources (1.2-1.8 km) with tall stacks and to identify the plume behavior during these episodes. The study was conducted at the Tennessee Valley Authority's Paradise Steam Plant. The highest concentrations were measured near the source during wind shear capping conditions, which normally correspond to stability class B or C conditions. The measured data are compared with results obtained using a convective boundary layer model and a steady-state Gaussian model.
NASA Technical Reports Server (NTRS)
Joncas, K. P.
1972-01-01
Concepts and techniques for identifying and simulating both the steady state and dynamic characteristics of electrical loads for use during integrated system test and evaluation are discussed. The investigations showed that it is feasible to design and develop interrogation and simulation equipment to perform the desired functions. During the evaluation, actual spacecraft loads were interrogated by stimulating the loads with their normal input voltage and measuring the resultant voltage and current time histories. Elements of the circuits were optimized by an iterative process of selecting element values and comparing the time-domain response of the model with those obtained from the real equipment during interrogation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haneberg, W.C.
1991-11-01
Previous workers have correlated slope failures during rainstorms with rainfall intensity, rainfall duration, and seasonal antecedent rainfall. This note shows how such relationships can be interpreted using a periodic steady-state solution to the well-known linear pressure diffusion equation. Normalization of the governing equation yields a characteristic response time that is a function of soil thickness, saturated hydraulic conductivity, and pre-storm effective porosity, and which is analogous to the travel time of a piston wetting front. The effects of storm frequency and magnitude are also successfully quantified using dimensionless attenuation factors and lag times.
DESIGN AND HAZARDS SUMMARY REPORT, BOILING REACTOR EXPERIMENT V (BORAX V)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1961-05-01
Design data for BORAX V are presented along with results of hazards evaluation studies. Considcration of the hazards associated with the operation of BORAX V was based on the following conditions: For normal steady-state power and experimental operation, the reactor and plant are adequately shielded and ventilated to allow personnel to be safely stationed in the turbine building and on the main floor of the reactor building. The control building is located one- half mile distant from the reactor building. For special, hazardous experiments, personnel are withdrawn from the reactor area. (M.C.G.)
Noise-induced transitions in a double-well oscillator with nonlinear dissipation.
Semenov, Vladimir V; Neiman, Alexander B; Vadivasova, Tatyana E; Anishchenko, Vadim S
2016-05-01
We develop a model of bistable oscillator with nonlinear dissipation. Using a numerical simulation and an electronic circuit realization of this system we study its response to additive noise excitations. We show that depending on noise intensity the system undergoes multiple qualitative changes in the structure of its steady-state probability density function (PDF). In particular, the PDF exhibits two pitchfork bifurcations versus noise intensity, which we describe using an effective potential and corresponding normal form of the bifurcation. These stochastic effects are explained by the partition of the phase space by the nullclines of the deterministic oscillator.
Pye, I F; Aber, G M
1982-01-01
The concentrations of inorganic ions and glucose in the plasma and CSF of 11 patients with "steady-state" chronic renal failure have been measured and their CSF: plasma interrelations studied. The results have been compared with the corresponding data from 34 control subjects. In the patients with renal failure, there was a positive correlation between raised CSF and plasma potassium concentrations. In contrast to the impaired potassium homeostasis, normal CSF magnesium and calcium concentrations were observed despite wide variations in the plasma concentrations of these ions. PMID:7085915
ESTIMATING SYSTEMIC EXPOSURE TO ETHINYL ESTRADIOL FROM AN ORAL CONTRACEPTIVE
WESTHOFF, Carolyn L.; PIKE, Malcolm C.; TANG, Rosalind; DINAPOLI, Marianne N.; SULL, Monica; CREMERS, Serge
2015-01-01
Objectives This study was conducted to compare single-dose pharmacokinetics of ethinyl estradiol in an oral contraceptive to steady-state values, and to assess whether any simpler measures could provide an adequate proxy of the ‘gold standard’ 24-hour steady-state area-under-the-curve. Identifying a simple, less expensive, measure of systemic ethinyl estradiol exposure would be useful for larger studies designed to assess the relationship between an individual’s ethinyl estradiol exposure and her side effects. Study Design We conducted a 13 samples over 24 hours pharmacokinetic analysis on day 1 and day 21 of the first cycle of a monophasic oral contraceptive containing 30 mcg ethinyl estradiol and 150 mcg levonorgestrel in 17 non-obese healthy white women. We also conducted an abbreviated single dose 9-sample pharmacokinetic analysis after a month washout. Ethinyl estradiol was measured by liquid chromatography-tandem mass spectrometry. We compared results of full 13-sample steady-state pharmacokinetic analysis with results calculated using fewer samples (9 or 5) and following the single doses. We calculated Pearson correlation coefficients to evaluate the relationships between these estimates of systemic ethinyl estradiol exposure. Results The area-under-the-curve, maximum (Cmax), and 24-hour (C24) values were similar following the two single oral contraceptive doses (area-under-the-curve, r = 0.92). The steady-state 13-sample 24-hour area-under-the-curve was highly correlated with the average 9-sample area-under-the-curve after the two single doses (r = 0.81, p = 0.0002). This correlation remained the same if the number of samples was reduced to 4, taken at time 1, 2.5, 4 and 24 hours. The C24 at steady-state was highly correlated with the 24-hour steady-state area-under-the-curve (r = 0.92, p < 0.0001). The average of the C24 values following the two single doses was also quite highly correlated with the steady-state area-under-the-curve (r = 0.72, p = 0.0026). Conclusions Limited blood sampling, including results from two single doses, gave highly correlated estimates of an oral contraceptive user’s steady-state ethinyl estradiol exposure. PMID:25511238
Estimating systemic exposure to ethinyl estradiol from an oral contraceptive.
Westhoff, Carolyn L; Pike, Malcolm C; Tang, Rosalind; DiNapoli, Marianne N; Sull, Monica; Cremers, Serge
2015-05-01
This study was conducted to compare single-dose pharmacokinetics of ethinyl estradiol in an oral contraceptive with steady-state values and to assess whether any simpler measures could provide an adequate proxy of the "gold standard" 24-hour steady-state area under the curve (AUC) value. Identification of a simple, less expensive measure of systemic ethinyl estradiol exposure would be useful for larger studies that are designed to assess the relationship between an individual's ethinyl estradiol exposure and side-effects. We collected 13 samples over 24 hours for pharmacokinetic analysis on days 1 and 21 of the first cycle of a monophasic oral contraceptive that contained 30 μg ethinyl estradiol and 150 μg levonorgestrel in 17 nonobese healthy white women. We also conducted an abbreviated single-dose 9-sample pharmacokinetic analysis after a month washout. Ethinyl estradiol was measured by liquid chromatography-tandem mass spectrometry. We compared results of a full 13-sample steady-state pharmacokinetic analysis with results that had been calculated with the use of fewer samples (9 or 5) and after the single doses. We calculated Pearson correlation coefficients to evaluate the relationships between these estimates of systemic ethinyl estradiol exposure. The AUC, maximum, and 24-hour values were similar after the 2 single oral contraceptive doses (AUC; r=0.92). The steady-state 13-sample 24-hour AUC value was correlated highly with the average 9-sample AUC value after the 2 single doses (r=0.81; P=.0002). This correlation remained the same if the number of single-dose samples was reduced to 4, taken at time 1, 2.5, 4, and 24 hours. The 24-hour value at steady-state was correlated highly with the 24-hour steady-state AUC value (r=0.92; P<.0001). The average of the 24-hour values after the 2 single doses was also correlated quite highly with the steady-state AUC value (r=0.72; P=.0026). Limited blood sampling, including results from 2 single doses, gave highly correlated estimates of an oral contraceptive user's steady-state ethinyl estradiol exposure. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Romanovskii, V. R.
2017-08-01
Conditions for the irreversible propagation of thermal instabilities in commercial superconductors subjected to intense and soft cooling have been formulated. An analysis has been conducted using two types of the superconductor's I-V characteristics, i.e., an ideal I-V characteristic, which assumes a step superconducting-to-normal transition, and a continuous I-V characteristic, which is described by a power law. The propagation rate of thermal instabilities along the superconducting composite has been determined. Calculations have been made for both subcritical and supercritical values of the current. It has been shown that they propagate along a commercial superconductor in the form of a switching wave. In rapidly cooled commercial superconductors, the steady-state rate of thermal instability propagation in the longitudinal direction can only be positive because there is no region of steady stabilization. It has been proved that, in the case of thermal instability irreversible propagation, the rise in the commercial superconductor temperature is similar to diffusion processes that occur in explosive chain reactions.
Sediment erosion by Görtler vortices: the scour-hole problem
NASA Astrophysics Data System (ADS)
Hopfinger, E. J.; Kurniawan, A.; Graf, W. H.; Lemmin, U.
2004-12-01
Experimental results on sediment erosion (scour) by a plane turbulent wall jet, issuing from a sluice gate, are presented which show clearly it seems for the first time that the turbulent wall layer is destabilized by the concave curvature of the water/sediment interface. The streamwise Görtler vortices which emerge create sediment streaks or longitudinal sediment ridges. The analysis of the results in terms of Görtler instability of the wall layer indicates that the strength of these curvature-excited streamwise vortices is such that the sediment transport is primarily due to turbulence created by these vortices. Their contribution to the wall shear stress is taken to be of the same form as the normal turbulent wall shear stress. For this reason, the model developed by Hogg et al. (J. Fluid Mech. Vol. 338, 1997, p. 317) remains valid; only the numerical coefficients are affected. The logarithmic dependency of the time evolution of the scour-hole depth predicted by this model is shown to be in good agreement with experiments. New scaling laws for the quasi-steady state depth and the associated time, inspired by the Hogg et al. (1997) model are proposed. Furthermore, it is emphasized that at least two scouring regimes must be distinguished: a short-time regime after which a quasi-steady state is reached, followed by a long-time regime, leading to an asymptotic state of virtually no sediment transport.
Huang, Yizhe; Sun, Daniel Jian; Zhang, Li-Hui
2018-08-01
Inappropriate cruising speed, such as speeding, is one of the major contributors to the road safety, which increases both the quantitative number and severity of traffic accidents. Previous studies have indicated that traffic congestion is one of the primary causes of drivers' frustration and aggression, which may lead to inappropriate speed choice. In this study, the large taxi floating car data (FCD) was used to empirically evaluate how traffic congestion-related negative moods, defined as state aggressiveness, affected drivers' speed choice. The indirect effect of traffic delay on the cruising speed adjustment through the state aggressiveness was assessed through the mediation analysis. Furthermore, the moderated mediation analysis was performed to explore the effect of driver type, value of time, and working duration on the mediation role of state aggressiveness. The results proved that the state aggressiveness was the mediator of the relationship between travel delays and driving speed adjustment, and the mediation role was different across various driver types. As compared to the aggressive drivers, the normal drivers and the steady drivers tended to behave more aggressively after experiencing non-recurrent congestion during the early stage of the trips. When the value of time was high, steady drivers were more likely to adjust their speed choice although the effect was not statistically significant for other driver types. The validation results indicated that the speed model incorporating state aggressiveness could better predict the travel time than the traditional speed model that only considering the specific expected speed distribution. The prediction results for the manifest indicators of state aggressiveness, such as the maximum speed and the speed deviation, also demonstrated a reasonable reflection of the field data. Copyright © 2018 Elsevier Ltd. All rights reserved.
Simulation of the Effect of Realistic Space Vehicle Environments on Binary Metal Alloys
NASA Technical Reports Server (NTRS)
Westra, Douglas G.; Poirier, D. R.; Heinrich, J. C.; Sung, P. K.; Felicelli, S. D.; Phelps, Lisa (Technical Monitor)
2001-01-01
Simulations that assess the effect of space vehicle acceleration environments on the solidification of Pb-Sb alloys are reported. Space microgravity missions are designed to provide a near zero-g acceleration environment for various types of scientific experiments. Realistically. these space missions cannot provide a perfect environment. Vibrations caused by crew activity, on-board experiments, support systems stems (pumps, fans, etc.), periodic orbital maneuvers, and water dumps can all cause perturbations to the microgravity environment. In addition, the drag on the space vehicle is a source of acceleration. Therefore, it is necessary to predict the impact of these vibration-perturbations and the steady-state drag acceleration on the experiments. These predictions can be used to design mission timelines. so that the experiment is run during times that the impact of the acceleration environment is acceptable for the experiment of interest. The simulations reported herein were conducted using a finite element model that includes mass, species, momentum, and energy conservation. This model predicts the existence of "channels" within the processing mushy zone and subsequently "freckles" within the fully processed solid, which are the effects of thermosolutal convection. It is necessary to mitigate thermosolutal convection during space experiments of metal alloys, in order to study and characterize diffusion-controlled transport phenomena (microsegregation) that are normally coupled with macrosegregation. The model allows simulation of steady-state and transient acceleration values ranging from no acceleration (0 g). to microgravity conditions (10(exp -6) to 10(exp -3) g), to terrestrial gravity conditions (1 g). The transient acceleration environments simulated were from the STS-89 SpaceHAB mission and from the STS-94 SpaceLAB mission. with on-orbit accelerometer data during different mission periods used as inputs for the simulation model. Periods of crew exercise, quiet (no crew activity), and nominal conditions from STS-89 were used as simulation inputs as were periods of nominal. overboard water-dump, and free-drift (no orbit maneuvering operations) from STS-94. Steady-state acceleration environments of 0.0 and 10(exp -6) to 10(exp -1) g were also simulated, to serve as a comparison to the transient data and to assess an acceptable magnitude for the steady-state vehicle drag
NASA Technical Reports Server (NTRS)
Chapman, Jeffryes W.; Lavelle, Thomas M.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei
2014-01-01
A simulation toolbox has been developed for the creation of both steady-state and dynamic thermodynamic software models. This paper describes the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS), which combines generic thermodynamic and controls modeling libraries with a numerical iterative solver to create a framework for the development of thermodynamic system simulations, such as gas turbine engines. The objective of this paper is to present an overview of T-MATS, the theory used in the creation of the module sets, and a possible propulsion simulation architecture. A model comparison was conducted by matching steady-state performance results from a T-MATS developed gas turbine simulation to a well-documented steady-state simulation. Transient modeling capabilities are then demonstrated when the steady-state T-MATS model is updated to run dynamically.
NASA Technical Reports Server (NTRS)
Chapman, Jeffryes W.; Lavelle, Thomas M.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei
2014-01-01
A simulation toolbox has been developed for the creation of both steady-state and dynamic thermodynamic software models. This paper describes the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS), which combines generic thermodynamic and controls modeling libraries with a numerical iterative solver to create a framework for the development of thermodynamic system simulations, such as gas turbine engines. The objective of this paper is to present an overview of T-MATS, the theory used in the creation of the module sets, and a possible propulsion simulation architecture. A model comparison was conducted by matching steady-state performance results from a T-MATS developed gas turbine simulation to a well-documented steady-state simulation. Transient modeling capabilities are then demonstrated when the steady-state T-MATS model is updated to run dynamically.
Coherent quantum dynamics in steady-state manifolds of strongly dissipative systems.
Zanardi, Paolo; Campos Venuti, Lorenzo
2014-12-12
Recently, it has been realized that dissipative processes can be harnessed and exploited to the end of coherent quantum control and information processing. In this spirit, we consider strongly dissipative quantum systems admitting a nontrivial manifold of steady states. We show how one can enact adiabatic coherent unitary manipulations, e.g., quantum logical gates, inside this steady-state manifold by adding a weak, time-rescaled, Hamiltonian term into the system's Liouvillian. The effective long-time dynamics is governed by a projected Hamiltonian which results from the interplay between the weak unitary control and the fast relaxation process. The leakage outside the steady-state manifold entailed by the Hamiltonian term is suppressed by an environment-induced symmetrization of the dynamics. We present applications to quantum-computation in decoherence-free subspaces and noiseless subsystems and numerical analysis of nonadiabatic errors.
Fluctuations, Stratification and Stability in a Liquid Fluidized Bed at Low Reynolds Number
NASA Technical Reports Server (NTRS)
Segre, P. N.; McClymer, J. P.
2004-01-01
The sedimentation dynamics of extremely low polydispersity, non-colloidal, particles are studied in a liquid fluidized bed at low Reynolds number, Re much less than 1. When fluidized, the system reaches a steady state, defined where the local average volume fraction does not vary in time. In steady state, the velocity fluctuations and the particle concentrations are found to strongly depend on height. Using our results, we test a recently developed stability model for steady state sedimentation. The model describes the data well, and shows that in steady state there is a balancing of particle fluxes due to the fluctuations and the concentration gradient. Some results are also presented for the dependence of the concentration gradient in fluidized beds on particle size; the gradients become smaller as the particles become larger and fewer in number.
NASA Astrophysics Data System (ADS)
Jayaraman, Balaji; Brasseur, James; Haupt, Sue; Lee, Jared
2016-11-01
LES of the "canonical" daytime atmospheric boundary layer (ABL) over flat topography is developed as an equilibrium ABL with steady surface heat flux, Q0 and steady unidirectional "geostrophic" wind vector Vg above a capping inversion. A strong inversion layer in daytime ABL acts as a "lid" that sharply separates 3D "microscale" ABL turbulence at the O(10) m scale from the quasi-2D "mesoscale" turbulent weather eddies (O(100) km scale). While "canonical" ABL is equilibrium, quasi-stationary and characterized statistically by the ratio of boundary layer depth (zi) to Obukhov length scale (- L) , the real mesoscale influences (Ug and Q0) that force a true daytime ABL are nonstationary at both diurnal and sub-diurnal time scales. We study the consequences of this non-stationarity on ABL dynamics by forcing ABL LES with realistic WRF simulations over flat Kansas terrain. Considering horizontal homogeneity, we relate the mesoscale and geostrophic winds, Ug and Vg, and systematically study the ABL turbulence response to non-steady variations in Q0 and Ug. We observe significant deviations from equilibrium, that manifest in many ways, such as the formation of "roll" eddies purely from changes in mesoscale wind direction that are normally associated with increased surface heat flux. Support from DOE. Compute resources from Penn State ICS.
Acetylcholine-activated ionic currents in parasympathetic neurons of bullfrog heart.
Tateishi, N; Kim, D K; Akaike, N
1990-05-01
1. The electrical and pharmacologic properties of acetylcholine (ACh)-induced current (IACh) were studied in the parasympathetic neurons isolated from bullfrog heart with the use of the concentration-clamp technique, which allows intracellular perfusion and rapid change of external solution within 2 ms under the single-electrode voltage-clamp condition. 2. The IACh consisted of an initial transient peak component and a successive steady-state plateau component. Both currents increased in a sigmoidal fashion with increasing ACh concentration. The dissociation constant (Kd value) and the Hill coefficient for each component were 2.2 X 10(-5) M and 1.6, respectively. 3. In the K(+)-free solution, the reversal potential (EACh) of IACh was close to the Na+ equilibrium potential (ENa). The current-voltage (I-V) relation showed inward rectification at positive potentials. 4. Nicotine mimicked only the peak component of IACh. However both peak and steady-state components were blocked nonselectively by the nicotinic blockers d-tubocurarine and hexamethonium. 5. Carbamylcholine (CCh) mimicked the steady-state component of IACh. The steady-state component was selectively inhibited by atropine at concentrations 1,000 times lower than that required for inhibition of the peak component. The steady state was blocked equally by either pirenzepine (M1 blocker) or AF-DX-116 (M2 blocker). 6. It was concluded that the IACh consisted of a peak component having double exponential activation and inactivation, mediated through the nicotinic actions, and a steady-state component having no inactivation, mediated through the muscarinic action.
Auditory steady-state response in cochlear implant patients.
Torres-Fortuny, Alejandro; Arnaiz-Marquez, Isabel; Hernández-Pérez, Heivet; Eimil-Suárez, Eduardo
2018-03-19
Auditory steady state responses to continuous amplitude modulated tones at rates between 70 and 110Hz, have been proposed as a feasible alternative to objective frequency specific audiometry in cochlear implant subjects. The aim of the present study is to obtain physiological thresholds by means of auditory steady-state response in cochlear implant patients (Clarion HiRes 90K), with acoustic stimulation, on free field conditions and to verify its biological origin. 11 subjects comprised the sample. Four amplitude modulated tones of 500, 1000, 2000 and 4000Hz were used as stimuli, using the multiple frequency technique. The recording of auditory steady-state response was also recorded at 0dB HL of intensity, non-specific stimulus and using a masking technique. The study enabled the electrophysiological thresholds to be obtained for each subject of the explored sample. There were no auditory steady-state responses at either 0dB or non-specific stimulus recordings. It was possible to obtain the masking thresholds. A difference was identified between behavioral and electrophysiological thresholds of -6±16, -2±13, 0±22 and -8±18dB at frequencies of 500, 1000, 2000 and 4000Hz respectively. The auditory steady state response seems to be a suitable technique to evaluate the hearing threshold in cochlear implant subjects. Copyright © 2018 Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. Publicado por Elsevier España, S.L.U. All rights reserved.
Hazra, Rohan; Balis, Frank M; Tullio, Antonella N; DeCarlo, Ellen; Worrell, Carol J; Steinberg, Seth M; Flaherty, John F; Yale, Kitty; Poblenz, Marianne; Kearney, Brian P; Zhong, Lijie; Coakley, Dion F; Blanche, Stephane; Bresson, Jean Louis; Zuckerman, Judith A; Zeichner, Steven L
2004-01-01
Tenofovir disoproxil fumarate (DF) is a potent nucleotide analog reverse transcriptase inhibitor approved for the treatment of human immunodeficiency virus (HIV)-infected adults. The single-dose and steady-state pharmacokinetics of tenofovir were evaluated following administration of tenofovir DF in treatment-experienced HIV-infected children requiring a change in antiretroviral therapy. Using increments of tenofovir DF 75-mg tablets, the target dose was 175 mg/m(2); the median administered dose was 208 mg/m(2). Single-dose pharmacokinetics were evaluated in 18 subjects, and the geometric mean area under the concentration-time curve from 0 h to infinity (AUC(0- infinity )) was 2,150 ng. h/ml and the geometric mean maximum concentration (C(max)) was 266 ng/ml. Subsequently, other antiretrovirals were added to each patient's regimen based upon treatment history and baseline viral resistance results. Steady-state pharmacokinetics were evaluated in 16 subjects at week 4. The steady-state, geometric mean AUC for the 24-h dosing interval was 2,920 ng. h/ml and was significantly higher than the AUC(0- infinity ) after the first dose (P = 0.0004). The geometric mean C(max) at steady state was 302 ng/ml. Tenofovir DF was generally very well tolerated. Steady-state tenofovir exposures in children receiving tenofovir DF-containing combination antiretroviral therapy approached values seen in HIV-infected adults (AUC, approximately 3,000 ng. h/ml; C(max), approximately 300 ng/ml) treated with tenofovir DF at 300 mg.
Alventosa-deLara, E; Barredo-Damas, S; Alcaina-Miranda, M I; Iborra-Clar, M I
2012-03-30
An ultrafiltration (UF) ceramic membrane was used to decolorize Reactive Black 5 (RB5) solutions at different dye concentrations (50 and 500 mg/L). Transmembrane pressure (TMP) and cross-flow velocity (CFV) were modified to study their influence on initial and steady-state permeate flux (J(p)) and dye rejection (R). Generally, J(p) increased with higher TMP and CFV and lower feed concentration, up to a maximum steady-state J(p) of 266.81 L/(m(2)h), obtained at 3 bar, 3m/s and 50mg/L. However, there was a TMP value (which changed depending on operating CFV and concentration) beyond which slight or no further increase in steady-state J(p) was observed. Similarly, the higher the CFV was, the more slightly the steady-state J(p) increased. Furthermore, the effectiveness of ultrafiltration treatment was evaluated through dye rejection coefficient. The results showed significant dye removals, regardless of the tested conditions, with steady-state R higher than 79.8% for the 50mg/L runs and around 73.2% for the 500 mg/L runs. Finally response surface methodology (RSM) was used to optimize membrane performance. At 50mg/L, a TMP of 4 bar and a CFV of 2.53 m/s were found to be the conditions giving the highest steady-state J(p), 255.86 L/(m(2)h), and the highest R, 95.2% simultaneously. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ganesan, Singaravelu; Ebenezar, Jeyasingh; Hemamalini, Srinivasan; Aruna, Prakasa R.
2002-05-01
Steady state fluorescence spectroscopic characterization of endogenous porphyrin emission from DMBA treated skin carcinogenesis in Swiss albino mice was carried out. The emission of endogenous porphyrin from normal and abnormal skin tissues was studied both in the presence and absence of exogenous ALA to compare the resultant porphyrin emission characterictics. The mice skin is excited at 405nm and emission spectra are scanned from 430 to 700nm. The average fluorescence emission spectra of mice skin at normal and various tissues transformation conditions were found to be different. Two peaks around 460nm and 636nm were observed and they may be attributed to NADH, Elastin and collagen combination and endogenous porphyrin emission. The intensity at 636nm increases as the stage of the cancer increases. Although exogenous ALA enhances the PPIX level in tumor, the synthesis of PPIX was also found in normal surrounding skin, in fact, with higher concentration than that of tumor tissues.
NASA Astrophysics Data System (ADS)
Rekha, Pachaiappan; Aruna, Prakasa Rao; Ganesan, Singaravelu
2016-03-01
Many research works based on fluorescence spectroscopy have proven its potential in the diagnosis of various diseases using the spectral signatures of the native key fluorophores such as tryptophan, tyrosine, collagen, NADH, FAD and porphyrin. These fluorophores distribution, concentration and their conformation may be changed depending upon the pathological and metabolic conditions of cells and tissues. In this study, we have made an attempt to characterize the blood plasma of normal subject and oral cancer patients by native fluorescence spectroscopy at 280 nm excitation. Further, the fluorescence data were analyzed by employing the multivariate statistical method - linear discriminant analyses (LDA) using leaves one out cross validation method. The results illustrate the potential of fluorescence spectroscopy technique in the diagnosis of oral cancer using blood plasma.
NASA Astrophysics Data System (ADS)
Fily, Yaouen; Baskaran, Aparna; Hagan, Michael F.
2015-01-01
We study the dynamics of nonaligning, noninteracting self-propelled particles confined to a box in two dimensions. In the strong confinement limit, when the persistence length of the active particles is much larger than the size of the box, particles stay on the boundary and align with the local boundary normal. It is then possible to derive the steady-state density on the boundary for arbitrary box shapes. In nonconvex boxes, the nonuniqueness of the boundary normal results in hysteretic dynamics and the density is nonlocal, i.e., it depends on the global geometry of the box. These findings establish a general connection between the geometry of a confining box and the behavior of an ideal active gas it confines, thus providing a powerful tool to understand and design such confinements.
Samuels, Mary; DiStefano, Joseph J.
2008-01-01
Background We upgraded our recent feedback control system (FBCS) simulation model of human thyroid hormone (TH) regulation to include explicit representation of hypothalamic and pituitary dynamics, and updated TH distribution and elimination (D&E) parameters. This new model greatly expands the range of clinical and basic science scenarios explorable by computer simulation. Methods We quantified the model from pharmacokinetic (PK) and physiological human data and validated it comparatively against several independent clinical data sets. We then explored three contemporary clinical issues with the new model: combined triiodothyronine (T3)/thyroxine (T4) versus T4-only treatment, parenteral levothyroxine (L-T4) administration, and central hypothyroidism. Results Combined T3/T4 therapy—In thyroidectomized patients, the L-T4–only replacement doses needed to normalize plasma T3 or average tissue T3 were 145 μg L-T4/day or 165 μgL-T4/day, respectively. The combined T4 + T3 dosing needed to normalize both plasma and tissue T3 levels was 105 μg L-T4 + 9 μgT3 per day. For all three regimens, simulated mean steady-state plasma thyroid-stimulating hormone (TSH), T3, and T4 was within normal ranges (TSH: 0.5–5 mU/L; T4: 5–12 μg/dL; T3: 0.8–1.9 ng/mL). Parenteral T4 administration—800 μg weekly or 400 μg twice weekly normalized average tissue T3 levels both for subcutaneous (SC) and intramuscular (IM) routes of administration. TSH, T3, and T4 levels were maintained within normal ranges for all four of these dosing schemes (1× vs. 2× weekly, SC vs. IM). Central hypothyroidism—We simulated steady-state plasma T3,T4, and TSH concentrations in response to varying degrees of central hypothyroidism, reducing TSH secretion from 50% down to 0.1% of normal. Surprisingly, TSH, T3, and T4 plasma concentrations remained within normal ranges for TSH secretion as low as 25% of normal. Conclusions Combined T3/T4 treatment—Simulated standard L-T4–only therapy was sufficient to renormalize average tissue T3 levels and maintain normal TSH, T3, and T4 plasma levels, supporting adequacy of standard L-T4–only treatment. Parenteral T4 administration—TSH, T3, and T4 levels were maintained within normal ranges for all four of these dosing schemes (1× vs. 2× weekly, SC vs. IM), supporting these therapeutic alternatives for patients with compromised L-T4 gut absorption. Central hypothyroidism—These results highlight how highly nonlinear feedback in the hypothalamic-pituitary-thyroid axis acts to maintain normal hormone levels, even with severely reduced TSH secretion. PMID:18844475
Basin stability measure of different steady states in coupled oscillators
NASA Astrophysics Data System (ADS)
Rakshit, Sarbendu; Bera, Bidesh K.; Majhi, Soumen; Hens, Chittaranjan; Ghosh, Dibakar
2017-04-01
In this report, we investigate the stabilization of saddle fixed points in coupled oscillators where individual oscillators exhibit the saddle fixed points. The coupled oscillators may have two structurally different types of suppressed states, namely amplitude death and oscillation death. The stabilization of saddle equilibrium point refers to the amplitude death state where oscillations are ceased and all the oscillators converge to the single stable steady state via inverse pitchfork bifurcation. Due to multistability features of oscillation death states, linear stability theory fails to analyze the stability of such states analytically, so we quantify all the states by basin stability measurement which is an universal nonlocal nonlinear concept and it interplays with the volume of basins of attractions. We also observe multi-clustered oscillation death states in a random network and measure them using basin stability framework. To explore such phenomena we choose a network of coupled Duffing-Holmes and Lorenz oscillators which are interacting through mean-field coupling. We investigate how basin stability for different steady states depends on mean-field density and coupling strength. We also analytically derive stability conditions for different steady states and confirm by rigorous bifurcation analysis.
An optimizing start-up strategy for a bio-methanator.
Sbarciog, Mihaela; Loccufier, Mia; Vande Wouwer, Alain
2012-05-01
This paper presents an optimizing start-up strategy for a bio-methanator. The goal of the control strategy is to maximize the outflow rate of methane in anaerobic digestion processes, which can be described by a two-population model. The methodology relies on a thorough analysis of the system dynamics and involves the solution of two optimization problems: steady-state optimization for determining the optimal operating point and transient optimization. The latter is a classical optimal control problem, which can be solved using the maximum principle of Pontryagin. The proposed control law is of the bang-bang type. The process is driven from an initial state to a small neighborhood of the optimal steady state by switching the manipulated variable (dilution rate) from the minimum to the maximum value at a certain time instant. Then the dilution rate is set to the optimal value and the system settles down in the optimal steady state. This control law ensures the convergence of the system to the optimal steady state and substantially increases its stability region. The region of attraction of the steady state corresponding to maximum production of methane is considerably enlarged. In some cases, which are related to the possibility of selecting the minimum dilution rate below a certain level, the stability region of the optimal steady state equals the interior of the state space. Aside its efficiency, which is evaluated not only in terms of biogas production but also from the perspective of treatment of the organic load, the strategy is also characterized by simplicity, being thus appropriate for implementation in real-life systems. Another important advantage is its generality: this technique may be applied to any anaerobic digestion process, for which the acidogenesis and methanogenesis are, respectively, characterized by Monod and Haldane kinetics.
Khoo, Nicholas K.H.; Hebbar, Sachin; Zhao, Weiling; Moore, Steven A.; Domann, Frederick E.; Robbins, Mike E.
2013-01-01
Glioma survival is dismal, in part, due to an imbalance in antioxidant expression and activity. Peroxisome proliferator-activated receptor (PPAR) agonists have antineoplastic properties which present new redox-dependent targets for glioma anticancer therapies. Herein, we demonstrate that treatment of primary cultures of normal rat astrocytes with PPAR agonists increased the expression of catalase mRNA protein, and enzymatic activity. In contrast, these same agonists had no effect on catalase expression and activity in malignant rat glioma cells. The increase in steady-state catalase mRNA observed in normal rat astrocytes was due, in part, to de novo mRNA synthesis as opposed to increased catalase mRNA stability. Moreover, pioglitazone-mediated induction of catalase activity in normal rat astrocytes was completely blocked by transfection with a PPARγ-dominant negative plasmid. These data suggest that defects in PPAR-mediated signaling and gene expression may represent a block to normal catalase expression and induction in malignant glioma. The ability of PPAR agonists to differentially increase catalase expression and activity in normal astrocytes but not glioma cells suggests that these compounds might represent novel adjuvant therapeutic agents for the treatment of gliomas. PMID:24024139
The effect of river pulsing on sedimentation and nutrients in created riparian wetlands.
Nahlik, Amanda M; Mitsch, William J
2008-01-01
Sedimentation under pulsed and steady-flow conditions was investigated in two created flow-through riparian wetlands in central Ohio over 2 yr. Hydrologic pulses of river water lasting for 6 to 8 d were imposed on each wetland from January through June during 2004. Mean inflow rates during pulses averaged 52 and 7 cm d(-1) between pulses. In 2005, the wetlands received a steady-flow regime of 11 cm d(-1) with no major hydrologic fluctuations. Thirty-two sediment traps were deployed and sampled once per month in April, May, June, and July for two consecutive years in each wetland. January through March were not sampled in either year due to frozen water surfaces in the wetlands. Gross sedimentation (sedimentation without normalizing for differences between years) was significantly greater in the pulsing study period (90 kg m(-2)) than in the steady-flow study period (64 kg m(-2)). When normalized for different hydrologic and total suspended solid inputs between years, sedimentation for April through July was not significantly different between pulsing and steady-flow study periods. Sedimentation for the 3 mo that received hydrologic pulses (April, May, and June) was significantly lower during pulsing months than in the corresponding steady-flow months. Large fractions of inorganic matter in collected sediments indicated that allochthonous inputs were the main contributor to sedimentation in these wetlands. Organic matter fractions of collected sediments were consistently greater in the steady-flow study period (1.8 g kg(-1)) than in the pulsed study period (1.5 g kg(-1)), consistent with greater primary productivity in the water column during steady-flow conditions.
Pharmacokinetic Steady-States Highlight Interesting Target-Mediated Disposition Properties.
Gabrielsson, Johan; Peletier, Lambertus A
2017-05-01
In this paper, we derive explicit expressions for the concentrations of ligand L, target R and ligand-target complex RL at steady state for the classical model describing target-mediated drug disposition, in the presence of a constant-rate infusion of ligand. We demonstrate that graphing the steady-state values of ligand, target and ligand-target complex, we obtain striking and often singular patterns, which yield a great deal of insight and understanding about the underlying processes. Deriving explicit expressions for the dependence of L, R and RL on the infusion rate, and displaying graphs of the relations between L, R and RL, we give qualitative and quantitive information for the experimentalist about the processes involved. Understanding target turnover is pivotal for optimising these processes when target-mediated drug disposition (TMDD) prevails. By a combination of mathematical analysis and simulations, we also show that the evolution of the three concentration profiles towards their respective steady-states can be quite complex, especially for lower infusion rates. We also show how parameter estimates obtained from iv bolus studies can be used to derive steady-state concentrations of ligand, target and complex. The latter may serve as a template for future experimental designs.
STEADY-STATE MODEL OF SOLAR WIND ELECTRONS REVISITED
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Peter H.; Kim, Sunjung; Choe, G. S., E-mail: yoonp@umd.edu
2015-10-20
In a recent paper, Kim et al. put forth a steady-state model for the solar wind electrons. The model assumed local equilibrium between the halo electrons, characterized by an intermediate energy range, and the whistler-range fluctuations. The basic wave–particle interaction is assumed to be the cyclotron resonance. Similarly, it was assumed that a dynamical steady state is established between the highly energetic superhalo electrons and high-frequency Langmuir fluctuations. Comparisons with the measured solar wind electron velocity distribution function (VDF) during quiet times were also made, and reasonable agreements were obtained. In such a model, however, only the steady-state solution for themore » Fokker–Planck type of electron particle kinetic equation was considered. The present paper complements the previous analysis by considering both the steady-state particle and wave kinetic equations. It is shown that the model halo and superhalo electron VDFs, as well as the assumed wave intensity spectra for the whistler and Langmuir fluctuations, approximately satisfy the quasi-linear wave kinetic equations in an approximate sense, thus further validating the local equilibrium model constructed in the paper by Kim et al.« less
Dong, Hattie Z; Worters, Pauline W; Wu, Holden H; Ingle, R Reeve; Vasanawala, Shreyas S; Nishimura, Dwight G
2013-08-01
Noncontrast-enhanced renal angiography techniques based on balanced steady-state free precession avoid external contrast agents, take advantage of high inherent blood signal from the T 2 / T 1 contrast mechanism, and have short steady-state free precession acquisition times. However, background suppression is limited; inflow times are inflexible; labeling region is difficult to define when tagging arterial flow; and scan times are long. To overcome these limitations, we propose the use of multiple inversion recovery preparatory pulses combined with alternating pulse repetition time balanced steady-state free precession to produce renal angiograms. Multiple inversion recovery uses selective spatial saturation followed by four nonselective inversion recovery pulses to concurrently null a wide range of background T 1 species while allowing for adjustable inflow times; alternating pulse repetition time steady-state free precession maintains vessel contrast and provides added fat suppression. The high level of suppression enables imaging in three-dimensional as well as projective two-dimensional formats, the latter of which has a scan time as short as one heartbeat. In vivo studies at 1.5 T demonstrate the superior vessel contrast of this technique. © 2012 Wiley Periodicals, Inc.
Hybrid Cascading Outage Analysis of Extreme Events with Optimized Corrective Actions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vallem, Mallikarjuna R.; Vyakaranam, Bharat GNVSR; Holzer, Jesse T.
2017-10-19
Power system are vulnerable to extreme contingencies (like an outage of a major generating substation) that can cause significant generation and load loss and can lead to further cascading outages of other transmission facilities and generators in the system. Some cascading outages are seen within minutes following a major contingency, which may not be captured exclusively using the dynamic simulation of the power system. The utilities plan for contingencies either based on dynamic or steady state analysis separately which may not accurately capture the impact of one process on the other. We address this gap in cascading outage analysis bymore » developing Dynamic Contingency Analysis Tool (DCAT) that can analyze hybrid dynamic and steady state behavior of the power system, including protection system models in dynamic simulations, and simulating corrective actions in post-transient steady state conditions. One of the important implemented steady state processes is to mimic operator corrective actions to mitigate aggravated states caused by dynamic cascading. This paper presents an Optimal Power Flow (OPF) based formulation for selecting corrective actions that utility operators can take during major contingency and thus automate the hybrid dynamic-steady state cascading outage process. The improved DCAT framework with OPF based corrective actions is demonstrated on IEEE 300 bus test system.« less
Solid Rocket Motor Combustion Instability Modeling in COMSOL Multiphysics
NASA Technical Reports Server (NTRS)
Fischbach, Sean R.
2015-01-01
Combustion instability modeling of Solid Rocket Motors (SRM) remains a topic of active research. Many rockets display violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process, acoustics, and steady-state gas dynamics. Recent advances in defining the energy transport of disturbances within steady flow-fields have been applied by combustion stability modelers to improve the analysis framework [1, 2, 3]. Employing this more accurate global energy balance requires a higher fidelity model of the SRM flow-field and acoustic mode shapes. The current industry standard analysis tool utilizes a one dimensional analysis of the time dependent fluid dynamics along with a quasi-three dimensional propellant grain regression model to determine the SRM ballistics. The code then couples with another application that calculates the eigenvalues of the one dimensional homogenous wave equation. The mean flow parameters and acoustic normal modes are coupled to evaluate the stability theory developed and popularized by Culick [4, 5]. The assumption of a linear, non-dissipative wave in a quiescent fluid remains valid while acoustic amplitudes are small and local gas velocities stay below Mach 0.2. The current study employs the COMSOL multiphysics finite element framework to model the steady flow-field parameters and acoustic normal modes of a generic SRM. The study requires one way coupling of the CFD High Mach Number Flow (HMNF) and mathematics module. The HMNF module evaluates the gas flow inside of a SRM using St. Robert's law to model the solid propellant burn rate, no slip boundary conditions, and the hybrid outflow condition. Results from the HMNF model are verified by comparing the pertinent ballistics parameters with the industry standard code outputs (i.e. pressure drop, thrust, ect.). These results are then used by the coefficient form of the mathematics module to determine the complex eigenvalues of the Acoustic Velocity Potential Equation (AVPE). The mathematics model is truncated at the nozzle sonic line, where a zero flux boundary condition is self-satisfying. The remaining boundaries are modeled with a zero flux boundary condition, assuming zero acoustic absorption on all surfaces. The results of the steady-state CFD and AVPE analyses are used to calculate the linear acoustic growth rate as is defined by Flandro and Jacob [2, 3]. In order to verify the process implemented within COMSOL we first employ the Culick theory and compare the results with the industry standard. After the process is verified, the Flandro/Jacob energy balance theory is employed and results displayed.
Modified fluctuation-dissipation and Einstein relation at nonequilibrium steady states
NASA Astrophysics Data System (ADS)
Chaudhuri, Debasish; Chaudhuri, Abhishek
2012-02-01
Starting from the pioneering work of Agarwal [G. S. Agarwal, Zeitschrift für PhysikEPJAFV1434-600110.1007/BF01391621 252, 25 (1972)], we present a unified derivation of a number of modified fluctuation-dissipation relations (MFDR) that relate response to small perturbations around nonequilibrium steady states to steady-state correlations. Using this formalism we show the equivalence of velocity forms of MFDR derived using continuum Langevin and discrete master equation dynamics. The resulting additive correction to the Einstein relation is exemplified using a flashing ratchet model of molecular motors.
Steady-state entanglement activation in optomechanical cavities
NASA Astrophysics Data System (ADS)
Farace, Alessandro; Ciccarello, Francesco; Fazio, Rosario; Giovannetti, Vittorio
2014-02-01
Quantum discord, and related indicators, are raising a relentless interest as a novel paradigm of nonclassical correlations beyond entanglement. Here, we discover a discord-activated mechanism yielding steady-state entanglement production in a realistic continuous-variable setup. This comprises two coupled optomechanical cavities, where the optical modes (OMs) communicate through a fiber. We first use a simplified model to highlight the creation of steady-state discord between the OMs. We show next that such discord improves the level of stationary optomechanical entanglement attainable in the system, making it more robust against temperature and thermal noise.
Dispersion of a Nanoliter Bolus in Microfluidic Co-Flow.
Conway, A J; Saadi, W M; Sinatra, F L; Kowalski, G; Larson, D; Fiering, J
2014-03-01
Microfluidic systems enable reactions and assays on the scale of nanoliters. However, at this scale nonuniformities in sample delivery become significant. To determine the fundamental minimum sample volume required for a particular device, a detailed understanding of mass transport is required. Co-flowing laminar streams are widely used in many devices, but typically only in the steady-state. Because establishing the co-flow steady-state consumes excess sample volume and time, there is a benefit to operating devices in the transient state, which predominates as the volume of the co-flow reactor decreases. Analysis of the co-flow transient has been neglected thus far. In this work we describe the fabrication of a pneumatically controlled microfluidic injector constructed to inject a discrete 50nL bolus into one side of a two-stream co-flow reactor. Using dye for image analysis, injections were performed at a range of flow rates from 0.5-10μL/min, and for comparison we collected the co-flow steady-state data for this range. The results of the image analysis were also compared against theory and simulations for device validation. For evaluation, we established a metric that indicates how well the mass distribution in the bolus injection approximates steady-state co-flow. Using such analysis, transient-state injections can approximate steady-state conditions within predefined errors, allowing straight forward measurements to be performed with reduced reagent consumption.
Joseph, David; Schobelock, Michael J.; Riesenberg, Robert R.; Vince, Bradley D.; Webster, Lynn R.; Adeniji, Abidemi; Elgadi, Mabrouk
2014-01-01
The effects of steady-state faldaprevir on the safety, pharmacokinetics, and pharmacodynamics of steady-state methadone and buprenorphine-naloxone were assessed in 34 healthy male and female subjects receiving stable addiction management therapy. Subjects continued receiving a stable oral dose of either methadone (up to a maximum dose of 180 mg per day) or buprenorphine-naloxone (up to a maximum dose of 24 mg-6 mg per day) and also received oral faldaprevir (240 mg) once daily (QD) for 8 days following a 480-mg loading dose. Serial blood samples were taken for pharmacokinetic analysis. The pharmacodynamics of the opioid maintenance regimens were evaluated by the objective and subjective opioid withdrawal scales. Coadministration of faldaprevir with methadone or buprenorphine-naloxone resulted in geometric mean ratios for the steady-state area under the concentration-time curve from 0 to 24 h (AUC0–24,ss), the steady-state maximum concentration of the drug in plasma (Cmax,ss), and the steady-state concentration of the drug in plasma at 24 h (C24,ss) of 0.92 to 1.18 for (R)-methadone, (S)-methadone, buprenorphine, norbuprenorphine, and naloxone, with 90% confidence intervals including, or very close to including, 1.00 (no effect), suggesting a limited overall effect of faldaprevir. Although individual data showed moderate variability in the exposures between subjects and treatments, there was no evidence of symptoms of opiate overdose or withdrawal either during the coadministration of faldaprevir with methadone or buprenorphine-naloxone or after faldaprevir dosing was stopped. Similar faldaprevir exposures were observed in the methadone- and buprenorphine-naloxone-treated subjects. In conclusion, faldaprevir at 240 mg QD can be coadministered with methadone or buprenorphine-naloxone without dose adjustment, although given the relatively narrow therapeutic windows of these agents, monitoring for opiate overdose and withdrawal may still be appropriate. (This study has been registered at ClinicalTrials.gov under registration no. NCT01637922.) PMID:25385094
NASA Astrophysics Data System (ADS)
Arora, Shitij; Fourment, Lionel
2018-05-01
In the context of the simulation of industrial hot forming processes, the resultant time-dependent thermo-mechanical multi-field problem (v →,p ,σ ,ɛ ) can be sped up by 10-50 times using the steady-state methods while compared to the conventional incremental methods. Though the steady-state techniques have been used in the past, but only on simple configurations and with structured meshes, and the modern-days problems are in the framework of complex configurations, unstructured meshes and parallel computing. These methods remove time dependency from the equations, but introduce an additional unknown into the problem: the steady-state shape. This steady-state shape x → can be computed as a geometric correction t → on the domain X → by solving the weak form of the steady-state equation v →.n →(t →)=0 using a Streamline Upwind Petrov Galerkin (SUPG) formulation. There exists a strong coupling between the domain shape and the material flow, hence, a two-step fixed point iterative resolution algorithm was proposed that involves (1) the computation of flow field from the resolution of thermo-mechanical equations on a prescribed domain shape and (2) the computation of steady-state shape for an assumed velocity field. The contact equations are introduced in the penalty form both during the flow computation as well as during the free-surface correction. The fact that the contact description is inhomogeneous, i.e., it is defined in the nodal form in the former, and in the weighted residual form in the latter, is assumed to be critical to the convergence of certain problems. Thus, the notion of nodal collocation is invoked in the weak form of the surface correction equation to homogenize the contact coupling. The surface correction algorithm is tested on certain analytical test cases and the contact coupling is tested with some hot rolling problems.
Wahl, Patrick; Zwingmann, Lukas; Manunzio, Christian; Wolf, Jacob; Bloch, Wilhelm
2018-05-18
This study evaluated the accuracy of the lactate minimum test, in comparison to a graded-exercise test and established threshold concepts (OBLA and mDmax) to determine running speed at maximal lactate steady state. Eighteen subjects performed a lactate minimum test, a graded-exercise test (2.4 m·s -1 start,+0.4 m·s -1 every 5 min) and 2 or more constant-speed tests of 30 min to determine running speed at maximal lactate steady state. The lactate minimum test consisted of an initial lactate priming segment, followed by a short recovery phase. Afterwards, the initial load of the subsequent incremental segment was individually determined and was increased by 0.1 m·s -1 every 120 s. Lactate minimum was determined by the lowest measured value (LM abs ) and by a third-order polynomial (LM pol ). The mean difference to maximal lactate steady state was+0.01±0.14 m·s -1 (LM abs ), 0.04±0.15 m·s -1 (LM pol ), -0.06±0.31 m·s 1 (OBLA) and -0.08±0.21 m·s 1 (mDmax). The intraclass correlation coefficient (ICC) between running velocity at maximal lactate steady state and LM abs was highest (ICC=0.964), followed by LM pol (ICC=0.956), mDmax (ICC=0.916) and OBLA (ICC=0.885). Due to the higher accuracy of the lactate minimum test to determine maximal lactate steady state compared to OBLA and mDmax, we suggest the lactate minimum test as a valid and meaningful concept to estimate running velocity at maximal lactate steady state in a single session for moderately up to well-trained athletes. © Georg Thieme Verlag KG Stuttgart · New York.
Foster, Carl; Farland, Courtney V.; Guidotti, Flavia; Harbin, Michelle; Roberts, Brianna; Schuette, Jeff; Tuuri, Andrew; Doberstein, Scott T.; Porcari, John P.
2015-01-01
High intensity interval training (HIIT) has become an increasingly popular form of exercise due to its potentially large effects on exercise capacity and small time requirement. This study compared the effects of two HIIT protocols vs steady-state training on aerobic and anaerobic capacity following 8-weeks of training. Fifty-five untrained college-aged subjects were randomly assigned to three training groups (3x weekly). Steady-state (n = 19) exercised (cycle ergometer) 20 minutes at 90% of ventilatory threshold (VT). Tabata (n = 21) completed eight intervals of 20s at 170% VO2max/10s rest. Meyer (n = 15) completed 13 sets of 30s (20 min) @ 100% PVO2 max/ 60s recovery, average PO = 90% VT. Each subject did 24 training sessions during 8 weeks. Results: There were significant (p < 0.05) increases in VO2max (+19, +18 and +18%) and PPO (+17, +24 and +14%) for each training group, as well as significant increases in peak (+8, + 9 and +5%) & mean (+4, +7 and +6%) power during Wingate testing, but no significant differences between groups. Measures of the enjoyment of the training program indicated that the Tabata protocol was significantly less enjoyable (p < 0.05) than the steady state and Meyer protocols, and that the enjoyment of all protocols declined (p < 0.05) across the duration of the study. The results suggest that although HIIT protocols are time efficient, they are not superior to conventional exercise training in sedentary young adults. Key points Steady state training equivalent to HIIT in untrained students Mild interval training presents very similar physiologic challenge compared to steady state training HIIT (particularly very high intensity variants were less enjoyable than steady state or mild interval training Enjoyment of training decreases across the course of an 8 week experimental training program PMID:26664271
Foster, Carl; Farland, Courtney V; Guidotti, Flavia; Harbin, Michelle; Roberts, Brianna; Schuette, Jeff; Tuuri, Andrew; Doberstein, Scott T; Porcari, John P
2015-12-01
High intensity interval training (HIIT) has become an increasingly popular form of exercise due to its potentially large effects on exercise capacity and small time requirement. This study compared the effects of two HIIT protocols vs steady-state training on aerobic and anaerobic capacity following 8-weeks of training. Fifty-five untrained college-aged subjects were randomly assigned to three training groups (3x weekly). Steady-state (n = 19) exercised (cycle ergometer) 20 minutes at 90% of ventilatory threshold (VT). Tabata (n = 21) completed eight intervals of 20s at 170% VO2max/10s rest. Meyer (n = 15) completed 13 sets of 30s (20 min) @ 100% PVO2 max/ 60s recovery, average PO = 90% VT. Each subject did 24 training sessions during 8 weeks. There were significant (p < 0.05) increases in VO2max (+19, +18 and +18%) and PPO (+17, +24 and +14%) for each training group, as well as significant increases in peak (+8, + 9 and +5%) & mean (+4, +7 and +6%) power during Wingate testing, but no significant differences between groups. Measures of the enjoyment of the training program indicated that the Tabata protocol was significantly less enjoyable (p < 0.05) than the steady state and Meyer protocols, and that the enjoyment of all protocols declined (p < 0.05) across the duration of the study. The results suggest that although HIIT protocols are time efficient, they are not superior to conventional exercise training in sedentary young adults. Key pointsSteady state training equivalent to HIIT in untrained studentsMild interval training presents very similar physiologic challenge compared to steady state trainingHIIT (particularly very high intensity variants were less enjoyable than steady state or mild interval trainingEnjoyment of training decreases across the course of an 8 week experimental training program.
Steady state scenario development with elevated minimum safety factor on DIII-D
Holcomb, Christopher T.; Ferron, John R.; Luce, Timothy C.; ...
2014-08-15
On DIII-D, a high β scenario with minimum safety factor (q min) near 1.4 has been optimized with new tools and shown to be a favourable candidate for long pulse or steady state operation in future devices. Furthermore, the new capability to redirect up to 5 MW of neutral beam injection (NBI) from on- to off-axis improves the ability to sustain elevated q min with a less peaked pressure profile. The observed changes increase the ideal magnetohydrodynamics (MHD) n = 1 mode β N limit thus providing a path forward for increasing the noninductive current drive fraction by operating atmore » high β N. Quasi-stationary discharges free of tearing modes have been sustained at βN = 3.5 and β T = 3.6% for two current profile diffusion timescales (about 3 s) limited by neutral beam duration. The discharge performance has normalized fusion performance expected to give fusion gain Q ≈ 5 in a device the size of ITER. Analysis of the poloidal flux evolution and current drive balance show that the loop voltage profile is almost relaxed even with 25% of the current driven inductively, and q min remains elevated near 1.4. Our observations increase confidence that the current profile will not evolve to one unstable to a tearing mode. In preliminary tests a divertor heat flux reduction technique based on producing a radiating mantle with neon injection appears compatible with this operating scenario. 0D model extrapolations suggest it may be possible to push this scenario up to 100% noninductive current drive by raising β N. Similar discharges with q min = 1.5–2 were susceptible to tearing modes and off-axis fishbones, and with q min > 2 lower normalized global energy confinement time is observed.« less
Gnimpieba, Etienne Z; Eveillard, Damien; Guéant, Jean-Louis; Chango, Abalo
2011-08-01
Dynamical modeling is an accurate tool for describing the dynamic regulation of one-carbon metabolism (1CM) with emphasis on the alteration of DNA methylation and/or dUMP methylation into dTMP. Using logic programming we present a comprehensive and adaptative mathematical model to study the impact of folate deficiency, including folate transport and enzymes activities. 5-Methyltetrahydrofolate (5mTHF) uptake and DNA and dUMP methylation were studied by simulating nutritional 5mTHF deficiency and methylenetetrahydrofolate reductase (MTHFR) gene defects. Both conditions had distinct effects on 1CM metabolite synthesis. Simulating severe 5mTHF deficiency (25% of normal levels) modulated 11 metabolites. However, simulating a severe decrease in MTHFR activity (25% of normal activity) modulated another set of metabolites. Two oscillations of varying amplitude were observed at the steady state for DNA methylation with severe 5mTHF deficiency, and the dUMP/dTMP ratio reached a steady state after 2 h, compared to 2.5 h for 100% 5mTHF. MTHFR activity with 25% of V(max) resulted in an increased methylated DNA pool after half an hour. We observed a deviation earlier in the profile compared to 50% and 100% V(max). For dUMP methylation, the highest level was observed with 25%, suggesting a low rate of dUMP methylation into dTMP with 25% of MTHFR activity. In conclusion, using logic programming we were able to construct the 1CM for analyzing the dynamic system behavior. This model may be used to refine biological interpretations of data or as a tool that can provide new hypotheses for pathogenesis.
Feng, Xiangyu; Ge, Yunshan; Ma, Chaochen; Tan, Jianwei; Yu, Linxiao; Li, Jiaqiang; Wang, Xin
2014-02-15
A particulate oxidation catalyst (POC) was employed to perform experiments on the engine test bench to evaluate the effects on the nitrogen dioxide (NO2) and particulate matter (PM) emissions from diesel engine. The engine exhaust was sampled from both upstream and downstream of the POC. The results showed that the POC increased the ratios of NO2/NOx significantly in the middle and high loads, the ratio of NO2/nitrogen oxides (NOx) increased 4.5 times on average under all experiment modes with the POC. An engine exhaust particle sizer (EEPS) was used to study the particle number-weighted size distributions and the abnormal particle emissions with the POC. The results indicated that the average reduction rate of particle number (PN) was 61% in the operating range of the diesel engine. At the engine speed of 1,400 r/min, the reduction rates of PN tended to decrease with the larger particle size. In the long time run under the steady mode (520 Nm, 1,200 r/min), abnormal particle emissions after the POC happened seven times in the first hour, and the average PN concentration of these abnormal emission peaks was much higher than that in normal state. The particle emissions of peaks 1-5 equaled the particles emitted downstream of the POC in normal state for 1.9h in number concentration, and for 3.6h in mass concentration. The PN concentrations tended to increase over time in 5h under the steady engine mode and the increase of the PN in the size range of 6.04-14.3 nm was more evident. Copyright © 2013 Elsevier B.V. All rights reserved.
Grose, John H; Mamo, Sara K
2012-01-01
The purpose of this study was to determine the reliability of the electrophysiological binaural beat steady state response as a gauge of temporal fine structure coding, particularly as it relates to the aging auditory system. The hypothesis was that the response would be more robust in a lower, than in a higher, frequency region and in younger, than in older, adults. Two experiments were undertaken. The first measured the 40 Hz binaural beat steady state response elicited by tone pairs in two frequency regions: lower (390 and 430 Hz tone pair) and higher (810 and 850 Hz tone pair). Frequency following responses (FFRs) evoked by the tones were also recorded. Ten young adults with normal hearing participated. The second experiment measured the binaural beat and FFRs in older adults but only in the lower frequency region. Fourteen older adults with relatively normal hearing participated. Response metrics in both experiments included response component signal-to-noise ratio (F statistic) and magnitude-squared coherence. Experiment 1 showed that FFRs were elicited in both frequency regions but were more robust in the lower frequency region. Binaural beat responses elicited by the lower frequency pair of tones showed greater amplitude fluctuation within a participant than the respective FFRs. Experiment 2 showed that older adults exhibited similar FFRs to younger adults, but proportionally fewer older participants showed binaural beat responses. Age differences in onset responses were also observed. The lower prevalence of the binaural beat response in older adults, despite the presence of FFRs, provides tentative support for the sensitivity of this measure to age-related deficits in temporal processing. However, the lability of the binaural beat response advocates caution in its use as an objective measure of fine structure coding.
Rial, Nathaniel S; Lazennec, Gwendal; Prasad, Anil R; Krouse, Robert S; Lance, Peter; Gerner, Eugene W
2009-01-01
Elevated deoxycholic acid (DCA), mutations in the adenomatous polyposis coli (APC) gene and chronic inflammation are associated with increased risk of colorectal cancer (CRC). APC status was manipulated to determine whether DCA mediates inflammatory molecules in normal or initiated colonic mucosa. DCA increased steady state mRNA and protein levels of CXCL8 in cells which do not express wild type APC. Steady state CXCL8 mRNA and protein were suppressed when cells with conditional expression of wild type APC were exposed to DCA. Immunostaining did not detect CXCL8 in normal human colonic mucosa. CXCL8 was expressed in adenomatous polyps and adenocarcinomas. CXCL8 expression correlated with nuclear β-catenin localization in epithelial cells of adenomas, but was associated with endothelial cells and neutrophils in the adenocarcinomas. DCA-mediated CXCL8 promoter-reporter activity was elevated in a mutant APC background. Wild type APC suppressed this effect. Mutation of activator protein-1 (AP-1) or nuclear factor kappa B (NF-κB) sites suppressed the activation of the CXCL8 promoter-reporter by DCA. Chromatin immunoprecipitation (ChIP) revealed that AP-1 and NF-κB binding to the 5′-promoter of CXCL8 was induced by DCA. The β-catenin transcription factor was bound to the 5′-promoter of CXCL8 in the absence or presence of DCA. Phenotypic assays determined that DCA-mediated invasion was blocked by antibody directed against CXCL8 or wild type-APC. CXCL8 exposure lead to matrix metalloproteinase-2 (MMP-2) production and increased invasion on laminin coated filters. These data suggest that DCA-mediated CXCL8 occurs in initiated colonic epithelium and neutralizing CXCL8 could reduce the invasive potential of tumors. PMID:19173296
Oguntoye, Oluwatosin O.; Ndububa, Dennis A.; Yusuf, Musah; Bolarinwa, Rahman A.; Ayoola, Oluwagbemiga O.
2017-01-01
Summary Background Sickle cell anaemia (SCA) is associated with structural manifestations in the hepatobiliary axis. This study aimed to investigate the hepatobiliary ultrasonographic abnormalities in adult patients with sickle cell anaemia in steady state attending the Haematology clinic of a federal tertiary health institution in Ile-Ife, Nigeria. Material/Methods Basic demographic data as well as right upper abdominal quadrant ultrasonography of 50 consecutive sickle cell anaemia patients were compared with those of 50 age- and sex-matched subjects with HbAA as controls. Results Each of the study groups (patients and controls) comprised of 21 (42%) males and 29 (58%) females. The age range of the patients was 18–45 years with a mean (±SD) of 27.6±7.607 years, while that of the controls was 21–43 years with a mean (±SD) of 28.0±5.079 years (p=0.746). Amongst the patients, 32 (64%) had hepatomegaly, 15 (30%) cholelithiasis and 3 (6%) biliary sludge. Fourteen (28%) of the patients had normal hepatobiliary ultrasound findings. In the control group, one (2%) person had cholelithiasis, one (2%) biliary sludge, one (2%) fatty liver and none hepatomegaly. Forty-seven (94%) of the controls had normal hepatobiliary ultrasound findings. There was a statistically significant difference in the prevalence of hepatomegaly and cholelithiasis between the patients and controls (p value <0.001 for both comparisons). Conclusions In this study, hepatomegaly, cholelithiasis and biliary sludge were the most common hepatobiliary ultrasound findings in patients with sickle cell anaemia. Ultrasonography is a useful tool for assessing hepatobiliary abnormalities in patients with sickle cell anaemia. PMID:28105246
New insights into the passive force enhancement in skeletal muscles.
Lee, Eun-Jeong; Joumaa, Venus; Herzog, Walter
2007-01-01
The steady-state isometric force following active stretching of a muscle is always greater than the steady-state isometric force obtained in a purely isometric contraction at the same length. This phenomenon has been termed "residual force enhancement" and it is associated with an active and a passive component. The origin of these components remains a matter of scientific debate. The purpose of this work was to test the hypothesis that the passive component of the residual force enhancement is caused by a passive structural element. In order to achieve this purpose, single fibers (n=6) from the lumbrical muscles of frog (Rana pipiens) were isolated and attached to a force transducer and a motor that could produce computer-controlled length changes. The passive force enhancement was assessed for three experimental conditions: in a normal Ringer's solution, and after the addition of 5 and 15mM 2,3-butanedione monoxime (BDM) which inhibits force production in a dose-dependent manner. If our hypothesis was correct, one would expect the passive force enhancement to be unaffected following BDM application. However, we found that increasing concentrations of BDM decreased the isometric forces, increased the normalized residual force enhancement, and most importantly for this study, increased the passive force enhancement. Furthermore, BDM decreased the rate of force relaxation after deactivation following active stretching of fibers, passive stretching in the Ringer's and BDM conditions produced the same passive force-sarcomere length relationship, and passive force enhancement required activation and force production. These results led to the conclusion that the passive force enhancement cannot be caused by a structural component exclusively as had been assumed up to date, but must be associated, directly or indirectly, with cross-bridge attachments upon activation and the associated active force.
Morello, D; Fitzgerald, M J; Babinet, C; Fausto, N
1990-01-01
We investigated the mechanisms of regulation of c-myc, c-fos, and c-jun at the early stages of liver regeneration in mice. We show that the transient increase in steady-state levels of c-myc mRNA at the start of liver regeneration is most probably regulated by posttranscriptional mechanisms. Although there was a marked increase in c-myc transcriptional initiation shortly after partial hepatectomy, a block in elongation prevented the completion of most transcripts. To gain further information on the mechanism of regulation of c-myc expression during liver regeneration, we used transgenic mice harboring the human c-myc gene driven by the H-2K promoter. In these animals, the murine c-myc responded to the growth stimulus generated by partial hepatectomy, whereas the expression of the transgene was constitutive and did not change in the regenerating liver. However, the mRNA from both genes increased markedly after cycloheximide injection, suggesting that the regulation of c-myc mRNA abundance in the regenerating liver differs from that occurring after protein synthesis inhibition. Furthermore, we show that in normal mice c-fos and c-jun mRNA levels and transcriptional rates increase within 30 min after partial hepatectomy. c-fos transcriptional elongation was restricted in nongrowing liver, but the block was partially relieved in the regenerating liver. Nevertheless, for both c-fos and c-jun, changes in steady-state mRNA detected after partial hepatectomy were much greater than the transcriptional increase. In the regenerating liver of H-2K/c-myc mice, c-fos and c-jun expression was diminished, whereas mouse c-myc expression was enhanced in comparison with that in nontransgenic animals. Images PMID:2111449
An Operational Definition of the Steady State in Enzyme Kinetics.
ERIC Educational Resources Information Center
Barnsley, E. A.
1990-01-01
The Briggs-Haldane assumption is used as the basis for the development of a kinetic model for enzyme catalysis. An alternative definition of the steady state and examples of realistic mechanisms are provided. (KR)
Vibration testing and analysis using holography
NASA Technical Reports Server (NTRS)
1971-01-01
Time average holography is useful in recording steady state vibrational mode patterns. Phase relationships under steady state conditions are measured with real time holography and special phase shifting techniques. Data from Michelson interferometer verify vibration amplitudes from holographic data.
Limiting Forces on Transit Trucks in Steady-State Curving
DOT National Transportation Integrated Search
1981-05-01
This study develops conservative bounds on wheel/rail forces and flange forces for several types of rigid and flexible trucks in steady-state curving conditions. The approximate analysis presented provides closed-form relations for estimating forces,...
NASA Astrophysics Data System (ADS)
Bieniek, M. S.; Santos, D. F. N.; Almeida, P. G. C.; Benilov, M. S.
2018-04-01
General scenarios of transitions between different spot patterns on electrodes of DC gas discharges and their relation to bifurcations of steady-state solutions are analyzed. In the case of cathodes of arc discharges, it is shown that any transition between different modes of current transfer is related to a bifurcation of steady-state solutions. In particular, transitions between diffuse and spot modes on axially symmetric cathodes, frequently observed in the experiment, represent an indication of the presence of pitchfork or fold bifurcations of steady-state solutions. Experimental observations of transitions on cathodes of DC glow microdischarges are analyzed and those potentially related to bifurcations of steady-state solutions are identified. The relevant bifurcations are investigated numerically and the computed patterns are found to conform to those observed in the course of the corresponding transitions in the experiment.
NASA Technical Reports Server (NTRS)
Reynolds, G. H.; Lenel, F. V.; Ansell, G. S.
1971-01-01
The effect of solute additions on the steady-state creep behavior of coarse-grained dispersion-strengthened aluminum alloys was studied. Recrystallized dispersion-strengthened solid solutions were found to have stress and temperature sensitivities quite unlike those observed in single-phase solid solutions having the same composition and grain size. The addition of magnesium or copper to the matrix of a recrystallized dispersion-strengthened aluminum causes a decrease in the steady-state creep rate which is much smaller than that caused by similar amounts of solute in single-phase solid solutions. All alloys exhibited essentially a 4.0 power stress exponent in agreement with the model of Ansell and Weertman. The activation energy for steady-state creep in dispersion-strengthened Al-Mg alloys, as well as the stress dependence, was in agreement with the physical model of dislocation climb over the dispersed particles.
Steady-state performance analysis of fiber-optic ring resonator
NASA Astrophysics Data System (ADS)
Seraji, Faramarz E.
2009-01-01
This paper presents a full steady-state analysis of a fiber-optic ring resonator (FORR). Although in the literature the steady-state response of the FORR has been described, a detailed description of the same is not available. As an understanding of the different steady-state characteristics of the FORR is required to appreciate its characteristic response, in this paper, the expressions for the output and loop intensities, phase angles of the fields, conditions for resonance, output and loop intensities at resonance and off-resonance, finesse, and group delay of the FORR are given for different ideal and practical operating conditions of the resonator. Graphical plots of all the above characteristics are given, by highlighting the important results. The information presented in this paper will be helpful in explaining and understanding the pulse response of the resonator used in different applications of FORR.
Poissonian steady states: from stationary densities to stationary intensities.
Eliazar, Iddo
2012-10-01
Markov dynamics are the most elemental and omnipresent form of stochastic dynamics in the sciences, with applications ranging from physics to chemistry, from biology to evolution, and from economics to finance. Markov dynamics can be either stationary or nonstationary. Stationary Markov dynamics represent statistical steady states and are quantified by stationary densities. In this paper, we generalize the notion of steady state to the case of general Markov dynamics. Considering an ensemble of independent motions governed by common Markov dynamics, we establish that the entire ensemble attains Poissonian steady states which are quantified by stationary Poissonian intensities and which hold valid also in the case of nonstationary Markov dynamics. The methodology is applied to a host of Markov dynamics, including Brownian motion, birth-death processes, random walks, geometric random walks, renewal processes, growth-collapse dynamics, decay-surge dynamics, Ito diffusions, and Langevin dynamics.
Reduction of Simulation Times for High-Q Structures using the Resonance Equation
Hall, Thomas Wesley; Bandaru, Prabhakar R.; Rees, Daniel Earl
2015-11-17
Simulating steady state performance of high quality factor (Q) resonant RF structures is computationally difficult for structures with sizes on the order of more than a few wavelengths because of the long times (on the order of ~ 0.1 ms) required to achieve steady state in comparison with maximum time step that can be used in the simulation (typically, on the order of ~ 1 ps). This paper presents analytical and computational approaches that can be used to accelerate the simulation of the steady state performance of such structures. The basis of the proposed approach is the utilization of amore » larger amplitude signal at the beginning to achieve steady state earlier relative to the nominal input signal. Finally, the methodology for finding the necessary input signal is then discussed in detail, and the validity of the approach is evaluated.« less
Steady-state solutions of a diffusive energy-balance climate model and their stability
NASA Technical Reports Server (NTRS)
Ghil, M.
1975-01-01
A diffusive energy-balance climate model, governed by a nonlinear parabolic partial differential equation, was studied. Three positive steady-state solutions of this equation are found; they correspond to three possible climates of our planet: an interglacial (nearly identical to the present climate), a glacial, and a completely ice-covered earth. Models similar to the main one are considered, and the number of their steady states was determined. All the models have albedo continuously varying with latitude and temperature, and entirely diffusive horizontal heat transfer. The stability under small perturbations of the main model's climates was investigated. A stability criterion is derived, and its application shows that the present climate and the deep freeze are stable, whereas the model's glacial is unstable. The dependence was examined of the number of steady states and of their stability on the average solar radiation.
SUPRATHERMAL SOLAR WIND ELECTRONS AND LANGMUIR TURBULENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Sunjung; Yoon, Peter H.; Choe, G. S.
2016-09-01
The steady-state model recently put forth for the solar wind electron velocity distribution function during quiet time conditions, was originally composed of three population electrons (core, halo, and superhalo) with the core remaining nonresonant with any plasma waves while the halo and superhalo separately maintained steady-state resonance with whistler- and Langmuir-frequency range fluctuations, respectively. However, a recent paper demonstrates that whistler-range fluctuations in fact have no significant contribution. The present paper represents a consummation of the model in that a self-consistent model of the suprathermal electron population, which encompasses both the halo and the superhalo, is constructed solely on themore » basis of the Langmuir fluctuation spectrum. Numerical solutions to steady-state particle and wave kinetic equations are obtained on the basis of an initial trial electron distribution and Langmuir wave spectrum. Such a finding offers a self-consistent explanation for the observed steady-state electron distribution in the solar wind.« less
Poissonian steady states: From stationary densities to stationary intensities
NASA Astrophysics Data System (ADS)
Eliazar, Iddo
2012-10-01
Markov dynamics are the most elemental and omnipresent form of stochastic dynamics in the sciences, with applications ranging from physics to chemistry, from biology to evolution, and from economics to finance. Markov dynamics can be either stationary or nonstationary. Stationary Markov dynamics represent statistical steady states and are quantified by stationary densities. In this paper, we generalize the notion of steady state to the case of general Markov dynamics. Considering an ensemble of independent motions governed by common Markov dynamics, we establish that the entire ensemble attains Poissonian steady states which are quantified by stationary Poissonian intensities and which hold valid also in the case of nonstationary Markov dynamics. The methodology is applied to a host of Markov dynamics, including Brownian motion, birth-death processes, random walks, geometric random walks, renewal processes, growth-collapse dynamics, decay-surge dynamics, Ito diffusions, and Langevin dynamics.
The Effect of Impeller Type on Floc Size and Structure during Shear-Induced Flocculation
Spicer; Keller; Pratsinis
1996-12-01
The effect of impeller type and shear rate on the evolution of floc size and structure during shear-induced flocculation of polystyrene particles with aluminum sulfate is investigated by image analysis. One radial flow (six-blade Rushton turbine) and two axial flow (three-blade fluid foil, four-blade 45° pitch) impeller configurations are examined. The steady state average floc size is shown to depend on the frequency of recirculation to the impeller zone and its characteristic velocity gradient. The concepts of fractal geometry are used to characterize the floc structure. For all impellers, the two-dimensional floc fractal dimension, Dpf, increases during floc growth, indicating formation of more open structures. Later on, Dpf levels off at a steady state value as breakage becomes significant and the floc size distribution approaches steady state. The shear rate does not affect the steady state Dpf of the flocs within experimental uncertainty.
Topological properties of a self-assembled electrical network via ab initio calculation
NASA Astrophysics Data System (ADS)
Stephenson, C.; Lyon, D.; Hübler, A.
2017-02-01
Interacting electrical conductors self-assemble to form tree like networks in the presence of applied voltages or currents. Experiments have shown that the degree distribution of the steady state networks are identical over a wide range of network sizes. In this work we develop a new model of the self-assembly process starting from the underlying physical interaction between conductors. In agreement with experimental results we find that for steady state networks, our model predicts that the fraction of endpoints is a constant of 0.252, and the fraction of branch points is 0.237. We find that our model predicts that these scaling properties also hold for the network during the approach to the steady state as well. In addition, we also reproduce the experimental distribution of nodes with a given Strahler number for all steady state networks studied.
The Steady-State Transport of Oxygen through Hemoglobin Solutions
Keller, K. H.; Friedlander, S. K.
1966-01-01
The steady-state transport of oxygen through hemoglobin solutions was studied to identify the mechanism of the diffusion augmentation observed at low oxygen tensions. A novel technique employing a platinum-silver oxygen electrode was developed to measure the effective diffusion coefficient of oxygen in steady-state transport. The measurements were made over a wider range of hemoglobin and oxygen concentrations than previously reported. Values of the Brownian motion diffusion coefficient of oxygen in hemoglobin solution were obtained as well as measurements of facilitated transport at low oxygen tensions. Transport rates up to ten times greater than ordinary diffusion rates were found. Predictions of oxygen flux were made assuming that the oxyhemoglobin transport coefficient was equal to the Brownian motion diffusivity which was measured in a separate set of experiments. The close correlation between prediction and experiment indicates that the diffusion of oxyhemoglobin is the mechanism by which steady-state oxygen transport is facilitated. PMID:5943608
Pre-Steady-State Kinetic Analysis of Single-Nucleotide Incorporation by DNA Polymerases
Su, Yan; Guengerich, F. Peter
2016-01-01
Pre-steady-state kinetic analysis is a powerful and widely used method to obtain multiple kinetic parameters. This protocol provides a step-by-step procedure for pre-steady-state kinetic analysis of single-nucleotide incorporation by a DNA polymerase. It describes the experimental details of DNA substrate annealing, reaction mixture preparation, handling of the RQF-3 rapid quench-flow instrument, denaturing polyacrylamide DNA gel preparation, electrophoresis, quantitation, and data analysis. The core and unique part of this protocol is the rationale for preparation of the reaction mixture (the ratio of the polymerase to the DNA substrate) and methods for conducting pre-steady-state assays on an RQF-3 rapid quench-flow instrument, as well as data interpretation after analysis. In addition, the methods for the DNA substrate annealing and DNA polyacrylamide gel preparation, electrophoresis, quantitation and analysis are suitable for use in other studies. PMID:27248785
Efficient steady-state solver for hierarchical quantum master equations
NASA Astrophysics Data System (ADS)
Zhang, Hou-Dao; Qiao, Qin; Xu, Rui-Xue; Zheng, Xiao; Yan, YiJing
2017-07-01
Steady states play pivotal roles in many equilibrium and non-equilibrium open system studies. Their accurate evaluations call for exact theories with rigorous treatment of system-bath interactions. Therein, the hierarchical equations-of-motion (HEOM) formalism is a nonperturbative and non-Markovian quantum dissipation theory, which can faithfully describe the dissipative dynamics and nonlinear response of open systems. Nevertheless, solving the steady states of open quantum systems via HEOM is often a challenging task, due to the vast number of dynamical quantities involved. In this work, we propose a self-consistent iteration approach that quickly solves the HEOM steady states. We demonstrate its high efficiency with accurate and fast evaluations of low-temperature thermal equilibrium of a model Fenna-Matthews-Olson pigment-protein complex. Numerically exact evaluation of thermal equilibrium Rényi entropies and stationary emission line shapes is presented with detailed discussion.
Marginal states in a cubic autocatalytic reaction
NASA Astrophysics Data System (ADS)
Das, Debojyoti; Ghosh, Pushpita; Ray, Deb Shankar
2011-09-01
Marginal steady state belongs to a special class of states in nonlinear dynamics. To realize this state we consider a cubic autocatalytic reaction A + 2B → 3B in a continuous-stirred-tank-reactor, where the flow rate of the reactant A can be controlled to manipulate the dynamical behavior of the open system. We demonstrate that when the flow rate is weakly noisy the autocatalytic reaction admits of a steady state which is marginal in nature and is surrounded by infinite number of periodic trajectories. When the uncatalyzed reaction A → B is included in the reaction scheme, there exists a marginal steady state which is a critical state corresponding to the point of transition between the flow branch and the equilibrium branch, similar to gas-liquid critical point of transition. This state loses its stability in the weak noise limit.
Influence of the hypercycle on the error threshold: a stochastic approach.
García-Tejedor, A; Sanz-Nuño, J C; Olarrea, J; Javier de la Rubia, F; Montero, F
1988-10-21
The role of fluctuations on the error threshold of the hypercycle has been studied by a stochastic approach on a very simplified model. For this model, the master equation was derived and its unique steady state calculated. This state implies the extinction of the system. But the actual time necessary to reach the steady state may be astronomically long whereas for times of experimental interest the system could be near some quasi-stationary states. In order to explore this possibility a Gillespie simulation of the stochastic process has been carried out. These quasi-stationary states correspond to the deterministic steady states of the system. The error threshold shifts towards higher values of the quality factor Q. Moreover, information about the fluctuations around the quasi-stationary states is obtained. The results are discussed in relation to the deterministic states.
NASA Technical Reports Server (NTRS)
Schallhorn, Paul; Majumdar, Alok; Tiller, Bruce
2001-01-01
A general purpose, one dimensional fluid flow code is currently being interfaced with the thermal analysis program SINDA/G. The flow code, GFSSP, is capable of analyzing steady state and transient flow in a complex network. The flow code is capable of modeling several physical phenomena including compressibility effects, phase changes, body forces (such as gravity and centrifugal) and mixture thermodynamics for multiple species. The addition of GFSSP to SINDA/G provides a significant improvement in convective heat transfer modeling for SINDA/G. The interface development is conducted in multiple phases. This paper describes the first phase of the interface which allows for steady and quasisteady (unsteady solid, steady fluid) conjugate heat transfer modeling.
Steady-state entanglement and thermalization of coupled qubits in two common heat baths
NASA Astrophysics Data System (ADS)
Hu, Li-Zhen; Man, Zhong-Xiao; Xia, Yun-Jie
2018-03-01
In this work, we study the steady-state entanglement and thermalization of two coupled qubits embedded in two common baths with different temperatures. The common bath is relevant when the two qubits are difficult to be isolated to only contact with their local baths. With the quantum master equation constructed in the eigenstate representation of the coupled qubits, we have demonstrated the variations of steady-state entanglement with respect to various parameters of the qubits' system in both equilibrium and nonequilibrium cases of the baths. The coupling strength and energy detuning of the qubits as well as the temperature gradient of the baths are found to be beneficial to the enhancement of the entanglement. We note a dark state of the qubits that is free from time-evolution and its initial population can greatly influence the steady-state entanglement. By virtues of effective temperatures, we also study the thermalization of the coupled qubits and their variations with energy detuning.
Steady state numerical solutions for determining the location of MEMS on projectile
NASA Astrophysics Data System (ADS)
Abiprayu, K.; Abdigusna, M. F. F.; Gunawan, P. H.
2018-03-01
This paper is devoted to compare the numerical solutions for the steady and unsteady state heat distribution model on projectile. Here, the best location for installing of the MEMS on the projectile based on the surface temperature is investigated. Numerical iteration methods, Jacobi and Gauss-Seidel have been elaborated to solve the steady state heat distribution model on projectile. The results using Jacobi and Gauss-Seidel are shown identical but the discrepancy iteration cost for each methods is gained. Using Jacobi’s method, the iteration cost is 350 iterations. Meanwhile, using Gauss-Seidel 188 iterations are obtained, faster than the Jacobi’s method. The comparison of the simulation by steady state model and the unsteady state model by a reference is shown satisfying. Moreover, the best candidate for installing MEMS on projectile is observed at pointT(10, 0) which has the lowest temperature for the other points. The temperature using Jacobi and Gauss-Seidel for scenario 1 and 2 atT(10, 0) are 307 and 309 Kelvin respectively.
Koppert, Marc; Kalitzin, Stiliyan; Velis, Demetrios; Lopes Da Silva, Fernando; Viergever, Max A
2016-12-01
Epilepsy is a condition in which periods of ongoing normal EEG activity alternate with periods of oscillatory behavior characteristic of epileptic seizures. The dynamics of the transitions between the two states are still unclear. Computational models provide a powerful tool to explore the underlying mechanisms of such transitions, with the purpose of eventually finding therapeutic interventions for this debilitating condition. In this study, the possibility to postpone seizures elicited by a decrease of inhibition is investigated by using external stimulation in a realistic bistable neuronal model consisting of two interconnected neuronal populations representing pyramidal cells and interneurons. In the simulations, seizures are induced by slowly decreasing the conductivity of GABA[Formula: see text] synaptic channels over time. Since the model is bistable, the system will change state from the initial steady state (SS) to the limit cycle (LS) state because of internal noise, when the inhibition falls below a certain threshold. Several state-independent stimulations paradigms are simulated. Their effectiveness is analyzed for various stimulation frequencies and intensities in combination with periodic and random stimulation sequences. The distributions of the time to first seizure in the presence of stimulation are compared with the situation without stimulation. In addition, stimulation protocols targeted to specific subsystems are applied with the objective of counteracting the baseline shift due to decreased inhibition in the system. Furthermore, an analytical model is used to investigate the effects of random noise. The relation between the strength of random noise stimulation, the control parameter of the system and the transitions between steady state and limit cycle are investigated. The study shows that it is possible to postpone epileptic activity by targeted stimulation in a realistic neuronal model featuring bistability and that it is possible to stop seizures by random noise in an analytical model.
Disposal of Energy by UV-B Sunscreens
NASA Astrophysics Data System (ADS)
Nordlund, Thomas; Krishnan, Rajagopal
2008-03-01
Ideal sunscreens absorb dangerous UV light and dispose of the energy safely. ``Safe disposal'' usually means conversion to heat. However, efficient absorption entails a high radiative rate, which implies high energy-transfer and other rates, unless some process intervenes to ``defuse'' the excited state. We studied the excited-state kinetics of three UV-B (290-320 nm) sunscreens by absorption, steady-state and time-resolved fluorescence. Excited-state rate analysis suggests that some sunscreens have low radiative-rate ``dark'' states, in addition to normal excited states.* We deduce dark states when sunscreens of high extinction coefficient do not show lifetimes and total emission consistent with such high radiative rates. A high radiative rate, accompanied by efficient fluorescence emission and/or transfer, may be unfavorable for a sunscreen. In spite of its dark excited state, padimate O shows significant re-emission of light in the UV-A (320-400 nm) and energy transfer to a natural component of excised skin, probably collagen. * Krishnan, R. and T.M. Nordlund (2007) J. Fluoresc. DOI 10.1007/s10895-007-0264-3.
Aspects of Cool-Flame Supported Droplet Combustion in Microgravity
NASA Technical Reports Server (NTRS)
Nayagam, Vedha; Dietrich, Daniel L.; Williams, Forman A.
2015-01-01
Droplet combustion experiments performed on board the International Space Station have shown that normal-alkane fuels with negative temperature coefficient (NTC) chemistry can support quasi-steady, low-temperature combustion without any visible flame. Here we review the results for n-decane, n-heptane, and n-octane droplets burning in carbon dioxidehelium diluted environments at different pressures and initial droplet sizes. Experimental results for cool-flame burning rates, flame standoff ratios, and extinction diameters are compared against simplified theoretical models of the phenomenon. A simplified quasi-steady model based on the partial-burning regime of Lin predicts the burning rate, and flame standoff ratio reasonably well for all three normal alkanes. The second-stage cool-flame burning and extinction following the first-stage hot-flame combustion, however, shows a small dependence on the initial droplet size, thus deviating from the quasi-steady results. An asymptotic model that estimates the oxygen depletion by the hot flame and its influence on cool-flame burning rates is shown to correct the quasi-steady results and provide a better comparison with the measured burning-rate results.This work was supported by the NASA Space Life and Physical Sciences Research and Applications Program and the International Space Station Program.
Using steady-state equations for transient flow calculation in natural gas pipelines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maddox, R.N.; Zhou, P.
1984-04-02
Maddox and Zhou have extended their technique for calculating the unsteady-state behavior of straight gas pipelines to complex pipeline systems and networks. After developing the steady-state flow rate and pressure profile for each pipe in the network, analysts can perform the transient-state analysis in the real-time step-wise manner described for this technique.
Simultaneous measurement of glucose transport and utilization in the human brain
Shestov, Alexander A.; Emir, Uzay E.; Kumar, Anjali; Henry, Pierre-Gilles; Seaquist, Elizabeth R.
2011-01-01
Glucose is the primary fuel for brain function, and determining the kinetics of cerebral glucose transport and utilization is critical for quantifying cerebral energy metabolism. The kinetic parameters of cerebral glucose transport, KMt and Vmaxt, in humans have so far been obtained by measuring steady-state brain glucose levels by proton (1H) NMR as a function of plasma glucose levels and fitting steady-state models to these data. Extraction of the kinetic parameters for cerebral glucose transport necessitated assuming a constant cerebral metabolic rate of glucose (CMRglc) obtained from other tracer studies, such as 13C NMR. Here we present new methodology to simultaneously obtain kinetic parameters for glucose transport and utilization in the human brain by fitting both dynamic and steady-state 1H NMR data with a reversible, non-steady-state Michaelis-Menten model. Dynamic data were obtained by measuring brain and plasma glucose time courses during glucose infusions to raise and maintain plasma concentration at ∼17 mmol/l for ∼2 h in five healthy volunteers. Steady-state brain vs. plasma glucose concentrations were taken from literature and the steady-state portions of data from the five volunteers. In addition to providing simultaneous measurements of glucose transport and utilization and obviating assumptions for constant CMRglc, this methodology does not necessitate infusions of expensive or radioactive tracers. Using this new methodology, we found that the maximum transport capacity for glucose through the blood-brain barrier was nearly twofold higher than maximum cerebral glucose utilization. The glucose transport and utilization parameters were consistent with previously published values for human brain. PMID:21791622
NASA Astrophysics Data System (ADS)
Bouchard, Dominique; Kirkaldy, John S.
1997-08-01
Various theoretical dendrite and cell spacing formulas have been tested against experimental data obtained in unsteady- and steady-state heat flow conditions. An iterative assessment strategy satisfactorily overcomes the circumstances that certain constitutive parameters are inadequately established and/or highly variable and that many of the data sets, in terms of gradients, velocities, and/or cooling rates, are unreliable. The accessed unsteady- and steady-state observations on near-terminal binary alloys for primary and secondary spacings were first examined within conventional power law representations, the deduced exponents and confidence limits for each alloy being tabularly recorded. Through this analysis, it became clear that to achieve predictive generality the many constitutive parameters must be included in a rational way, this being achievable only through extant or new theoretical formulations. However, in the case of primary spacings, all formulas, including our own, failed within the unsteady heat flow algorithm while performing adequately within their steady-state context. An earlier untested, heuristically derived steady-state formula after modification, λ _1 = 120 ( {{16X_0^{{1/2}} G_0 (\\varepsilon σ )T_M D}/{(1 - k)mΔ H G R}} )^{{1/2}} ultimately proved its utility in the unsteady regime, and so it is recommended for purposes of predictions for general terminal alloys. For secondary spacings, a Mullins and Sekerka type formula proved from the start to be adequate in both unsteady- and steady-state heat flows, and so it recommends itself in calibrated form, λ _2 = 12π ( {{4σ }/{X_0 (1 - k)^2 Δ H}( {D/R} )^2 } )^{{1/3}}
Plasschaert, Frank; Jones, Kim; Forward, Malcolm
2009-02-01
Measurement of the energy cost of walking in children with cerebral palsy is used for baseline and outcome assessment. However, such testing relies on the establishment of steady state that is deemed present when oxygen consumption is stable. This is often assumed when walking speed is constant but in practice, speed can and does vary naturally. Whilst constant speed is achievable on a treadmill, this is often impractical clinically, thus rendering an energy cost test to an element of subjectivity. This paper attempts to address this issue by presenting a new method for calculating energy cost of walking that automatically applies a mathematically defined threshold for steady state within a (non-treadmill) walking trial and then strips out all of the non-steady state events within that trial. The method is compared with a generic approach that does not remove non-steady state data but rather uses an average value over a complete walking trial as is often used in the clinical environment. Both methods were applied to the calculation of several energy cost of walking parameters of self-selected walking speed in a cohort of unimpaired subjects and children with cerebral palsy. The results revealed that both methods were strongly correlated for each parameter but showed systematic significant differences. It is suggested that these differences are introduced by the rejection of non-steady state data that would otherwise have incorrectly been incorporated into the calculation of the energy cost of walking indices during self-selected walking with its inherent speed variation.
Reconstructing metabolic flux vectors from extreme pathways: defining the alpha-spectrum.
Wiback, Sharon J; Mahadevan, Radhakrishnan; Palsson, Bernhard Ø
2003-10-07
The move towards genome-scale analysis of cellular functions has necessitated the development of analytical (in silico) methods to understand such large and complex biochemical reaction networks. One such method is extreme pathway analysis that uses stoichiometry and thermodynamic irreversibly to define mathematically unique, systemic metabolic pathways. These extreme pathways form the edges of a high-dimensional convex cone in the flux space that contains all the attainable steady state solutions, or flux distributions, for the metabolic network. By definition, any steady state flux distribution can be described as a nonnegative linear combination of the extreme pathways. To date, much effort has been focused on calculating, defining, and understanding these extreme pathways. However, little work has been performed to determine how these extreme pathways contribute to a given steady state flux distribution. This study represents an initial effort aimed at defining how physiological steady state solutions can be reconstructed from a network's extreme pathways. In general, there is not a unique set of nonnegative weightings on the extreme pathways that produce a given steady state flux distribution but rather a range of possible values. This range can be determined using linear optimization to maximize and minimize the weightings of a particular extreme pathway in the reconstruction, resulting in what we have termed the alpha-spectrum. The alpha-spectrum defines which extreme pathways can and cannot be included in the reconstruction of a given steady state flux distribution and to what extent they individually contribute to the reconstruction. It is shown that accounting for transcriptional regulatory constraints can considerably shrink the alpha-spectrum. The alpha-spectrum is computed and interpreted for two cases; first, optimal states of a skeleton representation of core metabolism that include transcriptional regulation, and second for human red blood cell metabolism under various physiological, non-optimal conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Paul Allan
We investigate dynamic wave-triggered slip under laboratory shear conditions. The experiment is composed of a three-block system containing two gouge layers composed of glass beads and held in place by a fixed load in a biaxial configuration. When the system is sheared under steady state conditions at a normal load of 4 MPa, we find that shear failure may be instantaneously triggered by a dynamic wave, corresponding to material weakening and softening if the system is in a critical shear stress state (near failure). Following triggering, the gouge material remains in a perturbed state over multiple slip cycles as evidencedmore » by the recovery of the material strength, shear modulus, and slip recurrence time. This work suggests that faults must be critically stressed to trigger under dynamic conditions and that the recovery process following a dynamically triggered event differs from the recovery following a spontaneous event.« less
Crowding Effects in Vehicular Traffic
Combinido, Jay Samuel L.; Lim, May T.
2012-01-01
While the impact of crowding on the diffusive transport of molecules within a cell is widely studied in biology, it has thus far been neglected in traffic systems where bulk behavior is the main concern. Here, we study the effects of crowding due to car density and driving fluctuations on the transport of vehicles. Using a microscopic model for traffic, we found that crowding can push car movement from a superballistic down to a subdiffusive state. The transition is also associated with a change in the shape of the probability distribution of positions from a negatively-skewed normal to an exponential distribution. Moreover, crowding broadens the distribution of cars’ trap times and cluster sizes. At steady state, the subdiffusive state persists only when there is a large variability in car speeds. We further relate our work to prior findings from random walk models of transport in cellular systems. PMID:23139762
Johnson, Paul Allan
2016-02-28
We investigate dynamic wave-triggered slip under laboratory shear conditions. The experiment is composed of a three-block system containing two gouge layers composed of glass beads and held in place by a fixed load in a biaxial configuration. When the system is sheared under steady state conditions at a normal load of 4 MPa, we find that shear failure may be instantaneously triggered by a dynamic wave, corresponding to material weakening and softening if the system is in a critical shear stress state (near failure). Following triggering, the gouge material remains in a perturbed state over multiple slip cycles as evidencedmore » by the recovery of the material strength, shear modulus, and slip recurrence time. This work suggests that faults must be critically stressed to trigger under dynamic conditions and that the recovery process following a dynamically triggered event differs from the recovery following a spontaneous event.« less
Henriksen, J H; Kok-Jensen, A
1984-04-01
The overall extravasation rate of albumin, TER (i.e. the fraction of the intravascular albumin mass (IVM) passing into, and during steady state returning from, the extravascular space per unit time) was determined from the disappearance of i.v. injected radioiodinated serum albumin in seven patients with severe chronic obstructive lung disease (COLD) and in seven normal controls. Arterial oxygen tension in patients with COLD was median 60 mmHg (range 47-80, normal greater than 75 mmHg), vital capacity was on the average 55% of expected normal value (median 1.80 litre, range 1.45-1.95), and forced expired volume in first sec was decreased to 21% of expected normal value (median 0.55 litre, range 0.40-0.70). Right-heart catheterization revealed pulmonary hypertension in all but one patient. TER in patients with COLD was median 6.1% IVM/h (range 3.5-10.1) as compared to that of normal controls 6.0% IVM/h (range 4.3-7.4), indicating that no significant change in microvascular leakiness to albumin could be found in patients with COLD. Thus, the results bring no support to a generally increased microvascular permeability to proteins in patients with COLD.
NASA Astrophysics Data System (ADS)
Schroeder, Charles
Semi-dilute polymer solutions are encountered in a wide array of applications such as advanced 3D printing technologies. Semi-dilute solutions are characterized by large fluctuations in concentration, such that hydrodynamic interactions, excluded volume interactions, and transient chain entanglements may be important, which greatly complicates analytical modeling and theoretical treatment. Despite recent progress, we still lack a complete molecular-level understanding of polymer dynamics in these systems. In this talk, I will discuss three recent projects in my group to study semi-dilute solutions that focus on single molecule studies of linear and ring polymers and a new method to measure normal stresses in microfluidic devices based on the Stokes trap. In the first effort, we use single polymer techniques to investigate the dynamics of semi-dilute unentangled and semi-dilute entangled DNA solutions in extensional flow, including polymer relaxation from high stretch, transient stretching dynamics in step-strain experiments, and steady-state stretching in flow. In the semi-dilute unentangled regime, our results show a power-law scaling of the longest polymer relaxation time that is consistent with scaling arguments based on the double cross-over regime. Upon increasing concentration, we observe a transition region in dynamics to the entangled regime. We also studied the transient and steady-state stretching dynamics in extensional flow using the Stokes trap, and our results show a decrease in transient polymer stretch and a milder coil-to-stretch transition for semi-dilute polymer solutions compared to dilute solutions, which is interpreted in the context of a critical Weissenberg number Wi at the coil-to-stretch transition. Interestingly, we observe a unique set of polymer conformations in semi-dilute unentangled solutions that are highly suggestive of transient topological entanglements in solutions that are nominally unentangled at equilibrium. Taken together, these results suggest that the transient stretching pathways in semi-dilute solution extensional flows are qualitatively different than for both dilute solutions and for semi-dilute solutions in shear flow. In a second effort, we studied the dynamics of ring polymers in background solutions of semi-dilute linear polymers. Interestingly, we observe strikingly large fluctuations in steady-state polymer extension for ring polymers in flow, which occurs due to the interplay between polymer topology and concentration leading to chain `threading' in flow. In a third effort, we developed a new microfluidic method to measure normal stress and extensional viscosity that can be loosely described as passive yet non-linear microrheology. In particular, we incorporated 3-D particle imaging velocimetry (PIV) with the Stokes trap to study extensional flow-induced particle migration in semi-dilute polymer solutions. Experimental results are analyzed using the framework of a second-order-fluid model, which allows for measurement of normal stress and extensional viscosity in semi-dilute polymer solutions, all of which is a first-of-its-kind demonstration. Microfluidic measurements of extensional viscosity are directly compared to the dripping-onto-substrate or DOS method, and good agreement is generally observed. Overall, our work aims to provide a molecular-level understanding of the role of polymer topology and concentration on bulk rheological properties by using single polymer techniques.
Calibration of steady-state car-following models using macroscopic loop detector data.
DOT National Transportation Integrated Search
2010-05-01
The paper develops procedures for calibrating the steady-state component of various car following models using : macroscopic loop detector data. The calibration procedures are developed for a number of commercially available : microscopic traffic sim...
Size and Shape of Solid Fuel Diffusion Flames in Very Low Speed Flows. M.S. Thesis. Final Report
NASA Technical Reports Server (NTRS)
Foutch, David W.
1987-01-01
The effect of very low speed forced flows on the size and shape of a solid fuel diffusion flame are investigated experimentally. Flows due to natural convection are eliminated by performing the experiment in low gravity. The range of velocities tested is 1.5 cm/s to 6.3 cm/s and the mole fraction of oxygen in the O2/N2 atmosphere ranges from 0.15 to 0.19. The flames did not reach steady state in the 5.2 sec to which the experiment was limited. Despite limited data, trends in the transient flame temperature and, by means of extrapolation, the steady state flame size are deduced. As the flow velocity is reduced, the flames move farther from the fuel surface, and the transient flame temperature is lowered. As the oxygen concentration is reduced the flames move closer to the fuel sample and the transient flame temperature is reduced. With stand off distances up to 8.5 + or - 0.7 mm and thicknesses around 1 or 2 mm, these flames are much weaker than flames observed at normal gravity. Based on the performance of the equipment and several qualitative observations, suggestions for future work are made.
Kennedy McConnell, Flora; Payne, Stephen
2017-08-01
Ischaemic stroke is a leading cause of death and disability. Autoregulation and collateral blood flow through the circle of Willis both play a role in preventing tissue infarction. To investigate the interaction of these mechanisms a one-dimensional steady-state model of the cerebral arterial network was created. Structural variants of the circle of Willis that present particular risk of stroke were recreated by using a network model coupled with: 1) a steady-state physiological model of cerebral autoregulation; and 2) one wherein the cerebral vascular bed was modeled as a passive resistance. Simulations were performed in various conditions of internal carotid and vertebral artery occlusion. Collateral flow alone is unable to ensure adequate blood flow ([Formula: see text] normal flow) to the cerebral arteries in several common variants during internal carotid artery occlusion. However, compared to a passive model, cerebral autoregulation is better able to exploit available collateral flow and maintain flows within [Formula: see text] of baseline. This is true for nearly all configurations. Hence, autoregulation is a crucial facilitator of collateral flow through the circle of Willis. Impairment of this response during ischemia will severely impact cerebral blood flows and tissue survival, and hence, autoregulation should be monitored in this situation.
Increased inflammation in sanctuary sites may explain viral blips in HIV infection
Piovoso, Michael J.; Cardozo, E. Fabian; Zurakowski, Ryan
2016-08-01
Here, combined antiretroviral therapy (cART) suppress HIV-1 viral replication, such that viral load in plasma remains below the limit of detection in standard assays. However, intermittent episodes of transient viremia (blips) occur in a set of HIV-patients. Given that follicular hyperplasia occurs during lymphoid inflammation as a normal response to infection, it is hypothesised that when the diameter of the lymph node follicle (LNF) increases and crosses a critical size, a viral blip occurs due to cryptic viremia. To study this hypothesis, a theoretical analysis of a mathematical model is performed to find the conditions for virus suppression in allmore » compartments and different scenarios of LNF size changes are simulated. According to the analysis, blips with duration of around 30 days arise when the diameter rise rate is between 0.02 and 0.03 days –1. Moreover, the final diameter of the site is directly related to the steady states of the virus load after the occurrence of a blip. When the value of R 0 is around 2.1, to have a steady-state below the limit of detection after the viral blip, the maximum final diameters should be greater than 0.7 mm so that there is a relative loss of connection between compartments.« less
Increased inflammation in sanctuary sites may explain viral blips in HIV infection.
Cardozo, E Fabian; Piovoso, Michael J; Zurakowski, Ryan
2016-08-01
Combined antiretroviral therapy (cART) suppress HIV-1 viral replication, such that viral load in plasma remains below the limit of detection in standard assays. However, intermittent episodes of transient viremia (blips) occur in a set of HIV-patients. Given that follicular hyperplasia occurs during lymphoid inflammation as a normal response to infection, it is hypothesised that when the diameter of the lymph node follicle (LNF) increases and crosses a critical size, a viral blip occurs due to cryptic viremia. To study this hypothesis, a theoretical analysis of a mathematical model is performed to find the conditions for virus suppression in all compartments and different scenarios of LNF size changes are simulated. According to the analysis, blips with duration of around 30 days arise when the diameter rise rate is between 0.02 and 0.03 days(-1). Moreover, the final diameter of the site is directly related to the steady states of the virus load after the occurrence of a blip. When the value of R0 is around 2.1, to have a steady-state below the limit of detection after the viral blip, the maximum final diameters should be greater than 0.7 mm so that there is a relative loss of connection between compartments.
Henze Bancroft, Leah C; Strigel, Roberta M; Hernando, Diego; Johnson, Kevin M; Kelcz, Frederick; Kijowski, Richard; Block, Walter F
2016-03-01
Chemical shift based fat/water decomposition methods such as IDEAL are frequently used in challenging imaging environments with large B0 inhomogeneity. However, they do not account for the signal modulations introduced by a balanced steady state free precession (bSSFP) acquisition. Here we demonstrate improved performance when the bSSFP frequency response is properly incorporated into the multipeak spectral fat model used in the decomposition process. Balanced SSFP allows for rapid imaging but also introduces a characteristic frequency response featuring periodic nulls and pass bands. Fat spectral components in adjacent pass bands will experience bulk phase offsets and magnitude modulations that change the expected constructive and destructive interference between the fat spectral components. A bSSFP signal model was incorporated into the fat/water decomposition process and used to generate images of a fat phantom, and bilateral breast and knee images in four normal volunteers at 1.5 Tesla. Incorporation of the bSSFP signal model into the decomposition process improved the performance of the fat/water decomposition. Incorporation of this model allows rapid bSSFP imaging sequences to use robust fat/water decomposition methods such as IDEAL. While only one set of imaging parameters were presented, the method is compatible with any field strength or repetition time. © 2015 Wiley Periodicals, Inc.
Increased inflammation in sanctuary sites may explain viral blips in HIV infection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piovoso, Michael J.; Cardozo, E. Fabian; Zurakowski, Ryan
Here, combined antiretroviral therapy (cART) suppress HIV-1 viral replication, such that viral load in plasma remains below the limit of detection in standard assays. However, intermittent episodes of transient viremia (blips) occur in a set of HIV-patients. Given that follicular hyperplasia occurs during lymphoid inflammation as a normal response to infection, it is hypothesised that when the diameter of the lymph node follicle (LNF) increases and crosses a critical size, a viral blip occurs due to cryptic viremia. To study this hypothesis, a theoretical analysis of a mathematical model is performed to find the conditions for virus suppression in allmore » compartments and different scenarios of LNF size changes are simulated. According to the analysis, blips with duration of around 30 days arise when the diameter rise rate is between 0.02 and 0.03 days –1. Moreover, the final diameter of the site is directly related to the steady states of the virus load after the occurrence of a blip. When the value of R 0 is around 2.1, to have a steady-state below the limit of detection after the viral blip, the maximum final diameters should be greater than 0.7 mm so that there is a relative loss of connection between compartments.« less
Dynamics of an HIV-1 infection model with cell mediated immunity
NASA Astrophysics Data System (ADS)
Yu, Pei; Huang, Jianing; Jiang, Jiao
2014-10-01
In this paper, we study the dynamics of an improved mathematical model on HIV-1 virus with cell mediated immunity. This new 5-dimensional model is based on the combination of a basic 3-dimensional HIV-1 model and a 4-dimensional immunity response model, which more realistically describes dynamics between the uninfected cells, infected cells, virus, the CTL response cells and CTL effector cells. Our 5-dimensional model may be reduced to the 4-dimensional model by applying a quasi-steady state assumption on the variable of virus. However, it is shown in this paper that virus is necessary to be involved in the modeling, and that a quasi-steady state assumption should be applied carefully, which may miss some important dynamical behavior of the system. Detailed bifurcation analysis is given to show that the system has three equilibrium solutions, namely the infection-free equilibrium, the infectious equilibrium without CTL, and the infectious equilibrium with CTL, and a series of bifurcations including two transcritical bifurcations and one or two possible Hopf bifurcations occur from these three equilibria as the basic reproduction number is varied. The mathematical methods applied in this paper include characteristic equations, Routh-Hurwitz condition, fluctuation lemma, Lyapunov function and computation of normal forms. Numerical simulation is also presented to demonstrate the applicability of the theoretical predictions.
40 CFR Appendix A to Subpart S of... - Calibrations, Adjustments and Quality Control
Code of Federal Regulations, 2012 CFR
2012-07-01
... average of the pre-test and post-test ambient background levels shall be compared to the permissible...—Calibrations, Adjustments and Quality Control (I) Steady-State Test Equipment States may opt to use transient emission test equipment for steady-state tests and follow the quality control requirements in paragraph (II...
40 CFR Appendix A to Subpart S of... - Calibrations, Adjustments and Quality Control
Code of Federal Regulations, 2010 CFR
2010-07-01
... average of the pre-test and post-test ambient background levels shall be compared to the permissible...—Calibrations, Adjustments and Quality Control (I) Steady-State Test Equipment States may opt to use transient emission test equipment for steady-state tests and follow the quality control requirements in paragraph (II...
40 CFR Appendix A to Subpart S of... - Calibrations, Adjustments and Quality Control
Code of Federal Regulations, 2011 CFR
2011-07-01
... average of the pre-test and post-test ambient background levels shall be compared to the permissible...—Calibrations, Adjustments and Quality Control (I) Steady-State Test Equipment States may opt to use transient emission test equipment for steady-state tests and follow the quality control requirements in paragraph (II...
40 CFR Appendix A to Subpart S of... - Calibrations, Adjustments and Quality Control
Code of Federal Regulations, 2013 CFR
2013-07-01
... average of the pre-test and post-test ambient background levels shall be compared to the permissible...—Calibrations, Adjustments and Quality Control (I) Steady-State Test Equipment States may opt to use transient emission test equipment for steady-state tests and follow the quality control requirements in paragraph (II...
40 CFR Appendix A to Subpart S of... - Calibrations, Adjustments and Quality Control
Code of Federal Regulations, 2014 CFR
2014-07-01
... average of the pre-test and post-test ambient background levels shall be compared to the permissible...—Calibrations, Adjustments and Quality Control (I) Steady-State Test Equipment States may opt to use transient emission test equipment for steady-state tests and follow the quality control requirements in paragraph (II...
NASA Astrophysics Data System (ADS)
Gudmundsson, Vidar; Jonsson, Thorsteinn H.; Bernodusson, Maria Laura; Abdullah, Nzar Rauf; Sitek, Anna; Goan, Hsi-Sheng; Tang, Chi-Shung; Manolescu, Andrei
2017-01-01
We analyze how a multilevel many-electron system in a photon cavity approaches the steady state when coupled to external leads. When a plunger gate is used to lower cavity photon dressed one- and two-electron states below the bias window defined by the external leads, we can identify one regime with nonradiative transitions dominating the electron transport, and another regime with radiative transitions. Both transitions trap the electrons in the states below the bias bringing the system into a steady state. The order of the two regimes and their relative strength depends on the location of the bias window in the energy spectrum of the system and the initial conditions.
The Politics of the Steady State
ERIC Educational Resources Information Center
Taylor, Charles
1978-01-01
A steady state society has limits pertaining to population size, non-renewable resources, and production which emits heat or substances into soil, water, or the atmosphere. Respecting these limits means renouncing exponential quantitative growth and accepting a universally available consumption standard. (SW)