Sample records for normal tissue development

  1. Genomic Changes in Normal Breast Tissue in Women at Normal Risk or at High Risk for Breast Cancer

    PubMed Central

    Danforth, David N.

    2016-01-01

    Sporadic breast cancer develops through the accumulation of molecular abnormalities in normal breast tissue, resulting from exposure to estrogens and other carcinogens beginning at adolescence and continuing throughout life. These molecular changes may take a variety of forms, including numerical and structural chromosomal abnormalities, epigenetic changes, and gene expression alterations. To characterize these abnormalities, a review of the literature has been conducted to define the molecular changes in each of the above major genomic categories in normal breast tissue considered to be either at normal risk or at high risk for sporadic breast cancer. This review indicates that normal risk breast tissues (such as reduction mammoplasty) contain evidence of early breast carcinogenesis including loss of heterozygosity, DNA methylation of tumor suppressor and other genes, and telomere shortening. In normal tissues at high risk for breast cancer (such as normal breast tissue adjacent to breast cancer or the contralateral breast), these changes persist, and are increased and accompanied by aneuploidy, increased genomic instability, a wide range of gene expression differences, development of large cancerized fields, and increased proliferation. These changes are consistent with early and long-standing exposure to carcinogens, especially estrogens. A model for the breast carcinogenic pathway in normal risk and high-risk breast tissues is proposed. These findings should clarify our understanding of breast carcinogenesis in normal breast tissue and promote development of improved methods for risk assessment and breast cancer prevention in women. PMID:27559297

  2. THE PROS AND CONS OF APOPTOSIS ASSAYS FOR USE IN THE STUDY OF CELLS, TISSUES AND ORGANS

    EPA Science Inventory

    Abstract
    Programmed cell death or apoptosis occurs in many tissues during normal development and in the normal homeostasis of adult tissues. Apoptosis also plays a significant role in abnormal development and disease. Increased interest in apoptosis and cell death in general...

  3. Development of a Novel Tissue Specific Aromatase Activity Regulation Therapeutic Method

    DTIC Science & Technology

    2009-09-01

    Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Estrogen is essential for normal growth and development of the female ...the ovaries and other tissues of the body using an enzyme called aromatase. Once women have reached menopause, the ovaries no longer produce estrogen...Introduction Estrogen is essential for normal growth and development of the female reproductive system, including breast tissue, and lifetime

  4. Cultured normal mammalian tissue and process

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Prewett, Tacey L. (Inventor); Wolf, David A. (Inventor); Spaulding, Glenn F. (Inventor)

    1993-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cell aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  5. Development of the technique of terahertz pulse spectroscopy for diagnostic malignant tumors during gastrointestinal surgeries

    NASA Astrophysics Data System (ADS)

    Goryachuk, A. A.; Khodzitsky, M. K.; Borovkova, M. A.; Khamid, A. K.; Dutkinskii, P. S.; Shishlo, D. A.

    2016-08-01

    Samples of fresh excised tissues obtained from patients who had undergone gastric cancer have been investigated. Samples were consisted of cancer zone, normal zone and zone mixed of normal and cancer tissues. Their optical properties and spectral features were investigated by terahertz time-domain spectroscopy (TDS) in reflection mode. It was found that waveforms of reflected signals from normal and cancer tissues were well distinguished so it can be concluded that it is easy to discriminate gastric cancer tissue from normal by using THz TDS.

  6. Recent Tissue Engineering Advances for the Treatment of Temporomandibular Joint Disorders.

    PubMed

    Aryaei, Ashkan; Vapniarsky, Natalia; Hu, Jerry C; Athanasiou, Kyriacos A

    2016-12-01

    Temporomandibular disorders (TMDs) are among the most common maxillofacial complaints and a major cause of orofacial pain. Although current treatments provide short- and long-term relief, alternative tissue engineering solutions are in great demand. Particularly, the development of strategies, providing long-term resolution of TMD to help patients regain normal function, is a high priority. An absolute prerequisite of tissue engineering is to understand normal structure and function. The current knowledge of anatomical, mechanical, and biochemical characteristics of the temporomandibular joint (TMJ) and associated tissues will be discussed, followed by a brief description of current TMD treatments. The main focus is on recent tissue engineering developments for regenerating TMJ tissue components, with or without a scaffold. The expectation for effectively managing TMD is that tissue engineering will produce biomimetic TMJ tissues that recapitulate the normal structure and function of the TMJ.

  7. Recent tissue engineering advances for the treatment of temporomandibular joint disorders

    PubMed Central

    Aryaei, Ashkan; Vapniarsky, Natalia; Hu, Jerry C; Athanasiou, Kyriacos A

    2016-01-01

    Temporomandibular disorders (TMD) are among the most common maxillofacial complaints and a major cause of orofacial pain. Although, current treatments provide short- and long-term relief, alternative tissue engineering solutions are in great demand. Particularly, the development of strategies, providing long-term resolution of TMD to help patients regain normal function is a high priority. An absolute prerequisite of tissue engineering is to understand normal structure and function. The current knowledge of anatomical, mechanical, and biochemical characteristics of the temporomandibular joint (TMJ) and associated tissues will be discussed, followed by a brief description of current TMD treatments. The main focus is on recent tissue engineering developments for regenerating TMJ tissue components, with or without a scaffold. The expectation for effectively managing TMD is that tissue engineering will produce biomimetic TMJ tissues that recapitulate the normal structure and function of the TMJ. PMID:27704395

  8. Fluorescence spectroscopy using excitation and emission matrix for quantification of tissue native fluorophores and cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Wu, Binlin; Gayen, S. K.; Xu, M.

    2014-03-01

    Native fluorescence spectrum of normal and cancerous human prostate tissues is studied to distinguish between normal and cancerous tissues, and cancerous tissues at different cancer grade. The tissue samples were obtained from Cooperative Human Tissue Network (CHTN) and National Disease Research Interchange(NDRI). An excitation and emission matrix (EEM) was generated for each tissue sample by acquiring native fluorescence spectrum of the sample using multiple excitation wavelengths. The non-negative matrix factorization algorithm was used to generate fluorescence EEMs that correspond to the fluorophores in biological tissues, including tryptophan, collagen, elastin, nicotinamide adenine dinucleotide (NADH), flavin adenine dinucleotide (FAD) and the background paraffin. We hypothesize that, as a consequence of metabolic changes associated with the development of cancer, the concentrations of NADH and FAD are different in normal and cancerous tissues, and also different for different cancer grades. We used the ratio of the abundances of FAD and NADH to distinguish between normal and cancerous tissues, and the tissue cancer grade. The FAD-to-NADH ratio was found to be the highest for normal tissue and decreased as the cancer grade increased.

  9. Identification of the boundary between normal brain tissue and ischemia region using two-photon excitation fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Du, Huiping; Wang, Shu; Wang, Xingfu; Zhu, Xiaoqin; Zhuo, Shuangmu; Chen, Jianxin

    2016-10-01

    Ischemic stroke is one of the common neurological diseases, and it is becoming the leading causes of death and permanent disability around the world. Early and accurate identification of the potentially salvageable boundary region of ischemia brain tissues may enable selection of the most appropriate candidates for early stroke therapies. In this work, TPEF microscopy was used to image the microstructures of normal brain tissues, ischemia regions and the boundary region between normal and ischemia brain tissues. The ischemia brain tissues from Sprague-Dawley (SD) rats were subjected to 6 hours of middle cerebral artery occlusion (MCAO). Our study demonstrates that TPEF microscopy has the ability to not only reveal the morphological changes of the neurons but also identify the boundary between normal brain tissue and ischemia region, which correspond well to the hematoxylin and eosin (H and E) stained images. With the development of miniaturized TPEF microscope imaging devices, TPEF microscopy can be developed into an effectively diagnostic and monitoring tool for cerebral ischemia.

  10. Role of Insulin-like growth factors in initiation of follicle growth in normal and polycystic human ovaries.

    PubMed

    Stubbs, Sharron A; Webber, Lisa J; Stark, Jaroslav; Rice, Suman; Margara, Raul; Lavery, Stuart; Trew, Geoffrey H; Hardy, Kate; Franks, Stephen

    2013-08-01

    Polycystic ovary syndrome (PCOS), the commonest cause of anovulatory infertility, is characterized by disordered follicle development including increased activation and accelerated growth of preantral follicles. Data from experimental animals and preliminary results from studies of human ovarian tissue suggest that IGFs affect preantral follicle development. Our objectives were to investigate the expression of the type-1 IGF receptor (IGFR-1) in the human ovary and to determine whether IGFs are involved in stimulating the transition of follicles from primordial to primary stage in normal and polycystic ovaries. We used archived ovarian tissue for protein expression studies and small cortical biopsies for follicle isolation and for tissue culture. This was a laboratory-based study, using clinical tissue samples. A total of 54 women, 33 with normal ovaries and 21 with polycystic ovaries, were classified by reference to menstrual cycle history and ultrasonography. We evaluated expression of IGFR-1 mRNA in isolated preantral follicles and of IGFR-1 protein in archived ovarian tissue samples from normal and polycystic ovaries and effects of exogenous IGF-1 on preantral follicle development and survival in cultured fragments of normal and polycystic ovaries. IGFR-1 mRNA and protein was expressed in preantral follicles at all stages of development and enhanced expression was noted in PCOS follicles during early preantral development. IGF-1 stimulated initiation of follicle growth in normal tissue but had little effect on preantral follicle growth in polycystic ovaries in which, characteristically, there was a higher proportion of follicles that had entered the growing phase even before culture. IGFs are plausible candidates in regulation of initiation of human follicle growth, and accelerated preantral follicle growth in PCOS may be due to increased activity of endogenous IGFs.

  11. Screening prostate cancer using a portable near infrared scanning imaging unit with an optical fiber-based rectal probe

    NASA Astrophysics Data System (ADS)

    Pu, Yang; Wang, Wubao; Tang, Guichen; Budansky, Yury; Sharonov, Mikhail; Xu, Min; Achilefu, Samuel; Eastham, James A.; Alfano, Robert R.

    2012-01-01

    A portable near infrared scanning polarization imaging unit with an optical fiber-based rectal probe, namely Photonic Finger, was designed and developed o locate the 3D position of abnormal prostate site inside normal prostate tissue. An inverse algorithm, Optical Tomography using Independent Component Analysis (OPTICA) was improved particularly to unmix the signal from targets (cancerous tissue) embedded in a turbid medium (normal tissue) in the backscattering imaging geometry. Photonic Finger combined with OPTICA was tested to characterize different target(s) inside different tissue medium, including cancerous prostate tissue embedded by large piece of normal tissue.

  12. Elastic light single-scattering spectroscopy for detection of dysplastic tissues

    NASA Astrophysics Data System (ADS)

    Canpolat, Murat; Denkçeken, Tuba; Akman, Ayşe.; Alpsoy, Erkan; Tuncer, Recai; Akyüz, Mahmut; Baykara, Mehmet; Yücel, Selçuk; Başsorgun, Ibrahim; ćiftçioǧlu, M. Akif; Gökhan, Güzide Ayşe.; Gürer, ElifInanç; Peştereli, Elif; Karaveli, Šeyda

    2013-11-01

    Elastic light single-scattering spectroscopy (ELSSS) system has been developed and tested in diagnosis of cancerous tissues of different organs. ELSSS system consists of a miniature visible light spectrometer, a single fiber optical probe, a halogen tungsten light source and a laptop. Measurements were performed on excised brain, skin, cervix and prostate tumor specimens and surrounding normal tissues. Single fiber optical probe with a core diameter of 100 μm was used to deliver white light to and from tissue. Single optical fiber probe mostly detects singly scattered light from tissue rather than diffused light. Therefore, measured spectra are sensitive to size of scatters in tissue such as cells, nuclei, mitochondria and other organelles of cells. Usually, nuclei of tumor cells are larger than nuclei of normal cells. Therefore, spectrum of singly scattered light of tumor tissue is different than normal tissue. The spectral slopes were shown to be positive for normal brain, skin and prostate and cervix tissues and negative for the tumors of the same tissues. Signs of the spectral slopes were used as a discrimination parameter to differentiate tumor from normal tissues for the three organ tissues. Sensitivity and specificity of the system in differentiation between tumors from normal tissues were 93% and %100 for brain, 87% and 85% for skin, 93.7% and 46.1% for cervix and 98% and 100% for prostate.

  13. Tissue Physiology and Pathology of Aromatase

    PubMed Central

    Stocco, Carlos

    2011-01-01

    Summary Aromatase is expressed in multiple tissues, indicating a crucial role for locally produced oestrogens in the differentiation, regulation and normal function of several organs and processes. This review is an overview of the role of aromatase in different tissues under normal physiological conditions and its contribution to the development of some oestrogen-related pathologies. PMID:22108547

  14. An Intron 9 CYP19 Gene Variant (IVS9+5G>A), Present in an Aromatase-Deficient Girl, Affects Normal Splicing and Is Also Present in Normal Human Steroidogenic Tissues.

    PubMed

    Saraco, Nora; Nesi-Franca, Suzana; Sainz, Romina; Marino, Roxana; Marques-Pereira, Rosana; La Pastina, Julia; Perez Garrido, Natalia; Sandrini, Romolo; Rivarola, Marco Aurelio; de Lacerda, Luiz; Belgorosky, Alicia

    2015-01-01

    Splicing CYP19 gene variants causing aromatase deficiency in 46,XX disorder of sexual development (DSD) patients have been reported in a few cases. A misbalance between normal and aberrant splicing variants was proposed to explain spontaneous pubertal breast development but an incomplete sex maturation progress. The aim of this study was to functionally characterize a novel CYP19A1 intronic homozygote mutation (IVS9+5G>A) in a 46,XX DSD girl presenting spontaneous breast development and primary amenorrhea, and to evaluate similar splicing variant expression in normal steroidogenic tissues. Genomic DNA analysis, splicing prediction programs, splicing assays, and in vitro protein expression and enzyme activity analyses were carried out. CYP19A1 mRNA expression in human steroidogenic tissues was also studied. A novel IVS9+5G>A homozygote mutation was found. In silico analysis predicts the disappearance of the splicing donor site in intron 9, confirmed by patient peripheral leukocyte cP450arom and in vitro studies. Protein analysis showed a shorter and inactive protein. The intron 9 transcript variant was also found in human steroidogenic tissues. The mutation IVS9+5G>A generates a splicing variant that includes intron 9 which is also present in normal human steroidogenic tissues, suggesting that a misbalance between normal and aberrant splicing variants might occur in target tissues, explaining the clinical phenotype in the affected patient. © 2015 S. Karger AG, Basel.

  15. A Modified Protocol for the Isolation of Primary Human Hepatocytes with Improved Viability and Function from Normal and Diseased Human Liver.

    PubMed

    Bartlett, David C; Newsome, Philip N

    2017-01-01

    Successful hepatocyte isolation is critical for continued development of cellular transplantation. However, most tissue available for research is from diseased liver and the results of hepatocyte isolation from such tissue are inferior compared to normal tissue. Here we describe a modified method, combining the use of Liberase and N-acetylcysteine (NAC), for the isolation of primary human hepatocytes with high viability from normal and diseased liver.

  16. A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries

    NASA Astrophysics Data System (ADS)

    Lazebnik, Mariya; Popovic, Dijana; McCartney, Leah; Watkins, Cynthia B.; Lindstrom, Mary J.; Harter, Josephine; Sewall, Sarah; Ogilvie, Travis; Magliocco, Anthony; Breslin, Tara M.; Temple, Walley; Mew, Daphne; Booske, John H.; Okoniewski, Michal; Hagness, Susan C.

    2007-10-01

    The development of microwave breast cancer detection and treatment techniques has been driven by reports of substantial contrast in the dielectric properties of malignant and normal breast tissues. However, definitive knowledge of the dielectric properties of normal and diseased breast tissues at microwave frequencies has been limited by gaps and discrepancies across previously published studies. To address these issues, we conducted a large-scale study to experimentally determine the ultrawideband microwave dielectric properties of a variety of normal, malignant and benign breast tissues, measured from 0.5 to 20 GHz using a precision open-ended coaxial probe. Previously, we reported the dielectric properties of normal breast tissue samples obtained from reduction surgeries. Here, we report the dielectric properties of normal (adipose, glandular and fibroconnective), malignant (invasive and non-invasive ductal and lobular carcinomas) and benign (fibroadenomas and cysts) breast tissue samples obtained from cancer surgeries. We fit a one-pole Cole-Cole model to the complex permittivity data set of each characterized sample. Our analyses show that the contrast in the microwave-frequency dielectric properties between malignant and normal adipose-dominated tissues in the breast is considerable, as large as 10:1, while the contrast in the microwave-frequency dielectric properties between malignant and normal glandular/fibroconnective tissues in the breast is no more than about 10%.

  17. Measurement of glutathione S-transferase and its class-pi in plasma and tissue biopsies obtained after laparoscopy and endoscopy from subjects with esophagus and gastric cancer.

    PubMed

    Mohammadzadeh, G S; Nasseri Moghadam, S; Rasaee, M J; Zaree, A B; Mahmoodzadeh, H; Allameh, A

    2003-06-01

    To develop an indirect enzyme-linked immunosorbent assay (ELISA) for measuring class-pi glutathione S-transferase (GST) in plasma, and tissue biopsies obtained from upper gastrointestinal cancer (UGI Ca) patients. GST activity and GST-pi concentration were detected in normal human squamous esophageal epithelium, normal gastric cardia and their corresponding malignant tumor biopsies. Plasma GST was significantly higher (p < 0.05) in UGI Ca patients as compared to those obtained from normal individuals. Plasma GST-pi concentration in normal subjects was 6.6 +/- 1.9 ng/mg protein, whereas it was higher in UGI Ca patients (esophageal, 10.0 +/- 1.8; gastric, 10.7 +/- 1.7 ng/mL, p

  18. Optical characterization of pancreatic normal and tumor tissues with double integrating sphere system

    NASA Astrophysics Data System (ADS)

    Kiris, Tugba; Akbulut, Saadet; Kiris, Aysenur; Gucin, Zuhal; Karatepe, Oguzhan; Bölükbasi Ates, Gamze; Tabakoǧlu, Haşim Özgür

    2015-03-01

    In order to develop minimally invasive, fast and precise diagnostic and therapeutic methods in medicine by using optical methods, first step is to examine how the light propagates, scatters and transmitted through medium. So as to find out appropriate wavelengths, it is required to correctly determine the optical properties of tissues. The aim of this study is to measure the optical properties of both cancerous and normal ex-vivo pancreatic tissues. Results will be compared to detect how cancerous and normal tissues respond to different wavelengths. Double-integrating-sphere system and computational technique inverse adding doubling method (IAD) were used in the study. Absorption and reduced scattering coefficients of normal and cancerous pancreatic tissues have been measured within the range of 500-650 nm. Statistical significant differences between cancerous and normal tissues have been obtained at 550 nm and 630 nm for absorption coefficients. On the other hand; there were no statistical difference found for scattering coefficients at any wavelength.

  19. Real time cancer prediction based on objective tissue compliance measurement in endoscopic surgery.

    PubMed

    Fakhry, Morkos; Bello, Fernando; Hanna, George B

    2014-02-01

    To investigate the feasibility of real time cancer tissue diagnosis intraoperatively based on in vivo tissue compliance measurements obtained by a recently developed laparoscopic smart device. Cancer tissue is stiffer than its normal counterpart. Modern forms of remote surgery such as laparoscopic and robotic surgical techniques diminish direct assessment of this important tissue property. In vivo human tissue compliance of the normal and cancer gastrointestinal tissue is unknown. A Clinical Real Time Tissue Compliance Mapping System (CRTCMS) with a predictive power comparable to the human hand and useable in routine surgical practice has been recently developed. The CRTCMS is employed in the operating theater to collect data from 50 patients undergoing intra-abdominal surgical interventions [40 men, 10 women, aged between 32 and 89 (mean = 66.4, range = 57)]. This includes 10 esophageal and 27 gastric cancer patients. A total of 1212 compliance measurements of normal and cancerous in vivo gastrointestinal tissues were taken. The data were used to calibrate the CRTCMS to predict cancerous tissue in a further 12 patients (3 cancer esophagus and 9 cancer stomach) involving 175 measurements. The system demonstrated a high prediction power to diagnose cancer tissue in real time during routine surgical procedures (sensitivity = 98.7%, specificity = 99%). An in vivo human tissue compliance data bank of the gastrointestinal tract was produced. Real time cancer diagnosis based on in vivo tissue compliance measurements is feasible. The reported data open new avenues in cancer diagnostics, surgical robotics, and development of more realistic surgical simulators.

  20. Investigation of scattering coefficients and anisotropy factors of human cancerous and normal prostate tissues using Mie theory

    NASA Astrophysics Data System (ADS)

    Pu, Yang; Chen, Jun; Wang, Wubao

    2014-02-01

    The scattering coefficient, μs, the anisotropy factor, g, the scattering phase function, p(θ), and the angular dependence of scattering intensity distributions of human cancerous and normal prostate tissues were systematically investigated as a function of wavelength, scattering angle and scattering particle size using Mie theory and experimental parameters. The Matlab-based codes using Mie theory for both spherical and cylindrical models were developed and applied for studying the light propagation and the key scattering properties of the prostate tissues. The optical and structural parameters of tissue such as the index of refraction of cytoplasm, size of nuclei, and the diameter of the nucleoli for cancerous and normal human prostate tissues obtained from the previous biological, biomedical and bio-optic studies were used for Mie theory simulation and calculation. The wavelength dependence of scattering coefficient and anisotropy factor were investigated in the wide spectral range from 300 nm to 1200 nm. The scattering particle size dependence of μs, g, and scattering angular distributions were studied for cancerous and normal prostate tissues. The results show that cancerous prostate tissue containing larger size scattering particles has more contribution to the forward scattering in comparison with the normal prostate tissue. In addition to the conventional simulation model that approximately considers the scattering particle as sphere, the cylinder model which is more suitable for fiber-like tissue frame components such as collagen and elastin was used for developing a computation code to study angular dependence of scattering in prostate tissues. To the best of our knowledge, this is the first study to deal with both spherical and cylindrical scattering particles in prostate tissues.

  1. Raman spectroscopy of normal oral buccal mucosa tissues: study on intact and incised biopsies

    NASA Astrophysics Data System (ADS)

    Deshmukh, Atul; Singh, S. P.; Chaturvedi, Pankaj; Krishna, C. Murali

    2011-12-01

    Oral squamous cell carcinoma is one of among the top 10 malignancies. Optical spectroscopy, including Raman, is being actively pursued as alternative/adjunct for cancer diagnosis. Earlier studies have demonstrated the feasibility of classifying normal, premalignant, and malignant oral ex vivo tissues. Spectral features showed predominance of lipids and proteins in normal and cancer conditions, respectively, which were attributed to membrane lipids and surface proteins. In view of recent developments in deep tissue Raman spectroscopy, we have recorded Raman spectra from superior and inferior surfaces of 10 normal oral tissues on intact, as well as incised, biopsies after separation of epithelium from connective tissue. Spectral variations and similarities among different groups were explored by unsupervised (principal component analysis) and supervised (linear discriminant analysis, factorial discriminant analysis) methodologies. Clusters of spectra from superior and inferior surfaces of intact tissues show a high overlap; whereas spectra from separated epithelium and connective tissue sections yielded clear clusters, though they also overlap on clusters of intact tissues. Spectra of all four groups of normal tissues gave exclusive clusters when tested against malignant spectra. Thus, this study demonstrates that spectra recorded from the superior surface of an intact tissue may have contributions from deeper layers but has no bearing from the classification of a malignant tissues point of view.

  2. Three dimensional optic tissue culture and process

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F. (Inventor); Prewett, Tacey L. (Inventor); Goodwin, Thomas J. (Inventor); Francis, Karen M. (Inventor); Cardwell, Delmar R. (Inventor); Oconnor, Kim (Inventor); Fitzgerald, Wendy S. (Inventor); Aten, Laurie A. (Inventor)

    1994-01-01

    A process for artificially producing three-dimensional optic tissue has been developed. The optic cells are cultured in a bioreactor at low shear conditions. The tissue forms normal, functional tissue organization and extracellular matrix.

  3. Media Compositions for Three Dimensional Mammalian Tissue Growth Under Microgravity Culture Conditions

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor)

    1998-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  4. Media Compositions for Three-Dimensional Mammalian Tissue Growth under Microgravity Culture Conditions

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor)

    1998-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue.The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  5. Three Dimensional Optic Tissue Culture and Process

    NASA Technical Reports Server (NTRS)

    OConnor, Kim C. (Inventor); Spaulding, Glenn F. (Inventor); Goodwin, Thomas J. (Inventor); Aten, Laurie A. (Inventor); Francis, Karen M. (Inventor); Caldwell, Delmar R. (Inventor); Prewett, Tacey L. (Inventor); Fitzgerald, Wendy S. (Inventor)

    1999-01-01

    A process for artificially producing three-dimensional optic tissue has been developed. The optic cells are cultured in a bioireactor at low shear conditions. The tissue forms as normal, functional tissue grows with tissue organization and extracellular matrix formation.

  6. Engineering epithelial-stromal interactions in vitro for toxicology assessment.

    PubMed

    Belair, David G; Abbott, Barbara D

    2017-05-01

    Crosstalk between epithelial and stromal cells drives the morphogenesis of ectodermal organs during development and promotes normal mature adult epithelial tissue homeostasis. Epithelial-stromal interactions (ESIs) have historically been examined using mammalian models and ex vivo tissue recombination. Although these approaches have elucidated signaling mechanisms underlying embryonic morphogenesis processes and adult mammalian epithelial tissue function, they are limited by the availability of tissue, low throughput, and human developmental or physiological relevance. In this review, we describe how bioengineered ESIs, using either human stem cells or co-cultures of human primary epithelial and stromal cells, have enabled the development of human in vitro epithelial tissue models that recapitulate the architecture, phenotype, and function of adult human epithelial tissues. We discuss how the strategies used to engineer mature epithelial tissue models in vitro could be extrapolated to instruct the design of organotypic culture models that can recapitulate the structure of embryonic ectodermal tissues and enable the in vitro assessment of events critical to organ/tissue morphogenesis. Given the importance of ESIs towards normal epithelial tissue development and function, such models present a unique opportunity for toxicological screening assays to incorporate ESIs to assess the impact of chemicals on mature and developing epidermal tissues. Published by Elsevier B.V.

  7. Engineering epithelial-stromal interactions in vitro for toxicology assessment

    PubMed Central

    Belair, David G.; Abbott, Barbara D.

    2018-01-01

    Crosstalk between epithelial and stromal cells drives the morphogenesis of ectodermal organs during development and promotes normal mature adult epithelial tissue homeostasis. Epithelial-stromal interactions (ESIs) have historically been examined using mammalian models and ex vivo tissue recombination. Although these approaches have elucidated signaling mechanisms underlying embryonic morphogenesis processes and adult mammalian epithelial tissue function, they are limited by the availability of tissue, low throughput, and human developmental or physiological relevance. In this review, we describe how bioengineered ESIs, using either human stem cells or co-cultures of human primary epithelial and stromal cells, have enabled the development of human in vitro epithelial tissue models that recapitulate the architecture, phenotype, and function of adult human epithelial tissues. We discuss how the strategies used to engineer mature epithelial tissue models in vitro could be extrapolated to instruct the design of organotypic culture models that can recapitulate the structure of embryonic ectodermal tissues and enable the in vitro assessment of events critical to organ/tissue morphogenesis. Given the importance of ESIs towards normal epithelial tissue development and function, such models present a unique opportunity for toxicological screening assays to incorporate ESIs to assess the impact of chemicals on mature and developing epidermal tissues. PMID:28285100

  8. Trace elemental analysis in cancer-afflicted tissues of penis and testis by PIXE technique

    NASA Astrophysics Data System (ADS)

    Naga Raju, G. J.; John Charles, M.; Bhuloka Reddy, S.; Sarita, P.; Seetharami Reddy, B.; Rama Lakshmi, P. V. B.; Vijayan, V.

    2005-04-01

    PIXE technique was employed to estimate the trace elemental concentrations in the biological samples of cancerous penis and testis. A 3 MeV proton beam was employed to excite the samples. From the present results it can be seen that the concentrations of Cl, Fe and Co are lower in the cancerous tissue of the penis when compared with those in normal tissue while the concentrations of Cu, Zn and As are relatively higher. The concentrations of K, Ca, Ti, Cr, Mn, Br, Sr and Pb are in agreement within standard deviations in both cancerous and normal tissues. In the cancerous tissue of testis, the concentrations of K, Cr and Cu are higher while the concentrations of Fe, Co and Zn are lower when compared to those in normal tissue of testis. The concentrations of Cl, Ca, Ti and Mn are in agreement in both cancerous and normal tissues of testis. The higher levels of Cu lead to the development of tumor. Our results also support the underlying hypothesis of an anticopper, antiangiogenic approach to cancer therapy. The Cu/Zn ratios of both penis and testis were higher in cancer tissues compared to that of normal.

  9. It takes a tissue to make a tumor: epigenetics, cancer and the microenvironment

    NASA Technical Reports Server (NTRS)

    Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)

    2001-01-01

    How do normal tissues limit the development of cancer? This review discusses the evidence that normal cells effectively restrict malignant behavior, and that such tissue forces must be subjugated to establish a tumor. The action of ionizing radiation will be specifically discussed regarding the disruption of the microenvironment that promotes the transition from preneoplastic to neoplastic growth. Unlike the highly unpredictable nature of genetic mutations, the response of normal cells to radiation damage follows an epigenetic program similar to wound healing and other damage responses. Our hypothesis is that the persistent disruption of the microenvironment in irradiated tissue compromises its ability to suppress carcinogenesis.

  10. Dielectric properties of human normal, malignant and cirrhotic liver tissue: in vivo and ex vivo measurements from 0.5 to 20 GHz using a precision open-ended coaxial probe.

    PubMed

    O'Rourke, Ann P; Lazebnik, Mariya; Bertram, John M; Converse, Mark C; Hagness, Susan C; Webster, John G; Mahvi, David M

    2007-08-07

    Hepatic malignancies have historically been treated with surgical resection. Due to the shortcomings of this technique, there is interest in other, less invasive, treatment modalities, such as microwave hepatic ablation. Crucial to the development of this technique is the accurate knowledge of the dielectric properties of human liver tissue at microwave frequencies. To this end, we characterized the dielectric properties of in vivo and ex vivo normal, malignant and cirrhotic human liver tissues from 0.5 to 20 GHz. Analysis of our data at 915 MHz and 2.45 GHz indicates that the dielectric properties of ex vivo malignant liver tissue are 19 to 30% higher than normal tissue. The differences in the dielectric properties of in vivo malignant and normal liver tissue are not statistically significant (with the exception of effective conductivity at 915 MHz, where malignant tissue properties are 16% higher than normal). Also, the dielectric properties of in vivo normal liver tissue at 915 MHz and 2.45 GHz are 16 to 43% higher than ex vivo. No statistically significant differences were found between the dielectric properties of in vivo and ex vivo malignant tissue (with the exception of effective conductivity at 915 MHz, where malignant tissue properties are 28% higher than normal). We report the one-pole Cole-Cole parameters for ex vivo normal, malignant and cirrhotic liver tissue in this frequency range. We observe that wideband dielectric properties of in vivo liver tissue are different from the wideband dielectric properties of ex vivo liver tissue, and that the in vivo data cannot be represented in terms of a Cole-Cole model. Further work is needed to uncover the mechanisms responsible for the observed wideband trends in the in vivo liver data.

  11. Fiber-probe optical spectroscopy discriminates normal brain from focal cortical dysplasia in pediatric subjects

    NASA Astrophysics Data System (ADS)

    Anand, Suresh; Cicchi, Riccardo; Giordano, Flavio; Conti, Valerio; Buccoliero, Anna Maria; Guerrini, Renzo; Pavone, Francesco S.

    2017-02-01

    Focal cortical dysplasia (FCD) is an abnormality in the cerebral cortex that is caused by malformations during cortical development. Currently, magnetic resonance imaging (MRI) and electro-corticography (ECoG) are used for detecting FCD. On the downside, MRI is very much insensitive to small malformations in the brain, while ECoG is an invasive and time consuming procedure. Recently, optical techniques were widely exploited as a minimally invasive and quantitative approaches for disease diagnosis. These techniques include fluorescence and Raman spectroscopy. The aim of this investigation is to study the diagnostic performances of optical spectroscopy incorporating fluorescence (at 378 nm and 445 nm excitation wavelengths) and Raman spectroscopy (at 785 nm excitation) for the discrimination of FCD from normal brain in pediatric subjects. The study included 10 normal and 17 FCD tissue sites from 3 normal and 7 FCD samples. The emission spectra of FCD at 378 nm excitation wavelength presented a blue-shifted peak with respect to normal tissue. Prominent spectral differences between normal and FCD tissue were observed at 1298 cm-1, 1302 cm-1, 1445 cm-1 and 1660 cm-1 using Raman spectroscopy. Tissue classification models were developed using a multivariate statistical method, principal component analysis. This study demonstrates that a combined spectroscopic approach can provide a better diagnostic capability for classifying normal and FCD tissues. Further, the implementation of the technology within a fiber probe could open the way for in vivo diagnostics and intra-operative surgical guidance.

  12. SWIR dispersive Raman spectroscopy for discrimination of normal and malignant kidney tissue (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Haifler, Miki; Pence, Isaac J.; Zisman, Amnon; Uzzo, Robert G.; Greenberg, Richard; Kutikov, Alexander; Smaldone, Marc; Chen, David; Viterbo, Rosalia; Ristau, Benjamin; Mahadevan-Jansen, Anita; Dumont, Alexander; Patil, Chetan A.

    2017-02-01

    Kidney cancer affects 65,000 new patients every. As computerized tomography became ubiquitous, the number of small, incidentally detected renal masses increased. About 6,000 benign cases are misclassified radiographically as malignant and removed surgically. Raman spectroscopy (RS) has been widely demonstrated for disease discrimination, however intense near-infrared auto-fluorescence of certain tissues (e.g kidney) can present serious challenges to bulk tissue diagnosis. A 1064nm excitation dispersive detection RS system demonstrated the ability to collect spectra with superior quality in tissues with strong auto-fluorescence. Our objective is to develop a 1064 nm dispersive detection RS system capable of differentiating normal and malignant renal tissue. We will report on the design and development of a clinical system for use in nephron sparing surgeries. We will present pilot data that has been collected from normal and malignant ex vivo kidney specimens using a benchtop RS system. A total of 93 measurements were collected from 12 specimens (6 Renal Cell Carcinoma, 6 Normal ). Spectral classification was performed using sparse multinomial logistic regression (SMLR). Correct classification by SMLR was obtained in 78% of the trials with sensitivity and specificity of 82% and 75% respectively. We will present the association of spectral features with biological indicators of healthy and diseased kidney tissue. Our findings indicate that 1064nm RS is a promising technique for differentiation of normal and malignant renal tissue. This indicates the potential for accurately separating healthy and cancerous tissues and suggests implications for utilizing RS for optical biopsy and surgical guidance in nephron sparing surgery.

  13. Esophageal cancer detection based on tissue surface-enhanced Raman spectroscopy and multivariate analysis

    NASA Astrophysics Data System (ADS)

    Feng, Shangyuan; Lin, Juqiang; Huang, Zufang; Chen, Guannan; Chen, Weisheng; Wang, Yue; Chen, Rong; Zeng, Haishan

    2013-01-01

    The capability of using silver nanoparticle based near-infrared surface enhanced Raman scattering (SERS) spectroscopy combined with principal component analysis (PCA) and linear discriminate analysis (LDA) to differentiate esophageal cancer tissue from normal tissue was presented. Significant differences in Raman intensities of prominent SERS bands were observed between normal and cancer tissues. PCA-LDA multivariate analysis of the measured tissue SERS spectra achieved diagnostic sensitivity of 90.9% and specificity of 97.8%. This exploratory study demonstrated great potential for developing label-free tissue SERS analysis into a clinical tool for esophageal cancer detection.

  14. Discrimination of premalignant lesions and cancer tissues from normal gastric tissues using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Luo, Shuwen; Chen, Changshui; Mao, Hua; Jin, Shaoqin

    2013-06-01

    The feasibility of early detection of gastric cancer using near-infrared (NIR) Raman spectroscopy (RS) by distinguishing premalignant lesions (adenomatous polyp, n=27) and cancer tissues (adenocarcinoma, n=33) from normal gastric tissues (n=45) is evaluated. Significant differences in Raman spectra are observed among the normal, adenomatous polyp, and adenocarcinoma gastric tissues at 936, 1003, 1032, 1174, 1208, 1323, 1335, 1450, and 1655 cm-1. Diverse statistical methods are employed to develop effective diagnostic algorithms for classifying the Raman spectra of different types of ex vivo gastric tissues, including principal component analysis (PCA), linear discriminant analysis (LDA), and naive Bayesian classifier (NBC) techniques. Compared with PCA-LDA algorithms, PCA-NBC techniques together with leave-one-out, cross-validation method provide better discriminative results of normal, adenomatous polyp, and adenocarcinoma gastric tissues, resulting in superior sensitivities of 96.3%, 96.9%, and 96.9%, and specificities of 93%, 100%, and 95.2%, respectively. Therefore, NIR RS associated with multivariate statistical algorithms has the potential for early diagnosis of gastric premalignant lesions and cancer tissues in molecular level.

  15. Optical diagnostic of breast cancer using Raman, polarimetric and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Anwar, Shahzad; Firdous, Shamaraz; Rehman, Aziz-ul; Nawaz, Muhammed

    2015-04-01

    We presented the optical diagnostic of normal and cancerous human breast tissues using Raman, polarimetric and fluorescence spectroscopic techniques. Breast cancer is the second leading cause of cancer death among women worldwide. Optical diagnostics of cancer offered early intervention and the greatest chance of cure. Spectroscopic data were collected from freshly excised surgical specimens of normal tissues with Raman bands at 800, 1171 and 1530 cm-1 arising mainly by lipids, nucleic acids, proteins, carbohydrates and amino acids. For breast cancer, Raman bands are observed at 1070, 1211, 1495, 1583 and 1650 cm-1. Results demonstrate that the spectra of normal tissue are dominated by lipids and amino acids. Polarization decomposition of the Mueller matrix and confocal microscopic fluorescence provides detailed description of cancerous tissue and distinguishes between the normal and malignant one. Based on these findings, we successfully differentiate normal and malignant breast tissues at an early stage of disease. There is a need to develop a new tool for noninvasive, real-time diagnosis of tissue abnormalities and a test procedure for detecting breast cancer at an early stage.

  16. A large-scale measurement of dielectric properties of normal and malignant colorectal tissues obtained from cancer surgeries at Larmor frequencies.

    PubMed

    Li, Zhou; Deng, Guanhua; Li, Zhe; Xin, Sherman Xuegang; Duan, Song; Lan, Maoying; Zhang, Sa; Gao, Yixin; He, Jun; Zhang, Songtao; Tang, Hongming; Wang, Weiwei; Han, Shuai; Yang, Qing X; Zhuang, Ling; Hu, Jiani; Liu, Feng

    2016-11-01

    Knowledge of dielectric properties of malignant human tissues is necessary for the recently developed magnetic resonance (MR) technique called MR electrical property tomography. This technique may be used in early tumor detection based on the obvious differentiation of the dielectric properties between normal and malignant tissues. However, the dielectric properties of malignant human tissues in the scale of the Larmor frequencies are not completely available in the literature. In this study, the authors focused only on the dielectric properties of colorectal tumor tissue. The dielectric properties of 504 colorectal malignant samples excised from 85 patients in the scale of the Larmor frequencies were measured using the precision open-ended coaxial probe method. The obtained complex-permittivity data were fitted to the single-pole Cole-Cole model. The median permittivity and conductivity for the malignant tissue sample were 79.3 and 0.881 S/m at 128 MHz, which were 14.6% and 17.0% higher, respectively, than those of normal tissue samples. Significant differences between normal and malignant tissues were found for the dielectric properties (p < 0.05). Experimental results indicated that the dielectric properties were significantly different between normal and malignant tissues for colorectal tissue. This large-scale clinical measurement provides more subtle base data to validate the technique of MR electrical property tomography.

  17. Morphologic differentiation of colon carcinoma cell lines HT-29 and HT-29KM in rotating-wall vessels

    NASA Technical Reports Server (NTRS)

    Goodwin, T. J.; Jessup, J. M.; Wolf, D. A.

    1992-01-01

    A new low shear stress microcarrier culture system has been developed at NASA's Johnson Space Center that permits three-dimensional tissue culture. Two established human colon adenocarcinoma cell lines, HT-29, an undifferentiated, and HT-29KM, a stable, moderately differentiated subline of HT-29, were grown in new tissue culture bioreactors called Rotating-Wall Vessels (RWVs). RWVs are used in conjunction with multicellular cocultivation to develop a unique in vitro tissue modeling system. Cells were cultivated on Cytodex-3 microcarrier beads, with and without mixed normal human colonic fibroblasts, which served as the mesenchymal layer. Culture of the tumor lines in the absence of fibroblasts produced spheroidlike growth and minimal differentiation. In contrast, when tumor lines were co-cultivated with normal colonic fibroblasts, initial growth was confined to the fibroblast population until the microcarriers were covered. The tumor cells then commenced proliferation at an accelerated rate, organizing themselves into three-dimensional tissue masses that achieved 1.0- to 1.5-cm diameters. The masses displayed glandular structures, apical and internal glandular microvilli, tight intercellular junctions, desmosomes, cellular polarity, sinusoid development, internalized mucin, and structural organization akin to normal colon crypt development. Differentiated samples were subjected to transmission and scanning electron microscopy and histologic analysis, revealing embryoniclike mesenchymal cells lining the areas around the growth matrices. Necrosis was minimal throughout the tissue masses. These data suggest that the RWV affords a new model for investigation and isolation of growth, regulatory, and structural processes within neoplastic and normal tissue.

  18. Method for Producing Non-Neoplastic, Three Dimensional, Mammalian Tissue and Cell Aggregates Under Microgravity Culture Conditions and the Products Produced Therefrom

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Wolf, David A. (Inventor); Spaulding, Glenn F. (Inventor); Prewett, Tracey L. (Inventor)

    1996-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural, and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  19. It takes a tissue to make a tumor: Epigenetics, cancer and the microenvironment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barcellos-Hoff, Mary Helen

    How do normal tissues limit the development of cancer? This review discusses the evidence that normal cells effectively restrict malignant behavior, and that such tissue forces must be subjugated to establish a tumor. The action of ionizing radiation will be specifically discussed regarding the disruption of the microenvironment that promotes the transition from preneoplastic to neoplastic growth. Unlike the highly unpredictable nature of genetic mutations, the response of normal cells to radiation damage follows an epigenetic program similar to wound healing and other damage responses. Our hypothesis is that the persistent disruption of the microenvironment in irradiated tissue compromises itsmore » ability to suppress carcinogenesis.« less

  20. Expression of chicken ovalbumin upstream promoter-transcription factor I (COUP-TFI) in bladder transitional cell carcinoma.

    PubMed

    Ham, Won Sik; Lee, Joo Hyoung; Yu, Ho Song; Choi, Young Deuk

    2008-10-01

    An analysis of differentially expressed genes (DEGs) between bladder transitional cell carcinoma (TCC) and the surrounding urothelium to help identify what lies behind the mechanism of multifocal tumor development has not yet been performed. We sought to find a new DEG related to the development of bladder TCC. Thirty-nine bladder TCC tissues paired with normal-appearing urothelium tissues obtained from the same patient were used as subjects. Initially, we compared the messenger RNA (mRNA) profiles between normal-appearing urothelium and TCC tissue of 1 patient by using annealing control primer (ACP)-based GeneFishing polymerase chain reaction (PCR) and selective amplification of family members (SAFM) PCR to identify potential DEGs. To validate the results of the ACP data, reverse transcriptase-polymerase chain reaction (RT-PCR) was performed on those of all 39 patients. Among the several DEGs discovered in the ACP data, 1 DEG was chosen as the candidate for the RT-PCR, that is present or markedly upregulated in normal-appearing urothelial tissue compared with TCC tissue. Gene sequence searching revealed that this DEG is chicken ovalbumin upstream promoter-transcription factor I (COUP-TFI). Downregulation of COUP-TFI mRNA expression in TCC tissue compared to normal-appearing urothelium tissue of the same patient, irrespective of tumor stage and grade, was confirmed by RT-PCR in 39 patients. Our results suggest that the loss of COUP-TFI may play a role in the transition from normal epithelium to TCC. Further characterization of the COUP-TFI gene is expected to give us informations about bladder TCC tumorigenesis.

  1. Epithelium percentage estimation facilitates epithelial quantitative protein measurement in tissue specimens.

    PubMed

    Chen, Jing; Toghi Eshghi, Shadi; Bova, George Steven; Li, Qing Kay; Li, Xingde; Zhang, Hui

    2013-12-01

    The rapid advancement of high-throughput tools for quantitative measurement of proteins has demonstrated the potential for the identification of proteins associated with cancer. However, the quantitative results on cancer tissue specimens are usually confounded by tissue heterogeneity, e.g. regions with cancer usually have significantly higher epithelium content yet lower stromal content. It is therefore necessary to develop a tool to facilitate the interpretation of the results of protein measurements in tissue specimens. Epithelial cell adhesion molecule (EpCAM) and cathepsin L (CTSL) are two epithelial proteins whose expressions in normal and tumorous prostate tissues were confirmed by measuring staining intensity with immunohistochemical staining (IHC). The expressions of these proteins were measured by ELISA in protein extracts from OCT embedded frozen prostate tissues. To eliminate the influence of tissue heterogeneity on epithelial protein quantification measured by ELISA, a color-based segmentation method was developed in-house for estimation of epithelium content using H&E histology slides from the same prostate tissues and the estimated epithelium percentage was used to normalize the ELISA results. The epithelium contents of the same slides were also estimated by a pathologist and used to normalize the ELISA results. The computer based results were compared with the pathologist's reading. We found that both EpCAM and CTSL levels, measured by ELISA assays itself, were greatly affected by epithelium content in the tissue specimens. Without adjusting for epithelium percentage, both EpCAM and CTSL levels appeared significantly higher in tumor tissues than normal tissues with a p value less than 0.001. However, after normalization by the epithelium percentage, ELISA measurements of both EpCAM and CTSL were in agreement with IHC staining results, showing a significant increase only in EpCAM with no difference in CTSL expression in cancer tissues. These results were obtained with normalization by both the computer estimated and pathologist estimated epithelium percentage. Our results show that estimation of tissue epithelium percentage using our color-based segmentation method correlates well with pathologists' estimation of tissue epithelium percentages. The epithelium contents estimated by color-based segmentation may be useful in immuno-based analysis or clinical proteomic analysis of tumor proteins. The codes used for epithelium estimation as well as the micrographs with estimated epithelium content are available online.

  2. Expression of BMI-1 and Mel-18 in breast tissue - a diagnostic marker in patients with breast cancer

    PubMed Central

    2010-01-01

    Background Polycomb Group (PcG) proteins are epigenetic silencers involved in maintaining cellular identity, and their deregulation can result in cancer. Expression of Mel-18 and Bmi-1 has been studied in tumor tissue, but not in adjacent non-cancerous breast epithelium. Our study compares the expression of the two genes in normal breast epithelium of cancer patients and relates it to the level of expression in the corresponding tumors as well as in breast epithelium of healthy women. Methods A total of 79 tumors, of which 71 malignant tumors of the breast, 6 fibroadenomas, and 2 DCIS were studied and compared to the reduction mammoplastic specimens of 11 healthy women. In addition there was available adjacent cancer free tissue for 23 of the malignant tumors. The tissue samples were stored in RNAlater, RNA was isolated to create expression microarray profile. These two genes were then studied more closely first on mRNA transcription level by microarrays (Agilent 44 K) and quantitative RT-PCR (TaqMan) and then on protein expression level using immunohistochemistry. Results Bmi-1 mRNA is significantly up-regulated in adjacent normal breast tissue in breast cancer patients compared to normal breast tissue from noncancerous patients. Conversely, mRNA transcription level of Mel-18 is lower in normal breast from patients operated for breast cancer compared to breast tissue from mammoplasty. When protein expression of these two genes was evaluated, we observed that most of the epithelial cells were positive for Bmi-1 in both groups of tissue samples, although the expression intensity was stronger in normal tissue from cancer patients compared to mammoplasty tissue samples. Protein expression of Mel-18 showed inversely stronger intensity in tissue samples from mammoplasty compared to normal breast tissue from patients operated for breast cancer. Conclusion Bmi-1 mRNA level is consistently increased and Mel-18 mRNA level is consistently decreased in adjacent normal breast tissue of cancer patients as compared to normal breast tissue in women having had reduction mammoplasties. Bmi-1/Mel-18 ratio can be potentially used as a tool for stratifying women at risk of developing malignancy. PMID:21162745

  3. Magnetoacoustic imaging of human liver tumor with magnetic induction

    NASA Astrophysics Data System (ADS)

    Hu, Gang; Cressman, Erik; He, Bin

    2011-01-01

    Magnetoacoustic tomography with magnetic induction (MAT-MI) is an imaging technique under development to achieve imaging of electrical impedance contrast in biological tissues with spatial resolution close to ultrasound imaging. However, previously reported MAT-MI experimental results are obtained either from low salinity gel phantoms, or from normal animal tissue samples. In this study, we report the experimental study on the performance of the MAT-MI imaging method for imaging in vitro human liver tumor tissue. The present promising experimental results suggest the feasibility of MAT-MI to image electrical impedance contrast between the cancerous tissue and its surrounding normal tissues.

  4. Optical biopsy fiber-based fluorescence spectroscopy instrumentation

    NASA Astrophysics Data System (ADS)

    Katz, Alvin; Ganesan, Singaravelu; Yang, Yuanlong; Tang, Gui C.; Budansky, Yury; Celmer, Edward J.; Savage, Howard E.; Schantz, Stimson P.; Alfano, Robert R.

    1996-04-01

    Native fluorescence spectroscopy of biomolecules has emerged as a new modality to the medical community in characterizing the various physiological conditions of tissues. In the past several years, many groups have been working to introduce the spectroscopic methods to diagnose cancer. Researchers have successfully used native fluorescence to distinguish cancerous from normal tissue samples in rat and human tissue. We have developed three generations of instruments, called the CD-scan, CD-ratiometer and CD-map, to allow the medical community to use optics for diagnosing tissue. Using ultraviolet excitation and emission spectral measurements on both normal and cancerous tissue of the breast, gynecology, colon, and aerodigestive tract can be separated. For example, from emission intensities at 340 nm to 440 nm (300 nm excitation), a statistically consistent difference between malignant tissue and normal or benign tissue is observed. In order to utilize optical biopsy techniques in a clinical setting, the CD-scan instrument was developed, which allows for rapid and reliable in-vitro and in-vivo florescence measurements of the aerodigestive tract with high accuracy. The instrumentation employs high sensitivity detection techniques which allows for lamp excitation, small diameter optical fiber probes; the higher spatial resolution afforded by the small diameter probes can increase the ability to detect smaller tumors. The fiber optic probes allow for usage in the aerodigestive tract, cervix and colon. Needle based fiber probes have been developed for in-vivo detection of breast cancer.

  5. Expression and clinical significance of ATM and PUMA gene in patients with colorectal cancer.

    PubMed

    Xiong, Hui; Zhang, Jiangnan

    2017-12-01

    The expression of ataxia-telangiectasia mutated (ATM) and p53 upregulated modulator of apoptosis (PUMA) genes in patients with colorectal cancer were investigated, to explore the correlation between the expression of ATM and PUMA and tumor development, to evaluate the clinical significance of ATM and PUMA in the treatment of colorectal cancer. Quantitative real-time PCR was used to detect the expression of ATM and PUMA in tumor tissue and adjacent healthy tissue of 67 patients with colorectal cancer and in normal colorectal tissue of 33 patients with colorectal polyps at mRNA level. The expression level of ATM mRNA in colorectal cancer tissues was significantly higher than that in normal mucosa tissues and adjacent non-cancerous tissue (P≤0.05), while no significant differences in expression level of ATM mRNA were found between normal mucosa tissues and adjacent noncancerous tissue (P=0.07). There was a negative correlation between the expression of ATM mRNA and the degree of differentiation of colorectal cancer (r= -0.312, P=0.013), while expression level of ATM mRNA was not significantly correlated with the age, sex, tumor invasion, lymph node metastasis or clinical stage (P>0.05). Expression levels of PUMA mRNA in colorectal cancer tissues, adjacent noncancerous tissue and normal tissues were 0.68±0.07, 0.88±0.04 and 1.76±0.06, respectively. Expression level of PUMA mRNA in colorectal cancer tissues and adjacent noncancerous tissue was significantly lower than that in normal colorectal tissues (P<0.05). The results showed that ATM mRNA is expressed abnormally in colorectal cancer tissues. Expression of PUMA gene in colorectal carcinoma is downregulated, and is negatively correlated with the occurrence of cancer.

  6. Time-Resolved Spectroscopy and Near Infrared Imaging for Prostate Cancer Detection: Receptor-targeted and Native Biomarker

    NASA Astrophysics Data System (ADS)

    Pu, Yang

    Optical spectroscopy and imaging using near-infrared (NIR) light provides powerful tools for non-invasive detection of cancer in tissue. Optical techniques are capable of quantitative reconstructions maps of tissue absorption and scattering properties, thus can map in vivo the differences in the content of certain marker chromophores and/or fluorophores in normal and cancerous tissues (for example: water, tryptophan, collagen and NADH contents). Potential clinical applications of optical spectroscopy and imaging include functional tumor detection and photothermal therapeutics. Optical spectroscopy and imaging apply contrasts from intrinsic tissue chromophores such as water, collagen and NADH, and extrinsic optical contrast agents such as Indocyanine Green (ICG) to distinguish disease tissue from the normal one. Fluorescence spectroscopy and imaging also gives high sensitivity and specificity for biomedical diagnosis. Recent developments on specific-targeting fluorophores such as small receptor-targeted dye-peptide conjugate contrast agent offer high contrast between normal and cancerous tissues hence provide promising future for early tumour detection. This thesis focus on a study to distinguish the cancerous prostate tissue from the normal prostate tissues with enhancement of specific receptor-targeted prostate cancer contrast agents using optical spectroscopy and imaging techniques. The scattering and absorption coefficients, and anisotropy factor of cancerous and normal prostate tissues were investigated first as the basis for the biomedical diagnostic and optical imaging. Understanding the receptors over-expressed prostate cancer cells and molecular target mechanism of ligand, two small ICG-derivative dye-peptides, namely Cypate-Bombesin Peptide Analogue Conjugate (Cybesin) and Cypate-Octreotate Peptide Conjugate (Cytate), were applied to study their clinical potential for human prostate cancer detection. In this work, the steady-state and time-resolved fluorescence spectroscopy of Cybesin (Cytate) in solution, and in cancerous and normal prostate tissues were studied. It was found that more Cybesin (Cytate) was uptaken in the cancerous prostate tissue than those in the normal tissue. The preferential uptake of Cybesin (Cytate) in cancerous tissue was used to image and distinguish cancerous areas from the normal tissue. To investigate rotational dynamics and fluorescence polarization anisotropy of the contrast agents in prostate tissues, an analytical model was used to extract the rotational times and polarization anisotropies, which were observed for higher values of Cybesin (Cytate)-stained cancerous prostate tissue in comparison with the normal tissue. These reflect changes of microstructures of cancerous and normal tissues and their different binding affinity with contrast agents. The results indicate that the use of optical spectroscopy and imaging combined with receptor-targeted contrast agents is a valuable tool to study microenvironmental changes of tissue, and detect prostate cancer in early stage.

  7. Clinical applications of image guided-intensity modulated radiation therapy (IG-IMRT) for conformal avoidance of normal tissue

    NASA Astrophysics Data System (ADS)

    Gutierrez, Alonso Navar

    2007-12-01

    Recent improvements in imaging technology and radiation delivery have led to the development of advanced treatment techniques in radiotherapy which have opened the door for novel therapeutic approaches to improve the efficacy of radiation cancer treatments. Among these advances is image-guided, intensity modulated radiation therapy (IG-IMRT), in which imaging is incorporated to aid in inter-/intra-fractional target localization and to ensure accurate delivery of precise and highly conformal dose distributions. In principle, clinical implementation of IG-IMRT should improve normal tissue sparing and permit effective biological dose escalation thus widening the radiation therapeutic window and lead to increases in survival through improved local control of primary neoplastic diseases. Details of the development of three clinical applications made possible solely with IG-IMRT radiation delivery techniques are presented: (1) Laparoscopically implanted tissue expander radiotherapy (LITE-RT) has been developed to enhance conformal avoidance of normal tissue during the treatment of intra-abdominopelvic cancers. LITE-RT functions by geometrically displacing surrounding normal tissue and isolating the target volume through the interfractional inflation of a custom-shaped tissue expander throughout the course of treatment. (2) The unique delivery geometry of helical tomotherapy, a novel form of IG-IMRT, enables the delivery of composite treatment plan m which whole brain radiotherapy (WBRT) with hippocampal avoidance, hypothesized to reduce the risk of memory function decline and improve the patient's quality of life, and simultaneously integrated boost to multiple brain metastases to improve intracranial tumor control is achieved. (3) Escalation of biological dose to targets through integrated, selective subvolume boosts have been shown to efficiently increase tumor dose without significantly increasing normal tissue dose. Helical tomotherapy was used to investigate the feasibility of delivering a simultaneously integrated subvolume boost to canine nasal tumors and was found to dramatically increase estimated 1-year tumor control probability (TCP) without increasing the dose to the eyes, so as to preserve vision, and to the brain, so as to prevent neuropathy.

  8. Normalization of white matter intensity on T1-weighted images of patients with acquired central nervous system demyelination.

    PubMed

    Ghassemi, Rezwan; Brown, Robert; Narayanan, Sridar; Banwell, Brenda; Nakamura, Kunio; Arnold, Douglas L

    2015-01-01

    Intensity variation between magnetic resonance images (MRI) hinders comparison of tissue intensity distributions in multicenter MRI studies of brain diseases. The available intensity normalization techniques generally work well in healthy subjects but not in the presence of pathologies that affect tissue intensity. One such disease is multiple sclerosis (MS), which is associated with lesions that prominently affect white matter (WM). To develop a T1-weighted (T1w) image intensity normalization method that is independent of WM intensity, and to quantitatively evaluate its performance. We calculated median intensity of grey matter and intraconal orbital fat on T1w images. Using these two reference tissue intensities we calculated a linear normalization function and applied this to the T1w images to produce normalized T1w (NT1) images. We assessed performance of our normalization method for interscanner, interprotocol, and longitudinal normalization variability, and calculated the utility of the normalization method for lesion analyses in clinical trials. Statistical modeling showed marked decreases in T1w intensity differences after normalization (P < .0001). We developed a WM-independent T1w MRI normalization method and tested its performance. This method is suitable for longitudinal multicenter clinical studies for the assessment of the recovery or progression of disease affecting WM. Copyright © 2014 by the American Society of Neuroimaging.

  9. Diagnostics of normal and cancer tissues by fiberoptic evanescent wave Fourier transform IR (FEW-FTIR) spectroscopy

    NASA Astrophysics Data System (ADS)

    Afanasyeva, Natalia I.

    1998-06-01

    Fourier Transform Infrared (FTIR) Spectroscopy using optical fibers operated in the attenuated total reflection (ATR) regime in the mid-IR region in the range 850 to 4000 cm-1 has recently found an application in the noninvasive diagnostics of tissues in vivo. The method is suitable for nondestructive, nontoxic, fast (seconds), direct measurements of the spectra of normal and pathological tissues in vitro, ex vivo, and in vivo in real time. The aim of our studies is the express testing of various tumor tissues at the early stages of their development. The method is expected to be further developed for endoscopic and biopsy applications as well as for the research of different materials.

  10. The Susan G. Komen for the Cure Tissue Bank at the IU Simon Cancer Center: a unique resource for defining the "molecular histology" of the breast.

    PubMed

    Sherman, Mark E; Figueroa, Jonine D; Henry, Jill E; Clare, Susan E; Rufenbarger, Connie; Storniolo, Anna Maria

    2012-04-01

    "Molecular histology" of the breast may be conceptualized as encompassing the normative ranges of histologic structure and marker expression in normal breast tissues in relation to a woman's age and life experiences. Studies of molecular histology can aid our understanding of early events in breast carcinogenesis and provide data for comparison with diseased breast tissues. Until recently, lack of epidemiologically annotated, optimally prepared normal breast tissues obtained from healthy women presented a barrier to breast cancer research. The Komen Tissue Bank at Indiana University (Indianapolis, IN) is a unique biorepository that was developed to overcome this limitation. The Bank enrolls healthy donors who provide questionnaire data, blood, and up to four breast biopsies, which are prepared as both formalin-fixed, paraffin-embedded and frozen tissues. The resource is accessible to researchers worldwide through a proposal submission, review, and approval process. As of November 2010, the Bank had collected specimens and information from 1,174 donors. In this review, we discuss the importance of studying normal breast tissues, assess the strengths and limitations of studying normal tissues obtained from different sources, and summarize the features of the Komen Tissue Bank. As research projects are completed, results will be posted on the Bank's website. 2012 AACR

  11. Akt1/NFκB signaling pathway activation by a small molecule DMA confers radioprotection to intestinal epithelium in xenograft model.

    PubMed

    Tiwari, Vinod; Kamran, Mohammad Zahid; Ranjan, Atul; Nimesh, Hemlata; Singh, Manish; Tandon, Vibha

    2017-07-01

    Normal tissue protection and recovery of radiation-induced damage are of paramount importance for development of radioprotector. Radioprotector which selectively protects normal tissues over cancerous tissues improves the therapeutic window of radiation therapy. In the present study, small bisbenzimidazole molecule, DMA (5-(4-methylpiperazin-1-yl)-2-[2'-(3,4-dimethoxy-phenyl)-5'-benzimidazolyl]-benzimidazole) was evaluated for in vivo radioprotective effects to selectively protect normal tissue over tumor with underlying molecular mechanism. Administration of single DMA dose prior to radiation has enhanced survival of Balb/c mice against sublethal and supralethal total body irradiation. DMA ameliorated radiation-induced damage of normal tissues such as hematopoietic (HP) and gastrointestinal tract (GI) system. Oxidative stress marker Malondialdehyde level was decreased by DMA whereas it maintained endogenous antioxidant status by increasing the level of reduced glutathione, glutathione reductase, glutathione-s-transferase, superoxide dismutase and total thiol content in hepatic tissue of irradiated mice. Mechanistic studies revealed that DMA treatment prior to radiation leads to Akt1/NFκB signaling which reduced radiation-induced genomic instability in normal cells. However, these pathways were not activated in tumor tissues when subjected to DMA treatment in similar conditions. Abrogation of Akt1 and NFκB genes resulted in no radioprotection by DMA and enhanced apoptosis against radiation. Plasma half-life of DMA was 3.5h and 2.65h at oral and intravenous dose respectively and 90% clearance was observed in 16h. In conclusion, these data suggests that DMA has potential to be developed as a safe radioprotective agent for radiation countermeasures and an adjuvant in cancer therapy. Copyright © 2017. Published by Elsevier Inc.

  12. Systematic gene microarray analysis of the lncRNA expression profiles in human uterine cervix carcinoma.

    PubMed

    Chen, Jie; Fu, Ziyi; Ji, Chenbo; Gu, Pingqing; Xu, Pengfei; Yu, Ningzhu; Kan, Yansheng; Wu, Xiaowei; Shen, Rong; Shen, Yan

    2015-05-01

    The human uterine cervix carcinoma is one of the most well-known malignancy reproductive system cancers, which threatens women health globally. However, the mechanisms of the oncogenesis and development process of cervix carcinoma are not yet fully understood. Long non-coding RNAs (lncRNAs) have been proved to play key roles in various biological processes, especially development of cancer. The function and mechanism of lncRNAs on cervix carcinoma is still rarely reported. We selected 3 cervix cancer and normal cervix tissues separately, then performed lncRNA microarray to detect the differentially expressed lncRNAs. Subsequently, we explored the potential function of these dysregulated lncRNAs through online bioinformatics databases. Finally, quantity real-time PCR was carried out to confirm the expression levels of these dysregulated lncRNAs in cervix cancer and normal tissues. We uncovered the profiles of differentially expressed lncRNAs between normal and cervix carcinoma tissues by using the microarray techniques, and found 1622 upregulated and 3026 downregulated lncRNAs (fold-change>2.0) in cervix carcinoma compared to the normal cervical tissue. Furthermore, we found HOXA11-AS might participate in cervix carcinogenesis by regulating HOXA11, which is involved in regulating biological processes of cervix cancer. This study afforded expression profiles of lncRNAs between cervix carcinoma tissue and normal cervical tissue, which could provide database for further research about the function and mechanism of key-lncRNAs in cervix carcinoma, and might be helpful to explore potential diagnosis factors and therapeutic targets for cervix carcinoma. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  13. Improved normal tissue protection by proton and X-ray microchannels compared to homogeneous field irradiation.

    PubMed

    Girst, S; Marx, C; Bräuer-Krisch, E; Bravin, A; Bartzsch, S; Oelfke, U; Greubel, C; Reindl, J; Siebenwirth, C; Zlobinskaya, O; Multhoff, G; Dollinger, G; Schmid, T E; Wilkens, J J

    2015-09-01

    The risk of developing normal tissue injuries often limits the radiation dose that can be applied to the tumour in radiation therapy. Microbeam Radiation Therapy (MRT), a spatially fractionated photon radiotherapy is currently tested at the European Synchrotron Radiation Facility (ESRF) to improve normal tissue protection. MRT utilizes an array of microscopically thin and nearly parallel X-ray beams that are generated by a synchrotron. At the ion microprobe SNAKE in Munich focused proton microbeams ("proton microchannels") are studied to improve normal tissue protection. Here, we comparatively investigate microbeam/microchannel irradiations with sub-millimetre X-ray versus proton beams to minimize the risk of normal tissue damage in a human skin model, in vitro. Skin tissues were irradiated with a mean dose of 2 Gy over the irradiated area either with parallel synchrotron-generated X-ray beams at the ESRF or with 20 MeV protons at SNAKE using four different irradiation modes: homogeneous field, parallel lines and microchannel applications using two different channel sizes. Normal tissue viability as determined in an MTT test was significantly higher after proton or X-ray microchannel irradiation compared to a homogeneous field irradiation. In line with these findings genetic damage, as determined by the measurement of micronuclei in keratinocytes, was significantly reduced after proton or X-ray microchannel compared to a homogeneous field irradiation. Our data show that skin irradiation using either X-ray or proton microchannels maintain a higher cell viability and DNA integrity compared to a homogeneous irradiation, and thus might improve normal tissue protection after radiation therapy. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  14. Visualization and tissue classification of human breast cancer images using ultrahigh-resolution OCT.

    PubMed

    Yao, Xinwen; Gan, Yu; Chang, Ernest; Hibshoosh, Hanina; Feldman, Sheldon; Hendon, Christine

    2017-03-01

    Breast cancer is one of the most common cancers, and recognized as the third leading cause of mortality in women. Optical coherence tomography (OCT) enables three dimensional visualization of biological tissue with micrometer level resolution at high speed, and can play an important role in early diagnosis and treatment guidance of breast cancer. In particular, ultra-high resolution (UHR) OCT provides images with better histological correlation. This paper compared UHR OCT performance with standard OCT in breast cancer imaging qualitatively and quantitatively. Automatic tissue classification algorithms were used to automatically detect invasive ductal carcinoma in ex vivo human breast tissue. Human breast tissues, including non-neoplastic/normal tissues from breast reduction and tumor samples from mastectomy specimens, were excised from patients at Columbia University Medical Center. The tissue specimens were imaged by two spectral domain OCT systems at different wavelengths: a home-built ultra-high resolution (UHR) OCT system at 800 nm (measured as 2.72 μm axial and 5.52 μm lateral) and a commercial OCT system at 1,300 nm with standard resolution (measured as 6.5 μm axial and 15 μm lateral), and their imaging performances were analyzed qualitatively. Using regional features derived from OCT images produced by the two systems, we developed an automated classification algorithm based on relevance vector machine (RVM) to differentiate hollow-structured adipose tissue against solid tissue. We further developed B-scan based features for RVM to classify invasive ductal carcinoma (IDC) against normal fibrous stroma tissue among OCT datasets produced by the two systems. For adipose classification, 32 UHR OCT B-scans from 9 normal specimens, and 28 standard OCT B-scans from 6 normal and 4 IDC specimens were employed. For IDC classification, 152 UHR OCT B-scans from 6 normal and 13 IDC specimens, and 104 standard OCT B-scans from 5 normal and 8 IDC specimens were employed. We have demonstrated that UHR OCT images can produce images with better feature delineation compared with images produced by 1,300 nm OCT system. UHR OCT images of a variety of tissue types found in human breast tissue were presented. With a limited number of datasets, we showed that both OCT systems can achieve a good accuracy in identifying adipose tissue. Classification in UHR OCT images achieved higher sensitivity (94%) and specificity (93%) of adipose tissue than the sensitivity (91%) and specificity (76%) in 1,300 nm OCT images. In IDC classification, similarly, we achieved better results with UHR OCT images, featured an overall accuracy of 84%, sensitivity of 89% and specificity of 71% in this preliminary study. In this study, we provided UHR OCT images of different normal and malignant breast tissue types, and qualitatively and quantitatively studied the texture and optical features from OCT images of human breast tissue at different resolutions. We developed an automated approach to differentiate adipose tissue, fibrous stroma, and IDC within human breast tissues. Our work may open the door toward automatic intraoperative OCT evaluation of early-stage breast cancer. Lasers Surg. Med. 49:258-269, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Automatic and objective oral cancer diagnosis by Raman spectroscopic detection of keratin with multivariate curve resolution analysis

    NASA Astrophysics Data System (ADS)

    Chen, Po-Hsiung; Shimada, Rintaro; Yabumoto, Sohshi; Okajima, Hajime; Ando, Masahiro; Chang, Chiou-Tzu; Lee, Li-Tzu; Wong, Yong-Kie; Chiou, Arthur; Hamaguchi, Hiro-O.

    2016-01-01

    We have developed an automatic and objective method for detecting human oral squamous cell carcinoma (OSCC) tissues with Raman microspectroscopy. We measure 196 independent Raman spectra from 196 different points of one oral tissue sample and globally analyze these spectra using a Multivariate Curve Resolution (MCR) analysis. Discrimination of OSCC tissues is automatically and objectively made by spectral matching comparison of the MCR decomposed Raman spectra and the standard Raman spectrum of keratin, a well-established molecular marker of OSCC. We use a total of 24 tissue samples, 10 OSCC and 10 normal tissues from the same 10 patients, 3 OSCC and 1 normal tissues from different patients. Following the newly developed protocol presented here, we have been able to detect OSCC tissues with 77 to 92% sensitivity (depending on how to define positivity) and 100% specificity. The present approach lends itself to a reliable clinical diagnosis of OSCC substantiated by the “molecular fingerprint” of keratin.

  16. Simultaneous multiplane imaging of human ovarian cancer by volume holographic imaging

    PubMed Central

    Orsinger, Gabriel V.; Watson, Jennifer M.; Gordon, Michael; Nymeyer, Ariel C.; de Leon, Erich E.; Brownlee, Johnathan W.; Hatch, Kenneth D.; Chambers, Setsuko K.; Barton, Jennifer K.; Kostuk, Raymond K.; Romanowski, Marek

    2014-01-01

    Abstract. Ovarian cancer is the most deadly gynecologic cancer, a fact which is attributable to poor early detection and survival once the disease has reached advanced stages. Intraoperative laparoscopic volume holographic imaging has the potential to provide simultaneous visualization of surface and subsurface structures in ovarian tissues for improved assessment of developing ovarian cancer. In this ex vivo ovarian tissue study, we assembled a benchtop volume holographic imaging system (VHIS) to characterize the microarchitecture of 78 normal and 40 abnormal tissue specimens derived from ovarian, fallopian tube, uterine, and peritoneal tissues, collected from 26 patients aged 22 to 73 undergoing bilateral salpingo-oophorectomy, hysterectomy with bilateral salpingo-oophorectomy, or abdominal cytoreductive surgery. All tissues were successfully imaged with the VHIS in both reflectance- and fluorescence-modes revealing morphological features which can be used to distinguish between normal, benign abnormalities, and cancerous tissues. We present the development and successful application of VHIS for imaging human ovarian tissue. Comparison of VHIS images with corresponding histopathology allowed for qualitatively distinguishing microstructural features unique to the studied tissue type and disease state. These results motivate the development of a laparoscopic VHIS for evaluating the surface and subsurface morphological alterations in ovarian cancer pathogenesis. PMID:24676382

  17. hPSC-derived lung and intestinal organoids as models of human fetal tissue

    PubMed Central

    Aurora, Megan; Spence, Jason R.

    2016-01-01

    In vitro human pluripotent stem cell (hPSC) derived tissues are excellent models to study certain aspects of normal human development. Current research in the field of hPSC derived tissues reveals these models to be inherently fetal-like on both a morphological and gene expression level. In this review we briefly discuss current methods for differentiating lung and intestinal tissue from hPSCs into individual 3-dimensional units called organoids. We discuss how these methods mirror what is known about in vivo signaling pathways of the developing embryo. Additionally, we will review how the inherent immaturity of these models lends them to be particularly valuable in the study of immature human tissues in the clinical setting of premature birth. Human lung organoids (HLOs) and human intestinal organoids (HIOs) not only model normal development, but can also be utilized to study several important diseases of prematurity such as respiratory distress syndrome (RDS), bronchopulmonary dysplasia (BPD), and necrotizing enterocolitis (NEC). PMID:27287882

  18. Transcriptional expression analysis of survivin splice variants reveals differential expression of survivin-3α in breast cancer.

    PubMed

    Moniri Javadhesari, Solmaz; Gharechahi, Javad; Hosseinpour Feizi, Mohammad Ali; Montazeri, Vahid; Halimi, Monireh

    2013-04-01

    Survivin, which is a novel member of the inhibitor of apoptosis family proteins, is known to play an important role in the regulation of cell cycle and apoptosis. Differential expression of survivin in tumor tissues introduces it as a new candidate molecular marker for cancer. Here we investigated the expression of survivin and its splice variants in breast tumors, as well as normal adjacent tissues obtained from the same patients. Thirty five tumors and 17 normal adjacent tissues from women diagnosed with breast cancer were explored in this study. Differential expression of different survivin splice variants was detected and semiquantitatively analyzed using reverse transcription-polymerase chain reaction. Results showed that survivin and its splice variants were differentially expressed in tumor specimens compared with normal adjacent tissues. The expression of survivin-3B and survivin-3α was specifically detected in tumor tissues compared with normal adjacent ones (53% in tumor tissues compared to 5% in normal adjacent for survivin-3B and 65% in tumor tissues and 0.0% in normal adjacent tissues for survivin-3α). Statistical analysis showed that survivin and survivin-ΔEx3 were upregulated in benign (90%, p<0.034) and malignant (76%, p<0.042) tumors, respectively. On the other hand, our results showed that survivin-2α (100% of the cases) was the dominant expressed variant of survivin in breast cancer. The data presented here showed that survivin splice variants were differentially expressed in benign and malignant breast cancer tissues, suggesting their potential role in breast cancer development. Differential expression of survivin-2α and survivin-3α splice variants highlights their usefulness as new candidate markers for breast cancer diagnosis and prognosis.

  19. Infrared spectroscopy in biomedical diagnostics

    NASA Astrophysics Data System (ADS)

    Afanasyeva, Natalia I.; Kolyakov, Sergei F.; Letokhov, Vladilen S.; Artioushenko, Vjacheslav G.; Golovkina, Viktoriya N.

    1998-01-01

    Fiberoptic evanescent wave Fourier transform infrared (FEW- FTIR) spectroscopy using fiberoptic sensors operated in the attenuated total reflection (ATR) regime in the middle infrared (IR) region of the spectrum (850 - 1850 cm-1) has recently found application in the diagnostics of tissues. The method is suitable for noninvasive and rapid (seconds) direct measurements of the spectra of normal and pathological tissues in vitro, ex vivo and in vivo. The aim of our studies is the express testing of various tumor tissues at the early stages of their development. The method is expected to be further developed for endoscopic and biopsy applications. We measured in vivo the skin normal and malignant tissues on surface (directly on patients) in various cases of basaloma, melanoma and nevus. The experiments were performed in the operating room for measurements of skin in the depth (under/in the layers of epidermis), human breast, stomach, lung, kidney tissues. The breast and skin tissues at different stages of tumor or cancer were distinguished very clearly in spectra of amide, side cyclic and noncyclic hydrogen bonded fragments of amino acid residuals, phosphate groups and sugars. Computer monitoring is being developed for diagnostics.

  20. A review on color normalization and color deconvolution methods in histopathology.

    PubMed

    Onder, Devrim; Zengin, Selen; Sarioglu, Sulen

    2014-01-01

    The histopathologists get the benefits of wide range of colored dyes to have much useful information about the lesions and the tissue compositions. Despite its advantages, the staining process comes up with quite complex variations in staining concentrations and correlations, tissue fixation types, and fixation time periods. Together with the improvements in computing power and with the development of novel image analysis methods, these imperfections have led to the emerging of several color normalization algorithms. This article is a review of the currently available digital color normalization methods for the bright field histopathology. We describe the proposed color normalization methodologies in detail together with the lesion and tissue types used in the corresponding experiments. We also present the quantitative validation approaches for each of the proposed methodology where available.

  1. Porcine Tissue-Specific Regulatory Networks Derived from Meta-Analysis of the Transcriptome

    PubMed Central

    Pérez-Montarelo, Dafne; Hudson, Nicholas J.; Fernández, Ana I.; Ramayo-Caldas, Yuliaxis; Dalrymple, Brian P.; Reverter, Antonio

    2012-01-01

    The processes that drive tissue identity and differentiation remain unclear for most tissue types. So are the gene networks and transcription factors (TF) responsible for the differential structure and function of each particular tissue, and this is particularly true for non model species with incomplete genomic resources. To better understand the regulation of genes responsible for tissue identity in pigs, we have inferred regulatory networks from a meta-analysis of 20 gene expression studies spanning 480 Porcine Affymetrix chips for 134 experimental conditions on 27 distinct tissues. We developed a mixed-model normalization approach with a covariance structure that accommodated the disparity in the origin of the individual studies, and obtained the normalized expression of 12,320 genes across the 27 tissues. Using this resource, we constructed a network, based on the co-expression patterns of 1,072 TF and 1,232 tissue specific genes. The resulting network is consistent with the known biology of tissue development. Within the network, genes clustered by tissue and tissues clustered by site of embryonic origin. These clusters were significantly enriched for genes annotated in key relevant biological processes and confirm gene functions and interactions from the literature. We implemented a Regulatory Impact Factor (RIF) metric to identify the key regulators in skeletal muscle and tissues from the central nervous systems. The normalization of the meta-analysis, the inference of the gene co-expression network and the RIF metric, operated synergistically towards a successful search for tissue-specific regulators. Novel among these findings are evidence suggesting a novel key role of ERCC3 as a muscle regulator. Together, our results recapitulate the known biology behind tissue specificity and provide new valuable insights in a less studied but valuable model species. PMID:23049964

  2. Proteomic analysis of laser-captured paraffin-embedded tissues: a molecular portrait of head and neck cancer progression.

    PubMed

    Patel, Vyomesh; Hood, Brian L; Molinolo, Alfredo A; Lee, Norman H; Conrads, Thomas P; Braisted, John C; Krizman, David B; Veenstra, Timothy D; Gutkind, J Silvio

    2008-02-15

    Squamous cell carcinoma of the head and neck (HNSCC), the sixth most prevalent cancer among men worldwide, is associated with poor prognosis, which has improved only marginally over the past three decades. A proteomic analysis of HNSCC lesions may help identify novel molecular targets for the early detection, prevention, and treatment of HNSCC. Laser capture microdissection was combined with recently developed techniques for protein extraction from formalin-fixed paraffin-embedded (FFPE) tissues and a novel proteomics platform. Approximately 20,000 cells procured from FFPE tissue sections of normal oral epithelium and well, moderately, and poorly differentiated HNSCC were processed for mass spectrometry and bioinformatic analysis. A large number of proteins expressed in normal oral epithelium and HNSCC, including cytokeratins, intermediate filaments, differentiation markers, and proteins involved in stem cell maintenance, signal transduction, migration, cell cycle regulation, growth and angiogenesis, matrix degradation, and proteins with tumor suppressive and oncogenic potential, were readily detected. Of interest, the relative expression of many of these molecules followed a distinct pattern in normal squamous epithelia and well, moderately, and poorly differentiated HNSCC tumor tissues. Representative proteins were further validated using immunohistochemical studies in HNSCC tissue sections and tissue microarrays. The ability to combine laser capture microdissection and in-depth proteomic analysis of FFPE tissues provided a wealth of information regarding the nature of the proteins expressed in normal squamous epithelium and during HNSCC progression, which may allow the development of novel biomarkers of diagnostic and prognostic value and the identification of novel targets for therapeutic intervention in HNSCC.

  3. Expression and distribution of endocan in human tissues.

    PubMed

    Zhang, S M; Zuo, L; Zhou, Q; Gui, S Y; Shi, R; Wu, Q; Wei, W; Wang, Y

    2012-04-01

    Endocan is a novel human endothelial cell specific molecule. Its expression is regulated by cytokines and vascular endothelial growth factor (VEGF). The distribution of endocan in normal human tissues, however, remains unclear. We examined the expression of endocan in normal human tissue using immunohistochemical stains. Endocan was expressed in actively proliferative or neogeneic tissues and cells such as glandular tissues, endothelium of neovasculature, bronchial epithelium, germinal centers of lymph nodes etc. Endocan was not present in silent or resting tissues or cells such as endothelium of great arteries and spleen etc. Our findings suggest that endocan may act as a marker for angiogenesis or oncogenesis and could be regarded as a candidate gene for inflammatory tissue, neoplasia, tumor development and metastasis. The expression level of endocan may assist early diagnosis and prognosis of some tumors.

  4. The Susan G. Komen for the Cure® Tissue Bank at the IU Simon Cancer Center: A Unique Resource for Defining the “Molecular Histology” of the Breast

    PubMed Central

    Sherman, Mark E.; Figueroa, Jonine D.; Henry, Jill E.; Clare, Susan E.; Rufenbarger, Connie; Storniolo, Anna Maria

    2014-01-01

    “Molecular histology” of the breast may be conceptualized as encompassing the normative ranges of histological structure and marker expression in normal breast tissues in relation to a woman’s age and life experiences. Studies of molecular histology can aid our understanding of early events in breast carcinogenesis and provide data for comparison with diseased breast tissues. Until recently, lack of epidemiologically annotated, optimally prepared normal breast tissues obtained from healthy women presented a barrier to breast cancer research. The Komen Tissue Bank at Indiana University is a unique biorepository that was developed to overcome this limitation. The Bank enrolls healthy donors who provide questionnaire data, blood, and up to four breast biopsies, which are prepared as both formalin fixed paraffin embedded and frozen tissues. The resource is accessible to researchers worldwide through a proposal submission, review, and approval process. As of November 2010, the Bank had collected specimens and information from 1,174 donors. In this review, we discuss the importance of studying normal breast tissues, assess the strengths and limitations of studying normal tissues obtained from different sources, and summarize the features of the Komen Tissue Bank. As research projects are completed, results will be posted on the Bank’s website. PMID:22345117

  5. Diagnostics of cancer tissues by fiber optic evanescent wave Fourier transform IR (FEW-FTIR) spectroscopy

    NASA Astrophysics Data System (ADS)

    Afanasyeva, Natalia I.; Kolyakov, Sergei F.; Letokhov, Vladilen S.; Golovkina, Viktoriya N.

    1997-08-01

    Fiber optic evanescent wave Fourier transform infrared (FEW- FTIR) spectroscopy using fiberoptic sensors operated in the attenuated total reflection (ATR) regime in the middle infrared (IR) region of the spectrum (850 - 1850 cm-1) has recently found application in the diagnostics of tissues. The method is suitable for noninvasive and rapid (seconds) direct measurements of the spectra of normal and pathological tissues in vitro, ex vivo and in vivo. The aim of our studies is the express testing of various tumor tissues at the early stages of their development. The method is expected to be further developed for endoscopic and biopsy applications. We measured in vivo the skin normal and malignant tissues on surface (directly on patients) in various cases of basaloma, melanoma and nevus. The experiments were performed in operating room for measurements of skin in the depth (under/in the layers of epidermis), human breast, stomach, lung, kidney tissues. The breast and skin tissues at different stages of tumor or cancer were distinguished very clearly in spectra of amide, side cyclic and noncyclic hydrogen bonded fragments of aminoacid residuals, phosphate groups and sugars. Computer monitoring is being developed for diagnostics.

  6. Molecular IR Spectroscopy: New Trends and Methods of Noninvasive Diagnostics of Tissue IN VIVO

    NASA Astrophysics Data System (ADS)

    Afanasyeva, Natalia; Bruch, Reinhard

    1998-05-01

    Fiberoptic evanescent wave Fourier transform infrared (FEW-FTIR) spectroscopy using fiberoptic sensors operated in the attenuated total reflection (ATR) regime in the middle infrared (IR) region of the spectrum (850-1850 cm-1) has recently been applied to the diagnostics of tissues. The method is suitable for noninvasive and rapid (seconds) direct measurements of the spectra of normal and pathological tissues in vitro, ex vivo and in vivo. The aim of our studies is the express testing of various tumor tissues at the early stages of their development. The method is expected to be further developed for endoscopic and biopsy applications. We measured the normal skin and malignant tissues in vivo on the surface (directly on patients) in various cases of basaloma, melanoma and nevus. The experiments were performed in the operating room to measure the skin in the depth (under/in the layers of epidermis) of human breast, stomach, lung, and kidney tissues. The breast and skin tissues at different stages of tumor or cancer were distinguished very clearly in spectra of amide, side cyclic and noncyclic hydrogen bonded fragments of aminoacid residuals, phosphate groups and sugars. Computer monitoring is being developed for diagnostics.

  7. Estrogen and progesterone signalling in the normal breast and its implications for cancer development.

    PubMed

    Hilton, Heidi N; Clarke, Christine L; Graham, J Dinny

    2018-05-05

    The ovarian hormones estrogen and progesterone are master regulators of the development and function of a broad spectrum of human tissues, including the breast, reproductive and cardiovascular systems, brain and bone. Acting through the nuclear estrogen (ER) and progesterone receptors (PR), both play complex and essential coordinated roles in the extensive development of the lobular alveolar epithelial structures of the normal breast during puberty, the normal menstrual cycle and pregnancy. The past decade has seen major advances in understanding the mechanisms of action of estrogen and progesterone in the normal breast and in the delineation of the complex hierarchy of cell types regulated by ovarian hormones in this tissue. There is evidence for a role for both ER and PR in driving breast cancer, and both are favourable prognostic markers with respect to outcome. In this review, we summarize current knowledge of the mechanisms of action of ER and PR in the normal breast, and implications for the development and management of breast cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, C.; Gavin, P.

    This report describes research performed at the WSU College of Veterinary Medicine in which a large animal model was developed and used to study the effects of boron neutron capture therapy (BNCT) on normal and neoplastic canine brain tissue. The studies were performed using borocaptate sodium (BSH) and epithermal neutrons and had two major foci: biodistribution of BSH in animals with spontaneously occurring brain tumors; and effects of BNCT in normal and neoplastic brain tissue.

  9. Cardiovascular abnormalities with normal blood pressure in tissue kallikrein-deficient mice

    NASA Astrophysics Data System (ADS)

    Meneton, Pierre; Bloch-Faure, May; Hagege, Albert A.; Ruetten, Hartmut; Huang, Wei; Bergaya, Sonia; Ceiler, Debbie; Gehring, Doris; Martins, Isabelle; Salmon, Georges; Boulanger, Chantal M.; Nussberger, Jürg; Crozatier, Bertrand; Gasc, Jean-Marie; Heudes, Didier; Bruneval, Patrick; Doetschman, Tom; Ménard, Joël; Alhenc-Gelas, François

    2001-02-01

    Tissue kallikrein is a serine protease thought to be involved in the generation of bioactive peptide kinins in many organs like the kidneys, colon, salivary glands, pancreas, and blood vessels. Low renal synthesis and urinary excretion of tissue kallikrein have been repeatedly linked to hypertension in animals and humans, but the exact role of the protease in cardiovascular function has not been established largely because of the lack of specific inhibitors. This study demonstrates that mice lacking tissue kallikrein are unable to generate significant levels of kinins in most tissues and develop cardiovascular abnormalities early in adulthood despite normal blood pressure. The heart exhibits septum and posterior wall thinning and a tendency to dilatation resulting in reduced left ventricular mass. Cardiac function estimated in vivo and in vitro is decreased both under basal conditions and in response to βadrenergic stimulation. Furthermore, flow-induced vasodilatation is impaired in isolated perfused carotid arteries, which express, like the heart, low levels of the protease. These data show that tissue kallikrein is the main kinin-generating enzyme in vivo and that a functional kallikrein-kinin system is necessary for normal cardiac and arterial function in the mouse. They suggest that the kallikrein-kinin system could be involved in the development or progression of cardiovascular diseases.

  10. [Tissue collagenase MMP-14 and endogenous regulators of its activity in the corpus uteri in squamous cell carcinoma of the cervix].

    PubMed

    Timoshenko, O S; Gureeva, T A; Kugaevskaya, E V; Zavalishina, L E; Andreeva, Yu Yu; Solovyeva, N I

    to investigate the expression of the membrane-bound matrix metalloproteinase MT1-MMP (MMP-14), its tissue inhibitor TIMP-2, and the proMMP-14 activator furin in the corpus uteri from the vaginal wall to the bottom of the uterine cavity in squamous cell carcinoma of the cervix (SCCC). Hysterectomy material was examined in patients with SCCC. Reverse transcriptase polymerase chain reaction (RT-PCR), immunohistochemistry (IHC), and enzyme assays were used. In SCCC, higher levels of MMP-14 expression were established in tumor cells, as evidenced by IHC (+3) and RT-PCR. IHC showed that the expression of MMP-14 was absent or insignificant in the normal uterine endometrial and myometrial tissues. However, that of MMP-14 mRNA was also found in the normal tissues to the bottom of the uterine cavity. Furin activity in the tumor was much higher than that in normal tissues. IHC indicated that TIMP-2 expression was low or absent in both the tumor and normal tissues. The expression of TIMP-2 mRNA was sufficiently obvious in both the tumor and normal tissues to the bottom of the uterine cavity. In SCCC, MMP-14 expression was substantially increased in tumors. The expression of MMP-14 and regulators of its activity is aimed at enhancing the tumor destructive (invasive) potential in the pericellular space and can occur (be induced) in the morphologically normal uterine tissue apparently with involvement of signaling through the epithelial-mesenchymal interaction. Data are important for understanding the role of MMP-14 in the development of a multistage process of carcinogenesis and may have prognostic value and an impact on therapeutic strategy for the patient.

  11. Electrical impedance characterization of normal and cancerous human hepatic tissue.

    PubMed

    Laufer, Shlomi; Ivorra, Antoni; Reuter, Victor E; Rubinsky, Boris; Solomon, Stephen B

    2010-07-01

    The four-electrode method was used to measure the ex vivo complex electrical impedance of tissues from 14 hepatic tumors and the surrounding normal liver from six patients. Measurements were done in the frequency range 1-400 kHz. It was found that the conductivity of the tumor tissue was much higher than that of the normal liver tissue in this frequency range (from 0.14 +/- 0.06 S m(-1) versus 0.03 +/- 0.01 S m(-1) at 1 kHz to 0.25 +/- 0.06 S m(-1) versus 0.15 +/- 0.03 S m(-1) at 400 kHz). The Cole-Cole models were estimated from the experimental data and the four parameters (rho(0), rho(infinity), alpha, f(c)) were obtained using a least-squares fit algorithm. The Cole-Cole parameters for the cancerous and normal liver are 9 +/- 4 Omega m(-1), 2.2 +/- 0.7 Omega m(-1), 0.5 +/- 0.2, 140 +/- 103 kHz and 50 +/- 28 Omega m(-1), 3.2 +/- 0.6 Omega m(-1), 0.64 +/- 0.04, 10 +/- 7 kHz, respectively. These data can contribute to developing bioelectric applications for tissue diagnostics and in tissue treatment planning with electrical fields such as radiofrequency tissue ablation, electrochemotherapy and gene therapy with reversible electroporation, nanoscale pulsing and irreversible electroporation.

  12. EFFECTS OF IRRADIATION ON BRAIN VASCULATURE USING AN IN SITU TUMOR MODEL

    PubMed Central

    Zawaski, Janice A.; Gaber, M. Waleed; Sabek, Omaima M.; Wilson, Christy M.; Duntsch, Christopher D.; Merchant, Thomas E.

    2013-01-01

    Purpose Damage to normal tissue is a limiting factor in clinical radiotherapy (RT). We tested the hypothesis that the presence of tumor alters the response of normal tissues to irradiation using a rat in situ brain tumor model. Methods and Materials Intravital microscopy was used with a rat cranial window to assess the in situ effect of rat C6 glioma on peritumoral tissue with and without RT. The RT regimen included 40 Gy at 8 Gy/day starting Day 5 after tumor implant. Endpoints included blood–brain barrier permeability, clearance index, leukocyte-endothelial interactions and staining for vascular endothelial growth factor (VEGF) glial fibrillary acidic protein, and apoptosis. To characterize the system response to RT, animal survival and tumor surface area and volume were measured. Sham experiments were performed on similar animals implanted with basement membrane matrix absent of tumor cells. Results The presence of tumor alone increases permeability but has little effect on leukocyte–endothelial interactions and astrogliosis. Radiation alone increases tissue permeability, leukocyte-endothelial interactions, and astrogliosis. The highest levels of permeability and cell adhesion were seen in the model that combined tumor and irradiation; however, the presence of tumor appeared to reduce the volume of rolling leukocytes. Unirradiated tumor and peritumoral tissue had poor clearance. Irradiated tumor and peritumoral tissue had a similar clearance index to irradiated and unirradiated sham-implanted animals. Radiation reduces the presence of VEGF in peritumoral normal tissues but did not affect the amount of apoptosis in the normal tissue. Apoptosis was identified in the tumor tissue with and without radiation. Conclusions We developed a novel approach to demonstrate that the presence of the tumor in a rat intracranial model alters the response of normal tissues to irradiation. PMID:22197233

  13. Functional tissue engineering of tendon: Establishing biological success criteria for improving tendon repair.

    PubMed

    Breidenbach, Andrew P; Gilday, Steven D; Lalley, Andrea L; Dyment, Nathaniel A; Gooch, Cynthia; Shearn, Jason T; Butler, David L

    2014-06-27

    Improving tendon repair using Functional Tissue Engineering (FTE) principles has been the focus of our laboratory over the last decade. Although our primary goals were initially focused only on mechanical outcomes, we are now carefully assessing the biological properties of our tissue-engineered tendon repairs so as to link biological influences with mechanics. However, given the complexities of tendon development and healing, it remains challenging to determine which aspects of tendon biology are the most important to focus on in the context of tissue engineering. To address this problem, we have formalized a strategy to identify, prioritize, and evaluate potential biological success criteria for tendon repair. We have defined numerous biological properties of normal tendon relative to cellular phenotype, extracellular matrix and tissue ultra-structure that we would like to reproduce in our tissue-engineered repairs and prioritized these biological criteria by examining their relative importance during both normal development and natural tendon healing. Here, we propose three specific biological criteria which we believe are essential for normal tendon function: (1) scleraxis-expressing cells; (2) well-organized and axially-aligned collagen fibrils having bimodal diameter distribution; and (3) a specialized tendon-to-bone insertion site. Moving forward, these biological success criteria will be used in conjunction with our already established mechanical success criteria to evaluate the effectiveness of our tissue-engineered tendon repairs. © 2013 Published by Elsevier Ltd.

  14. Detection of nasopharyngeal cancer using confocal Raman spectroscopy and genetic algorithm technique

    NASA Astrophysics Data System (ADS)

    Li, Shao-Xin; Chen, Qiu-Yan; Zhang, Yan-Jiao; Liu, Zhi-Ming; Xiong, Hong-Lian; Guo, Zhou-Yi; Mai, Hai-Qiang; Liu, Song-Hao

    2012-12-01

    Raman spectroscopy (RS) and a genetic algorithm (GA) were applied to distinguish nasopharyngeal cancer (NPC) from normal nasopharyngeal tissue. A total of 225 Raman spectra are acquired from 120 tissue sites of 63 nasopharyngeal patients, 56 Raman spectra from normal tissue and 169 Raman spectra from NPC tissue. The GA integrated with linear discriminant analysis (LDA) is developed to differentiate NPC and normal tissue according to spectral variables in the selected regions of 792-805, 867-880, 996-1009, 1086-1099, 1288-1304, 1663-1670, and 1742-1752 cm-1 related to proteins, nucleic acids and lipids of tissue. The GA-LDA algorithms with the leave-one-out cross-validation method provide a sensitivity of 69.2% and specificity of 100%. The results are better than that of principal component analysis which is applied to the same Raman dataset of nasopharyngeal tissue with a sensitivity of 63.3% and specificity of 94.6%. This demonstrates that Raman spectroscopy associated with GA-LDA diagnostic algorithm has enormous potential to detect and diagnose nasopharyngeal cancer.

  15. Characterizing the lung tissue mechanical properties using a micromechanical model of alveolar sac

    NASA Astrophysics Data System (ADS)

    Karami, Elham; Seify, Behzad; Moghadas, Hadi; Sabsalinejad, Masoomeh; Lee, Ting-Yim; Samani, Abbas

    2017-03-01

    According to statistics, lung disease is among the leading causes of death worldwide. As such, many research groups are developing powerful tools for understanding, diagnosis and treatment of various lung diseases. Recently, biomechanical modeling has emerged as an effective tool for better understanding of human physiology, disease diagnosis and computer assisted medical intervention. Mechanical properties of lung tissue are important requirements for methods developed for lung disease diagnosis and medical intervention. As such, the main objective of this study is to develop an effective tool for estimating the mechanical properties of normal and pathological lung parenchyma tissue based on its microstructure. For this purpose, a micromechanical model of the lung tissue was developed using finite element (FE) method, and the model was demonstrated to have application in estimating the mechanical properties of lung alveolar wall. The proposed model was developed by assembling truncated octahedron tissue units resembling the alveoli. A compression test was simulated using finite element method on the created geometry and the hyper-elastic parameters of the alveoli wall were calculated using reported alveolar wall stress-strain data and an inverse optimization framework. Preliminary results indicate that the proposed model can be potentially used to reconstruct microstructural images of lung tissue using macro-scale tissue response for normal and different pathological conditions. Such images can be used for effective diagnosis of lung diseases such as Chronic Obstructive Pulmonary Disease (COPD).

  16. [The expression and clinical significance of EphA2 and E-cadherin in papillary thyroid carcinoma].

    PubMed

    Liu, Yan; Miao, Yuhua; Li, Xiaoming

    2015-06-01

    To investigate the expression and clinical significance of EphA2 and E cadherin proteins in papillary thyroid carcinoma tissues, and to explore the relationship between them. Using immunohistochemical SP/PV method, we detected the expression of EphA2 and E cadherin in tumors of 43 papillary thyroid carcinomas, 11 thyroid adenoma and 10 normal thyroid tissues, then studied their relationships with clinic pathological factors. The total positive rates of EphA2 and E cadherin expression were 58. 14% and 32. 56% in papillary thyroid carcinoma tissues, 18. 18% and 81. 81% in thyroid adenoma.tissues and they were 10. 00% and 100. 00% in normal thyroid tissues respectively. The positive expression of EphA2 in carcinoma tissues was higher than in the thyroid adenoma tissues and normal thyroid tissues (P<0. 05) and the positive expression of E cadherin in carcinoma tissues was lower than that in the thyroid adenoma tissues and normal thyroid tissues (P<0. 05). The positive expression of EphA2 and E cadherin was associated with lymph node metastasis and histological grade (P<0. 05), but it was not associated with all the clinic-pathological factors including age, sex and the tumor size (P>0. 05). In papillary thyroid carcinoma tissues, the expression of EphA2 was negatively correlated with the expression of E cadherin protein (r= -0. 416, P<0. 01). EphA2 and E cadherin may be involved in carcinogenesis and development of papillary thyroid carcinoma.

  17. Microstructural heterogeneity directs micromechanics and mechanobiology in native and engineered fibrocartilage

    NASA Astrophysics Data System (ADS)

    Han, Woojin M.; Heo, Su-Jin; Driscoll, Tristan P.; Delucca, John F.; McLeod, Claire M.; Smith, Lachlan J.; Duncan, Randall L.; Mauck, Robert L.; Elliott, Dawn M.

    2016-04-01

    Treatment strategies to address pathologies of fibrocartilaginous tissue are in part limited by an incomplete understanding of structure-function relationships in these load-bearing tissues. There is therefore a pressing need to develop micro-engineered tissue platforms that can recreate the highly inhomogeneous tissue microstructures that are known to influence mechanotransductive processes in normal and diseased tissue. Here, we report the quantification of proteoglycan-rich microdomains in developing, ageing and diseased fibrocartilaginous tissues, and the impact of these microdomains on endogenous cell responses to physiologic deformation within a native-tissue context. We also developed a method to generate heterogeneous tissue-engineered constructs (hetTECs) with non-fibrous proteoglycan-rich microdomains engineered into the fibrous structure, and show that these hetTECs match the microstructural, micromechanical and mechanobiological benchmarks of native tissue. Our tissue-engineered platform should facilitate the study of the mechanobiology of developing, homeostatic, degenerating and regenerating fibrous tissues.

  18. Microstructural heterogeneity directs micromechanics and mechanobiology in native and engineered fibrocartilage.

    PubMed

    Han, Woojin M; Heo, Su-Jin; Driscoll, Tristan P; Delucca, John F; McLeod, Claire M; Smith, Lachlan J; Duncan, Randall L; Mauck, Robert L; Elliott, Dawn M

    2016-04-01

    Treatment strategies to address pathologies of fibrocartilaginous tissue are in part limited by an incomplete understanding of structure-function relationships in these load-bearing tissues. There is therefore a pressing need to develop micro-engineered tissue platforms that can recreate the highly inhomogeneous tissue microstructures that are known to influence mechanotransductive processes in normal and diseased tissue. Here, we report the quantification of proteoglycan-rich microdomains in developing, ageing and diseased fibrocartilaginous tissues, and the impact of these microdomains on endogenous cell responses to physiologic deformation within a native-tissue context. We also developed a method to generate heterogeneous tissue-engineered constructs (hetTECs) with non-fibrous proteoglycan-rich microdomains engineered into the fibrous structure, and show that these hetTECs match the microstructural, micromechanical and mechanobiological benchmarks of native tissue. Our tissue-engineered platform should facilitate the study of the mechanobiology of developing, homeostatic, degenerating and regenerating fibrous tissues.

  19. Microstructural Heterogeneity in Native and Engineered Fibrocartilage Directs Micromechanics and Mechanobiology

    PubMed Central

    Han, Woojin M; Heo, Su-Jin; Driscoll, Tristan P; Delucca, John F; McLeod, Claire M; Smith, Lachlan J; Duncan, Randall L; Mauck, Robert L; Elliott, Dawn M

    2015-01-01

    Treatment strategies to address pathologies of fibrocartilaginous tissue are in part limited by an incomplete understanding of structure-function relationships in these load-bearing tissues. There is therefore a pressing need to develop microengineered tissue platforms that can recreate the highly inhomogeneous tissue microstructures that are known to influence mechanotransductive processes in normal and diseased tissue. Here, we report the quantification of proteoglycan-rich microdomains in developing, aging, and diseased fibrocartilaginous tissues, and the impact of these microdomains on endogenous cell responses to physiologic deformation within a native-tissue context. We also developed a method to generate heterogeneous tissue engineered constructs (hetTECs) with microscale non-fibrous proteoglycan-rich microdomains engineered into the fibrous structure, and show that these hetTECs match the microstructural, micromechanical, and mechanobiological benchmarks of native tissue. Our tissue engineered platform should facilitate the study of the mechanobiology of developing, homeostatic, degenerating, and regenerating fibrous tissues. PMID:26726994

  20. Structure, function, and long-term maintenance of the isolated turtle colon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeFevre, M.E.; Reisman, L.

    1978-01-01

    We describe the 5-day maintenance of sacs of turtle colonic mucosa in enriched bathing solutions. The mean maximum transepithelial potential difference (PD) developed by the sacs in Ringer solution enriched with tissue-culture medium and gassed with 95% air-5% CO/sub 2/ was 126 mV at 24 hours. Lower values were observed in other solutions. The PD of 24-hour sacs was partially or totally inhibited by ouabain, replacement of Na by choline in mucosal bathing fluids, or removal of Ca from serosal bathing fluids. The sacs transported Na in excess of H/sub 2/O forming a dilute mucosal solution. The responses of fourmore » different sac preparations (normally oriented or everted, and stripped normally oriented or everted) to long incubation were compared. Stripped normally oriented tissue developed the highest PD and maintained the lowest water content. The morphology of fresh and long-incubated tissue was examined. This investigation demonstrates that the turtle colon can be maintained in vitro for long periods, and it provides information on the morphology and physiology of this tissue.« less

  1. Characterizing the heterogeneity of triple-negative breast cancers using microdissected normal ductal epithelium and RNA-sequencing

    PubMed Central

    Radovich, Milan; Clare, Susan E.; Atale, Rutuja; Pardo, Ivanesa; Hancock, Bradley A.; Solzak, Jeffrey P.; Kassem, Nawal; Mathieson, Theresa; Storniolo, Anna Maria V.; Rufenbarger, Connie; Lillemoe, Heather A.; Blosser, Rachel J.; Choi, Mi Ran; Sauder, Candice A.; Doxey, Diane; Henry, Jill E.; Hilligoss, Eric E.; Sakarya, Onur; Hyland, Fiona C.; Hickenbotham, Matthew; Zhu, Jin; Glasscock, Jarret; Badve, Sunil; Ivan, Mircea; Liu, Yunlong; Sledge, George W.; Schneider, Bryan P.

    2014-01-01

    Triple-negative breast cancers (TNBCs) are a heterogeneous set of tumors defined by an absence of actionable therapeutic targets (ER−,PR−,HER2−). Microdissected normal ductal epithelium from healthy volunteers represents a novel comparator to reveal insights into TNBC heterogeneity and to inform drug development. Using RNA-sequencing data from our institution and The Cancer Genome Atlas (TCGA) we compared the transcriptomes of 94 TNBCs, 20 microdissected normal breast tissues from healthy volunteers from the Susan G. Komen for the Cure Tissue Bank, and 10 histologically normal tissues adjacent to tumor. Pathway analysis comparing TNBCs to optimized normal controls of microdissected normal epithelium versus classic controls composed of adjacent normal tissue revealed distinct molecular signatures. Differential gene expression of TNBC compared with normal comparators demonstrated important findings for TNBC-specific clinical trials testing targeted agents; lack of over-expression for negative studies and over-expression in studies with drug activity. Next, by comparing each individual TNBC to the set of microdissected normals, we demonstrate that TNBC heterogeneity is attributable to transcriptional chaos, is associated with non-silent DNA mutational load, and explains transcriptional heterogeneity in addition to known molecular subtypes. Finally, chaos analysis identified 146 core genes dysregulated in >90% of TNBCs revealing an over-expressed central network. In conclusion, Use of microdissected normal ductal epithelium from healthy volunteers enables an optimized approach for studying TNBC and uncovers biological heterogeneity mediated by transcriptional chaos. PMID:24292813

  2. Characterizing the heterogeneity of triple-negative breast cancers using microdissected normal ductal epithelium and RNA-sequencing.

    PubMed

    Radovich, Milan; Clare, Susan E; Atale, Rutuja; Pardo, Ivanesa; Hancock, Bradley A; Solzak, Jeffrey P; Kassem, Nawal; Mathieson, Theresa; Storniolo, Anna Maria V; Rufenbarger, Connie; Lillemoe, Heather A; Blosser, Rachel J; Choi, Mi Ran; Sauder, Candice A; Doxey, Diane; Henry, Jill E; Hilligoss, Eric E; Sakarya, Onur; Hyland, Fiona C; Hickenbotham, Matthew; Zhu, Jin; Glasscock, Jarret; Badve, Sunil; Ivan, Mircea; Liu, Yunlong; Sledge, George W; Schneider, Bryan P

    2014-01-01

    Triple-negative breast cancers (TNBCs) are a heterogeneous set of tumors defined by an absence of actionable therapeutic targets (ER, PR, and HER-2). Microdissected normal ductal epithelium from healthy volunteers represents a novel comparator to reveal insights into TNBC heterogeneity and to inform drug development. Using RNA-sequencing data from our institution and The Cancer Genome Atlas (TCGA) we compared the transcriptomes of 94 TNBCs, 20 microdissected normal breast tissues from healthy volunteers from the Susan G. Komen for the Cure Tissue Bank, and 10 histologically normal tissues adjacent to tumor. Pathway analysis comparing TNBCs to optimized normal controls of microdissected normal epithelium versus classic controls composed of adjacent normal tissue revealed distinct molecular signatures. Differential gene expression of TNBC compared with normal comparators demonstrated important findings for TNBC-specific clinical trials testing targeted agents; lack of over-expression for negative studies and over-expression in studies with drug activity. Next, by comparing each individual TNBC to the set of microdissected normals, we demonstrate that TNBC heterogeneity is attributable to transcriptional chaos, is associated with non-silent DNA mutational load, and explains transcriptional heterogeneity in addition to known molecular subtypes. Finally, chaos analysis identified 146 core genes dysregulated in >90 % of TNBCs revealing an over-expressed central network. In conclusion, use of microdissected normal ductal epithelium from healthy volunteers enables an optimized approach for studying TNBC and uncovers biological heterogeneity mediated by transcriptional chaos.

  3. What We Should Know Before Using Tissue Engineering Techniques to Repair Injured Tendons: A Developmental Biology Perspective

    PubMed Central

    Liu, Chia-Feng; Aschbacher-Smith, Lindsey; Barthelery, Nicolas J.; Dyment, Nathaniel; Butler, David

    2011-01-01

    Tendons connect muscles to bones, and serve as the transmitters of force that allow all the movements of the body. Tenocytes are the basic cellular units of tendons, and produce the collagens that form the hierarchical fiber system of the tendon. Tendon injuries are common, and difficult to repair, particularly in the case of the insertion of tendon into bone. Successful attempts at cell-based repair therapies will require an understanding of the normal development of tendon tissues, including their differentiated regions such as the fibrous mid-section and fibrocartilaginous insertion site. Many genes are known to be involved in the formation of tendon. However, their functional roles in tendon development have not been fully characterized. Tissue engineers have attempted to generate functional tendon tissue in vitro. However, a lack of knowledge of normal tendon development has hampered these efforts. Here we review studies focusing on the developmental mechanisms of tendon development, and discuss the potential applications of a molecular understanding of tendon development to the treatment of tendon injuries. PMID:21314435

  4. Expression of Folliculogenesis-Related Genes in Vitrified Human Ovarian Tissue after Two Weeks In Vitro Culture.

    PubMed

    Shams Mofarahe, Zahra; Salehnia, Mojdeh; Ghaffari Novin, Marefat; Ghorbanmehr, Nassim; Fesharaki, Mohammad Gholami

    2017-01-01

    This study was designed to evaluate the effects of vitrification and in vitro culture of human ovarian tissue on the expression of oocytic and follicular cell-related genes. In this experimental study, ovarian tissue samples were obtained from eight transsexual women. Samples were cut into small fragments and were then assigned to vitrified and non-vitrified groups. In each group, some tissue fragments were divided into un-cultured and cultured (in α-MEM medium for 2 weeks) subgroups. The normality of follicles was assessed by morphological observation under a light microscope using hematoxylin and eosin (H&E) staining. Expression levels of factor in the germ line alpha ( FIGLA ), KIT ligand ( KL ), growth differentiation factor 9 ( GDF-9 ) and follicle stimulating hormone receptor ( FSHR ) genes were quantified in both groups by real-time reverse transcriptase polymerase chain reaction (RT-PCR) at the beginning and the end of culture. The percentage of normal follicles was similar between non-cultured vitrified and non-vitrified groups (P>0.05), however, cultured tissues had significantly fewer normal follicles than non-cultured tissues in both vitrified and non-vitrified groups (P<0.05). In both cultured groups the rate of primary and secondary follicles was significantly higher than non-cultured tissues (P<0.05). The expression of all examined genes was not significantly altered in both non-cultured groups. Whiles, in comparison with cultured tissues non-cultured tissues, the expression of FIGLA gene was significantly decreased, KL gene was not changed, GDF-9 and FSHR genes was significantly increased (P<0.05). Human ovarian vitrification following in vitro culture has no impairing effects on follicle normality and development and expression of related-genes. However, in vitro culture condition has deleterious effects on normality of follicles.

  5. Markers of fibrosis and epithelial to mesenchymal transition demonstrate field cancerization in histologically normal tissue adjacent to breast tumors

    PubMed Central

    Trujillo, Kristina A.; Heaphy, Christopher M.; Mai, Minh; Vargas, Keith M.; Jones, Anna C.; Vo, Phung; Butler, Kimberly S.; Joste, Nancy E.; Bisoffi, Marco; Griffith, Jeffrey K

    2011-01-01

    Previous studies have shown that a field of genetically altered but histologically normal tissue extends 1 cm or more from the margins of human breast tumors. The extent, composition and biological significance of this field are only partially understood, but the molecular alterations in affected cells could provide mechanisms for limitless replicative capacity, genomic instability and a microenvironment that supports tumor initiation and progression. We demonstrate by microarray, qRT-PCR and immunohistochemistry a signature of differential gene expression that discriminates between patient-matched, tumor-adjacent histologically normal breast tissues located 1 cm and 5 cm from the margins of breast adenocarcinomas (TAHN-1 and TAHN-5, respectively). The signature includes genes involved in extracellular matrix remodeling, wound healing, fibrosis and epithelial to mesenchymal transition (EMT). Myofibroblasts, which are mediators of wound healing and fibrosis, and intra-lobular fibroblasts expressing MMP2, SPARC, TGF-β3, which are inducers of EMT, were both prevalent in TAHN-1 tissues, sparse in TAHN-5 tissues, and absent in normal tissues from reduction mammoplasty. Accordingly, EMT markers S100A4 and vimentin were elevated in both luminal and myoepithelial cells, and EMT markers α-smooth muscle actin and SNAIL were elevated in luminal epithelial cells of TAHN-1 tissues. These results identify cellular processes that are differentially activated between TAHN-1 and TAHN-5 breast tissues, implicate myofibroblasts as likely mediators of these processes, provide evidence that EMT is occurring in histologically normal tissues within the affected field and identify candidate biomarkers to investigate whether or how field cancerization contributes to the development of primary or recurrent breast tumors. PMID:21105047

  6. Tenascin-C and mechanotransduction in the development and diseases of cardiovascular system

    PubMed Central

    Imanaka-Yoshida, Kyoko; Aoki, Hiroki

    2014-01-01

    Living tissue is composed of cells and extracellular matrix (ECM). In the heart and blood vessels, which are constantly subjected to mechanical stress, ECM molecules form well-developed fibrous frameworks to maintain tissue structure. ECM is also important for biological signaling, which influences various cellular functions in embryonic development, and physiological/pathological responses to extrinsic stimuli. Among ECM molecules, increased attention has been focused on matricellular proteins. Matricellular proteins are a growing group of non-structural ECM proteins highly up-regulated at active tissue remodeling, serving as biological mediators. Tenascin-C (TNC) is a typical matricellular protein, which is highly expressed during embryonic development, wound healing, inflammation, and cancer invasion. The expression is tightly regulated, dependent on the microenvironment, including various growth factors, cytokines, and mechanical stress. In the heart, TNC appears in a spatiotemporal-restricted manner during early stages of development, sparsely detected in normal adults, but transiently re-expressed at restricted sites associated with tissue injury and inflammation. Similarly, in the vascular system, TNC is strongly up-regulated during embryonic development and under pathological conditions with an increase in hemodynamic stress. Despite its intriguing expression pattern, cardiovascular system develops normally in TNC knockout mice. However, deletion of TNC causes acute aortic dissection (AAD) under strong mechanical and humoral stress. Accumulating reports suggest that TNC may modulate the inflammatory response and contribute to elasticity of the tissue, so that it may protect cardiovascular tissue from destructive stress responses. TNC may be a key molecule to control cellular activity during development, adaptation, or pathological tissue remodeling. PMID:25120494

  7. MO-D-BRF-01: Pediatric Treatment Planning II: The PENTEC Report On Normal Tissue Complications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constine, L; Hodgson, D; Bentzen, S

    With advances in multimodality therapy, childhood cancer cure rates approach 80%. However, both radiotherapy and chemotherapy may cause debilitating or even fatal ‘late effects’ that are critical to understand, mitigate, or prevent. QUANTEC identified the uncertainties relating to side-effects of adult treatments, but this is more complicated for children in whom a mosaic of tissues develops at different rates and temporal sequences. Childhood cancer survivors have long life expectancy and may develop treatmentinduced secondary cancers and severe organ/tissue injury decades after treatment. Collaborative long-term observational studies and clinical research programs for survivors of pediatric and adolescent cancer provide some dose-responsemore » data for follow-up periods exceeding 40 years. Data analysis is challenging due to the influence of both therapeutic and developmental variables. PENTEC is a group of radiation oncologists, pediatric oncologists, subsepcialty physicians, medical physicists, biomathematic modelers/statisticians, and epidemiologists charged with conducting a critical synthesis of existing literature aiming to: critically analyze radiation dose-volume effects on normal tissue tolerances as a function of age/development in pediatric cancer patients in order to inform treatment planning and improve outcomes for survivors; describe relevant physics issues specific to pediatric radiotherapy; propose dose-volumeoutcome reporting standards to improve the knowledge base to inform future treatment guidelines. PENTEC has developed guidelines for systematic literature reviews, data extraction tolls and data analysis. This education session will discuss:1. Special considerations for normal tissue radiation response of children/adolescents, e.g. the interplay between development and radiotherapy effects.2. Epidemiology of organ/tissue injuries and secondary cancers.3. Exploration of dose-response differences between children and adults4. Methodology for literature review, data mining of outcomes databases, and NTCP or longitudinal modeling of doseresponse. 5. PENTEC goals and timetable. Learning Objectives: Understand important differences between normal tissue effects of radiation therapy in pediatric and adult patients. Be able to identify situations where there is ‘interplay’ between organ development and radiation-induced complications. Identify methods to systematically extract quantitative dose-volumeresponse relationships from existing outcomes databases. Provide guidance for the medical physicist to properly understand, implement, guide and control contemporary technology and applications in pediatric radiation oncology.« less

  8. Gene Expression Architecture of Mouse Dorsal and Tail Skin Reveals Functional Differences in Inflammation and Cancer.

    PubMed

    Quigley, David A; Kandyba, Eve; Huang, Phillips; Halliwill, Kyle D; Sjölund, Jonas; Pelorosso, Facundo; Wong, Christine E; Hirst, Gillian L; Wu, Di; Delrosario, Reyno; Kumar, Atul; Balmain, Allan

    2016-07-26

    Inherited germline polymorphisms can cause gene expression levels in normal tissues to differ substantially between individuals. We present an analysis of the genetic architecture of normal adult skin from 470 genetically unique mice, demonstrating the effect of germline variants, skin tissue location, and perturbation by exogenous inflammation or tumorigenesis on gene signaling pathways. Gene networks related to specific cell types and signaling pathways, including sonic hedgehog (Shh), Wnt, Lgr family stem cell markers, and keratins, differed at these tissue sites, suggesting mechanisms for the differential susceptibility of dorsal and tail skin to development of skin diseases and tumorigenesis. The Pten tumor suppressor gene network is rewired in premalignant tumors compared to normal tissue, but this response to perturbation is lost during malignant progression. We present a software package for expression quantitative trait loci (eQTL) network analysis and demonstrate how network analysis of whole tissues provides insights into interactions between cell compartments and signaling molecules. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Comparison of the pharmacokinetics between L-BPA and L-FBPA using the same administration dose and protocol: a validation study for the theranostic approach using [18F]-L-FBPA positron emission tomography in boron neutron capture therapy.

    PubMed

    Watanabe, Tsubasa; Hattori, Yoshihide; Ohta, Youichiro; Ishimura, Miki; Nakagawa, Yosuke; Sanada, Yu; Tanaka, Hiroki; Fukutani, Satoshi; Masunaga, Shin-Ichiro; Hiraoka, Masahiro; Ono, Koji; Suzuki, Minoru; Kirihata, Mitsunori

    2016-11-08

    Boron neutron capture therapy (BNCT) is a cellular-level particle radiation therapy that combines the selective delivery of boron compounds to tumour tissue with neutron irradiation. L-p-Boronophenylalanine (L-BPA) is a boron compound now widely used in clinical situations. Determination of the boron distribution is required for successful BNCT prior to neutron irradiation. Thus, positron emission tomography with [ 18 F]-L-FBPA, an 18 F-labelled radiopharmaceutical analogue of L-BPA, was developed. However, several differences between L-BPA and [ 18 F]-L-FBPA have been highlighted, including the different injection doses and administration protocols. The purpose of this study was to clarify the equivalence between L-BPA and [ 19 F]-L-FBPA as alternatives to [ 18 F]-L-FBPA. SCC-VII was subcutaneously inoculated into the legs of C3H/He mice. The same dose of L-BPA or [ 19 F]-L-FBPA was subcutaneously injected. The time courses of the boron concentrations in blood, tumour tissue, and normal tissue were compared between the groups. Next, we administered the therapeutic dose of L-BPA or the same dose of [ 19 F]-L-FBPA by continuous infusion and compared the effects of the administration protocol on boron accumulation in tissues. There were no differences between L-BPA and [ 19 F]-L-FBPA in the transition of boron concentrations in blood, tumour tissue, and normal tissue using the same administration protocol. However, the normal tissue to blood ratio of the boron concentrations in the continuous-infusion group was lower than that in the subcutaneous injection group. No difference was noted in the time course of the boron concentrations in tumour tissue and normal tissues between L-BPA and [ 19 F]-L-FBPA. However, the administration protocol had effects on the normal tissue to blood ratio of the boron concentration. In estimating the BNCT dose in normal tissue by positron emission tomography (PET), we should consider the possible overestimation of the normal tissue to blood ratio of the boron concentrations derived from the values measured by PET on dose calculation.

  10. Quantifying glucose permeability and enhanced light penetration in ex vivo human normal and cancerous esophagus tissues with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zhao, Q. L.; Si, J. L.; Guo, Z. Y.; Wei, H. J.; Yang, H. Q.; Wu, G. Y.; Xie, S. S.; Li, X. Y.; Guo, X.; Zhong, H. Q.; Li, L. Q.

    2011-01-01

    We report our pilot results on quantification of glucose (G) diffusion permeability in human normal esophagus and ESCC tissues in vitro by using OCT technique. The permeability coefficient of 40% aqueous solution of G was found to be (1.74±0.04)×10-5 cm/s in normal esophagus and (2.45±0.06)×10-5 cm/s in ESCC tissues. The results from this study indicate that ESCC tissues had a higher permeability coefficient compared to normal esophageal tissues, and the light penetration depths gradually increase with the increase of applied topically with G time for the normal esophageal and ESCC tissues. The results indicate that the permeability coefficient of G in cancer tissues was 1.41-fold than that in normal tissues, and the light penetration depth for the ESCC tissues is significantly smaller than that of normal esophagus tissues in the same time range. These results demonstrate that the optical clearing of normal and cancer esophagus tissues are improved after application of G.

  11. In vivo Diagnosis of Cervical Intraepithelial Neoplasia Using 337-nm- Excited Laser-Induced Fluorescence

    NASA Astrophysics Data System (ADS)

    Ramanujam, N.; Mitchell, M. F.; Mahadevan, A.; Warren, S.; Thomsen, S.; Silva, E.; Richards-Kortum, R.

    1994-10-01

    Laser-induced fluorescence at 337-nm excitation was used in vivo to differentiate neoplastic [cervical intraepithelial neoplasia (CIN)], nonneoplastic abnormal (inflammation and human papilloma viral infection), and normal cervical tissues. A colposcope (low-magnification microscope used to view the cervix with reflected light) was used to identify 66 normal and 49 abnormal (5 inflammation, 21 human papilloma virus infection, and 23 CIN) sites on the cervix in 28 patients. These sites were then interrogated spectroscopically. A two-stage algorithm was developed to diagnose CIN. The first stage differentiated histologically abnormal tissues from colposcopically normal tissues with a sensitivity, specificity, and positive predictive value of 92%, 90%, and 88%, respectively. The second stage differentiated preneoplastic and neoplastic tissues from nonneoplastic abnormal tissues with a sensitivity, specificity, and positive predictive value of 87%, 73%, and 74%, respectively. Spectroscopic differences were consistent with a decrease in the absolute contribution of collagen fluorescence, an increase in the absolute contribution of oxyhemoglobin attenuation, and an increase in the relative contribution of reduced nicotinamide dinucleotide phosphate [NAD(P)H] fluorescence as tissue progresses from normal to abnormal in the same patient. These results suggest that in vivo fluorescence spectroscopy of the cervix can be used to diagnose CIN at colposcopy.

  12. Comparative pharmacokinetic and tissue distribution profiles of four major bioactive components in normal and hepatic fibrosis rats after oral administration of Fuzheng Huayu recipe.

    PubMed

    Yang, Tao; Liu, Shan; Wang, Chang-Hong; Tao, Yan-Yan; Zhou, Hua; Liu, Cheng-Hai

    2015-10-10

    Fuzheng Huayu recipe (FZHY) is a herbal product for the treatment of liver fibrosis approved by the Chinese State Food and Drug Administration (SFDA), but its pharmacokinetics and tissue distribution had not been investigated. In this study, the liver fibrotic model was induced with intraperitoneal injection of dimethylnitrosamine (DMN), and FZHY was given orally to the model and normal rats. The plasma pharmacokinetics and tissue distribution profiles of four major bioactive components from FZHY were analyzed in the normal and fibrotic rat groups using an ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method. Results revealed that the bioavailabilities of danshensu (DSS), salvianolic acid B (SAB) and rosmarinic acid (ROS) in liver fibrotic rats increased 1.49, 3.31 and 2.37-fold, respectively, compared to normal rats. There was no obvious difference in the pharmacokinetics of amygdalin (AMY) between the normal and fibrotic rats. The tissue distribution of DSS, SAB, and AMY trended to be mostly in the kidney and lung. The distribution of DSS, SAB, and AMY in liver tissue of the model rats was significantly decreased compared to the normal rats. Significant differences in the pharmacokinetics and tissue distribution profiles of DSS, ROS, SAB and AMY were observed in rats with hepatic fibrosis after oral administration of FZHY. These results provide a meaningful basis for developing a clinical dosage regimen in the treatment of hepatic fibrosis by FZHY. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Selection and validation of suitable reference genes for miRNA expression normalization by quantitative RT-PCR in citrus somatic embryogenic and adult tissues.

    PubMed

    Kou, Shu-Jun; Wu, Xiao-Meng; Liu, Zheng; Liu, Yuan-Long; Xu, Qiang; Guo, Wen-Wu

    2012-12-01

    miRNAs have recently been reported to modulate somatic embryogenesis (SE), a key pathway of plant regeneration in vitro. For expression level detection and subsequent function dissection of miRNAs in certain biological processes, qRT-PCR is one of the most effective and sensitive techniques, for which suitable reference gene selection is a prerequisite. In this study, three miRNAs and eight non-coding RNAs (ncRNA) were selected as reference candidates, and their expression stability was inspected in developing citrus SE tissues cultured at 20, 25, and 30 °C. Stability of the eight non-miRNA ncRNAs was further validated in five adult tissues without temperature treatment. The best single reference gene for SE tissues was snoR14 or snoRD25, while for the adult tissues the best one was U4; although they were not as stable as the optimal multiple references snoR14 + U6 for SE tissues and snoR14 + U5 for adult tissues. For expression normalization of less abundant miRNAs in SE tissues, miR3954 was assessed as a viable reference. Single reference gene snoR14 outperformed multiple references for the overall SE and adult tissues. As one of the pioneer systematic studies on reference gene identification for plant miRNA normalization, this study benefits future exploration on miRNA function in citrus and provides valuable information for similar studies in other higher plants. Three miRNAs and eight non-coding RNAs were tested as reference candidates on developing citrus SE tissues. Best single references snoR14 or snoRD25 and optimal multiple references snoR14 + U6, snoR14 + U5 were identified.

  14. Evaluation of tissue engineered models of the oral mucosa to investigate oral candidiasis.

    PubMed

    Yadev, Nishant P; Murdoch, Craig; Saville, Stephen P; Thornhill, Martin H

    2011-06-01

    Candida albicans is a commensal organism that can be isolated from the majority of healthy individuals. However, in certain susceptible individuals C. albicans can become pathogenic leading to the mucocutaneous infection; oral candidiasis. Murine models and in vitro monolayer cultures have generated some data on the likely virulence and host factors that contribute to oral candidiasis but these models have limitations. Recently, tissue engineered oral mucosal models have been developed to mimic the normal oral mucosa but little information is available on their true representation. In this study, we assessed the histological features of three different tissue engineered oral mucosal models compared to the normal oral mucosa and analysed both cell damage and cytokine release following infection with C. albicans. Models comprised of normal oral keratinocytes and a fibroblast-containing matrix displayed more similar immunohistological and proliferation characteristics to normal mucosa, compared to models composed of an oral carcinoma cell line. Although all models were invaded and damaged by C. albicans in a similar manner, the cytokine response was much more pronounced in models containing normal keratinocytes. These data suggest that models based on normal keratinocytes atop a fibroblast-containing connective tissue will significantly aid in dissecting the molecular pathogenesis of oral candidiasis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. In Vitro Tissue Differentiation using Dynamics of Tissue Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Lin, Wei-Chiang; Phillips, Paul J.

    2002-03-01

    Dynamics of tissue mechanical properties of various human tissue types were studied at macroscopic as well as microscopic level in vitro. This study was conducted to enable the development of a feedback system based on dynamics of tissue mechanical properties for intraoperative guidance for tumor treatment (e.g., RF ablation of liver tumor) and noninvasive tumor localization. Human liver tissues, including normal, cancerous, and cirrhotic tissues, were obtained from patients receiving liver transplant or tumor resection at Vanderbilt University Medical Center with the approval of the Vanderbilt Institutional Review Board. Tissue samples, once resected from the patients, were snap-frozen using liquid nitrogen and stored at -70 oC. Measurements of the mechanical properties of these tissue samples were conducted at the University of Tennessee at Knoxville. Dynamics of tissue mechanical properties were measured from both native and thermally coagulated tissue samples at macroscopic and microscopic level. Preliminary results suggest the dynamics of mechanical properties of normal liver tissues are very different from those of cancerous liver tissues. The correlation between the dynamics of mechanical properties at macroscopic level and those at microscopic level is currently under investigation.

  16. Hippo signaling is required for Notch-dependent smooth muscle differentiation of neural crest.

    PubMed

    Manderfield, Lauren J; Aghajanian, Haig; Engleka, Kurt A; Lim, Lillian Y; Liu, Feiyan; Jain, Rajan; Li, Li; Olson, Eric N; Epstein, Jonathan A

    2015-09-01

    Notch signaling has well-defined roles in the assembly of arterial walls and in the development of the endothelium and smooth muscle of the vasculature. Hippo signaling regulates cellular growth in many tissues, and contributes to regulation of organ size, in addition to other functions. Here, we show that the Notch and Hippo pathways converge to regulate smooth muscle differentiation of the neural crest, which is crucial for normal development of the aortic arch arteries and cranial vasculature during embryonic development. Neural crest-specific deletion of the Hippo effectors Yap and Taz produces neural crest precursors that migrate normally, but fail to produce vascular smooth muscle, and Notch target genes such as Jagged1 fail to activate normally. We show that Yap is normally recruited to a tissue-specific Jagged1 enhancer by directly interacting with the Notch intracellular domain (NICD). The Yap-NICD complex is recruited to chromatin by the DNA-binding protein Rbp-J in a Tead-independent fashion. Thus, Hippo signaling can modulate Notch signaling outputs, and components of the Hippo and Notch pathways physically interact. Convergence of Hippo and Notch pathways by the mechanisms described here might be relevant for the function of these signaling cascades in many tissues and in diseases such as cancer. © 2015. Published by The Company of Biologists Ltd.

  17. Osteoactivin expressed during cirrhosis development in rats fed a choline-deficient, L-amino acid-defined diet, accelerates motility of hepatoma cells.

    PubMed

    Onaga, Masaaki; Ido, Akio; Hasuike, Satoru; Uto, Hirofumi; Moriuchi, Akihiro; Nagata, Kenji; Hori, Takeshi; Hayash, Katsuhiro; Tsubouchi, Hirohito

    2003-11-01

    Hepatocellular carcinoma (HCC) is closely associated with chronic liver diseases, particularly cirrhosis. However, the genes involved in hepatocarcinogenesis in the context of developing cirrhosis remain unknown. This study aims to identify genes associated with early cirrhosis-associated hepatocarcinogenesis. We examined genes differentially expressed between the livers of normal rats and rats fed a choline-deficient, L-amino acid-defined (CDAA) diet using suppression subtractive hybridization. We examined both the expression in the liver and HCC tissues of osteoactivin (OA), isolated in this screen, and its effect on invasiveness and metastasis. OA mRNA was strongly expressed in the livers of rats fed the CDAA diet for 1-3 months. Moderate expression was sustained for 18 months. OA overexpression increased the invasiveness and metastasis of rat hepatoma cells in vitro and in vivo. In humans, OA expression was not detectable in normal liver tissues. While OA transcripts were detectable in cirrhotic nontumorous liver tissues surrounding HCCs, the majority of HCC tissue samples exhibited higher levels of OA expression than the surrounding normal tissue. These results indicate that OA is a novel factor involved in the progression of HCC via stimulation of tumor invasiveness and metastatic potential.

  18. Control of thermal therapies with moving power deposition field.

    PubMed

    Arora, Dhiraj; Minor, Mark A; Skliar, Mikhail; Roemer, Robert B

    2006-03-07

    A thermal therapy feedback control approach to control thermal dose using a moving power deposition field is developed and evaluated using simulations. A normal tissue safety objective is incorporated in the controller design by imposing constraints on temperature elevations at selected normal tissue locations. The proposed control technique consists of two stages. The first stage uses a model-based sliding mode controller that dynamically generates an 'ideal' power deposition profile which is generally unrealizable with available heating modalities. Subsequently, in order to approximately realize this spatially distributed idealized power deposition, a constrained quadratic optimizer is implemented to compute intensities and dwell times for a set of pre-selected power deposition fields created by a scanned focused transducer. The dwell times for various power deposition profiles are dynamically generated online as opposed to the commonly employed a priori-decided heating strategies. Dynamic intensity and trajectory generation safeguards the treatment outcome against modelling uncertainties and unknown disturbances. The controller is designed to enforce simultaneous activation of multiple normal tissue temperature constraints by rapidly switching between various power deposition profiles. The hypothesis behind the controller design is that the simultaneous activation of multiple constraints substantially reduces treatment time without compromising normal tissue safety. The controller performance and robustness with respect to parameter uncertainties is evaluated using simulations. The results demonstrate that the proposed controller can successfully deliver the desired thermal dose to the target while maintaining the temperatures at the user-specified normal tissue locations at or below the maximum allowable values. Although demonstrated for the case of a scanned focused ultrasound transducer, the developed approach can be extended to other heating modalities with moving deposition fields, such as external and interstitial ultrasound phased arrays, multiple radiofrequency needle applicators and microwave antennae.

  19. The detection of cancer in living tissue with single-cell precision and the development of a system for targeted drug delivery to cancer

    NASA Astrophysics Data System (ADS)

    Fields, Adam; Pi, Sean; Ramek, Alex; Bernheim, Taylor; Fields, Jessica; Pernodet, Nadine; Rafailovich, Miriam

    2007-03-01

    The development of innovations in the field of cancer diagnostics is imperative to improve the early identification of malignant cells within the human body. Two novel techniques are presented for the detection of cancer cells in living tissue. First, shear modulation force microscopy (SMFM) was employed to measure cell mechanics of normal and cancer cells in separate and mixed tissue cultures. We found that the moduli of normal keratinocytes were twice as high as the moduli of SCC cancerous keratinocytes, and that the cancer cells were unambiguously identifiable from a mixture of both kinds of cells. Second, confocal microscopy and the BIAcore 2000 were used to demonstrate the preferential adhesion of glass micro-beads impregnated with fluorescent dye to the membranes of cancer cells as compared to those of normal cells. In addition to their use as a cancer detection system, these hollow and porous beads present a model system for targeted drug delivery in the treatment of cancer.

  20. Autophagy-associated proteins BAG3 and p62 in testicular cancer.

    PubMed

    Bartsch, Georg; Jennewein, Lukas; Harter, Patrick N; Antonietti, Patrick; Blaheta, Roman A; Kvasnicka, Hans-Michael; Kögel, Donat; Haferkamp, Axel; Mittelbronn, Michel; Mani, Jens

    2016-03-01

    Testicular germ cell tumors (TGCT) represent the most common malignant tumor group in the age group of 20 to 40-years old men. The potentially curable effect of cytotoxic therapy in TGCT is mediated mainly by the induction of apoptosis. Autophagy has been discussed as an alternative mechanism of cell death but also of treatment resistance in various types of tumors. However, in TGCT the expression and role of core autophagy-associated factors is hitherto unknown. We designed the study in order to evaluate the potential role of autophagy-associated factors in the development and progression of testicular cancers. Eighty-four patients were assessed for autophagy (BAG3, p62) and apoptosis (cleaved caspase 3) markers using immunohistochemistry (IHC) on tissue micro- arrays. In addition, western blot analyses of frozen tissue of seminoma and non-seminoma were performed. Our findings show that BAG3 was significantly upregulated in seminoma as compared to non-seminoma but not to normal testicular tissue. No significant difference of p62 expression was detected between neoplastic and normal tissue or between seminoma and non-seminoma. BAG3 and p62 showed distinct loco‑regional expression patterns in normal and neoplastic human testicular tissues. In contrast to the autophagic markers, apoptosis rate was significantly higher in testicular tumors as compared to normal testicular tissue, but not between different TGCT subtypes. The present study, for the first time, examined the expression of central autophagy proteins BAG3 and p62 in testicular cancer. Our findings imply that in general apoptosis but not autophagy induction differs between normal and neoplastic testis tissue.

  1. Analysis of molecular pathways in pancreatic ductal adenocarcinomas with a bioinformatics approach.

    PubMed

    Wang, Yan; Li, Yan

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer death worldwide. Our study aimed to reveal molecular mechanisms. Microarray data of GSE15471 (including 39 matching pairs of pancreatic tumor tissues and patient-matched normal tissues) was downloaded from Gene Expression Omnibus (GEO) database. We identified differentially expressed genes (DEGs) in PDAC tissues compared with normal tissues by limma package in R language. Then GO and KEGG pathway enrichment analyses were conducted with online DAVID. In addition, principal component analysis was performed and a protein-protein interaction network was constructed to study relationships between the DEGs through database STRING. A total of 532 DEGs were identified in the 38 PDAC tissues compared with 33 normal tissues. The results of principal component analysis of the top 20 DEGs could differentiate the PDAC tissues from normal tissues directly. In the PPI network, 8 of the 20 DEGs were all key genes of the collagen family. Additionally, FN1 (fibronectin 1) was also a hub node in the network. The genes of the collagen family as well as FN1 were significantly enriched in complement and coagulation cascades, ECM-receptor interaction and focal adhesion pathways. Our results suggest that genes of collagen family and FN1 may play an important role in PDAC progression. Meanwhile, these DEGs and enriched pathways, such as complement and coagulation cascades, ECM-receptor interaction and focal adhesion may be important molecular mechanisms involved in the development and progression of PDAC.

  2. Microgravity

    NASA Image and Video Library

    2000-12-15

    Paul Ducheyne, a principal investigator in the microgravity materials science program and head of the University of Pernsylvania's Center for Bioactive Materials and Tissue Engineering, is leading the trio as they use simulated microgravity to determine the optimal characteristics of tiny glass particles for growing bone tissue. The result could make possible a much broader range of synthetic bone-grafting applications. Even in normal gravity, bioactive glass particles enhance bone growth in laboratory tests with flat tissue cultures. Ducheyne and his team believe that using the bioactive microcarriers in a rotating bioreactor in microgravity will produce improved, three-dimensional tissue cultures. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: NASA and University of Pennsylvania Center for Bioactive Materials and Tissue Engineering.

  3. Spectroscopic diagnosis of laryngeal carcinoma using near-infrared Raman spectroscopy and random recursive partitioning ensemble techniques.

    PubMed

    Teh, Seng Khoon; Zheng, Wei; Lau, David P; Huang, Zhiwei

    2009-06-01

    In this work, we evaluated the diagnostic ability of near-infrared (NIR) Raman spectroscopy associated with the ensemble recursive partitioning algorithm based on random forests for identifying cancer from normal tissue in the larynx. A rapid-acquisition NIR Raman system was utilized for tissue Raman measurements at 785 nm excitation, and 50 human laryngeal tissue specimens (20 normal; 30 malignant tumors) were used for NIR Raman studies. The random forests method was introduced to develop effective diagnostic algorithms for classification of Raman spectra of different laryngeal tissues. High-quality Raman spectra in the range of 800-1800 cm(-1) can be acquired from laryngeal tissue within 5 seconds. Raman spectra differed significantly between normal and malignant laryngeal tissues. Classification results obtained from the random forests algorithm on tissue Raman spectra yielded a diagnostic sensitivity of 88.0% and specificity of 91.4% for laryngeal malignancy identification. The random forests technique also provided variables importance that facilitates correlation of significant Raman spectral features with cancer transformation. This study shows that NIR Raman spectroscopy in conjunction with random forests algorithm has a great potential for the rapid diagnosis and detection of malignant tumors in the larynx.

  4. Production of Normal Mammalian Organ Culture Using a Medium Containing Mem-Alpha, Leibovitz L 15, Glucose Galactose Fructose

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Wolf, David A. (Inventor); Spaulding, Glenn F. (Inventor); Prewett, Tacey L. (Inventor)

    1999-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue. The cells are grown in vitro under micro- gravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel. The medium used for culturing the cells, especially a mixture of epithelial and mesenchymal cells contains a mixture of Mem-alpha and Leibovits L15 supplemented with glucose, galactose and fructose.

  5. Automated adipose study for assessing cancerous human breast tissue using optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gan, Yu; Yao, Xinwen; Chang, Ernest W.; Bin Amir, Syed A.; Hibshoosh, Hanina; Feldman, Sheldon; Hendon, Christine P.

    2017-02-01

    Breast cancer is the third leading cause of death in women in the United States. In human breast tissue, adipose cells are infiltrated or replaced by cancer cells during the development of breast tumor. Therefore, an adipose map can be an indicator of identifying cancerous region. We developed an automated classification method to generate adipose map within human breast. To facilitate the automated classification, we first mask the B-scans from OCT volumes by comparing the signal noise ratio with a threshold. Then, the image was divided into multiple blocks with a size of 30 pixels by 30 pixels. In each block, we extracted texture features such as local standard deviation, entropy, homogeneity, and coarseness. The features of each block were input to a probabilistic model, relevance vector machine (RVM), which was trained prior to the experiment, to classify tissue types. For each block within the B-scan, RVM identified the region with adipose tissue. We calculated the adipose ratio as the number of blocks identified as adipose over the total number of blocks within the B-scan. We obtained OCT images from patients (n = 19) in Columbia medical center. We automatically generated the adipose maps from 24 B-scans including normal samples (n = 16) and cancerous samples (n = 8). We found the adipose regions show an isolated pattern that in cancerous tissue while a clustered pattern in normal tissue. Moreover, the adipose ratio (52.30 ± 29.42%) in normal tissue was higher than the that in cancerous tissue (12.41 ± 10.07%).

  6. Three-Dimensional Coculture Of Human Small-Intestine Cells

    NASA Technical Reports Server (NTRS)

    Wolf, David; Spaulding, Glen; Goodwin, Thomas J.; Prewett, Tracy

    1994-01-01

    Complex three-dimensional masses of normal human epithelial and mesenchymal small-intestine cells cocultured in process involving specially designed bioreactors. Useful as tissued models for studies of growth, regulatory, and differentiation processes in normal intestinal tissues; diseases of small intestine; and interactions between cells of small intestine and viruses causing disease both in small intestine and elsewhere in body. Process used to produce other tissue models, leading to advances in understanding of growth and differentiation in developing organisms, of renewal of tissue, and of treatment of myriad of clinical conditions. Prior articles describing design and use of rotating-wall culture vessels include "Growing And Assembling Cells Into Tissues" (MSC-21559), "High-Aspect-Ratio Rotating Cell-Culture Vessel" (MSC-21662), and "In Vitro, Matrix-Free Formation Of Solid Tumor Spheroids" (MSC-21843).

  7. Regulation of the oncodevelopmental expression of type 1 chain ABH and Lewis(b) blood group antigens in human colon by alpha-2-L-fucosylation.

    PubMed Central

    Orntoft, T F; Greenwell, P; Clausen, H; Watkins, W M

    1991-01-01

    Blood group antigen expression in the distal human colon is related to the development of the organ and is modified by malignant transformation. To elucidate the biochemical basis for these changes, we have (a) analysed the activity of glycosyltransferases coded for by the H, Se, Le, X, and A genes, in tissue biopsy specimens from normal and malignant proximal and distal human colon; (b) characterised the glycosphingolipids expressed in the various regions of normal and malignant colon by immunostaining of high performance thin layer chromatography plates; and (c) located the antigens on tissue sections from the same subjects by immunohistochemistry. In both secretors and non-secretors we found a significantly higher activity of alpha-2-L-fucosyltransferases in carcinomatous rectal tissue than in tissue from normal subjects, whereas the other transferase activities studied showed no significant differences. The acceptor substrate specificity suggested that both the Se and the H gene dependent alpha-2-L-fucosyltransferases are increased in carcinomas. In non-malignant tissue the only enzyme which showed appreciably higher activity in caecum than in rectum was alpha-2-L-fucosyltransferase. Immunochemistry and immunohistochemistry showed alpha-2-L-fucosylated structures in normal caecum from secretors and in tumour tissue from both secretors and non-secretors. We conclude that the alpha-2-L-fucosyltransferases control the expression of ABH, and Lewis(b) structures in normal and malignant colon. Images Figure 4 PMID:1826491

  8. Hyperspectral imaging fluorescence excitation scanning for detecting colorectal cancer: pilot study

    NASA Astrophysics Data System (ADS)

    Leavesley, Silas J.; Wheeler, Mikayla; Lopez, Carmen; Baker, Thomas; Favreau, Peter F.; Rich, Thomas C.; Rider, Paul F.; Boudreaux, Carole W.

    2016-03-01

    Optical spectroscopy and hyperspectral imaging have shown the theoretical potential to discriminate between cancerous and non-cancerous tissue with high sensitivity and specificity. To date, these techniques have not been able to be effectively translated to endoscope platforms. Hyperspectral imaging of the fluorescence excitation spectrum represents a new technology that may be well-suited for endoscopic implementation. However, the feasibility of detecting differences between normal and cancerous mucosa using fluorescence excitation-scanning hyperspectral imaging has not been evaluated. The objective of this pilot study was to evaluate the changes in the fluorescence excitation spectrum of resected specimen pairs of colorectal adenocarcinoma and normal colorectal mucosa. Patients being treated for colorectal adenocarcinoma were enrolled. Representative adenocarcinoma and normal colonic mucosa specimens were collected from each case. Specimens were flash frozen in liquid nitrogen. Adenocarcinoma was confirmed by histologic evaluation of H&E permanent sections. Hyperspectral image data of the fluorescence excitation of adenocarcinoma and surrounding normal tissue were acquired using a custom microscope configuration previously developed in our lab. Results demonstrated consistent spectral differences between normal and cancerous tissues over the fluorescence excitation spectral range of 390-450 nm. We conclude that fluorescence excitation-scanning hyperspectral imaging may offer an alternative approach for differentiating adenocarcinoma and surrounding normal mucosa of the colon. Future work will focus on expanding the number of specimen pairs analyzed and will utilize fresh tissues where possible, as flash freezing and reconstituting tissues may have altered the autofluorescence properties.

  9. Pattern of somatostatin receptors expression in normal and bladder cancer tissue samples.

    PubMed

    Karavitakis, Markos; Msaouel, Pavlos; Michalopoulos, Vassilis; Koutsilieris, Michael

    2014-06-01

    Known risks factors for bladder cancer progression and recurrence are limited regarding their prognostic ability. Therefore identification of molecular determinants of disease progression could provide with more specific prognostic information and could be translated into new approaches for biomarker development. In the present study we evaluated, the expression patterns of somatostatin receptors 1-5 (SSTRs) in normal and tumor bladder tissues. The expression of SSTR1-5 was characterized in 45 normal and bladder cancer tissue samples using reverse transcriptase-polymerase chain reaction (RT-PCR). SSTR1 was expressed in 24 samples, SSTR2 in 15, SSTR3 in 23, SSTR4 in 16 and SSTR5 in all but one sample. Bladder cancer tissue samples expressed lower levels of SSTR3. Co-expression of SSTRs was associated with superficial disease. Our results demonstrate, for the first time, that there is expression of SSTR in normal and bladder cancer urothelium. Further studies are required to evaluate the prognostic and therapeutic significance of these findings. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  10. Three-Dimensional Culture Model of Skeletal Muscle Tissue with Atrophy Induced by Dexamethasone.

    PubMed

    Shimizu, Kazunori; Genma, Riho; Gotou, Yuuki; Nagasaka, Sumire; Honda, Hiroyuki

    2017-06-15

    Drug screening systems for muscle atrophy based on the contractile force of cultured skeletal muscle tissues are required for the development of preventive or therapeutic drugs for atrophy. This study aims to develop a muscle atrophy model by inducing atrophy in normal muscle tissues constructed on microdevices capable of measuring the contractile force and to verify if this model is suitable for drug screening using the contractile force as an index. Tissue engineered skeletal muscles containing striated myotubes were prepared on the microdevices for the study. The addition of 100 µM dexamethasone (Dex), which is used as a muscle atrophy inducer, for 24 h reduced the contractile force significantly. An increase in the expression of Atrogin-1 and MuRF-1 in the tissues treated with Dex was established. A decrease in the number of striated myotubes was also observed in the tissues treated with Dex. Treatment with 8 ng/mL Insulin-like Growth Factor (IGF-I) for 24 h significantly increased the contractile force of the Dex-induced atrophic tissues. The same treatment, though, had no impact on the force of the normal tissues. Thus, it is envisaged that the atrophic skeletal muscle tissues induced by Dex can be used for drug screening against atrophy.

  11. Three-Dimensional Culture Model of Skeletal Muscle Tissue with Atrophy Induced by Dexamethasone

    PubMed Central

    Shimizu, Kazunori; Genma, Riho; Gotou, Yuuki; Nagasaka, Sumire; Honda, Hiroyuki

    2017-01-01

    Drug screening systems for muscle atrophy based on the contractile force of cultured skeletal muscle tissues are required for the development of preventive or therapeutic drugs for atrophy. This study aims to develop a muscle atrophy model by inducing atrophy in normal muscle tissues constructed on microdevices capable of measuring the contractile force and to verify if this model is suitable for drug screening using the contractile force as an index. Tissue engineered skeletal muscles containing striated myotubes were prepared on the microdevices for the study. The addition of 100 µM dexamethasone (Dex), which is used as a muscle atrophy inducer, for 24 h reduced the contractile force significantly. An increase in the expression of Atrogin-1 and MuRF-1 in the tissues treated with Dex was established. A decrease in the number of striated myotubes was also observed in the tissues treated with Dex. Treatment with 8 ng/mL Insulin-like Growth Factor (IGF-I) for 24 h significantly increased the contractile force of the Dex-induced atrophic tissues. The same treatment, though, had no impact on the force of the normal tissues. Thus, it is envisaged that the atrophic skeletal muscle tissues induced by Dex can be used for drug screening against atrophy. PMID:28952535

  12. Time-resolved fluorescence (TRF) and diffuse reflectance spectroscopy (DRS) for margin analysis in breast cancer.

    PubMed

    Shalaby, Nourhan; Al-Ebraheem, Alia; Le, Du; Cornacchi, Sylvie; Fang, Qiyin; Farrell, Thomas; Lovrics, Peter; Gohla, Gabriela; Reid, Susan; Hodgson, Nicole; Farquharson, Michael

    2018-03-01

    One of the major problems in breast cancer surgery is defining surgical margins and establishing complete tumor excision within a single surgical procedure. The goal of this work is to establish instrumentation that can differentiate between tumor and normal breast tissue with the potential to be implemented in vivo during a surgical procedure. A time-resolved fluorescence and reflectance spectroscopy (tr-FRS) system is used to measure fluorescence intensity and lifetime as well as collect diffuse reflectance (DR) of breast tissue, which can subsequently be used to extract optical properties (absorption and reduced scatter coefficient) of the tissue. The tr-FRS data obtained from patients with Invasive Ductal Carcinoma (IDC) whom have undergone lumpectomy and mastectomy surgeries is presented. A preliminary study was conducted to determine the validity of using banked pre-frozen breast tissue samples to study the fluorescence response and optical properties. Once the validity was established, the tr-FRS system was used on a data-set of 40 pre-frozen matched pair cases to differentiate between tumor and normal breast tissue. All measurements have been conducted on excised normal and tumor breast samples post surgery. Our results showed the process of freezing and thawing did not cause any significant differences between fresh and pre-frozen normal or tumor breast tissue. The tr-FRS optical data obtained from 40 banked matched pairs showed significant differences between normal and tumor breast tissue. The work detailed in the main study showed the tr-FRS system has the potential to differentiate malignant from normal breast tissue in women undergoing surgery for known invasive ductal carcinoma. With further work, this successful outcome may result in the development of an accurate intraoperative real-time margin assessment system. Lasers Surg. Med. 50:236-245, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  13. The myofibroblast, multiple origins for major roles in normal and pathological tissue repair

    PubMed Central

    2012-01-01

    Myofibroblasts differentiate, invade and repair injured tissues by secreting and organizing the extracellular matrix and by developing contractile forces. When tissues are damaged, tissue homeostasis must be re-established, and repair mechanisms have to rapidly provide harmonious mechanical tissue organization, a process essentially supported by (myo)fibroblasts. Under physiological conditions, the secretory and contractile activities of myofibroblasts are terminated when the repair is complete (scar formation) but the functionality of the tissue is only rarely perfectly restored. At the end of the normal repair process, myofibroblasts disappear by apoptosis but in pathological situations, myofibroblasts likely remain leading to excessive scarring. Myofibroblasts originate from different precursor cells, the major contribution being from local recruitment of connective tissue fibroblasts. However, local mesenchymal stem cells, bone marrow-derived mesenchymal stem cells and cells derived from an epithelial-mesenchymal transition process, may represent alternative sources of myofibroblasts when local fibroblasts are not able to satisfy the requirement for these cells during repair. These diverse cell types probably contribute to the appearance of myofibroblast subpopulations which show specific biological properties and which are important to understand in order to develop new therapeutic strategies for treatment of fibrotic and scarring diseases. PMID:23259712

  14. Differential Expression of c-fos Proto-Oncogene in Normal Oral Mucosa versus Squamous Cell Carcinoma

    PubMed Central

    Krishna, Akhilesh; Bhatt, Madan Lal Brahma; Singh, Vineeta; Singh, Shraddha; Gangwar, Pravin Kumar; Singh, Uma Shankar; Kumar, Vijay; Mehrotra, Divya

    2018-01-01

    Background: The c-Fos nuclear protein dimerizes with Jun family proteins to form the transcription factor AP-1 complex which participates in signal transduction and regulation of normal cellular processes. In tumorigenesis, c-Fos promotes invasive growth through down-regulation of tumor suppressor genes but its role in oral carcinogenesis is not clear. Objectives: This study concerned c-fos gene expression in normal and malignant tissues of the oral cavity, with attention to associations between expression status and clinico-pathological profiles of OSCC patients. Method: A total of 65 histopathologically confirmed OSCC tissue samples were included in case group along with an equal number of age and sex-matched normal tissue samples of oral cavity for the control group. c-Fos protein and m-RNA expressions were analyzed using immunohistochemistry and qRT-PCR, respectively. Results: A significant low expression of c-Fos protein was observed in OSCC cases than normal control subjects (p= <0.001). The mean percent positivity of c-Fos protein in cases vs. controls was 24.91± 2.7 vs. 49.68± 2.2 (p= <0.001). Most OSCC tissue samples showed weak or moderate c-Fos expression whereas 53.8% of normal tissue sections presented with strong immunostaining. Moreover, the relative m-RNA expression for the c-fos gene was significantly decreased in case group (0.93± 0.48) as compared to the control group (1.22± 0.87). Majority of c-Fos positive cases were diagnosed with well developed tumor. The mean percent positivity of c-Fos protein was significantly lower in higher grade tumor as compared with normal oral mucosa (p= < 0.001). Conclusion: The present study suggested that the c-fos gene is downregulated in oral carcinomas. The disparity of c-Fos protein levels in different pathological grades of tumor and normal oral tissue samples may indicate that loss of c-Fos expression is related with the progression of OSCC. PMID:29582647

  15. Screening of the residual normal ovarian tissue adjacent to orthotopic epithelial ovarian carcinomas in nude mice.

    PubMed

    Zhu, G H; Wang, S T; Yao, M Z; Cai, J H; Chen, C Y; Yang, Z X; Hong, L; Yang, S Y

    2014-04-16

    The objective of this study was to explore the feasibility and methods of screening the residual normal ovarian tissue adjacent to orthotopic ovarian carcinomas in nude mice. Human epithelial ovarian cancer cells (OVCAR3) were subcutaneously implanted for a tumor source and ovarian orthotopic transplantation. The cancer tissue, proximal paraneoplastic tissue, middle paraneoplastic tissue, remote paraneoplastic tissue, and normal ovarian tissue were removed. CK-7, CA125, p53, survivin, MMP-2, and TIMP-2 expression was detected by reverse transcription polymerase chain reaction. We obtained 35 paraneoplastic residual ovarian tissues with normal biopsies from 40 cases of an orthotopic epithelial ovarian carcinoma model (87.5%). CK-7, CA125, p53, survivin, MMP-2, and TIMP-2 expression was lower in proximal paraneoplastic tissue than in cancer tissue (P < 0.05) and higher than in middle and remote paraneoplastic tissue (P < 0.01). There was no statistically significant difference between the expression of these genes in middle and proximal paraneoplastic tissue as well as among residual normal ovarian tissues with different severity (P > 0.05). In ovarian tissues of 20 normal nude mice, the expression of CK- 7, CA125, p53, survivin, MMP-2, and TIMP-2 was negative. Overall, the expression levels of CK-7, CA125, p53, survivin, MMP-2, TIMP-2, and other molecular markers showed a decreasing trend in the non-cancer tissue direction. The expression levels can be used as standards to screen residual normal ovarian tissue. We can obtain relatively safe normal ovarian tissues adjacent to epithelial ovarian cancer.

  16. Microfluidic extraction and microarray detection of biomarkers from cancer tissue slides

    NASA Astrophysics Data System (ADS)

    Nguyen, H. T.; Dupont, L. N.; Jean, A. M.; Géhin, T.; Chevolot, Y.; Laurenceau, E.; Gijs, M. A. M.

    2018-03-01

    We report here a new microfluidic method allowing for the quantification of human epidermal growth factor receptor 2 (HER2) expression levels from formalin-fixed breast cancer tissues. After partial extraction of proteins from the tissue slide, the extract is routed to an antibody (Ab) microarray for HER2 titration by fluorescence. Then the HER2-expressing cell area is evaluated by immunofluorescence (IF) staining of the tissue slide and used to normalize the fluorescent HER2 signal measured from the Ab microarray. The number of HER2 gene copies measured by fluorescence in situ hybridization (FISH) on an adjacent tissue slide is concordant with the normalized HER2 expression signal. This work is the first study implementing biomarker extraction and detection from cancer tissue slides using microfluidics in combination with a microarray system, paving the way for further developments towards multiplex and precise quantification of cancer biomarkers.

  17. Metabolism links bacterial biofilms and colon carcinogenesis

    PubMed Central

    Johnson, Caroline H.; Dejea, Christine M.; Edler, David; Hoang, Linh T.; Santidrian, Antonio F.; Felding, Brunhilde H.; Cho, Kevin; Wick, Elizabeth C.; Hechenbleikner, Elizabeth M.; Uritboonthai, Winnie; Goetz, Laura; Casero, Robert A.; Pardoll, Drew M.; White, James R.; Patti, Gary J.; Sears, Cynthia L.; Siuzdak, Gary

    2015-01-01

    SUMMARY Bacterial biofilms in the colon alter the host tissue microenvironment. A role for biofilms in colon cancer metabolism has been suggested but to date has not been evaluated. Using metabolomics, we investigated the metabolic influence that microbial biofilms have on colon tissues and the related occurrence of cancer. Patient-matched colon cancers and histologically normal tissues, with or without biofilms, were examined. We show the upregulation of polyamine metabolites in tissues from cancer hosts with significant enhancement of N1, N12-diacetylspermine in both biofilm positive cancer and normal tissues. Antibiotic treatment, which cleared biofilms, decreased N1, N12-diacetylspermine levels to those seen in biofilm negative tissues, indicating that host cancer and bacterial biofilm structures contribute to the polyamine metabolite pool. These results show that colonic mucosal biofilms alter the cancer metabolome, to produce a regulator of cellular proliferation and colon cancer growth potentially affecting cancer development and progression. PMID:25959674

  18. Metabolism links bacterial biofilms and colon carcinogenesis.

    PubMed

    Johnson, Caroline H; Dejea, Christine M; Edler, David; Hoang, Linh T; Santidrian, Antonio F; Felding, Brunhilde H; Ivanisevic, Julijana; Cho, Kevin; Wick, Elizabeth C; Hechenbleikner, Elizabeth M; Uritboonthai, Winnie; Goetz, Laura; Casero, Robert A; Pardoll, Drew M; White, James R; Patti, Gary J; Sears, Cynthia L; Siuzdak, Gary

    2015-06-02

    Bacterial biofilms in the colon alter the host tissue microenvironment. A role for biofilms in colon cancer metabolism has been suggested but to date has not been evaluated. Using metabolomics, we investigated the metabolic influence that microbial biofilms have on colon tissues and the related occurrence of cancer. Patient-matched colon cancers and histologically normal tissues, with or without biofilms, were examined. We show the upregulation of polyamine metabolites in tissues from cancer hosts with significant enhancement of N(1), N(12)-diacetylspermine in both biofilm-positive cancer and normal tissues. Antibiotic treatment, which cleared biofilms, decreased N(1), N(12)-diacetylspermine levels to those seen in biofilm-negative tissues, indicating that host cancer and bacterial biofilm structures contribute to the polyamine metabolite pool. These results show that colonic mucosal biofilms alter the cancer metabolome to produce a regulator of cellular proliferation and colon cancer growth potentially affecting cancer development and progression. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Predicting Sensitivity of Breast Tumors to Src-targeted Therapies Through Assessment of Cas/Src/BCAR3 Activity

    DTIC Science & Technology

    2017-10-01

    expression is elevated in DCIS samples compared to normal mammary tissue, invasive ductal carcinoma (IDC) compared to normal mammary tissue, and DCIS... compared to IDC. (2) BCAR3 is significantly upregulated in triple negative breast cancer and normal tissue; (3) BCAR3 expression shows a modest...expression was seen to be elevated in DCIS samples compared to normal mammary tissue, invasive ductal carcinoma (IDC) compared to normal mammary tissue, and

  20. Early discrimination of nasopharyngeal carcinoma based on tissue deoxyribose nucleic acid surface-enhanced Raman spectroscopy analysis

    NASA Astrophysics Data System (ADS)

    Qiu, Sufang; Li, Chao; Lin, Jinyong; Xu, Yuanji; Lu, Jun; Huang, Qingting; Zou, Changyan; Chen, Chao; Xiao, Nanyang; Lin, Duo; Chen, Rong; Pan, Jianji; Feng, Shangyuan

    2016-12-01

    Surface-enhanced Raman spectroscopy (SERS) was employed to detect deoxyribose nucleic acid (DNA) variations associated with the development of nasopharyngeal carcinoma (NPC). Significant SERS spectral differences between the DNA extracted from early NPC, advanced NPC, and normal nasopharyngeal tissue specimens were observed at 678, 729, 788, 1337, 1421, 1506, and 1573 cm-1, which reflects the genetic variations in NPC. Principal component analysis combined with discriminant function analysis for early NPC discrimination yielded a diagnostic accuracy of 86.8%, 92.3%, and 87.9% for early NPC, advanced NPC, and normal nasopharyngeal tissue DNA, respectively. In this exploratory study, we demonstrated the potential of SERS for early detection of NPC based on the DNA molecular study of biopsy tissues.

  1. Quantitative fluorescence and elastic scattering tissue polarimetry using an Eigenvalue calibrated spectroscopic Mueller matrix system.

    PubMed

    Soni, Jalpa; Purwar, Harsh; Lakhotia, Harshit; Chandel, Shubham; Banerjee, Chitram; Kumar, Uday; Ghosh, Nirmalya

    2013-07-01

    A novel spectroscopic Mueller matrix system has been developed and explored for both fluorescence and elastic scattering polarimetric measurements from biological tissues. The 4 × 4 Mueller matrix measurement strategy is based on sixteen spectrally resolved (λ = 400 - 800 nm) measurements performed by sequentially generating and analyzing four elliptical polarization states. Eigenvalue calibration of the system ensured high accuracy of Mueller matrix measurement over a broad wavelength range, either for forward or backscattering geometry. The system was explored for quantitative fluorescence and elastic scattering spectroscopic polarimetric studies on normal and precancerous tissue sections from human uterine cervix. The fluorescence spectroscopic Mueller matrices yielded an interesting diattenuation parameter, exhibiting differences between normal and precancerous tissues.

  2. Treating Brain Tumor with Microbeam Radiation Generated by a Compact Carbon-Nanotube-Based Irradiator: Initial Radiation Efficacy Study.

    PubMed

    Yuan, Hong; Zhang, Lei; Frank, Jonathan E; Inscoe, Christina R; Burk, Laurel M; Hadsell, Mike; Lee, Yueh Z; Lu, Jianping; Chang, Sha; Zhou, Otto

    2015-09-01

    Microbeam radiation treatment (MRT) using synchrotron radiation has shown great promise in the treatment of brain tumors, with a demonstrated ability to eradicate the tumor while sparing normal tissue in small animal models. With the goal of expediting the advancement of MRT research beyond the limited number of synchrotron facilities in the world, we recently developed a compact laboratory-scale microbeam irradiator using carbon nanotube (CNT) field emission-based X-ray source array technology. The focus of this study is to evaluate the effects of the microbeam radiation generated by this compact irradiator in terms of tumor control and normal tissue damage in a mouse brain tumor model. Mice with U87MG human glioblastoma were treated with sham irradiation, low-dose MRT, high-dose MRT or 10 Gy broad-beam radiation treatment (BRT). The microbeams were 280 μm wide and spaced at 900 μm center-to-center with peak dose at either 48 Gy (low-dose MRT) or 72 Gy (high-dose MRT). Survival studies showed that the mice treated with both MRT protocols had a significantly extended life span compared to the untreated control group (31.4 and 48.5% of life extension for low- and high-dose MRT, respectively) and had similar survival to the BRT group. Immunostaining on MRT mice demonstrated much higher DNA damage and apoptosis level in tumor tissue compared to the normal brain tissue. Apoptosis in normal tissue was significantly lower in the low-dose MRT group compared to that in the BRT group at 48 h postirradiation. Interestingly, there was a significantly higher level of cell proliferation in the MRT-treated normal tissue compared to that in the BRT-treated mice, indicating rapid normal tissue repairing process after MRT. Microbeam radiation exposure on normal brain tissue causes little apoptosis and no macrophage infiltration at 30 days after exposure. This study is the first biological assessment on MRT effects using the compact CNT-based irradiator. It provides an alternative technology that can enable widespread MRT research on mechanistic studies using a preclinical model, as well as further translational research towards clinical applications.

  3. Microgravity

    NASA Image and Video Library

    1996-06-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators

  4. Microgravity

    NASA Image and Video Library

    1988-07-14

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators.

  5. Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators

  6. Rotating Bioreactor

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators.

  7. Significance of phosphatase and tensin homologue (PTEN), O(6)-methylguanine-DNA methyltransferase (MGMT), and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) protein expression in gynaecomastia.

    PubMed

    Zhu, L; Liu, Z; Yang, J; Cai, J

    2009-01-01

    This study was designed to investigate the pathogenesis of gynaecomastia by measuring phosphatase and tensin homologue (PTEN), O(6)-methylguanine-DNA methyltransferase (MGMT) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) protein in breast tissue specimens from 68 patients with gynaecomastia and 24 normal male controls using immunohistochemical staining. The gynaecomastia cases were divided into three different histological types: florid, intermediate and fibrous. The PTEN, MGMT and DNA-PKcs proteins were detected in both gynaecomastia and normal breast tissue, but the levels of immunohistochemical staining of each protein were significantly lower in gynaecomastia breast tissue than in normal breast tissue. There were also significant differences in the levels of immunohistochemical staining for the three proteins according to gynaecomastia histological type. These results suggest that abnormally low levels of PTEN, MGMT and DNA-PKcs protein in gynaecomastia breast tissue may play a role in the development of gynaecomastia. Further research is required to elucidate fully their individual roles in the pathophysiology of gynaecomastia.

  8. Distinctive Glycerophospholipid Profiles of Human Seminoma and Adjacent Normal Tissues by Desorption Electrospray Ionization Imaging Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Masterson, Timothy A.; Dill, Allison L.; Eberlin, Livia S.; Mattarozzi, Monica; Cheng, Liang; Beck, Stephen D. W.; Bianchi, Federica; Cooks, R. Graham

    2011-08-01

    Desorption electrospray ionization mass spectrometry (DESI-MS) has been successfully used to discriminate between normal and cancerous human tissue from different anatomical sites. On the basis of this, DESI-MS imaging was used to characterize human seminoma and adjacent normal tissue. Seminoma and adjacent normal paired human tissue sections (40 tissues) from 15 patients undergoing radical orchiectomy were flash frozen in liquid nitrogen and sectioned to 15 μm thickness and thaw mounted to glass slides. The entire sample was two-dimensionally analyzed by the charged solvent spray to form a molecular image of the biological tissue. DESI-MS images were compared with formalin-fixed, hematoxylin and eosin (H&E) stained slides of the same material. Increased signal intensity was detected for two seminolipids [seminolipid (16:0/16:0) and seminolipid (30:0)] in the normal tubule testis tissue; these compounds were undetectable in seminoma tissue, as well as from the surrounding fat, muscle, and blood vessels. A glycerophosphoinositol [PI(18:0/20:4)] was also found at increased intensity in the normal testes tubule tissue when compared with seminoma tissue. Ascorbic acid (i.e., vitamin C) was found at increased amounts in seminoma tissue when compared with normal tissue. DESI-MS analysis was successfully used to visualize the location of several types of molecules across human seminoma and normal tissues. Discrimination between seminoma and adjacent normal testes tubules was achieved on the basis of the spatial distributions and varying intensities of particular lipid species as well as ascorbic acid. The increased presence of ascorbic acid within seminoma compared with normal seminiferous tubules was previously unknown.

  9. Imaging denatured collagen strands in vivo and ex vivo via photo-triggered hybridization of caged collagen mimetic peptides.

    PubMed

    Li, Yang; Foss, Catherine A; Pomper, Martin G; Yu, S Michael

    2014-01-31

    Collagen is a major structural component of the extracellular matrix that supports tissue formation and maintenance. Although collagen remodeling is an integral part of normal tissue renewal, excessive amount of remodeling activity is involved in tumors, arthritis, and many other pathological conditions. During collagen remodeling, the triple helical structure of collagen molecules is disrupted by proteases in the extracellular environment. In addition, collagens present in many histological tissue samples are partially denatured by the fixation and preservation processes. Therefore, these denatured collagen strands can serve as effective targets for biological imaging. We previously developed a caged collagen mimetic peptide (CMP) that can be photo-triggered to hybridize with denatured collagen strands by forming triple helical structure, which is unique to collagens. The overall goals of this procedure are i) to image denatured collagen strands resulting from normal remodeling activities in vivo, and ii) to visualize collagens in ex vivo tissue sections using the photo-triggered caged CMPs. To achieve effective hybridization and successful in vivo and ex vivo imaging, fluorescently labeled caged CMPs are either photo-activated immediately before intravenous injection, or are directly activated on tissue sections. Normal skeletal collagen remolding in nude mice and collagens in prefixed mouse cornea tissue sections are imaged in this procedure. The imaging method based on the CMP-collagen hybridization technology presented here could lead to deeper understanding of the tissue remodeling process, as well as allow development of new diagnostics for diseases associated with high collagen remodeling activity.

  10. Fluorescence and photodynamic effects of bacteriochlorin a observed in vivo in 'sandwich' observation chambers.

    PubMed Central

    van Leengoed, H. L.; Schuitmaker, J. J.; van der Veen, N.; Dubbelman, T. M.; Star, W. M.

    1993-01-01

    Bacteriochlorin a (BCA), a derivative of bacteriochlorphyll a, is an effective photosensitiser in vitro and in vivo. BCA has a major absorption peak at 760 nm where tissue penetration is optimal. This property, together with rapid tissue clearance promises minor skin photosensitivity. The tissue localising and photodynamic properties of BCA were studied using isogeneic RMA mammary tumours, transplanted into subcutaneous tissue in transparent 'sandwich' observation chambers on the back of WAG/Rij rats. The fluorescence kinetics following an i.v. administration of 20 mg kg-1 BCA was assessed in blood vessels, tumour and normal tissue. Subsequently, the development of vascular- and tissue damage after a therapeutic light dose (760 nm, 600 J cm-2) was observed. Fifteen minutes post injection (p.i.), the fluorescence of BCA in the tumour reached a plateau value of 2.5 times the fluorescence in the normal tissue. From 1 h post injection the tumour fluorescence diminished gradually; after 24 h, the tumour fluorescence signal did not exceed that of the normal tissue. Following photodynamic therapy (PDT), 24 h p.i., complete vascular stasis was observed 2 h post treatment in the tumour only, with subsequent recovery. The presence of viable tumour cells following PDT was assessed by histology and re-transplantation of treated tumour tissue from the chamber into the flank immediately or 7 days after treatment. In both cases tumour regrowth was observed. BCA-PDT (20 mg kg-1, 760 nm, 100 J cm-2) 1 h after BCA administration, an interval which gives the optimal differential between tumour and normal tissue, was sufficient to prevent tumour regrowth. However, this only occurred when re-transplantation was performed 7 days after PDT. During PDT, 1 h p.i., vascular damage in tumour and normal tissue was considerable. Complete vascular shut-down was observed in the tumour 2 h after therapy and in the surrounding tissues at 24 h. Circulation damage was associated with vascular spasm and occlusion probably due to thrombi formation. Oedema was notable, especially following PDT with 600 J cm-2 at 24 h p.i. Images Figure 1 PMID:8494722

  11. Pulp-dentin biology in restorative dentistry. Part 1: normal structure and physiology.

    PubMed

    Mjör, I A; Sveen, O B; Heyeraas, K J

    2001-06-01

    Considerable knowledge has accumulated over the years on the structure and function of the dental pulp and dentin. Some of this knowledge has important clinical implications. This review, which is the first of seven articles, will be limited to those parts of the normal structure and physiology of the pulp and dentin that have been shown to result in, or are likely lead to, tissue reactions associated with the clinical treatment of these tissues. Although certain normal structures will be highlighted in some detail, a basic knowledge of pulpal and dentinal development and structure is a prerequisite for an understanding of this text.

  12. Normal female phenotype and ovarian development despite the ovarian expression of the sex-determining region of Y chromosome (SRY) in a 46,XX/69,XXY diploid/triploid mosaic child conceived after in vitro fertilization-intracytoplasmic sperm injection.

    PubMed

    Oktem, Ozgur; Paduch, Darius A; Xu, Kangpu; Mielnik, Anna; Oktay, Kutluk

    2007-03-01

    Diploid/triploid mosaicism (mixoploidy) is a rare chromosomal abnormality characterized by mental and growth retardation, hypotonia, and dysmorphic features such as facial asymmetry, low-set ears, and syndactyly. All 46,XX/69,XXY cases fall into three phenotypic groups: male with testicular development, ovotestis disorder of sex development (DSD), or undervirilized male DSD. All phenotypic females with diploid/triploid mosaic reported so far had 46,XX/69,XXX karyotype. We report an 8-year-old girl conceived after in vitro fertilization-intracytoplasmic sperm injection with normal internal/external genital and ovarian development despite 46,XX/69,XXY mosaicism and normal expression of sex-determining region of Y chromosome (SRY) in her gonads. Because of the increased risk of gonadoblastoma resulting from Y chromosome mosaicism, her ovaries were removed by laparoscopy. Ovarian tissue was analyzed histologically as well as by fluorescence in situ hybridization, PCR, and RT-PCR amplification to determine the localization of Y chromosome and expression of SRY and DAX1 mRNA. Methylation-specific PCR was used to assess the inactivation pattern of X chromosomes. By laparoscopy, internal female genital anatomy appeared to be normal. Cytogenetic and molecular methods confirmed the presence of intact and functionally active Y chromosome in the ovary. Strikingly, histological assessment of the gonads showed normal ovarian architecture with abundant primordial follicles despite the presence of the Y chromosome in ovarian follicles and the expression of SRY mRNA in gonadal tissue. This case illustrates that normal ovarian development is possible in the presence of Y chromosome in ovarian follicles and despite the expression of SRY in ovarian tissue. Furthermore, this is the first documented case of mixoploidy after in vitro fertilization-intracytoplasmic sperm injection and the only phenotypic female with 46,XX/69,XXY karyotype.

  13. Cancer: A Problem of Developmental Biology; Scientific Evidence for Reprogramming and Differentiation Therapy.

    PubMed

    Sell, Stewart; Nicolini, Andrea; Ferrari, Paola; Biava, Pier M

    2016-01-01

    Current medical literature acknowledges that embryonic micro-environment is able to suppress tumor development. Administering carcinogenic substances during organogenesis in fact leads to embryonic malformations, but not to offspring tumor growth. Once organogenesis has ended, administration of carcinogenic substances causes a rise in offspring tumor development. These data indicate that cancer can be considered a deviation in normal development, which can be regulated by factors of the embryonic microenvironment. Furthermore, it has been demonstrated that teratoma differentiates into normal tissues once it is implanted in the embryo. Recently, it has been shown that implanting a melanoma in Zebrafish embryo did not result in a tumor development; however, it did in the adult specimen. This demonstrates that cancer cells can differentiate into normal tissues when implanted in the embryo. In addition, it was demonstrated that other tumors can revert into a normal phenotype and/or differentiate into normal tissue when implanted in the embryo. These studies led some authors to define cancer as a problem of developmental biology and to predict the present concept of "cancer stem cells theory". In this review, we record the most important researches about the reprogramming and differentiation treatments of cancer cells to better clarify how the substances taken from developing embryo or other biological substances can induce differentiation of malignant cells. Lastly, a model of cancer has been proposed here, conceived by one of us, which is consistent with the reality, as demonstrated by a great number of researches. This model integrates the theory of the "maturation arrest" of cancer cells as conceived by B. Pierce with the theory which describes cancer as a process of deterministic chaos determined by genetic and/or epigenetic alterations in differentiated cells, which leads a normal cell to become cancerous. All the researches here described demonstrated that cancer can be considered a problem of developmental biology and that one of the most important hallmarks of cancer is the loss of differentiation as already described by us in other articles.

  14. Verification of echo amplitude envelope analysis method in skin tissues for quantitative follow-up of healing ulcers

    NASA Astrophysics Data System (ADS)

    Omura, Masaaki; Yoshida, Kenji; Akita, Shinsuke; Yamaguchi, Tadashi

    2018-07-01

    We aim to develop an ultrasonic tissue characterization method for the follow-up of healing ulcers by diagnosing collagen fibers properties. In this paper, we demonstrated a computer simulation with simulation phantoms reflecting irregularly distributed collagen fibers to evaluate the relationship between physical properties, such as number density and periodicity, and the estimated characteristics of the echo amplitude envelope using the homodyned-K distribution. Moreover, the consistency between echo signal characteristics and the structures of ex vivo human tissues was verified from the measured data of normal skin and nonhealed ulcers. In the simulation study, speckle or coherent signal characteristics are identified as periodically or uniformly distributed collagen fibers with high number density and high periodicity. This result shows the effectiveness of the analysis using the homodyned-K distribution for tissues with complicated structures. Normal skin analysis results are characterized as including speckle or low-coherence signal components, and a nonhealed ulcer is different from normal skin with respect to the physical properties of collagen fibers.

  15. Genome-wide identification of RNA editing in hepatocellular carcinoma.

    PubMed

    Kang, Lin; Liu, Xiaoqiao; Gong, Zhoulin; Zheng, Hancheng; Wang, Jun; Li, Yingrui; Yang, Huanming; Hardwick, James; Dai, Hongyue; Poon, Ronnie T P; Lee, Nikki P; Mao, Mao; Peng, Zhiyu; Chen, Ronghua

    2015-02-01

    We did whole-transcriptome sequencing and whole-genome sequencing on nine pairs of Hepatocellular carcinoma (HCC) tumors and matched adjacent tissues to identify RNA editing events. We identified mean 26,982 editing sites with mean 89.5% canonical A→G edits in each sample using an improved bioinformatics pipeline. The editing rate was significantly higher in tumors than adjacent normal tissues. Comparing the difference between tumor and normal tissues of each patient, we found 7 non-synonymous tissue specific editing events including 4 tumor-specific edits and 3 normal-specific edits in the coding region, as well as 292 edits varying in editing degree. The significant expression changes of 150 genes associated with RNA editing were found in tumors, with 3 of the 4 most significant genes being cancer related. Our results show that editing might be related to higher gene expression. These findings indicate that RNA editing modification may play an important role in the development of HCC. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Biomaterials and host versus graft response: A short review

    PubMed Central

    Velnar, Tomaz; Bunc, Gorazd; Klobucar, Robert; Gradisnik, Lidija

    2016-01-01

    Biomaterials and biotechnology are increasing becoming an important area in modern medicine. The main aim in this area is the development of materials, which are biocompatible to normal tissue. Tissue-implant interactions with molecular, biological and cellular characteristics at the implant-tissue interface are important for the use and development of implants. Implantation may cause an inflammatory and immune response in tissue, foreign body reaction, systemic toxicity and imminent infection. Tissue-implant interactions determine the implant life-period. The aims of the study are to consider the biological response to implants. Biomaterials and host reactions to implants and their mechanisms are also briefly discussed. PMID:26894284

  17. Analysis of the association of the expression of KiSS-1 in colorectal cancer tissues with the pathology and prognosis.

    PubMed

    Huo, Xinkai; Zhang, Lei; Li, Tao

    2018-03-01

    Colorectal cancer is a common malignant tumor of the digestive tract with high morbidity and mortality rates. The aim of the present study was to examine the expression level of KiSS-1 in tumor tissues of patients with colorectal cancer, and to explore the relationship with the clinicopathology and prognosis of patients with colorectal cancer. Frozen tumor tissue and corresponding cancer-adjacent normal tissue specimens were selected from 56 patients with colorectal cancer who were treated in the Department of Surgery of our hospital from May 2009 to December 2011. The expression levels of KiSS-1 messenger ribonucleic acid (mRNA) in tumor tissues and cancer-adjacent normal tissues were detected by reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR). The expression levels of KiSS-1 proteins in colorectal cancer tissues and cancer-adjacent normal tissues were further detected by immunohistochemistry. In addition, the association of the expression level of KiSS-1 proteins in tissues of colorectal cancer patients with pathological parameters and the prognosis of patients with colorectal cancer was analyzed combined with clinical data. The RT-qPCR results showed that the expression of KiSS-1 mRNA in colorectal cancer tissues was significantly lower than that in cancer-adjacent normal tissues (P<0.05). Immunohistochemistry results indicated that the positive expression rate of KiSS-1 proteins in colorectal cancer tissues (26.79%) was significantly lower than that in cancer-adjacent normal tissues (80.36%). The low expression of KiSS-1 in colorectal cancer tissues was associated with the degree of differentiation, invasion and metastasis, as well as clinical staging. The 5-year overall survival rate of patients with colorectal cancer was 55.36% (31/56). The univariate survival analysis showed that patients with lowly expressed KiSS-1 had worse prognosis. The low expression of KiSS-1 is closely associated with the occurrence and development of colorectal cancer, especially to the degree of differentiation, invasion and metastasis, as well as clinical staging. Thus, the expression of KiSS-1 in colorectal cancer tissues can be used as a reference for the prognosis of colorectal cancer, and KiSS-1 is a potential new target for the treatment of colorectal cancer.

  18. Bare Bones of Bioactive Glass

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Paul Ducheyne, a principal investigator in the microgravity materials science program and head of the University of Pernsylvania's Center for Bioactive Materials and Tissue Engineering, is leading the trio as they use simulated microgravity to determine the optimal characteristics of tiny glass particles for growing bone tissue. The result could make possible a much broader range of synthetic bone-grafting applications. Even in normal gravity, bioactive glass particles enhance bone growth in laboratory tests with flat tissue cultures. Ducheyne and his team believe that using the bioactive microcarriers in a rotating bioreactor in microgravity will produce improved, three-dimensional tissue cultures. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: NASA and University of Pennsylvania Center for Bioactive Materials and Tissue Engineering.

  19. ABERRANT SPLICING OF A BRAIN-ENRICHED ALTERNATIVE EXON ELIMINATES TUMOR SUPPRESSOR FUNCTION AND PROMOTES ONCOGENE FUNCTION DURING BRAIN TUMORIGENESIS

    PubMed Central

    Bredel, Markus; Ferrarese, Roberto; Harsh, Griffith R.; Yadav, Ajay K.; Bug, Eva; Maticzka, Daniel; Reichardt, Wilfried; Masilamani, Anie P.; Dai, Fangping; Kim, Hyunsoo; Hadler, Michael; Scholtens, Denise M.; Yu, Irene L.Y.; Beck, Jürgen; Srinivasasainagendra, Vinodh; Costa, Fabrizio; Baxan, Nicoleta; Pfeifer, Dietmar; Elverfeldt, Dominik v.; Backofen, Rolf; Weyerbrock, Astrid; Duarte, Christine W.; He, Xiaolin; Prinz, Marco; Chandler, James P.; Vogel, Hannes; Chakravarti, Arnab; Rich, Jeremy N.; Carro, Maria S.

    2014-01-01

    BACKGROUND: Tissue-specific alternative splicing is known to be critical to emergence of tissue identity during development, yet its role in malignant transformation is undefined. Tissue-specific splicing involves evolutionary-conserved, alternative exons, which represent only a minority of total alternative exons. Many, however, have functional features that influence activity in signaling pathways to profound biological effect. Given that tissue-specific splicing has a determinative role in brain development and the enrichment of genes containing tissue-specific exons for proteins with roles in signaling and development, it is thus plausible that changes in such exons could rewire normal neurogenesis towards malignant transformation. METHODS: We used integrated molecular genetic and cell biology analyses, computational biology, animal modeling, and clinical patient profiles to characterize the effect of aberrant splicing of a brain-enriched alternative exon in the membrane-binding tumor suppressor Annexin A7 (ANXA7) on oncogene regulation and brain tumorigenesis. RESULTS: We show that aberrant splicing of a tissue-specific cassette exon in ANXA7 diminishes endosomal targeting and consequent termination of the signal of the EGFR oncoprotein during brain tumorigenesis. Splicing of this exon is mediated by the ribonucleoprotein Polypyrimidine Tract-Binding Protein 1 (PTBP1), which is normally repressed during brain development but, we find, is excessively expressed in glioblastomas through either gene amplification or loss of a neuron-specific microRNA, miR-124. Silencing of PTBP1 attenuates both malignancy and angiogenesis in a stem cell-derived glioblastoma animal model characterized by a high native propensity to generate tumor endothelium or vascular pericytes to support tumor growth. We show that EGFR amplification and PTBP1 overexpression portend a similarly poor clinical outcome, further highlighting the importance of PTBP1-mediated activation of EGFR. CONCLUSIONS: Our data illustrate how anomalous splicing of a tissue-regulated exon in a constituent of an oncogenic signaling pathway eliminates its tumor suppressor function and promotes tumorigenesis. This paradigm of malignant glial transformation as a consequence of tissue-specific alternative exon splicing in a tumor suppressor, may have widespread applicability in explaining how changes in critical tissue-specific regulatory mechanisms reprogram normal development to oncogenesis. SECONDARY CATEGORY: n/a.

  20. Structural and quantitative expression analyses of HERV gene family in human tissues.

    PubMed

    Ahn, Kung; Kim, Heui-Soo

    2009-08-31

    Human endogenous retroviruses (HERVs) have been implicated in the pathogenesis of several human diseases as multi-copy members in the human genome. Their gene expression profiling could provide us with important insights into the pathogenic relationship between HERVs and cancer. In this study, we have evaluated the genomic structure and quantitatively determined the expression patterns in the env gene of a variety of HERV family members located on six specific loci by the RetroTector 10 program, as well as real-time RT-PCR amplification. The env gene transcripts evidenced significant differences in the human tumor/normal adjacent tissues (colon, liver, uterus, lung and testis). As compared to the adjacent normal tissues, high levels of expression were noted in testis tumor tissues for HERV-K, in liver and lung tumor tissues for HERV-R, in liver, lung, and testis tumor tissues for HERV-H, and in colon and liver tumor tissues for HERV-P. These data warrant further studies with larger groups of patients to develop biomarkers for specific human cancers.

  1. Fluorescent microscopic study of epithalon binding in maternal and fetal rabbit tissues in health and under conditions of placental insufficiency.

    PubMed

    Lapina, E A; Nazarova, L A; Petrova, O P; Sibarov, D A; Zubzhitskaya, L B; Pavlova, N G; Konstantinova, N N; Konovalov, Ya S; Kvetnoi, I M; Arutyunyan, A V; Grigorev, E I

    2005-05-01

    Epithalon (regulatory tetrapeptide) labeled with dansil (fluorescent stain) easily penetrates into all tissues and organs of pregnant rabbit females and through the placenta into fetal organs. Incorporation of labeled epithalon in placental tissues is more often observed in fetuses developing under conditions of placental insufficiency than in normal fetuses.

  2. Systematic bias in genomic classification due to contaminating non-neoplastic tissue in breast tumor samples.

    PubMed

    Elloumi, Fathi; Hu, Zhiyuan; Li, Yan; Parker, Joel S; Gulley, Margaret L; Amos, Keith D; Troester, Melissa A

    2011-06-30

    Genomic tests are available to predict breast cancer recurrence and to guide clinical decision making. These predictors provide recurrence risk scores along with a measure of uncertainty, usually a confidence interval. The confidence interval conveys random error and not systematic bias. Standard tumor sampling methods make this problematic, as it is common to have a substantial proportion (typically 30-50%) of a tumor sample comprised of histologically benign tissue. This "normal" tissue could represent a source of non-random error or systematic bias in genomic classification. To assess the performance characteristics of genomic classification to systematic error from normal contamination, we collected 55 tumor samples and paired tumor-adjacent normal tissue. Using genomic signatures from the tumor and paired normal, we evaluated how increasing normal contamination altered recurrence risk scores for various genomic predictors. Simulations of normal tissue contamination caused misclassification of tumors in all predictors evaluated, but different breast cancer predictors showed different types of vulnerability to normal tissue bias. While two predictors had unpredictable direction of bias (either higher or lower risk of relapse resulted from normal contamination), one signature showed predictable direction of normal tissue effects. Due to this predictable direction of effect, this signature (the PAM50) was adjusted for normal tissue contamination and these corrections improved sensitivity and negative predictive value. For all three assays quality control standards and/or appropriate bias adjustment strategies can be used to improve assay reliability. Normal tissue sampled concurrently with tumor is an important source of bias in breast genomic predictors. All genomic predictors show some sensitivity to normal tissue contamination and ideal strategies for mitigating this bias vary depending upon the particular genes and computational methods used in the predictor.

  3. Kindler syndrome protein Kindlin-1 is mainly expressed in adult tissues originating from ectoderm/endoderm.

    PubMed

    Zhan, Jun; Yang, Mei; Zhang, Jing; Guo, YongQing; Liu, Wei; Zhang, HongQuan

    2015-05-01

    Mutations of integrin-interacting protein Kindlin-1 cause Kindler syndrome and deregulation of Kindlin-1 is implicated in human cancers. The Kindlin-1-related diseases are confined in limited tissue types. However, Kindlin-1 tissue distribution and the dogma that governs Kindlin-1 expression in normal human body are elusive. This study examined Kindlin-1 expression in normal human adult organs, human and mouse embryonic organs by immunohistochemical analyses. We identified a general principle that the level of Kindlin-1 expression in tissues is tightly correlated with the corresponding germ layers from which these tissues originate. We compared the expression of Kindlin-1 with Kindlin-2 and found that Kindlin-1 is highly expressed in epithelial tissues derived from ectoderm and endoderm, whereas Kindlin-2 is mainly expressed in mesoderm-derived tissues. Likewise, Kindlin-1 was also found highly expressed in endoderm/ectoderm-derived tissues in human and mouse embryos. Our findings indicate that Kindlin-1 may play an importance role in the development of endoderm/ectoderm related tissues.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cintron, C.; Hong, B.S.; Covington, H.I.

    Whole neonate rabbit corneas and adult corneas containing 2-week-old scars were incubated in the presence of (/sup 14/C) glycine. Radiolabeled collagen extracted from the corneas and scar tissue were analyzed by sodium dodecylsulfate/polyacrylamide gel electrophoresis and fluorography to determine the types and relative quantity of collagen polypeptides present and synthesized by these tissues. In addition to other collagen types, type III was found in both neonate cornea and scar tissue from adult cornea, albeit in relatively small quantities. Type III collagen in normal cornea was associated with the residue after pepsin digestion and formic acid extraction of the tissue, andmore » the same type of collagen was extracted from scar tissue after similar treatment. Type III collagen-specific monoclonal antibody bound to developing normal corneas and healing adult tissue sections, as determined by immunofluorescence. Antibody binding was localized to the endothelium and growing Descemet's membrane in fetal and neonate corneas, and restricted to the most posterior region of the corneal scar tissue. Although monoclonal antibody to keratan sulfate, used as a marker for stromal fibroblasts, bound to most of the scar tissue, the antibody failed to bind to the posterior scar tissue positive for type III collagen. We conclude that endothelial cells from fetal and neonate rabbit cornea and endothelium-derived fibroblasts from healing wounds of adult cornea synthesize and deposit type III collagen. Moreover, this collagen appears to be incorporated into the growing Descemet's membrane of normal corneas and narrow posterior portion of the scar tissue.« less

  5. The feasibility of using poroelastographic techniques for distinguishing between normal and lymphedematous tissues in vivo

    NASA Astrophysics Data System (ADS)

    Righetti, Raffaella; Garra, Brian S.; Mobbs, Louise M.; Kraemer-Chant, Christina M.; Ophir, Jonathan; Krouskop, Thomas A.

    2007-11-01

    Lymphedema is a common condition involving an abnormal accumulation of lymphatic fluid in the interstitial space that causes swelling, most often in the arm(s) and leg(s). Lymphedema is a significant lifelong concern that can be congenital or develop following cancer treatment or cancer metastasis. Common methods of evaluation of lymphedema are mostly qualitative making it difficult to reliably assess the severity of the disease, a key factor in choosing the appropriate treatment. In this paper, we investigate the feasibility of using novel elastographic techniques to differentiate between lymphedematous and normal tissues. This study represents the first step of a larger study aimed at investigating the combined use of elastographic and sonographic techniques for the detection and staging of lymphedema. In this preliminary study, poroelastographic images were generated from the leg (8) and arm (4) subcutis of five normal volunteers and seven volunteers having lymphedema, and the results were compared using statistical analyses. The preliminary results reported in this paper suggest that it may be feasible to perform poroelastography in different lymphedematous tissues in vivo and that poroelastography techniques may be of help in differentiating between normal and lymphedematous tissues.

  6. Tissue-aware RNA-Seq processing and normalization for heterogeneous and sparse data.

    PubMed

    Paulson, Joseph N; Chen, Cho-Yi; Lopes-Ramos, Camila M; Kuijjer, Marieke L; Platig, John; Sonawane, Abhijeet R; Fagny, Maud; Glass, Kimberly; Quackenbush, John

    2017-10-03

    Although ultrahigh-throughput RNA-Sequencing has become the dominant technology for genome-wide transcriptional profiling, the vast majority of RNA-Seq studies typically profile only tens of samples, and most analytical pipelines are optimized for these smaller studies. However, projects are generating ever-larger data sets comprising RNA-Seq data from hundreds or thousands of samples, often collected at multiple centers and from diverse tissues. These complex data sets present significant analytical challenges due to batch and tissue effects, but provide the opportunity to revisit the assumptions and methods that we use to preprocess, normalize, and filter RNA-Seq data - critical first steps for any subsequent analysis. We find that analysis of large RNA-Seq data sets requires both careful quality control and the need to account for sparsity due to the heterogeneity intrinsic in multi-group studies. We developed Yet Another RNA Normalization software pipeline (YARN), that includes quality control and preprocessing, gene filtering, and normalization steps designed to facilitate downstream analysis of large, heterogeneous RNA-Seq data sets and we demonstrate its use with data from the Genotype-Tissue Expression (GTEx) project. An R package instantiating YARN is available at http://bioconductor.org/packages/yarn .

  7. Assessment of tumor angiogenesis using fluorescence contrast agents

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Liu, Qian; Huang, Ping; Hyman, Shay; Intes, Xavier; Lee, William; Chance, Britton

    2003-12-01

    Angiogenesis is an important factor for further tumor growth and thus could be an attractive therapeutic target. Optical imaging can provide a non-invasive way to measure the permeability of tumor blood vessels and assess the tumor vasculature. We have developed a dual-channel near-infrared fluorescence system for simultaneous measurement of the pharmacokinetics of tumorous and normal tissues with exogenous contrast agents. This frequency-domain system consists of the light source (780 nm laser diode), fiber optics, interference filter (830 nm) and the detector (PMT). The fluorescent contrast agent used in this study is Indocyanine Green (ICG), and the normal dosage is 100 μl at a concentration of 5 μM. In vivo animal study is performed on the K1735 melanoma-bearing mouse. The fluorescence signals both tumorous and normal tissues after the bolus injection of ICG through the tail vein are continuously recorded as a function of time. The data is fitted by a double-exponential model to reveal the wash-in and wash-out parameters of different tissues. We observed an elongated wash-out from the tumor compared with normal tissue (leg). The effect of radiation therapy on the tumor vasculature is also discussed.

  8. Application of hyperosmotic agent to determine gastric cancer with optical coherence tomography ex vivo in mice

    NASA Astrophysics Data System (ADS)

    Xiong, Honglian; Guo, Zhouyi; Zeng, Changchun; Wang, Like; He, Yonghong; Liu, Songhao

    2009-03-01

    Noninvasive tumor imaging could lead to the early detection and timely treatment of cancer. Optical coherence tomography (OCT) has been reported as an ideal diagnostic tool for distinguishing tumor tissues from normal tissues based on structural imaging. In this study, the capability of OCT for functional imaging of normal and tumor tissues based on time- and depth-resolved quantification of the permeability of biomolecules through these tissues is investigated. The orthotopic graft model of gastric cancer in nude mice is used, normal and tumor tissues from the gastric wall are imaged, and a diffusion of 20% aqueous solution of glucose in normal stomach tissues and gastric tumor tissues is monitored and quantified as a function of time and tissue depth by an OCT system. Our results show that the permeability coefficient is (0.94+/-0.04)×10-5 cm/s in stomach tissues and (5.32+/-0.17)×10-5 cm/s in tumor tissues, respectively, and that tumor tissues have a higher permeability coefficient compared to normal tissues in optical coherence tomographic images. From the results, it is found that the accurate and sensitive assessment of the permeability coefficients of normal and tumor tissues offers an effective OCT image method for detection of tumor tissues and clinical diagnosis.

  9. Using Electronic Noses to Detect Tumors During Neurosurgery

    NASA Technical Reports Server (NTRS)

    Homer, Margie L.; Ryan, Margaret A.; Lara, Liana M.; Kateb, Babak; Chen, Mike

    2008-01-01

    It has been proposed to develop special-purpose electronic noses and algorithms for processing the digitized outputs of the electronic noses for determining whether tissue exposed during neurosurgery is cancerous. At present, visual inspection by a surgeon is the only available intraoperative technique for detecting cancerous tissue. Implementation of the proposal would help to satisfy a desire, expressed by some neurosurgeons, for an intraoperative technique for determining whether all of a brain tumor has been removed. The electronic-nose technique could complement multimodal imaging techniques, which have also been proposed as means of detecting cancerous tissue. There are also other potential applications of the electronic-nose technique in general diagnosis of abnormal tissue. In preliminary experiments performed to assess the viability of the proposal, the problem of distinguishing between different types of cultured cells was substituted for the problem of distinguishing between normal and abnormal specimens of the same type of tissue. The figure presents data from one experiment, illustrating differences between patterns that could be used to distinguish between two types of cultured cancer cells. Further development can be expected to include studies directed toward answering questions concerning not only the possibility of distinguishing among various types of normal and abnormal tissue but also distinguishing between tissues of interest and other odorous substances that may be present in medical settings.

  10. Quantitative proteomic profiling of paired cancerous and normal colon epithelial cells isolated freshly from colorectal cancer patients.

    PubMed

    Tu, Chengjian; Mojica, Wilfrido; Straubinger, Robert M; Li, Jun; Shen, Shichen; Qu, Miao; Nie, Lei; Roberts, Rick; An, Bo; Qu, Jun

    2017-05-01

    The heterogeneous structure in tumor tissues from colorectal cancer (CRC) patients excludes an informative comparison between tumors and adjacent normal tissues. Here, we develop and apply a strategy to compare paired cancerous (CEC) versus normal (NEC) epithelial cells enriched from patients and discover potential biomarkers and therapeutic targets for CRC. CEC and NEC cells are respectively isolated from five different tumor and normal locations in the resected colon tissue from each patient (N = 12 patients) using an optimized epithelial cell adhesion molecule (EpCAM)-based enrichment approach. An ion current-based quantitative method is employed to perform comparative proteomic analysis for each patient. A total of 458 altered proteins that are common among >75% of patients are observed and selected for further investigation. Besides known findings such as deregulation of mitochondrial function, tricarboxylic acid cycle, and RNA post-transcriptional modification, functional analysis further revealed RAN signaling pathway, small nucleolar ribonucleoproteins (snoRNPs), and infection by RNA viruses are altered in CEC cells. A selection of the altered proteins of interest is validated by immunohistochemistry analyses. The informative comparison between matched CEC and NEC enhances our understanding of molecular mechanisms of CRC development and provides biomarker candidates and new pathways for therapeutic intervention. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Tissue damage caused by the intramuscular injection of long-acting penicillin.

    PubMed

    Schanzer, H; Jacobson, J H

    1985-04-01

    In order to elucidate whether tissue damage produced on occasion by intramuscular injection of long-acting penicillin is due to accidental intra-arterial injection or vasospasm, two types of experiments were carried out in rabbits. In the first set of experiments, six New Zealand White rabbits were given intra-arterial injections of 0.4 mL of a mixture containing 300,000 U of penicillin G benzathine and 300,000 units of penicillin procaine per milliliter (Bicillin C-R) into the left femoral artery and 0.4 mL of normal saline into the right femoral artery as autocontrol. In a second set of experiments, 0.4 mL of the same penicillin preparation was injected in the space surrounding the left femoral artery in five New Zealand rabbits, and 0.4 mL of normal saline was injected in a similar fashion around the right femoral artery as control. The legs of the rabbits that received the intra-arterial injection of penicillin invariably developed ischemic manifestations. None of the legs of rabbits given intra-arterial injections of normal saline had pathologic manifestations. None of the rabbits that received the periarterial penicillin preparation or normal saline developed abnormalities. These results strongly suggest that the tissue damage produced by penicillin is secondary to the intra-arterial administration of the drug.

  12. Differential Expression of Cytochrome P450 Enzymes in Normal and Tumor Tissues from Childhood Rhabdomyosarcoma

    PubMed Central

    Molina-Ortiz, Dora; Camacho-Carranza, Rafael; González-Zamora, José Francisco; Shalkow-Kalincovstein, Jaime; Cárdenas-Cardós, Rocío; Ností-Palacios, Rosario; Vences-Mejía, Araceli

    2014-01-01

    Intratumoral expression of genes encoding Cytochrome P450 enzymes (CYP) might play a critical role not only in cancer development but also in the metabolism of anticancer drugs. The purpose of this study was to compare the mRNA expression patterns of seven representative CYPs in paired tumor and normal tissue of child patients with rabdomyosarcoma (RMS). Using real time quantitative RT-PCR, the gene expression pattern of CYP1A1, CYP1A2, CYP1B1, CYP2E1, CYP2W1, CYP3A4, and CYP3A5 were analyzed in tumor and adjacent non-tumor tissues from 13 child RMS patients. Protein concentration of CYPs was determined using Western blot. The expression levels were tested for correlation with the clinical and pathological data of the patients. Our data showed that the expression levels of CYP1A1 and CYP1A2 were negligible. Elevated expression of CYP1B1 mRNA and protein was detected in most RMS tumors and adjacent normal tissues. Most cancerous samples exhibit higher levels of both CYP3A4 and CYP3A5 compared with normal tissue samples. Expression of CYP2E1 mRNA was found to be significantly higher in tumor tissue, however no relation was found with protein levels. CYP2W1 mRNA and/or protein are mainly expressed in tumors. In conclusion, we defined the CYP gene expression profile in tumor and paired normal tissue of child patients with RMS. The overexpression of CYP2W1, CYP3A4 and CYP3A5 in tumor tissues suggests that they may be involved in RMS chemoresistance; furthermore, they may be exploited for the localized activation of anticancer prodrugs. PMID:24699256

  13. Autofluorescence polarization spectroscopy of cancerous and normal colorectal tissues

    NASA Astrophysics Data System (ADS)

    Genova, Ts.; Borisova, E.; Penkov, N.; Vladimirov, B.; Terziev, I.; Zhelyazkova, Al.; Avramov, L.

    2016-01-01

    The wide spread of colorectal cancer and high mortality rate among the patients, brings it to a level of high public health concern. Implementation of standard endoscopic surveillance proves to be effective for reduction of colorectal cancer patients' mortality, since its early diagnosis allows eradication of the disease prior to invasive cancer development, but its application in common clinical practice is still limited. Therefore the development of complimentary diagnostic techniques of the standard white-light endoscopy is on high demand. The non-invasive and highly informative nature of the fluorescence spectroscopy allow to use it as the most realistic prospect of an add-on "red flag" technique for early endoscopy detection of colorectal cancer. Synchronous fluorescence spectroscopy (SFS) is a steady-state approach that is used for evaluation of specific fluorescence characteristics of cancerous colorectal tissues in our studies. The feasibility of polarization fluorescence technique to enhance the contrast between normal and cancerous tissues was investigated as well. Additional linear polarizing optics was used on the way of the excitation and emission fluorescence light beams. The polarizing effects were investigated in parallel and perpendicular linear polarization modes respectively. The excitation applied was in the region of 280 - 440 nm, with 10 nm scanning step, and the fluorescence emission was detected in the region of 300 - 800 nm. Our previous experience with SFS technique showed its great potential for accurate, highly sensitive and specific discrimination between cancerous and normal colorectal tissue. Since one of the major sources of endogenous fluorescence with diagnostic meaning is the structural protein - collagen, which is characterized with high anisotropy, we've expected and observed an enhancement of the spectral differences between cancerous and normal colorectal tissue, which could be beneficial for the colorectal tumour' diagnostics using SFS.

  14. Whole-Lesion Apparent Diffusion Coefficient-Based Entropy-Related Parameters for Characterizing Cervical Cancers: Initial Findings.

    PubMed

    Guan, Yue; Li, Weifeng; Jiang, Zhuoran; Chen, Ying; Liu, Song; He, Jian; Zhou, Zhengyang; Ge, Yun

    2016-12-01

    This study aimed to develop whole-lesion apparent diffusion coefficient (ADC)-based entropy-related parameters of cervical cancer to preliminarily assess intratumoral heterogeneity of this lesion in comparison to adjacent normal cervical tissues. A total of 51 women (mean age, 49 years) with cervical cancers confirmed by biopsy underwent 3-T pelvic diffusion-weighted magnetic resonance imaging with b values of 0 and 800 s/mm 2 prospectively. ADC-based entropy-related parameters including first-order entropy and second-order entropies were derived from the whole tumor volume as well as adjacent normal cervical tissues. Intraclass correlation coefficient, Wilcoxon test with Bonferroni correction, Kruskal-Wallis test, and receiver operating characteristic curve were used for statistical analysis. All the parameters showed excellent interobserver agreement (all intraclass correlation coefficients  > 0.900). Entropy, entropy(H) 0 , entropy(H) 45 , entropy(H) 90 , entropy(H) 135 , and entropy(H) mean were significantly higher, whereas entropy(H) range and entropy(H) std were significantly lower in cervical cancers compared to adjacent normal cervical tissues (all P <.0001). Kruskal-Wallis test showed that there were no significant differences among the values of various second-order entropies including entropy(H) 0, entropy(H) 45 , entropy(H) 90 , entropy(H) 135 , and entropy(H) mean. All second-order entropies had larger area under the receiver operating characteristic curve than first-order entropy in differentiating cervical cancers from adjacent normal cervical tissues. Further, entropy(H) 45 , entropy(H) 90 , entropy(H) 135 , and entropy(H) mean had the same largest area under the receiver operating characteristic curve of 0.867. Whole-lesion ADC-based entropy-related parameters of cervical cancers were developed successfully, which showed initial potential in characterizing intratumoral heterogeneity in comparison to adjacent normal cervical tissues. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  15. Tumor characterization and treatment monitoring of postsurgical human breast specimens using harmonic motion imaging (HMI).

    PubMed

    Han, Yang; Wang, Shutao; Hibshoosh, Hanina; Taback, Bret; Konofagou, Elisa

    2016-05-09

    High-intensity focused ultrasound (HIFU) is a noninvasive technique used in the treatment of early-stage breast cancer and benign tumors. To facilitate its translation to the clinic, there is a need for a simple, cost-effective device that can reliably monitor HIFU treatment. We have developed harmonic motion imaging (HMI), which can be used seamlessly in conjunction with HIFU for tumor ablation monitoring, namely harmonic motion imaging for focused ultrasound (HMIFU). The overall objective of this study was to develop an all ultrasound-based system for real-time imaging and ablation monitoring in the human breast in vivo. HMI was performed in 36 specimens (19 normal, 15 invasive ductal carcinomas, and 2 fibroadenomas) immediately after surgical removal. The specimens were securely embedded in a tissue-mimicking agar gel matrix and submerged in degassed phosphate-buffered saline to mimic in vivo environment. The HMI setup consisted of a HIFU transducer confocally aligned with an imaging transducer to induce an oscillatory radiation force and estimate the resulting displacement. 3D HMI displacement maps were reconstructed to represent the relative tissue stiffness in 3D. The average peak-to-peak displacement was found to be significantly different (p = 0.003) between normal breast tissue and invasive ductal carcinoma. There were also significant differences before and after HMIFU ablation in both the normal (53.84 % decrease) and invasive ductal carcinoma (44.69 % decrease) specimens. HMI can be used to map and differentiate relative stiffness in postsurgical normal and pathological breast tissues. HMIFU can also successfully monitor thermal ablations in normal and pathological human breast specimens. This HMI technique may lead to a new clinical tool for breast tumor imaging and HIFU treatment monitoring.

  16. 7 CFR 51.1868 - Well developed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... shows normal growth. Tomatoes which are ridged and peaked at the stem end, contain dry tissue, and usually contain open spaces below the level of the stem scar, are not considered well developed. ...

  17. 7 CFR 51.1868 - Well developed.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... shows normal growth. Tomatoes which are ridged and peaked at the stem end, contain dry tissue, and usually contain open spaces below the level of the stem scar, are not considered well developed. ...

  18. 7 CFR 51.1868 - Well developed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... shows normal growth. Tomatoes which are ridged and peaked at the stem end, contain dry tissue, and usually contain open spaces below the level of the stem scar, are not considered well developed. ...

  19. [Identification and management of intra-operative suspicious tissues in 20 transsphenoidal surgery cases].

    PubMed

    Liu, Jun-Feng; Ke, Chang-Shu; Chen, Xi; Xu, Yu; Zhang, Hua-Qiu; Chen, Juan; Gan, Chao; Li, Chao-Xi; Lei, Ting

    2013-05-01

    To determine appropriate protocols for the identification and management of intra operative suspicious tissues during transsphenoidal surgery. Clinical data and pathological reports of 20 patients with intra-operative suspicious tissues during transsphenoidal surgeries were analyzed retrospectively. The methods for discriminating between adenoma and normal pituitary tissues were reviewed. The postoperative pathological reports revealed that adenoma and normal pituitary tissues coexisted in 9 samples, while 5 samples were identified as normal pituitary tissues, 2 as adenoma tissues, and 4 as other tissues. Adenomas were distinguished from normal pituitary tissues on the basis of intra-operative appearance, texture, blood supply and possible existence of boundary. If decisions are difficult to made during surgeries from the appearance of the suspicious tissues, pathological examinations are advised as a guidance for the next steps.

  20. Identification of structural and secretory lectin-binding glycoproteins of normal and cancerous human prostate.

    PubMed

    Lad, P M; Cooper, J F; Learn, D B; Olson, C V

    1984-12-07

    We have utilized the technique of lectin-loading of SDS gels with iodinated concanavalin A and wheat germ agglutinin to identify glycoproteins in prostatic and seminal fluids as well as in prostate tissue fractions. The following subunits which bound both lectins were detected: (a) 50, 43 and 38 kDa subunits common to prostatic and seminal fluids, and an additional 55 kDa subunit which predominates only in prostatic fluid; (b) 78, 55, 50 and 43 kDa subunits in prostatic tissue cytosol and (c) 195, 170, 135, 116 and 95 kDa subunits present in the particulate fractions of prostatic tissue. Immunoblotting using specific rabbit antibodies revealed the 50 kDa band to be prostatic acid phosphatase and the 38 kDa band to be prostate-specific antigen. Interestingly, antibodies directed toward prostatic acid phosphatase were found to cross-react with the 43 kDa band. Fractionation on sucrose gradients showed that several of these particulate glycoproteins were associated with a vesicle fraction enriched in adenylate cyclase activity, implying that they are plasma membrane glycoproteins. Comparison of soluble and particulate fractions of normal and cancerous tissue homogenates was made by densitometric scanning of autoradiograms of lectin-loaded gels. Similar relative intensities of lectin-binding were obtained for corresponding proteins in normal and cancerous tissue fractions. Also, immunoblotting showed no differences in prostatic acid phosphatase or prostate-specific antigen between normal and cancerous soluble homogenate fractions. Our results suggest that major lectin-binding proteins are conserved in the transition from normal to cancerous tissue. These results may be useful in developing a multiple-marker profile of metastatic prostate cancer and for the design of imaging agents, such as monoclonal antibodies, to prominent soluble and particulate prostate glycoproteins.

  1. Systematic approach to study of thinly and thickly sectioned melanoma tissues with scanning acoustic microscopy

    NASA Astrophysics Data System (ADS)

    Miyasaka, C.; Tittmann, B. R.; Tutwiler, R.; Tian, Y.; Maeva, E.; Shum, D.

    2010-03-01

    The present study is to investigate the feasibility of applying in-vivo acoustic microscopy to the analysis of cancerous tissue. The study was implemented with mechanical scanning reflection acoustic microscope (SAM) by the following procedures. First, we ultrasonically visualized thick sections of normal and tumor tissues to determine the lowest transducer frequency required for cellular imaging. We used skin for normal tissue and the tumor was a malignant melanoma. Thin sections of the tissue were also studied with the optical and high-frequency-ultrasonic imaging for pathological evaluation. Secondly, we ultrasonically visualized subsurface cellular details of thin tissue specimens with different modes (i.e., pulse and tone-burst wave modes) to obtain the highest quality ultrasonic images. The objective is to select the best mode for the future design of a future SAM for in-vivo examination. Thirdly, we developed a mathematical modeling technique based on an angular spectrum approach for improving image processing and comparing numerical to experimental results.

  2. Effect of radiation and other cytotoxic agents on the growth of cells cultured from normal and tumor tissues from the female genital tract

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mothersill, C.; Seymour, C.B.; Bonnar, J.

    1990-05-01

    A technique is presented which allows the response of human gynecological tissue to radiation and cytotoxic drugs to be assessed using a tissue culture explant system. The technique is simple to use and gives results in line with those obtained for human tissues by more complex culture methods. Data are presented showing how the explant technique developed by the group for other tissues can be adapted to yield acceptable results for normal tissue response to radiation. The potential of the technique for use in predictive testing of individual tumor response is then assessed in five cases of gynecological malignancy. Itmore » is clear that variations in sensitivity to different radio- and chemotherapy agents and combinations can be detected. The results obtained require clinical validation and it is hoped that this will come over the next few years from evaluation of patient response to treatment using individually optimized, rather than empirical therapy.« less

  3. Growth hormone mRNA in mammary gland tumors of dogs and cats.

    PubMed Central

    Mol, J A; van Garderen, E; Selman, P J; Wolfswinkel, J; Rijinberk, A; Rutteman, G R

    1995-01-01

    We have shown recently that in the dog progestin administration results in mammary production of immunoreactive growth hormone (GH). At present we demonstrate the expression of the gene encoding GH in the mammary gland of dogs and cats using reverse-transcriptase PCR. GH mRNA was found in the great majority of normal mammary tissues as well as benign and malignant mammary tumors of the dog and was associated with the presence of immunoreactive GH in cryostat sections. The mammary PCR product proved to be identical to that of the pituitary. The highest expression levels were found after prolonged treatment with progestins. In carcinomas GH mRNA was also found in progesterone receptor-negative tissue samples, indicating that after malignant transformation GH gene expression may become progestin independent. GH mRNA was also present in mammary tissues of cats with progestin-induced fibroadenomatous changes. It is concluded that GH gene expression occurs in normal, hyperplastic, and neoplastic mammary tissue of the dog. The expression in normal tissue is stimulated by progestins and might mediate the progestin-stimulated development of canine mammary tumors. The demonstration of progestin-stimulated GH expression in mammary tissue of cats indicates that the phenomenon is more generalized among mammals. Images PMID:7738169

  4. Cellular Response to a Novel Fetal Acellular Collagen Matrix: Implications for Tissue Regeneration

    PubMed Central

    Rennert, Robert C.; Garg, Ravi K.; Gurtner, Geoffrey C.

    2013-01-01

    Introduction. PriMatrix (TEI Biosciences Inc., Boston, MA, USA) is a novel acellular collagen matrix derived from fetal bovine dermis that is designed for use in partial- and full-thickness wounds. This study analyzes the cellular response to PriMatrix in vivo, as well as the ability of this matrix to facilitate normal tissue regeneration. Methods. Five by five mm squares of rehydrated PriMatrix were implanted in a subcutaneous fashion on the dorsum of wild-type mice. Implant site tissue was harvested for histology, immunohistochemistry (IHC), and flow cytometric analyses at multiple time points until day 28. Results. PriMatrix implants were found to go through a biological progression initiated by a transient infiltrate of inflammatory cells, followed by mesenchymal cell recruitment and vascular development. IHC analysis revealed that the majority of the implanted fetal dermal collagen fibers persisted through day 28 but underwent remodeling and cellular repopulation to form tissue with a density and morphology consistent with healthy dermis. Conclusions. PriMatrix implants undergo progressive in vivo remodeling, facilitating the regeneration of histologically normal tissue through a mild inflammatory and progenitor cell response. Regeneration of normal tissue is especially important in a wound environment, and these findings warrant further investigation of PriMatrix in this setting. PMID:23970899

  5. Cellular response to a novel fetal acellular collagen matrix: implications for tissue regeneration.

    PubMed

    Rennert, Robert C; Sorkin, Michael; Garg, Ravi K; Januszyk, Michael; Gurtner, Geoffrey C

    2013-01-01

    Introduction. PriMatrix (TEI Biosciences Inc., Boston, MA, USA) is a novel acellular collagen matrix derived from fetal bovine dermis that is designed for use in partial- and full-thickness wounds. This study analyzes the cellular response to PriMatrix in vivo, as well as the ability of this matrix to facilitate normal tissue regeneration. Methods. Five by five mm squares of rehydrated PriMatrix were implanted in a subcutaneous fashion on the dorsum of wild-type mice. Implant site tissue was harvested for histology, immunohistochemistry (IHC), and flow cytometric analyses at multiple time points until day 28. Results. PriMatrix implants were found to go through a biological progression initiated by a transient infiltrate of inflammatory cells, followed by mesenchymal cell recruitment and vascular development. IHC analysis revealed that the majority of the implanted fetal dermal collagen fibers persisted through day 28 but underwent remodeling and cellular repopulation to form tissue with a density and morphology consistent with healthy dermis. Conclusions. PriMatrix implants undergo progressive in vivo remodeling, facilitating the regeneration of histologically normal tissue through a mild inflammatory and progenitor cell response. Regeneration of normal tissue is especially important in a wound environment, and these findings warrant further investigation of PriMatrix in this setting.

  6. Discriminating model for diagnosis of basal cell carcinoma and melanoma in vitro based on the Raman spectra of selected biochemicals

    NASA Astrophysics Data System (ADS)

    Silveira, Landulfo; Silveira, Fabrício Luiz; Bodanese, Benito; Zângaro, Renato Amaro; Pacheco, Marcos Tadeu T.

    2012-07-01

    Raman spectroscopy has been employed to identify differences in the biochemical constitution of malignant [basal cell carcinoma (BCC) and melanoma (MEL)] cells compared to normal skin tissues, with the goal of skin cancer diagnosis. We collected Raman spectra from compounds such as proteins, lipids, and nucleic acids, which are expected to be represented in human skin spectra, and developed a linear least-squares fitting model to estimate the contributions of these compounds to the tissue spectra. We used a set of 145 spectra from biopsy fragments of normal (30 spectra), BCC (96 spectra), and MEL (19 spectra) skin tissues, collected using a near-infrared Raman spectrometer (830 nm, 50 to 200 mW, and 20 s exposure time) coupled to a Raman probe. We applied the best-fitting model to the spectra of biochemicals and tissues, hypothesizing that the relative spectral contribution of each compound to the tissue Raman spectrum changes according to the disease. We verified that actin, collagen, elastin, and triolein were the most important biochemicals representing the spectral features of skin tissues. A classification model applied to the relative contribution of collagen III, elastin, and melanin using Euclidean distance as a discriminator could differentiate normal from BCC and MEL.

  7. Model based recovery of histological parameters starting from reflectance spectra of the colon

    NASA Astrophysics Data System (ADS)

    Hidovic-Rowe, Dzena; Claridge, Ela

    2005-06-01

    Colon cancer alters the tissue macro-architecture. Changes include increase in blood content and distortion of the collagen matrix, which affect the reflectance spectra of the colon and its colouration. We have developed a physics-based model for predicting colon tissue spectra. The colon structure is represented by three layers: mucosa, submucosa and smooth muscle. Each layer is represented by parameters defining its optical properties: molar concentration and absorption coefficients of haemoglobins, describing absorption of light; size and density of collagen fibres; refractive index of the medium and collagen fibres, describing light scattering; and layer thicknesses. Spectra were calculated using the Monte Carlo method. The output of the model was compared to experimental data comprising 50 spectra acquired in vivo from normal tissue. The extracted histological parameters showed good agreement with known values. An experiment was carried out to study the differences between normal and abnormal tissue. These were characterised by increased blood content and decreased collagen density, which is consistent with known differences between normal and abnormal tissue. This suggests that histological quantities of the colon could be computed from its reflectance spectra. The method is likely to have diagnostic value in the early detection of colon cancer.

  8. Human Immune Disorder Arising from Mutation of the α Chain of the Interleukin-2 Receptor

    NASA Astrophysics Data System (ADS)

    Sharfe, Nigel; Dadi, Harjit K.; Shahar, Michal; Roifman, Chaim M.

    1997-04-01

    Profound cellular immunodeficiency occurs as the result of mutations in proteins involved in both the differentiation and function of mature lymphoid cells. We describe here a novel human immune aberration arising from a truncation mutation of the interleukin-2 receptor α chain (CD25), a subunit of the tripartite high-affinity receptor for interleukin 2. This immunodeficiency is characterized by decreased numbers of peripheral T cells displaying abnormal proliferation but normal B cell development. Extensive lymphocytic infiltration of tissues, including lung, liver, gut, and bone, is observed, accompanied by tissue atrophy and inflammation. Although mature T cells are present, the absence of CD25 does affect the differentiation of thymocytes. While displaying normal development of CD2, CD3, CD4, and CD8 expression, CD25-deficient cortical thymocytes do not express CD1, and furthermore they fail to normally down-regulate levels of the anti-apoptotic protein bcl-2.

  9. Distribution of erlotinib in rash and normal skin in cancer patients receiving erlotinib visualized by matrix assisted laser desorption/ionization mass spectrometry imaging.

    PubMed

    Nishimura, Meiko; Hayashi, Mitsuhiro; Mizutani, Yu; Takenaka, Kei; Imamura, Yoshinori; Chayahara, Naoko; Toyoda, Masanori; Kiyota, Naomi; Mukohara, Toru; Aikawa, Hiroaki; Fujiwara, Yasuhiro; Hamada, Akinobu; Minami, Hironobu

    2018-04-06

    The development of skin rashes is the most common adverse event observed in cancer patients treated with epidermal growth factor receptor-tyrosine kinase inhibitors such as erlotinib. However, the pharmacological evidence has not been fully revealed. Erlotinib distribution in the rashes was more heterogeneous than that in the normal skin, and the rashes contained statistically higher concentrations of erlotinib than adjacent normal skin in the superficial skin layer (229 ± 192 vs. 120 ± 103 ions/mm 2 ; P = 0.009 in paired t -test). LC-MS/MS confirmed that the concentration of erlotinib in the skin rashes was higher than that in normal skin in the superficial skin layer (1946 ± 1258 vs. 1174 ± 662 ng/cm 3 ; P = 0.028 in paired t -test). The results of MALDI-MSI and LC-MS/MS were well correlated (coefficient of correlation 0.879, P < 0.0001). Focal distribution of erlotinib in the skin tissue was visualized using non-labeled MALDI-MSI. Erlotinib concentration in the superficial layer of the skin rashes was higher than that in the adjacent normal skin. We examined patients with advanced pancreatic cancer who developed skin rashes after treatment with erlotinib and gemcitabine. We biopsied both the rash and adjacent normal skin tissues, and visualized and compared the distribution of erlotinib within the skin using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). The tissue concentration of erlotinib was also measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS) with laser microdissection.

  10. Distribution of erlotinib in rash and normal skin in cancer patients receiving erlotinib visualized by matrix assisted laser desorption/ionization mass spectrometry imaging

    PubMed Central

    Mizutani, Yu; Takenaka, Kei; Imamura, Yoshinori; Chayahara, Naoko; Toyoda, Masanori; Kiyota, Naomi; Mukohara, Toru; Aikawa, Hiroaki; Fujiwara, Yasuhiro; Hamada, Akinobu; Minami, Hironobu

    2018-01-01

    Background The development of skin rashes is the most common adverse event observed in cancer patients treated with epidermal growth factor receptor-tyrosine kinase inhibitors such as erlotinib. However, the pharmacological evidence has not been fully revealed. Results Erlotinib distribution in the rashes was more heterogeneous than that in the normal skin, and the rashes contained statistically higher concentrations of erlotinib than adjacent normal skin in the superficial skin layer (229 ± 192 vs. 120 ± 103 ions/mm2; P = 0.009 in paired t-test). LC-MS/MS confirmed that the concentration of erlotinib in the skin rashes was higher than that in normal skin in the superficial skin layer (1946 ± 1258 vs. 1174 ± 662 ng/cm3; P = 0.028 in paired t-test). The results of MALDI-MSI and LC-MS/MS were well correlated (coefficient of correlation 0.879, P < 0.0001). Conclusions Focal distribution of erlotinib in the skin tissue was visualized using non-labeled MALDI-MSI. Erlotinib concentration in the superficial layer of the skin rashes was higher than that in the adjacent normal skin. Methods We examined patients with advanced pancreatic cancer who developed skin rashes after treatment with erlotinib and gemcitabine. We biopsied both the rash and adjacent normal skin tissues, and visualized and compared the distribution of erlotinib within the skin using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). The tissue concentration of erlotinib was also measured by liquid chromatography-tandem mass spectrometry (LC–MS/MS) with laser microdissection. PMID:29719624

  11. Non-invasive Assessments of Adipose Tissue Metabolism In Vitro.

    PubMed

    Abbott, Rosalyn D; Borowsky, Francis E; Quinn, Kyle P; Bernstein, David L; Georgakoudi, Irene; Kaplan, David L

    2016-03-01

    Adipose tissue engineering is a diverse area of research where the developed tissues can be used to study normal adipose tissue functions, create disease models in vitro, and replace soft tissue defects in vivo. Increasing attention has been focused on the highly specialized metabolic pathways that regulate energy storage and release in adipose tissues which affect local and systemic outcomes. Non-invasive, dynamic measurement systems are useful to track these metabolic pathways in the same tissue model over time to evaluate long term cell growth, differentiation, and development within tissue engineering constructs. This approach reduces costs and time in comparison to more traditional destructive methods such as biochemical and immunochemistry assays and proteomics assessments. Towards this goal, this review will focus on important metabolic functions of adipose tissues and strategies to evaluate them with non-invasive in vitro methods. Current non-invasive methods, such as measuring key metabolic markers and endogenous contrast imaging will be explored.

  12. Non-invasive assessments of adipose tissue metabolism in vitro

    PubMed Central

    Abbott, Rosalyn D.; Borowsky, Francis E.; Quinn, Kyle P.; Bernstein, David L.; Georgakoudi, Irene; Kaplan, David L.

    2015-01-01

    Adipose tissue engineering is a diverse area of research where the developed tissues can be used to study normal adipose tissue functions, create disease models in vitro, and replace soft tissue defects in vivo. Increasing attention has been focused on the highly specialized metabolic pathways that regulate energy storage and release in adipose tissues which affect local and systemic outcomes. Non-invasive, dynamic measurement systems are useful to track these metabolic pathways in the same tissue model over time to evaluate long term cell growth, differentiation, and development within tissue engineering constructs. This approach reduces costs and time in comparison to more traditional destructive methods such as biochemical and immunochemistry assays and proteomics assessments. Towards this goal, this review will focus on important metabolic functions of adipose tissues and strategies to evaluate them with noninvasive in vitro methods. Current non-invasive methods, such as measuring key metabolic markers and endogenous contrast imaging will be explored. PMID:26399988

  13. Identification of Reference Genes for Normalizing Quantitative Real-Time PCR in Urechis unicinctus

    NASA Astrophysics Data System (ADS)

    Bai, Yajiao; Zhou, Di; Wei, Maokai; Xie, Yueyang; Gao, Beibei; Qin, Zhenkui; Zhang, Zhifeng

    2018-06-01

    The reverse transcription quantitative real-time PCR (RT-qPCR) has become one of the most important techniques of studying gene expression. A set of valid reference genes are essential for the accurate normalization of data. In this study, five candidate genes were analyzed with geNorm, NormFinder, BestKeeper and ΔCt methods to identify the genes stably expressed in echiuran Urechis unicinctus, an important commercial marine benthic worm, under abiotic (sulfide stress) and normal (adult tissues, embryos and larvae at different development stages) conditions. The comprehensive results indicated that the expression of TBP was the most stable at sulfide stress and in developmental process, while the expression of EF- 1- α was the most stable at sulfide stress and in various tissues. TBP and EF- 1- α were recommended as a suitable reference gene combination to accurately normalize the expression of target genes at sulfide stress; and EF- 1- α, TBP and TUB were considered as a potential reference gene combination for normalizing the expression of target genes in different tissues. No suitable gene combination was obtained among these five candidate genes for normalizing the expression of target genes for developmental process of U. unicinctus. Our results provided a valuable support for quantifying gene expression using RT-qPCR in U. unicinctus.

  14. Comparative pharmacokinetics and tissue distribution profiles of lignan components in normal and hepatic fibrosis rats after oral administration of Fuzheng Huayu recipe.

    PubMed

    Yang, Tao; Liu, Shan; Zheng, Tian-Hui; Tao, Yan-Yan; Liu, Cheng-Hai

    2015-05-26

    Fuzheng Huayu recipe (FZHY) is formulated on the basis of Chinese medicine theory in treating liver fibrosis. To illuminate the influence of the pathological state of liver fibrosis on the pharmacokinetics and tissue distribution profiles of lignan components from FZHY. Male Wistar rats were randomly divided into normal group and Hepatic fibrosis group (induced by dimethylnitrosamine). Six lignan components were detected and quantified by ultrahigh performance liquid chromatography-tandem mass spectrometry(UHPLC-MS/MS)in the plasma and tissue of normal and hepatic fibrosis rats. A rapid, sensitive and convenient UHPLC-MS/MS method has been developed for the simultaneous determination of six lignan components in different rat biological samples successfully. After oral administration of FZHY at a dose of 15g/kg, the pharmacokinetic behaviors of schizandrin A (SIA), schizandrin B (SIB), schizandrin C (SIC), schisandrol A (SOA), Schisandrol B (SOB) and schisantherin A (STA) have been significantly changed in hepatic fibrosis rats compared with the normal rats, and their AUC(0-t) values were increased by 235.09%, 388.44%, 223.30%, 669.30%, 295.08% and 267.63% orderly (P<0.05). Tissue distribution results showed the amount of SIA, SIB, SOA and SOB were significant increased in heart, lung, spleen and kidney of hepatic fibrosis rats compared with normal rats at most of the time point (P<0.05). Meanwhile, the result also reveals that the hepatic fibrosis could delay the peak time of lignans in liver. The results proved that the established UHPLC-MS/MS method could be applied to the comparative study on pharmacokinetics and tissue distribution of lignan components in normal and hepatic fibrosis rats. The hepatic fibrosis could alter the pharmacokinetics and tissue distribution properties of lignan components in rats after administration of FZHY. The results might be helpful for guide the clinical application of this medicine. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. UPLC-MS method for quantification of pterostilbene and its application to comparative study of bioavailability and tissue distribution in normal and Lewis lung carcinoma bearing mice.

    PubMed

    Deng, Li; Li, Yongzhi; Zhang, Xinshi; Chen, Bo; Deng, Yulin; Li, Yujuan

    2015-10-10

    A UPLC-MS method was developed for determination of pterostilbene (PTS) in plasma and tissues of mice. PTS was separated on Agilent Zorbax XDB-C18 column (50 × 2.1 mm, 1.8 μm) with gradient mobile phase at the flow rate of 0.2 ml/min. The detection was performed by negative ion electrospray ionization in multiple reaction monitoring mode. The linear calibration curve of PTS in mouse plasma and tissues ranged from 1.0 to 5000 and 0.50 to 500 ng/ml (r(2)>0.9979), respectively, with lowest limits of quantification (LLOQ) were between 0.5 and 2.0 ng/ml, respectively. The accuracy and precision of the assay were satisfactory. The validated method was applied to the study of bioavailability and tissue distribution of PTS in normal and Lewis lung carcinoma (LLC) bearing mice. The bioavailability of PTS (dose 14, 28 and 56 mg/kg) in normal mice were 11.9%, 13.9% and 26.4%, respectively; and the maximum level (82.1 ± 14.2 μg/g) was found in stomach (dose 28 mg/kg). The bioavailability, peak concentration (Cmax), time to peak concentration (Tmax) of PTS in LLC mice was increased compared with normal mice. The results indicated the UPLC-MS method is reliable and bioavailability and tissue distribution of PTS in normal and LLC mice were dramatically different. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Amniotic membrane scaffolds enable the development of tissue-engineered urothelium with molecular and ultrastructural properties comparable to that of native urothelium.

    PubMed

    Jerman, Urška Dragin; Veranič, Peter; Kreft, Mateja Erdani

    2014-04-01

    The amniotic membrane (AM) is a naturally derived biomaterial that possesses biological and mechanical properties of great importance for tissue engineering. The aim of our study was to determine whether the AM enables the formation of a normal urinary bladder epithelium-urothelium--and to reveal any differences in the urothelial cell (UC) growth and differentiation when using different AM scaffolds. Cryopreserved human AM was used as a scaffold in three different ways. Normal porcine UCs were seeded on the AM epithelium (eAM), denuded AM (dAM), and stromal AM (sAM) and were cultured for 3 weeks. UC growth on AM scaffolds was monitored daily. By using electron microscopy, histochemical and immunofluorescence techniques, we here provide evidence that all three AM scaffolds enable the development of the urothelium. The fastest growth and the highest differentiation of UCs were demonstrated on the sAM scaffold, which enables the development of tissue-engineered urothelium with molecular and ultrastructural properties comparable to that of the native urothelium. Most importantly, the highly differentiated urothelia on the sAM scaffolds provide important experimental models for future drug delivery studies and developing tissue engineering strategies considering that subtle differences are identified before translation to the clinical settings.

  17. Analysis and classification of normal and pathological skin tissue spectra using neural networks

    NASA Astrophysics Data System (ADS)

    Bruch, Reinhard F.; Afanasyeva, Natalia I.; Gummuluri, Satyashree

    2000-07-01

    An innovative spectroscopic diagnostic method has been developed for investigation of different regions of normal human skin tissue, as well as cancerous and precancerous conditions in vivo, ex vivo and in vitro. This new method is a combination of fiber-optical evanescent wave Fourier Transform infrared (FEW-FTIR) spectroscopy and fiber optic techniques using low-loss, highly flexible and nontoxic fiber optical sensors. The FEW-FTIR technique is nondestructive and very sensitive to changes of vibrational spectra in the IR region without heating and staining and thus altering the skin tissue. A special software package was developed for the treatment of the spectra. This package includes a database, programs for data preparation and presentation, and neural networks for classification of disease states. An unsupervised neural competitive learning neural network is implemented for skin cancer diagnosis. In this study, we have investigated and classified skin tissue in the range of 1400 to 1800 cm-1 using these programs. The results of our surface analysis of skin tissue are discussed in terms of molecular structural similarities and differences as well as in terms of different skin states represented by eleven different skin spectra classes.

  18. How specific Raman spectroscopic models are: a comparative study between different cancers

    NASA Astrophysics Data System (ADS)

    Singh, S. P.; Kumar, K. Kalyan; Chowdary, M. V. P.; Maheedhar, K.; Krishna, C. Murali

    2010-02-01

    Optical spectroscopic methods are being contemplated as adjunct/ alternative to existing 'Gold standard' of cancer diagnosis, histopathological examination. Several groups are actively pursuing diagnostic applications of Ramanspectroscopy in cancers. We have developed Raman spectroscopic models for diagnosis of breast, oral, stomach, colon and larynx cancers. So far, specificity and applicability of spectral- models has been limited to particular tissue origin. In this study we have evaluated explicitly of spectroscopic-models by analyzing spectra from already developed spectralmodels representing normal and malignant tissues of breast (46), cervix (52), colon (25), larynx (53), and oral (47). Spectral data was analyzed by Principal Component Analysis (PCA) using scores of factor, Mahalanobis distance and Spectral residuals as discriminating parameters. Multiparametric limit test approach was also explored. The preliminary unsupervised PCA of pooled data indicates that normal tissue types were always exclusive from their malignant counterparts. But when we consider tissue of different origin, large overlap among clusters was found. Supervised analysis by Mahalanobis distance and spectral residuals gave similar results. The 'limit test' approach where classification is based on match / mis-match of the given spectrum against all the available spectra has revealed that spectral models are very exclusive and specific. For example breast normal spectral model show matches only with breast normal spectra and mismatch to rest of the spectra. Same pattern was seen for most of spectral models. Therefore, results of the study indicate the exclusiveness and efficacy of Raman spectroscopic-models. Prospectively, these findings might open new application of Raman spectroscopic models in identifying a tumor as primary or metastatic.

  19. Nanomaterials for Cardiac Myocyte Tissue Engineering.

    PubMed

    Amezcua, Rodolfo; Shirolkar, Ajay; Fraze, Carolyn; Stout, David A

    2016-07-19

    Since their synthesizing introduction to the research community, nanomaterials have infiltrated almost every corner of science and engineering. Over the last decade, one such field has begun to look at using nanomaterials for beneficial applications in tissue engineering, specifically, cardiac tissue engineering. During a myocardial infarction, part of the cardiac muscle, or myocardium, is deprived of blood. Therefore, the lack of oxygen destroys cardiomyocytes, leaving dead tissue and possibly resulting in the development of arrhythmia, ventricular remodeling, and eventual heart failure. Scarred cardiac muscle results in heart failure for millions of heart attack survivors worldwide. Modern cardiac tissue engineering research has developed nanomaterial applications to combat heart failure, preserve normal heart tissue, and grow healthy myocardium around the infarcted area. This review will discuss the recent progress of nanomaterials for cardiovascular tissue engineering applications through three main nanomaterial approaches: scaffold designs, patches, and injectable materials.

  20. Fractionation in normal tissues: the (α/β)eff concept can account for dose heterogeneity and volume effects.

    PubMed

    Hoffmann, Aswin L; Nahum, Alan E

    2013-10-07

    The simple Linear-Quadratic (LQ)-based Withers iso-effect formula (WIF) is widely used in external-beam radiotherapy to derive a new tumour dose prescription such that there is normal-tissue (NT) iso-effect when changing the fraction size and/or number. However, as conventionally applied, the WIF is invalid unless the normal-tissue response is solely determined by the tumour dose. We propose a generalized WIF (gWIF) which retains the tumour prescription dose, but replaces the intrinsic fractionation sensitivity measure (α/β) by a new concept, the normal-tissue effective fractionation sensitivity, [Formula: see text], which takes into account both the dose heterogeneity in, and the volume effect of, the late-responding normal-tissue in question. Closed-form analytical expressions for [Formula: see text] ensuring exact normal-tissue iso-effect are derived for: (i) uniform dose, and (ii) arbitrary dose distributions with volume-effect parameter n = 1 from the normal-tissue dose-volume histogram. For arbitrary dose distributions and arbitrary n, a numerical solution for [Formula: see text] exhibits a weak dependence on the number of fractions. As n is increased, [Formula: see text] increases from its intrinsic value at n = 0 (100% serial normal-tissue) to values close to or even exceeding the tumour (α/β) at n = 1 (100% parallel normal-tissue), with the highest values of [Formula: see text] corresponding to the most conformal dose distributions. Applications of this new concept to inverse planning and to highly conformal modalities are discussed, as is the effect of possible deviations from LQ behaviour at large fraction sizes.

  1. Tissue multifractality and hidden Markov model based integrated framework for optimum precancer detection

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sabyasachi; Das, Nandan K.; Kurmi, Indrajit; Pradhan, Asima; Ghosh, Nirmalya; Panigrahi, Prasanta K.

    2017-10-01

    We report the application of a hidden Markov model (HMM) on multifractal tissue optical properties derived via the Born approximation-based inverse light scattering method for effective discrimination of precancerous human cervical tissue sites from the normal ones. Two global fractal parameters, generalized Hurst exponent and the corresponding singularity spectrum width, computed by multifractal detrended fluctuation analysis (MFDFA), are used here as potential biomarkers. We develop a methodology that makes use of these multifractal parameters by integrating with different statistical classifiers like the HMM and support vector machine (SVM). It is shown that the MFDFA-HMM integrated model achieves significantly better discrimination between normal and different grades of cancer as compared to the MFDFA-SVM integrated model.

  2. Remote Skin Tissue Diagnostics In Vivo By Fiber Optic Evanescent Wave Fourier Transform Infrared (FEW-FTIR) Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kolyakov, Sergei; Afanasyeva, Natalia; Bruch, Reinhard; Afanasyeva, Natalia

    1998-05-01

    The new method of fiber optical evanescent wave Fourier transform infrared (FEW-FTIR) spectroscopy has been applied to the diagnostics of normal skin tissue, as well as precancerous and cancerous conditions. The FEW-FTIR technique is nondestructive and sensitive to changes of vibrational spectra in the IR region, without heating and damaging human and animal skin tissue. Therefore this method and technique is an ideal diagnostic tool for tumor and cancer characterization at an early stage of development on a molecular level. The application of fiber optic technology in the middle infrared (MIR) region is relatively inexpensive and can be adapted easily to any commercially available tabletop FTIR spectrometers. This method of diagnostics is fast (several seconds), and can be applied to many fields. Noninvasive medical diagnostics of skin cancer and other skin diseases in vivo, ex vivo, and in vitro allow for the development of convenient, remote clinical applications in dermatology and related fields. The spectral variations from normal to pathological skin tissue and environmental influence on skin have been measured.

  3. Fascin 1 is dispensable for developmental and tumour angiogenesis

    PubMed Central

    Ma, Yafeng; Reynolds, Louise E.; Li, Ang; Stevenson, Richard P.; Hodivala-Dilke, Kairbaan M.; Yamashiro, Shigeko; Machesky, Laura M.

    2013-01-01

    Summary The actin bundling protein fascin 1 is not expressed in adult epithelial tissues, but during development it is transiently expressed in many different cell types, and later in adults it is expressed in a subset of immune cells, nervous tissues, endothelial cells, smooth muscle cells and pericytes. In contrast to the wealth of knowledge about the role of fascin 1 in cancer cell migration and invasion, little is known about the involvement of fascin 1 in angiogenesis. We speculated that as angiogenesis involves migration and invasion of tissues by endothelial cells, fascin 1 might have a role in both normal and tumour angiogenesis. Here, we provide evidence that loss of fascin 1 causes relatively minor reductions to angiogenesis during embryonic, postnatal and cancerous development by examining E12.5 hindbrains, postnatal retinas and B16F0 tumour cell allografts in fascin 1-null mice. We also find that in fascin 1 null tissues, endothelial cells display reduced filopodia formation during sprouting. We thus propose that fascin 1 expression promotes angiogenesis via filopodia formation, but is largely dispensable for both normal and tumour angiogenesis. PMID:24244855

  4. Fascin 1 is dispensable for developmental and tumour angiogenesis.

    PubMed

    Ma, Yafeng; Reynolds, Louise E; Li, Ang; Stevenson, Richard P; Hodivala-Dilke, Kairbaan M; Yamashiro, Shigeko; Machesky, Laura M

    2013-01-01

    The actin bundling protein fascin 1 is not expressed in adult epithelial tissues, but during development it is transiently expressed in many different cell types, and later in adults it is expressed in a subset of immune cells, nervous tissues, endothelial cells, smooth muscle cells and pericytes. In contrast to the wealth of knowledge about the role of fascin 1 in cancer cell migration and invasion, little is known about the involvement of fascin 1 in angiogenesis. We speculated that as angiogenesis involves migration and invasion of tissues by endothelial cells, fascin 1 might have a role in both normal and tumour angiogenesis. Here, we provide evidence that loss of fascin 1 causes relatively minor reductions to angiogenesis during embryonic, postnatal and cancerous development by examining E12.5 hindbrains, postnatal retinas and B16F0 tumour cell allografts in fascin 1-null mice. We also find that in fascin 1 null tissues, endothelial cells display reduced filopodia formation during sprouting. We thus propose that fascin 1 expression promotes angiogenesis via filopodia formation, but is largely dispensable for both normal and tumour angiogenesis.

  5. Boron Neutron Capture Therapy (BNCT) in an oral precancer model: therapeutic benefits and potential toxicity of a double application of BNCT with a six-week interval.

    PubMed

    Monti Hughes, Andrea; Pozzi, Emiliano C C; Heber, Elisa M; Thorp, Silvia; Miller, Marcelo; Itoiz, Maria E; Aromando, Romina F; Molinari, Ana J; Garabalino, Marcela A; Nigg, David W; Trivillin, Verónica A; Schwint, Amanda E

    2011-11-01

    Given the clinical relevance of locoregional recurrences in head and neck cancer, we developed a novel experimental model of premalignant tissue in the hamster cheek pouch for long-term studies and demonstrated the partial inhibitory effect of a single application of Boron Neutron Capture Therapy (BNCT) on tumor development from premalignant tissue. The aim of the present study was to evaluate the effect of a double application of BNCT with a 6 week interval in terms of inhibitory effect on tumor development, toxicity and DNA synthesis. We performed a double application, 6 weeks apart, of (1) BNCT mediated by boronophenylalanine (BPA-BNCT); (2) BNCT mediated by the combined application of decahydrodecaborate (GB-10) and BPA [(GB-10+BPA)-BNCT] or (3) beam-only, at RA-3 nuclear reactor and followed the animals for 8 months. The control group was cancerized and sham-irradiated. BPA-BNCT, (GB-10+BPA)-BNCT and beam-only induced a reduction in tumor development from premalignant tissue that persisted until 8, 3, and 2 months respectively. An early maximum inhibition of 100% was observed for all 3 protocols. No normal tissue radiotoxicity was detected. Reversible mucositis was observed in premalignant tissue, peaking at 1 week and resolving by the third week after each irradiation. Mucositis after the second application was not exacerbated by the first application. DNA synthesis was significantly reduced in premalignant tissue 8 months post-BNCT. A double application of BPA-BNCT and (GB-10+BPA)-BNCT, 6 weeks apart, could be used therapeutically at no additional cost in terms of radiotoxicity in normal and dose-limiting tissues. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Boron Neutron Capture Therapty (BNCT) in an Oral Precancer Model: Therapeutic Benefits and Potential Toxicity of a Double Application of BNCT with a Six-Week Interval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrea Monti Hughes; Emiliano C.C. Pozzi; Elisa M. Heber

    Given the clinical relevance of locoregional recurrences in head and neck cancer, we developed a novel experimental model of premalignant tissue in the hamster cheek pouch for long-term studies and demonstrated the partial inhibitory effect of a single application of Boron Neutron Capture Therapy (BNCT) on tumor development from premalignant tissue. The aim of the present study was to evaluate the effect of a double application of BNCT with a 6 week interval in terms of inhibitory effect on tumor development, toxicity and DNA synthesis. We performed a double application, 6 weeks apart, of (1) BNCT mediated by boronophenylalanine (BPA-BNCT);more » (2) BNCT mediated by the combined application of decahydrodecaborate (GB-10) and BPA [(GB-10 + BPA)-BNCT] or (3) beam-only, at RA-3 nuclear reactor and followed the animals for 8 months. The control group was cancerized and sham-irradiated. BPA-BNCT, (GB- 10 + BPA)-BNCT and beam-only induced a reduction in tumor development from premalignant tissue that persisted until 8, 3, and 2 months respectively. An early maximum inhibition of 100% was observed for all 3 protocols. No normal tissue radiotoxicity was detected. Reversible mucositis was observed in premalignant tissue, peaking at 1 week and resolving by the third week after each irradiation. Mucositis after the second application was not exacerbated by the first application. DNA synthesis was significantly reduced in premalignant tissue 8 months post-BNCT. A double application of BPA-BNCT and (GB-10 + BPA)-BNCT, 6 weeks apart, could be used therapeutically at no additional cost in terms of radiotoxicity in normal and dose-limiting tissues.« less

  7. Laser-induced differential normalized fluorescence method for cancer diagnosis

    DOEpatents

    Vo-Dinh, Tuan; Panjehpour, Masoud; Overholt, Bergein F.

    1996-01-01

    An apparatus and method for cancer diagnosis are disclosed. The diagnostic method includes the steps of irradiating a tissue sample with monochromatic excitation light, producing a laser-induced fluorescence spectrum from emission radiation generated by interaction of the excitation light with the tissue sample, and dividing the intensity at each wavelength of the laser-induced fluorescence spectrum by the integrated area under the laser-induced fluorescence spectrum to produce a normalized spectrum. A mathematical difference between the normalized spectrum and an average value of a reference set of normalized spectra which correspond to normal tissues is calculated, which provides for amplifying small changes in weak signals from malignant tissues for improved analysis. The calculated differential normalized spectrum is correlated to a specific condition of a tissue sample.

  8. Laser-induced differential normalized fluorescence method for cancer diagnosis

    DOEpatents

    Vo-Dinh, T.; Panjehpour, M.; Overholt, B.F.

    1996-12-03

    An apparatus and method for cancer diagnosis are disclosed. The diagnostic method includes the steps of irradiating a tissue sample with monochromatic excitation light, producing a laser-induced fluorescence spectrum from emission radiation generated by interaction of the excitation light with the tissue sample, and dividing the intensity at each wavelength of the laser-induced fluorescence spectrum by the integrated area under the laser-induced fluorescence spectrum to produce a normalized spectrum. A mathematical difference between the normalized spectrum and an average value of a reference set of normalized spectra which correspond to normal tissues is calculated, which provides for amplifying small changes in weak signals from malignant tissues for improved analysis. The calculated differential normalized spectrum is correlated to a specific condition of a tissue sample. 5 figs.

  9. Alu-derived cis-element regulates tumorigenesis-dependent gastric expression of GASDERMIN B (GSDMB).

    PubMed

    Komiyama, Hiromitsu; Aoki, Aya; Tanaka, Shigekazu; Maekawa, Hiroshi; Kato, Yoriko; Wada, Ryo; Maekawa, Takeo; Tamura, Masaru; Shiroishi, Toshihiko

    2010-02-01

    GASDERMIN B (GSDMB) belongs to the novel gene family GASDERMIN (GSDM). All GSDM family members are located in amplicons, genomic regions often amplified during cancer development. Given that GSDMB is highly expressed in cancerous cells and the locus resides in an amplicon, GSDMB may be involved in cancer development and/or progression. However, only limited information is available on GSDMB expression in tissues, normal and cancerous, from cancer patients. Furthermore, the molecular mechanisms that regulate GSDMB expression in gastric tissues are poorly understood. We investigated the spatiotemporal expression patterns of GSDMB in gastric cancer patients and the 5' regulatory sequences upstream of GSDMB. GSDMB was not expressed in the majority of normal gastric-tissue samples, and the expression level was very low in the few normal samples with GSDMB expression. Most pre-cancer samples showed moderate GSDMB expression, and most cancerous samples showed augmented GSDMB expression. Analysis of genome sequences revealed that an Alu element resides in the 5' region upstream of GSDMB. Reporter assays using intact, deleted, and mutated Alu elements clearly showed that this Alu element positively regulates GSDMB expression and that a putative IKZF binding motif in this element is crucial to upregulate GSDMB expression.

  10. A new plan-scoring method using normal tissue complication probability for personalized treatment plan decisions in prostate cancer

    NASA Astrophysics Data System (ADS)

    Kim, Kwang Hyeon; Lee, Suk; Shim, Jang Bo; Yang, Dae Sik; Yoon, Won Sup; Park, Young Je; Kim, Chul Yong; Cao, Yuan Jie; Chang, Kyung Hwan

    2018-01-01

    The aim of this study was to derive a new plan-scoring index using normal tissue complication probabilities to verify different plans in the selection of personalized treatment. Plans for 12 patients treated with tomotherapy were used to compare scoring for ranking. Dosimetric and biological indexes were analyzed for the plans for a clearly distinguishable group ( n = 7) and a similar group ( n = 12), using treatment plan verification software that we developed. The quality factor ( QF) of our support software for treatment decisions was consistent with the final treatment plan for the clearly distinguishable group (average QF = 1.202, 100% match rate, n = 7) and the similar group (average QF = 1.058, 33% match rate, n = 12). Therefore, we propose a normal tissue complication probability (NTCP) based on the plan scoring index for verification of different plans for personalized treatment-plan selection. Scoring using the new QF showed a 100% match rate (average NTCP QF = 1.0420). The NTCP-based new QF scoring method was adequate for obtaining biological verification quality and organ risk saving using the treatment-planning decision-support software we developed for prostate cancer.

  11. Heat stress differentially modifies ethylene biosynthesis and signaling in pea floral and fruit tissues.

    PubMed

    Savada, Raghavendra P; Ozga, Jocelyn A; Jayasinghege, Charitha P A; Waduthanthri, Kosala D; Reinecke, Dennis M

    2017-10-01

    Ethylene biosynthesis is regulated in reproductive tissues in response to heat stress in a manner to optimize resource allocation to pollinated fruits with developing seeds. High temperatures during reproductive development are particularly detrimental to crop fruit/seed production. Ethylene plays vital roles in plant development and abiotic stress responses; however, little is known about ethylene's role in reproductive tissues during development under heat stress. We assessed ethylene biosynthesis and signaling regulation within the reproductive and associated tissues of pea during the developmental phase that sets the stage for fruit-set and seed development under normal and heat-stress conditions. The transcript abundance profiles of PsACS [encode enzymes that convert S-adenosyl-L-methionine to 1-aminocyclopropane-1-carboxylic acid (ACC)] and PsACO (encode enzymes that convert ACC to ethylene), and ethylene evolution were developmentally, environmentally, and tissue-specifically regulated in the floral/fruit/pedicel tissues of pea. Higher transcript abundance of PsACS and PsACO in the ovaries, and PsACO in the pedicels was correlated with higher ethylene evolution and ovary senescence and pedicel abscission in fruits that were not pollinated under control temperature conditions. Under heat-stress conditions, up-regulation of ethylene biosynthesis gene expression in pre-pollinated ovaries was also associated with higher ethylene evolution and lower retention of these fruits. Following successful pollination and ovule fertilization, heat-stress modified PsACS and PsACO transcript profiles in a manner that suppressed ovary ethylene evolution. The normal ethylene burst in the stigma/style and petals following pollination was also suppressed by heat-stress. Transcript abundance profiles of ethylene receptor and signaling-related genes acted as qualitative markers of tissue ethylene signaling events. These data support the hypothesis that ethylene biosynthesis is regulated in reproductive tissues in response to heat stress to modulate resource allocation dynamics.

  12. Preferential expression of cystein-rich secretory protein-3 (CRISP-3) in chronic pancreatitis.

    PubMed

    Liao, Q; Kleeff, J; Xiao, Y; Guweidhi, A; Schambony, A; Töpfer-Petersen, E; Zimmermann, A; Büchler, M W; Friess, H

    2003-04-01

    Chronic pancreatitis (CP) is a progressive inflammatory process resulting in exocrine and endocrine pancreatic insufficiency in advanced stages. Cysteine-rich secretory protein (CRISP-3) has been identified as a defense-associated molecule with predominant expression in the salivary gland, pancreas and prostate. In this study, we investigated CRISP-3 expression in normal pancreatic tissues, chronic pancreatitis tissues, pancreatic cancer tissues and pancreatic cancer cell lines, as well as in other gastrointestinal organs. 15 normal pancreatic tissues, 14 chronic pancreatitis tissues and 14 pancreatic cancer tissues as well as three pancreatic cancer cell lines were analyzed. Moreover, hepatocellular carcinoma and esophageal, stomach and colon cancers were also analyzed together with the corresponding normal controls. CRISP-3 was expressed at moderate to high levels in chronic pancreatitis tissues and at moderate levels in pancreatic cancer tissues but at low levels in normal pancreatic tissues, and was absent in three pancreatic cancer cell lines. CRISP-3 expression was below the level of detection in all cancerous gastrointestinal tissues and in all normal tissues except 2 of 16 colon tissue samples. CRISP-3 mRNA signals and immunoreactivity were strongly present in the cytoplasm of degenerating acinar cells and in small proliferating ductal cells in CP tissues and CP-like lesions in pancreatic cancer tissues. In contrast, CRISP-3 expression was weak to absent in the cytoplasm of cancer cells as well as in acinar cells and ductal cells in pancreatic cancer tissues and normal pancreatic tissues. These results reveal that the distribution of CRISP-3 in gastrointestinal tissues is predominantly in the pancreas. High levels of CRISP-3 in acinar cells dedifferentiating into small proliferating ductal cells in CP and CP-like lesions in pancreatic cancer suggests a role of this molecule in the pathophysiology of CP.

  13. In-vivo cancer diagnosis of the esophagus using laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Vo-Dinh, Tuan; Panjehpour, Masoud; Overholt, Bergein F.; Buckley, Paul F., II; Edwards, Donna H.

    1995-04-01

    Laser-induced fluorescence (LIF) was used for direct in-vivo cancer diagnosis of the esophagus without requiring biopsy. The methodology was applied to differentiate normal and malignant tumors of the esophagus. Endogenous fluorescence of normal and malignant tissues were measured directly using a fiberoptic probe inserted through an endoscope. The measurements were performed in vivo during routine endoscopy. Detection of the fluorescence signal from the tissue was performed using laser excitation. The results of this LIF approach were compared with histopathology results of the biopsy samples and indicated excellent agreement in the classification of normal and malignant tumors for the samples investigated. The LIF procedure could lead to the development of a rapid and cost-effective technique for cancer diagnosis.

  14. Detection of the human endogenous retrovirus ERV3-encoded Env-protein in human tissues using antibody-based proteomics.

    PubMed

    Fei, Chen; Atterby, Christina; Edqvist, Per-Henrik; Pontén, Fredrik; Zhang, Wei Wei; Larsson, Erik; Ryan, Frank P

    2014-01-01

    There is growing evidence to suggest that human endogenous retroviruses (HERVs) have contributed to human evolution, being expressed in development, normal physiology and disease. A key difficulty in the scientific evaluation of this potential viral contribution is the accurate demonstration of virally expressed protein in specific human cells and tissues. In this study, we have adopted the endogenous retrovirus, ERV3, as our test model in developing a reliable high-capacity methodology for the expression of such endogenous retrovirus-coded protein. Two affinity-purified polyclonal antibodies to ERV3 Env-encoded protein were generated to detect the corresponding protein expression pattern in specific human cells, tissues and organs. Sampling included normal tissues from 144 individuals ranging from childhood to old age. This included more than forty different tissues and organs and some 216 different cancer tissues representing the twenty commonest forms of human cancer. The Rudbeck Laboratory, Uppsala University and Uppsala University Hospital, Uppsala, Sweden. The potential expression at likely physiological level of the ERV3Env encoded protein in a wide range of human cells, tissues and organs. We found that ERV3 encoded Env protein is expressed at substantive levels in placenta, testis, adrenal gland, corpus luteum, Fallopian tubes, sebaceous glands, astrocytes, bronchial epithelium and the ducts of the salivary glands. Substantive expression was also seen in a variety of epithelial cells as well as cells known to undergo fusion in inflammation and in normal physiology, including fused macrophages, myocardium and striated muscle. This contrasted strongly with the low levels expressed in other tissues types. These findings suggest that this virus plays a significant role in human physiology and may also play a possible role in disease. This technique can now be extended to the study of other HERV genomes within the human chromosomes that may have contributed to human evolution, physiology and disease.

  15. Development of an Autonomous, Dual Chamber Bioreactor for the Growth of 3-Dimensional Epithelial-Stromal Tissues in Microgravity

    NASA Technical Reports Server (NTRS)

    Patel, Zarana S.; Wettergreen, Matthew A.; Huff, Janice L.

    2014-01-01

    We are developing a novel, autonomous bioreactor that can provide for the growth and maintenance in microgravity of 3-D organotypic epithelial-stromal cultures that require an air-liquid interface. These complex 3-D tissue models accurately represent the morphological features, differentiation markers, and growth characteristics observed in normal human epithelial tissues, including the skin, esophagus, lung, breast, pancreas, and colon. However, because of their precise and complex culture requirements, including that of an air-liquid interface, these 3-D models have yet to be utilized for life sciences research aboard the International Space Station. The development of a bioreactor for these cultures will provide the capability to perform biological research on the ISS using these realistic, tissue-like human epithelial-stromal cell models and will contribute significantly to advances in fundamental space biology research on questions regarding microgravity effects on normal tissue development, aging, cancer, and other disease processes. It will also allow for the study of how combined stressors, such as microgravity with radiation and nutritional deficiencies, affect multiple biological processes and will provide a platform for conducting countermeasure investigations on the ISS without the use of animal models. The technology will be autonomous and consist of a cell culture chamber that provides for air-liquid, liquid-liquid, and liquid-air exchanges within the chambers while maintaining the growth and development of the biological samples. The bioreactor will support multiple tissue types and its modular design will provide for incorporation of add-on capabilities such as microfluidics drug delivery, media sampling, and in situ biomarker analysis. Preliminary flight testing of the hardware will be conducted on a parabolic platform through NASA's Flight Opportunities Program.

  16. Experimental endometriosis: the nude mouse as a xenographic host.

    PubMed

    Bruner-Tran, Kaylon L; Webster-Clair, Deborah; Osteen, Kevin G

    2002-03-01

    Endometriosis is a complex disease that can develop as a consequence of retrograde menstruation, occurring in association with the cyclic loss of endometrial tissue in primates and humans. In addition, progression of disease parallels a woman's exposure to ovarian steroids, rarely occurring prior to menarche and generally resolving following menopause. Because of the cost of developing primate models to study endometriosis, numerous small animal models have been established to approach various elements related to the pathophysiology of this disease. Our laboratory has developed an experimental endometriosis model using nude mice as a xenographic host for human tissues. Our goal is to approach the basic cellular mechanisms of estrogen and progesterone action that link these hormones to the development or prevention of endometriosis. In our initial studies, we have sought to understand steroid-associated regulation of matrix metalloproteinases (MMPs) with regard to the development of experimental endometriosis. Using both short-term organ cultures and nude mice as xenographic hosts of human tissue, we have demonstrated a critical role of progesterone and progesterone-associated cytokines in preventing the initial establishment of experimental disease. Women with endometriosis appear to lack normal endometrial responsiveness to progesterone, resulting in altered expression of several MMPs and an enhanced ability of these tissues to establish ectopic lesions in nude mice. Developing a better understanding of the impairments in the normal endometrial physiology of women with endometriosis should aid in the development of better treatment or diagnostic strategies.

  17. Cell-surface markers for colon adenoma and adenocarcinoma

    PubMed Central

    Sewda, Kamini; Coppola, Domenico; Enkemann, Steven; Yue, Binglin; Kim, Jongphil; Lopez, Alexis S.; Wojtkowiak, Jonathan W.; Stark, Valerie E.; Morse, Brian; Shibata, David; Vignesh, Shivakumar; Morse, David L.

    2016-01-01

    Early detection of colorectal cancer (CRC) is crucial for effective treatment. Among CRC screening techniques, optical colonoscopy is widely considered the gold standard. However, it is a costly and invasive procedure with a low rate of compliance. Our long-term goal is to develop molecular imaging agents for the non-invasive detection of CRC by molecular imaging-based colonoscopy using CT, MRI or fluorescence. To achieve this, cell surface targets must be identified and validated. Here, we report the discovery of cell-surface markers that distinguish CRC from surrounding tissues that could be used as molecular imaging targets. Profiling of mRNA expression microarray data from patient tissues including adenoma, adenocarcinoma, and normal gastrointestinal tissues was used to identify potential CRC specific cell-surface markers. Of the identified markers, six were selected for further validation (CLDN1, GPR56, GRM8, LY6G6D/F, SLCO1B3 and TLR4). Protein expression was confirmed by immunohistochemistry of patient tissues. Except for SLCO1B3, diffuse and low expression was observed for each marker in normal colon tissues. The three markers with the greatest protein overexpression were CLDN1, LY6G6D/F and TLR4, where at least one of these markers was overexpressed in 97% of the CRC samples. GPR56, LY6G6D/F and SLCO1B3 protein expression was significantly correlated with the proximal tumor location and with expression of mismatch repair genes. Marker expression was further validated in CRC cell lines. Hence, three cell-surface markers were discovered that distinguish CRC from surrounding normal tissues. These markers can be used to develop imaging or therapeutic agents targeted to the luminal surface of CRC. PMID:26894861

  18. Cell-surface markers for colon adenoma and adenocarcinoma.

    PubMed

    Sewda, Kamini; Coppola, Domenico; Enkemann, Steven; Yue, Binglin; Kim, Jongphil; Lopez, Alexis S; Wojtkowiak, Jonathan W; Stark, Valerie E; Morse, Brian; Shibata, David; Vignesh, Shivakumar; Morse, David L

    2016-04-05

    Early detection of colorectal cancer (CRC) is crucial for effective treatment. Among CRC screening techniques, optical colonoscopy is widely considered the gold standard. However, it is a costly and invasive procedure with a low rate of compliance. Our long-term goal is to develop molecular imaging agents for the non-invasive detection of CRC by molecular imaging-based colonoscopy using CT, MRI or fluorescence. To achieve this, cell surface targets must be identified and validated. Here, we report the discovery of cell-surface markers that distinguish CRC from surrounding tissues that could be used as molecular imaging targets. Profiling of mRNA expression microarray data from patient tissues including adenoma, adenocarcinoma, and normal gastrointestinal tissues was used to identify potential CRC specific cell-surface markers. Of the identified markers, six were selected for further validation (CLDN1, GPR56, GRM8, LY6G6D/F, SLCO1B3 and TLR4). Protein expression was confirmed by immunohistochemistry of patient tissues. Except for SLCO1B3, diffuse and low expression was observed for each marker in normal colon tissues. The three markers with the greatest protein overexpression were CLDN1, LY6G6D/F and TLR4, where at least one of these markers was overexpressed in 97% of the CRC samples. GPR56, LY6G6D/F and SLCO1B3 protein expression was significantly correlated with the proximal tumor location and with expression of mismatch repair genes. Marker expression was further validated in CRC cell lines. Hence, three cell-surface markers were discovered that distinguish CRC from surrounding normal tissues. These markers can be used to develop imaging or therapeutic agents targeted to the luminal surface of CRC.

  19. Karyometry of the colonic mucosa.

    PubMed

    Alberts, David S; Einspahr, Janine G; Krouse, Robert S; Prasad, Anil; Ranger-Moore, James; Hamilton, Peter; Ismail, Ayaaz; Lance, Peter; Goldschmid, Steven; Hess, Lisa M; Yozwiak, Michael; Bartels, Hubert G; Bartels, Peter H

    2007-12-01

    The study summarizes results of karyometric measurements in epithelial cells of the colorectal mucosa to document evidence of a field effect of preneoplastic development among patients with colorectal adenocarcinoma or adenoma. Karyometric analyses were done on high-resolution images of histologic sections from 48 patients with colorectal adenocarcinomas and 44 patients with adenomas and on images from matching normal-appearing mucosa directly adjacent to such lesions, at a 1-cm and 10-cm distance from the lesions or from the rectal mucosa of adenoma patients, as well as from 24 healthy normal controls with no family history of colonic disease. The nuclei recorded in the histologically normal-appearing mucosa of patients with either colorectal adenoma or adenocarcinoma exhibited differences in karyometric features in comparison with nuclei recorded in rectal mucosa from patients who were free of a colonic lesion. These differences were expressed to the same extent in tissue adjacent to the lesions and in normal-appearing tissue as distant as the rectum. The nuclear chromatin pattern may serve as an integrating biomarker for a preneoplastic development. The field effect might provide an end point in chemopreventive intervention trials.

  20. Stromal androgen receptor roles in the development of normal prostate, benign prostate hyperplasia, and prostate cancer.

    PubMed

    Wen, Simeng; Chang, Hong-Chiang; Tian, Jing; Shang, Zhiqun; Niu, Yuanjie; Chang, Chawnshang

    2015-02-01

    The prostate is an androgen-sensitive organ that needs proper androgen/androgen receptor (AR) signals for normal development. The progression of prostate diseases, including benign prostate hyperplasia (BPH) and prostate cancer (PCa), also needs proper androgen/AR signals. Tissue recombination studies report that stromal, but not epithelial, AR plays more critical roles via the mesenchymal-epithelial interactions to influence the early process of prostate development. However, in BPH and PCa, much more attention has been focused on epithelial AR roles. However, accumulating evidence indicates that stromal AR is also irreplaceable and plays critical roles in prostate disease progression. Herein, we summarize the roles of stromal AR in the development of normal prostate, BPH, and PCa, with evidence from the recent results of in vitro cell line studies, tissue recombination experiments, and AR knockout animal models. Current evidence suggests that stromal AR may play positive roles to promote BPH and PCa progression, and targeting stromal AR selectively with AR degradation enhancer, ASC-J9, may allow development of better therapies with fewer adverse effects to battle BPH and PCa. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  1. [Breast abnormalities: a retrospective study of 208 patients].

    PubMed

    Famà, Fausto; Gioffrè Florio, Maria Antonietta; Villari, Santa Alessandra; Caruso, Rosario; Barresi, Valeria; Mazzei, Sergio; Pollicino, Andrea; Scarfò, Paola

    2007-01-01

    Ectopic breast tissue occurs in 0.4-6% of the general population. Usually, these tissues develop along the embryonic milk line but other sites are reported in the literature. Accessory breasts are commonly axillary and may undergo hormonal changes. Some pathologies of normally positioned breasts can occur in ectopic breast tissue, including carcinoma, and therefore require traditional senological flow-charts and imaging strategies. Supernumerary nipples are generally asymptomatic but may sometimes be associated with urological malformations. In our 10-year experience, 208 patients were observed (138 polythelia and 70 polymastia) and 159 surgical procedures were performed, 97 for supernumerary nipple excision and 67 for accessory breast ablation. Five neoplastic lesions and 25 fibrocystic mastopathies were detected in specimens; normal nipple or breast tissue was found in 129. In view of the potentially malignant transformation of accessory breasts, thorough physician evaluation is needed. Surgery is currently suggested in cases of suspected malignancy, in symptomatic cases and for cosmetic problems.

  2. Utilizing nonlinear optical microscopy to investigate the development of early cancer in nude mice in vivo

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Chin; Li, Feng-Chieh; Lin, Sung-Jan; Lo, Wen; Dong, Chen-Yuan

    2007-07-01

    In this investigation, we used in vivo nonlinear optical microscopy to image normal and carcinogen DMBA treated skin tissues of nude mice. We acquired two-photon autofluroescence and second harmonic generation (SHG) images of the skin tissue, and applied the ASI (Autofluorescence versus SHG Index) to the resulting image. This allows us to visualize and quantify the interaction between mouse skin cells and the surrounding connective tissue. We found that as the imaging depth increases, ASI has a different distribution in the normal and the treated skin tissues. Since the DMBA treated skin eventually became squamous cell carcinoma (SCC), our results show that the physiological changes to mouse skin en route to become cancer can be effectively tracked by multiphoton microscopy. We envision this approach to be effective in studying tumor biology and tumor treatment procedures.

  3. Label-free imaging and spectroscopy for early detection of cervical cancer.

    PubMed

    Jing, Yueyue; Wang, Yulan; Wang, Xinyi; Song, Chuan; Ma, Jiong; Xie, Yonghui; Fei, Yiyan; Zhang, Qinghua; Mi, Lan

    2018-05-01

    The label-free imaging and spectroscopy method was studied on cervical unstained tissue sections obtained from 36 patients. The native fluorescence spectra of tissues are analyzed by the optical redox ratio (ORR), which is defined as fluorescence intensity ratio between NADH and FAD, and indicates the metabolism change with the cancer development. The ORRs of normal tissues are consistently higher than those of precancer or cancerous tissues. A criterion line of ORR at 5.0 can be used to discriminate cervical precancer/cancer from normal tissues. The sensitivity and specificity of the native fluorescence spectroscopy method for cervical cancer diagnosis are determined as 100% and 91%. Moreover, the native fluorescence spectroscopy study is much more sensitive on the healthy region of cervical precancer/cancer patients compared with the traditional clinical staining method. The results suggest label-free imaging and spectroscopy is a fast, highly sensitive and specific method on the detection of cervical cancer. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Abnormalities in the basement membrane structure promote basal keratinocytes in the epidermis of hypertrophic scars to adopt a proliferative phenotype.

    PubMed

    Yang, Shaowei; Sun, Yexiao; Geng, Zhijun; Ma, Kui; Sun, Xiaoyan; Fu, Xiaobing

    2016-05-01

    The majority of studies on scar formation have mainly focused on the dermis and little is known of the involvement of the epidermis. Previous research has demonstrated that the scar tissue-derived keratinocytes are different from normal cells at both the genetic and cell biological levels; however, the mechanisms responsible for the fundamental abnormalities in keratinocytes during scar development remain elusive. For this purpose, in this study, we used normal, wound edge and hypertrophic scar tissue to examine the morphological changes which occur during epidermal regeneration as part of the wound healing process and found that the histological structure of hypertrophic scar tissues differed from that of normal skin, with a significant increase in epidermal thickness. Notably, staining of the basement membrane (BM) appeared to be absent in the scar tissues. Moreover, immunofluorescence staining for cytokeratin (CK)10, CK14, CK5, CK19 and integrin-β1 indicated the differential expression of cell markers in the epidermal keratinocytes among the normal, wound edge and hypertrophic scar tissues, which corresponded with the altered BM structures. By using a panel of proteins associated with BM components, we validated our hypothesis that the BM plays a significant role in regulating the cell fate decision of epidermal keratinocytes during skin wound healing. Alterations in the structure of the BM promote basal keratinocytes to adopt a proliferative phenotype both in vivo and in vitro.

  5. Abnormalities in the basement membrane structure promote basal keratinocytes in the epidermis of hypertrophic scars to adopt a proliferative phenotype

    PubMed Central

    YANG, SHAOWEI; SUN, YEXIAO; GENG, ZHIJUN; MA, KUI; SUN, XIAOYAN; FU, XIAOBING

    2016-01-01

    The majority of studies on scar formation have mainly focused on the dermis and little is known of the involvement of the epidermis. Previous research has demonstrated that the scar tissue-derived keratinocytes are different from normal cells at both the genetic and cell biological levels; however, the mechanisms responsible for the fundamental abnormalities in keratinocytes during scar development remain elusive. For this purpose, in this study, we used normal, wound edge and hypertrophic scar tissue to examine the morphological changes which occur during epidermal regeneration as part of the wound healing process and found that the histological structure of hypertrophic scar tissues differed from that of normal skin, with a significant increase in epidermal thickness. Notably, staining of the basement membrane (BM) appeared to be absent in the scar tissues. Moreover, immunofluorescence staining for cytokeratin (CK)10, CK14, CK5, CK19 and integrin-β1 indicated the differential expression of cell markers in the epidermal keratinocytes among the normal, wound edge and hypertrophic scar tissues, which corresponded with the altered BM structures. By using a panel of proteins associated with BM components, we validated our hypothesis that the BM plays a significant role in regulating the cell fate decision of epidermal keratinocytes during skin wound healing. Alterations in the structure of the BM promote basal keratinocytes to adopt a proliferative phenotype both in vivo and in vitro. PMID:26986690

  6. RUNX3 methylation in normal surrounding urothelium of patients with non-muscle-invasive bladder cancer: potential role in the prediction of tumor progression.

    PubMed

    Jeong, P; Min, B D; Ha, Y S; Song, P H; Kim, I Y; Ryu, K H; Kim, J H; Yun, S J; Kim, W J

    2012-11-01

    Previously, we reported a causal relationship between RUNX3 methylation and bladder tumor development. Thus, in order to clarify its role in tumorigenesis, this study aims to identify the function of RUNX3 methylation in normal adjacent urothelium of patients with non-muscle invasive bladder cancer (NMIBC). Tumor tissue and donor-matched normal adjacent tissue from 55 patients who underwent transurethral resection (TUR) were selected for the study, and RUNX3 promoter methylation was assessed using methylation-specific polymerase chain reaction (MS-PCR). RUNX3 promoter methylation occurred more frequently in tumor samples than in histologically normal urothelium in patients with NMIBC (P = 0.02). The methylation rates for the RUNX3 promoter in normal adjacent urothelium and tumor tissue were 47% and 69%, respectively. Interestingly, RUNX3 methylation in normal adjacent urothelium was associated with tumor number (P = 0.022) and progression (P = 0.035). Kaplan-Meier estimates revealed that RUNX3 methylation in normal urothelium showed a significant association with time to progression (P = 0.017) in NMIBC patients. Stratifying the patients into 'both methylation', 'one methylation' and 'no methylation' groups for tumors and normal urothelium revealed that no progression occurred in the 'no methylation' group during follow-up. Multivariate Cox regression analysis demonstrated that RUNX3 methylation in normal urothelium [hazards ratio (HR): 5.692, P = 0.042] was an independent predictor of progression. RUNX3 methylation was associated with transition from normal urothelium to bladder tumor. More importantly, RUNX3 methylation in normal adjacent urothelium may predict progression in NMIBC patients who have undergone TUR. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Implementation of nanoparticles in therapeutic radiation oncology

    NASA Astrophysics Data System (ADS)

    Beeler, Erik; Gabani, Prashant; Singh, Om V.

    2017-05-01

    Development and progress of cancer is a very complex disease process to comprehend because of the multiple changes in cellular physiology, pathology, and pathophysiology resulting from the numerous genetic changes from which cancer originates. As a result, most common treatments are not directed at the molecular level but rather at the tissue level. While personalized care is becoming an increasingly aim, the most common cancer treatments are restricted to chemotherapy, radiation, and surgery, each of which has a high likelihood of resulting in rather severe adverse side effects. For example, currently used radiation therapy does not discriminate between normal and cancerous cells and greatly relies on the external targeting of the radiation beams to specific cells and organs. Because of this, there is an immediate need for the development of new and innovative technologies that help to differentiate tumor cells and micrometastases from normal cells and facilitate the complete destruction of those cells. Recent advancements in nanoscience and nanotechnology have paved a way for the development of nanoparticles (NPs) as multifunctional carriers to deliver therapeutic radioisotopes for tumor targeted radiation therapy, to monitor their delivery, and improve the therapeutic index of radiation and tumor response to the treatment. The application of NPs in radiation therapy has aimed to improve outcomes in radiation therapy by increasing therapeutic effect in tumors and reducing toxicity on normal tissues. Because NPs possess unique properties, such as preferential accumulation in tumors and minimal uptake in normal tissues, it makes them ideal for the delivery of radiotherapy. This review provides an overview of the recent development of NPs for carrying and delivering therapeutic radioisotopes for systemic radiation treatment for a variety of cancers in radiation oncology.

  8. Time-resolved laser-induced fluorescence spectroscopy as a diagnostic instrument in head and neck carcinoma.

    PubMed

    Meier, Jeremy D; Xie, Hongtao; Sun, Yang; Sun, Yinghua; Hatami, Nisa; Poirier, Brian; Marcu, Laura; Farwell, D Gregory

    2010-06-01

    The objectives of this study were to 1) determine differences in lifetime fluorescence between normal and malignant tissue of the upper aerodigestive tract, and 2) evaluate the potential of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as a diagnostic instrument for head and neck squamous cell carcinoma (HNSCC). Cross-sectional study. University-based medical center. Nine patients with suspected HNSCC were included. In the operating room, a nitrogen pulse laser (337 nm, 700-picosecond pulse width) was used to induce tissue autofluorescence of normal tissue and suspected malignant lesions. Spectral intensities and time-domain measurements were obtained and compared with the histopathology at each site. A total of 53 sites were measured. The fluorescence parameters that provided the most discrimination were determined. Differences in spectral intensities allowed for discrimination between malignant and normal tissue. The spectral intensity of malignant tissue was lower than that of normal tissue, and a shift of peak intensity to a longer wavelength was observed in the normalized spectrum of malignant tissue in the range of 360 to approximately 660 nm. Multiple time-resolved fluorescence parameters provided the best diagnostic discrimination between normal tissue and carcinoma, including average lifetimes (i.e., at 390 nm: 1.7 +/- 0.06 ns [not significant] for normal and 1.3 +/- 0.06 ns for tumor, P = 0.0025) and the second-order Laguerre expansion coefficient (LEC-2) (i.e., at 460 nm: 0.135 +/- 0.001 for normal and 0.155 +/- 0.007 for tumor, P < 0.05). These findings highlight some of the differences in lifetime fluorescence between normal and malignant tissue. TR-LIFS has potential as a noninvasive diagnostic technique for HNSCC. Copyright 2010 American Academy of Otolaryngology-Head and Neck Surgery Foundation. Published by Mosby, Inc. All rights reserved.

  9. Time-resolved laser-induced fluorescence spectroscopy as a diagnostic instrument in head and neck carcinoma

    PubMed Central

    Meier, Jeremy D.; Xie, Hongtao; Sun, Yang; Sun, Yinghua; Hatami, Nisa; Poirier, Brian; Marcu, Laura; Farwell, D. Gregory

    2011-01-01

    OBJECTIVE 1) Determine differences in lifetime fluorescence between normal and malignant tissue of the upper aerodigestive tract. 2) Evaluate the potential of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as a diagnostic instrument for head and neck squamous cell carcinoma (HNSCC). STUDY DESIGN Cross-sectional study. SETTING University-based medical center. SUBJECTS AND METHODS Nine patients with suspected HNSCC were included. In the operating room, a nitrogen pulse laser (337 nm, 700 ps pulse width) was used to induce tissue autofluorescence of normal tissue and suspected malignant lesions. Spectral intensities and time-domain measurements were obtained and compared to the histopathology at each site. A total of 53 sites were measured. The fluorescence parameters that provided the most discrimination were determined. RESULTS Differences in spectral intensities allowed for discrimination between malignant and normal tissue. The spectral intensity of malignant tissue was lower than the normal tissue, and a shift of peak intensity to a longer wavelength was observed in the normalized spectrum of malignant tissue in the range of 360~660 nm. Multiple time-resolved fluorescence parameters provided the best diagnostic discrimination between normal tissue and carcinoma, including average lifetimes (i.e., at 390 nm: 1.7±0.06 ns for normal and 1.3±0.06 ns for tumor, P=0.0025), and the Laguerre coefficients, LEC-2 (i.e., at 460 nm: 0.135±0.001 for normal and 0.155±0.007 for tumor, P<0.05). CONCLUSION These findings highlight some of the differences in lifetime fluorescence between normal and malignant tissue. TR-LIFS has potential as a non-invasive diagnostic technique for HNSCC. PMID:20493355

  10. Near-infrared Raman spectroscopy for estimating biochemical changes associated with different pathological conditions of cervix

    NASA Astrophysics Data System (ADS)

    Daniel, Amuthachelvi; Prakasarao, Aruna; Ganesan, Singaravelu

    2018-02-01

    The molecular level changes associated with oncogenesis precede the morphological changes in cells and tissues. Hence molecular level diagnosis would promote early diagnosis of the disease. Raman spectroscopy is capable of providing specific spectral signature of various biomolecules present in the cells and tissues under various pathological conditions. The aim of this work is to develop a non-linear multi-class statistical methodology for discrimination of normal, neoplastic and malignant cells/tissues. The tissues were classified as normal, pre-malignant and malignant by employing Principal Component Analysis followed by Artificial Neural Network (PC-ANN). The overall accuracy achieved was 99%. Further, to get an insight into the quantitative biochemical composition of the normal, neoplastic and malignant tissues, a linear combination of the major biochemicals by non-negative least squares technique was fit to the measured Raman spectra of the tissues. This technique confirms the changes in the major biomolecules such as lipids, nucleic acids, actin, glycogen and collagen associated with the different pathological conditions. To study the efficacy of this technique in comparison with histopathology, we have utilized Principal Component followed by Linear Discriminant Analysis (PC-LDA) to discriminate the well differentiated, moderately differentiated and poorly differentiated squamous cell carcinoma with an accuracy of 94.0%. And the results demonstrated that Raman spectroscopy has the potential to complement the good old technique of histopathology.

  11. Electrical conductivity measurement of excised human metastatic liver tumours before and after thermal ablation.

    PubMed

    Haemmerich, Dieter; Schutt, David J; Wright, Andrew W; Webster, John G; Mahvi, David M

    2009-05-01

    We measured the ex vivo electrical conductivity of eight human metastatic liver tumours and six normal liver tissue samples from six patients using the four electrode method over the frequency range 10 Hz to 1 MHz. In addition, in a single patient we measured the electrical conductivity before and after the thermal ablation of normal and tumour tissue. The average conductivity of tumour tissue was significantly higher than normal tissue over the entire frequency range (from 4.11 versus 0.75 mS cm(-1) at 10 Hz, to 5.33 versus 2.88 mS cm(-1) at 1 MHz). We found no significant correlation between tumour size and measured electrical conductivity. While before ablation tumour tissue had considerably higher conductivity than normal tissue, the two had similar conductivity throughout the frequency range after ablation. Tumour tissue conductivity changed by +25% and -7% at 10 Hz and 1 MHz after ablation (0.23-0.29 at 10 Hz, and 0.43-0.40 at 1 MHz), while normal tissue conductivity increased by +270% and +10% at 10 Hz and 1 MHz (0.09-0.32 at 10 Hz and 0.37-0.41 at 1 MHz). These data can potentially be used to differentiate tumour from normal tissue diagnostically.

  12. Imaging-guided two-photon excitation-emission-matrix measurements of human skin tissues

    NASA Astrophysics Data System (ADS)

    Yu, Yingqiu; Lee, Anthony M. D.; Wang, Hequn; Tang, Shuo; Zhao, Jianhua; Lui, Harvey; Zeng, Haishan

    2012-07-01

    There are increased interests on using multiphoton imaging and spectroscopy for skin tissue characterization and diagnosis. However, most studies have been done with just a few excitation wavelengths. Our objective is to perform a systematic study of the two-photon fluorescence (TPF) properties of skin fluorophores, normal skin, and diseased skin tissues. A nonlinear excitation-emission-matrix (EEM) spectroscopy system with multiphoton imaging guidance was constructed. A tunable femtosecond laser was used to vary excitation wavelengths from 730 to 920 nm for EEM data acquisition. EEM measurements were performed on excised fresh normal skin tissues, seborrheic keratosis tissue samples, and skin fluorophores including: NADH, FAD, keratin, melanin, collagen, and elastin. We found that in the stratum corneum and upper epidermis of normal skin, the cells have large sizes and the TPF originates from keratin. In the lower epidermis, cells are smaller and TPF is dominated by NADH contributions. In the dermis, TPF is dominated by elastin components. The depth resolved EEM measurements also demonstrated that keratin structure has intruded into the middle sublayers of the epidermal part of the seborrheic keratosis lesion. These results suggest that the imaging guided TPF EEM spectroscopy provides useful information for the development of multiphoton clinical devices for skin disease diagnosis.

  13. CT/FMT dual-model imaging of breast cancer based on peptide-lipid nanoparticles

    NASA Astrophysics Data System (ADS)

    Xu, Guoqiang; Lin, Qiaoya; Lian, Lichao; Qian, Yuan; Lu, Lisen; Zhang, Zhihong

    2016-03-01

    Breast cancer is one of the most harmful cancers in human. Its early diagnosis is expected to improve the patients' survival rate. X-ray computed tomography (CT) has been widely used in tumor detection for obtaining three-dimentional information. Fluorescence Molecular Tomography (FMT) imaging combined with near-infrared fluorescent dyes provides a powerful tool for the acquisition of molecular biodistribution information in deep tissues. Thus, the combination of CT and FMT imaging modalities allows us to better differentiate diseased tissues from normal tissues. Here we developed a tumor-targeting nanoparticle for dual-modality imaging based on a biocompatible HDL-mimicking peptide-phospholipid scaffold (HPPS) nanocarrier. By incorporation of CT contrast agents (iodinated oil) and far-infrared fluorescent dyes (DiR-BOA) into the hydrophobic core of HPPS, we obtained the FMT and CT signals simultaneously. Increased accumulation of the nanoparticles in the tumor lesions was achieved through the effect of the tumor-targeting peptide on the surface of nanoparticle. It resulted in excellent contrast between lesions and normal tissues. Together, the abilities to sensitively separate the lesions from adjacent normal tissues with the aid of a FMT/CT dual-model imaging approach make the targeting nanoparticles a useful tool for the diagnostics of breast cancer.

  14. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature

    PubMed Central

    Zhu, Xingjun; Feng, Wei; Chang, Jian; Tan, Yan-Wen; Li, Jiachang; Chen, Min; Sun, Yun; Li, Fuyou

    2016-01-01

    Photothermal therapy (PTT) at present, following the temperature definition for conventional thermal therapy, usually keeps the temperature of lesions at 42–45 °C or even higher. Such high temperature kills cancer cells but also increases the damage of normal tissues near lesions through heat conduction and thus brings about more side effects and inhibits therapeutic accuracy. Here we use temperature-feedback upconversion nanoparticle combined with photothermal material for real-time monitoring of microscopic temperature in PTT. We observe that microscopic temperature of photothermal material upon illumination is high enough to kill cancer cells when the temperature of lesions is still low enough to prevent damage to normal tissue. On the basis of the above phenomenon, we further realize high spatial resolution photothermal ablation of labelled tumour with minimal damage to normal tissues in vivo. Our work points to a method for investigating photothermal properties at nanoscale, and for the development of new generation of PTT strategy. PMID:26842674

  15. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature.

    PubMed

    Zhu, Xingjun; Feng, Wei; Chang, Jian; Tan, Yan-Wen; Li, Jiachang; Chen, Min; Sun, Yun; Li, Fuyou

    2016-02-04

    Photothermal therapy (PTT) at present, following the temperature definition for conventional thermal therapy, usually keeps the temperature of lesions at 42-45 °C or even higher. Such high temperature kills cancer cells but also increases the damage of normal tissues near lesions through heat conduction and thus brings about more side effects and inhibits therapeutic accuracy. Here we use temperature-feedback upconversion nanoparticle combined with photothermal material for real-time monitoring of microscopic temperature in PTT. We observe that microscopic temperature of photothermal material upon illumination is high enough to kill cancer cells when the temperature of lesions is still low enough to prevent damage to normal tissue. On the basis of the above phenomenon, we further realize high spatial resolution photothermal ablation of labelled tumour with minimal damage to normal tissues in vivo. Our work points to a method for investigating photothermal properties at nanoscale, and for the development of new generation of PTT strategy.

  16. Glycomics expression analysis of sulfated glycosaminoglycans of human colorectal cancer tissues and non-neoplastic mucosa by electrospray ionization mass spectrometry.

    PubMed

    Marolla, Ana Paula Cleto; Waisberg, Jaques; Saba, Gabriela Tognini; Waisberg, Daniel Reis; Margeotto, Fernando Beani; Pinhal, Maria Aparecida da Silva

    2015-01-01

    To determine the presence of glycosaminoglycans in the extracellular matrix of connective tissue from neoplastic and non-neoplastic colorectal tissues, since it has a central role in tumor development and progression. Tissue samples from neoplastic and non-neoplastic colorectal tissues were obtained from 64 operated patients who had colorectal carcinoma with no distant metastases. Expressions of heparan sulphate, chondroitin sulphate, dermatan sulphate and their fragments were analyzed by electrospray ionization mass spectrometry, with the technique for extraction and quantification of glycosaminoglycans after proteolysis and electrophoresis. The statistical analysis included mean, standard deviation, and Student'st test. The glycosaminoglycans extracted from colorectal tissue showed three electrophoretic bands in agarose gel. Electrospray ionization mass spectrometry showed characteristic disaccharide fragments from glycosaminoglycans, indicating their structural characterization in the tissues analyzed. Some peaks in the electrospray ionization mass spectrometry were not characterized as fragments of sugars, indicating the presence of fragments of the protein structure of proteoglycans generated during the glycosaminoglycan purification. The average amount of chondroitin and dermatan increased in the neoplastic tissue compared to normal tissue (p=0.01). On the other hand, the average amount of heparan decreased in the neoplastic tissue compared to normal tissue (p= 0.03). The method allowed the determination of the glycosaminoglycans structural profile in colorectal tissue from neoplastic and non-neoplastic colorectal tissue. Neoplastic tissues showed greater amounts of chondroitin sulphate and dermatan sulphate compared to non-neoplastic tissues, while heparan sulphate was decreased in neoplastic tissues.

  17. Nonnegative constraint analysis of key fluorophores within human breast cancer using native fluorescence spectroscopy excited by selective wavelength of 300 nm

    NASA Astrophysics Data System (ADS)

    Pu, Yang; Sordillo, Laura A.; Alfano, Robert R.

    2015-03-01

    Native fluorescence spectroscopy offers an important role in cancer discrimination. It is widely acknowledged that the emission spectrum of tissue is a superposition of spectra of various salient fluorophores. In this study, the native fluorescence spectra of human cancerous and normal breast tissues excited by selected wavelength of 300 nm are used to investigate the key building block fluorophores: tryptophan and reduced nicotinamide adenine dinucleotide (NADH). The basis spectra of these key fluorophores' contribution to the tissue emission spectra are obtained by nonnegative constraint analysis. The emission spectra of human cancerous and normal tissue samples are projected onto the fluorophore spectral subspace. Since previous studies indicate that tryptophan and NADH are key fluorophores related with tumor evolution, it is essential to obtain their information from tissue fluorescence but discard the redundancy. To evaluate the efficacy of for cancer detection, linear discriminant analysis (LDA) classifier is used to evaluate the sensitivity, and specificity. This research demonstrates that the native fluorescence spectroscopy measurements are effective to detect changes of fluorophores' compositions in tissues due to the development of cancer.

  18. Pseudogynecomastia secondary to injection of heroin into breast tissue.

    PubMed

    Carlson, R H; Velez, R; Rivlin, R S

    1978-03-01

    A 50-year-old man who has a heroin addict developed bilateral, symmetrical swelling of the breasts as a result of injecting himself directly into the breasts for several years. Results of histologic examination of the breast tissue showed granulomatous inflammation and a foreign body reaction without gynecomastia or tumor. Liver and endocrine functions were generally normal.

  19. Fluid mechanics as a driver of tissue-scale mechanical signaling in organogenesis.

    PubMed

    Gilbert, Rachel M; Morgan, Joshua T; Marcin, Elizabeth S; Gleghorn, Jason P

    2016-12-01

    Organogenesis is the process during development by which cells self-assemble into complex, multi-scale tissues. Whereas significant focus and research effort has demonstrated the importance of solid mechanics in organogenesis, less attention has been given to the fluid forces that provide mechanical cues over tissue length scales. Fluid motion and pressure is capable of creating spatial gradients of forces acting on cells, thus eliciting distinct and localized signaling patterns essential for proper organ formation. Understanding the multi-scale nature of the mechanics is critically important to decipher how mechanical signals sculpt developing organs. This review outlines various mechanisms by which tissues generate, regulate, and sense fluid forces and highlights the impact of these forces and mechanisms in case studies of normal and pathological development.

  20. Microarray expression profiling in adhesion and normal peritoneal tissues.

    PubMed

    Ambler, Dana R; Golden, Alicia M; Gell, Jennifer S; Saed, Ghassan M; Carey, David J; Diamond, Michael P

    2012-05-01

    To identify molecular markers associated with adhesion and normal peritoneal tissue using microarray expression profiling. Comparative study. University hospital. Five premenopausal women. Adhesion and normal peritoneal tissue samples were obtained from premenopausal women. Ribonucleic acid was extracted using standard protocols and processed for hybridization to Affymetrix Whole Transcript Human Gene Expression Chips. Microarray data were obtained from five different patients, each with adhesion tissue and normal peritoneal samples. Real-time polymerase chain reaction was performed for confirmation using standard protocols. Gene expression in postoperative adhesion and normal peritoneal tissues. A total of 1,263 genes were differentially expressed between adhesion and normal tissues. One hundred seventy-three genes were found to be up-regulated and 56 genes were down-regulated in the adhesion tissues compared with normal peritoneal tissues. The genes were sorted into functional categories according to Gene Ontology annotations. Twenty-six up-regulated genes and 11 down-regulated genes were identified with functions potentially relevant to the pathophysiology of postoperative adhesions. We evaluated and confirmed expression of 12 of these specific genes via polymerase chain reaction. The pathogenesis, natural history, and optimal treatment of postoperative adhesive disease remains unanswered. Microarray analysis of adhesions identified specific genes with increased and decreased expression when compared with normal peritoneum. Knowledge of these genes and ontologic pathways with altered expression provide targets for new therapies to treat patients who have or are at risk for postoperative adhesions. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  1. Functional pitch of a liver: fatty liver disease diagnosis with photoacoustic spectrum analysis

    NASA Astrophysics Data System (ADS)

    Xu, Guan; Meng, Zhuoxian; Lin, Jiandie; Carson, Paul; Wang, Xueding

    2014-03-01

    To provide more information for classification and assessment of biological tissues, photoacoustic spectrum analysis (PASA) moves beyond the quantification of the intensities of the photoacoustic (PA) signals by the use of the frequency-domain power distribution, namely power spectrum, of broadband PA signals. The method of PASA quantifies the linear-fit to the power spectrum of the PA signals from a biological tissue with 3 parameters, including intercept, midband-fit and slope. Intercept and midband-fit reflect the total optical absorption of the tissues whereas slope reflects the heterogeneity of the tissue structure. Taking advantage of the optical absorption contrasts contributed by lipid and blood at 1200 and 532 nm, respectively and the heterogeneous tissue microstructure in fatty liver due to the lipid infiltration, we investigate the capability of PASA in identifying histological changes of fatty livers in mouse model. 6 and 9 pairs of normal and fatty liver tissues from rat models were examined by ex vivo experiment with a conventional rotational PA measurement system. One pair of rat models with normal and fatty livers was examined non-invasively and in situ with our recently developed ultrasound and PA parallel imaging system. The results support our hypotheses that the spectrum analysis of PA signals can provide quantitative measures of the differences between the normal and fatty liver tissues and that part of the PA power spectrum can suffice for characterization of microstructures in biological tissues. Experimental results also indicate that the vibrational absorption peak of lipid at 1200nm could facilitate fatty liver diagnosis.

  2. Effects of Supplemental Vitamin D and Calcium on Normal Colon Tissue and Circulating Biomarkers of Risk for Colorectal Neoplasms

    PubMed Central

    Bostick, Roberd M.

    2015-01-01

    This brief review, based on an invited presentation at the 17th Workshop on Vitamin D, is to summarize a line of the author’s research that has been directed at the intertwined missions of clarifying and/or developing vitamin D and calcium and as preventive agents against colorectal cancer in humans, understanding the mechanisms by which these agents may reduce risk for the disease, and developing ‘treatable’ biomarkers of risk for colorectal cancer. The biological plausibility and observational and clinical trial evidence for vitamin D and calcium in reducing risk for colorectal neoplasms, the development of pre-neoplastic biomarkers of risk for colorectal neoplasms, and the clinical trial findings from the author’s research group on the efficacy of vitamin D and calcium in modulating these biomarkers are summarized. Regarding the latter, we tested the efficacy of 800 IU (20 µg) of vitamin D3 and 2.0g of calcium daily, alone and combined vs. placebo over 6 months on modulating normal colon tissue and circulating hypothesis-based biomarkers of risk for colorectal neoplasms in a randomized, double-blind, placebo-controlled, 2×2 factorial design clinical trial (n = 92). The tissue-based biomarkers were measured in biopsies of normal-appearing rectal mucosa using immunohistochemistry with quantitative image analysis, and a panel of circulating inflammation markers was measured using enzyme-linked immunoassays (ELISA). Statistically significant proportional tissue increases in the vitamin D group relative to the placebo group were found in bax (51%), p21 (141%), APC (48%), E-cadherin (78%), MSH2 (179%), the CaSR (39%), and CYP27B1 (159%). In blood, there was a 77% statistically significant decrease in a summary inflammation z-score. The findings for calcium were similar to those for vitamin D. These findings indicate that supplemental vitamin D3 or calcium can favorably modulate multiple normal colon tissue and circulating hypothesis-based biomarkers of risk for colorectal neoplasms in sporadic colorectal adenoma patients. PMID:25597952

  3. Effects of supplemental vitamin D and calcium on normal colon tissue and circulating biomarkers of risk for colorectal neoplasms.

    PubMed

    Bostick, Roberd M

    2015-04-01

    This brief review, based on an invited presentation at the 17th Workshop on Vitamin D, is to summarize a line of the author's research that has been directed at the intertwined missions of clarifying and/or developing vitamin D and calcium as preventive agents against colorectal cancer in humans, understanding the mechanisms by which these agents may reduce risk for the disease, and developing 'treatable' biomarkers of risk for colorectal cancer. The biological plausibility and observational and clinical trial evidence for vitamin D and calcium in reducing risk for colorectal neoplasms, the development of pre-neoplastic biomarkers of risk for colorectal neoplasms, and the clinical trial findings from the author's research group on the efficacy of vitamin D and calcium in modulating these biomarkers are summarized. Regarding the latter, we tested the efficacy of 800 IU (20μg) of vitamin D3 and 2.0g of calcium daily, alone and combined vs. placebo over 6 months on modulating normal colon tissue and circulating hypothesis-based biomarkers of risk for colorectal neoplasms in a randomized, double-blind, placebo-controlled, 2×2 factorial design clinical trial (n=92). The tissue-based biomarkers were measured in biopsies of normal-appearing rectal mucosa using immunohistochemistry with quantitative image analysis, and a panel of circulating inflammation markers was measured using enzyme-linked immunoassays (ELISA). Statistically significant proportional tissue increases in the vitamin D group relative to the placebo group were found in bax (51%), p21 (141%), APC (48%), E-cadherin (78%), MSH2 (179%), the CaSR (39%), and CYP27B1 (159%). In blood, there was a 77% statistically significant decrease in a summary inflammation z-score. The findings for calcium were similar to those for vitamin D. These findings indicate that supplemental vitamin D3 or calcium can favorably modulate multiple normal colon tissue and circulating hypothesis-based biomarkers of risk for colorectal neoplasms in sporadic colorectal adenoma patients. This article is part of a Special Issue entitled '17th Vitamin D Workshop'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. In Vivo Stable Transduction of Humanized Liver Tissue in Chimeric Mice via High-Capacity Adenovirus–Lentivirus Hybrid Vector

    PubMed Central

    Kataoka, Miho; Tateno, Chise; Yoshizato, Katsutoshi; Kawasaki, Yoshiko; Kimura, Takahiro; Faure-Kumar, Emmanuelle; Palmer, Donna J.; Ng, Philip; Okamura, Haruki; Kasahara, Noriyuki

    2010-01-01

    Abstract We developed hybrid vectors employing high-capacity adenovirus as a first-stage carrier encoding all the components required for in situ production of a second-stage lentivirus, thereby achieving stable transgene expression in secondary target cells. Such vectors have never previously been tested in normal tissues, because of the scarcity of suitable in vivo systems permissive for second-stage lentivirus assembly. Here we employed a novel murine model in which endogenous liver tissue is extensively reconstituted with engrafted human hepatocytes, and successfully achieved stable transduction by the second-stage lentivirus produced in situ from first-stage adenovirus. This represents the first demonstration of the functionality of adenoviral-lentiviral hybrid vectors in a normal parenchymal organ in vivo. PMID:19725756

  5. Remote skin tissue diagnostics in vivo by fiber optic evanescent wave Fourier transform infrared (FEW-FTIR) spectroscopy

    NASA Astrophysics Data System (ADS)

    Afanasyeva, Natalia I.; Kolyakov, Sergei F.; Butvina, Leonid N.

    1998-04-01

    The new method of fiber-optical evanescent wave Fourier transform IR (FEW-FTIR) spectroscopy has been applied to the diagnostics of normal tissue, as well as precancerous and cancerous conditions. The FEW-FTIR technique is nondestructive and sensitive to changes of vibrational spectra in the IR region, without heating and damaging human and animal skin tissue. Therefore this method and technique is an ideal diagnostic tool for tumor and cancer characterization at an early stage of development on a molecular level. The application of fiber optic technology in the middle IR region is relatively inexpensive and can be adapted easily to any commercially available tabletop FTIR spectrometers. This method of diagnostics is fast, remote, and can be applied to many fields Noninvasive medical diagnostics of skin cancer and other skin diseases in vivo, ex vivo, and in vitro allow for the development convenient, remote clinical applications in dermatology and related fields. The spectral variations from normal to pathological skin tissue and environmental influence on skin have been measured and assigned in the regions of 850-4000 cm-1. The lipid structure changes are discussed. We are able to develop the spectral histopathology as a fast and informative tool of analysis.

  6. Mapping the cellular and molecular heterogeneity of normal and malignant breast tissues and cultured cell lines

    PubMed Central

    2010-01-01

    Introduction Normal and neoplastic breast tissues are comprised of heterogeneous populations of epithelial cells exhibiting various degrees of maturation and differentiation. While cultured cell lines have been derived from both normal and malignant tissues, it remains unclear to what extent they retain similar levels of differentiation and heterogeneity as that found within breast tissues. Methods We used 12 reduction mammoplasty tissues, 15 primary breast cancer tissues, and 20 human breast epithelial cell lines (16 cancer lines, 4 normal lines) to perform flow cytometry for CD44, CD24, epithelial cell adhesion molecule (EpCAM), and CD49f expression, as well as immunohistochemistry, and in vivo tumor xenograft formation studies to extensively analyze the molecular and cellular characteristics of breast epithelial cell lineages. Results Human breast tissues contain four distinguishable epithelial differentiation states (two luminal phenotypes and two basal phenotypes) that differ on the basis of CD24, EpCAM and CD49f expression. Primary human breast cancer tissues also contain these four cellular states, but in altered proportions compared to normal tissues. In contrast, cultured cancer cell lines are enriched for rare basal and mesenchymal epithelial phenotypes, which are normally present in small numbers within human tissues. Similarly, cultured normal human mammary epithelial cell lines are enriched for rare basal and mesenchymal phenotypes that represent a minor fraction of cells within reduction mammoplasty tissues. Furthermore, although normal human mammary epithelial cell lines exhibit features of bi-potent progenitor cells they are unable to differentiate into mature luminal breast epithelial cells under standard culture conditions. Conclusions As a group breast cancer cell lines represent the heterogeneity of human breast tumors, but individually they exhibit increased lineage-restricted profiles that fall short of truly representing the intratumoral heterogeneity of individual breast tumors. Additionally, normal human mammary epithelial cell lines fail to retain much of the cellular diversity found in human breast tissues and are enriched for differentiation states that are a minority in breast tissues, although they do exhibit features of bi-potent basal progenitor cells. These findings suggest that collections of cell lines representing multiple cell types can be used to model the cellular heterogeneity of tissues. PMID:20964822

  7. Aluminum concentrations in central and peripheral areas of malignant breast lesions do not differ from those in normal breast tissues

    PubMed Central

    2013-01-01

    Background Aluminum is used in a wide range of applications and is a potential environmental hazard. The known genotoxic effects of aluminum might play a role in the development of breast cancer. However, the data currently available on the subject are not sufficient to establish a causal relationship between aluminum exposure and the augmented risk of developing breast cancer. To achieve maximum sensitivity and specificity in the determination of aluminum levels, we have developed a detection protocol using graphite furnace atomic absorption spectrometry (GFAAS). The objective of the present study was to compare the aluminum levels in the central and peripheral areas of breast carcinomas with those in the adjacent normal breast tissues, and to identify patient and/or tumor characteristics associated with these aluminum levels. Methods A total of 176 patients with breast cancer were included in the study. Samples from the central and peripheral areas of their tumors were obtained, as well as from the surrounding normal breast tissue. Aluminum quantification was performed using GFAAS. Results The average (mean ± SD) aluminum concentrations were as follows: central area, 1.88 ± 3.60 mg/kg; peripheral area, 2.10 ± 5.67 mg/kg; and normal area, 1.68 ± 11.1 mg/kg. Overall and two-by-two comparisons of the aluminum concentrations in these areas indicated no significant differences. We detected a positive relationship between aluminum levels in the peripheral areas of the tumors, age and menopausal status of the patients (P = .02). Conclusions Using a sensitive quantification technique we detected similar aluminum concentrations in the central and peripheral regions of breast tumors, and in normal tissues. In addition, we did not detect significant differences in aluminum concentrations as related to the location of the breast tumor within the breast, or to other relevant tumor features such as stage, size and steroid receptor status. The next logical step is the assessment of whether the aluminum concentration is related to the key genomic abnormalities associated with breast carcinogenesis. PMID:23496847

  8. Aluminum concentrations in central and peripheral areas of malignant breast lesions do not differ from those in normal breast tissues.

    PubMed

    Rodrigues-Peres, Raquel Mary; Cadore, Solange; Febraio, Stefanny; Heinrich, Juliana Karina; Serra, Katia Piton; Derchain, Sophie F M; Vassallo, Jose; Sarian, Luis Otavio

    2013-03-08

    Aluminum is used in a wide range of applications and is a potential environmental hazard. The known genotoxic effects of aluminum might play a role in the development of breast cancer. However, the data currently available on the subject are not sufficient to establish a causal relationship between aluminum exposure and the augmented risk of developing breast cancer. To achieve maximum sensitivity and specificity in the determination of aluminum levels, we have developed a detection protocol using graphite furnace atomic absorption spectrometry (GFAAS). The objective of the present study was to compare the aluminum levels in the central and peripheral areas of breast carcinomas with those in the adjacent normal breast tissues, and to identify patient and/or tumor characteristics associated with these aluminum levels. A total of 176 patients with breast cancer were included in the study. Samples from the central and peripheral areas of their tumors were obtained, as well as from the surrounding normal breast tissue. Aluminum quantification was performed using GFAAS. The average (mean ± SD) aluminum concentrations were as follows: central area, 1.88 ± 3.60 mg/kg; peripheral area, 2.10 ± 5.67 mg/kg; and normal area, 1.68 ± 11.1 mg/kg. Overall and two-by-two comparisons of the aluminum concentrations in these areas indicated no significant differences. We detected a positive relationship between aluminum levels in the peripheral areas of the tumors, age and menopausal status of the patients (P = .02). Using a sensitive quantification technique we detected similar aluminum concentrations in the central and peripheral regions of breast tumors, and in normal tissues. In addition, we did not detect significant differences in aluminum concentrations as related to the location of the breast tumor within the breast, or to other relevant tumor features such as stage, size and steroid receptor status. The next logical step is the assessment of whether the aluminum concentration is related to the key genomic abnormalities associated with breast carcinogenesis.

  9. Problems and potentialities of cultured plant cells in retrospect and prospect

    NASA Technical Reports Server (NTRS)

    Steward, F. C.; Krikorian, A. D.

    1979-01-01

    The past, present and expected future accomplishments and limitations of plant cell and tissue culture are reviewed. Consideration is given to the pioneering insights of Haberlandt in 1902, the development of culture techniques, and past work on cell division, cell and tissue growth and development, somatic embryogenesis, and metabolism and respiration. Current activity in culture media and technique development for plant regions, organs, tissues, cells, protoplasts, organelles and embryos, totipotency, somatic embryogenesis and clonal propagation under normal and space conditions, biochemical potentialities, and genetic engineering is surveyed. Prospects for the investigation of the induced control of somatic cell division, the division of isolated protoplasts, the improvement of haploid cell cultures, liquid cultures for somatic embryogenesis, and the genetic control of development are outlined.

  10. Maternal transfer of methimazole and effects on thyroid hormone availability in embryonic tissues.

    PubMed

    Van Herck, Stijn L J; Geysens, Stijn; Bald, Edward; Chwatko, Grazyna; Delezie, Evelyne; Dianati, Elham; Ahmed, R G; Darras, Veerle M

    2013-07-01

    Methimazole (MMI) is an anti-thyroid drug used in the treatment of chronic hyperthyroidism. There is, however, some debate about its use during pregnancy as MMI is known to cross the mammalian placenta and reach the developing foetus. A similar problem occurs in birds, where MMI is deposited in the egg and taken up by the developing embryo. To investigate whether maternally derived MMI can have detrimental effects on embryonic development, we treated laying hens with MMI (0.03% in drinking water) and measured total and reduced MMI contents in the tissues of hens and embryos at different stages of development. In hens, MMI was selectively increased in the thyroid gland, while its levels in the liver and especially brain remained relatively low. Long-term MMI treatment induced a pronounced goitre with a decrease in thyroxine (T₄) content but an increase in thyroidal 3,5,3'-triiodothyronine (T₃) content. This resulted in normal T₃ levels in tissues except in the brain. In chicken embryos, MMI levels were similar in the liver and brain. They gradually decreased during development but always remained above those in the corresponding maternal tissues. Contrary to the situation in hens, T₄ availability was only moderately affected in embryos. Peripheral T₃ levels were reduced in 14-day-old embryos but normal in 18-day-old embryos, while brain T₃ content was decreased at all embryonic stages tested. We conclude that all embryonic tissues are exposed to relatively high doses of MMI and its oxidised metabolites. The effect of maternal MMI treatment on embryonic thyroid hormone availability is most pronounced for brain T₃ content, which is reduced throughout the embryonic development period.

  11. Differences in microRNA expression during tumor development in the transition and peripheral zones of the prostate

    PubMed Central

    2013-01-01

    Background The prostate is divided into three glandular zones, the peripheral zone (PZ), the transition zone (TZ), and the central zone. Most prostate tumors arise in the peripheral zone (70-75%) and in the transition zone (20-25%) while only 10% arise in the central zone. The aim of this study was to investigate if differences in miRNA expression could be a possible explanation for the difference in propensity of tumors in the zones of the prostate. Methods Patients with prostate cancer were included in the study if they had a tumor with Gleason grade 3 in the PZ, the TZ, or both (n=16). Normal prostate tissue was collected from men undergoing cystoprostatectomy (n=20). The expression of 667 unique miRNAs was investigated using TaqMan low density arrays for miRNAs. Student’s t-test was used in order to identify differentially expressed miRNAs, followed by hierarchical clustering and principal component analysis (PCA) to study the separation of the tissues. The ADtree algorithm was used to identify markers for classification of tissues and a cross-validation procedure was used to test the generality of the identified miRNA-based classifiers. Results The t-tests revealed that the major differences in miRNA expression are found between normal and malignant tissues. Hierarchical clustering and PCA based on differentially expressed miRNAs between normal and malignant tissues showed perfect separation between samples, while the corresponding analyses based on differentially expressed miRNAs between the two zones showed several misplaced samples. A classification and cross-validation procedure confirmed these results and several potential miRNA markers were identified. Conclusions The results of this study indicate that the major differences in the transcription program are those arising during tumor development, rather than during normal tissue development. In addition, tumors arising in the TZ have more unique differentially expressed miRNAs compared to the PZ. The results also indicate that separate miRNA expression signatures for diagnosis might be needed for tumors arising in the different zones. MicroRNA signatures that are specific for PZ and TZ tumors could also lead to more accurate prognoses, since tumors arising in the PZ tend to be more aggressive than tumors arising in the TZ. PMID:23890084

  12. A computational framework to detect normal and tuberculosis infected lung from H and E-stained whole slide images

    NASA Astrophysics Data System (ADS)

    Niazi, M. Khalid Khan; Beamer, Gillian; Gurcan, Metin N.

    2017-03-01

    Accurate detection and quantification of normal lung tissue in the context of Mycobacterium tuberculosis infection is of interest from a biological perspective. The automatic detection and quantification of normal lung will allow the biologists to focus more intensely on regions of interest within normal and infected tissues. We present a computational framework to extract individual tissue sections from whole slide images having multiple tissue sections. It automatically detects the background, red blood cells and handwritten digits to bring efficiency as well as accuracy in quantification of tissue sections. For efficiency, we model our framework with logical and morphological operations as they can be performed in linear time. We further divide these individual tissue sections into normal and infected areas using deep neural network. The computational framework was trained on 60 whole slide images. The proposed computational framework resulted in an overall accuracy of 99.2% when extracting individual tissue sections from 120 whole slide images in the test dataset. The framework resulted in a relatively higher accuracy (99.7%) while classifying individual lung sections into normal and infected areas. Our preliminary findings suggest that the proposed framework has good agreement with biologists on how define normal and infected lung areas.

  13. Modeling and stress analyses of a normal foot-ankle and a prosthetic foot-ankle complex.

    PubMed

    Ozen, Mustafa; Sayman, Onur; Havitcioglu, Hasan

    2013-01-01

    Total ankle replacement (TAR) is a relatively new concept and is becoming more popular for treatment of ankle arthritis and fractures. Because of the high costs and difficulties of experimental studies, the developments of TAR prostheses are progressing very slowly. For this reason, the medical imaging techniques such as CT, and MR have become more and more useful. The finite element method (FEM) is a widely used technique to estimate the mechanical behaviors of materials and structures in engineering applications. FEM has also been increasingly applied to biomechanical analyses of human bones, tissues and organs, thanks to the development of both the computing capabilities and the medical imaging techniques. 3-D finite element models of the human foot and ankle from reconstruction of MR and CT images have been investigated by some authors. In this study, data of geometries (used in modeling) of a normal and a prosthetic foot and ankle were obtained from a 3D reconstruction of CT images. The segmentation software, MIMICS was used to generate the 3D images of the bony structures, soft tissues and components of prosthesis of normal and prosthetic ankle-foot complex. Except the spaces between the adjacent surface of the phalanges fused, metatarsals, cuneiforms, cuboid, navicular, talus and calcaneus bones, soft tissues and components of prosthesis were independently developed to form foot and ankle complex. SOLIDWORKS program was used to form the boundary surfaces of all model components and then the solid models were obtained from these boundary surfaces. Finite element analyses software, ABAQUS was used to perform the numerical stress analyses of these models for balanced standing position. Plantar pressure and von Mises stress distributions of the normal and prosthetic ankles were compared with each other. There was a peak pressure increase at the 4th metatarsal, first metatarsal and talus bones and a decrease at the intermediate cuneiform and calcaneus bones, in prosthetic ankle-foot complex compared to normal one. The predicted plantar pressures and von Misses stress distributions for a normal foot were consistent with other FE models given in the literature. The present study is aimed to open new approaches for the development of ankle prosthesis.

  14. Phase Contrast Microscopy Analysis of Breast Tissue

    PubMed Central

    Wells, Wendy A.; Wang, Xin; Daghlian, Charles P.; Paulsen, Keith D.; Pogue, Brian W.

    2010-01-01

    OBJECTIVE To assess how optical scatter properties in breast tissue, as measured by phase contrast microscopy and interpreted pathophysiologically, might be exploited as a diagnostic tool to differentiate cancer from benign tissue. STUDY DESIGN We evaluated frozen human breast tissue sections of adipose tissue, normal breast parenchyma, benign fibroadenoma tumors and noninvasive and invasive malignant cancers by phase contrast microscopy through quantification of grayscale values, using multiple regions of interest (ROI). Student’s t tests were performed on phase contrast measures across diagnostic categories testing data from individual cases; all ROI data were used as separate measures. RESULTS Stroma demonstrated significantly higher scatter intensity than did epithelium, with lower scattering in tumor-associated stroma as compared with normal or benign-associated stroma. Measures were comparable for invasive and noninvasive malignant tumors but were higher than those found in benign tumors and were lowest in adipose tissue. CONCLUSION Significant differences were found in scatter coefficient properties of epithelium and stroma across diagnostic categories of breast tissue, particularly between benign and malignant-associated stroma. Improved understanding of how scatter properties correlate with morphologic criteria used in routine pathologic diagnoses could have a significant clinical impact as developing optical technology allows macroscopic in situ phase contrast imaging. PMID:19736867

  15. Traction force microscopy of engineered cardiac tissues.

    PubMed

    Pasqualini, Francesco Silvio; Agarwal, Ashutosh; O'Connor, Blakely Bussie; Liu, Qihan; Sheehy, Sean P; Parker, Kevin Kit

    2018-01-01

    Cardiac tissue development and pathology have been shown to depend sensitively on microenvironmental mechanical factors, such as extracellular matrix stiffness, in both in vivo and in vitro systems. We present a novel quantitative approach to assess cardiac structure and function by extending the classical traction force microscopy technique to tissue-level preparations. Using this system, we investigated the relationship between contractile proficiency and metabolism in neonate rat ventricular myocytes (NRVM) cultured on gels with stiffness mimicking soft immature (1 kPa), normal healthy (13 kPa), and stiff diseased (90 kPa) cardiac microenvironments. We found that tissues engineered on the softest gels generated the least amount of stress and had the smallest work output. Conversely, cardiomyocytes in tissues engineered on healthy- and disease-mimicking gels generated significantly higher stresses, with the maximal contractile work measured in NRVM engineered on gels of normal stiffness. Interestingly, although tissues on soft gels exhibited poor stress generation and work production, their basal metabolic respiration rate was significantly more elevated than in other groups, suggesting a highly ineffective coupling between energy production and contractile work output. Our novel platform can thus be utilized to quantitatively assess the mechanotransduction pathways that initiate tissue-level structural and functional remodeling in response to substrate stiffness.

  16. Intraoperative Raman Spectroscopy of Soft Tissue Sarcomas

    PubMed Central

    Nguyen, John Q.; Gowani, Zain S.; O’Connor, Maggie; Pence, Isaac J.; Nguyen, The-Quyen; Holt, Ginger E.; Schwartz, Herbert S.; Halpern, Jennifer L.; Mahadevan-Jansen, Anita

    2017-01-01

    Background and Objective Soft tissue sarcomas (STS) are a rare and heterogeneous group of malignant tumors that are often treated through surgical resection. Current intraoperative margin assessment methods are limited and highlight the need for an improved approach with respect to time and specificity. Here we investigate the potential of near-infrared Raman spectroscopy for the intraoperative differentiation of STS from surrounding normal tissue. Materials and Methods In vivo Raman measurements at 785 nm excitation were intraoperatively acquired from subjects undergoing STS resection using a probe based spectroscopy system. A multivariate classification algorithm was developed in order to automatically identify spectral features that can be used to differentiate STS from the surrounding normal muscle and fat. The classification algorithm was subsequently tested using leave-one-subject-out cross-validation. Results With the exclusion of well-differentiated liposarcomas, the algorithm was able to classify STS from the surrounding normal muscle and fat with a sensitivity and specificity of 89.5% and 96.4%, respectively. Conclusion These results suggest that single point near-infrared Raman spectroscopy could be utilized as a rapid and non-destructive surgical guidance tool for identifying abnormal tissue margins in need of further excision. PMID:27454580

  17. Intraoperative Raman spectroscopy of soft tissue sarcomas.

    PubMed

    Nguyen, John Q; Gowani, Zain S; O'Connor, Maggie; Pence, Isaac J; Nguyen, The-Quyen; Holt, Ginger E; Schwartz, Herbert S; Halpern, Jennifer L; Mahadevan-Jansen, Anita

    2016-10-01

    Soft tissue sarcomas (STS) are a rare and heterogeneous group of malignant tumors that are often treated through surgical resection. Current intraoperative margin assessment methods are limited and highlight the need for an improved approach with respect to time and specificity. Here we investigate the potential of near-infrared Raman spectroscopy for the intraoperative differentiation of STS from surrounding normal tissue. In vivo Raman measurements at 785 nm excitation were intraoperatively acquired from subjects undergoing STS resection using a probe based spectroscopy system. A multivariate classification algorithm was developed in order to automatically identify spectral features that can be used to differentiate STS from the surrounding normal muscle and fat. The classification algorithm was subsequently tested using leave-one-subject-out cross-validation. With the exclusion of well-differentiated liposarcomas, the algorithm was able to classify STS from the surrounding normal muscle and fat with a sensitivity and specificity of 89.5% and 96.4%, respectively. These results suggest that single point near-infrared Raman spectroscopy could be utilized as a rapid and non-destructive surgical guidance tool for identifying abnormal tissue margins in need of further excision. Lasers Surg. Med. 48:774-781, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. In vitro cholesteatoma growth and secretion of cytokines.

    PubMed

    Helgaland, Tore; Engelen, Bart; Olsnes, Carla; Aarstad, Hans Jørgen; Vassbotn, Flemming S

    2010-07-01

    Our results show a significant difference between skin and cholesteatoma biology in vitro. Cholesteatoma disease is a process of destruction characterized by uncontrolled growth of squamous epithelial cells in the middle ear or temporal bone. The pathophysiology behind the cholesteatoma development is controversial, and the mechanisms driving the cholesteatoma growth, migration and destructive properties is still unclear. We aimed to provide a method to study the effect of various compounds on cholesteatoma and skin tissue growth, as well as to further investigate the biological differences between normal skin and cholesteatoma tissue. We have established a method to study cholesteatoma biopsy tissue in vitro. Cholesteatoma tissues from patients undergoing surgery for chronic otitis were grown in culture medium and compared to growth patterns and behaviour of normal retroauricular skin. Conditioned medium was analysed for various secreted cytokines. We found a radial outgrowth of keratinocyte epithelium from the circular biopsies. After 5 days of culture we found a significant growth of both cholesteatoma and skin-derived cells. Cholesteatoma samples showed higher growth rate as compared with skin control cultures from the same patient. Moreover, the cholesteatoma cells showed higher production of monocyte chemoattractant protein-1 (MCP-1) and interleukin (IL)-6 as compared with normal skin.

  19. A randomized, placebo-controlled, preoperative trial of allopurinol in subjects with colorectal adenoma.

    PubMed

    Puntoni, Matteo; Branchi, Daniela; Argusti, Alessandra; Zanardi, Silvia; Crosta, Cristiano; Meroni, Emanuele; Munizzi, Francesco; Michetti, Paolo; Coccia, Gianni; De Roberto, Giuseppe; Bandelloni, Roberto; Turbino, Laura; Minetti, Egle; Mori, Marco; Salvi, Sandra; Boccardo, Simona; Gatteschi, Beatrice; Benelli, Roberto; Sonzogni, Angelica; DeCensi, Andrea

    2013-02-01

    Inflammation and oxidative stress play a crucial role in the development of colorectal cancer (CRC) and interference with these mechanisms represents a strategy in CRC chemoprevention. Allopurinol, a safe molecular scavenger largely used as antigout agent, has been shown to increase survival of patients with advanced CRC and to reduce CRC incidence in long-term gout users in epidemiologic studies. We conducted a randomized, double-blind, placebo-controlled preoperative trial in subjects with colorectal adenomatous polyps to assess the activity of allopurinol on biomarkers of colorectal carcinogenesis. After complete colonoscopy and biopsy of the index polyp, 73 subjects with colorectal adenomas were assigned to either placebo or one of two doses of allopurinol (100 mg or 300 mg) and treated for four weeks before polyp removal. Change of Ki-67 labeling index in adenomatous tissue was the primary endpoint. Secondary endpoints were the immunohistochemical (IHC) expression of NF-κB, β-catenin, topoisomerase-II-α, and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) in adenomatous polyps and normal adjacent colonic tissue. Compared with placebo, Ki-67 levels were not significantly modulated by allopurinol, whereas β-catenin and NF-κB expression levels decreased significantly in adenomatous tissue, with a mean change from baseline of -10.6%, 95% confidence interval (CI), -20.5 to -0.7, and -8.1%, 95% CI, -22.7 to 6.5, respectively. NF-κB also decreased significantly in normal adjacent tissue (-16.4%; 95% CI, -29.0 to -3.8). No dose-response relationship was noted, except for NF-κB expression in normal tissue. Allopurinol can inhibit biomarkers of oxidative activation in colon adenomatous polyps and normal adjacent tissue. Further studies should define its potential chemopreventive activity.

  20. The role of high airway pressure and dynamic strain on ventilator-induced lung injury in a heterogeneous acute lung injury model.

    PubMed

    Jain, Sumeet V; Kollisch-Singule, Michaela; Satalin, Joshua; Searles, Quinn; Dombert, Luke; Abdel-Razek, Osama; Yepuri, Natesh; Leonard, Antony; Gruessner, Angelika; Andrews, Penny; Fazal, Fabeha; Meng, Qinghe; Wang, Guirong; Gatto, Louis A; Habashi, Nader M; Nieman, Gary F

    2017-12-01

    Acute respiratory distress syndrome causes a heterogeneous lung injury with normal and acutely injured lung tissue in the same lung. Improperly adjusted mechanical ventilation can exacerbate ARDS causing a secondary ventilator-induced lung injury (VILI). We hypothesized that a peak airway pressure of 40 cmH 2 O (static strain) alone would not cause additional injury in either the normal or acutely injured lung tissue unless combined with high tidal volume (dynamic strain). Pigs were anesthetized, and heterogeneous acute lung injury (ALI) was created by Tween instillation via a bronchoscope to both diaphragmatic lung lobes. Tissue in all other lobes was normal. Airway pressure release ventilation was used to precisely regulate time and pressure at both inspiration and expiration. Animals were separated into two groups: (1) over-distension + high dynamic strain (OD + H DS , n = 6) and (2) over-distension + low dynamic strain (OD + L DS , n = 6). OD was caused by setting the inspiratory pressure at 40 cmH 2 O and dynamic strain was modified by changing the expiratory duration, which varied the tidal volume. Animals were ventilated for 6 h recording hemodynamics, lung function, and inflammatory mediators followed by an extensive necropsy. In normal tissue (N T ), OD + L DS caused minimal histologic damage and a significant reduction in BALF total protein (p < 0.05) and MMP-9 activity (p < 0.05), as compared with OD + H DS . In acutely injured tissue (ALI T ), OD + L DS resulted in reduced histologic injury and pulmonary edema (p < 0.05), as compared with OD + H DS . Both N T and ALI T are resistant to VILI caused by OD alone, but when combined with a H DS , significant tissue injury develops.

  1. Optical biopsy of head and neck cancer using hyperspectral imaging and convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Halicek, Martin; Little, James V.; Wang, Xu; Patel, Mihir; Griffith, Christopher C.; El-Deiry, Mark W.; Chen, Amy Y.; Fei, Baowei

    2018-02-01

    Successful outcomes of surgical cancer resection necessitate negative, cancer-free surgical margins. Currently, tissue samples are sent to pathology for diagnostic confirmation. Hyperspectral imaging (HSI) is an emerging, non-contact optical imaging technique. A reliable optical method could serve to diagnose and biopsy specimens in real-time. Using convolutional neural networks (CNNs) as a tissue classifier, we developed a method to use HSI to perform an optical biopsy of ex-vivo surgical specimens, collected from 21 patients undergoing surgical cancer resection. Training and testing on samples from different patients, the CNN can distinguish squamous cell carcinoma (SCCa) from normal aerodigestive tract tissues with an area under the curve (AUC) of 0.82, 81% accuracy, 81% sensitivity, and 80% specificity. Additionally, normal oral tissues can be sub-classified into epithelium, muscle, and glandular mucosa using a decision tree method, with an average AUC of 0.94, 90% accuracy, 93% sensitivity, and 89% specificity. After separately training on thyroid tissue, the CNN differentiates between thyroid carcinoma and normal thyroid with an AUC of 0.95, 92% accuracy, 92% sensitivity, and 92% specificity. Moreover, the CNN can discriminate medullary thyroid carcinoma from benign multi-nodular goiter (MNG) with an AUC of 0.93, 87% accuracy, 88% sensitivity, and 85% specificity. Classical-type papillary thyroid carcinoma is differentiated from benign MNG with an AUC of 0.91, 86% accuracy, 86% sensitivity, and 86% specificity. Our preliminary results demonstrate that an HSI-based optical biopsy method using CNNs can provide multi-category diagnostic information for normal head-and-neck tissue, SCCa, and thyroid carcinomas. More patient data are needed in order to fully investigate the proposed technique to establish reliability and generalizability of the work.

  2. Heat treatment of human esophageal tissues: Effect on esophageal cancer detection using oxygenated hemoglobin diffuse reflectance ratio

    NASA Astrophysics Data System (ADS)

    Zhao, Q. L.; Guo, Z. Y.; Si, J. L.; Wei, H. J.; Yang, H. Q.; Wu, G. Y.; Xie, S. S.; Guo, X.; Zhong, H. Q.; Li, L. Q.; Li, X. Y.

    2011-03-01

    The main objective of the present work is to study the influence of heat treatment on the esophageal cancer detection using the diffuse reflectance (DR) spectral intensity ratio R540/R575 of oxygenated hemoglobin (HbO2) absorption bands to distinguish the epithelial tissues of normal human esophagus and moderately differentiated esophageal squamous cell carcinoma (ESCC) at different heat treatment temperature of 20, 37, 42, 50, and 60°C, respectively. The DR spectra for the epithelial tissues of the normal esophagus and ESCC in vitro at different heat-treatment temperature in the wavelength range 400-650 nm were measured with a commercial optical fiber spectrometer. The results indicate that the average DR spectral intensity overall enhancement with concomitant increase of heat-treatment temperature for the epithelial tissues of normal esophagus and ESCC, but the average DR spectral intensity for the normal esophageal epithelial tissues is relatively higher than that for ESCC epithelial tissues at the same heat-treatment temperature. The mean R540/R575 ratios of ESCC epithelial tissues were always lower than that of normal esophageal epithelial tissues at the same temperature, and the mean R540/R575 ratios of the epithelial tissues of the normal esophagus and ESCC were decreasing with the increase of different heat-treatment temperatures. The differences in the mean R540/R575 ratios between the epithelial tissues of normal esophagus and ESCC were 13.33, 13.59, 11.76, and 11.11% at different heat-treatment temperature of 20, 37, 42, and 50°C, respectively. These results also indicate that the DR intensity ratio R540/R575 of the hemoglobin bands is a useful tool for discrimination between the epithelial tissues of normal esophagus and ESCC in the temperature range from room temperature to 50°C, but it was non-effective at 60°C or over 60°C.

  3. Engineering stromal-epithelial interactions in vitro for ...

    EPA Pesticide Factsheets

    Background: Crosstalk between epithelial and stromal cells drives the morphogenesis of ectodermal organs during development and promotes normal mature adult epithelial tissue function. Epithelial-mesenchymal interactions (EMIs) have been examined using mammalian models, ex vivo tissue recombination, and in vitro co-cultures. Although these approaches have elucidated signaling mechanisms underlying morphogenetic processes and adult mammalian epithelial tissue function, they are limited by the availability of human tissue, low throughput, and human developmental or physiological relevance. Objectives: Bioengineering strategies to promote EMIs using human epithelial and mesenchymal cells have enabled the development of human in vitro models of adult epidermal and glandular tissues. In this review, we describe recent bioengineered models of human epithelial tissue and organs that can instruct the design of organotypic models of human developmental processes.Methods: We reviewed current bioengineering literature and here describe how bioengineered EMIs have enabled the development of human in vitro epithelial tissue models.Discussion: Engineered models to promote EMIs have recapitulated the architecture, phenotype, and function of adult human epithelial tissue, and similar engineering principles could be used to develop models of developmental morphogenesis. We describe how bioengineering strategies including bioprinting and spheroid culture could be implemented to

  4. Metabolite profiling of human colon carcinoma--deregulation of TCA cycle and amino acid turnover.

    PubMed

    Denkert, Carsten; Budczies, Jan; Weichert, Wilko; Wohlgemuth, Gert; Scholz, Martin; Kind, Tobias; Niesporek, Silvia; Noske, Aurelia; Buckendahl, Anna; Dietel, Manfred; Fiehn, Oliver

    2008-09-18

    Apart from genetic alterations, development and progression of colorectal cancer has been linked to influences from nutritional intake, hyperalimentation, and cellular metabolic changes that may be the basis for new diagnostic and therapeutic approaches. However, in contrast to genomics and proteomics, comprehensive metabolomic investigations of alterations in malignant tumors have rarely been conducted. In this study we investigated a set of paired samples of normal colon tissue and colorectal cancer tissue with gas-chromatography time-of-flight mass-spectrometry, which resulted in robust detection of a total of 206 metabolites. Metabolic phenotypes of colon cancer and normal tissues were different at a Bonferroni corrected significance level of p=0.00170 and p=0.00005 for the first two components of an unsupervised PCA analysis. Subsequent supervised analysis found 82 metabolites to be significantly different at p<0.01. Metabolites were connected to abnormalities in metabolic pathways by a new approach that calculates the distance of each pair of metabolites in the KEGG database interaction lattice. Intermediates of the TCA cycle and lipids were found down-regulated in cancer, whereas urea cycle metabolites, purines, pyrimidines and amino acids were generally found at higher levels compared to normal colon mucosa. This study demonstrates that metabolic profiling facilitates biochemical phenotyping of normal and neoplastic colon tissue at high significance levels and points to GC-TOF-based metabolomics as a new method for molecular pathology investigations.

  5. Tissue-specific expression of transgenic secreted ACE in vasculature can restore normal kidney functions, but not blood pressure, of Ace-/- mice.

    PubMed

    Chattopadhyay, Saurabh; Kessler, Sean P; Colucci, Juliana Almada; Yamashita, Michifumi; Senanayake, Preenie deS; Sen, Ganes C

    2014-01-01

    Angiotensin-converting enzyme (ACE) regulates normal blood pressure and fluid homeostasis through its action in the renin-angiotensin-system (RAS). Ace-/- mice are smaller in size, have low blood pressure and defective kidney structure and functions. All of these defects are cured by transgenic expression of somatic ACE (sACE) in vascular endothelial cells of Ace-/- mice. sACE is expressed on the surface of vascular endothelial cells and undergoes a natural cleavage secretion process to generate a soluble form in the body fluids. Both the tissue-bound and the soluble forms of ACE are enzymatically active, and generate the vasoactive octapeptide Angiotensin II (Ang II) with equal efficiency. To assess the relative physiological roles of the secreted and the cell-bound forms of ACE, we expressed, in the vascular endothelial cells of Ace-/- mice, the ectodomain of sACE, which corresponded to only the secreted form of ACE. Our results demonstrated that the secreted form of ACE could normalize kidney functions and RAS integrity, growth and development of Ace-/- mice, but not their blood pressure. This study clearly demonstrates that the secreted form of ACE cannot replace the tissue-bound ACE for maintaining normal blood pressure; a suitable balance between the tissue-bound and the soluble forms of ACE is essential for maintaining all physiological functions of ACE.

  6. Assessing the uncertainty in a normal tissue complication probability difference (∆NTCP): radiation-induced liver disease (RILD) in liver tumour patients treated with proton vs X-ray therapy.

    PubMed

    Kobashi, Keiji; Prayongrat, Anussara; Kimoto, Takuya; Toramatsu, Chie; Dekura, Yasuhiro; Katoh, Norio; Shimizu, Shinichi; Ito, Yoichi M; Shirato, Hiroki

    2018-03-01

    Modern radiotherapy technologies such as proton beam therapy (PBT) permit dose escalation to the tumour and minimize unnecessary doses to normal tissues. To achieve appropriate patient selection for PBT, a normal tissue complication probability (NTCP) model can be applied to estimate the risk of treatment-related toxicity relative to X-ray therapy (XRT). A methodology for estimating the difference in NTCP (∆NTCP), including its uncertainty as a function of dose to normal tissue, is described in this study using the Delta method, a statistical method for evaluating the variance of functions, considering the variance-covariance matrix. We used a virtual individual patient dataset of radiation-induced liver disease (RILD) in liver tumour patients who were treated with XRT as a study model. As an alternative option for individual patient data, dose-bin data, which consists of the number of patients who developed toxicity in each dose level/bin and the total number of patients in that dose level/bin, are useful for multi-institutional data sharing. It provides comparable accuracy with individual patient data when using the Delta method. With reliable NTCP models, the ∆NTCP with uncertainty might potentially guide the use of PBT; however, clinical validation and a cost-effectiveness study are needed to determine the appropriate ∆NTCP threshold.

  7. Assessing the uncertainty in a normal tissue complication probability difference (∆NTCP): radiation-induced liver disease (RILD) in liver tumour patients treated with proton vs X-ray therapy

    PubMed Central

    Kobashi, Keiji; Kimoto, Takuya; Toramatsu, Chie; Dekura, Yasuhiro; Katoh, Norio; Shimizu, Shinichi; Ito, Yoichi M; Shirato, Hiroki

    2018-01-01

    Abstract Modern radiotherapy technologies such as proton beam therapy (PBT) permit dose escalation to the tumour and minimize unnecessary doses to normal tissues. To achieve appropriate patient selection for PBT, a normal tissue complication probability (NTCP) model can be applied to estimate the risk of treatment-related toxicity relative to X-ray therapy (XRT). A methodology for estimating the difference in NTCP (∆NTCP), including its uncertainty as a function of dose to normal tissue, is described in this study using the Delta method, a statistical method for evaluating the variance of functions, considering the variance–covariance matrix. We used a virtual individual patient dataset of radiation-induced liver disease (RILD) in liver tumour patients who were treated with XRT as a study model. As an alternative option for individual patient data, dose-bin data, which consists of the number of patients who developed toxicity in each dose level/bin and the total number of patients in that dose level/bin, are useful for multi-institutional data sharing. It provides comparable accuracy with individual patient data when using the Delta method. With reliable NTCP models, the ∆NTCP with uncertainty might potentially guide the use of PBT; however, clinical validation and a cost-effectiveness study are needed to determine the appropriate ∆NTCP threshold. PMID:29538699

  8. Tissue-Specific Expression of Transgenic Secreted ACE in Vasculature Can Restore Normal Kidney Functions, but Not Blood Pressure, of Ace-/- Mice

    PubMed Central

    Chattopadhyay, Saurabh; Kessler, Sean P.; Colucci, Juliana Almada; Yamashita, Michifumi; Senanayake, Preenie deS; Sen, Ganes C.

    2014-01-01

    Angiotensin-converting enzyme (ACE) regulates normal blood pressure and fluid homeostasis through its action in the renin-angiotensin-system (RAS). Ace-/- mice are smaller in size, have low blood pressure and defective kidney structure and functions. All of these defects are cured by transgenic expression of somatic ACE (sACE) in vascular endothelial cells of Ace-/- mice. sACE is expressed on the surface of vascular endothelial cells and undergoes a natural cleavage secretion process to generate a soluble form in the body fluids. Both the tissue-bound and the soluble forms of ACE are enzymatically active, and generate the vasoactive octapeptide Angiotensin II (Ang II) with equal efficiency. To assess the relative physiological roles of the secreted and the cell-bound forms of ACE, we expressed, in the vascular endothelial cells of Ace-/- mice, the ectodomain of sACE, which corresponded to only the secreted form of ACE. Our results demonstrated that the secreted form of ACE could normalize kidney functions and RAS integrity, growth and development of Ace-/- mice, but not their blood pressure. This study clearly demonstrates that the secreted form of ACE cannot replace the tissue-bound ACE for maintaining normal blood pressure; a suitable balance between the tissue-bound and the soluble forms of ACE is essential for maintaining all physiological functions of ACE. PMID:24475296

  9. [Circadian rhythm variation of the clock genes Per1 and cell cycle related genes in different stages of carcinogenesis of buccal mucosa in animal model].

    PubMed

    Tan, Xuemei; Ye, Hua; Yang, Kai; Chen, Dan; Tang, Hong

    2015-07-01

    To investigate the expression and circadian rhythm variation of biological clock gene Per1 and cell cycle genes p53, CyclinD1, cyclin-dependent kinases (CDK1), CyclinB1 in different stages of carcinogenesis in buccal mucosa and its relationship with the development of buccal mucosa carcinoma. Ninety golden hamsters were housed under 12 hours light-12 hours dark cycles, and the model of buccal squamous cell carcinoma was established by using the dimethylbenzanthracene (DMBA) to smear the golden hamster buccal mucosa. Before the DMBA was used and after DMBA was used 6 weeks and 14 weeks respectively, the golden hamsters were sacrificed at 6 different time points (5 rats per time point) within 24 hour, including 4, 8, 12, 16, 20 and 24 hour after lights onset (HALO), and the normal buccal mucosa, precancerous lesions and cancer tissue were obtained, respectively. HE stained sections were prepared to observe the canceration of each tissue. Real time RT-PCR was used to detect the mRNA expression of Per1, p53, CyclinD1, CDK1 and CyclinB1, and a cosine analysis method was applied to determine the circadian rhythm variation of Per1, p53, CyclinD1, CDK1 and CyclinB1 mRNA expression, which were characterized by median, amplitude and acrophase. The expression of Per1, p53, CDK1 and CyclinD1 mRNA in 6 different time points within 24 hours in the tissues of three different stages of carcinogenesis had circadian rhythm, respectively. However, the CyclinB1 mRNA was expressed with circadian rhythm just in normal and cancer tissue (P < 0.05), while in precancerous lesions the circadian rhythm was in disorder (P > 0.05). As the development of carcinoma, the median of Per1 and p53 mRNA expression were significantly decreased (P < 0.05), yet the median of CDK1, CyclinB1 and CyclinD1 mRNA expression were significantly increased (P < 0.05). The amplitude of Per1, p53 and CyclinD1 mRNA expression was significantly decreased as the development of carcinoma (P < 0.05), however the amplitude of CDK1 mRNA expression was significantly increased (P < 0.05). In addition, there was no significant difference in the amplitude of CyclinB1 mRNA expression. The time that the peak expression value of Per1 and CDK1 mRNA appeared (Acrophase) in precancerous lesions was remarkably earlier than that in normal tissues, but the acrophase of p53 and CyclinD1 mRNA expression was remarkably delayed. Moreover, the acrophase of CDK1 and CyclinB1 mRNA expression in cancer tissues was obviously earlier than that in normal tissues, yet there was no significant variation in acrophase of Per1, p53, CyclinD1 mRNA expression between normal tissues and cancer tissues. The circadian rhythm of clock gene Per1 and cell cycle genes p53, CyclinD1, CDK1, CyclinB1 expression remarkably varied with the occurrence and development of carcinoma. Further research into the interaction between circadian and cell cycle of two cycle activity and relationship with the carcinogenesis may providenew ideas and methods of individual treatment and the mechanism of carcinogenesis.

  10. Automated classification of tissue by type using real-time spectroscopy

    NASA Astrophysics Data System (ADS)

    Benaron, David A.; Cheong, Wai-Fung; Duckworth, Joshua L.; Noles, Kenneth; Nezhat, Camran; Seidman, Daniel; Hintz, Susan R.; Levinson, Carl J.; Murphy, Aileen L.; Price, John W., Jr.; Liu, Frank W.; Stevenson, David K.; Kermit, Eben L.

    1997-12-01

    Each tissue type has a unique spectral signature (e.g. liver looks distinct from bowel due to differences in both absorbance and in the way the tissue scatters light). While differentiation between normal tissues and tumors is not trivial, automated discrimination among normal tissue types (e.g. nerve, artery, vein, muscle) is feasible and clinically important, as many medical errors in medicine involve the misidentification of normal tissues. In this study, we have found that spectroscopic differentiation of tissues can be successfully applied to tissue samples (kidney and uterus) and model systems (fruit). Such optical techniques may usher in use of optical tissue diagnosis, leading to automated and portable diagnostic devices which can identify tissues, and guide use of medical instruments, such as during ablation or biopsy.

  11. Quantitative ultrasound backscatter for pulsed cavitational ultrasound therapy- histotripsy.

    PubMed

    Wang, Tzu-yin; Xu, Zhen; Winterroth, Frank; Hall, Timothy L; Fowlkes, J Brian; Rothman, Edward D; Roberts, William W; Cain, Charles A

    2009-05-01

    Histotripsy is a well-controlled ultrasonic tissue ablation technology that mechanically and progressively fractionates tissue structures using cavitation. The fractionated tissue volume can be monitored with ultrasound imaging because a significant ultrasound backscatter reduction occurs.This paper correlates the ultrasound backscatter reduction with the degree of tissue fractionation characterized by the percentage of remaining normal-appearing cell nuclei on histology.Different degrees of tissue fractionation were generated in vitro in freshly excised porcine kidneys by varying the number of therapeutic ultrasound pulses from 100 to 2000 pulses per treatment location. All ultrasound pulses were 15 cycles at 1 MHz delivered at 100 Hz pulse repetition frequency and 19 MPa peak negative pressure. The results showed that the normalized backscatter intensity decreased exponentially with increasing number of pulses. Correspondingly, the percentage of normal appearing nuclei in the treated area decreased exponentially as well. A linear correlation existed between the normalized backscatter intensity and the percentage of normal appearing cell nuclei in the treated region. This suggests that the normalized backscatter intensity may be a potential quantitative real-time feedback parameter for histotripsy-induced tissue fractionation. This quantitative feedback may allow the prediction of local clinical outcomes, i.e., when a tissue volume has been sufficiently treated.

  12. Snipper, an Eri1 homologue, affects histone mRNA abundance and is crucial for normal Drosophila melanogaster development.

    PubMed

    Alexiadis, Anastasios; Delidakis, Christos; Kalantidis, Kriton

    2017-07-01

    The conserved 3'-5' RNA exonuclease ERI1 is implicated in RNA interference inhibition, 5.8S rRNA maturation and histone mRNA maturation and turnover. The single ERI1 homologue in Drosophila melanogaster Snipper (Snp) is a 3'-5' exonuclease, but its in vivo function remains elusive. Here, we report Snp requirement for normal Drosophila development, since its perturbation leads to larval arrest and tissue-specific downregulation results in abnormal tissue development. Additionally, Snp directly interacts with histone mRNA, and its depletion results in drastic reduction in histone transcript levels. We propose that Snp protects the 3'-ends of histone mRNAs and upon its absence, histone transcripts are readily degraded. This in turn may lead to cell cycle delay or arrest, causing growth arrest and developmental perturbations. © 2017 Federation of European Biochemical Societies.

  13. Diagnosis of breast cancer by tissue analysis

    PubMed Central

    Bhattacharyya, Debnath; Bandyopadhyay, Samir Kumar

    2013-01-01

    In this paper, we propose a technique to locate abnormal growth of cells in breast tissue and suggest further pathological test, when require. We compare normal breast tissue with malignant invasive breast tissue by a series of image processing steps. Normal ductal epithelial cells and ductal/lobular invasive carcinogenic cells also consider for comparison here in this paper. In fact, features of cancerous breast tissue (invasive) are extracted and analyses with normal breast tissue. We also suggest the breast cancer recognition technique through image processing and prevention by controlling p53 gene mutation to some extent. PMID:23372340

  14. A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries.

    PubMed

    Lazebnik, Mariya; McCartney, Leah; Popovic, Dijana; Watkins, Cynthia B; Lindstrom, Mary J; Harter, Josephine; Sewall, Sarah; Magliocco, Anthony; Booske, John H; Okoniewski, Michal; Hagness, Susan C

    2007-05-21

    The efficacy of emerging microwave breast cancer detection and treatment techniques will depend, in part, on the dielectric properties of normal breast tissue. However, knowledge of these properties at microwave frequencies has been limited due to gaps and discrepancies in previously reported small-scale studies. To address these issues, we experimentally characterized the wideband microwave-frequency dielectric properties of a large number of normal breast tissue samples obtained from breast reduction surgeries at the University of Wisconsin and University of Calgary hospitals. The dielectric spectroscopy measurements were conducted from 0.5 to 20 GHz using a precision open-ended coaxial probe. The tissue composition within the probe's sensing region was quantified in terms of percentages of adipose, fibroconnective and glandular tissues. We fit a one-pole Cole-Cole model to the complex permittivity data set obtained for each sample and determined median Cole-Cole parameters for three groups of normal breast tissues, categorized by adipose tissue content (0-30%, 31-84% and 85-100%). Our analysis of the dielectric properties data for 354 tissue samples reveals that there is a large variation in the dielectric properties of normal breast tissue due to substantial tissue heterogeneity. We observed no statistically significant difference between the within-patient and between-patient variability in the dielectric properties.

  15. Modeling an Excitable Biosynthetic Tissue with Inherent Variability for Paired Computational-Experimental Studies.

    PubMed

    Gokhale, Tanmay A; Kim, Jong M; Kirkton, Robert D; Bursac, Nenad; Henriquez, Craig S

    2017-01-01

    To understand how excitable tissues give rise to arrhythmias, it is crucially necessary to understand the electrical dynamics of cells in the context of their environment. Multicellular monolayer cultures have proven useful for investigating arrhythmias and other conduction anomalies, and because of their relatively simple structure, these constructs lend themselves to paired computational studies that often help elucidate mechanisms of the observed behavior. However, tissue cultures of cardiomyocyte monolayers currently require the use of neonatal cells with ionic properties that change rapidly during development and have thus been poorly characterized and modeled to date. Recently, Kirkton and Bursac demonstrated the ability to create biosynthetic excitable tissues from genetically engineered and immortalized HEK293 cells with well-characterized electrical properties and the ability to propagate action potentials. In this study, we developed and validated a computational model of these excitable HEK293 cells (called "Ex293" cells) using existing electrophysiological data and a genetic search algorithm. In order to reproduce not only the mean but also the variability of experimental observations, we examined what sources of variation were required in the computational model. Random cell-to-cell and inter-monolayer variation in both ionic conductances and tissue conductivity was necessary to explain the experimentally observed variability in action potential shape and macroscopic conduction, and the spatial organization of cell-to-cell conductance variation was found to not impact macroscopic behavior; the resulting model accurately reproduces both normal and drug-modified conduction behavior. The development of a computational Ex293 cell and tissue model provides a novel framework to perform paired computational-experimental studies to study normal and abnormal conduction in multidimensional excitable tissue, and the methodology of modeling variation can be applied to models of any excitable cell.

  16. Tissue dielectric measurement using an interstitial dipole antenna.

    PubMed

    Wang, Peng; Brace, Christopher L

    2012-01-01

    The purpose of this study was to develop a technique to measure the dielectric properties of biological tissues with an interstitial dipole antenna based upon previous efforts for open-ended coaxial probes. The primary motivation for this technique is to facilitate treatment monitoring during microwave tumor ablation by utilizing the heating antenna without additional intervention or interruption of the treatment. The complex permittivity of a tissue volume surrounding the antenna was calculated from reflection coefficients measured after high-temperature microwave heating by using a rational function model of the antenna's input admittance. Three referencing liquids were needed for measurement calibration. The dielectric measurement technique was validated ex vivo in normal and ablated bovine livers. Relative permittivity and effective conductivity were lower in the ablation zone when compared to normal tissue, consistent with previous results. The dipole technique demonstrated a mean 10% difference of permittivity values when compared to open-ended coaxial cable measurements in the frequency range of 0.5-20 GHz. Variability in measured permittivities could be smoothed by fitting to a Cole-Cole dispersion model. Further development of this technique may facilitate real-time monitoring of microwave ablation treatments through the treatment applicator. © 2011 IEEE

  17. Tissue Dielectric Measurement Using an Interstitial Dipole Antenna

    PubMed Central

    Wang, Peng; Brace, Christopher L.

    2012-01-01

    The purpose of this study was to develop a technique to measure the dielectric properties of biological tissues with an interstitial dipole antenna based upon previous efforts for open-ended coaxial probes. The primary motivation for this technique is to facilitate treatment monitoring during microwave tumor ablation by utilizing the heating antenna without additional intervention or interruption of the treatment. The complex permittivity of a tissue volume surrounding the antenna was calculated from reflection coefficients measured after high-temperature microwave heating by using a rational function model of the antenna’s input admittance. Three referencing liquids were needed for measurement calibration. The dielectric measurement technique was validated ex vivo in normal and ablated bovine livers. Relative permittivity and effective conductivity were lower in the ablation zone when compared to normal tissue, consistent with previous results. The dipole technique demonstrated a mean 10% difference of permittivity values when compared to open-ended coaxial cable measurements in the frequency range of 0.5–20 GHz. Variability in measured permittivities could be smoothed by fitting to a Cole–Cole dispersion model. Further development of this technique may facilitate real-time monitoring of microwave ablation treatments through the treatment applicator. PMID:21914566

  18. CDX1 protein expression in normal, metaplastic, and neoplastic human alimentary tract epithelium.

    PubMed

    Silberg, D G; Furth, E E; Taylor, J K; Schuck, T; Chiou, T; Traber, P G

    1997-08-01

    CDX1 is an intestine-specific transcription factor expressed early in intestinal development that may be involved in regulation of proliferation and differentiation of intestinal epithelial cells. We examined the pattern of CDX1 protein expression in metaplastic and neoplastic tissue to provide insight into its possible role in abnormal differentiation. Tissue samples were stained by immunohistochemistry using an affinity-purified, polyclonal antibody against a peptide epitope of CDX1. Specific nuclear staining was found in epithelial cells of the small intestine and colon. Esophagus and stomach did not express CDX1 protein; however, adjacent areas of intestinal metaplastic tissue intensely stained for CDX1. Adenocarcinomas of the stomach and esophagus had both positive and negative nuclear staining for CDX1. Colonic epithelial cells in adenomatous polyps and adenocarcinomas had a decreased intensity of staining compared with normal colonic crypts in the same specimen. CDX1 may be important in the transition from normal gastric and esophageal epithelium to intestinal-type metaplasia. The variability in expression of CDX1 in gastric and esophageal adenocarcinomas suggests more than one pathway in the development of these carcinomas. The decrease of CDX1 in colonic adenocarcinomas may indicate a role for CDX1 in growth regulation and in the maintenance of the differentiated phenotype.

  19. Iodine-131 dose-dependent gene expression: alterations in both normal and tumour thyroid tissues of post-Chernobyl thyroid cancers.

    PubMed

    Abend, M; Pfeiffer, R M; Ruf, C; Hatch, M; Bogdanova, T I; Tronko, M D; Hartmann, J; Meineke, V; Mabuchi, K; Brenner, A V

    2013-10-15

    A strong, consistent association between childhood irradiation and subsequent thyroid cancer provides an excellent model for studying radiation carcinogenesis. We evaluated gene expression in 63 paired RNA specimens from frozen normal and tumour thyroid tissues with individual iodine-131 (I-131) doses (0.008-8.6 Gy, no unirradiated controls) received from Chernobyl fallout during childhood (Ukrainian-American cohort). Approximately half of these randomly selected samples (32 tumour/normal tissue RNA specimens) were hybridised on 64 whole-genome microarrays (Agilent, 4 × 44 K). Associations between I-131 dose and gene expression were assessed separately in normal and tumour tissues using Kruskal-Wallis and linear trend tests. Of 155 genes significantly associated with I-131 after Bonferroni correction and with ≥2-fold increase per dose category, we selected 95 genes. On the remaining 31 RNA samples these genes were used for validation purposes using qRT-PCR. Expression of eight genes (ABCC3, C1orf9, C6orf62, FGFR1OP2, HEY2, NDOR1, STAT3, and UCP3) in normal tissue and six genes (ANKRD46, CD47, HNRNPH1, NDOR1, SCEL, and SERPINA1) in tumour tissue was significantly associated with I-131. PANTHER/DAVID pathway analyses demonstrated significant over-representation of genes coding for nucleic acid binding in normal and tumour tissues, and for p53, EGF, and FGF signalling pathways in tumour tissue. The multistep process of radiation carcinogenesis begins in histologically normal thyroid tissue and may involve dose-dependent gene expression changes.

  20. Informing Stem Cell-Based Tendon Tissue Engineering Approaches with Embryonic Tendon Development.

    PubMed

    Okech, William; Kuo, Catherine K

    Adult tendons fail to regenerate normal tissue after injury, and instead form dysfunctional scar tissue with abnormal mechanical properties. Surgical repair with grafts is the current standard to treat injuries, but faces significant limitations including pain and high rates of re-injury. To address this, we aim to regenerate new, normal tendons to replace dysfunctional tendons. A common approach to tendon tissue engineering is to design scaffolds and bioreactors based on adult tendon properties that can direct adult stem cell tenogenesis. Despite significant progress, advances have been limited due, in part, to a need for markers and potent induction cues. Our goal is to develop novel tendon tissue engineering approaches informed by embryonic tendon development. We are characterizing structure-property relationships of embryonic tendon to identify design parameters for three-dimensional scaffolds and bioreactor mechanical loading systems to direct adult stem cell tenogenesis. We will review studies in which we quantified changes in the mechanical and biochemical properties of tendon during embryonic development and elucidated specific mechanisms of functional property elaboration. We then examined the effects of these mechanical and biochemical factors on embryonic tendon cell behavior. Using custom-designed bioreactors, we also examined the effects of dynamic mechanical loading and growth factor treatment on embryonic tendon cells. Our findings have established cues to induce tenogenesis as well as metrics to evaluate differentiation. We finish by discussing how we have evaluated the tenogenic differentiation potential of adult stem cells by comparing their responses to that of embryonic tendon cells in these culture systems.

  1. PIXE analysis of tumors and localization behavior of a lanthanide in nude mice

    NASA Astrophysics Data System (ADS)

    Chang, Pei-Jiun; Yang, Czau-Siung; Chou, Ming-Ji; Wei, Chau-Chin; Hsu, Chu-Chung; Wang, Chia-Yu

    1984-04-01

    We have used particle induced X-ray emission (PIXE) to analyze the elemental compositions and uptakes of a lanthanide, yttrium in this report, in tumors and normal tissues of nude mice. A small amount of yttrium nitrate was injected into nude mice with tumors. Samples of normal and malignant tissues taken from these mice were bombarded by the 2 MeV proton beam from a 3 MeV Van de Graaff accelerator with a Ge detector system to determine the relative elemental compositions of tissues and the relative concentrations of yttrium taken up by these tissues. We found that the uptakes of yttrium by tumors were at least five times more than those by normal tissues. Substantial differences were often observed between the trace element weight (or concentration) pattern of the cancerous and normal tissues. The present result is compared with human tissues.

  2. Expression of cyclooxygenase-1 and cyclooxygenase-2, syndecan-1 and connective tissue growth factor in benign and malignant breast tissue from premenopausal women.

    PubMed

    Fahlén, M; Zhang, H; Löfgren, L; Masironi, B; von Schoultz, E; von Schoultz, B; Sahlin, L

    2017-05-01

    Stromal factors have been identified as important for tumorigenesis and metastases of breast cancer. From 49 premenopausal women, samples were collected from benign or malignant tumors and the seemingly normal tissue adjacent to the tumor. The factors studied, with real-time polymerase chain reaction (PCR) and immunohistochemistry, were cyclooxygenase-1 and cyclooxygenase-2 (COX-1 and COX-2), syndecan-1 (S-1) and connective tissue growth factor (CTGF). COX-1 and S-1 mRNA levels were higher in the malignant tumors than in normal and benign tissues. The COX-2 mRNA level was lower in the malignant tumor than in the normal tissue, while CTGF mRNA did not differ between the groups. COX-1 immunostaining was higher in stroma from malignant tumors than in benign tissues, whereas COX-2 immunostaining was higher in the malignant tissue. Glandular S-1 immunostaining was lower in malignant tumors compared to benign and normal tissues, and the opposite was found in stroma. Conclusively, mRNA levels of COX-1 and COX-2 were oppositely regulated, with COX-1 being increased in the malignant tumor while COX-2 was decreased. S-1 protein localization switched from glandular to stromal cells in malignant tissues. Thus, these markers are, in premenopausal women, localized and regulated differently in normal/benign breast tissue as compared to the malignant tumor.

  3. Porcine transcriptome analysis based on 97 non-normalized cDNA libraries and assembly of 1,021,891 expressed sequence tags

    PubMed Central

    Gorodkin, Jan; Cirera, Susanna; Hedegaard, Jakob; Gilchrist, Michael J; Panitz, Frank; Jørgensen, Claus; Scheibye-Knudsen, Karsten; Arvin, Troels; Lumholdt, Steen; Sawera, Milena; Green, Trine; Nielsen, Bente J; Havgaard, Jakob H; Rosenkilde, Carina; Wang, Jun; Li, Heng; Li, Ruiqiang; Liu, Bin; Hu, Songnian; Dong, Wei; Li, Wei; Yu, Jun; Wang, Jian; Stærfeldt, Hans-Henrik; Wernersson, Rasmus; Madsen, Lone B; Thomsen, Bo; Hornshøj, Henrik; Bujie, Zhan; Wang, Xuegang; Wang, Xuefei; Bolund, Lars; Brunak, Søren; Yang, Huanming; Bendixen, Christian; Fredholm, Merete

    2007-01-01

    Background Knowledge of the structure of gene expression is essential for mammalian transcriptomics research. We analyzed a collection of more than one million porcine expressed sequence tags (ESTs), of which two-thirds were generated in the Sino-Danish Pig Genome Project and one-third are from public databases. The Sino-Danish ESTs were generated from one normalized and 97 non-normalized cDNA libraries representing 35 different tissues and three developmental stages. Results Using the Distiller package, the ESTs were assembled to roughly 48,000 contigs and 73,000 singletons, of which approximately 25% have a high confidence match to UniProt. Approximately 6,000 new porcine gene clusters were identified. Expression analysis based on the non-normalized libraries resulted in the following findings. The distribution of cluster sizes is scaling invariant. Brain and testes are among the tissues with the greatest number of different expressed genes, whereas tissues with more specialized function, such as developing liver, have fewer expressed genes. There are at least 65 high confidence housekeeping gene candidates and 876 cDNA library-specific gene candidates. We identified differential expression of genes between different tissues, in particular brain/spinal cord, and found patterns of correlation between genes that share expression in pairs of libraries. Finally, there was remarkable agreement in expression between specialized tissues according to Gene Ontology categories. Conclusion This EST collection, the largest to date in pig, represents an essential resource for annotation, comparative genomics, assembly of the pig genome sequence, and further porcine transcription studies. PMID:17407547

  4. Fluid mechanics as a driver of tissue-scale mechanical signaling in organogenesis

    PubMed Central

    Gilbert, Rachel M.; Morgan, Joshua T.; Marcin, Elizabeth S.; Gleghorn, Jason P.

    2016-01-01

    Purpose of Review Organogenesis is the process during development by which cells self-assemble into complex, multi-scale tissues. Whereas significant focus and research effort has demonstrated the importance of solid mechanics in organogenesis, less attention has been given to the fluid forces that provide mechanical cues over tissue length scales. Recent Findings Fluid motion and pressure is capable of creating spatial gradients of forces acting on cells, thus eliciting distinct and localized signaling patterns essential for proper organ formation. Understanding the multi-scale nature of the mechanics is critically important to decipher how mechanical signals sculpt developing organs. Summary This review outlines various mechanisms by which tissues generate, regulate, and sense fluid forces and highlights the impact of these forces and mechanisms in case studies of normal and pathological development. PMID:28163984

  5. Tissue architecture and breast cancer: the role of extracellular matrix and steroid hormones

    PubMed Central

    Hansen, R K; Bissell, M J

    2010-01-01

    The changes in tissue architecture that accompany the development of breast cancer have been the focus of investigations aimed at developing new cancer therapeutics. As we learn more about the normal mammary gland, we have begun to understand the complex signaling pathways underlying the dramatic shifts in the structure and function of breast tissue. Integrin-, growth factor-, and steroid hormone-signaling pathways all play an important part in maintaining tissue architecture; disruption of the delicate balance of signaling results in dramatic changes in the way cells interact with each other and with the extracellular matrix, leading to breast cancer. The extracellular matrix itself plays a central role in coordinating these signaling processes. In this review, we consider the interrelationships between the extracellular matrix, integrins, growth factors, and steroid hormones in mammary gland development and function. PMID:10903527

  6. The nanomechanical signature of liver cancer tissues and its molecular origin

    NASA Astrophysics Data System (ADS)

    Tian, Mengxin; Li, Yiran; Liu, Weiren; Jin, Lei; Jiang, Xifei; Wang, Xinyan; Ding, Zhenbin; Peng, Yuanfei; Zhou, Jian; Fan, Jia; Cao, Yi; Wang, Wei; Shi, Yinghong

    2015-07-01

    Patients with cirrhosis are at higher risk of developing hepatocellular carcinoma (HCC), the second most frequent cause of cancer-related deaths. Although HCC diagnosis based on conventional morphological characteristics serves as the ``gold standard'' in the clinic, there is a high demand for more convenient and effective diagnostic methods that employ new biophysical perspectives. Here, we show that the nanomechanical signature of liver tissue is directly correlated with the development of HCC. Using indentation-type atomic force microscopy (IT-AFM), we demonstrate that the lowest elasticity peak (LEP) in the Young's modulus distribution of surgically removed liver cancer tissues can serve as a mechanical fingerprint to evaluate the malignancy of liver cancer. Cirrhotic tissues shared the same LEP as normal tissues. However, a noticeable downward shift in the LEP was detected when the cirrhotic tissues progressed to a malignant state, making the tumor tissues more prone to microvascular invasion. Cell-level mechanistic studies revealed that the expression level of a Rho-family effector (mDia1) was consistent with the mechanical trend exhibited by the tissue. Our findings indicate that the mechanical profiles of liver cancer tissues directly varied with tumor progression, providing an additional platform for the future diagnosis of HCC.Patients with cirrhosis are at higher risk of developing hepatocellular carcinoma (HCC), the second most frequent cause of cancer-related deaths. Although HCC diagnosis based on conventional morphological characteristics serves as the ``gold standard'' in the clinic, there is a high demand for more convenient and effective diagnostic methods that employ new biophysical perspectives. Here, we show that the nanomechanical signature of liver tissue is directly correlated with the development of HCC. Using indentation-type atomic force microscopy (IT-AFM), we demonstrate that the lowest elasticity peak (LEP) in the Young's modulus distribution of surgically removed liver cancer tissues can serve as a mechanical fingerprint to evaluate the malignancy of liver cancer. Cirrhotic tissues shared the same LEP as normal tissues. However, a noticeable downward shift in the LEP was detected when the cirrhotic tissues progressed to a malignant state, making the tumor tissues more prone to microvascular invasion. Cell-level mechanistic studies revealed that the expression level of a Rho-family effector (mDia1) was consistent with the mechanical trend exhibited by the tissue. Our findings indicate that the mechanical profiles of liver cancer tissues directly varied with tumor progression, providing an additional platform for the future diagnosis of HCC. Electronic supplementary information (ESI) available: Detailed experimental procedures and supplementary figures. See DOI: 10.1039/c5nr02192h

  7. CvADH1, a member of short-chain alcohol dehydrogenase family, is inducible by gibberellin and sucrose in developing watermelon seeds.

    PubMed

    Kim, Joonyul; Kang, Hong-Gyu; Jun, Sung-Hoon; Lee, Jinwon; Yim, Jieun; An, Gynheung

    2003-01-01

    To understand the molecular mechanisms that control seed formation, we selected a seed-preferential gene (CvADH1) from the ESTs of developing watermelon seeds. RNA blot analysis and in situ localization showed that CvADH1 was preferentially expressed in the nucellar tissue. The CvADH1 protein shared about 50% homology with short-chain alcohol dehydrogenase including ABA2 in Arabidopsis thaliana, stem secoisolariciresinol dehydrogenase in Forsythia intermedia, and 3beta-hydroxysterol dehydrogenase in Digitalis lanata. We investigated gene-expression levels in seeds from both normally pollinated fruits and those made parthenocarpic via N-(2-chloro-4-pyridyl)-N'-phenylurea treatment, the latter of which lack zygotic tissues. Whereas the transcripts of CvADH1 rapidly started to accumulate from about the pre-heart stage in normal seeds, they were not detectable in the parthenocarpic seeds. Treating the parthenogenic fruit with GA(3) strongly induced gene expression, up to the level accumulated in pollinated seeds. These results suggest that the CvADH1 gene is induced in maternal tissues by signals made in the zygotic tissues, and that gibberellin might be one of those signals. We also observed that CvADH1 expression was induced by sucrose in the parthenocarpic seeds. Therefore, we propose that the CvADH1 gene is inducible by gibberellin, and that sucrose plays an important role in the maternal tissues of watermelon during early seed development.

  8. Causal network analysis of head and neck keloid tissue identifies potential master regulators.

    PubMed

    Garcia-Rodriguez, Laura; Jones, Lamont; Chen, Kang Mei; Datta, Indrani; Divine, George; Worsham, Maria J

    2016-10-01

    To generate novel insights and hypotheses in keloid development from potential master regulators. Prospective cohort. Six fresh keloid and six normal skin samples from 12 anonymous donors were used in a prospective cohort study. Genome-wide profiling was done previously on the cohort using the Infinium HumanMethylation450 BeadChip (Illumina, San Diego, CA). The 190 statistically significant CpG islands between keloid and normal tissue mapped to 152 genes (P < .05). The top 10 statistically significant genes (VAMP5, ACTR3C, GALNT3, KCNAB2, LRRC61, SCML4, SYNGR1, TNS1, PLEKHG5, PPP1R13-α, false discovery rate <.015) were uploaded into the Ingenuity Pathway Analysis software's Causal Network Analysis (QIAGEN, Redwood City, CA). To reflect expected gene expression direction in the context of methylation changes, the inverse of the methylation ratio from keloid versus normal tissue was used for the analysis. Causal Network Analysis identified disease-specific master regulator molecules based on downstream differentially expressed keloid-specific genes and expected directionality of expression (hypermethylated vs. hypomethylated). Causal Network Analysis software identified four hierarchical networks that included four master regulators (pyroxamide, tributyrin, PRKG2, and PENK) and 19 intermediate regulators. Causal Network Analysis of differentiated methylated gene data of keloid versus normal skin demonstrated four causal networks with four master regulators. These hierarchical networks suggest potential driver roles for their downstream keloid gene targets in the pathogenesis of the keloid phenotype, likely triggered due to perturbation/injury to normal tissue. NA Laryngoscope, 126:E319-E324, 2016. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  9. A replacement for islet equivalents with improved reliability and validity.

    PubMed

    Huang, Han-Hung; Ramachandran, Karthik; Stehno-Bittel, Lisa

    2013-10-01

    Islet equivalent (IE), the standard estimate of isolated islet volume, is an essential measure to determine the amount of transplanted islet tissue in the clinic and is used in research laboratories to normalize results, yet it is based on the false assumption that all islets are spherical. Here, we developed and tested a new easy-to-use method to quantify islet volume with greater accuracy. Isolated rat islets were dissociated into single cells, and the total cell number per islet was determined by using computer-assisted cytometry. Based on the cell number per islet, we created a regression model to convert islet diameter to cell number with a high R2 value (0.8) and good validity and reliability with the same model applicable to young and old rats and males or females. Conventional IE measurements overestimated the tissue volume of islets. To compare results obtained using IE or our new method, we compared Glut2 protein levels determined by Western Blot and proinsulin content via ELISA between small (diameter≤100 μm) and large (diameter≥200 μm) islets. When normalized by IE, large islets showed significantly lower Glut2 level and proinsulin content. However, when normalized by cell number, large and small islets had no difference in Glut2 levels, but large islets contained more proinsulin. In conclusion, normalizing islet volume by IE overestimated the tissue volume, which may lead to erroneous results. Normalizing by cell number is a more accurate method to quantify tissue amounts used in islet transplantation and research.

  10. Photoacoustic physio-chemical analysis for prostate cancer diagnosis (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xu, Guan; Cheng, Qian; Huang, Shengsong; Qin, Ming; Hopkins, Thomas; Lee, Chang H.; Kopelman, Raoul; Chao, Wan-yu; Keller, Evan T.; Wu, Denglong; Wang, Xueding

    2017-03-01

    Photoacoustic physio-chemical analysis (PAPCA) is a recently developed technology capable of simultaneously quantifying the content of molecular components and the corresponding microarchitectures in biological tissue. We have successfully quantified the diagnostic information in livers with PAPCA. In this study, we implemented PAPCA to the diagnosis of prostate cancers. 4 human prostates were scanned ex vivo. The PA signals from normal and cancerous regions in the prostates were acquired by an interstitial needle PA probe. A total of 14 interstitial measurements, including 6 within the normal regions and 8 in the cancerous regions, were acquired. The observed changes in molecular components, including lipid, collagen and hemoglobin were consistent with the findings by other research groups. The changes were quantified by PA spectral analysis (PASA) at wavelengths where strong optical absorption of the relevant molecular components was found. Statistically significant differences among the PASA parameters were observed (p=0.025 at significance of 0.05). A support vector machine model for differentiating the normal and cancerous tissue was established. With the limited number of samples, an 85% diagnostic accuracy was found. The diagnostic information in the PCPCA can be further enriched by targeted optical contrast agents visualizing the microarchitecture in PCa tissues. F3 PAA-PEG nanoparticles was employed to stain the PCa cells in a transgenic mouse model, in which the microarchitectures of normal and cancerous prostate tissues are comparable to that in human. Statistically significant differences were observed between the contrast-enhanced normal and cancerous regions (p=0.038 at a significance of 0.05).

  11. Resonance Raman of BCC and normal skin

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-hui; Sriramoju, Vidyasagar; Boydston-White, Susie; Wu, Binlin; Zhang, Chunyuan; Pei, Zhe; Sordillo, Laura; Beckman, Hugh; Alfano, Robert R.

    2017-02-01

    The Resonance Raman (RR) spectra of basal cell carcinoma (BCC) and normal human skin tissues were analyzed using 532nm laser excitation. RR spectral differences in vibrational fingerprints revealed skin normal and cancerous states tissues. The standard diagnosis criterion for BCC tissues are created by native RR biomarkers and its changes at peak intensity. The diagnostic algorithms for the classification of BCC and normal were generated based on SVM classifier and PCA statistical method. These statistical methods were used to analyze the RR spectral data collected from skin tissues, yielding a diagnostic sensitivity of 98.7% and specificity of 79% compared with pathological reports.

  12. Glycomics expression analysis of sulfated glycosaminoglycans of human colorectal cancer tissues and non-neoplastic mucosa by electrospray ionization mass spectrometry

    PubMed Central

    Marolla, Ana Paula Cleto; Waisberg, Jaques; Saba, Gabriela Tognini; Waisberg, Daniel Reis; Margeotto, Fernando Beani; Pinhal, Maria Aparecida da Silva

    2015-01-01

    ABSTRACT Objective To determine the presence of glycosaminoglycans in the extracellular matrix of connective tissue from neoplastic and non-neoplastic colorectal tissues, since it has a central role in tumor development and progression. Methods Tissue samples from neoplastic and non-neoplastic colorectal tissues were obtained from 64 operated patients who had colorectal carcinoma with no distant metastases. Expressions of heparan sulphate, chondroitin sulphate, dermatan sulphate and their fragments were analyzed by electrospray ionization mass spectrometry, with the technique for extraction and quantification of glycosaminoglycans after proteolysis and electrophoresis. The statistical analysis included mean, standard deviation, and Student’s t test. Results The glycosaminoglycans extracted from colorectal tissue showed three electrophoretic bands in agarose gel. Electrospray ionization mass spectrometry showed characteristic disaccharide fragments from glycosaminoglycans, indicating their structural characterization in the tissues analyzed. Some peaks in the electrospray ionization mass spectrometry were not characterized as fragments of sugars, indicating the presence of fragments of the protein structure of proteoglycans generated during the glycosaminoglycan purification. The average amount of chondroitin and dermatan increased in the neoplastic tissue compared to normal tissue (p=0.01). On the other hand, the average amount of heparan decreased in the neoplastic tissue compared to normal tissue (p= 0.03). Conclusion The method allowed the determination of the glycosaminoglycans structural profile in colorectal tissue from neoplastic and non-neoplastic colorectal tissue. Neoplastic tissues showed greater amounts of chondroitin sulphate and dermatan sulphate compared to non-neoplastic tissues, while heparan sulphate was decreased in neoplastic tissues. PMID:26761548

  13. Rejuvenating Strategies for Stem Cell-based Therapies in Aging

    PubMed Central

    Neves, Joana; Sousa-Victor, Pedro; Jasper, Heinrich

    2017-01-01

    SUMMARY Recent advances in our understanding of tissue regeneration and the development of efficient approaches to induce and differentiate pluripotent stem cells for cell replacement therapies promise exciting avenues for treating degenerative age-related diseases. However, clinical studies and insights from model organisms have identified major roadblocks that normal aging processes impose on tissue regeneration. These new insights suggest that specific targeting of environmental niche components, including growth factors, ECM and immune cells, and intrinsic stem cell properties that are affected by aging will be critical for development of new strategies to improve stem cell function and optimize tissue repair processes. PMID:28157498

  14. Update in TSH Receptor Agonists and Antagonists

    PubMed Central

    Neumann, Susanne

    2012-01-01

    The physiological role of the TSH receptor (TSHR) as a major regulator of thyroid function is well understood, but TSHRs are also expressed in multiple normal extrathyroidal tissues, and the physiological roles of TSHRs in these tissues are unclear. Moreover, TSHRs play a major role in several pathological conditions including hyperthyroidism, hypothyroidism, and thyroid tumors. Small molecule, “drug-like” TSHR agonists, neutral antagonists, and inverse agonists may be useful as probes of TSHR function in extrathyroidal tissues and as leads to develop drugs for several diseases of the thyroid. In this Update, we review the most recent findings regarding the development and use of these small molecule TSHR ligands. PMID:23019348

  15. Comparison of stretched-Exponential and monoexponential model diffusion-Weighted imaging in prostate cancer and normal tissues.

    PubMed

    Liu, Xiaohang; Zhou, Liangping; Peng, Weijun; Wang, He; Zhang, Yong

    2015-10-01

    To compare stretched-exponential and monoexponential model diffusion-weighted imaging (DWI) in prostate cancer and normal tissues. Twenty-seven patients with prostate cancer underwent DWI exam using b-values of 0, 500, 1000, and 2000 s/mm(2) . The distributed diffusion coefficients (DDC) and α values of prostate cancer and normal tissues were obtained with stretched-exponential model and apparent diffusion coefficient (ADC) values using monoexponential model. The ADC, DDC (both in 10(-3) mm(2)/s), and α values (range, 0-1) were compared among different prostate tissues. The ADC and DDC were also compared and correlated in each tissue, and the standardized differences between DDC and ADC were compared among different tissues. Data were obtained for 31 cancers, 36 normal peripheral zone (PZ) and 26 normal central gland (CG) tissues. The ADC (0.71 ± 0.12), DDC (0.60 ± 0.18), and α value (0.64 ± 0.05) of tumor were all significantly lower than those of the normal PZ (1.41 ± 0.22, 1.47 ± 0.20, and 0.85 ± 0.09) and CG (1.25 ± 0.14, 1.32 ± 0.13, and 0.82 ± 0.06) (all P < 0.05). ADC was significantly higher than DDC in cancer, but lower than DDC in the PZ and CG (all P < 0.05). The ADC and DDC were strongly correlated (R(2)  = 0.99, 0.98, 0.99, respectively, all P < 0.05) in all the tissue, and standardized difference between ADC and DDC of cancer was slight but significantly higher than that in normal tissue. The stretched-exponential model DWI provides more parameters for distinguishing prostate cancer and normal tissue and reveals slight differences between DDC and ADC values. © 2015 Wiley Periodicals, Inc.

  16. Proteomic profiling of fetal esophageal epithelium, esophageal cancer, and tumor-adjacent esophageal epithelium and immunohistochemical characterization of a representative differential protein, PRX6

    PubMed Central

    Guo, Jun-Hui; Xing, Guo-Lan; Fang, Xin-Hui; Wu, Hui-Fang; Zhang, Bo; Yu, Jin-Zhong; Fan, Zong-Min; Wang, Li-Dong

    2017-01-01

    AIM To understand the molecular mechanism of esophageal cancer development and provide molecular markers for screening high-risk populations and early diagnosis. METHODS Two-dimensional electrophoresis combined with mass spectrometry were adopted to screen differentially expressed proteins in nine cases of fetal esophageal epithelium, eight cases of esophageal cancer, and eight cases of tumor-adjacent normal esophageal epithelium collected from fetuses of different gestational age, or esophageal cancer patients from a high-risk area of esophageal cancer in China. Immunohistochemistry (avidin-biotin-horseradish peroxidase complex method) was used to detect the expression of peroxiredoxin (PRX)6 in 91 cases of esophageal cancer, tumor-adjacent normal esophageal tissue, basal cell hyperplasia, dysplasia, and carcinoma in situ, as well as 65 cases of esophageal epithelium from fetuses at a gestational age of 3-9 mo. RESULTS After peptide mass fingerprint analysis and search of protein databases, 21 differential proteins were identified; some of which represent a protein isoform. Varying degrees of expression of PRX6 protein, which was localized mainly in the cytoplasm, were detected in adult and fetal normal esophageal tissues, precancerous lesions, and esophageal cancer. With the progression of esophageal lesions, PRX6 protein expression showed a declining trend (P < 0.05). In fetal epithelium from fetuses at gestational age 3-6 mo, PRX6 protein expression showed a declining trend with age (P < 0.05). PRX6 protein expression was significantly higher in well-differentiated esophageal cancer tissues than in poorly differentiated esophageal cancer tissues (P < 0.05). CONCLUSION Development and progression of esophageal cancer result from interactions of genetic changes (accumulation or superposition). PRX6 protein is associated with fetal esophageal development and cancer differentiation. PMID:28293090

  17. Proteomic profiling of fetal esophageal epithelium, esophageal cancer, and tumor-adjacent esophageal epithelium and immunohistochemical characterization of a representative differential protein, PRX6.

    PubMed

    Guo, Jun-Hui; Xing, Guo-Lan; Fang, Xin-Hui; Wu, Hui-Fang; Zhang, Bo; Yu, Jin-Zhong; Fan, Zong-Min; Wang, Li-Dong

    2017-02-28

    To understand the molecular mechanism of esophageal cancer development and provide molecular markers for screening high-risk populations and early diagnosis. Two-dimensional electrophoresis combined with mass spectrometry were adopted to screen differentially expressed proteins in nine cases of fetal esophageal epithelium, eight cases of esophageal cancer, and eight cases of tumor-adjacent normal esophageal epithelium collected from fetuses of different gestational age, or esophageal cancer patients from a high-risk area of esophageal cancer in China. Immunohistochemistry (avidin-biotin-horseradish peroxidase complex method) was used to detect the expression of peroxiredoxin (PRX)6 in 91 cases of esophageal cancer, tumor-adjacent normal esophageal tissue, basal cell hyperplasia, dysplasia, and carcinoma in situ , as well as 65 cases of esophageal epithelium from fetuses at a gestational age of 3-9 mo. After peptide mass fingerprint analysis and search of protein databases, 21 differential proteins were identified; some of which represent a protein isoform. Varying degrees of expression of PRX6 protein, which was localized mainly in the cytoplasm, were detected in adult and fetal normal esophageal tissues, precancerous lesions, and esophageal cancer. With the progression of esophageal lesions, PRX6 protein expression showed a declining trend ( P < 0.05). In fetal epithelium from fetuses at gestational age 3-6 mo, PRX6 protein expression showed a declining trend with age ( P < 0.05). PRX6 protein expression was significantly higher in well-differentiated esophageal cancer tissues than in poorly differentiated esophageal cancer tissues ( P < 0.05). Development and progression of esophageal cancer result from interactions of genetic changes (accumulation or superposition). PRX6 protein is associated with fetal esophageal development and cancer differentiation.

  18. In Vivo Monitoring of pH, Redox Status, and Glutathione Using L-Band EPR for Assessment of Therapeutic Effectiveness in Solid Tumors

    PubMed Central

    Bobko, Andrey A.; Eubank, Timothy D.; Voorhees, Jeffrey L.; Efimova, Olga V.; Kirilyuk, Igor A.; Petryakov, Sergey; Trofimiov, Dmitrii G.; Marsh, Clay B.; Zweier, Jay L.; Grigor’ev, Igor A.; Samouilov, Alexandre; Khramtsov, Valery V.

    2011-01-01

    Approach for in vivo real-time assessment of tumor tissue extracellular pH (pHe), redox, and intracellular glutathione based on L-band EPR spectroscopy using dual function pH and redox nitroxide probe and disulfide nitroxide biradical, is described. These parameters were monitored in PyMT mice bearing breast cancer tumors during treatment with granulocyte macrophage colony-stimulating factor. It was observed that tumor pHe is about 0.4 pH units lower than that in normal mammary gland tissue. Treatment with granulocyte macrophage colony-stimulating factor decreased the value of pHe by 0.3 units compared with PBS control treatment. Tumor tissue reducing capacity and intracellular glutathione were elevated compared with normal mammary gland tissue. Granulocyte macrophage colony-stimulating factor treatment resulted in a decrease of the tumor tissue reducing capacity and intracellular glutathione content. In addition to spectroscopic studies, pHe mapping was performed using recently proposed variable frequency proton–electron double-resonance imaging. The pH mapping superimposed with MRI image supports probe localization in mammary gland/tumor tissue, shows high heterogeneity of tumor tissue pHe and a difference of about 0.4 pH units between average pHe values in tumor and normal mammary gland. In summary, the developed multifunctional approach allows for in vivo, noninvasive pHe, extracellular redox, and intracellular glutathione content monitoring during investigation of various therapeutic strategies for solid tumors. Magn Reson Med 000:000–000, 2011. PMID:22113626

  19. The Resistance of Certain Tissues to Invasion

    PubMed Central

    Eisenstein, Reuben; Sorgente, Nino; Soble, Lawrence W.; Miller, Alexander; Kuettner, Klaus E.

    1973-01-01

    If puppy tissues are explanted onto the chick chorioallantoic membrane, those tissues which normally have a blood supply are rapidly invaded by vascularized mesenchyme of host origin. Hyaline cartilage, a tissue virtually devoid of blood vessels, is impenetrable by proliferating mesenchyme of the host, while calcified cartilage, which normally is vascularized, is penetrable. The stroma of the cornea, another normally avascular tissue, is readily penetrable, but Descemet's membrane forms a barrier to invasion by host tissues. The experimental system used permits the design of experiments in which the study of factors responsible for the resistance of tissues such as cartilage to invasion can be undertaken. ImagesFig 1Fig 2Fig 3Fig 4 PMID:4129060

  20. Tryptophan as key biomarker to detect gastrointestinal tract cancer using non-negative biochemical analysis of native fluorescence and Stokes Shift spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Leana; Zhou, Yan; Liu, Cheng-hui; Zhou, Lixin; He, Yong; Pu, Yang; Nguyen, Thien An; Alfano, Robert R.

    2015-03-01

    The objective of this study was to find out the emission spectral fingerprints for discrimination of human colorectal and gastric cancer from normal tissue in vitro by applying native fluorescence. The native fluorescence (NFL) and Stokes shift spectra of seventy-two human cancerous and normal colorectal (colon, rectum) and gastric tissues were analyzed using three selected excitation wavelengths (e.g. 300 nm, 320 nm and 340 nm). Three distinct biomarkers, tryptophan, collagen and reduced nicotinamide adenine dinucleotide hydrate (NADH), were found in the samples of cancerous and normal tissues from eighteen subjects. The spectral profiles of tryptophan exhibited a sharp peak in cancerous colon tissues under a 300 nm excitation when compared with normal tissues. The changes in compositions of tryptophan, collagen, and NADH were found between colon cancer and normal tissues under an excitation of 300 nm by the non-negative basic biochemical component analysis (BBCA) model.

  1. Proteomics and bioinformatics analysis of altered protein expression in the placental villous tissue from early recurrent miscarriage patients.

    PubMed

    Pan, Hai-Tao; Ding, Hai-Gang; Fang, Min; Yu, Bin; Cheng, Yi; Tan, Ya-Jing; Fu, Qi-Qin; Lu, Bo; Cai, Hong-Guang; Jin, Xin; Xia, Xian-Qing; Zhang, Tao

    2018-01-01

    Recurrent miscarriage (RM) affects 5% of women, it has an adverse emotional impact on women. Because of the complexities of early development, the mechanism of recurrent miscarriage is still unclear. We hypothesized that abnormal placenta leads to early recurrent miscarriage (ERM). The aim of this study was to identify ERM associated factors in human placenta villous tissue using proteomics. Investigation of these differences in protein expression in parallel profiling is essential to understand the comprehensive pathophysiological mechanism underlying recurrent miscarriage (RM). To gain more insight into mechanisms of recurrent miscarriage (RM), a comparative proteome profile of the human placenta villous tissue in normal and RM pregnancies was analyzed using iTRAQ technology and bioinformatics analysis used by Ingenuity Pathway Analysis (IPA) software. In this study, we employed an iTRAQ based proteomics analysis of four placental villous tissues from patients with early recurrent miscarriage (ERM) and four from normal pregnant women. Finally, we identified 2805 proteins and 79,998 peptides between patients with RM and normal matched group. Further analysis identified 314 differentially expressed proteins in placental villous tissue (≥1.3-fold, Student's t-test, p < 0.05); 209 proteins showed the increased expression while 105 proteins showed decreased expression. These 314 proteins were analyzed by Ingenuity Pathway Analysis (IPA) and were found to play important roles in the growth of embryo. Furthermore, network analysis show that Angiotensinogen (AGT), MAPK14 and Prothrombin (F2) are core factors in early embryonic development. We used another 8 independent samples (4 cases and 4 controls) to cross validation of the proteomic data. This study has identified several proteins that are associated with early development, these results may supply new insight into mechanisms behind recurrent miscarriage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Normalization of periodontal tissues in osteopetrotic mib mutant rats, treated with CSF-1

    NASA Technical Reports Server (NTRS)

    Wojtowicz, A.; Yamauchi, M.; Sotowski, R.; Ostrowski, K.

    1998-01-01

    The osteopetrotic mib mutation in rats causes defects in the skeletal bone tissue in young animals. These defects, i.e. slow bone remodelling, changes in both crystallinity and mineral content, are transient and undergo normalization, even without any treatment in 6-wk-old animals. Treatment with CSF-1 (colony stimulating factor-1) accelerates the normalization process in skeletal bones. The periodontal tissues around the apices of incisors show abnormalities caused by the slow remodelling process of the mandible bone tissue, the deficiency of osteoclasts and their abnormal morphology, as well as the disorganization of periodontal ligament fibres. In contrast to the skeletal tissues, these abnormalities would not undergo spontaneous normalization. Under treatment with colony stimulating factor 1 (CSF-1), the primitive bone trabeculae of mandible are resorbed and the normalization of the number of osteoclasts and their cytology occurs. The organization of the periodontal ligament fibres is partially restored, resembling the histological structure of the normal one.

  3. Emphysema (image)

    MedlinePlus

    Emphysema is a lung disease involving damage to the air sacs (alveoli). There is progressive destruction of alveoli and the surrounding tissue that supports the alveoli. With more advanced disease, large air cysts develop where normal lung ...

  4. The biochemical, nanomechanical and chemometric signatures of brain cancer

    NASA Astrophysics Data System (ADS)

    Abramczyk, Halina; Imiela, Anna

    2018-01-01

    Raman spectroscopy and imaging combined with AFM topography and mechanical indentation by AFM have been shown to be an effective tool for analysis and discrimination of human brain tumors from normal structures. Raman methods have potential to be applied in clinical practice as they allow for identification of tumor margins during surgery. In this study, we investigate medulloblastoma (grade IV WHO) (n = 5) and the tissue from the negative margins used as normal controls. We compare a high grade medulloblastoma (IV grade), and non-tumor samples from human central nervous system (CNS) tissue. Based on the properties of the Raman vibrational spectra and Raman images we provide a real-time feedback that is label-free method to monitor tumor metabolism that reveals reprogramming of biosynthesis of lipids, and proteins. We have found that the high-grade tumors of central nervous system (medulloblastoma) exhibit enhanced level of β-sheet conformation and down-regulated level of α-helix conformation when comparing against normal tissue. We have shown that the ratio of Raman intensities I2930/I2845 at 2930 and 2845 cm- 1 is a good source of information on the ratio of lipid and protein contents. We have found that the ratio reflects the lipid and protein contents of tumorous brain tissue compared to the non-tumor tissue. Almost all brain tumors have the Raman intensity ratios significantly higher (1.99 ± 0.026) than that found in non-tumor brain tissue, which is 1.456 ± 0.02, and indicates that the relative amount of lipids compared to proteins is significantly higher in the normal brain tissue. Mechanical indentation using AFM on sliced human brain tissues (medulloblastoma, grade IV) revealed that the mechanical properties of this tissue are strongly heterogeneous, between 1.8 and 75.7 kPa, and the mean of 27.16 kPa. The sensitivity and specificity obtained directly from PLSDA and cross validation gives a sensitivity and specificity of 98.5% and 96% and 96.3% and 92% for cross-validation, respectively. The high sensitivity and specificity demonstrates usefulness for a proper decision for a Raman diagnostic test on biochemical alterations monitored by Raman spectroscopy related to brain cancer development.

  5. Immunopathology of experimental Chagas' disease: binding of T cells to Trypanosoma cruzi-infected heart tissue.

    PubMed Central

    Mortatti, R C; Maia, L C; de Oliveira, A V; Munk, M E

    1990-01-01

    The immunopathology of Chagas' disease was studied in the experimental model of chronic infection in C57BL/10JT or mice. Sublethal infection with Trypanosoma cruzi, Y strain, induced specific antibodies and a delayed hypersensitivity response to parasite antigens. Mice developed chronic chagasic myocarditis but not skeletal muscle myositis. Binding of T cells to infected heart tissue was investigated during short-term cocultivation of lymphocytes with heart cryostat sections. T cells from infected mice and from normal controls bound equally to myocardium and liver sections from both infected and normal mice. A search in depth was attempted with cells heavily tagged with 99mTc. Labeled T cells from chagasic mice bound to both normal and infected myocardium slices. 99mTc-labeled T cells from controls gave the same binding values. Glass-adherent spleen cells behaved identically to T cells. Prior treatment of the tissue with serum from chronically infected mice did not increase the number of binding cells. Peritoneal macrophages tagged with 99mTc-sulfur colloid also bound to infected myocardium slices. The binding of macrophages was not changed by pretreatment of infected tissue with anti-T, cruzi antibodies. In short, this work did not detect any population of T cells or macrophages which could bind specifically to infected heart tissue to initiate an autoreactive process. Images PMID:2228230

  6. Raman spectroscopy of oral tissues: correlation of spectral and biochemical markers

    NASA Astrophysics Data System (ADS)

    Singh, S. P.; Krishna, C. Murali

    2014-03-01

    Introduction Optical spectroscopic methods are being explored as novel tools for early and non-invasive cancer diagnosis. Both ex vivo and in vivo Raman spectroscopic studies carried out in oral cancer over the past decade have demonstrated that spectra of normal tissues are rich in lipids while tumor spectra show predominance of proteins. An accurate understanding of spectral features with respect to the biochemical composition is a pre-requisite before transferring these technologies for routine clinical usage. Therefore, in the present study, we have carried out Raman and biochemical studies on same tissues to correlate spectral markers and biochemical composition of normal and tumor oral tissues. Materials and Methods Spectra of 20 pairs of normal and tumor oral tissues were acquired using fiber-optic probe coupled HE-785 Raman spectrometer. Intensity associated with lipid (1440 cm-1) and protein (1450 and 1660 cm-1) bands were computed using curve-deconvolution method. Same tissues were then subjected to biochemical estimations of major biomolecules i.e., protein, lipid and phospholipids. Results and Discussion The intensity of the lipid band was found to be higher in normal tissues with respect to tumors, and the protein band was higher in tumors compared to normal tissues. Biochemical estimation yielded similar results i.e. high protein to lipid or phospholipid ratio in tumors with-respect to normal tissues. These differences were found to be statistically significant. Conclusion Findings of curve-deconvolution and biochemical estimation correlate very well and corroborate the spectral profile noted in earlier studies.

  7. The classification of secondary colorectal liver cancer in human biopsy samples using angular dispersive x-ray diffraction and multivariate analysis

    NASA Astrophysics Data System (ADS)

    Theodorakou, Chrysoula; Farquharson, Michael J.

    2009-08-01

    The motivation behind this study is to assess whether angular dispersive x-ray diffraction (ADXRD) data, processed using multivariate analysis techniques, can be used for classifying secondary colorectal liver cancer tissue and normal surrounding liver tissue in human liver biopsy samples. The ADXRD profiles from a total of 60 samples of normal liver tissue and colorectal liver metastases were measured using a synchrotron radiation source. The data were analysed for 56 samples using nonlinear peak-fitting software. Four peaks were fitted to all of the ADXRD profiles, and the amplitude, area, amplitude and area ratios for three of the four peaks were calculated and used for the statistical and multivariate analysis. The statistical analysis showed that there are significant differences between all the peak-fitting parameters and ratios between the normal and the diseased tissue groups. The technique of soft independent modelling of class analogy (SIMCA) was used to classify normal liver tissue and colorectal liver metastases resulting in 67% of the normal tissue samples and 60% of the secondary colorectal liver tissue samples being classified correctly. This study has shown that the ADXRD data of normal and secondary colorectal liver cancer are statistically different and x-ray diffraction data analysed using multivariate analysis have the potential to be used as a method of tissue classification.

  8. Characterizing optical properties and spatial heterogeneity of human ovarian tissue using spatial frequency domain imaging

    NASA Astrophysics Data System (ADS)

    Nandy, Sreyankar; Mostafa, Atahar; Kumavor, Patrick D.; Sanders, Melinda; Brewer, Molly; Zhu, Quing

    2016-10-01

    A spatial frequency domain imaging (SFDI) system was developed for characterizing ex vivo human ovarian tissue using wide-field absorption and scattering properties and their spatial heterogeneities. Based on the observed differences between absorption and scattering images of different ovarian tissue groups, six parameters were quantitatively extracted. These are the mean absorption and scattering, spatial heterogeneities of both absorption and scattering maps measured by a standard deviation, and a fitting error of a Gaussian model fitted to normalized mean Radon transform of the absorption and scattering maps. A logistic regression model was used for classification of malignant and normal ovarian tissues. A sensitivity of 95%, specificity of 100%, and area under the curve of 0.98 were obtained using six parameters extracted from the SFDI images. The preliminary results demonstrate the diagnostic potential of the SFDI method for quantitative characterization of wide-field optical properties and the spatial distribution heterogeneity of human ovarian tissue. SFDI could be an extremely robust and valuable tool for evaluation of the ovary and detection of neoplastic changes of ovarian cancer.

  9. [Expression of vascular endothelial growth factor and its significance in pulmonary bronchoalveolar carcinoma].

    PubMed

    Song, Weian; Li, Hui; Wang, Huasheng; Zhang, Weidong; Zhao, Xiaogang

    2004-02-20

    To study the relationship between the vascular endothelial growth factor (VEGF) and the clinicopathological characteristics of the patients with pulmonary bronchoalveolar carcinoma, and to research the possible role of VEGF in the malignant growth of pulmonary bronchoalveolar carcinoma. The expression of VEGF and MVD were detected in 38 pulmonary bronchoalveolar carcinoma and 20 normal lung tissues by immunohistochemical method. The positive rate of VEGF expression (73.68%,28/38) and MVD (63.81±19.26) in pulmonary bronchoalveolar carcinoma tissues were both remarkably higher than those in normal lung tissues (0, 18.44±6.53)( P < 0.005,P < 0.001). The positive rate of VEGF expression was significantly related to the size of tumor ( P < 0.05), lymphatic metastasis ( P < 0.025) and TNM stage ( P < 0.05), and so did the MVD ( P < 0.05, P < 0.05, P < 0.05). MVD was remarkably higher in VEGF (+) carcinoma tissues than that in VEGF (-) carcinoma tissues ( P < 0.05). VEGF correlates with the clinicopathological characteristics of pulmonary bronchoalveolar carcinoma. It may play an important role in the development of pulmonary bronchoalveolar carcinoma.

  10. Cytological and ultrastructural studies on root tissues

    NASA Technical Reports Server (NTRS)

    Slocum, R. D.; Gaynor, J. J.; Galston, A. W.

    1984-01-01

    The anatomy and fine structure of roots from oat and mung bean seedlings, grown under microgravity conditions for 8 days aboard the Space Shuttle, was examined and compared to that of roots from ground control plants grown under similar conditions. Roots from both sets of oat seedlings exhibited characteristic monocotyledonous tissue organization and normal ultrastructural features, except for cortex cell mitochondria, which exhibited a 'swollen' morphology. Various stages of cell division were observed in the meristematic tissues of oat roots. Ground control and flight-grown mung bean roots also showed normal tissue organization, but root cap cells in the flight-grown roots were collapsed and degraded in appearance, especially at the cap periphery. At the ultrastructural level, these cells exhibited a loss of organelle integrity and a highly-condensed cytoplasm. This latter observation perhaps suggests a differing tissue sensitivity for the two species to growth conditions employed in space flight. The basis for abnormal root cap cell development is not understood, but the loss of these putative gravity-sensing cells holds potential significance for long term plant growth orientation during space flight.

  11. NASA Bioreactor tissue culture

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  12. State of the mineral component of rat bone tissue during hypokinesia and the recovery period

    NASA Technical Reports Server (NTRS)

    Volozhin, A. I.; Stupakov, G. P.; Pavlova, M. N.; Muradov, I. S.

    1980-01-01

    Experiments were conducted on young growing rats. Hypokinesia lasting from 20 to 200 days caused retarded gain in weight and volume of the femur and delayed development of the cortical layer of the diaphysis. In contrast, the density of the cortical layer of the femoral diaphysis increased due to elevation of the mineral saturation of the bone tissue microstructures. Incorporation of Ca into the bone tissue in hypokinesia had a tendency to reduce. Partial normalization of the bone tissue mineral component occurred during a 20 day recovery period following hypokinesia.

  13. Axonal abnormalities in vanishing white matter.

    PubMed

    Klok, Melanie D; Bugiani, Marianna; de Vries, Sharon I; Gerritsen, Wouter; Breur, Marjolein; van der Sluis, Sophie; Heine, Vivi M; Kole, Maarten H P; Baron, Wia; van der Knaap, Marjo S

    2018-04-01

    We aimed to study the occurrence and development of axonal pathology and the influence of astrocytes in vanishing white matter. Axons and myelin were analyzed using electron microscopy and immunohistochemistry on Eif2b4 and Eif2b5 single- and double-mutant mice and patient brain tissue. In addition, astrocyte-forebrain co-culture studies were performed. In the corpus callosum of Eif2b5- mutant mice, myelin sheath thickness, axonal diameter, and G-ratio developed normally up to 4 months. At 7 months, however, axons had become thinner, while in control mice axonal diameters had increased further. Myelin sheath thickness remained close to normal, resulting in an abnormally low G-ratio in Eif2b5- mutant mice. In more severely affected Eif2b4-Eif2b5 double-mutants, similar abnormalities were already present at 4 months, while in milder affected Eif2b4 mutants, few abnormalities were observed at 7 months. Additionally, from 2 months onward an increased percentage of thin, unmyelinated axons and increased axonal density were present in Eif2b5 -mutant mice. Co-cultures showed that Eif2b5 mutant astrocytes induced increased axonal density, also in control forebrain tissue, and that control astrocytes induced normal axonal density, also in mutant forebrain tissue. In vanishing white matter patient brains, axons and myelin sheaths were thinner than normal in moderately and severely affected white matter. In mutant mice and patients, signs of axonal transport defects and cytoskeletal abnormalities were minimal. In vanishing white matter, axons are initially normal and atrophy later. Astrocytes are central in this process. If therapy becomes available, axonal pathology may be prevented with early intervention.

  14. FOXP3+ regulatory T cells in normal prostate tissue, postatrophic hyperplasia, prostatic intraepithelial neoplasia, and tumor histological lesions in men with and without prostate cancer

    PubMed Central

    Andren, Ove; Ohlson, Anna‐Lena; Carlsson, Jessica; Andersson, Swen‐Olof; Giunchi, Francesca; Rider, Jennifer R.; Fiorentino, Michelangelo

    2017-01-01

    Background The tumor promoting or counteracting effects of the immune response to cancer development are thought to be mediated to some extent by the infiltration of regulatory T cells (Tregs). In the present study we evaluated the prevalence of Treg populations in stromal and epithelial compartments of normal, post atrophic hyperplasia (PAH), prostatic intraepithelial neoplasia (PIN), and tumor lesions in men with and without prostate cancer. Methods Study subjects were 102 men consecutively diagnosed with localized prostate cancer undergoing radical prostatectomy and 38 men diagnosed with bladder cancer undergoing cystoprostatectomy without prostate cancer at the pathological examination. Whole mount sections from all patients were evaluated for the epithelial and stromal expression of CD4+ Tregs and CD8+ Tregs in normal, PAH, PIN, and tumor lesions. A Friedmańs test was used to investigate differences in the mean number of Tregs across histological lesions. Logistic regression was used to estimate crude and adjusted odds ratios (OR) for prostate cancer for each histological area. Results In men with prostate cancer, similarly high numbers of stromal CD4+ Tregs were identified in PAH and tumor, but CD4+ Tregs were less common in PIN. Greater numbers of epithelial CD4+ Tregs in normal prostatic tissue were positively associated with both Gleason score and pT‐stage. We observed a fourfold increased risk of prostate cancer in men with epithelial CD4+ Tregs in the normal prostatic tissue counterpart. Conclusions Our results may suggest a possible pathway through which PAH develops directly into prostate cancer in the presence of CD4+ Tregs and indicate that transformation of the anti‐tumor immune response may be initiated even before the primary tumor is established. PMID:29105795

  15. Expression of metalloprotease insulin-degrading enzyme insulysin in normal and malignant human tissues.

    PubMed

    Yfanti, Christina; Mengele, Karin; Gkazepis, Apostolos; Weirich, Gregor; Giersig, Cecylia; Kuo, Wen-Liang; Tang, Wei-Jen; Rosner, Marsha; Schmitt, Manfred

    2008-10-01

    Insulin-degrading enzyme (IDE, insulysin, insulinase; EC 3.4.22.11), a thiol metalloendopeptidase, is involved in intracellular degradation of insulin, thereby inhibiting its translocation and accumulation to the nucleus. Recently, protein expression of IDE has been demonstrated in the epithelial ducts of normal breast and breast cancer tissue. Utilizing four different antibodies generated against different epitopes of the IDE molecule, we performed Western blot analysis and immunohistochemical staining on several normal human tissues, on a plethora of tumor cell lines of different tissue origin, and on malignant breast and ovarian tissue. Applying the four IDE-directed antibodies, we demonstrated IDE expression at the protein level, by means of immunoblotting and immunocytochemistry, in each of the tumor cell lines analyzed. Insulin-degrading enzyme protein expression was found in normal tissues of the kidney, liver, lung, brain, breast and skeletal muscle, as well as in breast and ovarian cancer tissues. Immunohistochemical visualization of IDE indicated cytoplasmic localization of IDE in each of the cell lines and tissues assessed. In conclusion, we performed for the first time a wide-ranging survey on IDE protein expression in normal and malignant tissues and cells thus extending our knowledge on the cellular and tissue distribution of IDE, an enzyme which to date has mainly been studied in connection with Alzheimer's disease and diabetes but not in cancer.

  16. Quantitative Ultrasound Backscatter for Pulsed Cavitational Ultrasound Therapy—Histotripsy

    PubMed Central

    Wang, Tzu-Yin; Xu, Zhen; Winterroth, Frank; Hall, Timothy L.; Fowlkes, J. Brian; Rothman, Edward D.; Roberts, William W.; Cain, Charles A.

    2011-01-01

    Histotripsy is a well-controlled ultrasonic tissue ablation technology that mechanically and progressively fractionates tissue structures using cavitation. The fractionated tissue volume can be monitored with ultrasound imaging because a significant ultrasound backscatter reduction occurs. This paper correlates the ultrasound backscatter reduction with the degree of tissue fractionation characterized by the percentage of remaining normal-appearing cell nuclei on histology. Different degrees of tissue fractionation were generated in vitro in freshly excised porcine kidneys by varying the number of therapeutic ultrasound pulses from 100 to 2000 pulses per treatment location. All ultrasound pulses were 15 cycles at 1 MHz delivered at 100 Hz pulse repetition frequency and 19 MPa peak negative pressure. The results showed that the normalized backscatter intensity decreased exponentially with increasing number of pulses. Correspondingly, the percentage of normal appearing nuclei in the treated area decreased exponentially as well. A linear correlation existed between the normalized backscatter intensity and the percentage of normal appearing cell nuclei in the treated region. This suggests that the normalized backscatter intensity may be a potential quantitative real-time feedback parameter for histotripsy-induced tissue fractionation. This quantitative feedback may allow the prediction of local clinical outcomes, i.e., when a tissue volume has been sufficiently treated. PMID:19750596

  17. Evaluation of immunoreactivity of normal tissues from dogs, using monoclonal antibody B72.3.

    PubMed

    Clemo, F A; DeNicola, D B; Zimmermann, J L

    1994-08-01

    Monoclonal antibody (MAB) B72.3, which recognizes human tumor-associated glycoprotein-72, has immunoreactivity for malignant epithelial neoplasms in human beings and dogs. To further characterize the range of immunoreactivity of MAB B72.3 in canine tissues, MAB B72.3 and 2 other tumor-associated glycoprotein-72 antibodies (MAB CC49 and CC83) were tested against a wide spectrum of normal tissues from dogs. Immunoreactivity was detected, using an avidin-biotin-complex immunoperoxidase method. Monoclonal antibody B72.3 did not stain most types of normal canine tissues, but various types of epithelial cells within the gastrointestinal and respiratory tract mucosae, salivary gland, esophagus, epididymis, uterus, thymus, hair follicle, and apocrine glands of the anal sac had variable staining with MAB B72.3. A similar range of immunoreactivity in comparable types of normal tissues was seen for MAB CC49 and CC83; however, MAB CC49, but not MAB B72.3 and CC83, stained the endothelium of capillaries and small vessels in most normal tissues. Staining of frozen and paraffin-embedded tissues was similar. In conclusion, we found that MAB B72.3, CC49, and CC83 had selected immunoreactivity for specific types of normal canine epithelial cells, especially those involved with mucin production.

  18. Depth-resolved monitoring of diffusion of hyperosmotic agents in normal and malignant human esophagus tissues using optical coherence tomography in-vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Qingliang; Guo Zhouyi; Wei Huajiang

    2011-10-31

    Depth-resolved monitoring with differentiation and quantification of glucose diffusion in healthy and abnormal esophagus tissues has been studied in vitro. Experiments have been performed using human normal esophagus and esophageal squamous cell carcinoma (ESCC) tissues by the optical coherence tomography (OCT). The images have been continuously acquired for 120 min in the experiments, and the depth-resolved and average permeability coefficients of the 40 % glucose solution have been calculated by the OCT amplitude (OCTA) method. We demonstrate the capability of the OCT technique for depth-resolved monitoring, differentiation, and quantifying of glucose diffusion in normal esophagus and ESCC tissues. It ismore » found that the permeability coefficients of the 40 % glucose solution are not uniform throughout the normal esophagus and ESCC tissues and increase from (3.30 {+-} 0.09) Multiplication-Sign 10{sup -6} and (1.57 {+-} 0.05) Multiplication-Sign 10{sup -5} cm s{sup -1} at the mucous membrane of normal esophagus and ESCC tissues to (1.82 {+-} 0.04) Multiplication-Sign 10{sup -5} and (3.53 {+-} 0.09) Multiplication-Sign 10{sup -5} cm s{sup -1} at the submucous layer approximately 742 {mu}m away from the epithelial surface of normal esophagus and ESCC tissues, respectively. (optical coherence tomography)« less

  19. Expression of Estrogen Receptors in Relation to Hormone Levels and the Nottingham Prognostic Index.

    PubMed

    Fahlén, Mia; Zhang, Hua; Löfgren, Lars; Masironi, Britt; VON Schoultz, Eva; VON Schoultz, B O; Sahlin, Lena

    2016-06-01

    Estrogen hormones have a large impact on both normal development and tumorigenesis of the breast. Breast tissue samples from 49 women undergoing surgery were included. The estrogen receptors (ERα and ERβ), ERα36 and G-coupled estrogen receptor-1 (GPER) were determined in benign and malignant breast tissue. The ERα36 and ERα mRNA levels were highest in malignant tumors. Stromal ERβ immunostaining in benign tumors was higher than in the paired normal tissue. GPER expression was lowest in benign tumors. In the malignant tumors, the Nottingham Prognostic Index (NPI) correlated positively with stromal GPER and the serum testosterone level. The serum insulin-like growth factor-1 (IGF-1) level correlated negatively with GPER mRNA and glandular ERα. The expression of ERα36 is stronger in malignant breast tissue. The strong positive correlation between NPI and GPER in malignant breast stroma indicates an important role for GPER in breast cancer prognosis. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  20. Tissue tonometry is a simple, objective measure for pliability of burn scar: is it reliable?

    PubMed

    Lye, Ian; Edgar, Dale W; Wood, Fiona M; Carroll, Sara

    2006-01-01

    Objective measurement of burn scar response to treatment is important to facilitate individual patient care, research, and service development. This work examines the validity and reliability of the tonometer as a means of quantifying scar pliability. Ten burn survivors were recruited into the study. Triplicate measures were taken for each of four scar and one normal skin point. The pliability score from the Vancouver Scar Scale also was used as a comparison. The tonometer demonstrated a high degree of reliability (intraclass correlation coefficients 0.91-0.94). It also was shown to provide a valid measure of pliability by quantifying decreased tissue deformation for scar (2.04 +/- 0.45 mm) compared with normal tissue (3.02 +/- 0.92 mm; t = 4.28, P = .004) and a moderate correlation with Vancouver Scar Scale scores. The tissue tonometer provides a repeatable, objective index of burn scar pliability. Using the methods described, it is a simple, clinically useful technique for monitoring an individual's scar.

  1. Mesothelial cells in tissue repair and fibrosis.

    PubMed

    Mutsaers, Steven E; Birnie, Kimberly; Lansley, Sally; Herrick, Sarah E; Lim, Chuan-Bian; Prêle, Cecilia M

    2015-01-01

    Mesothelial cells are fundamental to the maintenance of serosal integrity and homeostasis and play a critical role in normal serosal repair following injury. However, when normal repair mechanisms breakdown, mesothelial cells take on a profibrotic role, secreting inflammatory, and profibrotic mediators, differentiating and migrating into the injured tissues where they contribute to fibrogenesis. The development of new molecular and cell tracking techniques has made it possible to examine the origin of fibrotic cells within damaged tissues and to elucidate the roles they play in inflammation and fibrosis. In addition to secreting proinflammatory mediators and contributing to both coagulation and fibrinolysis, mesothelial cells undergo mesothelial-to-mesenchymal transition, a process analogous to epithelial-to-mesenchymal transition, and become fibrogenic cells. Fibrogenic mesothelial cells have now been identified in tissues where they have not previously been thought to occur, such as within the parenchyma of the fibrotic lung. These findings show a direct role for mesothelial cells in fibrogenesis and open therapeutic strategies to prevent or reverse the fibrotic process.

  2. Human brain cancer studied by resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Liu, Cheng-Hui; Sun, Yi; Pu, Yang; Boydston-White, Susie; Liu, Yulong; Alfano, Robert R.

    2012-11-01

    The resonance Raman (RR) spectra of six types of human brain tissues are examined using a confocal micro-Raman system with 532-nm excitation in vitro. Forty-three RR spectra from seven subjects are investigated. The spectral peaks from malignant meningioma, stage III (cancer), benign meningioma (benign), normal meningeal tissues (normal), glioblastoma multiforme grade IV (cancer), acoustic neuroma (benign), and pituitary adenoma (benign) are analyzed. Using a 532-nm excitation, the resonance-enhanced peak at 1548 cm-1 (amide II) is observed in all of the tissue specimens, but is not observed in the spectra collected using the nonresonance Raman system. An increase in the intensity ratio of 1587 to 1605 cm-1 is observed in the RR spectra collected from meningeal cancer tissue as compared with the spectra collected from the benign and normal meningeal tissue. The peak around 1732 cm-1 attributed to fatty acids (lipids) are diminished in the spectra collected from the meningeal cancer tumors as compared with the spectra from normal and benign tissues. The characteristic band of spectral peaks observed between 2800 and 3100 cm-1 are attributed to the vibrations of methyl (-CH3) and methylene (-CH2-) groups. The ratio of the intensities of the spectral peaks of 2935 to 2880 cm-1 from the meningeal cancer tissues is found to be lower in comparison with that of the spectral peaks from normal, and benign tissues, which may be used as a distinct marker for distinguishing cancerous tissues from normal meningeal tissues. The statistical methods of principal component analysis and the support vector machine are used to analyze the RR spectral data collected from meningeal tissues, yielding a diagnostic sensitivity of 90.9% and specificity of 100% when two principal components are used.

  3. Smart biomaterials design for tissue engineering and regenerative medicine.

    PubMed

    Furth, Mark E; Atala, Anthony; Van Dyke, Mark E

    2007-12-01

    As a prominent tool in regenerative medicine, tissue engineering (TE) has been an active field of scientific research for nearly three decades. Clinical application of TE technologies has been relatively restricted, however, owing in part to the limited number of biomaterials that are approved for human use. While many excellent biomaterials have been developed in recent years, their translation into clinical practice has been slow. As a consequence, many investigators still employ biodegradable polymers that were first approved for use in humans over 30 years ago. During normal development tissue morphogenesis is heavily influenced by the interaction of cells with the extracellular matrix (ECM). Yet simple polymers, while providing architectural support for neo-tissue development, do not adequately mimic the complex interactions between adult stem and progenitor cells and the ECM that promote functional tissue regeneration. Future advances in TE and regenerative medicine will depend on the development of "smart" biomaterials that actively participate in the formation of functional tissue. Clinical translation of these new classes of biomaterials will be supported by many of the same evaluation tools as those developed and described by Professor David F. Williams and colleagues over the past 30 years.

  4. Von Hippel-Lindau protein in the RPE is essential for normal ocular growth and vascular development.

    PubMed

    Lange, Clemens A K; Luhmann, Ulrich F O; Mowat, Freya M; Georgiadis, Anastasios; West, Emma L; Abrahams, Sabu; Sayed, Haroon; Powner, Michael B; Fruttiger, Marcus; Smith, Alexander J; Sowden, Jane C; Maxwell, Patrick H; Ali, Robin R; Bainbridge, James W B

    2012-07-01

    Molecular oxygen is essential for the development, growth and survival of multicellular organisms. Hypoxic microenvironments and oxygen gradients are generated physiologically during embryogenesis and organogenesis. In the eye, oxygen plays a crucial role in both physiological vascular development and common blinding diseases. The retinal pigment epithelium (RPE) is a monolayer of cells essential for normal ocular development and in the mature retina provides support for overlying photoreceptors and their vascular supply. Hypoxia at the level of the RPE is closely implicated in pathogenesis of age-related macular degeneration. Adaptive tissue responses to hypoxia are orchestrated by sophisticated oxygen sensing mechanisms. In particular, the von Hippel-Lindau tumour suppressor protein (pVhl) controls hypoxia-inducible transcription factor (HIF)-mediated adaptation. However, the role of Vhl/Hif1a in the RPE in the development of the eye and its vasculature is unknown. In this study we explored the function of Vhl and Hif1a in the developing RPE using a tissue-specific conditional-knockout approach. We found that deletion of Vhl in the RPE results in RPE apoptosis, aniridia and microphthalmia. Increased levels of Hif1a, Hif2a, Epo and Vegf are associated with a highly disorganised retinal vasculature, chorioretinal anastomoses and the persistence of embryonic vascular structures into adulthood. Additional inactivation of Hif1a in the RPE rescues the RPE morphology, aniridia, microphthalmia and anterior vasoproliferation, but does not rescue retinal vasoproliferation. These data demonstrate that Vhl-dependent regulation of Hif1a in the RPE is essential for normal RPE and iris development, ocular growth and vascular development in the anterior chamber, whereas Vhl-dependent regulation of other downstream pathways is crucial for normal development and maintenance of the retinal vasculature.

  5. Genetics Home Reference: acrocallosal syndrome

    MedlinePlus

    ... callosum occurs when the tissue that connects the left and right halves of the brain (the corpus callosum ) fails to form normally during the early stages of development before birth. Other brain abnormalities, including the growth ...

  6. Novel targets for ATM-deficient malignancies

    PubMed Central

    Winkler, Johannes; Hofmann, Kay; Chen, Shuhua

    2014-01-01

    Conventional chemo- and radiotherapies for the treatment of cancer target rapidly dividing cells in both tumor and non-tumor tissues and can exhibit severe cytotoxicity in normal tissue and impair the patient's immune system. Novel targeted strategies aim for higher efficacy and tumor specificity. The role of ATM protein in the DNA damage response is well known and ATM deficiency frequently plays a role in tumorigenesis and development of malignancy. In addition to contributing to disease development, ATM deficiency also renders malignant cells heavily dependent on other pathways that cooperate with the ATM-mediated DNA damage response to ensure tumor cell survival. Disturbing those cooperative pathways by inhibiting critical protein components allows specific targeting of tumors while sparing healthy cells with normal ATM status. We review druggable candidate targets for the treatment of ATM-deficient malignancies and the mechanisms underlying such targeted therapies. PMID:27308314

  7. Carbon-ion radiotherapy for locally advanced or unfavorably located choroidal melanoma: A Phase I/II dose-escalation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuji, Hiroshi; Ishikawa, Hitoshi; Yanagi, Takeshi

    2007-03-01

    Purpose: To evaluate the applicability of carbon ion beams for the treatment of choroidal melanoma with regard to normal tissue morbidity and local tumor control. Methods and Materials: Between January 2001 and February 2006, 59 patients with locally advanced or unfavorably located choroidal melanoma were enrolled in a Phase I/II clinical trial of carbon-ion radiotherapy at the National Institute of Radiologic Sciences. The primary endpoint of this study was normal tissue morbidity, and secondary endpoints were local tumor control and patient survival. Of the 59 subjects enrolled, 57 were followed >6 months and analyzed. Results: Twenty-three patients (40%) developed neovascularmore » glaucoma, and three underwent enucleation for eye pain due to elevated intraocular pressure. Incidence of neovascular glaucoma was dependent on tumor size and site. Five patients had died at analysis, three of distant metastasis and two of concurrent disease. All but one patient, who developed marginal recurrence, were controlled locally. Six patients developed distant metastasis, five in the liver and one in the lung. Three-year overall survival, disease-free survival, and local control rates were 88.2%, 84.8%, and 97.4%, respectively. No apparent dose-response relationship was observed in either tumor control or normal tissue morbidity at the dose range applied. Conclusion: Carbon-ion radiotherapy can be applied to choroidal melanoma with an acceptable morbidity and sufficient antitumor effect, even with tumors of unfavorable size or site.« less

  8. Dependence of normal brain integral dose and normal tissue complication probability on the prescription isodose values for γ-knife radiosurgery

    NASA Astrophysics Data System (ADS)

    Ma, Lijun

    2001-11-01

    A recent multi-institutional clinical study suggested possible benefits of lowering the prescription isodose lines for stereotactic radiosurgery procedures. In this study, we investigate the dependence of the normal brain integral dose and the normal tissue complication probability (NTCP) on the prescription isodose values for γ-knife radiosurgery. An analytical dose model was developed for γ-knife treatment planning. The dose model was commissioned by fitting the measured dose profiles for each helmet size. The dose model was validated by comparing its results with the Leksell gamma plan (LGP, version 5.30) calculations. The normal brain integral dose and the NTCP were computed and analysed for an ensemble of treatment cases. The functional dependence of the normal brain integral dose and the NCTP versus the prescribing isodose values was studied for these cases. We found that the normal brain integral dose and the NTCP increase significantly when lowering the prescription isodose lines from 50% to 35% of the maximum tumour dose. Alternatively, the normal brain integral dose and the NTCP decrease significantly when raising the prescribing isodose lines from 50% to 65% of the maximum tumour dose. The results may be used as a guideline for designing future dose escalation studies for γ-knife applications.

  9. Next-generation transcriptome sequencing of the premenopausal breast epithelium using specimens from a normal human breast tissue bank.

    PubMed

    Pardo, Ivanesa; Lillemoe, Heather A; Blosser, Rachel J; Choi, MiRan; Sauder, Candice A M; Doxey, Diane K; Mathieson, Theresa; Hancock, Bradley A; Baptiste, Dadrie; Atale, Rutuja; Hickenbotham, Matthew; Zhu, Jin; Glasscock, Jarret; Storniolo, Anna Maria V; Zheng, Faye; Doerge, R W; Liu, Yunlong; Badve, Sunil; Radovich, Milan; Clare, Susan E

    2014-03-17

    Our efforts to prevent and treat breast cancer are significantly impeded by a lack of knowledge of the biology and developmental genetics of the normal mammary gland. In order to provide the specimens that will facilitate such an understanding, The Susan G. Komen for the Cure Tissue Bank at the IU Simon Cancer Center (KTB) was established. The KTB is, to our knowledge, the only biorepository in the world prospectively established to collect normal, healthy breast tissue from volunteer donors. As a first initiative toward a molecular understanding of the biology and developmental genetics of the normal mammary gland, the effect of the menstrual cycle and hormonal contraceptives on DNA expression in the normal breast epithelium was examined. Using normal breast tissue from 20 premenopausal donors to KTB, the changes in the mRNA of the normal breast epithelium as a function of phase of the menstrual cycle and hormonal contraception were assayed using next-generation whole transcriptome sequencing (RNA-Seq). In total, 255 genes representing 1.4% of all genes were deemed to have statistically significant differential expression between the two phases of the menstrual cycle. The overwhelming majority (221; 87%) of the genes have higher expression during the luteal phase. These data provide important insights into the processes occurring during each phase of the menstrual cycle. There was only a single gene significantly differentially expressed when comparing the epithelium of women using hormonal contraception to those in the luteal phase. We have taken advantage of a unique research resource, the KTB, to complete the first-ever next-generation transcriptome sequencing of the epithelial compartment of 20 normal human breast specimens. This work has produced a comprehensive catalog of the differences in the expression of protein-coding genes as a function of the phase of the menstrual cycle. These data constitute the beginning of a reference data set of the normal mammary gland, which can be consulted for comparison with data developed from malignant specimens, or to mine the effects of the hormonal flux that occurs during the menstrual cycle.

  10. Next-generation transcriptome sequencing of the premenopausal breast epithelium using specimens from a normal human breast tissue bank

    PubMed Central

    2014-01-01

    Introduction Our efforts to prevent and treat breast cancer are significantly impeded by a lack of knowledge of the biology and developmental genetics of the normal mammary gland. In order to provide the specimens that will facilitate such an understanding, The Susan G. Komen for the Cure Tissue Bank at the IU Simon Cancer Center (KTB) was established. The KTB is, to our knowledge, the only biorepository in the world prospectively established to collect normal, healthy breast tissue from volunteer donors. As a first initiative toward a molecular understanding of the biology and developmental genetics of the normal mammary gland, the effect of the menstrual cycle and hormonal contraceptives on DNA expression in the normal breast epithelium was examined. Methods Using normal breast tissue from 20 premenopausal donors to KTB, the changes in the mRNA of the normal breast epithelium as a function of phase of the menstrual cycle and hormonal contraception were assayed using next-generation whole transcriptome sequencing (RNA-Seq). Results In total, 255 genes representing 1.4% of all genes were deemed to have statistically significant differential expression between the two phases of the menstrual cycle. The overwhelming majority (221; 87%) of the genes have higher expression during the luteal phase. These data provide important insights into the processes occurring during each phase of the menstrual cycle. There was only a single gene significantly differentially expressed when comparing the epithelium of women using hormonal contraception to those in the luteal phase. Conclusions We have taken advantage of a unique research resource, the KTB, to complete the first-ever next-generation transcriptome sequencing of the epithelial compartment of 20 normal human breast specimens. This work has produced a comprehensive catalog of the differences in the expression of protein-coding genes as a function of the phase of the menstrual cycle. These data constitute the beginning of a reference data set of the normal mammary gland, which can be consulted for comparison with data developed from malignant specimens, or to mine the effects of the hormonal flux that occurs during the menstrual cycle. PMID:24636070

  11. [Expression and clinical significance of Xiap and Caspase-3 protien in primary epithelia ovarian cancer].

    PubMed

    Chen, Wei; Peng, Ping

    2010-07-01

    To study the expression and clinical significance of Xiap, Caspase-3 protein in primary epithelia ovarian cancer. The Xiap and Caspase-3 were detected by immunohistochemical in 40 cases of epithelial ovarian cancer 20 cases of borderline ovarian tumor, 15 cases of benign ovarian tumor, and 15 normal ovarian tissues. There were significantly different between the expression of Xiap in epithelial ovarian cancer, borderline ovarian tumor, benign ovarian tumor and normal ovarian tissues. The expression of Caspase-3 in epithelial ovarian cancer and borderline ovarian tumor was significantly lower than that in benign ovarian tumor and normal ovarian tissue (P<0.01). The expression of Xiap in epithelial ovarian cancer was related to clinc stage, pathological grade and living. The expression of caspase-3 in epithelial ovarian cancer was related to clinc stage and living (P<0.01). The expressions of Xiap and Caspase-3 may be important roles for the formation and development of epithelia ovarian cancer. The expressions of Xiap and Caspase-3 are the poor prognostic factors in epithelial ovarian carcinomas.

  12. Novel antioxidants are not toxic to normal tissues but effectively kill cancer cells.

    PubMed

    Kovalchuk, Anna; Aladedunye, Felix; Rodriguez-Juarez, Rocio; Li, Dongping; Thomas, James; Kovalchuk, Olga; Przybylski, Roman

    2013-10-01

    Free radicals are formed as a result of cellular processes and play a key role in predisposition to and development of numerous diseases and of premature aging. Recently, we reported the syntheses of a number of novel phenolic antioxidants for possible application in food industry. In the present study, analyses of the cellular processes and molecular gene expression effects of some of the novel antioxidants in normal human tissues and in cancer cells were undertaken. Results indicated that whereas the examined antioxidants showed no effects on morphology and gene expression of normal human oral and gingival epithelial tissues, they exerted a profound cell killing effect on breast cancer cells, including on chemotherapy-resistant breast cancer cells and on oral squamous carcinoma cells. Among the tested antioxidants, N-decyl-N-(3-methoxy-4-hydroxybenzyl)-3-(3,4-dihydroxyphenyl) propanamide and N-decyl-N-(3,5-dimethoxy-4-hydroxybenzyl)-3-(3,4-dihydroxyphenyl) propanamide were the most promising, with excellent potential for cancer treatment. Moreover, our gene expression databases can be used as a roadmap for future analysis of mechanisms of antioxidant action.

  13. On the possibility of spectroscopic cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Khairullina, Alphiya Y.; Oleinik, Tatiana V.; Korolevich, Alexander N.; Sevkovsky, Yacob I.

    1993-07-01

    The diffuse reflection and transmission coefficients, other optical parameters of normal and cancer tissues have been investigated in visible and infrared spectra. The optimal spectral range for distinguishing the cancer is found. The spectral absorption coefficients and size of cells parameter determined using our approach are analyzed to be different for normal and pathological tissues. The method is proposed for calculating the diffuse reflectance and transmittance of multiple tissue layers. The investigations have shown that cancer may be distinguished under the layers of skin and normal tissue.

  14. Scube3 Is Expressed in Multiple Tissues during Development but Is Dispensable for Embryonic Survival in the Mouse

    PubMed Central

    Xavier, Guilherme M.; Panousopoulos, Leonidas; Cobourne, Martyn T.

    2013-01-01

    The vertebrate Scube family consists of three independent members Scube1-3; which encode secreted cell surface-associated membrane glycoproteins that share a domain organization of at least five recognizable motifs and the ability to both homo- and heterodimerize. There is recent biochemical evidence to suggest that Scube2 is directly involved in Hedgehog signaling, acting co-operatively with Dispatched to mediate the release in soluble form of cholesterol and palmitate-modified Hedgehog ligand during long-range activity. Indeed, in the zebrafish myotome, all three Scube proteins can subtly promote Hedgehog signal transduction in a non-cell autonomous manner. In order to further investigate the role of Scube genes during development, we have generated mice with targeted inactivation of Scube3. Despite a dynamic developmental expression pattern, with transcripts present in neuroectoderm, endoderm and endochondral tissues, particularly within the craniofacial region; an absence of Scube3 function results in no overt embryonic phenotype in the mouse. Mutant mice are born at expected Mendelian ratios, are both viable and fertile, and seemingly retain normal Hedgehog signaling activity in craniofacial tissues. These findings suggest that in the mouse, Scube3 is dispensable for normal development; however, they do not exclude the possibility of a co-operative role for Scube3 with other Scube members during embryogenesis or a potential role in adult tissue homeostasis over the long-term. PMID:23383134

  15. A method for establishing human primary gastric epithelial cell culture from fresh surgical gastric tissues.

    PubMed

    Aziz, Faisal; Yang, Xuesong; Wen, Qingping; Yan, Qiu

    2015-08-01

    At present, biopsy specimens, cancer cell lines and tissues obtained by gastric surgery are used in the study and analysis of gastric cancer, including the molecular mechanisms and proteomics. However, fibroblasts and other tissue components may interfere with these techniques. Therefore, the present study aimed to develop a procedure for the isolation of viable human gastric epithelial cells from gastric surgical tissues. A method was developed to culture human gastric epithelial cells using fresh, surgically excised tissues and was evaluated using immunocytochemistry, periodic acid-Schiff (PAS) staining and cell viability assays. Low cell growth was observed surrounding the gastric tissue on the seventh day of tissue explant culture. Cell growth subsequently increased, and at 12 days post-explant a high number of pure epithelial cells were detected. The gastric cancer cells exhibited rapid growth with a doubling time of 13-52 h, as compared to normal cells, which had a doubling time of 20-53 h. Immunocytochemical analyses of primary gastric cells revealed positive staining for cytokeratin 18 and 19, which indicated that the culture was comprised of pure epithelial cells and contained no fibroblasts. Furthermore, PAS staining demonstrated that the cultured gastric cells produced neutral mucin. Granulin and carbohydrate antigen 724 staining confirmed the purity of gastric cancer and normal cells in culture. This method of cell culture indicated that the gastric cells in primary culture consisted of mucin-secreting gastric epithelial cells, which may be useful for the study of gastric infection with Helicobacter pylori and gastric cancer.

  16. Tryptophan autofluorescence imaging of neoplasms of the human colon

    NASA Astrophysics Data System (ADS)

    Banerjee, Bhaskar; Renkoski, Timothy; Graves, Logan R.; Rial, Nathaniel S.; Tsikitis, Vassiliki Liana; Nfonsom, Valentine; Pugh, Judith; Tiwari, Piyush; Gavini, Hemanth; Utzinger, Urs

    2012-01-01

    Detection of flat neoplasia is a major challenge in colorectal cancer screening, as missed lesions can lead to the development of an unexpected `incident' cancer prior to the subsequent endoscopy. The use of a tryptophan-related autofluorescence has been reported to be increased in murine intestinal dysplasia. The emission spectra of cells isolated from human adenocarcinoma and normal mucosa of the colon were studied and showed markedly greater emission intensity from cancerous cells compared to cells obtained from the surrounding normal mucosa. A proto-type multispectral imaging system optimized for ultraviolet macroscopic imaging of tissue was used to obtain autofluorescence images of surgical specimens of colonic neoplasms and normal mucosa after resection. Fluorescence images did not display the expected greater emission from the tumor as compared to the normal mucosa, most probably due to increased optical absorption and scattering in the tumors. Increased fluorescence intensity in neoplasms was observed however, once fluorescence images were corrected using reflectance images. Tryptophan fluorescence alone may be useful in differentiating normal and cancerous cells, while in tissues its autofluorescence image divided by green reflectance may be useful in displaying neoplasms.

  17. Male Killing Spiroplasma Preferentially Disrupts Neural Development in the Drosophila melanogaster Embryo

    PubMed Central

    Martin, Jennifer; Chong, Trisha; Ferree, Patrick M.

    2013-01-01

    Male killing bacteria such as Spiroplasma are widespread pathogens of numerous arthropods including Drosophila melanogaster. These maternally transmitted bacteria can bias host sex ratios toward the female sex in order to ‘selfishly’ enhance bacterial transmission. However, little is known about the specific means by which these pathogens disrupt host development in order to kill males. Here we show that a male-killing Spiroplasma strain severely disrupts nervous tissue development in male but not female D. melanogaster embryos. The neuroblasts, or neuron progenitors, form properly and their daughter cells differentiate into neurons of the ventral nerve chord. However, the neurons fail to pack together properly and they produce highly abnormal axons. In contrast, non-neural tissue, such as mesoderm, and body segmentation appear normal during this time, although the entire male embryo becomes highly abnormal during later stages. Finally, we found that Spiroplasma is altogether absent from the neural tissue but localizes within the gut and the epithelium immediately surrounding the neural tissue, suggesting that the bacterium secretes a toxin that affects neural tissue development across tissue boundaries. Together these findings demonstrate the unique ability of this insect pathogen to preferentially affect development of a specific embryonic tissue to induce male killing. PMID:24236124

  18. Plasma Shh levels reduced in pancreatic cancer patients

    PubMed Central

    El-Zaatari, Mohamad; Daignault, Stephanie; Tessier, Art; Kelsey, Gail; Travnikar, Lisa A.; Cantu, Esperanza F.; Lee, Jamie; Plonka, Caitlyn M.; Simeone, Diane M.; Anderson, Michelle A.; Merchant, Juanita L.

    2012-01-01

    Objectives Normally, sonic hedgehog (Shh) is expressed in the pancreas during fetal development and transiently after tissue injury. Although pancreatic cancers express Shh, it is not known if the protein is secreted into the blood and whether its plasma levels change with pancreatic transformation. The goal of this study was to develop an ELISA to detect human Shh in blood, and determine the levels in subjects with and without pancreatic cancer. Methods A human Shh ELISA assay was developed, and plasma Shh levels were measured in blood samples from normal volunteers and subjects with pancreatitis or pancreatic cancer. The biological activity of plasma Shh was tested using NIH-3T3 cells. Results The average levels of Shh in human blood were lower in pancreatitis and pancreatic cancer patients than in normal individuals. Hematopoietic cells did not express Shh suggesting that Shh is secreted into the bloodstream. Plasma fractions enriched for Shh did not induce Gli-1 mRNA suggesting that the protein was not biologically active. Conclusions Shh is secreted from tissues and organs into the circulation but its activity is blocked by plasma proteins. Reduced plasma levels were found in pancreatic cancer patients, but alone were not sufficient to predict pancreatic cancer. PMID:22513293

  19. ΔNp63 promotes stem cell activity in mammary gland development and basal-like breast cancer by enhancing Fzd7 expression and Wnt signaling

    PubMed Central

    Chakrabarti, Rumela; Wei, Yong; Hwang, Julie; Hang, Xiang; Blanco, Mario Andres; Choudhury, Abrar; Tiede, Benjamin; Romano, Rose-Anne; DeCoste, Christina; Mercatali, Laura; Ibrahim, Toni; Amadori, Dino; Kannan, Nagarajan; Eaves, Connie J; Sinha, Satrajit; Kang, Yibin

    2014-01-01

    Emerging evidence suggests that cancer is populated and maintained by tumor initiating cells (TICs) with stem-like properties similar to that of adult tissue stem cells. Despite recent advances, the molecular regulatory mechanisms that may be shared between normal and malignant stem cells remain poorly understood. Here we show that the ΔNp63 isoform of the Trp63 transcription factor promotes normal mammary stem cell (MaSC) activity by increasing the expression of the Wnt receptor Fzd7, thereby enhancing Wnt signaling. Importantly, Fzd7-dependent enhancement of Wnt signaling by ΔNp63 also governs tumor initiating activity of the basal subtype of breast cancer. These findings establish ΔNp63 as a key regulator of stem cells in both normal and malignant mammary tissues and provide direct evidence that breast cancer TICs and normal MaSCs share common regulatory mechanisms. PMID:25241036

  20. Gene expression profiling of human breast tissue samples using SAGE-Seq.

    PubMed

    Wu, Zhenhua Jeremy; Meyer, Clifford A; Choudhury, Sibgat; Shipitsin, Michail; Maruyama, Reo; Bessarabova, Marina; Nikolskaya, Tatiana; Sukumar, Saraswati; Schwartzman, Armin; Liu, Jun S; Polyak, Kornelia; Liu, X Shirley

    2010-12-01

    We present a powerful application of ultra high-throughput sequencing, SAGE-Seq, for the accurate quantification of normal and neoplastic mammary epithelial cell transcriptomes. We develop data analysis pipelines that allow the mapping of sense and antisense strands of mitochondrial and RefSeq genes, the normalization between libraries, and the identification of differentially expressed genes. We find that the diversity of cancer transcriptomes is significantly higher than that of normal cells. Our analysis indicates that transcript discovery plateaus at 10 million reads/sample, and suggests a minimum desired sequencing depth around five million reads. Comparison of SAGE-Seq and traditional SAGE on normal and cancerous breast tissues reveals higher sensitivity of SAGE-Seq to detect less-abundant genes, including those encoding for known breast cancer-related transcription factors and G protein-coupled receptors (GPCRs). SAGE-Seq is able to identify genes and pathways abnormally activated in breast cancer that traditional SAGE failed to call. SAGE-Seq is a powerful method for the identification of biomarkers and therapeutic targets in human disease.

  1. Puberty is an important developmental period for the establishment of adipose tissue mass and metabolic homeostasis.

    PubMed

    Holtrup, Brandon; Church, Christopher D; Berry, Ryan; Colman, Laura; Jeffery, Elise; Bober, Jeremy; Rodeheffer, Matthew S

    2017-07-03

    Over the past 2 decades, the incidence of childhood obesity has risen dramatically. This recent rise in childhood obesity is particularly concerning as adults who were obese during childhood develop type II diabetes that is intractable to current forms of treatment compared with individuals who develop obesity in adulthood. While the mechanisms responsible for the exacerbated diabetic phenotype associated with childhood obesity is not clear, it is well known that childhood is an important time period for the establishment of normal white adipose tissue in humans. This association suggests that exposure to obesogenic stimuli during adipose development may have detrimental effects on adipose function and metabolic homeostasis. In this study, we identify the period of development associated with puberty, postnatal days 18-34, as critical for the establishment of normal adipose mass in mice. Exposure of mice to high fat diet only during this time period results in metabolic dysfunction, increased leptin expression, and increased adipocyte size in adulthood in the absence of sustained increased fat mass or body weight. These findings indicate that exposure to obesogenic stimuli during critical developmental periods have prolonged effects on adipose tissue function that may contribute to the exacerbated metabolic dysfunctions associated with childhood obesity.

  2. Classification of mass and normal breast tissue: A convolution neural network classifier with spatial domain and texture images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahiner, B.; Chan, H.P.; Petrick, N.

    1996-10-01

    The authors investigated the classification of regions of interest (ROI`s) on mammograms as either mass or normal tissue using a convolution neural network (CNN). A CNN is a back-propagation neural network with two-dimensional (2-D) weight kernels that operate on images. A generalized, fast and stable implementation of the CNN was developed. The input images to the CNN were obtained form the ROI`s using two techniques. The first technique employed averaging and subsampling. The second technique employed texture feature extraction methods applied to small subregions inside the ROI. Features computed over different subregions were arranged as texture images, which were subsequentlymore » used as CNN inputs. The effects of CNN architecture and texture feature parameters on classification accuracy were studied. Receiver operating characteristic (ROC) methodology was used to evaluate the classification accuracy. A data set consisting of 168 ROI`s containing biopsy-proven masses and 504 ROI`s containing normal breast tissue was extracted from 168 mammograms by radiologists experienced in mammography. This data set was used for training and testing the CNN. With the best combination of CNN architecture and texture feature parameters, the area under the test ROC curve reached 0.87, which corresponded to a true-positive fraction of 90% at a false positive fraction of 31%. The results demonstrate the feasibility of using a CNN for classification of masses and normal tissue on mammograms.« less

  3. Alternative Polyadenylation in Glioblastoma Multiforme and Changes in Predicted RNA Binding Protein Profiles

    PubMed Central

    Shao, Jiaofang; Zhang, Jing; Zhang, Zengming; Jiang, Huawei; Lou, Xiaoyan; Foltz, Gregory; Lan, Qing; Huang, Qiang

    2013-01-01

    Abstract Alternative polyadenylation (APA) is widely present in the human genome and plays a key role in carcinogenesis. We conducted a comprehensive analysis of the APA products in glioblastoma multiforme (GBM, one of the most lethal brain tumors) and normal brain tissues and further developed a computational pipeline, RNAelements (http://sysbio.zju.edu.cn/RNAelements/), using covariance model from known RNA binding protein (RBP) targets acquired by RNA Immunoprecipitation (RIP) analysis. We identified 4530 APA isoforms for 2733 genes in GBM, and found that 182 APA isoforms from 148 genes showed significant differential expression between normal and GBM brain tissues. We then focused on three genes with long and short APA isoforms that show inconsistent expression changes between normal and GBM brain tissues. These were myocyte enhancer factor 2D, heat shock factor binding protein 1, and polyhomeotic homolog 1 (Drosophila). Using the RNAelements program, we found that RBP binding sites were enriched in the alternative regions between the first and the last polyadenylation sites, which would result in the short APA forms escaping regulation from those RNA binding proteins. To the best of our knowledge, this report is the first comprehensive APA isoform dataset for GBM and normal brain tissues. Additionally, we demonstrated a putative novel APA-mediated mechanism for controlling RNA stability and translation for APA isoforms. These observations collectively lay a foundation for novel diagnostics and molecular mechanisms that can inform future therapeutic interventions for GBM. PMID:23421905

  4. Activation of RAS family genes in urothelial carcinoma.

    PubMed

    Boulalas, I; Zaravinos, A; Karyotis, I; Delakas, D; Spandidos, D A

    2009-05-01

    Bladder cancer is the fifth most common malignancy in men in Western society. We determined RAS codon 12 and 13 point mutations and evaluated mRNA expression levels in transitional cell carcinoma cases. Samples from 30 human bladder cancers and 30 normal tissues were analyzed by polymerase chain reaction/restriction fragment length polymorphism and direct sequencing to determine the occurrence of mutations in codons 12 and 13 of RAS family genes. Moreover, we used real-time reverse transcriptase-polymerase chain reaction to evaluate the expression profile of RAS genes in bladder cancer specimens compared to that in adjacent normal tissues. Overall H-RAS mutations in codon 12 were observed in 9 tumor samples (30%). Two of the 9 patients (22%) had invasive bladder cancer and 7 (77%) had noninvasive bladder cancer. One H-RAS mutation (11%) was homozygous and the remaining 89% were heterozygous. All samples were WT for K and N-RAS oncogenes. Moreover, 23 of 30 samples (77%) showed over expression in at least 1 RAS family gene compared to adjacent normal tissue. K and N-RAS had the highest levels of over expression in bladder cancer specimens (50%), whereas 27% of transitional cell carcinomas demonstrated H-RAS over expression relative to paired normal tissues. Our results underline the importance of H-RAS activation in human bladder cancer by codon 12 mutations. Moreover, they provide evidence that increased expression of all 3 RAS genes is a common event in bladder cancer that is associated with disease development.

  5. Quantification of Chitinase mRNA Levels in Human and Mouse Tissues by Real-Time PCR: Species-Specific Expression of Acidic Mammalian Chitinase in Stomach Tissues

    PubMed Central

    Ohno, Misa; Togashi, Yuto; Tsuda, Kyoko; Okawa, Kazuaki; Kamaya, Minori; Sakaguchi, Masayoshi; Sugahara, Yasusato; Oyama, Fumitaka

    2013-01-01

    Chitinase hydrolyzes chitin, which is an N-acetyl-D-glucosamine polymer that is present in a wide range of organisms, including insects, parasites and fungi. Although mammals do not contain any endogenous chitin, humans and mice express two active chitinases, chitotriosidase (Chit1) and acidic mammalian chitinase (AMCase). Because the level of expression of these chitinases is increased in many inflammatory conditions, including Gaucher disease and mouse models of asthma, both chitinases may play important roles in the pathophysiologies of these and other diseases. We recently established a quantitative PCR system using a single standard DNA and showed that AMCase mRNA is synthesized at extraordinarily high levels in mouse stomach tissues. In this study, we applied this methodology to the quantification of chitinase mRNAs in human tissues and found that both chitinase mRNAs were widely expressed in normal human tissues. Chit1 mRNA was highly expressed in the human lung, whereas AMCase mRNA was not overexpressed in normal human stomach tissues. The levels of these mRNAs in human tissues were significantly lower than the levels of housekeeping genes. Because the AMCase expression levels were quite different between the human and mouse stomach tissues, we developed a quantitative PCR system to compare the mRNA levels between human and mouse tissues using a human-mouse hybrid standard DNA. Our analysis showed that Chit1 mRNA is expressed at similar levels in normal human and mouse lung. In contrast, the AMCase expression level in human stomach was significantly lower than that expression level observed in mouse stomach. These mRNA differences between human and mouse stomach tissues were reflecting differences in the chitinolytic activities and levels of protein expression. Thus, the expression level of the AMCase in the stomach is species-specific. PMID:23826286

  6. Adiponectin/resistin interplay in serum and in adipose tissue of obese and normal-weight individuals.

    PubMed

    Jonas, Marta Izabela; Kurylowicz, Alina; Bartoszewicz, Zbigniew; Lisik, Wojciech; Jonas, Maurycy; Domienik-Karlowicz, Justyna; Puzianowska-Kuznicka, Monika

    2017-01-01

    The interplay between adiponectin and resistin, the two adipokines of opposite effects, may determine the metabolic profile of obese individuals and development of obesity-related complications. The current study was conducted to assess how adiponectin/resistin interplay in sera and adipose tissues may influence the metabolic profile of obese and normal-weight subjects. Concentrations of adiponectin and resistin were measured on protein level by immunoassay in visceral and subcutaneous adipose tissues from 50 obese (body mass index > 40 kg/m 2 ) and 28 normal-weight (body mass index 20-24.9 kg/m 2 ) individuals. Simultaneously expression of ADIPOQ and RETN (encoding adiponectin and resistin, respectively) was assessed on mRNA level by real-time PCR. ADIPOQ mRNA (P = 0.0001) and adiponectin protein (P = 0.0013) levels were lower, while RETN mRNA (P = 0.0338) and resistin (P < 0.0001)-higher in subcutaneous adipose tissues of obese subjects. ADIPOQ and RETN mRNA levels did not correlate with protein concentrations in the investigated adipose tissues. In obesity adiponectin serum concentrations correlated positively with ADIPOQ mRNA in subcutaneous adipose tissue (P = 0.005) and negatively with protein levels in visceral adipose tissue (P = 0.001). Obesity was associated with higher adiponectin-resistin index value in sera (P < 0.0001) and decreased in subcutaneous adipose tissue (P < 0.001), but only adiponectin-resistin index measured in sera was significantly higher in obese with the metabolic syndrome (P = 0.04). Obesity affects synthesis of adiponectin and resistin mainly in subcutaneous adipose tissue. The adiponectin-resistin index assessed in the adipose tissues has a different prognostic value compared to the adiponectin-resistin index in serum and does not reflect a metabolic risk in obese individuals.

  7. Lineage-specific splicing of a brain-enriched alternative exon promotes glioblastoma progression

    PubMed Central

    Ferrarese, Roberto; Harsh, Griffith R.; Yadav, Ajay K.; Bug, Eva; Maticzka, Daniel; Reichardt, Wilfried; Dombrowski, Stephen M.; Miller, Tyler E.; Masilamani, Anie P.; Dai, Fangping; Kim, Hyunsoo; Hadler, Michael; Scholtens, Denise M.; Yu, Irene L.Y.; Beck, Jürgen; Srinivasasainagendra, Vinodh; Costa, Fabrizio; Baxan, Nicoleta; Pfeifer, Dietmar; von Elverfeldt, Dominik; Backofen, Rolf; Weyerbrock, Astrid; Duarte, Christine W.; He, Xiaolin; Prinz, Marco; Chandler, James P.; Vogel, Hannes; Chakravarti, Arnab; Rich, Jeremy N.; Carro, Maria S.; Bredel, Markus

    2014-01-01

    Tissue-specific alternative splicing is critical for the emergence of tissue identity during development, yet the role of this process in malignant transformation is undefined. Tissue-specific splicing involves evolutionarily conserved, alternative exons that represent only a minority of the total alternative exons identified. Many of these conserved exons have functional features that influence signaling pathways to profound biological effect. Here, we determined that lineage-specific splicing of a brain-enriched cassette exon in the membrane-binding tumor suppressor annexin A7 (ANXA7) diminishes endosomal targeting of the EGFR oncoprotein, consequently enhancing EGFR signaling during brain tumor progression. ANXA7 exon splicing was mediated by the ribonucleoprotein PTBP1, which is normally repressed during neuronal development. PTBP1 was highly expressed in glioblastomas due to loss of a brain-enriched microRNA (miR-124) and to PTBP1 amplification. The alternative ANXA7 splicing trait was present in precursor cells, suggesting that glioblastoma cells inherit the trait from a potential tumor-initiating ancestor and that these cells exploit this trait through accumulation of mutations that enhance EGFR signaling. Our data illustrate that lineage-specific splicing of a tissue-regulated alternative exon in a constituent of an oncogenic pathway eliminates tumor suppressor functions and promotes glioblastoma progression. This paradigm may offer a general model as to how tissue-specific regulatory mechanisms can reprogram normal developmental processes into oncogenic ones. PMID:24865424

  8. Comparative Testis Tissue Proteomics Using 2-Dye Versus 3-Dye DIGE Analysis.

    PubMed

    Holland, Ashling

    2018-01-01

    Comparative tissue proteomics aims to analyze alterations of the proteome in response to a stimulus. Two-dimensional difference gel electrophoresis (2D-DIGE) is a modified and advanced form of 2D gel electrophoresis. DIGE is a powerful biochemical method that compares two or three protein samples on the same analytical gel, and can be used to establish differentially expressed protein levels between healthy normal and diseased pathological tissue sample groups. Minimal DIGE labeling can be used via a 2-dye system with Cy3 and Cy5 or a 3-dye system with Cy2, Cy3, and Cy5 to fluorescently label samples with CyDye flours pre-electrophoresis. DIGE circumvents gel-to-gel variability by multiplexing samples to a single gel and through the use of a pooled internal standard for normalization. This form of quantitative high-resolution proteomics facilitates the comparative analysis and evaluation of tissue protein compositions. Comparing tissue groups under different conditions is crucially important for advancing the biomedical field by characterization of cellular processes, understanding pathophysiological development and tissue biomarker discovery. This chapter discusses 2D-DIGE as a comparative tissue proteomic technique and describes in detail the experimental steps required for comparative proteomic analysis employing both options of 2-dye and 3-dye DIGE minimal labeling.

  9. Integrating gross pathology into teaching of undergraduate medical science students using human cadavers.

    PubMed

    Gopalan, Vinod; Dissabandara, Lakal; Nirthanan, Selvanayagam; Forwood, Mark R; Lam, Alfred King-Yin

    2016-09-01

    Human cadavers offer a great opportunity for histopathology students for the learning and teaching of tissue pathology. In this study, we aimed to implement an integrated learning approach by using cadavers to enhance students' knowledge and to develop their skills in gross tissue identification, handling and dissection techniques. A total of 35 students enrolled in the undergraduate medical science program participated in this study. A 3-hour laboratory session was conducted that included an active exploration of cadaveric specimens to identify normal and pathological tissues as well as tissue dissection. The majority of the students strongly agreed that the integration of normal and morbid anatomy improved their understanding of tissue pathology. All the students either agreed or strongly agreed that this laboratory session was useful to improve their tissue dissection and instrument handling skills. Furthermore, students from both cohorts rated the session as very relevant to their learning and recommended that this approach be added to the existing histopathology curriculum. To conclude, an integrated cadaver-based practical session can be used effectively to enhance the learning experience of histopathology science students, as well as improving their manual skills of tissue treatment, instrument handling and dissection. © 2016 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

  10. Tissue architecture and breast cancer: the role of extracellular matrix and steroid hormones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, R K; Bissell, M J

    The changes in tissue architecture that accompany the development of breast cancer have been the focus of investigations aimed at developing new cancer therapeutics. As we learn more about the normal mammary gland, we have begun to understand the complex signaling pathways underlying the dramatic shifts in the structure and function of breast tissue. Integrin-, growth factor-, and steroid hormone-signaling pathways all play an important part in maintaining tissue architecture; disruption of the delicate balance of signaling results in dramatic changes in the way cells interact with each other and with the extracellular matrix, leading to breast cancer. The extracellularmore » matrix itself plays a central role in coordinating these signaling processes. In this review, we consider the interrelationships between the extracellular matrix, integrins, growth factors, and steroid hormones in mammary gland development and function.« less

  11. Measurement of gene expression in archival paraffin-embedded tissues: development and performance of a 92-gene reverse transcriptase-polymerase chain reaction assay.

    PubMed

    Cronin, Maureen; Pho, Mylan; Dutta, Debjani; Stephans, James C; Shak, Steven; Kiefer, Michael C; Esteban, Jose M; Baker, Joffre B

    2004-01-01

    Throughout the last decade many laboratories have shown that mRNA levels in formalin-fixed and paraffin-embedded (FPE) tissue specimens can be quantified by reverse transcriptase-polymerase chain reaction (RT-PCR) techniques despite the extensive RNA fragmentation that occurs in tissues so preserved. We have developed RT-PCR methods that are sensitive, precise, and that have multianalyte capability for potential wide use in clinical research and diagnostic assays. Here it is shown that the extent of fragmentation of extracted FPE tissue RNA significantly increases with archive storage time. Probe and primer sets for RT-PCR assays based on amplicons that are both short and homogeneous in length enable effective reference gene-based data normalization for cross comparison of specimens that differ substantially in age. A 48-gene assay used to compare gene expression profiles from the same breast cancer tissue that had been either frozen or FPE showed very similar profiles after reference gene-based normalization. A 92-gene assay, using RNA extracted from three 10- micro m FPE sections of archival breast cancer specimens (dating from 1985 to 2001) yielded analyzable data for these genes in all 62 tested specimens. The results were substantially concordant when estrogen receptor, progesterone receptor, and HER2 receptor status determined by RT-PCR was compared with immunohistochemistry assays for these receptors. Furthermore, the results highlight the advantages of RT-PCR over immunohistochemistry with respect to quantitation and dynamic range. These findings support the development of RT-PCR analysis of FPE tissue RNA as a platform for multianalyte clinical diagnostic tests.

  12. The use of morphological characteristics and texture analysis in the identification of tissue composition in prostatic neoplasia.

    PubMed

    Diamond, James; Anderson, Neil H; Bartels, Peter H; Montironi, Rodolfo; Hamilton, Peter W

    2004-09-01

    Quantitative examination of prostate histology offers clues in the diagnostic classification of lesions and in the prediction of response to treatment and prognosis. To facilitate the collection of quantitative data, the development of machine vision systems is necessary. This study explored the use of imaging for identifying tissue abnormalities in prostate histology. Medium-power histological scenes were recorded from whole-mount radical prostatectomy sections at x 40 objective magnification and assessed by a pathologist as exhibiting stroma, normal tissue (nonneoplastic epithelial component), or prostatic carcinoma (PCa). A machine vision system was developed that divided the scenes into subregions of 100 x 100 pixels and subjected each to image-processing techniques. Analysis of morphological characteristics allowed the identification of normal tissue. Analysis of image texture demonstrated that Haralick feature 4 was the most suitable for discriminating stroma from PCa. Using these morphological and texture measurements, it was possible to define a classification scheme for each subregion. The machine vision system is designed to integrate these classification rules and generate digital maps of tissue composition from the classification of subregions; 79.3% of subregions were correctly classified. Established classification rates have demonstrated the validity of the methodology on small scenes; a logical extension was to apply the methodology to whole slide images via scanning technology. The machine vision system is capable of classifying these images. The machine vision system developed in this project facilitates the exploration of morphological and texture characteristics in quantifying tissue composition. It also illustrates the potential of quantitative methods to provide highly discriminatory information in the automated identification of prostatic lesions using computer vision.

  13. Association between infection of virulence cagA gene Helicobacter pylori and laryngeal squamous cell carcinoma

    PubMed Central

    Burduk, Paweł Krzysztof

    2013-01-01

    Background The aim of the study was to evaluate the presence of cagA gene Helicobacter pylori in etiopathogenesis of initiation and development of larynx squamous cell carcinoma (LSCC) and its predictable role as a prognostic factor. Material/Methods The prospective, controlled study involved a series of 75 patients (65 male, 10 female, mean age 59.1 years, range 43 to 79 years) with larynx cancer. Samples of larynx cancerous tissue, each of 10–15 mg, were obtained from fresh tissues and were used for nucleic acid purification. DNA was extracted from 225 samples (larynx tumor – I (75), margin of tumor and normal tissue – II (75) and normal larynx tissue from opposite side to the tumor – III). All samples were subjected to H. pylori ureA detection by the PCR H. pylori diagnostic test. Samples that were positive for ureA H. pylori gene were evaluated for cagA H. pylori gene. Results Presence of H. pylori cagA gene was identified in 46,7% to 49,3% of 75 H. pylori ureA gene-positive larynx cancer depending of tissue location. There was a correlation of high incidence of positive cagA gene in larynx cancer tissue in supraglottic versus subglottic and glottic location. We observed a predominance of cagA gene in LSCC in patients with positive cervical lymph nodes and clinical stage T3 and T4. Conclusions H. pylori is present in larynx tissue and may be a possible carcinogen or co-carcinogen in LSCC development, but that must be addressed by future investigations. The presence of cagA gene in larynx cancer tissues significantly decreases survival rate and increases the disease recurrence possibilities. PMID:23860397

  14. Association between infection of virulence cagA gene Helicobacter pylori and laryngeal squamous cell carcinoma.

    PubMed

    Burduk, Paweł Krzysztof

    2013-07-17

    The aim of the study was to evaluate the presence of cagA gene Helicobacter pylori in etiopathogenesis of initiation and development of larynx squamous cell carcinoma (LSCC) and its predictable role as a prognostic factor. The prospective, controlled study involved a series of 75 patients (65 male, 10 female, mean age 59.1 years, range 43 to 79 years) with larynx cancer. Samples of larynx cancerous tissue, each of 10-15 mg, were obtained from fresh tissues and were used for nucleic acid purification. DNA was extracted from 225 samples (larynx tumor - I (75), margin of tumor and normal tissue - II (75) and normal larynx tissue from opposite side to the tumor - III). All samples were subjected to H. pylori ureA detection by the PCR H. pylori diagnostic test. Samples that were positive for ureA H. pylori gene were evaluated for cagA H. pylori gene. Presence of H. pylori cagA gene was identified in 46,7% to 49,3% of 75 H. pylori ureA gene-positive larynx cancer depending of tissue location. There was a correlation of high incidence of positive cagA gene in larynx cancer tissue in supraglottic versus subglottic and glottic location. We observed a predominance of cagA gene in LSCC in patients with positive cervical lymph nodes and clinical stage T3 and T4. H. pylori is present in larynx tissue and may be a possible carcinogen or co-carcinogen in LSCC development, but that must be addressed by future investigations. The presence of cagA gene in larynx cancer tissues significantly decreases survival rate and increases the disease recurrence possibilities.

  15. Juxtacanalicular tissue in pigmentary and primary open angle glaucoma. The hydrodynamic role of pigment and other constituents.

    PubMed

    Murphy, C G; Johnson, M; Alvarado, J A

    1992-12-01

    We tested the hypothesis that obstruction of the juxtacanalicular tissues, by melanin granules in pigmentary glaucoma and by other impermeable material in primary open angle glaucoma, leads to the development of a chronic glaucomatous condition. The distribution and concentration of melanin and other impermeable materials in the juxtacanalicular tissues and elsewhere in the trabecular meshwork was determined in 13 specimens. Six specimens were from patients with pigmentary glaucoma, two from patients with pigment dispersion syndrome, and three from patients with primary open angle glaucoma, as well as two from normal subjects. The effect of these materials on flow resistance was estimated using two hydrodynamic models. In model A, the electron-lucent spaces of the juxtacanalicular tissue were assumed to be open spaces, while in model B, these spaces and spaces filled with ground substance were assumed to be gel filled. In pigmentary glaucoma, 3.5% of the pigment was found in the juxtacanalicular tissue, while 96.5% was found in the corneoscleral and uveoscleral tissues. Permeabilities calculated according to model A were much higher than those expected from estimates of outflow facility in all groups, in agreement with the previous report of Ethier et al. The gel-filled spaces available for fluid flow, as determined by model B, showed no statistically demonstrable differences (pigmentary glaucoma, 32.9%; primary open angle glaucoma, 36.6%; pigment dispersion syndrome, 43.4%; normal, 44.1%). Furthermore, the amount of pigment present in the juxtacanalicular tissue was determined to have a negligible influence on permeability. Thus, the development of the chronic glaucomatous condition cannot be directly attributed to pigment accumulation in the juxtacanalicular tissue in pigmentary glaucoma.

  16. Identification of tissue-specific cell death using methylation patterns of circulating DNA

    PubMed Central

    Lehmann-Werman, Roni; Neiman, Daniel; Zemmour, Hai; Moss, Joshua; Magenheim, Judith; Vaknin-Dembinsky, Adi; Rubertsson, Sten; Nellgård, Bengt; Blennow, Kaj; Zetterberg, Henrik; Spalding, Kirsty; Haller, Michael J.; Wasserfall, Clive H.; Schatz, Desmond A.; Greenbaum, Carla J.; Dorrell, Craig; Grompe, Markus; Zick, Aviad; Hubert, Ayala; Maoz, Myriam; Fendrich, Volker; Bartsch, Detlef K.; Golan, Talia; Ben Sasson, Shmuel A.; Zamir, Gideon; Razin, Aharon; Cedar, Howard; Shapiro, A. M. James; Glaser, Benjamin; Shemer, Ruth; Dor, Yuval

    2016-01-01

    Minimally invasive detection of cell death could prove an invaluable resource in many physiologic and pathologic situations. Cell-free circulating DNA (cfDNA) released from dying cells is emerging as a diagnostic tool for monitoring cancer dynamics and graft failure. However, existing methods rely on differences in DNA sequences in source tissues, so that cell death cannot be identified in tissues with a normal genome. We developed a method of detecting tissue-specific cell death in humans based on tissue-specific methylation patterns in cfDNA. We interrogated tissue-specific methylome databases to identify cell type-specific DNA methylation signatures and developed a method to detect these signatures in mixed DNA samples. We isolated cfDNA from plasma or serum of donors, treated the cfDNA with bisulfite, PCR-amplified the cfDNA, and sequenced it to quantify cfDNA carrying the methylation markers of the cell type of interest. Pancreatic β-cell DNA was identified in the circulation of patients with recently diagnosed type-1 diabetes and islet-graft recipients; oligodendrocyte DNA was identified in patients with relapsing multiple sclerosis; neuronal/glial DNA was identified in patients after traumatic brain injury or cardiac arrest; and exocrine pancreas DNA was identified in patients with pancreatic cancer or pancreatitis. This proof-of-concept study demonstrates that the tissue origins of cfDNA and thus the rate of death of specific cell types can be determined in humans. The approach can be adapted to identify cfDNA derived from any cell type in the body, offering a minimally invasive window for diagnosing and monitoring a broad spectrum of human pathologies as well as providing a better understanding of normal tissue dynamics. PMID:26976580

  17. Intra-operative probe for brain cancer: feasibility study

    NASA Astrophysics Data System (ADS)

    Vu Thi, M. H.; Charon, Y.; Duval, M. A.; Lefebvre, F.; Menard, L.; Pitre, S.; Pinot, L.; Siebert, R.

    2007-07-01

    The present work aims a new medical probe for surgeons devoted to brain cancers, in particular glioblastoma multiforme. Within the last years, our group has started the development of a new intra-operative beta imaging probe. More recently, we took an alternative approach for the same application: a fluorescence probe. In both cases the purpose is to differentiate normal from tumor brain tissue. In a first step, we developed set-ups capable to measure autofluorescence. They are based on a dedicated epi-fluorescence design and on specific fiber optic probes. Relative signal amplitude, spectral shape and fluorescence lifetime measurements are foreseen to distinguish normal and cancer tissue by analyzing fluorophores like NADH, lipopigments and porphyrines. The autofluorescence spectra are recorded in the 460-640 nm range with a low resolution spectrometer. For lifetime measurements a fast detector (APD) is used together with a TCSPC-carte. Intrinsic wavelength- and time-resolutions are a few nm and 200 ps, respectively. Different samples have been analyzed to validate our new detection system and to allow a first configuration of our medical fluorescence probe. First results from the tissue measurements are shown.

  18. Vitamin A supplementation in early life affects later response to an obesogenic diet in rats.

    PubMed

    Granados, N; Amengual, J; Ribot, J; Musinovic, H; Ceresi, E; von Lintig, J; Palou, A; Bonet, M L

    2013-09-01

    To assess the influence of supplementation with a moderate dose of vitamin A in early life on adipose tissue development and the response to an obesogenic diet later in life. During the suckling period, rat pups received a daily oral dose of retinyl palmitate corresponding to three times the vitamin A ingested daily from maternal milk. Control rats received the vehicle (olive oil). Short-term effects of treatment on gene expression and morphology of white adipose tissue (WAT) were analyzed in animals on the day after weaning (day 21). To study long-term effects, control and vitamin A-treated rats were fed, after weaning, a normal fat or a high-fat (HF) diet for 16 weeks. WAT of vitamin A-treated young rats (day 21) was enriched in small adipocytes with a reduced expression of adipogenic markers (peroxisome proliferator-activated receptor γ and lipoprotein lipase) and an increased cell proliferation potential as indicated by increased expression of proliferating cell nuclear antigen. Increased retinoic acid (RA)-induced transcriptional responses were present in the tissues of vitamin A-treated young rats (day 21) including WAT. Vitamin A-treated rats developed higher adiposity than control rats on a HF diet as indicated by body composition analysis and increased WAT depot mass, adipocyte diameter, WAT DNA content, leptinemia and adipose leptin gene expression. Excess adiposity gain in vitamin A-treated rats developed in the absence of changes in body weight and was attributable to excess adipocyte hyperplasia. No differences in adiposity were observed between vitamin A-treated rats and control rats on a normal fat diet. Total retinol levels in WAT of vitamin A-treated rats were elevated at weaning (day 21) and normalized by day 135 of age. Vitamin A intake in the early stages of postnatal life favors subsequent HF diet-induced adiposity gain through mechanisms that may relate to changes in adipose tissue development, likely mediated by RA.

  19. From The Cover: Reconstruction of functionally normal and malignant human breast tissues in mice

    NASA Astrophysics Data System (ADS)

    Kuperwasser, Charlotte; Chavarria, Tony; Wu, Min; Magrane, Greg; Gray, Joe W.; Carey, Loucinda; Richardson, Andrea; Weinberg, Robert A.

    2004-04-01

    The study of normal breast epithelial morphogenesis and carcinogenesis in vivo has largely used rodent models. Efforts at studying mammary morphogenesis and cancer with xenotransplanted human epithelial cells have failed to recapitulate the full extent of development seen in the human breast. We have developed an orthotopic xenograft model in which both the stromal and epithelial components of the reconstructed mammary gland are of human origin. Genetic modification of human stromal cells before the implantation of ostensibly normal human mammary epithelial cells resulted in the outgrowth of benign and malignant lesions. This experimental model allows for studies of human epithelial morphogenesis and differentiation in vivo and underscores the critical role of heterotypic interactions in human breast development and carcinogenesis.

  20. A Compendium of Canine Normal Tissue Gene Expression

    PubMed Central

    Chen, Qing-Rong; Wen, Xinyu; Khan, Javed; Khanna, Chand

    2011-01-01

    Background Our understanding of disease is increasingly informed by changes in gene expression between normal and abnormal tissues. The release of the canine genome sequence in 2005 provided an opportunity to better understand human health and disease using the dog as clinically relevant model. Accordingly, we now present the first genome-wide, canine normal tissue gene expression compendium with corresponding human cross-species analysis. Methodology/Principal Findings The Affymetrix platform was utilized to catalogue gene expression signatures of 10 normal canine tissues including: liver, kidney, heart, lung, cerebrum, lymph node, spleen, jejunum, pancreas and skeletal muscle. The quality of the database was assessed in several ways. Organ defining gene sets were identified for each tissue and functional enrichment analysis revealed themes consistent with known physio-anatomic functions for each organ. In addition, a comparison of orthologous gene expression between matched canine and human normal tissues uncovered remarkable similarity. To demonstrate the utility of this dataset, novel canine gene annotations were established based on comparative analysis of dog and human tissue selective gene expression and manual curation of canine probeset mapping. Public access, using infrastructure identical to that currently in use for human normal tissues, has been established and allows for additional comparisons across species. Conclusions/Significance These data advance our understanding of the canine genome through a comprehensive analysis of gene expression in a diverse set of tissues, contributing to improved functional annotation that has been lacking. Importantly, it will be used to inform future studies of disease in the dog as a model for human translational research and provides a novel resource to the community at large. PMID:21655323

  1. Comparative study of Hsp27, GSK3β, Wnt1 and PRDX3 in Hirschsprung's disease.

    PubMed

    Gao, Hong; Liu, Xiaomei; Chen, Dong; Lv, Liangying; Wu, Mei; Mi, Jie; Wang, Weilin

    2014-06-01

    Hirschsprung's disease (HSCR) is a developmental disorder of the enteric nervous system characterized by aganglionosis in distal gut. In this study, we used two-dimensional gel electrophoresis (2-DE) technology coupled with matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis to identify differentially expressed proteins in the aganglionic (stenotic) and ganglionic (normal) colon segment tissues from patients with HSCR. We identified 15 proteins with different expression levels between the stenotic and the normal colon segment tissues from patients with HSCR. Nine proteins were upregulated and six proteins downregulated in the stenotic colon segment tissues compared to the normal colon segment tissues. Based on the biological functions, we selected the Hsp27 upregulated proteins and the PRDX3 downregulated proteins to confirm their expression in 20 patients. The protein and mRNA expressions of Hsp27 were statistically higher in the stenotic colon segment tissues than in the normal colon segment tissues, whereas the protein and mRNA expressions of PRDX3 were statistically lower in the stenotic colon segment tissues than in the normal colon segment tissues. These findings of changes in mRNA and protein in tissues from patients with HSCR provide information which may be helpful in understanding the pathomechanism that is implicated in the disease. © 2014 The Authors. International Journal of Experimental Pathology © 2014 International Journal of Experimental Pathology.

  2. Genetics Home Reference: congenital generalized lipodystrophy

    MedlinePlus

    ... childhood. One of the most common features is insulin resistance, a condition in which the body's tissues are ... that normally helps to regulate blood sugar levels. Insulin resistance may develop into a more serious disease called ...

  3. Genetics Home Reference: familial partial lipodystrophy

    MedlinePlus

    ... adulthood. Many people with familial partial lipodystrophy develop insulin resistance, a condition in which the body's tissues cannot ... that normally helps to regulate blood sugar levels. Insulin resistance may worsen to become a more serious disease ...

  4. RBFOX2 Is an Important Regulator of Mesenchymal Tissue-Specific Splicing in both Normal and Cancer Tissues

    PubMed Central

    Venables, Julian P.; Brosseau, Jean-Philippe; Gadea, Gilles; Klinck, Roscoe; Prinos, Panagiotis; Beaulieu, Jean-François; Lapointe, Elvy; Durand, Mathieu; Thibault, Philippe; Tremblay, Karine; Rousset, François; Tazi, Jamal; Abou Elela, Sherif

    2013-01-01

    Alternative splicing provides a critical and flexible layer of regulation intervening in many biological processes to regulate the diversity of proteins and impact cell phenotype. To identify alternative splicing differences that distinguish epithelial from mesenchymal tissues, we have investigated hundreds of cassette exons using a high-throughput reverse transcription-PCR (RT-PCR) platform. Extensive changes in splicing were noted between epithelial and mesenchymal tissues in both human colon and ovarian tissues, with many changes from mostly one splice variant to predominantly the other. Remarkably, many of the splicing differences that distinguish normal mesenchymal from normal epithelial tissues matched those that differentiate normal ovarian tissues from ovarian cancer. Furthermore, because splicing profiling could classify cancer cell lines according to their epithelial/mesenchymal characteristics, we used these cancer cell lines to identify regulators for these specific splicing signatures. By knocking down 78 potential splicing factors in five cell lines, we provide an extensive view of the complex regulatory landscape associated with the epithelial and mesenchymal states, thus revealing that RBFOX2 is an important driver of mesenchymal tissue-specific splicing. PMID:23149937

  5. Microgravity

    NASA Image and Video Library

    1998-01-01

    The heart of the bioreactor is the rotating wall vessel, shown without its support equipment. Volume is about 125 mL. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  6. Proton Radiotherapy for Solid Tumors of Childhood

    PubMed Central

    Cotter, Shane E.; McBride, Sean M.; Yock, Torunn I.

    2012-01-01

    The increasing efficacy of pediatric cancer therapy over the past four decades has produced many long-term survivors that now struggle with serious treatment related morbidities affecting their quality of life. Radiation therapy is responsible for a significant proportion of these late effects, but a relatively new and emerging modality, proton radiotherapy hold great promise to drastically reduce these treatment related late effects in long term survivors by sparing dose to normal tissues. Dosimetric studies of proton radiotherapy compared with best available photon based treatment show significant dose sparing to developing normal tissues. Furthermore, clinical data are now emerging that begin to quantify the benefit in decreased late treatment effects while maintaining excellent cancer control rates. PMID:22417062

  7. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The heart of the bioreactor is the rotating wall vessel, shown without its support equipment. Volume is about 125 mL. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  8. funtooNorm: an R package for normalization of DNA methylation data when there are multiple cell or tissue types.

    PubMed

    Oros Klein, Kathleen; Grinek, Stepan; Bernatsky, Sasha; Bouchard, Luigi; Ciampi, Antonio; Colmegna, Ines; Fortin, Jean-Philippe; Gao, Long; Hivert, Marie-France; Hudson, Marie; Kobor, Michael S; Labbe, Aurelie; MacIsaac, Julia L; Meaney, Michael J; Morin, Alexander M; O'Donnell, Kieran J; Pastinen, Tomi; Van Ijzendoorn, Marinus H; Voisin, Gregory; Greenwood, Celia M T

    2016-02-15

    DNA methylation patterns are well known to vary substantially across cell types or tissues. Hence, existing normalization methods may not be optimal if they do not take this into account. We therefore present a new R package for normalization of data from the Illumina Infinium Human Methylation450 BeadChip (Illumina 450 K) built on the concepts in the recently published funNorm method, and introducing cell-type or tissue-type flexibility. funtooNorm is relevant for data sets containing samples from two or more cell or tissue types. A visual display of cross-validated errors informs the choice of the optimal number of components in the normalization. Benefits of cell (tissue)-specific normalization are demonstrated in three data sets. Improvement can be substantial; it is strikingly better on chromosome X, where methylation patterns have unique inter-tissue variability. An R package is available at https://github.com/GreenwoodLab/funtooNorm, and has been submitted to Bioconductor at http://bioconductor.org. © The Author 2015. Published by Oxford University Press.

  9. Concentration of cadmium, nickel and aluminium in female breast cancer.

    PubMed

    Romanowicz-Makowska, Hanna; Forma, Ewa; Bryś, Magdalena; Krajewska, Wanda M; Smolarz, Beata

    2011-12-01

    The aim of this study was to investigate the cadmium (Cd), nickel (Ni) and aluminium (Al) concentrations in female breast cancer and normal tissue. The concentration of metals in 16 non-cancerous breast tissues and 67 breast cancer samples was measured by flame atomic absorption spectrometry. In the case of normal breast tissue the concentrations were 0.61 ± 0.24 μg Cd/g dry tissue, 1.84 ± 0.67 μg Ni/g dry tissue, and 3.63 ± 1.00 μg Al/g dry tissue, whereas in breast cancer concentrations of metals were 0.76 ± 0.38 μg/g dry tissue, 2.26 ± 0.79 μg/g dry tissue, and 4.40 ± 1.82 μg/g dry tissue, respectively. The concentration of Cd and Al in normal breast tissue was significantly lower than in breast cancer. In the case of Ni concentration, we did not observe statistically significant differences between normal and cancerous tissue. There were no significant differences in concentration of studied metals, in breast cancer, in the context of age, menopausal status, and cancer histological grading. The data obtained show higher concentration of cadmium and aluminium and support a possible relationship between those metals and breast cancer.

  10. Msx homeobox gene family and craniofacial development.

    PubMed

    Alappat, Sylvia; Zhang, Zun Yi; Chen, Yi Ping

    2003-12-01

    Vertebrate Msx genes are unlinked, homeobox-containing genes that bear homology to the Drosophila muscle segment homeobox gene. These genes are expressed at multiple sites of tissue-tissue interactions during vertebrate embryonic development. Inductive interactions mediated by the Msx genes are essential for normal craniofacial, limb and ectodermal organ morphogenesis, and are also essential to survival in mice, as manifested by the phenotypic abnormalities shown in knockout mice and in humans. This review summarizes studies on the expression, regulation, and functional analysis of Msx genes that bear relevance to craniofacial development in humans and mice. Key words: Msx genes, craniofacial, tooth, cleft palate, suture, development, transcription factor, signaling molecule.

  11. Silver nanoparticle based surface enhanced Raman scattering spectroscopy of diabetic and normal rat pancreatic tissue under near-infrared laser excitation

    NASA Astrophysics Data System (ADS)

    Huang, H.; Shi, H.; Feng, S.; Lin, J.; Chen, W.; Huang, Z.; Li, Y.; Yu, Y.; Lin, D.; Xu, Q.; Chen, R.

    2013-04-01

    This paper presents the use of high spatial resolution silver nanoparticle based near-infrared surface enhanced Raman scattering (SERS) from rat pancreatic tissue to obtain biochrmical information about the tissue. A high quality SERS signal from a mixture of pancreatic tissues and silver nanoparticles can be obtained within 10 s using a Renishaw micro-Raman system. Prominent SERS bands of pancreatic tissue were assigned to known molecular vibrations, such as the vibrations of DNA bases, RNA bases, proteins and lipids. Different tissue structures of diabetic and normal rat pancreatic tissues have characteristic features in SERS spectra. This exploratory study demonstrated great potential for using SERS imaging to distinguish diabetic and normal pancreatic tissues on frozen sections without using dye labeling of functionalized binding sites.

  12. Scattering properties of normal and cancerous tissues from human stomach based on phase-contrast microscope

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Li, Zhifang; Li, Hui

    2012-12-01

    In order to study scattering properties of normal and cancerous tissues from human stomach, we collect images for human gastric specimens by using phase-contrast microscope. The images were processed by the way of mathematics morphology. The equivalent particle size distribution of tissues can be obtained. Combining with Mie scattering theory, the scattering properties of tissues can be calculated. Assume scattering of light in biological tissue can be seen as separate scattering events by different particles, total scattering properties can be equivalent to as scattering sum of particles with different diameters. The results suggest that scattering coefficient of the cancerous tissue is significantly higher than that of normal tissue. The scattering phase function is different especially in the backscattering area. Those are significant clinical benefits to diagnosis cancerous tissue

  13. Olfactory granule cell development in normal and hyperthyroid rats.

    PubMed

    Brunjes, P C; Schwark, H D; Greenough, W T

    1982-10-01

    Dendritic development was examined in olfactory bulbs of both normal 7-, 14-, 21- and 60-day-old rats and littermates treated on postnatal days 1-4 with 1 microgram/g body weight of L-thyroxine sodium. Tissue was processed via the Golgi-Cox technique and subjected to quantitative analyses of mitral and internal layer granule cell development. These populations of granule cells were selected because their pattern of late proliferation suggested potentially greater susceptibility to postnatal hormonal alterations. Although neonatal hyperthyroidism induces widespread acceleration of maturation, including precocious chemosensitivity, granule cell development was unaffected relative to littermate controls. Both normal and hyperthyroid groups exhibited an inverted U-shaped pattern of cellular development, with rapid dendritic dendritic growth and expansion occurring during the earliest ages tested, but with loss of processes and dendritic field size occurring after day 21.

  14. SU-E-T-630: Predictive Modeling of Mortality, Tumor Control, and Normal Tissue Complications After Stereotactic Body Radiotherapy for Stage I Non-Small Cell Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindsay, WD; Oncora Medical, LLC, Philadelphia, PA; Berlind, CG

    Purpose: While rates of local control have been well characterized after stereotactic body radiotherapy (SBRT) for stage I non-small cell lung cancer (NSCLC), less data are available characterizing survival and normal tissue toxicities, and no validated models exist assessing these parameters after SBRT. We evaluate the reliability of various machine learning techniques when applied to radiation oncology datasets to create predictive models of mortality, tumor control, and normal tissue complications. Methods: A dataset of 204 consecutive patients with stage I non-small cell lung cancer (NSCLC) treated with stereotactic body radiotherapy (SBRT) at the University of Pennsylvania between 2009 and 2013more » was used to create predictive models of tumor control, normal tissue complications, and mortality in this IRB-approved study. Nearly 200 data fields of detailed patient- and tumor-specific information, radiotherapy dosimetric measurements, and clinical outcomes data were collected. Predictive models were created for local tumor control, 1- and 3-year overall survival, and nodal failure using 60% of the data (leaving the remainder as a test set). After applying feature selection and dimensionality reduction, nonlinear support vector classification was applied to the resulting features. Models were evaluated for accuracy and area under ROC curve on the 81-patient test set. Results: Models for common events in the dataset (such as mortality at one year) had the highest predictive power (AUC = .67, p < 0.05). For rare occurrences such as radiation pneumonitis and local failure (each occurring in less than 10% of patients), too few events were present to create reliable models. Conclusion: Although this study demonstrates the validity of predictive analytics using information extracted from patient medical records and can most reliably predict for survival after SBRT, larger sample sizes are needed to develop predictive models for normal tissue toxicities and more advanced machine learning methodologies need be consider in the future.« less

  15. From natural bone grafts to tissue engineering therapeutics: Brainstorming on pharmaceutical formulative requirements and challenges.

    PubMed

    Baroli, Biancamaria

    2009-04-01

    Tissue engineering is an emerging multidisciplinary field of investigation focused on the regeneration of diseased or injured tissues through the delivery of appropriate molecular and mechanical signals. Therefore, bone tissue engineering covers all the attempts to reestablish a normal physiology or to speed up healing of bone in all musculoskeletal disorders and injuries that are lashing modern societies. This article attempts to give a pharmaceutical perspective on the production of engineered man-made bone grafts that are described as implantable tissue engineering therapeutics, and to highlight the importance of understanding bone composition and structure, as well as osteogenesis and bone healing processes, to improve the design and development of such implants. In addition, special emphasis is given to pharmaceutical aspects that are frequently minimized, but that, instead, may be useful for formulation developments and in vitro/in vivo correlations.

  16. [Use of tissue engineering in the reconstruction of flexor tendon injuries of the hand].

    PubMed

    Bíró, Vilmos

    2015-02-08

    In his literary analysis, the author describes a novel method applied in the reconstruction of flexor tendon injuries of the hand. This procedure is named tissue engineering, and it is examined mainly under experimental circumstances. After definition of the method and descriptions of literary preliminaries the author discusses the healing process of the normal tendon tissue, then development of the scaffold, an important step of tissue engineering is described. After these topics the introduction of the pluripotent mesenchymal stem cells into the scaffold, and proliferation of these cells and development of the sliding systems are presented. The mechanical resisting ability of the formed tendon tissue is also discussed. Finally, the author concludes that as long as results of experimental research cannot be successfully applied into clinical practice, well-tried tendon reconstruction operations and high quality postoperative rehabilitation are needed.

  17. Expression of metalloprotease insulin-degrading enzyme (insulysin) in normal and malignant human tissues

    PubMed Central

    Yfanti, Christina; Mengele, Karin; Gkazepis, Apostolos; Weirich, Gregor; Giersig, Cecylia; Kuo, Wen-Liang; Tang, Wei-Jen; Rosner, Marsha; Schmitt, Manfred

    2013-01-01

    Background Insulin-degrading enzyme (IDE, insulysin, insulinase; EC 3.4.22.11), a thiol metalloendopeptidase, is involved in intracellular degradation of insulin, thereby inhibiting its translocation and accumulation to the nucleus. Recently, protein expression of IDE has been demonstrated in the epithelial ducts of normal breast and in breast cancer tissue (Radulescu et al., Int J Oncol 30:73; 2007). Materials and Methods Utilizing four different antibodies generated against different epitopes of the IDE molecule, we performed western blot analysis and immunohistochemical staining on several normal human tissues, on a plethora of tumor cell lines of different tissue origin, and on malignant breast and ovarian tissue. Results Applying the four IDE-directed antibodies, we demonstrate IDE expression at the protein level, both by means of immunoblotting and immunocytochemistry, in all of the tumor cell lines analyzed. Besides, IDE protein expression was found in normal tissues of the kidney, liver, lung, brain, breast and skeletal muscle, as well as in breast and ovarian cancer tissues. Immunohistochemical visualization of IDE indicated cytoplasmic localization of IDE in all of the cell lines and tissues assessed. Conclusions We performed for the first time a wide-ranging survey on IDE protein expression in normal and malignant tissues and cells and thus extend knowledge about cellular and tissue distribution of IDE, an enzyme which so far has mainly been studied in connection with Alzheimer’s disease and diabetes but not in cancer. PMID:18813847

  18. Population effect model identifies gene expression predictors of survival outcomes in lung adenocarcinoma for both Caucasian and Asian patients

    PubMed Central

    Cai, Guoshuai; Xiao, Feifei; Cheng, Chao; Li, Yafang; Amos, Christopher I.; Whitfield, Michael L.

    2017-01-01

    Background We analyzed and integrated transcriptome data from two large studies of lung adenocarcinomas on distinct populations. Our goal was to investigate the variable gene expression alterations between paired tumor-normal tissues and prospectively identify those alterations that can reliably predict lung disease related outcomes across populations. Methods We developed a mixed model that combined the paired tumor-normal RNA-seq from two populations. Alterations in gene expression common to both populations were detected and validated in two independent DNA microarray datasets. A 10-gene prognosis signature was developed through a l1 penalized regression approach and its prognostic value was evaluated in a third independent microarray cohort. Results Deregulation of apoptosis pathways and increased expression of cell cycle pathways were identified in tumors of both Caucasian and Asian lung adenocarcinoma patients. We demonstrate that a 10-gene biomarker panel can predict prognosis of lung adenocarcinoma in both Caucasians and Asians. Compared to low risk groups, high risk groups showed significantly shorter overall survival time (Caucasian patients data: HR = 3.63, p-value = 0.007; Asian patients data: HR = 3.25, p-value = 0.001). Conclusions This study uses a statistical framework to detect DEGs between paired tumor and normal tissues that considers variances among patients and ethnicities, which will aid in understanding the common genes and signalling pathways with the largest effect sizes in ethnically diverse cohorts. We propose multifunctional markers for distinguishing tumor from normal tissue and prognosis for both populations studied. PMID:28426704

  19. Towards automated early cancer detection: Non-invasive, fluorescence-based approaches for quantitative assessment of cells and tissue to identify pre-cancers

    NASA Astrophysics Data System (ADS)

    Levitt, Jonathan Michael

    Cancer is the second leading cause of death globally, second only to heart disease. As in many diseases, patient survival is directly related to how early lesions are detected. Using conventional screening methods, the early changes associated with cancer, which occur on the microscopic scale, can easily go overlooked. Due to the inherent drawbacks of conventional techniques we present non-invasive, optically based methods to acquire high resolution images from live samples and assess cellular function associated with the onset of disease. Specifically, we acquired fluorescence images from NADH and FAD to quantify morphology and metabolic activity. We first conducted studies to monitor monolayers of keratinocytes in response to apoptosis which has been shown to be disrupted during cancer progression. We found that as keratinocytes undergo apoptosis there are populations of mitochondria that exhibit a higher metabolic activity that become progressively confined to a gradually smaller perinuclear region. To further assess the changes associated with early cancer growth we developed automated methods to rapidly quantify fluorescence images and extract morphological and metabolic information from life tissue. In this study, we simultaneously quantified mitochondrial organization, metabolic activity, nuclear size distribution, and the localization of the structural protein keratin, to differentiate between normal and pre-cancerous engineered tissues. We found the degree mitochondrial organization, as determined from the fractal derived Hurst parameter, was well correlated to level of cellular differentiation. We also found that the metabolic activity in the pre-cancerous cells was greater and more consistent throughout tissue depths in comparison to normal tissue. Keratin localization, also quantified from the fluorescence images, we found it to be confined to the uppermost layers of normal tissue while it was more evenly distributed in the precancerous tissues. To allow for evaluation of the early cancerous changes in vivo, we developed video-rate confocal reflectance/multi-photon fluorescence microscope as a clinical prototype. This device was specifically designed to rapidly acquire and assess non-invasively acquire fluorescence images using the automated methods we have developed. We have demonstrated the ability of this microscope to simultaneously acquire fluorescence, confocal reflectance, and second-harmonic generation images as well as assess blood flow in vivo.

  20. Serial analysis of gene expression reveals differential expression between endometriosis and normal endometrium. Possible roles for AXL and SHC1 in the pathogenesis of endometriosis

    PubMed Central

    Honda, Hiroshi; Barrueto, Fermin F; Gogusev, Jean; Im, Dwight D; Morin, Patrice J

    2008-01-01

    Background Endometriosis is a clinical condition that affects up to 10% of the women of reproductive age. Endometriosis is characterized by the presence of endometrial tissues outside the uterine cavity and can lead to chronic pelvic pain, infertility and, in some cases, to ovarian cancer. Methods In order to better understand the pathogenesis of endometriosis, we have used Serial Analysis of Gene Expression (SAGE) to identify genes differentially in this disease by studying three endometriotic tissues and a normal endometrium sample. Promising candidates (AXL, SHC1, ACTN4, PI3KCA, p-AKT, p-mTOR, and p-ERK) were independently validated by immunohistochemistry in additional normal and endometriotic tissues. Results We identified several genes differentially expressed between endometriosis and normal endometrium. IGF2, ACTN4, AXL, and SHC1 were among the most upregulated genes. Comparison of the endometriosis gene expression profiles with the gene expression patterns observed in normal human tissues allowed the identification of endometriosis-specific genes, which included several members of the MMP family (MMP1,2,3,10,11,14). Immunohistochemical analysis of several candidates confirmed the SAGE findings, and suggested the involvement of the PI3K-Akt and MAPK signaling pathways in endometriosis. Conclusion In human endometriosis, the PI3K-Akt and MAPK signaling pathways may be activated via overexpression of AXL and SHC1, respectively. These genes, as well as others identified as differentially expressed in this study, may be useful for the development of novel strategies for the detection and/or therapy of endometriosis. PMID:19055724

  1. Epigenetic alteration of p16 and retinoic acid receptor beta genes in the development of epithelial ovarian carcinoma.

    PubMed

    Bhagat, Rahul; Kumar, Sandeep Sriram; Vaderhobli, Shilpa; Premalata, Chennagiri S; Pallavi, Venkateshaiah Reddihalli; Ramesh, Gawari; Krishnamoorthy, Lakshmi

    2014-09-01

    Silencing of tumor suppressor and tumor-related genes by promoter hypermethylation is one of the major events in ovarian carcinogenesis. In this study, we analyzed aberrant promoter methylation of p16 and RAR-β genes in 134 epithelial ovarian carcinomas (EOCs), 23 low malignant potential (LMP) tumors, 26 benign cystadenomas, and 15 normal ovarian tissues. Methylation was investigated by methylation-specific PCR (MSP), and the results were confirmed by bisulfite DNA sequencing. Relative gene expression of p16 and RAR-β was done using quantitative reverse transcriptase PCR (qRT-PCR) on 51 EOC cases, 9 LMP tumors, and 7 benign cystadenomas with 5 normal ovarian tissues. Aberrant methylation for p16 and RAR-β was present in 43 % (58/134) and 31 % (41/134) in carcinoma cases, 22 % (05/23) and 52 % (12/23) in LMP tumors, and 42 % (11/26) and 69 % (18/26) in benign cystadenomas. No methylation was observed in any of the normal ovarian tissues. The mRNA expression level of p16 and RAR-β was significantly downregulated in EOC and LMP tumors than the corresponding normal tissues whereas the expression level was normal in benign cystadenomas for p16 and slightly reduced for RAR-β. A significant correlation of p16 promoter methylation was observed with reduced gene expression in EOC. For RAR-β, no significant correlation was observed between promoter methylation and gene expression. Our results suggest that epigenetic alterations of p16 and RAR-β have an important role in ovarian carcinogenesis and that mechanism along with methylation plays a significant role in downregulation of RAR-β gene in ovarian cancer.

  2. The sensitivity of normal brain and intracranially implanted VX2 tumour to interstitial photodynamic therapy.

    PubMed Central

    Lilge, L.; Olivo, M. C.; Schatz, S. W.; MaGuire, J. A.; Patterson, M. S.; Wilson, B. C.

    1996-01-01

    The applicability and limitations of a photodynamic threshold model, used to describe quantitatively the in vivo response of tissues to photodynamic therapy, are currently being investigated in a variety of normal and malignant tumour tissues. The model states that tissue necrosis occurs when the number of photons absorbed by the photosensitiser per unit tissue volume exceeds a threshold. New Zealand White rabbits were sensitised with porphyrin-based photosensitisers. Normal brain or intracranially implanted VX2 tumours were illuminated via an optical fibre placed into the tissue at craniotomy. The light fluence distribution in the tissue was measured by multiple interstitial optical fibre detectors. The tissue concentration of the photosensitiser was determined post mortem by absorption spectroscopy. The derived photodynamic threshold values for normal brain are significantly lower than for VX2 tumour for all photosensitisers examined. Neuronal damage is evident beyond the zone of frank necrosis. For Photofrin the threshold decreases with time delay between photosensitiser administration and light treatment. No significant difference in threshold is found between Photofrin and haematoporphyrin derivative. The threshold in normal brain (grey matter) is lowest for sensitisation by 5 delta-aminolaevulinic acid. The results confirm the very high sensitivity of normal brain to porphyrin photodynamic therapy and show the importance of in situ light fluence monitoring during photodynamic irradiation. Images Figure 1 Figure 4 Figure 5 Figure 6 Figure 7 PMID:8562339

  3. Development of Antioxidant COX-2 Inhibitors as Radioprotective Agents for Radiation Therapy—A Hypothesis-Driven Review

    PubMed Central

    Laube, Markus; Kniess, Torsten; Pietzsch, Jens

    2016-01-01

    Radiation therapy (RT) evolved to be a primary treatment modality for cancer patients. Unfortunately, the cure or relief of symptoms is still accompanied by radiation-induced side effects with severe acute and late pathophysiological consequences. Inhibitors of cyclooxygenase-2 (COX-2) are potentially useful in this regard because radioprotection of normal tissue and/or radiosensitizing effects on tumor tissue have been described for several compounds of this structurally diverse class. This review aims to substantiate the hypothesis that antioxidant COX-2 inhibitors are promising radioprotectants because of intercepting radiation-induced oxidative stress and inflammation in normal tissue, especially the vascular system. For this, literature reporting on COX inhibitors exerting radioprotective and/or radiosensitizing action as well as on antioxidant COX inhibitors will be reviewed comprehensively with the aim to find cross-points of both and, by that, stimulate further research in the field of radioprotective agents. PMID:27104573

  4. Nanotechnology for the delivery of phytochemicals in cancer therapy.

    PubMed

    Xie, Jing; Yang, Zhaogang; Zhou, Chenguang; Zhu, Jing; Lee, Robert J; Teng, Lesheng

    2016-01-01

    The aim of this review is to summarize advances that have been made in the delivery of phytochemicals for cancer therapy by the use of nanotechnology. Over recent decades, much research effort has been invested in developing phytochemicals as cancer therapeutic agents. However, several impediments to their wide spread use as drugs still have to be overcome. Among these are low solubility, poor penetration into cells, high hepatic disposition, and narrow therapeutic index. Rapid clearance or uptake by normal tissues and wide tissue distribution result in low drug accumulation in the target tumor sites can result in undesired drug exposure in normal tissues. Association with or encapsulation in nanoscale drug carriers is a potential strategy to address these problems. This review discussed lessons learned on the use of nanotechnology for delivery of phytochemicals that been tested in clinical trials or are moving towards the clinic. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Immunohistochemical expression of SP-NK-1R-EGFR pathway and VDR in colonic inflammation and neoplasia

    PubMed Central

    Isidro, Raymond A; Cruz, Myrella L; Isidro, Angel A; Baez, Axel; Arroyo, Axel; González-Marqués, William A; González-Keelan, Carmen; Torres, Esther A; Appleyard, Caroline B

    2015-01-01

    AIM: To determine the expression of neurokinin-1 receptor (NK-1R), phosphorylated epidermal growth factor receptor (pEGFR), cyclooxygenase-2 (Cox-2), and vitamin D receptor (VDR) in normal, inflammatory bowel disease (IBD), and colorectal neoplasia tissues from Puerto Ricans. METHODS: Tissues from patients with IBD, colitis-associated colorectal cancer (CAC), sporadic dysplasia, and sporadic colorectal cancer (CRC), as well as normal controls, were identified at several centers in Puerto Rico. Archival formalin-fixed, paraffin-embedded tissues were de-identified and processed by immunohistochemistry for NK-1R, pEGFR, Cox-2, and VDR. Pictures of representative areas of each tissues diagnosis were taken and scored by three observers using a 4-point scale that assessed intensity of staining. Tissues with CAC were further analyzed by photographing representative areas of IBD and the different grades of dysplasia, in addition to the areas of cancer, within each tissue. Differences in the average age between the five patient groups were assessed with one-way analysis of variance and Tukey-Kramer multiple comparisons test. The mean scores for normal tissues and tissues with IBD, dysplasia, CRC, and CAC were calculated and statistically compared using one-way analysis of variance and Dunnett’s multiple comparisons test. Correlations between protein expression patterns were analyzed with the Pearson’s product-moment correlation coefficient. Data are presented as mean ± SE. RESULTS: On average, patients with IBD were younger (34.60 ± 5.81) than normal (63.20 ± 6.13, P < 0.01), sporadic dysplasia (68.80 ± 4.42, P < 0.01), sporadic cancer (74.80 ± 4.91, P < 0.001), and CAC (57.50 ± 5.11, P < 0.05) patients. NK-1R in cancer tissue (sporadic CRC, 1.73 ± 0.34; CAC, 1.57 ± 0.53) and sporadic dysplasia (2.00 ± 0.45) were higher than in normal tissues (0.73 ± 0.19). pEGFR was significantly increased in sporadic CRC (1.53 ± 0.43) and CAC (2.25 ± 0.47) when compared to normal tissue (0.07 ± 0.25, P < 0.05, P < 0.001, respectively). Cox-2 was significantly increased in sporadic colorectal cancer (2.20 ± 0.23 vs 0.80 ± 0.37 for normal tissues, P < 0.05). In comparison to normal (2.80 ± 0.13) and CAC (2.50 ± 0.33) tissues, VDR was significantly decreased in sporadic dysplasia (0.00 ± 0.00, P < 0.001 vs normal, P < 0.001 vs CAC) and sporadic CRC (0.47 ± 0.23, P < 0.001 vs normal, P < 0.001 vs CAC). VDR levels negatively correlated with NK-1R (r = -0.48) and pEGFR (r = -0.56) in normal, IBD, sporadic dysplasia and sporadic CRC tissue, but not in CAC. CONCLUSION: Immunohistochemical NK-1R and pEGFR positivity with VDR negativity can be used to identify areas of sporadic colorectal neoplasia. VDR immunoreactivity can distinguish CAC from sporadic cancer. PMID:25684939

  6. Near-infrared confocal micro-Raman spectroscopy combined with PCA-LDA multivariate analysis for detection of esophageal cancer

    NASA Astrophysics Data System (ADS)

    Chen, Long; Wang, Yue; Liu, Nenrong; Lin, Duo; Weng, Cuncheng; Zhang, Jixue; Zhu, Lihuan; Chen, Weisheng; Chen, Rong; Feng, Shangyuan

    2013-06-01

    The diagnostic capability of using tissue intrinsic micro-Raman signals to obtain biochemical information from human esophageal tissue is presented in this paper. Near-infrared micro-Raman spectroscopy combined with multivariate analysis was applied for discrimination of esophageal cancer tissue from normal tissue samples. Micro-Raman spectroscopy measurements were performed on 54 esophageal cancer tissues and 55 normal tissues in the 400-1750 cm-1 range. The mean Raman spectra showed significant differences between the two groups. Tentative assignments of the Raman bands in the measured tissue spectra suggested some changes in protein structure, a decrease in the relative amount of lactose, and increases in the percentages of tryptophan, collagen and phenylalanine content in esophageal cancer tissue as compared to those of a normal subject. The diagnostic algorithms based on principal component analysis (PCA) and linear discriminate analysis (LDA) achieved a diagnostic sensitivity of 87.0% and specificity of 70.9% for separating cancer from normal esophageal tissue samples. The result demonstrated that near-infrared micro-Raman spectroscopy combined with PCA-LDA analysis could be an effective and sensitive tool for identification of esophageal cancer.

  7. Concentrations of cadmium and selected essential elements in malignant large intestine tissue

    PubMed Central

    Dziki, Adam; Kilanowicz, Anna; Sapota, Andrzej; Duda-Szymańska, Joanna; Daragó, Adam

    2015-01-01

    Introduction Colorectal cancer is one of the most common cancers worldwide. Incidence rates of large intestine cancer indicate a role of environmental and occupational factors. The role of essential elements and their interaction with toxic metals can contribute to the explanation of a complex mechanism by which large intestine cancer develops. Bearing this in mind, determining the levels of essential and toxic elements in tissues (organs), as well as in body fluids, seems to shed light on their role in the mode of action in malignant disease. Aim Determination of the levels of cadmium, zinc, copper, selenium, calcium, magnesium, and iron in large intestine malignant tissue. Material and methods Two intraoperative intestine sections were investigated: one from the malignant tissue and the other one from the normal tissue, collected from each person with diagnosed large intestine cancer. Cadmium, zinc, copper, calcium, magnesium, and iron levels were determined with atomic absorption spectrometry, and selenium levels by spectrofluorimetric method. Results The levels of copper, selenium, and magnesium were higher in the malignant than in normal tissues. In addition, the zinc/copper and calcium/magnesium relationship was altered in malignant tissue, where correlations were lower compared to non-malignant tissue. Conclusions The results seems to demonstrate disturbed homeostasis of some essential elements. However, it is hard to confirm their involvement in the aetiology of colorectal cancer. PMID:27110307

  8. Tissue Molecular Anatomy Project (TMAP): an expression database for comparative cancer proteomics.

    PubMed

    Medjahed, Djamel; Luke, Brian T; Tontesh, Tawady S; Smythers, Gary W; Munroe, David J; Lemkin, Peter F

    2003-08-01

    By mining publicly accessible databases, we have developed a collection of tissue-specific predictive protein expression maps as a function of cancer histological state. Data analysis is applied to the differential expression of gene products in pooled libraries from the normal to the altered state(s). We wish to report the initial results of our survey across different tissues and explore the extent to which this comparative approach may help uncover panels of potential biomarkers of tumorigenesis which would warrant further examination in the laboratory.

  9. Apparent diffusion coefficient of breast cancer and normal fibroglandular tissue in diffusion-weighted imaging: the effects of menstrual cycle and menopausal status.

    PubMed

    Kim, Jin You; Suh, Hie Bum; Kang, Hyun Jung; Shin, Jong Ki; Choo, Ki Seok; Nam, Kyung Jin; Lee, Seok Won; Jung, Young Lae; Bae, Young Tae

    2016-05-01

    The purpose of this study was to investigate prospectively whether the apparent diffusion coefficients (ADCs) of both breast cancer and normal fibroglandular tissue vary with the menstrual cycle and menopausal status. Institutional review board approval was obtained, and informed consent was obtained from each participant. Fifty-seven women (29 premenopausal, 28 postmenopausal) with newly diagnosed breast cancer underwent diffusion-weighted imaging twice (interval 12-20 days) before surgery. Two radiologists independently measured ADC of breast cancer and normal contralateral breast tissue, and we quantified the differences according to the phases of menstrual cycle and menopausal status. With normal fibroglandular tissue, ADC was significantly lower in postmenopausal than in premenopausal women (P = 0.035). In premenopausal women, ADC did not differ significantly between proliferative and secretory phases in either breast cancer or normal fibroglandular tissue (P = 0.969 and P = 0.519, respectively). In postmenopausal women, no significant differences were found between ADCs measured at different time intervals in either breast cancer or normal fibroglandular tissue (P = 0.948 and P = 0.961, respectively). The within-subject variability of the ADC measurements was quantified using the coefficient of variation (CV) and was small: the mean CVs of tumor ADC were 2.90 % (premenopausal) and 3.43 % (postmenopausal), and those of fibroglandular tissue ADC were 4.37 % (premenopausal) and 2.55 % (postmenopausal). Both intra- and interobserver agreements were excellent for ADC measurements, with intraclass correlation coefficients in the range of 0.834-0.974. In conclusion, the measured ADCs of breast cancer and normal fibroglandular tissue were not affected significantly by menstrual cycle, and the measurements were highly reproducible both within and between observers.

  10. Distribution of Basement Membrane Molecules, Laminin and Collagen Type IV, in Normal and Degenerated Cartilage Tissues.

    PubMed

    Foldager, Casper Bindzus; Toh, Wei Seong; Gomoll, Andreas H; Olsen, Bjørn Reino; Spector, Myron

    2014-04-01

    The objective of the present study was to investigate the presence and distribution of 2 basement membrane (BM) molecules, laminin and collagen type IV, in healthy and degenerative cartilage tissues. Normal and degenerated tissues were obtained from goats and humans, including articular knee cartilage, the intervertebral disc, and meniscus. Normal tissue was also obtained from patella-tibial enthesis in goats. Immunohistochemical analysis was performed using anti-laminin and anti-collagen type IV antibodies. Human and goat skin were used as positive controls. The percentage of cells displaying the pericellular presence of the protein was graded semiquantitatively. When present, laminin and collagen type IV were exclusively found in the pericellular matrix, and in a discrete layer on the articulating surface of normal articular cartilage. In normal articular (hyaline) cartilage in the human and goat, the proteins were found co-localized pericellularly. In contrast, in human osteoarthritic articular cartilage, collagen type IV but not laminin was found in the pericellular region. Nonpathological fibrocartilaginous tissues from the goat, including the menisci and the enthesis, were also positive for both laminin and collagen type IV pericellularly. In degenerated fibrocartilage, including intervertebral disc, as in degenerated hyaline cartilage only collagen type IV was found pericellularly around chondrocytes but with less intense staining than in non-degenerated tissue. In calcified cartilage, some cells were positive for laminin but not type IV collagen. We report differences in expression of the BM molecules, laminin and collagen type IV, in normal and degenerative cartilaginous tissues from adult humans and goats. In degenerative tissues laminin is depleted from the pericellular matrix before collagen type IV. The findings may inform future studies of the processes underlying cartilage degeneration and the functional roles of these 2 extracellular matrix proteins, normally associated with BM.

  11. Comparative dosimetry of volumetric modulated arc therapy and limited-angle static intensity-modulated radiation therapy for early-stage larynx cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riegel, Adam C.; Antone, Jeffrey; Schwartz, David L., E-mail: dschwartz3@nshs.edu

    2013-04-01

    To compare relative carotid and normal tissue sparing using volumetric-modulated arc therapy (VMAT) or intensity-modulated radiation therapy (IMRT) for early-stage larynx cancer. Seven treatment plans were retrospectively created on 2 commercial treatment planning systems for 11 consecutive patients with T1-2N0 larynx cancer. Conventional plans consisted of opposed-wedged fields. IMRT planning used an anterior 3-field beam arrangement. Two VMAT plans were created, a full 360° arc and an anterior 180° arc. Given planning target volume (PTV) coverage of 95% total volume at 95% of 6300 cGy and maximum spinal cord dose below 2500 cGy, mean carotid artery dose was pushed asmore » low as possible for each plan. Deliverability was assessed by comparing measured and planned planar dose with the gamma (γ) index. Full-arc planning provided the most effective carotid sparing but yielded the highest mean normal tissue dose (where normal tissue was defined as all soft tissue minus PTV). Static IMRT produced next-best carotid sparing with lower normal tissue dose. The anterior half-arc produced the highest carotid artery dose, in some cases comparable with conventional opposed fields. On the whole, carotid sparing was inversely related to normal tissue dose sparing. Mean γ indexes were much less than 1, consistent with accurate delivery of planned treatment. Full-arc VMAT yields greater carotid sparing than half-arc VMAT. Limited-angle IMRT remains a reasonable alternative to full-arc VMAT, given its ability to mediate the competing demands of carotid and normal tissue dose constraints. The respective clinical significance of carotid and normal tissue sparing will require prospective evaluation.« less

  12. Canine treatment with SnET2 for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Frazier, Donita L.; Milligan, Andrew J.; Vo-Dinh, Tuan; Morgan, Alan R.; Overholt, Bergein F.

    1990-07-01

    Photodynamic therapy is a treatment technique that utilizes the photoactived species of a drug to destroy tumor tissue. To be successful, the drug must localize in tumor tissue preferentially over normal tissue and must be activated by light of a specific wavelength. Currently the only drug to be approved for clinical use is Heinatoporphyrin Derivative (HpD) although a series of new drugs are being developed for use in the near future. One of the drugs belongs to a class called purpurins which display absorp-' tions between 630-711 nm. Along with several other investigators, we are currently exploring the characteristics of a specific purpurin (SnET2) in normal and tumorous canine tissue. The use of this compound has demonstrated increased tumor control rates in spontaneous dog tumors. Preliminary pharmacokinetic studies have been performed on 6 normal beagle dogs. SnET2 (2 mg/kg) was injected intravenously over 10 minutes and blood was collected at 5, 15, 30, 45 minutes and at 1, 2, 4, 8, 12 and 24 hours following administration for determination of drug concentration and calculation of pharinacokinetic parameters. Skin biopsies were collected at 1, 4, 8, 12 and 24 hours. Dogs were euthanized at 24 hours and tissues (liver, kidney muscle, esophagus, stomach, duodenum, jejunum, ileura, colon, adrenal gland, thyroid, heart, lung, urinary bladder, prostate, pancreas, eye, brain) were collected for drug raeasurement. Drug was shown to persist in liver and kidney for a prolonged period of time coiapared to other tissues. Knowledge of the pharmacokinetic properties of the drug will greatly add to the ability to treat patients with effective protocols.

  13. Immunohistochemical analysis of S6K1 and S6K2 localization in human breast tumors.

    PubMed

    Filonenko, Valeriy V; Tytarenko, Ruslana; Azatjan, Sergey K; Savinska, Lilya O; Gaydar, Yuriy A; Gout, Ivan T; Usenko, Vasiliy S; Lyzogubov, Valeriy V

    2004-12-01

    To perform an immunohistochemical analysis of human breast adenomas and adenocarcinomas as well as normal breast tissues in respect of S6 ribosomal protein kinase (S6K) expression and localization in normal and transformed cells. The expression level and localization of S6K have been detected in formalin fixed, paraffin embedded sections of normal human breast tissues, adenomas and adenocarcinomas with different grade of differentiation. Immunohistochemical detection of S6K1 and S6K2 in normal human breast tissues and breast tumors were performed using specific monoclonal and polyclonal antibodies against S6K1 and S6K2 with following semiquantitative analysis. The increase of S6K content in the cytoplasm of epithelial cells in benign and malignant tumors has been detected. Nuclear accumulation of S6K1 and to a greater extend S6K2 have been found in breast adenocarcinomas. About 80% of breast adenocarcinomas cases revealed S6K2 nuclear staining comparing to normal tissues. In 31% of cases more then 50% of cancer cells had strong nuclear staining. Accumulation of S6K1 in the nucleus of neoplastic cells has been demonstrated in 25% of cases. Nuclear localization of S6K in the epithelial cells in normal breast tissues has not been detected. Immunohistochemical analysis of S6K1 and S6K2 expression in normal human breast tissues, benign and malignant breast tumors clearly indicates that both kinases are overexpressed in breast tumors. Semiquantitative analysis of peculiarities of S6K localization in normal tissues and tumors revealed that nucleoplasmic accumulation of S6K (especially S6K2) is a distinguishing feature of cancer cells.

  14. Pancreatic cancer patient survival correlates with DNA methylation of pancreas development genes.

    PubMed

    Thompson, Michael J; Rubbi, Liudmilla; Dawson, David W; Donahue, Timothy R; Pellegrini, Matteo

    2015-01-01

    DNA methylation is an epigenetic mark associated with regulation of transcription and genome structure. These markers have been investigated in a variety of cancer settings for their utility in differentiating normal tissue from tumor tissue. Here, we examine the direct correlation between DNA methylation and patient survival. We find that changes in the DNA methylation of key pancreatic developmental genes are strongly associated with patient survival.

  15. Acoustic microscopy analyses to determine good vs. failed tissue engineered oral mucosa under normal or thermally stressed culture conditions.

    PubMed

    Winterroth, Frank; Lee, Junho; Kuo, Shiuhyang; Fowlkes, J Brian; Feinberg, Stephen E; Hollister, Scott J; Hollman, Kyle W

    2011-01-01

    This study uses scanning acoustic microscopy (SAM) ultrasonic profilometry to determine acceptable vs. failed tissue engineered oral mucosa. Specifically, ex vivo-produced oral mucosal equivalents (EVPOMEs) under normal or thermally stressed culture conditions were scanned with the SAM operator blinded to the culture conditions. As seeded cells proliferate, they fill in and smooth out the surface irregularities; they then stratify and produce a keratinized protective upper layer. Some of these transformations could alter backscatter of ultrasonic signals and in the case of the thermally stressed cells, produce backscatter similar to an unseeded device. If non-invasive ultrasonic monitoring could be developed, then tissue cultivation could be adjusted to measure biological variations in the stratified surface. To create an EVPOME device, oral mucosa keratinocytes were seeded onto acellular cadaveric dermis. Two sets of EVPOMEs were cultured: one at physiological temperature 37 °C and the other at 43 °C. The specimens were imaged with SAM consisting of a single-element transducer: 61 MHz center frequency, 32 MHz bandwidth, 1.52 f#. Profilometry for the stressed and unseeded specimens showed higher surface irregularities compared to unstressed specimens. Elevated thermal stress retards cellular differentiation, increasing root mean square values; these results show that SAM can potentially monitor cell/tissue development.

  16. Characteristic profiles of DNA epigenetic modifications in colon cancer and its predisposing conditions-benign adenomas and inflammatory bowel disease.

    PubMed

    Dziaman, Tomasz; Gackowski, Daniel; Guz, Jolanta; Linowiecka, Kinga; Bodnar, Magdalena; Starczak, Marta; Zarakowska, Ewelina; Modrzejewska, Martyna; Szpila, Anna; Szpotan, Justyna; Gawronski, Maciej; Labejszo, Anna; Liebert, Ariel; Banaszkiewicz, Zbigniew; Klopocka, Maria; Foksinski, Marek; Marszalek, Andrzej; Olinski, Ryszard

    2018-01-01

    Active demethylation of 5-methyl-2'-deoxycytidine (5-mdC) in DNA occurs by oxidation to 5-(hydroxymethyl)-2'-deoxycytidine (5-hmdC) and further oxidation to 5-formyl-2'-deoxycytidine (5-fdC) and 5-carboxy-2'-deoxycytidine (5-cadC), and is carried out by enzymes of the ten-eleven translocation family (TETs 1, 2, 3). Decreased level of epigenetic DNA modifications in cancer tissue may be a consequence of reduced activity/expression of TET proteins. To determine the role of epigenetic DNA modifications in colon cancer development, we analyzed their levels in normal colon and various colonic pathologies. Moreover, we determined the expressions of TETs at mRNA and protein level.The study included material from patients with inflammatory bowel disease (IBD), benign polyps (AD), and colorectal cancer (CRC). The levels of epigenetic DNA modifications and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in examined tissues were determined by means of isotope-dilution automated online two-dimensional ultraperformance liquid chromatography with tandem mass spectrometry (2D-UPLC-MS/MS). The expressions of TET mRNA were measured with RT-qPCR, and the expressions of TET proteins were determined immunohistochemically. IBD was characterized by the highest level of 8-oxodG among all analyzed tissues, as well as by a decrease in 5-hmdC and 5-mdC levels (at a midrange between normal colon and CRC). AD had the lowest levels of 5-hmdC and 5-mdC of all examined tissues and showed an increase in 8-oxodG and 5-(hydroxymethyl)-2'-deoxyuridine (5-hmdU) levels. CRC was characterized by lower levels of 5-hmdC and 5-mdC, the lowest level of 5-fdC among all analyzed tissues, and relatively high content of 5-cadC. The expression of TET1 mRNA in CRC and AD was significantly weaker than in IBD and normal colon. Furthermore, CRC and AD showed significantly lower levels of TET2 and AID mRNA than normal colonic tissue. Our findings suggest that a complex relationship between aberrant pattern of DNA epigenetic modification and cancer development does not depend solely on the transcriptional status of TET proteins, but also on the characteristics of premalignant/malignant cells. This study showed for the first time that the examined colonic pathologies had their unique epigenetic marks, distinguishing them from each other, as well as from normal colonic tissue. A decrease in 5-fdC level may be a characteristic feature of largely undifferentiated cancer cells.

  17. Mammary stem cell and macrophage markers are enriched in normal tissue adjacent to inflammatory breast cancer.

    PubMed

    Reddy, Jay P; Atkinson, Rachel L; Larson, Richard; Burks, Jared K; Smith, Daniel; Debeb, Bisrat G; Ruffell, Brian; Creighton, Chad J; Bambhroliya, Arvind; Reuben, James M; Van Laere, Steven J; Krishnamurthy, Savitri; Symmans, William F; Brewster, Abenaa M; Woodward, Wendy A

    2018-06-01

    We hypothesized that breast tissue not involved by tumor in inflammatory breast cancer (IBC) patients contains intrinsic differences, including increased mammary stem cells and macrophage infiltration, which may promote the IBC phenotype. Normal breast parenchyma ≥ 5 cm away from primary tumors was obtained from mastectomy specimens. This included an initial cohort of 8 IBC patients and 60 non-IBC patients followed by a validation cohort of 19 IBC patients and 25 non-IBC patients. Samples were immunostained for either CD44 + CD49f + CD133/2 + mammary stem cell markers or the CD68 macrophage marker and correlated with IBC status. Quantitation of positive cells was determined using inForm software from PerkinElmer. We also examined the association between IBC status and previously published tumorigenic stem cell and IBC tumor signatures in the validation cohort samples. 8 of 8 IBC samples expressed isolated CD44 + CD49f + CD133/2 + stem cell marked cells in the initial cohort as opposed to 0/60 non-IBC samples (p = 0.001). Similarly, the median number of CD44 + CD49f + CD133/2 + cells was significantly higher in the IBC validation cohort as opposed to the non-IBC validation cohort (25.7 vs. 14.2, p = 0.007). 7 of 8 IBC samples expressed CD68 + histologically confirmed macrophages in initial cohort as opposed to 12/48 non-IBC samples (p = 0.001). In the validation cohort, the median number of CD68 + cells in IBC was 3.7 versus 1.0 in the non-IBC cohort (p = 0.06). IBC normal tissue was positively associated with a tumorigenic stem cell signature (p = 0.02) and with a 79-gene IBC signature (p < 0.001). Normal tissue from IBC patients is enriched for both mammary stem cells and macrophages and has higher association with both a tumorigenic stem cell signature and IBC-specific tumor signature. Collectively, these data suggest that IBC normal tissue differs from non-IBC tissue. Whether these changes occur before the tumor develops or is induced by tumor warrants further investigation.

  18. Selection of suitable soybean EF1α genes as internal controls for real-time PCR analyses of tissues during plant development and under stress conditions.

    PubMed

    Saraiva, Kátia D C; Fernandes de Melo, Dirce; Morais, Vanessa D; Vasconcelos, Ilka M; Costa, José H

    2014-09-01

    The EF1α genes were stable in the large majority of soybean tissues during development and in specific tissues/conditions under stress. Quantitative real-time PCR (qPCR) analysis strongly depends on transcript normalization using stable reference genes. Reference genes are generally encoded by multigene families and are used in qPCR normalization; however, little effort has been made to verify the stability of different gene members within a family. Here, the expression stability of members of the soybean EF1α gene family (named EF1α 1a1, 1a2, 1b, 2a, 2b and 3) was evaluated in different tissues during plant development and stress exposure (SA and PEG). Four genes (UKN1, SKIP 16, EF1β and MTP) already established as stably expressed were also used in the comparative analysis. GeNorm analyses revealed different combinations of reference genes as stable in soybean tissues during development. The EF1α genes were the most stable in cotyledons (EF1α 3 and EF1α 1b), epicotyls (EF1α 1a2, EF1α 2b and EF1α 1a1), hypocotyls (EF1α 1a1 and EF1β), pods (EF1α 2a and EF1α 2b) and roots (EF1α 2a and UKN1) and less stable in tissues such as trifoliate and unifoliate leaves and germinating seeds. Under stress conditions, no suitable combination including only EF1α genes was found; however, some genes were relatively stable in leaves (EF1α 1a2) and roots (EF1α 1a1) treated with SA as well as in roots treated with PEG (EF1α 2b). EF1α 2a was the most stably expressed EF1α gene in all soybean tissues under stress. Taken together, our data provide guidelines for the selection of EF1α genes for use as reference genes in qPCR expression analyses during plant development and under stress conditions.

  19. Relationship Between Speed of Sound in and Density of Normal and Diseased Rat Livers

    NASA Astrophysics Data System (ADS)

    Hachiya, Hiroyuki; Ohtsuki, Shigeo; Tanaka, Motonao

    1994-05-01

    Speed of sound is an important acoustic parameter for quantitative characterization of living tissues. In this paper, the relationship between speed of sound in and density of rat liver tissues are investigated. The speed of sound was measured by the nondeformable technique based on frequency-time analysis of a 3.5 MHz pulse response. The speed of sound in normal livers varied minimally between individuals and was not related to body weight or age. In liver tissues which were administered CCl4, the speed of sound was lower than the speed of sound in normal tissues. The relationship between speed of sound and density in normal, fatty and cirrhotic livers can be fitted well on the line which is estimated using the immiscible liquid model assuming a mixture of normal liver and fat tissues. For 3.5 MHz ultrasound, it is considered that the speed of sound in fresh liver with fatty degeneration is responsible for the fat content and is not strongly dependent on the degree of fibrosis.

  20. Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue.

    PubMed

    Cooper, Colin S; Eeles, Rosalind; Wedge, David C; Van Loo, Peter; Gundem, Gunes; Alexandrov, Ludmil B; Kremeyer, Barbara; Butler, Adam; Lynch, Andrew G; Camacho, Niedzica; Massie, Charlie E; Kay, Jonathan; Luxton, Hayley J; Edwards, Sandra; Kote-Jarai, ZSofia; Dennis, Nening; Merson, Sue; Leongamornlert, Daniel; Zamora, Jorge; Corbishley, Cathy; Thomas, Sarah; Nik-Zainal, Serena; O'Meara, Sarah; Matthews, Lucy; Clark, Jeremy; Hurst, Rachel; Mithen, Richard; Bristow, Robert G; Boutros, Paul C; Fraser, Michael; Cooke, Susanna; Raine, Keiran; Jones, David; Menzies, Andrew; Stebbings, Lucy; Hinton, Jon; Teague, Jon; McLaren, Stuart; Mudie, Laura; Hardy, Claire; Anderson, Elizabeth; Joseph, Olivia; Goody, Victoria; Robinson, Ben; Maddison, Mark; Gamble, Stephen; Greenman, Christopher; Berney, Dan; Hazell, Steven; Livni, Naomi; Fisher, Cyril; Ogden, Christopher; Kumar, Pardeep; Thompson, Alan; Woodhouse, Christopher; Nicol, David; Mayer, Erik; Dudderidge, Tim; Shah, Nimish C; Gnanapragasam, Vincent; Voet, Thierry; Campbell, Peter; Futreal, Andrew; Easton, Douglas; Warren, Anne Y; Foster, Christopher S; Stratton, Michael R; Whitaker, Hayley C; McDermott, Ultan; Brewer, Daniel S; Neal, David E

    2015-04-01

    Genome-wide DNA sequencing was used to decrypt the phylogeny of multiple samples from distinct areas of cancer and morphologically normal tissue taken from the prostates of three men. Mutations were present at high levels in morphologically normal tissue distant from the cancer, reflecting clonal expansions, and the underlying mutational processes at work in morphologically normal tissue were also at work in cancer. Our observations demonstrate the existence of ongoing abnormal mutational processes, consistent with field effects, underlying carcinogenesis. This mechanism gives rise to extensive branching evolution and cancer clone mixing, as exemplified by the coexistence of multiple cancer lineages harboring distinct ERG fusions within a single cancer nodule. Subsets of mutations were shared either by morphologically normal and malignant tissues or between different ERG lineages, indicating earlier or separate clonal cell expansions. Our observations inform on the origin of multifocal disease and have implications for prostate cancer therapy in individual cases.

  1. Grading of cervical intraepithelial neoplasia using spatial frequency for optical histology

    NASA Astrophysics Data System (ADS)

    Pu, Yang; Jagtap, Jaidip; Pradhan, Asima; Alfano, Robert R.

    2014-03-01

    It is important to detect cervical dysplasia, Cervical Intraepithelial Neoplasia (CIN). CIN is the potentially premalignant and abnormal squamous cells on surface of cervix. In this study, the spatial frequency spectra of pre-cancer cervical tissues are used to detect differences among different grades of human cervical tissues. Seven sets of thick tissue sections of human cervix of normal, CIN 1, CIN 2, and CIN 3 tissues are studied. The confocal microscope images of the stromal region of normal and CIN human tissues were analyzed using Fast Fourier Transform (FFT) to generate the spatial spectra. It is observed that higher frequency components exist in CIN tissues than those in normal tissue, as well as those in higher grade CIN tissue than those in lower grade CIN tissue. The width of the spatial frequency of different types of tissues is used to create a criterion for CIN grading by training a support vector machine (SVM) classifier. The results show that the randomness of tissue structures from normal to different stages of precancer in cervical tissue can be recognized by fingerprints of the spatial frequency. The efficacy of spatial frequency analysis for CIN grading is evaluated as excellent since high AUC (area under the ROC curve), sensitivity and specificity are obtained by the statistics study. This works lays the foundation of using spatial frequency spectra for a histology evaluation.

  2. Evaluation of a fluorescence feedback system for guidance of laser angioplasty.

    PubMed

    Deckelbaum, L I; Desai, S P; Kim, C; Scott, J J

    1995-01-01

    Laser-induced fluorescence spectroscopy (LIFS) may be capable of guiding laser angioplasty by discriminating normal and atherosclerotic artery and by determining catheter-tissue environment. Previous optical multichannel analyzer based LIFS systems have been expensive and cumbersome. To simplify LIFS, a system based on photomultiplier tubes was developed and evaluated. Tissue fluorescence was induced by a helium cadmium laser (wavelength = 325 nm, power = 0.2-0.5 mW), collected by clinical multifiber laser angioplasty catheters and directed through one of two filters (10 nm bandpass, 380 nm or 440 nm peak transmission) to a photomultiplier tube. An LIFS ratio was defined as the relative intensity at 380:440 nm after calibration with an elastin fluorescence spectrum; 157 coronary artery cadaveric specimens were evaluated spectroscopically and histologically. To evaluate the utility of LIFS to optimize catheter position by determining catheter-tissue contact, by determining saline dilution of blood, and by orienting eccentric multifiber catheters a new variable, the total fluorescence intensity (TFI) was defined as the sum of arterial fluorescence intensities at 380 nm and 440 nm. TFI was recorded in vitro through multifiber catheters from 20 arterial specimens in vitro in blood and evaluated as a function of the catheter-to-tissue distance (d) over a range from 0 to 400 mu. Defining normal specimens as those with an intimal thickness < or = 200 mu, and atherosclerotic as those with an intimal thickness > 200 mu, 47/50 (94%) normal and 85/107 (79%) atherosclerotic specimens were correctly classified using a threshold LIFS ratio of 2.0. Mean (+/- SE) normal ratio was 1.76 +/- 0.02 and mean atherosclerotic ratio was 2.78 +/- 0.08 (P < or = 0.01). The classification accuracy of atherosclerotic specimens increased with intimal thickness so that 95% of atherosclerotic specimens (69/73) with intimal thickness > or = 400 mu were correctly classified. TFI was capable of determining catheter-tissue contact as maximal TFI was recorded with the catheter in contact with the tissue (d = 0 mu) and decreased markedly with distance (to 52 +/- 6% at d = 100 mu, 19 +/- 4% at d = 200 mu, and 3 +/- 1% at d = 300 mu). TFI was recorded from ten arterial specimens in blood/saline mixtures ranging in hematocrit from 0% (saline) to 50% (whole blood). TFI was capable of detecting saline hemodilution of blood as TFI decreased markedly at higher hematocrits such that TFI could only by recorded at hematocrits < 10% for catheter-to-tissue distances > or = 300 mu. TFI was recorded through ecentric multifiber catheters from 25 arterial specimens and eval-uated as a function of the degree of catheter-tissue overlap. TFI was capable of detecting maximal catheter-tissue overlap as TFI correlated linearly with the area (A) of overlap (TFI = 1.12 A + .07, r = 0.92). By discriminating atherosclerotic from normal tissue and by confirming catheter-tissue contact and saline hemodilution, fluorescence feedback should minimize irradiation of normal tissue and/or blood and enhance the safety and efficacy of laser angioplasty.

  3. Polarimetric signature imaging of anisotropic bio-medical tissues

    NASA Astrophysics Data System (ADS)

    Wu, Stewart H.; Yang, De-Ming; Chiou, Arthur; Nee, Soe-Mie F.; Nee, Tsu-Wei

    2010-02-01

    Polarimetric imaging of Stokes vector (I, Q, U, V) can provide 4 independent signatures showing the linear and circular polarizations of biological tissues and cells. Using a recently developed Stokes digital imaging system, we measured the Stokes vector images of tissue samples from sections of rat livers containing normal portions and hematomas. The derived Mueller matrix elements can quantitatively provide multi-signature data of the bio-sample. This polarimetric optical technology is a new option of biosensing technology to inspect the structures of tissue samples, particularly for discriminating tumor and non-tumor biopsy. This technology is useful for critical disease discrimination and medical diagnostics applications.

  4. Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Wenjuan; Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, California 92697; Li, Rui

    2014-03-24

    We designed and developed a confocal acoustic radiation force optical coherence elastography system. A ring ultrasound transducer was used to achieve reflection mode excitation and generate an oscillating acoustic radiation force in order to generate displacements within the tissue, which were detected using the phase-resolved optical coherence elastography method. Both phantom and human tissue tests indicate that this system is able to sense the stiffness difference of samples and quantitatively map the elastic property of materials. Our confocal setup promises a great potential for point by point elastic imaging in vivo and differentiation of diseased tissues from normal tissue.

  5. Accuracy of Raman spectroscopy in differentiating brain tumor from normal brain tissue.

    PubMed

    Zhang, Jing; Fan, Yimeng; He, Min; Ma, Xuelei; Song, Yanlin; Liu, Ming; Xu, Jianguo

    2017-05-30

    Raman spectroscopy could be applied to distinguish tumor from normal tissues. This meta-analysis was conducted to assess the accuracy of Raman spectroscopy in differentiating brain tumor from normal brain tissue. PubMed and Embase were searched to identify suitable studies prior to Jan 1st, 2016. We estimated the pooled sensitivity, specificity, positive and negative likelihood ratios (LR), diagnostic odds ratio (DOR), and constructed summary receiver operating characteristics (SROC) curves to identity the accuracy of Raman spectroscopy in differentiating brain tumor from normal brain tissue. A total of six studies with 1951 spectra were included. For glioma, the pooled sensitivity and specificity of Raman spectroscopy were 0.96 (95% CI 0.94-0.97) and 0.99 (95% CI 0.98-0.99), respectively. The area under the curve (AUC) was 0.9831. For meningioma, the pooled sensitivity and specificity were 0.98 (95% CI 0.94-1.00) and 1.00 (95% CI 0.98-1.00), respectively. The AUC was 0.9955. This meta-analysis suggested that Raman spectroscopy could be an effective and accurate tool for differentiating glioma and meningioma from normal brain tissue, which would help us both avoid removal of normal tissue and minimize the volume of residual tumor.

  6. Monitoring of permeability of different analytes in human normal and cancerous bladder tissues in vitro using optical coherence tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bingsong Lei; Xiaoyuan Deng; Huajiang Wei

    2014-12-31

    We report our preliminary results on quantification of glucose and dimethyl sulfoxide (DMSO) diffusion in normal and cancerous human bladder tissues in vitro by using a spectral domain optical coherence tomography (SD-OCT). The permeability coefficients (PCs) of a 30% aqueous solution of glucose are found to be (7.92 ± 0.81) × 10{sup -6} cm s{sup -1} and (1.19 ± 0.13) × 10{sup -5} cm s{sup -1} in normal and cancerous bladder tissues, respectively. The PCs of 50% DMSO are calculated to be (8.99 ± 0.93) × 10{sup -6} cm s{sup -1} and (1.43 ± 0.17) × 10{sup -5} cm s{supmore » -1} in normal and cancerous bladder tissues, respectively. The obtained results show a statistically significant difference in permeability of normal and cancerous tissue and indicate that the PC of 50% DMSO is about 1.13-and 1.21-fold higher than that of 30% glucose in normal bladder and cancerous bladder tissues, respectively. Thus, the quantitative measurements with the help of PCs from OCT images can be a potentially powerful method for bladder cancer detection. (optical coherence tomography)« less

  7. Engineering epithelial-stromal interactions in vitro for toxicology assessment

    EPA Science Inventory

    Background: Crosstalk between epithelial and stromal cells drives the morphogenesis of ectodermal organs during development and promotes normal mature adult epithelial tissue function. Epithelial-mesenchymal interactions (EMIs) have been examined using mammalian models, ex vivo t...

  8. A Comparison of Raman Spectral Features of Frozen and Deparaffinized Tissues in Neuroblastoma and Ganglioneuroma

    NASA Astrophysics Data System (ADS)

    Devpura, Suneetha; Thakur, Jagdish S.; Poulik, Janet M.; Rabah, Raja; Naik, Vaman M.; Naik, Ratna

    2012-02-01

    We have investigated the cellular regions in neuroblastoma and ganglioneuroma using Raman spectroscopy and compared their spectral characteristics with those of normal adrenal gland. Thin sections from both frozen and deparaffinized tissues, obtained from the same tissue specimen, were studied in conjunction with the pathological examination of the tissues. We found a significant difference in the spectral features of frozen sections of normal adrenal gland, neuroblastoma, and ganglioneuroma when compared to deparaffinized tissues. The quantitative analysis of the Raman data using chemometric methods of principal component analysis and discriminant function analysis obtained from the frozen tissues show a sensitivity and specificity of 100% each. The biochemical identification based on the spectral differences shows that the normal adrenal gland tissues have higher levels of carotenoids, lipids, and cholesterol compared to the neuroblastoma and ganglioneuroma frozen tissues. However, deparaffinized tissues show complete removal of these biochemicals in adrenal tissues. This study demonstrates that Raman spectroscopy combined with chemometric methods can successfully distinguish neuroblastoma and ganglioneuroma at cellular level.

  9. A Dosimetric Comparison of Proton and Intensity-Modulated Photon Radiotherapy for Pediatric Parameningeal Rhabdomyosarcomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozak, Kevin R.; Adams, Judith; Krejcarek, Stephanie J.

    Purpose: We compared tumor and normal tissue dosimetry of proton radiation therapy with intensity-modulated radiation therapy (IMRT) for pediatric parameningeal rhabdomyosarcomas (PRMS). Methods and Materials: To quantify dosimetric differences between contemporary proton and photon treatment for pediatric PRMS, proton beam plans were compared with IMRT plans. Ten patients treated with proton radiation therapy at Massachusetts General Hospital had IMRT plans generated. To facilitate dosimetric comparisons, clinical target volumes and normal tissue volumes were held constant. Plans were optimized for target volume coverage and normal tissue sparing. Results: Proton and IMRT plans provided acceptable and comparable target volume coverage, with atmore » least 99% of the CTV receiving 95% of the prescribed dose in all cases. Improved dose conformality provided by proton therapy resulted in significant sparing of all examined normal tissues except for ipsilateral cochlea and mastoid; ipsilateral parotid gland sparing was of borderline statistical significance (p = 0.05). More profound sparing of contralateral structures by protons resulted in greater dose asymmetry between ipsilateral and contralateral retina, optic nerves, cochlea, and mastoids; dose asymmetry between ipsilateral and contralateral parotids was of borderline statistical significance (p = 0.05). Conclusions: For pediatric PRMS, superior normal tissue sparing is achieved with proton radiation therapy compared with IMRT. Because of enhanced conformality, proton plans also demonstrate greater normal tissue dose distribution asymmetry. Longitudinal studies assessing the impact of proton radiotherapy and IMRT on normal tissue function and growth symmetry are necessary to define the clinical consequences of these differences.« less

  10. LINE1 and Alu repetitive element DNA methylation in tumors and white blood cells from epithelial ovarian cancer patients.

    PubMed

    Akers, Stacey N; Moysich, Kirsten; Zhang, Wa; Collamat Lai, Golda; Miller, Austin; Lele, Shashikant; Odunsi, Kunle; Karpf, Adam R

    2014-02-01

    We determined whether DNA methylation of repetitive elements (RE) is altered in epithelial ovarian cancer (EOC) patient tumors and white blood cells (WBC), compared to normal tissue controls. Two different quantitative measures of RE methylation (LINE1 and Alu bisulfite pyrosequencing) were used in normal and tumor tissues from EOC cases and controls. Tissues analyzed included: i) EOC, ii) normal ovarian surface epithelia (OSE), iii) normal fallopian tube surface epithelia (FTE), iv) WBC from EOC patients, obtained before and after treatment, and v) WBC from demographically-matched controls. REs were significantly hypomethylated in EOC compared to OSE and FTE, and LINE1 and Alu methylation showed a significant direct association in these tissues. In contrast, WBC RE methylation was significantly higher in EOC cases compared to controls. RE methylation in patient-matched EOC tumors and pre-treatment WBC did not correlate. EOC shows robust RE hypomethylation compared to normal tissues from which the disease arises. In contrast, RE are generally hypermethylated in EOC patient WBC compared to controls. EOC tumor and WBC methylation did not correlate in matched patients, suggesting that RE methylation is independently controlled in tumor and normal tissues. Despite the significant differences observed over the population, the range of RE methylation in patient and control WBC overlapped, limiting their specific utility as an EOC biomarker. However, our data demonstrate that DNA methylation is deranged in normal tissues from EOC patients, supporting further investigation of WBC DNA methylation biomarkers suitable for EOC risk assessment. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Spatial differences of cellular origins and in vivo hypoxia modify contractile properties of pulmonary artery smooth muscle cells: lessons for arterial tissue engineering.

    PubMed

    Hall, S M; Soueid, A; Smith, T; Brown, R A; Haworth, S G; Mudera, V

    2007-01-01

    Tissue engineering of functional arteries is challenging. Within the pulmonary artery wall, smooth muscle cells (PASMCs) have site-specific developmental and functional phenotypes, reflecting differing contractile roles. The force generated by PASMCs isolated from the inner 25% and outer 50% of the media of intrapulmonary elastic arteries from five normal and eight chronically hypoxic (hypertensive) 14 day-old piglets was quantified in a three-dimensional (3D) collagen construct, using a culture force monitor. Outer medial PASMCs from normal piglets exerted more force (528 +/- 50 dynes) than those of hypoxic piglets (177 +/- 42 dynes; p < 0.01). Force generation by inner medial PASMCs from normal and hypoxic piglets was similar (349 +/- 35 and 239 +/- 60 dynes). In response to agonist (thromboxane) stimulation, all PASMCs from normal and hypoxic piglets contracted, but the increase in force generated by outer and inner hypoxic PASMCs (ranges 13-72 and 14-56 dynes) was less than by normal PASMCs (ranges 27-154 and 34-159 dynes, respectively; p < 0.05 for both). All hypoxic PASMCs were unresponsive to antagonist (sodium nitroprusside) stimulation, all normal PASMCs relaxed (range - 87 to - 494 dynes). Myosin heavy chain expression by both hypoxic PASMC phenotypes was less than normal (p < 0.05 for both), as was the activity of focal adhesion kinase, regulating contraction, in hypoxic inner PASMCs (p < 0.01). Chronic hypoxia resulted in the development of abnormal PASMC phenotypes, which in collagen constructs exhibited a reduction in contractile force and reactivity to agonists. Characterization of the mechanical response of spatially distinct cells and modification of their behaviour by hypoxia is critical for successful tissue engineering of major blood vessels.

  12. Comprehensive analysis of a microRNA expression profile in pediatric medulloblastoma.

    PubMed

    Dai, Junqiang; Li, Qiao; Bing, Zhitong; Zhang, Yinian; Niu, Liang; Yin, Hang; Yuan, Guoqiang; Pan, Yawen

    2017-06-01

    Medulloblastoma is the most common malignant brain tumor of the central nervous system among children. Medulloblastoma is an embryonal tumor, of which little is known about the pathogenesis. Several efforts have been made to understand the molecular aspects of its tumorigenic pathways; however, these are poorly understood. microRNA (miRNA), a type of non‑coding short RNA, has been proven to be associated with a number of physiological processes and pathological processes of serious diseases, including brain tumors. Differentially expressed miRNAs serve an important role in numerous types of malignancy. The present study aims to define a differentially expressed set of miRNAs in medulloblastoma tumor tissue, compared with normal samples, to improve the understanding of the tumorigenesis. It was identified that 22 miRNAs were upregulated and 26 miRNAs were downregulated in the tumor tissue compared with the normal group. However, when the medulloblastoma tissue was compared with normal cerebellum tissue, 9 miRNAs were identified to be up or downregulated in the tumor samples. The differentially expressed miRNAs in the tumor tissue were identified in order to clarify the networks and pathways of tumorigenesis using Ingenuity Pathway Analysis. Subsequently, key regulatory genes associated with the development of medulloblastoma were identified, including tumor protein p53, insulin like growth factor 1 receptor, argonaute 2, mitogen‑activated protein kinases 1 and 3, sirtuin 1 and Y box binding protein 1.

  13. Tendon Tissue Engineering: Progress, Challenges, and Translation to the Clinic

    PubMed Central

    Shearn, Jason T.; Kinneberg, Kirsten R.C.; Dyment, Nathaniel A.; Galloway, Marc T.; Kenter, Keith; Wylie, Christopher; Butler, David L.

    2013-01-01

    The tissue engineering field has made great strides in understanding how different aspects of tissue engineered constructs (TECs) and the culture process affect final tendon repair. However, there remain significant challenges in developing strategies that will lead to a clinically effective and commercially successful product. In an effort to increase repair quality, a better understanding of normal development, and how it differs from adult tendon healing, may provide strategies to improve tissue engineering. As tendon tissue engineering continues to improve, the field needs to employ more clinically relevant models of tendon injury such as degenerative tendons. We need to translate successes to larger animal models to begin exploring the clinical implications of our treatments. By advancing the models used to validate our TECs, we can help convince our toughest customer, the surgeon, that our products will be clinically efficacious. As we address these challenges in musculoskeletal tissue engineering, the field still needs to address the commercialization of products developed in the laboratory. TEC commercialization faces numerous challenges because each injury and patient is unique. This review aims to provide tissue engineers with a summary of important issues related to engineering tendon repairs and potential strategies for producing clinically successful products. PMID:21625053

  14. Distinct expression patterns of the E3 ligase SIAH-1 and its partner Kid/KIF22 in normal tissues and in the breast tumoral processes.

    PubMed

    Bruzzoni-Giovanelli, Heriberto; Fernandez, Plinio; Veiga, Lucía; Podgorniak, Marie-Pierre; Powell, Darren J; Candeias, Marco M; Mourah, Samia; Calvo, Fabien; Marín, Mónica

    2010-02-09

    SIAH proteins are the human members of an highly conserved family of E3 ubiquitin ligases. Several data suggest that SIAH proteins may have a role in tumor suppression and apoptosis. Previously, we reported that SIAH-1 induces the degradation of Kid (KIF22), a chromokinesin protein implicated in the normal progression of mitosis and meiosis, by the ubiquitin proteasome pathway. In human breast cancer cells stably transfected with SIAH-1, Kid/KIF22 protein level was markedly reduced whereas, the Kid/KIF22 mRNA level was increased. This interaction has been further elucidated through analyzing SIAH and Kid/KIF22 expression in both paired normal and tumor tissues and cell lines. It was observed that SIAH-1 protein is widely expressed in different normal tissues, and in cells lines but showing some differences in western blotting profiles. Immunofluorescence microscopy shows that the intracellular distribution of SIAH-1 and Kid/KIF22 appears to be modified in human tumor tissues compared to normal controls. When mRNA expression of SIAH-1 and Kid/KIF22 was analyzed by real-time PCR in normal and cancer breast tissues from the same patient, a large variation in the number of mRNA copies was detected between the different samples. In most cases, SIAH-1 mRNA is decreased in tumor tissues compared to their normal counterparts. Interestingly, in all breast tumor tissues analyzed, variations in the Kid/KIF22 mRNA levels mirrored those seen with SIAH-1 mRNAs. This concerted variation of SIAH-1 and Kid/KIF22 messengers suggests the existence of an additional level of control than the previously described protein-protein interaction and protein stability regulation. Our observations also underline the need to re-evaluate the results of gene expression obtained by qRT-PCR and relate it to the protein expression and cellular localization when matched normal and tumoral tissues are analyzed.

  15. [Development of computer aided forming techniques in manufacturing scaffolds for bone tissue engineering].

    PubMed

    Wei, Xuelei; Dong, Fuhui

    2011-12-01

    To review recent advance in the research and application of computer aided forming techniques for constructing bone tissue engineering scaffolds. The literature concerning computer aided forming techniques for constructing bone tissue engineering scaffolds in recent years was reviewed extensively and summarized. Several studies over last decade have focused on computer aided forming techniques for bone scaffold construction using various scaffold materials, which is based on computer aided design (CAD) and bone scaffold rapid prototyping (RP). CAD include medical CAD, STL, and reverse design. Reverse design can fully simulate normal bone tissue and could be very useful for the CAD. RP techniques include fused deposition modeling, three dimensional printing, selected laser sintering, three dimensional bioplotting, and low-temperature deposition manufacturing. These techniques provide a new way to construct bone tissue engineering scaffolds with complex internal structures. With rapid development of molding and forming techniques, computer aided forming techniques are expected to provide ideal bone tissue engineering scaffolds.

  16. Towards noninvasive method for the detection of pathological tissue variations by mapping different blood parameters

    NASA Astrophysics Data System (ADS)

    Abdallah, Omar; Qananwah, Qasem; Abo Alam, Kawther; Bolz, Armin

    2010-04-01

    This paper describes the development of an early detection method for probing pathological tissue variations. The method could be used for classifying various tissue alteration namely tumors tissue or skin disorders. The used approach is based on light scattering and absorption spectroscopy. Spectral content of the scattered light provides diagnostic information about the tissue contents. The importance of this method is using a safe light that has less power than the used in the imaging methods that will enable the frequent examination of tissue, while the exiting modalities have drawbacks like ionization, high cost, time-consuming, and agents' usage. A modality for mapping the oxygen saturation distribution in tissues noninvasively is new in this area of research, since this study focuses on the oxygen molecule in the tissue which supposed to be homogenously distributed through the tissues. Cancers may cause greater vascularization and greater oxygen consumption than in normal tissue. Therefore, oxygen existence and homogeneity will be alternated depending on the tissue state. In the proposed system, the signal was extracted after illuminating the tissue by light emitting diodes (LED's) that emits light in two wavelengths, red (660 nm) and infrared (880 nm). The absorption in these wavelengths is mainly due to oxyhemoglobin (HbO2) and deoxyhemoglobin (Hb) while other blood and tissue contents nearly have low effect on the signal. The backscattered signal which is received by a photodiodes array (128 PDs) was measured and processed using LabVIEW. Photoplethysmogram (PPG) signals have been measured at different locations. These signals will be used to differentiate between the normal and the pathological tissues. Variations in hemoglobin concentration and blood perfusion will also be used as an important indication feature for this purpose.

  17. A specific, nonproliferative role for E2F-5 in choroid plexus function revealed by gene targeting

    PubMed Central

    Lindeman, Geoffrey J.; Dagnino, Lina; Gaubatz, Stefan; Xu, Yuhui; Bronson, Roderick T.; Warren, Henry B.; Livingston, David M.

    1998-01-01

    Homozygous E2F-5 knockout embryos and mice have been generated. Although embryonic development appeared normal, newborn mice developed nonobstructive hydrocephalus, suggesting excessive cerebrospinal fluid (CSF) production. Although the CSF-producing choroid plexus displayed normal cellular organization, it contained abundant electron-lucent epithelial cells, consistent with excessive CSF secretory activity. Moreover, E2F-5 CNS expression in normal animals was largely confined to the choroid plexus. Cell cycle kinetics were not perturbed in homozygous knockout embryo fibroblasts. Thus, E2F-5 is not essential for cell proliferation. Rather, it affects the secretory behavior of a differentiated neural tissue. PMID:9553039

  18. A novel morphological approach to gonads in disorders of sex development.

    PubMed

    Lepais, Laureline; Morel, Yves; Mouriquand, Pierre; Gorduza, Daniela; Plotton, Ingrid; Collardeau-Frachon, Sophie; Dijoud, Frédérique

    2016-11-01

    Disorders of sex development are defined as congenital conditions with discordance between the phenotype, the genotype, the karyotype, and the hormonal profile. The disorders of sex development consensus classification established in 2005 are mainly based on chromosomal and biological data. However, histological anomalies are not considered. The aims of this study were to define the specific pathological features of gonads in various groups of disorders of sex development in order to clarify the nosology of histological findings and to evaluate the tumor risk in case of a conservative approach. One hundred and seventy-five samples from 86 patients with disorders of sex development were analyzed following a strict histological reading protocol. The term 'gonadal dysgenesis' for the histological analysis was found confusing and therefore excluded. The concept of 'dysplasia' was subsequently introduced in order to describe the architectural disorganization of the gonad (various degrees of irregular seminiferous tubules, thin albuginea, fibrous interstitium). Five histological types were identified: normal gonad, hypoplastic testis, dysplastic testis, streak gonad, and ovotestis. The analysis showed an association between undifferentiated gonadal tissue, a potential precursor of gonadoblastoma, and dysplasia. Dysplasia and undifferentiated gonadal tissue were only encountered in cases of genetic or chromosomal abnormality ('dysgenesis' groups in the disorders of sex development consensus classification). 'Dysgenetic testes', related to an embryonic malformation of the gonad, have variable histological presentations, from normal to streak. Conversely, gonads associated with hormonal deficiencies always display a normal architecture. A loss of expression of AMH and α-inhibin was identified in dysplastic areas. Foci of abnormal expression of the CD117 and OCT4 immature germ cells markers in dysplasia and undifferentiated gonadal tissue were associated with an increased risk of neoplasia. This morphological analysis aims at clarifying the histological classification and gives an indication of tumor risk of gonads in disorders of sex development.

  19. Suppression of endogenous lipogenesis induces reversion of the malignant phenotype and normalized differentiation in breast cancer

    PubMed Central

    Schroeder, Barbara; Park, Cheol Hong; Chandra Mohan, KVP; Khurana, Ashwani; Corominas-Faja, Bruna; Cuyàs, Elisabet; Alarcón, Tomás; Kleer, Celina; Menendez, Javier A.; Lupu, Ruth

    2016-01-01

    The correction of specific signaling defects can reverse the oncogenic phenotype of tumor cells by acting in a dominant manner over the cancer genome. Unfortunately, there have been very few successful attempts at identifying the primary cues that could redirect malignant tissues to a normal phenotype. Here we show that suppression of the lipogenic enzyme fatty acid synthase (FASN) leads to stable reversion of the malignant phenotype and normalizes differentiation in a model of breast cancer (BC) progression. FASN knockdown dramatically reduced tumorigenicity of BC cells and restored tissue architecture, which was reminiscent of normal ductal-like structures in the mammary gland. Loss of FASN signaling was sufficient to direct tumors to a reversed phenotype that was near normal when considering the development of polarized growth-arrested acinar-like structure similar to those formed by nonmalignant breast cells in a 3D reconstituted basement membrane in vitro. This process, in vivo, resulted in a low proliferation index, mesenchymal-epithelial transition, and shut-off of the angiogenic switch in FASN-depleted BC cells orthotopically implanted into mammary fat pads. The role of FASN as a negative regulator of correct breast tissue architecture and terminal epithelial cell differentiation was dominant over the malignant phenotype of tumor cells possessing multiple cancer-driving genetic lesions as it remained stable during the course of serial in vivo passage of orthotopic tumor-derived cells. Transient knockdown of FASN suppressed hallmark structural and cytosolic/secretive proteins (vimentin, N-cadherin, fibronectin) in a model of EMT-induced cancer stem cells (CSC). Indirect pharmacological inhibition of FASN promoted a phenotypic switch from basal- to luminal-like tumorsphere architectures with reduced intrasphere heterogeneity. The fact that sole correction of exacerbated lipogenesis can stably reprogram cancer cells back to normal-like tissue architectures might open a new avenue to chronically restrain BC progression by using FASN-based differentiation therapies. PMID:27223424

  20. Pancreatic tissue assessment using fluorescence and reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Chandra, Malavika; Heidt, David; Simeone, Diane; McKenna, Barbara; Scheiman, James; Mycek, Mary-Ann

    2007-07-01

    The ability of multi-modal optical spectroscopy to detect signals from pancreatic tissue was demonstrated by studying human pancreatic cancer xenografts in mice and freshly excised human pancreatic tumor tissue. Measured optical spectra and fluorescence decays were correlated with tissue morphological and biochemical properties. The measured spectral features and decay times correlated well with expected pathological differences in normal, pancreatitis and adenocarcinoma tissue states. The observed differences between the fluorescence and reflectance properties of normal, pancreatitis and adenocarcinoma tissue indicate a possible application of multi-modal optical spectroscopy to differentiating between the three tissue classifications.

  1. Detection of molecular signatures of oral squamous cell carcinoma and normal epithelium - application of a novel methodology for unsupervised segmentation of imaging mass spectrometry data.

    PubMed

    Widlak, Piotr; Mrukwa, Grzegorz; Kalinowska, Magdalena; Pietrowska, Monika; Chekan, Mykola; Wierzgon, Janusz; Gawin, Marta; Drazek, Grzegorz; Polanska, Joanna

    2016-06-01

    Intra-tumor heterogeneity is a vivid problem of molecular oncology that could be addressed by imaging mass spectrometry. Here we aimed to assess molecular heterogeneity of oral squamous cell carcinoma and to detect signatures discriminating normal and cancerous epithelium. Tryptic peptides were analyzed by MALDI-IMS in tissue specimens from five patients with oral cancer. Novel algorithm of IMS data analysis was developed and implemented, which included Gaussian mixture modeling for detection of spectral components and iterative k-means algorithm for unsupervised spectra clustering performed in domain reduced to a subset of the most dispersed components. About 4% of the detected peptides showed significantly different abundances between normal epithelium and tumor, and could be considered as a molecular signature of oral cancer. Moreover, unsupervised clustering revealed two major sub-regions within expert-defined tumor areas. One of them showed molecular similarity with histologically normal epithelium. The other one showed similarity with connective tissue, yet was markedly different from normal epithelium. Pathologist's re-inspection of tissue specimens confirmed distinct features in both tumor sub-regions: foci of actual cancer cells or cancer microenvironment-related cells prevailed in corresponding areas. Hence, molecular differences detected during automated segmentation of IMS data had an apparent reflection in real structures present in tumor. © 2016 The Authors. Proteomics Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ai, H; Zhang, H

    Purpose: To evaluate normal tissue toxicity in patients with head and neck cancer by calculating average survival fraction (SF) and equivalent uniform dose (EUD) for normal tissue cells. Methods: 20 patients with head and neck cancer were included in this study. IMRT plans were generated using EclipseTM treatment planning system by dosimetrist following clinical radiotherapy treatment guidelines. The average SF for three different normal tissue cells of each concerned structure can be calculated from dose spectrum acquired from differential dose volume histogram (DVH) using linear quadratic model. The three types of normal tissues include radiosensitive, moderately radiosensitive and radio-resistant thatmore » represents 70%, 50% and 30% survival fractions, respectively, for a 2-Gy open field. Finally, EUDs for three types of normal tissue of each structure were calculated from average SF. Results: The EUDs of the brainstem, spinal cord, parotid glands, brachial plexus and etc were calculated. Our analysis indicated that the brainstem can absorb as much as 14.3% of prescription dose to the tumor if the cell line is radiosensitive. In addition, as much as 16.1% and 18.3% of prescription dose were absorbed by the brainstem for moderately radiosensitive and radio-resistant cells, respectively. For the spinal cord, the EUDs reached up to 27.6%, 35.0% and 42.9% of prescribed dose for the three types of radiosensitivities respectively. Three types of normal cells for parotid glands can get up to 65.6%, 71.2% and 78.4% of prescription dose, respectively. The maximum EUDs of brachial plexsus were calculated as 75.4%, 76.4% and 76.7% of prescription for three types of normal cell lines. Conclusion: The results indicated that EUD can be used to quantify and evaluate the radiation damage to surrounding normal tissues. Large variation of normal tissue EUDs may come from variation of target volumes and radiation beam orientations among the patients.« less

  3. Characterization of cancer and normal tissue fluorescence through wavelet transform and singular value decomposition

    NASA Astrophysics Data System (ADS)

    Gharekhan, Anita H.; Biswal, Nrusingh C.; Gupta, Sharad; Pradhan, Asima; Sureshkumar, M. B.; Panigrahi, Prasanta K.

    2008-02-01

    The statistical and characteristic features of the polarized fluorescence spectra from cancer, normal and benign human breast tissues are studied through wavelet transform and singular value decomposition. The discrete wavelets enabled one to isolate high and low frequency spectral fluctuations, which revealed substantial randomization in the cancerous tissues, not present in the normal cases. In particular, the fluctuations fitted well with a Gaussian distribution for the cancerous tissues in the perpendicular component. One finds non-Gaussian behavior for normal and benign tissues' spectral variations. The study of the difference of intensities in parallel and perpendicular channels, which is free from the diffusive component, revealed weak fluorescence activity in the 630nm domain, for the cancerous tissues. This may be ascribable to porphyrin emission. The role of both scatterers and fluorophores in the observed minor intensity peak for the cancer case is experimentally confirmed through tissue-phantom experiments. Continuous Morlet wavelet also highlighted this domain for the cancerous tissue fluorescence spectra. Correlation in the spectral fluctuation is further studied in different tissue types through singular value decomposition. Apart from identifying different domains of spectral activity for diseased and non-diseased tissues, we found random matrix support for the spectral fluctuations. The small eigenvalues of the perpendicular polarized fluorescence spectra of cancerous tissues fitted remarkably well with random matrix prediction for Gaussian random variables, confirming our observations about spectral fluctuations in the wavelet domain.

  4. Atm heterozygous mice are more sensitive to radiation-induced cataracts than are their wild-type counterparts

    NASA Technical Reports Server (NTRS)

    Worgul, Basil V.; Smilenov, Lubomir; Brenner, David J.; Junk, Anna; Zhou, Wei; Hall, Eric J.

    2002-01-01

    It is important to know whether the human population includes genetically predisposed radiosensitive subsets. In vitro studies have shown that cells from individuals homozygous for ataxia telangiectasia (A-T) are much more radiosensitive than cells from unaffected individuals. Although cells heterozygous for the ATM gene (ATM(+/-)) may be slightly more radiosensitive in vitro, it remained to be determined whether the greater susceptibility of ATM(+/-) cells translates into an increased sensitivity for late effects in vivo, though there is a suggestion that radiotherapy patients that are heterozygous for the ATM gene may be more at risk of developing late normal tissue damage. We chose cataractogenesis in the lens as a means to assay for the effects of ATM deficiency in a late-responding tissue. One eye of wild-type, Atm heterozygous and homozygous knockout mice was exposed to 0.5-, 1.0-, 2.0-, or 4.0-Gy x rays. The animals were followed weekly for cataract development by conventional slit-lamp biomicroscopy. Cataract development in the animals of all three groups was strongly dependent on dose. The lenses of homozygous mice were the first to opacify at any given dose. Most important in the present context is that cataracts appeared earlier in the heterozygous versus wild-type animals. The data suggest that ATM heterozygotes in the human population may also be radiosensitive. This may influence the choice of individuals destined to be exposed to higher than normal doses of radiation, such as astronauts, and may also suggest that radiotherapy patients who are ATM heterozygotes could be predisposed to increased late normal tissue damage.

  5. Hybrid phosphorescence and fluorescence native spectroscopy for breast cancer detection.

    PubMed

    Alimova, Alexandra; Katz, A; Sriramoju, Vidyasagar; Budansky, Yuri; Bykov, Alexei A; Zeylikovich, Roman; Alfano, R R

    2007-01-01

    Fluorescence and phosphorescence measurements are performed on normal and malignant ex vivo human breast tissues using UV LED and xenon lamp excitation. Tryptophan (trp) phosphorescence intensity is higher in both normal glandular and adipose tissue when compared to malignant tissue. An algorithm based on the ratio of trp fluorescence intensity at 345 nm to phosphorescence intensity at 500 nm is successfully used to separate normal from malignant tissue types. Normal specimens consistently exhibited a low I(345)I(500) ratio (<10), while for malignant specimens, the I(345)I(500) ratio is consistently high (>15). The ratio analysis correlates well with histopathology. Intensity ratio maps with a spatial resolution of 0.5 mm are generated in which local regions of malignancy could be identified.

  6. Diagnosis of meningioma by time-resolved fluorescence spectroscopy.

    PubMed

    Butte, Pramod V; Pikul, Brian K; Hever, Aviv; Yong, William H; Black, Keith L; Marcu, Laura

    2005-01-01

    We investigate the use of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as an adjunctive tool for the intraoperative rapid evaluation of tumor specimens and delineation of tumor from surrounding normal tissue. Tissue autofluorescence is induced with a pulsed nitrogen laser (337 nm, 1.2 ns) and the intensity decay profiles are recorded in the 370 to 500 nm spectral range with a fast digitizer (0.2 ns resolution). Experiments are conducted on excised specimens (meningioma, dura mater, cerebral cortex) from 26 patients (97 sites). Spectral intensities and time-dependent parameters derived from the time-resolved spectra of each site are used for tissue characterization. A linear discriminant analysis algorithm is used for tissue classification. Our results reveal that meningioma is characterized by unique fluorescence characteristics that enable discrimination of tumor from normal tissue with high sensitivity (>89%) and specificity (100%). The accuracy of classification is found to increase (92.8% cases in the training set and 91.8% in the cross-validated set correctly classified) when parameters from both the spectral and the time domain are used for discrimination. Our findings establish the feasibility of using TR-LIFS as a tool for the identification of meningiomas and enables further development of real-time diagnostic tools for analyzing surgical tissue specimens of meningioma or other brain tumors.

  7. Diagnosis of meningioma by time-resolved fluorescence spectroscopy

    PubMed Central

    Butte, Pramod V.; Pikul, Brian K.; Hever, Aviv; Yong, William H.; Black, Keith L.; Marcu, Laura

    2010-01-01

    We investigate the use of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as an adjunctive tool for the intraoperative rapid evaluation of tumor specimens and delineation of tumor from surrounding normal tissue. Tissue autofluorescence is induced with a pulsed nitrogen laser (337 nm, 1.2 ns) and the intensity decay profiles are recorded in the 370 to 500 nm spectral range with a fast digitizer (0.2 ns resolution). Experiments are conducted on excised specimens (meningioma, dura mater, cerebral cortex) from 26 patients (97 sites). Spectral intensities and time-dependent parameters derived from the time-resolved spectra of each site are used for tissue characterization. A linear discriminant analysis algorithm is used for tissue classification. Our results reveal that meningioma is characterized by unique fluorescence characteristics that enable discrimination of tumor from normal tissue with high sensitivity (>89%) and specificity (100%). The accuracy of classification is found to increase (92.8% cases in the training set and 91.8% in the cross-validated set correctly classified) when parameters from both the spectral and the time domain are used for discrimination. Our findings establish the feasibility of using TR-LIFS as a tool for the identification of meningiomas and enables further development of real-time diagnostic tools for analyzing surgical tissue specimens of meningioma or other brain tumors. PMID:16409091

  8. On-the-spot lung cancer differential diagnosis by label-free, molecular vibrational imaging and knowledge-based classification

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Li, Fuhai; Thrall, Michael J.; Yang, Yaliang; Xing, Jiong; Hammoudi, Ahmad A.; Zhao, Hong; Massoud, Yehia; Cagle, Philip T.; Fan, Yubo; Wong, Kelvin K.; Wang, Zhiyong; Wong, Stephen T. C.

    2011-09-01

    We report the development and application of a knowledge-based coherent anti-Stokes Raman scattering (CARS) microscopy system for label-free imaging, pattern recognition, and classification of cells and tissue structures for differentiating lung cancer from non-neoplastic lung tissues and identifying lung cancer subtypes. A total of 1014 CARS images were acquired from 92 fresh frozen lung tissue samples. The established pathological workup and diagnostic cellular were used as prior knowledge for establishment of a knowledge-based CARS system using a machine learning approach. This system functions to separate normal, non-neoplastic, and subtypes of lung cancer tissues based on extracted quantitative features describing fibrils and cell morphology. The knowledge-based CARS system showed the ability to distinguish lung cancer from normal and non-neoplastic lung tissue with 91% sensitivity and 92% specificity. Small cell carcinomas were distinguished from nonsmall cell carcinomas with 100% sensitivity and specificity. As an adjunct to submitting tissue samples to routine pathology, our novel system recognizes the patterns of fibril and cell morphology, enabling medical practitioners to perform differential diagnosis of lung lesions in mere minutes. The demonstration of the strategy is also a necessary step toward in vivo point-of-care diagnosis of precancerous and cancerous lung lesions with a fiber-based CARS microendoscope.

  9. Extracting morphologies from third harmonic generation images of structurally normal human brain tissue.

    PubMed

    Zhang, Zhiqing; Kuzmin, Nikolay V; Groot, Marie Louise; de Munck, Jan C

    2017-06-01

    The morphologies contained in 3D third harmonic generation (THG) images of human brain tissue can report on the pathological state of the tissue. However, the complexity of THG brain images makes the usage of modern image processing tools, especially those of image filtering, segmentation and validation, to extract this information challenging. We developed a salient edge-enhancing model of anisotropic diffusion for image filtering, based on higher order statistics. We split the intrinsic 3-phase segmentation problem into two 2-phase segmentation problems, each of which we solved with a dedicated model, active contour weighted by prior extreme. We applied the novel proposed algorithms to THG images of structurally normal ex-vivo human brain tissue, revealing key tissue components-brain cells, microvessels and neuropil, enabling statistical characterization of these components. Comprehensive comparison to manually delineated ground truth validated the proposed algorithms. Quantitative comparison to second harmonic generation/auto-fluorescence images, acquired simultaneously from the same tissue area, confirmed the correctness of the main THG features detected. The software and test datasets are available from the authors. z.zhang@vu.nl. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  10. Measurement of Gene Expression in Archival Paraffin-Embedded Tissues

    PubMed Central

    Cronin, Maureen; Pho, Mylan; Dutta, Debjani; Stephans, James C.; Shak, Steven; Kiefer, Michael C.; Esteban, Jose M.; Baker, Joffre B.

    2004-01-01

    Throughout the last decade many laboratories have shown that mRNA levels in formalin-fixed and paraffin-embedded (FPE) tissue specimens can be quantified by reverse transcriptase-polymerase chain reaction (RT-PCR) techniques despite the extensive RNA fragmentation that occurs in tissues so preserved. We have developed RT-PCR methods that are sensitive, precise, and that have multianalyte capability for potential wide use in clinical research and diagnostic assays. Here it is shown that the extent of fragmentation of extracted FPE tissue RNA significantly increases with archive storage time. Probe and primer sets for RT-PCR assays based on amplicons that are both short and homogeneous in length enable effective reference gene-based data normalization for cross comparison of specimens that differ substantially in age. A 48-gene assay used to compare gene expression profiles from the same breast cancer tissue that had been either frozen or FPE showed very similar profiles after reference gene-based normalization. A 92-gene assay, using RNA extracted from three 10-μm FPE sections of archival breast cancer specimens (dating from 1985 to 2001) yielded analyzable data for these genes in all 62 tested specimens. The results were substantially concordant when estrogen receptor, progesterone receptor, and HER2 receptor status determined by RT-PCR was compared with immunohistochemistry assays for these receptors. Furthermore, the results highlight the advantages of RT-PCR over immunohistochemistry with respect to quantitation and dynamic range. These findings support the development of RT-PCR analysis of FPE tissue RNA as a platform for multianalyte clinical diagnostic tests. PMID:14695316

  11. Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials

    PubMed Central

    Jenrow, Kenneth A.; Brown, Stephen L.

    2014-01-01

    To summarize current knowledge regarding mechanisms of radiation-induced normal tissue injury and medical countermeasures available to reduce its severity. Advances in radiation delivery using megavoltage and intensity-modulated radiation therapy have permitted delivery of higher doses of radiation to well-defined tumor target tissues. Injury to critical normal tissues and organs, however, poses substantial risks in the curative treatment of cancers, especially when radiation is administered in combination with chemotherapy. The principal pathogenesis is initiated by depletion of tissue stem cells and progenitor cells and damage to vascular endothelial microvessels. Emerging concepts of radiation-induced normal tissue toxicity suggest that the recovery and repopulation of stromal stem cells remain chronically impaired by long-lived free radicals, reactive oxygen species, and pro-inflammatory cytokines/chemokines resulting in progressive damage after radiation exposure. Better understanding the mechanisms mediating interactions among excessive generation of reactive oxygen species, production of pro-inflammatory cytokines and activated macrophages, and role of bone marrow-derived progenitor and stem cells may provide novel insight on the pathogenesis of radiation-induced injury of tissues. Further understanding the molecular signaling pathways of cytokines and chemokines would reveal novel targets for protecting or mitigating radiation injury of tissues and organs. PMID:25324981

  12. Expression and Significance of Cyclophilin J in Primary Gastric Adenocarcinoma.

    PubMed

    Gong, Zhaohua; Mu, Yuling; Chen, Jian; Chu, Hongjin; Lian, Peiwen; Wang, Congcong; Wang, Jiahui; Jiang, Lixin

    2017-08-01

    Biomarkers are essential in early diagnosis and understanding of the molecular mechanism of human cancer. The expression of cyclophilin J, a novel member of the cyclophilin family, was investigated in primary gastric adenocarcinoma. Western blot analysis was carried out on 36 paired tumor and normal tissue samples; immunohistochemical analysis was carried out on 120 gastric carcinoma tissues and normal adjacent tissue. Cyclophilin J protein was overexpressed in 72.2% of gastric carcinoma tissues compared to adjacent normal tissues. Immunohistochemical analysis revealed that cyclophilin J was overexpressed in 49.2% (59/120) and 23.3% (28/120) of gastric carcinoma tissues and adjacent tissues, respectively (p<0.05). Expression of cyclophilin J was associated with the degree of differentiation, but not with lymph node metastasis, gender or depth of tumor infiltration. The overall survival of patients showed no association with the overexpression of cyclophilin J protein. Cyclophilin J expression was up-regulated in gastric carcinoma compared to normal gastric tissues. However, in order to confirm its association with the survival of patients with gastric cancer, more cases need to be studied. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  13. A Cancer-Indicative microRNA Pattern in Normal Prostate Tissue

    PubMed Central

    Hellwinkel, Olaf J. C.; Sellier, Christina; Sylvester, Yu-Mi Jessica; Brase, Jan C.; Isbarn, Hendrik; Erbersdobler, Andreas; Steuber, Thomas; Sültmann, Holger; Schlomm, Thorsten; Wagner, Christina

    2013-01-01

    We analyzed the levels of selected micro-RNAs in normal prostate tissue to assess their potential to indicate tumor foci elsewhere in the prostate. Histologically normal prostate tissue samples from 31 prostate cancer patients and two cancer negative control groups with either unsuspicious or elevated prostate specific antigen (PSA) levels (14 and 17 individuals, respectively) were analyzed. Based on the expression analysis of 157 microRNAs in a pool of prostate tissue samples and information from data bases/literature, we selected eight microRNAs for quantification by real-time polymerase chain reactions (RT-PCRs). Selected miRNAs were analyzed in histologically tumor-free biopsy samples from patients and healthy controls. We identified seven microRNAs (miR-124a, miR-146a & b, miR-185, miR-16 and let-7a & b), which displayed significant differential expression in normal prostate tissue from men with prostate cancer compared to both cancer negative control groups. Four microRNAs (miR-185, miR-16 and let-7a and let-7b) remained to significantly discriminate normal tissues from prostate cancer patients from those of the cancer negative control group with elevated PSA levels. The transcript levels of these microRNAs were highly indicative for the presence of cancer in the prostates, independently of the PSA level. Our results suggest a microRNA-pattern in histologically normal prostate tissue, indicating prostate cancer elsewhere in the organ. PMID:23459235

  14. Derivation of the expressions for γ50 and D50 for different individual TCP and NTCP models

    NASA Astrophysics Data System (ADS)

    Stavreva, N.; Stavrev, P.; Warkentin, B.; Fallone, B. G.

    2002-10-01

    This paper presents a complete set of formulae for the position (D50) and the normalized slope (γ50) of the dose-response relationship based on the most commonly used radiobiological models for tumours as well as for normal tissues. The functional subunit response models (critical element and critical volume) are used in the derivation of the formulae for the normal tissue. Binomial statistics are used to describe the tumour control probability, the functional subunit response as well as the normal tissue complication probability. The formulae are derived for the single hit and linear quadratic models of cell kill in terms of the number of fractions and dose per fraction. It is shown that the functional subunit models predict very steep, almost step-like, normal tissue individual dose-response relationships. Furthermore, the formulae for the normalized gradient depend on the cellular parameters α and β when written in terms of number of fractions, but not when written in terms of dose per fraction.

  15. Carcinoma-specific Ulex europaeus agglutinin-I binding glycoproteins of human colorectal carcinoma and its relation to carcinoembryonic antigen.

    PubMed

    Matsushita, Y; Yonezawa, S; Nakamura, T; Shimizu, S; Ozawa, M; Muramatsu, T; Sato, E

    1985-08-01

    Glycoproteins binding to Ulex europaeus agglutinin-I (UEA-I) lectin, which recognizes the terminal alpha-L-fucose residue, were analyzed in 18 cases of human colorectal carcinoma by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by the Western blotting method. In the distal large bowel (descending and sigmoid colon and rectum), high-molecular-weight glycoproteins binding to UEA-I existed in carcinoma tissue but not in normal mucosa. In the proximal large bowel (ascending and transverse colon), high-molecular-weight glycoproteins binding to UEA-I were found both in normal mucosa and in carcinoma tissue, whereas those from the carcinoma tissue had an apparently lower molecular weight as compared to the weight of those from the normal mucosa. Thus there is a biochemical difference in UEA-I binding glycoproteins between the normal mucosa and the carcinoma tissue, although in our previous histochemical study no difference was observed in UEA-I binding glycoproteins of the proximal large bowel between the carcinoma tissue and the normal mucosa. Furthermore, carcinoembryonic antigen from the carcinoma tissue was found to have the same electrophoretical mobility as the UEA-I binding glycoproteins.

  16. Assessment of Microcirculatory Hemoglobin Levels in Normal and Diabetic Subjects using Diffuse Reflectance Spectroscopy in the Visible Region — a Pilot Study

    NASA Astrophysics Data System (ADS)

    Sujatha, N.; Anand, B. S. Suresh; Nivetha, K. Bala; Narayanamurthy, V. B.; Seshadri, V.; Poddar, R.

    2015-07-01

    Light-based diagnostic techniques provide a minimally invasive way for selective biomarker estimation when tissues transform from a normal to a malignant state. Spectroscopic techniques based on diffuse reflectance characterize the changes in tissue hemoglobin/oxygenation levels during the tissue transformation process. Recent clinical investigations have shown that changes in tissue oxygenation and microcirculation are observed in diabetic subjects in the initial and progressive stages. In this pilot study, we discuss the potential of diffuse reflectance spectroscopy (DRS) in the visible (Vis) range to differentiate the skin microcirculatory hemoglobin levels between normal and advanced diabetic subjects with and without neuropathy. Average concentration of hemoglobin as well as hemoglobin oxygen saturation within the probed tissue volume is estimated for a total of four different sites in the foot sole. The results indicate a statistically significant decrease in average total hemoglobin and increase in hemoglobin oxygen saturation levels for diabetic foot compared with a normal foot. The present study demonstrates the ability of reflectance spectroscopy in the Vis range to determine and differentiate the changes in tissue hemoglobin and hemoglobin oxygen saturation levels in normal and diabetic subjects.

  17. A method for deriving a 4D-interpolated balanced planning target for mobile tumor radiotherapy.

    PubMed

    Roland, Teboh; Hales, Russell; McNutt, Todd; Wong, John; Simari, Patricio; Tryggestad, Erik

    2012-01-01

    Tumor control and normal tissue toxicity are strongly correlated to the tumor and normal tissue volumes receiving high prescribed dose levels in the course of radiotherapy. Planning target definition is, therefore, crucial to ensure favorable clinical outcomes. This is especially important for stereotactic body radiation therapy of lung cancers, characterized by high fractional doses and steep dose gradients. The shift in recent years from population-based to patient-specific treatment margins, as facilitated by the emergence of 4D medical imaging capabilities, is a major improvement. The commonly used motion-encompassing, or internal-target volume (ITV), target definition approach provides a high likelihood of coverage for the mobile tumor but inevitably exposes healthy tissue to high prescribed dose levels. The goal of this work was to generate an interpolated balanced planning target that takes into account both tumor coverage and normal tissue sparing from high prescribed dose levels, thereby improving on the ITV approach. For each 4DCT dataset, 4D deformable image registration was used to derive two bounding targets, namely, a 4D-intersection and a 4D-composite target which minimized normal tissue exposure to high prescribed dose levels and maximized tumor coverage, respectively. Through definition of an "effective overlap volume histogram" the authors derived an "interpolated balanced planning target" intended to balance normal tissue sparing from prescribed doses with tumor coverage. To demonstrate the dosimetric efficacy of the interpolated balanced planning target, the authors performed 4D treatment planning based on deformable image registration of 4D-CT data for five previously treated lung cancer patients. Two 4D plans were generated per patient, one based on the interpolated balanced planning target and the other based on the conventional ITV target. Plans were compared for tumor coverage and the degree of normal tissue sparing resulting from the new approach was quantified. Analysis of the 4D dose distributions from all five patients showed that while achieving tumor coverage comparable to the ITV approach, the new planning target definition resulted in reductions of lung V(10), V(20), and V(30) of 6.3% ± 1.7%, 10.6% ± 3.9%, and 12.9% ± 5.5%, respectively, as well as reductions in mean lung dose, mean dose to the GTV-ring and mean heart dose of 8.8% ± 2.5%, 7.2% ± 2.5%, and 10.6% ± 3.6%, respectively. The authors have developed a simple and systematic approach to generate a 4D-interpolated balanced planning target volume that implicitly incorporates the dynamics of respiratory-organ motion without requiring 4D-dose computation or optimization. Preliminary results based on 4D-CT data of five previously treated lung patients showed that this new planning target approach may improve normal tissue sparing without sacrificing tumor coverage.

  18. The role of the local environment and epigenetics in shaping macrophage identity and their effect on tissue homeostasis.

    PubMed

    Amit, Ido; Winter, Deborah R; Jung, Steffen

    2016-01-01

    Macrophages provide a critical systemic network cells of the innate immune system. Emerging data suggest that in addition, they have important tissue-specific functions that range from clearance of surfactant from the lungs to neuronal pruning and establishment of gut homeostasis. The differentiation and tissue-specific activation of macrophages require precise regulation of gene expression, a process governed by epigenetic mechanisms such as DNA methylation, histone modification and chromatin structure. We argue that epigenetic regulation of macrophages is determined by lineage- and tissue-specific transcription factors controlled by the built-in programming of myeloid development in combination with signaling from the tissue environment. Perturbation of epigenetic mechanisms of tissue macrophage identity can affect normal macrophage tissue function and contribute to pathologies ranging from obesity and autoimmunity to neurodegenerative diseases.

  19. Telomere length in normal and neoplastic canine tissues.

    PubMed

    Cadile, Casey D; Kitchell, Barbara E; Newman, Rebecca G; Biller, Barbara J; Hetler, Elizabeth R

    2007-12-01

    To determine the mean telomere restriction fragment (TRF) length in normal and neoplastic canine tissues. 57 solid-tissue tumor specimens collected from client-owned dogs, 40 samples of normal tissue collected from 12 clinically normal dogs, and blood samples collected from 4 healthy blood donor dogs. Tumor specimens were collected from client-owned dogs during diagnostic or therapeutic procedures at the University of Illinois Veterinary Medical Teaching Hospital, whereas 40 normal tissue samples were collected from 12 control dogs. Telomere restriction fragment length was determined by use of an assay kit. A histologic diagnosis was provided for each tumor by personnel at the Veterinary Diagnostic Laboratory at the University of Illinois. Mean of the mean TRF length for 44 normal samples was 19.0 kilobases (kb; range, 15.4 to 21.4 kb), and the mean of the mean TRF length for 57 malignant tumors was 19.0 kb (range, 12.9 to 23.5 kb). Although the mean of the mean TRF length for tumors and normal tissues was identical, tumor samples had more variability in TRF length. Telomerase, which represents the main mechanism by which cancer cells achieve immortality, is an attractive therapeutic target. The ability to measure telomere length is crucial to monitoring the efficacy of telomerase inhibition. In contrast to many other mammalian species, the length of canine telomeres and the rate of telomeric DNA loss are similar to those reported in humans, making dogs a compelling choice for use in the study of human anti-telomerase strategies.

  20. The biochemical, nanomechanical and chemometric signatures of brain cancer.

    PubMed

    Abramczyk, Halina; Imiela, Anna

    2018-01-05

    Raman spectroscopy and imaging combined with AFM topography and mechanical indentation by AFM have been shown to be an effective tool for analysis and discrimination of human brain tumors from normal structures. Raman methods have potential to be applied in clinical practice as they allow for identification of tumor margins during surgery. In this study, we investigate medulloblastoma (grade IV WHO) (n=5) and the tissue from the negative margins used as normal controls. We compare a high grade medulloblastoma (IV grade), and non-tumor samples from human central nervous system (CNS) tissue. Based on the properties of the Raman vibrational spectra and Raman images we provide a real-time feedback that is label-free method to monitor tumor metabolism that reveals reprogramming of biosynthesis of lipids, and proteins. We have found that the high-grade tumors of central nervous system (medulloblastoma) exhibit enhanced level of β-sheet conformation and down-regulated level of α-helix conformation when comparing against normal tissue. We have shown that the ratio of Raman intensities I2930/I2845 at 2930 and 2845cm -1 is a good source of information on the ratio of lipid and protein contents. We have found that the ratio reflects the lipid and protein contents of tumorous brain tissue compared to the non-tumor tissue. Almost all brain tumors have the Raman intensity ratios significantly higher (1.99±0.026) than that found in non-tumor brain tissue, which is 1.456±0.02, and indicates that the relative amount of lipids compared to proteins is significantly higher in the normal brain tissue. Mechanical indentation using AFM on sliced human brain tissues (medulloblastoma, grade IV) revealed that the mechanical properties of this tissue are strongly heterogeneous, between 1.8 and 75.7kPa, and the mean of 27.16kPa. The sensitivity and specificity obtained directly from PLSDA and cross validation gives a sensitivity and specificity of 98.5% and 96% and 96.3% and 92% for cross-validation, respectively. The high sensitivity and specificity demonstrates usefulness for a proper decision for a Raman diagnostic test on biochemical alterations monitored by Raman spectroscopy related to brain cancer development. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. BAD-mediated apoptotic pathway is associated with human cancer development.

    PubMed

    Stickles, Xiaomang B; Marchion, Douglas C; Bicaku, Elona; Al Sawah, Entidhar; Abbasi, Forough; Xiong, Yin; Bou Zgheib, Nadim; Boac, Bernadette M; Orr, Brian C; Judson, Patricia L; Berry, Amy; Hakam, Ardeshir; Wenham, Robert M; Apte, Sachin M; Berglund, Anders E; Lancaster, Johnathan M

    2015-04-01

    The malignant transformation of normal cells is caused in part by aberrant gene expression disrupting the regulation of cell proliferation, apoptosis, senescence and DNA repair. Evidence suggests that the Bcl-2 antagonist of cell death (BAD)-mediated apoptotic pathway influences cancer chemoresistance. In the present study, we explored the role of the BAD-mediated apoptotic pathway in the development and progression of cancer. Using principal component analysis to derive a numeric score representing pathway expression, we evaluated clinico-genomic datasets (n=427) from corresponding normal, pre-invasive and invasive cancers of different types, such as ovarian, endometrial, breast and colon cancers in order to determine the associations between the BAD-mediated apoptotic pathway and cancer development. Immunofluorescence was used to compare the expression levels of phosphorylated BAD [pBAD (serine-112, -136 and -155)] in immortalized normal and invasive ovarian, colon and breast cancer cells. The expression of the BAD-mediated apoptotic pathway phosphatase, PP2C, was evaluated by RT-qPCR in the normal and ovarian cancer tissue samples. The growth-promoting effects of pBAD protein levels in the immortalized normal and cancer cells were assessed using siRNA depletion experiments with MTS assays. The expression of the BAD-mediated apoptotic pathway was associated with the development and/or progression of ovarian (n=106, p<0.001), breast (n=185, p<0.0008; n=61, p=0.04), colon (n=22, p<0.001) and endometrial (n=33, p<0.001) cancers, as well as with ovarian endometriosis (n=20, p<0.001). Higher pBAD protein levels were observed in the cancer cells compared to the immortalized normal cells, whereas PP2C gene expression was lower in the cancer compared to the ovarian tumor tissue samples (n=76, p<0.001). The increased pBAD protein levels after the depletion of PP2C conferred a growth advantage to the immortalized normal and cancer cells. The BAD-mediated apoptotic pathway is thus associated with the development of human cancers likely influenced by the protein levels of pBAD.

  2. In-vitro micro-Raman study of tissue samples for detecting cervical and ovarian cancer with 785-nm laser excitation

    NASA Astrophysics Data System (ADS)

    Sharma, S. K.; Kamemoto, L. E.; Misra, A. K.; Goodman, M. T.; Luk, H. W.; Killeen, J. L.

    2010-04-01

    We present results of in vitro micro-Raman spectroscopy of normal and cancerous cervical and ovarian tissues excited with 785 nm near-infrared (NIR) laser. Micro- Raman spectra of squamous cervical cells of both cervix and ovarian tissues show significant differences in the spectra of normal and cancerous cells. In particular, several well-defined Raman peaks in the 775-975 cm-1 region are observed in the spectra of normal cervix squamous cells but are completely missing in the spectra of invasive cervical cancer cells. In the high-frequency 2800-3100 cm-1 region it is shown that the peak area under CH stretching band is much lower than the corresponding area in the spectra of normal cells. In the case of ovarian tissues, the micro-Raman spectra show noticeable spectral differences between normal cells and ovarian serous cancer cells. In particular, we observed the accumulation of β-carotene in ovarian serous cancer cells compared to normal ovarian cells from women with no ovarian cancer. The NIR micro-Raman spectroscopy offers a potential molecular technique for detecting cervical and ovarian cancer from the respective tissues.

  3. HPLC assisted Raman spectroscopic studies on bladder cancer

    NASA Astrophysics Data System (ADS)

    Zha, W. L.; Cheng, Y.; Yu, W.; Zhang, X. B.; Shen, A. G.; Hu, J. M.

    2015-04-01

    We applied confocal Raman spectroscopy to investigate 12 normal bladder tissues and 30 tumor tissues, and then depicted the spectral differences between the normal and the tumor tissues and the potential canceration mechanism with the aid of the high-performance liquid chromatographic (HPLC) technique. Normal tissues were demonstrated to contain higher tryptophan, cholesterol and lipid content, while bladder tumor tissues were rich in nucleic acids, collagen and carotenoids. In particular, β-carotene, one of the major types of carotenoids, was found through HPLC analysis of the extract of bladder tissues. The statistical software SPSS was applied to classify the spectra of the two types of tissues according to their differences. The sensitivity and specificity of 96.7 and 66.7% were obtained, respectively. In addition, different layers of the bladder wall including mucosa (lumps), muscle and adipose bladder tissue were analyzed by Raman mapping technique in response to previous Raman studies of bladder tissues. All of these will play an important role as a directive tool for the future diagnosis of bladder cancer in vivo.

  4. 3D modeling of effects of increased oxygenation and activity concentration in tumors treated with radionuclides and antiangiogenic drugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagerloef, Jakob H.; Kindblom, Jon; Bernhardt, Peter

    Purpose: Formation of new blood vessels (angiogenesis) in response to hypoxia is a fundamental event in the process of tumor growth and metastatic dissemination. However, abnormalities in tumor neovasculature often induce increased interstitial pressure (IP) and further reduce oxygenation (pO{sub 2}) of tumor cells. In radiotherapy, well-oxygenated tumors favor treatment. Antiangiogenic drugs may lower IP in the tumor, improving perfusion, pO{sub 2} and drug uptake, by reducing the number of malfunctioning vessels in the tissue. This study aims to create a model for quantifying the effects of altered pO{sub 2}-distribution due to antiangiogenic treatment in combination with radionuclide therapy. Methods:more » Based on experimental data, describing the effects of antiangiogenic agents on oxygenation of GlioblastomaMultiforme (GBM), a single cell based 3D model, including 10{sup 10} tumor cells, was developed, showing how radionuclide therapy response improves as tumor oxygenation approaches normal tissue levels. The nuclides studied were {sup 90}Y, {sup 131}I, {sup 177}Lu, and {sup 211}At. The absorbed dose levels required for a tumor control probability (TCP) of 0.990 are compared for three different log-normal pO{sub 2}-distributions: {mu}{sub 1} = 2.483, {sigma}{sub 1} = 0.711; {mu}{sub 2} = 2.946, {sigma}{sub 2} = 0.689; {mu}{sub 3} = 3.689, and {sigma}{sub 3} = 0.330. The normal tissue absorbed doses will, in turn, depend on this. These distributions were chosen to represent the expected oxygen levels in an untreated hypoxic tumor, a hypoxic tumor treated with an anti-VEGF agent, and in normal, fully-oxygenated tissue, respectively. The former two are fitted to experimental data. The geometric oxygen distributions are simulated using two different patterns: one Monte Carlo based and one radially increasing, while keeping the log-normal volumetric distributions intact. Oxygen and activity are distributed, according to the same pattern. Results: As tumor pO{sub 2} approaches normal tissue levels, the therapeutic effect is improved so that the normal tissue absorbed doses can be decreased by more than 95%, while retaining TCP, in the most favorable scenario and by up to about 80% with oxygen levels previously achieved in vivo, when the least favourable oxygenation case is used as starting point. The major difference occurs in poorly oxygenated cells. This is also where the pO{sub 2}-dependence of the oxygen enhancement ratio is maximal. Conclusions: Improved tumor oxygenation together with increased radionuclide uptake show great potential for optimising treatment strategies, leaving room for successive treatments, or lowering absorbed dose to normal tissues, due to increased tumor response. Further studies of the concomitant use of antiangiogenic drugs and radionuclide therapy therefore appear merited.« less

  5. Enhanced effect of gap junction uncouplers on macroscopic electrical properties of reperfused myocardium

    PubMed Central

    Rodriguez-Sinovas, Antonio; García-Dorado, David; Ruiz-Meana, Marisol; Soler-Soler, Jordi

    2004-01-01

    Transient inhibition of gap junction (GJ)-mediated communication with heptanol during myocardial reperfusion limits infarct size. However, inhibition of cell coupling in normal myocardium may be arrhythmogenic. The purpose of this study was to test the hypothesis that the consequences of GJ inhibition may be magnified in reperfused myocardium compared with normal tissue, thus allowing the inhibition of GJs in reperfused tissue while only minimally modifying overall macroscopic cell coupling in normal myocardium. Concentration–response curves were defined for the effects of heptanol, 18α-glycyrrhetinic acid, halothane, and palmitoleic acid on conduction velocity, tissue electrical impedance, developed tension and lactate dehydrogenase (LDH) release in normoxically perfused rat hearts (n = 17). Concentrations lacking significant effects on tissue impedance were added during the initial 15 min of reperfusion in hearts submitted to 60 min (n = 43) or 30 min (n = 35) of ischaemia. These concentrations markedly increased myocardial electrical impedance (resistivity and phase angle) in myocardium reperfused after either 30 or 60 min of ischaemia, and reduced reperfusion-induced LDH release after 1 h of ischaemia by 83.6, 57.9, 51.7 and 52.5% for heptanol, 18α-glycyrrhetinic acid, halothane and palmitoleic acid, respectively. LDH release was minimal in hearts submitted to 30 min of ischaemia, independently of group allocation. In conclusion, the present results strongly support the hypothesis that intercellular communication in postischaemic myocardium may be effectively reduced by concentrations of GJ inhibitors affecting only minimally overall electrical impedance in normal myocardium. Reduction of cell coupling during initial reperfusion was consistently associated with attenuated lethal reperfusion injury. PMID:15218064

  6. Expression of Zinc Finger and BTB Domain-containing 7A in Colorectal Carcinoma.

    PubMed

    Joo, Jin Woo; Kim, Hyun-Soo; Do, Sung-Im; Sung, Ji-Youn

    2018-05-01

    Previous studies have revealed that zinc finger and BTB domain-containing 7A (ZBTB7A), an important proto-oncogene, plays multiple roles in carcinogenesis and is up-regulated in several human malignancies. However, the expression of ZBTB7A in colorectal carcinoma (CRC) has seldom been documented. In this study, we investigated the differential expression of ZBTB7A in CRC cell lines and tissues. Expression levels of ZBTB7A mRNA and protein were examined in CRC cell lines. ZBTB7A protein expression was also evaluated in tissue samples of normal colonic mucosa, high-grade dysplasia, and CRC using immunohistochemical staining. All CRC cell lines exhibited significantly higher ZBTB7A mRNA expression levels than did normal colonic epithelial cells. The ZBTB7A protein expression levels were clearly higher in the CRC cell lines than in the normal colonic epithelial cells. Consistent with the cell line data, immunostaining revealed that there were significant differences in ZBTB7A protein expression between tissue samples of CRC and normal colonic mucosa (p=0.048) and high-grade dysplasia (p=0.015). In addition, metastatic CRC exhibited significantly higher ZBTB7A protein expression levels than primary CRC (p=0.027). We demonstrated that ZBTB7A expression is up-regulated in CRC cell lines and tissues. Our data suggest that ZBTB7A is involved in the development and progression of CRC. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  7. Measurement of pressure-displacement kinetics of hemoglobin in normal breast tissue with near-infrared spectral imaging.

    PubMed

    Jiang, Shudong; Pogue, Brian W; Laughney, Ashley M; Kogel, Christine A; Paulsen, Keith D

    2009-04-01

    Applying localized external displacement to the breast surface can change the interstitial fluid pressure such that regional transient microvascular changes occur in oxygenation and vascular volume. Imaging these dynamic responses over time, while different pressures are applied, could provide selective temporal contrast for cancer relative to the surrounding normal breast. In order to investigate this possibility in normal breast tissue, a near-infrared spectral tomography system was developed that can simultaneously acquire data at three wavelengths with a 15 s time resolution per scan. The system was tested first with heterogeneous blood phantoms. Changes in regional blood concentrations were found to be linearly related to recovered mean hemoglobin concentration (Hb(T)) values (R(2)=0.9). In a series of volunteer breast imaging exams, data from 17 asymptomatic subjects were acquired under increasing and decreasing breast compression. Calculations show that a 10 mm displacement applied to the breast results in surface pressures in the range of 0-55 kPa depending on breast density. The recovered human data indicate that Hb(T) was reduced under compression and the normalized change was significantly correlated to the applied pressure with a p value of 0.005. The maximum Hb(T) decreases in breast tissue were associated with body mass index (BMI), which is a surrogate indicator of breast density. No statistically valid correlations were found between the applied pressure and the changes in tissue oxygen saturation (S(t)O(2)) or water percentage (H(2)O) across the range of BMI values studied.

  8. Cartilage proteoglycans inhibit fibronectin-mediated adhesion

    NASA Astrophysics Data System (ADS)

    Rich, A. M.; Pearlstein, E.; Weissmann, G.; Hoffstein, S. T.

    1981-09-01

    Normal tissues and organs show, on histological examination, a pattern of cellular and acellular zones that is characteristic and unique for each organ or tissue. This pattern is maintained in health but is sometimes destroyed by disease. For example, in mobile joints, the articular surfaces consist of relatively acellular hyaline cartilage, and the joint space is enclosed by a capsule of loose connective tissue with a lining of fibroblasts and macrophages. In the normal joint these cells are confined to the synovial lining and the articular surface remains acellular. In in vitro culture, macrophages and their precursor monocytes are very adhesive, and fibroblasts can migrate and overgrow surfaces such as collagen or plastic used for tissue culture. The fibroblasts adhere to collagen by means of fibronectin, which they synthesize and secrete1. Because the collagen of cartilage is capable of binding serum fibronectin2 and fibronectin is present in cartilage during its development3, these cells should, in theory, slowly migrate from the synovial lining to the articular surface. It is their absence from the articular cartilage in normal circumstances, and then presence in such pathological states as rheumatoid arthritis, that is striking. We therefore set out to determine whether a component of cartilage could prevent fibroblast adherence in a defined adhesion assay. As normal cartilage is composed of 50% proteoglycans and 50% collagen by dry weight4, we tested the possibility that the proteoglycans in cartilage inhibit fibroblast adhesion to collagen. We present here evidence that fibroblast spreading and adhesion to collagenous substrates is inhibited by cartilage proteoglycans.

  9. Measurement of pressure-displacement kinetics of hemoglobin in normal breast tissue with near-infrared spectral imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Shudong; Pogue, Brian W.; Laughney, Ashley M.

    2009-04-01

    Applying localized external displacement to the breast surface can change the interstitial fluid pressure such that regional transient microvascular changes occur in oxygenation and vascular volume. Imaging these dynamic responses over time, while different pressures are applied, could provide selective temporal contrast for cancer relative to the surrounding normal breast. In order to investigate this possibility in normal breast tissue, a near-infrared spectral tomography system was developed that can simultaneously acquire data at three wavelengths with a 15 s time resolution per scan. The system was tested first with heterogeneous blood phantoms. Changes in regional blood concentrations were found tomore » be linearly related to recovered mean hemoglobin concentration (HbT) values (R{sup 2}=0.9). In a series of volunteer breast imaging exams, data from 17 asymptomatic subjects were acquired under increasing and decreasing breast compression. Calculations show that a 10 mm displacement applied to the breast results in surface pressures in the range of 0-55 kPa depending on breast density. The recovered human data indicate that HbT was reduced under compression and the normalized change was significantly correlated to the applied pressure with a p value of 0.005. The maximum HbT decreases in breast tissue were associated with body mass index (BMI), which is a surrogate indicator of breast density. No statistically valid correlations were found between the applied pressure and the changes in tissue oxygen saturation (StO2) or water percentage (H2O) across the range of BMI values studied.« less

  10. Investigating the biochemical progression of liver disease through fibrosis, cirrhosis, dysplasia, and hepatocellular carcinoma using Fourier transform infrared spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Sreedhar, Hari; Pant, Mamta; Ronquillo, Nemencio R.; Davidson, Bennett; Nguyen, Peter; Chennuri, Rohini; Choi, Jacqueline; Herrera, Joaquin A.; Hinojosa, Ana C.; Jin, Ming; Kajdacsy-Balla, Andre; Guzman, Grace; Walsh, Michael J.

    2014-03-01

    Hepatocellular carcinoma (HCC) is the most common form of primary hepatic carcinoma. HCC ranks the fourth most prevalent malignant tumor and the third leading cause of cancer related death in the world. Hepatocellular carcinoma develops in the context of chronic liver disease and its evolution is characterized by progression through intermediate stages to advanced disease and possibly even death. The primary sequence of hepatocarcinogenesis includes the development of cirrhosis, followed by dysplasia, and hepatocellular carcinoma.1 We addressed the utility of Fourier Transform Infrared (FT-IR) spectroscopic imaging, both as a diagnostic tool of the different stages of the disease and to gain insight into the biochemical process associated with disease progression. Tissue microarrays were obtained from the University of Illinois at Chicago tissue bank consisting of liver explants from 12 transplant patients. Tissue core biopsies were obtained from each explant targeting regions of normal, liver cell dysplasia including large cell change and small cell change, and hepatocellular carcinoma. We obtained FT-IR images of these tissues using a modified FT-IR system with high definition capabilities. Firstly, a supervised spectral classifier was built to discriminate between normal and cancerous hepatocytes. Secondly, an expanded classifier was built to discriminate small cell and large cell changes in liver disease. With the emerging advances in FT-IR instrumentation and computation there is a strong drive to develop this technology as a powerful adjunct to current histopathology approaches to improve disease diagnosis and prognosis.

  11. Terahertz spectroscopy of brain tissue from a mouse model of Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Shi, Lingyan; Shumyatsky, Pavel; Rodríguez-Contreras, Adrián; Alfano, Robert

    2016-01-01

    The terahertz (THz) absorption and index of refraction of brain tissues from a mouse model of Alzheimer's disease (AD) and a control wild-type (normal) mouse were compared using THz time-domain spectroscopy (THz-TDS). Three dominating absorption peaks associated to torsional-vibrational modes were observed in AD tissue, at about 1.44, 1.8, and 2.114 THz, closer to the peaks of free tryptophan molecules than in normal tissue. A possible reason is that there is more free tryptophan in AD brain tissue, while in normal brain tissue more tryptophan is attached to other molecules. Our study suggests that THz-absorption modes may be used as an AD biomarker fingerprint in brain, and that THz-TDS is a promising technique for early diagnosis of AD.

  12. Terahertz spectroscopy for the study of paraffin-embedded gastric cancer samples

    NASA Astrophysics Data System (ADS)

    Wahaia, Faustino; Kasalynas, Irmantas; Seliuta, Dalius; Molis, Gediminas; Urbanowicz, Andrzej; Carvalho Silva, Catia D.; Carneiro, Fatima; Valusis, Gintaras; Granja, Pedro L.

    2015-01-01

    Terahertz (THz) spectroscopy constitute promising technique for biomedical applications as a complementary and powerful tool for diseases screening specially for early cancer diagnostic. The THz radiation is not harmful to biological tissues. As increased blood supply in cancer-affected tissues and consequent local increase in tissue water content makes THz technology a potentially attractive. In the present work, samples of healthy and adenocarcinoma-affected gastric tissue were analyzed using transmission time-domain THz spectroscopy (THz-TDS). The work shows the capability of the technique to distinguish between normal and cancerous regions in dried and paraffin-embedded samples. Plots of absorption coefficient α and refractive index n of normal and cancer affected tissues, are presented and the conditions for discrimination between normal and affected tissues are discussed.

  13. Parthenolide Selectively Sensitizes Prostate Tumor Tissue to Radiotherapy while Protecting Healthy Tissues In Vivo.

    PubMed

    Morel, Katherine L; Ormsby, Rebecca J; Bezak, Eva; Sweeney, Christopher J; Sykes, Pamela J

    2017-05-01

    Radiotherapy is widely used in cancer treatment, however the benefits can be limited by radiation-induced damage to neighboring normal tissues. Parthenolide (PTL) exhibits anti-inflammatory and anti-tumor properties and selectively induces radiosensitivity in prostate cancer cell lines, while protecting primary prostate epithelial cell lines from radiation-induced damage. Low doses of radiation have also been shown to protect from subsequent high-dose-radiation-induced apoptosis as well as DNA damage. These properties of PTL and low-dose radiation could be used to improve radiotherapy by killing more tumor cells and less normal cells. Sixteen-week-old male Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) and C57BL/6J mice were treated with PTL (40 mg/kg), dimethylaminoparthenolide (DMAPT, a PTL analogue with increased bioavailability) (100 mg/kg), or vehicle control three times over one week prior to combinations of low (10 mGy) and high (6 Gy) doses of whole-body X-irradiation. Tissues were analyzed for apoptosis at a range of time points up to 72 h postirradiation. Both PTL and DMAPT protected normal tissues, but not prostate tumor tissues, from a significant proportion of high-dose-radiation-induced apoptosis. DMAPT provided superior protection compared to PTL in normal dorsolateral prostate (71.7% reduction, P = 0.026), spleen (48.2% reduction, P = 0.0001) and colorectal tissue (38.0% reduction, P = 0.0002), and doubled radiation-induced apoptosis in TRAMP prostate tumor tissue (101.3% increase, P = 0.039). Both drugs induced the greatest radiosensitivity in TRAMP prostate tissue in areas with higher grade prostatic intraepithelial neoplasia (PIN) lesions. A 10 mGy dose delivered 3 h prior to a 6 Gy dose induced a radioadaptive apoptosis response in normal C57Bl/6J prostate (28.4% reduction, P = 0.045) and normal TRAMP spleen (13.6% reduction, P = 0.047), however the low-dose-adaptive radioprotection did not significantly add to the PTL/DMAPT-induced protection in normal tissues, nor did it affect tumor kill. These results support the use of the more bioavailable DMAPT and low-dose radiation, alone or in combination as useful radioprotectors of normal tissues to alleviate radiotherapy-induced side-effects in patients. The enhanced radiosensitisation in prostate tissues displaying high-grade PIN suggests that DMAPT also holds promise for targeted therapy of advanced prostate cancer, which may go on to become metastatic. The redox mechanisms involved in the differential radioprotection observed here suggest that increased radiotherapy efficacy by DMAPT is more broadly applicable to a range of cancer types.

  14. Dobutamine Stress Echocardiography and Tissue Synchronization Imaging

    PubMed Central

    Tas, Hakan; Gundogdu, Fuat; Gurlertop, Yekta; Karakelleoglu, Sule

    2008-01-01

    Dobutamine stress echocardiography has emerged as a reliable method for the diagnosis of coronary artery disease and the management of its treatment. Several studies have shown that that this technique works with 80–85% accuracy in comparison with other imaging methods. There are few studies aimed at developing the clinical utility of dobutamine stress echocardiography for the evaluation of normal and abnormal segments that result from dobutamine stress with Tissue Synchronization Imaging. PMID:25610034

  15. Relationship of oxygen dose to angiogenesis induction in irradiated tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marx, R.E.; Ehler, W.J.; Tayapongsak, P.

    1990-11-01

    This study was accomplished in an irradiated rabbit model to assess the angiogenic properties of normobaric oxygen and hyperbaric oxygen as compared with air-breathing controls. Results indicated that normobaric oxygen had no angiogenic properties above normal revascularization of irradiated tissue than did air-breathing controls (p = 0.89). Hyperbaric oxygen demonstrated an eight- to ninefold increased vascular density over both normobaric oxygen and air-breathing controls (p = 0.001). Irradiated tissue develops a hypovascular-hypocellular-hypoxic tissue that does not revascularize spontaneously. Results failed to demonstrate an angiogenic effect of normobaric oxygen. It is suggested that oxygen in this sense is a drug requiringmore » hyperbaric pressures to generate therapeutic effects on chronically hypovascular irradiated tissue.« less

  16. Microgravity

    NASA Image and Video Library

    2001-06-01

    Cells cultured on Earth (left) typically settle quickly on the bottom of culture vessels due to gravity. In microgravity (right), cells remain suspended and aggregate to form three-dimensional tissue. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  17. Microgravity

    NASA Image and Video Library

    1998-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  18. What do we know about the participation of hematopoietic stem cells in hematopoiesis?

    PubMed

    Drize, Nina; Petinati, Nataliya

    2015-01-01

    The demonstrated presence in adult tissues of cells with sustained tissue regenerative potential has given rise to the concept of tissue stem cells. Assays to detect and measure such cells indicate that they have enormous proliferative potential and usually an ability to produce all or many of the mature cell types that define the specialized functionality of the tissue. In the hematopoietic system, one or only a few cells can restore lifelong hematopoiesis of the whole organism. To what extent is the maintenance of hematopoietic stem cells required during normal hematopoiesis? How does the constant maintenance of hematopoiesis occur and what is the behavior of the hematopoietic stem cells in the normal organism? How many of the hematopoietic stem cells are created during the development of the organism? How many hematopoietic stem cells are generating more mature progeny at any given moment? What happens to the population of hematopoietic stem cells in aging? This review will attempt to describe the results of recent research which contradict some of the ideas established over the past 30 years about how hematopoiesis is regulated.

  19. Diagnosing breast cancer using Raman spectroscopy: prospective analysis

    NASA Astrophysics Data System (ADS)

    Haka, Abigail S.; Volynskaya, Zoya; Gardecki, Joseph A.; Nazemi, Jon; Shenk, Robert; Wang, Nancy; Dasari, Ramachandra R.; Fitzmaurice, Maryann; Feld, Michael S.

    2009-09-01

    We present the first prospective test of Raman spectroscopy in diagnosing normal, benign, and malignant human breast tissues. Prospective testing of spectral diagnostic algorithms allows clinicians to accurately assess the diagnostic information contained in, and any bias of, the spectroscopic measurement. In previous work, we developed an accurate, internally validated algorithm for breast cancer diagnosis based on analysis of Raman spectra acquired from fresh-frozen in vitro tissue samples. We currently evaluate the performance of this algorithm prospectively on a large ex vivo clinical data set that closely mimics the in vivo environment. Spectroscopic data were collected from freshly excised surgical specimens, and 129 tissue sites from 21 patients were examined. Prospective application of the algorithm to the clinical data set resulted in a sensitivity of 83%, a specificity of 93%, a positive predictive value of 36%, and a negative predictive value of 99% for distinguishing cancerous from normal and benign tissues. The performance of the algorithm in different patient populations is discussed. Sources of bias in the in vitro calibration and ex vivo prospective data sets, including disease prevalence and disease spectrum, are examined and analytical methods for comparison provided.

  20. Bioreactor principles

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Cells cultured on Earth (left) typically settle quickly on the bottom of culture vessels due to gravity. In microgravity (right), cells remain suspended and aggregate to form three-dimensional tissue. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  1. Raman spectroscopy differentiates squamous cell carcinoma (SCC) from normal skin following treatment with a high-powered CO2 laser.

    PubMed

    Fox, Sara A; Shanblatt, Ashley A; Beckman, Hugh; Strasswimmer, John; Terentis, Andrew C

    2014-12-01

    The number of cases of non-melanoma skin cancer (NMSC), which include squamous cell carcinoma (SCC) and basal cell carcinoma (BCC), continues to rise as the aging population grows. Mohs micrographic surgery has become the treatment of choice in many cases but is not always necessary or feasible. Ablation with a high-powered CO2 laser offers the advantage of highly precise, hemostatic tissue removal. However, confirmation of complete cancer removal following ablation is difficult. In this study we tested for the first time the feasibility of using Raman spectroscopy as an in situ diagnostic method to differentiate NMSC from normal tissue following partial ablation with a high-powered CO2 laser. Twenty-five tissue samples were obtained from eleven patients undergoing Mohs micrographic surgery to remove NMSC tumors. Laser treatment was performed with a SmartXide DOT Fractional CO2 Laser (DEKA Laser Technologies, Inc.) emitting a wavelength of 10.6 μm. Treatment levels ranged from 20 mJ to 1200 mJ total energy delivered per laser treatment spot (350 μm spot size). Raman spectra were collected from both untreated and CO2 laser-treated samples using a 785 nm diode laser. Principal Component Analysis (PCA) and Binary Logistic Regression (LR) were used to classify spectra as originating from either normal or NMSC tissue, and from treated or untreated tissue. Partial laser ablation did not adversely affect the ability of Raman spectroscopy to differentiate normal from cancerous residual tissue, with the spectral classification model correctly identifying SCC tissue with 95% sensitivity and 100% specificity following partial laser ablation, compared with 92% sensitivity and 60% selectivity for untreated NMSC tissue. The main biochemical difference identified between normal and NMSC tissue was high levels of collagen in the normal tissue, which was lacking in the NMSC tissue. The feasibility of a combined high-powered CO2 laser ablation, Raman diagnostic procedure for the treatment of NMSC is demonstrated since CO2 laser treatment does not hinder the ability of Raman spectroscopy to differentiate normal from diseased tissue. This combined approach could be employed clinically to greatly enhance the speed and effectiveness of NMSC treatment in many cases. © 2014 Wiley Periodicals, Inc.

  2. Quantitative analysis of drug distribution by ambient mass spectrometry imaging method with signal extinction normalization strategy and inkjet-printing technology.

    PubMed

    Luo, Zhigang; He, Jingjing; He, Jiuming; Huang, Lan; Song, Xiaowei; Li, Xin; Abliz, Zeper

    2018-03-01

    Quantitative mass spectrometry imaging (MSI) is a robust approach that provides both quantitative and spatial information for drug candidates' research. However, because of complicated signal suppression and interference, acquiring accurate quantitative information from MSI data remains a challenge, especially for whole-body tissue sample. Ambient MSI techniques using spray-based ionization appear to be ideal for pharmaceutical quantitative MSI analysis. However, it is more challenging, as it involves almost no sample preparation and is more susceptible to ion suppression/enhancement. Herein, based on our developed air flow-assisted desorption electrospray ionization (AFADESI)-MSI technology, an ambient quantitative MSI method was introduced by integrating inkjet-printing technology with normalization of the signal extinction coefficient (SEC) using the target compound itself. The method utilized a single calibration curve to quantify multiple tissue types. Basic blue 7 and an antitumor drug candidate (S-(+)-deoxytylophorinidine, CAT) were chosen to initially validate the feasibility and reliability of the quantitative MSI method. Rat tissue sections (heart, kidney, and brain) administered with CAT was then analyzed. The quantitative MSI analysis results were cross-validated by LC-MS/MS analysis data of the same tissues. The consistency suggests that the approach is able to fast obtain the quantitative MSI data without introducing interference into the in-situ environment of the tissue sample, and is potential to provide a high-throughput, economical and reliable approach for drug discovery and development. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Microgravity

    NASA Image and Video Library

    1998-01-01

    Astronaut John Blaha replaces an exhausted media bag and filled waste bag with fresh bags to continue a bioreactor experiment aboard space station Mir in 1996. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. This image is from a video downlink. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).

  4. Prodrug strategy for cancer cell-specific targeting: A recent overview.

    PubMed

    Zhang, Xian; Li, Xiang; You, Qidong; Zhang, Xiaojin

    2017-10-20

    The increasing development of targeted cancer therapy provides extensive possibilities in clinical trials, and numerous strategies have been explored. The prodrug is one of the most promising strategies in targeted cancer therapy to improve the selectivity and efficacy of cytotoxic compounds. Compared with normal tissues, cancer cells are characterized by unique aberrant markers, thus inactive prodrugs targeting these markers are excellent therapeutics to release active drugs, killing cancer cells without damaging normal tissues. In this review, we explore an integrated view of potential prodrugs applied in targeted cancer therapy based on aberrant cancer specific markers and some examples are provided for inspiring new ideas of prodrug strategy for cancer cell-specific targeting. Copyright © 2017. Published by Elsevier Masson SAS.

  5. Adipose tissue expandability and the early origins of PCOS.

    PubMed

    de Zegher, Francis; Lopez-Bermejo, Abel; Ibáñez, Lourdes

    2009-11-01

    The most prevalent phenotypes of polycystic ovary syndrome (PCOS) are characterized by insulin resistance and androgen excess. The adipose tissue (AT) expandability hypothesis explains the development of insulin resistance in obesity and in cases of AT deficit. In line with this hypothesis, we propose that hyperinsulinemic androgen excess in PCOS is often underpinned by exhaustion of the capacity to expand subcutaneous AT in a metabolically safe way. Such exhaustion might occur when a positive energy imbalance meets a normal fat-storage capacity and/or when a normal energy balance faces a low fat storage capacity. This concept thus explains how PCOS phenotypes might result from obesity, prenatal growth restraint or a genetic lipodystrophy, or, experimentally, from prenatal androgen excess.

  6. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Astronaut John Blaha replaces an exhausted media bag and filled waste bag with fresh bags to continue a bioreactor experiment aboard space station Mir in 1996. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. This image is from a video downlink. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).

  7. Scalloped and Yorkie are required for cell cycle re-entry of quiescent cells after tissue damage.

    PubMed

    Meserve, Joy H; Duronio, Robert J

    2015-08-15

    Regeneration of damaged tissues typically requires a population of active stem cells. How damaged tissue is regenerated in quiescent tissues lacking a stem cell population is less well understood. We used a genetic screen in the developing Drosophila melanogaster eye to investigate the mechanisms that trigger quiescent cells to re-enter the cell cycle and proliferate in response to tissue damage. We discovered that Hippo signaling regulates compensatory proliferation after extensive cell death in the developing eye. Scalloped and Yorkie, transcriptional effectors of the Hippo pathway, drive Cyclin E expression to induce cell cycle re-entry in cells that normally remain quiescent in the absence of damage. Ajuba, an upstream regulator of Hippo signaling that functions as a sensor of epithelial integrity, is also required for cell cycle re-entry. Thus, in addition to its well-established role in modulating proliferation during periods of tissue growth, Hippo signaling maintains homeostasis by regulating quiescent cell populations affected by tissue damage. © 2015. Published by The Company of Biologists Ltd.

  8. The epithelial-mesenchymal interactions: insights into physiological and pathological aspects of oral tissues.

    PubMed

    Santosh, Arvind Babu Rajendra; Jones, Thaon Jon

    2014-03-17

    In the human biological system, the individual cells divide and form tissues and organs. These tissues are hetero-cellular. Basically any tissue consists of an epithelium and the connective tissue. The latter contains mainly mesenchymally-derived tissues with a diversified cell population. The cell continues to grow and differentiate in a pre-programmed manner using a messenger system. The epithelium and the mesenchymal portion of each tissue have two different origins and perform specific functions, but there is a well-defined interaction mechanism, which mediates between them. Epithelial mesenchymal interactions (EMIs) are part of this mechanism, which can be regarded as a biological conversation between epithelial and mesenchymal cell populations involved in the cellular differentiation of one or both cell populations. EMIs represent a process that is essential for cell growth, cell differentiation and cell multiplication. EMIs are associated with normal physiological processes in the oral cavity, such as odontogenesis, dentino-enamel junction formation, salivary gland development, palatogenesis, and also pathological processes, such as oral cancer. This paper focuses the role EMIs in odontogenesis, salivary gland development, palatogenesis and oral cancer.

  9. Effects of stripped oil shale retort water on fishes, birds, and mammals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nystrom, R.R.

    1983-01-01

    Golden hamsters (Mesocricetus auratus Water), coturnix quail (Coturnix coturnix Teminck and Schlegal), fathead minnows (Pimphales promelas Rafinesque), and rainbow trout (Salmo gairdneri Richardson) were subjected to various exposures of stripped oil shale retort water (SRW). Chronic low-level exposures of all experimental animals to SRW revealed no adverse histological effects attributable to SRW. Also, production and development of second generation fathead minnows and coturnix quail exposed to SRW was normal. Subacute exposure of rainbow trout to SRW produced ultrastructural changes detected by transmission, scanning, and freeze fracture electron microscopy) in the gill, liver, and kidney tissues. The gills showed a swellingmore » of secondary lamellae, disorganization of normal tissue architecture, and sloughing of respiratory cells. The liver contained lamellar bodies not seen in the controls. Relatively large, electron dense, membrane-bounded deposits were present in proximal tubule cells of the kidney. Sodium arsenite (a significant component of SRW) was shown to cause swelling of granular endosplasmic reticulum in quail liver tissue with an acute exposure. This effect could be related to the fact that arsenic inhibits ATP production, which would decrease the ability of the sodium pumps to maintain a normal osmotic balance.« less

  10. Clinical Features of Nivolumab-Induced Thyroiditis: A Case Series Study.

    PubMed

    Yamauchi, Ichiro; Sakane, Yoriko; Fukuda, Yorihide; Fujii, Toshihito; Taura, Daisuke; Hirata, Masakazu; Hirota, Keisho; Ueda, Yohei; Kanai, Yugo; Yamashita, Yui; Kondo, Eri; Sone, Masakatsu; Yasoda, Akihiro; Inagaki, Nobuya

    2017-07-01

    The programmed cell death-1 (PD-1) pathway is a novel therapeutic target in immune checkpoint therapy for cancer. It consists of the PD-1 receptor and its two ligands, programmed death-ligand 1 (PD-L1) and programmed death-ligand 2 (PD-L2). Nivolumab is an anti-PD-1 monoclonal antibody approved for malignant melanoma, advanced non-small cell lung cancer, and advanced renal cell carcinoma in Japan. Thyrotoxicosis and hypothyroidism have both been reported in international Phase 3 studies and national post-marketing surveillance of nivolumab in Japan. This study analyzed five consecutive cases with thyroid dysfunction associated with nivolumab therapy. Second, it examined the mRNA and protein expressions of PD-L1 and PD-L2 by reverse transcription polymerase chain reaction and Western blotting. All patients were diagnosed with painless thyroiditis. Thyrotoxicosis developed within four weeks from the first administration of nivolumab and normalized within four weeks of onset in three of the five patients. Hypothyroidism after transient thyrotoxicosis developed in two patients, and preexisting hypothyroidism persisted in one patient. The other two patients were treated with glucocorticoids and discontinued nivolumab therapy for comorbid adverse events. One did not develop hypothyroidism, and the other developed mild, transient hypothyroidism. In addition, it was verified that normal thyroid tissue expresses PD-L1 and PD-L2 mRNA and those proteins. In the present cases, nivolumab-induced thyrotoxicosis seemed to be associated with painless thyroiditis, while no patient with Graves' disease was observed. A transient and rapid course with subsequent hypothyroidism was observed in nivolumab-induced thyroiditis. In addition, it was verified that PD-L1 and PD-L2 are expressed in normal thyroid tissue. This suggests that nivolumab therapy reduces immune tolerance, even in normal thyroid tissue, and leads to the development of thyroiditis. Treating thyrotoxicosis with only supportive care and considering levothyroxine replacement therapy once subsequent hypothyroidism occurs is proposed. Further investigations are required to confirm whether glucocorticoid therapy and discontinuation of nivolumab therapy prevent subsequent hypothyroidism.

  11. SU-E-T-573: Normal Tissue Dose Effect of Prescription Isodose Level Selection in Lung Stereotactic Body Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Q; Lei, Y; Zheng, D

    Purpose: To evaluate dose fall-off in normal tissue for lung stereotactic body radiation therapy (SBRT) cases planned with different prescription isodose levels (IDLs), by calculating the dose dropping speed (DDS) in normal tissue on plans computed with both Pencil Beam (PB) and Monte-Carlo (MC) algorithms. Methods: The DDS was calculated on 32 plans for 8 lung SBRT patients. For each patient, 4 dynamic conformal arc plans were individually optimized for prescription isodose levels (IDL) ranging from 60% to 90% of the maximum dose with 10% increments to conformally cover the PTV. Eighty non-overlapping rind structures each of 1mm thickness weremore » created layer by layer from each PTV surface. The average dose in each rind was calculated and fitted with a double exponential function (DEF) of the distance from the PTV surface, which models the steep- and moderate-slope portions of the average dose curve in normal tissue. The parameter characterizing the steep portion of the average dose curve in the DEF quantifies the DDS in the immediate normal tissue receiving high dose. Provided that the prescription dose covers the whole PTV, a greater DDS indicates better normal tissue sparing. The DDS were compared among plans with different prescription IDLs, for plans computed with both PB and MC algorithms. Results: For all patients, the DDS was found to be the lowest for 90% prescription IDL and reached a highest plateau region for 60% or 70% prescription. The trend was the same for both PB and MC plans. Conclusion: Among the range of prescription IDLs accepted by lung SBRT RTOG protocols, prescriptions to 60% and 70% IDLs were found to provide best normal tissue sparing.« less

  12. Dynamic Contrast-enhanced Magnetic Resonance Imaging for Differentiating Between Primary Tumor, Metastatic Node and Normal Tissue in Head and Neck Cancer.

    PubMed

    Chen, Liangliang; Ye, Yufeng; Chen, Hanwei; Chen, Shihui; Jiang, Jinzhao; Dan, Guo; Huang, Bingsheng

    2018-06-01

    To study the difference of the Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) parameters among the primary tumor, metastatic node and peripheral normal tissue of head and neck cancer. Consecutive newly-diagnosed head and neck cancer patients with nodal metastasis between December 2010 and July 2013 were recruited, and 25 patients (8 females; 24~63,mean 43±11 years old) were enrolled. DCE-MRI was performed in the primary tumor region including the regional lymph nodes on a 3.0-T MRI system. Three quantitative parameters: Ktrans (volume transfer constant), ve (volume fraction of extravascular extracellular space) and kep (the rate constant of contrast transfer) were calculated for the largest node. A repeated-measure ANOVA with a Greenhouse-Geisser correction and post hoc tests using the Bonferroni correction were used to evaluate the differences in Ktrans, ve and kep among primary tumors, metastatic nodes and normal tissue. The values of both Ktrans and ve of normal tissue differed significantly from those of nodes (both P < 0.001) and primary tumors (both P < 0.001) respectively, while no significant differences of Ktrans and ve were observed between nodes and primary tumors (P = 0.075 and 0.365 respectively). The kep values of primary tumors were significantly different from those of nodes (P = 0.001) and normal tissue (P = 0.002), while no significant differences between nodes and normal tissue (P > 0.999). The DCE-MRI parameters were different in the tumors, metastatic nodes and normal tissue in head and neck cancer. These findings may be useful in the characterization of head and neck cancer.

  13. Microenvironmental Regulation of Mammary Carcinogenesis

    DTIC Science & Technology

    2008-06-01

    cells. These models share many of the hallmarks of multistage human breast cancer development including histological disease progression and immune cell... developed by Muller and colleagues20, represents a reasonable recapitulation of late-stage human breast cancer as determined by histological progression ...Annual Progress Report d. Develop a profile of proteolytic activities in normal and neoplastic mammary tissues from mouse models of mammary

  14. Disruption of Insulin Signaling in Myf5-Expressing Progenitors Leads to Marked Paucity of Brown Fat but Normal Muscle Development

    PubMed Central

    Lynes, Matthew D.; Schulz, Tim J.; Pan, Andrew J.

    2015-01-01

    Insulin exerts pleiotropic effects on cell growth, survival, and metabolism, and its role in multiple tissues has been dissected using conditional knockout mice; however, its role in development has not been studied. Lineage tracing experiments have demonstrated that interscapular brown adipose tissue (BAT) arises from a Myf5-positive lineage shared with skeletal muscle and distinct from the majority of white adipose tissue (WAT) precursors. In this study, we sought to investigate the effects of impaired insulin signaling in the Myf5-expressing precursor cells by deleting the insulin receptor gene. Mice lacking insulin receptor in the Myf5 lineage (Myf5IRKO) have a decrease of interscapular BAT mass; however, muscle development appeared normal. Histologically, the residual BAT had decreased cell size but appeared mature and potentially functional. Expression of adipogenic inhibitors preadipocyte factor-1, Necdin, and wingless-type MMTV integration site member 10a in the residual BAT tissue was nonetheless increased compared with controls, and there was an enrichment of progenitor cells with impaired adipogenic differentiation capacity, suggesting a suppression of adipogenesis in BAT. Surprisingly, when cold challenged, Myf5IRKO mice did not show impaired thermogenesis. This resistance to cold could be attributed to an increased presence of uncoupling protein 1-positive brown adipocytes in sc WAT as well as increased expression of lipolytic activity in BAT. These data suggest a critical role of insulin signaling in the development of interscapular BAT from Myf5-positive progenitor cells, but it appears to be dispensable for muscle development. They also underscore the importance of compensatory browning of sc WAT in the absence of BAT for thermoregulation. PMID:25625589

  15. Effects of Induced Electric Fields on Tissues and Cells

    NASA Astrophysics Data System (ADS)

    Sequin, Emily Katherine

    Cancer remains a substantial health burden in the United States. Traditional treatments for solid malignancies may include chemotherapy, radiation therapy, targeted therapies, or surgical resection. Improved surgical outcomes coincide with increased information regarding the tumor extent in the operating room. Furthermore, pathological examination and diagnosis is bettered when the pathologist has additional information about lesion locations on the large resected specimens from which they take a small sample for microscopic evaluation. Likewise, cancer metastasis is a leading cause of cancer death. Fully understanding why a particular tumor becomes metastatic as well as the mechanisms of cell migration are critical to both preventing metastasis and treating it. This dissertation utilizes the complex interactions of induced electric fields with tissues and cells to meet two complementary research goals. First, eddy currents are induced in tissues using a coaxial eddy current probe (8mm diameter) in order to distinguish tumor tissue from surrounding normal tissue to address the needs of surgeons performing curative cancer resections. Measurements on animal tissue phantoms characterize the eddy current measurement finding that the effective probing area corresponds to about twice the diameter of the probe and that the specimen temperature must be constant for reliable measurements. Measurements on ten fresh tissue specimens from human patients undergoing surgical resection for liver metastases from colorectal cancer showed that the eddy current measurement technique can be used to differentiate tumors from surrounding liver tissue in a non-destructive, non-invasive manner. Furthermore, the differentiation between the tumor and normal tissues required no use of contrast agents. Statistically significant differences between eddy current measurements in three tissue categories, tumor, normal, and interface, were found across patients using a Tukey's pairwise comparison. Moreover, the first eddy current image of the interface region between tumor and normal tissues is presented. Secondly, the effects of induced electric fields on cell motility are explored as cell motility plays an important role in both cancer metastasis and the healing of chronic wounds. Human keratinocyte migration in a wound healing assay was reduced by about 50% under the influence of a 1 Hz induced electric field with a maximum field strength of approximately 34.3 microV/cm. A modified Transwell migration assay was developed to study to migration of metastatic breast cancer cells under the influence of an induced electric field at 100 kHz and maximum field strength of 11.2 microV/cm. It was shown that low frequency, low magnitude, noncontact electric fields can overcome the effects of the chemoattractants SDF1aalpha and EGF. This suggests a possible therapeutic benefit for the treatment of metastatic cancer with non-invasive, induced electric fields. In essence, this work has laid the foundation for exploring the use of non-contact, induced electric fields to study the properties of tissues and cells. These findings support the further development of eddy current technology into a tool useful in the operating room for surgeons seeking information on surgical margin quality. Furthermore, the modifications to standard migration assays offer new ways to study cell motility.

  16. Expression of SIRT1 in the ovaries of rats with polycystic ovary syndrome before and after therapeutic intervention with exenatide

    PubMed Central

    Tao, Xin; Zhang, Xiao; Ge, Shu-Qi; Zhang, Er-Hong; Zhang, Bin

    2015-01-01

    Aim: To investigate the expression of silent information regulator 1 (SIRT1) in rats with polycystic ovary syndrome (PCOS) and its alteration after exenatide treatment. Methods: PCOS rat model was established by dehydroepiandrosterone induction. The animals were randomly divided into exenatide treatment group (EX group, n = 10), metformin treatment group (MF group, n = 10), PCOS group (PCOS group, n = 9) and normal control group (NC group, n = 10). Histological changes of the ovarian tissues were examined by HE staining. SIRT1 expression in the ovarian tissue was detected by RT-PCR and immunohistochemistry. Results: Rats in the PCOS group lost their estrous cycle. Histological observation of the ovary showed saccular dilatation of the follicle, decreased number of corpora lutea, fewer layers of granulosa cells aligned loosely, and thickened layer of theca cells. The changes in reproductive hormones and the development of insulin resistance suggested the successful establishment of the animal models. Immunohistochemistry and Q-PCR detected the mRNA and protein expressions of SIRT1 in the ovary tissues of rats in the normal control group. The SIRT1 expression was significantly lower in PCOS group than in control group (P < 0.05); after drug intervention, the SIRT1 expression significantly increased in EX and MF groups (compared with the PCOS group), whereas no significant difference was noted between the EX group and MF group. Conclusions: The SIRT1 expression in the ovary tissue decreases in PCOS rats (compare with the normal rats) but can be up-regulated after Ex or MF treatment. These drugs may affect the process and development of PCOS by regulating the SIRT1 expression. Exenatide may be therapeutic for PCOS by up-regulating the SITR1 expression. PMID:26339397

  17. Expression of SIRT1 in the ovaries of rats with polycystic ovary syndrome before and after therapeutic intervention with exenatide.

    PubMed

    Tao, Xin; Zhang, Xiao; Ge, Shu-Qi; Zhang, Er-Hong; Zhang, Bin

    2015-01-01

    To investigate the expression of silent information regulator 1 (SIRT1) in rats with polycystic ovary syndrome (PCOS) and its alteration after exenatide treatment. PCOS rat model was established by dehydroepiandrosterone induction. The animals were randomly divided into exenatide treatment group (EX group, n = 10), metformin treatment group (MF group, n = 10), PCOS group (PCOS group, n = 9) and normal control group (NC group, n = 10). Histological changes of the ovarian tissues were examined by HE staining. SIRT1 expression in the ovarian tissue was detected by RT-PCR and immunohistochemistry. Rats in the PCOS group lost their estrous cycle. Histological observation of the ovary showed saccular dilatation of the follicle, decreased number of corpora lutea, fewer layers of granulosa cells aligned loosely, and thickened layer of theca cells. The changes in reproductive hormones and the development of insulin resistance suggested the successful establishment of the animal models. Immunohistochemistry and Q-PCR detected the mRNA and protein expressions of SIRT1 in the ovary tissues of rats in the normal control group. The SIRT1 expression was significantly lower in PCOS group than in control group (P < 0.05); after drug intervention, the SIRT1 expression significantly increased in EX and MF groups (compared with the PCOS group), whereas no significant difference was noted between the EX group and MF group. The SIRT1 expression in the ovary tissue decreases in PCOS rats (compare with the normal rats) but can be up-regulated after Ex or MF treatment. These drugs may affect the process and development of PCOS by regulating the SIRT1 expression. Exenatide may be therapeutic for PCOS by up-regulating the SITR1 expression.

  18. Downregulation of external death receptor genes FAS and DR5 in colorectal cancer samples positive for human papillomavirus infection.

    PubMed

    Karbasi, Ashraf; Borhani, Nasim; Daliri, Karim; Kazemi, Bahram; Manoochehri, Mehdi

    2015-06-01

    Human papillomaviruses (HPV) have frequently been detected in colorectal cancer tumor samples, and may play a role in the pathogenesis of colorectal cancer. This study was designed to investigate the presence of DNA and RNA for the high-risk HPV genotypes 16 and 18 in samples of colorectal cancer tumors and adjacent normal tissues. We also investigated the expression of proapoptotic genes in HPV-positive colorectal tumors compared to normal tissue samples. Samples of tumoral and adjacent normal tissues were fresh-frozen, and HPV DNA was identified by nested and semiquantitative PCR. Real time PCR was used to quantitatively compare the expression of HPV-18 E6 and nine proapoptotic genes in HPV-positive tumors and samples of adjacent normal tissue. HPV-16 DNA was found in 10.5% of the tumor samples, and HPV-18 DNA was found in 23.6% of the samples. Real time PCR results showed lower expression of the E6 gene in HPV-positive tumors than in adjacent normal tissue. The expression of two proapoptotic genes, FAS and DR5, was significantly lower in tumor samples than in adjacent normal tissues. HPV infection, especially HPV-18, may play a role in colorectal cancer tumorigenesis by downregulating death receptor genes and interfering with the extrinsic pathway of apoptosis. Copyright © 2015 Elsevier GmbH. All rights reserved.

  19. Simulation study of pO2 distribution in induced tumour masses and normal tissues within a microcirculation environment.

    PubMed

    Li, Mao; Li, Yan; Wen, Peng Paul

    2014-01-01

    The biological microenvironment is interrupted when tumour masses are introduced because of the strong competition for oxygen. During the period of avascular growth of tumours, capillaries that existed play a crucial role in supplying oxygen to both tumourous and healthy cells. Due to limitations of oxygen supply from capillaries, healthy cells have to compete for oxygen with tumourous cells. In this study, an improved Krogh's cylinder model which is more realistic than the previously reported assumption that oxygen is homogeneously distributed in a microenvironment, is proposed to describe the process of the oxygen diffusion from a capillary to its surrounding environment. The capillary wall permeability is also taken into account. The simulation study is conducted and the results show that when tumour masses are implanted at the upstream part of a capillary and followed by normal tissues, the whole normal tissues suffer from hypoxia. In contrast, when normal tissues are ahead of tumour masses, their pO2 is sufficient. In both situations, the pO2 in the whole normal tissues drops significantly due to the axial diffusion at the interface of normal tissues and tumourous cells. As the existence of the axial oxygen diffusion cannot supply the whole tumour masses, only these tumourous cells that are near the interface can be partially supplied, and have a small chance to survive.

  20. [Expression and clinical significance of CD45RO in laryngeal carcinoma tissue].

    PubMed

    Li, Manyi; Liu, Jishengi; Zhou, Hui; Wu, Wenying; Xiao, Gensheng; Yu, Yafeng; Guo, Lingchuan

    2014-03-01

    To investigate the role and significance of CD45RO in occurance and development in laryngeal squamous carcinoma, and to provide some valuable clues for searching new approaches to assess prognosis and theoretical basis for tumor biotherapy. The expression of CD45RO protein in 50 cases of laryngeal squamous carcinoma and 10 cases normal mucos was detected by immunohistochemical S-P method. The positive rate of CD45RO was 30% and 86% respectively in normal tissue and laryngeal squamous cell carcinoma tissue. The expresion of CD45RO was significantly and negatively associated with local metastatic of lymph nodes 0.713, P < 0.05) and tumor sites (r = -0.750, P < 0.05), but it have no notable difference with pathology differentiation, age, infiltrating depth and clinical stages in 50 cases of laryngeal squamous cell cancer. (1) The expresion of CD45RO in laryngeal squamous cell cancer is more than that in normal tissue. (2) It is possible that overexpresion of CD45RO in laryngeal squamous cell carcinoma cut local metastatic lymph nodes. (3) It is probable that overexpresion of CD45RO in laryngeal squamous cell cancer made for prognosis of patients. (4) Other than UICC-TNM stage, pathology differentiation, it provide valuable clues for searching new approaches to assess prognosis of laryngeal squamous cell carcinoma.

  1. The significance of PIWI family expression in human lung embryogenesis and non-small cell lung cancer.

    PubMed

    Navarro, Alfons; Tejero, Rut; Viñolas, Nuria; Cordeiro, Anna; Marrades, Ramon M; Fuster, Dolors; Caritg, Oriol; Moises, Jorge; Muñoz, Carmen; Molins, Laureano; Ramirez, Josep; Monzo, Mariano

    2015-10-13

    The expression of Piwi-interacting RNAs, small RNAs that bind to PIWI proteins, was until recently believed to be limited to germinal stem cells. We have studied the expression of PIWI genes during human lung embryogenesis and in paired tumor and normal tissue prospectively collected from 71 resected non-small-cell lung cancer patients. The mRNA expression analysis showed that PIWIL1 was highly expressed in 7-week embryos and downregulated during the subsequent weeks of development. PIWIL1 was expressed in 11 of the tumor samples but in none of the normal tissue samples. These results were validated by immunohistochemistry, showing faint cytoplasmic reactivity in the PIWIL1-positive samples. Interestingly, the patients expressing PIWIL1 had a shorter time to relapse (TTR) (p = 0.006) and overall survival (OS) (p = 0.0076) than those without PIWIL1 expression. PIWIL2 and 4 were downregulated in tumor tissue in comparison to the normal tissue (p < 0.001) and the patients with lower levels of PIWIL4 had shorter TTR (p = 0.048) and OS (p = 0.033). In the multivariate analysis, PIWIL1 expression emerged as an independent prognostic marker. Using 5-Aza-dC treatment and bisulfite sequencing, we observed that PIWIL1 expression could be regulated in part by methylation. Finally, an in silico study identified a stem-cell expression signature associated with PIWIL1 expression.

  2. Characterization of adenoviral transduction profile in prostate cancer cells and normal prostate tissue.

    PubMed

    Ai, Jianzhong; Tai, Phillip W L; Lu, Yi; Li, Jia; Ma, Hong; Su, Qin; Wei, Qiang; Li, Hong; Gao, Guangping

    2017-09-01

    Prostate diseases are common in males worldwide with high morbidity. Gene therapy is an attractive therapeutic strategy for prostate diseases, however, it is currently underdeveloped. As well known, adeno virus (Ad) is the most widely used gene therapy vector. The aims of this study are to explore transduction efficiency of Ad in prostate cancer cells and normal prostate tissue, thus further providing guidance for future prostate pathophysiological studies and therapeutic development of prostate diseases. We produced Ad expressing enhanced green fluorescence protein (EGFP), and characterized the transduction efficiency of Ad in both human and mouse prostate cancer cell lines in vitro, as well as prostate tumor xenograft, and wild-type mouse prostate tissue in vivo. Ad transduction efficiency was determined by EGFP fluorescence using microscopy and flow cytometry. Cell type-specific transduction was examined by immunofluorescence staining of cell markers. Our data showed that Ad efficiently transduced human and mouse prostate cancer cells in vitro in a dose dependent manner. Following intratumoral and intraprostate injection, Ad could efficiently transduce prostate tumor xenograft and the major prostatic cell types in vivo, respectively. Our findings suggest that Ad can efficiently transduce prostate tumor cells in vitro as well as xenograft and normal prostate tissue in vivo, and further indicate that Ad could be a potentially powerful toolbox for future gene therapy of prostate diseases. © 2017 Wiley Periodicals, Inc.

  3. Novel In Vivo Model for Combinatorial Fluorescence Labeling in Mouse Prostate

    PubMed Central

    Fang, Xiaolan; Gyabaah, Kenneth; Nickkholgh, Bita; Cline, J. Mark; Balaji, K.C.

    2015-01-01

    BACKGROUND The epithelial layer of prostate glands contains several types of cells, including luminal and basal cells. Yet there is paucity of animal models to study the cellular origin of normal or neoplastic development in the prostate to facilitate the treatment of heterogenous prostate diseases by targeting individual cell lineages. METHODS We developed a mouse model that expresses different types of fluorescent proteins (XFPs) specifically in prostatic cells. Using an in vivo stochastic fluorescent protein combinatorial strategy, XFP signals were expressed specifically in prostate of Protein Kinase D1 (PKD1) knock-out, K-RasG12D knock-in, and Phosphatase and tensin homolog (PTEN) and PKD1 double knock-out mice under the control of PB-Cre promoter. RESULTS In vivo XFP signals were observed in prostate of PKD1 knock-out, K-RasG12D knock-in, and PTEN PKD1 double knock-out mice, which developed normal, hyperplastic, and neoplastic prostate, respectively. The patchy expression pattern of XFPs in neoplasia tissue indicated the clonal origin of cancer cells in the prostate. CONCLUSIONS The transgenic mouse models demonstrate combinatorial fluorescent protein expression in normal and cancerous prostatic tissues. This novel prostate-specific fluorescent labeled mouse model, which we named Prorainbow, could be useful in studying benign and malignant pathology of prostate. PMID:25753731

  4. Novel In Vivo model for combinatorial fluorescence labeling in mouse prostate.

    PubMed

    Fang, Xiaolan; Gyabaah, Kenneth; Nickkholgh, Bita; Cline, J Mark; Balaji, K C

    2015-06-15

    The epithelial layer of prostate glands contains several types of cells, including luminal and basal cells. Yet there is paucity of animal models to study the cellular origin of normal or neoplastic development in the prostate to facilitate the treatment of heterogenous prostate diseases by targeting individual cell lineages. We developed a mouse model that expresses different types of fluorescent proteins (XFPs) specifically in prostatic cells. Using an in vivo stochastic fluorescent protein combinatorial strategy, XFP signals were expressed specifically in prostate of Protein Kinase D1 (PKD1) knock-out, K-Ras(G) (12) (D) knock-in, and Phosphatase and tensin homolog (PTEN) and PKD1 double knock-out mice under the control of PB-Cre promoter. In vivo XFP signals were observed in prostate of PKD1 knock-out, K-Ras(G) (12) (D) knock-in, and PTEN PKD1 double knock-out mice, which developed normal, hyperplastic, and neoplastic prostate, respectively. The patchy expression pattern of XFPs in neoplasia tissue indicated the clonal origin of cancer cells in the prostate. The transgenic mouse models demonstrate combinatorial fluorescent protein expression in normal and cancerous prostatic tissues. This novel prostate-specific fluorescent labeled mouse model, which we named Prorainbow, could be useful in studying benign and malignant pathology of prostate. © 2015 Wiley Periodicals, Inc.

  5. Impaired coordination between signaling pathways is revealed in human colorectal cancer using single-cell mass cytometry of archival tissue blocks

    PubMed Central

    Simmons, Alan J.; Scurrah, Cherie’ R.; McKinley, Eliot T.; Herring, Charles A.; Irish, Jonathan M.; Washington, Mary K.; Coffey, Robert J.; Lau, Ken S.

    2016-01-01

    Cellular heterogeneity poses a significant challenge to understanding tissue level phenotypes and confounds conventional bulk analyses. To facilitate the analysis of signaling at the single-cell level in human tissues, we applied mass cytometry using CyTOF (Cytometry Time-of-Flight) to formalin-fixed paraffin-embedded (FFPE) normal and diseased intestinal specimens. We developed and validated a technique called FFPE-DISSECT (Disaggregation for Intracellular Signaling in Single Epithelial Cells from Tissue), a single-cell approach for characterizing native signaling states from embedded solid tissue samples. We applied FFPE-DISSECT coupled to mass cytometry and found differential signaling by tumor necrosis factor α (TNF-α) in intestinal enterocytes, goblet cells and enteroendocrine cells, implicating the role of the downstream RAS-RAF-MEK-ERK signaling pathway in dictating goblet cell identity. In addition, application of FFPE-DISSECT, mass cytometry, and data-driven computational analyses to human colon specimens confirmed reduced differentiation in colorectal cancer (CRC) compared to normal colon, and revealed quantitative increases in inter- and intra-tissue heterogeneity in CRC with regards to the modular regulation of signaling pathways. Specifically, modular co-regulation of the kinases P38 and ERK, the translation regulator 4EBP1, and the transcription factor CREB in the proliferative compartment of the normal colon was loss in CRC, as evidenced by their impaired coordination over samplings of single cells in tissue. Our data suggest that this single-cell approach, applied in conjunction with genomic annotation, such as microsatellite instability and mutations in KRAS and BRAF, allows rapid and detailed characterization of cellular heterogeneity from clinical repositories of embedded human tissues. FFPE-DISSECT coupled of mass cytometry can be used for deriving cellular landscapes from archived patient samples, beyond CRC, and as a high resolution tool for disease characterization and subtyping. PMID:27729552

  6. Prostate Cancer Detection Using Near Infrared Spectral Polarization Imaging

    DTIC Science & Technology

    2005-07-01

    position. This indicates the polarization preservation nature of Cybesin. Time Resolved Fluorescence Intensity of Cybesin 60000 Perpendicular 3000 0...absorption than that of normal tissue at water absorption peaks indicating cancer tissue has less water content than that of normal tissue; (5) preliminary...rectum-and-membrane tissues.’ This indicates that our proposed approach of imaging a prostate gland through rectum using spectral polarization imaging

  7. Investigation of metabolite changes in the transition from pre-invasive to invasive cervical cancer measured using (1)H and (31)P magic angle spinning MRS of intact tissue.

    PubMed

    De Silva, Sonali S; Payne, Geoffrey S; Thomas, Valerie; Carter, Paul G; Ind, Thomas E J; deSouza, Nandita M

    2009-02-01

    The aim of this study was to determine the metabolic changes in the transition from pre-invasive to invasive cervical cancer using high-resolution magic angle spinning (HR-MAS) MRS. Biopsy specimens were obtained from women with histologically normal cervix (n = 5), cervical intraepithelial neoplasia (CIN; mild, n = 5; moderate/severe, n = 40), and invasive cancer (n = 23). (1)H HR-MAS MRS data were acquired using a Bruker Avance 11.74 T spectrometer (Carr-Purcell-Meiboom-Gill sequence; TR = 4.8 s; TE = 135 ms; 512 scans; 41 min acquisition). (31)P HR-MAS spectra were obtained from the normal subjects and cancer patients only (as acetic acid applied before tissue sampling in patients with CIN impaired spectral quality) using a (1)H-decoupled pulse-acquire sequence (TR = 2.82 s; 2048 scans; 96 min acquisition). Peak assignments were based on values reported in the literature. Peak areas were measured using the AMARES algorithm. Estimated metabolite concentrations were compared between patient diagnostic categories and tissue histology using independent samples t tests. Comparisons based on patient category at diagnosis showed significantly higher estimated concentrations of choline (P = 0.0001) and phosphocholine (P = 0.002) in tissue from patients with cancer than from patients with high-grade dyskaryosis, but no differences between non-cancer groups. Division by histology of the sample also showed increases in choline (P = 0.002) and phosphocholine (P = 0.002) in cancer compared with high-grade CIN tissue. Phosphoethanolamine was increased in cancer compared with normal tissue (P = 0.0001). Estimated concentrations of alanine (P = 0.01) and creatine (P = 0.008) were significantly reduced in normal tissue from cancer patients compared with normal tissue from non-cancer patients. The estimated concentration of choline was significantly increased in CIN tissue from cancer patients compared with CIN tissue from non-cancer patients (P = 0.0001). Estimated concentrations of choline-containing metabolites increased from pre-invasive to invasive cervical cancer. Concurrent metabolite depletion occurs in normal tissue adjacent to cancer tissue. Copyright (c) 2008 John Wiley & Sons, Ltd.

  8. Ultra-Wideband Millimeter-Wave Dielectric Characteristics of Freshly Excised Normal and Malignant Human Skin Tissues.

    PubMed

    Mirbeik-Sabzevari, Amir; Ashinoff, Robin; Tavassolian, Negar

    2018-06-01

    Millimeter waves have recently gained attention for the evaluation of skin lesions and the detection of skin tumors. Such evaluations heavily rely on the dielectric contrasts existing between normal and malignant skin tissues at millimeter-wave frequencies. However, current studies on the dielectric properties of normal and diseased skin tissues at these frequencies are limited and inconsistent. In this study, a comprehensive dielectric spectroscopy study is conducted for the first time to characterize the ultra-wideband dielectric properties of freshly excised normal and malignant skin tissues obtained from skin cancer patients having undergone Mohs micrographic surgeries at Hackensack University Medical Center. Measurements are conducted using a precision slim-form open-ended coaxial probe in conjunction with a millimeter-wave vector network analyzer over the frequency range of 0.5-50 GHz. A one-pole Cole-Cole model is fitted to the complex permittivity dataset of each sample. Statistically considerable contrasts are observed between the dielectric properties of malignant and normal skin tissues over the ultra-wideband millimeter-wave frequency range considered.

  9. Role of percent tissue altered on ectasia after LASIK in eyes with suspicious topography.

    PubMed

    Santhiago, Marcony R; Smadja, David; Wilson, Steven E; Krueger, Ronald R; Monteiro, Mario L R; Randleman, J Bradley

    2015-04-01

    To investigate the association of the percent tissue altered (PTA) with the occurrence of ectasia after LASIK in eyes with suspicious preoperative corneal topography. This retrospective comparative case-control study compared associations of reported ectasia risk factors in 129 eyes, including 57 eyes with suspicious preoperative Placido-based corneal topography that developed ectasia after LASIK (suspect ectasia group), 32 eyes with suspicious topography that remained stable for at least 3 years after LASIK (suspect control group), and 30 eyes that developed ectasia with bilateral normal topography (normal topography ectasia group). Groups were subdivided based on topographic asymmetry into high- or low-suspect groups. The PTA, preoperative central corneal thickness (CCT), residual stromal bed (RSB), and age (years) were evaluated in univariate and multivariate analyses. Average PTA values for normal topography ectasia (45), low-suspect ectasia (39), high-suspect ectasia (36), low-suspect control (32), and high-suspect control (29) were significantly different from one another in all comparisons (P < .003) except high- and low-suspect ectasia groups (P = .033), and presented the highest discriminative capability of all variables evaluated. Age was only significantly different between the high-suspect ectasia and normal topography ectasia groups, and CCT was not significantly different between any groups. Stepwise logistic regression revealed the PTA as the most significant independent variable (P < .0001), with RSB the next most significant parameter. There remains a significant correlation between PTA values and ectasia risk after LASIK, even in eyes with suspicious corneal topography. Less tissue alteration, or a lower PTA value, was necessary to induce ectasia in eyes with more remarkable signs of topographic abnormality, and PTA provided better discriminative capabilities than RSB for all study populations. Copyright 2015, SLACK Incorporated.

  10. Nanomechanical signatures of oral submucous fibrosis in sub-epithelial connective tissue.

    PubMed

    Anura, Anji; Das, Debanjan; Pal, Mousumi; Paul, Ranjan Rashmi; Das, Soumen; Chatterjee, Jyotirmoy

    2017-01-01

    Oral sub-mucous fibrosis (OSF), a potentially malignant disorder, exhibits extensive remodeling of extra-cellular matrix in the form of sub-epithelial fibrosis which is a possible sequel of assaults from different oral habit related irritants. It has been assumed that micro/nanobio-mechanical imbalance experienced in the oral mucosa due to fibrosis may be deterministic for malignant potential (7-13%) of this pathosis. Present study explores changes in mechanobiological attributes of sub-epithelial connective tissue of OSF and the normal counterpart. The atomic force microscopy was employed to investigate tissue topography at micro/nano levels. It documented the presence of closely packed parallel arrangement of dense collagen fibers with wide variation in bandwidth and loss of D-space in OSF as compared to normal. The AFM based indentation revealed that sub-epithelium of OSF tissue has lost its flexibility with increased Young's modulus, stiffness, adhesiveness and reduced deformation of the juxta-epithealial connective tissue towards the deeper layer. These significant variations in nano-mechanical properties of the connective tissue indicated plausible impacts on patho-physiological microenvironment. Excessive deposition of collagen I and diminished expression of collagen III, fibronectin along with presence of α-SMA positive myofibroblast in OSF depicted its pathological basis and indicated the influence of altered ECM on this pathosis. The mechanobiological changes in OSF were corroborative with change in collagen composition recorded through immunohistochemistry and RT-PCR. The revelation of comparative nanomechanical profiles of normal oral mucosa and OSF in the backdrop of their structural and cardinal molecular attributes thus became pivotal for developing holistic pathobiological insight about possible connects for malignant transformation of this pre-cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Development of a normal tissue complication probability (NTCP) model for radiation-induced hypothyroidism in nasopharyngeal carcinoma patients.

    PubMed

    Luo, Ren; Wu, Vincent W C; He, Binghui; Gao, Xiaoying; Xu, Zhenxi; Wang, Dandan; Yang, Zhining; Li, Mei; Lin, Zhixiong

    2018-05-18

    The objectives of this study were to build a normal tissue complication probability (NTCP) model of radiation-induced hypothyroidism (RHT) for nasopharyngeal carcinoma (NPC) patients and to compare it with other four published NTCP models to evaluate its efficacy. Medical notes of 174 NPC patients after radiotherapy were reviewed. Biochemical hypothyroidism was defined as an elevated level of serum thyroid-stimulating hormone (TSH) value with a normal or decreased level of serum free thyroxine (fT4) after radiotherapy. Logistic regression with leave-one-out cross-validation was performed to establish the NTCP model. Model performance was evaluated and compared by the area under the receiver operating characteristic curve (AUC) in our NPC cohort. With a median follow-up of 24 months, 39 (22.4%) patients developed biochemical hypothyroidism. Gender, chemotherapy, the percentage thyroid volume receiving more than 50 Gy (V 50 ), and the maximum dose of the pituitary (P max ) were identified as the most predictive factors for RHT. A NTCP model based on these four parameters were developed. The model comparison was made in our NPC cohort and our NTCP model performed better in RHT prediction than the other four models. This study developed a four-variable NTCP model for biochemical hypothyroidism in NPC patients post-radiotherapy. Our NTCP model for RHT presents a high prediction capability. This is a retrospective study without registration.

  12. Differentiation of Normal and Malignant Breast Tissues using Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Mehrotra, Ranjana; Jangir, Deepak Kumar; Gupta, Alka; Kandpal, H. C.

    2008-11-01

    Infrared spectra of carcinomatous and their normal fore bearing tissues were collected in the 600 cm-1 to 4000 cm-1 region. Fourier Transform Infrared (FTIR) data of infiltrating ductal carcinoma of breast with different grades of malignancy from patients of different age groups were analyzed. Infrared spectra demonstrate significant spectral differences between the tumor sections of normal and the malignant breast tissues. In particular, changes in frequency and intensity in the spectra of protein, nucleic acid and glycogen were observed. This allows to make a qualitative and semi quantitative evaluation of the changes in proliferation activities from normal to diseased tissue. The findings establish a framework for additional studies, which may enable us to establish a relation of the diseased state with its infrared spectra.

  13. Brain tumor imaging of rat fresh tissue using terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Sayuri; Fukushi, Yasuko; Kubota, Oichi; Itsuji, Takeaki; Ouchi, Toshihiko; Yamamoto, Seiji

    2016-07-01

    Tumor imaging by terahertz spectroscopy of fresh tissue without dye is demonstrated using samples from a rat glioma model. The complex refractive index spectrum obtained by a reflection terahertz time-domain spectroscopy system can discriminate between normal and tumor tissues. Both the refractive index and absorption coefficient of tumor tissues are higher than those of normal tissues and can be attributed to the higher cell density and water content of the tumor region. The results of this study indicate that terahertz technology is useful for detecting brain tumor tissue.

  14. Polarization sensitive corneal and anterior segment swept-source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lim, Yiheng; Yamanari, Masahiro; Yasuno, Yoshiaki

    2010-02-01

    We develop a compact polarization sensitive corneal and anterior segment swept-source optical coherence tomography (PS-CAS- OCT) for evaluating the usefulness of PS-OCT, and enabling large scale studies in the tissue properties of normal and diseased eyes using the benefits of the PS-OCT, which provides better tissue discrimination compared to the conventional OCT by visualizing the fibrous tissues in the anterior eye segment. Our polarization-sensitive interferometer is size reduced into a 19 inch box for the portability and the probe is integrated into a position adjustable scanning head for the usability of our system.

  15. Metabolic gradients: a new system for old questions.

    PubMed

    Blackstone, Neil W

    2008-04-22

    Metabolic gradients are likely to be crucial to normal and abnormal development of cells and tissues. As shown by a new study, a Xenopus egg model system has great promise to illuminate quantitative measures of metabolic gradients in living cytoplasm.

  16. Fusobacterium nucleatum as a prognostic marker of colorectal cancer in a Japanese population.

    PubMed

    Yamaoka, Yuko; Suehiro, Yutaka; Hashimoto, Shinichi; Hoshida, Tomomi; Fujimoto, Michiyo; Watanabe, Michiya; Imanaga, Daiki; Sakai, Kouhei; Matsumoto, Toshihiko; Nishioka, Mitsuaki; Takami, Taro; Suzuki, Nobuaki; Hazama, Shoichi; Nagano, Hiroaki; Sakaida, Isao; Yamasaki, Takahiro

    2018-04-01

    Accumulating evidence shows an overabundance of Fusobacterium nucleatum in colorectal tumor tissues. However, the correlation between the absolute copy number of F. nucleatum in colorectal cancer tissues and colorectal cancer progression is unclear from previous reports. Therefore, we performed a study to compare the abundance of F. nucleatum in colorectal tissues with clinicopathologic and molecular features of colorectal cancer. We collected 100 colorectal cancer tissues and 72 matched normal-appearing mucosal tissues. Absolute copy numbers of F. nucleatum were measured by droplet digital PCR. The detection rates of F. nucleatum were 63.9% (46/72) in normal-appearing mucosal tissues and 75.0% (75/100) in CRC tissue samples. The median copy number of F. nucleatum was 0.4/ng DNA in the normal-appearing colorectal mucosa in patients with colorectal cancer and 1.9/ng DNA in the colorectal cancer tissues (P = 0.0031). F. nucleatum copy numbers in stage IV colorectal cancer tissues were significantly higher than those in the normal-appearing mucosa in patients with colorectal cancer (P = 0.0016). The abundance of F. nucleatum in colorectal cancer tissues correlated with tumor size and KRAS mutation and was significantly associated with shorter overall survival times; this trend was notable in the patients with stage IV colorectal cancer. Focusing on normal-appearing mucosa in the patients with colorectal cancer, the F. nucleatum copy number was significantly higher in the patients with stage IV rather than stages I-III. These results suggest that determining F. nucleatum levels may help predict clinical outcomes in colorectal cancer patients. Further confirmatory studies using independent datasets are required to confirm our findings.

  17. Distribution of Basement Membrane Molecules, Laminin and Collagen Type IV, in Normal and Degenerated Cartilage Tissues

    PubMed Central

    Toh, Wei Seong; Gomoll, Andreas H.; Olsen, Bjørn Reino; Spector, Myron

    2014-01-01

    Objective: The objective of the present study was to investigate the presence and distribution of 2 basement membrane (BM) molecules, laminin and collagen type IV, in healthy and degenerative cartilage tissues. Design: Normal and degenerated tissues were obtained from goats and humans, including articular knee cartilage, the intervertebral disc, and meniscus. Normal tissue was also obtained from patella-tibial enthesis in goats. Immunohistochemical analysis was performed using anti-laminin and anti–collagen type IV antibodies. Human and goat skin were used as positive controls. The percentage of cells displaying the pericellular presence of the protein was graded semiquantitatively. Results: When present, laminin and collagen type IV were exclusively found in the pericellular matrix, and in a discrete layer on the articulating surface of normal articular cartilage. In normal articular (hyaline) cartilage in the human and goat, the proteins were found co-localized pericellularly. In contrast, in human osteoarthritic articular cartilage, collagen type IV but not laminin was found in the pericellular region. Nonpathological fibrocartilaginous tissues from the goat, including the menisci and the enthesis, were also positive for both laminin and collagen type IV pericellularly. In degenerated fibrocartilage, including intervertebral disc, as in degenerated hyaline cartilage only collagen type IV was found pericellularly around chondrocytes but with less intense staining than in non-degenerated tissue. In calcified cartilage, some cells were positive for laminin but not type IV collagen. Conclusions: We report differences in expression of the BM molecules, laminin and collagen type IV, in normal and degenerative cartilaginous tissues from adult humans and goats. In degenerative tissues laminin is depleted from the pericellular matrix before collagen type IV. The findings may inform future studies of the processes underlying cartilage degeneration and the functional roles of these 2 extracellular matrix proteins, normally associated with BM. PMID:26069692

  18. Correlation of tissue-plasma partition coefficients between normal tissues and subcutaneous xenografts of human tumor cell lines in mouse as a prediction tool of drug penetration in tumors.

    PubMed

    Poulin, Patrick; Hop, Cornelis Eca; Salphati, Laurent; Liederer, Bianca M

    2013-04-01

    Understanding drug distribution and accumulation in tumors would be informative in the assessment of efficacy in targeted therapy; however, existing methods for predicting tissue drug distribution focus on normal tissues and do not incorporate tumors. The main objective of this study was to describe the relationships between tissue-plasma concentration ratios (Kp ) of normal tissues and those of subcutaneous xenograft tumors under nonsteady-state conditions, and establish regression equations that could potentially be used for the prediction of drug levels in several human tumor xenografts in mouse, based solely on a Kp value determined in a normal tissue (e.g., muscle). A dataset of 17 compounds was collected from the literature and from Genentech. Tissue and plasma concentration data in mouse were obtained following oral gavage or intraperitoneal administration. Linear regression analyses were performed between Kp values in several normal tissues (muscle, lung, liver, or brain) and those in human tumor xenografts (CL6, EBC-1, HT-29, PC3, U-87, MCF-7-neo-Her2, or BT474M1.1). The tissue-plasma ratios in normal tissues reasonably correlated with the tumor-plasma ratios in CL6, EBC-1, HT-29, U-87, BT474M1.1, and MCF-7-neo-Her2 xenografts (r(2) in the range 0.62-1) but not with the PC3 xenograft. In general, muscle and lung exhibited the strongest correlation with tumor xenografts, followed by liver. Regression coefficients from brain were low, except between brain and the glioblastoma U-87 xenograft (r(2) in the range 0.62-0.94). Furthermore, reasonably strong correlations were observed between muscle and lung and between muscle and liver (r(2) in the range 0.67-0.96). The slopes of the regressions differed depending on the class of drug (strong vs. weak base) and type of tissue (brain vs. other tissues and tumors). Overall, this study will contribute to our understanding of tissue-plasma partition coefficients for tumors and facilitate the use of physiologically based pharmacokinetics (PBPK) modeling for chemotherapy in oncology studies. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:1355-1369, 2013. Copyright © 2013 Wiley Periodicals, Inc.

  19. Multispectral fluorescence imaging of human ovarian and Fallopian tube tissue for early stage cancer detection

    NASA Astrophysics Data System (ADS)

    Tate, Tyler; Baggett, Brenda; Rice, Photini; Watson, Jennifer; Orsinger, Gabe; Nymeyer, Ariel C.; Welge, Weston A.; Keenan, Molly; Saboda, Kathylynn; Roe, Denise J.; Hatch, Kenneth; Chambers, Setsuko; Black, John; Utzinger, Urs; Barton, Jennifer

    2015-03-01

    With early detection, five year survival rates for ovarian cancer are over 90%, yet no effective early screening method exists. Emerging consensus suggests that perhaps over 50% of the most lethal form of the disease, high grade serous ovarian cancer, originates in the Fallopian tube. Cancer changes molecular concentrations of various endogenous fluorophores. Using specific excitation wavelengths and emissions bands on a Multispectral Fluorescence Imaging (MFI) system, spatial and spectral data over a wide field of view can be collected from endogenous fluorophores. Wavelength specific reflectance images provide additional information to normalize for tissue geometry and blood absorption. Ratiometric combination of the images may create high contrast between neighboring normal and abnormal tissue. Twenty-six women undergoing oophorectomy or debulking surgery consented the use of surgical discard tissue samples for MFI imaging. Forty-nine pieces of ovarian tissue and thirty-two pieces of Fallopian tube tissue were collected and imaged with excitation wavelengths between 280 nm and 550 nm. After imaging, each tissue sample was fixed, sectioned and HE stained for pathological evaluation. Comparison of mean intensity values between normal, benign, and cancerous tissue demonstrate a general trend of increased fluorescence of benign tissue and decreased fluorescence of cancerous tissue when compared to normal tissue. The predictive capabilities of the mean intensity measurements are tested using multinomial logistic regression and quadratic discriminant analysis. Adaption of the system for in vivo Fallopian tube and ovary endoscopic imaging is possible and is briefly described.

  20. Oxygenated hemoglobin diffuse reflectance ratio for in vitro detection of human gastric pre-cancer

    NASA Astrophysics Data System (ADS)

    Li, L. Q.; Wei, H. J.; Guo, Z. Y.; Yang, H. Q.; Wu, G. Y.; Xie, S. S.; Zhong, H. Q.; Li, X. Y.; Zhao, Q. L.; Guo, X.

    2010-07-01

    Oxygenated hemoglobin diffuse reflectance (DR) ratio (R540/R575) method based on DR spectral signatures is used for early diagnosis of malignant lesions of human gastric epithelial tissues in vitro. The DR spectra for four different kinds of gastric epithelial tissues were measured using a spectrometer with an integrating sphere detector in the spectral range from 400 to 650 nm. The results of measurement showed that the average DR spectral intensity for the epithelial tissues of normal stomach is higher than that for the epithelial tissues of chronic and malignant stomach and that for the epithelial tissues of chronic gastric ulcer is higher than that for the epithelial tissues of malignant stomach. The average DR spectra for four different kinds of gastric epithelial tissues show dips at 542 and 577 nm owing to absorption from oxygenated Hemoglobin (HbO2). The differences in the mean R540/R575 ratios of HbO2 bands are 6.84% between the epithelial tissues of normal stomach and chronic gastric ulcer, 14.7% between the epithelial tissues of normal stomach and poorly differentiated gastric adenocarcinoma and 22.6% between the epithelial tissues of normal stomach and undifferentiated gastric adenocarcinoma. It is evident from results that there were significant differences in the mean R540/R575 ratios of HbO2 bands for four different kinds of gastric epithelial tissues in vitro ( P < 0.01).

  1. Microgravity

    NASA Image and Video Library

    1996-01-01

    Exterior view of the NASA Bioreactor Engineering Development Unit flown on Mir. The rotating wall vessel is behind the window on the face of the large module. Control electronics are in the module at left; gas supply and cooling fans are in the module at back. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  2. A Head and Neck Simulator for Radiology and Radiotherapy

    NASA Astrophysics Data System (ADS)

    Thompson, Larissa; Campos, Tarcísio P. R.

    2013-06-01

    Phantoms are suitable tools to simulate body tissues and organs in radiology and radiation therapy. This study presents the development of a physical head and neck phantom and its radiological response for simulating brain pathology. The following features on the phantom are addressed and compared to human data: mass density, chemical composition, anatomical shape, computerized tomography images and Hounsfield Units. Mass attenuation and kerma coefficients of the synthetic phantom and normal tissues, as well as their deviations, were also investigated. Radiological experiments were performed, including brain tumors and subarachnoid hemorrhage simulations. Computerized tomography images of such pathologies in phantom and human were obtained. The anthropometric dimensions of the phantom present anatomical conformation similar to a human head and neck. Elemental weight percentages of the equivalent tissues match the human ones. Hounsfield Unit values of the main developed structures are presented, approaching human data. Kerma and mass attenuation coefficients spectra from human and phantom are presented, demonstrating smaller deviations in the radiological X-ray spectral domain. In conclusion, the phantom presented suitable normal and pathological radiological responses relative to those observed in humans. It may improve radiological protocols and education in medical imaging.

  3. Interactions of the hormones leptin, ghrelin, adiponectin, resistin, and PYY3-36 with the reproductive system.

    PubMed

    Budak, Erdal; Fernández Sánchez, Manuel; Bellver, José; Cerveró, Ana; Simón, Carlos; Pellicer, Antonio

    2006-06-01

    To summarize the effects of novel hormones (leptin, ghrelin, adiponectin, resistin, and PYY3-36) secreted from adipose tissue and the gastrointestinal tract that have been discovered to exert different effects on several reproductive functions, such as the hypothalamic-pituitary-gonadal axis, embryo development, implantation physiology, and clinically relevant conditions. A MEDLINE computer search was performed to identify relevant articles. Leptin and ghrelin exert important roles on body weight regulation, eating behavior, and reproduction, acting on the central nervous system and target reproductive organs. As a marker of adequate nutritional stores, these hormones may act on the central nervous system to initiate the complex process of puberty and maintain normal reproductive function. In addition, leptin and ghrelin and their receptors are involved in reproductive events such as gonadal function, embryo development, and embryo-endometrial interaction. Leptin and ghrelin and other adipose tissue-secreted hormones have significant effects on reproduction. Acting through the brain, these hormones may serve as links between adipose tissue and the reproductive system to supply and regulate energy needs for normal reproduction and pregnancy. Future studies are needed to further clarify the role of these hormones in reproductive events and other related gynecological conditions.

  4. Optical biopsy of pre-malignant or degenerative lesions: the role of the inflammatory process

    NASA Astrophysics Data System (ADS)

    da Silva Martinho, Herculano

    2011-03-01

    Recent technological advances in fiber optics, light sources, detectors, and molecular biology have stimulated unprecedented development of optical methods to detect pathological changes in tissues. These methods, collectively termed "optical biopsy," are nondestructive in situ and real-time assays. Optical biopsy techniques as fluorescence spectroscopy, polarized light scattering spectroscopy, optical coherence tomography, confocal reflectance microscopy, and Raman spectroscopy had been extensively used to characterize several pathological tissues. In special, Raman spectroscopy technique had been able to probe several biochemical alterations due to pathology development as change in the DNA, glycogen, phospholipid, non-collagenous proteins. All studies claimed that the optical biopsy methods were able to discriminate normal and malignant tissues. However, few studies had been devoted to the discrimination of very common subtle or early pathological states as inflammatory process, which are always present on, e.g., cancer lesion border. In this work we present a systematic comparison of optical biopsy data on several kinds of lesions were inflammatory infiltrates play the role (breast, cervical, and oral lesion). It will be discussed the essential conditions for the optimization of discrimination among normal and alterated states based on statistical analysis.

  5. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Exterior view of the NASA Bioreactor Engineering Development Unit flown on Mir. The rotating wall vessel is behind the window on the face of the large module. Control electronics are in the module at left; gas supply and cooling fans are in the module at back. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  6. Looking for Cancer Clues in Publicly Accessible Databases

    PubMed Central

    Lemkin, Peter F.; Smythers, Gary W.; Munroe, David J.

    2004-01-01

    What started out as a mere attempt to tentatively identify proteins in experimental cancer-related 2D-PAGE maps developed into VIRTUAL2D, a web-accessible repository for theoretical pI/MW charts for 92 organisms. Using publicly available expression data, we developed a collection of tissue-specific plots based on differential gene expression between normal and diseased states. We use this comparative cancer proteomics knowledge base, known as the tissue molecular anatomy project (TMAP), to uncover threads of cancer markers common to several types of cancer and to relate this information to established biological pathways. PMID:18629065

  7. Looking for cancer clues in publicly accessible databases.

    PubMed

    Medjahed, Djamel; Lemkin, Peter F; Smythers, Gary W; Munroe, David J

    2004-01-01

    What started out as a mere attempt to tentatively identify proteins in experimental cancer-related 2D-PAGE maps developed into VIRTUAL2D, a web-accessible repository for theoretical pI/MW charts for 92 organisms. Using publicly available expression data, we developed a collection of tissue-specific plots based on differential gene expression between normal and diseased states. We use this comparative cancer proteomics knowledge base, known as the tissue molecular anatomy project (TMAP), to uncover threads of cancer markers common to several types of cancer and to relate this information to established biological pathways.

  8. FDG-PET reproducibility in tumor-bearing mice: comparing a traditional SUV approach with a tumor-to-brain tissue ratio approach.

    PubMed

    Busk, Morten; Munk, Ole L; Jakobsen, Steen; Frøkiær, Jørgen; Overgaard, Jens; Horsman, Michael R

    2017-05-01

    Current [F-18]-fluorodeoxyglucose positron emission tomography (FDG-PET) procedures in tumor-bearing mice typically includes fasting, anesthesia, and standardized uptake value (SUV)-based quantification. Such procedures may be inappropriate for prolonged multiscan experiments. We hypothesize that normalization of tumor FDG retention relative to a suitable reference tissue may improve accuracy as this method may be less susceptible to uncontrollable day-to-day changes in blood glucose levels, physical activity, or unnoticed imperfect tail vein injections. Fed non-anesthetized tumor-bearing mice were administered FDG intravenously (i.v.) or intraperitoneally (i.p.) and PET scanned on consecutive days using a Mediso nanoScan PET/magnetic resonance imaging (MRI). Reproducibility of various PET-deduced measures of tumor FDG retention, including normalization to FDG signal in reference organs and a conventional SUV approach, was evaluated. Day-to-day variability in i.v. injected mice was lower when tumor FDG retention was normalized to brain signal (T/B), compared to normalization to other tissues or when using SUV-based normalization. Assessment of tissue radioactivity in dissected tissues confirmed the validity of PET-derived T/B ratios. Mean T/B and SUV values were similar in i.v. and i.p. administered animals, but SUV normalization was more robust in the i.p. group than in the i.v. group. Multimodality scanners allow tissue delineation and normalization of tumor FDG uptake relative to reference tissues. Normalization to brain, but not liver or kidney, improved scan reproducibility considerably and was superior to traditional SUV quantification in i.v. tracer-injected animals. Day-to-day variability in SUV's was lower in i.p. than in i.v. injected animals, and i.p. injections may therefore be a valuable alternative in prolonged rodent studies, where repeated vein injections are undesirable.

  9. Sensory Innervation of the Nonspecialized Connective Tissues in the Low Back of the Rat

    PubMed Central

    Corey, Sarah M.; Vizzard, Margaret A.; Badger, Gary J.; Langevin, Helene M.

    2011-01-01

    Chronic musculoskeletal pain, including low back pain, is a worldwide debilitating condition; however, the mechanisms that underlie its development remain poorly understood. Pathological neuroplastic changes in the sensory innervation of connective tissue may contribute to the development of nonspecific chronic low back pain. Progress in understanding such potentially important abnormalities is hampered by limited knowledge of connective tissue's normal sensory innervation. The goal of this study was to evaluate and quantify the sensory nerve fibers terminating within the nonspecialized connective tissues in the low back of the rat. With 3-dimensional reconstructions of thick (30–80 μm) tissue sections we have for the first time conclusively identified sensory nerve fiber terminations within the collagen matrix of connective tissue in the low back. Using dye labeling techniques with Fast Blue, presumptive dorsal root ganglia cells that innervate the low back were identified. Of the Fast Blue-labeled cells, 60–88% also expressed calcitonin gene-related peptide (CGRP) immunoreactivity. Based on the immunolabeling with CGRP and the approximate size of these nerve fibers (≤2 μm) we hypothesize that they are Aδ or C fibers and thus may play a role in the development of chronic pain. PMID:21411968

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ren; Boudreau, Aaron; Bissell, Mina J

    Mammary gland development, functional differentiation, and homeostasis are orchestrated and sustained by a balance of biochemical and biophysical cues from the organ's microenvironment. The three-dimensional microenvironment of the mammary gland, predominantly 'encoded' by a collaboration between the extracellular matrix (ECM), hormones, and growth factors, sends signals from ECM receptors through the cytoskeletal intracellular matrix to nuclear and chromatin structures resulting in gene expression; the ECM in turn is regulated and remodeled by signals from the nucleus. In this chapter, we discuss how coordinated ECM deposition and remodeling is necessary for mammary gland development, how the ECM provides structural and biochemicalmore » cues necessary for tissue-specific function, and the role of the cytoskeleton in mediating the extra - to intracellular dialogue occurring between the nucleus and the microenvironment. When operating normally, the cytoskeletal-mediated dynamic and reciprocal integration of tissue architecture and function directs mammary gland development, tissue polarity, and ultimately, tissue-specific gene expression. Cancer occurs when these dynamic interactions go awry for an extended time.« less

  11. Autofluorescence spectroscopy of oral mucosa

    NASA Astrophysics Data System (ADS)

    Majumdar, S. K.; Uppal, A.; Gupta, P. K.

    1998-06-01

    We report the results of an in-vitro study on autofluorescence from pathologically characterized normal and malignant squamous tissues from the oral cavity. The study involved biopsy samples from 47 patients with oral cancer of which 11 patients had cancer of tongue, 17 of buccal mucosa and 19 of alveolus. The results of excitation and emission spectroscopy at several wavelengths (280 nm less than or equal to (lambda) exless than or equal to 460 nm; 340 nm less than or equal to (lambda) em less than or equal to 520 nm) showed that at (lambda) ex equals 337 nm and 400 nm the mean value for the spectrally integrated fluorescence intensity [(Sigma) (lambda ) IF((lambda) )] from the normal tissue sites was about a factor of 2 larger than that from the malignant tissue sites. At other excitation wavelengths the difference in (Sigma) (lambda ) IF((lambda) ) was not statistically significant. Similarly, for (lambda) em equals 390 nm and 460 nm, the intensity of the 340 nm band of the excitation spectra from normal tissues was observed to be a factor of 2 larger than that from malignant tissues. Analysis of these results suggests that NADH concentration is higher in normal oral tissues compared to the malignant. This contrasts with our earlier observation of an reduced NADH concentration in normal sites of breast tissues vis a vis malignant sites. For the 337 nm excited emission spectra a 10-variable MVLR score (using (Sigma) (lambda ) IF((lambda) ) and normalized intensities at nine wavelengths as input parameters) provided a sensitivity and specificity of 95.7% and 93.1% over the sample size investigated.

  12. Limbal Fibroblasts Maintain Normal Phenotype in 3D RAFT Tissue Equivalents Suggesting Potential for Safe Clinical Use in Treatment of Ocular Surface Failure.

    PubMed

    Massie, Isobel; Dale, Sarah B; Daniels, Julie T

    2015-06-01

    Limbal epithelial stem cell deficiency can cause blindness, but transplantation of these cells on a carrier such as human amniotic membrane can restore vision. Unfortunately, clinical graft manufacture using amnion can be inconsistent. Therefore, we have developed an alternative substrate, Real Architecture for 3D Tissue (RAFT), which supports human limbal epithelial cells (hLE) expansion. Epithelial organization is improved when human limbal fibroblasts (hLF) are incorporated into RAFT tissue equivalent (TE). However, hLF have the potential to transdifferentiate into a pro-scarring cell type, which would be incompatible with therapeutic transplantation. The aim of this work was to assess the scarring phenotype of hLF in RAFT TEs in hLE+ and hLE- RAFT TEs and in nonairlifted and airlifted RAFT TEs. Diseased fibroblasts (dFib) isolated from the fibrotic conjunctivae of ocular mucous membrane pemphigoid (Oc-MMP) patients were used as a pro-scarring positive control against which hLF were compared using surrogate scarring parameters: matrix metalloproteinase (MMP) activity, de novo collagen synthesis, α-smooth muscle actin (α-SMA) expression, and transforming growth factor-β (TGF-β) secretion. Normal hLF and dFib maintained different phenotypes in RAFT TE. MMP-2 and -9 activity, de novo collagen synthesis, and α-SMA expression were all increased in dFib cf. normal hLF RAFT TEs, although TGF-β1 secretion did not differ between normal hLF and dFib RAFT TEs. Normal hLF do not progress toward a scarring-like phenotype during culture in RAFT TEs and, therefore, may be safe to include in therapeutic RAFT TE, where they can support hLE, although in vivo work is required to confirm this. dFib RAFT TEs (used in this study as a positive control) may be useful toward the development of an ex vivo disease model of Oc-MMP.

  13. Limbal Fibroblasts Maintain Normal Phenotype in 3D RAFT Tissue Equivalents Suggesting Potential for Safe Clinical Use in Treatment of Ocular Surface Failure

    PubMed Central

    Dale, Sarah B.; Daniels, Julie T.

    2015-01-01

    Limbal epithelial stem cell deficiency can cause blindness, but transplantation of these cells on a carrier such as human amniotic membrane can restore vision. Unfortunately, clinical graft manufacture using amnion can be inconsistent. Therefore, we have developed an alternative substrate, Real Architecture for 3D Tissue (RAFT), which supports human limbal epithelial cells (hLE) expansion. Epithelial organization is improved when human limbal fibroblasts (hLF) are incorporated into RAFT tissue equivalent (TE). However, hLF have the potential to transdifferentiate into a pro-scarring cell type, which would be incompatible with therapeutic transplantation. The aim of this work was to assess the scarring phenotype of hLF in RAFT TEs in hLE+ and hLE− RAFT TEs and in nonairlifted and airlifted RAFT TEs. Diseased fibroblasts (dFib) isolated from the fibrotic conjunctivae of ocular mucous membrane pemphigoid (Oc-MMP) patients were used as a pro-scarring positive control against which hLF were compared using surrogate scarring parameters: matrix metalloproteinase (MMP) activity, de novo collagen synthesis, α-smooth muscle actin (α-SMA) expression, and transforming growth factor-β (TGF-β) secretion. Normal hLF and dFib maintained different phenotypes in RAFT TE. MMP-2 and -9 activity, de novo collagen synthesis, and α-SMA expression were all increased in dFib cf. normal hLF RAFT TEs, although TGF-β1 secretion did not differ between normal hLF and dFib RAFT TEs. Normal hLF do not progress toward a scarring-like phenotype during culture in RAFT TEs and, therefore, may be safe to include in therapeutic RAFT TE, where they can support hLE, although in vivo work is required to confirm this. dFib RAFT TEs (used in this study as a positive control) may be useful toward the development of an ex vivo disease model of Oc-MMP. PMID:25380529

  14. FOXP3+ regulatory T cells in normal prostate tissue, postatrophic hyperplasia, prostatic intraepithelial neoplasia, and tumor histological lesions in men with and without prostate cancer.

    PubMed

    Davidsson, Sabina; Andren, Ove; Ohlson, Anna-Lena; Carlsson, Jessica; Andersson, Swen-Olof; Giunchi, Francesca; Rider, Jennifer R; Fiorentino, Michelangelo

    2018-01-01

    The tumor promoting or counteracting effects of the immune response to cancer development are thought to be mediated to some extent by the infiltration of regulatory T cells (T regs ). In the present study we evaluated the prevalence of T reg populations in stromal and epithelial compartments of normal, post atrophic hyperplasia (PAH), prostatic intraepithelial neoplasia (PIN), and tumor lesions in men with and without prostate cancer. Study subjects were 102 men consecutively diagnosed with localized prostate cancer undergoing radical prostatectomy and 38 men diagnosed with bladder cancer undergoing cystoprostatectomy without prostate cancer at the pathological examination. Whole mount sections from all patients were evaluated for the epithelial and stromal expression of CD4 + T regs and CD8 + T regs in normal, PAH, PIN, and tumor lesions. A Friedmańs test was used to investigate differences in the mean number of T regs across histological lesions. Logistic regression was used to estimate crude and adjusted odds ratios (OR) for prostate cancer for each histological area. In men with prostate cancer, similarly high numbers of stromal CD4 + T regs were identified in PAH and tumor, but CD4 + T regs were less common in PIN. Greater numbers of epithelial CD4+ T regs in normal prostatic tissue were positively associated with both Gleason score and pT-stage. We observed a fourfold increased risk of prostate cancer in men with epithelial CD4 + T regs in the normal prostatic tissue counterpart. Our results may suggest a possible pathway through which PAH develops directly into prostate cancer in the presence of CD4 + T regs and indicate that transformation of the anti-tumor immune response may be initiated even before the primary tumor is established. © 2017 The Authors. The Prostate Published by Wiley Periodicals Inc.

  15. Pelvic Normal Tissue Contouring Guidelines for Radiation Therapy: A Radiation Therapy Oncology Group Consensus Panel Atlas

    PubMed Central

    Gay, Hiram A.; Barthold, H. Joseph; O’Meara, Elizabeth; Bosch, Walter R.; El Naqa, Issam; Al-Lozi, Rawan; Rosenthal, Seth A.; Lawton, Colleen; Lee, W. Robert; Sandler, Howard; Zietman, Anthony; Myerson, Robert; Dawson, Laura A.; Willett, Christopher; Kachnic, Lisa A.; Jhingran, Anuja; Portelance, Lorraine; Ryu, Janice; Small, William; Gaffney, David; Viswanathan, Akila N.; Michalski, Jeff M.

    2012-01-01

    Purpose To define a male and female pelvic normal tissue contouring atlas for Radiation Therapy Oncology Group (RTOG) trials. Methods and Materials One male pelvis computed tomography (CT) data set and one female pelvis CT data set were shared via the Image-Guided Therapy QA Center. A total of 16 radiation oncologists participated. The following organs at risk were contoured in both CT sets: anus, anorectum, rectum (gastrointestinal and genitourinary definitions), bowel NOS (not otherwise specified), small bowel, large bowel, and proximal femurs. The following were contoured in the male set only: bladder, prostate, seminal vesicles, and penile bulb. The following were contoured in the female set only: uterus, cervix, and ovaries. A computer program used the binomial distribution to generate 95% group consensus contours. These contours and definitions were then reviewed by the group and modified. Results The panel achieved consensus definitions for pelvic normal tissue contouring in RTOG trials with these standardized names: Rectum, AnoRectum, SmallBowel, Colon, BowelBag, Bladder, UteroCervix, Adnexa_R, Adnexa_L, Prostate, SeminalVesc, PenileBulb, Femur_R, and Femur_L. Two additional normal structures whose purpose is to serve as targets in anal and rectal cancer were defined: AnoRectumSig and Mesorectum. Detailed target volume contouring guidelines and images are discussed. Conclusions Consensus guidelines for pelvic normal tissue contouring were reached and are available as a CT image atlas on the RTOG Web site. This will allow uniformity in defining normal tissues for clinical trials delivering pelvic radiation and will facilitate future normal tissue complication research. PMID:22483697

  16. Molecular characterization of immortalized normal and dysplastic oral cell lines.

    PubMed

    Dickman, Christopher T D; Towle, Rebecca; Saini, Rajan; Garnis, Cathie

    2015-05-01

    Cell lines have been developed for modeling cancer and cancer progression. The molecular background of these cell lines is often unknown to those using them to model disease behaviors. As molecular alterations are the ultimate drivers of cell phenotypes, having an understanding of the molecular make-up of these systems is critical for understanding the disease biology modeled. Six immortalized normal, one immortalized dysplasia, one self-immortalized dysplasia, and two primary normal cell lines derived from oral tissues were analyzed for DNA copy number changes and changes in both mRNA and miRNA expression using SMRT-v.2 genome-wide tiling comparative genomic hybridization arrays, Agilent Whole Genome 4x44k expression arrays, and Exiqon V2.M-RT-PCR microRNA Human panels. DNA copy number alterations were detected in both normal and dysplastic immortalized cell lines-as well as in the single non-immortalized dysplastic cell line. These lines were found to have changes in expression of genes related to cell cycle control as well as alterations in miRNAs that are deregulated in clinical oral squamous cell carcinoma tissues. Immortal lines-whether normal or dysplastic-had increased disruption in expression relative to primary lines. All data are available as a public resource. Molecular profiling experiments have identified DNA, mRNA, and miRNA alterations for a panel of normal and dysplastic oral tissue cell lines. These data are a valuable resource to those modeling diseases of the oral mucosa, and give insight into the selection of model cell lines and the interpretation of data from those lines. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Identifying DNA Methylation Features that Underlie Prostate Cancer Disparities

    DTIC Science & Technology

    2016-10-01

    Report We will continue to recruit African American patients and bank their prostate tissue . We will continue dissecting tumor samples into tumor...in prostate tumors and adjacent normal tissue derived from both AA and EA individuals. We will determine if DNA methylation patterns in prostate... tissue (both cancerous and normal tissue ) differ between AA and EA individuals. We will also identify methylation features that differ between tumor

  18. Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue

    NASA Astrophysics Data System (ADS)

    Yang, Yi; Wang, Tianheng; Biswal, Nrusingh C.; Wang, Xiaohong; Sanders, Melinda; Brewer, Molly; Zhu, Quing

    2011-09-01

    Optical scattering coefficient from ex vivo unfixed normal and malignant ovarian tissue was quantitatively extracted by fitting optical coherence tomography (OCT) A-line signals to a single scattering model. 1097 average A-line measurements at a wavelength of 1310 nm were performed at 108 sites obtained from 18 ovaries. The average scattering coefficient obtained from the normal tissue group consisted of 833 measurements from 88 sites was 2.41 mm-1 (+/-0.59), while the average coefficient obtained from the malignant tissue group consisted of 264 measurements from 20 sites was 1.55 mm-1 (+/-0.46). The malignant ovarian tissue showed significant lower scattering than the normal group (p < 0.001). The amount of collagen within OCT imaging depth was analyzed from the tissue histological section stained with Sirius Red. The average collagen area fraction (CAF) obtained from the normal tissue group was 48.4% (+/-12.3%), while the average CAF obtained from the malignant tissue group was 11.4% (+/-4.7%). A statistical significance of the collagen content was found between the two groups (p < 0.001). These results demonstrated that quantitative measurements of optical scattering coefficient from OCT images could be a potential powerful method for ovarian cancer detection.

  19. Distinct expression patterns of the E3 ligase SIAH-1 and its partner Kid/KIF22 in normal tissues and in the breast tumoral processes

    PubMed Central

    2010-01-01

    SIAH proteins are the human members of an highly conserved family of E3 ubiquitin ligases. Several data suggest that SIAH proteins may have a role in tumor suppression and apoptosis. Previously, we reported that SIAH-1 induces the degradation of Kid (KIF22), a chromokinesin protein implicated in the normal progression of mitosis and meiosis, by the ubiquitin proteasome pathway. In human breast cancer cells stably transfected with SIAH-1, Kid/KIF22 protein level was markedly reduced whereas, the Kid/KIF22 mRNA level was increased. This interaction has been further elucidated through analyzing SIAH and Kid/KIF22 expression in both paired normal and tumor tissues and cell lines. It was observed that SIAH-1 protein is widely expressed in different normal tissues, and in cells lines but showing some differences in western blotting profiles. Immunofluorescence microscopy shows that the intracellular distribution of SIAH-1 and Kid/KIF22 appears to be modified in human tumor tissues compared to normal controls. When mRNA expression of SIAH-1 and Kid/KIF22 was analyzed by real-time PCR in normal and cancer breast tissues from the same patient, a large variation in the number of mRNA copies was detected between the different samples. In most cases, SIAH-1 mRNA is decreased in tumor tissues compared to their normal counterparts. Interestingly, in all breast tumor tissues analyzed, variations in the Kid/KIF22 mRNA levels mirrored those seen with SIAH-1 mRNAs. This concerted variation of SIAH-1 and Kid/KIF22 messengers suggests the existence of an additional level of control than the previously described protein-protein interaction and protein stability regulation. Our observations also underline the need to re-evaluate the results of gene expression obtained by qRT-PCR and relate it to the protein expression and cellular localization when matched normal and tumoral tissues are analyzed. PMID:20144232

  20. SU-E-T-587: Optimal Volumetric Modulated Arc Radiotherapy Treatment Planning Technique for Multiple Brain Metastases with Increasing Number of Arcs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keeling, V; Hossain, S; Hildebrand, K

    Purpose: To show improvements in dose conformity and normal brain tissue sparing using an optimal planning technique (OPT) against clinically acceptable planning technique (CAP) in the treatment of multiple brain metastases. Methods: A standardized international benchmark case with12 intracranial tumors was planned using two different VMAT optimization methods. Plans were split into four groups with 3, 6, 9, and 12 targets each planned with 3, 5, and 7 arcs using Eclipse TPS. The beam geometries were 1 full coplanar and half non-coplanar arcs. A prescription dose of 20Gy was used for all targets. The following optimization criteria was used (OPTmore » vs. CAP): (No upper limit vs.108% upper limit for target volume), (priority 140–150 vs. 75–85 for normal-brain-tissue), and (selection of automatic sparing Normal-Tissue-Objective (NTO) vs. Manual NTO). Both had priority 50 to critical structures such as brainstem and optic-chiasm, and both had an NTO priority 150. Normal-brain-tissue doses along with Paddick Conformity Index (PCI) were evaluated. Results: In all cases PCI was higher for OPT plans. The average PCI (OPT,CAP) for all targets was (0.81,0.64), (0.81,0.63), (0.79,0.57), and (0.72,0.55) for 3, 6, 9, and 12 target plans respectively. The percent decrease in normal brain tissue volume (OPT/CAP*100) achieved by OPT plans was (reported as follows: V4, V8, V12, V16, V20) (184, 343, 350, 294, 371%), (192, 417, 380, 299, 360%), and (235, 390, 299, 281, 502%) for the 3, 5, 7 arc 12 target plans, respectively. The maximum brainstem dose decreased for the OPT plan by 4.93, 4.89, and 5.30 Gy for 3, 5, 7 arc 12 target plans, respectively. Conclusion: Substantial increases in PCI, critical structure sparing, and decreases in normal brain tissue dose were achieved by eliminating upper limits from optimization, using automatic sparing of normal tissue function with high priority, and a high priority to normal brain tissue.« less

Top