NASA Astrophysics Data System (ADS)
Yi, Huili; Tian, Jianxiang
2014-07-01
A new simple correlation based on the principle of corresponding state is proposed to estimate the temperature-dependent surface tension of normal saturated liquids. The correlation is a linear one and strongly stands for 41 saturated normal liquids. The new correlation requires only the triple point temperature, triple point surface tension and critical point temperature as input and is able to represent the experimental surface tension data for these 41 saturated normal liquids with a mean absolute average percent deviation of 1.26% in the temperature regions considered. For most substances, the temperature covers the range from the triple temperature to the one beyond the boiling temperature.
Calibration and temperature correction of heat dissipation matric potential sensors
Flint, A.L.; Campbell, G.S.; Ellett, K.M.; Calissendorff, C.
2002-01-01
This paper describes how heat dissipation sensors, used to measure soil water matric potential, were analyzed to develop a normalized calibration equation and a temperature correction method. Inference of soil matric potential depends on a correlation between the variable thermal conductance of the sensor's porous ceramic and matric poten-tial. Although this correlation varies among sensors, we demonstrate a normalizing procedure that produces a single calibration relationship. Using sensors from three sources and different calibration methods, the normalized calibration resulted in a mean absolute error of 23% over a matric potential range of -0.01 to -35 MPa. Because the thermal conductivity of variably saturated porous media is temperature dependent, a temperature correction is required for application of heat dissipation sensors in field soils. A temperature correction procedure is outlined that reduces temperature dependent errors by 10 times, which reduces the matric potential measurement errors by more than 30%. The temperature dependence is well described by a thermal conductivity model that allows for the correction of measurements at any temperature to measurements at the calibration temperature.
NASA Astrophysics Data System (ADS)
Esmaielpour, Hamidreza; Whiteside, Vincent R.; Hirst, Louise C.; Forbes, David V.; Walters, Robert J.; Sellers, Ian R.
We present an investigation of the interface effects for InGaAsP/InAlAs QW and InP/InAlAs QW structures capped with an InP layer. Continuous wave photoluminescence (PL) spectroscopy of these samples at 4 K shows features associated with the interfaces of an InAlAs layer grown on an InP layer (normal interface) and an InP layer grown on an InAlAs material (inverted interface). Power dependent PL of the InGaAsP QW indicates that there are two features related to the inverted interface, whereby the linear polarization of one increases and for the other decreases. In addition, a temperature dependent study of this sample shows that as the temperature increases: the linear polarization for both features decreases; at room temperature, there is negligible polarization effect. A power dependent PL study of the InP QW structure shows both normal and inverted interface transitions have opposing trends in linear polarization. Notably, the temperature dependent PL investigation displays a reduction of polarization degree for the inverted interface: as expected; while an increase of polarization for the normal interface was observed. In addition, power and temperature dependence of peak energy of the interface transitions for both samples will be presented.
Meissner effect in normal-superconducting proximity-contact double layers
NASA Astrophysics Data System (ADS)
Higashitani, Seiji; Nagai, Katsuhiko
1995-02-01
The Meissner effect in normal-superconducting proximity-contact double layers is discussed in the clean limit. The diamagnetic current is calculated using the quasi-classical Green's function. We obtain the quasi-classical Green's function linear in the vector potential in the proximity-contact double layers with a finite reflection coefficient at the interface. It is found that the diamagnetic current in the clean normal layer is constant in space, therefore, the magnetic field linearly decreases in the clean normal layer. We give an explicit expression for the screening length in the clean normal layer and study its temperature dependence. We show that the temperature dependence in the clean normal layer is considerably different from that in the dirty normal layer and agrees with a recent experiment in Au-Nb system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meijer, H.C.; Andriessen, J.; Postma, H.
1986-04-01
A phenomenological description for the temperature and magnetic field dependence of the electrical resistance R of polycrystalline samples of the reentrant superconductors TmRh/sub 4/B/sub 4/ and ErRh/sub 4/B/sub 4/ is given on the basis of two assumptions: (1) Due to the anisotropic values of the rare-earth ions the critical field of the crystallites depends on the direction of the externally applied field, which leads to an increasing number of normal crystallites with increasing field. For the dependence of the magnetization M on temperature, a molecular field model is used. (2) The bulk resistance R of the sample depends in amore » linear way on the fraction of normal crystallites. There is a qualitative agreement with the experimental results of Hamaker et al. and of Ott et al. It is also shown that an applied field H/sub e/ is equal to the orbital critical field H(/sub c//sub 2/ for the temperature at which R(H/sub e/, T) starts deviating from the resistance of the normal sample.« less
Beeler, N.M.; Tullis, T.E.; Kronenberg, A.K.; Reinen, L.A.
2007-01-01
Earthquake occurrence probabilities that account for stress transfer and time-dependent failure depend on the product of the effective normal stress and a lab-derived dimensionless coefficient a. This coefficient describes the instantaneous dependence of fault strength on deformation rate, and determines the duration of precursory slip. Although an instantaneous rate dependence is observed for fracture, friction, crack growth, and low temperature plasticity in laboratory experiments, the physical origin of this effect during earthquake faulting is obscure. We examine this rate dependence in laboratory experiments on different rock types using a normalization scheme modified from one proposed by Tullis and Weeks [1987]. We compare the instantaneous rate dependence in rock friction with rate dependence measurements from higher temperature dislocation glide experiments. The same normalization scheme is used to compare rate dependence in friction to rock fracture and to low-temperature crack growth tests. For particular weak phyllosilicate minerals, the instantaneous friction rate dependence is consistent with dislocation glide. In intact rock failure tests, for each rock type considered, the instantaneous rate dependence is the same size as for friction, suggesting a common physical origin. During subcritical crack growth in strong quartzofeldspathic and carbonate rock where glide is not possible, the instantaneous rate dependence measured during failure or creep tests at high stress has long been thought to be due to crack growth; however, direct comparison between crack growth and friction tests shows poor agreement. The crack growth rate dependence appears to be higher than the rate dependence of friction and fracture by a factor of two to three for all rock types considered. Copyright 2007 by the American Geophysical Union.
Quartz tuning-fork oscillations in He II and drag coefficient
NASA Astrophysics Data System (ADS)
Gritsenko, I. A.; Zadorozhko, A. A.; Neoneta, A. S.; Chagovets, V. K.; Sheshin, G. A.
2011-07-01
The temperature dependencies of drag coefficient for quartz tuning forks of various geometric dimensions, immersed in the He II, were determined experimentally in the temperature range 0.1-3 K. It is identified, that these dependencies are similar, but the values of drag coefficient are different for tuning forks with different geometric dimensions. It is shown, that the obtained specific drag coefficient depends only on the temperature and frequency of vibrations, when the value of drag coefficient is normalized to the surface area of moving tuning-fork prong. The temperature dependencies of normalized drag coefficient for the tuning forks of various dimensions, wire, and microsphere, oscillating in the Не II, are compared. It is shown, that in the ballistic regime of scattering of quasiparticles, these dependencies are identical and have a slope proportional to T4, which is determined by the density of thermal excitations. In the hydrodynamic regime at T > 0.5 K, the behavior of the temperature dependence of specific drag coefficient is affected by the size and frequency of vibrating body. The empirical relation, which allows to describe the behavior of specific drag coefficient for vibrating tuning forks, microsphere, and wire everywhere over the temperature region and at various frequencies, is proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokolov, Mikhail A
2010-01-01
A force-displacement trace of a Charpy impact test of a reactor pressure vessel (RPV) steel in the transition range has a characteristic point, the so-called force at the end of unstable crack propagation , Fa. A two-parameter Weibull probability function is used to model the distribution of the Fa in Charpy tests performed at ORNL on different RPV steels in the unirradiated and irradiated conditions. These data have a good replication at a given test temperature, thus, the statistical analysis was applicable. It is shown that when temperature is normalized to TNDT (T-TNDT) or to T100a (T-T100a), the median Famore » values of different RPV steels have a tendency to form the same shape of temperature dependence. Depending on normalization temperature, TNDT or T100a, it suggests a universal shape of the temperature dependence of Fa for different RPV steels. The best fits for these temperature dependencies are presented. These dependencies are suggested for use in estimation of NDT or T100a from randomly generated Charpy impact tests. The maximum likelihood methods are used to derive equations to estimate TNDT and T100a from randomly generated Charpy impact tests.« less
Rakhimov, Abdulla; Askerzade, Iman N
2014-09-01
We have shown that the critical temperature of a Bose-Einstein condensate to a normal phase transition of noninteracting bosons in cubic optical lattices has a linear dependence on the filling factor, especially at large densities. The condensed fraction exhibits a linear power law dependence on temperature in contrast to the case of ideal homogeneous Bose gases.
NASA Astrophysics Data System (ADS)
Johnston, Clifford T.; Swanson, Basil I.
1985-03-01
The unusual temperature dependence of the amide-I region in the IR spectrum of acetanilide (C 6H 5NHCOCH 3) has recently been attributed to a self-trapped Davydov-like soliton. The temperature dependence of the single-crystal Raman scattering, from acetanilide and its ND and 13CO substituted analogs in the phonon and internal mode regions has now been studied. The behavior of the amide-I region in the Raman spectra of the normal isotopic species is similar to that observed earlier in infrared studies. However, on the basis of results obtained from the ND and 13CO substituted species the unusual temperature dependence in the 1650 cm -1 region has been attributed to Fermi coupling of the amide-I fundamental and a combination band involving the in-plane NH deformation and a low-frequency torsional mode. As temperature is lowered, the strong blue-shift of the torsional mode results in a commensurate blue-shift in the combination level thereby increasing the Fermi coupling. Temperature tuning of the Fermi coupling results in the anomalous intensity changes observed in the IR and Raman spectra of the amide-I region for the normal isotopic species.
Temperature Dependence of Parametric Phenomenon in Airborne Ultrasound for Temperature Measurement
NASA Astrophysics Data System (ADS)
Kon, Akihiko; Wakatsuki, Naoto; Mizutani, Koichi
2008-08-01
The temperature dependence of parametric phenomenon in air was experimentally studied. It was confirmed from experimental data that the amplitude of upper sideband sound with a frequency of 36.175 kHz, which is caused by parametric phenomenon between high-power ultrasound with a frequency of 20.175 kHz and another normal sound with a frequency of 16.0 kHz, is proportional to -0.88×10-4×(T+273.15). This temperature dependence of the amplitude of upper sideband sound caused by the parametric phenomenon suggests a simple and effective method of temperature measurement.
Sakaguchi, Kouhei; Ohno, Ryoko; Yoshida, Kentaro
2017-01-01
Triploid wheat hybrids between tetraploid wheat and Aegilops tauschii sometimes show abnormal growth phenotypes, and the growth abnormalities inhibit generation of wheat synthetic hexaploids. In type II necrosis, one of the growth abnormalities, necrotic cell death accompanied by marked growth repression occurs only under low temperature conditions. At normal temperature, the type II necrosis lines show grass-clump dwarfism with no necrotic symptoms, excess tillers, severe dwarfism and delayed flowering. Here, we report comparative expression analyses to elucidate the molecular mechanisms of the temperature-dependent phenotypic plasticity in the triploid wheat hybrids. We compared gene and small RNA expression profiles in crown tissues to characterize the temperature-dependent phenotypic plasticity. No up-regulation of defense-related genes was observed under the normal temperature, and down-regulation of wheat APETALA1-like MADS-box genes, considered to act as flowering promoters, was found in the grass-clump dwarf lines. Some microRNAs, including miR156, were up-regulated, whereas the levels of transcripts of the miR156 target genes SPLs, known to inhibit tiller and branch number, were reduced in crown tissues of the grass-clump dwarf lines at the normal temperature. Unusual expression of the miR156/SPLs module could explain the grass-clump dwarf phenotype. Dramatic alteration of gene expression profiles, including miRNA levels, in crown tissues is associated with the temperature-dependent phenotypic plasticity in type II necrosis/grass-clump dwarf wheat hybrids. PMID:28463975
... fever, because the skin cannot sweat and control temperature properly. Affected adults are unable to tolerate a ... need special measures to keep a normal body temperature. Depending on which genes are affected, other symptoms ...
Quantum turbulence in superfluids with wall-clamped normal component.
Eltsov, Vladimir; Hänninen, Risto; Krusius, Matti
2014-03-25
In Fermi superfluids, such as superfluid (3)He, the viscous normal component can be considered to be stationary with respect to the container. The normal component interacts with the superfluid component via mutual friction, which damps the motion of quantized vortex lines and eventually couples the superfluid component to the container. With decreasing temperature and mutual friction, the internal dynamics of the superfluid component becomes more important compared with the damping and coupling effects from the normal component. As a result profound changes in superfluid dynamics are observed: the temperature-dependent transition from laminar to turbulent vortex motion and the decoupling from the reference frame of the container at even lower temperatures.
Quantum turbulence in superfluids with wall-clamped normal component
Eltsov, Vladimir; Hänninen, Risto; Krusius, Matti
2014-01-01
In Fermi superfluids, such as superfluid 3He, the viscous normal component can be considered to be stationary with respect to the container. The normal component interacts with the superfluid component via mutual friction, which damps the motion of quantized vortex lines and eventually couples the superfluid component to the container. With decreasing temperature and mutual friction, the internal dynamics of the superfluid component becomes more important compared with the damping and coupling effects from the normal component. As a result profound changes in superfluid dynamics are observed: the temperature-dependent transition from laminar to turbulent vortex motion and the decoupling from the reference frame of the container at even lower temperatures. PMID:24704879
NASA Astrophysics Data System (ADS)
Ge, Xian-Hui; Tian, Yu; Wu, Shang-Yu; Wu, Shao-Feng
2017-08-01
We derive new black hole solutions in Einstein-Maxwell-axion-dilaton theory with a hyperscaling violation exponent. We then examine the corresponding anomalous transport exhibited by cuprate strange metals in the normal phase of high-temperature superconductors via gauge-gravity duality. Linear-temperature-dependence resistivity and quadratic-temperature-dependence inverse Hall angle can be achieved. In the high-temperature regime, the heat conductivity and Hall Lorenz ratio are proportional to the temperature. The Nernst signal first increases as temperature goes up, but it then decreases with increasing temperature in the high-temperature regime.
Li, Jianwei; Handler, Alfred M
2017-09-28
Female to male sex reversal was achieved in an emerging agricultural insect pest, Drosophila suzukii, by creating a temperature-sensitive point mutation in the sex-determination gene, transformer-2 (tra-2), using CRISPR/Cas9 (clustered regularly interspaced palindromic repeats/CRISPR-associated) homology-directed repair gene-editing. Ds-tra-2 ts2 mutants developed as normal fertile XX and XY adults at permissive temperatures below 20 °C, but at higher restrictive temperatures (26 to 29 °C) chromosomal XX females developed as sterile intersexuals with a predominant male phenotype, while XY males developed with normal morphology, but were sterile. The temperature-dependent function of the Ds-TRA-2 ts2 protein was also evident by the up- and down-regulation of female-specific Ds-Yolk protein 1 (Ds-Yp1) gene expression by temperature shifts during adulthood. This study confirmed the temperature-dependent function of a gene-edited mutation and provides a new method for the more general creation of conditional mutations for functional genomic analysis in insects, and other organisms. Furthermore, it provides a temperature-dependent system for creating sterile male populations useful for enhancing the efficacy of biologically-based programs, such as the sterile insect technique (SIT), to control D. suzukii and other insect pest species of agricultural and medical importance.
New generalized corresponding states correlation for surface tension of normal saturated liquids
NASA Astrophysics Data System (ADS)
Yi, Huili; Tian, Jianxiang
2015-08-01
A new simple correlation based on the principle of corresponding state is proposed to estimate the temperature-dependent surface tension of normal saturated liquids. The new correlation contains three coefficients obtained by fitting 17,051 surface tension data of 38 saturated normal liquids. These 38 liquids contain refrigerants, hydrocarbons and some other inorganic liquids. The new correlation requires only the triple point temperature, triple point surface tension and critical point temperature as input and is able to well represent the experimental surface tension data for each of the 38 saturated normal liquids from the triple temperature up to the point near the critical point. The new correlation gives absolute average deviations (AAD) values below 3% for all of these 38 liquids with the only exception being octane with AAD=4.30%. Thus, the new correlation gives better overall results in comparison with other correlations for these 38 normal saturated liquids.
Temperature evolution of the charge and spin transport in Cu/Nb interface
NASA Astrophysics Data System (ADS)
Ishitaki, Masayuki; Ohnishi, Kohei; Kimura, Takashi
2018-06-01
The transport properties for the charge and spin currents in a normal-metal/superconductor interface have been investigated by using a nano-pillar based lateral spin valve. Owing to the efficient reduction of the Joule heating, we were able to observe the temperature and bias-current dependences of the spin transport in the Cu/Nb bilayer system. From the temperature dependence of the spin signal, the superconducting gap of the Nb in contact with Cu was found to open gradually with decreasing the temperature. We also found that the inhomogeneous superconducting property produces the significant temperature and field dependences of the background signal in the nonlocal measurement around the transition temperature.
Zhu, Xiao-Qing; Li, Xiu-Tao; Han, Su-Hui; Mei, Lian-Rui
2012-05-18
The effects of substituents on the temperature dependences of kinetic isotope effect (KIE) for the reactions of the hydride transfer from the substituted 5-methyl-6-phenyl-5,6-dihydrophenanthridine (G-PDH) to thioxanthylium (TX(+)) in acetonitrile were examined, and the results show that the temperature dependences of KIE for the hydride transfer reactions can be converted by adjusting the nature of the substituents in the molecule of the hydride donor. In general, electron-withdrawing groups can make the KIE to have normal temperature dependence, but electron-donating groups can make the KIE to have abnormal temperature dependence. Thermodynamic analysis on the possible pathways of the hydride transfer from G-PDH to TX(+) in acetonitrile suggests that the transfers of the hydride anion in the reactions are all carried out by the concerted one-step mechanism whether the substituent is an electron-withdrawing group or an electron-donating group. But the examination of Hammett-type free energy analysis on the hydride transfer reactions supports that the concerted one-step hydride transfer is not due to an elementary chemical reaction. The experimental values of KIE at different temperatures for the hydride transfer reactions were modeled by using a kinetic equation formed according to a multistage mechanism of the hydride transfer including a returnable charge-transfer complex as the reaction intermediate; the real mechanism of the hydride transfer and the root that why the temperature dependences of KIE can be converted as the nature of the substituents are changed were discovered.
Effect of magnetic field on the flux pinning mechanisms in Al and SiC co-doped MgB2 superconductor
NASA Astrophysics Data System (ADS)
Kia, N. S.; Ghorbani, S. R.; Arabi, H.; Hossain, M. S. A.
2018-07-01
MgB2 superconductor samples co-doped with 0.02 wt. Al2O3 and 0-0.05 wt. SiC were studied by magnetization - magnetic field (M-H) loop measurements at different temperatures. The critical current density has been calculated by the Bean model, and the irreversibility field, Hirr, has been obtained by the Kramer method. The pinning mechanism of the co-doped sample with 2% Al and 5% SiC was investigated in particular due to its having the highest Hirr. The normalized volume pinning force f = F/Fmax as a function of reduced magnetic field h = H/Hirr has been obtained, and the pinning mechanism was studied by the Dew-Houghes model. It was found that the normal point pinning (NPP), the normal surface pinning (NSP), and the normal volume pinning (NVP) mechanisms play the main roles. The magnetic field and temperature dependence of contributions of the NPP, NSP, and NVP pinning mechanisms were obtained. The results show that the contributions of the pinning mechanisms depend on the temperature and magnetic field. From the temperature dependence of the critical current density within the collective pinning theory, it was found that both the δl pinning due to spatial fluctuations of the charge-carrier mean free path and the δTc pinning due to randomly distributed spatial variations in the transition temperature coexist at zero magnetic field in co-doped samples. Yet, the charge-carrier mean-free-path fluctuation pinning (δl) is the only important pinning mechanism at non-zero magnetic fields.
Reversible voltage dependent transition of abnormal and normal bipolar resistive switching.
Wang, Guangyu; Li, Chen; Chen, Yan; Xia, Yidong; Wu, Di; Xu, Qingyu
2016-11-14
Clear understanding the mechanism of resistive switching is the important prerequisite for the realization of high performance nonvolatile resistive random access memory. In this paper, binary metal oxide MoO x layer sandwiched by ITO and Pt electrodes was taken as a model system, reversible transition of abnormal and normal bipolar resistive switching (BRS) in dependence on the maximum voltage was observed. At room temperature, below a critical maximum voltage of 2.6 V, butterfly shaped I-V curves of abnormal BRS has been observed with low resistance state (LRS) to high resistance state (HRS) transition in both polarities and always LRS at zero field. Above 2.6 V, normal BRS was observed, and HRS to LRS transition happened with increasing negative voltage applied. Temperature dependent I-V measurements showed that the critical maximum voltage increased with decreasing temperature, suggesting the thermal activated motion of oxygen vacancies. Abnormal BRS has been explained by the partial compensation of electric field from the induced dipoles opposite to the applied voltage, which has been demonstrated by the clear amplitude-voltage and phase-voltage hysteresis loops observed by piezoelectric force microscopy. The normal BRS was due to the barrier modification at Pt/MoO x interface by the accumulation and depletion of oxygen vacancies.
Addendum to the lattice dynamics of. gamma. -Ce
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stassis, C.; Loong, C.; McMasters, O.D.
1982-05-15
Inelastic neutron scattering techniques have been used to study the temperature dependence of the dispersion curves of ..gamma..-Ce. We find that the frequencies of all but the T (111), branches exhibit normal temperature dependence. Close to the zone boundary the frequencies of the T(111) branch, on the other hand, decrease with decreasing temperature, and at room temperature this branch exhibits a dip at the zone boundary. This anomalous behavior may be related to the fcc..-->..dhcp phase transition.
Artifact Correction in Temperature-Dependent Attenuated Total Reflection Infrared (ATR-IR) Spectra.
Sobieski, Brian; Chase, Bruce; Noda, Isao; Rabolt, John
2017-08-01
A spectral processing method was developed and tested for analyzing temperature-dependent attenuated total reflection infrared (ATR-IR) spectra of aliphatic polyesters. Spectra of a bio-based, biodegradable polymer, 3.9 mol% 3HHx poly[(R)-3-hydroxybutyrate- co-(R)-3-hydroxyhexanoate] (PHBHx), were analyzed and corrected prior to analysis using two-dimensional correlation spectroscopy (2D-COS). Removal of the temperature variation of diamond absorbance, correction of the baseline, ATR correction, and appropriate normalization were key to generating more reliable data. Both the processing steps and order were important. A comparison to differential scanning calorimetry (DSC) analysis indicated that the normalization method should be chosen with caution to avoid unintentional trends and distortions of the crystalline sensitive bands.
NASA Technical Reports Server (NTRS)
Boers, R.; Eloranta, E. W.
1986-01-01
Lidar data of the atmospheric entrainment zone from six days of clear air convection obtained in central Illinois during July 1979 are presented. A new method to measure the potential temperature jump across the entrainment zone based on only one temperature sounding and continuous lidar measurements of the mixed layer height is developed. An almost linear dependence is found between the normalized entrainment rate and the normalized thickness of the entrainment zone.
NASA Astrophysics Data System (ADS)
Yakushin, V. A.; Zhmud', N. P.; Stirna, U. K.
2002-05-01
The effect of processing factors on the inhomogeneity and physicomechanical characteristics of spray-on polyurethane foams is studied. The dependences of the basic characteristics of foam plastics on the apparent density and cell-shape factor are determined. A method is offered for evaluating the effect of the technological surface skin on the tensile characteristics of foam plastics under normal and low temperatures.
Fundamental Research on Infrared Detection
2006-10-15
2. Antimony-based type-II superlattice (T2-SL) photodetectors – We explored the temperature dependent and noise current characteristics of interband...their CZT substrates. Task 2. Antimony-based type-II superlattice (T2-SL) photodetectors – We explored the temperature dependent and noise ...structures, leading to potentially high device performance in photovoltaic mode with low noise and normal incidence detection. The ICDs have a
1974-10-01
polyester chains. Cross-linking, normally known as the curing process, is brought about by free radicals supplied by a catalyst, usually an organic...peroxide. Cure is normally carried out at room temperature, but a higher tenmerature may be used, depending on the reactivity of the catalyst. In the...selection of an elevated cure temperature permits wide versatility and a large measure of control over the proces-ing of these resins. Since the direct
Study of diffusion coefficient of anhydrous trehalose glasses by using PFG-NMR spectroscopy
NASA Astrophysics Data System (ADS)
Kwon, Hyun-Joung; Takekawa, Reiji; Kawamura, Junichi; Tokuyama, Michio
2013-02-01
We investigated the temperature dependent long time self-diffusion coefficient of the anhydrous trehalose supercooled liquids by using pulsed field gradient nuclear magnetic resonance (PFG-NMR) spectroscopy. At the same temperature ranges, the diffusion coefficient convoluted from the α-relaxation time as Einstein-Smoluchowski relaxation, measured by using the dielectric loss spectroscopy are well overlapped with diffusion coefficients within experimental error. The temperature dependent diffusion coefficients obtained from different methods are normalized by fictive temperature and well satisfied the single master curve, proposed by Tokuyama.
Magnetic exchange coupling through superconductors: A trilayer study
NASA Astrophysics Data System (ADS)
Sá de Melo, C. A.
2000-11-01
The possibility of magnetic exchange coupling between two ferromagnets (F) separated by a superconductor (S) spacer is analyzed using the functional integral method. For this coupling to occur three prima facie conditions need to be satisfied. First, an indirect exchange coupling between the ferromagnets must exist when the superconductor is in its normal state. Second, superconductivity must not be destroyed due to the proximity to ferromagnetic boundaries. Third, roughness of the F/S interfaces must be small. Under these conditions, when the superconductor is cooled to below its critical temperature, the magnetic coupling changes. The appearance of the superconducting gap introduces a new length scale (the coherence length of the superconductor) and modifies the temperature dependence of the indirect exchange coupling existent in the normal state. The magnetic coupling is oscillatory both above and below the the critical temperature of the superconductor, as well as strongly temperature-dependent. However, at low temperatures the indirect exchange coupling decay length is controlled by the coherence length of the superconductor, while at temperatures close to and above the critical temperature of the superconductor the magnetic coupling decay length is controlled by the thermal length.
Chrystal, C.; Grierson, B. A.; Solomon, W. M.; ...
2017-03-29
We measured the dependence of intrinsic torque and momentum confinement time on normalized gyroradius (ρ *) and collisionality (v *) in the DIII-D tokamak. The intrinsic torque normalized to temperature is found to have ρ * and v * dependencies of ρ * -1.5 ± 0.8 and v * -0.26 ± 0.04. This dependence on ρ * is unexpectedly favorable (increasing as ρ * decreases). The choice of normalization is important, and the implications are discussed. The unexpected dependence on ρ * is found to be robust, despite some uncertainty in the choice of normalization. Furthermore, the dependence of momentummore » confinement on ρ * does not clearly demonstrate Bohm or gyro-Bohm like scaling, and a weaker dependence on v * is found. The calculations required to use these dependencies to determine the intrinsic torque in future tokamaks such as ITER are presented, and the importance of the normalization is explained. Based on the currently available information, the intrinsic torque predicted for ITER is 33 N m, comparable to the expected torque available from neutral beam injection. The expected average intrinsic rotation associated with this intrinsic torque is small compared to current tokamaks, but it may still aid stability and performance in ITER. Published by AIP Publishing.« less
Evaluation of antipyretic potential of Vernonia cinerea extract in rats.
Gupta, Malaya; Mazumder, U K; Manikandan, L; Bhattacharya, S; Haldar, P K; Roy, S
2003-08-01
The methanol extract of the whole plant of Vernonia cinerea (MEVC) was evaluated for its antipyretic potential on normal body temperature and yeast-induced pyrexia in rats. MEVC significantly reduced the normal body temperature at doses of 250 and 500 mg/kg body weight p.o. MEVC also lowered the elevated body temperature in the case of yeast-induced pyrexia in a dose dependent manner. The antipyretic effect of the extract at a dose of 500 mg/kg was identical to that of the standard drug paracetamol. Copyright 2003 John Wiley & Sons, Ltd.
An unusual temperature dependence in the oxidation of oxycarbide layers on uranium
NASA Astrophysics Data System (ADS)
Ellis, Walton P.
1981-09-01
An anomalous temperature dependence has been observed for the oxidation kinetics of outermost oxycarbide layers on polycrystalline uranium metal. Normally, oxidation or corrosion reactions are expected to proceed more rapidly as the temperature is elevated. Thus, it came as a surprise when we observed that the removal of the outermost atomic layers of carbon from uranium oxycarbide by O 2 reproducibly proceeds at a much faster rate at 25°C than at 280°C.
An unusual temperature dependence in the oxidation of oxycarbide layers on uranium
NASA Astrophysics Data System (ADS)
Ellis, Walton P.
An anomalous temperature dependence has been observed for the oxidation kinetics of outermost oxycarbide layers on polycrystalline uranium metal. Normally, oxidation or corrosion reactions are expected to proceed more rapidly as the temperature is elevated. Thus, it came as a surprise when we observed that the removal of the outermost atomic layers of carbon from uranium oxycarbide by O 2 reproducibly proceeds at a much faster rate at 25°C than at 280°C.
NASA Technical Reports Server (NTRS)
Duan, Lian; Choudhari, Meelan M.
2014-01-01
Direct numerical simulations (DNS) of Mach 6 turbulent boundary layer with nominal freestream Mach number of 6 and Reynolds number of Re(sub T) approximately 460 are conducted at two wall temperatures (Tw/Tr = 0.25, 0.76) to investigate the generated pressure fluctuations and their dependence on wall temperature. Simulations indicate that the influence of wall temperature on pressure fluctuations is largely limited to the near-wall region, with the characteristics of wall-pressure fluctuations showing a strong temperature dependence. Wall temperature has little influence on the propagation speed of the freestream pressure signal. The freestream radiation intensity compares well between wall-temperature cases when normalized by the local wall shear; the propagation speed of the freestream pressure signal and the orientation of the radiation wave front show little dependence on the wall temperature.
Theoretical Studies of Defects in Tetrahedral Semiconductors.
1980-08-01
pulse. The exact time of the maximal sur- has been measured by Shvarev et al. [I I at 1.0, face temperature depends on pulse duration, thermal 0.7 and...0.4 lAn from 57.50 off normal incidence. diffusivity (which is generally T dependent ), pulse Auston et al. (81 reported the time resolved reflec- shape...surface occur 30 to 40 ns after the peak of their 25 ns HWHM or ripples on the surface or a temperature depend - gaussian pulse rather than within
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chrystal, C.; Grierson, B. A.; Solomon, W. M.
We measured the dependence of intrinsic torque and momentum confinement time on normalized gyroradius (ρ *) and collisionality (v *) in the DIII-D tokamak. The intrinsic torque normalized to temperature is found to have ρ * and v * dependencies of ρ * -1.5 ± 0.8 and v * -0.26 ± 0.04. This dependence on ρ * is unexpectedly favorable (increasing as ρ * decreases). The choice of normalization is important, and the implications are discussed. The unexpected dependence on ρ * is found to be robust, despite some uncertainty in the choice of normalization. Furthermore, the dependence of momentummore » confinement on ρ * does not clearly demonstrate Bohm or gyro-Bohm like scaling, and a weaker dependence on v * is found. The calculations required to use these dependencies to determine the intrinsic torque in future tokamaks such as ITER are presented, and the importance of the normalization is explained. Based on the currently available information, the intrinsic torque predicted for ITER is 33 N m, comparable to the expected torque available from neutral beam injection. The expected average intrinsic rotation associated with this intrinsic torque is small compared to current tokamaks, but it may still aid stability and performance in ITER. Published by AIP Publishing.« less
NASA Technical Reports Server (NTRS)
Ristau, R.; Nagel, U.; Iglseder, H.; Koenig, J.; Rath, H. J.; Normura, H.; Kono, M.; Tanabe, M.; Sato, J.
1993-01-01
The evaporation of fuel droplets under high ambient pressure and temperature in normal gravity and microgravity has been investigated experimentally. For subcritical ambient conditions, droplet evaporation after a heat-up period follows the d(exp 2)-law. For all data the evaporation constant increases as the ambient temperature increases. At identical ambient conditions the evaporation constant under microgravity is smaller compared to normal gravity. This effect can first be observed at 1 bar and increases with ambient pressure. Preliminary experiments on ignition delay for self-igniting fuel droplets have been performed. Above a 1 s delay time, at identical ambient conditions, significant differences in the results of the normal and microgravity data are observed. Self-ignition occurs within different temperature ranges due to the influence of gravity. The time dependent behavior of the droplet is examined theoretically. In the calculations two different approaches for the gas phase are applied. In the first approach the conditions at the interface are given using a quasi steady theory approximation. The second approach uses a set of time dependent governing equations for the gas phase which are then evaluated. In comparison, the second model shows a better agreement with the drop tower experiments. In both cases a time dependent gasification rate is observed.
Pressure effect on the superconducting and the normal state of β -B i2Pd
NASA Astrophysics Data System (ADS)
Pristáš, G.; Orendáč, Mat.; Gabáni, S.; Kačmarčík, J.; Gažo, E.; Pribulová, Z.; Correa-Orellana, A.; Herrera, E.; Suderow, H.; Samuely, P.
2018-04-01
The pressure effect up to 24.0 kbar on superconducting and normal-state properties of β -B i2Pd single crystal (Tc≈4.98 K at ambient pressure) has been investigated by measurements of the electrical resistivity. In addition, we have performed the heat capacity measurements in the temperature range 0.7-300 K at ambient pressure. The recent calculations of electronic density of states, electron-phonon interaction spectral function, and phonon density of states of β -B i2Pd [Zheng and Margine, Phys. Rev. B 95, 014512 (2017), 10.1103/PhysRevB.95.014512], are used to fit the resistivity and the heat capacity data. In the superconducting state we have focused on the influence of pressure on the superconducting transition temperature Tc and upper critical field Hc 2 and a negative effect with d Tc/d p =-0.025 K /kbar and d Hc 2/d p =-8 mT /kbar is found. A simplified Bloch-Grüneisen model was used to analyze the pressure effect on the temperature dependence of the normal-state resistivity. The obtained results point to a decrease of the electron-phonon coupling parameter λ and to a shift of phonon frequencies to higher values with pressure. Moreover, the temperature dependence of the normal-state resistivity follows a T2 dependence above Tc up to about 25 K. Together with the enhanced value of Sommerfeld coefficient γ =13.23 mJ mo l-1K-2 these results point to a certain role of the electron-electron interaction in the superconducting pairing mechanism in β -B i2Pd .
Magnetic exchange coupling through superconductors : a trilayer study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sa de Melo, C. A. R.; Materials Science Division
1997-09-08
The possibility of magnetic exchange coupling between two ferromagnets (F) separated by a superconductor (S) spacer is analyzed using the functional integral method. For this coupling to occur three prima facie conditions need to be satisfied. First, an indirect exchange coupling between the ferromagnets must exist when the superconductor is in its normal state. Second, superconductivity must not be destroyed due to the proximity to ferromagnetic boundaries. Third, roughness of the F/S interfaces must be small. Under these conditions, when the superconductor is cooled to below its critical temperature, the magnetic coupling changes. The appearance of the superconducting gap introducesmore » a new length scale (the coherence length of the superconductor) and modifies the temperature dependence of the indirect exchange coupling existent in the normal state. The magnetic coupling is oscillatory both above and below the critical temperature of the superconductor, as well as strongly temperature-dependent. However, at low temperatures the indirect exchange coupling decay length is controlled by the coherence length of the superconductor, while at temperatures close to and above the critical temperature of the superconductor the magnetic coupling decay length is controlled by the thermal length.« less
Sex reversal triggers the rapid transition from genetic to temperature-dependent sex.
Holleley, Clare E; O'Meally, Denis; Sarre, Stephen D; Marshall Graves, Jennifer A; Ezaz, Tariq; Matsubara, Kazumi; Azad, Bhumika; Zhang, Xiuwen; Georges, Arthur
2015-07-02
Sex determination in animals is amazingly plastic. Vertebrates display contrasting strategies ranging from complete genetic control of sex (genotypic sex determination) to environmentally determined sex (for example, temperature-dependent sex determination). Phylogenetic analyses suggest frequent evolutionary transitions between genotypic and temperature-dependent sex determination in environmentally sensitive lineages, including reptiles. These transitions are thought to involve a genotypic system becoming sensitive to temperature, with sex determined by gene-environment interactions. Most mechanistic models of transitions invoke a role for sex reversal. Sex reversal has not yet been demonstrated in nature for any amniote, although it occurs in fish and rarely in amphibians. Here we make the first report of reptile sex reversal in the wild, in the Australian bearded dragon (Pogona vitticeps), and use sex-reversed animals to experimentally induce a rapid transition from genotypic to temperature-dependent sex determination. Controlled mating of normal males to sex-reversed females produces viable and fertile offspring whose phenotypic sex is determined solely by temperature (temperature-dependent sex determination). The W sex chromosome is eliminated from this lineage in the first generation. The instantaneous creation of a lineage of ZZ temperature-sensitive animals reveals a novel, climate-induced pathway for the rapid transition between genetic and temperature-dependent sex determination, and adds to concern about adaptation to rapid global climate change.
NASA Astrophysics Data System (ADS)
Atsarkin, V. A.; Borisenko, I. V.; Demidov, V. V.; Shaikhulov, T. A.
2018-06-01
Temperature evolution of pure spin current has been studied in an epitaxial thin-film bilayer La2/3Sr1/3MnO3/Pt deposited on a NdGaO3 substrate. The spin current was generated by microwave pumping under conditions of ferromagnetic resonance in the ferromagnetic La2/3Sr1/3MnO3 layer and detected in the Pt layer due to the inverse spin Hall effect. A considerable increase in the spin current magnitude has been observed upon cooling from the Curie point (350 K) down to 100 K. Using the obtained data, the temperature evolution of the mixed spin conductance g mix (T) has been extracted. It was found that the g mix (T) dependence correlates with magnetization in a thin area adjacent to the ferromagnetic-normal metal interface.
Parkin, Gerard
2009-02-17
Deuterium kinetic isotope effects (KIEs) serve as versatile tools to infer details about reaction mechanisms and the nature of transition states, while equilibrium isotope effects (EIEs) associated with the site preferences of hydrogen and deuterium enable researchers to study aspects of molecular structure. Researchers typically interpret primary deuterium isotope effects based on two simple guidelines: (i) the KIE for an elementary reaction is normal (k(H)/k(D) > 1) and (ii) the EIE is dictated by deuterium preferring to be located in the site corresponding to the highest frequency oscillator. In this Account, we evaluate the applicability of these rules to the interactions of H-H and C-H bonds with a transition metal center. Significantly, experimental and computational studies question the predictability of primary EIEs in these systems based on the notion that deuterium prefers to occupy the highest frequency oscillator. In particular, the EIEs for (i) formation of sigma-complexes by coordination of H-H and C-H bonds and (ii) oxidative addition of dihydrogen exhibit unusual temperature dependencies, such that the same system may demonstrate both normal (i.e., K(H)/K(D) > 1) and inverse (i.e., K(H)/K(D) < 1) values. The transition between a normal and inverse EIE indicates that these systems do not demonstrate the typical monotonic variation predicted by the van't Hoff relationship. Instead, the calculated EIEs in these systems are 0 at 0 K, increase to a value greater than 1, and then decrease to unity at infinite temperature. This unusual behavior may be rationalized by considering the individual factors that contribute to the EIE. Specifically, the EIE may be expressed in the form EIE = SYM x MMI x EXC x ZPE (where SYM is the symmetry factor, MMI is the mass-moment of inertia term, EXC is the excitation term, and ZPE is the zero-point energy term), and the distinctive temperature profile results from the inverse ZPE (enthalpy) and normal [SYM x MMI x EXC] (entropy) components opposing each other and having different temperature dependencies. At low temperatures, the ZPE component dominates and the EIE is inverse, while at high temperatures, the [SYM x MMI x EXC] component dominates and the EIE is normal. The inverse nature of the ZPE term is a consequence of the rotational and translational degrees of freedom of RH (R = H, CH(3)) becoming low-energy isotopically sensitive vibrations in the product, while the normal nature of the [SYM x MMI x EXC] component results from deuterium substitution having a larger impact on the moment of inertia of the smaller molecule.
Kurita, N; Ronning, F; Tokiwa, Y; Bauer, E D; Subedi, A; Singh, D J; Thompson, J D; Movshovich, R
2009-04-10
We have performed low-temperature specific heat and thermal conductivity measurements of the Ni-based superconductor BaNi2As2 (T{c}=0.7 K) in a magnetic field. In a zero field, thermal conductivity shows T-linear behavior in the normal state and exhibits a BCS-like exponential decrease below T{c}. The field dependence of the residual thermal conductivity extrapolated to zero temperature is indicative of a fully gapped superconductor. This conclusion is supported by the analysis of the specific heat data, which are well fit by the BCS temperature dependence from T{c} down to the lowest temperature of 0.1 K.
Molecular dynamics simulations of thermally activated edge dislocation unpinning from voids in α -Fe
NASA Astrophysics Data System (ADS)
Byggmästar, J.; Granberg, F.; Nordlund, K.
2017-10-01
In this study, thermal unpinning of edge dislocations from voids in α -Fe is investigated by means of molecular dynamics simulations. The activation energy as a function of shear stress and temperature is systematically determined. Simulations with a constant applied stress are compared with dynamic simulations with a constant strain rate. We found that a constant applied stress results in a temperature-dependent activation energy. The temperature dependence is attributed to the elastic softening of iron. If the stress is normalized with the softening of the specific shear modulus, the activation energy is shown to be temperature-independent. From the dynamic simulations, the activation energy as a function of critical shear stress was determined using previously developed methods. The results from the dynamic simulations are in good agreement with the constant stress simulations, after the normalization. This indicates that the computationally more efficient dynamic method can be used to obtain the activation energy as a function of stress and temperature. The obtained relation between stress, temperature, and activation energy can be used to introduce a stochastic unpinning event in larger-scale simulation methods, such as discrete dislocation dynamics.
NASA Astrophysics Data System (ADS)
Entler, S.; Duran, I.; Kocan, M.; Vayakis, G.
2017-07-01
Three vacuum vessel sectors in ITER will be instrumented by the outer vessel steady-state magnetic field sensors. Each sensor unit features a pair of metallic Hall sensors with a sensing layer made of bismuth to measure tangential and normal components of the local magnetic field. The influence of temperature and magnetic field on the Hall coefficient was tested for the temperature range from 25 to 250 oC and the magnetic field range from 0 to 0.5 T. A fit of the Hall coefficient normalized temperature function independent of magnetic field was found, and a model of the Hall coefficient functional dependence at a wide range of temperature and magnetic field was built with the purpose to simplify the calibration procedure.
Pressure dependence of the electron-phonon interaction and the normal-state resistivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapp, O.; Sundqvist, B.
1981-07-01
Accurate measurements of the electrical resistance as a function of temperature and pressure are reported for Sn, Zr, dhcp La, and V. These measurements cover a temperature region around room temperature and pressures up to 1.3 GPa. From these data, including also our previous measurements for Al and published results for Pb, the pressure dependence of drho/dT (the resistivity-temperature derivative) is obtained. This quantity is found to be a significant factor in the pressure dependence of the electron-phonon interaction parameter lambda. For the nontransition metals the relative pressure dependence of drho/dT is much larger than the compressibility. Therefore the pressuremore » dependence of the superconducting T/sub c/ is quantitatively well accounted for by the resistance data for these metals. For the transition metals the pressure dependence of drho/dT is relatively smaller and T/sub c/(p) calculated from the resistance data is, at the best, only qualitatively correct. These differences are discussed. Estimates for the pressure dependence of the plasma frequency are obtained.« less
Temperature Monitoring and Perioperative Thermoregulation
Sessler, Daniel I.
2008-01-01
Most clinically available thermometers accurately report the temperature of whatever tissue is being measured. The difficulty is that no reliably core-temperature measuring sites are completely non-invasive and easy to use — especially in patients not having general anesthesia. Nonetheless, temperature can be reliably measured in most patients. Body temperature should be measured in patients having general anesthesia exceeding 30 minutes in duration, and in patients having major operations under neuraxial anesthesia. Core body temperature is normally tightly regulated. All general anesthetics produce a profound dose-dependent reduction in the core temperature triggering cold defenses including arterio-venous shunt vasoconstriction and shivering. Anesthetic-induced impairment of normal thermoregulatory control, and the resulting core-to-peripheral redistribution of body heat, is the primary cause of hypothermia in most patients. Neuraxial anesthesia also impairs thermoregulatory control, although to a lesser extant than general anesthesia. Prolonged epidural analgesia is associated with hyperthermia whose cause remains unknown. PMID:18648241
Magnon Mode Selective Spin Transport in Compensated Ferrimagnets.
Cramer, Joel; Guo, Er-Jia; Geprägs, Stephan; Kehlberger, Andreas; Ivanov, Yurii P; Ganzhorn, Kathrin; Della Coletta, Francesco; Althammer, Matthias; Huebl, Hans; Gross, Rudolf; Kosel, Jürgen; Kläui, Mathias; Goennenwein, Sebastian T B
2017-06-14
We investigate the generation of magnonic thermal spin currents and their mode selective spin transport across interfaces in insulating, compensated ferrimagnet/normal metal bilayer systems. The spin Seebeck effect signal exhibits a nonmonotonic temperature dependence with two sign changes of the detected voltage signals. Using different ferrimagnetic garnets, we demonstrate the universality of the observed complex temperature dependence of the spin Seebeck effect. To understand its origin, we systematically vary the interface between the ferrimagnetic garnet and the metallic layer, and by using different metal layers we establish that interface effects play a dominating role. They do not only modify the magnitude of the spin Seebeck effect signal but in particular also alter its temperature dependence. By varying the temperature, we can select the dominating magnon mode and we analyze our results to reveal the mode selective interface transmission probabilities for different magnon modes and interfaces. The comparison of selected systems reveals semiquantitative details of the interfacial coupling depending on the materials involved, supported by the obtained field dependence of the signal.
Vlachakis, Georgios; Chatterjee, Sayantani; Arroyo-Mateos, Manuel; Wackers, Paul F. K.; Jonker, Martijs J.
2018-01-01
Increased ambient temperature is inhibitory to plant immunity including auto-immunity. SNC1-dependent auto-immunity is, for example, fully suppressed at 28°C. We found that the Arabidopsis sumoylation mutant siz1 displays SNC1-dependent auto-immunity at 22°C but also at 28°C, which was EDS1 dependent at both temperatures. This siz1 auto-immune phenotype provided enhanced resistance to Pseudomonas at both temperatures. Moreover, the rosette size of siz1 recovered only weakly at 28°C, while this temperature fully rescues the growth defects of other SNC1-dependent auto-immune mutants. This thermo-insensitivity of siz1 correlated with a compromised thermosensory growth response, which was independent of the immune regulators PAD4 or SNC1. Our data reveal that this high temperature induced growth response strongly depends on COP1, while SIZ1 controls the amplitude of this growth response. This latter notion is supported by transcriptomics data, i.e. SIZ1 controls the amplitude and timing of high temperature transcriptional changes including a subset of the PIF4/BZR1 gene targets. Combined our data signify that SIZ1 suppresses an SNC1-dependent resistance response at both normal and high temperatures. At the same time, SIZ1 amplifies the dark and high temperature growth response, likely via COP1 and upstream of gene regulation by PIF4 and BRZ1. PMID:29357355
NASA Astrophysics Data System (ADS)
Koleske, D. D.; Sibener, S. J.
In this paper we present temperature dependent studies of the surface phonon dispersion relations for fcc (100), (110), and (111) faces using molecular dynamics (MD) simulations and Lennard-Jones potentials. This study was conducted in order to investigate how anharmonic potential terms influence the dynamical properties of the surface. This was accomplished by examining the temperature dependence of the Q-resolved phonon spectral density function. All phonon frequencies were found to decrease linearly in T as the temperature was increased, while at low temperatures the phonon linewidths increased linearly with T. At higher temperatures, some of the phonon linewidths changed from having a linear to a quadratic dependence on T. The temperature at which this T to T2 change occurs is surface dependent and occurs at the lowest temperature on the (110) surface. The T2 dependence arises from the increasing importance of higher-order phonon-phonon scattering terms. The phonons which exhibit T2 dependence tend to be modes which propagate perpendicularly or nearly perpendicularly to the direction of maximum root-mean-squared displacement (RMSD). This is especially true for the linewidth of the S 1 mode at overlineX on the (110) surface where, at T ≈ 15-23% of the melting temperature, the RMSD perpendicular to the atomic rows become larger than the RMSD normal to the surface. Our results indicate that the dynamics on the (110) surface may be significantly influenced by anharmonic potential terms at temperatures as low as 15% of the melting temperature.
Positron lifetime studies of defect structures in Ba(1-x)K(x)BiO3
NASA Astrophysics Data System (ADS)
Obrien, J. C.; Howell, R. H.; Radousky, H. B.; Sterne, P. A.; Hinks, D. G.; Folkerts, T. J.; Shelton, R. N.
1990-12-01
Temperature-dependent positron lifetime experiments have been performed from room temperature to cryogenic temperatures on Ba(1-x)K(x)BiO3, for x = 0.4 and 0.5. From the temperature dependence of the positron lifetime in the normal state, we observe a clear signature of competition between separate defect populations to trap the positron. Theoretical calculations of lifetimes of free or trapped positrons have been performed on Ba(1-x)K(x)BiO3, to help identify these defects. Lifetime measurements separated by long times have been performed and evidence of aging effects in the sample defect populations is seen in these materials.
Karaszewski, Bartosz; Carpenter, Trevor K; Thomas, Ralph G R; Armitage, Paul A; Lymer, Georgina Katherine S; Marshall, Ian; Dennis, Martin S; Wardlaw, Joanna M
2013-01-01
Pyrexia soon after stroke is associated with severe stroke and poor functional outcome. Few studies have assessed brain temperature after stroke in patients, so little is known of its associations with body temperature, stroke severity, or outcome. We measured temperatures in ischemic and normal-appearing brain using 1H-magnetic resonance spectroscopy and its correlations with body (tympanic) temperature measured four-hourly, infarct growth by 5 days, early neurologic (National Institute of Health Stroke Scale, NIHSS) and late functional outcome (death or dependency). Among 40 patients (mean age 73 years, median NIHSS 7, imaged at median 17 hours), temperature in ischemic brain was higher than in normal-appearing brain on admission (38.6°C-core, 37.9°C-contralateral hemisphere, P=0.03) but both were equally elevated by 5 days; both were higher than tympanic temperature. Ischemic lesion temperature was not associated with NIHSS or 3-month functional outcome; in contrast, higher contralateral normal-appearing brain temperature was associated with worse NIHSS, infarct expansion and poor functional outcome, similar to associations for tympanic temperature. We conclude that brain temperature is higher than body temperature; that elevated temperature in ischemic brain reflects a local tissue response to ischemia, whereas pyrexia reflects the systemic response to stroke, occurs later, and is associated with adverse outcomes. PMID:23571281
Maraviglia, B; Herring, F G; Weeks, G; Godin, D V
1979-01-01
The membrane fluidity of erythrocytes from patients with Lecithin: cholesterol acyltransferase (LCAT) deficiency was studied by means of electron spin resonance. The temperature dependence of the separation of the outer extrema of the spectra of 2-(3-carboxy-propyl)-4,4-dimethyl, 2-tridecyl-3-oxazolidinyloxyl spin probe was monitored for normal, presumed carrier and clinically affected subjects. The temperature profile of controls was significantly different from that of the presumed carriers and the clinically affected individuals. The results show that the compositional abnormalities previously noted in erythrocyte membranes from patients with LCAT deficiency are associated with alterations in the physiocochemical state of the membrane. An investigation of the spectral lineshapes below 10 degrees C allowed a distinction to be made at the membrane level between clinically affected subjects and clinically normal heterozygous carriers. Alterations in the temperature dependence of elec-ron spin resonance parameters may provide a sensitive index of red cell membrane alterations in pathological states of generalized membrane involvement.
NASA Astrophysics Data System (ADS)
Nam, Y. S.; Yoon, J. S.; Ju, H. L.; Chang, S. K.; Baek, K. S.
2014-10-01
The temperature-dependent behavior of p-type transparent semiconducting oxide CuAlO2 single crystals prepared by using a flux self-removal method in alumina crucibles was investigated through transmittance and photoluminescence (PL) measurements at temperatures from 12 K to room temperature. The low-temperature (12 K) PL spectrum shows two weak, broad emission peaks, one at 3.52 eV and the other at 3.08 eV, which we assign to excitonic emission and to defectrelated emission originating from copper vacancies. The positions of the PL peaks as functions of temperature exhibit a normal behavior satisfying the standard Varshini law, and the Debye temperature is found to be θ D = 610 ± 80 K. The exciton-binding energy of the CuAlO2 single crystal is estimated to be 49 meV from the PL intensity change with temperature.
NASA Astrophysics Data System (ADS)
Ding, Y.; Chen, X.; Bi, R.; Zhang, L. H.; Li, L.; Zhao, M.
2016-12-01
Alkenones and sterols are useful biomarkers to construct past productivity and community structure changes in aquatic environments. Until now, the quantitative relationship between biomarker content and biomass in marine phytoplankton remains understudied, which hinders the quantitative reconstruction of ocean changes. In this study, we carried out laboratory culture experiments to determine the quantitative relationship between biomarker content and biomass under three temperatures (15°, 20° and 25°) and three N:P supply ratios (N:P=10:1, 24:1 and 63:1 mol mol-1) for three common phytoplankton groups, diatoms (Phaeodactylum tricornutum Bohlin, Skeletonema costatum, Chaetoceros muelleri), dinoflagellates (Karenia mikimotoi, Prorocentrum donghaiense, Prorocentrum minimum), and coccolithophores (Emiliania huxleyi). Alkenones were only detected in E. huxleyiand dinosterol was only detected in dinoflagellates, confirming that they are the biomarkers for these two groups of phytoplankton, respectively. Brassicasterol was detected in all three groups of phytoplankton, but its content was higher in diatoms, suggesting that it is still a useful biomarker for diatoms. Cell-normalized alkenone content (pg/cell) increases with increasing growth temperature by up to 30%; while the effect of nutrients on alkenone content is minimum. On the other hand, cell-normalized dinosterol content is not temperature dependent, but it is strongly affected by nutrient ratio changes. The effects of temperature and nutrients on cell-normalized brassicasterol content are phytoplankton dependent. For diatoms, the temperature effect is minimum while the nutrient effect is significant but also varies with temperatures. Our results have strong implications for understanding how different phytoplankton respond to global changes, and for more quantitative reconstruction of past productivity and community structure changes using these biomarkers.
Activation energy of the low-load NaCl transition from nanoindentation loading curves.
Kaupp, Gerd
2014-01-01
Access to activation energies E(a) of phase transitions is opened by unprecedented analyses of temperature dependent nanoindentation loading curves. It is based on kinks in linearized loading curves, with additional support by coincidence of kink and electrical conductivity of silicon loading curves. Physical properties of B1, B2, NaCl and further phases are discussed. The normalized low-load transition energy of NaCl (Wtrans/µN) increases with temperature and slightly decreases with load. Its semi-logarithmic plot versus T obtains activation energy E(a)/µN for calculation of the transition work for all interesting temperatures and pressures. Arrhenius-type activation energy (kJ/mol) is unavailable for indentation phase transitions. The E(a) per load normalization proves insensitive to creep-on-load, which excludes normalization to depth or volume for large temperature ranges. Such phase transition E(a)/µN is unprecedented material's property and will be of practical importance for the compatibility of composite materials under impact and further shearing interactions at elevated temperatures. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Usselman, Robert J.; Russek, Stephen E.; Klem, Michael T.; Allen, Mark A.; Douglas, Trevor; Young, Mark; Idzerda, Yves U.; Singel, David J.
2012-10-01
Electron magnetic resonance (EMR) spectroscopy was used to determine the magnetic properties of maghemite (γ-Fe2O3) nanoparticles formed within size-constraining Listeria innocua (LDps)-(DNA-binding protein from starved cells) protein cages that have an inner diameter of 5 nm. Variable-temperature X-band EMR spectra exhibited broad asymmetric resonances with a superimposed narrow peak at a gyromagnetic factor of g ≈ 2. The resonance structure, which depends on both superparamagnetic fluctuations and inhomogeneous broadening, changes dramatically as a function of temperature, and the overall linewidth becomes narrower with increasing temperature. Here, we compare two different models to simulate temperature-dependent lineshape trends. The temperature dependence for both models is derived from a Langevin behavior of the linewidth resulting from "anisotropy melting." The first uses either a truncated log-normal distribution of particle sizes or a bi-modal distribution and then a Landau-Liftshitz lineshape to describe the nanoparticle resonances. The essential feature of this model is that small particles have narrow linewidths and account for the g ≈ 2 feature with a constant resonance field, whereas larger particles have broad linewidths and undergo a shift in resonance field. The second model assumes uniform particles with a diameter around 4 nm and a random distribution of uniaxial anisotropy axes. This model uses a more precise calculation of the linewidth due to superparamagnetic fluctuations and a random distribution of anisotropies. Sharp features in the spectrum near g ≈ 2 are qualitatively predicted at high temperatures. Both models can account for many features of the observed spectra, although each has deficiencies. The first model leads to a nonphysical increase in magnetic moment as the temperature is increased if a log normal distribution of particles sizes is used. Introducing a bi-modal distribution of particle sizes resolves the unphysical increase in moment with temperature. The second model predicts low-temperature spectra that differ significantly from the observed spectra. The anisotropy energy density K1, determined by fitting the temperature-dependent linewidths, was ˜50 kJ/m3, which is considerably larger than that of bulk maghemite. The work presented here indicates that the magnetic properties of these size-constrained nanoparticles and more generally metal oxide nanoparticles with diameters d < 5 nm are complex and that currently existing models are not sufficient for determining their magnetic resonance signatures.
Creep Behavior of Near-Stoichiometric Polycrystalline Binary NiAl
NASA Technical Reports Server (NTRS)
Raj, S. V.
2002-01-01
New and published constant load creep and constant engineering strain rate data on near-stoichiometric binary NiAl in the intermediate temperature range 700 to 1300 K are reviewed. Both normal and inverse primary creep curves are observed depending on stress and temperature. Other characteristics relating to creep of NiAl involving grain size, stress and temperature dependence are critically examined and discussed. At stresses below 25 MPa and temperatures above 1000 K, a new grain boundary sliding mechanism was observed with n approx. 2, Qc approx. 100 kJ/ mol and a grain size exponent of about 2. It is demonstrated that Coble creep and accommodated grain boundary sliding models fail to predict the experimental creep rates by several orders of magnitude.
Magnon mode selective spin transport in compensated ferrimagnets
Cramer, Joel; Guo, Er -Jia; Geprags, Stephan; ...
2017-04-13
We investigate the generation of magnonic thermal spin currents and their mode selective spin transport across interfaces in insulating, compensated ferrimagnet/normal metal bilayer systems. The spin Seebeck effect signal exhibits a nonmonotonic temperature dependence with two sign changes of the detected voltage signals. Using different ferrimagnetic garnets, we demonstrate the universality of the observed complex temperature dependence of the spin Seebeck effect. To understand its origin, we systematically vary the interface between the ferrimagnetic garnet and the metallic layer, and by using different metal layers we establish that interface effects play a dominating role. They do not only modify themore » magnitude of the spin Seebeck effect signal but in particular also alter its temperature dependence. By varying the temperature, we can select the dominating magnon mode and we analyze our results to reveal the mode selective interface transmission probabilities for different magnon modes and interfaces. As a result, the comparison of selected systems reveals semiquantitative details of the interfacial coupling depending on the materials involved, supported by the obtained field dependence of the signal.« less
Magnon mode selective spin transport in compensated ferrimagnets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cramer, Joel; Guo, Er -Jia; Geprags, Stephan
We investigate the generation of magnonic thermal spin currents and their mode selective spin transport across interfaces in insulating, compensated ferrimagnet/normal metal bilayer systems. The spin Seebeck effect signal exhibits a nonmonotonic temperature dependence with two sign changes of the detected voltage signals. Using different ferrimagnetic garnets, we demonstrate the universality of the observed complex temperature dependence of the spin Seebeck effect. To understand its origin, we systematically vary the interface between the ferrimagnetic garnet and the metallic layer, and by using different metal layers we establish that interface effects play a dominating role. They do not only modify themore » magnitude of the spin Seebeck effect signal but in particular also alter its temperature dependence. By varying the temperature, we can select the dominating magnon mode and we analyze our results to reveal the mode selective interface transmission probabilities for different magnon modes and interfaces. As a result, the comparison of selected systems reveals semiquantitative details of the interfacial coupling depending on the materials involved, supported by the obtained field dependence of the signal.« less
Navaee-Ardeh, S; Mohammadi-Rovshandeh, J; Pourjoozi, M
2004-03-01
A normalized design was used to examine the influence of independent variables (alcohol concentration, cooking time and temperature) in the catalytic soda-ethanol pulping of rice straw on various mechanical properties (breaking length, burst, tear index and folding endurance) of paper sheets obtained from each pulping process. An equation of each dependent variable as a function of cooking variables (independent variables) was obtained by multiple non-linear regression using the least square method by MATLAB software for developing of empirical models. The ranges of alcohol concentration, cooking time and temperature were 40-65% (w/w), 150-180 min and 195-210 degrees C, respectively. Three-dimensional graphs of dependent variables were also plotted versus independent variables. The optimum values of breaking length, burst and tear index and folding endurance were 4683.7 (m), 30.99 (kN/g), 376.93 (mN m2/g) and 27.31, respectively. However, short cooking time (150 min), high ethanol concentration (65%) and high temperature (210 degrees C) could be used to produce papers with suitable burst and tear index. However, for papers with best breaking length and folding endurance low temperature (195 degrees C) was desirable. Differences between optimum values of dependent variables obtained by normalized design and experimental data were less than 20%.
Truncik, C J S; Huttema, W A; Turner, P J; Ozcan, S; Murphy, N C; Carrière, P R; Thewalt, E; Morse, K J; Koenig, A J; Sarrao, J L; Broun, D M
2013-01-01
CeCoIn₅ is a heavy fermion superconductor with strong similarities to the high-Tc cuprates, including quasi-two-dimensionality, proximity to antiferromagnetism and probable d-wave pairing arising from a non-Fermi-liquid normal state. Experiments allowing detailed comparisons of their electronic properties are of particular interest, but in most cases are difficult to realize, due to their very different transition temperatures. Here we use low-temperature microwave spectroscopy to study the charge dynamics of the CeCoIn₅ superconducting state. The similarities to cuprates, in particular to ultra-clean YBa₂Cu₃O(y), are striking: the frequency and temperature dependence of the quasiparticle conductivity are instantly recognizable, a consequence of rapid suppression of quasiparticle scattering below T(c); and penetration-depth data, when properly treated, reveal a clean, linear temperature dependence of the quasiparticle contribution to superfluid density. The measurements also expose key differences, including prominent multiband effects and a temperature-dependent renormalization of the quasiparticle mass.
NASA Technical Reports Server (NTRS)
Pham-Van-diep, Gerald C.; Erwin, Daniel A.
1989-01-01
Velocity distribution functions in normal shock waves in argon and helium are calculated using Monte Carlo direct simulation. These are compared with experimental results for argon at M = 7.18 and for helium at M = 1.59 and 20. For both argon and helium, the variable-hard-sphere (VHS) model is used for the elastic scattering cross section, with the velocity dependence derived from a viscosity-temperature power-law relationship in the way normally used by Bird (1976).
Sumi, Tomonari; Maruyama, Yutaka; Mitsutake, Ayori; Mochizuki, Kenji; Koga, Kenichiro
2018-02-05
Recently, we proposed a reference-modified density functional theory (RMDFT) to calculate solvation free energy (SFE), in which a hard-sphere fluid was introduced as the reference system instead of an ideal molecular gas. Through the RMDFT, using an optimal diameter for the hard-sphere reference system, the values of the SFE calculated at room temperature and normal pressure were in good agreement with those for more than 500 small organic molecules in water as determined by experiments. In this study, we present an application of the RMDFT for calculating the temperature and pressure dependences of the SFE for solute molecules in water. We demonstrate that the RMDFT has high predictive ability for the temperature and pressure dependences of the SFE for small solute molecules in water when the optimal reference hard-sphere diameter determined for each thermodynamic condition is used. We also apply the RMDFT to investigate the temperature and pressure dependences of the thermodynamic stability of an artificial small protein, chignolin, and discuss the mechanism of high-temperature and high-pressure unfolding of the protein. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Reentrant Resistive Behavior and Dimensional Crossover in Disordered Superconducting TiN Films.
Postolova, Svetlana V; Mironov, Alexey Yu; Baklanov, Mikhail R; Vinokur, Valerii M; Baturina, Tatyana I
2017-05-11
A reentrant temperature dependence of the normal state resistance often referred to as the N-shaped temperature dependence, is omnipresent in disordered superconductors - ranging from high-temperature cuprates to ultrathin superconducting films - that experience superconductor-to-insulator transition. Yet, despite the ubiquity of this phenomenon its origin still remains a subject of debate. Here we investigate strongly disordered superconducting TiN films and demonstrate universality of the reentrant behavior. We offer a quantitative description of the N-shaped resistance curve. We show that upon cooling down the resistance first decreases linearly with temperature and then passes through the minimum that marks the 3D-2D crossover in the system. In the 2D temperature range the resistance first grows with decreasing temperature due to quantum contributions and eventually drops to zero as the system falls into a superconducting state. Our findings demonstrate the prime importance of disorder in dimensional crossover effects.
A systematic review of body temperature variations in older people.
Lu, Shu-Hua; Leasure, Angela-Renee; Dai, Yu-Tzu
2010-01-01
The purpose of this systematic review was to determine the extent to which the research literature indicates body temperature norms in the geriatric population. The specific questions addressed were to examine normal body temperature values in persons 60 years of age and older; determine differences in temperature values depending on non-invasive measurement site and measurement device used; and, examine the degree and extent of temperature variability according to time of day and time of year. The traditional 'normal' temperature of 98.6 degrees F/37 degrees C may in fact be lower in older people due to the ageing process. Age-associated changes in vasomotor sweating function, skeletal muscle response, temperature perception and physical behaviours may influence the ability to maintain optimum temperature. A systematic literature review. A search of multiple databases yielded 22 papers which met inclusion criteria. Studies were included which focused on temperature measurement, sampled persons 60 years of age and older, collected data from non-invasive temperature measurement sites and which used a prospective study design. Studies were independently appraised using a structured appraisal format. Temperature normal values by site were rectal 98.8 degrees F/37.1 degrees C, ear-based 98.3 degrees F/36.8 degrees C, urine 97.6 degrees F/36.5 degrees C, oral 97.4 degrees F/36.3 degrees C and axillary 97.1 degrees F/36.2 degrees C. Temperature exhibited a 0.7 degrees F/0.4 degrees C diurnal and 0.2 degrees F/0.1 degrees C circannual variation. Synthesis of data indicated that normal body temperature values in older people by sites were rectal 0.7 degrees F/0.4 degrees C, ear-based 0.3 degrees F/0.2 degrees C, oral 1.2 degrees F/0.7 degrees C, axillary 0.6 degrees F/0.3 degrees C lower than adults' acceptable value from those traditionally found in nursing textbooks. Given the fact that normal body temperature values were consistently lower than values reported in the literature, clinicians may need to re-evaluate the point at which interventions for abnormal temperatures are initiated.
Temperature dependence of ice-on-rock friction at realistic glacier conditions
Savage, H.; Nettles, M.
2017-01-01
Using a new biaxial friction apparatus, we conducted experiments of ice-on-rock friction in order to better understand basal sliding of glaciers and ice streams. A series of velocity-stepping and slide–hold–slide tests were conducted to measure friction and healing at temperatures between −20°C and melting. Experimental conditions in this study are comparable to subglacial temperatures, sliding rates and effective pressures of Antarctic ice streams and other glaciers, with load-point velocities ranging from 0.5 to 100 µm s−1 and normal stress σn = 100 kPa. In this range of conditions, temperature dependences of both steady-state friction and frictional healing are considerable. The friction increases linearly with decreasing temperature (temperature weakening) from μ = 0.52 at −20°C to μ = 0.02 at melting. Frictional healing increases and velocity dependence shifts from velocity-strengthening to velocity-weakening behaviour with decreasing temperature. Our results indicate that the strength and stability of glaciers and ice streams may change considerably over the range of temperatures typically found at the ice–bed interface. This article is part of the themed issue ‘Microdynamics of ice’. PMID:28025297
Electromagnetic properties of proximity systems
NASA Astrophysics Data System (ADS)
Kresin, Vladimir Z.
1985-07-01
Magnetic screening in the proximity system Sα-Mβ, where Mβ is a normal metal N, semiconductor (semimetal), or a superconductor, is studied. Main attention is paid to the low-temperature region where nonlocality plays an important role. The thermodynamic Green's-function method is employed in order to describe the behavior of the proximity system in an external field. The temperature and thickness dependences of the penetration depth λ are obtained. The dependence λ(T) differs in a striking way from the dependence in usual superconductors. The strong-coupling effect is taken into account. A special case of screening in a superconducting film backed by a size-quantizing semimetal film is considered. The results obtained are in good agreement with experimental data.
Sign reversal of transformation entropy change in Co{sub 2}Cr(Ga,Si) shape memory alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Xiao, E-mail: xu@material.tohoku.ac.jp; Omori, Toshihiro; Kainuma, Ryosuke
2015-11-02
In situ X-ray diffraction (XRD) measurements and compression tests were performed on Co{sub 2}Cr(Ga,Si) shape memory alloys. The reentrant martensitic transformation behavior was directly observed during the in situ XRD measurements. The high-temperature parent phase and low-temperature reentrant parent phase were found to have a continuous temperature dependence of lattice parameter, therefore suggesting that they are the same phase in nature. Moreover, compression tests were performed on a parent-phase single crystal sample; an evolution from normal to inverse temperature dependence of critical stress for martensitic transformation was directly observed. Based on the Clausius-Clapeyron analysis, a sign reversal of entropy changemore » can be expected on the same alloy.« less
Electrical resistivity in Zr48Nb8Cu12Fe8Be24 glassy and crystallized alloys
NASA Astrophysics Data System (ADS)
Bai, H. Y.; Tong, C. Z.; Zheng, P.
2004-02-01
The electrical resistivity of Zr48Nb8Cu12Fe8Be24 bulk metallic glassy and crystallized alloys in the temperature range of 4.2-293 K is investigated. It is found that the resistivity in glassy and crystallized states shows opposite temperature coefficients. For the metallic glass, the resistivity shows a negative logarithmic dependence at temperatures below 16 K, whereas it has more normal behavior for the crystallized alloy. At higher temperatures, the resistivity in both glassy and crystallized alloys shows dependence upon both T and T2, but the signs of the T and T2 terms are opposite. The results are interpreted in terms of scattering from two-level tunneling states in glasses and the generalized Ziman diffraction model.
Normalized fluctuations, H2O vs n-hexane: Site-correlated percolation
NASA Astrophysics Data System (ADS)
Koga, Yoshikata; Westh, Peter; Sawamura, Seiji; Taniguchi, Yoshihiro
1996-08-01
Entropy, volume and the cross fluctuations were normalized to the average volume of a coarse grain with a fixed number of molecules, within which the local and instantaneous value of interest is evaluated. Comparisons were made between liquid H2O and n-hexane in the range from -10 °C to 120 °C and from 0.1 MPa to 500 MPa. The difference between H2O and n-hexane in temperature and pressure dependencies of these normalized fluctuations was explained in terms of the site-correlated percolation theory for H2O. In particular, the temperature increase was confirmed to reduce the hydrogen bond probability, while the pressure appeared to have little effect on the hydrogen bond probability. According to the Le Chatelier principle, however, the putative formation of ``ice-like'' patches at low temperatures due to the site-correlated percolation requirement is retarded by pressure increases. Thus, only in the limited region of low pressure (<300 MPa) and temperature (<60 °C), the fluctuating ice-like patches are considered to persist.
NASA Astrophysics Data System (ADS)
Ishii, Hajime; Ueno, Hiroaki; Ueda, Tetsuzo; Endoh, Tetsuo
2018-06-01
In this paper, the current–voltage (I–V) characteristics of a 600-V-class normally off GaN gate injection transistor (GIT) from 25 to 200 °C are analyzed, and it is revealed that the drain current of the GIT increases during high-temperature operation. It is found that the maximum drain current (I dmax) of the GIT is 86% higher than that of a conventional 600-V-class normally off GaN metal insulator semiconductor hetero-FET (MIS-HFET) at 150 °C, whereas the GIT obtains 56% I dmax even at 200 °C. Moreover, the mechanism of the drain current increase of the GIT is clarified by examining the relationship between the temperature dependence of the I–V characteristics of the GIT and the gate hole injection effect determined from the shift of the second transconductance (g m) peak of the g m–V g characteristic. From the above, the GIT is a promising device with enough drivability for future power switching applications even under high-temperature conditions.
NASA Astrophysics Data System (ADS)
Webb, R. A.
1998-03-01
A variety of experiments are discussed where, at low temperatures, it appears that the non-interacting picture of electrons in a Fermi liquid description of a mesoscopic sample is breaking down. Specifically, experiments on the temperature dependence of the phase-coherence time, energy relaxation rate, spin-flip scattering time, persistent currents in normal metals and transmission through a barrier in the fractional quantum Hall regime all display low-temperature properties which can not be accounted for in the independent electron picture.
Effective surface Debye temperature for NiMnSb(100) epitaxial films
NASA Astrophysics Data System (ADS)
Borca, C. N.; Komesu, Takashi; Jeong, Hae-kyung; Dowben, P. A.; Ristoiu, D.; Hordequin, Ch.; Pierre, J.; Nozières, J. P.
2000-07-01
The surface Debye temperature of the NiMnSb (100) epitaxial films has been obtained using low energy electron diffraction, inverse photoemission, and core-level photoemission. The normal dynamic motion of the (100) surface results in a value for the effective surface Debye temperature of 145±13 K. This is far smaller than the bulk Debye temperature of 312±5 K obtained from wave vector dependent inelastic neutron scattering. The large difference between these measures of surface and bulk dynamic motion indicates a soft and compositionally different (100) surface.
Anomalous proximity effect in an inhomogeneous disordered superconductor.
Escoffier, W; Chapelier, C; Hadacek, N; Villégier, J-C
2004-11-19
By combining very low temperature scanning tunneling microscopy and spectroscopy on a TiN film we have observed a nonuniform state comprising of superconducting (S) and normal (N) areas. The local density of states displays a spatial dependence between S and N different from the usual proximity effect. We conclude that mesoscopic fluctuations might play a major role in accordance with recent theories describing superconductor-normal-metal quantum transition.
NASA Astrophysics Data System (ADS)
Ryu, J. H.; Oh, D.; Cho, J.
2017-12-01
Global warming has been affecting the phenological and physiological conditions of crop plants due to heat stress. Thus, the scientific understanding of not only crop-yield change, but also growth progress during high temperature condition is necessary. In this study, growth response and yield of paddy rice depending on air temperature (Ta) has been studied in a Temperature Gradient Chamber (TGC) that is composed of higher Ta than actual Ta (ambient temperature). The results on imitating experiment of global warming provided the reduced production of crop by heat stress. Therefore, it is important to quickly detect the condition of a plant in order to minimize damage to heat stress on global warming. Phenological and physiological changes depending on Ta was detected using optical spectroscopy sensors because remote sensing is useful and efficient technology to monitor quickly and continually. Two vegetation indices, Normalized Difference Vegetation Index (NDVI) and Photochemical Reflectance Index (PRI), were applied to monitor paddy rice growth using hyperspectral and multispectral radiometer. Ta in TGC was gradually set from actual Ta + 0 ° to actual Ta + 3 °. The variations of NDVI and PRI were different during rice growth period, and also these patterns were changed depending on Ta condition. NDVI and PRI under +3 ° condition increase faster than ambient temperature. After heading stage, the values of NDVI and PRI were dropped. However, the NDVI and PRI of rice under heat stress were relatively slowly decreased. In addition, we found that the yield of rice decreased in the case of delayed drop patterns of NDVI and PRI after heading stage. Our results will be useful to understand crop plant conditions using vegetation index under global warming situations.
NASA Astrophysics Data System (ADS)
Min, Young-Mi; Kryjov, Vladimir N.; Oh, Sang Myeong; Lee, Hyun-Ju
2017-12-01
This paper assesses the real-time 1-month lead forecasts of 3-month (seasonal) mean temperature and precipitation on a monthly basis issued by the Asia-Pacific Economic Cooperation Climate Center (APCC) for 2008-2015 (8 years, 96 forecasts). It shows the current level of the APCC operational multi-model prediction system performance. The skill of the APCC forecasts strongly depends on seasons and regions that it is higher for the tropics and boreal winter than for the extratropics and boreal summer due to direct effects and remote teleconnections from boundary forcings. There is a negative relationship between the forecast skill and its interseasonal variability for both variables and the forecast skill for precipitation is more seasonally and regionally dependent than that for temperature. The APCC operational probabilistic forecasts during this period show a cold bias (underforecasting of above-normal temperature and overforecasting of below-normal temperature) underestimating a long-term warming trend. A wet bias is evident for precipitation, particularly in the extratropical regions. The skill of both temperature and precipitation forecasts strongly depends upon the ENSO strength. Particularly, the highest forecast skill noted in 2015/2016 boreal winter is associated with the strong forcing of an extreme El Nino event. Meanwhile, the relatively low skill is associated with the transition and/or continuous ENSO-neutral phases of 2012-2014. As a result the skill of real-time forecast for boreal winter season is higher than that of hindcast. However, on average, the level of forecast skill during the period 2008-2015 is similar to that of hindcast.
Edmunds, Peter J; Burgess, Scott C
2016-12-15
Body size has large effects on organism physiology, but these effects remain poorly understood in modular animals with complex morphologies. Using two trials of a ∼24 day experiment conducted in 2014 and 2015, we tested the hypothesis that colony size of the coral Pocillopora verrucosa affects the response of calcification, aerobic respiration and gross photosynthesis to temperature (∼26.5 and ∼29.7°C) and P CO 2 (∼40 and ∼1000 µatm). Large corals calcified more than small corals, but at a slower size-specific rate; area-normalized calcification declined with size. Whole-colony and area-normalized calcification were unaffected by temperature, P CO 2 , or the interaction between the two. Whole-colony respiration increased with colony size, but the slopes of these relationships differed between treatments. Area-normalized gross photosynthesis declined with colony size, but whole-colony photosynthesis was unaffected by P CO 2 , and showed a weak response to temperature. When scaled up to predict the response of large corals, area-normalized metrics of physiological performance measured using small corals provide inaccurate estimates of the physiological performance of large colonies. Together, these results demonstrate the importance of colony size in modulating the response of branching corals to elevated temperature and high P CO 2 . © 2016. Published by The Company of Biologists Ltd.
Levallois, J.; Tran, M. K.; Pouliot, D.; ...
2016-08-24
Here we performed an experimental study of the temperature and doping dependence of the energy-loss function of the bilayer and trilayer bismuth cuprates family. The primary aim is to obtain information on the energy stored in the Coulomb interaction between the conduction electrons, on the temperature dependence thereof, and on the change of Coulomb interaction when Cooper pairs are formed. We performed temperature-dependent ellipsometry measurements on several Bi 2Sr 2CaCu 2O 8₋x single crystals: underdoped with T c=60, 70, and 83 K; optimally doped with T c=91 K; overdoped with T c=84, 81, 70, and 58 K; as well asmore » optimally doped Bi 2Sr 2Ca 2Cu 3O 10+x with T c=110 K. Our first observation is that, as the temperature drops through T c, the loss function in the range up to 2 eV displays a change of temperature dependence as compared to the temperature dependence in the normal state. This effect at—or close to—T c depends strongly on doping, with a sign change for weak overdoping. The size of the observed change in Coulomb energy, using an extrapolation with reasonable assumptions about its q dependence, is about the same size as the condensation energy that has been measured in these compounds. Our results therefore lend support to the notion that the Coulomb energy is an important factor for stabilizing the superconducting phase. Lastly, because of the restriction to small momentum, our observations do not exclude a possible significant contribution to the condensation energy of the Coulomb energy associated with the region of q around (π,π).« less
NASA Astrophysics Data System (ADS)
Zhou, Zhen; Hernández-Pérez, Francisco E.; Shoshin, Yuriy; van Oijen, Jeroen A.; de Goey, Laurentius P. H.
2017-09-01
The influence of Soret diffusion on lean premixed flames propagating in hydrogen/air mixtures is numerically investigated with a detailed chemical and transport models at normal and elevated pressure and temperature. The Soret diffusion influence on the one-dimensional (1D) flame mass burning rate and two-dimensional (2D) flame propagating characteristics is analysed, revealing a strong dependency on flame stretch rate, pressure and temperature. For 1D flames, at normal pressure and temperature, with an increase of Karlovitz number from 0 to 0.4, the mass burning rate is first reduced and then enhanced by Soret diffusion of H2 while it is reduced by Soret diffusion of H. The influence of Soret diffusion of H2 is enhanced by pressure and reduced by temperature. On the contrary, the influence of Soret diffusion of H is reduced by pressure and enhanced by temperature. For 2D flames, at normal pressure and temperature, during the early phase of flame evolution, flames with Soret diffusion display more curved flame cells. Pressure enhances this effect, while temperature reduces it. The influence of Soret diffusion of H2 on the global consumption speed is enhanced at elevated pressure. The influence of Soret diffusion of H on the global consumption speed is enhanced at elevated temperature. The flame evolution is more affected by Soret diffusion in the early phase of propagation than in the long run due to the local enrichment of H2 caused by flame curvature effects. The present study provides new insights into the Soret diffusion effect on the characteristics of lean hydrogen/air flames at conditions that are relevant to practical applications, e.g. gas engines and turbines.
Thermal conductance of Nb thin films at sub-kelvin temperatures.
Feshchenko, A V; Saira, O-P; Peltonen, J T; Pekola, J P
2017-02-03
We determine the thermal conductance of thin niobium (Nb) wires on a silica substrate in the temperature range of 0.1-0.6 K using electron thermometry based on normal metal-insulator-superconductor tunnel junctions. We find that at 0.6 K, the thermal conductance of Nb is two orders of magnitude lower than that of Al in the superconducting state, and two orders of magnitude below the Wiedemann-Franz conductance calculated with the normal state resistance of the wire. The measured thermal conductance exceeds the prediction of the Bardeen-Cooper-Schrieffer theory, and demonstrates a power law dependence on temperature as T 4.5 , instead of an exponential one. At the same time, we monitor the temperature profile of the substrate along the Nb wire to observe possible overheating of the phonon bath. We show that Nb can be successfully used for thermal insulation in a nanoscale circuit while simultaneously providing an electrical connection.
Thermal conductance of Nb thin films at sub-kelvin temperatures
NASA Astrophysics Data System (ADS)
Feshchenko, A. V.; Saira, O.-P.; Peltonen, J. T.; Pekola, J. P.
2017-02-01
We determine the thermal conductance of thin niobium (Nb) wires on a silica substrate in the temperature range of 0.1-0.6 K using electron thermometry based on normal metal-insulator-superconductor tunnel junctions. We find that at 0.6 K, the thermal conductance of Nb is two orders of magnitude lower than that of Al in the superconducting state, and two orders of magnitude below the Wiedemann-Franz conductance calculated with the normal state resistance of the wire. The measured thermal conductance exceeds the prediction of the Bardeen-Cooper-Schrieffer theory, and demonstrates a power law dependence on temperature as T4.5, instead of an exponential one. At the same time, we monitor the temperature profile of the substrate along the Nb wire to observe possible overheating of the phonon bath. We show that Nb can be successfully used for thermal insulation in a nanoscale circuit while simultaneously providing an electrical connection.
McCormick, S.D.; Shrimpton, J.M.; Moriyama, S.; Bjornsson, Bjorn Thrandur
2002-01-01
Atlantic salmon (Salmo salar) juveniles were reared under simulated conditions of normal photoperiod (LDN) or short days (LD 9:15) and ambient temperature (AMB: normal temperature increases in April) or an advanced temperature cycle (ADV: temperature increases in February). Under both photoperiod conditions, the timing of increased and peak levels of gill Na+,K+-ATPase activity were not altered by temperature, although the rate of increase was initially greater under ADV. ADV/LD 9:15 resulted in peak gill Na+,K+-ATPase activity that was half of that seen under normal photoperiod and temperature conditions. Plasma growth hormone (GH) levels increased threefold in late March under ADV/LDN, but not under ADV/LD 9:15, indicating that there is a photoperiod-dependent effect of temperature on levels of this hormone. Plasma insulin-like growth factor I (IGF-I) increased in spring in all groups, with increases occurring significantly earlier in the ADV/LDN group. In each photoperiod condition, the advanced temperature cycle resulted in large decreases in plasma thyroxine (T4) levels in March, which subsequently recovered, whereas plasma 3,5,3???-triiodo-L-thyronine (T3) levels were not substantially affected by either photoperiod or temperature. There was no consistent pattern of change in plasma cortisol levels. The results do not provide support for the role of temperature as a zeitgeber, but do indicate that temperature has a role in the timing of smolting by affecting the rate of development and interacting with the photoperiod.
NASA Astrophysics Data System (ADS)
Mahajan, Sandeep; Haridas, Divya; Ali, S. T.; Munirathnam, N. R.; Sreenivas, K.; Thakur, O. P.; Prakash, Chandra
2014-10-01
In present study we have prepared ferroelectric BaZrxTi1-xO3 (x=0.05) ceramic by conventional solid state reaction route and studied its electrical properties as a function of temperature and frequency. X-ray diffraction (XRD) analysis shows single-phase formation of the compound with orthorhombic crystal structure at room temperature. Impedance and electric modulus spectroscopy analysis in the frequency range of 40 Hz-1 MHz at high temperature (200-600 °C) suggests two relaxation processes with different time constant are involved which are attributed to bulk and grain boundary effects. Frequency dependent dielectric plot at different temperature shows normal variation with frequency while dielectric loss (tanδ) peak was found to obey an Arrhenius law with activation energy of 1.02 eV. The frequency-dependent AC conductivity data were also analyzed in a wide temperature range. In present work we have studied the role of grain and grain boundaries on the electrical behaviour of Zr-doped BaTiO3 and their dependence on temperature and frequency by complex impedance and modulus spectroscopy (CIS) technique in a wide frequency (40 Hz-1 MHz) and high temperature range.
Length-dependent thermal transport in one-dimensional self-assembly of planar π-conjugated molecules
NASA Astrophysics Data System (ADS)
Tang, Hao; Xiong, Yucheng; Zu, Fengshuo; Zhao, Yang; Wang, Xiaomeng; Fu, Qiang; Jie, Jiansheng; Yang, Juekuan; Xu, Dongyan
2016-06-01
This work reports a thermal transport study in quasi-one-dimensional organic nanostructures self-assembled from conjugated planar molecules via π-π interactions. Thermal resistances of single crystalline copper phthalocyanine (CuPc) and perylenetetracarboxylic diimide (PTCDI) nanoribbons are measured via a suspended thermal bridge method. We experimentally observed the deviation from the linear length dependence for the thermal resistance of single crystalline β-phase CuPc nanoribbons, indicating possible subdiffusion thermal transport. Interestingly, a gradual transition to the linear length dependence is observed with the increase of the lateral dimensions of CuPc nanoribbons. The measured thermal resistance of single crystalline CuPc nanoribbons shows an increasing trend with temperature. However, the trend of temperature dependence of thermal resistance is reversed after electron irradiation, i.e., decreasing with temperature, indicating that the single crystalline CuPc nanoribbons become `amorphous'. Similar behavior is also observed for PTCDI nanoribbons after electron irradiation, proving that the electron beam can induce amorphization of single crystalline self-assembled nanostructures of planar π-conjugated molecules. The measured thermal resistance of the `amorphous' CuPc nanoribbon demonstrates a roughly linear dependence on the nanoribbon length, suggesting that normal diffusion dominates thermal transport.This work reports a thermal transport study in quasi-one-dimensional organic nanostructures self-assembled from conjugated planar molecules via π-π interactions. Thermal resistances of single crystalline copper phthalocyanine (CuPc) and perylenetetracarboxylic diimide (PTCDI) nanoribbons are measured via a suspended thermal bridge method. We experimentally observed the deviation from the linear length dependence for the thermal resistance of single crystalline β-phase CuPc nanoribbons, indicating possible subdiffusion thermal transport. Interestingly, a gradual transition to the linear length dependence is observed with the increase of the lateral dimensions of CuPc nanoribbons. The measured thermal resistance of single crystalline CuPc nanoribbons shows an increasing trend with temperature. However, the trend of temperature dependence of thermal resistance is reversed after electron irradiation, i.e., decreasing with temperature, indicating that the single crystalline CuPc nanoribbons become `amorphous'. Similar behavior is also observed for PTCDI nanoribbons after electron irradiation, proving that the electron beam can induce amorphization of single crystalline self-assembled nanostructures of planar π-conjugated molecules. The measured thermal resistance of the `amorphous' CuPc nanoribbon demonstrates a roughly linear dependence on the nanoribbon length, suggesting that normal diffusion dominates thermal transport. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr09043a
NASA Astrophysics Data System (ADS)
Khadzhai, G. Ya.; Vovk, R. V.; Vovk, N. R.; Kamchatnaya, S. N.; Dobrovolskiy, O. V.
2018-02-01
We reveal that the temperature dependence of the basal-plane normal-state electrical resistance of optimally doped YBa2Cu3O7-δ single crystals can be with great accuracy approximated within the framework of the model of s-d electron-phonon scattering. This requires taking into account the fluctuation conductivity whose contribution exponentially increases with decreasing temperature and decreases with an increase of oxygen deficiency. Room-temperature annealing improves the sample and, thus, increases the superconducting transition temperature. The temperature of the 2D-3D crossover decreases during annealing.
NASA Astrophysics Data System (ADS)
Khan, F.; Pilz, J.; Spöck, G.
2017-12-01
Spatio-temporal dependence structures play a pivotal role in understanding the meteorological characteristics of a basin or sub-basin. This further affects the hydrological conditions and consequently will provide misleading results if these structures are not taken into account properly. In this study we modeled the spatial dependence structure between climate variables including maximum, minimum temperature and precipitation in the Monsoon dominated region of Pakistan. For temperature, six, and for precipitation four meteorological stations have been considered. For modelling the dependence structure between temperature and precipitation at multiple sites, we utilized C-Vine, D-Vine and Student t-copula models. For temperature, multivariate mixture normal distributions and for precipitation gamma distributions have been used as marginals under the copula models. A comparison was made between C-Vine, D-Vine and Student t-copula by observational and simulated spatial dependence structure to choose an appropriate model for the climate data. The results show that all copula models performed well, however, there are subtle differences in their performances. The copula models captured the patterns of spatial dependence structures between climate variables at multiple meteorological sites, however, the t-copula showed poor performance in reproducing the dependence structure with respect to magnitude. It was observed that important statistics of observed data have been closely approximated except of maximum values for temperature and minimum values for minimum temperature. Probability density functions of simulated data closely follow the probability density functions of observational data for all variables. C and D-Vines are better tools when it comes to modelling the dependence between variables, however, Student t-copulas compete closely for precipitation. Keywords: Copula model, C-Vine, D-Vine, Spatial dependence structure, Monsoon dominated region of Pakistan, Mixture models, EM algorithm.
Microstrip patch antenna for simultaneous strain and temperature sensing
NASA Astrophysics Data System (ADS)
Mbanya Tchafa, F.; Huang, H.
2018-06-01
A patch antenna, consisting of a radiation patch, a dielectric substrate, and a ground plane, resonates at distinct fundamental frequencies that depend on the substrate dielectric constant and the dimensions of the radiation patch. Since these parameters change with the applied strain and temperature, this study investigates simultaneous strain and temperature sensing using a single antenna that has two fundamental resonant frequencies. The theoretical relationship between the antenna resonant frequency shifts, the temperature, and the applied strain was first established to guide the selection of the dielectric substrate, based on which an antenna sensor with a rectangular radiation patch was designed and fabricated. A tensile test specimen instrumented with the antenna sensor was subjected to thermo-mechanical tests. Experiment results validated the theoretical predictions that the normalized antenna resonant frequency shifts are linearly proportional to the applied strain and temperature changes. An inverse method was developed to determine the strain and temperature changes from the normalized antenna resonant frequency shifts, yielding measurement uncertainty of 0.4 °C and 17.22 μ \\varepsilon for temperature and strain measurement, respectively.
Frequency and temperature dependence of electrical breakdown at 21, 30, and 39 GHz.
Braun, H H; Döbert, S; Wilson, I; Wuensch, W
2003-06-06
A TeV-range e(+)e(-) linear collider has emerged as one of the most promising candidates to extend the high energy frontier of experimental elementary particle physics. A high accelerating gradient for such a collider is desirable to limit its overall length. Accelerating gradient is mainly limited by electrical breakdown, and it has been generally assumed that this limit increases with increasing frequency for normal-conducting accelerating structures. Since the choice of frequency has a profound influence on the design of a linear collider, the frequency dependence of breakdown has been measured using six exactly scaled single-cell cavities at 21, 30, and 39 GHz. The influence of temperature on breakdown behavior was also investigated. The maximum obtainable surface fields were found to be in the range of 300 to 400 MV/m for copper, with no significant dependence on either frequency or temperature.
Frequency and Temperature Dependence of Electrical Breakdown at 21, 30, and 39GHz
NASA Astrophysics Data System (ADS)
Braun, H. H.; Döbert, S.; Wilson, I.; Wuensch, W.
2003-06-01
A TeV-range e+e- linear collider has emerged as one of the most promising candidates to extend the high energy frontier of experimental elementary particle physics. A high accelerating gradient for such a collider is desirable to limit its overall length. Accelerating gradient is mainly limited by electrical breakdown, and it has been generally assumed that this limit increases with increasing frequency for normal-conducting accelerating structures. Since the choice of frequency has a profound influence on the design of a linear collider, the frequency dependence of breakdown has been measured using six exactly scaled single-cell cavities at 21, 30, and 39GHz. The influence of temperature on breakdown behavior was also investigated. The maximum obtainable surface fields were found to be in the range of 300 to 400 MV/m for copper, with no significant dependence on either frequency or temperature.
Black holes from large N singlet models
NASA Astrophysics Data System (ADS)
Amado, Irene; Sundborg, Bo; Thorlacius, Larus; Wintergerst, Nico
2018-03-01
The emergent nature of spacetime geometry and black holes can be directly probed in simple holographic duals of higher spin gravity and tensionless string theory. To this end, we study time dependent thermal correlation functions of gauge invariant observables in suitably chosen free large N gauge theories. At low temperature and on short time scales the correlation functions encode propagation through an approximate AdS spacetime while interesting departures emerge at high temperature and on longer time scales. This includes the existence of evanescent modes and the exponential decay of time dependent boundary correlations, both of which are well known indicators of bulk black holes in AdS/CFT. In addition, a new time scale emerges after which the correlation functions return to a bulk thermal AdS form up to an overall temperature dependent normalization. A corresponding length scale was seen in equal time correlation functions in the same models in our earlier work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pradhan, Tuhin; Gazi, Harun Al Rasid; Biswas, Ranjit
2009-08-07
Temperature dependence of the excited state intramolecular charge transfer reaction of 4-(1-azetidinyl)benzonitrile (P4C) in ethyl acetate (EA), acetonitrile (ACN), and ethanol at several concentrations of lithium perchlorate (LiClO{sub 4}) has been investigated by using the steady state and time resolved fluorescence spectroscopic techniques. The temperature range considered is 267-343 K. The temperature dependent spectral peak shifts and reaction driving force (-{Delta}G{sub r}) in electrolyte solutions of these solvents can be explained qualitatively in terms of interaction between the reactant molecule and ion-atmosphere. Time resolved studies indicate that the decay kinetics of P4C is biexponential, regardless of solvents, LiClO{sub 4} concentrations,more » and temperatures considered. Except at higher electrolyte concentrations in EA, reaction rates in solutions follow the Arrhenius-type temperature dependence where the estimated activation energy exhibits substantial electrolyte concentration dependence. The average of the experimentally measured activation energies in these three neat solvents is found to be in very good agreement with the predicted value based on data in room temperature solvents. While the rate constant in EA shows a electrolyte concentration induced parabolic dependence on reaction driving force (-{Delta}G{sub r}), the former in ethanol and ACN increases only linearly with the increase in driving force (-{Delta}G{sub r}). The data presented here also indicate that the step-wise increase in solvent reorganization energy via sequential addition of electrolyte induces the ICT reaction in weakly polar solvents to crossover from the Marcus inverted region to the normal region.« less
Pair-breaking mechanisms in superconductor—normal-metal—superconductor junctions
NASA Astrophysics Data System (ADS)
Yang, H. C.; Finnemore, D. K.
1984-08-01
The critical current density Jc has been measured for superconductor—normal-metal—superconductor (S-N-S) junctions over a wide range of temperature and composition in order to determine the depairing effects of magnetic impurities. Junctions, which are in a sandwich geometry with the N layer typically 600 nm thick, show well-defined diffraction patterns indicating that the junctions are of high quality. Below 4.2 K, the temperature dependence of Jc is found to follow a modified bridge theory based on the work of Makeev et al.
NASA Astrophysics Data System (ADS)
Anwar, Faizan; Bárdossy, András; Seidel, Jochen
2017-04-01
Estimating missing values in a time series of a hydrological variable is an everyday task for a hydrologist. Existing methods such as inverse distance weighting, multivariate regression, and kriging, though simple to apply, provide no indication of the quality of the estimated value and depend mainly on the values of neighboring stations at a given step in the time series. Copulas have the advantage of representing the pure dependence structure between two or more variables (given the relationship between them is monotonic). They rid us of questions such as transforming the data before use or calculating functions that model the relationship between the considered variables. A copula-based approach is suggested to infill discharge, precipitation, and temperature data. As a first step the normal copula is used, subsequently, the necessity to use non-normal / non-symmetrical dependence is investigated. Discharge and temperature are treated as regular continuous variables and can be used without processing for infilling and quality checking. Due to the mixed distribution of precipitation values, it has to be treated differently. This is done by assigning a discrete probability to the zeros and treating the rest as a continuous distribution. Building on the work of others, along with infilling, the normal copula is also utilized to identify values in a time series that might be erroneous. This is done by treating the available value as missing, infilling it using the normal copula and checking if it lies within a confidence band (5 to 95% in our case) of the obtained conditional distribution. Hydrological data from two catchments Upper Neckar River (Germany) and Santa River (Peru) are used to demonstrate the application for datasets with different data quality. The Python code used here is also made available on GitHub. The required input is the time series of a given variable at different stations.
NASA Astrophysics Data System (ADS)
Xu, Xiao; Nagasako, Makoto; Kataoka, Mitsuo; Umetsu, Rie Y.; Omori, Toshihiro; Kanomata, Takeshi; Kainuma, Ryosuke
2015-03-01
Electronic, magnetic, and thermodynamic properties of Co2Cr(Ga,Si) -based shape-memory alloys, which exhibit reentrant martensitic transformation (RMT) behavior, were studied experimentally. For electric resistivity (ER), an inverse (semiconductor-like) temperature dependence in the parent phase was found, along with anomalous behavior below its Curie temperature. A pseudobinary phase diagram was determined, which gives a "martensite loop" clearly showing the reentrant behavior. Differential scanning calorimetry and specific-heat measurements were used to derive the entropy change Δ S between martensite and parent phases. The temperature dependence of the derived Δ S was analyzed thermodynamically to confirm the appearances of both the RMT and normal martensitic transformation. Detailed studies on the specific heat in martensite and parent phases at low temperatures were also conducted.
Thermal Counterflow in a Periodic Channel with Solid Boundaries
NASA Astrophysics Data System (ADS)
Baggaley, Andrew W.; Laurie, Jason
2015-01-01
We perform numerical simulations of finite temperature quantum turbulence produced through thermal counterflow in superfluid He, using the vortex filament model. We investigate the effects of solid boundaries along one of the Cartesian directions, assuming a laminar normal fluid with a Poiseuille velocity profile, whilst varying the temperature and the normal fluid velocity. We analyze the distribution of the quantized vortices, reconnection rates, and quantized vorticity production as a function of the wall-normal direction. We find that the quantized vortex lines tend to concentrate close to the solid boundaries with their position depending only on temperature and not on the counterflow velocity. We offer an explanation of this phenomenon by considering the balance of two competing effects, namely the rate of turbulent diffusion of an isotropic tangle near the boundaries and the rate of quantized vorticity production at the center. Moreover, this yields the observed scaling of the position of the peak vortex line density with the mutual friction parameter. Finally, we provide evidence that upon the transition from laminar to turbulent normal fluid flow, there is a dramatic increase in the homogeneity of the tangle, which could be used as an indirect measure of the transition to turbulence in the normal fluid component for experiments.
Seo, Yu-Il; Choi, Woo-Jae; Ahmad, D; Kimura, Shin-Ichi; Kwon, Yong Seung
2018-06-05
We measured the optical reflectivity R(ω) for an underdoped (Ca 0.935 La 0.065 ) 10 (Pt 3 As 8 )(Fe 2 As 2 ) 5 single crystal and obtained the optical conductivity [Formula: see text] using the K-K transformation. The normal state [Formula: see text] at 30 K is well fitted by a Drude-Lorentz model with two Drude components (ω p1 = 1446 cm -1 and ω p2 = 6322 cm -1 ) and seven Lorentz components. Relative reflectometry was used to accurately determine the temperature dependence of the superconducting gap at various temperatures below T c . The results clearly show the opening of a superconducting gap with a weaker second gap structure; the magnitudes for the gaps are estimated from the generalized Mattis-Bardeen model to be Δ 1 = 30 and Δ 2 = 50 cm -1 , respectively, at T = 8 K, which both decrease with increasing temperature. The temperature dependence of the gaps was not consistent with one-band BCS theory but was well described by a two-band (hence, two gap) BCS model with interband interactions. The temperature dependence of the superfluid density is flat at low temperatures, indicating an s-wave full-gap superconducting state.
Hemoglobin Dynamics in Red Blood Cells: Correlation to Body Temperature
Stadler, A. M.; Digel, I.; Artmann, G. M.; Embs, J. P.; Zaccai, G.; Büldt, G.
2008-01-01
A transition in hemoglobin behavior at close to body temperature has been discovered recently by micropipette aspiration experiments on single red blood cells (RBCs) and circular dichroism spectroscopy on hemoglobin solutions. The transition temperature was directly correlated to the body temperatures of a variety of species. In an exploration of the molecular basis for the transition, we present neutron scattering measurements of the temperature dependence of hemoglobin dynamics in whole human RBCs in vivo. The data reveal a change in the geometry of internal protein motions at 36.9°C, at human body temperature. Above that temperature, amino acid side-chain motions occupy larger volumes than expected from normal temperature dependence, indicating partial unfolding of the protein. Global protein diffusion in RBCs was also measured and the findings compared favorably with theoretical predictions for short-time self-diffusion of noncharged hard-sphere colloids. The results demonstrated that changes in molecular dynamics in the picosecond time range and angstrom length scale might well be connected to a macroscopic effect on whole RBCs that occurs at body temperature. PMID:18708462
Hemoglobin dynamics in red blood cells: correlation to body temperature.
Stadler, A M; Digel, I; Artmann, G M; Embs, J P; Zaccai, G; Büldt, G
2008-12-01
A transition in hemoglobin behavior at close to body temperature has been discovered recently by micropipette aspiration experiments on single red blood cells (RBCs) and circular dichroism spectroscopy on hemoglobin solutions. The transition temperature was directly correlated to the body temperatures of a variety of species. In an exploration of the molecular basis for the transition, we present neutron scattering measurements of the temperature dependence of hemoglobin dynamics in whole human RBCs in vivo. The data reveal a change in the geometry of internal protein motions at 36.9 degrees C, at human body temperature. Above that temperature, amino acid side-chain motions occupy larger volumes than expected from normal temperature dependence, indicating partial unfolding of the protein. Global protein diffusion in RBCs was also measured and the findings compared favorably with theoretical predictions for short-time self-diffusion of noncharged hard-sphere colloids. The results demonstrated that changes in molecular dynamics in the picosecond time range and angstrom length scale might well be connected to a macroscopic effect on whole RBCs that occurs at body temperature.
Magnetic susceptibility in the normal phase of Bi2Sr2CaCu2O8+δ single crystals
NASA Astrophysics Data System (ADS)
Lopes, Lutiene F.; Peña, J. Paola; Schaf, Jacob; Tumelero, Milton A.; Vieira, Valdemar N.; Pureur, Paulo
2018-05-01
We report on measurements of the c-axis component of the magnetic susceptibility in the normal phase of several single crystal samples of the Bi2Sr2CaCu2O8+δ cuprate superconductor. These crystal were submitted to appropriate heat treatments so that the density of hole carriers could be varied in an extended region of the superconducting dome. In general, the measured susceptibility shows significant temperature dependence, which was attributed to the pseudogap phenomenon. The results were interpreted with basis on a phenomenological model that allows the determination of the pseudogap characteristic temperature T* as a function of the carrier density.
Reentrant resistive behavior and dimensional crossover in disordered superconducting TiN films
Postolova, Svetlana V.; Mironov, Alexey Yu.; Baklanov, Mikhail R.; ...
2017-05-11
A reentrant temperature dependence of the normal state resistance often referred to as the N-shaped temperature dependence, is omnipresent in disordered superconductors – ranging from high-temperature cuprates to ultrathin superconducting films – that experience superconductor-to-insulator transition. Yet, despite the ubiquity of this phenomenon its origin still remains a subject of debate. Here we investigate strongly disordered superconducting TiN films and demonstrate universality of the reentrant behavior. We offer a quantitative description of the N-shaped resistance curve. We show that upon cooling down the resistance first decreases linearly with temperature and then passes through the minimum that marks the 3D-2D crossovermore » in the system. In the 2D temperature range the resistance first grows with decreasing temperature due to quantum contributions and eventually drops to zero as the system falls into a superconducting state. As a result, our findings demonstrate the prime importance of disorder in dimensional crossover effects.« less
Critical current density and vortex pinning in tetragonal FeS 1 ₋ x Se x ( x = 0 , 0.06 )
Wang, Aifeng; Wu, Lijun; Ivanovski, V. N.; ...
2016-09-07
Here we report critical current density (J c) in tetragonal FeS single crystals, similar to iron-based superconductors with much higher superconducting critical temperatures (T c). The J c is enhanced three times by 6% Se doping. We observe scaling of the normalized vortex pinning force as a function of reduced field at all temperatures. Vortex pinning in FeS and FeS 0.94Se 0.06 shows contribution of core-normal surfacelike pinning. Lastly, reduced temperature dependence of J c indicates that dominant interaction of vortex cores and pinning centers is via scattering of charge carriers with reduced mean free path (δl), in contrast tomore » K xFe 2₋ySe 2 where spatial variations in T c (δT c) prevails.« less
The impact of climatic and non-climatic factors on land surface temperature in southwestern Romania
NASA Astrophysics Data System (ADS)
Roşca, Cristina Florina; Harpa, Gabriela Victoria; Croitoru, Adina-Eliza; Herbel, Ioana; Imbroane, Alexandru Mircea; Burada, Doina Cristina
2017-11-01
Land surface temperature is one of the most important parameters related to global warming. It depends mainly on soil type, discontinuous vegetation cover, or lack of precipitation. The main purpose of this paper is to investigate the relationship between high LST, synoptic conditions and air masses trajectories, vegetation cover, and soil type in one of the driest region in Romania. In order to calculate the land surface temperature and normalized difference vegetation index, five satellite images of LANDSAT missions 5 and 7, covering a period of 26 years (1986-2011), were selected, all of them collected in the month of June. The areas with low vegetation density were derived from normalized difference vegetation index, while soil types have been extracted from Corine Land Cover database. HYSPLIT application was employed to identify the air masses origin based on their backward trajectories for each of the five study cases. Pearson, logarithmic, and quadratic correlations were used to detect the relationships between land surface temperature and observed ground temperatures, as well as between land surface temperature and normalized difference vegetation index. The most important findings are: strong correlation between land surface temperature derived from satellite images and maximum ground temperature recorded in a weather station located in the area, as well as between areas with land surface temperature equal to or higher than 40.0 °C and those with lack of vegetation; the sandy soils are the most prone to high land surface temperature and lack of vegetation, followed by the chernozems and brown soils; extremely severe drought events may occur in the region.
Lamellar Thickness and Stretching Temperature Dependency of Cavitation in Semicrystalline Polymers
Wang, Yaotao; Jiang, Zhiyong; Fu, Lianlian; Lu, Ying; Men, Yongfeng
2014-01-01
Polybutene-1 (PB-1), a typical semicrystalline polymer, in its stable form I shows a peculiar temperature dependent strain-whitening behavior when being stretched at temperatures in between room temperature and melting temperature of the crystallites where the extent of strain-whitening weakens with the increasing of stretching temperature reaching a minima value followed by an increase at higher stretching temperatures. Correspondingly, a stronger strain-hardening phenomenon was observed at higher temperatures. The strain-whitening phenomenon in semicrystalline polymers has its origin of cavitation process during stretching. In this work, the effect of crystalline lamellar thickness and stretching temperature on the cavitation process in PB-1 has been investigated by means of combined synchrotron ultrasmall-angle and wide-angle X-ray scattering techniques. Three modes of cavitation during the stretching process can be identified, namely “no cavitation” for the quenched sample with the thinnest lamellae where only shear yielding occurred, “cavitation with reorientation” for the samples stretched at lower temperatures and samples with thicker lamellae, and “cavitation without reorientation” for samples with thinner lamellae stretched at higher temperatures. The mode “cavitation with reorientation” occurs before yield point where the plate-like cavities start to be generated within the lamellar stacks with normal perpendicular to the stretching direction due to the blocky substructure of the crystalline lamellae and reorient gradually to the stretching direction after strain-hardening. The mode of “cavitation without reorientation” appears after yield point where ellipsoidal shaped cavities are generated in those lamellae stacks with normal parallel to the stretching direction followed by an improvement of their orientation at larger strains. X-ray diffraction results reveal a much improved crystalline orientation for samples with thinner lamellae stretched at higher temperatures. The observed behavior of microscopic structural evolution in PB-1 stretched at different temperatures explains above mentioned changes in macroscopic strain-whitening phenomenon with increasing in stretching temperature and stress-strain curves. PMID:24820772
Tang, Ping-Han; Wu, Ten-Ming; Yen, Tsung-Wen; Lai, S K; Hsu, P J
2011-09-07
We perform isothermal Brownian-type molecular dynamics simulations to obtain the velocity autocorrelation function and its time Fourier-transformed power spectral density for the metallic cluster Ag(17)Cu(2). The temperature dependences of these dynamical quantities from T = 0 to 1500 K were examined and across this temperature range the cluster melting temperature T(m), which we define to be the principal maximum position of the specific heat is determined. The instantaneous normal mode analysis is then used to dissect the cluster dynamics by calculating the vibrational instantaneous normal mode density of states and hence its frequency integrated value I(j) which is an ensemble average of all vibrational projection operators for the jth atom in the cluster. In addition to comparing the results with simulation data, we look more closely at the entities I(j) of all atoms using the point group symmetry and diagnose their temperature variations. We find that I(j) exhibit features that may be used to deduce T(m), which turns out to agree very well with those inferred from the power spectral density and specific heat. © 2011 American Institute of Physics
Lilly, Laura E; Bonaventura, Joseph; Lipnick, Michael S; Block, Barbara A
2015-03-01
Hemoglobin-oxygen (Hb-O2) binding properties are central to aerobic physiology, and must be optimized for an animal's aerobic requirements and environmental conditions, both of which can vary widely with seasonal changes or acutely with diving. In the case of tunas, the matter is further complicated by large regional temperature differences between tissues within the same animal. This study investigates the effects of thermal acclimation on red blood cell Hb-O2 binding in Pacific bluefin tuna (T. orientalis) and yellowfin tuna (T. albacares) maintained in captive tanks at acclimation temperatures of 17°, 20° and 24 °C. Oxygen binding properties of acclimated tuna isolated red blood cells were examined under varying experimental temperatures (15°-35 °C) and CO2 levels (0%, 0.5% and 1.5%). Results for Pacific bluefin tuna produced temperature-independence at 17 °C- and 20 °C-acclimation temperatures and significant reverse temperature-dependence at 24 °C-acclimation in the absence of CO2, with instances of reverse temperature-dependence in 17 °C- and 24 °C-acclimations at 0.5% and 1.5% CO2. In contrast, yellowfin tuna produced normal temperature-dependence at each acclimation temperature at 0% CO2, temperature-independence at 0.5% and 1.5% CO2, and significant reverse temperature-dependence at 17 °C-acclimation and 0.5% CO2. Thermal acclimation of Pacific bluefin tuna increased O2 binding affinity of the 17 °C-acclimation group, and produced a significantly steeper oxygen equilibrium curve slope (nH) at 24 °C-acclimation compared to the other acclimation temperatures. We discuss the potential implications of these findings below. Copyright © 2014 Elsevier Inc. All rights reserved.
Rajendran, V; Begum, A Nishara; Azooz, M A; el Batal, F H
2002-11-01
Bioactive glasses of the system SiO2-Na2O-CaO-P2O5 have been prepared by the normal melting and annealing technique. The elastic moduli, attenuation, Vickers hardness, fracture toughness and fracture surface energy have been obtained using the known method at room temperature. The temperature dependence of elastic moduli and attenuation measurements have been extended over a wide range of temperature from 150 to 500 K. The SiO2 content dependence of velocities, attenuation, elastic moduli, and other parameters show an interesting observation at 45 wt% of SiO2 by exhibiting an anomalous behaviour. A linear relation is developed for Tg, which explores the influence of Na2O on SiO2-Na2O-CaO-P2O5 bioactive glasses. The measured hardness, fracture toughness and fracture surface energy show a linear relation with Young's modulus. It is also interesting to note that the observed results are functions of polymerisation and the number of non-bridging oxygens (NBO) prevailing in the network with change in SiO2 content. The temperature dependence of velocities, attenuation and elastic moduli show the existence of softening in the glass network structure as temperature increases.
Pressure induced change in the electronic state of Ta 4 Pd 3 Te 16
Jo, Na Hyun; Xiang, Li; Kaluarachchi, Udhara S.; ...
2017-04-24
Here, we present measurements of superconducting transition temperature, resistivity, magnetoresistivity, and temperature dependence of the upper critical field of Ta 4 Pd 3 Te 16 under pressures up to 16.4 kbar. All measured properties have an anomaly at ~ 2 $-$ 4 kbar pressure range; in particular there is a maximum in T c and upper critical field, H c2 ( 0 ), and minimum in low temperature, normal state resistivity. Qualitatively, the data can be explained considering the density of state at the Fermi level as a dominant parameter.
Far-infrared spectra of acetanilide revisited
NASA Astrophysics Data System (ADS)
Spire, A.; Barthes, M.; Kellouai, H.; De Nunzio, G.
2000-03-01
A new investigation of the temperature dependence of the far-infrared spectra of acetanilide and some isotopomers is presented. Four absorption bands are considered at 31, 42, 64, and 80 cm-1, and no significant change of their integrated intensity is observed when reducing the temperature. The temperature induced frequency shift values and other properties of these bands are consistent with an assignment as anharmonic lattice phonons. These results rule out the assignment of the 64, 80, and 106 cm-1 bands as normal modes of the polaronic excitation, as previously suggested.
Mondal, Sabyasachi; Haroun, Nageeb A. H.; Sibanda, Precious
2015-01-01
In this paper, the magnetohydrodynamic (MHD) axisymmetric stagnation-point flow of an unsteady and electrically conducting incompressible viscous fluid in with temperature dependent thermal conductivity, thermal radiation and Navier slip is investigated. The flow is due to a shrinking surface that is shrunk axisymmetrically in its own plane with a linear velocity. The magnetic field is imposed normally to the sheet. The model equations that describe this fluid flow are solved by using the spectral relaxation method. Here, heat transfer processes are discussed for two different types of wall heating; (a) a prescribed surface temperature and (b) a prescribed surface heat flux. We discuss and evaluate how the various parameters affect the fluid flow, heat transfer and the temperature field with the aid of different graphical presentations and tabulated results. PMID:26414006
Structure and optical properties of evaporated films of the Cr- and V-group metals
NASA Technical Reports Server (NTRS)
Nestell, J. E., Jr.; Christy, R. W.; Cohen, M. H.; Ruben, G. C.
1980-01-01
Thin films of Cr, Mo, and W rapidly evaporated in high vacuum (5 x 10 to the -7th torr) onto room-temperature substrates show anomalously low reflectance (compared to bulk samples). From electron and X-ray diffraction and electron microscopy, the normal bcc crystal structure is found, but with very fine grains. Columnar grains about 100 A in diameter were separated by a less dense grain-boundary network about 10-A wide. The measured optical conductivity agrees with an inhomogeneous-medium model that assumes the normal crystalline conductivity for the grain interiors, with model parameters that correlate to the observed columnar grain size. In contrast, V and Nb films rapidly evaporated onto room-temperature substrates have the reflectance of bulk crystalline material. On liquid-nitrogen temperature substrates, however, V and Nb have normal bcc crystal structure but with small flat-plate grains, and the same model, with appropriate parameters, accounts for the optical conductivity. The difference between these two groups apparently depends on residual gases segregated at the grain boundaries in the Cr-group films.
Dielectric behavior and AC conductivity of Cr doped α-Mn2O3
NASA Astrophysics Data System (ADS)
Chandra, Mohit; Yadav, Satish; Singh, K.
2018-05-01
The complex dielectric behavior of polycrystalline α-Mn2-xCrxO3 (x = 0.10) has been investigated isothermally at wide frequency range (4Hz-1 MHz) at different temperatures (300-390K). The dielectric spectroscopy results have been discussed in different formulism like dielectric constant, impedance and ac conductivity. The frequency dependent dielectric loss (tanδ) exhibit a clear relaxation behavior in the studied temperature range. The relaxation frequency increases with increasing temperature. These results are fitted using Arrhenius equation which suggest thermally activated process and the activation energy is 0.173±0.0024 eV. The normalized tanδ curves at different temperatures merge as a single master curve which indicate that the relaxation process follow the similar relaxation dynamics in the studied temperature range. Further, the dielectric relaxation follows non-Debye behavior. The impedance results inference that the grain boundary contribution dominate at lower frequency whereas grain contribution appeared at higher frequencies and exhibit strong temperature dependence. The ac conductivity data shows that the ac conductivity increases with increasing temperature which corroborate the semiconducting nature of the studied sample.
Temperature-dependent photoluminescence study of InP/ZnS quantum dots
NASA Astrophysics Data System (ADS)
Thuy Pham, Thi; Tran, Thi Kim Chi; Liem Nguyen, Quang
2011-06-01
This paper reports on the temperature-dependent photoluminescence of InP/ZnS quantum dots under 532 nm excitation, which is above the InP transition energy but well below that of ZnS. The overall photoluminescence spectra show two spectral components. The higher-energy one (named X) is assigned to originate from the excitonic transition; while the low-energy spectral component (named I) is normally interpreted as resulting from lattice imperfections in the crystalline structure of InP/ZnS quantum dots (QDs). Peak positions of both the X and I emissions vary similarly with increasing temperature and the same as the InP bandgap narrowing with temperature. In the temperature range from 15 to 80 K, the ratio of the integrated intensity from the X and the I emissions decreases gradually and then this ratio increases fast at temperatures higher than 80 K. This could result from a population of charge carriers in the lattice imperfection states at a temperature below 80 K to increase the I emission but then with these charge carriers being released to contribute to the X emission.
Thermal conductance of Nb thin films at sub-kelvin temperatures
Feshchenko, A. V.; Saira, O.-P.; Peltonen, J. T.; Pekola, J. P.
2017-01-01
We determine the thermal conductance of thin niobium (Nb) wires on a silica substrate in the temperature range of 0.1–0.6 K using electron thermometry based on normal metal-insulator-superconductor tunnel junctions. We find that at 0.6 K, the thermal conductance of Nb is two orders of magnitude lower than that of Al in the superconducting state, and two orders of magnitude below the Wiedemann-Franz conductance calculated with the normal state resistance of the wire. The measured thermal conductance exceeds the prediction of the Bardeen-Cooper-Schrieffer theory, and demonstrates a power law dependence on temperature as T4.5, instead of an exponential one. At the same time, we monitor the temperature profile of the substrate along the Nb wire to observe possible overheating of the phonon bath. We show that Nb can be successfully used for thermal insulation in a nanoscale circuit while simultaneously providing an electrical connection. PMID:28155895
Surface patterning of GaAs under irradiation with very heavy polyatomic Au ions
NASA Astrophysics Data System (ADS)
Bischoff, L.; Böttger, R.; Heinig, K.-H.; Facsko, S.; Pilz, W.
2014-08-01
Self-organization of surface patterns on GaAs under irradiation with heavy polyatomic Au ions has been observed. The patterns depend on the ion mass, and the substrate temperature as well as the incidence angle of the ions. At room temperature, under normal incidence the surface remains flat, whereas above 200 °C nanodroplets of Ga appear after irradiation with monatomic, biatomic as well as triatomic Au ions of kinetic energies in the range of 10-30 keV per atom. In the intermediate temperature range of 100-200 °C meander- and dot-like patterns form, which are not related to Ga excess. Under oblique ion incidence up to 45° from the surface normal, at room temperature the surface remains flat for mon- and polyatomic Au ions. For bi- and triatomic ions in the range of 60° ≤ α ≤ 70° ripple patterns have been found, which become shingle-like for α ≥ 80°, whereas the surface remains flat for monatomic ions.
Frequency and Thermal Behavior of Acoustic Absorption in ɛ-GaSe Crystals
NASA Astrophysics Data System (ADS)
Dzhafarova, S. Z.
2018-04-01
The paper presents results of measuring acoustic absorption in ɛ-GaSe crystals. The absorption of a longitudinal wave which propagates normal to the crystal layers, quadratically depends on frequency. However, it does not depend on temperature, i.e. it displays an Akhiezer behavior although its absolute value considerably exceeds the expected. The analysis of the frequency and thermal behavior of absorption of piezoelectric waves propagating along the layers, includes the deduction of contribution made by the interaction between waves and charge carriers. This analysis shows the linear dependence between the lattice absorption of these waves and the frequency. The linear frequency and weak temperature dependences of the acoustic absorption characterize the additional ultra-Akhiezer absorption in glasses. In our case, it can be caused by various polytypes forming in GaSe crystals which differ merely in a mutual arrangement of layers.
In situ measurement of gas composition changes in radio frequency plasmas using a quartz sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Atsushi; Nonaka, Hidehiko
2009-09-15
A simple method using a quartz sensor (Q-sensor) was developed to observe gas composition changes in radio frequency (rf) plasmas. The output depends on the gases' absolute pressure, molecular weight, and viscosity. The pressure-normalized quartz sensor output depends only on the molecular weight and viscosity of the gas. Consequently, gas composition changes can be detected in the plasmas if a sensor can be used in the plasmas. Influences imparted by the plasmas on the sensor, such as those by reactive particles (e.g., radicals and ions), excited species, electrons, temperature, and electric potentials during measurements were investigated to test the applicabilitymore » of this quartz sensor measurement to plasma. The Q-sensor measurement results for rf plasmas with argon, hydrogen, and their mixtures are reproducible, demonstrating that the Q-sensor measurement is applicable for plasmas. In this work, pressure- and temperature-normalized Q-sensor output (NQO) were used to obtain the gas composition information of plasma. Temperature-normalization of the Q-sensor output enabled quartz sensor measurements near plasma electrodes, where the quartz sensor temperature increases. The changes in NQO agreed with results obtained by gas analysis using a quadrupole mass spectrometer. Results confirmed that the change in NQO is mainly attributable to changes in the densities and kinds of gas molecules in the plasma gas phase, not by other extrinsic influences of plasma. For argon, hydrogen, and argon-hydrogen plasmas, these changes correspond to reduction in nitrogen, production of carbon monoxide, and dissociation of hydrogen molecules, respectively. These changes in NQO qualitatively and somewhat quantitatively agreed with results obtained using gas analysis, indicting that the measurement has a potential application to obtain the gas composition in plasmas without disturbing industrial plasma processes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benabbas, Abdelkrim; Salna, Bridget; Sage, J. Timothy
2015-03-21
Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical “gating” distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotopemore » effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working near room temperature. This expression also holds when a broad protein conformational distribution of D-A equilibrium distances dominates the spread of the D-A vibrational wavefunction.« less
Benabbas, Abdelkrim; Salna, Bridget; Sage, J Timothy; Champion, Paul M
2015-03-21
Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical "gating" distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotope effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working near room temperature. This expression also holds when a broad protein conformational distribution of D-A equilibrium distances dominates the spread of the D-A vibrational wavefunction.
Influence of disorder on the superconducting critical temperature in indium-opal nanocomposites
NASA Astrophysics Data System (ADS)
Zakharchuk, I.; Januzaj, A.; Mikhailin, N. Yu.; Traito, K. B.; Chernyaev, A. V.; Romanov, S. G.; Safonchik, M.; Shamshur, D. V.; Lähderanta, E.
2018-06-01
Transport properties of bulk indium-opal and indium-porous glass superconducting nanocomposites possessing moderate and strong disorder are investigated. A strongly nonmonotonous dependence of the global critical temperature Tc versus normal state conductivity of samples is found. The maximum, which is observed at moderate disorder, has Tc higher than that of clean bulk indium. The increasing part can be explained by the Eliashberg equations with disorder and an additional mechanism of interaction between superconducting and dielectric granules. The descending part of the maximum at higher disorder can be explained by the increasing of long-range Coulomb repulsion due to diffusion of charges. Negative slope in magnetic field dependence of resistivity and a peak in the temperature dependence of resistivity, observed in the sample near the proximity to the disorder-induced superconductor-insulator transition (SIT). A large difference between the onset temperature of superconducting fluctuations, Tcon , and global critical temperature Tc is found and considered in the framework of the weak multifractal theory. Slow time-logarithmic relaxation of the resistivity between Tc and Tcon is observed, which assumes existence of the precursor state near the SIT. This unusual state is discussed in the scope of the many-body localization theory.
NASA Astrophysics Data System (ADS)
Marchenko, I. G.; Marchenko, I. I.; Zhiglo, A. V.
2018-01-01
We present a study of the diffusion enhancement of underdamped Brownian particles in a one-dimensional symmetric space-periodic potential due to external symmetric time-periodic driving with zero mean. We show that the diffusivity can be enhanced by many orders of magnitude at an appropriate choice of the driving amplitude and frequency. The diffusivity demonstrates abnormal (decreasing) temperature dependence at the driving amplitudes exceeding a certain value. At any fixed driving frequency Ω normal temperature dependence of the diffusivity is restored at low enough temperatures, T
Decoherence induced deformation of the ground state in adiabatic quantum computation.
Deng, Qiang; Averin, Dmitri V; Amin, Mohammad H; Smith, Peter
2013-01-01
Despite more than a decade of research on adiabatic quantum computation (AQC), its decoherence properties are still poorly understood. Many theoretical works have suggested that AQC is more robust against decoherence, but a quantitative relation between its performance and the qubits' coherence properties, such as decoherence time, is still lacking. While the thermal excitations are known to be important sources of errors, they are predominantly dependent on temperature but rather insensitive to the qubits' coherence. Less understood is the role of virtual excitations, which can also reduce the ground state probability even at zero temperature. Here, we introduce normalized ground state fidelity as a measure of the decoherence-induced deformation of the ground state due to virtual transitions. We calculate the normalized fidelity perturbatively at finite temperatures and discuss its relation to the qubits' relaxation and dephasing times, as well as its projected scaling properties.
Decoherence induced deformation of the ground state in adiabatic quantum computation
Deng, Qiang; Averin, Dmitri V.; Amin, Mohammad H.; Smith, Peter
2013-01-01
Despite more than a decade of research on adiabatic quantum computation (AQC), its decoherence properties are still poorly understood. Many theoretical works have suggested that AQC is more robust against decoherence, but a quantitative relation between its performance and the qubits' coherence properties, such as decoherence time, is still lacking. While the thermal excitations are known to be important sources of errors, they are predominantly dependent on temperature but rather insensitive to the qubits' coherence. Less understood is the role of virtual excitations, which can also reduce the ground state probability even at zero temperature. Here, we introduce normalized ground state fidelity as a measure of the decoherence-induced deformation of the ground state due to virtual transitions. We calculate the normalized fidelity perturbatively at finite temperatures and discuss its relation to the qubits' relaxation and dephasing times, as well as its projected scaling properties. PMID:23528821
Impact of impurities on zonal flow driven by trapped electron mode turbulence
NASA Astrophysics Data System (ADS)
Guo, Weixin; Wang, Lu; Zhuang, Ge
2017-12-01
The impact of impurities on the generation of zonal flow (ZF) driven by collisonless trapped electron mode turbulence in deuterium (D)-tritium (T) plasmas is investigated. An expression for ZF growth rate with impurities is derived by balancing the ZF potential shielded by polarization effects and the ZF modulated radial turbulent current. Then, it is shown that the maximum normalized ZF growth rate is reduced by the presence of fully ionized non-trace light impurities with relatively flat density profile, and slightly reduced by highly ionized trace tungsten, while the maximum normalized ZF growth rate can be enhanced by fully ionized non-trace light impurities with relatively steep density profile. In particular, the effects of high temperature helium from D-T reaction on ZF depend on the temperature ratio between electrons and high temperature helium. The possible relevance of our findings to recent experimental results and future burning plasmas is also discussed.
Magnetic Exchange Coupling in Ferromagnetic/Superconducting/Ferromagnetic Multilayers
NASA Astrophysics Data System (ADS)
de Melo, C. A. R. Sa
2001-03-01
The possibility of magnetic exchange coupling between ferromagnets (F) separated by superconductor (S) spacers in F/S/F multilayers is analysed theoretically [1,2]. Ideal systems for the observation of magnetic coupling through superconductors are complex oxide multilayers consisting of Colossal Magneto-Resistance (CMR) Ferromagnets and High Critical Temperature Cuprate Superconductors. For this coupling to occur, three "prima facie" conditions need to be satisfied. First, an indirect exchange coupling between the ferromagnets must exist when the superconductor is in its normal state. Second, superconductivity must not be destroyed due to the proximity of ferromagnetic boundaries. Third, roughness of the F/S interfaces must be small. Under these conditions, when the superconductor is cooled below its critical temperature T_c, the magnetic coupling changes. The appearance of the superconducting gap introduces a new length scale (the coherence length of the superconductor) and modifies the temperature dependence of the indirect exchange coupling existent in the normal state. The magnetic coupling is oscillatory both above and below T_c, as well as strongly temperature-dependent. However at low temperatures the indirect exchange coupling decay length is controlled by the coherence length of the superconductor, while at temperatures close to and above Tc the magnetic coupling decay length is controlled by the thermal length. [I would like to thank the Georgia Institute of Technology, NSF (Grant No. DMR-9803111) and NATO (Grant No. CRG-972261) for financial support.] [1] C. A. R. Sa de Melo, Phys. Rev. Lett. 79, 1933 (1997). [2] C. A. R. Sa de Melo, Phys. Rev. B 62, 12303 (2000).
Thermodynamics of the relativistic Fermi gas in D dimensions
NASA Astrophysics Data System (ADS)
Sevilla, Francisco J.; Piña, Omar
2017-09-01
The influence of spatial dimensionality and particle-antiparticle pair production on the thermodynamic properties of the relativistic Fermi gas, at finite chemical potential, is studied. Resembling a "phase transition", qualitatively different behaviors of the thermodynamic susceptibilities, namely the isothermal compressibility and the specific heat, are markedly observed at different temperature regimes as function of the system dimensionality and of the rest mass of the particles. A minimum in the temperature dependence of the isothermal compressibility marks a characteristic temperature, in the range of tenths of the Fermi temperature, at which the system transit from a "normal" phase, to a phase where the gas compressibility grows as a power law of the temperature.
Infrared absorption spectra of molecular crystals: Possible evidence for small-polaron formation?
NASA Astrophysics Data System (ADS)
Pržulj, Željko; Čevizović, Dalibor; Zeković, Slobodan; Ivić, Zoran
2008-09-01
The temperature dependence of the position of the so-called anomalous band peaked at 1650cm in the IR-absorption spectrum of crystalline acetanilide (ACN) is theoretically investigated within the small-polaron theory. Its pronounced shift towards the position of the normal band is predicted with the rise of temperature. Interpretation of the IR-absorption spectra in terms of small-polaron model has been critically assessed on the basis of these results.
Tone, Takahiro; Takeuchi, Ari; Makino, Osamu
2012-01-01
In the absence of viral single-stranded DNA binding protein gp5, Bacillus subtilis phage φ29 failed to grow and to replicate its genome at 45 °C, while it grew and replicated normally at 30 °C and 42 °C. This indicates that gp5 is dispensable for φ29 DNA replication at 42 °C and lower temperatures.
Brauchi, Sebastian; Orio, Patricio; Latorre, Ramon
2004-01-01
The cold and menthol receptor, TRPM8, also designated CMR1, is a member of the transient receptor potential (TRP) family of excitatory ion channels. TRPM8 is a channel activated by cold temperatures, voltage, and menthol. In this study, we characterize the cold- and voltage-induced activation of TRPM8 channel in an attempt to identify the temperature- and voltage-dependent components involved in channel activation. Under equilibrium conditions, decreasing temperature has two effects. (i) It shifts the normalized conductance vs. voltage curves toward the left, along the voltage axis. This effect indicates that the degree of order is higher when the channel is in the open configuration. (ii) It increases the maximum channel open probability, suggesting that temperature affects both voltage-dependent and -independent pathways. In the temperature range between 18°C and 25°C, large changes in enthalpy (ΔH = -112 kcal/mol) and entropy (ΔS = -384 cal/mol K) accompany the activation process. The Q10 calculated in the same temperature range is 24. This thermodynamic analysis strongly suggests that the process of opening involves large conformational changes of the channel-forming protein. Therefore, the highly temperature-dependent transition between open and closed configurations is possible because enthalpy and entropy are both large and compensate each other. Our data also demonstrate that temperature and voltage interact allosterically to enhance channel opening. PMID:15492228
Grim, Jeffrey M; Simonik, Elizabeth A; Semones, Molly C; Kuhn, Donald E; Crockett, Elizabeth L
2013-02-01
Cold temperature generally induces an enhancement of oxidative capacities, a greater content of intracellular lipids, and a remodeling of lipids in biological membranes. These physiological responses may pose a heightened risk of lipid peroxidation (LPO), while warm temperature could result in greater risk of LPO since rates involving reactive oxygen species and LPO will be elevated. The current study examines responses of the glutathione system of antioxidant defense after temperature acclimation. We measured total glutathione (tGSH), and protein levels of GPx1, GPx4, and GST (cardiac and skeletal muscles), and enzymatic activity (skeletal muscle) of glutathione-dependent antioxidants (GPx, GPx4, and GST) in tissues from striped bass (Morone saxatilis) acclimated for six weeks to 7 °C or 25 °C. tGSH of cardiac muscle from cold-acclimated animals was 1.2-times higher than in warm-bodied counterparts, but unchanged with temperature acclimation in skeletal muscle. A second low molecular weight antioxidant, ascorbate was 1.4- and 1.5-times higher in cardiac and skeletal muscle, respectively in warm- than cold-acclimated animals. Despite 1.2-times higher oxidative capacities (as indicated by citrate synthase activity), in skeletal muscle from cold- versus warm-acclimated fish, levels and activities of antioxidant enzymes were similar between acclimation groups. Lipid peroxidation products (as indicated by TBARS), normalized to tissue wet weight, were more than 2-times higher in skeletal muscle from cold- than warm-acclimated animals, however, when normalized to phospholipid content there was no statistical difference between acclimation groups. Our results demonstrate that the physiological changes, associated with acclimation to low temperature in the eurythermal striped bass, are not accompanied by an enhanced antioxidant defense in the glutathione-dependent system. Copyright © 2012 Elsevier Inc. All rights reserved.
Temperature-dependent modulation of regional lymphatic contraction frequency and flow.
Solari, Eleonora; Marcozzi, Cristiana; Negrini, Daniela; Moriondo, Andrea
2017-11-01
Lymph drainage and propulsion are sustained by an extrinsic mechanism, based on mechanical forces acting from the surrounding tissues against the wall of lymphatic vessels, and by an intrinsic mechanism attributable to active spontaneous contractions of the lymphatic vessel muscle. Despite being heterogeneous, the mechanisms underlying the generation of spontaneous contractions share a common biochemical nature and are thus modulated by temperature. In this study, we challenged excised tissues from rat diaphragm and hindpaw, endowed with spontaneously contracting lymphatic vessels, to temperatures from 24°C (hindpaw) or 33°C (diaphragmatic vessels) to 40°C while measuring lymphatic contraction frequency ( f c ) and amplitude. Both vessel populations displayed a sigmoidal relationship between f c and temperature, each centered around the average temperature of surrounding tissue (36.7 diaphragmatic and 32.1 hindpaw lymphatics). Although the slope factor of the sigmoidal fit to the f c change of hindpaw vessels was 2.3°C·cycles -1 ·min -1 , a value within the normal range displayed by simple biochemical reactions, the slope factor of the diaphragmatic lymphatics was 0.62°C·cycles -1 ·min -1 , suggesting the added involvement of temperature-sensing mechanisms. Lymph flow calculated as a function of temperature confirmed the relationship observed on f c data alone and showed that none of the two lymphatic vessel populations would be able to adapt to the optimal working temperature of the other tissue district. This poses a novel question whether lymphatic vessels might not adapt their function to accommodate the change if exposed to a surrounding temperature, which is different from their normal condition. NEW & NOTEWORTHY This study demonstrates to what extent lymphatic vessel intrinsic contractility and lymph flow are modulated by temperature and that this modulation is dependent on the body district that the vessels belong to, suggesting a possible functional misbehavior should lymphatic vessels be exposed to a chronically different temperature. Copyright © 2017 the American Physiological Society.
Anisotropic thermal conductivity in carbon honeycomb
NASA Astrophysics Data System (ADS)
Chen, Xue-Kun; Liu, Jun; Du, Dan; Xie, Zhong-Xiang; Chen, Ke-Qiu
2018-04-01
Carbon honeycomb, a new kind of 3D carbon allotrope experimentally synthesized recently, has received much attention for its fascinating applications in electronic device and energy storage. In the present work, we perform equilibrium molecular dynamics (EMD) to study the thermal transport properties of carbon honeycombs with different chirality. It is found that the thermal conductivity along the honeycomb axis ({κx} ) is three times larger than that normal to the axis ({κz} ), which shows strong anisotropy reflecting their geometric anisotropy. Lattice dynamics calculations reveal that this anisotropy stems from the orientation-dependent phonon group velocities. Moreover, when ambient temperature (T ) increases from 200 K to 800 K, the {{T}-1} dependence of κ is observed due to the enhanced Umklapp scattering. The detailed phonon spectra analyses indicate phonon group velocities are insensitive to the variation of ambient temperature, and the temperature dependence of the relaxation times of low-frequency phonons (<20 THz) follows ∼ {{T}-1} behavior. Our results have a certain guiding significance to develop carbon honeycomb for effective thermal channeling devices.
Temperature dependence of positron annihilation parameters in Tl-Ba-Ca-Cu-O superconductors
NASA Astrophysics Data System (ADS)
Sundar, C. S.; Bharathi, A.; Ching, W. Y.; Jean, Y. C.; Hor, P. H.; Meng, R. L.; Huang, Z. J.; Chu, C. W.
1990-08-01
The results of positron lifetime and Doppler broadened line-shape parameter measurements as a function of temperature, across Tc, in the Tl-Ba-Ca-Cu-O superconductors are presented. The bulk lifetime in the normal state is found to decrease with the increase in the number of CuO2 layers. Different temperature dependencies of the annihilation parameters are observed in the various Tl systems containing different numbers of CuO2 layers. In the Tl2Ba2Ca2Cu3O10 system, an increase in lifetime is observed below Tc, whereas in Tl2Ba2CaCu2O8, a decrease in lifetime is seen below Tc. In the Tl2Ba2CuO6 system, the lifetime is observed to be temperature independent. The different temperature variations of positron annihilation parameters are discussed in the light of the positron density distribution, obtained with use of the results of the self-consistent orthogonalized linear combination of atomic orbitals band-structure calculations. It is argued that the different temperature dependencies of the annihilation parameters is related to the positron density distribution within the unit cell and arise due to local charge transfer in the vicinity of the CuO2 layer in the superconducting state.
Temperature affects transport of polysaccharides and proteins in articular cartilage explants.
Moeini, Mohammad; Lee, Kwan-Bong; Quinn, Thomas M
2012-07-26
Solute transport phenomena mediate many aspects of the physiology and contrast agent-based clinical imaging of articular cartilage. Temperatures up to 10°C below standard body temperature (37°C) are common in articulating joints during normal activities and clinically (e.g. cold treatment of injuries). Therefore it is of interest to characterize the effects of temperature changes on solute transport parameters in cartilage. A range of fluorescent solutes including fluorescein isothiocyanate, 4 and 40kDa dextrans, myoglobin, insulin and chondroitin sulfate were prepared and used in assays of solute effective partition coefficient and effective diffusivity in bovine intermediate zone articular cartilage explants maintained at 10, 22 or 37°C. Trends for increasing partition coefficient with increasing temperature were evident for all solutes except chondroitin sulfate, with significant changes between 22 and 37°C for 4kDa dextran, insulin and myoglobin. Diffusivities of most solutes tested also tended to increase with increasing temperature, with significant changes between 10 and 22°C for FITC, 40kDa dextran and myoglobin. Oddly, insulin diffusivity decreased significantly as temperature increased from 22 to 37°C while chondroitin sulfate diffusivity exhibited no clear temperature dependence. These results highlight solute-specific temperature dependences of transport phenomena which may depend upon molecular weight, chemical structure, molecular conformation, and solute-matrix and solute-solute interactions. The articular cartilage explants themselves exhibited small but significant changes in water and glycosaminoglycan contents during experiments, underscoring the importance of solute-matrix interactions. Solute transport parameters in cartilage and their temperature dependences are therefore not easily predicted, and case-by-case experimental determination may be essential. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wiecki, P.; Taufour, V.; Chung, D. Y.; Kanatzidis, M. G.; Bud'ko, S. L.; Canfield, P. C.; Furukawa, Y.
2018-02-01
We present the results of 75As nuclear magnetic resonance (NMR), nuclear quadrupole resonance (NQR), and resistivity measurements in KFe2As2 under pressure (p ). The temperature dependence of the NMR shift, nuclear spin-lattice relaxation time (T1), and resistivity show a crossover between a high-temperature incoherent, local-moment behavior and a low-temperature coherent behavior at a crossover temperature (T*). T* is found to increase monotonically with pressure, consistent with increasing hybridization between localized 3 d orbital-derived bands with the itinerant electron bands. No anomaly in T* is seen at the critical pressure pc=1.8 GPa where a change of slope of the superconducting (SC) transition temperature Tc(p ) has been observed. In contrast, Tc(p ) seems to correlate with antiferromagnetic spin fluctuations in the normal state as measured by the NQR 1 /T1 data, although such a correlation cannot be seen in the replacement effects of A in the A Fe2As2 (A =K , Rb, Cs) family. In the superconducting state, two T1 components are observed at low temperatures, suggesting the existence of two distinct local electronic environments. The temperature dependence of the short T1 s indicates a nearly gapless state below Tc. On the other hand, the temperature dependence of the long component 1 /T1 L implies a large reduction in the density of states at the Fermi level due to the SC gap formation. These results suggest a real-space modulation of the local SC gap structure in KFe2As2 under pressure.
Metal-to-insulator crossover in YBa2Cu3Oy probed by low-temperature quasiparticle heat transport.
Sun, X F; Segawa, Kouji; Ando, Yoichi
2004-09-03
It was recently demonstrated that in La2-xSrxCuO4 the magnetic-field (H) dependence of the low-temperature thermal conductivity kappa up to 16 T reflects whether the normal state under high magnetic field is a metal or an insulator. We measure the H dependence of kappa in YBa(2)Cu(3)O(y) (YBCO) at subkelvin temperatures for a wide doping range, and find that at low doping the kappa(H) behavior signifies the change in the ground state in this system as well. Surprisingly, the critical doping is found to be located deeply inside the underdoped region, about the hole doping of 0.07 hole/Cu; this critical doping is apparently related to the stripe correlations as revealed by the in-plane resistivity anisotropy.
Stadler, A M; Digel, I; Embs, J P; Unruh, T; Tehei, M; Zaccai, G; Büldt, G; Artmann, G M
2009-06-17
A transition in hemoglobin (Hb), involving partial unfolding and aggregation, has been shown previously by various biophysical methods. The correlation between the transition temperature and body temperature for Hb from different species, suggested that it might be significant for biological function. To focus on such biologically relevant human Hb dynamics, we studied the protein internal picosecond motions as a response to hydration, by elastic and quasielastic neutron scattering. Rates of fast diffusive motions were found to be significantly enhanced with increasing hydration from fully hydrated powder to concentrated Hb solution. In concentrated protein solution, the data showed that amino acid side chains can explore larger volumes above body temperature than expected from normal temperature dependence. The body temperature transition in protein dynamics was absent in fully hydrated powder, indicating that picosecond protein dynamics responsible for the transition is activated only at a sufficient level of hydration. A collateral result from the study is that fully hydrated protein powder samples do not accurately describe all aspects of protein picosecond dynamics that might be necessary for biological function.
Semiconductor-like behavior in superconducting Nb/Al films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greco, M.; Menichetti, E.; Rinaudo, G.
1999-04-20
The authors report here the experimental evidence of semiconductor-superconductor transitions in relatively thick Nb/Al structures. The temperature dependence of resistivity {rho}(T) shows a sharp superconducting transition followed by either a normal metallic behavior in low-resistivity samples, or a semiconducting behavior when the sample resistivity at 10 K is above 100 {mu}{Omega} cm. The authors discuss here the fabrication conditions and the electron localization regime associated with the measured {rho}(T) dependence.
Analysis of the internal temperature of the cells in a battery pack during SOC balancing
NASA Astrophysics Data System (ADS)
Mizanur, R.; Rashid, M. M.; Rahman, A.; Zahirul Alam, A. H. M.; Ihsan, S.; Mollik, M. S.
2017-03-01
Lithium-ion batteries are more suitable for the application of electric vehicle due to high energy and power density compared to other rechargeable batteries. However, the battery pack temperature has a great impact on the overall performance, cycle life, normal charging-discharging behaviour and even safety. During rapid charge transferring process, the internal temperature may exceed its allowable limit (460C). In this paper, an analysis of internal temperature during charge balancing and discharging conditions is presented. Specific interest is paid to the effects of temperature on the different rate of ambient temperature and discharging current. Matlab/Simulink Li-ion battery model and quasi-resonant converter base balancing system are used to study the temperature effect. Rising internal temperature depends on the rate of balancing current and ambient temperature found in the simulation results.
Host-pathogen interactions in a varying environment: temperature, behavioural fever and fitness.
Elliot, Sam L; Blanford, Simon; Thomas, Matthew B
2002-01-01
We demonstrate how variable temperatures, mediated by host thermoregulation and behavioural fever, critically affect the interaction between a host (the desert locust, Schistocerca gregaria) and a pathogen (the fungus Metarhizium anisopliae var. acridum). By means of behavioural thermoregulation, infected locusts can raise their body temperatures to fever levels. The adaptive value of this behaviour was examined using three thermal regimes wherein maximum body temperatures achievable were: (i) below, or (ii) at normally preferred temperatures, or were (iii) unrestricted, allowing heightened fever temperatures. All infected locusts ultimately succumbed to disease, with median survival times of 8, 15 and 21 days post-infection, respectively. Crucially, only those locusts able to fever produced viable offspring. This represents, to our knowledge, the first demonstration of the adaptive value of behavioural fever following infection with a naturally occurring pathogen. By contrast, although normal host thermoregulation moderately reduced pathogen reproduction (by 35%), there was no additional negative effect of fever, resulting in an asymmetry in the fitness consequences of fever for the host and the pathogen. The dependency of the host-pathogen interaction upon external abiotic conditions has implications for how virulence and resistance are treated both theoretically and in the management of pests and diseases. PMID:12184830
Chen, Chenghao; Xu, Min; Anantaprakorn, Yuto; Rosing, Mechthild; Stanewsky, Ralf
2018-05-21
Circadian clocks organize biological processes to occur at optimized times of day and thereby contribute to overall fitness. While the regular daily changes of environmental light and temperature synchronize circadian clocks, extreme external conditions can bypass the temporal constraints dictated by the clock. Despite advanced knowledge about how the daily light-dark changes synchronize the clock, relatively little is known with regard to how the daily temperature changes influence daily timing and how temperature and light signals are integrated. In Drosophila, a network of ∼150 brain clock neurons exhibit 24-hr oscillations of clock gene expression to regulate daily activity and sleep. We show here that a temperature input pathway from peripheral sensory organs, which depends on the gene nocte, targets specific subsets of these clock neurons to synchronize molecular and behavioral rhythms to temperature cycles. Strikingly, while nocte 1 mutant flies synchronize normally to light-dark cycles at constant temperatures, the combined presence of light-dark and temperature cycles inhibits synchronization. nocte 1 flies exhibit altered siesta sleep, suggesting that the sleep-regulating clock neurons are an important target for nocte-dependent temperature input, which dominates a parallel light input into these cells. In conclusion, we reveal a nocte-dependent temperature input pathway to central clock neurons and show that this pathway and its target neurons are important for the integration of sensory light and temperature information in order to temporally regulate activity and sleep during daily light and temperature cycles. Copyright © 2018 Elsevier Ltd. All rights reserved.
Plasmon resonance enhanced temperature-dependent photoluminescence of Si-V centers in diamond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Shaoheng; State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012; Song, Jie
2015-11-23
Temperature dependent optical property of diamond has been considered as a very important factor for realizing high performance diamond-based optoelectronic devices. The photoluminescence feature of the zero phonon line of silicon-vacancy (Si-V) centers in Si-doped chemical vapor deposited single crystal diamond (SCD) with localized surface plasmon resonance (LSPR) induced by gold nanoparticles has been studied at temperatures ranging from liquid nitrogen temperature to 473 K, as compared with that of the SCD counterpart in absence of the LSPR. It is found that with LSPR the emission intensities of Si-V centers are significantly enhanced by factors of tens and the magnitudes ofmore » the redshift (width) of the emissions become smaller (narrower), in comparison with those of normal emissions without plasmon resonance. More interestingly, these strong Si-V emissions appear remarkably at temperatures up to 473 K, while the spectral feature was not reported in previous studies on the intrinsic Si-doped diamonds when temperatures are higher than room temperature. These findings would lead to reaching high performance diamond-based devices, such as single photon emitter, quantum cryptography, biomarker, and so forth, working under high temperature conditions.« less
Normal stress effects on Knudsen flow
NASA Astrophysics Data System (ADS)
Eu, Byung Chan
2018-01-01
Normal stress effects are investigated on tube flow of a single-component non-Newtonian fluid under a constant pressure gradient in a constant temperature field. The generalized hydrodynamic equations are employed, which are consistent with the laws of thermodynamics. In the cylindrical tube flow configuration, the solutions of generalized hydrodynamic equations are exactly solvable and the flow velocity is obtained in a simple one-dimensional integral quadrature. Unlike the case of flow in the absence of normal stresses, the flow develops an anomaly in that the flow in the boundary layer becomes stagnant and the thickness of such a stagnant velocity boundary layer depends on the pressure gradient, the aspect ratio of the radius to the length of the tube, and the pressure (or density and temperature) at the entrance of the tube. The volume flow rate formula through the tube is derived for the flow. It generalizes the Knudsen flow rate formula to the case of a non-Newtonian stress tensor in the presence of normal stress differences. It also reduces to the Navier-Stokes theory formula in the low shear rate limit near equilibrium.
El Niño and its impact on fire weather conditions in Alaska
Hess, Jason C.; Scott, Carven A.; Hufford, Gary L.; Fleming, Michael D.
2001-01-01
Examining the relationship of El Niño to weather patterns in Alaska shows wide climate variances that depend on the teleconnection between the tropics and the northern latitudes. However, the weather patterns exhibited in Alaska during and just after moderate to strong El Niño episodes are generally consistent: above normal temperature and precipitation along the Alaskan coast, and above normal temperature and below normal precipitation in the interior, especially through the winter. The warm, dry conditions in the Alaskan interior increase summer wildfire potential. Statistics on the area burned since 1940 show that 15 out of 17 of the biggest fire years occurred during a moderate to strong El Niño episode. These 15 years account for nearly 63% of the total area burned over the last 58 years. Evidence points to increased dry thunderstorms and associated lightning activity during an El Niño episode; the percentage of total area burned by lightning caused fires during five episodes increased from a normal of less than 40% to a high of about 96%.
Conditions of viscosity measurement for detecting irradiated peppers
NASA Astrophysics Data System (ADS)
Hayashi, Toru; Todoriki, Setsuko; Okadome, Hiroshi; Kohyama, Kaoru
1995-04-01
Viscosity of gelatinized suspensions of black and white peppers decreased depending upon dose. The viscosity was influenced by gelatinization and viscosity measurement conditions. The difference between unirradiated pepper and an irradiated one was larger at a higher pH and temperature for gelatinization. A viscosity parameter normalized with the starch content of pepper sample and the viscosity of a 5% suspension of corn starch could get rid of the influence of the conditions for viscosity measurement such as a type of viscometer, shear rate and temperature.
Dynamics of crystalline acetanilide: Analysis using neutron scattering and computer simulation
NASA Astrophysics Data System (ADS)
Hayward, R. L.; Middendorf, H. D.; Wanderlingh, U.; Smith, J. C.
1995-04-01
The unusual temperature dependence of several optical spectroscopic vibrational bands in crystalline acetanilide has been interpreted as providing evidence for dynamic localization. Here we examine the vibrational dynamics of crystalline acetanilide over a spectral range of ˜20-4000 cm-1 using incoherent neutron scattering experiments, phonon normal mode calculations and molecular dynamics simulations. A molecular mechanics energy function is parametrized and used to perform the normal mode analyses in the full configurational space of the crystal i.e., including the intramolecular and intermolecular degrees of freedom. One- and multiphonon incoherent inelastic neutron scattering intensities are calculated from harmonic analyses in the first Brillouin zone and compared with the experimental data presented here. Phonon dispersion relations and mean-square atomic displacements are derived from the harmonic model and compared with data derived from coherent inelastic neutron scattering and neutron and x-ray diffraction. To examine the temperature effects on the vibrations the full, anharmonic potential function is used in molecular dynamics simulations of the crystal at 80, 140, and 300 K. Several, but not all, of the spectral features calculated from the molecular dynamics simulations exhibit temperature-dependent behavior in agreement with experiment. The significance of the results for the interpretation of the optical spectroscopic results and possible improvements to the model are discussed.
NRC Class 1E Digital Computer System Guidelines
1993-05-01
then be "proved" that the vessel cannot be at high temperature state and norma ! t emperature state at the same time. The question whether high, normal...3 of Dependability of critical computer systems. Elsever Applied Science, 1988. [18] J. W. Duran and S. C. Ntafos, "A report on random testing," in
Jeon, I.; Huang, K.; Yazici, D.; ...
2016-03-07
We report a study of the superconducting and normal-state properties of the filled-skutterudite system PrPt 4Ge 12 - x Sb x. Polycrystalline samples with Sb concentrations up to x = 5 were synthesized and investigated by means of x-ray diffraction, electrical resistivity, magnetic susceptibility, and specific heat measurements. We observed a suppression of superconductivity with increasing Sb substitution up to x = 4 , above which no signature of superconductivity was observed down to 140 mK. The Sommerfeld coefficient, γ , of superconducting specimens decreases with increasing x up to x = 3 , suggesting that superconductivity may depend onmore » the density of electronic states in this system. Finally, the specific heat for x = 0.5 exhibits an exponential temperature dependence in the superconducting state, reminiscent of a nodeless superconducting energy gap. Here we observed evidence for a weak “rattling” mode associated with the Pr ions, characterized by an Einstein temperature Θ E ~ 60 K for 0 ≤ x ≤ 5 ; however, the rattling mode may not play any role in suppressing superconductivity.« less
Micromechanics of ice friction
NASA Astrophysics Data System (ADS)
Sammonds, P. R.; Bailey, E.; Lishman, B.; Scourfield, S.
2015-12-01
Frictional mechanics are controlled by the ice micro-structure - surface asperities and flaws - but also the ice fabric and permeability network structure of the contacting blocks. Ice properties are dependent upon the temperature of the bulk ice, on the normal stress and on the sliding velocity and acceleration. This means the shear stress required for sliding is likewise dependent on sliding velocity, acceleration, and temperature. We aim to describe the micro-physics of the contacting surface. We review micro-mechanical models of friction: the elastic and ductile deformation of asperities under normal loads and their shear failure by ductile flow, brittle fracture, or melting and hydrodynamic lubrication. Combinations of these give a total of six rheological models of friction. We present experimental results in ice mechanics and physics from laboratory experiments to understand the mechanical models. We then examine the scaling relations of the slip of ice, to examine how the micro-mechanics of ice friction can be captured simple reduced-parameter models, describing the mechanical state and slip rate of the floes. We aim to capture key elements that they may be incorporated into mid and ocean-basin scale modelling.
Hill, E.F.
1989-01-01
Time- and temperature-dependent postmortem changes in inhibited brain cholinesterase (ChE) activity may confound diagnosis of field poisoning of wildlife by anticholinesterase pesticide. Carbamate-inhibited ChE activity may return to normal within 1 to 2 days of exposure of intact carcass to moderate ambient temperature (18-32C). Organophosphorus-inhibited ChE activity becomes more depressed over the same time. Uninhibited ChE activity was resilient to above freezing temperature to 32C for 1 day and 25C for 3 days. Carbamate- and organophosphorus-inhibited ChE can be separated by incubation of homogenate for 1 hour at physiological temperatures; carbamylated ChE can be readily reactivated while phosphorylated ChE cannot.
NASA Astrophysics Data System (ADS)
Kauffman, Chad Matthew
The temperature and precipitation that describe the norm of daily, monthly, and seasonal climate conditions are ``climate normals.'' They are usually calculated based on climate data covering a 30-year period, and updated in every 10 years. The next update will take place in year 2001. Because of the advent of the Automated Surface Observations Systems (ASOS) beginning in early 1990s and recognized temperature bias between ASOS and the conventional temperature sensors there is an uncertainty of how the ASOS data should be used to calculate the 1971-2000 temperature normal. This study examined the uncertainty and offered a method to minimize it. It showed that the ASOS bias has a measurable impact on the new 30-year temperature normal. The impact varies among stations and climate regions. Some stations with a cooling trend in ASOS temperature have a cooler normal for their temperature, while others with a warming trend have a warmer normal for temperature. These quantitative evaluations of ASOS effect for stations and regions can be used to reduce ASOS bias in temperature normals. This study also evaluated temperature normals for different length periods and compared them to the 30-year normal. It showed that the difference between the normals, is smaller in maritime climate than in continental temperate climate. In the former, the six- year normal describes a similar temperature variation as the 30-year normal does. In the latter, the 18-year normal starts to resemble the temperature variation that the 30-year normal describes. These results provide a theoretical basis for applying different normals in different regions. The study further compared temperature normal for different periods and identified a seasonal shift in climate change in the southwestern U.S. where the summer maximum temperature has shifted to a late summer month and the winter minimum temperature shifted to an early winter month in the past 30 years.
Constraining friction, dilatancy and effective stress with earthquake rates in the deep crust
NASA Astrophysics Data System (ADS)
Beeler, N. M.; Thomas, A.; Burgmann, R.; Shelly, D. R.
2015-12-01
Similar to their behavior on the deep extent of some subduction zones, families of recurring low-frequency earthquakes (LFE) within zones of non-volcanic tremor on the San Andreas fault in central California show strong sensitivity to stresses induced by the tides. Taking all of the LFE families collectively, LFEs occur at all levels of the daily tidal stress, and are in phase with the very small, ~200 Pa, shear stress amplitudes while being uncorrelated with the ~2 kPa tidal normal stresses. Following previous work we assume LFE sources are small, persistent regions that repeatedly fail during shear within a much larger scale, otherwise aseismically creeping fault zone and that the correlation of LFE occurrence reflects modulation of the fault creep rate by the tidal stresses. We examine the predictions of laboratory-observed rate-dependent dilatancy associated with frictional slip. The effect of dilatancy hardening is to damp the slip rate, so high dilatancy under undrained pore pressure reduces modulation of slip rate by the tides. The undrained end-member model produces: 1) no sensitivity to the tidal normal stress, as first suggested in this context by Hawthorne and Rubin [2010], and 2) fault creep rate in phase with the tidal shear stress. Room temperature laboratory-observed values of the dilatancy and friction coefficients for talc, an extremely weak and weakly dilatant material, under-predict the observed San Andreas modulation at least by an order of magnitude owing to too much dilatancy. This may reflect a temperature dependence of the dilatancy and friction coefficients, both of which are expected to be zero at the brittle-ductile transition. The observed tidal modulation constrains the product of the friction and dilatancy coefficients to be at most 5 x 10-7 in the LFE source region, an order of magnitude smaller than observed at room temperature for talc. Alternatively, considering the predictions of a purely rate-dependent talc friction would constrain the ambient effective normal stress to be no more than 40 kPa. In summary, for friction models that have both rate-dependent strength and dilatancy, the observations require intrinsic weakness, low dilatancy, and lithostatic pore fluid pressures.
Cooling beyond the boundary value in supercritical fluids under vibration
NASA Astrophysics Data System (ADS)
Sharma, D.; Erriguible, A.; Amiroudine, S.
2017-12-01
Supercritical fluids when subjected to simultaneous quench and vibration have been known to cause various intriguing flow phenomena and instabilities depending on the relative direction of temperature gradient and vibration. Here we describe a surprising and interesting phenomenon wherein temperature in the fluid falls below the imposed boundary value when the walls are quenched and the direction of vibration is normal to the temperature gradient. We define these regions in the fluid as sink zones, because they act like sink for heat within the fluid domain. The formation of these zones is first explained using a one-dimensional (1D) analysis with acceleration in constant direction. Subsequently, the effect of various boundary conditions and the relative direction of the temperature gradient to acceleration are analyzed, highlighting the necessary conditions for the formation of sink zones. It is found that the effect of high compressibility and the action of self-weight (due to high acceleration) causes the temperature to change in the bulk besides the usual action of piston effect. This subsequently affects the overall temperature profile thereby leading to the formation of sink zones. Though the examined 1D cases differ from the current two-dimensional (2D) cases, owing to the direction of acceleration being normal as compared to parallel in case of former, the explanations pertaining to 1D cases are judiciously utilized to elucidate the formation of sink zones in 2D supercritical fluids subjected to thermal quench and vibrational acceleration. The appearance of sink zones is found to be dependent on several factors such as proximity to the critical point and acceleration. A surface three-dimensional plot illustrating the effect of these parameters on onset time of sink zones is presented to further substantiate these arguments.
A CMOS smart temperature and humidity sensor with combined readout.
Eder, Clemens; Valente, Virgilio; Donaldson, Nick; Demosthenous, Andreas
2014-09-16
A fully-integrated complementary metal-oxide semiconductor (CMOS) sensor for combined temperature and humidity measurements is presented. The main purpose of the device is to monitor the hermeticity of micro-packages for implanted integrated circuits and to ensure their safe operation by monitoring the operating temperature and humidity on-chip. The smart sensor has two modes of operation, in which either the temperature or humidity is converted into a digital code representing a frequency ratio between two oscillators. This ratio is determined by the ratios of the timing capacitances and bias currents in both oscillators. The reference oscillator is biased by a current whose temperature dependency is complementary to the proportional to absolute temperature (PTAT) current. For the temperature measurement, this results in an exceptional normalized sensitivity of about 0.77%/°C at the accepted expense of reduced linearity. The humidity sensor is a capacitor, whose value varies linearly with relative humidity (RH) with a normalized sensitivity of 0.055%/% RH. For comparison, two versions of the humidity sensor with an area of either 0.2 mm2 or 1.2 mm2 were fabricated in a commercial 0.18 μm CMOS process. The on-chip readout electronics operate from a 5 V power supply and consume a current of approximately 85 µA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoque, Md Nadim Ferdous; Yang, Mengjin; Li, Zhen
2016-07-08
Researchers have debated whether methylammonium lead iodide (MAPbI3), with a perovskite crystal structure, is ferroelectric and therefore contributes to the current--voltage hysteresis commonly observed in hybrid perovskite solar cells (PSCs). We thoroughly investigated temperature-dependent polarization, dielectric, and impedance spectroscopies, and we found no evidence of ferroelectric effect in a MAPbI3 thin film at normal operating conditions. Therefore, the effect does not contribute to the hysteresis in PSCs, whereas the large component of ionic migration observed may play a critical role. Our temperature-based polarization and dielectric studies find that MAPbI3 exhibits different electrical behaviors below and above ca. 45 degrees C,more » suggesting a phase transition around this temperature. In particular, we report the activation energies of ionic migration for the two phases and temperature-dependent permittivity of MAPbI3. This study contributes to the understanding of the material properties and device performance of hybrid perovskites.« less
Specific heat of normal and superfluid3He
NASA Astrophysics Data System (ADS)
Alvesalo, T. A.; Haavasoja, T.; Manninen, M. T.
1981-11-01
Extensive measurements of the heat capacity of liquid 3 He in the normal and superfluid phases are reported. The experiments range from 0.8 to 10 mK and cover pressures from 0 to 32.5 bar in zero magnetic field. The phase diagram of 3 He, based on the platinum NMR temperature scale, is presented. In the normal liquid at low pressures and near the superfluid transition T c an excess specific heat is found. The effective mass m* of3He is at all pressures about 30% smaller than the values reported earlier. The calculated Fermi liquid parameters F0 and F1 are reduced as m*/m, while the spin alignment factor (1 + Z0/4)-1 is enhanced from 3.1 3.8 to 4.3 5.3, depending on pressure. The specific heat discontinuity ΔC/C at T c is for P = 0 close to the BCS value 1.43, whereas at 32.5 bar ΔC/C is 1.90±0.03 in the B phase and 2.04±0.03 in the A phase, revealing distinctly the pressure dependence of strong coupling effects. The temperature dependence of the specific heat in the B phase agrees with a model calculation of Serene and Rainer. The latent heat L at the AB transition is 1.14±0.02 µJ/mole for P = 32.5 bar and decreases quickly as the polycritical point is approached; at 23.0 bar, L = 0.03 ± 0.02 µJ/mole.
Vibrational Spectroscopic Studies of Reduced-Sensitivity RDX under Static Compression
NASA Astrophysics Data System (ADS)
Wong, Chak
2005-07-01
Explosives formulations with Reduced- Sensitivity RDX showed reduced shock sensitivity using NOL Large Scale Gap Test, compared with similar formulations using normal RDX. Molecular processes responsible for the reduction of sensitivity are unknown and are crucial for formulation development. Vibrational spectroscopy at static high pressure may shed light to the mechanisms responsible for the reduced shock sensitivity as shown by the NOL Large Scale Gap Test. SIRDX, a form of Reduced- Sensitivity RDX, was subjected to static compression at ambient temperature in a Merrill-Bassett sapphire cell from ambient to about 6 GPa. The spectroscopic techniques used were Raman and Fourier-Transformed IR (FTIR). The pressure dependence of the Raman mode frequencies of SIRDX was determined and compared with that of normal RDX. The behavior of SIRDX near the pressure at which normal RDX, at ambient temperature, undergoes a phase transition from the α to the γ polymorph will be presented. Implications to the reduction in sensitivity will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiecki, P.; Taufour, V.; Chung, D. Y.
We present the results of 75As nuclear magnetic resonance (NMR), nuclear quadrupole resonance (NQR), and resistivity measurements in KFe 2As 2 under pressure (p). The temperature dependence of the NMR shift, nuclear spin-lattice relaxation time (T1), and resistivity show a crossover between a high-temperature incoherent, local-moment behavior and a low-temperature coherent behavior at a crossover temperature (T *). T * is found to increase monotonically with pressure, consistent with increasing hybridization between localized 3d orbitalderived bands with the itinerant electron bands. No anomaly in T * is seen at the critical pressure pc = 1.8 GPa where a change ofmore » slope of the superconducting (SC) transition temperature Tc(p) has been observed. In contrast, Tc(p) seems to correlate with antiferromagnetic spin fluctuations in the normal state as measured by the NQR 1/T1 data, although such a correlation cannot be seen in the replacement effects of A in the KFe 2As 2 (A = K, Rb, Cs) family. In the superconducting state, two T1 components are observed at low temperatures, suggesting the existence of two distinct local electronic environments. The temperature dependence of the short T1s indicates a nearly gapless state below Tc. On the other hand, the temperature dependence of the long component 1/T1L implies a large reduction in the density of states at the Fermi level due to the SC gap formation. These results suggest a real-space modulation of the local SC gap structure in KFe 2As 2 under pressure.« less
Wiecki, P.; Taufour, V.; Chung, D. Y.; ...
2018-02-13
We present the results of 75As nuclear magnetic resonance (NMR), nuclear quadrupole resonance (NQR), and resistivity measurements in KF e2 As 2 under pressure (p). The temperature dependence of the NMR shift, nuclear spin-lattice relaxation time (T 1), and resistivity show a crossover between a high-temperature incoherent, local-moment behavior and a low-temperature coherent behavior at a crossover temperature (T*). T* is found to increase monotonically with pressure, consistent with increasing hybridization between localized 3d orbital-derived bands with the itinerant electron bands. No anomaly in T* is seen at the critical pressure p c= 1.8 GPa where a change of slopemore » of the superconducting (SC) transition temperature T c( p ) has been observed. In contrast, T c( p ) seems to correlate with antiferromagnetic spin fluctuations in the normal state as measured by the NQR 1/T 1 data, although such a correlation cannot be seen in the replacement effects of A in the AFe 2As 2 (A=K,Rb,Cs) family. In the superconducting state, two T 1 components are observed at low temperatures, suggesting the existence of two distinct local electronic environments. The temperature dependence of the short T 1s indicates a nearly gapless state below T c. On the other hand, the temperature dependence of the long component 1/T 1Limplies a large reduction in the density of states at the Fermi level due to the SC gap formation. These results suggest a real-space modulation of the local SC gap structure in KFe 2As 2 under pressure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiecki, P.; Taufour, V.; Chung, D. Y.
We present the results of 75As nuclear magnetic resonance (NMR), nuclear quadrupole resonance (NQR), and resistivity measurements in KF e2 As 2 under pressure (p). The temperature dependence of the NMR shift, nuclear spin-lattice relaxation time (T 1), and resistivity show a crossover between a high-temperature incoherent, local-moment behavior and a low-temperature coherent behavior at a crossover temperature (T*). T* is found to increase monotonically with pressure, consistent with increasing hybridization between localized 3d orbital-derived bands with the itinerant electron bands. No anomaly in T* is seen at the critical pressure p c= 1.8 GPa where a change of slopemore » of the superconducting (SC) transition temperature T c( p ) has been observed. In contrast, T c( p ) seems to correlate with antiferromagnetic spin fluctuations in the normal state as measured by the NQR 1/T 1 data, although such a correlation cannot be seen in the replacement effects of A in the AFe 2As 2 (A=K,Rb,Cs) family. In the superconducting state, two T 1 components are observed at low temperatures, suggesting the existence of two distinct local electronic environments. The temperature dependence of the short T 1s indicates a nearly gapless state below T c. On the other hand, the temperature dependence of the long component 1/T 1Limplies a large reduction in the density of states at the Fermi level due to the SC gap formation. These results suggest a real-space modulation of the local SC gap structure in KFe 2As 2 under pressure.« less
NASA Technical Reports Server (NTRS)
Emmons, Louisa K.; De Zafra, Robert L.
1990-01-01
Results are presented of the field measurements of atmospheric opacity at 278 GHz (9.3/cm) conducted at the McMurdo Station (Antarctica) during the austral springs of 1986 and 1987, in conjunction with balloon measurements of water vapor profile and total column density, showing a strong inverse temperature dependence when normalized to precipitable water vapor. The value of measured opacity per mm of precipitable water vapor (PWV) is roughly two times greater at -35 C than at -10 C and three times greater than measurements at +25 C reported by Zammit and Ade (1981). Various theories proposed to explain excess absorption in continuum regions are reviewed.
Analytical model of ground-state lasing phenomenon in broadband semiconductor quantum dot lasers
NASA Astrophysics Data System (ADS)
Korenev, Vladimir V.; Savelyev, Artem V.; Zhukov, Alexey E.; Omelchenko, Alexander V.; Maximov, Mikhail V.
2013-05-01
We introduce an analytical approach to the description of broadband lasing spectra of semiconductor quantum dot lasers emitting via ground-state optical transitions of quantum dots. The explicit analytical expressions describing the shape and the width of lasing spectra as well as their temperature and injection current dependences are obtained in the case of low homogeneous broadening. It is shown that in this case these dependences are determined by only two dimensionless parameters, which are the dispersion of the distribution of QDs over the energy normalized to the temperature and loss-to-maximum gain ratio. The possibility of optimization of laser's active region size and structure by using the intentionally introduced disorder is also carefully considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filipkowski, M.E.; Budnick, J.I.
1991-11-15
We describe a quantitative analysis of the low-temperature ({ital T}{lt}300 K) susceptibility ({chi}({ital T})) of La{sub 2{minus}x}Sr{sub x}CuO{sub 4+y} for dopant concentrations in the vicinity of the superconducting phase boundary (SPB) at {ital x}=0.055. This analysis is based on a phenomenological model for the temperature dependence consisting of a Curie-like 1/{ital T} term plus a term linear in {ital T}. We find that the former exhibits nontrivial doping dependence at the SPB, while the {ital T}-linear part accepts decomposition into a Pauli contribution and a portion which can be understood using spin-wave theory.
Effective Thermal Conductivity of Graphite Materials with Cracks
NASA Astrophysics Data System (ADS)
Pestchaanyi, S. E.; Landman, I. S.
The dependence of effective thermal diffusivity on temperature caused by volumetric cracks is modelled for macroscopic graphite samples using the three-dimensional thermomechanics code Pegasus-3D. At high off-normal heat loads typical of the divertor armour, thermostress due to the anisotropy of graphite grains is much larger than that due to the temperature gradient. Numerical simulation demonstrated that the volumetric crack density both in fine grain graphites and in the CFC matrix depends mainly on the local sample temperature, not on the temperature gradient. This allows to define an effective thermal diffusivity for graphite with cracks. The results obtained are used to explain intense cracking and particle release from carbon based materials under electron beam heat load. Decrease of graphite thermal diffusivity with increase of the crack density explains particle release mechanism in the experiments with CFC where a clear energy threshold for the onset of particle release has been observed in J. Linke et al. Fusion Eng. Design, in press, Bazyler et al., these proceedings. Surface temperature measurement is necessary to calibrate the Pegasus-3D code for simulation of ITER divertor armour brittle destruction.
Probing the thermal Hall effect using miniature capacitive strontium titanate thermometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tinsman, Colin; Li, Gang; Asaba, Tomoya
2016-06-27
The thermal Hall effect is the thermal analog of the electrical Hall effect. Rarely observed in normal metals, thermal Hall signals have been argued to be a key property for a number of strongly correlated materials, such as high temperature superconductors, correlated topological insulators, and quantum magnets. The observation of the thermal Hall effect requires precise measurement of temperature in intense magnetic fields. Particularly at low temperature, resistive thermometers have a strong dependence on field, which makes them unsuitable for this purpose. We have created capacitive thermometers which instead measure the dielectric constant of strontium titanate (SrTiO{sub 3}). SrTiO{sub 3}more » approaches a ferroelectric transition, causing its dielectric constant to increase by a few orders of magnitude at low temperature. As a result, these thermometers are very sensitive at low temperature while having very little dependence on the applied magnetic field, making them ideal for thermal Hall measurements. We demonstrate this method by making measurements of the thermal Hall effect in Bismuth in magnetic fields of up to 10 T.« less
A generalized law for brittle deformation of Westerly granite
Lockner, D.A.
1998-01-01
A semiempirical constitutive law is presented for the brittle deformation of intact Westerly granite. The law can be extended to larger displacements, dominated by localized deformation, by including a displacement-weakening break-down region terminating in a frictional sliding regime often described by a rate- and state-dependent constitutive law. The intact deformation law, based on an Arrhenius type rate equation, relates inelastic strain rate to confining pressure Pc, differential stress ????, inelastic strain ??i, and temperature T. The basic form of the law for deformation prior to fault nucleation is In ????i = c - (E*/RT) + (????/a??o)sin-??(???? i/2??o) where ??o and ??o are normalization constants (dependent on confining pressure), a is rate sensitivity of stress, and ?? is a shape parameter. At room temperature, eight experimentally determined coefficients are needed to fully describe the stress-strain-strain rate response for Westerly granite from initial loading to failure. Temperature dependence requires apparent activation energy (E* ??? 90 kJ/mol) and one additional experimentally determined coefficient. The similarity between the prefailure constitutive law for intact rock and the rate- and state-dependent friction laws for frictional sliding on fracture surfaces suggests a close connection between these brittle phenomena.
Free flux flow: a probe into the field dependence of vortex core size in clean single crystals
NASA Astrophysics Data System (ADS)
Gapud, A. A.; Gafarov, O.; Moraes, S.; Thompson, J. R.; Christen, D. K.; Reyes, A. P.
2012-02-01
The free-flux-flow (FFF) phase has been attained successfully in a number of clean, weak-pinning, low-anisotropy, low-Tc, single-crystal samples as a unique probe into type II superconductivity that is independent of composition. The ``clean'' quality of the samples have been confirmed by reversible magnetization, high residual resistivity ratio, and low critical current densities Jc with a re-entrant ``peak'' effect in Jc(H) just below the critical field Hc2. The necessity of high current densities presented technical challenges that had been successfully addressed, and FFF is confirmed by a field-dependent ohmic state that is also well below the normal state. In these studies, the FFF resistivity ρf(H) has been measured in order to observe the field-dependent core size of the quantized magnetic flux vortices as modeled recently by Kogan and Zelezhina (KZ) who predicted a specific deviation from Bardeen-Stephen flux flow, dependent on normalized temperature and scattering parameter λ. The compounds studied are: V3Si, LuNi2B2C, and NbSe2, and results have shown consistency with the KZ model. Other applications of this method could also be used to probe normal-state properties, especially for the new iron arsenides, as will be discussed.
Thermal motion of a nonlinear localized pattern in a quasi-one-dimensional system.
Dessup, Tommy; Coste, Christophe; Saint Jean, Michel
2016-07-01
We study the dynamics of localized nonlinear patterns in a quasi-one-dimensional many-particle system near a subcritical pitchfork bifurcation. The normal form at the bifurcation is given and we show that these patterns can be described as solitary-wave envelopes. They are stable in a large temperature range and can diffuse along the chain of interacting particles. During their displacements the particles are continually redistributed on the envelope. This change of particle location induces a small modulation of the potential energy of the system, with an amplitude that depends on the transverse confinement. At high temperature, this modulation is irrelevant and the thermal motion of the localized patterns displays all the characteristics of a free quasiparticle diffusion with a diffusion coefficient that may be deduced from the normal form. At low temperature, significant physical effects are induced by the modulated potential. In particular, the localized pattern may be trapped at very low temperature. We also exhibit a series of confinement values for which the modulation amplitudes vanishes. For these peculiar confinements, the mean-square displacement of the localized patterns also evidences free-diffusion behavior at low temperature.
Myers, R. D.; Veale, W. L.; Yaksh, T. L.
1971-01-01
1. In the unanaesthetized Rhesus monkey, solutions containing sodium, calcium, potassium or magnesium in excess of the normal concentration of extracellular fluid were perfused from a lateral to the fourth ventricle through chronically implanted cannulae. 2. Sodium (11·0-88·0 mM in excess of the physiological concentration) perfused through the ventricles, caused an immediate rise in body temperature which was accompanied by vasoconstriction, piloerection and shivering. The latency of the hyperthermia was related directly to the rate of perfusion and the concentration of sodium, whereas the magnitude of the response depended upon the concentration only. When the perfusion was terminated, shivering ceased and the temperature of the monkey returned to the base line level. 3. When calcium ions were perfused in concentrations 2·5-47·9 mM in excess of that of extracellular fluid, a fall in the temperature of the animal occurred. The magnitude of the decreases depended upon the concentration of calcium in the perfusion fluid. Vasodilatation, sedation and a reduction in withdrawal reflexes accompanied the calcium-induced hypothermia. After the perfusion ended, the temperature continued to fall until the monkey began to shiver and vasoconstriction was observed in many skin areas. 4. The perfusion through the cerebral ventricles with modified Krebs solution alone or with the Krebs solution which contained potassium or magnesium ions in concentrations five to ten times normal had virtually no effect on the temperature of the monkey. 5. Since the temperature of the monkey was unchanged as long as the physiological ratio of sodium to calcium in the perfusion fluid remained constant, we conclude that the balance between these two essential cations within the brain stem could determine the neural mechanism whereby the set-point for body temperature of the primate is established. PMID:4999638
Climatological Modeling of Monthly Air Temperature and Precipitation in Egypt through GIS Techniques
NASA Astrophysics Data System (ADS)
El Kenawy, A.
2009-09-01
This paper describes a method for modeling and mapping four climatic variables (maximum temperature, minimum temperature, mean temperature and total precipitation) in Egypt using a multiple regression approach implemented in a GIS environment. In this model, a set of variables including latitude, longitude, elevation within a distance of 5, 10 and 15 km, slope, aspect, distance to the Mediterranean Sea, distance to the Red Sea, distance to the Nile, ratio between land and water masses within a radius of 5, 10, 15 km, the Normalized Difference Vegetation Index (NDVI), the Normalized Difference Water Index (NDWI), the Normalized Difference Temperature Index (NDTI) and reflectance are included as independent variables. These variables were integrated as raster layers in MiraMon software at a spatial resolution of 1 km. Climatic variables were considered as dependent variables and averaged from quality controlled and homogenized 39 series distributing across the entire country during the period of (1957-2006). For each climatic variable, digital and objective maps were finally obtained using the multiple regression coefficients at monthly, seasonal and annual timescale. The accuracy of these maps were assessed through cross-validation between predicted and observed values using a set of statistics including coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), mean bias Error (MBE) and D Willmott statistic. These maps are valuable in the sense of spatial resolution as well as the number of observatories involved in the current analysis.
Ludlow, Michelle K; Soudackov, Alexander V; Hammes-Schiffer, Sharon
2009-05-27
In this paper we present theoretical calculations on model biomimetic systems for quinol oxidation. In these model systems, an excited-state [Ru(bpy)(2)(pbim)](+) complex (bpy = 2,2'-dipyridyl, pbim = 2-(2-pyridyl)benzimidazolate) oxidizes a ubiquinol or plastoquinol analogue in acetonitrile. The charge transfer reaction occurs via a proton-coupled electron transfer (PCET) mechanism, in which an electron is transferred from the quinol to the Ru and a proton is transferred from the quinol to the pbim(-) ligand. The experimentally measured average kinetic isotope effects (KIEs) at 296 K are 1.87 and 3.45 for the ubiquinol and plastoquinol analogues, respectively, and the KIE decreases with temperature for plastoquinol but increases with temperature for ubiquinol. The present calculations provide a possible explanation for the differences in magnitudes and temperature dependences of the KIEs for the two systems and, in particular, an explanation for the unusual inverse temperature dependence of the KIE for the ubiquinol analogue. These calculations are based on a general theoretical formulation for PCET reactions that includes quantum mechanical effects of the electrons and transferring proton, as well as the solvent reorganization and proton donor-acceptor motion. The physical properties of the system that enable the inverse temperature dependence of the KIE are a stiff hydrogen bond, which corresponds to a high-frequency proton donor-acceptor motion, and small inner-sphere and solvent reorganization energies. The inverse temperature dependence of the KIE may be observed if the 0/0 pair of reactant/product vibronic states is in the inverted Marcus region, while the 0/1 pair of reactant/product vibronic states is in the normal Marcus region and is the dominant contributor to the overall rate. In this case, the free energy barrier for the dominant transition is lower for deuterium than for hydrogen because of the smaller splittings between the vibronic energy levels for deuterium, and the KIE increases with increasing temperature. The temperature dependence of the KIE is found to be very sensitive to the interplay among the driving force, the reorganization energy, and the vibronic coupling in this regime.
The clear-sky greenhouse effect sensitivity to a sea surface temperature change
NASA Technical Reports Server (NTRS)
Duvel, J. PH.; Breon, F. M.
1991-01-01
The clear-sky greenhouse effect response to a sea surface temperature (SST or Ts) change is studied using outgoing clear-sky longwave radiation measurements from the Earth Radiation Budget Experiment. Considering geographical distributions for July 1987, the relation between the SST, the greenhouse effect (defined as the outgoing infrared flux trapped by atmospheric gases), and the precipitable water vapor content (W), estimated by the Special Sensor Microwave Imager, is analyzed first. A fairly linear relation between W and the normalized greenhouse effect g, is found. On the contrary, the SST dependence of both W and g exhibits nonlinearities with, especially, a large increase for SST above 25 C. This enhanced sensitivity of g and W can be interpreted in part by a corresponding large increase of atmospheric water vapor content related to the transition from subtropical dry regions to equatorial moist regions. Using two years of data (1985 and 1986), the normalized greenhouse effect sensitivity to the sea surface temperature is computed from the interannual variation of monthly mean values.
Normalized Temperature Contrast Processing in Flash Infrared Thermography
NASA Technical Reports Server (NTRS)
Koshti, Ajay M.
2016-01-01
The paper presents further development in normalized contrast processing of flash infrared thermography method by the author given in US 8,577,120 B1. The method of computing normalized image or pixel intensity contrast, and normalized temperature contrast are provided, including converting one from the other. Methods of assessing emissivity of the object, afterglow heat flux, reflection temperature change and temperature video imaging during flash thermography are provided. Temperature imaging and normalized temperature contrast imaging provide certain advantages over pixel intensity normalized contrast processing by reducing effect of reflected energy in images and measurements, providing better quantitative data. The subject matter for this paper mostly comes from US 9,066,028 B1 by the author. Examples of normalized image processing video images and normalized temperature processing video images are provided. Examples of surface temperature video images, surface temperature rise video images and simple contrast video images area also provided. Temperature video imaging in flash infrared thermography allows better comparison with flash thermography simulation using commercial software which provides temperature video as the output. Temperature imaging also allows easy comparison of surface temperature change to camera temperature sensitivity or noise equivalent temperature difference (NETD) to assess probability of detecting (POD) anomalies.
Anisotropic thermal conductivity in carbon honeycomb.
Chen, Xue-Kun; Liu, Jun; Du, Dan; Xie, Zhong-Xiang; Chen, Ke-Qiu
2018-04-18
Carbon honeycomb, a new kind of 3D carbon allotrope experimentally synthesized recently, has received much attention for its fascinating applications in electronic device and energy storage. In the present work, we perform equilibrium molecular dynamics (EMD) to study the thermal transport properties of carbon honeycombs with different chirality. It is found that the thermal conductivity along the honeycomb axis ([Formula: see text]) is three times larger than that normal to the axis ([Formula: see text]), which shows strong anisotropy reflecting their geometric anisotropy. Lattice dynamics calculations reveal that this anisotropy stems from the orientation-dependent phonon group velocities. Moreover, when ambient temperature ([Formula: see text]) increases from 200 K to 800 K, the [Formula: see text] dependence of [Formula: see text] is observed due to the enhanced Umklapp scattering. The detailed phonon spectra analyses indicate phonon group velocities are insensitive to the variation of ambient temperature, and the temperature dependence of the relaxation times of low-frequency phonons (<20 THz) follows [Formula: see text] behavior. Our results have a certain guiding significance to develop carbon honeycomb for effective thermal channeling devices.
Repina, S V; Nardid, O A; Marchenko, V S; Shilo, A V
2004-05-01
At present, the question of how the structural state of the erythrocyte cytosol is arranged to maintain essential permeabilities successfully both at normal temperature and during periods with a significant body temperature reduction during hypobiosis remains unanswered. In the present work, we performed comparative investigations of temperature-dependent changes in the cytosol state of erythrocytes from animals subjected to natural (winter hibernating ground squirrels) or artificial hypobiosis. The cytosol state was evaluated by the ESR method of spin probes (TEMPON) within the temperature range of 0-50 degrees C. Erythrocyte resistance to acid hemolysis, which is limited by the permeability of membranes for protons and the state of the anion channel, were determined using the method described by Terskov and Getelson [Biofizika 2 (1957) 259]. A change in cytosol microviscosity of erythrocytes was found as well as a temperature-dependent increase in acid resistance of erythrocytes. Our investigations allow us to conclude that physiological changes occurring in a mammalian organism during natural and artificial hypobiosis are accompanied by structural modifications of the erythrocyte cytosol. The temperature range where these modifications are observed (8, 15, 40 degrees C) suggests that the most probable modifying link is spectrin and/or the sites of its interaction with membrane. The interaction of cytoskeletal components with the cell membrane plays a key role in regulation of membrane permeability, suggesting an important role of this interaction in the adaptive reactions of erythrocytes.
Analysis of Screen Channel LAD Bubble Point Tests in Liquid Oxygen at Elevated Temperature
NASA Technical Reports Server (NTRS)
Hartwig, Jason; McQuillen, John
2011-01-01
The purpose of this paper is to examine the key parameters that affect the bubble point pressure for screen channel Liquid Acquisition Devices in cryogenic liquid oxygen at elevated pressures and temperatures. An in depth analysis of the effect of varying temperature, pressure, and pressurization gas on bubble point is presented. Testing of a 200 x 1400 and 325 x 2300 Dutch Twill screen sample was conducted in the Cryogenics Components Lab 7 facility at the NASA Glenn Research Center in Cleveland, Ohio. Test conditions ranged from 92 to 130K and 0.138 - 1.79 MPa. Bubble point is shown to be a strong function of temperature with a secondary dependence on pressure. The pressure dependence is believed to be a function of the amount of evaporation and condensation occurring at the screen. Good agreement exists between data and theory for normally saturated liquid but the model generally under predicts the bubble point in subcooled liquid. Better correlation with the data is obtained by using the liquid temperature at the screen to determine surface tension of the fluid, as opposed to the bulk liquid temperature.
NASA Astrophysics Data System (ADS)
Torres, L.; Finocchio, G.; Lopez-Diaz, L.; Martinez, E.; Carpentieri, M.; Consolo, G.; Azzerboni, B.
2007-05-01
In a recent investigation Sankey et al. [Phys. Rev. Lett. 96, 227601 (2006)] demonstrated a technique for measuring spin-transfer-driven ferromagnetic resonance in individual ellipsoidal PyCu nanomagnets as small as 30×90×5.5nm3. In the present work, these experiments are analyzed by means of full micromagnetic modeling finding quantitative agreement and enlightening the spatial distribution of the normal modes found in the experiment. The magnetic parameter set used in the computations is obtained by fitting static magnetoresistance measurements. The temperature effect is also included together with all the nonuniform contributions to the effective field as the magnetostatic coupling and the Ampere field. The polarization function of Slonczewski [J. Magn. Magn. Mater. 159, L1 (1996)] is used including its spatial and angular dependences. Experimental spin-transfer-driven ferromagnetic resonance spectra are reproduced using the same currents as in the experiment. The use of full micromagnetic modeling allows us to further investigate the spatial dependence of the modes. The dependence of the normal mode frequency on the dc and the external field together with a comparison to the normal modes induced by a microwave current is also addressed.
Fractional Brownian motors and stochastic resonance
NASA Astrophysics Data System (ADS)
Goychuk, Igor; Kharchenko, Vasyl
2012-05-01
We study fluctuating tilt Brownian ratchets based on fractional subdiffusion in sticky viscoelastic media characterized by a power law memory kernel. Unlike the normal diffusion case, the rectification effect vanishes in the adiabatically slow modulation limit and optimizes in a driving frequency range. It is shown also that the anomalous rectification effect is maximal (stochastic resonance effect) at optimal temperature and can be of surprisingly good quality. Moreover, subdiffusive current can flow in the counterintuitive direction upon a change of temperature or driving frequency. The dependence of anomalous transport on load exhibits a remarkably simple universality.
Short Ballistic Josephson Coupling in Planar Graphene Junctions with Inhomogeneous Carrier Doping
NASA Astrophysics Data System (ADS)
Park, Jinho; Lee, Jae Hyeong; Lee, Gil-Ho; Takane, Yositake; Imura, Ken-Ichiro; Taniguchi, Takashi; Watanabe, Kenji; Lee, Hu-Jong
2018-02-01
We report on short ballistic (SB) Josephson coupling in junctions embedded in a planar heterostructure of graphene. Ballistic Josephson coupling is confirmed by the Fabry-Perot-type interference of the junction critical current Ic . The product of Ic and the normal-state junction resistance RN , normalized by the zero-temperature gap energy Δ0 of the superconducting electrodes, turns out to be exceptionally large close to 2, an indication of strong Josephson coupling in the SB junction limit. However, Ic shows a temperature dependence that is inconsistent with the conventional short-junction-like behavior based on the standard Kulik-Omel'yanchuk prediction. We argue that this feature stems from the effects of inhomogeneous carrier doping in graphene near the superconducting contacts, although the junction is in fact in the short-junction limit.
NASA Technical Reports Server (NTRS)
Kirkpatrick, A. R.
1972-01-01
The results are presented of a study to determine the effect of in-situ proton irradiation upon low temperature, low intensity performance of several cell types. The cell types were selected in an attempt to distinguish variations in temperature-dependent radiation resistance which could be attributed to the n-p or p-n structure, diffused or implanted junctions, crucible grown or float-zone type base material, and high or low base resistivity. The results indicate that while expected variations of performance occur at room temperature, all cell types degrade more or less similarly at lower temperatures with normalized degradation becoming increasingly rapid as temperature is reduced. Recommendations for an optimized cell for Jupiter probe use are included along with a definition of the testing required on these cells to insure good performance characteristics.
Magneto thermal conductivity of superconducting Nb with intermediate level of impurity
DOE Office of Scientific and Technical Information (OSTI.GOV)
L.S. Sharath Chandra, M.K. Chattopadhyay, S.B. Roy, V.C. Sahni, G.R. Myneni
2012-03-01
Niobium materials with intermediate purity level are used for fabrication of superconducting radio frequency cavities (SCRF), and thermal conductivity is an important parameter influencing the performance of such SCRF cavities. We report here the temperature and magnetic field dependence of thermal conductivity {kappa} for superconducting niobium (Nb) samples, for which the electron mean free path I{sub e}, the phonon mean free path I{sub g}, and the vortex core diameter 2r{sub C} are of the same order of magnitude. The measured thermal conductivity is analyzed using the effective gap model (developed for I{sub e} >> 2r{sub C} (Dubeck et al 1963more » Phys. Rev. Lett. 10 98)) and the normal core model (developed for I{sub e} << 2r{sub C} (Ward and Dew-Hughes 1970 J. Phys. C: Solid St. Phys. 3 2245)). However, it is found that the effective gap model is not suitable for low temperatures when I{sub e} {approx} 2r{sub C}. The normal core model, on the other hand, is able to describe {kappa}(T,H) over the entire temperature range except in the field regime between H{sub C1} and H{sub C2} i.e. in the mixed state. It is shown that to understand the complete behavior of {kappa} in the mixed state, the scattering of quasi-particles from the vortex cores and the intervortex quasi-particle tunneling are to be invoked. The quasi-particle scattering from vortices for the present system is understood in terms of the framework of Sergeenkov and Ausloos (1995 Phys. Rev. B 52 3614) extending their approach to the case of Nb. The intervortex tunneling is understood within the framework of Schmidbauer et al (1970 Z. Phys. 240 30). Analysis of the field dependence of thermal conductivity shows that while the quasi-particle scattering from vortices dominates in the low fields, the intervortex quasi-particle tunneling dominates in high fields. Analysis of the temperature dependence of thermal conductivity shows that while the quasi-particle scattering is dominant at low temperatures, the intervortex quasi-particle tunneling is dominant at high temperatures.« less
Superconductor-Insulator Transition in NbTiN Films
NASA Astrophysics Data System (ADS)
Burdastyh, M. V.; Postolova, S. V.; Baturina, T. I.; Proslier, T.; Vinokur, V. M.; Mironov, A. Yu.
2017-12-01
Experimental results indicating a direct disorder-induced superconductor-insulator transition in NbTiN thin films have been reported. It has been shown that an increase in the resistance per square in the normal state is accompanied by the suppression of the critical temperature of the superconducting transition T c according to the fermion mechanism of suppression of superconductivity by disorder. At the same time, the temperature of the Berezinskii-Kosterlitz-Thouless transition is completely suppressed at a nonzero critical temperature and, then, the ground state changes to insulating, which is characteristic of the boson model of suppression of superconductivity by disorder. It has been shown that the temperature dependences of the resistance of insulating films follow the Arrhenius activation law.
Impact of viscosity variation and micro rotation on oblique transport of Cu-water fluid.
Tabassum, Rabil; Mehmood, R; Nadeem, S
2017-09-01
This study inspects the influence of temperature dependent viscosity on Oblique flow of micropolar nanofluid. Fluid viscosity is considered as an exponential function of temperature. Governing equations are converted into dimensionless forms with aid of suitable transformations. Outcomes of the study are shown in graphical form and discussed in detail. Results revealed that viscosity parameter has pronounced effects on velocity profiles, temperature distribution, micro-rotation, streamlines, shear stress and heat flux. It is found that viscosity parameter enhances the temperature distribution, tangential velocity profile, normal component of micro-rotation and shear stress at the wall while it has decreasing effect on tangential component of micro-rotation and local heat flux. Copyright © 2017 Elsevier Inc. All rights reserved.
de Solla, Shane R; Martin, Pamela A; Fernie, Kimberly J; Park, Brad J; Mayne, Gregory
2006-02-01
The herbicide atrazine has been suspected of affecting sexual development by inducing aromatase, resulting in the increased conversion of androgens to estrogens. We used snapping turtles (Chelydra serpentina), a species in which sex is dependent on the production of estrogen through aromatase activity in a temperature-dependent manner, to investigate if environmentally relevant exposures to atrazine affected gonadal development. Eggs were incubated in soil to which atrazine was applied at a typical field application rate (3.1 L/ha), 10-fold this rate (31 L/ha), and a control rate (no atrazine) for the duration of embryonic development. The incubation temperature (25 degrees C) was selected to produce only males. Although some males with testicular oocytes and females were produced in the atrazine-treated groups (3.3-3.7%) but not in the control group, no statistical differences were found among treatments. Furthermore, snapping turtle eggs collected from natural nests in a corn field were incubated at the pivotal temperature (27.5 degrees C) at which both males and females normally would be produced, and some males had oocytes in the testes (15.4%). The presence of low numbers of males with oocytes may be a natural phenomenon, and we have limited evidence to suggest that the presence of normal males with oocytes may represent a feminizing effect of atrazine. Histological examination of the thyroid gland revealed no effect on thyroid morphology.
Normalized Temperature Contrast Processing in Infrared Flash Thermography
NASA Technical Reports Server (NTRS)
Koshti, Ajay M.
2016-01-01
The paper presents further development in normalized contrast processing used in flash infrared thermography method. Method of computing normalized image or pixel intensity contrast, and normalized temperature contrast are provided. Methods of converting image contrast to temperature contrast and vice versa are provided. Normalized contrast processing in flash thermography is useful in quantitative analysis of flash thermography data including flaw characterization and comparison of experimental results with simulation. Computation of normalized temperature contrast involves use of flash thermography data acquisition set-up with high reflectivity foil and high emissivity tape such that the foil, tape and test object are imaged simultaneously. Methods of assessing other quantitative parameters such as emissivity of object, afterglow heat flux, reflection temperature change and surface temperature during flash thermography are also provided. Temperature imaging and normalized temperature contrast processing provide certain advantages over normalized image contrast processing by reducing effect of reflected energy in images and measurements, therefore providing better quantitative data. Examples of incorporating afterglow heat-flux and reflection temperature evolution in flash thermography simulation are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, Ryan T.
2011-01-01
The London penetration depth has been measured in various doping levels of single crystals of Ba(Fe 1-xT x) 2As 2 (T=Co,Ni,Ru,Rh,Pd,Pt,Co+Cu) superconductors by utilizing a tunnel diode resonator (TDR) apparatus. All in-plane penetration depth measurements exhibit a power law temperature dependence of the form Δλ ab(T) = CT n, indicating the existence of low-temperature, normal state quasiparticles all the way down to the lowest measured temperature, which was typically 500 mK. Several different doping concentrations from the Ba(Fe 1-xT x) 2As 2 (T=Co,Ni) systems have been measured and the doping dependence of the power law exponent, n, is compared tomore » results from measurements of thermal conductivity and specific heat. In addition, a novel method has been developed to allow for the measurement of the zero temperature value of the in-plane penetration depth, λ ab(0), by using TDR frequency shifts. By using this technique, the doping dependence of λ ab(0) has been measured in the Ba(Fe 1-xCo x) 2As 2 series, which has allowed also for the construction of the doping-dependent superfluid phase stiffness, ρ s(T) = [λ(0)/λ(T)] 2. By studying the effects of disorder on these superconductors using heavy ion irradiation, it has been determined that the observed power law temperature dependence likely arises from pair-breaking impurity scattering contributions, which is consistent with the proposed s±-wave symmetry of the superconducting gap in the dirty scattering limit. This hypothesis is supported by the measurement of an exponential temperature dependence of the penetration depth in the intrinsically clean LiFeAs, indicative of a nodeless superconducting gap.« less
Vapor-liquid phase separator permeability results
NASA Technical Reports Server (NTRS)
Yuan, S. W. K.; Frederking, T. H. K.
1981-01-01
Continued studies are described in the area of vapor-liquid phase separator work with emphasis on permeabilities of porous sintered plugs (stainless steel, nominal pore size 2 micrometer). The temperature dependence of the permeability has been evaluated in classical fluid using He-4 gas at atmospheric pressure and in He-2 on the basis of a modified, thermosmotic permeability of the normal fluid.
Maturano, Y Paola; Mestre, M Victoria; Combina, Mariana; Toro, María Eugenia; Vazquez, Fabio; Esteve-Zarzoso, Braulio
2016-11-21
Transformation of grape must into wine is a process that may vary according to the consumers' requirements. Application of cold soak prior to alcoholic fermentation is a common practice in cellars in order to enhance flavor complexity and extraction of phenolic compounds. However, the effect of this step on wine yeast microbiota is not well-known. The current study simultaneously analyzed the effect of different cold soak temperatures on the microbiological population throughout the process and the use of culture-dependent and independent techniques to study this yeast ecology. The temperatures assayed were those normally applied in wineries: 2.5, 8 and 12°C. PCR-DGGE allowed detection of the most representative species such as Hanseniaspora uvarum, Starmerella bacillaris and Saccharomyces cerevisiae. As could be expected, highest diversity indices were obtained at the beginning of each process, and survival of H. uvarum or S. bacillaris depended on the temperature. Our results are in agreement with those obtained with culture independent methods, but qPCR showed higher precision and a different behavior was observed for each yeast species and at each temperature assayed. Comparison of both culture-independent techniques can provide a general overview of the whole process, although DGGE does not reveal the diversity expected due to the reported problems with the sensitivity of this technique. Copyright © 2016 Elsevier B.V. All rights reserved.
Magnetostriction of some rare earth-aluminum Laves phase compounds
NASA Technical Reports Server (NTRS)
Pourarian, F.; Wallace, W. E.
1979-01-01
Measurements of the linear and volume magnetostriction of RAl2 cubic Laves compounds in which R is one of the rare earth elements Gd, Dy, Ho or Er, at temperatures between 4.2 K and the Curie temperature of each compound, are reported. Magnetic fields up to 2.5 Tesla were applied, and magnetostriction was measured using standard strain gage techniques. Saturation magnetostrictions of 17 x 10 to the -6th, -1420 x 10 to the -6th, 60 x 10 to the -6th and -920 x 10 to the -6th are determined at 4.2 K for GdAl2, DyAl2, HoAl2 and ErAl2, respectively. Large forced magnetostriction is observed in GdAl2 above the saturation field and the strain temperature dependence shows a decrease in magnitude below 40 K. A linear dependence of magnetostriction on magnetic field was observed for DyAl2 above 40 K, and the observed temperature dependence is interpreted in terms of the lowest order single-ion magnetoelastic theory. An observed decrease in the magnitude of the strain of HoAl2 below 15 K is associated with a change of the easy direction of magnetization, while in the case of ErAl2, magnetostriction is observed to occur normally up to the Curie temperature. Large volume magnetostriction is obtained for all the compounds with the exception of GdAl2.
Temperature-Dependent Kinetic Model for Nitrogen-Limited Wine Fermentations▿
Coleman, Matthew C.; Fish, Russell; Block, David E.
2007-01-01
A physical and mathematical model for wine fermentation kinetics was adapted to include the influence of temperature, perhaps the most critical factor influencing fermentation kinetics. The model was based on flask-scale white wine fermentations at different temperatures (11 to 35°C) and different initial concentrations of sugar (265 to 300 g/liter) and nitrogen (70 to 350 mg N/liter). The results show that fermentation temperature and inadequate levels of nitrogen will cause stuck or sluggish fermentations. Model parameters representing cell growth rate, sugar utilization rate, and the inactivation rate of cells in the presence of ethanol are highly temperature dependent. All other variables (yield coefficient of cell mass to utilized nitrogen, yield coefficient of ethanol to utilized sugar, Monod constant for nitrogen-limited growth, and Michaelis-Menten-type constant for sugar transport) were determined to vary insignificantly with temperature. The resulting mathematical model accurately predicts the observed wine fermentation kinetics with respect to different temperatures and different initial conditions, including data from fermentations not used for model development. This is the first wine fermentation model that accurately predicts a transition from sluggish to normal to stuck fermentations as temperature increases from 11 to 35°C. Furthermore, this comprehensive model provides insight into combined effects of time, temperature, and ethanol concentration on yeast (Saccharomyces cerevisiae) activity and physiology. PMID:17616615
Interband coupling and transport interband scattering in s ± superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kogan, Vladimir; Prozorov, Ruslan
A two-band model with repulsive interband coupling and interband transport (potential) scattering is considered to elucidate their effects on material properties. In agreement with previous work, we find that the bands order parameters Δ 1,2 differ and the large is at the band with a smaller normal density of states (DOS), N n2 < N n1. However, the bands energy gaps, as determined by the energy dependence of the DOS, are equal due to scattering. For each temperature, the gaps turn zero at a certain critical interband scattering rate, i.e. for strong enough scattering the model material becomes gappless. Inmore » the gapless state, the DOS at the band 2 is close to the normal state value, whereas at the band 1 it has a V-shape with non-zero minimum. When the normal bands DOS' are mismatched, N n1 6= N n2, the critical temperature T c is suppressed even in the absence of interband scattering, T c(N n1) has a dome-like shape. With increasing interband scattering, the London penetration depth at low temperatures evolves from being exponentially at to the powerlaw and even to near linear behavior in the gapless state, the latter being easily misinterpreted as caused by order parameter nodes.« less
Suda, Hitoshi; Sato, Kazuya; Yanase, Sumino
2012-01-01
The lifespans of many poikilothermic animals, including the nematode Caenorhabditis elegans, depend significantly on environmental temperature. Using long-living, thermosensory mutants of C. elegans, we tested whether the temperature dependency of the mean lifespan is compatible with the Arrhenius equation, which typically represents one of the chemical reaction rate theories. The temperature dependency of C. elegans was the Arrhenius type or normal, but daf-2(e1370) mutants were quite different from the others. However, taking into account the effect of the thermal denaturation of DAF-2 with the temperature, we showed that our analyzed results are compatible with previous ones. We investigated the timing mechanism of one parameter (the onset of biodemographic aging (t(0))) in the lifespan equation by applying the RNAi feeding method to daf-2 mutants in order to suppress daf-16 activity at different times during the life cycle. In summary, we further deepened the biological role of two elements, t(0) and z (the inverse of the aging rate), in the lifespan equation and mean lifespan formulated by our diffusion model z(2) = 4Dt(0), where z is composed of t(0) and D (the diffusion constant). Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Electrical transport and low-frequency noise in chemical vapor deposited single-layer MoS2 devices.
Sharma, Deepak; Amani, Matin; Motayed, Abhishek; Shah, Pankaj B; Birdwell, A Glen; Najmaei, Sina; Ajayan, Pulickel M; Lou, Jun; Dubey, Madan; Li, Qiliang; Davydov, Albert V
2014-04-18
We have studied temperature-dependent (77-300 K) electrical characteristics and low-frequency noise (LFN) in chemical vapor deposited (CVD) single-layer molybdenum disulfide (MoS2) based back-gated field-effect transistors (FETs). Electrical characterization and LFN measurements were conducted on MoS2 FETs with Al2O3 top-surface passivation. We also studied the effect of top-surface passivation etching on the electrical characteristics of the device. Significant decrease in channel current and transconductance was observed in these devices after the Al2O3 passivation etching. For passivated devices, the two-terminal resistance variation with temperature showed a good fit to the activation energy model, whereas for the etched devices the trend indicated a hopping transport mechanism. A significant increase in the normalized drain current noise power spectral density (PSD) was observed after the etching of the top passivation layer. The observed channel current noise was explained using a standard unified model incorporating carrier number fluctuation and correlated surface mobility fluctuation mechanisms. Detailed analysis of the gate-referred noise voltage PSD indicated the presence of different trapping states in passivated devices when compared to the etched devices. Etched devices showed weak temperature dependence of the channel current noise, whereas passivated devices exhibited near-linear temperature dependence.
NASA Astrophysics Data System (ADS)
Chou, Kuan-Yu; Hsu, Nai-Wen; Su, Yi-Hsin; Chou, Chung-Tao; Chiu, Po-Yuan; Chuang, Yen; Li, Jiun-Yun
2018-02-01
We investigate DC characteristics of a two-dimensional electron gas (2DEG) in an undoped Si/SiGe heterostructure and its temperature dependence. An insulated-gate field-effect transistor was fabricated, and transfer characteristics were measured at 4 K-300 K. At low temperatures (T < 45 K), source electrons are injected into the buried 2DEG channel first and drain current increases with the gate voltage. By increasing the gate voltage further, the current saturates followed by a negative transconductance observed, which can be attributed to electron tunneling from the buried channel to the surface channel. Finally, the drain current is saturated again at large gate biases due to parallel conduction of buried and surface channels. By increasing the temperature, an abrupt increase in threshold voltage is observed at T ˜ 45 K and it is speculated that negatively charged impurities at the Al2O3/Si interface are responsible for the threshold voltage shift. At T > 45 K, the current saturation and negative transconductance disappear and the device acts as a normal transistor.
NASA Astrophysics Data System (ADS)
Hegde, S. M.; Brown, Gail J.; Capano, Michael; Eyink, Kurt
1997-03-01
We have investigated MBE grown p-type, GaAs/AlGaAs QWIPs by photoluminescence spectroscopy. Excitation intensity, and temperature dependent photoluminescence spectra from 4.5K to 295K were studied. The PL-spectra were fitted with multiple gaussians to extract information on inter-subband (c1-hh1) peak loactions, full width at half maximum(FWHM), intensity and integrated intensity. A detailed analysis of the origin of the observed peaks and their thermal actiavtion energies was carried out. X-ray diffraction measurements were used to confirm the high qualiuty of the grown MQW structures and the Al-composition in the AlGaAs barriers. Temperature dependent photoconductivity measurements were used to measure the relative photoresponse from the hh1-to-continuum states in the valence subband transitions of these detector structures in the 10 micron region. It is found that high photoluminescence efficiency for the intersubband free-to-free transition at higher temperatures correl! ates with good photoresponse at th ose higher temperatures.
Rai, Neeraj; Maginn, Edward J
2012-01-01
Atomistic Monte Carlo simulations are used to compute vapour-liquid coexistence properties of a homologous series of [C(n)mim][NTf2] ionic liquids, with n = 1, 2, 4, 6. Estimates of the critical temperatures range from 1190 K to 1257 K, with longer cation alkyl chains serving to lower the critical temperature. Other quantities such as critical density, critical pressure, normal boiling point, and accentric factor are determined from the simulations. Vapour pressure curves and the temperature dependence of the enthalpy of vapourisation are computed and found to have a weak dependence on the length of the cation alkyl chain. The ions in the vapour phase are predominately in single ion pairs, although a significant number of ions are found in neutral clusters of larger sizes as temperature is increased. It is found that previous estimates of the critical point obtained from extrapolating experimental surface tension data agree reasonably well with the predictions obtained here, but group contribution methods and primitive models of ionic liquids do not capture many of the trends observed in the present study
NASA Astrophysics Data System (ADS)
Molina, J. F.; Moreno, J. A.; Castro, A.; Rodríguez, C.; Fershtater, G. B.
2015-09-01
Dependencies of plagioclase/amphibole Al-Si partitioning, DAl/Siplg/amp, and amphibole/liquid Mg partitioning, DMgamp/liq, on temperature, pressure and phase compositions are investigated employing robust regression methods based on MM-estimators. A database with 92 amphibole-plagioclase pairs - temperature range: 650-1050 °C; amphibole compositional limits: > 0.02 apfu (23O) Ti and > 0.05 apfu Al - and 148 amphibole-glass pairs - temperature range: 800-1100 °C; amphibole compositional limit: CaM4/(CaM4 + NaM4) > 0.75 - compiled from experiments in the literature was used for the calculations (amphibole normalization scheme: 13-CNK method).
NASA Technical Reports Server (NTRS)
Zipf, Edward C.
1988-01-01
The rate coefficient for the excitation of the O(1S) state due to the dissociative recombination of O2(+) (v of not greater than 3) ions has been determined as a function of the electron temperature from 300-3500 K. In agreement with the work of Guberman (1987), the results suggest that the absolute magnitude of alpha(1S) is nearly the same for a wide variety of O2(+) vibrational distributions over the electron temperature range normally encountered in the nocturnal F-region. It is noted that previous studies which modeled 5577-A airglow data using a fixed value for f(1S) may be misleading.
Superconducting gamma and fast-neutron spectrometers with high energy resolution
Friedrich, Stephan; , Niedermayr, Thomas R.; Labov, Simon E.
2008-11-04
Superconducting Gamma-ray and fast-neutron spectrometers with very high energy resolution operated at very low temperatures are provided. The sensor consists of a bulk absorber and a superconducting thermometer weakly coupled to a cold reservoir, and determines the energy of the incident particle from the rise in temperature upon absorption. A superconducting film operated at the transition between its superconducting and its normal state is used as the thermometer, and sensor operation at reservoir temperatures around 0.1 K reduces thermal fluctuations and thus enables very high energy resolution. Depending on the choice of absorber material, the spectrometer can be configured either as a Gamma-spectrometer or as a fast-neutron spectrometer.
Thermal expansion properties of Ho2Fe16.5Cr0.5
NASA Astrophysics Data System (ADS)
Dan, Shovan; Mukherjee, S.; Mazumdar, Chandan; Ranganathan, R.
2018-04-01
We report the thermal expansion behavior of Ho2Fe16.5Cr0.5 compound in the range of temperature 13-483 K, using structural parameters obtained by analyzing temperature dependent x-ray diffraction (XRD) patterns. From 13 K to 300 K, the compound shows negligible thermal expansion having the coefficient of volume expansion (αV) ∼ 10-6 K -1. The thermal expansion behavior of the studied compound can be explained by the role of magnetovolume effect (MVE) below ferrimagnetic ordering temperature (394 K), in addition to normal phononic contribution. Fe sublattice contribute to MVE, whereas both the rare earth and Fe sublattice determine the value of saturation magnetization.
Gas identification by dynamic measurements of SnO2 sensors
NASA Astrophysics Data System (ADS)
Vorobioff, Juan; Rodriguez, Daniel; Boselli, Alfredo; Lamagna, Alberto; Rinaldi, Carlos
2011-09-01
It is well know that the use of chambers with the sensors in the e-nose improves the measurements, due to a constant gas flow and the controlled temperature sensors[1]. Normally, the chamber temperature is above room temperature due to the heat generated by the heater of sensors. Also, the chamber takes a long time to reach a stable equilibrium temperature and it depends on enviromental conditions. Besides, the temperature variations modify the humidity producing variations in resistance measurements[2]. In this work using a heater system that controls the temperature of the chamber, the desorption process on SnO2 sensor array was study[3]. Also, it was fitted the data signal sensors using a two exponential decay functions in order to determine the desorbing constant process. These constants were used to classify and identify different alcohols and their concentrations.
Effects of Normal Metal Features on Superconducting Transition-Edge Sensors
NASA Astrophysics Data System (ADS)
Wakeham, N. A.; Adams, J. S.; Bandler, S. R.; Chervenak, J. A.; Datesman, A. M.; Eckart, M. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Miniussi, A. R.; Porter, F. S.; Sadleir, J. E.; Sakai, K.; Smith, S. J.; Wassell, E. J.; Yoon, W.
2018-04-01
In transition-edge sensors (TESs), the addition of normal metal stripes on top of the superconducting bilayer, perpendicular to the current direction, is known to globally alter the sensitivity of the resistance R to changes in temperature T and current I. Here, we describe measurements of the dependence of the TES current on magnetic field B, bath temperature and voltage bias in devices with various numbers of stripes. We show that the normal metal features have a profound effect on the appearance of localized regions of very large (T/R) dR/dT . We associate this with changes in the current distribution and corresponding changes in the oscillatory pattern of I(B). 140 μm TESs with no stripes are found to have a relatively smooth resistive transition and sufficiently low noise that the measured energy resolution is 1.6 eV for X-rays of 1.5 keV. The predicted energy resolution at 6 keV is better than 2 eV, once the heat capacity is optimized for these higher energies.
Antarctic Sea ice variations and seasonal air temperature relationships
NASA Technical Reports Server (NTRS)
Weatherly, John W.; Walsh, John E.; Zwally, H. J.
1991-01-01
Data through 1987 are used to determine the regional and seasonal dependencies of recent trends of Antarctic temperature and sea ice. Lead-lag relationships involving regional sea ice and air temperature are systematically evaluated, with an eye toward the ice-temperature feedbacks that may influence climatic change. Over the 1958-1087 period the temperature trends are positive in all seasons. For the 15 years (l973-l987) for which ice data are available, the trends are predominantly positive only in winter and summer, and are most strongly positive over the Antarctic Peninsula. The spatially aggregated trend of temperature for this latter period is small but positive, while the corresponding trend of ice coverage is small but negative. Lag correlations between seasonal anomalies of the two variables are generally stronger with ice lagging the summer temperatures and with ice leading the winter temperatures. The implication is that summer temperatures predispose the near-surface waters to above-or below-normal ice coverage in the following fall and winter.
Thermal effects on shearing resistance of fractures in Tak granite
NASA Astrophysics Data System (ADS)
Khamrat, S.; Thongprapha, T.; Fuenkajorn, K.
2018-06-01
Triaxial shear tests have been performed on tension-induced fractures and smooth saw-cut surfaces in Tak granite under temperatures up to 773 K. The objective is to gain an understanding of the movement of shallow faults that cause seismic activities in the Tak batholith in the north of Thailand. The results indicate that the peak and residual shear strengths and fracture dilations notably decrease as the temperatures increase. The thermal effect is enhanced under higher confining pressures. The areas of the sheared-off asperities increase with temperature and confining pressure. A power equation can describe the increase of shear strengths with normal stress where the normal stress exponent is a linear function of the temperature. The strain energy principle is applied to incorporate the principal stresses and strains into a strength criterion. A linear relation between the distortional strain energy (Wd) and the mean strain energy (Wm) of the fractures is obtained. The Wd-Wm slope depends on the fracture roughness and strength of the asperities, which can be defined as a function of shear and mean strains and dilation of the fractures. This may allow predicting the peak strength of the shallow faults in the Tak batholith.
Temperature-dependent electrochemical heat generation in a commercial lithium-ion battery
NASA Astrophysics Data System (ADS)
Bandhauer, Todd M.; Garimella, Srinivas; Fuller, Thomas F.
2014-02-01
Lithium-ion batteries suffer from inherent thermal limitations (i.e., capacity fade and thermal runaway); thus, it is critical to understand heat generation experienced in the batteries under normal operation. In the current study, reversible and irreversible electrochemical heat generation rates were measured experimentally on a small commercially available C/LiFePO4 lithium-ion battery designed for high-rate applications. The battery was tested over a wide range of temperatures (10-60 °C) and discharge and charge rates (∼C/4-5C) to elucidate their effects. Two samples were tested in a specially designed wind tunnel to maintain constant battery surface temperature within a maximum variation of ±0.88 °C. A data normalization technique was employed to account for the observed capacity fade, which was largest at the highest rates. The heat rate was shown to increase with both increasing rate and decreasing temperature, and the reversible heat rate was shown to be significant even at the highest rate and temperature (7.4% at 5C and 55 °C). Results from cycling the battery using a dynamic power profile also showed that constant-current data predict the dynamic performance data well. In addition, the reversible heat rate in the dynamic simulation was shown to be significant, especially for charge-depleting HEV applications.
Normal vibrational modes of phospholipid bilayers observed by low-frequency Raman scattering
NASA Astrophysics Data System (ADS)
Surovtsev, N. V.; Dmitriev, A. A.; Dzuba, S. A.
2017-03-01
Low-frequency Raman spectra of multilamellar vesicles made either of 1-palmitoyl-2-oleoyl-s n -glycero-3-phosphocholine (POPC) or 1,2-dipalmitoyl-s n -glycero-3-phosphocholine (DPPC) have been studied in a wide temperature range. Below 0 ∘C two peaks are found at frequencies around 8-9 and 14 -17 c m -1 and attributed to the normal vibrational modes of the phospholipid bilayer, which are determined by the bilayer thickness and stiffness (elastic modulus). The spectral positions of the peaks depend on the temperature and the bilayer composition. It is suggested that the ratio of the intensities of the first and second peaks can serve as a measure of the interleaflet elastic coupling. The addition of cholesterol to the phospholipid bilayer leads to peak shift and broadening, which may be assigned to the composition heterogeneities commonly attributed to the lipid raft formation.
A Comparison of Methods for Computing the Residual Resistivity Ratio of High-Purity Niobium
Splett, J. D.; Vecchia, D. F.; Goodrich, L. F.
2011-01-01
We compare methods for estimating the residual resistivity ratio (RRR) of high-purity niobium and investigate the effects of using different functional models. RRR is typically defined as the ratio of the electrical resistances measured at 273 K (the ice point) and 4.2 K (the boiling point of helium at standard atmospheric pressure). However, pure niobium is superconducting below about 9.3 K, so the low-temperature resistance is defined as the normal-state (i.e., non-superconducting state) resistance extrapolated to 4.2 K and zero magnetic field. Thus, the estimated value of RRR depends significantly on the model used for extrapolation. We examine three models for extrapolation based on temperature versus resistance, two models for extrapolation based on magnetic field versus resistance, and a new model based on the Kohler relationship that can be applied to combined temperature and field data. We also investigate the possibility of re-defining RRR so that the quantity is not dependent on extrapolation. PMID:26989580
Effects of repeated bending load at room temperature for composite Nb3Sn wires
NASA Astrophysics Data System (ADS)
Awaji, Satoshi; Watanabe, Kazuo; Katagiri, Kazumune
2003-09-01
In order to realize a react and wind (R&W) method for Nb3Sn wires, the influences of a bending load at room temperature are investigated. Usually, the superconducting wires undergo bending loads at room temperature repeatedly during winding and insulation processes. We define these bending loads as 'pre-bending' treatments. We applied the pre-bending strain of 0 and 0.5% to the highly strengthened CuNb/(Nb, Ti)3Sn wires, and measured the stress/strain properties and critical currents. The improvements of stress dependence of normalized critical current and the increase of the maximum critical current by the pre-bending treatments were found. The model based on the distribution of the local tensile strain as a bending strain describes the experimental results well without the increase of the maximum critical current. When the pre-bending strain was applied, the calculated results indicate that the mechanical properties are improved due to the local work hardening, and hence the stress dependence of Ic increases.
Topoclimatological and snowhydrological survey of Switzerland
NASA Technical Reports Server (NTRS)
Winiger, M. (Principal Investigator)
1980-01-01
The author has identified the following significant results. Low temperature zones depend on the topography and the terrain coverage type (besides the meteorological situation). The usual pattern of cold zones at the bottom of the valleys, warmer belts along the valley slopes, and cold mountain tops is modified by the terrain coverage type. Rural and forested areas normally have different surface temperatures, but along a vertical profile the temperature decrease (or increase) is often of the same order of magnitude. Because there is also a close correlation between the topography and terrain coverage (high percentage of forested areas at the valley slopes up to the timber line, much less along the valley floors), the surface temperature of the warm slope zone is increased compared to a valley profile with uniform coverage.
Swioklo, Stephen; Constantinescu, Andrei; Connon, Che J
2016-03-01
Despite considerable progress within the cell therapy industry, unmet bioprocessing and logistical challenges associated with the storage and distribution of cells between sites of manufacture and the clinic exist. We examined whether hypothermic (4°C-23°C) preservation of human adipose-derived stem cells could be improved through their encapsulation in 1.2% calcium alginate. Alginate encapsulation improved the recovery of viable cells after 72 hours of storage. Viable cell recovery was highly temperature-dependent, with an optimum temperature of 15°C. At this temperature, alginate encapsulation preserved the ability for recovered cells to attach to tissue culture plastic on rewarming, further increasing its effect on total cell recovery. On attachment, the cells were phenotypically normal, displayed normal growth kinetics, and maintained their capacity for trilineage differentiation. The number of cells encapsulated (up to 2 × 10(6) cells per milliliter) did not affect viable cell recovery nor did storage of encapsulated cells in a xeno-free, serum-free,current Good Manufacturing Practice-grade medium. We present a simple, low-cost system capable of enhancing the preservation of human adipose-derived stem cells stored at hypothermic temperatures, while maintaining their normal function. The storage of cells in this manner has great potential for extending the time windows for quality assurance and efficacy testing, distribution between the sites of manufacture and the clinic, and reducing the wastage associated with the limited shelf life of cells stored in their liquid state. ©AlphaMed Press.
Silva, R S; de Melo, P B; Omena, L; Nunes, A M; da Silva, M G A; Meneghetti, M R; de Oliveira, I N
2017-12-01
The present study is devoted to the investigation of the nonlinear optical properties of a smectic liquid crystal doped with gold nanorods. Using the Z-scan technique, we investigate the changes in the optical birefringence of a homeotropic sample upon laser exposure, considering the configurations of normal and oblique incidence. Our results reveal that the birefringence variations may be governed by distinct physical mechanisms, depending on the relative angle between the far-field director and the wave vector of the excitation laser beam. In particular, we observe that the position dependence of the far-field transmittance exhibits different behaviors as the incidence angle is changed, indicating that distortions in the beam wavefront may be associated with the thermal lens phenomenon or an optically induced reorientation of the nematic director. The temperature dependence of the nonlinear refractive and absorptive coefficients is investigated close to the smectic-A-nematic phase transition. A detailed analysis of the interplay between smectic order and plasmon resonance is performed, thus unveiling the capability of plasmonic liquid crystal to be used in optical devices.
NASA Astrophysics Data System (ADS)
Silva, R. S.; de Melo, P. B.; Omena, L.; Nunes, A. M.; da Silva, M. G. A.; Meneghetti, M. R.; de Oliveira, I. N.
2017-12-01
The present study is devoted to the investigation of the nonlinear optical properties of a smectic liquid crystal doped with gold nanorods. Using the Z -scan technique, we investigate the changes in the optical birefringence of a homeotropic sample upon laser exposure, considering the configurations of normal and oblique incidence. Our results reveal that the birefringence variations may be governed by distinct physical mechanisms, depending on the relative angle between the far-field director and the wave vector of the excitation laser beam. In particular, we observe that the position dependence of the far-field transmittance exhibits different behaviors as the incidence angle is changed, indicating that distortions in the beam wavefront may be associated with the thermal lens phenomenon or an optically induced reorientation of the nematic director. The temperature dependence of the nonlinear refractive and absorptive coefficients is investigated close to the smectic-A -nematic phase transition. A detailed analysis of the interplay between smectic order and plasmon resonance is performed, thus unveiling the capability of plasmonic liquid crystal to be used in optical devices.
Effect of soil texture on the microwave emission from soils
NASA Technical Reports Server (NTRS)
Schmugge, T. J.
1980-01-01
The intensity brightness temperature of the microwave emission from the soil is determined primarily by its dielectric properties. The large difference between the dielectric constant of water and that of dry soil produces a strong dependence of the soil's dielectric constant on its moisture content. This dependence is effected by the texture of the soil because the water molecules close to the particle surface are tightly bound and do not contribute significantly to the dielectric properties. Since this surface area is a function of the particle size distribution (soil texture), being larger for clay soils with small particles, and smaller for sandy soils with larger particles; the dielectric properties will depend on soil texture. Laboratory measurements of the dielectric constant for soils are summarized. The dependence of the microwave emission on texture is demonstrated by measurements of brightness temperature from an aircraft platform for a wide range of soil textures. It is concluded that the effect of soil texture differences on the observed values can be normalized by expressing the soil moisture values as a percent field capacity for the soil.
Coping with thermal challenges: physiological adaptations to environmental temperatures.
Tattersall, Glenn J; Sinclair, Brent J; Withers, Philip C; Fields, Peter A; Seebacher, Frank; Cooper, Christine E; Maloney, Shane K
2012-07-01
Temperature profoundly influences physiological responses in animals, primarily due to the effects on biochemical reaction rates. Since physiological responses are often exemplified by their rate dependency (e.g., rate of blood flow, rate of metabolism, rate of heat production, and rate of ion pumping), the study of temperature adaptations has a long history in comparative and evolutionary physiology. Animals may either defend a fairly constant temperature by recruiting biochemical mechanisms of heat production and utilizing physiological responses geared toward modifying heat loss and heat gain from the environment, or utilize biochemical modifications to allow for physiological adjustments to temperature. Biochemical adaptations to temperature involve alterations in protein structure that compromise the effects of increased temperatures on improving catalytic enzyme function with the detrimental influences of higher temperature on protein stability. Temperature has acted to shape the responses of animal proteins in manners that generally preserve turnover rates at animals' normal, or optimal, body temperatures. Physiological responses to cold and warmth differ depending on whether animals maintain elevated body temperatures (endothermic) or exhibit minimal internal heat production (ectothermic). In both cases, however, these mechanisms involve regulated neural and hormonal over heat flow to the body or heat flow within the body. Examples of biochemical responses to temperature in endotherms involve metabolic uncoupling mechanisms that decrease metabolic efficiency with the outcome of producing heat, whereas ectothermic adaptations to temperature are best exemplified by the numerous mechanisms that allow for the tolerance or avoidance of ice crystal formation at temperatures below 0°C. 2012 American Physiological Society. Compr Physiol 2:2037-2061, 2012.
A Method to Measure and Estimate Normalized Contrast in Infrared Flash Thermography
NASA Technical Reports Server (NTRS)
Koshti, Ajay M.
2016-01-01
The paper presents further development in normalized contrast processing used in flash infrared thermography method. Method of computing normalized image or pixel intensity contrast, and normalized temperature contrast are provided. Methods of converting image contrast to temperature contrast and vice versa are provided. Normalized contrast processing in flash thermography is useful in quantitative analysis of flash thermography data including flaw characterization and comparison of experimental results with simulation. Computation of normalized temperature contrast involves use of flash thermography data acquisition set-up with high reflectivity foil and high emissivity tape such that the foil, tape and test object are imaged simultaneously. Methods of assessing other quantitative parameters such as emissivity of object, afterglow heat flux, reflection temperature change and surface temperature during flash thermography are also provided. Temperature imaging and normalized temperature contrast processing provide certain advantages over normalized image contrast processing by reducing effect of reflected energy in images and measurements, therefore providing better quantitative data. Examples of incorporating afterglow heat-flux and reflection temperature evolution in flash thermography simulation are also discussed.
Effect of electron beam on the properties of electron-acoustic rogue waves
NASA Astrophysics Data System (ADS)
El-Shewy, E. K.; Elwakil, S. A.; El-Hanbaly, A. M.; Kassem, A. I.
2015-04-01
The properties of nonlinear electron-acoustic rogue waves have been investigated in an unmagnetized collisionless four-component plasma system consisting of a cold electron fluid, Maxwellian hot electrons, an electron beam and stationary ions. It is found that the basic set of fluid equations is reduced to a nonlinear Schrodinger equation. The dependence of rogue wave profiles and the associated electric field on the carrier wave number, normalized density of hot electron and electron beam, relative cold electron temperature and relative beam temperature are discussed. The results of the present investigation may be applicable in auroral zone plasma.
Analytical YORP torques model with an improved temperature distribution function
NASA Astrophysics Data System (ADS)
Breiter, S.; Vokrouhlický, D.; Nesvorný, D.
2010-01-01
Previous models of the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect relied either on the zero thermal conductivity assumption, or on the solutions of the heat conduction equations assuming an infinite body size. We present the first YORP solution accounting for a finite size and non-radial direction of the surface normal vectors in the temperature distribution. The new thermal model implies the dependence of the YORP effect in rotation rate on asteroids conductivity. It is shown that the effect on small objects does not scale as the inverse square of diameter, but rather as the first power of the inverse.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trang Nghiêm, T. T.; Chapuis, Pierre-Olivier
The wave property of phonons is employed to explore the thermal transport across a finite periodic array of nano-scatterers such as circular and triangular holes. As thermal phonons are generated in all directions, we study their transmission through a single array for both normal and oblique incidences, using a linear dispersionless time-dependent acoustic frame in a two-dimensional system. Roughness effects can be directly considered within the computations without relying on approximate analytical formulae. Analysis by spatio-temporal Fourier transform allows us to observe the diffraction effects and the conversion of polarization. Frequency-dependent energy transmission coefficients are computed for symmetric and asymmetricmore » objects that are both subject to reciprocity. We demonstrate that the phononic array acts as an efficient thermal barrier by applying the theory of thermal boundary (Kapitza) resistances to arrays of smooth scattering holes in silicon for an exemplifying periodicity of 10 nm in the 5–100 K temperature range. It is observed that the associated thermal conductance has the same temperature dependence as that without phononic filtering.« less
NASA Technical Reports Server (NTRS)
Gasumyants, V. E.; Vladimirskaya, E. V.; Smirnov, V. I.; Kazanskiy, S. V.
1995-01-01
The temperature dependencies of thermopower, S, in the range T = T(sub c)-1000K as well as of resistivity and Hall coefficient in the range T = T(sub c)-300K for the single-phase ceramic samples Bi2Sr2Ca(1-x)Nd(x)Cu2O(y) have been measured. It was found that the S(T) dependencies in normal phase have three characteristic regions. Despite the fact that the S(T) dependencies in Bi-based high-T(sub c) superconductors (HTSC) differ essentially from ones in Y-based HTSC at T = T(sub c)-300K, the main feature of theirs (S(T) = const at high temperatures) retains in samples investigated at T is greater than 620K. The results obtained have been analyzed on the basis of the narrow-band model with the use of assumption of slight asymmetry of the conductive band. The band spectrum parameters of the samples studied have been calculated. An analysis of the tendencies in these parameters changes with samples composition varying enables to make the conclusion about the similarity of the main features of the conductive band structure in Y- and Bi-based HTSC.
NASA Astrophysics Data System (ADS)
Andalib, T.; Martin, J. W.; Bidinosti, C. P.; Mammei, R. R.; Jamieson, B.; Lang, M.; Kikawa, T.
2017-09-01
Future experiments seeking to measure the neutron electric dipole moment (nEDM) require stable and homogeneous magnetic fields. Normally these experiments use a coil internal to a passively magnetically shielded volume to generate the magnetic field. The stability of the magnetic field generated by the coil within the magnetically shielded volume may be influenced by a number of factors. The factor studied here is the dependence of the internally generated field on the magnetic permeability μ of the shield material. We provide measurements of the temperature-dependence of the permeability of the material used in a set of prototype magnetic shields, using experimental parameters nearer to those of nEDM experiments than previously reported in the literature. Our measurements imply a range of 1/μ dμ/dT from 0-2.7%/K. Assuming typical nEDM experiment coil and shield parameters gives μ/B0 dB0/dμ = 0.01, resulting in a temperature dependence of the magnetic field in a typical nEDM experiment of dB0/dT = 0 - 270 pT/K for B0 = 1 μT. The results are useful for estimating the necessary level of temperature control in nEDM experiments.
Instantaneous Normal Modes and the Protein Glass Transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulz, Roland; Krishnan, Marimuthu; Daidone, Isabella
2009-01-01
In the instantaneous normal mode method, normal mode analysis is performed at instantaneous configurations of a condensed-phase system, leading to modes with negative eigenvalues. These negative modes provide a means of characterizing local anharmonicities of the potential energy surface. Here, we apply instantaneous normal mode to analyze temperature-dependent diffusive dynamics in molecular dynamics simulations of a small protein (a scorpion toxin). Those characteristics of the negative modes are determined that correlate with the dynamical (or glass) transition behavior of the protein, as manifested as an increase in the gradient with T of the average atomic mean-square displacement at ~ 220more » K. The number of negative eigenvalues shows no transition with temperature. Further, although filtering the negative modes to retain only those with eigenvectors corresponding to double-well potentials does reveal a transition in the hydration water, again, no transition in the protein is seen. However, additional filtering of the protein double-well modes, so as to retain only those that, on energy minimization, escape to different regions of configurational space, finally leads to clear protein dynamical transition behavior. Partial minimization of instantaneous configurations is also found to remove nondiffusive imaginary modes. In summary, examination of the form of negative instantaneous normal modes is shown to furnish a physical picture of local diffusive dynamics accompanying the protein glass transition.« less
Instantaneous Normal Modes and the Protein Glass Transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, Roland; Krishnan, Marimuthu; Daidone, Isabella
2009-01-01
In the instantaneous normal mode method, normal mode analysis is performed at instantaneous configurations of a condensed-phase system, leading to modes with negative eigenvalues. These negative modes provide a means of characterizing local anharmonicities of the potential energy surface. Here, we apply instantaneous normal mode to analyze temperature-dependent diffusive dynamics in molecular dynamics simulations of a small protein (a scorpion toxin). Those characteristics of the negative modes are determined that correlate with the dynamical (or glass) transition behavior of the protein, as manifested as an increase in the gradient with T of the average atomic mean-square displacement at 220 K.more » The number of negative eigenvalues shows no transition with temperature. Further, although filtering the negative modes to retain only those with eigenvectors corresponding to double-well potentials does reveal a transition in the hydration water, again, no transition in the protein is seen. However, additional filtering of the protein double-well modes, so as to retain only those that, on energy minimization, escape to different regions of configurational space, finally leads to clear protein dynamical transition behavior. Partial minimization of instantaneous configurations is also found to remove nondiffusive imaginary modes. In summary, examination of the form of negative instantaneous normal modes is shown to furnish a physical picture of local diffusive dynamics accompanying the protein glass transition.« less
Crystallization kinetics, optical and dielectric properties of Li2OṡCdOṡBi2O3ṡSiO2 glasses
NASA Astrophysics Data System (ADS)
Rani, Saroj; Sanghi, Sujata; Ahlawat, Neetu; Agarwal, Ashish
2015-10-01
Crystallization kinetics, optical absorption and electrical behavior of lithium cadmium silicate glasses with different amount of bismuth oxide were investigated using non-isothermal crystallization approach, UV-VIS-NIR spectroscopy and impedance spectroscopy, respectively. These glasses were synthesized by normal melt quenching technique. Variation in physical properties, viz. density, molar volume with Bi2O3:SiO2 ratio were related to the structural changes occurring in the glasses. The glass transition temperature (Tg), crystalline peak temperature (Tp) and melting temperature (Tm) of these glasses were determined using differential scanning calorimeter at various heating rates. The dependence of Tg and Tp on heating rate has been used for the determination of the activation energy of glass transition and crystallization. Thermal stability parameters have revealed high stability of the glass prepared with 40 mol% of Bi2O3 content. The crystallization kinetics for the glasses was studied by using the Kissinger and modified Ozawa equations. Appearance of a sharp cut-off and a wide and reasonable transmission in VIS-NIR region makes these glasses suitable for IR transmission window. The cut-off wavelength, optical band gap and Urbach's energy have been analyzed and discussed in terms of changes in the glass structure. By analyzing the impedance spectra, the ac and dc conductivities, activation energy for dc conduction (Edc) and for relaxation (EM″) were calculated. The results obtained from dc conductivity confirm the network forming role of Cd2+ ion in the glasses. The scaling of the conductivity spectra has been used to interpret the temperature dependence of the relaxation dynamics. The observed conductivity spectra follows power law with exponent 's' which decreases with temperature and satisfies the correlated barrier hopping (CBH) model. The perfect overlying of normalized plots of electrical modulus on a single 'master curve' depicts temperature as well as composition independent dynamical process at several frequencies.
Rostkowska, Hanna; Lapinski, Leszek; Nowak, Maciej J
2018-05-23
Spontaneous thiol → thione hydrogen-atom transfer has been investigated for molecules of thiourea trapped in Ar, Ne, normal-H2 (n-H2) and normal-D2 (n-D2) low-temperature matrices. The most stable thione isomer was the only form of the compound present in the matrices after their deposition. According to MP2/6-311++G(2d,p) calculations, the thiol tautomer should be higher in energy by 62.5 kJ mol-1. This less stable thiol form of the compound was photochemically generated in a thione → thiol process, occurring upon UV irradiation of the matrix. Subsequently, a very slow spontaneous conversion of the thiol tautomer into the thione form was observed for the molecules isolated in Ar, Ne, n-H2 and n-D2 matrices kept at 3.5 K and in the dark. Since the thiol → thione transformation in thiourea is a process involving the dissociation of a chemical bond, the barrier for this hydrogen-atom transfer is very high (104-181 kJ mol-1). Crossing such a high potential-energy barrier at a temperature as low as 3.5 K, is possible only by hydrogen-atom tunneling. The experimentally measured time constants of this tunneling process: 52 h (Ar), 76 h (Ne), 94 h (n-H2) and 94 h (n-D2), do not differ much from one another. Hence, the dependence of the tunneling rate on the matrix environment is not drastic. The progress of the thiol → thione conversion was also monitored for Ar matrices at different temperature: 3.5 K, 9 K and 15 K. For this temperature range, the experiments revealed no detectable temperature dependence of the rate of the tunneling process.
Magnetic Property Measurements on Single Wall Carbon Nanotube-Polyimide Composites
NASA Technical Reports Server (NTRS)
Sun, Keun J.; Wincheski, Russell A.; Park, Cheol
2008-01-01
Temperature and magnetic field dependent magnetization measurements were performed on polyimide nanocomposite samples, synthesized with various weight percentages of single wall carbon nanotubes. It was found that the magnetization of the composite, normalized to the mass of nanotube material in the sample, decreased with increasing weight percentage of nanotubes. It is possible that the interfacial coupling between the carbon nanotube (CNT) fillers and the polyimide matrix promotes the diamagnetic response from CNTs and reduces the total magnetization of the composite. The coercivity of the samples, believed to originate from the residual magnetic catalyst particles, was enhanced and had a stronger temperature dependence as a result of the composite synthesis. These changes in magnetic properties can form the basis of a new approach to investigate the interfacial properties in the CNT nanocomposites through magnetic property measurements.
Age-related maintenance of eccentric strength: a study of temperature dependence.
Power, Geoffrey A; Flaaten, Nordan; Dalton, Brian H; Herzog, Walter
2016-04-01
With adult aging, eccentric strength is maintained better than isometric strength leading to a higher ratio of eccentric/isometric force production (ECC/ISO) in older than younger adults. The purpose was to investigate the ECC/ISO during electrical activation of the adductor pollicis during lengthening (20-320° s(-1)) contractions in 24 young (n = 12, ∼24 years) and old (n = 12, ∼72 years) males across muscle temperatures (cold ∼19 °C; normal ∼30 °C; warm ∼35 °C). For isometric force, the old were 20-30 % weaker in the normal and cold conditions (P < 0.05) with no difference for the warm condition compared to young (P > 0.05). Half-relaxation time (HRT) did not differ across age for the normal and warm temperatures (P > 0.05), but it slowed significantly for old in the cold condition compared with young (∼15 %; P < 0.05), as well, there was a 20 and 40 % increase in muscle stiffness for the young and old, respectively. ECC/ISO was 50-60 % greater for the cold condition than the normal and warm conditions. There was no age difference in ECC/ISO across ages for the normal and warm conditions (P > 0.05), but for the cold, the old exhibited a 20-35 % higher ECC/ISO than did the young for velocities above 60° s(-1) (P < 0.05). A contributing factor to the elevated ECC/ISO is an increased proportion of weakly compared to strongly bound crossbridges. These findings highlight the relationship (r = 0.70) between intrinsic muscle contractile speed (HRT) and eccentric strength in old age.
Temperature dependent surface modification of molybdenum due to low energy He+ ion irradiation
NASA Astrophysics Data System (ADS)
Tripathi, J. K.; Novakowski, T. J.; Joseph, G.; Linke, J.; Hassanein, A.
2015-09-01
In this paper, we report on the temperature dependent surface modifications in molybdenum (Mo) samples due to 100 eV He+ ion irradiation in extreme conditions as a potential candidate to plasma-facing components in fusion devices alternative to tungsten. The Mo samples were irradiated at normal incidence, using an ion fluence of 2.6 × 1024 ions m-2 (with a flux of 7.2 × 1020 ions m-2 s-1). Surface modifications have been studied using high-resolution field emission scanning electron-(SEM) and atomic force (AFM) microscopy. At 773 K target temperature homogeneous evolution of molybdenum nanograins on the entire Mo surface were observed. However, at 823 K target temperature appearance of nano-pores and pin-holes nearby the grain boundaries, and Mo fuzz in patches were observed. The fuzz density increases significantly with target temperatures and continued until 973 K. However, at target temperatures beyond 973 K, counterintuitively, a sequential reduction in the fuzz density has been seen till 1073 K temperatures. At 1173 K and above temperatures, only molybdenum nano structures were observed. Our temperature dependent studies confirm a clear temperature widow, 823-1073 K, for Mo fuzz formation. Ex-situ high resolution X-ray photoelectron spectroscopy studies on Mo fuzzy samples show the evidence of MoO3 3d doublets. This elucidates that almost all the Mo fuzz were oxidized during open air exposure and are thick enough as well. Likewise the microscopy studies, the optical reflectivity measurements also show a sequential reduction in the reflectivity values (i.e., enhancement in the fuzz density) up to 973 K and after then a sequential enhancement in the reflectivity values (i.e., reduction in the fuzz density) with target temperatures. This is in well agreement with microscopy studies where we observed clear temperature window for Mo fuzz growth.
NASA Astrophysics Data System (ADS)
Basavalingappa, Adarsh
Copper interconnects are typically polycrystalline and follow a lognormal grain size distribution. Polycrystalline copper interconnect microstructures with a lognormal grain size distribution were obtained with a Voronoi tessellation approach. The interconnect structures thus obtained were used to study grain growth mechanisms, grain boundary scattering, scattering dependent resistance of interconnects, stress evolution, vacancy migration, reliability life times, impact of orientation dependent anisotropy on various mechanisms, etc. In this work, the microstructures were used to study the impact of microstructure and elastic anisotropy of copper on thermal and electromigration induced failure. A test structure with copper and bulk moduli values was modeled to do a comparative study with the test structures with textured microstructure and elastic anisotropy. By subjecting the modeled test structure to a thermal stress by ramping temperature down from 400 °C to 100 °C, a significant variation in normal stresses and pressure were observed at the grain boundaries. This variation in normal stresses and hydrostatic stresses at the grain boundaries was found to be dependent on the orientation, dimensions, surroundings, and location of the grains. This may introduce new weak points within the metal line where normal stresses can be very high depending on the orientation of the grains leading to delamination and accumulation sites for vacancies. Further, the hydrostatic stress gradients act as a driving force for vacancy migration. The normal stresses can exceed certain grain orientation dependent critical threshold values and induce delamination at the copper and cap material interface, thereby leading to void nucleation and growth. Modeled test structures were subjected to a series of copper depositions at 250 °C followed by copper etch at 25 °C to obtain initial stress conditions. Then the modeled test structures were subjected to 100,000 hours ( 11.4 years) of simulated thermal stress at an elevated temperature of 150 °C. Vacancy migration due to concentration gradients, thermal gradients, and mechanical stress gradients were considered under the applied thermal stress. As a result, relatively high concentrations of vacancies were observed in the test structure due to a driving force caused by the pressure gradients resulting from the elastic anisotropy of copper. The grain growth mechanism was not considered in these simulations. Studies with two grain analysis demonstrated that the stress gradients developed will be severe when (100) grains are adjacent to (111) grains, therefore making them the weak points for potentially reliability failures. Ilan Blech discovered that electromigration occurs above a critical product of the current density and metal length, commonly referred as Blech condition. Electromigration stress simulations in this work were carried out by subjecting test structures to scaled current densities to overcome the Blech condition of (jL)crit for small dimensions of test structure and the low temperature stress condition used. Vacancy migration under the electromigration stress conditions was considered along with the vacancy migration induced stress evolution. A simple void growth model was used which assumes voids start to form when vacancies reach a critical level. Increase of vacancies in a localized region increases the resistance of the metal line. Considering a 10% increase in resistance as a failure criterion, the distributions of failure times were obtained for given electromigration stress conditions. Bimodal/multimodal failure distributions were obtained as a result. The sigma values were slightly lower than the ones commonly observed from experiments. The anisotropy of the elastic moduli of copper leads to the development of significantly different stress values which are dependent on the orientation of the grains. This results in some grains having higher normal stress than the others. This grain orientation dependent normal stress can reach a critical stress necessary to induce delamination at the copper and cap interface. Time taken to reach critical stress was considered as time to fail and distributions of failure times were obtained for structures with different grain orientations in the microstructure for different critical stress values. The sigma values of the failure distributions thus obtained for different constant critical stress values had a strong dependence of on the critical stress. It is therefore critical to use the appropriate critical stress value for the delamination of copper and cap interface. The critical stress necessary to overcome the local adhesion of the copper and the cap material interface is dependent on grain orientation of the copper. Simulations were carried out by considering grain orientation dependent critical normal stress values as failure criteria. The sigma value thus obtained with selected critical stress values were comparable to sigma values commonly observed from experiments.
NASA Technical Reports Server (NTRS)
Sawyer, J. W.; Waters, W. A., Jr.
1981-01-01
Tests were conducted at room temperature to determine the shear properties of the strain isolator pad (SIP) material used in the thermal protection system of the space shuttle. Tests were conducted on both the .23 cm and .41 cm thick SIP material in the virgin state and after fifty fully reversed shear cycles. The shear stress displacement relationships are highly nonlinear, exhibit large hysteresis effects, are dependent on material orientation, and have a large low modulus region near the zero stress level where small changes in stress can result in large displacements. The values at the higher stress levels generally increase with normal and shear force load conditioning. Normal forces applied during the shear tests reduces the low modulus region for the material. Shear test techniques which restrict the normal movement of the material give erroneous stress displacement results. However, small normal forces do not significantly effect the shear modulus for a given shear stress. Poisson's ratio values for the material are within the range of values for many common materials. The values are not constant but vary as a function of the stress level and the previous stress history of the material. Ultimate shear strengths of the .23 cm thick SIP are significantly higher than those obtained for the .41 cm thick SIP.
NASA Astrophysics Data System (ADS)
Zhang, Li; Lüttge, Andreas
2009-11-01
With previous two-dimensional (2D) simulations based on surface-specific feldspar dissolution succeeding in relating the macroscopic feldspar kinetics to the molecular-scale surface reactions of Si and Al atoms ( Zhang and Lüttge, 2008, 2009), we extended our modeling effort to three-dimensional (3D) feldspar particle dissolution simulations. Bearing on the same theoretical basis, the 3D feldspar particle dissolution simulations have verified the anisotropic surface kinetics observed in the 2D surface-specific simulations. The combined effect of saturation state, pH, and temperature on the surface kinetics anisotropy has been subsequently evaluated, found offering diverse options for morphological evolution of dissolving feldspar nanoparticles with varying grain sizes and starting shapes. Among the three primary faces on the simulated feldspar surface, the (1 0 0) face has the biggest dissolution rate across an extensively wide saturation state range and thus acquires a higher percentage of the surface area upon dissolution. The slowest dissolution occurs to either (0 0 1) or (0 1 0) faces depending on the bond energies of Si-(O)-Si ( ΦSi-O-Si/ kT) and Al-(O)-Si ( ΦAl-O-Si/ kT). When the ratio of ΦSi-O-Si/ kT to ΦAl-O-Si/ kT changes from 6:3 to 7:5, the dissolution rates of three primary faces change from the trend of (1 0 0) > (0 1 0) > (0 0 1) to the trend of (1 0 0) > (0 0 1) > (0 1 0). The rate difference between faces becomes more distinct and accordingly edge rounding becomes more significant. Feldspar nanoparticles also experience an increasing degree of edge rounding from far-from-equilibrium to close-to-equilibrium. Furthermore, we assessed the connection between the continuous morphological modification and the variation in the bulk dissolution rate during the dissolution of a single feldspar particle. Different normalization treatments equivalent to the commonly used mass, cube assumption, sphere assumption, geometric surface area, and reactive surface area normalizations have been used to normalize the bulk dissolution rate. For each of the treatments, time consistence and grain size dependence of the normalized dissolution rate have been evaluated and the results revealed significant dependences on the magnitude of surface kinetic anisotropy under differing environmental conditions. In general, the normalized dissolution rates are strongly dependent on grain size. Time-consistent normalization treatment varies with the investigated condition. The modeling results suggest that the sphere-, cube-, and BET-normalized dissolution rates are appropriate under the far-from-equilibrium conditions at low pH where these normalizations are time-consistent and are slightly dependent on grain size.
Torsion of the normal fallopian tube.
Provost, M W
1972-01-01
From 1961 to 1970 a number of cases of torsion of the Fallopian tube were seen at the Kaiser Foundation Hospital in San Francisco of which 3 cases are reported. Of the many theories of causation, pelvic congestion seemed the most likely. The only universal symptom is pain, located in the quadrant of the affected tube and sometimes radiating to the thigh or flank. Nausea and vomiting are frequent; temperature and white cell count are only slightly elevated or normal. A mass is often felt, depending on the amount of hemorrhage. Correct diagnosis is almost never made preoperatively. The only treatment is laparotomy and surgical correction.
Fretting of titanium at temperatures to 650 C in air
NASA Technical Reports Server (NTRS)
Bill, R. C.
1975-01-01
Fretting wear experiments were conducted on high-purity titanium at temperatures up to 650 C. Results indicate that up to about 500 C, the fretting wear increases with temperature. A further increase in the temperature up to 650 C results in decreasing fretting wear. This change in trend of fretting wear with temperature is shown to be associated with a change in oxidation rate. Additional experiments at 650 C showed a transmission from a low rate of fretting wear to a higher rate occurred after exposure to a number of fretting cycles; the number of cycles required to cause this transition was dependent on the normal load. Scanning electron microscopy studies revealed that this transition was marked by cracking and disruption of the surface oxide film. A model was proposed that coupled the oxidation rate kinetics of titanium at 650 C with the occurrence of wear at the surface of the oxide film.
NASA Astrophysics Data System (ADS)
Marx, Benjamin; Rath, Alexander; Kolm, Frederick; Schröder, Andreas; Buntebarth, Christian; Dreß, Albrecht; Hill, Wieland
2016-05-01
For high-voltage cables, the maximum temperature of the insulation must never be exceeded at any location and at any load condition. The local temperatures depend not only on the cable design and load history, but also on the local thermal environment of the cable. Therefore, distributed temperature monitoring of high-voltage cables is essential to ensure the integrity of the cable at high load. Especially, the load of the export cables of wind farms varies strongly in dependence on weather conditions. In this field study, we demonstrate the measurement performance of a new, robust Brillouin distributed temperature sensing system (Brillouin-DTS). The system is based on spontaneous Brillouin scattering and does not require a fibre loop. This is essential for long submarine high-voltage cables, where normally no loop can be formed in the seabed. It is completely passively cooled and does not contain any moving or wearing parts. The instrument is dedicated for use in industrial and other rough environments. With a measuring time below 10 min, the temperature resolution is better than 1 °C for distances up to 50 km. In the field study, the submarine export cable of an off-shore wind farm has been monitored. The temperature profile of the export cable shows several hot spots, mostly located at cable joints, and also several cold spots.
Mizuno, Ju; Mohri, Satoshi; Yokoyama, Takeshi; Otsuji, Mikiya; Arita, Hideko; Hanaoka, Kazuo
2017-02-01
Varying temperature affects cardiac systolic and diastolic function and the left ventricular (LV) pressure-time curve (PTC) waveform that includes information about LV inotropism and lusitropism. Our proposed half-logistic (h-L) time constants obtained by fitting using h-L functions for four segmental phases (Phases I-IV) in the isovolumic LV PTC are more useful indices for estimating LV inotropism and lusitropism during contraction and relaxation periods than the mono-exponential (m-E) time constants at normal temperature. In this study, we investigated whether the superiority of the goodness of h-L fits remained even at hypothermia and hyperthermia. Phases I-IV in the isovolumic LV PTCs in eight excised, cross-circulated canine hearts at 33, 36, and 38 °C were analyzed using h-L and m-E functions and the least-squares method. The h-L and m-E time constants for Phases I-IV significantly shortened with increasing temperature. Curve fitting using h-L functions was significantly better than that using m-E functions for Phases I-IV at all temperatures. Therefore, the superiority of the goodness of h-L fit vs. m-E fit remained at all temperatures. As LV inotropic and lusitropic indices, temperature-dependent h-L time constants could be more useful than m-E time constants for Phases I-IV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaetsu, Isao; Okubo, Hiroshi; Ito, Akihiko
1973-06-01
The radiation-induced polymerization of binary systems consisting of glass-forming monomer and glass-forming solvent in supercooled phase was studied. The initial polymerization rates were markedly affected by T/sub g/ (glass transition temperature) and T/sub v/ of the system (30-50 deg C higher than T/sub g/), which are functions of the composition. The composition and temperature dependence of initial polymerization rate in binary glass-forming systems were much affected by homogeneity of the polymerization system and the T of the glass- forming solvent. The composition and temperature dependences in the glycidyl methacrylate --triacetin system as a typical homogeneous polymerization system were studied inmore » detail, and the polymerizations of hydroxyethyl methacrylate triacetln and hydroxyethyl methacrylate --isoamyl acetate systems were studied for the heterogeneous polymerization systems; the former illustrates the combination of lower T/sub g/ monomer and higher T/sub g/ solvent and the latter typifies a system consisting of higher T/sub g/ monomer and lower T/sub g/ solvent. All experimental results for the composition and temperature dependence of initial polymerization rate in binary glass-forming systems could be explained by considering the product of the effect of the physical effect relating to T/sub v/ and T/sub g/ of the system and the effect of composition in normal solution polymerization at higher temperature, which was also the product of a dilution effect and a chemical or physical acceleration effect. (auth)« less
Maswadi, Saher M; Dodd, Stephen J; Gao, Jia-Hong; Glickman, Randolph D
2004-01-01
Laser-induced heating in an ocular phantom is measured with magnetic resonance thermography (MRT) using temperature-dependent phase changes in proton resonance frequency. The ocular phantom contains a layer of melanosomes isolated from bovine retinal pigment epithelium. The phantom is heated by the 806-nm output of a continuous wave diode laser with an irradiance of 2.4 to 21.6 W/cm2 in a beam radius of 0.8 or 2.4 mm, depending on the experiment. MRT is performed with a 2 T magnet, and a two-turn, 6-cm-diam, circular radio frequency coil. Two-dimensional temperature gradients are measured within the plane of the melanin layer, as well as normal to it, with a temperature resolution of 1 degrees C or better. The temperature gradients extending within the melanin layer are broader than those orthogonal to the layer, consistent with the higher optical absorption and consequent heating in the melanin. The temperature gradients in the phantom measured by MRT closely approximate the predictions of a classical heat diffusion model. Three-dimensional temperature maps with a spatial resolution of 0.25 mm in all directions are also made. Although the temporal resolution is limited in the prototype system (22.9 s for a single image "slice"), improvements in future implementations are likely. These results indicate that MRT has sufficient spatial and temperature resolution to monitor target tissue temperature during transpupillary thermotherapy in the human eye.
Na/K-interdiffusion in alkali feldspar: new data on diffusion anisotropy and composition dependence
NASA Astrophysics Data System (ADS)
Schaeffer, Anne-Kathrin; Petrishcheva, Elena; Habler, Gerlinde; Abart, Rainer; Rhede, Dieter
2013-04-01
Exchange experiments between gem-quality alkali feldspar with an initial XOr of 0.85 or 0.72 and Na/K-salt melts have been conducted at temperatures between 800° and 1000° C. The crystals were prepared as crystallographically oriented plates, the polished surfaces corresponding to the (010) or (001) plane of the feldspar. The composition of the melts was varied systematically to induce a controlled shift of the feldspar towards more Na-rich or K-rich compositions (XOr 0.5 to 1). A molar excess of cations by a factor of 40 in the melt ensured constant concentration boundary conditions for cation exchange. Different geometries of diffusion profiles can be observed depending on the direction of the composition shift. For a shift towards more K-rich compositions the diffusion profile exhibits two plateaus corresponding to an exchanged rim in equilibrium with the melt and a completely unexchanged core, respectively. Between these plateaus an exchange front develops with an inflection point that progresses into the crystal with t1-2. The width of this diffusion front varies greatly with the extent of chemical shift and crystallographic direction. The narrowest profiles are always found in the direction normal to (010), i.e. b, marking the slowest direction of interdiffusion. A shift towards more Na-rich composition leads to the development of a crack system due to the composition strain associated with the substitution of the larger K+ion with the smaller Na+ion. The exchange front developing in this case lacks the inflection point observed for shifts towards more K-rich compositions. The observed geometry of the diffusion fronts can be explained by a composition dependence of the interdiffusion coefficient. We used the Boltzmann transformation to calculate the interdiffusion coefficient in dependence of composition from our data in a range between XOr 0.5 and 1 for profiles normal to both (010) and (001) and for different temperatures. As indicated by the different widths of the front a marked anisotropy in interdiffusion is apparent; it is about 10 times faster perpendicular to (001) than normal to (010). This is in good accordance with results of earlier studies. However, the composition dependence deviates from what is expected from theoretical calculations using the Manning relation for interdiffusion. For profiles normal to (001) the interdiffusion coefficient is nearly constant at 0.3 x 10-15m2s-1over the composition range XOr 0.50 to 0.95 and then rises steeply to values of 2.5 x 10-15m2s-1. Normal to (010) the interdiffusion coefficient is nearly constant at 0.03 x 10-15m2s-1over the composition range XOr 0.50 to 0.97 before, too, rising steeply at higher XOr. Interdiffusion coefficients calculated by Christoffersen et al. (1983) for this composition range also showed this rise but much less localized and steep. The activation energy also shows an anisotropy and slight composition dependence. Normal to (001) it is about 340 kJ/mole while it is 250 kJ/mole normal to (010). In the range between XOr0.94 to 1 it shows a slight rise by about 20 kJ/mole for both directions. ___ References Christoffersen et al. (1983): Interdiffusion of K and Na in alkali feldspar: diffusion couple experiments, -American Mineralogist, Vol. 68, pp. 1126-1133
Calculation of Optical Parameters of Liquid Crystals
NASA Astrophysics Data System (ADS)
Kumar, A.
2007-12-01
Validation of a modified four-parameter model describing temperature effect on liquid crystal refractive indices is being reported in the present article. This model is based upon the Vuks equation. Experimental data of ordinary and extraordinary refractive indices for two liquid crystal samples MLC-9200-000 and MLC-6608 are used to validate the above-mentioned theoretical model. Using these experimental data, birefringence, order parameter, normalized polarizabilities, and the temperature gradient of refractive indices are determined. Two methods: directly using birefringence measurements and using Haller's extrapolation procedure are adopted for the determination of order parameter. Both approches of order parameter calculation are compared. The temperature dependences of all these parameters are discussed. A close agreement between theory and experiment is obtained.
Electric Field Effects in Self-Propagating High-Temperature Synthesis under Microgravity Conditions
NASA Technical Reports Server (NTRS)
Unuvar, C.; Frederick, D. M.; Shaw, B. D.; Munir, Z. A.
2003-01-01
Self-propagating high-temperature synthesis (SHS) has been used to form many materials. SHS generally involves mixing reactants together (e.g., metal powders) and igniting the mixture such that a combustion (deflagration) wave passes though the mixture. The imposition of an electric field (AC or DC) across SHS reactants has been shown to have a marked effect on the dynamics of wave propagation and on the nature, composition, and homogeneity of the product . The use of an electric field with SHS has been termed "field-assisted SHS". Combustion wave velocities and temperatures are directly affected by the field, which is typically perpendicular to the average wave velocity. The degree of activation by the field (e.g., combustion rate) is related to the current density distribution within the sample, and is therefore related to the temperature-dependent spatial distribution of the effective electrical conductivity of reactants and products. Furthermore, the field can influence other important SHS-related phenomena including capillary flow, mass-transport in porous media, and Marangoni flows. These phenomena are influenced by gravity in conventional SHS processes (i.e., without electric fields). As a result the influence of the field on SHS under reduced gravity is expected to be different than under normal gravity. It is also known that heat loss rates from samples, which can depend significantly on gravity, can influence final products in SHS. This research program is focused on studying field-assisted SHS under reduced gravity conditions. The broad objective of this research program is to understand the role of an electric field in SHS reactions under conditions where gravity-related effects are suppressed. The research will allow increased understanding of fundamental aspects of field-assisted SHS processes as well as synthesis of materials that cannot be formed in normal gravity.
The interplay of protein and solvent picosecond dynamics: Experimental and theoretical studies
NASA Astrophysics Data System (ADS)
He, Yunfen
Terahertz gap is located between microwaves and infrared. THz-TDS is based on the generation of subpicosecond terahertz pulses using ultrashort laser pulses with pulse durations of a few femtoseconds. From the spectroscopic point of view terahertz radiation excites the low frequency vibrations of molecules. Terahertz spectroscopy provides a new way to study protein dynamics in this critical frequency range. The strong temperature dependence of molecular flexibility near 200 K for proteins and polynucleotides hydrated above 30% by weight, dynamical transition, is one of the most significant phenomena of biomolecular dynamics. Measurements of the dynamical transition were performed for native, fully denatured and unstructured polypeptides using THz-TDS. The results reveal that the dynamical transition is independent of either tertiary or secondary structure. The transition are also found for shorter chain alanine peptides down to penta-alanine, which indicates that a quantitative predictive theory for the temperature dependence lies in the understanding of the interaction of the side chains of the poly peptide or poly nucleotide with the biological water. The far infrared vibrational modes can be calculated using harmonic or anharmonic normal mode analysis, and the resulting Density of States (DOS) strongly resembles the measured absorbance. A large contrast in the terahertz dielectric response between oxidized and reduced cytochrome c has lready been observed experimentally. This large contrast has been associated with a change in the collective structural motions that related to protein flexibility. Molecular simulation results from quasiharmonic analysis and dipole-dipole correlation analysis are compared with the measurements to determine the relative contribution of correlated motions and diffusive motions to the measured dielectric response. The measured hydration dependence is reproduced by hydration dependence of quasiharmonic normal modes, but these modes calculations do not reproduce the oxidation dependence. Whereas dipole-dipole correlation analysis reproduces the oxidation dependence at the lowest hydration level, but surprisingly do not capture the hydration dependence. These results suggest that the hydration dependence in the THz response does in fact arise from changes in the vibrational modes, and the oxidation dependence arises from relaxational motions.
NASA Technical Reports Server (NTRS)
Poff, K. L.
1991-01-01
Thermotropism in primary roots of Zea mays L. was studied with respect to gradient strength (degrees C cm-1), temperature of exposure within a gradient, pre-treatment temperature, and gravitropic stimulation. The magnitude of the response decreased with gradient strength. Maximum thermotropism was independent of gradient strength and pre-treatment temperature. The range of temperature for positive and negative thermotropism did not change with pre-treatment temperature. However, the exact range of temperatures for positive and negative thermotropism varied with gradient strengths. In general, temperatures of exposure lower than 25 degrees C resulted in positive tropic responses while temperatures of exposure of 39 degrees C or more resulted in negative tropic responses. Thermotropism was shown to modify and reverse the normal gravitropic curvature of a horizontal root when thermal gradients were applied opposite the 1 g vector. It is concluded that root thermotropism is a consequence of thermal sensing and that the curvature of the primary root results from the interaction of the thermal and gravitational sensing systems.
Leptin actions on food intake and body temperature are mediated by IL-1.
Luheshi, G N; Gardner, J D; Rushforth, D A; Loudon, A S; Rothwell, N J
1999-06-08
Leptin regulates energy balance through its actions in the brain on appetite and energy expenditure and also shares properties with cytokines such as IL-1. We report here that leptin, injected into rats intracerebroventricularly or peripherally, induces significant dose-dependent increases in core body temperature as well as suppression of appetite. Leptin failed to affect food intake or body temperature in obese (fa/fa) Zucker rats, which posses a defective leptin receptor. Furthermore, injection of leptin increased levels of the proinflammatory cytokine IL-1beta in the hypothalamus of normal Sprague-Dawley rats. Central injection of IL-1 receptor antagonist (IL-1ra) inhibited the suppression of food intake caused by central or peripheral injection of leptin (60 and 84%, respectively) and abolished the leptin-induced increase in body temperature in both cases. Mice lacking (gene knockout) the main IL-1 receptor (80 kDa, R1) responsible for IL-1 actions showed no reduction in food intake in response to leptin. These data indicate that leptin actions in the brain depend on IL-1, and we show further that the effect of leptin on fever, but not food intake, is abolished by a cyclooxygenase inhibitor. Thus, we propose that in addition to its role in body weight regulation, leptin may mediate neuroimmune responses via actions in the brain dependent on release of IL-1 and prostaglandins.
Mathematical analysis of the multiband BCS gap equations in superconductivity
NASA Astrophysics Data System (ADS)
Yang, Yisong
2005-01-01
In this paper, we present a mathematical analysis for the phonon-dominated multiband isotropic and anisotropic BCS gap equations at any finite temperature T. We establish the existence of a critical temperature T so that, when T
NASA Technical Reports Server (NTRS)
Dudley, J. J.; Crawford, D. L.; Bowers, J. E.
1992-01-01
The variation in the center wavelength of distributed Bragg reflectors used in optoelectronic devices, such as surface emitting lasers and Fabry-Perot modulators, is measured as the temperature of the mirrors changes over the range 25 C to 105 C. An analytic expression for the shift in center wavelength with temperature is presented. The mirrors measured are made of InP/InGaAsP, GaAs/AlAs, and Si/SiN(x). The linear shifts in center wavelength are 0.110 +/- 0.003 nm/C, 0.087 +/- 0.003 nm/C, and 0.067 +/- 0.007 nm/C for the InP/InGaAsP, GaAs/AlAs, and Si/SiN mirrors, respectively. Based on these data, the change in penetration depth with temperature is calculated.
Dong, Jin-yang; Zhang, Gui-xin; Wang, Chang-quan
2012-01-01
As a kind of new electric light source, electrodeless discharge lamps are of long life, low mercury and non-stroboscopic light. The lighting effect of electrodeless discharge lamps depends on the radiation efficiency of 253.7 nm resonance spectra line to a large extent. The influence of cold temperature on 253.7 nm resonance spectra line has been studied experimentally by atomic emission spectral analysis. It was found that the radiation efficiency of 253.7 nm resonance spectra line is distributed in a nearly normal fashion with the variation of cold spot temperature, in other words, there is an optimum cold spot temperature for an electrodeless discharge lamp. At last, the results of experiments were analyzed through gas discharge theory, which offers guidance to the improvement of lighting effect for electrodeless discharge lamps.
NASA Astrophysics Data System (ADS)
Yang, Wei; Zhou, Qianhong; Dong, Zhiwei
2017-01-01
We report a simulation study on nitrogen vibrational and translational temperature in 3 μs pulse 110 GHz microwave air breakdown at pressure from 1 Torr to 100 Torr. The one-dimensional model is based on a self-consistent solution to Helmholtz equation for microwave field, electron density equation, and the average energy equation for electrons, nitrogen vibrational, and translational degrees. The breakdown threshold is calculated from the transmitted microwave profile, and it agrees well with that from experiment. The spatio-temporal characteristics of vibrational and translational temperature are shown, and the peak values at the end of pulse are compared to the results fitted from optical emission spectroscopy. The dependences of vibrational and translational temperature on normalized microwave fields and gas pressure are investigated, and the underlying mechanisms are unveiled.
Levesque, J P; Hatzfeld, A; Domart, I; Hatzfeld, J
1990-02-01
Normal human hemopoietic cells such as early bone marrow progenitors, or lymphoma-derived cell lines such as Raji or JM cells, possess a low-affinity receptor specific for fibrinogen. This receptor triggers a mitogenic effect. It differs from the glycoprotein IIb-IIIa which is involved in fibrinogen-induced platelet aggregation. We demonstrate here that this mitogenic fibrinogen receptor (MFR) can be internalized or reexpressed, depending on culture conditions. Internalization was temperature-dependent. At 37 degrees C in the presence of cycloheximide or actinomycin D, the half-life of cell surface MFRs was 2 h, independent of receptor occupancy. Binding of fibrinogen to the MFR resulted in a down-regulation which was fibrinogen dose-dependent. This occurred in serum-supplemented medium but not in defined medium supplemented with fatty acids. Reexpression of MFRs could be induced in 28 to 42 h by serum removal. The down-regulation of mitogenic receptors in plasma or serum could explain why normal cells do not proliferate in the peripheral blood.
Shen, Tengming; Ye, Liyang; Li, Pei
2016-07-01
For this study, small insert solenoids have been built using a commercial Ag/Bi-2212 multifilamentary round wire, insulated with a new thin TiO 2– polymer coating insulation (thickness in ~20 μm versus ~100 μm for a commonly used mullite braided sleeve insulation), and characterized in background magnetic field up to 14 T at 4.2 K to explore the high-field performance and quench detection of Bi-2212 magnets. The coil has no visible leakage and no electrical shorts after reaction, and it carries 280 A/mm -2 in a background field 14 T and generates an additional 1.7 T. A notable result is that,more » despite normal zones propagate slowly along the conductor, the hot spot temperature upon detection increases only from 40 K to 60 K when the resistive quench detection voltage threshold increases from 0.1 V to 1 V for all operating current density investigated, showing that quench detection using voltage taps is feasible for this coil. This is in a strong contrast to a coil we previously built to the same specifications but from wires insulated with the mullite braided sleeve insulation, for which the hot spot temperature upon detection increases from ~80 K to ~140 K while increasing from the detection voltage threshold from 0.1 V to 1 V, and thus for which quench detection using voltage taps presents significant risks, consistent with the common belief that the effectiveness of quench detection using voltage taps for superconducting magnets built using high temperature superconductors is seriously compromised by their slow normal zone propagation. This striking difference is ascribed to the fast transverse quench propagation enabled by thin insulation and improved thermal coupling between conductor turns. Finally, this work demonstrates that quench detection for high-temperature superconducting magnets highly depends on the design and construction of the coils such as insulation materials used and this dependence should be factored into the overall magnet design.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Tengming; Ye, Liyang; Li, Pei
For this study, small insert solenoids have been built using a commercial Ag/Bi-2212 multifilamentary round wire, insulated with a new thin TiO 2– polymer coating insulation (thickness in ~20 μm versus ~100 μm for a commonly used mullite braided sleeve insulation), and characterized in background magnetic field up to 14 T at 4.2 K to explore the high-field performance and quench detection of Bi-2212 magnets. The coil has no visible leakage and no electrical shorts after reaction, and it carries 280 A/mm -2 in a background field 14 T and generates an additional 1.7 T. A notable result is that,more » despite normal zones propagate slowly along the conductor, the hot spot temperature upon detection increases only from 40 K to 60 K when the resistive quench detection voltage threshold increases from 0.1 V to 1 V for all operating current density investigated, showing that quench detection using voltage taps is feasible for this coil. This is in a strong contrast to a coil we previously built to the same specifications but from wires insulated with the mullite braided sleeve insulation, for which the hot spot temperature upon detection increases from ~80 K to ~140 K while increasing from the detection voltage threshold from 0.1 V to 1 V, and thus for which quench detection using voltage taps presents significant risks, consistent with the common belief that the effectiveness of quench detection using voltage taps for superconducting magnets built using high temperature superconductors is seriously compromised by their slow normal zone propagation. This striking difference is ascribed to the fast transverse quench propagation enabled by thin insulation and improved thermal coupling between conductor turns. Finally, this work demonstrates that quench detection for high-temperature superconducting magnets highly depends on the design and construction of the coils such as insulation materials used and this dependence should be factored into the overall magnet design.« less
NASA Astrophysics Data System (ADS)
Allen, Philip B.
2018-04-01
Simulations [e.g., X. W. Zhou et al., Phys. Rev. B 79, 115201 (2009), 10.1103/PhysRevB.79.115201] show nonlocal effects of the ballistic/diffusive crossover. The local temperature has nonlinear spatial variation not contained in the local Fourier law j ⃗(r ⃗) =-κ ∇ ⃗T (r ⃗) . The heat current j ⃗(r ⃗) depends not just on the local temperature gradient ∇ ⃗T (r ⃗) but also on temperatures at points r⃗' within phonon mean free paths, which can be micrometers long. This paper uses the Peierls-Boltzmann transport theory in nonlocal form to analyze the spatial variation Δ T (r ⃗) . The relaxation-time approximation (RTA) is used because the full solution is very challenging. Improved methods of extrapolation to obtain the bulk thermal conductivity κ are proposed. Callaway invented an approximate method of correcting RTA for the q ⃗ (phonon wave vector or crystal momentum) conservation of N (Normal as opposed to Umklapp) anharmonic collisions. This method is generalized to the nonlocal case where κ (k ⃗) depends on the wave vector of the current j ⃗(k ⃗) and temperature gradient i k ⃗Δ T (k ⃗) .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciurea, Magdalena Lidia, E-mail: ciurea@infim.ro; Lazanu, Sorina, E-mail: ciurea@infim.ro
2014-10-06
Multi-quantum well structures and Si wafers implanted with heavy iodine and bismuth ions are studied in order to evaluate the influence of stress on the parameters of trapping centers. The experimental method of thermostimullatedcurrents without applied bias is used, and the trapping centers are filled by illumination. By modeling the discharge curves, we found in multilayered structures the parameters of both 'normal' traps and 'stress-induced' ones, the last having a Gaussian-shaped temperature dependence of the cross section. The stress field due to the presence of stopped heavy ions implanted into Si was modeled by a permanent electric field. The increasemore » of the strain from the neighborhood of I ions to the neighborhood of Bi ions produces the broadening of some energy levels and also a temperature dependence of the cross sections for all levels.« less
NASA Astrophysics Data System (ADS)
Ciurea, Magdalena Lidia; Lazanu, Sorina
2014-10-01
Multi-quantum well structures and Si wafers implanted with heavy iodine and bismuth ions are studied in order to evaluate the influence of stress on the parameters of trapping centers. The experimental method of thermostimullatedcurrents without applied bias is used, and the trapping centers are filled by illumination. By modeling the discharge curves, we found in multilayered structures the parameters of both 'normal' traps and 'stress-induced' ones, the last having a Gaussian-shaped temperature dependence of the cross section. The stress field due to the presence of stopped heavy ions implanted into Si was modeled by a permanent electric field. The increase of the strain from the neighborhood of I ions to the neighborhood of Bi ions produces the broadening of some energy levels and also a temperature dependence of the cross sections for all levels.
NASA Astrophysics Data System (ADS)
Singh, Namita; Sharma, Roopam; Khenata, R.; Varshney, Dinesh
2018-05-01
The carrier diffusion contribution to the thermoelectric power (Scdiff) is calculated for MgB2, Mg0.9A10.1B2 and drag Mg0.8Al0.2B2 within two energy gap method. The phonon drag thermoelectric power (Sphdrag) in normal state dominate and is an artifact of strong phonon-impurity and phonon scattering mechanism. The conductivity within the relaxation time approximation for π and σ band carriers has been taken into account ignoring a possible energy dependence of the scattering rates. Both these channels for heat transfer are clubbed to get total thermoelectric power (Stotal) which starts departing from linear temperature dependence at about 150 K, before increasing at higher temperatures weakly. The anomalies reported are well accounted in terms of the scattering mechanism by phonon drag and carrier scattering with impurities, shows similar results as those revealed from experiments.
Multi-water-bag models of ion temperature gradient instability in cylindrical geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coulette, David; Besse, Nicolas
2013-05-15
Ion temperature gradient instabilities play a major role in the understanding of anomalous transport in core fusion plasmas. In the considered cylindrical geometry, ion dynamics is described using a drift-kinetic multi-water-bag model for the parallel velocity dependency of the ion distribution function. In a first stage, global linear stability analysis is performed. From the obtained normal modes, parametric dependencies of the main spectral characteristics of the instability are then examined. Comparison of the multi-water-bag results with a reference continuous Maxwellian case allows us to evaluate the effects of discrete parallel velocity sampling induced by the Multi-Water-Bag model. Differences between themore » global model and local models considered in previous works are discussed. Using results from linear, quasilinear, and nonlinear numerical simulations, an analysis of the first stage saturation dynamics of the instability is proposed, where the divergence between the three models is examined.« less
Molecular Dynamics Simulations of Star Polymeric Molecules with Diblock Arms, a Comparative Study.
Swope, William C; Carr, Amber C; Parker, Amanda J; Sly, Joseph; Miller, Robert D; Rice, Julia E
2012-10-09
We have performed all atom explicit solvent molecular dynamics simulations of three different star polymeric systems in water, each star molecule consisting of 16 diblock copolymer arms bound to a small adamantane core. The arms of each system consist of an inner "hydrophobic" block (either polylactide, polyvalerolactone, or polyethylene) and an outer hydrophilic block (polyethylene oxide, PEO). These models exhibit unusual structure very close to the core (clearly an artifact of our model) but which we believe becomes "normal" or bulk-like at relatively short distances from this core. We report on a number of temperature-dependent thermodynamic (structural/energetic) properties as well as kinetic properties. Our observations suggest that under physiological conditions, the hydrophobic regions of these systems may be solid and glassy, with only rare and shallow penetration by water, and that a sharp boundary exists between the hydrophobic cores and either the PEO or water. The PEO in these models is seen to be fully water-solvated at low temperatures but tends to phase separate from water as the temperature is increased, reminiscent of a lower critical solution temperature exhibited by PEO-water mixtures. Water penetration concentration and depth is composition and temperature dependent with greater water penetration for the most ester-rich star polymer.
Wavelength and bandwidth tunable photonic stopband of ferroelectric liquid crystals.
Ozaki, Ryotaro; Moritake, Hiroshi
2012-03-12
The chiral smectic C phase of ferroelectric liquid crystals (FLCs) has a self-assembling helical structure which is regarded as a one-dimensional pseudo-photonic crystal. It is well known that a stopband of a FLC can be tuned in wavelength domain by changing temperature or electric field. We here have demonstrated an FLC stopband with independently tunable wavelength and bandwidth by controlling temperature and incident angle. At highly oblique incidence, the stopband does not have polarization dependence. Furthermore, the bandwidth at highly oblique incidence is much wider than that at normal incidence. The mechanism of the tunable stopband is clarified by considering the reflection at oblique incidence.
A ferroelectric model for the low emissivity highlands on Venus
NASA Technical Reports Server (NTRS)
Shepard, Michael K.; Arvidson, Raymond E.; Brackett, Robert A.; Fegley, Bruce, Jr.
1994-01-01
A model to explain the low emissivity venusian highlands is proposed utilizing the temperature-dependent dielectric constant of ferroelectric minerals. Ferroelectric minerals are known to occur in alkaline and carbonite rocks, both of which are plausible for Venus. Ferroelectric minerals possess extremely high dielectric constants (10(exp 5)) over small temperature intervals and are only required in minor (much less than 1%) abundances to explain the observed emissivities. The ferroelectric model can account for: (1) the observed reduction in emissivity with increased altitude, (2) the abrupt return to normal emissivities at highest elevations, and (3) the variations in the critical elevation observed from region to region.
Apoptosis and Accidental Cell Death in Cultured Human Keratinocytes after Thermal Injury
Matylevitch, Natalia P.; Schuschereba, Steven T.; Mata, Jennifer R.; Gilligan, George R.; Lawlor, David F.; Goodwin, Cleon W.; Bowman, Phillip D.
1998-01-01
The respective roles of apoptosis and accidental cell death after thermal injury were evaluated in normal human epidermal keratinocytes. By coupling the LIVE/DEAD fluorescence viability assay with the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) method and ultrastructural morphology, these two processes could be distinguished. Cells were grown on glass coverslips with a microgrid pattern so that the results of several staining procedures performed sequentially could be visualized in the same cells after heating at temperatures of up to 72°C for 1 second. After exposure to temperatures of 58 to 59°C, cells died predominantly by apoptosis; viable cells became TUNEL positive, indicating degradation of DNA. After exposure to temperatures of 60 to 66°C, both TUNEL-positive viable cells and TUNEL-positive nonviable cells were observed, indicating that apoptosis and accidental cell death were occurring simultaneously. Cells died almost immediately after exposure to temperatures above 72°C, presumably from heat fixation. The fluorescent mitochondrial probe MitoTracker Orange indicated that cells undergoing apoptosis became TUNEL positive before loss of mitochondrial function. Nucleosomal fragmentation of DNA analyzed by enzyme-linked immunosorbent assay and gel electrophoresis occurred after exposure to temperatures of 58 to 59°C. The characteristic morphological findings of cells undergoing apoptosis, by transmission electron microscopy, included cellular shrinkage, cytoplasmic budding, and relatively intact mitochondria. Depending on temperature and time of exposure, normal human epidermal keratinocytes may die by apoptosis, accidental cell death, or heat fixation. PMID:9708816
Apoptosis and accidental cell death in cultured human keratinocytes after thermal injury.
Matylevitch, N P; Schuschereba, S T; Mata, J R; Gilligan, G R; Lawlor, D F; Goodwin, C W; Bowman, P D
1998-08-01
The respective roles of apoptosis and accidental cell death after thermal injury were evaluated in normal human epidermal keratinocytes. By coupling the LIVE/DEAD fluorescence viability assay with the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) method and ultrastructural morphology, these two processes could be distinguished. Cells were grown on glass coverslips with a microgrid pattern so that the results of several staining procedures performed sequentially could be visualized in the same cells after heating at temperatures of up to 72 degrees C for 1 second. After exposure to temperatures of 58 to 59 degrees C, cells died predominantly by apoptosis; viable cells became TUNEL positive, indicating degradation of DNA. After exposure to temperatures of 60 to 66 degrees C, both TUNEL-positive viable cells and TUNEL-positive nonviable cells were observed, indicating that apoptosis and accidental cell death were occurring simultaneously. Cells died almost immediately after exposure to temperatures above 72 degrees C, presumably from heat fixation. The fluorescent mitochondrial probe MitoTracker Orange indicated that cells undergoing apoptosis became TUNEL positive before loss of mitochondrial function. Nucleosomal fragmentation of DNA analyzed by enzyme-linked immunosorbent assay and gel electrophoresis occurred after exposure to temperatures of 58 to 59 degrees C. The characteristic morphological findings of cells undergoing apoptosis, by transmission electron microscopy, included cellular shrinkage, cytoplasmic budding, and relatively intact mitochondria. Depending on temperature and time of exposure, normal human epidermal keratinocytes may die by apoptosis, accidental cell death, or heat fixation.
Heat tolerance of two Cladonia species and Campylopus praemorsus in a hot steam vent area of Hawaii.
Kappen, Ludger; Smith, Clifford W
1980-01-01
Temperatures were measured in soil, Cladonia skottsbergii, Cl. oceanica, and Campylopus praemorsus growing in the almost barren geothermal area at Puhimau, Hawaii. The measurements were made in the early morning in winter when insolation and air temperatures were minimal and the geothermal effects were predominant. Measurements were made on healthy, dew moistened plants. Close to steam vents Campylopus praemorsus forms thick cushions on hot soil and temperatures up to 29.8°C are recorded in the active parts of the moss. Cladonia oceanica grows exclusively on moss in this area, but not as close to steam vents as the moss itself. Maximum temperatures were 27.2°C in stunted and 23°C in ramified growth forms. In this area Cl. skottsbergii normally colonizes tree stumps of Metrosideros only where the steam is already cool. Maximum temperatures were 23°C in normal thalli, through higher temperatures were measured in partly damaged or killed thalli overhanging the stump where they are immersed in hot steam. With respect to heat tolerance only Campylopus can be considered as adapted to the hot environment. Therefore it is able to colonize the hot dry soil while deriving its moisture from adjacent steam vents. The lichens, particularly Cl. skottsbergii, are not adapted and are as sensitive to heat as most other lichens. Therefore they can only survive where there is at most a small geothermal impact yet they are obviously dependent on moisture from the steam vents.
NASA Astrophysics Data System (ADS)
Sambell, K.; Evers, L. G.; Snellen, M.
2017-12-01
Deriving the deep-ocean temperature is a challenge. In-situ observations and satellite observations are hardly applicable. However, knowledge about changes in the deep ocean temperature is important in relation to climate change. Oceans are filled with low-frequency sound waves created by sources such as underwater volcanoes, earthquakes and seismic surveys. The propagation of these sound waves is temperature dependent and therefore carries valuable information that can be used for temperature monitoring. This phenomenon is investigated by applying interferometry to hydroacoustic data measured in the South Pacific Ocean. The data is measured at hydrophone station H03 which is part of the International Monitoring System (IMS). This network consists of several stations around the world and is in place for the verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The station consists of two arrays located north and south of Robinson Crusoe Island separated by 50 km. Both arrays consist of three hydrophones with an intersensor distance of 2 km located at a depth of 1200 m. This depth is in range of the SOFAR channel. Hydroacoustic data measured at the south station is cross-correlated for the time period 2014-2017. The results are improved by applying one-bit normalization as a preprocessing step. Furthermore, beamforming is applied to the hydroacoustic data in order to characterize ambient noise sources around the array. This shows the presence of a continuous source at a backazimuth between 180 and 200 degrees throughout the whole time period, which is in agreement with the results obtained by cross-correlation. Studies on source strength show a seasonal dependence. This is an indication that the sound is related to acoustic activity in Antarctica. Results on this are supported by acoustic propagation modeling. The normal mode technique is used to study the sound propagation from possible source locations towards station H03.
Thermal conductivity of high purity synthetic single crystal diamonds
NASA Astrophysics Data System (ADS)
Inyushkin, A. V.; Taldenkov, A. N.; Ralchenko, V. G.; Bolshakov, A. P.; Koliadin, A. V.; Katrusha, A. N.
2018-04-01
Thermal conductivity of three high purity synthetic single crystalline diamonds has been measured with high accuracy at temperatures from 6 to 410 K. The crystals grown by chemical vapor deposition and by high-pressure high-temperature technique demonstrate almost identical temperature dependencies κ (T ) and high values of thermal conductivity, up to 24 W cm-1K-1 at room temperature. At conductivity maximum near 63 K, the magnitude of thermal conductivity reaches 285 W cm-1K-1 , the highest value ever measured for diamonds with the natural carbon isotope composition. Experimental data were fitted with the classical Callaway model for the lattice thermal conductivity. A set of expressions for the anharmonic phonon scattering processes (normal and umklapp) has been proposed which gives an excellent fit to the experimental κ (T ) data over almost the whole temperature range explored. The model provides the strong isotope effect, nearly 45%, and the high thermal conductivity (>24 W cm-1K-1 ) for the defect-free diamond with the natural isotopic abundance at room temperature.
NASA Technical Reports Server (NTRS)
Cunningham, Thomas J.; Fossum, Eric R.; Baier, Steven M.
1992-01-01
Noise and current-voltage characterization of complementary heterojunction field-effect transistor (CHFET) structures below 8 K are presented. It is shown that the CHFET exhibits normal transistor operation down to 6 K. Some of the details of the transistor operation, such as the gate-voltage dependence of the channel potential, are analyzed. The gate current is examined and is shown to be due to several mechanisms acting in parallel. These include field-emission and thermionic-field-emission, conduction through a temperature-activated resistance, and thermionic emission. The input referred noise for n-channel CHFETs is presented and discussed. The noise has the spectral dependence of 1/f noise, but does not exhibit the usual area dependence.
NIS tunnel junction as an x-ray photon sensor
NASA Astrophysics Data System (ADS)
Azgui, Fatma; Mears, Carl A.; Labov, Simon E.; Frank, Matthias A.; Sadoulet, Bernard; Brunet, E.; Hiller, Lawrence J.; Lindeman, Mark A.; Netel, Harrie
1995-09-01
This work presents the first results of our development of normal-insulating-superconducting tunnel junctions used as energy dispersive detectors for low energy particles. The device described here is a Ag/Al(subscript 2)O(subscript 3)/Al tunnel junction of area 1.5 multiplied by 10(superscript 4) micrometer squared with thicknesses of 200 nm for the normal Ag strip and 100 nm for the superconducting Al film. Two different high-speed SQUID systems manufactured by quantum magnetics and HYPRES, respectively, were used for the readout of this device. At 80 mK bath temperature we obtained an energy resolution DeltaE(subscript FWHM) equals 250 eV for 5.89 keV x rays absorbed directly in the normal metal. This energy resolution appears to be limited in large part by the observed strong position dependence of the device response.
MJO influence on ENSO effects in precipitation and temperature over South America
NASA Astrophysics Data System (ADS)
Shimizu, M. H.; Bombardi, R. J.; Ambrizzi, T.
2013-12-01
Researches on the effects of the El Niño Southern Oscillation (ENSO) over precipitation and temperature, such as drought, flood, and anomalous high or cold temperatures, have great importance because of the impact of ENSO on the environment, society, and economy. Several studies have reported the influences of ENSO over South American precipitation and temperature climatological patterns, such as drier than normal conditions over northeast Brazil during the warm phase (El Niño) and wetter than normal conditions over northeast Brazil in the cold phase (La Niña). However, some recent studies focusing on the Northern Hemisphere have indicated that the basic response of ENSO is dependent on the phase of the Madden-Julian Oscillation (MJO). The MJO is characterized by the eastward propagation of the convection from Indian to Central Pacific Ocean and is related to variations in the position and intensity of the South Atlantic Convergence Zone (SACZ). The present work investigates the combined response of the phases of these two distinct phenomena, ENSO and MJO, over South America. Our goal is to explore the relative importance of the MJO to precipitation and temperature anomalies during ENSO events. MJO events were defined using the MJO index created by Jones and Carvalho (2012) based on empirical orthogonal functions analysis. ENSO phases were defined according to the Oceanic Niño Index provided by the National Oceanic and Atmospheric Administration (NOAA). A composite analysis with each combination of the phases of ENSO and MJO was performed to obtain the mean patterns of temperature and precipitation over South America for the months of November to March (austral summer). The results showed that the precipitation and temperature anomalies patterns observed during ENSO events, without the concurrent occurrence of the MJO, can be strengthened or weakened during events where ENSO and MJO occur simultaneously. Moreover, the effect on the anomalies patterns in these events depends on the MJO phase. During El Niño events, MJO phases 1 and 5 seem to intensify the anomaly patterns over northwest and northeast of South America, respectively. In addition, during the MJO phase 3, these patterns are weaker over northern and stronger over southern South America. During Niña events, MJO phases 3 and 5 presented more precipitation in the region of the SACZ. These results suggest that the influence of ENSO over South America depends on the MJO phase and on the position of convection over the Tropical Indian/Pacific Oceans associated with this phase, which triggers eastward propagating wave trains.
Ultrasound Attenuation in Normal Fluid 3He in 98% Aerogel: Knudsen-to-Hydrodynamic Crossover
NASA Astrophysics Data System (ADS)
Lee, Yoonseok; Choi, H. C.; Moon, B. H.; Masuhara, N.; Meisel, M. W.; Takeuchi, H.; Higashitani, S.; Nagai, K.; Mulders, N.
2014-03-01
Mass flow in porous media is a widely occurring phenomenon as in water flow in aquifers, blood flow in vessels, and petroleum flow through sandstones. However, the understanding of these phenomena is a challenging task. In particular, when the mean free path of the fluid particles exceeds the pore size, the hydrodynamic description breaks down and the fluid mass is carried by the Knudsen diffusion. The 3He-aerogel system offers an opportunity that allows a systematic investigation of a wide range flow phenomena from the hydrodynamic to Knudsen regime owing to the strongly temperature dependent mean free path in liquid 3He at low temperatures. In this paper, we present ultrasound attenuation measurements of liquid 3He in 98% aerogel. The Knudsen-hydrodynamic crossover is clearly demonstrated in a drastic change in the temperature dependence in attenuation observed in this system. H. Takeuchi et al., Phys. Rev. Lett. 108, 225307 (2012). Grant-in-Aid for Scientific Research No. 21540365 and No. 22103003 by MEXT of Japan and NSF DMR-0803516, DMR-0654118, and the State of Florida.
Potentially exploitable supercritical geothermal resources in the ductile crust
Watanabe, Noriaki; Numakura, Tatsuya; Sakaguchi, Kiyotoshi; Saishu, Hanae; Okamoto, Atsushi; Ingebritsen, Steven E.; Tsuchiya, Noriyoshi
2017-01-01
The hypothesis that the brittle–ductile transition (BDT) drastically reduces permeability implies that potentially exploitable geothermal resources (permeability >10−16 m2) consisting of supercritical water could occur only in rocks with unusually high transition temperatures such as basalt. However, tensile fracturing is possible even in ductile rocks, and some permeability–depth relations proposed for the continental crust show no drastic permeability reduction at the BDT. Here we present experimental results suggesting that the BDT is not the first-order control on rock permeability, and that potentially exploitable resources may occur in rocks with much lower BDT temperatures, such as the granitic rocks that comprise the bulk of the continental crust. We find that permeability behaviour for fractured granite samples at 350–500 °C under effective confining stress is characterized by a transition from a weakly stress-dependent and reversible behaviour to a strongly stress-dependent and irreversible behaviour at a specific, temperature-dependent effective confining stress level. This transition is induced by onset of plastic normal deformation of the fracture surface (elastic–plastic transition) and, importantly, causes no ‘jump’ in the permeability. Empirical equations for this permeability behaviour suggest that potentially exploitable resources exceeding 450 °C may form at depths of 2–6 km even in the nominally ductile crust.
NASA Astrophysics Data System (ADS)
Zhang, Yan; Zhang, Yuzhong; Lu, Rongsheng; Shu, Shuangbao; Lang, Xianli; Yang, Lei
2018-01-01
Molybdenum (Mo) is an important material to construct the first wall for the Experimental Advanced Superconducting Tokamak (EAST). The real-time monitoring of temperature distribution of the first wall based on radiation thermometry is essential to guarantee the stable operation of EAST. So, it is especially important for the acquisition of emissivity property of Mo. In this work, a self-designed emissivity measurement apparatus is developed, and the relationship between the normal infrared spectral band (7.5-13 μm) emissivity of Mo against the temperature and surface roughness of material samples is experimentally investigated under the vacuum condition over the temperature ranging from 100 °C to 500 °C. Moreover, the dependence of spectral band emissivity of Mo exposed to air on the heating-duration time at a given elevated temperature is also studied. The emissivity measurement apparatus is mainly composed of a high temperature furnace and a radiation thermometer as well as a benchmark blackbody furnace. The radiation thermometer is firstly calibrated against the blackbody furnace by means of the multi-temperature methods. And then the temperature of the sample is simultaneously measured by the two highly accurate S-type thermocouples and the radiation thermometer. Finally the emissivity value of the sample is calculated based on the direct radiometric method. The developed emissivity measurement method and experimental results obtained in this work may be helpful to understand the work state the EAST and to use of Mo as an emissivity reference.
Turbulent transport stabilization by ICRH minority fast ions in low rotating JET ILW L-mode plasmas
NASA Astrophysics Data System (ADS)
Bonanomi, N.; Mantica, P.; Di Siena, A.; Delabie, E.; Giroud, C.; Johnson, T.; Lerche, E.; Menmuir, S.; Tsalas, M.; Van Eester, D.; Contributors, JET
2018-05-01
The first experimental demonstration that fast ion induced stabilization of thermal turbulent transport takes place also at low values of plasma toroidal rotation has been obtained in JET ILW (ITER-like wall) L-mode plasmas with high (3He)-D ICRH (ion cyclotron resonance heating) power. A reduction of the gyro-Bohm normalized ion heat flux and higher values of the normalized ion temperature gradient have been observed at high ICRH power and low NBI (neutral beam injection) power and plasma rotation. Gyrokinetic simulations indicate that ITG (ion temperature gradient) turbulence stabilization induced by the presence of high-energetic 3He ions is the key mechanism in order to explain the experimental observations. Two main mechanisms have been identified to be responsible for the turbulence stabilization: a linear electrostatic wave-fast particle resonance mechanism and a nonlinear electromagnetic mechanism. The dependence of the stabilization on the 3He distribution function has also been studied.
On the solubility of gallium nitride in supercritical ammonia-sodium solutions
NASA Astrophysics Data System (ADS)
Griffiths, Steven; Pimputkar, Siddha; Speck, James S.; Nakamura, Shuji
2016-12-01
Due to the disparity between observed gallium nitride (GaN) growth under conditions for which literature reports normal solubility, GaN solubility in supercritical NH3-Na containing solutions was re-evaluated. Isothermal gravimetric experiments on polycrystalline GaN were performed in the temperature range (T =415-650 °C) for which retrograde growth of GaN routinely occurs (P ≈ 200 MPa, molar NH3:Na fill ratio =20:1). Two previously-unreported error contributions to the gravimetric determination of GaN solubility were identified: Ga-alloying of exposed Ni-containing components, and the presence of a dense, Ga-absorbing Na-rich, second phase under these conditions. Due to the inability to measure Ga-alloying of the exposed autoclave wall for each experiment, considerable scatter was introduced in the refined GaN solubility curve. No clear dependence of GaN solubility on temperature was resolvable, while most solubility values were determined to be within a band of 0.03-0.10 mol% GaN, normalized by fill NH3.
Infrared spectra of the ammonium ion in ammonium hexavanadate (NH 4) 2V 6O 16
NASA Astrophysics Data System (ADS)
de Waal, D.; Heyns, A. M.; Range, K.-J.; Eglmeier, C.
The infrared bands of the NH +4 and ND +4 groups in (NH 4) 2V 6O 16 and its deuterated analogue can be assigned with a fair amount of certainty at 90 K under the space group P2 1/ m( C22 h). The ND stretching modes of isotopically dilute NH 3D + ions in the crystal are in agreement with the predicted splitting into Cs, Cs and C1(2) components. The frequencies, shapes and temperature dependence of these modes suggest that both normal and bifurcated hydrogen bonds are formed. The latter closely resembles corresponding bonds in NH 4VO 3, but the normal hydrogen bonds are not as strong as the similar bonds in NH 4VO 3. This can be expected as NH +4 ions are dynamic in character in (NH 4) 2V 6O 16 and remain so down to temperatures of 90 K.
Chemical Reactions in Turbulent Mixing Flows
1993-07-15
documented the flame length de- pendence on Reynolds number, in the range 1.0 x 104 < Re < 15 x 104, as well as the existence of a Reynolds-number-dependent...Dimotakis et al. (1992), and Dimotakis (1993),* for a more complete discussion. In order to characterize flame length behavior, these investigations were con...temperature distribution. Both axes are normalized by the flame length measured in the momentum-dominated regime. In the purely momentum- dominated case
Chemical Reactions in Turbulent Mixing Flows
1992-07-01
Chemically-Reacting, Gas-Phase Turbulent Jets (Gilbrech 1991), that explored Reynolds number effects on turbulent flame length and the influence of...and asymptotes to a constant value beyond the flame tip. The main result of the work is that the flame length , as estimated from the temperature...8217. Specifically, the normalized flame length Lf/d* displays a linear dependence on the stoichiometric mixture ratio 0, with a slope that decreases from Re "• 1.0
NASA Astrophysics Data System (ADS)
Chu, Rambis Kam-Hong
1998-10-01
We have investigated the normal-state magnetoresistance (MR) and nonlinear voltage-current (I-V) behavior on the newly discovered superconducting rare-earth nickel borocarbide YNi2B2C. By contrast to previous samples used in various experiments, our specimens were synthesized using the Floating-Zone Technique (FZT). This method produces high-crystalline quality samples and minimizes the number of defects. Measurements were taken on temperature and field dependence of the resistivity of YNi2B2C between T c+1 and T c+145 K in magnetic fields up to 8 T. The in-plane magnetoresistance (MR), Δrho(H,/ T) gradually reverses the sign from negative to positive as the temperature decreases. A pronounced crossover is observed at T=80 K with H=4 T. Within our field range, the salient sign-reversal and temperature-dependence of MR characterize a spin- fluctuation temperature (T sf~80 K). Below T sf, the spins fluctuate rapidly compared with their thermal motion and the sample appears to be nonmagnetic, and it is the topology of the Fermi surface yields the positive Δrho. However, the thermal fluctuations are rapid above T sf so that the local spin-polarization lives long enough to reveal the short-range parallel moments and the scattering events are diminished, Δrho is therefore negative. Despite the fact that YNi2B2C is widely considered nonmagnetic, our observation implies that Ni 3d electrons are not totally quenched as it was thought, and they are both spatially and temporally correlated. Our results are in quantitative agreement with the MR dependence upon temperature and applied field. Non-ohmic voltage-current (I-V) isotherms were also measured in a-oriented samples, and the mixed state of YNi2B2C was found to be similar to that of high-T c cuprates, possibly due to the relatively large thermal fluctuations compared with conventional type-II superconductors. Universal critical exponents, v and z were obtained from the critical scaling analysis. Our results are close to the previous I-V measurements in c-oriented specimens. These implied that YNi2B2C is isotropic at least within the context of vortex dynamics. Furthermore, the angular dependent I-V measurements indicated that there is no evidence of 3-d columnar vortices, which are anticipated from the Bose-glass model. Instead, the vortices behave like 2-d wandering pancakes with a very weak interlayer coupling. Our results are consistent with the vortex- glass model.
Dynamic strain aging behavior of 10Cr steel under low cycle fatigue at 650°C
NASA Astrophysics Data System (ADS)
Mishnev, Roman; Dudova, Nadezhda; Kaibyshev, Rustam
2017-12-01
The low cycle fatigue behavior of a 10Cr-2W-0.7Mo-3Co-NbV steel with 80 ppm of B additions was studied at elevated temperatures of 600 and 650°C. The steel after normalizing and tempering at 770°C was tested under fully reversed tension-compression loading with the total strain amplitude controlled from ±0.2 to ±1.0% at temperatures of 600 and 650°C. It was revealed that the steel exhibits a positive temperature dependence of both the cyclic strain hardening exponent n' and the cyclic strength coefficient K ' during cyclic loading at 650°C. It was suggested that dynamic strain aging causes fatigue resistance degradation through facilitating microcrack initiation.
Roccato, Anna; Uyttendaele, Mieke; Membré, Jeanne-Marie
2017-06-01
In the framework of food safety, when mimicking the consumer phase, the storage time and temperature used are mainly considered as single point estimates instead of probability distributions. This singlepoint approach does not take into account the variability within a population and could lead to an overestimation of the parameters. Therefore, the aim of this study was to analyse data on domestic refrigerator temperatures and storage times of chilled food in European countries in order to draw general rules which could be used either in shelf-life testing or risk assessment. In relation to domestic refrigerator temperatures, 15 studies provided pertinent data. Twelve studies presented normal distributions, according to the authors or from the data fitted into distributions. Analysis of temperature distributions revealed that the countries were separated into two groups: northern European countries and southern European countries. The overall variability of European domestic refrigerators is described by a normal distribution: N (7.0, 2.7)°C for southern countries, and, N (6.1, 2.8)°C for the northern countries. Concerning storage times, seven papers were pertinent. Analysis indicated that the storage time was likely to end in the first days or weeks (depending on the product use-by-date) after purchase. Data fitting showed the exponential distribution was the most appropriate distribution to describe the time that food spent at consumer's place. The storage time was described by an exponential distribution corresponding to the use-by date period divided by 4. In conclusion, knowing that collecting data is time and money consuming, in the absence of data, and at least for the European market and for refrigerated products, building a domestic refrigerator temperature distribution using a Normal law and a time-to-consumption distribution using an Exponential law would be appropriate. Copyright © 2017 Elsevier Ltd. All rights reserved.
Performance of three systems for warming intravenous fluids at different flow rates.
Satoh, J; Yamakage, M; Wasaki, S I; Namiki, A
2006-02-01
This study compared the intravenous fluid warming capabilities of three systems at different flow rates. The devices studied were a water-bath warmer, a dry-heat plate warmer, and an intravenous fluid tube warmer Ambient temperature was controlled at 22 degrees to 24 degrees C. Normal saline (0.9% NaCl) at either room temperature (21 degrees to 23 degrees C) or at ice-cold temperature (3 degrees to 5 degrees C) was administered through each device at a range of flow rates (2 to 100 ml/min). To mimic clinical conditions, the temperature of the fluid was measured with thermocouples at the end of a one metre tube connected to the outflow of the warmer for the first two devices and at the end of the 1.2 m warming tubing for the intravenous fluid tube warmer The temperature of fluid delivered by the water bath warmer increased as the flow rate was increased up to 15 to 20 ml/min but decreased with greater flow rates. The temperature of the fluid delivered by the dry-heat plate warmer significantly increased as the flow rate was increased within the range tested (due to decreased cooling after leaving the device at higher flow rates). The temperature of fluid delivered by the intravenous fluid tube warmer did not depend on the flow rate up to 20 ml/min but significantly and fluid temperature-dependently decreased at higher flow rates (>30 ml/min). Under the conditions of our testing, the dry heat plate warmer delivered the highest temperature fluid at high flow rates.
Crossover from impurity-controlled to granular superconductivity in (TMTSF) 2ClO4
NASA Astrophysics Data System (ADS)
Yonezawa, Shingo; Marrache-Kikuchi, Claire A.; Bechgaard, Klaus; Jérome, Denis
2018-01-01
Using a proper cooling procedure, a controllable amount of nonmagnetic structural disorder can be introduced at low temperature in (TMTSF) 2ClO4 . Here we performed simultaneous measurements of transport and magnetic properties of (TMTSF) 2ClO4 in its normal and superconducting states, while finely covering three orders of magnitude of the cooling rate around the anion ordering temperature. Our result reveals, with increasing density of disorder, the existence of a crossover between homogeneous defect-controlled d -wave superconductivity and granular superconductivity. At slow cooling rates, with small amount of disorder, the evolution of superconducting properties is well described with the Abrikosov-Gorkov theory, providing further confirmation of non-s -wave pairing in this compound. In contrast, at fast cooling rates, zero resistance and diamagnetic shielding are achieved through a randomly distributed network of superconducting puddles embedded in a normal conducting background and interconnected by proximity effect coupling. The temperature dependence of the ac complex susceptibility reveals features typical for a network of granular superconductors. This makes (TMTSF) 2ClO4 a model system for granular superconductivity where the grain size and their concentration are tunable within the same sample.
Turton, David A; Wynne, Klaas
2008-04-21
Structural relaxation in the peptide model N-methylacetamide (NMA) is studied experimentally by ultrafast optical Kerr effect spectroscopy over the normal-liquid temperature range and compared to the relaxation measured in water at room temperature. It is seen that in both hydrogen-bonding liquids, beta relaxation is present, and in each case, it is found that this can be described by the Cole-Cole function. For NMA in this temperature range, the alpha and beta relaxations are each found to have an Arrhenius temperature dependence with indistinguishable activation energies. It is known that the variations on the Debye function, including the Cole-Cole function, are unphysical, and we introduce two general modifications: One allows for the initial rise of the function, determined by the librational frequencies, and the second allows the function to be terminated in the alpha relaxation.
Modeling of the Temperature-dependent Spectral Response of In(1-x)Ga(x)Sb Infrared Photodetectors
NASA Technical Reports Server (NTRS)
Gonzalex-Cuevas, Juan A.; Refaat, Tamer F.; Abedin, M. Nurul; Elsayed-Ali, Hani E.
2006-01-01
A model of the spectral responsivity of In(1-x) Ga(x) Sb p-n junction infrared photodetectors has been developed. This model is based on calculations of the photogenerated and diffusion currents in the device. Expressions for the carrier mobilities, absorption coefficient and normal-incidence reflectivity as a function of temperature were derived from extensions made to Adachi and Caughey-Thomas models. Contributions from the Auger recombination mechanism, which increase with a rise in temperature, have also been considered. The responsivity was evaluated for different doping levels, diffusion depths, operating temperatures, and photon energies. Parameters calculated from the model were compared with available experimental data, and good agreement was obtained. These theoretical calculations help to better understand the electro-optical behavior of In(1-x) Ga(x) Sb photodetectors, and can be utilized for performance enhancement through optimization of the device structure.
Flux pinning enhancement in thin films of Y3 Ba5 Cu8O18.5 + d
NASA Astrophysics Data System (ADS)
Aghabagheri, S.; Mohammadizadeh, M. R.; Kameli, P.; Salamati, H.
2018-06-01
YBa2Cu3O7 (Y123) and Y3Ba5Cu8O18 (Y358) thin films were deposited by pulsed laser deposition method. XRD analysis shows both films grow in c axis orientation. Resistivity versus temperature analysis shows superconducting transition temperature was about 91.2 K and 91.5 K and transition width for Y358 and Y123 films was about 0.6 K and 1.6 K, respectively. Analysis of the temperature dependence of the AC susceptibility near the transition temperature, employing Bean's critical state model, indicates that intergranular critical current density for Y358 films is more than twice of intergranular critical current density of Y123 films. Thus, flux pining is stronger in Y358 films. Weak links in the both samples is of superconductor-normal-superconductor (SNS) type irrespective of stoichiometry.
Quantum and classical ripples in graphene
NASA Astrophysics Data System (ADS)
Hašík, Juraj; Tosatti, Erio; MartoÅák, Roman
2018-04-01
Thermal ripples of graphene are well understood at room temperature, but their quantum counterparts at low temperatures are in need of a realistic quantitative description. Here we present atomistic path-integral Monte Carlo simulations of freestanding graphene, which show upon cooling a striking classical-quantum evolution of height and angular fluctuations. The crossover takes place at ever-decreasing temperatures for ever-increasing wavelengths so that a completely quantum regime is never attained. Zero-temperature quantum graphene is flatter and smoother than classical graphene at large scales yet rougher at short scales. The angular fluctuation distribution of the normals can be quantitatively described by coexistence of two Gaussians, one classical strongly T -dependent and one quantum about 2° wide, of zero-point character. The quantum evolution of ripple-induced height and angular spread should be observable in electron diffraction in graphene and other two-dimensional materials, such as MoS2, bilayer graphene, boron nitride, etc.
An internal thermal sensor controlling temperature preference in Drosophila.
Hamada, Fumika N; Rosenzweig, Mark; Kang, Kyeongjin; Pulver, Stefan R; Ghezzi, Alfredo; Jegla, Timothy J; Garrity, Paul A
2008-07-10
Animals from flies to humans are able to distinguish subtle gradations in temperature and show strong temperature preferences. Animals move to environments of optimal temperature and some manipulate the temperature of their surroundings, as humans do using clothing and shelter. Despite the ubiquitous influence of environmental temperature on animal behaviour, the neural circuits and strategies through which animals select a preferred temperature remain largely unknown. Here we identify a small set of warmth-activated anterior cell (AC) neurons located in the Drosophila brain, the function of which is critical for preferred temperature selection. AC neuron activation occurs just above the fly's preferred temperature and depends on dTrpA1, an ion channel that functions as a molecular sensor of warmth. Flies that selectively express dTrpA1 in the AC neurons select normal temperatures, whereas flies in which dTrpA1 function is reduced or eliminated choose warmer temperatures. This internal warmth-sensing pathway promotes avoidance of slightly elevated temperatures and acts together with a distinct pathway for cold avoidance to set the fly's preferred temperature. Thus, flies select a preferred temperature by using a thermal sensing pathway tuned to trigger avoidance of temperatures that deviate even slightly from the preferred temperature. This provides a potentially general strategy for robustly selecting a narrow temperature range optimal for survival.
Xu, Zhenzhu; Shimizu, Hideyuki; Ito, Shoko; Yagasaki, Yasumi; Zou, Chunjing; Zhou, Guangsheng; Zheng, Yuanrun
2014-02-01
Warming, watering and elevated atmospheric CO₂-concentration effects have been extensively studied separately; however, their combined impact on plants is not well understood. In the current research, we examined plant growth and physiological responses of three dominant species from the Eurasian Steppe with different functional traits to a combination of elevated CO₂, high temperature, and four simulated precipitation patterns. Elevated CO₂ stimulated plant growth by 10.8-41.7 % for a C₃ leguminous shrub, Caragana microphylla, and by 33.2-52.3 % for a C₃ grass, Stipa grandis, across all temperature and watering treatments. Elevated CO₂, however, did not affect plant biomass of a C₄ grass, Cleistogenes squarrosa, under normal or increased precipitation, whereas a 20.0-69.7 % stimulation of growth occurred with elevated CO₂ under drought conditions. Plant growth was enhanced in the C₃ shrub and the C₄ grass by warming under normal precipitation, but declined drastically with severe drought. The effects of elevated CO₂ on leaf traits, biomass allocation and photosynthetic potential were remarkably species-dependent. Suppression of photosynthetic activity, and enhancement of cell peroxidation by a combination of warming and severe drought, were partly alleviated by elevated CO₂. The relationships between plant functional traits and physiological activities and their responses to climate change were discussed. The present results suggested that the response to CO₂ enrichment may strongly depend on the response of specific species under varying patterns of precipitation, with or without warming, highlighting that individual species and multifactor dependencies must be considered in a projection of terrestrial ecosystem response to climatic change.
NASA Astrophysics Data System (ADS)
Baumgarten, Lorenz; Kierfeld, Jan
2018-05-01
We study the influence of thermal fluctuations on the buckling behavior of thin elastic capsules with spherical rest shape. Above a critical uniform pressure, an elastic capsule becomes mechanically unstable and spontaneously buckles into a shape with an axisymmetric dimple. Thermal fluctuations affect the buckling instability by two mechanisms. On the one hand, thermal fluctuations can renormalize the capsule's elastic properties and its pressure because of anharmonic couplings between normal displacement modes of different wavelengths. This effectively lowers its critical buckling pressure [Košmrlj and Nelson, Phys. Rev. X 7, 011002 (2017), 10.1103/PhysRevX.7.011002]. On the other hand, buckled shapes are energetically favorable already at pressures below the classical buckling pressure. At these pressures, however, buckling requires to overcome an energy barrier, which only vanishes at the critical buckling pressure. In the presence of thermal fluctuations, the capsule can spontaneously overcome an energy barrier of the order of the thermal energy by thermal activation already at pressures below the critical buckling pressure. We revisit parameter renormalization by thermal fluctuations and formulate a buckling criterion based on scale-dependent renormalized parameters to obtain a temperature-dependent critical buckling pressure. Then we quantify the pressure-dependent energy barrier for buckling below the critical buckling pressure using numerical energy minimization and analytical arguments. This allows us to obtain the temperature-dependent critical pressure for buckling by thermal activation over this energy barrier. Remarkably, both parameter renormalization and thermal activation lead to the same parameter dependence of the critical buckling pressure on temperature, capsule radius and thickness, and Young's modulus. Finally, we study the combined effect of parameter renormalization and thermal activation by using renormalized parameters for the energy barrier in thermal activation to obtain our final result for the temperature-dependent critical pressure, which is significantly below the results if only parameter renormalization or only thermal activation is considered.
Rey-Martinez, Jorge; McGarvie, Leigh; Pérez-Fernández, Nicolás
2017-03-01
The obtained simulations support the underlying hypothesis that the hydrostatic caloric drive is dissipated by local convective flow in a hydropic duct. To develop a computerized model to simulate and predict the internal fluid thermodynamic behavior within both normal and hydropic horizontal ducts. This study used a computational fluid dynamics software to simulate the effects of cooling and warming of two geometrical models representing normal and hydropic ducts of one semicircular horizontal canal during 120 s. Temperature maps, vorticity, and velocity fields were successfully obtained to characterize the endolymphatic flow during the caloric test in the developed models. In the normal semicircular canal, a well-defined endolymphatic linear flow was obtained, this flow has an opposite direction depending only on the cooling or warming condition of the simulation. For the hydropic model a non-effective endolymphatic flow was predicted; in this model the velocity and vorticity fields show a non-linear flow, with some vortices formed inside the hydropic duct.
NASA Astrophysics Data System (ADS)
Nilsson, Peter; Magnusson, Karin; Appelqvist, Hanna; Cieslar-Pobuda, Artur; Bäck, Marcus; Kågedal, Bertil; Jonasson, Jon; Los, Marek
2015-10-01
Molecular tools for fluorescent imaging of cells and their components are vital for understanding the function and activity of cells. Here, we report an imidazole functionalized pentameric oligothiophene, p-HTIm, that can be utilized for fluorescent imaging of cells. p-HTIm fluorescence in normal cells appeared in a peripheral punctate pattern partially co-localized with lysosomes, whereas a one-sided perinuclear Golgi associated localization of the dye was observed in malignant cells. The uptake of p-HTIm was temperature dependent and the intracellular target was reached within 1 h after staining. The ability of p-HTIm to stain cells was reduced when the imidazole side chain was chemically altered, verifying that specific imidazole side-chain functionalities are necessary for achieving the observed cellular staining. Our findings confirm that properly functionalized oligothiophenes can be utilized as fluorescent tools for vital staining of cells and that the selectivity towards distinct intracellular targets are highly dependent on the side-chain functionalities along the conjugated thiophene backbone.
Pathophysiology of Temperature Regulation.
ERIC Educational Resources Information Center
Mitchell, D.; Laburn, Helen P.
1985-01-01
Discusses: (1) measurement of body temperature; (2) normal deviations from normal body temperature; (3) temperature in the very young and the very old; (4) abnormal liability of thermoregulation; (5) hyperthermia; (6) fever; and (7) hypothermia. (JN)
Hiratoko, Tatsuya; Yoshiasa, Akira; Nakatani, Tomotaka; Okube, Maki; Nakatsuka, Akihiko; Sugiyama, Kazumasa
2013-07-01
XANES (X-ray absorption near-edge structure) spectra of the Ti K-edges of ATiO3 (A = Ca and Sr), A2TiO4 (A = Mg and Fe), TiO2 rutile and TiO2 anatase were measured in the temperature range 20-900 K. Ti atoms for all samples were located in TiO6 octahedral sites. The absorption intensity invariant point (AIIP) was found to be between the pre-edge and post-edge. After the AIIP, amplitudes damped due to Debye-Waller factor effects with temperature. Amplitudes in the pre-edge region increased with temperature normally by thermal vibration. Use of the AIIP peak intensity as a standard point enables a quantitative comparison of the intensity of the pre-edge peaks in various titanium compounds over a wide temperature range.
NASA Astrophysics Data System (ADS)
Oueslati, Boutheina; Camberlin, Pierre; Zoungrana, Joël; Roucou, Pascal; Diallo, Saliou
2018-02-01
The relationships between precipitation and temperature in the central Sudano-Sahelian belt are investigated by analyzing 50 years (1959-2008) of observed temperature (Tx and Tn) and rainfall variations. At daily time-scale, both Tx and Tn show a marked decrease as a response to rainfall occurrence, with a strongest departure from normal 1 day after the rainfall event (-0.5 to -2.5 °C depending on the month). The cooling is slightly larger when heavy rainfall events (>5 mm) are considered. The temperature anomalies weaken after the rainfall event, but are still significant several days later. The physical mechanisms accounting for the temperature response to precipitation are analysed. The Tx drop is accounted for by reduced incoming solar radiation associated with increased cloud cover and increased surface evaporation following surface moistening. The effect of evaporation becomes dominant a few days after the rainfall event. The reduced daytime heat storage and the subsequent sensible heat flux result in a later negative Tn anomaly. The effect of rainfall variations on temperature is significant for long-term warming trends. The rainfall decrease experienced between 1959 and 2008 accounts for a rainy season Tx increase of 0.15 to 0.3 °C, out of a total Tx increase of 1.3 to 1.5 °C. These results have strong implications on the assessment of future temperature changes. The dampening or amplifying effects of precipitation are determined by the sign of future precipitation trends. Confidence on temperature changes under global warming partly depend on the robustness of precipitation projections.
Elliot, Simon L.; Rodrigues, Juliana de O.; Lorenzo, Marcelo G.; Martins-Filho, Olindo A.; Guarneri, Alessandra A.
2015-01-01
It is often assumed that parasites are not virulent to their vectors. Nevertheless, parasites commonly exploit their vectors (nutritionally for example) so these can be considered a form of host. Trypanosoma cruzi, a protozoan found in mammals and triatomine bugs in the Americas, is the etiological agent of Chagas disease that affects man and domestic animals. While it has long been considered avirulent to its vectors, a few reports have indicated that it can affect triatomine fecundity. We tested whether infection imposed a temperature-dependent cost on triatomine fitness. We held infected insects at four temperatures between 21 and 30°C and measured T. cruzi growth in vitro at the same temperatures in parallel. Trypanosoma cruzi infection caused a considerable delay in the time the insects took to moult (against a background effect of temperature accelerating moult irrespective of infection status). Trypanosoma cruzi also reduced the insects’ survival, but only at the intermediate temperatures of 24 and 27°C (against a background of increased mortality with increasing temperatures). Meanwhile, in vitro growth of T. cruzi increased with temperature. Our results demonstrate virulence of a protozoan agent of human disease to its insect vector under these conditions. It is of particular note that parasite-induced mortality was greatest over the range of temperatures normally preferred by these insects, probably implying adaptation of the parasite to perform well at these temperatures. Therefore we propose that triggering this delay in moulting is adaptive for the parasites, as it will delay the next bloodmeal taken by the bug, thus allowing the parasites time to develop and reach the insect rectum in order to make transmission to a new vertebrate host possible. PMID:25793495
NASA Astrophysics Data System (ADS)
Sparks, Kate M.; Foo, Shawna A.; Uthicke, Sven; Byrne, Maria; Lamare, Miles
2017-03-01
The crown-of-thorns sea star Acanthaster planci is a key predator of corals and has had a major influence on the decrease in coral cover across the Indo-Pacific. To understand how this species may adapt to ocean warming and acidification, this study used a quantitative genetic approach to examine the response in offspring of 24 half-sib A. planci families raised in fully crossed treatment combinations of temperature (27, 29 and 31 °C) and pCO2 (450 and 900 ppm) to the gastrulation stage (26 h post-fertilisation). Interactions between genotype and environment were tested using a permutational multivariate ANOVA and restricted error maximum likelihood calculations of variance. High temperature (31 °C) significantly reduced normal (symmetrical, intact) development by 15% at the 16-cell stage. Increased temperature (from 29 to 31 °C) reduced normal gastrulation from 65 to 30%. The extent to which each genotype was affected depended on sire identity, which explained 15% of variation. pCO2 did not significantly influence development at gastrulation. To explore the importance of individual mating pairs, response ratios were calculated for offspring of each family across all treatments. Response ratios demonstrated that the majority of genotypes experienced the highest percentage of normal development to gastrulation in the control treatment, and that family (sire × dam) is important in determining the response to ocean warming and acidification. A positive genetic correlation (overall r* G = 0.76) from sire × environment interactions, however, indicated that individuals which develop `better' at both high temperature and high pCO2 may cope better with near-future predicted warm and acidified conditions for eastern Australia.
NASA Astrophysics Data System (ADS)
Kanazawa, Ken; Yamawaki, Kazuma; Sekita, Naoya; Nishio, Yôtarô; Kuroda, Shinji; Mitome, Masanori; Bando, Yoshio
2015-04-01
We investigated the structural and magnetic properties of Cr1-δTe thin films grown on CdTe(001) layers by molecular beam epitaxy (MBE) with systematic variations of the ratio between Cr and Te fluxes and the substrate temperature Ts during the growth. Cr1-δTe of the hexagonal structure (hex-Cr1-δTe) was always formed irrespective of the growth conditions, but the growth orientation was different depending on the Cr/Te flux ratio and Ts. Hex-Cr1-δTe was grown in the [0001] axis in the range of small Cr/Te ratios and high Ts while it was also grown in the direction normal to the (1-102) plane at larger Cr/Te ratios or lower Ts. Hex-Cr1-δTe films grown in the both orientations show ferromagnetism, but they exhibit a clear contrast in the field dependence of perpendicular magnetization at 2 K; a square hysteretic loop in the film grown in the [0001] axis versus a round-shape loop in the film grown in the direction normal to the (1-102) plane. Moreover, the films grown in the [0001] axis at the smallest Cr/Te ratio show variations of ferromagnetic properties with Curie temperature (Tc) and the coercivity (Hc) varying according to the value of Ts.
Cointegration as a data normalization tool for structural health monitoring applications
NASA Astrophysics Data System (ADS)
Harvey, Dustin Y.; Todd, Michael D.
2012-04-01
The structural health monitoring literature has shown an abundance of features sensitive to various types of damage in laboratory tests. However, robust feature extraction in the presence of varying operational and environmental conditions has proven to be one of the largest obstacles in the development of practical structural health monitoring systems. Cointegration, a technique adapted from the field of econometrics, has recently been introduced to the SHM field as one solution to the data normalization problem. Response measurements and feature histories often show long-run nonstationarity due to fluctuating temperature, load conditions, or other factors that leads to the occurrence of false positives. Cointegration theory allows nonstationary trends common to two or more time series to be modeled and subsequently removed. Thus, the residual retains sensitivity to damage with dependence on operational and environmental variability removed. This study further explores the use of cointegration as a data normalization tool for structural health monitoring applications.
Logit-normal mixed model for Indian Monsoon rainfall extremes
NASA Astrophysics Data System (ADS)
Dietz, L. R.; Chatterjee, S.
2014-03-01
Describing the nature and variability of Indian monsoon rainfall extremes is a topic of much debate in the current literature. We suggest the use of a generalized linear mixed model (GLMM), specifically, the logit-normal mixed model, to describe the underlying structure of this complex climatic event. Several GLMM algorithms are described and simulations are performed to vet these algorithms before applying them to the Indian precipitation data procured from the National Climatic Data Center. The logit-normal model was applied with fixed covariates of latitude, longitude, elevation, daily minimum and maximum temperatures with a random intercept by weather station. In general, the estimation methods concurred in their suggestion of a relationship between the El Niño Southern Oscillation (ENSO) and extreme rainfall variability estimates. This work provides a valuable starting point for extending GLMM to incorporate the intricate dependencies in extreme climate events.
Bose-Einstein Condensation of a Stochastic Liquid
NASA Astrophysics Data System (ADS)
Maćkowiak, Jan
The Bogoliubov-Lee-Huang theory of superfluid 4He is modified by introducing an effective temperature scale (which accounts for the deep well of the interatomic potential) and by incorporating into the Hamiltonian a stochastic term Vl, which simulates liquidity of HeI and liquidity of the normal and superfluid component of HeII. Vl depends on two independent random angles αn, αs ∈ [0, π], which characterize the locally ordered motion of the two fluids (the normal fluid and superfluid) comprising HeII. The resulting thermodynamics improves the thermodynamic functions and excitation spectrum Ep(αn, αs) of the superfluid phase, obtained previously, leaving the heat capacity CV (T) of the normal phase, with a minimum at Tmin > 2.17K, unchanged. The theoretical velocity of sound in HeII, equal to the initial slope of Ep(π, π), agrees with experiment.
NASA Astrophysics Data System (ADS)
Singh, Kirandeep; Kaur, Davinder
2017-04-01
The current study reports the strong magnetoelectric coupling (M-E) in silicon (Si)-integrated ferromagnetic shape memory alloy-based PZT/Ni-Mn-In thin-film multiferroic heterostructure. The strain-mediated nature of converse M-E coupling is reflected from the butterfly-shaped normalized magnetization (M/M s) versus electric field plots. The direct M-E properties of the heterostructure were measured with a frequency of AC magnetic field, bias magnetic field, as well as with temperature. A maximum direct M-E coupling in the bilayered thin-film multiferroic heterostructures occurred at resonance frequencies around the first-order structural transitional temperature of the bottom Ni-Mn-In layer. It was observed that the measuring temperature remarkably affects the direct M-E characteristic of the heterostructure. A large direct ME effect and converse ME effect coefficient α DME ~ 894 mV cm-1.Oe and α CME ~ 2.7 × 10-5 s m-1, respectively, were achieved in the bilayer at room temperature. The mechanism of direct as well as converse M-E effects in the thin-film multiferroic heterostructures is discussed. The electrically driven angular dependence of normalized magnetization (M/M s) reveals the twofold symmetric magnetic anisotropy of the heterostructure, with the drastic shifting of the magnetic hard axis at E > E c (coercivity of PZT).
Statistical Analysis of Hubble /WFC3 Transit Spectroscopy of Extrasolar Planets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Guangwei; Deming, Drake; Knutson, Heather
2017-10-01
Transmission spectroscopy provides a window to study exoplanetary atmospheres, but that window is fogged by clouds and hazes. Clouds and haze introduce a degeneracy between the strength of gaseous absorption features and planetary physical parameters such as abundances. One way to break that degeneracy is via statistical studies. We collect all published HST /WFC3 transit spectra for 1.1–1.65 μ m water vapor absorption and perform a statistical study on potential correlations between the water absorption feature and planetary parameters. We fit the observed spectra with a template calculated for each planet using the Exo-transmit code. We express the magnitude ofmore » the water absorption in scale heights, thereby removing the known dependence on temperature, surface gravity, and mean molecular weight. We find that the absorption in scale heights has a positive baseline correlation with planetary equilibrium temperature; our hypothesis is that decreasing cloud condensation with increasing temperature is responsible for this baseline slope. However, the observed sample is also intrinsically degenerate in the sense that equilibrium temperature correlates with planetary mass. We compile the distribution of absorption in scale heights, and we find that this distribution is closer to log-normal than Gaussian. However, we also find that the distribution of equilibrium temperatures for the observed planets is similarly log-normal. This indicates that the absorption values are affected by observational bias, whereby observers have not yet targeted a sufficient sample of the hottest planets.« less
Statistical Analysis of Hubble/WFC3 Transit Spectroscopy of Extrasolar Planets
NASA Astrophysics Data System (ADS)
Fu, Guangwei; Deming, Drake; Knutson, Heather; Madhusudhan, Nikku; Mandell, Avi; Fraine, Jonathan
2018-01-01
Transmission spectroscopy provides a window to study exoplanetary atmospheres, but that window is fogged by clouds and hazes. Clouds and haze introduce a degeneracy between the strength of gaseous absorption features and planetary physical parameters such as abundances. One way to break that degeneracy is via statistical studies. We collect all published HST/WFC3 transit spectra for 1.1-1.65 micron water vapor absorption, and perform a statistical study on potential correlations between the water absorption feature and planetary parameters. We fit the observed spectra with a template calculated for each planet using the Exo-Transmit code. We express the magnitude of the water absorption in scale heights, thereby removing the known dependence on temperature, surface gravity, and mean molecular weight. We find that the absorption in scale heights has a positive baseline correlation with planetary equilibrium temperature; our hypothesis is that decreasing cloud condensation with increasing temperature is responsible for this baseline slope. However, the observed sample is also intrinsically degenerate in the sense that equilibrium temperature correlates with planetary mass. We compile the distribution of absorption in scale heights, and we find that this distribution is closer to log-normal than Gaussian. However, we also find that the distribution of equilibrium temperatures for the observed planets is similarly log-normal. This indicates that the absorption values are affected by observational bias, whereby observers have not yet targeted a sufficient sample of the hottest planets.
Statistical Analysis of Hubble/WFC3 Transit Spectroscopy of Extrasolar Planets
NASA Astrophysics Data System (ADS)
Fu, Guangwei; Deming, Drake; Knutson, Heather; Madhusudhan, Nikku; Mandell, Avi; Fraine, Jonathan
2017-10-01
Transmission spectroscopy provides a window to study exoplanetary atmospheres, but that window is fogged by clouds and hazes. Clouds and haze introduce a degeneracy between the strength of gaseous absorption features and planetary physical parameters such as abundances. One way to break that degeneracy is via statistical studies. We collect all published HST/WFC3 transit spectra for 1.1-1.65 μm water vapor absorption and perform a statistical study on potential correlations between the water absorption feature and planetary parameters. We fit the observed spectra with a template calculated for each planet using the Exo-transmit code. We express the magnitude of the water absorption in scale heights, thereby removing the known dependence on temperature, surface gravity, and mean molecular weight. We find that the absorption in scale heights has a positive baseline correlation with planetary equilibrium temperature; our hypothesis is that decreasing cloud condensation with increasing temperature is responsible for this baseline slope. However, the observed sample is also intrinsically degenerate in the sense that equilibrium temperature correlates with planetary mass. We compile the distribution of absorption in scale heights, and we find that this distribution is closer to log-normal than Gaussian. However, we also find that the distribution of equilibrium temperatures for the observed planets is similarly log-normal. This indicates that the absorption values are affected by observational bias, whereby observers have not yet targeted a sufficient sample of the hottest planets.
Omori, Yasuhiro; Asari, Tetsuya; Maruyama, Kazuyasu; Kusama, Hiroshi; Kojima, Masami; Shibata, Nobuo
2003-01-01
The present study was performed to assess the effects of pilocarpine hydrochloride ((3S,4R)-3-ethyl-dihydro-4-[(1-methyl-1H-imidazole-5-yl)methyl]-2(3H)-furanone monohydrochloride, CAS 54-71-7) and cevimeline ((+/-)-cis-2-methylspiro[1,3-oxathiolane-5,3'-quinuclidine] hydrochloride, hemihydrate, CAS 153504-70-2), muscarinic receptor agonists, on salivary secretion from the submandibular/sublingual (SM/SL) glands in normal rats and in rats with xerostomia induced by X-ray (15 Gy) irradiation. To clarify their pharmacological safety profiles, the two drugs were further compared with regard to subtype selectivity for muscarinic receptors (M1, M2, and M3) and central nervous, respiratory, and cardiovascular effects. Pilocarpine hydrochloride (0.1-0.8 mg/kg i.d.) and cevimeline (3-30 mg/kg i.d.) dose-dependently increased salivary flow rate and total salivary volume in a 120-min period from SM/SL glands in both normal and irradiated rats, the minimum effective doses for their sialagogic effects being 0.2 and 10 mg/kg, respectively. Both drugs also increased protein output from SM/SL glands to a degree that depended on the increase in salivary volume in normal and irradiated rats. In a binding study using radiolabeled antagonists, neither pilocarpine hydrochloride nor cevimeline displayed subtype selectivity for muscarinic receptors, indicating non-selective muscarinic agonism. Effects on the central nervous system (CNS) were assessed by monitoring changes in body temperature in conscious normal rats. Pilocarpine hydrochloride (0.4-4 mg/kg p.o.) had no effect on body temperature, but cevimeline (30 and 100 mg/kg p.o.) caused a significant hypothermia. In terms of respiratory and cardiovascular effects in anesthetized normal rats, there was no clear difference in safety margin between pilocarpine hydrochloride and cevimeline, both drugs inducing significant changes in respiratory rate, heart rate, and blood pressure at doses close to those inducing sialagogic effects. These results suggest that pilocarpine hydrochloride could be used as a sialagogic drug for postirradiation-induced xerostomia with fewer adverse effects on the CNS.
Ion beam promoted lithium absorption in glassy polymeric carbon
NASA Astrophysics Data System (ADS)
Ila, D.; Zimmerman, R. L.; Jenkins, G. M.; Maleki, H.; Poker, D. B.
1995-12-01
Glassy Polymeric Carbon (GPC) samples prepared from a precursor possess accessible pore volume that depends on the heat treatment temperature. We have shown that lithium percolates without diffusion into the accessible pores of GPC samples immersed in a molten lithium salt bath at 700°C. Ion bombardment with 10 MeV Au atoms increases the total pore volume available for lithium occupation even for samples normally impermeable to lithium. The lithium concentration depth profile is measured using Li7(p,2α) nuclear reaction analysis. We will report on lithium percolation into GPC prepared at temperatures between 500°C and 1000°C and activated by a 10 MeV gold ion bombardment.
Anisotropic dielectric properties of two-dimensional matrix in pseudo-spin ferroelectric system
NASA Astrophysics Data System (ADS)
Kim, Se-Hun
2016-10-01
The anisotropic dielectric properties of a two-dimensional (2D) ferroelectric system were studied using the statistical calculation of the pseudo-spin Ising Hamiltonian model. It is necessary to delay the time for measurements of the observable and the independence of the new spin configuration under Monte Carlo sampling, in which the thermal equilibrium state depends on the temperature and size of the system. The autocorrelation time constants of the normalized relaxation function were determined by taking temperature and 2D lattice size into account. We discuss the dielectric constants of a two-dimensional ferroelectric system by using the Metropolis method in view of the Slater-Takagi defect energies.
Real-time dielectric studies of polymerizing systems
NASA Astrophysics Data System (ADS)
Williams, G.; Smith, I. K.; Holmes, P. A.; Varma, S.
1999-03-01
The use of real-time dielectric relaxation spectroscopy (DRS) for monitoring changes in molecular mobility during reaction for thermosetting systems is described together with phenomenological and molecular theories of the time-dependent relaxation functions that are involved. Reduced molecular mobility normally leads to the diffusion control of a reaction and ultimately to glass formation at the polymerization temperature 0953-8984/11/10A/004/img7. We present new DRS results for a boroxine/epoxide system that show glass formation below a `floor temperature' 0953-8984/11/10A/004/img8 and very different behaviour above 0953-8984/11/10A/004/img8, when the dielectric properties become independent of time and an elastomer is formed.
NASA Astrophysics Data System (ADS)
Ko, Jae-Hyeon; Lee, Kwang-Sei; Ike, Yuji; Kojima, Seiji
2008-11-01
The acoustic waves propagating along the direction perpendicular to the (1 0 0) cleavage plane of aspirin crystal were investigated using micro-Brillouin spectroscopy from which C11, C55 and C66 were obtained. The temperature dependence of the longitudinal acoustic waves could be explained by normal anharmonic lattice models, while the transverse acoustic waves showed an abnormal increase in the hypersonic attenuation at low temperatures indicating their coupling to local remnant dynamics. The sound velocity as well as the attenuation of the longitudinal acoustic waves of glassy aspirin showed a substantial change at ˜235 K confirming a transition from glassy to supercooled liquid state in vitreous aspirin.
Fuel cladding behavior under rapid loading conditions
NASA Astrophysics Data System (ADS)
Yueh, K.; Karlsson, J.; Stjärnsäter, J.; Schrire, D.; Ledergerber, G.; Munoz-Reja, C.; Hallstadius, L.
2016-02-01
A modified burst test (MBT) was used in an extensive test program to characterize fuel cladding failure behavior under rapid loading conditions. The MBT differs from a normal burst test with the use of a driver tube to simulate the expansion of a fuel pellet, thereby producing a partial strain driven deformation condition similar to that of a fuel pellet expansion in a reactivity insertion accident (RIA). A piston/cylinder assembly was used to pressurize the driver tube. By controlling the speed and distance the piston travels the loading rate and degree of sample deformation could be controlled. The use of a driver tube with a machined gauge section localizes deformation and allows for continuous monitoring of the test sample diameter change at the location of maximum hoop strain, during each test. Cladding samples from five irradiated fuel rods were tested between 296 and 553 K and loading rates from 1.5 to 3.5/s. The test rods included variations of Zircaloy-2 with different liners and ZIRLO, ranging in burn-up from 41 to 74 GWd/MTU. The test results show cladding ductility is strongly temperature and loading rate dependent. Zircaloy-2 cladding ductility degradation due to operational hydrogen pickup started to recover at approximately 358 K for test condition used in the study. This recovery temperature is strongly loading rate dependent. At 373 K, ductility recovery was small for loading rates less than 8 ms equivalent RIA pulse width, but longer than 8 ms the ductility recovery increased exponentially with increasing pulse width, consistent with literature observations of loading rate dependent brittle-to-ductile (BTD) transition temperature. The cladding ductility was also observed to be strongly loading rate/pulse width dependent for BWR cladding below the BTD temperature and Pressurized Water Reactor (PWR) cladding at both 296 and 553 K.
NASA Astrophysics Data System (ADS)
Williams, Tess Lawanna
Despite 25 years of intense research activity, high-temperature superconductors remain poorly understood, with the underlying pairing mechanism still unidentified. Efforts are complicated by the remarkably complex phase diagram, rich in energy-dependent charge and spin orders. In this thesis I describe the use of a Scanning Tunneling Microscope (STM) to study energy-dependent charge orders in Bi2-- yPbySr2CuO6+delta , a cuprate high-temperature superconductor. STM, a surface-sensitive probe used to map electronic structure with sub-meV energy resolution and sub-A spatial resolution, has contributed greatly to our current understanding of the cuprate high-temperature superconductors. However, STM data is acquired with a constant-current normalization condition. The measured differential conductance, g(x, y, V), is often taken to be proportional to the density of states at energy eV (where V is the voltage applied between tip and sample). In fact, due to the normalization condition, the measured g(x, y, V) is actually the quotient of the density of states at energy eV and the integrated density of states from the Fermi energy to eV. This unavoidable quotient may fold electronic structure from its true energy range into other energies. I discuss a new method to correct STM differential conductance spectra to remove the constant-current normalization condition. Using local work function measurements and the constant-current topograph, I create a map which does not suffer from the setpoint effect and contains a mixture of topographic information and properly normalized spectroscopic information. I apply this method to the extraction of the incommensurate charge modulation at q⃗˜34 2pa0 . I also extend the study of electronic nematic order, an atomic-lattice-periodic C4 → C2 symmetry breaking, from highly underdoped Bi2 Sr2CaCu2O 8+delta [28] to overdoped Bi2--yPb ySr2CuO6+/-delta. I find that the electronic nematic order parameter is robust to change of scan angle. I define and contrast three different electronic nematic orders with different phases with respect to the crystal. I discuss the effect of the choice of normalization and possible alternate explanations for the source of the calculated nematic order. Finally, I discuss a drift-correction technique, which removes picometer scale drift that is introduced into a spectral map by experimental imperfections, and characterize the optimal algorithm and potential artifacts that drift-correction may introduce.
Temperature dependence of stacking faults in catalyst-free GaAs nanopillars.
Shapiro, Joshua N; Lin, Andrew; Ratsch, Christian; Huffaker, D L
2013-11-29
Impressive opto-electronic devices and transistors have recently been fabricated from GaAs nanopillars grown by catalyst-free selective-area epitaxy, but this growth technique has always resulted in high densities of stacking faults. A stacking fault occurs when atoms on the growing (111) surface occupy the sites of a hexagonal-close-pack (hcp) lattice instead of the normal face-centered-cubic (fcc) lattice sites. When stacking faults occur consecutively, the crystal structure is locally wurtzite instead of zinc-blende, and the resulting band offsets are known to negatively impact device performance. Here we present experimental and theoretical evidence that indicate stacking fault formation is related to the size of the critical nucleus, which is temperature dependent. The difference in energy between the hcp and fcc orientation of small nuclei is computed using density-function theory. The minimum energy difference of 0.22 eV is calculated for a nucleus with 21 atoms, so the population of nuclei in the hcp orientation is expected to decrease as the nucleus grows larger. The experiment shows that stacking fault occurrence is dramatically reduced from 22% to 3% by raising the growth temperature from 730 to 790 ° C. These data are interpreted using classical nucleation theory which dictates a larger critical nucleus at higher growth temperature.
Dielectric and impedance study of praseodymium substituted Mg-based spinel ferrites
NASA Astrophysics Data System (ADS)
Farid, Hafiz Muhammad Tahir; Ahmad, Ishtiaq; Ali, Irshad; Ramay, Shahid M.; Mahmood, Asif; Murtaza, G.
2017-07-01
Spinel ferrites with nominal composition MgPryFe2-yO4 (y = 0.00, 0.025, 0.05, 0.075, 0.10) were prepared by sol-gel method. Temperature dependent DC electrical conductivity and drift mobility were found in good agreement with each other, reflecting semiconducting behavior. The dielectric properties of all the samples as a function of frequency (1 MHz-3 GHz) were measured at room temperature. The dielectric constant and complex dielectric constant of these samples decreased with the increase of praseodymium concentration. In the present spinel ferrite, Cole-Cole plots were used to separate the grain and grain boundary's effects. The substitution of praseodymium ions in Mg-based spinel ferrites leads to a remarkable rise of grain boundary's resistance as compared to the grain's resistance. As both AC conductivity and Cole-Cole plots are the functions of concentration, they reveal the dominant contribution of grain boundaries in the conduction mechanism. AC activation energy was lower than dc activation energy. Temperature dependence normalized AC susceptibility of spinel ferrites reveals that MgFe2O4 exhibits multi domain (MD) structure with high Curie temperature while on substitution of praseodymium, MD to SD transitions occurs. The low values of conductivity and low dielectric loss make these materials best candidate for high frequency application.
Evaluation of a Multi-Axial, Temperature, and Time Dependent (MATT) Failure Model
NASA Technical Reports Server (NTRS)
Richardson, D. E.; Anderson, G. L.; Macon, D. J.; Rudolphi, Michael (Technical Monitor)
2002-01-01
To obtain a better understanding the response of the structural adhesives used in the Space Shuttle's Reusable Solid Rocket Motor (RSRM) nozzle, an extensive effort has been conducted to characterize in detail the failure properties of these adhesives. This effort involved the development of a failure model that includes the effects of multi-axial loading, temperature, and time. An understanding of the effects of these parameters on the failure of the adhesive is crucial to the understanding and prediction of the safety of the RSRM nozzle. This paper documents the use of this newly developed multi-axial, temperature, and time (MATT) dependent failure model for modeling failure for the adhesives TIGA 321, EA913NA, and EA946. The development of the mathematical failure model using constant load rate normal and shear test data is presented. Verification of the accuracy of the failure model is shown through comparisons between predictions and measured creep and multi-axial failure data. The verification indicates that the failure model performs well for a wide range of conditions (loading, temperature, and time) for the three adhesives. The failure criterion is shown to be accurate through the glass transition for the adhesive EA946. Though this failure model has been developed and evaluated with adhesives, the concepts are applicable for other isotropic materials.
Kanno, H; Kajiwara, K; Miyata, K
2010-05-21
Supercooling behavior of aqueous dimethylsulfoxide (DMSO) solution was investigated as a function of DMSO concentration and at high pressures. A linear relationship was observed for T(H) (homogeneous ice nucleation temperature) and T(m) (melting temperature) for the supercooling of aqueous DMSO solution at normal pressure. Analysis of the DTA (differential thermal analysis) traces for homogeneous ice crystallization in the bottom region of the T(H) curve for a DMSO solution of R=20 (R: moles of water/moles of DMSO) at high pressures supported the contention that the second critical point (SCP) of liquid water should exist at P(c2)= approximately 200 MPa and at T(c2)<-100 degrees C (P(c2): pressure of SCP, T(c2): temperature of SCP). The presence of two T(H) peaks for DMSO solutions (R=15, 12, and 10) suggests that phase separation occurs in aqueous DMSO solution (R
NASA Astrophysics Data System (ADS)
Kanno, H.; Kajiwara, K.; Miyata, K.
2010-05-01
Supercooling behavior of aqueous dimethylsulfoxide (DMSO) solution was investigated as a function of DMSO concentration and at high pressures. A linear relationship was observed for TH (homogeneous ice nucleation temperature) and Tm (melting temperature) for the supercooling of aqueous DMSO solution at normal pressure. Analysis of the DTA (differential thermal analysis) traces for homogeneous ice crystallization in the bottom region of the TH curve for a DMSO solution of R =20 (R: moles of water/moles of DMSO) at high pressures supported the contention that the second critical point (SCP) of liquid water should exist at Pc2=˜200 MPa and at Tc2<-100 °C (Pc2: pressure of SCP, Tc2: temperature of SCP). The presence of two TH peaks for DMSO solutions (R =15, 12, and 10) suggests that phase separation occurs in aqueous DMSO solution (R ≤15) at high pressures and low temperatures (<-90 °C). The pressure dependence of the two TH curves for DMSO solutions of R =10 and 12 indicates that the two phase-separated components in the DMSO solution of R =10 have different liquid water structures [LDL-like and HDL-like structures (LDL: low-density liquid water, HDL: high-density liquid water)] in the pressure range of 120-230 MPa.
Self-similarity of temperature profiles in distant galaxy clusters: the quest for a universal law
NASA Astrophysics Data System (ADS)
Baldi, A.; Ettori, S.; Molendi, S.; Gastaldello, F.
2012-09-01
Context. We present the XMM-Newton temperature profiles of 12 bright (LX > 4 × 1044 erg s-1) clusters of galaxies at 0.4 < z < 0.9, having an average temperature in the range 5 ≲ kT ≲ 11 keV. Aims: The main goal of this paper is to study for the first time the temperature profiles of a sample of high-redshift clusters, to investigate their properties, and to define a universal law to describe the temperature radial profiles in galaxy clusters as a function of both cosmic time and their state of relaxation. Methods: We performed a spatially resolved spectral analysis, using Cash statistics, to measure the temperature in the intracluster medium at different radii. Results: We extracted temperature profiles for the clusters in our sample, finding that all profiles are declining toward larger radii. The normalized temperature profiles (normalized by the mean temperature T500) are found to be generally self-similar. The sample was subdivided into five cool-core (CC) and seven non cool-core (NCC) clusters by introducing a pseudo-entropy ratio σ = (TIN/TOUT) × (EMIN/EMOUT)-1/3 and defining the objects with σ < 0.6 as CC clusters and those with σ ≥ 0.6 as NCC clusters. The profiles of CC and NCC clusters differ mainly in the central regions, with the latter exhibiting a slightly flatter central profile. A significant dependence of the temperature profiles on the pseudo-entropy ratio σ is detected by fitting a function of r and σ, showing an indication that the outer part of the profiles becomes steeper for higher values of σ (i.e. transitioning toward the NCC clusters). No significant evidence of redshift evolution could be found within the redshift range sampled by our clusters (0.4 < z < 0.9). A comparison of our high-z sample with intermediate clusters at 0.1 < z < 0.3 showed how the CC and NCC cluster temperature profiles have experienced some sort of evolution. This can happen because higher z clusters are at a less advanced stage of their formation and did not have enough time to create a relaxed structure, which is characterized by a central temperature dip in CC clusters and by flatter profiles in NCC clusters. Conclusions: This is the first time that a systematic study of the temperature profiles of galaxy clusters at z > 0.4 has been attempted. We were able to define the closest possible relation to a universal law for the temperature profiles of galaxy clusters at 0.1 < z < 0.9, showing a dependence on both the relaxation state of the clusters and the redshift. Appendix A is only available in electronic form at http://www.aanda.org
Time for a change to assess and evaluate body temperature in clinical practice.
Sund-Levander, Märtha; Grodzinsky, Ewa
2009-08-01
The definition of normal body temperature as 37 degrees C still is considered the norm worldwide, but in practice there is a widespread confusion of the evaluation of body temperature, especially in elderly individuals. In this paper, we discuss the relevance of normal body temperature as 37 degrees C and consequences in clinical practice. Our conclusion is that body temperature should be evaluated in relation to the individual variability and that the best approach is to use the same site, and an unadjusted mode without adjustments to other sites. If the baseline value is not known, it is important to notice that frail elderly individuals are at risk of a low body temperature. In addition, what should be regarded as fever is closely related to what is considered as normal body temperature. That is, as normal body temperature shows individual variations, it is reasonable that the same should hold true for the febrile range.
Cleveland, J L; Dean, M; Rosenberg, N; Wang, J Y; Rapp, U R
1989-01-01
Retroviral expression vectors carrying the tyrosine kinase oncogenes abl, fms, src, and trk abrogate the requirements of murine myeloid FDC-P1 cells for interleukin-3 (IL-3). Factor-independent clones constitutively express c-myc in the absence of IL-3, whereas in parental cultures c-myc transcription requires the presence of the ligand. To directly test the effect of a tyrosine kinase oncogene on c-myc expression, retroviral constructs containing three different temperature-sensitive mutants of v-abl were introduced into myeloid IL-3-dependent FDC-P1 and 32D cells. At the permissive temperature, clones expressing temperature-sensitive abl behaved like wild-type abl-containing cells in their growth properties and expressed c-myc constitutively. Temperature shift experiments demonstrated that both IL-3 abrogation and the regulation of c-myc expression correlated with the presence of functional v-abl. Induction of c-myc expression by reactivation of temperature-sensitive v-abl mimicked c-myc induction by IL-3 in that it did not require protein synthesis and occurred at the level of transcription, with effects on both initiation and a transcription elongation block. However, v-abl-regulated FDC-P1 cell growth differed from IL-3-regulated growth in that c-fos and junB, which are normally induced by IL-3, were not induced by activation of v-abl. Images PMID:2555703
Infrared spectra of the ammonium ion in ammonium metavanadate NH 4VO 3
NASA Astrophysics Data System (ADS)
de Waal, D.; Heyns, A. M.; Range, K.-J.; Eglmeier, C.
The ND stretching modes of isotopically dilute NH 3D + ions in NH 4VO 3 are in agreement with the predicted splitting into C s, C s and C1(2) components under C s site symmetry for the NH +4 ion. The three bands observed represent the three NH bonding distances in the crystal, and the position, shape and low temperature behaviour of each band confirms the existence of two types of hydrogen bonding in NH 4VO 3. The low temperature infrared modes of NH +4 and ND +4 in NH 4VO 3 and ND 4VO 3, respectively, can be assigned under space group Pbcm. Temperature dependence of these modes also reflects the presence of both normal and bifurcated hydrogen bonds in NH 4VO 3.
Is there a path from cuprates towards room-temperature superconductivity?
Božović, I.; Wu, J.; He, X.; ...
2017-09-01
A brief account is presented of an extensive experiment performed at Brookhaven National Laboratory, aimed at understanding the nature of high-temperature superconductivity in cuprates. Over the course of the last 12 years, over 2000 films of the prototypical high- T c superconductor, La 2-xSr xCuO 4, have been synthesized using atomic-layer-by-layer molecular beam epitaxy (ALL-MBE), characterized by a range of techniques, and patterned into devices. These were then used to measure accurately the key physical parameters in both the superconducting and the normal states, and establish their precise dependence on doping, temperature, and external fields. Our results bring in somemore » great surprises, challenge the commonly held beliefs, rule out many theoretical models, and point to a new path for raising T c even further.« less
Dielectric and AC conductivity studies on SrBi4Ti4O15
NASA Astrophysics Data System (ADS)
Jose, Roshan; Saravanan, K. Venkata
2018-05-01
The four layered SrBi4Ti4O15 ceramics which belong to the aurivillius family of oxide was prepared by conventional solid state reaction technique. Analysis of the dielectric data as a function of temperature and frequency revealed normal phase transition. The frequency dependent ac conductivity follows Jonscher's universal power law. Frequency exponent (n), pre-exponential factor (A), bulk dc conductivity (σdc), and hopping frequency (ωp) were determined from the fitting curves. The variation of frequency exponent with temperature indicates that large polaron hopping mechanism up to curie-temperature, then its changes to small polaron hopping. The activation energies were calculated from ac conductivity, bulk dc conductivity and hopping frequency. The activation energies revealed that conductivity had contributions from migrations of oxygen vacancies, bismuth ion vacancies and strontium ion vacancies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswal, N C; Wu, Z; Chu, J
Purpose: To assess the potential of dynamic infrared imaging to evaluate early skin reactions during radiation therapy in cancer patients. Methods: Thermal images were captured by our home-built system consisting of two flash lamps and an infrared (IR) camera. The surface temperature of the skin was first raised by ∼ 6 °C from ∼1 ms short flashes; the camera then captured a series of IR images for 10 seconds. For each image series, a basal temperature was recorded for 0.5 seconds before flash was triggered. The temperature gradients (ε) were calculated between a reference point (immediately after the flash) andmore » at a time point of 2sec, 4sec and 9sec after that. A 1.0 cm region of interest (ROI) on the skin was drawn; the mean and standard deviations of the ROIs were calculated. The standard ε values for normal human skins were evaluated by imaging 3 healthy subjects with different skin colors. All of them were imaged on 3 separate days for consistency checks. Results: The temperature gradient, which is the temperature recovery rate, depends on the thermal properties of underlying tissue, i.e. thermal conductivity. The average ε for three volunteers averaged over 3 measurements were 0.64±0.1, 0.72±0.2 and 0.80±0.3 at 2sec, 4sec and 9sec respectively. The standard deviations were within 1.5%–3.2%. One of the volunteers had a prior small skin burn on the left wrist and the ε values for the burned site were around 9% (at 4sec) and 13% (at 9sec) lower than that from the nearby normal skin. Conclusion: The temperature gradients from the healthy subjects were reproducible within 1.5%–3.2 % and that from a burned skin showed a significant difference (9%–13%) from the normal skin. We have an IRB approved protocol to image head and neck patients scheduled for radiation therapy.« less
The Faraday effect of natural and artificial ferritins.
Koralewski, M; Kłos, J W; Baranowski, M; Mitróová, Z; Kopčanský, P; Melníková, L; Okuda, M; Schwarzacher, W
2012-09-07
Measurements of the Faraday rotation at room temperature over the light wavelength range of 300-680 nm for horse spleen ferritin (HSF), magnetoferritin with different loading factors (LFs) and nanoscale magnetite and Fe(2)O(3) suspensions are reported. The Faraday rotation and the magnetization of the materials studied present similar magnetic field dependences and are characteristic of a superparamagnetic system. The dependence of the Faraday rotation on the magnetic field is described, excluding HSF and Fe(2)O(3), by a Langevin function with a log-normal distribution of the particle size allowing the core diameters of the substances studied to be calculated. It was found that the specific Verdet constant depends linearly on the LF. Differences in the Faraday rotation spectra and their magnetic field dependences allow discrimination between magnetoferritin with maghemite and magnetite cores which can be very useful in biomedicine.
A consideration of the use of optical fibers to remotely couple photometers to telescopes
NASA Technical Reports Server (NTRS)
Heacox, William D.
1988-01-01
The possible use of optical fibers to remotely couple photometers to telescopes is considered. Such an application offers the apparent prospect of enhancing photometric stability as a consequence of the benefits of remote operation and decreased sensitivity to image details. A properly designed fiber optic coupler will probably show no significant changes in optical transmisssion due to normal variations in the fiber configuration. It may be more difficult to eliminate configuration-dependent effects on the pupil of the transmitted beam, and thus achieve photometric stability to guiding and seeing errors. In addition, there is some evidence for significant changes in the optical throughputs of fibers over the temperature range normally encountered in astronomical observatories.
NASA Astrophysics Data System (ADS)
Sun, Shanshan; Wang, Shaohua; Yu, Rong; Lei, Hechang
2017-08-01
We report the growth of heavily electron doped Li-NH3 intercalated FeSe single crystals that are free of material complexities and allow access to the intrinsic superconducting properties. Lix(NH3)yFe2Se2 single crystals show extremely large electronic anisotropy in both normal and superconducting states. They also exhibit anomalous transport properties in the normal state, which are believed to possibly be related to the anisotropy of relaxation time and/or temperature-dependent electron carrier concentration. Taking into account the great chemical flexibility of intercalants in the system, our findings provide a platform to understanding the origin of superconductivity in FeSe-related superconductors.
Rock friction under variable normal stress
Kilgore, Brian D.; Beeler, Nicholas M.; Lozos, Julian C.; Oglesby, David
2017-01-01
This study is to determine the detailed response of shear strength and other fault properties to changes in normal stress at room temperature using dry initially bare rock surfaces of granite at normal stresses between 5 and 7 MPa. Rapid normal stress changes result in gradual, approximately exponential changes in shear resistance with fault slip. The characteristic length of the exponential change is similar for both increases and decreases in normal stress. In contrast, changes in fault normal displacement and the amplitude of small high-frequency elastic waves transmitted across the surface follow a two stage response consisting of a large immediate and a smaller gradual response with slip. The characteristic slip distance of the small gradual response is significantly smaller than that of shear resistance. The stability of sliding in response to large step decreases in normal stress is well predicted using the shear resistance slip length observed in step increases. Analysis of the shear resistance and slip-time histories suggest nearly immediate changes in strength occur in response to rapid changes in normal stress; these are manifested as an immediate change in slip speed. These changes in slip speed can be qualitatively accounted for using a rate-independent strength model. Collectively, the observations and model show that acceleration or deceleration in response to normal stress change depends on the size of the change, the frictional characteristics of the fault surface, and the elastic properties of the loading system.
Origin of fieldlike spin-orbit torques in heavy metal/ferromagnet/oxide thin film heterostructures
NASA Astrophysics Data System (ADS)
Ou, Yongxi; Pai, Chi-Feng; Shi, Shengjie; Ralph, D. C.; Buhrman, R. A.
2016-10-01
We report measurements of the thickness and temperature (T ) dependencies of current-induced spin-orbit torques, especially the fieldlike (FL) component, in various heavy metal (HM)/normal metal (NM) spacer/ferromagnet (FM)/oxide (MgO and Hf Ox/MgO ) heterostructures. The FL torque in these samples originates from spin current generated by the spin Hall effect in the HM. For a FM layer sufficiently thin that a substantial portion of this spin current can reach the FM/oxide interface, T-dependent spin scattering there can yield a strong FL torque that is, in some cases, opposite in sign to that exerted at the NM/FM interface.
Thioune, El-Hadji; McCarthy, James; Gallagher, Thomas; Osborne, Bruce
2017-03-01
Climate change is expected to increase the frequency of above-normal atmospheric water deficits contemporaneous with periods of high temperatures. Here we explore alterations in physiology and gene expression in leaves of Coffea canephora Pierre ex A. Froehner caused by a sharp drop in relative humidity (RH) at three different temperatures. Both stomatal conductance (gs) and CO2 assimilation (A) measurements showed that gs and A values fell quickly at all temperatures after the transfer to low RH. However, leaf relative water content measurements indicated that leaves nonetheless experienced substantial water losses, implying that stomatal closure and/or resupply of water was not fast enough to stop excessive evaporative losses. At 27 and 35 °C, upper leaves showed significant decreases in Fv/Fm compared with lower leaves, suggesting a stronger impact on photosystem II for upper leaves, while at 42 °C, both upper and lower leaves were equally affected. Quantitative gene expression analysis of transcription factors associated with conventional dehydration stress, and genes involved with abscisic acid signalling, such as CcNCED3, indicated temperature-dependent, transcriptional changes during the Humidity Shock ('HuS') treatments. No expression was seen at 27 °C for the heat-shock gene CcHSP90-7, but it was strongly induced during the 42 °C 'HuS' treatment. Consistent with a proposal that important cellular damage occurred during the 42 °C 'HuS' treatment, two genes implicated in senescence were induced by this treatment. Overall, the data show that C. canephora plants subjected to a sharp drop in RH exhibit major, temperature-dependent alterations in leaf physiology and important changes in the expression of genes associated with abiotic stress and senescence. The results presented suggest that more detailed studies on the combined effects of low RH and high temperature are warranted. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Bao, Fei; Huang, Xiaozhen; Zhu, Chipan; Zhang, Xiaoyan; Li, Xin; Yang, Shuhua
2014-06-01
Plant defense responses are regulated by temperature. In Arabidopsis, the chilling-sensitive mutant chs2-1 (rpp4-1d) contains a gain-of-function mutation in the TIR-NB-LRR (Toll and interleukin 1 receptor-nucleotide binding-leucine-rich repeat) gene, RPP4 (RECOGNITION OF PERONOSPORA PARASITICA 4), which leads to constitutive activation of the defense response at low temperatures. Here, we identified and characterized two suppressors of rpp4-1d from a genetic screen, hsp90.2 and hsp90.3, which carry point mutations in the cytosolic heat shock proteins HSP90.2 and HSP90.3, respectively. The hsp90 mutants suppressed the chilling sensitivity of rpp4-1d, including seedling lethality, activation of the defense responses and cell death under chilling stress. The hsp90 mutants exhibited compromised RPM1 (RESISTANCE TO PSEUDOMONAS MACULICOLA 1)-, RPS4 (RESISTANCE TO P. SYRINGAE 4)- and RPP4-mediated pathogen resistance. The wild-type RPP4 and the mutated form rpp4 could interact with HSP90 to form a protein complex. Furthermore, RPP4 and rpp4 proteins accumulated in the cytoplasm and nucleus at normal temperatures, whereas the nuclear accumulation of the mutated rpp4 was decreased at low temperatures. Genetic analysis of the intragenic suppressors of rpp4-1d revealed the important functions of the NB-ARC and LRR domains of RPP4 in temperature-dependent defense signaling. In addition, the rpp4-1d-induced chilling sensitivity was largely independent of the WRKY70 or MOS (modifier of snc1) genes. [Correction added after online publication 11 March 2013: the expansions of TIR-NB-LRR and RPS4 were amended] This study reveals that Arabidopsis HSP90 regulates RPP4-mediated temperature-dependent cell death and defense responses. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Preliminary Analysis of SiC BWR Channel Box Performance under Normal Operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wirth, Brian; Singh, Gyanender P.; Gorton, Jacob
SiC-SiC composites are being considered for applications in the core components, including BWR channel box and fuel rod cladding, of light water reactors to improve accident tolerance. In the extreme nuclear reactor environment, core components like the BWR channel box will be exposed to neutron damage and a corrosive environment. To ensure reliable and safe operation of a SiC channel box, it is important to assess its deformation behavior under in-reactor conditions including the expected neutron flux and temperature distributions. In particular, this work has evaluated the effect of non-uniform dimensional changes caused by spatially varying neutron flux and temperaturesmore » on the deformation behavior of the channel box over the course of one cycle of irradiation. These analyses have been performed using the fuel performance modeling code BISON and the commercial finite element analysis code Abaqus, based on fast flux and temperature boundary conditions have been calculated using the neutronics and thermal-hydraulics codes Serpent2 and COBRA-TF, respectively. The dependence of dimensions and thermophysical properties on fast flux and temperature has been incorporated into the material models. These initial results indicate significant bowing of the channel box with a lateral displacement greater than 6.5mm. The channel box bowing behavior is time dependent, and driven by the temperature dependence of the SiC irradiation-induced swelling and the neutron flux/fluence gradients. The bowing behavior gradually recovers during the course of the operating cycle as the swelling of the SiC-SiC material saturates. However, the bending relaxation due to temperature gradients does not fully recover and residual bending remains after the swelling saturates in the entire channel box.« less
NASA Technical Reports Server (NTRS)
Faith, T. J.; Obenschain, A. F.
1974-01-01
Empirical equations have been derived from measurements of solar cell photovoltaic characteristics relating light-generated current and open circuit voltage to cell temperature, intensity of illumination and 1-MeV electron fluence. Both 2-ohm-cm and 10-ohm-cm cells were tested over the temperature range from 120 to 470 K, the illumination intensity range from 5 to 1830 mW/sq cm, and the electron fluence range from 1 x 10 to the 13th to 1 x 10 to the 16th electrons/sq cm. The normalized temperature coefficient of the light generated current varies as the 0.18 power of the fluence for temperatures above approximately 273 K and is independent of fluence at lower temperatures. At 140 mW/sq cm, a power law expression was derived which shows that the light-generated current decreases at a rate proportional to the 0.153 power of the fluence for both resistivities. The coefficient of the expression is larger for 2-ohm-cm cells; consequently, the advantage for 10-ohm-cm cells increased with increasing fluence.
Surface impedance and optimum surface resistance of a superconductor with an imperfect surface
NASA Astrophysics Data System (ADS)
Gurevich, Alex; Kubo, Takayuki
2017-11-01
We calculate a low-frequency surface impedance of a dirty, s -wave superconductor with an imperfect surface incorporating either a thin layer with a reduced pairing constant or a thin, proximity-coupled normal layer. Such structures model realistic surfaces of superconducting materials which can contain oxide layers, absorbed impurities, or nonstoichiometric composition. We solved the Usadel equations self-consistently and obtained spatial distributions of the order parameter and the quasiparticle density of states which then were used to calculate a low-frequency surface resistance Rs(T ) and the magnetic penetration depth λ (T ) as functions of temperature in the limit of local London electrodynamics. It is shown that the imperfect surface in a single-band s -wave superconductor results in a nonexponential temperature dependence of Z (T ) at T ≪Tc which can mimic the behavior of multiband or d -wave superconductors. The imperfect surface and the broadening of the gap peaks in the quasiparticle density of states N (ɛ ) in the bulk give rise to a weakly temperature-dependent residual surface resistance. We show that the surface resistance can be optimized and even reduced below its value for an ideal surface by engineering N (ɛ ) at the surface using pair-breaking mechanisms, particularly by incorporating a small density of magnetic impurities or by tuning the thickness and conductivity of the normal layer and its contact resistance. The results of this work address the limit of Rs in superconductors at T ≪Tc , and the ways of engineering the optimal density of states by surface nanostructuring and impurities to reduce losses in superconducting microresonators, thin-film strip lines, and radio-frequency cavities for particle accelerators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reft, C; Pankuch, M; Ramirez, H
Purpose: Use the ratio of the two high temperature peaks (HTR) in TLD 700 glow curves to investigate spatial dependence of the linear energy transfer (LET) in proton beams. Studies show that the relative biological effectiveness (RBE) depends upon the physical dose as well as its spatial distribution. Although proton therapy uses a spatially invariant RBE of 1.1, studies suggest that the RBE increases in the distal edge of a spread out Bragg peak (SOBP) due to the increased LET. Methods: Glow curve studies in TLD 700 show that the 280 C temperature peak is more sensitive to LET radiationmore » than the 210 C temperature peak. Therefore, the areas under the individual temperature peaks for TLDs irradiated in a proton beam normalized to the peak ratio for 6 MV photons are used to determine the HTR to obtain information on its LET. TLD 700 chips with dimensions 0.31×0.31×0.038 cc are irradiated with 90 MeV protons at varying depths in a specially designed blue wax phantom to investigate LET spatial dependence. Results: Five TLDs were placed at five different depths of the percent depth dose curve (PDD) of range 16.2 cm: center of the SOPB and approximately at the 99% distal edge, 90%, 75% and 25% of the PDD, respectively. HTR was 1.3 at the center of the SOBP and varied from 2.2 to 3.9 which can be related to an LET variation from 0.5 to 18 KeV/μ via calibration with radiation beams of varying LET. Conclusion: HTR data show a spatially invariant LET slightly greater than the 6 MV radiations in the SOBP, but a rapidly increasing LET at the end of the proton range. These results indicate a spatial variation in RBE with potential treatment consequences when selecting treatment margins to minimize the uncertainties in proton RBE.« less
NASA Astrophysics Data System (ADS)
Stakhira, Y. M.; Tovstyuk, N. K.; Fomenko, V. L.; Grigorchak, I. I.; Borysyuk, A. K.; Seredyuk, B. A.
2012-01-01
A solid-phase mechanochemical technology of production of polycrystalline InSе intercalated with Ni up to 1.25 at. % has been developed. The x-ray and phase analyses of the produced NixInSe samples confirm their homogeneity and demonstrate a nonmonotonic Ni-content dependence of the lattice constant along the axis normal to the layers. Analysis of the low-temperature (77 K) impedance response within the frequency region 10-3-106 Hz shows a good correlation between the change in interlayer distance and in the band conductivity observed with increasing Ni concentration. However, the Ni concentration dependence of specific magnetization demonstrates an irregular increase at x ˜ 1 and does not coincide with the former. Such behavior is explained by the proposed theoretical model, which at the same time unveiled the mechanism behind the increasing contribution of free carrier concentration to conductivity - hybridization of electron orbitals of guest nickel and the lattice layers.
NASA Astrophysics Data System (ADS)
Katsura, Tomoo; Baba, Kiyoshi; Yoshino, Takashi; Kogiso, Tetsu
2017-10-01
We review the currently available results of laboratory experiments, geochemistry and MT observations and attempt to explain the conductivity structures in the oceanic asthenosphere by constructing mineral-physics models for the depleted mid-oceanic ridge basalt (MORB) mantle (DMM) and volatile-enriched plume mantle (EM) along the normal and plume geotherms. The hopping and ionic conductivity of olivine has a large temperature dependence, whereas the proton conductivity has a smaller dependence. The contribution of proton conduction is small in DMM. Melt conductivity is enhanced by the H2O and CO2 components. The effects of incipient melts with high volatile components on bulk conductivity are significant. The low solidus temperatures of the hydrous carbonated peridotite produce incipient melts in the asthenosphere, which strongly increase conductivity around 100 km depth under older plates. DMM has a conductivity of 10- 1.2 - 1.5 S/m at 100-300 km depth, regardless of the plate age. Plume mantle should have much higher conductivity than normal mantle, due to its high volatile content and high temperatures. The MT observations of the oceanic asthenosphere show a relatively uniform conductivity at 200-300 km depth, consistent with the mineral-physics model. On the other hand, the MT observations show large lateral variations in shallow parts of the asthenosphere despite similar tectonic settings and close locations. Such variations are difficult to explain with the mineral-physics model. High conductivity layers (HCL), which are associated with anisotropy in the direction of the plate motion, have only been observed in the asthenosphere under infant or young plates, but they are not ubiquitous in the oceanic asthenosphere. Although the general features of HCL imply their high-temperature melting origin, the mineral-physics model cannot explain them quantitatively. Much lower conductivity under hotspots, compared with the model plume-mantle conductivity suggests the extraction of volatiles from the plume mantle by the ocean island basalt (OIB) magmatism.
NASA Astrophysics Data System (ADS)
Gerig, Lee Harvey
The purpose of this work was to investigate the electrical impedance properties of Human Erythrocytes suspended in normal saline and specifically how radiation and temperature affected these properties. The cells were obtained by venepuncture from normal adult volunteers, washed three times and resuspended in phosphate buffered saline. The cells were irradiated by ('60)Co gamma rays to doses varying from 500 to 20,000 rads. The electrical impedance was measured using a computerized measurement and data acquisition system developed in the Biophysics Laboratory, School of Physics, University of New South Wales. The measurements were performed employing a four terminal technique and a digitally synthesized sine wave. The measurements revealed that nonirradiated blood from any specific individual had reproducible electrical properties from day to day and that there were only small differences in the electrical properties of blood from the various individuals sampled. This data displayed complex structure in both the capacitance versus frequency and conductance versus frequency curves. Of great interest was the dependence on the time post venesection, indicating a continual change in the state of the cells after removal from their natural environment. The experiments also revealed a non linear temperature dependence and a significant change in the suspension impedance as a function of absorbed dose. A model of the system was introduced which was able to emulate most of the measured phenomena. Studies of how the model can be adapted to fit the measured data for various cases (eg. time, temperature, radiation dose) suggested various physiological processes occurring within the membrane. The results were indicative of effects such as radiation induced changes in the lipid hydrocarbon region, the presence of a complex protein structure, the dissociation of charge within the protein, the presence of electrogenic pumps, and the destruction of the lipid matrix by radiation induced lipid peroxidation.
Analyte Kinetics in a Nanocluster-Based Chemiresistor: A Case Study
2013-01-01
942 M.G. Ancona et al. / Sensors and Actuators B 177 (2013) 936– 946 Fig . 9 . Normalized recovery characteristics with temperature as a parameter fol...Sensors and Actuators B 177 (2013) 936– 946 Fig . 2. COOH–amine complex formation (a) with TEA in the cluster film, and (b) in several model systems...computer control with the TEA delivered by 940 M.G. Ancona et al. / Sensors and Actuators B 177 (2013) 936– 946 Fig . 4. The dependence of the conductance
NASA Technical Reports Server (NTRS)
Choi, Sukjoo; Sankar, Bhavani; Ebaugh, Newton C.
2005-01-01
A micromechanics method is developed to investigate microcrack propagation in a liquid hydrogen composite tank at cryogenic temperature. The unit cell is modeled using square and hexagonal shapes depends on fiber and matrix layout from microscopic images of composite laminates. Periodic boundary conditions are applied to the unit cell. The temperature dependent properties are taken into account in the analysis. The laminate properties estimated by the micromechanics method are compared with empirical solutions using constituent properties. The micro stresses in the fiber and matrix phases based on boundary conditions in laminate level are calculated to predict the formation of microcracks in the matrix. The method is applied to an actual liquid hydrogen storage system. The analysis predicts micro stresses in the matrix phase are large enough to cause microcracks in the composite. Stress singularity of a transverse crack normal to a ply-interface is investigated to predict the fracture behavior at cryogenic conditions using analytical and finite element analysis. When a transverse crack touches a ply-interface of a composite layer with same fiber orientation, the stress singularity is equal to 1/2. When the transverse crack propagates to a stiffer layer normal to the ply-direction, the singularity becomes less than 1/2 and vice versa. Finite element analysis is performed to predict the fracture toughness of a laminated beam subjected to fracture loads measured by four-point bending tests at room and cryogenic temperatures. As results, the fracture load at cryogenic temperature is significantly lower than that at room temperature. However, when thermal stresses are taken into consideration, for both cases of room and cryogenic temperatures, the difference of the fracture toughness becomes insignificant. The result indicates fracture toughness is a characteristic property, which is independent to temperature changes. The experimental analysis is performed to investigate the effect of cryogenic cycling on permeability for various composite material systems. Textile composites have lower permeability than laminated composites even with increasing number of cryogenic cycle. Nano-particles dispersed in laminated composites do not show improvement on permeability. The optical inspection is performed to investigate the microcrack propagation and void content in laminated composites and compared the microscopic results before and after cryogenic cycling.
NASA Astrophysics Data System (ADS)
Singh, Swapnil; Singh, Harshita; Karthick, T.; Tandon, Poonam; Prasad, Veena
2018-01-01
Temperature-dependent Fourier transform infrared spectroscopy (FTIR) combined with density functional theory (DFT) is employed to study the mechanism of phase transitions of V-shaped bent-core liquid crystal. Since it has a large number of flexible bonds, one-dimensional potential energy scan (PES) was performed on the flexible bonds and predicted the most stable conformer I. A detailed analysis of vibrational normal modes of conformer I have been done on the basis of potential energy distribution. The good agreement between the calculated spectrum of conformer I and observed FTIR spectrum at room temperature validates our theoretical structure model. Furthermore, the prominent changes observed in the stretching vibrational bands of CH3/CH2, Cdbnd O, ring CC, ring CO, ring CH in-plane bending, and ring CH out-of-plane bending at Iso → nematic phase transition (at 155 °C) have been illustrated. However, the minor changes in the spectral features observed for the other phase transitions might be due to the shape or bulkiness of molecules. Combined FTIR and PES study beautifully explained the dynamics of the molecules, molecular realignment, H-bonding, and conformational changes at the phase transitions.
NASA Astrophysics Data System (ADS)
Fatima, N.; Ahmed, M. M.; Karimov, Kh. S.
2017-11-01
This study reports the fabrication of organic field effect transistors (OFETs) using 3-[ethyl[4-[(4-nitrophenyl)azo]phenyl]amino]propanenitrile, usually known as Orange-Dye 25 (OD) and its composite with sugar. The study investigated the heat- and humidity-dependent electrical characteristics of the fabricated devices. Fabrication was carried out from the aqueous solution of the materials using different gravity conditions, i.e., at positive (normal) gravity (+1 g) and at negative gravity (-1 g). A thin layer (10-15 μm) of OD or OD:sugar was deposited by drop-casting on pre-fabricated drain and source silver (Ag) electrodes having 30 μm separation and 2 mm length followed by aluminum (Al) thermal evaporation to achieve a Schottky barrier. Devices fabricated using OD at -1 g were more sensitive in capacitance-temperature and impedance-humidity relationships than those fabricated at +1 g. Moreover, OFETs fabricated at -1 g using OD:sugar offered capacitance-temperature sensitivity much higher than the devices fabricated at +1 g. It has been observed that, in the drop-casting method, the properties of OFETs are dependent upon gravity as well as the solution composition employed for channel definition.
NASA Astrophysics Data System (ADS)
Matsumura, Takeshi; Yamamoto, Takayoshi; Tanida, Hiroshi; Sera, Masafumi
2017-09-01
We have performed resonant X-ray diffraction experiments on the antiferromagnet GdRu2Al10 and have clarified that the magnetic structure in the ordered state is cycloidal with the moments lying in the bc-plane and propagating along the b-axis. The propagation vector shows a similar temperature dependence to the magnetic order parameter, which can be interpreted as being associated with the gap opening in the conduction band and the resultant change in the magnetic exchange interaction. Although the S = 7/2 state of Gd is almost isotropic, the moments show slight preferential ordering along the b-axis. The c-axis component in the cycloid develops with decreasing temperature through a tiny transition in the ordered phase. We also show that the scattering involves the σ-σ' process, which is forbidden in normal E1-E1 resonance of magnetic dipole origin. We discuss the possibility of the E1-E2 resonance originating from a toroidal moment due to the lack of inversion symmetry at the Gd site. The spin-flop transition in a magnetic field is also described in detail.
Imaging technique for real-time temperature monitoring during cryotherapy of lesions.
Petrova, Elena; Liopo, Anton; Nadvoretskiy, Vyacheslav; Ermilov, Sergey
2016-11-01
Noninvasive real-time temperature imaging during thermal therapies is able to significantly improve clinical outcomes. An optoacoustic (OA) temperature monitoring method is proposed for noninvasive real-time thermometry of vascularized tissue during cryotherapy. The universal temperature-dependent optoacoustic response (ThOR) of red blood cells (RBCs) is employed to convert reconstructed OA images to temperature maps. To obtain the temperature calibration curve for intensity-normalized OA images, we measured ThOR of 10 porcine blood samples in the range of temperatures from 40°C to ?16°C and analyzed the data for single measurement variations. The nonlinearity (?Tmax) and the temperature of zero OA response (T0) of the calibration curve were found equal to 11.4±0.1°C and ?13.8±0.1°C, respectively. The morphology of RBCs was examined before and after the data collection confirming cellular integrity and intracellular compartmentalization of hemoglobin. For temperatures below 0°C, which are of particular interest for cryotherapy, the accuracy of a single temperature measurement was ±1°C, which is consistent with the clinical requirements. Validation of the proposed OA temperature imaging technique was performed for slow and fast cooling of blood samples embedded in tissue-mimicking phantoms.
Imaging technique for real-time temperature monitoring during cryotherapy of lesions
Petrova, Elena; Liopo, Anton; Nadvoretskiy, Vyacheslav; Ermilov, Sergey
2016-01-01
Abstract. Noninvasive real-time temperature imaging during thermal therapies is able to significantly improve clinical outcomes. An optoacoustic (OA) temperature monitoring method is proposed for noninvasive real-time thermometry of vascularized tissue during cryotherapy. The universal temperature-dependent optoacoustic response (ThOR) of red blood cells (RBCs) is employed to convert reconstructed OA images to temperature maps. To obtain the temperature calibration curve for intensity-normalized OA images, we measured ThOR of 10 porcine blood samples in the range of temperatures from 40°C to −16°C and analyzed the data for single measurement variations. The nonlinearity (ΔTmax) and the temperature of zero OA response (T0) of the calibration curve were found equal to 11.4±0.1°C and −13.8±0.1°C, respectively. The morphology of RBCs was examined before and after the data collection confirming cellular integrity and intracellular compartmentalization of hemoglobin. For temperatures below 0°C, which are of particular interest for cryotherapy, the accuracy of a single temperature measurement was ±1°C, which is consistent with the clinical requirements. Validation of the proposed OA temperature imaging technique was performed for slow and fast cooling of blood samples embedded in tissue-mimicking phantoms. PMID:27822579
Measuring and Estimating Normalized Contrast in Infrared Flash Thermography
NASA Technical Reports Server (NTRS)
Koshti, Ajay M.
2013-01-01
Infrared flash thermography (IRFT) is used to detect void-like flaws in a test object. The IRFT technique involves heating up the part surface using a flash of flash lamps. The post-flash evolution of the part surface temperature is sensed by an IR camera in terms of pixel intensity of image pixels. The IR technique involves recording of the IR video image data and analysis of the data using the normalized pixel intensity and temperature contrast analysis method for characterization of void-like flaws for depth and width. This work introduces a new definition of the normalized IR pixel intensity contrast and normalized surface temperature contrast. A procedure is provided to compute the pixel intensity contrast from the camera pixel intensity evolution data. The pixel intensity contrast and the corresponding surface temperature contrast differ but are related. This work provides a method to estimate the temperature evolution and the normalized temperature contrast from the measured pixel intensity evolution data and some additional measurements during data acquisition.
Tapadiya, Asish; Vasanthan, Nadarajah
2017-09-01
Poly(3-hydroxybutyrate) (PHB) is a microbially synthesized polymer, which is often purified by alkaline treatment. The effect of microstructure on alkaline hydrolysis has been studied by varying concentration of base and the temperature. The morphologies of PHB films before and after degradation were evaluated using DSC and FTIR spectroscopy. The hydrolytic degradation study by weight loss measurement revealed that the crystallinity of PHB greatly decreased the hydrolytic ability of PHB. The crystallization of PHB and the effect of base on hydrolysis was investigated by time dependent FTIR spectroscopy. The normalized absorbance of 3010cm -1 and 1183cm -1 were used to characterize the crystalline and the amorphous phases of PHB. FTIR spectroscopy reveal that the extent of hydrolysis decreased with increasing crystallinity. The crotonic acid was detected as a major product after hydrolysis, confirmed by UV/Visible and proton NMR spectroscopy. The normalized absorbance of the crystalline band at 3010cm -1 band remained constant, suggesting that there is no significant change in crystallinity with degradation. The normalized amorphous band at 1183cm -1 showed a decrease in absorbance ratio, suggesting degradation of the amorphous phase. Our data suggests that alkaline hydrolysis depends on concentration of base and the crystallinity of PHB. Copyright © 2017 Elsevier B.V. All rights reserved.
Ellingson, Benjamin A; Truhlar, Donald G
2007-10-24
Rate constants for the OH + H2S --> H2O + HS reaction, which is important for both atmospheric chemistry and combustion, are calculated by direct dynamics with the M06-2X density functional using the MG3S basis set. Energetics are compared to high-level MCG3/3//MC-QCISD/3 wave function theory and to results obtained by other density functionals. We employ canonical variational transition-state theory with multidimensional tunneling contributions and scaled generalized normal-mode frequencies evaluated in redundant curvilinear coordinates with anharmonicity included in the torsion. The transition state has a quantum mechanically distinguishable, nonsuperimposable mirror image that corresponds to a separate classical reaction path; the effect of the multiple paths is examined through use of a symmetry number and by torsional methods. Calculations with the reference-potential Pitzer-Gwinn treatment of the torsional mode agree with experiment, within experimental scatter, and predict a striking temperature dependence of the activation energy, increasing from -0.1 kcal/mol at 200 K to 0.2, 1.0, 3.4, and 9.8 kcal/mol at 300, 500, 1000, and 2400 K. The unusual temperature dependence arises from a dynamical bottleneck at an energy below reactants, following an addition complex on the reaction path with a classical binding energy of 4.4 kcal/mol. As a way to check the mechanism, kinetic isotope effects of the OH + D2S and OD + D2S reactions have been predicted.
Fractionation of lithium isotopes in magmatic systems as a natural consequence of cooling
NASA Astrophysics Data System (ADS)
Gallagher, Kerry; Elliott, Tim
2009-02-01
High-temperature, diffusive fractionation has been invoked to account for striking Li isotopic variability recently observed within individual phenocrysts and xenolith minerals. It has been argued that chemical potential gradients required to drive such diffusion arise from changes in Li partitioning between coexisting phases during cooling. If so, Li isotopic zoning should be a common occurrence but the role of temperature-dependent partition coefficients in generating Li isotopic variability remains to be tested in a quantitative manner. Here we consider a basic scenario of a phenocryst in a cooling lava, using simple parameterisations of the temperature dependence of Li partitioning and diffusivity in clinopyroxene. Our model initially produces an asymmetric isotope profile across the crystal with a δ7Li minimum that remains close to the edge of a crystal. Such a distinctive shape mimics Li isotopic profiles documented in some olivine and clinopyroxene phenocrysts, which have isotopically normal cores but anomalously light rims. The temperature dependence of both the diffusivity and the partition coefficient of Li are key factors in generating this form of diffusion profile. Continued diffusion leads to an inversion in the sense of isotopic change between core and rim and results in the whole phenocryst attaining markedly light isotopic values. Our calculations show that significant Li isotopic zoning can occur as a natural consequence of cooling magmatic systems. Crystals that have experienced more complex thermal histories (e.g. re-entrained cumulates versus true phenocrysts) will therefore exhibit contrasting isotopic profiles and, as such, these data may be useful for tracing sub-volcanic processes.
Gravitational Influences on Flame Propagation through Non-Uniform, Premixed Gas Systems
NASA Technical Reports Server (NTRS)
Miller, Fletcher J.; Easton, John; Ross, Howard D.; Marchese, Anthony; Perry, David; Kulis, Michael
2001-01-01
Flame propagation through non-uniformly premixed (or layered) gases has importance both in useful combustion systems and in unintentional fires. As summarized previously, non-uniform premixed gas combustion receives scant attention compared to the more usual limiting cases of diffusion or uniformly premixed flames, especially regarding the role gravity plays. This paper summarizes our progress on furthering the knowledge of layered combustion, in which a fuel concentration gradient exists normal to the direction of flame spread. We present experimental and numerical results for flame spread through propanol-air layers formed near the flash point temperature (25 C) or near the stoichiometric temperature (33 C). Both the model and experimental results show that the removal of gravity results in a faster spreading flame, by as much as 80% depending on conditions. This is exactly the opposite effect as that predicted by an earlier model reported. We also found that having a gallery lid results in faster flame spread, an effect more pronounced at normal gravity, demonstrating the importance of enclosure geometry. Also reported here is the beginning of our spectroscopic measurements of fuel vapor.
Thermodynamic properties and equation of state of liquid lead and lead bismuth eutectic
NASA Astrophysics Data System (ADS)
Sobolev, V. P.; Schuurmans, P.; Benamati, G.
2008-06-01
Since the 1950s, liquid lead (Pb) and lead-bismuth eutectic (Pb-Bi) have been studied in the USA, Canada and in the former-USSR as potential coolants for nuclear installations due to their very attractive thermophysical and neutronic properties. However, experimental data on the thermal properties of these coolants in the temperature range of interest are still incomplete and often contradictory. This makes it very difficult to perform design calculations and to analyse the normal and abnormal behaviour of nuclear installations where these coolants are expected to be used. Recently, a compilation of heavy liquid metal (HLM) properties along with recommendations for its use was prepared by the OECD/NEA Working Party on Fuel Cycle (WPFC) Expert Group on Lead-Bismuth Eutectic Technology. A brief review of this compilation and some new data are presented in this article. A set of correlations for the temperature dependence of the main thermodynamic properties of Pb and Pb-Bi(e) at normal pressure, and a set of simplified thermal and caloric equations of state for the liquid phase are proposed.
Troitzsch, R Z; Vass, H; Hossack, W J; Martyna, G J; Crain, J
2008-04-10
Free proline amino acid is a natural cryoprotectant expressed by numerous organisms under low-temperature stress. Previous reports have suggested that complex assemblies underlie its functional properties. We investigate here aqueous proline solutions as a function of temperature using combinations of Raman spectroscopy, Rayleigh-Brillouin light scattering, and molecular dynamics simulations with the view to revealing the molecular origins of the mixtures' functionality as a cryoprotectant. The evolution of the Brillouin frequency shifts and line widths with temperature shows that, above a critical proline concentration, the water-like dynamics is suppressed and viscoelastic behavior emerges: Here, the Landau-Placzek ratio also shows a temperature-independent maximum arising from concentration fluctuations. Molecular dynamics simulations reveal that the water-water correlations in the mixtures depend much more weakly on temperature than does bulk water. By contrast, the water OH Raman bands exhibit strong red-shifts on cooling similar to those seen in ices; however, no evidence of ice lattice phonons is observed in the low-frequency spectrum. We attribute this primarily to enhanced proline-water hydrogen bonding. In general, the picture that emerges is that aqueous proline is a heterogeneous mixture on molecular length scales (characterized by significant concentration fluctuations rather than well-defined aggregates). Simulations reveal that proline also appears to suppress the normal dependence of water structure on temperature and preserves the ambient-temperature correlations even in very cold solutions. The water structure in cold proline solutions therefore appears to be similar to that at a higher effective temperature. This, coupled with the emergence of glassy dynamics offers a molecular explanation for the functional properties of proline as a cryoprotectant without the need to invoke previously proposed complex aggregates.
NASA Astrophysics Data System (ADS)
Litwin, K. L.; Beyeler, J. D.; Polito, P. J.; Zygielbaum, B. R.; Sklar, L. S.; Collins, G. C.
2009-12-01
The tensile strength of ice bedrock on Titan should strongly influence the effectiveness of the erosional processes responsible for carving the extensive fluvial drainage networks and other surface features visible in images returned by the Cassini and Huygens probes. Recent measurements of the effect of temperature on the tensile strength of low-porosity, polycrystalline ice, without impurities, suggest that ice bedrock at the Titan surface temperature of 93 K may be as much as five times stronger than ice at terrestrial surface temperatures. However, ice bedrock on Titan and other outer solar system bodies may have significant porosity, and impurities such silicates or polymers are possible in such ices. In this laboratory investigation we are exploring the dependence of tensile strength on the density and concentration of impurities, for polycrystalline ice across a wide range of temperatures. We use the Brazilian tensile splitting test to measure strength, and control temperature with dry ice and liquid nitrogen. The 50 mm diameter ice cores are made from a log-normally distributed seed crystal mixture with a median size of 1.4 mm. To control ice density and porosity we vary the packing density of the seed grains in core molds and vary the degree of saturation of the matrix with added near-freezing distilled water. We also vary ice density by blending in a similarly-sized mixture of angular fragments of two types of impurities, a fine-grained volcanic rock and a polyethylene polymer. Because both types of impurities have greater tensile strength than ice at Earth surface temperatures, we expect higher concentrations of impurities to correlate with increased strength for ice-rock and ice-polymer mixtures. However, at the ultra-cold temperatures of the outer planets, we expect significant divergence in the temperature dependence of ice tensile strength for the various mixtures and resulting densities. These measurements will help constrain the range of possible ice tensile strengths that might occur on Titan and other solar system bodies.
Lumbera, Wenchie Marie L.; dela Cruz, Joseph; Yang, Seung-Hak; Hwang, Seong Gu
2016-01-01
There is a high association of heat shock on the alteration of energy and lipid metabolism. The alterations associated with thermal stress are composed of gene expression changes and adaptation through biochemical responses. Previous study showed that Angelica gigas Nakai (AGN) root extract promoted adipogenic differentiation in murine 3T3-L1 preadipocytes under the normal temperature condition. However, its effect in heat shocked 3T3-L1 cells has not been established. In this study, we investigated the effect of AGN root hot water extract in the adipogenic differentiation of murine 3T3-L1 preadipocytes following heat shock and its possible mechanism of action. Thermal stress procedure was executed within the same stage of preadipocyte confluence (G0) through incubation at 42°C for one hour and then allowed to recover at normal incubation temperature of 37°C for another hour before AGN treatment for both cell viability assay and Oil Red O. Cell viability assay showed that AGN was able to dose dependently (0 to 400 μg/mL) increase cell proliferation under normal incubation temperature and also was able to prevent cytotoxicity due to heat shock accompanied by cell proliferation. Confluent preadipocytes were subjected into heat shock procedure, recovery and then AGN treatment prior to stimulation with the differentiation solution. Heat shocked preadipocytes exhibited reduced differentiation as supported by decreased amount of lipid accumulation in Oil Red O staining and triglyceride measurement. However, those heat shocked preadipocytes that then were given AGN extract showed a dose dependent increase in lipid accumulation as shown by both evaluation procedures. In line with these results, real-time polymerase chain reaction (RT-PCR) and Western blot analysis showed that AGN increased adipogenic differentiation by upregulating heat shock protection related genes and proteins together with the adipogenic markers. These findings imply the potential of AGN in heat shock amelioration among 3T3-L1 preadipocytes through heat shock factor and proteins augmentation and enhanced adipogenic marker expression. PMID:26950875
Lumbera, Wenchie Marie L; Dela Cruz, Joseph; Yang, Seung-Hak; Hwang, Seong Gu
2016-03-01
There is a high association of heat shock on the alteration of energy and lipid metabolism. The alterations associated with thermal stress are composed of gene expression changes and adaptation through biochemical responses. Previous study showed that Angelica gigas Nakai (AGN) root extract promoted adipogenic differentiation in murine 3T3-L1 preadipocytes under the normal temperature condition. However, its effect in heat shocked 3T3-L1 cells has not been established. In this study, we investigated the effect of AGN root hot water extract in the adipogenic differentiation of murine 3T3-L1 preadipocytes following heat shock and its possible mechanism of action. Thermal stress procedure was executed within the same stage of preadipocyte confluence (G0) through incubation at 42°C for one hour and then allowed to recover at normal incubation temperature of 37°C for another hour before AGN treatment for both cell viability assay and Oil Red O. Cell viability assay showed that AGN was able to dose dependently (0 to 400 μg/mL) increase cell proliferation under normal incubation temperature and also was able to prevent cytotoxicity due to heat shock accompanied by cell proliferation. Confluent preadipocytes were subjected into heat shock procedure, recovery and then AGN treatment prior to stimulation with the differentiation solution. Heat shocked preadipocytes exhibited reduced differentiation as supported by decreased amount of lipid accumulation in Oil Red O staining and triglyceride measurement. However, those heat shocked preadipocytes that then were given AGN extract showed a dose dependent increase in lipid accumulation as shown by both evaluation procedures. In line with these results, real-time polymerase chain reaction (RT-PCR) and Western blot analysis showed that AGN increased adipogenic differentiation by upregulating heat shock protection related genes and proteins together with the adipogenic markers. These findings imply the potential of AGN in heat shock amelioration among 3T3-L1 preadipocytes through heat shock factor and proteins augmentation and enhanced adipogenic marker expression.
Combustion of Gaseous Fuels with High Temperature Air in Normal- and Micro-gravity Conditions
NASA Technical Reports Server (NTRS)
Wang, Y.; Gupta, A. K.
2001-01-01
The objective of this study is determine the effect of air preheat temperature on flame characteristics in normal and microgravity conditions. We have obtained qualitative (global flame features) and some quantitative information on the features of flames using high temperature combustion air under normal gravity conditions with propane and methane as the fuels. This data will be compared with the data under microgravity conditions. The specific focus under normal gravity conditions has been on determining the global flame features as well as the spatial distribution of OH, CH, and C2 from flames using high temperature combustion air at different equivalence ratio.
Li, Zhifang; Chen, Haiyu; Zhou, Feifan; Li, Hui; Chen, Wei R.
2015-01-01
Photothermal therapy is an effective means to induce tumor cell death, since tumor tissue is more sensitive to temperature increases than normal tissue. Biological responses depend on tissue temperature; target tissue temperature needs to be precisely measured and controlled to achieve desired thermal effects. In this work, a unique photoacoustic (PA) sensor is proposed for temperature measurement during interstitial laser phototherapy. A continuous-wave laser light and a pulsed laser light, for photothermal irradiation and photoacoustic temperature measurement, respectively, were delivered to the target tissue through a fiber coupler. During laser irradiation, the PA amplitude was measured. The Grüneisen parameter and the bioheat equation were used to determine the temperature in strategic positions in the target tissue. Our results demonstrate that the interstitial PA amplitude is a linear function of temperature in the range of 22 to 55 °C, as confirmed by thermocouple measurement. Furthermore, by choosing appropriate laser parameters, the maximum temperature surrounding the active diffuse fiber tip in tissue can be controlled in the range of 41 to 55 °C. Thus, this sensor could potentially be used for fast, accurate, and convenient three-dimensional temperature measurement, and for real-time feedback and control of interstitial laser phototherapy in cancer treatment. PMID:25756865
NASA Technical Reports Server (NTRS)
Liu, Yuan-Ming; Larson, Melora; Israelsson, Ulf
1999-01-01
We report experimental measurements of Tc (Q,P) for heat currents (Q) between I1and 100 micro W/sq cm and pressure (P) between SVP and 15 bar. The measurements were performed in a normal gravity environment, using the low-gravity simulator facility at JPL without the magnet being energized. The sample pressure was controlled to 0.1 micro bar using a hot volume, and a Straty-Adams capacitive pressure gauge. The total volume of helium in the sample cell and the hot volume was held constant using a pneumatic low temperature valve. A melting curve thermometer (MCT) measured the transition temperature (Tc) with a resolution of about 10 nK through a sidewall probe of the thermal conductivity sample cell. We employed the same measurement technique and procedure described by DAS. Preliminary results indicate that Tc (Q,P) depends very little on the pressure in the pressure range between SVP and 15 bar with a variation in the amplitude of Tc(Q,P) of less than about 5% observable in this pressure range. According to the Renormalization-group theory calculation by Haussmann and Dohm, the amplitude of Tc (Q,P) has a leading pressure-dependence term proportional to xi(sub 0) (sup (1/nu)), where xi(sub 0) is the correlation-length amplitude and nu is the correlation-length exponent. Thus, a small pressure dependence of the amplitude of Tc (Q,P) is expected since xi(sub 0) is very weakly dependent on pressure between SVP and 15 bar, consistent with our measurements.
Parabolic trough receiver heat loss and optical efficiency round robin 2015/2016
NASA Astrophysics Data System (ADS)
Pernpeintner, Johannes; Schiricke, Björn; Sallaberry, Fabienne; de Jalón, Alberto García; López-Martín, Rafael; Valenzuela, Loreto; de Luca, Antonio; Georg, Andreas
2017-06-01
A round robin for parabolic trough receiver heat loss and optical efficiency in the laboratory was performed between five institutions using five receivers in 2015/2016. Heat loss testing was performed at three cartridge heater test benches and one Joule heating test bench in the temperature range between 100 °C and 550 °C. Optical efficiency testing was performed with two spectrometric test bench and one calorimetric test bench. Heat loss testing results showed standard deviations at the order of 6% to 12 % for most temperatures and receivers and a standard deviation of 17 % for one receiver at 100 °C. Optical efficiency is presented normalized for laboratories showing standard deviations of 0.3 % to 1.3 % depending on the receiver.
Magnetotransport of indium antimonide doped with manganese
NASA Astrophysics Data System (ADS)
Kuzmina, K.; Aronzon, B. A.; Kochura, A. V.; Lashkul, A. V.; Lisunov, K. G.; Lähderanta, E.; Shakhov, M. A.
2014-07-01
Magnetotransport, including the magnetoresistance (MR) and the Hall effect, isinvestigated in polycrystalline In1-xMnxSb samples with x = 0.02 - 0.06, containing nanosize MnSb precipitates. The relative MR, Δρ/ρ, is positive within the whole range of B= 0 - 10 T and T ~ 20 - 300 K. The Hall resistivity, ρH, exhibits a nonlinear dependence on B up to the room temperature.MR is interpreted with the two-band model, suggesting two types of holes with different concentration and mobility. In addition, analysis of ρH (B, T) is performed by taking into account both the normal and the anomalous contributions. The latter is attributable to the effect of MnSb nanoprecipitates, having the ferromagnetic Curie temperature well above 300 K.
Kozyreva, T V; Simonova, T G
1991-01-01
The examination has shown that people who have many cold spots on the forearm possess high ventilation volume and breathing frequency and low value of oxygen utilization. These facts can evidence for the effect of cold skin receptors on the respiratory patterns. The skin temperature, at which the maximal cooling-induced changes of respiratory parameters are observed depends on the dynamic activity of cold skin thermoreceptors: the greater number of cold spots in the hand and forearm, the lesser cooling is necessary to cause the maximal increase of oxygen consumption and change of respiratory volume. The latter increased in the case of hand cooling and decreased in the case of the forearm cooling.
Structural Origin of Enhanced Dynamics at the Surface of a Glassy Alloy
NASA Astrophysics Data System (ADS)
Sun, Gang; Saw, Shibu; Douglass, Ian; Harrowell, Peter
2017-12-01
The enhancement of mobility at the surface of an amorphous alloy is studied using a combination of molecular dynamic simulations and normal mode analysis of the nonuniform distribution of Debye-Waller factors. The increased mobility at the surface is found to be associated with the appearance of Arrhenius temperature dependence. We show that the transverse Debye-Waller factor exhibits a peak at the surface. Over the accessible temperature range, we find that the bulk and surface diffusion coefficients obey the same empirical relationship with the respective Debye-Waller factors. Extrapolating this relationship to lower T , we argue that the observed decrease in the constraint at the surface is sufficient to account for the experimentally observed surface enhancement of mobility.
Thermal biofeedback in the treatment of intermittent claudication in diabetes: a case study.
Saunders, J T; Cox, D J; Teates, C D; Pohl, S L
1994-12-01
The objective of the present case study was to examine the therapeutic effects of thermal biofeedback-assisted autogenic training on a patient with non-insulin-dependent diabetes mellitus (NIDDM), vascular disease, and symptoms of intermittent claudication. The patient received thermal biofeedback from the hand for five sessions, then from the foot for 16 sessions, while hand and foot skin temperature were monitored simultaneously. In addition, the patient was instructed in autogenic training and practiced daily at home. Follow-up measurements were taken at 12 and 48 months. Within-session foot temperature rose specifically in response to foot temperature biofeedback and starting foot temperature rose between sessions. Posttreatment blood pressure was reduced to a normal level. Attacks of intermittent claudication were reduced to zero after 12 sessions and walking distance increased by about a mile per day over the course of treatment. It would appear that thermal biofeedback and autogenic training are potentially promising therapies for persons with diabetes and peripheral vascular disease.
Microstructural evolution and grain growth kinetics of GZ31 magnesium alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roostaei, M., E-mail: miladroustaei68@ut.ac.ir
2016-08-15
Grain growth behavior of Mg–3Gd–1Zn (GZ31) magnesium alloy was studied in a wide range of annealing time and temperature to clarify the kinetics of grain growth, microstructural evolution and related metallurgical phenomena. This material exhibited typical normal grain growth mode under annealing conditions with annealing temperature of lower than 300 °C and soaking time of lower than 240 min. However, the abnormality in grain growth was also evident at annealing temperature of 400 °C and 500 °C. The dependence of abnormal grain growth (AGG) at mentioned annealing temperatures upon microstructural features such as dispersed precipitates, which were rich in Znmore » and Gd, was investigated by optical micrographs, X-ray diffraction patterns, scanning electron microscopy images, and energy dispersive X-ray analysis spectra. The bimodality in grain-size distribution histograms also signified the occurrence of AGG. Based on the experimental data on grain growth obtained by annealing treatments, the grain growth exponent and the activation energy were also figured out.« less
A method to preserve trends in quantile mapping bias correction of climate modeled temperature
NASA Astrophysics Data System (ADS)
Grillakis, Manolis G.; Koutroulis, Aristeidis G.; Daliakopoulos, Ioannis N.; Tsanis, Ioannis K.
2017-09-01
Bias correction of climate variables is a standard practice in climate change impact (CCI) studies. Various methodologies have been developed within the framework of quantile mapping. However, it is well known that quantile mapping may significantly modify the long-term statistics due to the time dependency of the temperature bias. Here, a method to overcome this issue without compromising the day-to-day correction statistics is presented. The methodology separates the modeled temperature signal into a normalized and a residual component relative to the modeled reference period climatology, in order to adjust the biases only for the former and preserve the signal of the later. The results show that this method allows for the preservation of the originally modeled long-term signal in the mean, the standard deviation and higher and lower percentiles of temperature. To illustrate the improvements, the methodology is tested on daily time series obtained from five Euro CORDEX regional climate models (RCMs).
Investigation of iron(III) complex with crown-porphyrin
NASA Astrophysics Data System (ADS)
Pankratov, Denis A.; Dolzhenko, Vladimir D.; Stukan, Reonald A.; Al Ansari, Yana F.; Savinkina, Elena V.; Kiselev, Yury M.
2013-08-01
Iron complex of 5-(4-(((4'-hydroxy-benzo-15-crown-5)-5'-yl)diazo)phenyl)-10,15,20-triphenylporphyrin was investigated by 57Fe Mössbauer spectroscopy and EPR. Two Fe sites were identified; they give two differing signals, doublet and wide absorption in a large velocity interval. EPR spectra of solutions of the complex in chloroform at room temperature also show two signals with g = 2.064, AFe = 0.032 cm - 1; g = 2.015, AFe = 0.0034 cm - 1. The doublet asymmetry is studied vs. temperature and normal angle to the sample plane and gamma-beam. The isomer shift δ in the doublet varies from 0.25 to 0.41 mm/s in the 360-5 K temperature range, whereas quadruple splitting value is constant, Δ ˜ 0.65 mm/s. The relax absorption may be described as a wide singlet ( δ = 0.30- 0.44 mm/s and Γ = 2.83-3.38 mm/s); its relative area strongly depends on temperature. According to δ, both signals are assigned to Fe(III).
Thermodynamic parameters of phase transitions of perfluoro-N-(4-methylcyclohexyl)piperidine
NASA Astrophysics Data System (ADS)
Druzhinina, A. I.; Efimova, A. A.; Varushchenko, R. M.; Chelovskaya, N. V.
2007-12-01
The heat capacity of perfluoro-N-(4-methylcyclohexyl)piperidine (PMCP) was measured by low-temperature adiabatic calorimetry. The purity of the substance ( N 1 = 99.66 mol %), triple point temperature ( T tp = 293.26 K), and enthalpy of fusion (Δfus H {m/°} = 8.32 kJ/mol) were determined. The enthalpy of vaporization was measured by calorimetry at 298.15 K (Δvap H {m/°}(298.15 K) = 56.56 kJ/mol). The temperature dependence of the saturated vapor pressure of PMCP over the pressure range 6.2-101.6 kPa was determined by comparative ebulliometry. The normal boiling point ( T n.b. = 460.74 K), ehthalpies of vaporization (at various temperatures), and critical parameters of PMCP were calculated. The calculated and experimental values of Δvap H {m/°}(298.15 K) agree to within measurement errors, which proves the reliability of these values and pT parameters used in calculations.
NASA Astrophysics Data System (ADS)
Shiri, Ramin; Safari, Ebrahim; Bananej, Alireza
2018-04-01
We investigate numerically the controllable chirped pulse compression in a one-dimensional photonic structure containing a nematic liquid crystal defect layer using the temperature dependent refractive index of the liquid crystal. We consider the structure under irradiation by near-infrared ultra-short laser pulses polarized parallel to the liquid crystal director at a normal angle of incidence. It is found that the dispersion behaviour and consequently the compression ability of the system can be changed in a controlled manner due to the variation in the defect temperature. When the temperature increased from 290 to 305 K, the transmitted pulse duration decreased from 75 to 42 fs in the middle of the structure, correspondingly. As a result, a novel low-loss tunable pulse compressor with a really compact size and high compression factor is achieved. The so-called transfer matrix method is utilized for numerical simulations of the band structure and reflection/transmission spectra of the structure under investigation.
NASA Astrophysics Data System (ADS)
Zhao, Q. L.; Guo, Z. Y.; Si, J. L.; Wei, H. J.; Yang, H. Q.; Wu, G. Y.; Xie, S. S.; Guo, X.; Zhong, H. Q.; Li, L. Q.; Li, X. Y.
2011-03-01
The main objective of the present work is to study the influence of heat treatment on the esophageal cancer detection using the diffuse reflectance (DR) spectral intensity ratio R540/R575 of oxygenated hemoglobin (HbO2) absorption bands to distinguish the epithelial tissues of normal human esophagus and moderately differentiated esophageal squamous cell carcinoma (ESCC) at different heat treatment temperature of 20, 37, 42, 50, and 60°C, respectively. The DR spectra for the epithelial tissues of the normal esophagus and ESCC in vitro at different heat-treatment temperature in the wavelength range 400-650 nm were measured with a commercial optical fiber spectrometer. The results indicate that the average DR spectral intensity overall enhancement with concomitant increase of heat-treatment temperature for the epithelial tissues of normal esophagus and ESCC, but the average DR spectral intensity for the normal esophageal epithelial tissues is relatively higher than that for ESCC epithelial tissues at the same heat-treatment temperature. The mean R540/R575 ratios of ESCC epithelial tissues were always lower than that of normal esophageal epithelial tissues at the same temperature, and the mean R540/R575 ratios of the epithelial tissues of the normal esophagus and ESCC were decreasing with the increase of different heat-treatment temperatures. The differences in the mean R540/R575 ratios between the epithelial tissues of normal esophagus and ESCC were 13.33, 13.59, 11.76, and 11.11% at different heat-treatment temperature of 20, 37, 42, and 50°C, respectively. These results also indicate that the DR intensity ratio R540/R575 of the hemoglobin bands is a useful tool for discrimination between the epithelial tissues of normal esophagus and ESCC in the temperature range from room temperature to 50°C, but it was non-effective at 60°C or over 60°C.
NASA Astrophysics Data System (ADS)
Fall, András; Ukar, Estibalitz; Laubach, Stephen E.
2016-09-01
Electron backscattered diffraction techniques (EBSD) show that Dauphiné twins in quartz are widespread in many tectonometamorphic environments. Our study documents that under diagenetic temperatures (< 200 °C) and burial depths < 5 km Dauphiné twins are common in isolated fracture quartz deposits spanning between fracture walls (i.e., quartz bridges) in low-porosity quartz-cemented sandstones. Using examples from East Texas and Colorado cores, we show that twins are associated with crack-seal microstructure and fluid inclusions. Fracture wall-parallel and wall-normal inclusion trails contain coexisting aqueous and hydrocarbon gas inclusions, so homogenization temperatures of aqueous inclusions record true trapping temperatures. Inclusions in alignments normal to fracture walls are large and irregularly shaped compared to those aligned parallel to walls, but both show similar liquid-to-vapor ratios. Stacking transmitted light images with scanning electron microscope cathodoluminescence (SEM-CL) and EBSD images demonstrates that Dauphiné twin boundaries are localized along wall-normal inclusion trails. Trapping temperatures for wall-normal inclusion trails are usually higher than those aligned parallel to the fracture wall. Wall-normal fluid inclusion assemblage temperatures typically match the highest temperatures of wall-parallel assemblages trapped during sequential widening, but not necessarily the most recent. In context of burial histories for these samples, this temperature pattern implies that wall-normal assemblages form at discrete times during or after crack-seal fracture widening. Localization in isolated, potentially high-stress quartz deposits in fractures is compatible with a mechanical origin for these Dauphiné twins. Punctuated temperature values and discrepant sizes and shapes of inclusions in wall-normal trails implies that twinning is a by-product of the formation of the wall-normal inclusion assemblages. The association of Dauphiné twins and fluid inclusion assemblages from which temperature and possibly timing can be inferred provides a way to research timing as well as magnitude of paleostress in some diagenetic settings.
The high temperature impact response of tungsten and chromium
NASA Astrophysics Data System (ADS)
Zaretsky, E. B.; Kanel, G. I.
2017-09-01
The evolution of elastic-plastic shock waves has been studied in pure polycrystalline tungsten and chromium at room and elevated temperatures over propagation distances ranging from 0.05 to 3 mm (tungsten) and from 0.1 to 2 mm (chromium). The use of fused silica windows in all but one experiment with chromium and in several high temperature experiments with tungsten led to the need for performing shock and optic characterization of these windows over the 300-1200 K temperature interval. Experiments with tungsten and chromium samples showed that annealing of the metals transforms the initial ramping elastic wave into a jump-like wave, substantially increasing the Hugoniot elastic limits of the metals. With increased annealing time, the spall strength of the two metals slightly increases. Both at room and at high temperatures, the elastic precursor in the two metals decays in two distinct regimes. At propagation distances smaller than ˜1 mm (tungsten) or ˜0.5 mm (chromium), decay is fast, with the dislocation motion and multiplication being controlled by phonon viscous drag. At greater distances, the rate of decay becomes much lower, with control of the plastic deformation being passed to the thermally activated generation and motion of dislocation double-kinks. The stress at which this transition takes place virtually coincides with the Peierls stress τP of the active glide system. Analysis of the annealing effects in both presently and previously studied BCC metals (i.e., Ta, V, Nb, Mo, W, and Cr) and of the dependencies of their normalized Peierls stresses τP(θ) /τP(0 ) on the normalized temperature θ=T /Tm allows one to conclude that the non-planar, split into several glide planes, structure of the dislocation core in these metals is mainly responsible for their plastic deformation features.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, J.; Bollinger, A. T.; He, X.
The origin of high-temperature superconductivity in copper oxides and the nature of the ‘normal’ state above the critical temperature are widely debated. In underdoped copper oxides, this normal state hosts a pseudogap and other anomalous features; and in the overdoped materials, the standard Bardeen–Cooper–Schrieffer description fails, challenging the idea that the normal state is a simple Fermi liquid. To investigate these questions, we have studied the behaviour of single-crystal La 2–xSr xCuO 4 films through which an electrical current is being passed. Here we report that a spontaneous voltage develops across the sample, transverse (orthogonal) to the electrical current. The dependence of this voltage on probe current, temperature, in-plane device orientation and doping shows that this behaviour is intrinsic, substantial, robust and present over a broad range of temperature and doping. If the current direction is rotated in-plane by an anglemore » $$\\phi$$, the transverse voltage oscillates as sin(2$$\\phi$$), breaking the four-fold rotational symmetry of the crystal. The amplitude of the oscillations is strongly peaked near the critical temperature for superconductivity and decreases with increasing doping. We find that these phenomena are manifestations of unexpected in-plane anisotropy in the electronic transport. The films are very thin and epitaxially constrained to be tetragonal (that is, with four-fold symmetry), so one expects a constant resistivity and zero transverse voltage, for every $$\\phi$$. The origin of this anisotropy is purely electronic—the so-called electronic nematicity. Unusually, the nematic director is not aligned with the crystal axes, unless a substantial orthorhombic distortion is imposed. The fact that this anisotropy occurs in a material that exhibits high-temperature superconductivity may not be a coincidence.« less
Spontaneous breaking of rotational symmetry in copper oxide superconductors
Wu, J.; Bollinger, A. T.; He, X.; ...
2017-07-26
The origin of high-temperature superconductivity in copper oxides and the nature of the ‘normal’ state above the critical temperature are widely debated. In underdoped copper oxides, this normal state hosts a pseudogap and other anomalous features; and in the overdoped materials, the standard Bardeen–Cooper–Schrieffer description fails, challenging the idea that the normal state is a simple Fermi liquid. To investigate these questions, we have studied the behaviour of single-crystal La 2–xSr xCuO 4 films through which an electrical current is being passed. Here we report that a spontaneous voltage develops across the sample, transverse (orthogonal) to the electrical current. The dependence of this voltage on probe current, temperature, in-plane device orientation and doping shows that this behaviour is intrinsic, substantial, robust and present over a broad range of temperature and doping. If the current direction is rotated in-plane by an anglemore » $$\\phi$$, the transverse voltage oscillates as sin(2$$\\phi$$), breaking the four-fold rotational symmetry of the crystal. The amplitude of the oscillations is strongly peaked near the critical temperature for superconductivity and decreases with increasing doping. We find that these phenomena are manifestations of unexpected in-plane anisotropy in the electronic transport. The films are very thin and epitaxially constrained to be tetragonal (that is, with four-fold symmetry), so one expects a constant resistivity and zero transverse voltage, for every $$\\phi$$. The origin of this anisotropy is purely electronic—the so-called electronic nematicity. Unusually, the nematic director is not aligned with the crystal axes, unless a substantial orthorhombic distortion is imposed. The fact that this anisotropy occurs in a material that exhibits high-temperature superconductivity may not be a coincidence.« less
Dependence of future mortality changes on global CO2 concentrations: A review.
Lee, Jae Young; Choi, Hayoung; Kim, Ho
2018-05-01
The heterogeneity among previous studies of future mortality projections due to climate change has often hindered comparisons and syntheses of resulting impacts. To address this challenge, the present study introduced a novel method to normalize the results from projection studies according to different baseline and projection periods and climate scenarios, thereby facilitating comparison and synthesis. This study reviewed the 15 previous studies involving projected climate change-related mortality under Representative Concentration Pathways. To synthesize their results, we first reviewed the important study design elements that affected the reported results in previous studies. Then, we normalized the reported results by CO 2 concentration in order to eliminate the effects of the baseline period, projection period, and climate scenario choices. For twenty-five locations worldwide, the normalized percentage changes in temperature-attributable mortality per 100 ppm increase in global CO 2 concentrations ranged between 41.9% and 330%, whereas those of total mortality ranged between 0.3% and 4.8%. The normalization methods presented in this work will guide future studies to provide their results in a normalized format and facilitate research synthesis to reinforce our understanding on the risk of climate change. Copyright © 2018 Elsevier Ltd. All rights reserved.
Biased four-point probe resistance
NASA Astrophysics Data System (ADS)
Garcia-Vazquez, Valentin
2017-11-01
The implications of switching the current polarity in a four-point probe resistance measurement are presented. We demonstrate that, during the inversion of the applied current, any change in the voltage V produced by a continuous drop of the sample temperature T will induce a bias in the temperature-dependent DC resistance. The analytical expression for the bias is deduced and written in terms of the variations of the measured voltages with respect to T and by the variations of T with respect to time t. Experimental data measured on a superconducting Nb thin film confirm that the bias of the normal-state resistance monotonically increases with the cooling rate dT/dt while keeping fixed dV/dT; on the other hand, the bias increases with dV/dT, reaching values up to 13% with respect to the unbiased resistance obtained at room temperature.
A comparison of the far-infrared and low-frequency Raman spectra of glass-forming liquids
NASA Astrophysics Data System (ADS)
Perova, T. S.; Vij, J. K.; Christensen, D. H.; Nielsen, O. F.
1999-04-01
Far-infrared and low-frequency Raman spectra in the wavenumber range from 15 to 500 cm -1 were recorded for glycerol, triacetin (glycerol triacetate) and o-terphenyl at temperatures from 253 to 355 K. The far-infrared spectra of glycerol appear complex compared with the spectra of triacetin owing to the presence of hydrogen bonding in glycerol. The experimental results obtained for o-terphenyl are in good agreement with normal mode analyses carried out for crystalline o-terphenyl (A. Criado, F.J. Bermejo, A. de Andres, Mol. Phys. 82 (1994) 787). The far-infrared results are compared with the low-frequency Raman spectra of these three glass-forming liquids. The difference in temperature dependences found from these spectra is explained on the basis of different temperature contributions of the relaxational and vibrational processes to the low-frequency vibrational spectra.
Comparing two tetraalkylammonium ionic liquids. II. Phase transitions.
Lima, Thamires A; Paschoal, Vitor H; Faria, Luiz F O; Ribeiro, Mauro C C; Ferreira, Fabio F; Costa, Fanny N; Giles, Carlos
2016-06-14
Phase transitions of the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N1114][NTf2], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N1444][NTf2], were investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD) measurements, and Raman spectroscopy. XRD and Raman spectra were obtained as a function of temperature at atmospheric pressure, and also under high pressure at room temperature using a diamond anvil cell (DAC). [N1444][NTf2] experiences glass transition at low temperature, whereas [N1114][NTf2] crystallizes or not depending on the cooling rate. Both the ionic liquids exhibit glass transition under high pressure. XRD and low-frequency Raman spectra provide a consistent physical picture of structural ordering-disordering accompanying the thermal events of crystallization, glass transition, cold crystallization, pre-melting, and melting. Raman spectra in the high-frequency range of some specific cation and anion normal modes reveal conformational changes of the molecular structures along phase transitions.
Nutrient-gene interactions determine mitochondrial function: effect of dietary fat.
Kim, M J; Berdanier, C D
1998-02-01
The effect on mitochondrial respiration of feeding hydrogenated coconut oil, corn oil, or menhaden oil (MO) to diabetes-prone BHE/cdb rats and normal Sprague Dawley (SD) rats was studied. Both fat source and strain affected the temperature dependence of succinate-supported respiration. The transition temperature was greater in BHE/cdb rats than in the SD rats. The efficiency of ATP synthesis as reflected by the ADP:O ratio was decreased in the BHE/cdb rats compared to SD rats, with the exception of the comparison made at 37 degrees C with the MO-fed rats; at this temperature, the ADP:O ratios were similar. The diet and strain differences suggest a dietary lipid-gene interaction with respect to the mobility of subunit 6 of the F1F0ATPase. This subunit has two errors in its gene: one that affects the proton channel and another that likely affects its mobility within the inner mitochondrial membrane.
NASA Astrophysics Data System (ADS)
Somwan, Siripong; Funsueb, Narit; Limpichaipanit, Apichart; Ngamjarurojana, Athipong
2018-05-01
In this work, Pb0.91La0.09(Zr1-xTix)0.9775O3 ceramics where x = 0.3, 0.35 and 0.4 (the composition near MPB) were prepared by solid solution method. After fabrication process, electrical property was measured by LCR meter. Polarization and induced strain behavior of the samples were investigated by using interferometry technique modified with Sawyer-Tower circuit at various temperatures. The results of dielectric, polarization and induced strain properties were due to the Zr/Ti ratios, which changed their behavior when temperature was varied (30-70 °C). The normal to macro-micro domains to relaxor and paraelectric phase transition was demonstrated which is related to linear or nonlinear increase of polarization and induced strain as a function of applied subswitching electric field.
The scaling and temperature dependence of vertebrate metabolism
White, Craig R; Phillips, Nicole F; Seymour, Roger S
2005-01-01
Body size and temperature are primary determinants of metabolic rate, and the standard metabolic rate (SMR) of animals ranging in size from unicells to mammals has been thought to be proportional to body mass (M) raised to the power of three-quarters for over 40 years. However, recent evidence from rigorously selected datasets suggests that this is not the case for birds and mammals. To determine whether the influence of body mass on the metabolic rate of vertebrates is indeed universal, we compiled SMR measurements for 938 species spanning six orders of magnitude variation in mass. When normalized to a common temperature of 38 °C, the SMR scaling exponents of fish, amphibians, reptiles, birds and mammals are significantly heterogeneous. This suggests both that there is no universal metabolic allometry and that models that attempt to explain only quarter-power scaling of metabolic rate are unlikely to succeed. PMID:17148344
NASA Astrophysics Data System (ADS)
Gyuráki, Roland; Sirois, Frédéric; Grilli, Francesco
2018-07-01
Fluorescent microthermographic imaging, a method using rare-earth fluorescent coatings with temperature dependent light emission, was used for quench investigation in high temperature superconductors (HTS). A fluorophore was embedded in a polymer matrix and used as a coating on top of an HTS tape, while being excited with UV light and recorded with a high-speed camera. Simultaneously, the tape was pulsed with high amplitude, short duration DC current, and brought to quench with the help of a localised defect. The Joule heating during a quench influences the fluorescent light intensity emitted from the coating, and by recording the local variations in this intensity over time, the heating of the tape can be visualised and the developed temperatures can be calculated. In this paper, the fluorophore europium tris[3-(trifluoromethylhydroxymethylene)-(+)-camphorate] (EuTFC) provided sufficient temperature sensitivity and a usable temperature range from 77-260 K. With the help of 2500 image captures per second, the normal zone development was imaged in a 20 μm copper stabilised HTS tape held in a liquid nitrogen bath, and using a calibration curve, the temperatures reached during the quench have been calculated.
Temperature effects in ultrasonic Lamb wave structural health monitoring systems.
Lanza di Scalea, Francesco; Salamone, Salvatore
2008-07-01
There is a need to better understand the effect of temperature changes on the response of ultrasonic guided-wave pitch-catch systems used for structural health monitoring. A model is proposed to account for all relevant temperature-dependent parameters of a pitch-catch system on an isotropic plate, including the actuator-plate and plate-sensor interactions through shear-lag behavior, the piezoelectric and dielectric permittivity properties of the transducers, and the Lamb wave dispersion properties of the substrate plate. The model is used to predict the S(0) and A(0) response spectra in aluminum plates for the temperature range of -40-+60 degrees C, which accounts for normal aircraft operations. The transducers examined are monolithic PZT-5A [PZT denotes Pb(Zr-Ti)O3] patches and flexible macrofiber composite type P1 patches. The study shows substantial changes in Lamb wave amplitude response caused solely by temperature excursions. It is also shown that, for the transducers considered, the response amplitude changes follow two opposite trends below and above ambient temperature (20 degrees C), respectively. These results can provide a basis for the compensation of temperature effects in guided-wave damage detection systems.
Extremely large magnetoresistance in the topologically trivial semimetal α -WP2
NASA Astrophysics Data System (ADS)
Du, Jianhua; Lou, Zhefeng; Zhang, ShengNan; Zhou, Yuxing; Xu, Binjie; Chen, Qin; Tang, Yanqing; Chen, Shuijin; Chen, Huancheng; Zhu, Qinqing; Wang, Hangdong; Yang, Jinhu; Wu, QuanSheng; Yazyev, Oleg V.; Fang, Minghu
2018-06-01
Extremely large magnetoresistance (XMR) was recently discovered in many nonmagnetic materials, while its underlying mechanism remains poorly understood due to the complex electronic structure of these materials. Here we report an investigation of the α -phase WP2, a topologically trivial semimetal with monoclinic crystal structure (C 2 /m ), which contrasts with the recently discovered robust type-II Weyl semimetal phase in β -WP2 . We found that α -WP2 exhibits almost all the characteristics of XMR materials: the near-quadratic field dependence of MR, a field-induced up-turn in resistivity followed by a plateau at low temperature, which can be understood by the compensation effect, and high mobility of carriers confirmed by our Hall effect measurements. It was also found that the normalized MRs under different magnetic fields have the same temperature dependence in α -WP2 , the Kohler scaling law can describe the MR data in a wide temperature range, and there is no obvious change in the anisotropic parameter γ value with temperature. The resistance polar diagram has a peanut shape when the field is rotated in the a c plane, which can be understood by the anisotropy of the Fermi surface. These results indicate that both field-induced-gap and temperature-induced Lifshitz transition are not the origin of up-turn in resistivity in the α -WP2 semimetal. Our findings establish α -WP2 as a new reference material for exploring the XMR phenomena.
Specific heat in KFe2As2 in zero and applied magnetic field
NASA Astrophysics Data System (ADS)
Kim, J. S.; Kim, E. G.; Stewart, G. R.; Chen, X. H.; Wang, X. F.
2011-05-01
The specific heat down to 0.08 K of the iron pnictide superconductor KFe2As2 was measured on a single-crystal sample with a residual resistivity ratio of ˜650, with a Tconset determined by a specific heat of 3.7 K. The zero-field normal-state specific heat divided by temperature, C/T, was extrapolated from above Tc to T=0 by insisting on agreement between the extrapolated normal-state entropy at Tc, Snextrap(Tc), and the measured superconducting-state entropy at Tc, Ssmeas(Tc), since for a second-order phase transition the two entropies must be equal. This extrapolation would indicate that this rather clean sample of KFe2As2 exhibits non-Fermi-liquid behavior; i.e., C/T increases at low temperatures, in agreement with the reported non-Fermi-liquid behavior in the resistivity. However, specific heat as a function of magnetic field shows that the shoulder feature around 0.7 K, which is commonly seen in KFe2As2 samples, is not evidence for a second superconducting gap as has been previously proposed but instead is due to an unknown magnetic impurity phase, which can affect the entropy balance and the extrapolation of the normal-state specific heat. This peak (somewhat larger in magnitude) with similar field dependence is also found in a less pure sample of KFe2As2, with a residual resistivity ratio of only 90 and Tconset=3.1 K. These data, combined with the measured normal-state specific heat in field to suppress superconductivity, allow the conclusion that an increase in the normal-state specific heat as T→0 is in fact not seen in KFe2As2; i.e., Fermi-liquid behavior is observed.
Lin, Kung-Hsuan; Wang, Kuan-Jen; Chang, Chung-Chieh; Wen, Yu-Chieh; Lv, Bing; Chu, Ching-Wu; Wu, Maw-Kuen
2016-01-01
We have utilized ultrafast optical spectroscopy to study carrier dynamics in slightly underdoped (BaK)Fe2As2 crystals without magnetic transition. The photoelastic signals due to coherent acoustic phonons have been quantitatively investigated. According to our temperature-dependent results, we found that the relaxation component of superconducting quasiparticles persisted from the superconducting state up to at least 70 K in the normal state. Our findings suggest that the pseudogaplike feature in the normal state is possibly the precursor of superconductivity. We also highlight that the pseudogap feature of K-doped BaFe2As2 is different from that of other iron-based superconductors, including Co-doped or P-doped BaFe2As2. PMID:27180873
NASA Astrophysics Data System (ADS)
Fall, A.; Ukar, E.; Laubach, S.
2016-12-01
Dauphiné twins in quartz are widespread in many tectonometamorphic environments. Under diagenetic temperatures (<200°C) and burial depths less than 5 km Dauphiné twins are also common in isolated fracture quartz deposits spanning between fracture walls in low-porosity quartz-cemented sandstones. The twin boundaries coincide with fracture wall-normal fluid inclusion trails. The association of Dauphiné twins and fluid inclusion trails from which temperature and possibly timing can be inferred provides a way to research mechanism and timing of twinning, and potentially the magnitude of paleostrain and stress in some diagenetic settings. Using examples from East Texas and Colorado cores, we show that twins are associated with crack-seal microstructure and fluid inclusions. Fracture wall-parallel and wall-normal inclusion trails contain coexisting aqueous and hydrocarbon gas inclusions, so homogenization temperatures of aqueous inclusions, ranging from 130°C to 159°C in the East Texas Basin, and from 162°C to 176°C in the Piceance Basin, record true trapping temperatures. Inclusions in wall-normal trails are large and irregularly shaped compared to those in wall-parallel trails, but both show similar liquid-to-vapor ratios. Trapping temperatures for wall-normal inclusion trails are usually higher than those in the wall-parallel trails. Wall-normal fluid inclusion assemblage temperatures typically match the highest temperatures of wall-parallel assemblages trapped during sequential widening, but not necessarily the most recent. In context of burial histories for these samples, this temperature pattern implies that wall-normal assemblages form at discrete times during or after crack-seal fracture widening. Stacking transmitted light images with scanning electron microscope cathodoluminescence (SEM-CL) and electron backscattered diffraction (EBSD) images demonstrates that the twin boundaries are localized along wall-normal inclusion trails. Localization in isolated, potentially high-stress quartz deposits in fractures is compatible with a mechanical origin for these Dauphiné twins. Punctuated temperature values and discrepant sizes and shapes of inclusions in wall-normal trails imply that twinning is a by-product of the formation of the wall-normal inclusion trails.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Shichun; Kubo, Takayuki; Geng, R. L.
Recent studies by Romanenko et al. revealed that cooling down a superconducting cavity under a large spatial temperature gradient decreases the amount of trapped flux and leads to reduction of the residual surface resistance. In the present paper, the flux expulsion ratio and the trapped-flux-induced surface resistance of a large-grain cavity cooled down under a spatial temperature gradient up to 80K/m are studied under various applied magnetic fields from 5E-6 T to 2E-5 T. We show the flux expulsion ratio improves as the spatial temperature gradient increases, independent of the applied magnetic field: our results supports and enforces the previousmore » studies. We then analyze all RF measurement results obtained under different applied magnetic fields together by plotting the trapped- flux-induced surface resistance normalized by the applied magnetic field as a function of the spatial temperature gradient. All the data can be fitted by a single curve, which defines an empirical formula for the trapped- flux-induced surface resistance as a function of the spatial temperature gradient and applied magnetic field. The formula can fit not only the present results but also those obtained by Romanenko et al. previously. Furthermore, the sensitivity r fl of surface resistance from trapped magnetic flux of fine-grain and large-grain niobium cavities and the origin of dT/ds dependence of R fl/B a are also discussed.« less
Huang, Shichun; Kubo, Takayuki; Geng, R. L.
2016-08-26
Recent studies by Romanenko et al. revealed that cooling down a superconducting cavity under a large spatial temperature gradient decreases the amount of trapped flux and leads to reduction of the residual surface resistance. In the present paper, the flux expulsion ratio and the trapped-flux-induced surface resistance of a large-grain cavity cooled down under a spatial temperature gradient up to 80K/m are studied under various applied magnetic fields from 5E-6 T to 2E-5 T. We show the flux expulsion ratio improves as the spatial temperature gradient increases, independent of the applied magnetic field: our results supports and enforces the previousmore » studies. We then analyze all RF measurement results obtained under different applied magnetic fields together by plotting the trapped- flux-induced surface resistance normalized by the applied magnetic field as a function of the spatial temperature gradient. All the data can be fitted by a single curve, which defines an empirical formula for the trapped- flux-induced surface resistance as a function of the spatial temperature gradient and applied magnetic field. The formula can fit not only the present results but also those obtained by Romanenko et al. previously. Furthermore, the sensitivity r fl of surface resistance from trapped magnetic flux of fine-grain and large-grain niobium cavities and the origin of dT/ds dependence of R fl/B a are also discussed.« less
Nonlinear thermoelectric effects in high-field superconductor-ferromagnet tunnel junctions
Kolenda, Stefan; Machon, Peter
2016-01-01
Background: Thermoelectric effects result from the coupling of charge and heat transport and can be used for thermometry, cooling and harvesting of thermal energy. The microscopic origin of thermoelectric effects is a broken electron–hole symmetry, which is usually quite small in metal structures. In addition, thermoelectric effects decrease towards low temperatures, which usually makes them vanishingly small in metal nanostructures in the sub-Kelvin regime. Results: We report on a combined experimental and theoretical investigation of thermoelectric effects in superconductor/ferromagnet hybrid structures. We investigate the dependence of thermoelectric currents on the thermal excitation, as well as on the presence of a dc bias voltage across the junction. Conclusion: Large thermoelectric effects are observed in superconductor/ferromagnet and superconductor/normal-metal hybrid structures. The spin-independent signals observed under finite voltage bias are shown to be reciprocal to the physics of superconductor/normal-metal microrefrigerators. The spin-dependent thermoelectric signals in the linear regime are due to the coupling of spin and heat transport, and can be used to design more efficient refrigerators. PMID:28144509
NASA Astrophysics Data System (ADS)
Jiang, W. G.; Xiong, C. A.; Wu, X. G.
2013-11-01
The residual thermal stresses induced by the high-temperature sintering process in multilayer ceramic capacitors (MLCCs) are investigated by using a finite-element unit cell model, in which the strain gradient effect is considered. The numerical results show that the residual thermal stresses depend on the lateral margin length, the thickness ratio of the dielectrics layer to the electrode layer, and the MLCC size. At a given thickness ratio, as the MLCC size is scaled down, the peak shear stress reduces significantly and the normal stresses along the length and thickness directions change slightly with the decrease in the ceramic layer thickness t d as t d > 1 μm, but as t d < 1 μm, the normal stress components increase sharply with the increase in t d. Thus, the residual thermal stresses induced by the sintering process exhibit strong size effects and, therefore, the strain gradient effect should be taken into account in the design and evaluation of MLCC devices
Proximity Effects and Nonequilibrium Superconductivity in Transition-Edge Sensors
NASA Technical Reports Server (NTRS)
Sadleir, John E.; Smith, Stephen J.; Robinson, Ian K.; Finkbeiner, Fred M.; Chervenak, James A.; Bandler, Simon R.; Eckart, Megan E.; Kilbourne, Caroline A.
2011-01-01
We have recently shown that normal-metal/superconductor (N/S) bilayer TESs (superconducting Transition-Edge Sensors) exhibit weak-link behavior.l Here we extend our understanding to include TESs with added noise-mitigating normal-metal structures (N structures). We find TESs with added Au structures also exhibit weak-link behavior as evidenced by exponential temperature dependence of the critical current and Josephson-like oscillations of the critical current with applied magnetic field. We explain our results in terms of an effect converse to the longitudinal proximity effect (LoPE) 1, the lateral inverse proximity effect (LaiPE), for which the order parameter in the N/S bilayer is reduced due to the neighboring N structures. Resistance and critical current measurements are presented as a function of temperature and magnetic field taken on square Mol Au bilayer TESs with lengths ranging from 8 to 130 {\\mu}m with and without added N structures. We observe the inverse proximity effect on the bilayer over in-plane distances many tens of microns and find the transition shifts to lower temperatures scale approximately as the inverse square of the in- plane N-structure separation distance, without appreciable broadening of the transition width. We also present evidence for nonequilbrium superconductivity and estimate a quasiparticle lifetime of 1.8 \\times 10-10 s for the bilayer. The LoPE model is also used to explain the increased conductivity at temperatures above the bilayer's steep resistive transition.
Overload characteristics of paper-polypropylene-paper cable
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernst, A.
1990-09-01
The short-time rating of PPP pipe-type cable may be lower than the equivalent paper cable sized to carry the same normal load. The ratings depend on the relative conductor sizes and the maximum allowable conductor temperatures of the insulation. The insulation thermal resistivity may be a significant parameter for overload times of approximately one hour and should be verified for PPP insulation. The thermal capacitance temperature characteristic of PPP insulation is not known. However, the overload ratings are not very sensitive to this parameter. Overload ratings are given for maximum conductor temperatures from 105 C to 130 C. Use ofmore » ratings based on temperatures greater than 105 C would require testing to determine the extent of degradation of the insulation at these higher temperatures. PPP-insulated cable will be thermally stable over a wider range of operating conditions (voltage and current) compared with paper-insulated cable. The short-circuit ratings of PPP- and paper-insulated cable systems and the positive/negative and zero sequence impedances are compared. 21 refs., 22 figs., 5 tabs.« less
Role of Escherichia coli dnaA gene and its integrative suppression in M13 Coliphage DNA synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitra, S.; Stallions, D.R.
An F/sup +/ derivative of Escherichia coli E508 thermosensitive in dnaA function (involved in DNA synthesis initiation), its revertant and an Hfr derivative of E508(ts) in which the temperature-sensitive phenotype is suppressed by integrative suppression have been compared for their ability to support M13 phage DNA synthesis at the nonpermissive temperature. Upon infection at the nonpermissive temperature, both the revertant and the Hfr strain support normal phage replication while the temperature-sensitive mutant does not. However, when infection is carried out at a permissive temperature and the temperature is shifted up after infection, phage synthesis occurs in the temperature-sensitive mutant also,more » but in lesser quantity than in the revertant strain. Analysis of intracellular labeled phage DNA indicates: (a) parental replicative form DNA synthesis is not dependent on dnaA function; (b) progeny replicative form DNA synthesis is strongly inhibited in the temperature-sensitive dnaA mutant at the nonpermissive temperature; (c) progeny single-strand DNA synthesis does not absolutely require dnaA function; (d) progeny single-strand DNA is present in the circular form. The implication of the host DNA replication in M13 DNA synthesis is discussed.« less
On a possible melting curve of C60 fullerite
NASA Astrophysics Data System (ADS)
Zubov, V. I.; Rodrigues, C. G.; Zubov, I. V.
2003-07-01
We study the thermodynamic properties of the high-temperature modification of fullerites on the basis of the Girifalco intermolecular potential. In the present work, using Lindemann's melting criterion, we estimate a possible melting curve Tm(P) of C60 fullerite. To take into account the lattice anharmonicity, which has a strong effect at T > 700 K, we use the correlative method of unsymmetrized self-consistent field. To check this approach, first we have applied it to solid Ar. In the range between its triple point Tt = 83.807 K and 260 K we obtained the mean square relative deviation from experimental data of about 0.7%. The melting curve for C60 fullerite has been calculated from the melting point at normal pressure estimated at 1500 K up to 15 kbar, which corresponds to Tm = 4000 K, i.e. to the temperature estimated by Kim and Tománek [Phys. Rev. Lett. 72, 2418 (1994)] as that of the decomposition of the C60 molecule itself. The temperature dependence of the melting pressure is approximated very well by the Simon equation (Pm(T)/bar - 1)/b = (T/T0)c with T0 = 1500 K, b = 6643.8, and c = 1.209. The temperature dependence of the molar volume along the melting curve is described by Vs(T) = Vs(T0) - 29.20 ln (T/T0.
Hu, Zhonghan; Margulis, Claudio J
2006-01-24
In this work, we investigate the slow dynamics of 1-butyl-3-methylimidazolium hexafluorophosphate, a very popular room-temperature ionic solvent. Our study predicts the existence of heterogeneity in the liquid and shows that this heterogeneity is the underlying microscopic cause for the recently reported "red-edge effect" (REE) observed in the study of fluorescence of the organic probe 2-amino-7-nitrofluorene. This theoretical work explains in microscopic terms the relation between REE and dynamic heterogeneity in a room-temperature ionic liquid (IL). The REE is typical of micellar or colloidal systems, which are characterized by microscopic environments that are structurally very different. In contrast, in the case of this room-temperature IL, the REE occurs because of the long period during which molecules are trapped in quasistatic local solvent cages. This trapping time, which is longer than the lifetime of the excited-state probe, together with the inability of the surroundings to adiabatically relax, induces a set of site-specific spectroscopic responses. Subensembles of fluorescent molecules associated with particular local environments absorb and emit at different frequencies. We describe in detail the absorption wavelength-dependent emission spectra of 2-amino-7-nitrofluorene and show that this dependence on lambda(ex) is characteristic of the IL and, as is to be expected, is absent in the case of a normal solvent such as methanol.
King, Michelle A; Clanton, Thomas L; Laitano, Orlando
2016-01-15
Evidence of increased reactive oxygen species (ROS) production is observed in the circulation during exercise in humans. This is exacerbated at elevated body temperatures and attenuated when normal exercise-induced body temperature elevations are suppressed. Why ROS production during exercise is temperature dependent is entirely unknown. This review covers the human exercise studies to date that provide evidence that oxidant and antioxidant changes observed in the blood during exercise are dependent on temperature and fluid balance. We then address possible mechanisms linking exercise with these variables that include shear stress, effects of hemoconcentration, and signaling pathways involving muscle osmoregulation. Since pathways of muscle osmoregulation are rarely discussed in this context, we provide a brief review of what is currently known and unknown about muscle osmoregulation and how it may be linked to oxidant production in exercise and hyperthermia. Both the circulation and the exercising muscle fibers become concentrated with osmolytes during exercise in the heat, resulting in a competition for available water across the muscle sarcolemma and other tissues. We conclude that though multiple mechanisms may be responsible for the changes in oxidant/antioxidant balance in the blood during exercise, a strong case can be made that a significant component of ROS produced during some forms of exercise reflect requirements of adapting to osmotic challenges, hyperthermia challenges, and loss of circulating fluid volume. Copyright © 2016 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Hrovat, Matevž Majcen; Jeglič, Peter; Klanjšek, Martin; Hatakeda, Takehiro; Noji, Takashi; Tanabe, Yoichi; Urata, Takahiro; Huynh, Khuong K.; Koike, Yoji; Tanigaki, Katsumi; Arčon, Denis
2015-09-01
The superconducting critical temperature, Tc, of FeSe can be dramatically enhanced by intercalation of a molecular spacer layer. Here we report on a 77Se,7Li , and 1H nuclear magnetic resonance (NMR) study of the powdered hyper-interlayer-expanded Lix(C2H8N2) yFe2 -zSe2 with a nearly optimal Tc=45 K. The absence of any shift in the 7Li and 1H NMR spectra indicates a complete decoupling of interlayer units from the conduction electrons in FeSe layers, whereas nearly temperature-independent 7Li and 1H spin-lattice relaxation rates are consistent with the non-negligible concentration of Fe impurities present in the insulating interlayer space. On the other hand, the strong temperature dependence of 77Se NMR shift and spin-lattice relaxation rate, 1 /77T1 , is attributed to the holelike bands close to the Fermi energy. 1 /77T1 shows no additional anisotropy that would account for the onset of electronic nematic order down to Tc. Similarly, no enhancement in 1 /77T1 due to the spin fluctuations could be found in the normal state. Yet, a characteristic power-law dependence 1 /77T1∝T4.5 still complies with the Cooper pairing mediated by spin fluctuations.
1/f noise in semiconductor and metal nanocrystal solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Heng, E-mail: leophy@gmail.com; Lhuillier, Emmanuel, E-mail: emmanuel.lhuillier@espci.fr; Guyot-Sionnest, Philippe
2014-04-21
Electrical 1/f noise is measured in thin films of CdSe, CdSe/CdS, ZnO, HgTe quantum dots and Au nanocrystals. The 1/f noise, normalized per nanoparticle, shows no systematic dependence on the nanoparticle material and the coupling material. However, over 10 orders of magnitude, it correlates well with the nearest neighbor conductance suggesting some universal magnitude of the 1/f noise in these granular conductors. In the hopping regime, the main mechanism of 1/f noise is determined to be mobility fluctuated. In the metallic regime obtained with gold nanoparticle films, the noise drops to a similar level as bulk gold films and withmore » a similar temperature dependence.« less
Some endocrinological aspects of barbiturate dependence.
Norton, P R
1971-02-01
1. Hypophysectomized rats become dependent on barbitone and show the same withdrawal syndrome as intact animals.2. Barbitone dependent rats have larger thyroid and adrenal glands, a larger liver, smaller gonads and larger secondary sex organs than untreated animals. The levator ani muscle of the males is smaller.3. In contrast, dependent female hypophysectomized rats only showed a decreased gonad weight and increased liver weight.4. Histologically, the thyroid gland of dependent rats appears more active, but the concentration of iodine bound to plasma protein, basal metabolic rate and body temperature are similar in dependent and untreated animals.5. Resting plasma corticosterone concentration appears to be unchanged in barbitone dependent animals, but stress induced increases in the concentration of corticosterone in plasma are less in dependent animals.6. Immature barbitone dependent rats grow at a faster rate than untreated animals, but hypophysectomized rats of similar age receiving barbitone do not.7. The additional body weight gained by barbitone dependent animals is of normal body composition.8. Administration of growth hormone has an identical growth inducing effect in dependent hypophysectomized animals and in untreated hypophysectomized animals.9. Barbitone dependent rats do not exhibit the ;frustration effect' in a double runway. In barbitone dependent rats approach to a potentially ;frustrating' situation is slower than in untreated animals.
Spin-dependent Peltier effect in 3D topological insulators
NASA Astrophysics Data System (ADS)
Sengupta, Parijat; Kubis, Tillmann; Povolotskyi, Michael; Klimeck, Gerhard
2013-03-01
The Peltier effect represents the heat carrying capacity of a certain material when current passes through it. When two materials with different Peltier coefficients are placed together, the Peltier effect causes heat to flow either towards or away from the interface between them. This work utilizes the spin-polarized property of 3D topological insulator (TI) surface states to describe the transport of heat through the spin-up and spin-down channels. It has been observed that the spin channels are able to carry heat independently of each other. Spin currents can therefore be employed to supply or extract heat from an interface between materials with spin-dependent Peltier coefficients. The device is composed of a thin film of Bi2Se3 sandwiched between two layers of Bi2Te3. The thin film of Bi2Se3serves both as a normal and topological insulator. It is a normal insulator when its surfaces overlap to produce a finite band-gap. Using an external gate, Bi2Se3 film can be again tuned in to a TI. Sufficiently thick Bi2Te3 always retain TI behavior. Spin-dependent Peltier coefficients are obtained and the spin Nernst effect in TIs is shown by controlling the temperature gradient to convert charge current to spin current.
NASA Astrophysics Data System (ADS)
Pranesh Rao, K. M.; Narayan Prabhu, K.
2017-10-01
Martempering is an industrial heat treatment process that requires a quench bath that can operate without undergoing degradation in the temperature range of 423 K to 873 K (150 °C to 600 °C). The quench bath is expected to cool the steel part from the austenizing temperature to quench bath temperature rapidly and uniformly. Molten eutectic NaNO3-KNO3 mixture has been widely used in industry to martemper steel parts. In the present work, the effect of quench bath temperature on the cooling performance of a molten eutectic NaNO3-KNO3 mixture has been studied. An Inconel ASTM D-6200 probe was heated to 1133 K (860 °C) and subsequently quenched in the quench bath maintained at different temperatures. Spatially dependent transient heat flux at the metal-quenchant interface for each bath temperature was calculated using inverse heat conduction technique. Heat transfer occurred only in two stages, namely, nucleate boiling and convective cooling. The mean peak heat flux ( q max) decreased with increase in quench bath temperature, whereas the mean surface temperature corresponding to q max and mean surface temperature at the start of convective cooling stage increased with increase in quench bath temperature. The variation in normalized cooling parameter t 85 along the length of the probe increased with increase in quench bath temperature.
CdSe/ZnS quantum dot fluorescence spectra shape-based thermometry via neural network reconstruction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munro, Troy; Laboratory of Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, B-3001 Heverlee; Liu, Liwang
As a system of interest gets small, due to the influence of the sensor mass and heat leaks through the sensor contacts, thermal characterization by means of contact temperature measurements becomes cumbersome. Non-contact temperature measurement offers a suitable alternative, provided a reliable relationship between the temperature and the detected signal is available. In this work, exploiting the temperature dependence of their fluorescence spectrum, the use of quantum dots as thermomarkers on the surface of a fiber of interest is demonstrated. The performance is assessed of a series of neural networks that use different spectral shape characteristics as inputs (peak-based—peak intensity,more » peak wavelength; shape-based—integrated intensity, their ratio, full-width half maximum, peak normalized intensity at certain wavelengths, and summation of intensity over several spectral bands) and that yield at their output the fiber temperature in the optically probed area on a spider silk fiber. Starting from neural networks trained on fluorescence spectra acquired in steady state temperature conditions, numerical simulations are performed to assess the quality of the reconstruction of dynamical temperature changes that are photothermally induced by illuminating the fiber with periodically intensity-modulated light. Comparison of the five neural networks investigated to multiple types of curve fits showed that using neural networks trained on a combination of the spectral characteristics improves the accuracy over use of a single independent input, with the greatest accuracy observed for inputs that included both intensity-based measurements (peak intensity) and shape-based measurements (normalized intensity at multiple wavelengths), with an ultimate accuracy of 0.29 K via numerical simulation based on experimental observations. The implications are that quantum dots can be used as a more stable and accurate fluorescence thermometer for solid materials and that use of neural networks for temperature reconstruction improves the accuracy of the measurement.« less
Boulton, C.; Toy, V. G.; Townend, J.; Sutherland, R.
2016-01-01
Abstract The Alpine Fault, New Zealand, is a major plate‐bounding fault that accommodates 65–75% of the total relative motion between the Australian and Pacific plates. Here we present data on the hydrothermal frictional properties of Alpine Fault rocks that surround the principal slip zones (PSZ) of the Alpine Fault and those comprising the PSZ itself. The samples were retrieved from relatively shallow depths during phase 1 of the Deep Fault Drilling Project (DFDP‐1) at Gaunt Creek. Simulated fault gouges were sheared at temperatures of 25, 150, 300, 450, and 600°C in order to determine the friction coefficient as well as the velocity dependence of friction. Friction remains more or less constant with changes in temperature, but a transition from velocity‐strengthening behavior to velocity‐weakening behavior occurs at a temperature of T = 150°C. The transition depends on the absolute value of sliding velocity as well as temperature, with the velocity‐weakening region restricted to higher velocity for higher temperatures. Friction was substantially lower for low‐velocity shearing (V < 0.3 µm/s) at 600°C, but no transition to normal stress independence was observed. In the framework of rate‐and‐state friction, earthquake nucleation is most likely at an intermediate temperature of T = 300°C. The velocity‐strengthening nature of the Alpine Fault rocks at higher temperatures may pose a barrier for rupture propagation to deeper levels, limiting the possible depth extent of large earthquakes. Our results highlight the importance of strain rate in controlling frictional behavior under conditions spanning the classical brittle‐plastic transition for quartzofeldspathic compositions. PMID:27610290
Dunford, Jeffrey L; Dhirani, Al-Amin
2008-11-12
Interfaces between disordered normal materials and superconductors (S) can exhibit 'reflectionless tunnelling' (RT)-a phenomenon that arises from repeated disorder-driven elastic scattering, multiple Andreev reflections, and electron/hole interference. RT has been used to explain zero-bias conductance peaks (ZBCPs) observed using doped semiconductors and evaporated granular metal films as the disordered normal materials. Recently, in addition to ZBCPs, magnetoconductance oscillations predicted by RT theory have been observed using a novel normal disordered material: self-assembled nanoparticle films. In the present study, we find that the period of these oscillations decreases as temperature (T) increases. This suggests that the magnetic flux associated with interfering pathways increases accordingly. We propose that the increasing flux can be attributed to magnetic field penetration into S as [Formula: see text]. This model agrees remarkably well with known T dependence of penetration depth predicted by Bardeen-Cooper-Schrieffer theory. Our study shows that this additional region of flux is significant and must be considered in experimental and theoretical studies of RT.
Incoherent vs. coherent behavior in the normal state of copper oxide superconductors
NASA Technical Reports Server (NTRS)
Tesanovic, Zlatko
1991-01-01
The self-consistent quantum fluctuations around the mean-field Hartree-Fock state of the Hubbard model provide a very good description of the ground state and low temperature properties of a 2-D itinerant antiferromagnet. Very good agreement with numerical calculations and experimental data is obtained by including the one- and two-loop spin wave corrections to various physical quantities. In particular, the destruction of the long-range order above the Neel temperature can be understood as a spontaneous generation of a length-scale epsilon(T), which should be identified as the spin correlation length. For finite doping, the question of the Hartree-Fock starting point becomes a more complex one since an extra hole tends to self-trap in antiferromagnetic background. Such quantum defects in an underlying antiferromagnetic state can be spin-bags or vortex-like structures and tend to suppress the long-range order. If motion of the holes occurs on a time-scale shorter than the one associated with the motion of these quantum defects of a spin background, one obtains several important empirical features of the normal state of CuO superconductors like linear T-dependence of resistivity, the cusp in the tunneling density of states, etc. As opposed to a familiar Fermi-liquid behavior, the phenomenology of the above system is dominated by a large incoherent piece of a single hole propagator, resulting in many unusual normal state properties.
Effect of muscle type, salt and pH on cooked meat haemoprotein formation in lamb and beef.
Lytras, G N; Geileskey, A; King, R D; Ledward, D A
1999-06-01
The rate of cooked meat haemoprotein formation, measured as the rate of loss of myoglobin solubility, in lamb was dependent on the muscles anatomical location and temperature. Lamb longissimus dorsi musle at 55 to 70°C formed cooked meat haemoprotein more rapidly than the muscles in the shoulder and leg. The formation in lamb was more rapid than in beef. The rate in high pH beef (7.25) l. dorsi was lower than found in beef l. dorsi of normal pH but in low pH lamb (5.38) l. dorsi the rate was, at most temperatures, also slower than found in this muscle from lamb of normal pH. In the presence of NaCl the rate of cooked meat haemoprotein formation was faster (almost doubled at 2g/100g meat) than found in the corresponding salt free lamb and beef samples. Other additives commonly added to meat products (mechanically recovered meat, oil, polyphosphates, soya, whey and caseinate) had little effect on the rate of cooked meat haemoprotein formation, at the levels normally used in meat products. It is concluded that for lamb products little if any myoglobin will remain soluble, and the products will look cooked before the recommended thermal treatment to inactivate Escherichia coli O157:H7 has been achieved. ©
Muscovite dissolution kinetics as a function of pH at elevated temperature
Lammers, Kristin; Smith, Megan M.; Carroll, Susan A.
2017-06-07
We report that mineral reactivity can play an important role in fracture-controlled fluid networks where maintaining or increasing permeability is a goal, such as enhanced geothermal systems. In these systems, dissolution generates new void space, removes cement and physically transports less reactive mineral grains, while secondary precipitation acts to narrow or seal off fluid pathways. Sheet silicate mineral reactivity is likely to affect permeability evolution at the elevated temperatures of geothermal reservoirs because of the high reactive surface area and prevalence of these minerals in hydrothermal zones. To better describe the reactivity of one common sheet silicate, muscovite, we conducted kinetic dissolution experiments using flow-through reactors at temperatures of 100–280 °C and a pH range of 2–9. Surface area-normalized muscovite dissolution rates ranged from 0.17–155 · 10 - 11 mol m - 2 s - 1 over this temperature range, but showed little variation with pH above 150 °C. Aluminum was released to solution nonstoichiometrically with respect to dissolved silica, most likely resulting from secondary precipitation of an aluminum oxy-hydroxide identified as boehmite (γ-AlO(OH)( s)) by X-ray diffraction in reaction products from experiments conducted at pH ≤ 6. Surface area-normalized muscovite dissolution rates, Rate mus (mol m - 2 s - 1), can be described from 25 to 280 °C with the following kinetic rate equation: Rate mus = ([3∙10 -3∙e -44 /R∙T∙amore » $$0.8\\atop{H+}$$] + [9∙10 -6∙e- 45/R∙T] + [5∙10 -1∙ e-61/R∙T ∙a$$0.6\\atop{OH-}$$] ∙ (1-e -ΔGr/RT) where the rate and pre-exponential factors are in mol m - 2 s - 1; the activation energies, E, are in kJ mol - 1; a H+ and a OH- represent the activities of H + and OH -, respectively; R (kJ mol - 1 K - 1) is the gas constant; T is the temperature in Kelvins; and ΔG r (kJ mol - 1) is a measure of how close the aqueous solution is to muscovite equilibrium. The rate equation is constrained by our new data literature rates and has been evaluated against previous formulations with varying dependence on reaction affinity. Although 150 °C muscovite rates from Oelkers et al. (2008) show a systematic dependence on reaction affinity, incorporating this dependence did not accurately reproduce the higher-temperature rates. In conclusion, we recommend the rate equation shown above, with an affinity term that slows reaction rates only when solutions are close to equilibrium, for simulating the dissolution of muscovite under geothermal conditions.« less
Muscovite dissolution kinetics as a function of pH at elevated temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lammers, Kristin; Smith, Megan M.; Carroll, Susan A.
We report that mineral reactivity can play an important role in fracture-controlled fluid networks where maintaining or increasing permeability is a goal, such as enhanced geothermal systems. In these systems, dissolution generates new void space, removes cement and physically transports less reactive mineral grains, while secondary precipitation acts to narrow or seal off fluid pathways. Sheet silicate mineral reactivity is likely to affect permeability evolution at the elevated temperatures of geothermal reservoirs because of the high reactive surface area and prevalence of these minerals in hydrothermal zones. To better describe the reactivity of one common sheet silicate, muscovite, we conducted kinetic dissolution experiments using flow-through reactors at temperatures of 100–280 °C and a pH range of 2–9. Surface area-normalized muscovite dissolution rates ranged from 0.17–155 · 10 - 11 mol m - 2 s - 1 over this temperature range, but showed little variation with pH above 150 °C. Aluminum was released to solution nonstoichiometrically with respect to dissolved silica, most likely resulting from secondary precipitation of an aluminum oxy-hydroxide identified as boehmite (γ-AlO(OH)( s)) by X-ray diffraction in reaction products from experiments conducted at pH ≤ 6. Surface area-normalized muscovite dissolution rates, Rate mus (mol m - 2 s - 1), can be described from 25 to 280 °C with the following kinetic rate equation: Rate mus = ([3∙10 -3∙e -44 /R∙T∙amore » $$0.8\\atop{H+}$$] + [9∙10 -6∙e- 45/R∙T] + [5∙10 -1∙ e-61/R∙T ∙a$$0.6\\atop{OH-}$$] ∙ (1-e -ΔGr/RT) where the rate and pre-exponential factors are in mol m - 2 s - 1; the activation energies, E, are in kJ mol - 1; a H+ and a OH- represent the activities of H + and OH -, respectively; R (kJ mol - 1 K - 1) is the gas constant; T is the temperature in Kelvins; and ΔG r (kJ mol - 1) is a measure of how close the aqueous solution is to muscovite equilibrium. The rate equation is constrained by our new data literature rates and has been evaluated against previous formulations with varying dependence on reaction affinity. Although 150 °C muscovite rates from Oelkers et al. (2008) show a systematic dependence on reaction affinity, incorporating this dependence did not accurately reproduce the higher-temperature rates. In conclusion, we recommend the rate equation shown above, with an affinity term that slows reaction rates only when solutions are close to equilibrium, for simulating the dissolution of muscovite under geothermal conditions.« less
STUDIES ON THE MODE OF ACTION OF LATHYROGENIC COMPOUNDS
Levene, C. I.
1962-01-01
The lathyrogenic effect of INAH in the chick embryo may be measured by the increase in the extractibility of collagen from the bones with 1 M NaCl. Incubation of these bones in vitro with carbonyl compounds diminishes the amount of extractible collagen; with D-L-glyceraldehyde the reversal of the INAH effect is complete. This reversal effect is dependent on the time and temperature of incubation and on the quantity of D-L-glyceraldehyde, but is independent of the pH of the incubating medium, the optical form of the glyceraldehyde, or the metabolism of the cells; this suggests that it depends on a simple chemical combination. D-L-glyceraldehyde also reverses completely the extractibility of collagen from the bones of embryos rendered lathyrogenic with BAPN, semicarbazide, and hydrazine hydrate. The hypothesis has been advanced "that lathyrogenic agents act by blocking carbonyl groups on the collagen molecule, thus preventing cross-linking essential to normal maturation; normal maturation may be restored by the addition of carbonyl groups which act by competing either for the lathyrogen or for functional sites on the collagen molecule." In support of this hypothesis, it has been shown that purified lathyritic guinea pig collagen takes up lesser amounts of 2,4-dinitrophenylhydrazine—a compound which combines with carbonyl groups—than does normal collagen; it has been shown that lathyritic collagen still possesses the ability to form segment-long-spacing (SLS) collagen, but that these fibres are much thinner than normal; this is due perhaps to blockade of groups essential for lateral cross-linking of the tropocollagen unit. It has also been shown that normal, purified guinea pig collagen which has been pretreated with INAH, takes up lesser amounts of 2,4-dinitrophenylhydrazine and forms much thinner SLS fibres than the untreated controls. PMID:14464493
Samandoulgou, Idrissa; Hammami, Riadh; Morales Rayas, Rocio; Fliss, Ismail; Jean, Julie
2015-11-01
Loss of ordered molecular structure in proteins is known to increase their adhesion to surfaces. The aim of this work was to study the stability of norovirus secondary and tertiary structures and its implications for viral adhesion to fresh foods and agrifood surfaces. The pH, ionic strength, and temperature conditions studied correspond to those prevalent in the principal vehicles of viral transmission (vomit and feces) and in the food processing and handling environment (pasteurization and refrigeration). The structures of virus-like particles representing GI.1, GII.4, and feline calicivirus (FCV) were studied using circular dichroism and intrinsic UV fluorescence. The particles were remarkably stable under most of the conditions. However, heating to 65°C caused losses of β-strand structure, notably in GI.1 and FCV, while at 75°C the α-helix content of GII.4 and FCV decreased and tertiary structures unfolded in all three cases. Combining temperature with pH or ionic strength caused variable losses of structure depending on the particle type. Regardless of pH, heating to pasteurization temperatures or higher would be required to increase GII.4 and FCV adhesion, while either low or high temperatures would favor GI.1 adhesion. Regardless of temperature, increased ionic strength would increase GII.4 adhesion but would decrease GI.1 adhesion. FCV adsorption would be greater at refrigeration, pasteurization, or high temperature combined with a low salt concentration or at a higher NaCl concentration regardless of temperature. Norovirus adhesion mediated by hydrophobic interaction may depend on hydrophobic residues normally exposed on the capsid surface at pH 3, pH 8, physiological ionic strength, and low temperature, while at pasteurization temperatures it may rely more on buried hydrophobic residues exposed upon structural rearrangement. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Local time dependence of turbulent magnetic fields in Saturn's magnetodisc
NASA Astrophysics Data System (ADS)
Kaminker, V.; Delamere, P. A.; Ng, C. S.; Dennis, T.; Otto, A.; Ma, X.
2017-04-01
Net plasma transport in magnetodiscs around giant planets is outward. Observations of plasma temperature have shown that the expanding plasma is heating nonadiabatically during this process. Turbulence has been suggested as a source of heating. However, the mechanism and distribution of magnetic fluctuations in giant magnetospheres are poorly understood. In this study we attempt to quantify the radial and local time dependence of fluctuating magnetic field signatures that are suggestive of turbulence, quantifying the fluctuations in terms of a plasma heating rate density. In addition, the inferred heating rate density is correlated with magnetic field configurations that include azimuthal bend forward/back and magnitude of the equatorial normal component of magnetic field relative to the dipole. We find a significant local time dependence in magnetic fluctuations that is consistent with flux transport triggered in the subsolar and dusk sectors due to magnetodisc reconnection.
Are your covariates under control? How normalization can re-introduce covariate effects.
Pain, Oliver; Dudbridge, Frank; Ronald, Angelica
2018-04-30
Many statistical tests rely on the assumption that the residuals of a model are normally distributed. Rank-based inverse normal transformation (INT) of the dependent variable is one of the most popular approaches to satisfy the normality assumption. When covariates are included in the analysis, a common approach is to first adjust for the covariates and then normalize the residuals. This study investigated the effect of regressing covariates against the dependent variable and then applying rank-based INT to the residuals. The correlation between the dependent variable and covariates at each stage of processing was assessed. An alternative approach was tested in which rank-based INT was applied to the dependent variable before regressing covariates. Analyses based on both simulated and real data examples demonstrated that applying rank-based INT to the dependent variable residuals after regressing out covariates re-introduces a linear correlation between the dependent variable and covariates, increasing type-I errors and reducing power. On the other hand, when rank-based INT was applied prior to controlling for covariate effects, residuals were normally distributed and linearly uncorrelated with covariates. This latter approach is therefore recommended in situations were normality of the dependent variable is required.
Zeković, Slobodan; Ivić, Zoran
2009-01-01
The applicability of small-polaron model for the interpretation of infrared absorption spectrum in acetanilide has been critically reexamined. It is shown that the energy difference between the normal and anomalous peak, calculated by means of small-polaron theory, displays pronounced temperature dependence which is in drastic contradiction with experiment. It is demonstrated that self-trapped states, which are recently suggested to explain theoretically the experimental absorption spectrum in protein, cannot cause the appearance of the peaks in absorption spectrum for acetanilide.
Paul, Catriona; Murray, Alison A; Spears, Norah; Saunders, Philippa T K
2008-07-01
Infertility represents a major clinical problem and 50% of cases are attributable to the male partner. Testicular function is temperature dependent, and in both man and mouse the position of the testes in the scrotum ensures that they are kept at between 2 and 8 degrees C below core body temperature. We used a mouse model to investigate the impact of a single, transient, mild, scrotal heat stress (38, 40 or 42 degrees C for 30 min) on testicular function, sperm DNA integrity and embryo survival. We detected temperature-dependent changes in testicular architecture, number of apoptotic cells and a significant reduction in testis weight 7 and 14 days after heat stress at 42 degrees C. We report for the first time that DNA strand breaks (gamma-H2AX-positive foci) were present in spermatocytes recovered from testes subjected to 40 or 42 degrees C. Fertility of heat-stressed males was tested 23-28 d after treatment (sperm at this time would have been spermatocytes at time of heating). Paternal heat stress at 42 degrees C resulted in reduced pregnancy rate, placental weight and litter size; pregnancies from the 40 degrees C group had increased resorptions at e14.5. Abnormalities in embryonic development were detected at e3.5 and in vitro fertilisation with sperm recovered 16 h or 23 d after scrotal stress at 42 degrees C revealed a block in development between the 4-cell and blastocyst stages. This study has provided evidence of temperature-dependent effects on germ cell DNA integrity and highlighted the importance of an intact paternal genome for normal embryo development.
NASA Astrophysics Data System (ADS)
Rosário, Carlos M. M.; Thöner, Bo; Schönhals, Alexander; Menzel, Stephan; Wuttig, Matthias; Waser, Rainer; Sobolev, Nikolai A.; Wouters, Dirk J.
2018-05-01
Conductive filaments play a key role in redox-based resistive random access memory (ReRAM) devices based on the valence change mechanism, where the change of the resistance is ascribed to the modulation of the oxygen content in a local region of these conductive filaments. However, a deep understanding of the filaments' composition and structure is still a matter of debate. We approached the problem by comparing the electronic transport, at temperatures from 300 K down to 2 K, in the filaments and in TaOx films exhibiting a substoichiometric oxygen content. The filaments were created in Ta (15 nm)/Ta2O5 (5 nm)/Pt crossbar ReRAM structures. In the TaOx thin films with various oxygen contents, the in-plane transport was studied. There is a close similarity between the electrical properties of the conductive filaments in the ReRAM devices and of the TaOx films with x ˜ 1, evidencing also no dimensionality difference for the electrical transport. More specifically, for both systems there are two different conduction processes: one in the higher temperature range (from 50 K up to ˜300 K), where the conductivity follows a √{ T } dependence, and one at lower temperatures (<50 K), where the conductivity follows the exp(-1 / √{ T } ) dependence. This suggests a strong similarity between the material composition and structure of the filaments and those of the substoichiometric TaOx films. We also discuss the temperature dependence of the conductivity in the framework of possible transport mechanisms, mainly of those normally observed for granular metals.
Torres Del Río, J; Tornero-López, A M; Guirado, D; Pérez-Calatayud, J; Lallena, A M
2017-06-01
To analyze the air density dependence of the response of the new SourceCheck 4pi ionization chamber, manufactured by PTW. The air density dependence of three different SourceCheck 4pi chambers was studied by measuring 125 I sources. Measurements were taken by varying the pressure from 746.6 to 986.6hPa in a pressure chamber. Three different HDR 1000 Plus ionization chambers were also analyzed under similar conditions. A linear and a potential-like function of the air density were fitted to experimental data and their achievement in describing them was analyzed. SourceCheck 4pi chamber response showed a residual dependence on the air density once the standard pressure and temperature factor was applied. The chamber response was overestimated when the air density was below that under normal atmospheric conditions. A similar dependence was found for the HDR 1000 Plus chambers analyzed. A linear function of the air density permitted a very good description of this residual dependence, better than with a potential function. No significant variability between the different specimens of the same chamber model studied was found. The effect of overestimation observed in the chamber responses once they are corrected for the standard pressure and temperature may represent a non-negligible ∼4% overestimation in high altitude cities as ours (700m AMSL). This overestimation behaves linearly with the air density in all cases analyzed. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chui, Apple Pui Yi; Ang, Put
2015-06-01
To better understand the possible consequences of climate change on reef building scleractinian corals in a marginal environment, laboratory experiments were conducted to examine the interactive effects of changes in salinity and temperature on percent fertilization success and early embryonic development of the coral Platygyra acuta. In the present study, a salinity of 24 psu (ambient 32 psu) reduced fertilization success by 60 %. Normal embryonic development was reduced by >80 % at 26 psu (ambient 33 psu) with 100 % abnormal development at 22 psu under ambient temperature. Elevated temperature (+3 °C) above the ambient spawning temperature did not show any negative effects on fertilization success. However, there was a trend for more abnormal embryos to develop at elevated temperature in the 2 d of the spawning event. The interactive effects between salinity and temperature are statistically significant only on normal embryonic development of P. acuta, but not on its fertilization success. Salinity was revealed to be the main factor affecting both fertilization success and normal embryonic development. Interestingly, the much lower fertilization success (76 %) observed in the second day of spawning (Trial 2) under ambient temperature recovered to 99 % success under elevated (+3 °C) temperature conditions. Moreover, elevated temperature enhanced normal early embryonic development under lowered salinity (26 psu). This antagonistic interactive effect was consistently observed in two successive nights of spawning. Overall, our results indicate that, in terms of its fertilization success and embryonic development, P. acuta is the most tolerant coral species to reduced salinity thus far reported in the literature. Elevated temperature, at least that within the tolerable range of the corals, could apparently alleviate the potential negative effects from salinity stresses. This mitigating role of elevated temperature appears not to have been reported on corals before.
Thermal insulation and body temperature wearing a thermal swimsuit during water immersion.
Wakabayashi, Hitoshi; Hanai, Atsuko; Yokoyama, Shintaro; Nomura, Takeo
2006-09-01
This study evaluated the effects of a thermal swimsuit on body temperatures, thermoregulatory responses and thermal insulation during 60 min water immersion at rest. Ten healthy male subjects wearing either thermal swimsuits or normal swimsuits were immersed in water (26 degrees C or 29 degrees C). Esophageal temperature, skin temperatures and oxygen consumption were measured during the experiments. Metabolic heat production was calculated from oxygen consumption. Heat loss from skin to the water was calculated from the metabolic heat production and the change in mean body temperature during water immersion. Total insulation and tissue insulation were estimated by dividing the temperature difference between the esophagus and the water or the esophagus and the skin with heat loss from the skin. Esophageal temperature with a thermal swimsuit was higher than that with a normal swimsuit at the end of immersion in both water temperature conditions (p<0.05). Oxygen consumption, metabolic heat production and heat loss from the skin were less with the thermal swimsuit than with a normal swimsuit in both water temperatures (p<0.05). Total insulation with the thermal swimsuit was higher than that with a normal swimsuit due to insulation of the suit at both water temperatures (p<0.05). Tissue insulation was similar in all four conditions, but significantly higher with the thermal swimsuit in both water temperature conditions (p<0.05), perhaps due to of the attenuation of shivering during immersion with a thermal swimsuit. A thermal swimsuit can increase total insulation and reduce heat loss from the skin. Therefore, subjects with thermal swimsuits can maintain higher body temperatures than with a normal swimsuit and reduce shivering thermo-genesis.
Weed, Aaron S; Elkinton, Joseph S; Lany, Nina K
2016-12-01
Insect populations are affected by density-dependent and density-independent factors, and knowing how these factors affect long-term population growth is critical to pest management. In this study, we experimentally manipulated densities of the hemlock woolly adelgid on eastern and western hemlock trees in the western USA to evaluate the effects of density and host species on hemlock woolly adelgid crawler colonization. We then followed development of hemlock woolly adelgid on each hemlock species. Settlement of crawlers was strongly density-dependent and consistent between host species. In addition, a period of hot days that coincided with the settlement of hemlock woolly adelgid crawlers put our experimental and naturally occurring populations into diapause during April. Diapause resulted in one generation that yr in our experimental population. Analyses of long-term air temperature records indicated that diapause-inducing temperatures in April similar to those observed in our experiment have occurred rarely since 1909 and the frequency of these events has not changed over time. Prior work suggests that hemlock woolly adelgid completes two generations per yr in the western USA with a diapause occurring in the summer. This typical life history reflects the long-term influence of regional average seasonal temperature patterns on development and the timing of diapause-inducing temperatures. However, the timing of unseasonal weather, such as the hot days observed in our experiment, occasionally changes life history trajectories from this normal pattern. Our results show that density-dependent and density-independent factors have strong effects on generational mortality and life history of hemlock woolly adelgid that are important to its population dynamics and management. Published by Oxford University Press on behalf of Entomological Society of America 2016. This work is written by US Government employees and is in the public domain in the US.
Drag of a Cottrell atmosphere by an edge dislocation in a smectic-A liquid crystal.
Oswald, P; Lejček, L
2017-10-01
In a recent letter (P. Oswald et al., EPL 103, 46004 (2013)), we have shown that a smectic-A phase hardens in compression normal to the layers when the liquid crystal is doped with gold nanoparticles. This is due to the formation of Cottrell clouds nearby the core of the edge dislocations and the appearance of an additional drag force that reduces their mobility. We theoretically calculate the shape of the Cottrell cloud and the associated drag force as a function of the climb velocity of the dislocations. The main result is that the drag force depends on velocity and vanishes when the temperature tends to the smectic-A-to-nematic transition temperature. The role of the diffusion anisotropy is also evaluated.
Superconductivity and anomalous normal state in the CePd 2Si 2/CeNi 2Ge 2 system
NASA Astrophysics Data System (ADS)
Grosche, F. M.; Lister, S. J. S.; Carter, F. V.; Saxena, S. S.; Haselwimmer, R. K. W.; Mathur, N. D.; Julian, S. R.; Lonzarich, G. G.
1997-02-01
The unconventional nonmagnetic metal CeNi 2Ge 2 is characterised at ambient pressure by temperature dependences of the specific heat and of the resistivity which deviate strongly from standard Fermi-liquid predictions and are reminiscent of the behaviour observed in its sibling system CePd 2Si 2 above the critical pressure at which magnetic order is suppressed. We have explored the CePd 2Si 2/CeNi 2Ge 2 phase diagram in a series of resistivity measurements under high hydrostatic pressure, p. At p > 15 kbar, a new superconducting transition appears below 220 mK in CeNi 2Ge 2 and shifts to higher temperatures with increasing pressure, reaching ≈400 mK at p ≈ 26 kbar.
Broken symmetry and critical transport properties of random metals
Phillips, J. C.
1997-01-01
Recent experimental data on the conductivity σ+(T), T → 0, on the metallic side of the metal–insulator transition in ideally random (neutron transmutation-doped) 70Ge:Ga have shown that σ+(0) ∝ (N − Nc)μ with μ = ½, confirming earlier ultra-low-temperature results for Si:P. This value is inconsistent with theoretical predictions based on diffusive classical scaling models, but it can be understood by a quantum-directed percolative filamentary amplitude model in which electronic basis states exist which have a well-defined momentum parallel but not normal to the applied electric field. The model, which is based on a new kind of broken symmetry, also explains the anomalous sign reversal of the derivative of the temperature dependence in the critical regime. PMID:11038579
Superconducting and normal-state properties of the layered boride OsB2
NASA Astrophysics Data System (ADS)
Singh, Yogesh; Niazi, A.; Vannette, M. D.; Prozorov, R.; Johnston, D. C.
2007-12-01
OsB2 crystallizes in an orthorhombic structure (Pmmn) which contains alternate boron and osmium layers stacked along the c axis. The boron layers consist of puckered hexagons as opposed to the flat graphite-like boron layers in MgB2 . OsB2 is reported to become superconducting below 2.1K . We report results of the dynamic and static magnetic susceptibilities, electrical resistivity, Hall effect, heat capacity, and penetration depth measurements on arc-melted polycrystalline samples of OsB2 to characterize its superconducting and normal-state properties. These measurements confirmed that OsB2 becomes a bulk superconductor below Tc=2.1K . Our results indicate that OsB2 is a moderate-coupling type-II superconductor with an electron-phonon coupling constant λep≈0.4-0.5 , a small Ginzburg-Landau parameter κ˜1-2 , and an upper critical magnetic field Hc2(0.5K)˜420Oe for an unannealed sample and Hc2(1K)˜330Oe for an annealed sample. The temperature dependence of the superfluid density ns(T) for the unannealed sample is consistent with an s -wave superconductor with a slightly enhanced zero temperature gap Δ(0)=1.9kBTc and a zero temperature London penetration depth λ(0)=0.38(2)μm . The ns(T) data for the annealed sample show deviations from the predictions of the single-band s -wave BCS model. The magnetic, transport, and thermal properties in the normal state of isostructural and isoelectronic RuB2 , which is reported to become superconducting below 1.6K , are also reported.
Second-sound studies of coflow and counterflow of superfluid {sup 4}He in channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varga, Emil; Skrbek, L.; Babuin, Simone, E-mail: babuin@fzu.cz
2015-06-15
We report a comprehensive study of turbulent superfluid {sup 4}He flow through a channel of square cross section. We study for the first time two distinct flow configurations with the same apparatus: coflow (normal and superfluid components move in the same direction), and counterflow (normal and superfluid components move in opposite directions). We realise also a variation of counterflow with the same relative velocity, but where the superfluid component moves while there is no net flow of the normal component through the channel, i.e., pure superflow. We use the second-sound attenuation technique to measure the density of quantised vortex linesmore » in the temperature range 1.2 K ≲ T ≲ T{sub λ} ≈ 2.18 K and for flow velocities from about 1 mm/s up to almost 1 m/s in fully developed turbulence. We find that both the steady-state and temporal decay of the turbulence significantly differ in the three flow configurations, yielding an interesting insight into two-fluid hydrodynamics. In both pure superflow and counterflow, the same scaling of vortex line density with counterflow velocity is observed, L∝V{sub cf}{sup 2}, with a pronounced temperature dependence; in coflow instead, the vortex line density scales with velocity as L ∝ V{sup 3/2} and is temperature independent; we provide theoretical explanations for these observations. Further, we develop a new promising technique to use different second-sound resonant modes to probe the spatial distribution of quantised vortices in the direction perpendicular to the flow. Preliminary measurements indicate that coflow is less homogeneous than counterflow/superflow, with a denser concentration of vortices between the centre of the channel and its walls.« less
Slowdown of Interhelical Motions Induces a Glass Transition in RNA
Frank, Aaron T.; Zhang, Qi; Al-Hashimi, Hashim M.; Andricioaei, Ioan
2015-01-01
RNA function depends crucially on the details of its dynamics. The simplest RNA dynamical unit is a two-way interhelical junction. Here, for such a unit—the transactivation response RNA element—we present evidence from molecular dynamics simulations, supported by nuclear magnetic resonance relaxation experiments, for a dynamical transition near 230 K. This glass transition arises from the freezing out of collective interhelical motional modes. The motions, resolved with site-specificity, are dynamically heterogeneous and exhibit non-Arrhenius relaxation. The microscopic origin of the glass transition is a low-dimensional, slow manifold consisting largely of the Euler angles describing interhelical reorientation. Principal component analysis over a range of temperatures covering the glass transition shows that the abrupt slowdown of motion finds its explanation in a localization transition that traps probability density into several disconnected conformational pools over the low-dimensional energy landscape. Upon temperature increase, the probability density pools then flood a larger basin, akin to a lakes-to-sea transition. Simulations on transactivation response RNA are also used to backcalculate inelastic neutron scattering data that match previous inelastic neutron scattering measurements on larger and more complex RNA structures and which, upon normalization, give temperature-dependent fluctuation profiles that overlap onto a glass transition curve that is quasi-universal over a range of systems and techniques. PMID:26083927
Solid He: Progress, Status, and Outlook for Mass Flux Measurements
NASA Astrophysics Data System (ADS)
Hallock, R. B.
2015-07-01
After a brief introduction, what is provided there is brief summary of work with solid He done at the University of Massachusetts Amherst and an outlook for future work. What is presented here is based on a presentation made at the Quantum Gases Fluids and Solids Workshop in Sao Paulo, Brazil in August of 2014. Our work with solid He is aimed at the question: Can a sample cell filled with solid He support a mass flux through the cell? The answer, as will be shown here, is yes. Evidence for this from several types of experiments will be reviewed. There will be an emphasis on more recent work, work that explores how the flux observed depends on temperature and on the He impurity level. The behavior observed suggests that solid He may be an example of a material that demonstrates Bosonic Luttinger liquid behavior. The normalized He flux has a universal temperature dependence. The presence of He at different impurity levels shows that the He blocks the flux at a characteristic temperature. The behavior appears to be consistent with the cores of dislocations as the entity that carries the flux, but it is clear that more work needs to be done to fully understand solid He.
NASA Astrophysics Data System (ADS)
Stafford, B. H.; Sieger, M.; Ottolinger, R.; Meledin, A.; Strickland, N. M.; Wimbush, S. C.; Van Tendeloo, G.; Hühne, R.; Schultz, L.
2017-05-01
We grow BaHfO3 (BHO) nanorods in REBa2Cu3O7-x (REBCO, RE: Gd or Y) thin films on metal tapes coated with the inclined substrate deposited (ISD)-MgO template by both electron beam physical vapour deposition and pulsed laser deposition. In both cases the nanorods are inclined by an angle of 21°-29° with respect to the sample surface normal as a consequence of the tilted growth of the REBCO film resulting from the ISD-MgO layer. We present angular critical current density (J c) anisotropy as well as field- and temperature-dependant J c data of the BHO nanorod-containing GdBCO films demonstrating an increase in J c over a wide range of temperatures between 30 and 77 K and magnetic fields up to 8 T. In addition, we show that the angle of the peak in the J c anisotropy curve resulting from the nanorods is dependent both on temperature and magnetic field. The largest J c enhancement from the addition of the nanorods was found to occur at 30 K, 3 T, resulting in a J c of 3.0 MA cm-2.
Doping-induced change of optical properties in underdoped cuprate superconductors
NASA Astrophysics Data System (ADS)
Liu, H. L.; Quijada, M. A.; Zibold, A. M.; Yoon, Y.-D.; Tanner, D. B.; Cao, G.; Crow, J. E.; Berger, H.; Margaritondo, G.; Forró, L.; O, Beom-Hoan; Markert, J. T.; Kelly, R. J.; Onellion, M.
1999-01-01
We report on the ab-plane optical reflectance measurements of single crystals of Y-doped 0953-8984/11/1/020/img15 and Pr-doped 0953-8984/11/1/020/img16 over a wide frequency range from 80 to 0953-8984/11/1/020/img17 (10 meV-5 eV) and at temperatures between 20 and 300 K. Y and Pr doping both decrease the hole concentration in the 0953-8984/11/1/020/img18 planes. This has allowed us to investigate the evolution of ab-plane charge dynamics at doping levels ranging from heavily underdoped to nearly optimally doped. Our results of the low-frequency optical conductivity and spectral weight do not show any features associated with the normal-state pseudogap. Instead, one-component analysis for the optical conductivity shows the low-frequency depression in the scattering rate at 0953-8984/11/1/020/img19, signalling entry into the pseudogap state. Alternatively, no clear indications of the normal-state pseudogap are detected in the temperature-dependent zero-frequency free-carrier scattering rate by using two-component analysis. In the superconducting state, there is also no convincing evidence of superconducting gap absorption in all spectra. We find that there is a `universal correlation' between the numbers of carriers and the transition temperature. This correlation holds whether one considers the number of carriers in the superfluid or the total number of carriers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horlait, D.; Clavier, N.; Szenknect, S.
2012-03-15
The dissolution of Ce{sub 1-x}Ln{sub x}O{sub 2-x/2} solid solutions was undertaken in various acid media in order to evaluate the effects of several physicochemical parameters such as chemical composition, temperature, and acidity on the reaction kinetics. The normalized dissolution rates (R{sub L,0}) were found to be strongly modified by the trivalent lanthanide incorporation rate, due to the presence of oxygen vacancies decreasing the samples cohesion. Conversely, the nature of the trivalent cation considered only weakly impacted the R{sub L,0} values. The dependence of the normalized dissolution rates on the temperature then appeared to be of the same order of magnitudemore » than that of chemical composition. Moreover, it allowed determining the corresponding activation energy (E{sub A} ≅ 60-85 kJ.mol{sup -1}) which accounts for a dissolution driven by surface-controlled reactions. A similar conclusion was made regarding the acidity of the solution: the partial order related to (H{sub 3}O{sup +}) reaching about 0.7. Finally, the prevailing effect of the incorporation of aliovalent cations in the fluorite-type CeO{sub 2} matrix on the dissolution kinetics precluded the observation of slight effects such as those linked to the complexing agents or to the crystal structure of the samples. (authors)« less
Do acute phase markers explain body temperature and brain temperature after ischemic stroke?
Whiteley, William N.; Thomas, Ralph; Lowe, Gordon; Rumley, Ann; Karaszewski, Bartosz; Armitage, Paul; Marshall, Ian; Lymer, Katherine; Dennis, Martin
2012-01-01
Objective: Both brain and body temperature rise after stroke but the cause of each is uncertain. We investigated the relationship between circulating markers of inflammation with brain and body temperature after stroke. Methods: We recruited patients with acute ischemic stroke and measured brain temperature at hospital admission and 5 days after stroke with multivoxel magnetic resonance spectroscopic imaging in normal brain and the acute ischemic lesion (defined by diffusion-weighted imaging [DWI]). We measured body temperature with digital aural thermometers 4-hourly and drew blood daily to measure interleukin-6, C-reactive protein, and fibrinogen, for 5 days after stroke. Results: In 44 stroke patients, the mean temperature in DWI-ischemic brain soon after admission was 38.4°C (95% confidence interval [CI] 38.2–38.6), in DWI-normal brain was 37.7°C (95% CI 37.6–37.7), and mean body temperature was 36.6°C (95% CI 36.3–37.0). Higher mean levels of interleukin-6, C-reactive protein, and fibrinogen were associated with higher temperature in DWI-normal brain at admission and 5 days, and higher overall mean body temperature, but only with higher temperature in DWI-ischemic brain on admission. Conclusions: Systemic inflammation after stroke is associated with elevated temperature in normal brain and the body but not with later ischemic brain temperature. Elevated brain temperature is a potential mechanism for the poorer outcome observed in stroke patients with higher levels of circulating inflammatory markers. PMID:22744672
Core temperature rhythms in normal and tumor-bearing mice.
Griffith, D J; Busot, J C; Lee, W E; Djeu, D J
1993-01-01
The core temperature temporal behavior of DBA/2 mice (11 normal and 13 with an ascites tumor) was studied using surgically implanted radio telemetry transmitters. Normal mice continuously displayed a stable 24 hour temperature rhythm. Tumor-bearers displayed a progressive deterioration of the temperature rhythm following inoculation with tumor cells. While such disruptions have been noted by others, details on the dynamics of the changes have been mostly qualitative, often due to time-averaging or steady-state analysis of the data. The present study attempts to quantify the dynamics of the disruption of temperature rhythm (when present) by continuously monitoring temperatures over periods up to a month. Analysis indicated that temperature regulation in tumor-bearers was adversely affected during the active period only. Furthermore, it appears that the malignancy may be influencing temperature regulation via pathways not directly attributable to the energy needs of the growing tumor.
NASA Astrophysics Data System (ADS)
Makhlouf, Mohamed M.; El-Denglawey, Adel
2018-04-01
Methyl red (MR) powder is polycrystalline structure as-purchased. The uniform, homogeneous and no cracks nano MR thin films are successfully prepared using thermal evaporation technique. The structural investigation for the pristine, annealed and UV irradiated MR films shows nanorods spread in amorphous medium. The part of as-prepared films exposed to UV light irradiation of wavelength 254 nm and intensity of 2000 µW/cm2 for 1 h, while the other part of films was treated by the annealing temperature at 178 °C for 1 h. The optical properties of MR thin films were investigated using spectrophotometric measurements of the transmittance and reflectance at normal incidence in the spectral range 200-2000 nm. The optical constants, dispersion parameters, and energy loss and dielectric functions of MR thin films were calculated and showed remarkable dependence on UV irradiation and annealing temperature upon the films of MR. The dependence of absorption coefficient on the photon energy were analyzed and the results showed that MR films undergo direct allowed optical transition for pristine, annealed and irradiated MR films.
Strain induced ferromagnetism and large magnetoresistance of epitaxial La1.5Sr0.5CoMnO6 thin films
NASA Astrophysics Data System (ADS)
Krishna Murthy, J.; Jyotsna, G.; N, Nileena; Anil Kumar, P. S.
2017-08-01
In this study, the structural, magnetic, and magneto-transport properties of La1.5Sr0.5CoMnO6 (LSCMO) thin films deposited on a SrTiO3 (001) substrate were investigated. A normal θ/2θ x-ray diffraction, rocking curve, ϕ-scan, and reciprocal space mapping data showed that prepared LSCMO thin films are single phase and highly strained with epitaxial nature. Temperature vs. magnetization of LSCMO films exhibits strain-induced ferromagnetic ordering with TC ˜ 165 K. In contrast to the bulk samples, there was no exchange bias and canted type antiferromagnetic and spin glass behavior in films having thickness (t) ≤ 26 nm. Temperature dependent resistivity data were explained using Schnakenberg's model and the polaron hopping conduction process. The slope change in resistivity and magnetoresistance maximum (˜65%) around TC indicates the existence of a weak double exchange mechanism between the mixed valence states of transition metal ions. Suppression of spin dependent scattering with the magnetic field is attributed for the large negative magnetoresistance in LSCMO films.
μSR and NMR study of the superconducting Heusler compound YPd2Sn
NASA Astrophysics Data System (ADS)
Saadaoui, H.; Shiroka, T.; Amato, A.; Baines, C.; Luetkens, H.; Pomjakushina, E.; Pomjakushin, V.; Mesot, J.; Pikulski, M.; Morenzoni, E.
2013-09-01
We report on muon-spin rotation and relaxation (μSR) and 119Sn nuclear magnetic resonance (NMR) measurements to study the microscopic superconducting and magnetic properties of the Heusler compound with the highest superconducting transition temperature, YPd2Sn (Tc=5.4 K). Measurements in the vortex state provide the temperature dependence of the effective magnetic penetration depth λ(T) and the field dependence of the superconducting gap Δ(0). The results are consistent with a very dirty s-wave BCS superconductor with a gap Δ(0)=0.85(3) meV, λ(0)=212(1) nm, and a Ginzburg-Landau coherence length ξGL(0)≅23 nm. In spite of its very dirty character, the effective density of condensed charge carriers is high compared to that in the normal state. The μSR data in a broad range of applied fields are well reproduced by taking into account a field-related reduction of the effective superconducting gap. Zero-field μSR measurements, sensitive to the possible presence of very small magnetic moments, do not show any indications of magnetism in this compound.
Dynamic Jahn-Teller effect in the parent insulating state of the molecular superconductor Cs₃C₆₀.
Klupp, Gyöngyi; Matus, Péter; Kamarás, Katalin; Ganin, Alexey Y; McLennan, Alec; Rosseinsky, Matthew J; Takabayashi, Yasuhiro; McDonald, Martin T; Prassides, Kosmas
2012-06-19
The 'expanded fulleride' Cs(3)C(60) is an antiferromagnetic insulator in its normal state and becomes a molecular superconductor with T(c) as high as 38 K under pressure. There is mounting evidence that superconductivity is not of the conventional BCS type and electron-electron interactions are essential for its explanation. Here we present evidence for the dynamic Jahn-Teller effect as the source of the dramatic change in electronic structure occurring during the transition from the metallic to the localized state. We apply infrared spectroscopy, which can detect subtle changes in the shape of the C(60)3- ion due to the Jahn-Teller distortion. The temperature dependence of the spectra in the insulating phase can be explained by the gradual transformation from two temperature-dependent solid-state conformers to a single one, typical and unique for Jahn-Teller systems. These results unequivocally establish the relevance of the dynamic Jahn-Teller effect to overcoming Hund's rule and forming a low-spin state, leading to a magnetic Mott-Jahn-Teller insulator.
NASA Technical Reports Server (NTRS)
Fu, C. M.; Chen, C. M.; Lin, H. C.; Wu, K. H.; Juang, J. Y.; Uen, T. M.; Gou, Y. S.
1995-01-01
We have studied systematically the effect of microwave irradiation on the temperature dependent resistivity (R(I) and the current-voltage (I-V) characteristics of YBa2Gu3O(7 - x) (YBCO) bicrystalline grain boundary weak-links (GBWL's), with grain boundary of three different tilt angles. The superconducting transition temperature, T(sub c), has significant enhancement upon microwave irradiation. The microwave enhanced T(sub c) is increased as a function of incident microwave power, but limited to an optimum power level. The GBWL's of 45 deg tilt boundary has shown to be most sensitive to the microwave irradiation power, and the GBWL's of 36.8 deg tilt boundary has displayed a moderate response. In contrast, no enhancement of T(sub c) was observed in the GBWL's of 24 deg tilt boundary, as well as in the uniform films. Under the microwave irradiation, the R(T) dependent is hystertic as the transition taken from superconducting state to normal state and vice versa. Mechanisms associated with the redistribution of nonequilibrium quasiparticles under microwave irradiation are discussed.
NASA Technical Reports Server (NTRS)
Sadleir, John E.
2010-01-01
We have recently shown that normal-metal/superconductor (N/S) bilayer TESs (superconducting Transition-Edge Sensors) exhibit weak-link behavior. Our measurements were explained in terms of a longitudinal proximity effect model in which superconducting order from the higher transition temperature leads is induced into the TES bilayer plane over remarkably long distances (up to 290 micron). Here we extend our understanding to include TESs with added noise-mitigating normal-metal structures (N structures). We explain our results of an effect converse to the longitudinal proximity effect (LoPE), the lateral inverse proximity effect (LaiPE), for which the order parameter in the N/S bilayer is reduced due to the neighboring N structures. We present resistance and critical current measurements as a function of temperature and magnetic field taken on square Mo/Au bilayer TESs with lengths ranging from 8 to 130 micron with and without added N structures. We observe the inverse proximity effect on the bilayer over in-plane distances many tens of microns and find the transition shifts to lower temperature scale approximately as the inverse square of the in-plane N-structure separation distance, without appreciable broadening of the transition width. We find TESs with added Au structures exhibit weak-link behavior as evidenced by exponential temperature dependence of the critical current and Josephson-like oscillations of the critical current with applied magnetic field. We also present evidence for nonequilbrium superconductivity and estimate a quasiparticle lifetime of 1.8 x 10(exp -10) s for the bilayer. The LoPE model is also used to explain the increased conductivity at temperatures above the bilayer's steep resistive transition
NASA Technical Reports Server (NTRS)
Sadleir, John E.
2010-01-01
We have recently shown that normal-metal/superconductor (N /S) bilayer TESs (superconducting Transition-Edge Sensors) exhibit weak-link behavior. Our measurements were explained in terms of a longitudinal proximity effect model in which superconducting order from the higher transition temperature leads is induced into the TES bilayer plane over remarkably long distances (up to 290 micron). Here we extend our understanding to include TESs with added noise-mitigating normal-metal structures (N structures). We explain our results in terms of an effect converse to the longitudinal proximity effect (LoPE), the lateral inverse proximity effect (LaiPE), for which the order parameter in the N /S bilayer is reduced due to the neighboring N structures. We present resistance and critical current measurements as a function of temperature and magnetic field taken on square Mo/Au bilayer TESs with lengths ranging from 8 to 130 micron with and without added N structures. We observe the inverse proximity effect on the bilayer over in-plane distances many tens of microns and find the transition shifts to lower temperatures scale approximately as the inverse square of the in-plane N-structure separation distance, without appreciable broadening of the transition width. We find TESs with added Au structures exhibit weak-link behavior as evidenced by exponential temperature dependence of the critical current and Josephson-like oscillations of the critical current with applied magnetic field. We also present evidence for nonequilbrium superconductivity and estimate a quasiparticle lifetime of 1.8 x 10(exp -10) s for the bilayer. The LoPE model is also used to explain the increased conductivity at temperatures above the bilayer's steep resistive transition.
Physicochemical Processes and the Evolution of Strength in Calcite Fault Gouge at Room Temperature
NASA Astrophysics Data System (ADS)
Carpenter, B. M.; Viti, C.; Collettini, C.
2015-12-01
The presence of calcite in and near faults, as the dominant material, cement, or vein fill, indicates that the mechanical behavior of carbonate-dominated material likely plays an important role in shallow- and mid-crustal faulting. Furthermore, a variety of physical and chemical processes control the evolution of strength and style of slip along seismogenic faults and thus play a critical role in the seismic cycle. Determining the role and contributions of these types of mechanisms is essential to furthering our understanding of the processes and timescales that lead to the strengthening of faults during interseismic periods and their behavior during the earthquake nucleation process. To further our understanding of these processes, we performed laboratory-shearing experiments on calcite gouge at normal stresses from 1 to 100 MPa, under conditions of saturation and at room temperature. We performed velocity stepping (0.1-1000μm/s) and slide-hold-slide (1-3000s) tests, to measure the velocity dependence of friction and the amount of frictional strengthening respectively, under saturated conditions with pore fluid that was in equilibrium with CaCO3. At 5 MPa normal stress, we also varied the environmental conditions by performing experiments under conditions of 5% RH and 50 % RH, and saturation with: silicone oil, demineralized water, and the equilibrated solution combined with 0.5M NaCl. Finally, we collected post experimental samples for microscopic analysis. Our combined analyses of rate-dependence, strengthening behavior, and microstructures show that calcite fault gouge transitions from brittle to semi-brittle behavior at high normal stress and low sliding velocities. Furthermore, our results also highlight how changes in pore water chemistry can have significant influence on the mechanical behavior of calcite gouge in both the laboratory and in natural faults. Our observations have important implications for earthquake nucleation and propagation on faults in carbonate-dominated lithologies.
NASA Astrophysics Data System (ADS)
Kapranov, Sergey V.; Kouzaev, Guennadi A.
2018-01-01
Variations of effective diffusion coefficient of polar molecules exposed to microwave electric fields in a surface potential are studied by solving coupled stochastic differential equations of motion with a deterministic component of the surface force. Being an essential tool for the simulation interpretation, a theoretical approach to effective diffusion in surface potential is first developed. The effective diffusion coefficient is represented as the product of the normal diffusion coefficient and potential-dependent correction function, whose temperature dependence is close to the Arrhenius form. The analytically found zero-diffusion condition defines the state of thermal equilibrium at the surface. The diffusion of a water-like dipole molecule in the potential of graphite surface is simulated in the field-free conditions and in the presence of the alternating electric fields of various magnitude intensities and frequencies. Temperature dependence of the correction function exhibits field-induced variations of the effective Lennard-Jones energy parameter. It demonstrates maximum departure from the zero-field value at certain frequencies and intensities, which is associated with variations in the rotational dynamics. A concept of the amplitude-frequency resonance put forward to interpret the simulation results is explained using a heuristic reasoning and is corroborated by semi-quantitative considerations in terms of the Dissado-Hill cluster theory of dielectric relaxation.
NASA Astrophysics Data System (ADS)
Dassonneville, B.; Murani, A.; Ferrier, M.; Guéron, S.; Bouchiat, H.
2018-05-01
One of the best known causes of dissipation in ac-driven quantum systems stems from photon absorption causing transitions between levels. Dissipation can also be caused by the retarded response to the time-dependent excitation, and in general gives insight into the system's relaxation times and mechanisms. Here we address the dissipation in a mesoscopic normal wire with superconducting contacts, that sustains a dissipationless supercurrent at zero frequency and that may therefore naively be expected to remain dissipationless at a frequency lower than the superconducting gap. We probe the high-frequency linear response of such a normal metal/superconductor (NS) ring to a time-dependent flux by coupling it to a highly sensitive multimode microwave resonator. Far from being the simple, dissipationless derivative of the supercurrent-versus-phase relation, the ring's ac susceptibility also displays a dissipative component whose phase dependence is a signature of the dynamical processes occurring within the Andreev spectrum. We show how dissipation is driven by the competition between two mechanisms. The first is the relaxation of the Andreev level distribution function, while the second corresponds to microwave-induced transitions within the spectrum. Depending on the relative strength of those contributions, dissipation can be maximal at π , a phase at which the proximity-induced minigap closes, or can be maximal near π /2 , a phase at which the dc supercurrent is maximal. We also find that the dissipative response paradoxically increases at low temperature and can even exceed the normal-state conductance. The results are successfully confronted with theoretical predictions of the Kubo linear response and time-dependent Usadel equations, derived from the Bogoliubov-de Gennes Hamiltonian describing the SNS junction. These experiments thus demonstrate the power of the ac susceptibility measurement of individual hybrid mesoscopic systems in probing in a controlled way the quantum dynamics of Andreev bound states. By spanning different physical regimes, our experiments provide unique access to inelastic scattering and spectroscopy of an isolated quantum coherent system, and reveal the associated relaxation times. This technique should be a tool of choice to investigate topological superconductivity and detect the topological protection of edge states.
Ion-stimulated mass transport in nanoscale morphology evolution
NASA Astrophysics Data System (ADS)
George, Henry Bola
We observe temporal evolution of two distinct lateral length scales in surface topography following low energy, E, argon ion (Ar+) irradiation of Si(001). From real-space AFM topographs, we observe that the short-wavelength, lambda (high-wavenumber, q) evolve as nearly isotropic dots while the longer-lambda (low- q) features appear as isotropic "rings" at normal incidence and as anisotropic ripples at off-normal incidence with their wavevector orthogonal to the ion beam. We explain our results in terms of an interplay between smoothening by ion-enhanced viscous flow and roughening driven by ion sputtering (for high-q features) or elastic strain energy relief (for low- q features). Our proposed mechanisms also explain the weak temperature and flux dependence of both wavelengths. We also observe stable flat surfaces following irradiation at incidence angles greater than 20° from normal, E > 500 eV and temperature > 300°C. To explain non-diverging wavelengths as the smoothening boundary is approached, we present evidence that non-local terms are needed in the height evolution equation. We report the influence of pre-patterned boundaries in guiding ripples appearing during uniform irradiation at high temperatures. Compared to untemplated samples, we observe that the long-range order of the guided ripples is significantly enhanced. We develop a scalar figure of merit to characterize the degree of order of the patterns. We observe that templating is most efficient when the boundaries are separated by an integer multiple of the spontaneously arising wavelength. We report new observations following ion sculpting of nanopores. Among these are: (1) The formation of nanopores is not limited to insulators: we successfully close pores in other materials including silicon dioxide, amorphous silicon (semiconductor) and palladium silicide (metallic glass). (2) Pores retain "memory" of their initial radius: at the same instantaneous radius, pores that started off smaller require less argon fluence for closure. (3) In some cases the closure rate increases strongly with temperature but saturates at higher temperatures. As a partial explanation to these observations, we propose that anisotropic strain deformation is not limited to MeV irradiation of amorphous materials but plays an important role even in the keV regime.
Alginate-Encapsulation for the Improved Hypothermic Preservation of Human Adipose-Derived Stem Cells
Swioklo, Stephen; Constantinescu, Andrei
2016-01-01
Despite considerable progress within the cell therapy industry, unmet bioprocessing and logistical challenges associated with the storage and distribution of cells between sites of manufacture and the clinic exist. We examined whether hypothermic (4°C–23°C) preservation of human adipose-derived stem cells could be improved through their encapsulation in 1.2% calcium alginate. Alginate encapsulation improved the recovery of viable cells after 72 hours of storage. Viable cell recovery was highly temperature-dependent, with an optimum temperature of 15°C. At this temperature, alginate encapsulation preserved the ability for recovered cells to attach to tissue culture plastic on rewarming, further increasing its effect on total cell recovery. On attachment, the cells were phenotypically normal, displayed normal growth kinetics, and maintained their capacity for trilineage differentiation. The number of cells encapsulated (up to 2 × 106 cells per milliliter) did not affect viable cell recovery nor did storage of encapsulated cells in a xeno-free, serum-free,current Good Manufacturing Practice-grade medium. We present a simple, low-cost system capable of enhancing the preservation of human adipose-derived stem cells stored at hypothermic temperatures, while maintaining their normal function. The storage of cells in this manner has great potential for extending the time windows for quality assurance and efficacy testing, distribution between the sites of manufacture and the clinic, and reducing the wastage associated with the limited shelf life of cells stored in their liquid state. Significance Despite considerable advancement in the clinical application of cell-based therapies, major logistical challenges exist throughout the cell therapy supply chain associated with the storage and distribution of cells between the sites of manufacture and the clinic. A simple, low-cost system capable of preserving the viability and functionality of human adipose-derived stem cells (a cell with substantial clinical interest) at hypothermic temperatures (0°C–32°C) is presented. Such a system has considerable potential for extending the shelf life of cell therapy products at multiple stages throughout the cell therapy supply chain. PMID:26826163
NASA Astrophysics Data System (ADS)
Ghaderi Yeganeh, Mohammad
Global energy consumption has been increasing around the world, owing to the rapid growth of industrialization and improvements in the standard of living. As a result, more carbon dioxide and nitrogen oxide are being released into the environment. Therefore, techniques for achieving combustion at reduced carbon dioxide and nitric oxide emission levels have drawn increased attention. Combustion with a highly preheated air and low-oxygen concentration has been shown to provide significant energy savings, reduce pollution and equipment size, and uniform thermal characteristics within the combustion chamber. However, the fundamental understanding of this technique is limited. The motivation of the present study is to identify the effects of preheated combustion air on laminar coflow diffusion flames. Combustion characteristics of laminar coflow diffusion flames are evaluated for the effects of preheated combustion air temperature under normal and low-gravity conditions. Experimental measurements are conducted using direct flame photography, particle image velocimetry (PIV) and optical emission spectroscopy diagnostics. Laminar coflow diffusion flames are examined under four experimental conditions: normal-temperature/normal-gravity (case I), preheated-temperature/normal gravity (case II), normal-temperature/low-gravity (case III), and preheated-temperature/low-gravity (case IV). Comparisons between these four cases yield significant insights. In our studies, increasing the combustion air temperature by 400 K (from 300 K to 700 K), causes a 37.1% reduction in the flame length and about a 25% increase in peak flame temperature. The results also show that a 400 K increase in the preheated air temperature increases CH concentration of the flame by about 83.3% (CH is a marker for the rate of chemical reaction), and also increases the C2 concentration by about 60% (C2 is a marker for the soot precursor). It can therefore be concluded that preheating the combustion air increases the energy release intensity, flame temperature, C2 concentration, and, presumably, NOx production. Our work is the first to consider preheated temperature/low-gravity combustion. The results of our experiments reveal new insights. Where as increasing the temperature of the combustion air reduces the laminar flame width under normal gravity, we find that, in a low-gravity environment, increasing the combustion air temperature causes a significant increase in the flame width.
Ehleringer, James R.; Björkman, Olle
1978-01-01
Measurements of the dependence of photosynthesis on light, CO2, and temperature are reported for two species of Encelia (Compositae) which differ in leaf pubescence and in geographical distribution. Encelia californica is glabrous and occurs in relatively mild, but arid habitats and Encelia farinosa is heavily pubescent and occurs in hot, arid habitats. Both species possess the C3 photosynthetic pathway. Under high irradiances and normal atmospheric conditions the two species have high photosynthetic rates, exceeding 3 nanomoles of CO2 per square centimeter per second (48 milligrams of CO2 per square decimeter per hour) and complete light saturation does not occur by full noon sunlight. The high photosynthetic capacity is related to a high efficiency of utilization of intercellular CO2 combined with high stomatal conductance. Leaf estimates of total soluble protein and fraction I protein are higher in these species than in most plants, although the proportion of fraction I protein is not higher. Both E. californica and E. farinosa attain a maximum rate of photosynthesis between 25 and 30 C, despite the fact that the two species grow in very different thermal habitats. Neither E. californica nor E. farinosa shows significant acclimation in the temperature dependence of photosynthesis when grown under different temperature regimes. The presence of leaf hairs which reduce leaf absorptance and consequently leaf temperature plays an important part in the ability of E. farinosa to survive in its native high temperature environment. When the effects of pubescence are taken into account, there are few if any significant differences in the photosynthetic characteristics of the two species. PMID:16660483
Deveson, Ira W.; Holleley, Clare E.; Blackburn, James; Marshall Graves, Jennifer A.; Mattick, John S.; Waters, Paul D.; Georges, Arthur
2017-01-01
In many vertebrates, sex of offspring is determined by external environmental cues rather than by sex chromosomes. In reptiles, for instance, temperature-dependent sex determination (TSD) is common. Despite decades of work, the mechanism by which temperature is converted into a sex-determining signal remains mysterious. This is partly because it is difficult to distinguish the primary molecular events of TSD from the confounding downstream signatures of sexual differentiation. We use the Australian central bearded dragon, in which chromosomal sex determination is overridden at high temperatures to produce sex-reversed female offspring, as a unique model to identify TSD-specific features of the transcriptome. We show that an intron is retained in mature transcripts from each of two Jumonji family genes, JARID2 and JMJD3, in female dragons that have been sex-reversed by temperature but not in normal chromosomal females or males. JARID2 is a component of the master chromatin modifier Polycomb Repressive Complex 2, and the mammalian sex-determining factor SRY is directly regulated by an independent but closely related Jumonji family member. We propose that the perturbation of JARID2/JMJD3 function by intron retention alters the epigenetic landscape to override chromosomal sex-determining cues, triggering sex reversal at extreme temperatures. Sex reversal may then facilitate a transition from genetic sex determination to TSD, with JARID2/JMJD3 intron retention preserved as the decisive regulatory signal. Significantly, we also observe sex-associated differential retention of the equivalent introns in JARID2/JMJD3 transcripts expressed in embryonic gonads from TSD alligators and turtles, indicative of a reptile-wide mechanism controlling TSD. PMID:28630932
Deveson, Ira W; Holleley, Clare E; Blackburn, James; Marshall Graves, Jennifer A; Mattick, John S; Waters, Paul D; Georges, Arthur
2017-06-01
In many vertebrates, sex of offspring is determined by external environmental cues rather than by sex chromosomes. In reptiles, for instance, temperature-dependent sex determination (TSD) is common. Despite decades of work, the mechanism by which temperature is converted into a sex-determining signal remains mysterious. This is partly because it is difficult to distinguish the primary molecular events of TSD from the confounding downstream signatures of sexual differentiation. We use the Australian central bearded dragon, in which chromosomal sex determination is overridden at high temperatures to produce sex-reversed female offspring, as a unique model to identify TSD-specific features of the transcriptome. We show that an intron is retained in mature transcripts from each of two Jumonji family genes, JARID2 and JMJD3 , in female dragons that have been sex-reversed by temperature but not in normal chromosomal females or males. JARID2 is a component of the master chromatin modifier Polycomb Repressive Complex 2, and the mammalian sex-determining factor SRY is directly regulated by an independent but closely related Jumonji family member. We propose that the perturbation of JARID2/JMJD3 function by intron retention alters the epigenetic landscape to override chromosomal sex-determining cues, triggering sex reversal at extreme temperatures. Sex reversal may then facilitate a transition from genetic sex determination to TSD, with JARID2/JMJD3 intron retention preserved as the decisive regulatory signal. Significantly, we also observe sex-associated differential retention of the equivalent introns in JARID2/JMJD3 transcripts expressed in embryonic gonads from TSD alligators and turtles, indicative of a reptile-wide mechanism controlling TSD.
Efaw, Morgan L.; Williams, Rebecca M.
2013-01-01
Advances in understanding the molecular regulation of longitudinal growth have led to development of novel drug therapies for growth plate disorders. Despite progress, a major unmet challenge is delivering therapeutic agents to avascular-cartilage plates. Dense extracellular matrix and lack of penetrating blood vessels create a semipermeable “barrier,” which hinders molecular transport at the vascular-cartilage interface. To overcome this obstacle, we used a hindlimb heating model to manipulate bone circulation in 5-wk-old female mice (n = 22). Temperatures represented a physiological range of normal human knee joints. We used in vivo multiphoton microscopy to quantify temperature-enhanced delivery of large molecules into tibial growth plates. We tested the hypothesis that increasing hindlimb temperature from 22°C to 34°C increases vascular access of large systemic molecules, modeled using 10, 40, and 70 kDa dextrans that approximate sizes of physiological regulators. Vascular access was quantified by vessel diameter, velocity, and dextran leakage from subperichondrial plexus vessels and accumulation in growth plate cartilage. Growth plate entry of 10 kDa dextrans increased >150% at 34°C. Entry of 40 and 70 kDa dextrans increased <50%, suggesting a size-dependent temperature enhancement. Total dextran levels in the plexus increased at 34°C, but relative leakage out of vessels was not temperature dependent. Blood velocity and vessel diameter increased 118% and 31%, respectively, at 34°C. These results demonstrate that heat enhances vascular carrying capacity and bioavailability of large molecules around growth plates, suggesting that temperature could be a noninvasive strategy for modulating delivery of therapeutics to impaired growth plates of children. PMID:24371019
Low temperature Mössbauer spectroscopic studies on Sm3+ doped Zn-Mn ferrites
NASA Astrophysics Data System (ADS)
Jagadeesha Angadi, V.; Kubrin, S. P.; Sarychev, D. A.; Matteppanavar, Shidaling; Rudraswamy, B.; Liu, Hsiang-Lin; Praveena, K.
2017-11-01
For the first time, we report on the low temperature Mössbauer spectroscopic study of Zn2+0.5Mn2+0.5Sm3+xFe3+2-xO4 (where x = 0.01-0.05) prepared by the modified solution combustion method using a mixture of urea and glucose as a fuel. The Mössbauer spectroscopy at room and low temperatures was applied to understand the magnetic properties of the samples. The room temperature Mössbauer spectroscopy results suggest that the occupation of the octahedral sites by Sm3+ ions leads to the distortion enhancement of 57Fe nuclei environments, which leads to an increase in quadrupole splitting Δ values of D2 and D3 doublets. The low temperature Mössbauer spectroscopy results indicate that the presence of Sm3+ ions in the octahedron sites causes the decrease in the number of Fe-O-Fe chains. The transformation of Mössbauer spectra doublets into Zeeman sextets is accompanied by a significant decrease in the magnitude IM of Mössbauer spectra intensity within the 0-1.2 mm/s velocity range normalized to its value at 300 K. This drop in the temperature dependence of IM allows one to obtain the magnetic phase transition temperature TM from the Mössbauer experiment.
An experimental investigation of temperature rise during compaction of pharmaceutical powders.
Krok, Alexander; Mirtic, Andreja; Reynolds, Gavin K; Schiano, Serena; Roberts, Ron; Wu, Chuan-Yu
2016-11-20
During pharmaceutical powder compaction, temperature rise in the compressed powder can affect physiochemical properties of the powder, such as thermal degradation and change in crystallinity. Thus, it is of practical importance to understand the effect of process conditions and material properties on the thermal response of pharmaceutical formulations during compaction. The aim of this study was to examine the temperature rise of pharmaceutical powders during tableting, in particular, to explore how the temperature rise depends on material properties, compression speed and tablet shape. Three grades of microcrystalline cellulose (MCC) were considered: MCC Avicel pH 101, MCC Avicel pH 102 and MCC DG. These powders were compressed using a compaction simulator at various compaction speeds (10-500mm/s). Flat faced, shallow convex and normal convex tablets were produced and temperature distributions on the surface of theses tablets upon ejection were examined using an infrared thermoviewer. It was found that an increase in the compaction speed led to an increase in the average surface temperature. A higher surface temperature was induced when the powder was compressed into a tablet with larger surface curvature. This was primarily due to the increasing degree of powder deformation (i.e. the volume reduction) and the effect of interparticule/wall friction. Copyright © 2016 Elsevier B.V. All rights reserved.
Warm Body Temperature Facilitates Energy Efficient Cortical Action Potentials
Yu, Yuguo; Hill, Adam P.; McCormick, David A.
2012-01-01
The energy efficiency of neural signal transmission is important not only as a limiting factor in brain architecture, but it also influences the interpretation of functional brain imaging signals. Action potential generation in mammalian, versus invertebrate, axons is remarkably energy efficient. Here we demonstrate that this increase in energy efficiency is due largely to a warmer body temperature. Increases in temperature result in an exponential increase in energy efficiency for single action potentials by increasing the rate of Na+ channel inactivation, resulting in a marked reduction in overlap of the inward Na+, and outward K+, currents and a shortening of action potential duration. This increase in single spike efficiency is, however, counterbalanced by a temperature-dependent decrease in the amplitude and duration of the spike afterhyperpolarization, resulting in a nonlinear increase in the spike firing rate, particularly at temperatures above approximately 35°C. Interestingly, the total energy cost, as measured by the multiplication of total Na+ entry per spike and average firing rate in response to a constant input, reaches a global minimum between 37–42°C. Our results indicate that increases in temperature result in an unexpected increase in energy efficiency, especially near normal body temperature, thus allowing the brain to utilize an energy efficient neural code. PMID:22511855
Strength of Wet and Dry Montmorillonite
NASA Astrophysics Data System (ADS)
Morrow, C. A.; Lockner, D. A.; Moore, D. E.
2015-12-01
Montmorillonite, an expandable smectite clay, is a common mineral in fault zones to a depth of around 3 km. Its low strength relative to other common fault gouge minerals is important in many models of fault rheology. However, the coefficient of friction is not well constrained in the literature due to the difficulty of establishing fully drained or fully dried states in the laboratory. For instance, in some reported studies, samples were either partially saturated or possibly over pressured, leading to wide variability in reported shear strength. In this study, the coefficient of friction, μ, of both saturated and oven-dried (at 150°C) Na-montmorillonite was measured at normal stresses up to 680 MPa at room temperature and shortening rates from 1.0 to 0.01 μm/s. Care was taken to shear saturated samples slowly enough to avoid pore fluid overpressure in the clay layers. Coefficients of friction are reported after 8 mm of axial displacement in a triaxial apparatus on saw-cut samples containing a layer of montmorillonite gouge, with either granite or sandstone driving blocks. For saturated samples, μ increased from around 0.1 at low pressure to 0.25 at the highest test pressures. In contrast, values for oven-dried samples decreased asymptotically from approximately 0.78 at 10 MPa normal stress to around 0.45 at 400-680 MPa. While wet and dry strengths approached each other with increasing effective normal stress, wet strength remained only about half of the dry strength at 600 MPa effective normal stress. The increased coefficient of friction can be correlated with a reduction in the number of loosely bound lubricating surface water layers on the clay platelets due to applied normal stress under saturated conditions. The steady-state rate dependence of friction, a-b, was positive and dependent on normal stress. For saturated samples, a-b increased linearly with applied normal stress from ~0 to 0.004, while for dry samples a-b decreased with increasing normal stress from 0.008 to 0.002. All values were either neutral or rate strengthening, indicating a tendency for stable sliding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parry, G.; Bartholomew, J.A.; Blssell, M.J.
1980-07-01
We report here a study of the mechanisms leading to loss of growth control in chicken embryo fibroblasts transformed by Rous sarcoma virus (RSV). We have been particularly concerned with the role of the src gene in this process, and have used RSV mutants temperature sensitive (ts) for transformation to investigate the nature of the growth regulatory lesion. The two principal findings were (1) the stationary phase of the cell cycle (G{sub 1}) in chick embryo fibroblasts seems to have two distinct regulatory compartments (using the terminology of Brooks et al. we refer to these as 'Q' and 'A' states).more » When rendered stationary at 41.5 C by serum deprivation, normal cells enter a Q state, but cells infected with the ts-mutant occupy an A state. (2) Whereas normal cells can occupy either state depending on culture conditions, the ts-infected cells, at 41.5 C, do not seem to enter Q even though a known src gene product, a kinase, is reported to be inactive at this temperature. We discuss the possibility that viral factors other than the active src protein kinase influence growth control in infected cultures.« less
Aspects of Cool-Flame Supported Droplet Combustion in Microgravity
NASA Technical Reports Server (NTRS)
Nayagam, Vedha; Dietrich, Daniel L.; Williams, Forman A.
2015-01-01
Droplet combustion experiments performed on board the International Space Station have shown that normal-alkane fuels with negative temperature coefficient (NTC) chemistry can support quasi-steady, low-temperature combustion without any visible flame. Here we review the results for n-decane, n-heptane, and n-octane droplets burning in carbon dioxidehelium diluted environments at different pressures and initial droplet sizes. Experimental results for cool-flame burning rates, flame standoff ratios, and extinction diameters are compared against simplified theoretical models of the phenomenon. A simplified quasi-steady model based on the partial-burning regime of Lin predicts the burning rate, and flame standoff ratio reasonably well for all three normal alkanes. The second-stage cool-flame burning and extinction following the first-stage hot-flame combustion, however, shows a small dependence on the initial droplet size, thus deviating from the quasi-steady results. An asymptotic model that estimates the oxygen depletion by the hot flame and its influence on cool-flame burning rates is shown to correct the quasi-steady results and provide a better comparison with the measured burning-rate results.This work was supported by the NASA Space Life and Physical Sciences Research and Applications Program and the International Space Station Program.
2011-01-01
can have a significant impact on normal physiological functioning if precipitous increases in core temperature are not adequately controlled with...anterior hypothalamusIntroduction Thermal stress can have a significant impact on normal physiological functioning if precipitous increases in core...fat and skin). The regulation of a relatively constant internal temperature is critical for normal physiological functioning of tissues and cells, as
46 CFR 54.25-10 - Low temperature operation-ferritic steels (replaces UCS-65 through UCS-67).
Code of Federal Regulations, 2010 CFR
2010-10-01
... this temperature range are satisfied. Range percent Si 0.10-0.50 Maximum S 0.035 P 0.035 Ni 0.80 Cr 0... service temperature A-203, 21/4 percent, Ni, normalized −80 °F. for Grade A.−75 °F. for Grade B. A-203, 31/2 percent, Ni, normalized −130 °F. for Grade D.−110 °F. for Grade E. 5 percent Ni, normalized...
46 CFR 54.25-10 - Low temperature operation-ferritic steels (replaces UCS-65 through UCS-67).
Code of Federal Regulations, 2011 CFR
2011-10-01
... this temperature range are satisfied. Range percent Si 0.10-0.50 Maximum S 0.035 P 0.035 Ni 0.80 Cr 0... service temperature A-203, 21/4 percent, Ni, normalized −80 °F. for Grade A.−75 °F. for Grade B. A-203, 31/2 percent, Ni, normalized −130 °F. for Grade D.−110 °F. for Grade E. 5 percent Ni, normalized...
Zhu, Xingjun; Feng, Wei; Chang, Jian; Tan, Yan-Wen; Li, Jiachang; Chen, Min; Sun, Yun; Li, Fuyou
2016-01-01
Photothermal therapy (PTT) at present, following the temperature definition for conventional thermal therapy, usually keeps the temperature of lesions at 42–45 °C or even higher. Such high temperature kills cancer cells but also increases the damage of normal tissues near lesions through heat conduction and thus brings about more side effects and inhibits therapeutic accuracy. Here we use temperature-feedback upconversion nanoparticle combined with photothermal material for real-time monitoring of microscopic temperature in PTT. We observe that microscopic temperature of photothermal material upon illumination is high enough to kill cancer cells when the temperature of lesions is still low enough to prevent damage to normal tissue. On the basis of the above phenomenon, we further realize high spatial resolution photothermal ablation of labelled tumour with minimal damage to normal tissues in vivo. Our work points to a method for investigating photothermal properties at nanoscale, and for the development of new generation of PTT strategy. PMID:26842674
Zhu, Xingjun; Feng, Wei; Chang, Jian; Tan, Yan-Wen; Li, Jiachang; Chen, Min; Sun, Yun; Li, Fuyou
2016-02-04
Photothermal therapy (PTT) at present, following the temperature definition for conventional thermal therapy, usually keeps the temperature of lesions at 42-45 °C or even higher. Such high temperature kills cancer cells but also increases the damage of normal tissues near lesions through heat conduction and thus brings about more side effects and inhibits therapeutic accuracy. Here we use temperature-feedback upconversion nanoparticle combined with photothermal material for real-time monitoring of microscopic temperature in PTT. We observe that microscopic temperature of photothermal material upon illumination is high enough to kill cancer cells when the temperature of lesions is still low enough to prevent damage to normal tissue. On the basis of the above phenomenon, we further realize high spatial resolution photothermal ablation of labelled tumour with minimal damage to normal tissues in vivo. Our work points to a method for investigating photothermal properties at nanoscale, and for the development of new generation of PTT strategy.
Resonant and Inelastic Andreev Tunneling Observed on a Carbon Nanotube Quantum Dot.
Gramich, J; Baumgartner, A; Schönenberger, C
2015-11-20
We report the observation of two fundamental subgap transport processes through a quantum dot (QD) with a superconducting contact. The device consists of a carbon nanotube contacted by a Nb superconducting and a normal metal contact. First, we find a single resonance with position, shape, and amplitude consistent with the theoretically predicted resonant Andreev tunneling (AT) through a single QD level. Second, we observe a series of discrete replicas of resonant AT at a separation of ~145 μeV, with a gate, bias, and temperature dependence characteristic for boson-assisted, inelastic AT, in which energy is exchanged between a bosonic bath and the electrons. The magnetic field dependence of the replica's amplitudes and energies suggest that two different bosons couple to the tunnel process.
Nonequilibrium kinetic boundary condition at the vapor-liquid interface of argon
NASA Astrophysics Data System (ADS)
Ishiyama, Tatsuya; Fujikawa, Shigeo; Kurz, Thomas; Lauterborn, Werner
2013-10-01
A boundary condition for the Boltzmann equation (kinetic boundary condition, KBC) at the vapor-liquid interface of argon is constructed with the help of molecular dynamics (MD) simulations. The KBC is examined at a constant liquid temperature of 85 K in a wide range of nonequilibrium states of vapor. The present investigation is an extension of a previous one by Ishiyama, Yano, and Fujikawa [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.95.084504 95, 084504 (2005)] and provides a more complete form of the KBC. The present KBC includes a thermal accommodation coefficient in addition to evaporation and condensation coefficients, and these coefficients are determined in MD simulations uniquely. The thermal accommodation coefficient shows an anisotropic behavior at the interface for molecular velocities normal versus tangential to the interface. It is also found that the evaporation and condensation coefficients are almost constant in a fairly wide range of nonequilibrium states. The thermal accommodation coefficient of the normal velocity component is almost unity, while that of the tangential component shows a decreasing function of the density of vapor incident on the interface, indicating that the tangential velocity distribution of molecules leaving the interface into the vapor phase may deviate from the tangential parts of the Maxwell velocity distribution at the liquid temperature. A mechanism for the deviation of the KBC from the isotropic Maxwell KBC at the liquid temperature is discussed in terms of anisotropic energy relaxation at the interface. The liquid-temperature dependence of the present KBC is also discussed.
Creep Strength Behavior of Boron Added P91 Steel and its Weld in the Temperature Range of 600-650°C
NASA Astrophysics Data System (ADS)
Swaminathan, J.; Das, C. R.; Baral, Jayashree; Phaniraj, C.; Ghosh, R. N.; Albert, S. K.; Bhaduri, A. K.
One of the promising ways for mitigation of Type IV cracking — a failure by cracking at the intercritical /fine grained heat affected zone, a life limiting problem in advanced 9-12 Cr ferritic steel weld like that of P91 is through modification of alloy composition by addition of boron. Addition of boron was observed to improve the microstructure at the weld zone and hence the creep strength. In the present work, boron (100 ppm with controlled nitrogen) added P91 steel after normalizing at 1050°C and 1150°C and tempered at 760°C were studied for the creep behavior in the base metal and welded condition in the temperature range of 600-650°C. Creep strength was characterized in terms of stress and temperature dependence of creep rate and rupture time. Weld creep life was reduced compared to the base metal with rupture occurring at the ICHAZ (Type IV crack). However at longer time (at lower stress levels) exposure creep crack moves from weld metal to HAZ (Type II crack). Rupture life was found to superior for the base and weld in the boron containing steel when higher normalizing temperature is used. Estimation of 105 h was attempted based on short term rupture data available and weld strength factors were calculated. Observed values are better for P91BH condition than the values for P91BLcondition as well as those available for P91 in open literature
Microwave absorption through the martensitic and Curie transitions in Ni45Cr5Mn37In13
NASA Astrophysics Data System (ADS)
Pandey, Sudip; Vyzulin, Sergey; Quetz, Abdiel; Aryal, Anil; Dubenko, Igor; Granovsky, Alexander; Stadler, Shane; Ali, Naushad
2018-05-01
We have investigated the electron spin resonance (ESR) of the Ni45Cr5Mn37In13 Heusler alloy near the structural and magnetic phase transition temperatures. Ni45Cr5Mn37In13 is characterized by a first order magnetostructural (martensitic) transition (MST) with magneto-responsive properties such as magnetoresistance, Hall and magnetocaloric effects, etc., in the vicinity of the MST. Since the details and origins of these behaviors are not well understood, we used a technique beyond magnetometry, i.e., "microwave absorption", to reveal new information. ESR studies of Ni45Cr5Mn37In13 shows that this compound is characterized by wide absorption spectra at temperatures greater than 250 K that depend on the angle of the magnetic field relative to the normal to the sample plate (α) and temperature (T). Two local maxima at about 5 and 6 kOe were detected for α close to zero degrees near the martensitic transition and Curie temperatures. The absorption spectra are discussed along with the results of the structural and magnetic studies.
Temperature sensing using a Cr:ZnGa2O4 new phosphor
NASA Astrophysics Data System (ADS)
Sharma, S. K.; Glais, E.; Pellerin, M.; Chaneac, C.; Viana, B.
2016-02-01
The luminescence emission of a thermographic phosphor based on trivalent chromium doped ZGO (ZnGa2O4) bulk as well as nanoparticles is here reported. This material has a strong temperature dependence on the optical features such as ratio of their emission bands, bandwidths, bands position as well as the lifetime decay of the Cr3+. This makes this material well suitable as temperature sensor. ZnGa2O4 (ZGO), a normal spinel, exhibits a high brightness persistent luminescence, when doped with Cr3+ ions and shows an emission spectrum centered at 695 nm. At the nanometric scale, ZGO is used for in vivo imaging with a better signal to background ratio than classical fluorescent NIR probes. In this work we investigate the ability of the host to be a new thermographic phosphor. Several optical features are investigated in a broad temperature range (10 K-700 K). A comparison between bulk material and nanoparticles is introduced. The obtained results could be used to determine the optimal design parameters for sensor development.
Effect of pressure on the α relaxation in glycerol and xylitol
NASA Astrophysics Data System (ADS)
Paluch, M.; Casalini, R.; Hensel-Bielowka, S.; Roland, C. M.
2002-06-01
The effect of pressure on the dielectric relaxation of two polyhydroxy alcohols is examined by analysis of existing data on glycerol, together with new measurements on xylitol. The fragility, or Tg-normalized temperature dependence, changes with pressure for low pressures, but becomes invariant above 1 GPa. When compared at temperatures for which the α-relaxation times are equal, there is no effect of pressure (<1 GPa) on the shape of the α dispersion at higher temperatures. However, nearer Tg, pressure broadens the α peak, consistent with the expected correlation of fragility with the breadth of the relaxation function. We also observe that the α-relaxation peaks for both glycerol and xylitol show an excess intensity at higher frequencies. For xylitol, unlike for glycerol, at lower temperatures this wing disjoins to form a separate peak. For both glass formers, elevated pressure causes the excess wing to become more separated from the peak maximum; that is, the properties of the primary and excess intensities are not correlated. This implies that the excess wing in glycerol is also a distinct secondary process, although it cannot be resolved from the primary peak.
Constitutive response of passivated copper films to thermal cycling
NASA Astrophysics Data System (ADS)
Shen, Y.-L.; Ramamurty, U.
2003-02-01
The thermomechanical behavior of passivated thin copper films is studied. Stresses in copper films of thickness ranging from 125 to 1000 nm, deposited on quartz or silicon substrates and passivated with silicon oxide, were measured using the curvature method. The thermal cycling spans a temperature range from -196 to 600 °C. The measured mechanical behavior was found to be rate insensitive within the heating/cooling rate range of 5-25 °C/min. It was observed that the passivated films do not exhibit a significant stress relaxation at elevated temperatures that is normally found in unpassivated films. Furthermore, a significant strain hardening during the course of thermal loading was noted. Simple continuum plasticity analyses show that the experimentally measured stress-temperature response can only be rationalized with a kinematic hardening model. Analytical procedures for extracting the constitutive properties of the films that were developed on the basis of such a model are presented. The initial yield strength is higher and tends to be less temperature dependent in thinner films. The strain hardening rate is found to increase with decreasing film thickness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hensel-Bielowka, Stella; Wojnarowska, Zaneta; Dzida, Marzena
2015-08-11
Dynamic crossover above T g has been recognized as a characteristic feature of molecular dynamics of liquids approaching glass transition. Experimentally, it is manifested as a change in Vogel–Fulcher–Tammann dependence or a breakdown of the Stokes–Einstein and related relations. In this study, we report the exception from this rather general pattern of behavior. By means of dielectric, ultrasonic, rheological, and calorimetric methods, dynamics of two good ionic conductors (BMIm) 2[Co(NCS) 4] and (EMIm) 2[Co(NCS) 4] of less common stoichiometry (2:1) was studied in a very broad temperature range. However, none of the mentioned dynamic changes was observed in the entiremore » studied temperature range. On the contrary, the single VFT and the same fractional Walden coefficient were found for conductivity and viscosity changes over 12 decades. Finally and moreover, ultrasonic studies revealed that the data at temperatures which cover the normal liquid region cannot be fitted by a single exponential decay, and the Cole–Cole function should be used instead.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hensel-Bielowka, Stella; Wojnarowska, Zaneta E.; Dzida, Marzena
2015-08-11
Dynamic crossover above T g has been recognized as a characteristic feature of molecular dynamics of liquids approaching glass transition. Experimentally, it is manifested as a change in Vogel Fulcher Tammann dependence or a breakdown of the Stokes Einstein and related relations. In this paper, we report the exception from this rather general pattern of behavior. By means of dielectric, ultrasonic, rheological, and calorimetric methods, dynamics of two good ionic conductors (BMIm) 2[Co(NCS) 4] and (EMIm) 2[Co(NCS) 4] of less common stoichiometry (2:1) was studied in a very broad temperature range. However, none of the mentioned dynamic changes was observedmore » in the entire studied temperature range. On the contrary, the single VFT and the same fractional Walden coefficient were found for conductivity and viscosity changes over 12 decades. Furthermore, ultrasonic studies revealed that the data at temperatures which cover the normal liquid region cannot be fitted by a single exponential decay, and the Cole Cole function should be used instead.« less
Thermal equilibrium concentrations and effects of negatively charged Ga vacancies in n-type GaAs
NASA Astrophysics Data System (ADS)
Tan, T. Y.; You, H.-M.; Gösele, U. M.
1993-03-01
We have calculated the thermal equilibrium concentrations of the various negatively charged Ga vacancy species in GaAs. The triply-negatively-charged Ga vacancy, V {Ga/3-}, has been emphasized, since it dominates Ga self-diffusion and Ga-Al interdiffusion under intrinsic and n-doping conditions, as well as the diffusion of Si donor atoms occupying Ga sites. Under strong n-doping conditions, the thermal equilibrium V {Ga/3-}concentration, C_{V_{_{Ga} }^{3 - } }^{eq} (n), has been found to exhibit a temperature independence or a negative temperature dependence, i.e., the C_{V_{_{Ga} }^{3 - } }^{eq} (n) value is either unchanged or increases as the temperature is lowered. This is quite contrary to the normal point defect behavior for which the point defect thermal equilibrium concentration decreases as the temperature is lowered. This C_{V_{_{Ga} }^{3 - } }^{eq} (n) property provides explanations to a number of outstanding experimental results, either requiring the interpretation that V {Ga/3-}has attained its thermal equilibrium concentration at the onset of each experiment, or requiring mechanisms involving point defect non-equilibrium phenomena.
Landau-Lifshitz-Bloch equation for exchange-coupled grains
NASA Astrophysics Data System (ADS)
Vogler, Christoph; Abert, Claas; Bruckner, Florian; Suess, Dieter
2014-12-01
Heat-assisted recording is a promising technique to further increase the storage density in hard disks. Multilayer recording grains with graded Curie temperature is discussed to further assist the write process. Describing the correct magnetization dynamics of these grains, from room temperature to far above the Curie point, during a write process is required for the calculation of bit error rates. We present a coarse-grained approach based on the Landau-Lifshitz-Bloch (LLB) equation to model exchange-coupled grains with low computational effort. The required temperature-dependent material properties such as the zero-field equilibrium magnetization as well as the parallel and normal susceptibilities are obtained by atomistic Landau-Lifshitz-Gilbert simulations. Each grain is described with one magnetization vector. In order to mimic the atomistic exchange interaction between the grains a special treatment of the exchange field in the coarse-grained approach is presented. With the coarse-grained LLB model the switching probability of a recording grain consisting of two layers with graded Curie temperature is investigated in detail by calculating phase diagrams for different applied heat pulses and external magnetic fields.
Outcome of impact disruption of iron meteorites at room temperature
NASA Astrophysics Data System (ADS)
Katsura, T.; Nakamura, A.; Takabe, A.; Okamoto, T.; Sangen, K.; Hasegawa, S.; Liu, X.; Mashimo, T.
2014-07-01
The iron meteorites and some M-class asteroids are generally understood to originate in the cores of differentiated planetesimals or in the local melt pools of primitive bodies. On these primitive bodies and planetesimals, a wide range of collisional events at different mass scales, temperatures, and impact velocities would have occurred. Iron materials have a brittle-ductile transition at a certain temperature, which depends on metallurgical factors such as grain size and purity, and on conditions such as strain-rate and confining pressure [1]. An evolutional scenario of iron meteorite parent bodies was proposed in which they formed in the terrestrial planet region, after which they were scattered into the main belt by collisions, Yarkovsky thermal forces, and resonances [2]. In this case, they may have experienced collisional evolution in the vicinity of the Earth before they were scattered into the main belt. The size distribution of iron bodies in the main belt may therefore have depended on the disruption threshold of iron bodies at temperature above the brittle-ductile transition. This paper presents the results of impact-disruption experiments of iron meteorite and steel specimens mm-cm in size as projectiles or targets conducted at room temperature using three light-gas guns and one powder gun. Our iron specimens were almost all smaller in size than their counterparts (as targets or projectiles, respectively). The fragment size distribution of iron material was different from that of rocks. In iron fragmentation, a higher percentage of the mass is concentrated in larger fragments, i.e., the mass fraction of fine fragments is much less than that of rocks shown in the Figure (left). This is probably due to the ductile nature of the iron materials at room temperature. Furthermore, the Figure (right) shows that the largest fragment mass fraction f is dependent not only on the energy density but also on the size of the specimens. In order to obtain a generalized empirical relationship for f, we assumed a power-law dependence of f on initial peak pressure P_0 normalized by a dynamic strength, Y, which was defined to be dependent on the size of the iron material. A least-squares fit to the data of iron meteorite specimens resulted in the following relationship: f∝ ({P_0}/{Y})^{-2.1}. The deformation of the iron materials was found to be most significant when the initial pressure greatly exceeded the dynamic strength of the material.
An unusual metallic behavior in a Ag4SSe single crystal
NASA Astrophysics Data System (ADS)
Matteppanavar, Shidaling; Bui, Nguyen Hai An; van Smaalen, Sander; Thamizhavel, A.; Ramakrishnan, S.
2018-04-01
We report the magnetic susceptibility, resistivity and heat capacity measurements on high quality single crystalline tetra silver sulphoselenide (Ag4SSe). The magnetic susceptibility and resistivity measurements show anomalies around 260 K. The large diamagnetic drop with hysteresis at the transition implies a first order transition. Such a diamagnetic drop cannot be ascribed to the formation of charge density wave (CDW) since the temperature dependence of the resistivity shows no upturn at this transition. Infact the resistivity is decreasing with decreasing temperature, indicating a metallic behavior. However, unlike normal metals, the resistivity is almost temperature independent in the temperature range from 4-180 K. Usually, when one observes a diamagnetic transition, it is assumed to be due to a drop in the density of states at the Fermi level which leads to the decrease in the Pauli paramagnetic susceptibility. Such a decrease in the density of states often results in an increase in resistivity unless mobility of the charge carriers changes significantly. Hence, we believe that in Ag4SSe, the structural transition causes an unusual Fermi surface reconstruction which in turn leads to a strange metallic behavior at low temperatures.
Unusual kinetics of thermal decay of dim-light photoreceptors in vertebrate vision
Guo, Ying; Sekharan, Sivakumar; Liu, Jian; Batista, Victor S.; Tully, John C.; Yan, Elsa C. Y.
2014-01-01
We present measurements of rate constants for thermal-induced reactions of the 11-cis retinyl chromophore in vertebrate visual pigment rhodopsin, a process that produces noise and limits the sensitivity of vision in dim light. At temperatures of 52.0–64.6 °C, the rate constants fit well to an Arrhenius straight line with, however, an unexpectedly large activation energy of 114 ± 8 kcal/mol, which is much larger than the 60-kcal/mol photoactivation energy at 500 nm. Moreover, we obtain an unprecedentedly large prefactor of 1072±5 s−1, which is roughly 60 orders of magnitude larger than typical frequencies of molecular motions! At lower temperatures, the measured Arrhenius parameters become more normal: Ea = 22 ± 2 kcal/mol and Apref = 109±1 s−1 in the range of 37.0–44.5 °C. We present a theoretical framework and supporting calculations that attribute this unusual temperature-dependent kinetics of rhodopsin to a lowering of the reaction barrier at higher temperatures due to entropy-driven partial breakup of the rigid hydrogen-bonding network that hinders the reaction at lower temperatures. PMID:25002518
Influence of La doping on structural and dielectric properties of SrBi2Nb2O9 ceramics
NASA Astrophysics Data System (ADS)
Verma, Maya; Sreenivas, K.; Gupta, Vinay
2009-01-01
Lanthanum doped SrBi2Nb2O9 ceramics with the chemical formula SrBi2-xLaxNb2O9 (SBLN) (x =0-0.5) have been prepared through conventional solid state route. X-ray diffraction reveals the shrinkage of unit cell of strontium bismuth niobate with incorporation of La3+ dopant, having no lone pair electrons. Shifting of Raman phonon modes indicates the reduced rattling space of NbO6 octahedra with increase in La doping concentration. Further, the softening of lowest frequency phonon mode with increasing x in SBLN shows the transition from ferroelectric to paraelectric at room temperature. The dielectric properties for all the compositions are studied as a function of temperature (25 to 500 °C) over the frequency range of 10 kHz-1 MHz. With increase in lanthanum doping concentration the phase transition becomes diffused and transition temperature gets shifted toward lower temperature. A phase transition from normal ferroelectric to paraelectric has been observed via relaxor-type ferroelectrics with increase in x. The frequency dependence of transition temperature was studied in terms of Vogel-Fulcher relation for SBLN (x =0.4).
Borreguero, Jose M.; Mamontov, Eugene
2017-04-11
Here, the calorimetric glass-transition temperature of water is 136 K, but extrapolation of thermodynamic and relaxation properties of water from ambient temperature to below its homogeneous nucleation temperature T H = 235 K predicts divergence at T S = 228 K. The “no-man’s land” between the T H and glassy water crystallization temperature of 150 K, which is encountered on warming up from the vitrified state, precludes a straightforward reconciliation of the two incompatible temperature dependences of water properties, above 235 K and below 150 K. The addition of lithium chloride to water allows bypassing both T H and Tmore » S on cooling, resulting in the dynamics with no features except the calorimetric glass transition, still at 136 K. We show that lithium chloride prevents hydrogen-bonding network completion in water on cooling, as manifested, in particular, in changing microscopic diffusion mechanism of the water molecules. Thus thermodynamic and relaxation peculiarities exhibited by pure water on cooling to its glass transition, such as the existence of the T H and T S, must be associated specifically with the hydrogen-bonding network.« less
Superconductivity in two-dimensional NbSe2 field effect transistors
NASA Astrophysics Data System (ADS)
El-Bana, Mohammed S.; Wolverson, Daniel; Russo, Saverio; Balakrishnan, Geetha; Mck Paul, Don; Bending, Simon J.
2013-12-01
We describe investigations of superconductivity in few molecular layer NbSe2 field effect transistors. While devices fabricated from NbSe2 flakes less than eight molecular layers thick did not conduct, thicker flakes were superconducting with an onset Tc that was only slightly depressed from the bulk value for 2H-NbSe2 (7.2 K). The resistance typically showed a small, sharp high temperature transition followed by one or more broader transitions which usually ended in a wide tail to zero resistance at low temperatures. We speculate that these multiple resistive transitions are related to disorder in the layer stacking. The behavior of several flakes has been characterized as a function of temperature, applied field and back-gate voltage. We find that the conductance in the normal state and transition temperature depend weakly on the gate voltage, with both conductivity and Tc decreasing as the electron concentration is increased. The application of a perpendicular magnetic field allows the evolution of different resistive transitions to be tracked and values of the zero temperature upper critical field, Hc2(0), and coherence length, ξ(0), to be independently estimated. Our results are analyzed in terms of available theories for these phenomena.
Unusual kinetics of thermal decay of dim-light photoreceptors in vertebrate vision.
Guo, Ying; Sekharan, Sivakumar; Liu, Jian; Batista, Victor S; Tully, John C; Yan, Elsa C Y
2014-07-22
We present measurements of rate constants for thermal-induced reactions of the 11-cis retinyl chromophore in vertebrate visual pigment rhodopsin, a process that produces noise and limits the sensitivity of vision in dim light. At temperatures of 52.0-64.6 °C, the rate constants fit well to an Arrhenius straight line with, however, an unexpectedly large activation energy of 114 ± 8 kcal/mol, which is much larger than the 60-kcal/mol photoactivation energy at 500 nm. Moreover, we obtain an unprecedentedly large prefactor of 10(72±5) s(-1), which is roughly 60 orders of magnitude larger than typical frequencies of molecular motions! At lower temperatures, the measured Arrhenius parameters become more normal: Ea = 22 ± 2 kcal/mol and Apref = 10(9±1) s(-1) in the range of 37.0-44.5 °C. We present a theoretical framework and supporting calculations that attribute this unusual temperature-dependent kinetics of rhodopsin to a lowering of the reaction barrier at higher temperatures due to entropy-driven partial breakup of the rigid hydrogen-bonding network that hinders the reaction at lower temperatures.
Kimura, Yoshifumi; Fukuda, Masanori; Suda, Kayo; Terazima, Masahide
2010-09-16
Fluorescence dynamics of 4'-N,N-diethylamino-3-hydroxyflavone (DEAHF) and its methoxy derivative (DEAMF) in various room temperature ionic liquids (RTILs) have been studied mainly by an optical Kerr gate method. DEAMF showed a single band fluorescence whose peak shifted with time by the solvation dynamics. The averaged solvation time determined by the fluorescence peak shift was proportional to the viscosity of the solvent except for tetradecyltrihexylphosphonium bis(trifluoromethanesulfonyl)amide. The solvation times were consistent with reported values determined with different probe molecules. DEAHF showed dual fluorescence due to the normal and tautomer forms produced by the excited state intramolecular proton transfer (ESIPT), and the relative intensities were dependent on the time and the solvent cation or anion species. By using the information of the fluorescence spectrum of DEAMF, the fluorescence spectrum of DEAHF at each delay time after the photoexcitation was decomposed into the normal and the tautomer fluorescence components, respectively. The normal component showed a very fast decay simulated by a biexponential function (2-3 and 20-30 ps) with an additional slower decay component. The tautomer component showed a rise with the time constants corresponding to the faster decay of the normal form with an additional instantaneous rise. The faster dynamics of the normal and tautomer population changes were assigned to the ESIPT process, while the slower decay of the fluorescence was attributed to the population decay from the excited state through the radiative and nonradiative processes. The average ESIPT time was much faster than the averaged solvation time of RTILs. Basically, the ESIPT kinetics in RTILs is similar to those in conventional liquid solvents like acetonitrile (Chou et al. J. Phys. Chem. A 2005, 109, 3777). The faster ESIPT is interpreted in terms of the activation barrierless process from the Franck-Condon state before the solvation of the normal state in the electronic excited state. With the advance of the solvation in the excited state, the normal form becomes relatively more stable than the tautomer form, which makes the ESIPT become an activation process.
Superconductivity and Magnetism in LaO1-xFxFeAs
NASA Astrophysics Data System (ADS)
Buechner, Bernd
2009-03-01
Measuring ^75As, ^139La, and ^57Fe Nuclear Magnetic Resonance (NMR) as well as μSR, transport and thermodynamic properties we have determined the phase diagram of LaO1-xFxAsFe superconductors [1-6]. In my talk, I will show experimental studies of the magnetic ordering [2, 5], properties of the superconducting state [1, 3, 5] and the normal state properties [1, 4, 6] in the superconducting regions of the phase diagram. While the temperature dependence of the London penetration as determined from μSR points to an isotropic s wave state [3], our early NMR data suggest singlet pairing and nodes of the order parameter [1]. Extending the NMR work to lower temperatures we find evidence for a deviation of the T^3 behaviour of the spin lattice relaxation, which would agree with the extended s-wave symmetry suggested in recent theoretical work. In the paramagnetic normal state, NMR on all three nuclei shows that the local electronic susceptibility rises with increasing temperature. This had led to suggest the presence of a pseudogap, which I will discuss in detail. The scaling of all NMR shifts with respect to the macroscopic susceptibility indicates that there is no apparent multiband effect through preferential hyperfine couplings. Relaxation measurements indicate a similar temperature-dependence for (T1T)-1, and suggest that the dynamical susceptibility changes uniformly in q space with varying temperature. The transport properties show some striking similarities to the findings in cuprates [6] and, finally, susceptibility [4] as well as NMR studies point to the antiferromagnetic fluctuations, whose relevance is also discussed in many theoretical models of the superconducting pairing mechanism. In collaboration with Hans-Joachim Grafe, Christian Hess, R"udiger Klingeler, G"unter Behr, Agnieszka Kondrat, Norman Leps, and Guillaume Lang, IFW Dresden; Hans-Henning Klauss, TU Dresden; and Hubertus Luetkens, PSI Villigen. [4pt] References: [0pt] [1] H.-J. Grafe et al., Phys. Rev. Lett. 101, 047003 (2008) [0pt] [2] H.-H. Klauss et al., Phys. Rev. Lett. 101, 077005 (2008) [0pt] [3] H. Luetkens et al., Phys- Rev. Lett. 101, 097009 (2008) [0pt] [4] R. Klingeler et al., arXiv: 0808.0708 (2008) [0pt] [5] H. Luetkens et al., arXiv: 0806.3533 (2008) [0pt] [6] C. Hess et al., arXiv: 0811.1601 (2008)
NASA Astrophysics Data System (ADS)
Rinne, J.; Tuittila, E. S.; Peltola, O.; Li, X.; Raivonen, M.; Alekseychik, P.; Haapanala, S.; Pihlatie, M.; Aurela, M.; Mammarella, I.; Vesala, T.
2017-12-01
Models for calculating methane emission from wetland ecosystems typically relate the methane emission to carbon dioxide assimilation. Other parameters that control emission in these models are e.g. peat temperature and water table position. Many of these relations are derived from spatial variation between chamber measurements by space-for-time approach. Continuous longer term ecosystem scale methane emission measurements by eddy covariance method provide us independent data to assess the validity of the relations derived by space-for-time approach.We have analyzed eleven-year methane flux data-set, measured at a boreal fen, together with data on environmental parameters and carbon dioxide exchange to assess the relations to typical model drivers. The data was obtained by the eddy covariance method at Siikaneva mire complex, Southern Finland, during 2005-2015. The methane flux showed seasonal cycles in methane emission, with strongest correlation with peat temperature at 35 cm depth. The temperature relation was exponential throughout the whole peat temperature range of 0-16°C. The methane emission normalized to remove temperature dependence showed a non-monotonous relation on water table and positive correlation with gross primary production (GPP). However, inclusion of these as explaining variables improved algorithm-measurement correlation only slightly, with r2=0.74 for exponential temperature dependent algorithm, r2=0.76 for temperature - water table algorithm, and r2=0.79 for temperature - GPP algorithm. The methane emission lagged behind net ecosystem exchange (NEE) and GPP by two to three weeks. Annual methane emission ranged from 8.3 to 14 gC m-2, and was 20 % of NEE and 2.8 % of GPP. The inter-annual variation of methane emission was of similar magnitude as that of GPP and ecosystem respiration (Reco), but much smaller than that of NEE. The interannual variability of June-September average methane emission correlated significantly with that of GPP indicating a close link between these two processes in boreal fen ecosystems.
Comparing two tetraalkylammonium ionic liquids. II. Phase transitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lima, Thamires A.; Paschoal, Vitor H.; Faria, Luiz F. O.
Phase transitions of the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N{sub 1114}][NTf{sub 2}], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N{sub 1444}][NTf{sub 2}], were investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD) measurements, and Raman spectroscopy. XRD and Raman spectra were obtained as a function of temperature at atmospheric pressure, and also under high pressure at room temperature using a diamond anvil cell (DAC). [N{sub 1444}][NTf{sub 2}] experiences glass transition at low temperature, whereas [N{sub 1114}][NTf{sub 2}] crystallizes or not depending on the cooling rate. Both the ionic liquids exhibit glass transition under high pressure. XRD and low-frequency Raman spectra provide a consistent physical picturemore » of structural ordering-disordering accompanying the thermal events of crystallization, glass transition, cold crystallization, pre-melting, and melting. Raman spectra in the high-frequency range of some specific cation and anion normal modes reveal conformational changes of the molecular structures along phase transitions.« less
2D Larkin-Imry-Ma state of deformed ABM phase of superfluid 3He in ``ordered'' aerogel
NASA Astrophysics Data System (ADS)
Dmitriev, Vladimir; Senin, Andrey; Yudin, Alexey
2014-03-01
We report NMR studies of high temperature superfluid phase of 3He in so called ``ordered'' aerogel1 which strands are almost parallel to each other. Previously, it was found that the NMR properties of this phase depend on whether it is obtained on cooling from the normal phase or on warming from the low temperature phase2. These two types of high temperature phase (called as ESP1 and ESP2) correspond to Anderson-Brinkman-Morel (ABM) phase with large polar distortion and with orbital vector being in 2D Larkin-Imry-Ma (LIM) state. Here we present results which show that the observed difference in NMR signatures of the ESP1 and the ESP2 states is due to that the corresponding 2D LIM states can be anisotropic. In the ESP1 phase the anisotropy is absent or small, while in the ESP2 phase the anisotropy is large. NMR data have allowed us to estimate values of these anisotropies.
Development of Stable, Low Resistance Solder Joints for a Space-Flight HTS Lead Assemblies
NASA Technical Reports Server (NTRS)
Canavan, Edgar R.; Chiao, Meng; Panashchenko, Lyudmyla; Sampson, Michael
2017-01-01
The solder joints in spaceflight high temperature superconductor (HTS) lead assemblies for certain astrophysics missions have strict constraints on size and power dissipation. In addition, the joints must tolerate years of storage at room temperature, many thermal cycles, and several vibration tests between their manufacture and their final operation on orbit. As reported previously, solder joints between REBCO coated conductors and normal metal traces for the Astro-H mission showed low temperature joint resistance that grew approximately as log time over the course of months. Although the assemblies worked without issue in orbit, for the upcoming X-ray Astrophysics Recovery Mission we are attempting to improve our solder process to give lower, more stable, and more consistent joint resistance. We produce numerous sample joints and measure time- and thermal cycle-dependent resistance, and characterize the joints using x-ray and other analysis tools. For a subset of the joints, we use SEMEDS to try to understand the physical and chemical processes that effect joint behavior.
Process of Infection with Bacteriophage φX174
Dalgarno, L.; Sinsheimer, Robert L.
1968-01-01
A group of temperature-sensitive mutants of φX174 has been isolated which can go through a single, normal one-step growth cycle at 40 C but fail to form plaques at this temperature. Such mutants fail to initiate a second cycle at 40 C; however they can gain the capacity to infect at 40 C, upon incubation for 10 min in broth at 30 C. In regaining the ability to infect, the phage appear to undergo a temperature-dependent conformational alteration. The inverse process, a reversible loss of ability to infect at 40 C, is observed when such phage produced at 30 C are incubated for 2 hr at 40 C. The defect in initiation of a second cycle of infection appears to be in the injection of viral deoxyribonucleic acid. A two-step complementation test has been used to identify the cistron coding for the affected function. Such mutants are also unusually sensitive to an irreversible thermal inactivation when incubated at 40 C. PMID:4883013
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groenvold, F.; Thurmann-Moe, T.; Westrum, E.F. Jr.
1961-11-01
Heat capacities of platinum monosulfide, platinum monotelluride, and palladium monotelluride were measured in the range 5--350 deg K. They show the normal sigmoidal temperature dependence with no evidence of transivions or other anomalies. The derived heat-capacity equations were integrated. Values of heat capacitles, entropy, and enthalpy increments, and of the free-energy function are tabulated for selected temperatures. Av 298,15 deg K, the third-law entroples are 13,16 cal gfw/sup -1/ deg K/sup -1/ for PtS 19.41 cal gfw/sup -1/ deg K/sup - 1/ for PtTe, and 2l.42 cal gfw/sup -1/ deg K/sup -1/ for PdTe. The new dava on PvS weremore » correlaved wlvh exlstlng decomposlvlonpressure data vo evaluate DELTA Hf, DELTA Ff, and DELTA Sf 298.15 deg K. Entropies for other platlnum-metal monochalcogenides were estimated. (auth)« less
Temperature fluctuation in Rayleigh-Bénard convection: Logarithmic vs power-law
NASA Astrophysics Data System (ADS)
He, Yu-Hao; Xia, Ke-Qing
2016-11-01
We present an experimental measurement of the rms temperature (σT) profile in two regions inside a large aspect ratio (Γ = 4 . 2) rectangular Rayleigh-Bénard convection cell. The Rayleigh number (Ra) is from 3 . 2 ×107 to 1 . 9 ×108 at fixed Prandtl number (Pr = 4 . 34). It is found that, in one region, where the boundary layer is sheared by a large-scale wind, σT versus the distance (z) above the bottom plate, obeys power law over one decade, whereas in another region, where plumes concentrate and move upward (plume-ejection region), the profile of σT has a logarithmic dependence on z. When normalized by a typical temperature scale θ*, the profiles of σT at different Rayleigh numbers collapse onto a single curve, indicating a university of σT profile with respect to Ra . This work is supported by the Hong Kong Research Grant Council under Grant Number N_CUHK437/15.
Enhanced polarization and dielectric properties of Pb(Zr1-xTix)O3 thin films
NASA Astrophysics Data System (ADS)
Ortega, N.; Kumar, Ashok; Katiyar, R. S.
2008-10-01
We report the fabrication of PbZr0.57Ti0.43O3 (PZT) thin films with preferential growth along (111) and random crystalline orientation on the platinized silicon substrates using pulsed laser deposition technique. X-ray diffraction patterns and surface morphology indicate increase in grain size and nucleation, which support better perovskite matrix with increase in annealing temperature. We observed large dielectric constant (˜4000) and enhanced remanent polarization 70 μC/cm2 at room temperature attributed to grain growth and intermetallic Pt-Pb transient phase. Frequency dependent polarization showed minor reduction in polarization above 10 kHz frequencies. Normalized fatigue characteristic of PZT thin films showed minimal 25% degradation in remanent polarization after 109 cycles, which may be useful for memory devices. ac conductivity spectra illustrated that anomaly near the phase transition temperature with activation energy (Ea˜0.60-0.75 eV) supports the intrinsic nature of ferroelectric phase transition.
Intrinsic ferromagnetism in hexagonal boron nitride nanosheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Si, M. S.; Gao, Daqiang, E-mail: gaodq@lzu.edu.cn, E-mail: xueds@lzu.edu.cn; Yang, Dezheng
2014-05-28
Understanding the mechanism of ferromagnetism in hexagonal boron nitride nanosheets, which possess only s and p electrons in comparison with normal ferromagnets based on localized d or f electrons, is a current challenge. In this work, we report an experimental finding that the ferromagnetic coupling is an intrinsic property of hexagonal boron nitride nanosheets, which has never been reported before. Moreover, we further confirm it from ab initio calculations. We show that the measured ferromagnetism should be attributed to the localized π states at edges, where the electron-electron interaction plays the role in this ferromagnetic ordering. More importantly, we demonstratemore » such edge-induced ferromagnetism causes a high Curie temperature well above room temperature. Our systematical work, including experimental measurements and theoretical confirmation, proves that such unusual room temperature ferromagnetism in hexagonal boron nitride nanosheets is edge-dependent, similar to widely reported graphene-based materials. It is believed that this work will open new perspectives for hexagonal boron nitride spintronic devices.« less
Evaluation of Data on Solubility of Simple Apolar Gases in Light and Heavy Water at High Temperature
NASA Astrophysics Data System (ADS)
Prini, Roberto Fernández; Crovetto, Rosa
1989-07-01
The solubility data of apolar gases in light and heavy water over the temperature range covered experimentally have been evaluated, laying particular emphasis to the region above the normal boiling points of the solvents. The systems that have been included in this work are the inert gases and CH4 in light water and heavy water, H2, O2, N2, and C2H6 in light water and D2 in heavy water. Data in the original sources have been brought to the same footing by calculating from the raw experimental data P, T, and x when they were not reported by the author. This step is considered necessary to assess critically the available sets of data. The temperature dependence of Henry's constants for all the binary systems have been expressed in terms of two different polynomial equations. The formulations presented are discussed and the limits of application given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, L.; Bie, B. X.; Li, Q. H.
2017-06-01
In situ synchrotron x-ray imaging and diffraction are used to investigate deformation of a rolled magnesium alloy under uniaxial compression at room and elevated temperatures along two different directions. The loading axis (LA) is either perpendicular or parallel to the normal direction, and these two cases are referred to as LA⊥ and LAk loading, respectively. Multiscale measurements including stressestrain curves (macroscale), strain fields (mesoscale), and diffraction patterns (microscale) are obtained simultaneously. Due to initial texture, f1012g extension twinning is predominant in the LA⊥ loading, while dislocation motion prevails in the LAk loading. With increasing temperature, fewer f1012g extension twins aremore » activated in the LA⊥ samples, giving rise to reduced strain homogenization, while pyramidal slip becomes readily activated, leading to more homogeneous deformation for the LAk loading. The difference in the strain hardening rates is attributed to that in strain field homogenization for these two loading directions« less
Sign reversal of Hall signals in Tm3Fe5O12 /Pt with perpendicular magnetic anisotropy
NASA Astrophysics Data System (ADS)
Liu, Yawen; Tang, Chi; Xu, Yadong; Shi, Zhong; Shi, Jing
Robust interface strain-induced perpendicular magnetic anisotropy is produced in atomically flat ferromagnetic insulator Tm3Fe5O12 (TIG) films grown with pulsed laser deposition on both substituted-Gd3Ga5O12 and Nd3Ga5O12 (NGG). In TIG/Pt bilayers, we observe large hysteresis loops over a wide range of Pt thicknesses and temperatures. Both the ordinary Hall effect and anomalous Hall effect undergo a sign reversal as the temperature is lowered. The temperature dependence of the Hall signals in bilayers with different thickness of Pt indicates the existence of exchange interaction at the interface. Our results provide a clue to further understand the origin of the anomalous Hall effect in ferromagnetic insulator/normal metal bilayer systems. The work was supported as part of the SHINES, an Energy Frontier Research Center funded by the US Department of Energy, BES under Award No. SC0012670.
Boson localization and universality in YBa2Cu(3-x)M(x)O(7-delta)
NASA Technical Reports Server (NTRS)
Kallio, A.; Apaja, V.; Poykko, S.
1995-01-01
We consider a two component mixture of charged fermions on neutralizing background with all sign combinations and arbitrarily small mass ratios. In the two impurity limit for the heavier component we show that the pair forms a bound state for all charge combinations. In the lowest order approximation we derive a closed form expression Veff(r) for the binding potential which has short-range repulsion followed by attraction. In the classical limit, when the mass of embedded particles is large m2 much greater than m, we can calculate from Veff(r) also the cohesive energy E and the bond length R of a metallic crystal such as lithium. The lowest order result is R = 3.1 A, E = -0.9 eV, not entirely different from the experimental result for lithium metal. The same interaction for two holes on a parabolic band with m2 greater than m gives the quantum mechanical bound state which one may interpret as a boson or local pair in the case of high-Te and heavy fermion superconductors. We also show that for compounds of the type YBa2Cu(3 - x)M(x)O(7 - delta) one can understand most of the experimental results for the superconducting and normal states with a single temperature dependent boson breaking function f(T) for each impurity content x governing the decay of bosons into pairing fermions. In the normal state f(T) turns out to be a linear, universal function, independent of the impurity content I and the oxygen content delta. We predict with universality a depression in Tc(x) with slight down bending in agreement with experiment. As a natural consequence of the model the bosons become localized slightly above Tc due to the Wigner crystallization, enhanced with lattice local field minima. The holes remain delocalized with a linearly increasing concentration in the normal state, thus explaining the rising Hall density. The boson localization temperature T(sub BL) shows up as a minimum in the Hall density R(sub ab)(exp -1). We also give explanation for very recently observed scaling of temperature dependent Hall effect in La(2 - x)Sr(x)CuO4.
Boson localization and universality in YBa2Cu(3-x)M(x)O(7-delta)
NASA Astrophysics Data System (ADS)
Kallio, A.; Apaja, V.; Poykko, S.
1995-04-01
We consider a two component mixture of charged fermions on neutralizing background with all sign combinations and arbitrarily small mass ratios. In the two impurity limit for the heavier component we show that the pair forms a bound state for all charge combinations. In the lowest order approximation we derive a closed form expression Veff(r) for the binding potential which has short-range repulsion followed by attraction. In the classical limit, when the mass of embedded particles is large m2 much greater than m, we can calculate from Veff(r) also the cohesive energy E and the bond length R of a metallic crystal such as lithium. The lowest order result is R = 3.1 A, E = -0.9 eV, not entirely different from the experimental result for lithium metal. The same interaction for two holes on a parabolic band with m2 greater than m gives the quantum mechanical bound state which one may interpret as a boson or local pair in the case of high-Te and heavy fermion superconductors. We also show that for compounds of the type YBa2Cu(3 - x)M(x)O(7 - delta) one can understand most of the experimental results for the superconducting and normal states with a single temperature dependent boson breaking function f(T) for each impurity content x governing the decay of bosons into pairing fermions. In the normal state f(T) turns out to be a linear, universal function, independent of the impurity content I and the oxygen content delta. We predict with universality a depression in Tc(x) with slight down bending in agreement with experiment. As a natural consequence of the model the bosons become localized slightly above Tc due to the Wigner crystallization, enhanced with lattice local field minima. The holes remain delocalized with a linearly increasing concentration in the normal state, thus explaining the rising Hall density. The boson localization temperature T(sub BL) shows up as a minimum in the Hall density R(sub ab)(exp -1). We also give explanation for very recently observed scaling of temperature dependent Hall effect in La(2 - x)Sr(x)CuO4.
NASA Astrophysics Data System (ADS)
Myoung, B.; Kim, S.; Kim, J.; Kafatos, M.
2013-12-01
Despite advancements in agricultural technology, agricultural productivity remains vulnerable to extreme meteorological conditions. This study has found significant impacts of North Atlantic Oscillation (NAO) on extreme temperatures and in turn on crop yields in the Southwestern United States (SW US) region. Analyses of multi-year data of observed temperatures and simulated maize yields reveal that NAO affects positively the daily temperature maxima and minima in the green-up periods (March-June) and that the response of maize yields to NAO varies according to the climatological mean temperatures. In warmer regions, a combination of above-normal NAO in the planting periods and below-normal NAO in the growing periods is favorable for high maize yields by reducing extremely cold days during the planting periods and extremely hot days in the later periods, respectively. In colder regions, continuously above-normal NAO conditions favor higher yields via above normal thermal conditions. Results in this study suggest that NAO predictions can benefit agricultural planning in SW US.
Experimental evidence regarding the pressure dependence of fission track annealing in apatite
NASA Astrophysics Data System (ADS)
Schmidt, J. S.; Lelarge, M. L. M. V.; Conceicao, R. V.; Balzaretti, N. M.
2014-03-01
The main purposes of fission track thermochronology are unravelling the thermal histories of sedimentary basins, determining uplift and denudation rates, identifying the structural evolution of orogenic belts, determining sedimentary provenance, and dating volcanic rocks. The effect of temperature on fission tracks is well known and is used to determine the thermal history; however, the effect of pressure on the stability of tracks is still under debate. The present work aims to understand the role of pressure on the annealing kinetics of apatite fission tracks. The samples of Durango apatite used in our experiments were chosen for their international recognition as a calibration standard for geological dating. Neutron irradiation of the samples, after total annealing of their spontaneous tracks, produced induced tracks with homogeneous densities and lengths. The effect of pressure associated with temperature on fission track annealing was verified by experimental procedures using a hydraulic press of 1000 t with a toroidal chamber profile. The experiments consisted of a combination of applying 2 and 4 GPa with 20,150,190,235, and 290 °C for 1 and 10 h. The annealing rate was analysed by measuring the lengths of the fission tracks after each experiment using optical microscopy. The results demonstrate that the annealing of apatite fission tracks has a pressure dependence for samples subjected to 2 and 4 GPa. However, when extrapolated to pressures of ⩽150 MPa, compatible with the normal geological context in which apatite fission track methodology is broadly used, this dependence becomes insignificant compared to the temperature effect.
Kinetic and thermodynamic study of the thorium phosphate-diphosphate dissolution
NASA Astrophysics Data System (ADS)
Thomas, A. C.; Dacheux, N.; Le Coustumer, P.; Brandel, V.; Genet, M.
2000-10-01
The dissolution of the thorium phosphate-diphosphate (TPD), which was proposed for the actinides immobilization, was systematically studied as a function of several parameters such as surface, leaching flow, temperature, acidity or basicity of the leachate and phosphate concentration. The dependence of the normalized leaching rate on the temperature leads to an activation energy equal to about 42±3 kJ mol -1. The normalized leaching rate is slightly increased when increasing the acidity or the basicity of the leachate. The partial orders related to proton and hydroxide ions are equal to 0.31-0.35 and 0.35, respectively. For the pH range studied, i.e., 1
NASA Technical Reports Server (NTRS)
Ham, Seung-Hee; Sohn, Byung-Ju; Kato, Seiji; Satoh, Masaki
2013-01-01
The shape of the vertical profile of ice cloud layers is examined using 4 months of CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) global measurements taken on January, April, July, and October 2007. Ice clouds are selected using temperature profiles when the cloud base is located above the 253K temperature level. The obtained ice water content (IWC), effective radius, or extinction coefficient profiles are normalized by their layer mean values and are expressed in the normalized vertical coordinate, which is defined as 0 and 1 at the cloud base and top heights, respectively. Both CloudSat and CALIPSO observations show that the maximum in the IWC and extinction profiles shifts toward the cloud bottom, as the cloud depth increases. In addition, clouds with a base reaching the surface in a high-latitude region show that the maximum peak of the IWC and extinction profiles occurs near the surface, which is presumably due to snow precipitation. CloudSat measurements show that the seasonal difference in normalized cloud vertical profiles is not significant, whereas the normalized cloud vertical profile significantly varies depending on the cloud type and the presence of precipitation. It is further examined if the 7 day Nonhydrostatic Icosahedral Atmospheric Model (NICAM) simulation results from 25 December 2006 to 1 January 2007 generate similar cloud profile shapes. NICAM IWC profiles also show maximum peaks near the cloud bottom for thick cloud layers and maximum peaks at the cloud bottom for low-level clouds near the surface. It is inferred that oversized snow particles in the NICAM cloud scheme produce a more vertically inhomogeneous IWC profile than observations due to quick sedimentation.
A stress-induced phase transition model for semi-crystallize shape memory polymer
NASA Astrophysics Data System (ADS)
Guo, Xiaogang; Zhou, Bo; Liu, Liwu; Liu, Yanju; Leng, Jinsong
2014-03-01
The developments of constitutive models for shape memory polymer (SMP) have been motivated by its increasing applications. During cooling or heating process, the phase transition which is a continuous time-dependent process happens in semi-crystallize SMP and the various individual phases form at different temperature and in different configuration. Then, the transformation between these phases occurred and shape memory effect will emerge. In addition, stress applied on SMP is an important factor for crystal melting during phase transition. In this theory, an ideal phase transition model considering stress or pre-strain is the key to describe the behaviors of shape memory effect. So a normal distributed model was established in this research to characterize the volume fraction of each phase in SMP during phase transition. Generally, the experiment results are partly backward (in heating process) or forward (in cooling process) compared with the ideal situation considering delay effect during phase transition. So, a correction on the normal distributed model is needed. Furthermore, a nonlinear relationship between stress and phase transition temperature Tg is also taken into account for establishing an accurately normal distributed phase transition model. Finally, the constitutive model which taking the stress as an influence factor on phase transition was also established. Compared with the other expressions, this new-type model possesses less parameter and is more accurate. For the sake of verifying the rationality and accuracy of new phase transition and constitutive model, the comparisons between the simulated and experimental results were carried out.
NASA Astrophysics Data System (ADS)
Fisenko, Anatoliy I.; Lemberg, Vladimir F.
2016-09-01
The knowledge of thermal radiative and thermodynamic properties of uranium and plutonium carbides under extreme conditions is essential for designing a new metallic fuel materials for next generation of a nuclear reactor. The present work is devoted to the study of the thermal radiative and thermodynamic properties of liquid and solid uranium and plutonium carbides at their melting/freezing temperatures. The Stefan-Boltzmann law, total energy density, number density of photons, Helmholtz free energy density, internal energy density, enthalpy density, entropy density, heat capacity at constant volume, pressure, and normal total emissivity are calculated using experimental data for the frequency dependence of the normal spectral emissivity of liquid and solid uranium and plutonium carbides in the visible-near infrared range. It is shown that the thermal radiative and thermodynamic functions of uranium carbide have a slight difference during liquid-to-solid transition. Unlike UC, such a difference between these functions have not been established for plutonium carbide. The calculated values for the normal total emissivity of uranium and plutonium carbides at their melting temperatures is in good agreement with experimental data. The obtained results allow to calculate the thermal radiative and thermodynamic properties of liquid and solid uranium and plutonium carbides for any size of samples. Based on the model of Hagen-Rubens and the Wiedemann-Franz law, a new method to determine the thermal conductivity of metals and carbides at the melting points is proposed.
[Heated humidification during CPAP with and without tube insulation].
Rühle, K-H; Domanski, U; Schröder, M; Franke, K J; Nilius, G
2010-05-01
Patients with obstructive sleep apnoea syndrome (OSAS) under continuous positive pressure (CPAP) often complain about drying-up of the throat and nasal mucosa. In many cases the problem can be eliminated with a heated humidifier (WLB). Especially in a cold environment condensation forming on cooling of the air in the tube and the mask can be observed. To avoid this, some patients use an insulating tube covering. We investigated the effect of temperature (T) and relative humidity (rH) of the environment, the ventilation pressure, mask leaks, insulation of tubing on the T and rH% of the delivered air at the end of the tube or in the mask in OSAS patients. All measurements were performed with a conventional WLB (S8, Resmed Fa) and a temperature and humidity sensor (Fa Testo, Lenzkirch). 8 patients with OSAS were examined during the day at a room temperature of 16.4 degrees C. The temperature at the outlet of the WLB increased with a higher ambient temperature. Through isolation with a hose cover the temperature drop in the tube was reduced by 2.3 degrees C. By tube insulation a mean increase in temperature between 1.6 and 1.0 C during normal breathing in dependence on the leakage flow in the mask was found. Due to additional insulation with a tube cover the mask temperature can be increased, albeit slightly, and the formation of condensation is reduced.
NASA Astrophysics Data System (ADS)
Manjunatha, N.; Sumithra, R.
2018-04-01
The problem of surface tension driven two component magnetoconvection is investigated in a Porous-Fluid system, consisting of anincompressible two component electrically conducting fluid saturatedporous layer above which lies a layer of the same fluid in the presence of a uniform vertical magnetic field. The lower boundary of the porous layeris rigid and the upper boundary of the fluid layer is free with surfacetension effects depending on both temperature and concentration, boththese boundaries are insulating to heat and mass. At the interface thevelocity, shear and normal stress, heat and heat flux, mass and mass fluxare assumed to be continuous suitable for Darcy-Brinkman model. Theeigenvalue problem is solved in linear, parabolic and inverted parabolictemperature profiles and the corresponding Thermal Marangoni Numberis obtained for different important physical parameters.
NASA Astrophysics Data System (ADS)
Maksimochkin, G. I.; Shmeliova, D. V.; Pasechnik, S. V.; Dubtsov, A. V.; Semina, O. A.; Kralj, S.
2016-08-01
Results of optical investigations of the isotropic-nematic and nematic-smectic A phase transitions in porous polyethyleneterephthalate (PET) films filled with octyl-cyanobihenyl (8CB) liquid crystal (LC) are reported. Samples of porous films of thickness 23 µm with normally oriented cylindrical pores of a radius R ranging from 10 nm to 1000 nm were prepared using the track-etched membrane technology. The dynamic light scattering method was used to probe the nematic orientational fluctuations of confined LC samples. The corresponding relaxation time τ was measured as a function of R and temperature T at slow enough cooling rates (0.3-0.6 K/h) to locate the phase transition temperatures. Changes in τ(T) dependencies relatively sensitivity fingerprint the LC phase transformations. Experimental results are analysed using the Landau-de Gennes-Ginzburg phenomenological approach.
Spectroscopic study of shock-induced decomposition in ammonium perchlorate single crystals.
Gruzdkov, Y A; Winey, J M; Gupta, Y M
2008-05-01
Time-resolved Raman scattering measurements were performed on ammonium perchlorate (AP) single crystals under stepwise shock loading. For particular temperature and pressure conditions, the intensity of the Raman spectra in shocked AP decayed exponentially with time. This decay is attributed to shock-induced chemical decomposition in AP. A series of shock experiments, reaching peak stresses from 10-18 GPa, demonstrated that higher stresses inhibit decomposition while higher temperatures promote it. No orientation dependence was found when AP crystals were shocked normal to the (210) and (001) crystallographic planes. VISAR (velocity interferometer system for any reflector) particle velocity measurements and time-resolved optical extinction measurements carried out to verify these observations are consistent with the Raman data. The combined kinetic and spectroscopic results are consistent with a proton-transfer reaction as the first decomposition step in shocked AP.
Impedance spectroscopic and dielectric properties of nanosized Y2/3Cu3Ti4O12 ceramic
NASA Astrophysics Data System (ADS)
Sharma, Sunita; Yadav, Shiv Sundar; Singh, M. M.; Mandal, K. D.
2014-11-01
Yttrium Copper Titanate (Y2/3Cu3Ti4O12) nanoceramic is structurally analogous to CaCu3Ti4O12 (CCTO). X-ray diffraction (XRD) of Y2/3Cu3Ti4O12 (YCTO) shows the presence of all normal peaks of CCTO. SEM micrograph exhibits the presence of bimodal grains of size ranging from 1-2 μm. Bright field TEM image clearly displays nanocrystalline particle which is supported by presence of a few clear rings in the corresponding selected area electron diffraction (SAED) pattern. It exhibits a high value of dielectric constant (ɛ‧ = 8434) at room temperature and 100 Hz frequency with characteristic relaxation peaks. Impedance and modulus studies revealed the presence of temperature-dependent Maxwell-Wagner type of relaxation in the ceramic.