Elitsur, Yoram; Sigman, Terry; Watkins, Runa; Porto, Anthony F; Leonard Puppa, Elaine L; Foglio, Elsie J; Preston, Deborah L
2017-01-01
Celiac serology is crucial for the diagnosis of celiac disease in children. The American guideline for celiac disease in children suggested that positive serology should be followed by confirmatory intestinal histology. The relationship between high tissue transglutaminase titers and celiac disease in children has not been well investigated in children from North America. In the present study, we investigated whether different tissue transglutaminase titers in symptomatic children could predict celiac disease without the confirmation of intestinal histology. Data from biopsy confirmed celiac children were collected from four different clinics in North America. Clinical, serological, histological, and follow-up data were collected. The accuracy rates of various tissue transglutaminase titers to predict celiac disease in children were calculated. The data from 240 children were calculated. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy rate of tissue transglutaminase titers at ≥10× upper limit of normal were 75.4, 48.8, 87.7, 29.0, and 70.8 %, respectively. Similar data were noted in the other tissue transglutaminase titers (≥3× upper limit of normal, >100 U/ml, or >100 U/ml and >10× upper limit of normal). The positive predictive value of tissue transglutaminase titers at ≥3× upper limit of normal or higher was too low to predict celiac disease in children. Our data suggested that in routine clinical practice, high titers of tissue transglutaminase are not sufficient to diagnose celiac disease in North American children without intestinal biopsies.
NASA Astrophysics Data System (ADS)
Schlosser, Colin; Bodenschatz, Nico; Lam, Sylvia; Lee, Marette; McAlpine, Jessica N.; Miller, Dianne M.; Van Niekerk, Dirk J. T.; Follen, Michele; Guillaud, Martial; MacAulay, Calum E.; Lane, Pierre M.
2016-12-01
Current diagnostic capabilities and limitations of fluorescence endomicroscopy in the cervix are assessed by qualitative and quantitative image analysis. Four cervical tissue types are investigated: normal columnar epithelium, normal and precancerous squamous epithelium, and stromal tissue. This study focuses on the perceived variability within and the subtle differences between the four tissue groups in the context of endomicroscopic in vivo pathology. Conclusions are drawn on the general ability to distinguish and diagnose tissue types, on the need for imaging depth control to enhance differentiation, and on the possible risks for diagnostic misinterpretations.
Transferrin receptors in human tissues: their distribution and possible clinical relevance.
Gatter, K C; Brown, G; Trowbridge, I S; Woolston, R E; Mason, D Y
1983-05-01
The distribution of transferrin receptors (TR) has been studied in a range of normal and malignant tissues using four monoclonal antibodies, BK19.9, B3/25, T56/14 and T58/1. In normal tissues TR was found in a limited number of sites, notably basal epidermis, the endocrine pancreas, hepatocytes, Kupffer cells, testis and pituitary. This restricted pattern of distribution may be relevant to the characteristic pattern of iron deposition in primary haemachromatosis. In contrast to this limited pattern of expression in normal tissue, the receptor was widely distributed in carcinomas, sarcomas and in samples from cases of Hodgkin's disease. This malignancy-associated expression of the receptor may play a role in the anaemia of advanced malignancy by competing with the bone marrow for serum iron.
Transferrin receptors in human tissues: their distribution and possible clinical relevance.
Gatter, K C; Brown, G; Trowbridge, I S; Woolston, R E; Mason, D Y
1983-01-01
The distribution of transferrin receptors (TR) has been studied in a range of normal and malignant tissues using four monoclonal antibodies, BK19.9, B3/25, T56/14 and T58/1. In normal tissues TR was found in a limited number of sites, notably basal epidermis, the endocrine pancreas, hepatocytes, Kupffer cells, testis and pituitary. This restricted pattern of distribution may be relevant to the characteristic pattern of iron deposition in primary haemachromatosis. In contrast to this limited pattern of expression in normal tissue, the receptor was widely distributed in carcinomas, sarcomas and in samples from cases of Hodgkin's disease. This malignancy-associated expression of the receptor may play a role in the anaemia of advanced malignancy by competing with the bone marrow for serum iron. Images PMID:6302135
Sherman, Mark E; Figueroa, Jonine D; Henry, Jill E; Clare, Susan E; Rufenbarger, Connie; Storniolo, Anna Maria
2012-04-01
"Molecular histology" of the breast may be conceptualized as encompassing the normative ranges of histologic structure and marker expression in normal breast tissues in relation to a woman's age and life experiences. Studies of molecular histology can aid our understanding of early events in breast carcinogenesis and provide data for comparison with diseased breast tissues. Until recently, lack of epidemiologically annotated, optimally prepared normal breast tissues obtained from healthy women presented a barrier to breast cancer research. The Komen Tissue Bank at Indiana University (Indianapolis, IN) is a unique biorepository that was developed to overcome this limitation. The Bank enrolls healthy donors who provide questionnaire data, blood, and up to four breast biopsies, which are prepared as both formalin-fixed, paraffin-embedded and frozen tissues. The resource is accessible to researchers worldwide through a proposal submission, review, and approval process. As of November 2010, the Bank had collected specimens and information from 1,174 donors. In this review, we discuss the importance of studying normal breast tissues, assess the strengths and limitations of studying normal tissues obtained from different sources, and summarize the features of the Komen Tissue Bank. As research projects are completed, results will be posted on the Bank's website. 2012 AACR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keeling, V; Hossain, S; Hildebrand, K
Purpose: To show improvements in dose conformity and normal brain tissue sparing using an optimal planning technique (OPT) against clinically acceptable planning technique (CAP) in the treatment of multiple brain metastases. Methods: A standardized international benchmark case with12 intracranial tumors was planned using two different VMAT optimization methods. Plans were split into four groups with 3, 6, 9, and 12 targets each planned with 3, 5, and 7 arcs using Eclipse TPS. The beam geometries were 1 full coplanar and half non-coplanar arcs. A prescription dose of 20Gy was used for all targets. The following optimization criteria was used (OPTmore » vs. CAP): (No upper limit vs.108% upper limit for target volume), (priority 140–150 vs. 75–85 for normal-brain-tissue), and (selection of automatic sparing Normal-Tissue-Objective (NTO) vs. Manual NTO). Both had priority 50 to critical structures such as brainstem and optic-chiasm, and both had an NTO priority 150. Normal-brain-tissue doses along with Paddick Conformity Index (PCI) were evaluated. Results: In all cases PCI was higher for OPT plans. The average PCI (OPT,CAP) for all targets was (0.81,0.64), (0.81,0.63), (0.79,0.57), and (0.72,0.55) for 3, 6, 9, and 12 target plans respectively. The percent decrease in normal brain tissue volume (OPT/CAP*100) achieved by OPT plans was (reported as follows: V4, V8, V12, V16, V20) (184, 343, 350, 294, 371%), (192, 417, 380, 299, 360%), and (235, 390, 299, 281, 502%) for the 3, 5, 7 arc 12 target plans, respectively. The maximum brainstem dose decreased for the OPT plan by 4.93, 4.89, and 5.30 Gy for 3, 5, 7 arc 12 target plans, respectively. Conclusion: Substantial increases in PCI, critical structure sparing, and decreases in normal brain tissue dose were achieved by eliminating upper limits from optimization, using automatic sparing of normal tissue function with high priority, and a high priority to normal brain tissue.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riegel, Adam C.; Antone, Jeffrey; Schwartz, David L., E-mail: dschwartz3@nshs.edu
2013-04-01
To compare relative carotid and normal tissue sparing using volumetric-modulated arc therapy (VMAT) or intensity-modulated radiation therapy (IMRT) for early-stage larynx cancer. Seven treatment plans were retrospectively created on 2 commercial treatment planning systems for 11 consecutive patients with T1-2N0 larynx cancer. Conventional plans consisted of opposed-wedged fields. IMRT planning used an anterior 3-field beam arrangement. Two VMAT plans were created, a full 360° arc and an anterior 180° arc. Given planning target volume (PTV) coverage of 95% total volume at 95% of 6300 cGy and maximum spinal cord dose below 2500 cGy, mean carotid artery dose was pushed asmore » low as possible for each plan. Deliverability was assessed by comparing measured and planned planar dose with the gamma (γ) index. Full-arc planning provided the most effective carotid sparing but yielded the highest mean normal tissue dose (where normal tissue was defined as all soft tissue minus PTV). Static IMRT produced next-best carotid sparing with lower normal tissue dose. The anterior half-arc produced the highest carotid artery dose, in some cases comparable with conventional opposed fields. On the whole, carotid sparing was inversely related to normal tissue dose sparing. Mean γ indexes were much less than 1, consistent with accurate delivery of planned treatment. Full-arc VMAT yields greater carotid sparing than half-arc VMAT. Limited-angle IMRT remains a reasonable alternative to full-arc VMAT, given its ability to mediate the competing demands of carotid and normal tissue dose constraints. The respective clinical significance of carotid and normal tissue sparing will require prospective evaluation.« less
Sherman, Mark E.; Figueroa, Jonine D.; Henry, Jill E.; Clare, Susan E.; Rufenbarger, Connie; Storniolo, Anna Maria
2014-01-01
“Molecular histology” of the breast may be conceptualized as encompassing the normative ranges of histological structure and marker expression in normal breast tissues in relation to a woman’s age and life experiences. Studies of molecular histology can aid our understanding of early events in breast carcinogenesis and provide data for comparison with diseased breast tissues. Until recently, lack of epidemiologically annotated, optimally prepared normal breast tissues obtained from healthy women presented a barrier to breast cancer research. The Komen Tissue Bank at Indiana University is a unique biorepository that was developed to overcome this limitation. The Bank enrolls healthy donors who provide questionnaire data, blood, and up to four breast biopsies, which are prepared as both formalin fixed paraffin embedded and frozen tissues. The resource is accessible to researchers worldwide through a proposal submission, review, and approval process. As of November 2010, the Bank had collected specimens and information from 1,174 donors. In this review, we discuss the importance of studying normal breast tissues, assess the strengths and limitations of studying normal tissues obtained from different sources, and summarize the features of the Komen Tissue Bank. As research projects are completed, results will be posted on the Bank’s website. PMID:22345117
Extravascular transport in normal and tumor tissues.
Jain, R K; Gerlowski, L E
1986-01-01
The transport characteristics of the normal and tumor tissue extravascular space provide the basis for the determination of the optimal dosage and schedule regimes of various pharmacological agents in detection and treatment of cancer. In order for the drug to reach the cellular space where most therapeutic action takes place, several transport steps must first occur: (1) tissue perfusion; (2) permeation across the capillary wall; (3) transport through interstitial space; and (4) transport across the cell membrane. Any of these steps including intracellular events such as metabolism can be the rate-limiting step to uptake of the drug, and these rate-limiting steps may be different in normal and tumor tissues. This review examines these transport limitations, first from an experimental point of view and then from a modeling point of view. Various types of experimental tumor models which have been used in animals to represent human tumors are discussed. Then, mathematical models of extravascular transport are discussed from the prespective of two approaches: compartmental and distributed. Compartmental models lump one or more sections of a tissue or body into a "compartment" to describe the time course of disposition of a substance. These models contain "effective" parameters which represent the entire compartment. Distributed models consider the structural and morphological aspects of the tissue to determine the transport properties of that tissue. These distributed models describe both the temporal and spatial distribution of a substance in tissues. Each of these modeling techniques is described in detail with applications for cancer detection and treatment in mind.
It takes a tissue to make a tumor: epigenetics, cancer and the microenvironment
NASA Technical Reports Server (NTRS)
Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)
2001-01-01
How do normal tissues limit the development of cancer? This review discusses the evidence that normal cells effectively restrict malignant behavior, and that such tissue forces must be subjugated to establish a tumor. The action of ionizing radiation will be specifically discussed regarding the disruption of the microenvironment that promotes the transition from preneoplastic to neoplastic growth. Unlike the highly unpredictable nature of genetic mutations, the response of normal cells to radiation damage follows an epigenetic program similar to wound healing and other damage responses. Our hypothesis is that the persistent disruption of the microenvironment in irradiated tissue compromises its ability to suppress carcinogenesis.
NASA Astrophysics Data System (ADS)
Lazebnik, Mariya; Popovic, Dijana; McCartney, Leah; Watkins, Cynthia B.; Lindstrom, Mary J.; Harter, Josephine; Sewall, Sarah; Ogilvie, Travis; Magliocco, Anthony; Breslin, Tara M.; Temple, Walley; Mew, Daphne; Booske, John H.; Okoniewski, Michal; Hagness, Susan C.
2007-10-01
The development of microwave breast cancer detection and treatment techniques has been driven by reports of substantial contrast in the dielectric properties of malignant and normal breast tissues. However, definitive knowledge of the dielectric properties of normal and diseased breast tissues at microwave frequencies has been limited by gaps and discrepancies across previously published studies. To address these issues, we conducted a large-scale study to experimentally determine the ultrawideband microwave dielectric properties of a variety of normal, malignant and benign breast tissues, measured from 0.5 to 20 GHz using a precision open-ended coaxial probe. Previously, we reported the dielectric properties of normal breast tissue samples obtained from reduction surgeries. Here, we report the dielectric properties of normal (adipose, glandular and fibroconnective), malignant (invasive and non-invasive ductal and lobular carcinomas) and benign (fibroadenomas and cysts) breast tissue samples obtained from cancer surgeries. We fit a one-pole Cole-Cole model to the complex permittivity data set of each characterized sample. Our analyses show that the contrast in the microwave-frequency dielectric properties between malignant and normal adipose-dominated tissues in the breast is considerable, as large as 10:1, while the contrast in the microwave-frequency dielectric properties between malignant and normal glandular/fibroconnective tissues in the breast is no more than about 10%.
2007-09-01
AD_________________ Award Number: W81XWH-04-1-0817 TITLE: Pilot Comparison of Stromal Gene ...COVERED 30 Sep 2006 – 31 Aug 2007 4. TITLE AND SUBTITLE Pilot Comparison of Stromal Gene Expression among Normal Prostate Tissues and 5a. CONTRACT...subject to formal hypothesis testing. 15. SUBJECT TERMS Prostate Stromal Gene Expression 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
It takes a tissue to make a tumor: Epigenetics, cancer and the microenvironment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barcellos-Hoff, Mary Helen
How do normal tissues limit the development of cancer? This review discusses the evidence that normal cells effectively restrict malignant behavior, and that such tissue forces must be subjugated to establish a tumor. The action of ionizing radiation will be specifically discussed regarding the disruption of the microenvironment that promotes the transition from preneoplastic to neoplastic growth. Unlike the highly unpredictable nature of genetic mutations, the response of normal cells to radiation damage follows an epigenetic program similar to wound healing and other damage responses. Our hypothesis is that the persistent disruption of the microenvironment in irradiated tissue compromises itsmore » ability to suppress carcinogenesis.« less
Lazebnik, Mariya; McCartney, Leah; Popovic, Dijana; Watkins, Cynthia B; Lindstrom, Mary J; Harter, Josephine; Sewall, Sarah; Magliocco, Anthony; Booske, John H; Okoniewski, Michal; Hagness, Susan C
2007-05-21
The efficacy of emerging microwave breast cancer detection and treatment techniques will depend, in part, on the dielectric properties of normal breast tissue. However, knowledge of these properties at microwave frequencies has been limited due to gaps and discrepancies in previously reported small-scale studies. To address these issues, we experimentally characterized the wideband microwave-frequency dielectric properties of a large number of normal breast tissue samples obtained from breast reduction surgeries at the University of Wisconsin and University of Calgary hospitals. The dielectric spectroscopy measurements were conducted from 0.5 to 20 GHz using a precision open-ended coaxial probe. The tissue composition within the probe's sensing region was quantified in terms of percentages of adipose, fibroconnective and glandular tissues. We fit a one-pole Cole-Cole model to the complex permittivity data set obtained for each sample and determined median Cole-Cole parameters for three groups of normal breast tissues, categorized by adipose tissue content (0-30%, 31-84% and 85-100%). Our analysis of the dielectric properties data for 354 tissue samples reveals that there is a large variation in the dielectric properties of normal breast tissue due to substantial tissue heterogeneity. We observed no statistically significant difference between the within-patient and between-patient variability in the dielectric properties.
Vocal Dose Measures: Quantifying Accumulated Vibration Exposure in Vocal Fold Tissues
Titze, Ingo R.; Švec, Jan G.; Popolo, Peter S.
2011-01-01
To measure the exposure to self-induced tissue vibration in speech, three vocal doses were defined and described: distance dose, which accumulates the distance that tissue particles of the vocal folds travel in an oscillatory trajectory; energy dissipation dose, which accumulates the total amount of heat dissipated over a unit volume of vocal fold tissues; and time dose, which accumulates the total phonation time. These doses were compared to a previously used vocal dose measure, the vocal loading index, which accumulates the number of vibration cycles of the vocal folds. Empirical rules for viscosity and vocal fold deformation were used to calculate all the doses from the fundamental frequency (F0) and sound pressure level (SPL) values of speech. Six participants were asked to read in normal, monotone, and exaggerated speech and the doses associated with these vocalizations were calculated. The results showed that large F0 and SPL variations in speech affected the dose measures, suggesting that accumulation of phonation time alone is insufficient. The vibration exposure of the vocal folds in normal speech was related to the industrial limits for hand-transmitted vibration, in which the safe distance dose was derived to be about 500 m. This limit was found rather low for vocalization; it was related to a comparable time dose of about 17 min of continuous vocalization, or about 35 min of continuous reading with normal breathing and unvoiced segments. The voicing pauses in normal speech and dialogue effectively prolong the safe time dose. The derived safety limits for vocalization will likely require refinement based on a more detailed knowledge of the differences in hand and vocal fold tissue morphology and their response to vibrational stress, and on the effect of recovery of the vocal fold tissue during voicing pauses. PMID:12959470
Vocal dose measures: quantifying accumulated vibration exposure in vocal fold tissues.
Titze, Ingo R; Svec, Jan G; Popolo, Peter S
2003-08-01
To measure the exposure to self-induced tissue vibration in speech, three vocal doses were defined and described: distance dose, which accumulates the distance that tissue particles of the vocal folds travel in an oscillatory trajectory; energy dissipation dose, which accumulates the total amount of heat dissipated over a unit volume of vocal fold tissues; and time dose, which accumulates the total phonation time. These doses were compared to a previously used vocal dose measure, the vocal loading index, which accumulates the number of vibration cycles of the vocal folds. Empirical rules for viscosity and vocal fold deformation were used to calculate all the doses from the fundamental frequency (F0) and sound pressure level (SPL) values of speech. Six participants were asked to read in normal, monotone, and exaggerated speech and the doses associated with these vocalizations were calculated. The results showed that large F0 and SPL variations in speech affected the dose measures, suggesting that accumulation of phonation time alone is insufficient. The vibration exposure of the vocal folds in normal speech was related to the industrial limits for hand-transmitted vibration, in which the safe distance dose was derived to be about 500 m. This limit was found rather low for vocalization; it was related to a comparable time dose of about 17 min of continuous vocalization, or about 35 min of continuous reading with normal breathing and unvoiced segments. The voicing pauses in normal speech and dialogue effectively prolong the safe time dose. The derived safety limits for vocalization will likely require refinement based on a more detailed knowledge of the differences in hand and vocal fold tissue morphology and their response to vibrational stress, and on the effect of recovery of the vocal fold tissue during voicing pauses.
Mirbeik-Sabzevari, Amir; Ashinoff, Robin; Tavassolian, Negar
2018-06-01
Millimeter waves have recently gained attention for the evaluation of skin lesions and the detection of skin tumors. Such evaluations heavily rely on the dielectric contrasts existing between normal and malignant skin tissues at millimeter-wave frequencies. However, current studies on the dielectric properties of normal and diseased skin tissues at these frequencies are limited and inconsistent. In this study, a comprehensive dielectric spectroscopy study is conducted for the first time to characterize the ultra-wideband dielectric properties of freshly excised normal and malignant skin tissues obtained from skin cancer patients having undergone Mohs micrographic surgeries at Hackensack University Medical Center. Measurements are conducted using a precision slim-form open-ended coaxial probe in conjunction with a millimeter-wave vector network analyzer over the frequency range of 0.5-50 GHz. A one-pole Cole-Cole model is fitted to the complex permittivity dataset of each sample. Statistically considerable contrasts are observed between the dielectric properties of malignant and normal skin tissues over the ultra-wideband millimeter-wave frequency range considered.
Lilge, L.; Olivo, M. C.; Schatz, S. W.; MaGuire, J. A.; Patterson, M. S.; Wilson, B. C.
1996-01-01
The applicability and limitations of a photodynamic threshold model, used to describe quantitatively the in vivo response of tissues to photodynamic therapy, are currently being investigated in a variety of normal and malignant tumour tissues. The model states that tissue necrosis occurs when the number of photons absorbed by the photosensitiser per unit tissue volume exceeds a threshold. New Zealand White rabbits were sensitised with porphyrin-based photosensitisers. Normal brain or intracranially implanted VX2 tumours were illuminated via an optical fibre placed into the tissue at craniotomy. The light fluence distribution in the tissue was measured by multiple interstitial optical fibre detectors. The tissue concentration of the photosensitiser was determined post mortem by absorption spectroscopy. The derived photodynamic threshold values for normal brain are significantly lower than for VX2 tumour for all photosensitisers examined. Neuronal damage is evident beyond the zone of frank necrosis. For Photofrin the threshold decreases with time delay between photosensitiser administration and light treatment. No significant difference in threshold is found between Photofrin and haematoporphyrin derivative. The threshold in normal brain (grey matter) is lowest for sensitisation by 5 delta-aminolaevulinic acid. The results confirm the very high sensitivity of normal brain to porphyrin photodynamic therapy and show the importance of in situ light fluence monitoring during photodynamic irradiation. Images Figure 1 Figure 4 Figure 5 Figure 6 Figure 7 PMID:8562339
Nanoparticle formulations of cisplatin for cancer therapy
Duan, Xiaopin; He, Chunbai; Kron, Stephen J.; Lin, Wenbin
2016-01-01
The genotoxic agent cisplatin, used alone or in combination with radiation and/or other chemotherapeutic agents, is an important first-line chemotherapy for a broad range of cancers. The clinical utility of cisplatin is limited both by intrinsic and acquired resistance and dose-limiting normal tissue toxicity. That cisplatin shows little selectivity for tumor versus normal tissue may be a critical factor limiting its value. To overcome the low therapeutic ratio of the free drug, macromolecular, liposomal and nanoparticle drug delivery systems have been explored toward leveraging the enhanced permeability and retention (EPR) effect and promoting delivery of cisplatin to tumors. Here, we survey recent advances in nanoparticle formulations of cisplatin, focusing on agents that show promise in preclinical or clinical settings. PMID:26848041
How specific Raman spectroscopic models are: a comparative study between different cancers
NASA Astrophysics Data System (ADS)
Singh, S. P.; Kumar, K. Kalyan; Chowdary, M. V. P.; Maheedhar, K.; Krishna, C. Murali
2010-02-01
Optical spectroscopic methods are being contemplated as adjunct/ alternative to existing 'Gold standard' of cancer diagnosis, histopathological examination. Several groups are actively pursuing diagnostic applications of Ramanspectroscopy in cancers. We have developed Raman spectroscopic models for diagnosis of breast, oral, stomach, colon and larynx cancers. So far, specificity and applicability of spectral- models has been limited to particular tissue origin. In this study we have evaluated explicitly of spectroscopic-models by analyzing spectra from already developed spectralmodels representing normal and malignant tissues of breast (46), cervix (52), colon (25), larynx (53), and oral (47). Spectral data was analyzed by Principal Component Analysis (PCA) using scores of factor, Mahalanobis distance and Spectral residuals as discriminating parameters. Multiparametric limit test approach was also explored. The preliminary unsupervised PCA of pooled data indicates that normal tissue types were always exclusive from their malignant counterparts. But when we consider tissue of different origin, large overlap among clusters was found. Supervised analysis by Mahalanobis distance and spectral residuals gave similar results. The 'limit test' approach where classification is based on match / mis-match of the given spectrum against all the available spectra has revealed that spectral models are very exclusive and specific. For example breast normal spectral model show matches only with breast normal spectra and mismatch to rest of the spectra. Same pattern was seen for most of spectral models. Therefore, results of the study indicate the exclusiveness and efficacy of Raman spectroscopic-models. Prospectively, these findings might open new application of Raman spectroscopic models in identifying a tumor as primary or metastatic.
Li, Mao; Li, Yan; Wen, Peng Paul
2014-01-01
The biological microenvironment is interrupted when tumour masses are introduced because of the strong competition for oxygen. During the period of avascular growth of tumours, capillaries that existed play a crucial role in supplying oxygen to both tumourous and healthy cells. Due to limitations of oxygen supply from capillaries, healthy cells have to compete for oxygen with tumourous cells. In this study, an improved Krogh's cylinder model which is more realistic than the previously reported assumption that oxygen is homogeneously distributed in a microenvironment, is proposed to describe the process of the oxygen diffusion from a capillary to its surrounding environment. The capillary wall permeability is also taken into account. The simulation study is conducted and the results show that when tumour masses are implanted at the upstream part of a capillary and followed by normal tissues, the whole normal tissues suffer from hypoxia. In contrast, when normal tissues are ahead of tumour masses, their pO2 is sufficient. In both situations, the pO2 in the whole normal tissues drops significantly due to the axial diffusion at the interface of normal tissues and tumourous cells. As the existence of the axial oxygen diffusion cannot supply the whole tumour masses, only these tumourous cells that are near the interface can be partially supplied, and have a small chance to survive.
An, Jing; Hu, Fangdi; Wang, Changhong; Zhang, Zijia; Yang, Li; Wang, Zhengtao
2016-09-01
1. Pinoresinol di-O-β-d-glucopyranoside (PDG), geniposide (GE), geniposidic acid (GA), aucubin (AN) and chlorogenic acid (CA) are the representative active ingredients in Eucommiae cortex (EC), which may be estrogenic. 2. The ultra high-performance liquid chromatography/tandem mass spectrometry (UHPLC-MS/MS) method for simultaneous determination of the five ingredients showed good linearity, low limits of quantification and high extraction recoveries, as well as acceptable precision, accuracy and stability in mice plasma and tissue samples (liver, spleen, kidney and uterus). It was successfully applied to the comparative study on pharmacokinetics and tissue distribution of PDG, GE, GA, AN and CA between normal and ovariectomized (OVX) mice. 3. The results indicated that except CA, the plasma and tissue concentrations of PDG, GE, GA in OVX mice were all greater than those in normal mice. AN could only be detected in the plasma and liver homogenate of normal mice, which was poorly absorbed in OVX mice and low in other measured tissues. PDG, GE and GA seem to be better absorbed in OVX mice than in normal mice proved by the remarkable increased value of AUC0-∞ and Cmax. It is beneficial that PDG, GE, GA have better plasma absorption and tissue distribution in pathological state.
Akers, Stacey N; Moysich, Kirsten; Zhang, Wa; Collamat Lai, Golda; Miller, Austin; Lele, Shashikant; Odunsi, Kunle; Karpf, Adam R
2014-02-01
We determined whether DNA methylation of repetitive elements (RE) is altered in epithelial ovarian cancer (EOC) patient tumors and white blood cells (WBC), compared to normal tissue controls. Two different quantitative measures of RE methylation (LINE1 and Alu bisulfite pyrosequencing) were used in normal and tumor tissues from EOC cases and controls. Tissues analyzed included: i) EOC, ii) normal ovarian surface epithelia (OSE), iii) normal fallopian tube surface epithelia (FTE), iv) WBC from EOC patients, obtained before and after treatment, and v) WBC from demographically-matched controls. REs were significantly hypomethylated in EOC compared to OSE and FTE, and LINE1 and Alu methylation showed a significant direct association in these tissues. In contrast, WBC RE methylation was significantly higher in EOC cases compared to controls. RE methylation in patient-matched EOC tumors and pre-treatment WBC did not correlate. EOC shows robust RE hypomethylation compared to normal tissues from which the disease arises. In contrast, RE are generally hypermethylated in EOC patient WBC compared to controls. EOC tumor and WBC methylation did not correlate in matched patients, suggesting that RE methylation is independently controlled in tumor and normal tissues. Despite the significant differences observed over the population, the range of RE methylation in patient and control WBC overlapped, limiting their specific utility as an EOC biomarker. However, our data demonstrate that DNA methylation is deranged in normal tissues from EOC patients, supporting further investigation of WBC DNA methylation biomarkers suitable for EOC risk assessment. Copyright © 2013 Elsevier Inc. All rights reserved.
Girst, S; Marx, C; Bräuer-Krisch, E; Bravin, A; Bartzsch, S; Oelfke, U; Greubel, C; Reindl, J; Siebenwirth, C; Zlobinskaya, O; Multhoff, G; Dollinger, G; Schmid, T E; Wilkens, J J
2015-09-01
The risk of developing normal tissue injuries often limits the radiation dose that can be applied to the tumour in radiation therapy. Microbeam Radiation Therapy (MRT), a spatially fractionated photon radiotherapy is currently tested at the European Synchrotron Radiation Facility (ESRF) to improve normal tissue protection. MRT utilizes an array of microscopically thin and nearly parallel X-ray beams that are generated by a synchrotron. At the ion microprobe SNAKE in Munich focused proton microbeams ("proton microchannels") are studied to improve normal tissue protection. Here, we comparatively investigate microbeam/microchannel irradiations with sub-millimetre X-ray versus proton beams to minimize the risk of normal tissue damage in a human skin model, in vitro. Skin tissues were irradiated with a mean dose of 2 Gy over the irradiated area either with parallel synchrotron-generated X-ray beams at the ESRF or with 20 MeV protons at SNAKE using four different irradiation modes: homogeneous field, parallel lines and microchannel applications using two different channel sizes. Normal tissue viability as determined in an MTT test was significantly higher after proton or X-ray microchannel irradiation compared to a homogeneous field irradiation. In line with these findings genetic damage, as determined by the measurement of micronuclei in keratinocytes, was significantly reduced after proton or X-ray microchannel compared to a homogeneous field irradiation. Our data show that skin irradiation using either X-ray or proton microchannels maintain a higher cell viability and DNA integrity compared to a homogeneous irradiation, and thus might improve normal tissue protection after radiation therapy. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Overcoming confounded controls in the analysis of gene expression data from microarray experiments.
Bhattacharya, Soumyaroop; Long, Dang; Lyons-Weiler, James
2003-01-01
A potential limitation of data from microarray experiments exists when improper control samples are used. In cancer research, comparisons of tumour expression profiles to those from normal samples is challenging due to tissue heterogeneity (mixed cell populations). A specific example exists in a published colon cancer dataset, in which tissue heterogeneity was reported among the normal samples. In this paper, we show how to overcome or avoid the problem of using normal samples that do not derive from the same tissue of origin as the tumour. We advocate an exploratory unsupervised bootstrap analysis that can reveal unexpected and undesired, but strongly supported, clusters of samples that reflect tissue differences instead of tumour versus normal differences. All of the algorithms used in the analysis, including the maximum difference subset algorithm, unsupervised bootstrap analysis, pooled variance t-test for finding differentially expressed genes and the jackknife to reduce false positives, are incorporated into our online Gene Expression Data Analyzer ( http:// bioinformatics.upmc.edu/GE2/GEDA.html ).
Caruso, Hillary G.; Hurton, Lenka V.; Najjar, Amer; Rushworth, David; Ang, Sonny; Olivares, Simon; Mi, Tiejuan; Switzer, Kirsten; Singh, Harjeet; Huls, Helen; Lee, Dean A.; Heimberger, Amy B.; Champlin, Richard E.; Cooper, Laurence J. N.
2015-01-01
Many tumors over express tumor-associated antigens relative to normal tissue, such as epidermal growth factor receptor (EGFR). This limits targeting by human T cells modified to express chimeric antigen receptors (CARs) due to potential for deleterious recognition of normal cells. We sought to generate CAR+ T cells capable of distinguishing malignant from normal cells based on the disparate density of EGFR expression by generating two CARs from monoclonal antibodies which differ in affinity. T cells with low affinity Nimo-CAR selectively targeted cells over-expressing EGFR, but exhibited diminished effector function as the density of EGFR decreased. In contrast, the activation of T cells bearing high affinity Cetux-CAR was not impacted by the density of EGFR. In summary, we describe the generation of CARs able to tune T-cell activity to the level of EGFR expression in which a CAR with reduced affinity enabled T cells to distinguish malignant from non-malignant cells. PMID:26330164
Fujishiro, Mitsuhiro; Yahagi, Naohisa; Nakamura, Masanori; Kakushima, Naomi; Kodashima, Shinya; Ono, Satoshi; Kobayashi, Katsuya; Hashimoto, Takuhei; Yamamichi, Nobutake; Tateishi, Ayako; Shimizu, Yasuhito; Oka, Masashi; Ichinose, Masao; Omata, Masao
2006-10-01
Argon plasma coagulation (APC) is considered to be a safe thermocoagulation technique, but some reports show perforation and deformity during and after APC. In this study, we investigated the usefulness of prior submucosal injection for APC. APC over the mucosa was performed on fresh resected porcine esophagus, stomach, and colon with prior submucosal injection of normal saline (injection group) and without it (control group). The depth of tissue damage increased linearly with pulse duration up to the shallower submucosal layer in both groups. After that, tissue damage in the injection group remained confined to the shallower submucosal layer under any condition, whereas that in the control group continued to extend. The tissue damages of the injection groups were significantly (P<0.05) shallower than those of the control groups that reached the deeper submucosal layer in all the organs. Submucosal injection of normal saline before the application of APC may limit tissue damage and prevent perforation and deformity.
Patel, Krupa J; Trédan, Olivier; Tannock, Ian F
2013-07-01
Pharmacokinetic analyses estimate the mean concentration of drug within a given tissue as a function of time, but do not give information about the spatial distribution of drugs within that tissue. Here, we compare the time-dependent spatial distribution of three anticancer drugs within tumors, heart, kidney, liver and brain. Mice bearing various xenografts were treated with doxorubicin, mitoxantrone or topotecan. At various times after injection, tumors and samples of heart, kidney, liver and brain were excised. Within solid tumors, the distribution of doxorubicin, mitoxantrone and topotecan was limited to perivascular regions at 10 min after administration and the distance from blood vessels at which drug intensity fell to half was ~25-75 μm. Although drug distribution improved after 3 and 24 h, there remained a significant decrease in drug fluorescence with increasing distance from tumor blood vessels. Drug distribution was relatively uniform in the heart, kidney and liver with substantially greater perivascular drug uptake than in tumors. There was significantly higher total drug fluorescence in the liver than in tumors after 10 min, 3 and 24 h. Little to no drug fluorescence was observed in the brain. There are marked differences in the spatial distributions of three anticancer drugs within tumor tissue and normal tissues over time, with greater exposure to most normal tissues and limited drug distribution to many cells in tumors. Studies of the spatial distribution of drugs are required to complement pharmacokinetic data in order to better understand and predict drug effects and toxicities.
Dorin, Ryan P; Pohl, Hans G; De Filippo, Roger E; Yoo, James J; Atala, Anthony
2008-08-01
Complete urethral replacement using unseeded matrices has been proposed as a possible therapy in cases of congenital or acquired anomalies producing significant defects. Tissue regeneration involves fibrin deposition, re-epithelialization, and remodeling that are limited by the size of the defect. Scar formation occurs because of an inability of native cells to regenerate over the defect before fibrosis takes place. We investigated the maximum potential distance of normal native tissue regeneration over a range of distances using acellular matrices for tubular grafts as an experimental model. Tubularized urethroplasties were performed in 12 male rabbits using acellular matrices of bladder submucosa at varying lengths (0.5, 1, 2, and 3 cm). Serial urethrography was performed at 1, 3, and 4 weeks. Animals were sacrificed at 1, 3, and 4 weeks and the grafts harvested. Urothelial and smooth muscle cell regeneration was documented histologically with H&E and Masson's trichrome stains. Urethrograms demonstrated normal urethral calibers in the 0.5 cm group at all time points. The evolution of a stricture was demonstrated in the 1, 2, and 3 cm grafts by 4 weeks. Histologically all grafts demonstrated ingrowth of urothelial cells from the anastomotic sites at 1 week. By 4 weeks, the 0.5 cm grafts had a normal transitional layer of epithelium surrounded by a layer of muscle within the wall of the urethral lumen. The 1, 2, and 3 cm grafts showed ingrowth and normal cellular regeneration only at the anastomotic edges with increased collagen deposition and fibrosis toward the center by 2 weeks, and dense fibrin deposition throughout the grafts by 4 weeks. The maximum defect distance suitable for normal tissue formation using acellular grafts that rely on the native cells for tissue regeneration appears to be 0.5 cm. The indications for the use of acellular matrices in tubularized grafts may therefore be limited by the size of the defect to be repaired.
EFFECTS OF IRRADIATION ON BRAIN VASCULATURE USING AN IN SITU TUMOR MODEL
Zawaski, Janice A.; Gaber, M. Waleed; Sabek, Omaima M.; Wilson, Christy M.; Duntsch, Christopher D.; Merchant, Thomas E.
2013-01-01
Purpose Damage to normal tissue is a limiting factor in clinical radiotherapy (RT). We tested the hypothesis that the presence of tumor alters the response of normal tissues to irradiation using a rat in situ brain tumor model. Methods and Materials Intravital microscopy was used with a rat cranial window to assess the in situ effect of rat C6 glioma on peritumoral tissue with and without RT. The RT regimen included 40 Gy at 8 Gy/day starting Day 5 after tumor implant. Endpoints included blood–brain barrier permeability, clearance index, leukocyte-endothelial interactions and staining for vascular endothelial growth factor (VEGF) glial fibrillary acidic protein, and apoptosis. To characterize the system response to RT, animal survival and tumor surface area and volume were measured. Sham experiments were performed on similar animals implanted with basement membrane matrix absent of tumor cells. Results The presence of tumor alone increases permeability but has little effect on leukocyte–endothelial interactions and astrogliosis. Radiation alone increases tissue permeability, leukocyte-endothelial interactions, and astrogliosis. The highest levels of permeability and cell adhesion were seen in the model that combined tumor and irradiation; however, the presence of tumor appeared to reduce the volume of rolling leukocytes. Unirradiated tumor and peritumoral tissue had poor clearance. Irradiated tumor and peritumoral tissue had a similar clearance index to irradiated and unirradiated sham-implanted animals. Radiation reduces the presence of VEGF in peritumoral normal tissues but did not affect the amount of apoptosis in the normal tissue. Apoptosis was identified in the tumor tissue with and without radiation. Conclusions We developed a novel approach to demonstrate that the presence of the tumor in a rat intracranial model alters the response of normal tissues to irradiation. PMID:22197233
Xu, Lihua; Tan, Huo; Liu, Ruiming; Huang, Qungai; Zhang, Nana; Li, Xi; Wang, Jiani
2017-01-01
The cytoskeleton regulatory protein Mena is reportedly overexpressed in breast cancer; however, data regarding its expression level and clinical significance in gastric carcinoma (GC) is limited. The aim of the present study was to investigate Mena expression levels and prognostic significance in GC. Mena mRNA expression level was determined by reverse transcription-quantitative polymerase chain reaction in 10 paired GC and adjacent normal tissues. The Mena protein expression level was analyzed in paraffin-embedded GC samples and adjacent normal tissues by immunohistochemistry. Statistical analyses were also performed to evaluate the clinicopathological significance of Mena. The results revealed that the mRNA expression level of Mena was significantly higher in G Ct issues compared with in adjacent normal tissues from10 paired samples. In the paraffin-embedded tissue samples, the protein expression level of Mena was higher in G Ct issues compared with in adjacent normal tissues. Compared with adjacent normal tissues, Mena overexpression was observed in 52.83% (56/106) of patients. The overexpression of Mena was significantly associated with the T stage (P=0.033), tumor-node-metastasis (TNM) stage (P<0.001) and decreased overall survival (P<0.001). Based on a multivariate analysis, Mena expression level was an independent prognostic factor for overall survival time. In conclusion, Mena wasoverexpressed in G C tissues and significantly associated with the T stage, TNM stage and overall survival time. Mena may therefore be suitable as a prognostic indicator for patients with GC. PMID:29113241
Xu, Lihua; Tan, Huo; Liu, Ruiming; Huang, Qungai; Zhang, Nana; Li, Xi; Wang, Jiani
2017-11-01
The cytoskeleton regulatory protein Mena is reportedly overexpressed in breast cancer; however, data regarding its expression level and clinical significance in gastric carcinoma (GC) is limited. The aim of the present study was to investigate Mena expression levels and prognostic significance in GC. Mena mRNA expression level was determined by reverse transcription-quantitative polymerase chain reaction in 10 paired GC and adjacent normal tissues. The Mena protein expression level was analyzed in paraffin-embedded GC samples and adjacent normal tissues by immunohistochemistry. Statistical analyses were also performed to evaluate the clinicopathological significance of Mena. The results revealed that the mRNA expression level of Mena was significantly higher in G Ct issues compared with in adjacent normal tissues from10 paired samples. In the paraffin-embedded tissue samples, the protein expression level of Mena was higher in G Ct issues compared with in adjacent normal tissues. Compared with adjacent normal tissues, Mena overexpression was observed in 52.83% (56/106) of patients. The overexpression of Mena was significantly associated with the T stage (P=0.033), tumor-node-metastasis (TNM) stage (P<0.001) and decreased overall survival (P<0.001). Based on a multivariate analysis, Mena expression level was an independent prognostic factor for overall survival time. In conclusion, Mena wasoverexpressed in G C tissues and significantly associated with the T stage, TNM stage and overall survival time. Mena may therefore be suitable as a prognostic indicator for patients with GC.
Pulp-dentin biology in restorative dentistry. Part 1: normal structure and physiology.
Mjör, I A; Sveen, O B; Heyeraas, K J
2001-06-01
Considerable knowledge has accumulated over the years on the structure and function of the dental pulp and dentin. Some of this knowledge has important clinical implications. This review, which is the first of seven articles, will be limited to those parts of the normal structure and physiology of the pulp and dentin that have been shown to result in, or are likely lead to, tissue reactions associated with the clinical treatment of these tissues. Although certain normal structures will be highlighted in some detail, a basic knowledge of pulpal and dentinal development and structure is a prerequisite for an understanding of this text.
Redox-Modulated Phenomena and Radiation Therapy: The Central Role of Superoxide Dismutases
Holley, Aaron K.; Miao, Lu; St. Clair, Daret K.
2014-01-01
Abstract Significance: Ionizing radiation is a vital component in the oncologist's arsenal for the treatment of cancer. Approximately 50% of all cancer patients will receive some form of radiation therapy as part of their treatment regimen. DNA is considered the major cellular target of ionizing radiation and can be damaged directly by radiation or indirectly through reactive oxygen species (ROS) formed from the radiolysis of water, enzyme-mediated ROS production, and ROS resulting from altered aerobic metabolism. Recent Advances: ROS are produced as a byproduct of oxygen metabolism, and superoxide dismutases (SODs) are the chief scavengers. ROS contribute to the radioresponsiveness of normal and tumor tissues, and SODs modulate the radioresponsiveness of tissues, thus affecting the efficacy of radiotherapy. Critical Issues: Despite its prevalent use, radiation therapy suffers from certain limitations that diminish its effectiveness, including tumor hypoxia and normal tissue damage. Oxygen is important for the stabilization of radiation-induced DNA damage, and tumor hypoxia dramatically decreases radiation efficacy. Therefore, auxiliary therapies are needed to increase the effectiveness of radiation therapy against tumor tissues while minimizing normal tissue injury. Future Directions: Because of the importance of ROS in the response of normal and cancer tissues to ionizing radiation, methods that differentially modulate the ROS scavenging ability of cells may prove to be an important method to increase the radiation response in cancer tissues and simultaneously mitigate the damaging effects of ionizing radiation on normal tissues. Altering the expression or activity of SODs may prove valuable in maximizing the overall effectiveness of ionizing radiation. Antioxid. Redox Signal. 20, 1567–1589. PMID:24094070
Pattern of somatostatin receptors expression in normal and bladder cancer tissue samples.
Karavitakis, Markos; Msaouel, Pavlos; Michalopoulos, Vassilis; Koutsilieris, Michael
2014-06-01
Known risks factors for bladder cancer progression and recurrence are limited regarding their prognostic ability. Therefore identification of molecular determinants of disease progression could provide with more specific prognostic information and could be translated into new approaches for biomarker development. In the present study we evaluated, the expression patterns of somatostatin receptors 1-5 (SSTRs) in normal and tumor bladder tissues. The expression of SSTR1-5 was characterized in 45 normal and bladder cancer tissue samples using reverse transcriptase-polymerase chain reaction (RT-PCR). SSTR1 was expressed in 24 samples, SSTR2 in 15, SSTR3 in 23, SSTR4 in 16 and SSTR5 in all but one sample. Bladder cancer tissue samples expressed lower levels of SSTR3. Co-expression of SSTRs was associated with superficial disease. Our results demonstrate, for the first time, that there is expression of SSTR in normal and bladder cancer urothelium. Further studies are required to evaluate the prognostic and therapeutic significance of these findings. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Evaluation of tissue engineered models of the oral mucosa to investigate oral candidiasis.
Yadev, Nishant P; Murdoch, Craig; Saville, Stephen P; Thornhill, Martin H
2011-06-01
Candida albicans is a commensal organism that can be isolated from the majority of healthy individuals. However, in certain susceptible individuals C. albicans can become pathogenic leading to the mucocutaneous infection; oral candidiasis. Murine models and in vitro monolayer cultures have generated some data on the likely virulence and host factors that contribute to oral candidiasis but these models have limitations. Recently, tissue engineered oral mucosal models have been developed to mimic the normal oral mucosa but little information is available on their true representation. In this study, we assessed the histological features of three different tissue engineered oral mucosal models compared to the normal oral mucosa and analysed both cell damage and cytokine release following infection with C. albicans. Models comprised of normal oral keratinocytes and a fibroblast-containing matrix displayed more similar immunohistological and proliferation characteristics to normal mucosa, compared to models composed of an oral carcinoma cell line. Although all models were invaded and damaged by C. albicans in a similar manner, the cytokine response was much more pronounced in models containing normal keratinocytes. These data suggest that models based on normal keratinocytes atop a fibroblast-containing connective tissue will significantly aid in dissecting the molecular pathogenesis of oral candidiasis. Copyright © 2011 Elsevier Ltd. All rights reserved.
Compression Stiffening of Brain and its Effect on Mechanosensing by Glioma Cells
NASA Astrophysics Data System (ADS)
Pogoda, Katarzyna
The stiffness of tissues, often characterized by their time-dependent elastic properties, is tightly controlled under normal condition and central nervous system tissue is among the softest tissues. Changes in tissue and organ stiffness occur in some physiological conditions and are frequently symptoms of diseases such as fibrosis, cardiovascular disease and many forms of cancer. Primary cells isolated from various tissues often respond to changes in the mechanical properties of their substrates, and the range of stiffness over which these responses occur appear to be limited to the tissue elastic modulus from which they are derived. Our goal was to test the hypotheses that the stiffness of tumors derived from CNS tissue differs from that of normal brain, and that transformed cells derived from such tumors exhibit mechanical responses that differ from those of normal glial cells. Unlike breast and some other cancers where the stroma and the tumor itself is substantially stiffer than the surrounding normal tissue, our data suggest that gliomas can arise without a gross change in the macroscopic tissue stiffness when measured at low strains without compression. However, both normal brain and glioma samples stiffen with compression, but not in elongation and increased shear strains. On the other hand, different classes of immortalized cells derived from human glioblastoma show substantially different responses to the stiffness of substrates in vitrowhen grown on soft polyacrylamide and hyaluronic acid gels. This outcome supports the hypothesis that compression stiffening, which might occur with increased vascularization and interstitial pressure gradients that are characteristic of tumors, effectively stiffens the environment of glioma cells, and that in situ, the elastic resistance these cells sense might be sufficient to trigger the same responses that are activated in vitro by increased substrate stiffness.
Photoacoustic lifetime imaging for direct in vivo tissue oxygen monitoring
Shao, Qi; Ashkenazi, Shai
2015-01-01
Abstract. Measuring the partial pressure of oxygen (pO2) in tissue may provide physicians with essential information about the physiological state of tissue. However, currently available methods for measuring or imaging tissue pO2 have significant limitations, preventing them from being widely used in clinics. Recently, we have reported a direct and noninvasive in vivo imaging modality based on the photoacoustic lifetime which overcomes certain drawbacks of the existing methods. The technique maps the excited triplet state of oxygen-sensitive dye, thus reflecting the spatial and temporal distributions of tissue oxygen. Here, we present two studies which apply photoacoustic lifetime imaging (PALI) to monitor changes of tissue oxygen induced by external modulations. The first study modulates tissue oxygen by controlling the percentage of oxygen a normal mouse inhales. We demonstrate that PALI is able to reflect the change in oxygen level with respect to normal, oxygen-rich, and oxygen-poor breathing conditions. The second study involves an acute ischemia model using a thin thread tied around the hindlimb of a normal mouse to reduce the blood flow. PALI images were acquired before, during, and after the restriction. The drop of tissue pO2 and recovery from hypoxia due to reperfusion were tracked and observed by PALI. PMID:25748857
Caruso, Hillary G; Torikai, Hiroki; Zhang, Ling; Maiti, Sourindra; Dai, Jianliang; Do, Kim-Anh; Singh, Harjeet; Huls, Helen; Lee, Dean A; Champlin, Richard E; Heimberger, Amy B; Cooper, Laurence J N
2016-06-01
Potential for on-target, but off-tissue toxicity limits therapeutic application of genetically modified T cells constitutively expressing chimeric antigen receptors (CARs) from tumor-associated antigens expressed in normal tissue, such as epidermal growth factor receptor (EGFR). Curtailing expression of CAR through modification of T cells by in vitro-transcribed mRNA species is one strategy to mitigate such toxicity. We evaluated expression of an EGFR-specific CAR coded from introduced mRNA in human T cells numerically expanded ex vivo to clinically significant numbers through coculture with activating and propagating cells (AaPC) derived from K562 preloaded with anti-CD3 antibody. The density of AaPC could be adjusted to affect phenotype of T cells such that reduced ratio of AaPC resulted in higher proportion of CD8 and central memory T cells that were more conducive to electrotransfer of mRNA than T cells expanded with high ratios of AaPC. RNA-modified CAR T cells produced less cytokine, but demonstrated similar cytolytic capacity as DNA-modified CAR T cells in response to EGFR-expressing glioblastoma cells. Expression of CAR by mRNA transfer was transient and accelerated by stimulation with cytokine and antigen. Loss of CAR abrogated T-cell function in response to tumor and normal cells expressing EGFR. We describe a clinically applicable method to propagate and modify T cells to transiently express EGFR-specific CAR to target EGFR-expressing tumor cells that may be used to limit on-target, off-tissue toxicity to normal tissue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phelps, M.E.; Mazziotta, J.C.; Hawkins, R.A.
1981-01-01
Glycogen storage disease type I (GSD-I) is characterized by a functional deficit in glucose-6-phosphatase that normally hydrolyzes glucose-6-PO/sub 4/ to glucose. This enzyme is primarily found in liver, kidney, and muscle but it is also present in brain, where it appears to participate in the regulation of cerebral tissue glucose. Since most neurological symptoms in GSD-I patients involve systemic hypoglycemia, previous reports have not examined possible deficiencies in phosphatase activity in the brain. Positron computed tomography, F-18-labeled 2-fluorodeoxyglucose (FDG) and a tracer kinetic model for FDG were used to measure the cortical plasma/tissue forward and reverse transport, phosphorylation and dephosphorylationmore » rate constants, tissue/plasma concentration gradient, tissue concentration turnover rate for this competitive analog of glucose, and the cortical metabolic rates for glucose. Studies were carried out in age-matched normals (N = 13) and a single GSD-I patient. The dephosphorylation rate constant in the GSD-I patient was about one tenth the normal value indicating a low level of cerebral phosphatase activity. The other measured parameters were within normal limits except for the rate of glucose phosphorylation which reflected a cortical glucose metabolic rate one half the normal value. Since glucose transport and tissue glucose concentration was normal, the reduced cortical glucose metabolism probably results from the use of alternative substrates (..beta..-hydroxybutyrate and acetoacetate) which are consistently elevated in the plasma of GSD-I patients.« less
Current state of cartilage tissue engineering
Tuli, Richard; Li, Wan-Ju; Tuan, Rocky S
2003-01-01
Damage to cartilage is of great clinical consequence given the tissue's limited intrinsic potential for healing. Current treatments for cartilage repair are less than satisfactory, and rarely restore full function or return the tissue to its native normal state. The rapidly emerging field of tissue engineering holds great promise for the generation of functional cartilage tissue substitutes. The general approach involves a biocompatible, structurally and mechanically sound scaffold, with an appropriate cell source, which is loaded with bioactive molecules that promote cellular differentiation and/or maturation. This review highlights aspects of current progress in cartilage tissue engineering. PMID:12932283
Zhan, Jun; Yang, Mei; Zhang, Jing; Guo, YongQing; Liu, Wei; Zhang, HongQuan
2015-05-01
Mutations of integrin-interacting protein Kindlin-1 cause Kindler syndrome and deregulation of Kindlin-1 is implicated in human cancers. The Kindlin-1-related diseases are confined in limited tissue types. However, Kindlin-1 tissue distribution and the dogma that governs Kindlin-1 expression in normal human body are elusive. This study examined Kindlin-1 expression in normal human adult organs, human and mouse embryonic organs by immunohistochemical analyses. We identified a general principle that the level of Kindlin-1 expression in tissues is tightly correlated with the corresponding germ layers from which these tissues originate. We compared the expression of Kindlin-1 with Kindlin-2 and found that Kindlin-1 is highly expressed in epithelial tissues derived from ectoderm and endoderm, whereas Kindlin-2 is mainly expressed in mesoderm-derived tissues. Likewise, Kindlin-1 was also found highly expressed in endoderm/ectoderm-derived tissues in human and mouse embryos. Our findings indicate that Kindlin-1 may play an importance role in the development of endoderm/ectoderm related tissues.
Morel, Katherine L; Ormsby, Rebecca J; Bezak, Eva; Sweeney, Christopher J; Sykes, Pamela J
2017-05-01
Radiotherapy is widely used in cancer treatment, however the benefits can be limited by radiation-induced damage to neighboring normal tissues. Parthenolide (PTL) exhibits anti-inflammatory and anti-tumor properties and selectively induces radiosensitivity in prostate cancer cell lines, while protecting primary prostate epithelial cell lines from radiation-induced damage. Low doses of radiation have also been shown to protect from subsequent high-dose-radiation-induced apoptosis as well as DNA damage. These properties of PTL and low-dose radiation could be used to improve radiotherapy by killing more tumor cells and less normal cells. Sixteen-week-old male Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) and C57BL/6J mice were treated with PTL (40 mg/kg), dimethylaminoparthenolide (DMAPT, a PTL analogue with increased bioavailability) (100 mg/kg), or vehicle control three times over one week prior to combinations of low (10 mGy) and high (6 Gy) doses of whole-body X-irradiation. Tissues were analyzed for apoptosis at a range of time points up to 72 h postirradiation. Both PTL and DMAPT protected normal tissues, but not prostate tumor tissues, from a significant proportion of high-dose-radiation-induced apoptosis. DMAPT provided superior protection compared to PTL in normal dorsolateral prostate (71.7% reduction, P = 0.026), spleen (48.2% reduction, P = 0.0001) and colorectal tissue (38.0% reduction, P = 0.0002), and doubled radiation-induced apoptosis in TRAMP prostate tumor tissue (101.3% increase, P = 0.039). Both drugs induced the greatest radiosensitivity in TRAMP prostate tissue in areas with higher grade prostatic intraepithelial neoplasia (PIN) lesions. A 10 mGy dose delivered 3 h prior to a 6 Gy dose induced a radioadaptive apoptosis response in normal C57Bl/6J prostate (28.4% reduction, P = 0.045) and normal TRAMP spleen (13.6% reduction, P = 0.047), however the low-dose-adaptive radioprotection did not significantly add to the PTL/DMAPT-induced protection in normal tissues, nor did it affect tumor kill. These results support the use of the more bioavailable DMAPT and low-dose radiation, alone or in combination as useful radioprotectors of normal tissues to alleviate radiotherapy-induced side-effects in patients. The enhanced radiosensitisation in prostate tissues displaying high-grade PIN suggests that DMAPT also holds promise for targeted therapy of advanced prostate cancer, which may go on to become metastatic. The redox mechanisms involved in the differential radioprotection observed here suggest that increased radiotherapy efficacy by DMAPT is more broadly applicable to a range of cancer types.
Engineering epithelial-stromal interactions in vitro for toxicology assessment.
Belair, David G; Abbott, Barbara D
2017-05-01
Crosstalk between epithelial and stromal cells drives the morphogenesis of ectodermal organs during development and promotes normal mature adult epithelial tissue homeostasis. Epithelial-stromal interactions (ESIs) have historically been examined using mammalian models and ex vivo tissue recombination. Although these approaches have elucidated signaling mechanisms underlying embryonic morphogenesis processes and adult mammalian epithelial tissue function, they are limited by the availability of tissue, low throughput, and human developmental or physiological relevance. In this review, we describe how bioengineered ESIs, using either human stem cells or co-cultures of human primary epithelial and stromal cells, have enabled the development of human in vitro epithelial tissue models that recapitulate the architecture, phenotype, and function of adult human epithelial tissues. We discuss how the strategies used to engineer mature epithelial tissue models in vitro could be extrapolated to instruct the design of organotypic culture models that can recapitulate the structure of embryonic ectodermal tissues and enable the in vitro assessment of events critical to organ/tissue morphogenesis. Given the importance of ESIs towards normal epithelial tissue development and function, such models present a unique opportunity for toxicological screening assays to incorporate ESIs to assess the impact of chemicals on mature and developing epidermal tissues. Published by Elsevier B.V.
Engineering epithelial-stromal interactions in vitro for toxicology assessment
Belair, David G.; Abbott, Barbara D.
2018-01-01
Crosstalk between epithelial and stromal cells drives the morphogenesis of ectodermal organs during development and promotes normal mature adult epithelial tissue homeostasis. Epithelial-stromal interactions (ESIs) have historically been examined using mammalian models and ex vivo tissue recombination. Although these approaches have elucidated signaling mechanisms underlying embryonic morphogenesis processes and adult mammalian epithelial tissue function, they are limited by the availability of tissue, low throughput, and human developmental or physiological relevance. In this review, we describe how bioengineered ESIs, using either human stem cells or co-cultures of human primary epithelial and stromal cells, have enabled the development of human in vitro epithelial tissue models that recapitulate the architecture, phenotype, and function of adult human epithelial tissues. We discuss how the strategies used to engineer mature epithelial tissue models in vitro could be extrapolated to instruct the design of organotypic culture models that can recapitulate the structure of embryonic ectodermal tissues and enable the in vitro assessment of events critical to organ/tissue morphogenesis. Given the importance of ESIs towards normal epithelial tissue development and function, such models present a unique opportunity for toxicological screening assays to incorporate ESIs to assess the impact of chemicals on mature and developing epidermal tissues. PMID:28285100
Yuan, Hong; Zhang, Lei; Frank, Jonathan E; Inscoe, Christina R; Burk, Laurel M; Hadsell, Mike; Lee, Yueh Z; Lu, Jianping; Chang, Sha; Zhou, Otto
2015-09-01
Microbeam radiation treatment (MRT) using synchrotron radiation has shown great promise in the treatment of brain tumors, with a demonstrated ability to eradicate the tumor while sparing normal tissue in small animal models. With the goal of expediting the advancement of MRT research beyond the limited number of synchrotron facilities in the world, we recently developed a compact laboratory-scale microbeam irradiator using carbon nanotube (CNT) field emission-based X-ray source array technology. The focus of this study is to evaluate the effects of the microbeam radiation generated by this compact irradiator in terms of tumor control and normal tissue damage in a mouse brain tumor model. Mice with U87MG human glioblastoma were treated with sham irradiation, low-dose MRT, high-dose MRT or 10 Gy broad-beam radiation treatment (BRT). The microbeams were 280 μm wide and spaced at 900 μm center-to-center with peak dose at either 48 Gy (low-dose MRT) or 72 Gy (high-dose MRT). Survival studies showed that the mice treated with both MRT protocols had a significantly extended life span compared to the untreated control group (31.4 and 48.5% of life extension for low- and high-dose MRT, respectively) and had similar survival to the BRT group. Immunostaining on MRT mice demonstrated much higher DNA damage and apoptosis level in tumor tissue compared to the normal brain tissue. Apoptosis in normal tissue was significantly lower in the low-dose MRT group compared to that in the BRT group at 48 h postirradiation. Interestingly, there was a significantly higher level of cell proliferation in the MRT-treated normal tissue compared to that in the BRT-treated mice, indicating rapid normal tissue repairing process after MRT. Microbeam radiation exposure on normal brain tissue causes little apoptosis and no macrophage infiltration at 30 days after exposure. This study is the first biological assessment on MRT effects using the compact CNT-based irradiator. It provides an alternative technology that can enable widespread MRT research on mechanistic studies using a preclinical model, as well as further translational research towards clinical applications.
Identification of markers for quiescent pancreatic stellate cells in the normal human pancreas.
Nielsen, Michael Friberg Bruun; Mortensen, Michael Bau; Detlefsen, Sönke
2017-10-01
Pancreatic stellate cells (PSCs) play a central role as source of fibrogenic cells in pancreatic cancer and chronic pancreatitis. In contrast to quiescent hepatic stellate cells (qHSCs), a specific marker for quiescent PSCs (qPSCs) that can be used in formalin-fixed and paraffin embedded (FFPE) normal human pancreatic tissue has not been identified. The aim of this study was to identify a marker enabling the identification of qPSCs in normal human FFPE pancreatic tissue. Immunohistochemical (IHC), double-IHC, immunofluorescence (IF) and double-IF analyses were carried out using a tissue microarray consisting of cores with normal human pancreatic tissue. Cores with normal human liver served as control. Antibodies directed against adipophilin, α-SMA, CD146, CRBP-1, cytoglobin, desmin, GFAP, nestin, S100A4 and vinculin were examined, with special emphasis on their expression in periacinar cells in the normal human pancreas and perisinusoidal cells in the normal human liver. The immunolabelling capacity was evaluated according to a semiquantitative scoring system. Double-IF of the markers of interest together with markers for other periacinar cells was performed. Moreover, the utility of histochemical stains for the identification of human qPSCs was examined, and their ultrastructure was revisited by electron microscopy. Adipophilin, CRBP-1, cytoglobin and vinculin were expressed in qHSCs in the liver, whereas cytoglobin and adipophilin were expressed in qPSCs in the pancreas. Adipophilin immunohistochemistry was highly dependent on the preanalytical time interval (PATI) from removal of the tissue to formalin fixation. Cytoglobin, S100A4 and vinculin were expressed in periacinar fibroblasts (FBs). The other examined markers were negative in human qPSCs. Our data indicate that cytoglobin and adipophilin are markers of qPSCs in the normal human pancreas. However, the use of adipophilin as a qPSC marker may be limited due to its high dependence on optimal PATI. Cytoglobin, on the other hand, is a sensitive marker for qPSCs but is expressed in FBs as well.
Tumour and normal tissue radiobiology in mouse models: how close are mice to mini-humans?
Koontz, Bridget F; Verhaegen, Frank; De Ruysscher, Dirk
2017-01-01
Animal modelling is essential to the study of radiobiology and the advancement of clinical radiation oncology by providing preclinical data. Mouse models in particular have been highly utilized in the study of both tumour and normal tissue radiobiology because of their cost effectiveness and versatility. Technology has significantly advanced in preclinical radiation techniques to allow highly conformal image-guided irradiation of small animals in an effort to mimic human treatment capabilities. However, the biological and physical limitations of animal modelling should be recognized and considered when interpreting preclinical radiotherapy (RT) studies. Murine tumour and normal tissue radioresponse has been shown to vary from human cellular and molecular pathways. Small animal irradiation techniques utilize different anatomical boundaries and may have different physical properties than human RT. This review addresses the difference between the human condition and mouse models and discusses possible strategies for future refinement of murine models of cancer and radiation for the benefit of both basic radiobiology and clinical translation.
Tumour and normal tissue radiobiology in mouse models: how close are mice to mini-humans?
Verhaegen, Frank; De Ruysscher, Dirk
2017-01-01
Animal modelling is essential to the study of radiobiology and the advancement of clinical radiation oncology by providing preclinical data. Mouse models in particular have been highly utilized in the study of both tumour and normal tissue radiobiology because of their cost effectiveness and versatility. Technology has significantly advanced in preclinical radiation techniques to allow highly conformal image-guided irradiation of small animals in an effort to mimic human treatment capabilities. However, the biological and physical limitations of animal modelling should be recognized and considered when interpreting preclinical radiotherapy (RT) studies. Murine tumour and normal tissue radioresponse has been shown to vary from human cellular and molecular pathways. Small animal irradiation techniques utilize different anatomical boundaries and may have different physical properties than human RT. This review addresses the difference between the human condition and mouse models and discusses possible strategies for future refinement of murine models of cancer and radiation for the benefit of both basic radiobiology and clinical translation. PMID:27612010
Deng, Li; Li, Yongzhi; Zhang, Xinshi; Chen, Bo; Deng, Yulin; Li, Yujuan
2015-10-10
A UPLC-MS method was developed for determination of pterostilbene (PTS) in plasma and tissues of mice. PTS was separated on Agilent Zorbax XDB-C18 column (50 × 2.1 mm, 1.8 μm) with gradient mobile phase at the flow rate of 0.2 ml/min. The detection was performed by negative ion electrospray ionization in multiple reaction monitoring mode. The linear calibration curve of PTS in mouse plasma and tissues ranged from 1.0 to 5000 and 0.50 to 500 ng/ml (r(2)>0.9979), respectively, with lowest limits of quantification (LLOQ) were between 0.5 and 2.0 ng/ml, respectively. The accuracy and precision of the assay were satisfactory. The validated method was applied to the study of bioavailability and tissue distribution of PTS in normal and Lewis lung carcinoma (LLC) bearing mice. The bioavailability of PTS (dose 14, 28 and 56 mg/kg) in normal mice were 11.9%, 13.9% and 26.4%, respectively; and the maximum level (82.1 ± 14.2 μg/g) was found in stomach (dose 28 mg/kg). The bioavailability, peak concentration (Cmax), time to peak concentration (Tmax) of PTS in LLC mice was increased compared with normal mice. The results indicated the UPLC-MS method is reliable and bioavailability and tissue distribution of PTS in normal and LLC mice were dramatically different. Copyright © 2015 Elsevier B.V. All rights reserved.
Aging, Breast Cancer and the Mouse Model
2005-05-01
architecture and function of the of normal human cells in culture ( Hayflick , 1965). This limit surrounding tissue and stimulate (or inhibit) the... LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON OF ABSTRACT OF PAGES USAMRMC a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (include area U...mammary cancers in the mouse and that these tumors have strikingly similar histology. Nonetheless, several limitations exists to this model system and
The effect of renal failure on 18F-FDG uptake: a theoretic assessment.
Laffon, Eric; Cazeau, Anne-Laure; Monet, Antoine; de Clermont, Henri; Fernandez, Philippe; Marthan, Roger; Ducassou, Dominique
2008-12-01
This work addresses the issue of using (18)F-FDG PET in patients with renal failure. A model analysis has been developed to compare tissue (18)F-FDG uptake in a patient who has normal renal function with uptake in a theoretic limiting case that assumes tracer plasma decay is tracer physical decay and is trapped irreversibly. This comparison has allowed us to propose, in the limiting case, that the usually injected activity be lowered by a factor of 3. We also proposed that the PET static acquisition be obtained at about 160 min after tracer injection. These 2 proposals were aimed at obtaining a similar patient radiation dose and similar tissue (18)F-FDG uptake. In patients with arbitrary renal failure (i.e., between the 2 extremes of normal function and the theoretic limiting case), we propose that the injected activity be lowered (without exceeding a factor of 3) and that the acquisition be started between 45 and 160 min after tracer injection, depending on the severity of renal failure. Furthermore, the model also shows that the more severe the renal failure is, the more overestimated is the standardized uptake value, unless the renal failure indirectly impairs tissue sensitivity to insulin and hence glucose metabolism.
Good news–bad news: the Yin and Yang of immune privilege in the eye
Forrester, John V.; Xu, Heping
2012-01-01
The eye and the brain are prototypical tissues manifesting immune privilege (IP) in which immune responses to foreign antigens, particularly alloantigens are suppressed, and even completely inhibited. Explanations for this phenomenon are numerous and mostly reflect our evolving understanding of the molecular and cellular processes underpinning immunological responses generally. IP is now viewed as a property of many tissues and the level of expression of IP varies not only with the tissue but with the nature of the foreign antigen and changes in the limited conditions under which privilege can operate as a mechanism of immunological tolerance. As a result, IP functions normally as a homeostatic mechanism preserving normal function in tissues, particularly those with highly specialized function and limited capacity for renewal such as the eye and brain. However, IP is relatively easily bypassed in the face of a sufficiently strong immunological response, and the privileged tissues may be at greater risk of collateral damage because its natural defenses are more easily breached than in a fully immunocompetent tissue which rapidly rejects foreign antigen and restores integrity. This two-edged sword cuts its swathe through the eye: under most circumstances, IP mechanisms such as blood–ocular barriers, intraocular immune modulators, induction of T regulatory cells, lack of lymphatics, and other properties maintain tissue integrity; however, when these are breached, various degrees of tissue damage occur from severe tissue destruction in retinal viral infections and other forms of uveoretinal inflammation, to less severe inflammatory responses in conditions such as macular degeneration. Conversely, ocular IP and tumor-related IP can combine to permit extensive tumor growth and increased risk of metastasis thus threatening the survival of the host. PMID:23230433
Synthetic biology meets tissue engineering.
Davies, Jamie A; Cachat, Elise
2016-06-15
Classical tissue engineering is aimed mainly at producing anatomically and physiologically realistic replacements for normal human tissues. It is done either by encouraging cellular colonization of manufactured matrices or cellular recolonization of decellularized natural extracellular matrices from donor organs, or by allowing cells to self-organize into organs as they do during fetal life. For repair of normal bodies, this will be adequate but there are reasons for making unusual, non-evolved tissues (repair of unusual bodies, interface to electromechanical prostheses, incorporating living cells into life-support machines). Synthetic biology is aimed mainly at engineering cells so that they can perform custom functions: applying synthetic biological approaches to tissue engineering may be one way of engineering custom structures. In this article, we outline the 'embryological cycle' of patterning, differentiation and morphogenesis and review progress that has been made in constructing synthetic biological systems to reproduce these processes in new ways. The state-of-the-art remains a long way from making truly synthetic tissues, but there are now at least foundations for future work. © 2016 Authors; published by Portland Press Limited.
Fang, Jennifer S.; Angelov, Stoyan N.; Simon, Alexander M.
2013-01-01
Recently, we reported that recovery of tissue perfusion in the ischemic hindlimb was reduced, inflammatory response increased, and survival of distal limb tissue compromised in connexin 40 (Cx40)-deficient (Cx40−/−) mice. Here we evaluate whether genotype-specific differences in tissue perfusion, native vascular density, arteriogenesis, blood pressure, and chronic ANG II type 1 receptor (AT1R) activation contribute to poor recovery of ischemic hindlimb tissue in Cx40−/− mice. Hindlimb ischemia was induced in wild-type (WT), Cx40−/−, and losartan-treated Cx40−/− mice by using surgical procedures that either maintained (mild surgery) or compromised (severe surgery) perfusion of major collateral vessels supplying the distal limb. Pre- and postsurgical hindlimb perfusion was evaluated, and tissue survival, microvascular density, and macrophage infiltration were documented during recovery. Hindlimb perfusion was compromised in presurgical Cx40−/− versus WT mice despite comparable native microvascular density. Hindlimb perfusion 24 h postsurgery in Cx40−/− and WT mice was comparable after mild surgery (collateral vessels maintained), but compromised arteriogenesis in Cx40−/− animals nevertheless limited subsequent recovery of tissue perfusion and compromised tissue survival. Prolonged pre- and postsurgical treatment of Cx40−/− mice with losartan (an AT1R antagonist) normalized blood pressure but did not improve tissue perfusion or survival, despite reduced macrophage infiltration. Thus it appears Cx40 is necessary for normal tissue perfusion and for recovery of perfusion, arteriogenesis, and tissue survival in the ischemic hindlimb. Our data suggest that Cx40−/− mice are at significantly greater risk for poor recovery from ischemic insult due to compromised regulation of tissue perfusion, vascular remodeling, and prolonged inflammatory response. PMID:23292716
Mesenchymal stem cell therapy for attenuation of scar formation during wound healing.
Jackson, Wesley M; Nesti, Leon J; Tuan, Rocky S
2012-05-31
Scars are a consequence of cutaneous wound healing that can be both unsightly and detrimental to the function of the tissue. Scar tissue is generated by excessive deposition of extracellular matrix tissue by wound healing fibroblasts and myofibroblasts, and although it is inferior to the uninjured skin, it is able to restore integrity to the boundary between the body and its environment. Scarring is not a necessary process to repair the dermal tissues. Rather, scar tissue forms due to specific mechanisms that occur during the adult wound healing process and are modulated primarily by the inflammatory response at the site of injury. Adult tissue-derived mesenchymal stem cells, which participate in normal wound healing, are trophic mediators of tissue repair. These cells participate in attenuating inflammation in the wound and reprogramming the resident immune and wound healing cells to favor tissue regeneration and inhibit fibrotic tissue formation. As a result, these cells have been considered and tested as a likely candidate for a cellular therapy to promote scar-less wound healing. This review identifies specific mechanisms by which mesenchymal stem cells can limit tissue fibrosis and summarizes recent in vivo studies where these cells have been used successfully to limit scar formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehmann, Joerg; Department of Radiodiagnosis and Therapy, Division of Hematology/Oncology, University of California Davis School of Medicine, Sacramento, CA; DeNardo, Gerald L.
Purpose: Radioactivity deposition in normal tissues limits the dose deliverable by radiopharmaceuticals (RP) in radioimmunotherapy (RIT). This study investigated the absorbed radiation dose in normal tissues for prostate cancer patients in comparison to breast cancer patients for 2 RPs using the monoclonal antibody (MAb) m170. Methods and Materials: {sup 111}In-DOTA-glycylglycylglycyl-L-p-isothiocyanatophenylalanine amide (GGGF)-m170 and {sup 111}In-1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid (DOTA) 2-iminothiolane (2IT)-m170, representing the same MAb and chelate with and without a cleavable linkage, were studied in 13 breast cancer and 26 prostate cancer patients. Dosimetry for {sup 9}Y was calculated using {sup 111}In MAb pharmacokinetics from the initial imaging study for eachmore » patient, using reference man- and patient-specific masses. Results: The reference man-specific radiation doses (cGy/MBq) were not significantly different for the breast and the prostate cancer patients for both RPs in all but one tissue-RP combination (liver, DOTA-2IT). The patient-specific doses had differences between the groups most of which can be related to weight differences. Conclusions: Similar normal tissue doses were calculated for two groups of patients having different cancers and genders. This similarity combined with continued careful analysis of the imaging data might allow the use of higher starting doses in early phase RIT studies.« less
NASA Astrophysics Data System (ADS)
Charalampaki, Cleopatra
2017-02-01
The aim in brain tumor surgery is maximal tumor resection with minimal damage of normal neuronal tissue. Today diagnosis of tumor and definition of tumor borders intraoperatively is based on various visualization methods as well as on the histopathologic examination of a limited number of biopsy specimens via frozen sections. Unfortunately, intraoperative histopathology bears several shortcomings, and many biopsies are inconclusive. Therefore, the desirable treatment could be to have the ability to identify intraoperative cellular structures, and differentiate tumor from normal functional brain tissue on a cellular level. To achieve this goal new technological equipment integrated with new surgical concepts is needed.Confocal Laser Endomicroscopy (CLE) is an imaging technique which provides microscopic information of tissue in real-time. We are able to use these technique to perform intraoperative "optical biopsies" in bringing the microscope inside to the patients brain through miniaturized fiber-optic probes, and allow real-time histopathology. In our knowledge we are worldwide the only one neurosurgical group using CLE intraoperative for brain tumor surgery. We can detect and characterize intraoperative tumor cells, providing immediate online diagnosis without the need for frozen sections. It also provides delineation of borders between tumor and normal tissue on a cellular level, making surgical margins more accurate than ever before. The applications of CLE-assisted neurosurgery help to accurate the therapy by extending the resection borders and protecting the functionality of normal brain tissue in critical eloquent areas.
In situ detection of cancerous kidney tissue by means of fiber ATR-FTIR spectroscopy
NASA Astrophysics Data System (ADS)
Sablinskas, Valdas; Velicka, Martynas; Pucetaite, Milda; Urboniene, Vidita; Ceponkus, Justinas; Bandzeviciute, Rimante; Jankevicius, Feliksas; Sakharova, Tatiana; Bibikova, Olga; Steiner, Gerald
2018-02-01
The crucial goal of kidney-sparing surgical resection of a malignant tumor is complete removal of the cancerous tissue. The exact border between the cancerous and normal tissues is not always possible to identify by naked eye, therefore, a supplementary intraoperative diagnosis is needed. Unfortunately, intraoperative pathology methods used nowadays are time consuming and of inadequate quality rendering not definitive diagnosis. It has recently been shown that ATR-FTIR spectroscopy can be used for fast discrimination between cancerous and normal kidney tissues by analyzing the collected spectra of the tissue touch imprint smears. Most prominent differences are obtained in the wavenumber region from 950 cm-1 to 1250 cm-1, where the spectral bands due to the molecular vibrations of glycogen arise in the spectra of cancerous tissue smears. Such method of detection of cancerous tissue is limited by requirement to transfer the suspected tissue from the body to the FTIR instrument and stamp it on an ATR crystal of the spectrometer. We propose a spectroscopic tool which exploits the same principle of detection of cancerous cells as mentioned above, but does not require the tissue to be transferred from the body to the spectrometer. The portable spectrometer used in this design is equipped with fiber ATR probe and a sensitive liquid nitrogen cooled MCT detector. The design of the fiber probe allows the ATR tip to be changed easily in order to use only new sterilized tips for each measurement point of the tissue. It also enables sampling multiple areas of the suspected tissue with high lateral resolution which, in turn, increases accuracy with which the marginal regions between normal and cancerous tissues can be identified. Due to the loss of optical signal in the fiber probe the spectra have lower signal-to-noise ratio than in the case of standard ATR sampling setup. However, software for the spectral analysis used with the fiber probe design is still able to distinguish between cancerous and normal tissues with high accuracy.
Intraoperative Raman Spectroscopy of Soft Tissue Sarcomas
Nguyen, John Q.; Gowani, Zain S.; O’Connor, Maggie; Pence, Isaac J.; Nguyen, The-Quyen; Holt, Ginger E.; Schwartz, Herbert S.; Halpern, Jennifer L.; Mahadevan-Jansen, Anita
2017-01-01
Background and Objective Soft tissue sarcomas (STS) are a rare and heterogeneous group of malignant tumors that are often treated through surgical resection. Current intraoperative margin assessment methods are limited and highlight the need for an improved approach with respect to time and specificity. Here we investigate the potential of near-infrared Raman spectroscopy for the intraoperative differentiation of STS from surrounding normal tissue. Materials and Methods In vivo Raman measurements at 785 nm excitation were intraoperatively acquired from subjects undergoing STS resection using a probe based spectroscopy system. A multivariate classification algorithm was developed in order to automatically identify spectral features that can be used to differentiate STS from the surrounding normal muscle and fat. The classification algorithm was subsequently tested using leave-one-subject-out cross-validation. Results With the exclusion of well-differentiated liposarcomas, the algorithm was able to classify STS from the surrounding normal muscle and fat with a sensitivity and specificity of 89.5% and 96.4%, respectively. Conclusion These results suggest that single point near-infrared Raman spectroscopy could be utilized as a rapid and non-destructive surgical guidance tool for identifying abnormal tissue margins in need of further excision. PMID:27454580
Intraoperative Raman spectroscopy of soft tissue sarcomas.
Nguyen, John Q; Gowani, Zain S; O'Connor, Maggie; Pence, Isaac J; Nguyen, The-Quyen; Holt, Ginger E; Schwartz, Herbert S; Halpern, Jennifer L; Mahadevan-Jansen, Anita
2016-10-01
Soft tissue sarcomas (STS) are a rare and heterogeneous group of malignant tumors that are often treated through surgical resection. Current intraoperative margin assessment methods are limited and highlight the need for an improved approach with respect to time and specificity. Here we investigate the potential of near-infrared Raman spectroscopy for the intraoperative differentiation of STS from surrounding normal tissue. In vivo Raman measurements at 785 nm excitation were intraoperatively acquired from subjects undergoing STS resection using a probe based spectroscopy system. A multivariate classification algorithm was developed in order to automatically identify spectral features that can be used to differentiate STS from the surrounding normal muscle and fat. The classification algorithm was subsequently tested using leave-one-subject-out cross-validation. With the exclusion of well-differentiated liposarcomas, the algorithm was able to classify STS from the surrounding normal muscle and fat with a sensitivity and specificity of 89.5% and 96.4%, respectively. These results suggest that single point near-infrared Raman spectroscopy could be utilized as a rapid and non-destructive surgical guidance tool for identifying abnormal tissue margins in need of further excision. Lasers Surg. Med. 48:774-781, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Svenson, Robert H.; Marroum, Marie-Claire; Frank, Frank; Selle, Jay G.; Gallagher, John J.; Bou-Saba, George; Seifert, Kathleen T.; Linder, Kathy; Tatsis, George P.
1987-04-01
Canine myocardial lesions of predictable dimensions can be achieved with Nd:YAG laser photocoagulation. These lesions are well demarcated from surrounding normal tissue and heal with homogeneous scar formation. Intraoperative Nd:YAG laser photocoagulation successfully ablated 52 of 55 ventricular tachycardias in 17 patients. Histologic examination of tissues from these arrhythmogenic areas showed differences from lesions produced on canine epicardium. Lesions from the human cases were less predictable and not well circumscribed. These differences are felt to be due to optical inhomogeneities present in diseased, scarred human myocardium, geometric irregularities of the endocardial surface, anatomical constraints on tissue-fiber distance, and the angle of incidence of the beam with the tissue. Modifications of current delivery systems may overcome some of these limitations. Ablation of ventricular tachycardia arising deeper than 4.0 to 6.0 mm. from the irradiated surface may require interstitial probes coupled to the fiberoptic.
Rancilio, Nicholas J; Custead, Michelle R; Poulson, Jean M
2016-09-01
A 5-year-old spayed female Shih Tzu was referred for evaluation of a nasal transitional carcinoma. A total lifetime dose of 117 Gy was delivered to the intranasal mass in three courses over nearly 2 years using fractionated intensity modulated radiation therapy (IMRT) to spare normal tissues. Clinically significant late normal tissue side effects were limited to bilaterally diminished tear production. The patient died of metastatic disease progression 694 days after completion of radiation therapy course 1. This case demonstrates that retreatment with radiation therapy to high lifetime doses for recurrent local disease may be well tolerated with IMRT. © 2016 American College of Veterinary Radiology.
NASA Astrophysics Data System (ADS)
Han, Woojin M.; Heo, Su-Jin; Driscoll, Tristan P.; Delucca, John F.; McLeod, Claire M.; Smith, Lachlan J.; Duncan, Randall L.; Mauck, Robert L.; Elliott, Dawn M.
2016-04-01
Treatment strategies to address pathologies of fibrocartilaginous tissue are in part limited by an incomplete understanding of structure-function relationships in these load-bearing tissues. There is therefore a pressing need to develop micro-engineered tissue platforms that can recreate the highly inhomogeneous tissue microstructures that are known to influence mechanotransductive processes in normal and diseased tissue. Here, we report the quantification of proteoglycan-rich microdomains in developing, ageing and diseased fibrocartilaginous tissues, and the impact of these microdomains on endogenous cell responses to physiologic deformation within a native-tissue context. We also developed a method to generate heterogeneous tissue-engineered constructs (hetTECs) with non-fibrous proteoglycan-rich microdomains engineered into the fibrous structure, and show that these hetTECs match the microstructural, micromechanical and mechanobiological benchmarks of native tissue. Our tissue-engineered platform should facilitate the study of the mechanobiology of developing, homeostatic, degenerating and regenerating fibrous tissues.
Han, Woojin M; Heo, Su-Jin; Driscoll, Tristan P; Delucca, John F; McLeod, Claire M; Smith, Lachlan J; Duncan, Randall L; Mauck, Robert L; Elliott, Dawn M
2016-04-01
Treatment strategies to address pathologies of fibrocartilaginous tissue are in part limited by an incomplete understanding of structure-function relationships in these load-bearing tissues. There is therefore a pressing need to develop micro-engineered tissue platforms that can recreate the highly inhomogeneous tissue microstructures that are known to influence mechanotransductive processes in normal and diseased tissue. Here, we report the quantification of proteoglycan-rich microdomains in developing, ageing and diseased fibrocartilaginous tissues, and the impact of these microdomains on endogenous cell responses to physiologic deformation within a native-tissue context. We also developed a method to generate heterogeneous tissue-engineered constructs (hetTECs) with non-fibrous proteoglycan-rich microdomains engineered into the fibrous structure, and show that these hetTECs match the microstructural, micromechanical and mechanobiological benchmarks of native tissue. Our tissue-engineered platform should facilitate the study of the mechanobiology of developing, homeostatic, degenerating and regenerating fibrous tissues.
Han, Woojin M; Heo, Su-Jin; Driscoll, Tristan P; Delucca, John F; McLeod, Claire M; Smith, Lachlan J; Duncan, Randall L; Mauck, Robert L; Elliott, Dawn M
2015-01-01
Treatment strategies to address pathologies of fibrocartilaginous tissue are in part limited by an incomplete understanding of structure-function relationships in these load-bearing tissues. There is therefore a pressing need to develop microengineered tissue platforms that can recreate the highly inhomogeneous tissue microstructures that are known to influence mechanotransductive processes in normal and diseased tissue. Here, we report the quantification of proteoglycan-rich microdomains in developing, aging, and diseased fibrocartilaginous tissues, and the impact of these microdomains on endogenous cell responses to physiologic deformation within a native-tissue context. We also developed a method to generate heterogeneous tissue engineered constructs (hetTECs) with microscale non-fibrous proteoglycan-rich microdomains engineered into the fibrous structure, and show that these hetTECs match the microstructural, micromechanical, and mechanobiological benchmarks of native tissue. Our tissue engineered platform should facilitate the study of the mechanobiology of developing, homeostatic, degenerating, and regenerating fibrous tissues. PMID:26726994
Activity vs. rest in the treatment of bone, soft tissue and joint injuries.
Buckwalter, J A
1995-01-01
One of the most important advances in the treatment of musculoskeletal injuries has come from understanding that controlled early resumption of activity can promote restoration of function, and that treatment of injuries with prolonged rest may delay recovery and adversely affect normal tissues. In the last decade of the nineteenth century two widely respected orthopaedists with extensive clinical experience strongly advocated opposing treatments of musculoskeletal injuries. Hugh Owen Thomas in Liverpool believed that enforced, uninterrupted prolonged rest produced the best results. He noted that movement of injured tissues increased inflammation, and that, "It would indeed be as reasonable to attempt to cure a fever patient by kicking him out of bed, as to benefit joint disease by a wriggling at the articulation." Just Lucas-Championnier in Paris took the opposite position. He argued that early controlled active motion accelerated restoration of function, although he noted that mobility had to be given in limited doses. In general, Thomas' views met with greater acceptance in the early part of this century, but experimental studies of the last several decades generally support Lucas-Championneir. They confirm and help explain the deleterious effects of prolonged rest and the beneficial effects of activity on the musculoskeletal tissues. They have shown that maintenance of normal bone, tendon and ligament, articular cartilage and muscle structure and composition require repetitive use, and that changes in the patterns of tissue loading can strengthen or weaken normal tissues. Although all the musculoskeletal tissues can respond to repetitive loading, they vary in the magnitude and type of response to specific patterns of activity. Furthermore, their responsiveness may decline with increasing age. Skeletal muscle and bone demonstrate the most apparent response to changes in activity in individuals of any age. Cartilage and dense fibrous tissues also can respond to loading, but the responses are more difficult to measure. The effects of loading on injured tissues have been less extensively studied, but the available evidence indicates that repair tissues respond to loading and, like immature normal tissues, may be more sensitive to cyclic loading and motion than mature normal tissues. However, early motion and loading of injured tissues is not without risks. Premature or excessive loading and motion of repair tissue can inhibit or stop repair. Unfortunately, the optimal methods of facilitating healing by early application of loading and motion have not been defined.(ABSTRACT TRUNCATED AT 400 WORDS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukumoto, Shinya; Hanazono, Kiwamu; Fu, Dah-Renn
2013-09-13
Highlights: •LAT1 is highly expressed in tumors but at low levels in normal tissues. •We examine LAT1 expression and function in malignant melanoma (MM). •LAT1 expression in MM tissues and cell lines is higher than those in normal tissues. •LAT1 selective inhibitors inhibit amino acid uptake and cell growth in MM cells. •New chemotherapeutic protocols including LAT1 inhibitors are effective for treatment. -- Abstract: L-type amino acid transporter 1 (LAT1), an isoform of amino acid transport system L, transports branched or aromatic amino acids essential for fundamental cellular activities such as cellular growth, proliferation and maintenance. This amino acid transportermore » recently has received attention because of its preferential and up-regulated expression in a variety of human tumors in contrast to its limited distribution and low-level expression in normal tissues. In this study, we explored the feasibility of using LAT1 inhibitor as a new therapeutic agent for human malignant melanomas (MM) using canine spontaneous MM as a model for human MM. A comparative study of LAT expression was performed in 48 normal tissues, 25 MM tissues and five cell lines established from MM. The study observed LAT1 mRNA levels from MM tissues and cell lines that were significantly (P < 0.01) higher than in normal tissues. Additionally, MM with distant metastasis showed a higher expression than those without distant metastasis. Functional analysis of LAT1 was performed on one of the five cell lines, CMeC-1. [{sup 3}H]L-Leucine uptake and cellular growth activities in CMeC-1 were inhibited in a dose-dependent manner by selective LAT1 inhibitors (2-amino-2-norbornane-carboxylic acid, BCH and melphalan, LPM). Inhibitory growth activities of various conventional anti-cancer drugs, including carboplatin, cyclophosphamide, dacarbazine, doxorubicin, mitoxantrone, nimustine, vinblastine and vincristine, were significantly (P < 0.05) enhanced by combination use with BCH or LPM. These findings suggest that LAT1 could be a new therapeutic target for MM.« less
Antonopoulos, Markos; Stamatakos, Georgios
2015-01-01
Intensive glioma tumor infiltration into the surrounding normal brain tissues is one of the most critical causes of glioma treatment failure. To quantitatively understand and mathematically simulate this phenomenon, several diffusion-based mathematical models have appeared in the literature. The majority of them ignore the anisotropic character of diffusion of glioma cells since availability of pertinent truly exploitable tomographic imaging data is limited. Aiming at enriching the anisotropy-enhanced glioma model weaponry so as to increase the potential of exploiting available tomographic imaging data, we propose a Brownian motion-based mathematical analysis that could serve as the basis for a simulation model estimating the infiltration of glioblastoma cells into the surrounding brain tissue. The analysis is based on clinical observations and exploits diffusion tensor imaging (DTI) data. Numerical simulations and suggestions for further elaboration are provided.
Park, H G; Zhang, J Y; Foster, C; Sudilovsky, D; Schwed, D A; Mecenas, J; Devapatla, S; Lawrence, P; Kothapalli, K S D; Brenna, J T
2018-07-01
Numerous genetic alterations of HSA 11q13 are found frequently in several cancer types, including breast cancer (BC). The 11q13 locus harbors FADS2 encoding Δ6 desaturation which is not functional in several cancer cell lines, including hormone positive MCF7 BC cells. In vitro, the non-functional FADS2 activity unmasks 18:2n-6 elongation to 20:2n-6 and Δ5 desaturation by FADS1 to yield 5Z,11Z,14Z-20:3 (sciadonic acid) rather than 5Z,8Z,11Z,14Z-20:4 (arachidonic acid). In this pilot study we aimed to determine whether 5,11,14-20:3 appears in vivo in hormone positive human BC tissue. Fatty acids were profiled in surgically removed human breast tumor and adjacent normal tissue (n = 9). Sciadonic acid was detected in three of nine breast tumor samples and was below detect limits in normal breast tissue. The internal Δ8 double bond of arachidonic acid is required for normal eicosanoid synthesis but is missing in sciadonic acid. This pilot study demonstrates for the first time in vivo sciadonic acid in hormone positive BC tissue, warranting a larger survey study to further evaluate its appearance and the functional implications. Copyright © 2018. Published by Elsevier Ltd.
Photoacoustic physio-chemical analysis for prostate cancer diagnosis (Conference Presentation)
NASA Astrophysics Data System (ADS)
Xu, Guan; Cheng, Qian; Huang, Shengsong; Qin, Ming; Hopkins, Thomas; Lee, Chang H.; Kopelman, Raoul; Chao, Wan-yu; Keller, Evan T.; Wu, Denglong; Wang, Xueding
2017-03-01
Photoacoustic physio-chemical analysis (PAPCA) is a recently developed technology capable of simultaneously quantifying the content of molecular components and the corresponding microarchitectures in biological tissue. We have successfully quantified the diagnostic information in livers with PAPCA. In this study, we implemented PAPCA to the diagnosis of prostate cancers. 4 human prostates were scanned ex vivo. The PA signals from normal and cancerous regions in the prostates were acquired by an interstitial needle PA probe. A total of 14 interstitial measurements, including 6 within the normal regions and 8 in the cancerous regions, were acquired. The observed changes in molecular components, including lipid, collagen and hemoglobin were consistent with the findings by other research groups. The changes were quantified by PA spectral analysis (PASA) at wavelengths where strong optical absorption of the relevant molecular components was found. Statistically significant differences among the PASA parameters were observed (p=0.025 at significance of 0.05). A support vector machine model for differentiating the normal and cancerous tissue was established. With the limited number of samples, an 85% diagnostic accuracy was found. The diagnostic information in the PCPCA can be further enriched by targeted optical contrast agents visualizing the microarchitecture in PCa tissues. F3 PAA-PEG nanoparticles was employed to stain the PCa cells in a transgenic mouse model, in which the microarchitectures of normal and cancerous prostate tissues are comparable to that in human. Statistically significant differences were observed between the contrast-enhanced normal and cancerous regions (p=0.038 at a significance of 0.05).
Lawrence, Jessica A.; Forrest, Lisa J.; Turek, Michelle M.; Miller, Paul E.; Mackie, T. Rockwell; Jaradat, Hazim A.; Vail, David M.; Dubielzig, Richard R.; Chappell, Richard; Mehta, Minesh P.
2010-01-01
Intensity modulated radiation therapy (IMRT) allows optimization of radiation dose delivery to complex tumor volumes with rapid dose drop-off to surrounding normal tissues. A prospective study was performed to evaluate the concept of conformal avoidance using IMRT in canine sinonasal cancer. The potential of IMRT to improve clinical outcome with respect to acute and late ocular toxicity was evaluated. Thirty-one dogs with sinonasal cancer were treated definitively with IMRT using helical tomotherapy and/or dynamic multileaf collimator (DMLC) delivery. Ocular toxicity was evaluated prospectively and compared to a comparable group of historical controls treated with conventional two-dimensional radiotherapy (2D-RT) techniques. Treatment plans were devised for each dog using helical tomotherapy and DMLC that achieved the target dose to the planning treatment volume and limited critical normal tissues to the prescribed dose-volume constraints. Overall acute and late toxicities were limited and minor, detectable by an experienced observer. This was in contrast to the profound ocular morbidity observed in the historical control group treated with 2D-RT. Overall median survival for IMRT treated and 2D treated dogs was 420 days and 411 days, respectively. Compared with conventional techniques, IMRT reduced dose delivered to eyes and resulted in bilateral ocular sparing in the dogs reported herein. These data provide proof-of-principle that conformal avoidance radiotherapy can be delivered through high conformity IMRT, resulting in decreased normal tissue toxicity as compared to historical controls treated with 2D-RT. PMID:20973393
Yao, Xinwen; Gan, Yu; Chang, Ernest; Hibshoosh, Hanina; Feldman, Sheldon; Hendon, Christine
2017-03-01
Breast cancer is one of the most common cancers, and recognized as the third leading cause of mortality in women. Optical coherence tomography (OCT) enables three dimensional visualization of biological tissue with micrometer level resolution at high speed, and can play an important role in early diagnosis and treatment guidance of breast cancer. In particular, ultra-high resolution (UHR) OCT provides images with better histological correlation. This paper compared UHR OCT performance with standard OCT in breast cancer imaging qualitatively and quantitatively. Automatic tissue classification algorithms were used to automatically detect invasive ductal carcinoma in ex vivo human breast tissue. Human breast tissues, including non-neoplastic/normal tissues from breast reduction and tumor samples from mastectomy specimens, were excised from patients at Columbia University Medical Center. The tissue specimens were imaged by two spectral domain OCT systems at different wavelengths: a home-built ultra-high resolution (UHR) OCT system at 800 nm (measured as 2.72 μm axial and 5.52 μm lateral) and a commercial OCT system at 1,300 nm with standard resolution (measured as 6.5 μm axial and 15 μm lateral), and their imaging performances were analyzed qualitatively. Using regional features derived from OCT images produced by the two systems, we developed an automated classification algorithm based on relevance vector machine (RVM) to differentiate hollow-structured adipose tissue against solid tissue. We further developed B-scan based features for RVM to classify invasive ductal carcinoma (IDC) against normal fibrous stroma tissue among OCT datasets produced by the two systems. For adipose classification, 32 UHR OCT B-scans from 9 normal specimens, and 28 standard OCT B-scans from 6 normal and 4 IDC specimens were employed. For IDC classification, 152 UHR OCT B-scans from 6 normal and 13 IDC specimens, and 104 standard OCT B-scans from 5 normal and 8 IDC specimens were employed. We have demonstrated that UHR OCT images can produce images with better feature delineation compared with images produced by 1,300 nm OCT system. UHR OCT images of a variety of tissue types found in human breast tissue were presented. With a limited number of datasets, we showed that both OCT systems can achieve a good accuracy in identifying adipose tissue. Classification in UHR OCT images achieved higher sensitivity (94%) and specificity (93%) of adipose tissue than the sensitivity (91%) and specificity (76%) in 1,300 nm OCT images. In IDC classification, similarly, we achieved better results with UHR OCT images, featured an overall accuracy of 84%, sensitivity of 89% and specificity of 71% in this preliminary study. In this study, we provided UHR OCT images of different normal and malignant breast tissue types, and qualitatively and quantitatively studied the texture and optical features from OCT images of human breast tissue at different resolutions. We developed an automated approach to differentiate adipose tissue, fibrous stroma, and IDC within human breast tissues. Our work may open the door toward automatic intraoperative OCT evaluation of early-stage breast cancer. Lasers Surg. Med. 49:258-269, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Zhao, Q. L.; Si, J. L.; Guo, Z. Y.; Wei, H. J.; Yang, H. Q.; Wu, G. Y.; Xie, S. S.; Li, X. Y.; Guo, X.; Zhong, H. Q.; Li, L. Q.
2011-01-01
We report our pilot results on quantification of glucose (G) diffusion permeability in human normal esophagus and ESCC tissues in vitro by using OCT technique. The permeability coefficient of 40% aqueous solution of G was found to be (1.74±0.04)×10-5 cm/s in normal esophagus and (2.45±0.06)×10-5 cm/s in ESCC tissues. The results from this study indicate that ESCC tissues had a higher permeability coefficient compared to normal esophageal tissues, and the light penetration depths gradually increase with the increase of applied topically with G time for the normal esophageal and ESCC tissues. The results indicate that the permeability coefficient of G in cancer tissues was 1.41-fold than that in normal tissues, and the light penetration depth for the ESCC tissues is significantly smaller than that of normal esophagus tissues in the same time range. These results demonstrate that the optical clearing of normal and cancer esophagus tissues are improved after application of G.
Snuderl, Matija; Wirth, Dennis; Sheth, Sameer A; Bourne, Sarah K; Kwon, Churl-Su; Ancukiewicz, Marek; Curry, William T; Frosch, Matthew P; Yaroslavsky, Anna N
2013-01-01
Intraoperative diagnosis plays an important role in accurate sampling of brain tumors, limiting the number of biopsies required and improving the distinction between brain and tumor. The goal of this study was to evaluate dye-enhanced multimodal confocal imaging for discriminating gliomas from nonglial brain tumors and from normal brain tissue for diagnostic use. We investigated a total of 37 samples including glioma (13), meningioma (7), metastatic tumors (9) and normal brain removed for nontumoral indications (8). Tissue was stained in 0.05 mg/mL aqueous solution of methylene blue (MB) for 2-5 minutes and multimodal confocal images were acquired using a custom-built microscope. After imaging, tissue was formalin fixed and paraffin embedded for standard neuropathologic evaluation. Thirteen pathologists provided diagnoses based on the multimodal confocal images. The investigated tumor types exhibited distinctive and complimentary characteristics in both the reflectance and fluorescence responses. Images showed distinct morphological features similar to standard histology. Pathologists were able to distinguish gliomas from normal brain tissue and nonglial brain tumors, and to render diagnoses from the images in a manner comparable to haematoxylin and eosin (H&E) slides. These results confirm the feasibility of multimodal confocal imaging for intravital intraoperative diagnosis. © 2012 The Authors; Brain Pathology © 2012 International Society of Neuropathology.
Roberts, Edward W.; Deonarine, Andrew; Jones, James O.; Denton, Alice E.; Feig, Christine; Lyons, Scott K.; Espeli, Marion; Kraman, Matthew; McKenna, Brendan; Wells, Richard J.B.; Zhao, Qi; Caballero, Otavia L.; Larder, Rachel; Coll, Anthony P.; O’Rahilly, Stephen; Brindle, Kevin M.; Teichmann, Sarah A.; Tuveson, David A.
2013-01-01
Fibroblast activation protein-α (FAP) identifies stromal cells of mesenchymal origin in human cancers and chronic inflammatory lesions. In mouse models of cancer, they have been shown to be immune suppressive, but studies of their occurrence and function in normal tissues have been limited. With a transgenic mouse line permitting the bioluminescent imaging of FAP+ cells, we find that they reside in most tissues of the adult mouse. FAP+ cells from three sites, skeletal muscle, adipose tissue, and pancreas, have highly similar transcriptomes, suggesting a shared lineage. FAP+ cells of skeletal muscle are the major local source of follistatin, and in bone marrow they express Cxcl12 and KitL. Experimental ablation of these cells causes loss of muscle mass and a reduction of B-lymphopoiesis and erythropoiesis, revealing their essential functions in maintaining normal muscle mass and hematopoiesis, respectively. Remarkably, these cells are altered at these sites in transplantable and spontaneous mouse models of cancer-induced cachexia and anemia. Thus, the FAP+ stromal cell may have roles in two adverse consequences of cancer: their acquisition by tumors may cause failure of immunosurveillance, and their alteration in normal tissues contributes to the paraneoplastic syndromes of cachexia and anemia. PMID:23712428
Lin, Ya; Yamashita, Masaru; Zhang, Jingxian; Ling, Changying; Welham, Nathan V
2009-10-01
Disruption of the vocal fold extracellular matrix (ECM) can induce a profound and refractory dysphonia. Pulsed dye laser (PDL) irradiation has shown early promise as a treatment modality for disordered ECM in patients with chronic vocal fold scar; however, there are limited data addressing the mechanism by which this laser energy might induce cellular and extracellular changes in vocal fold tissues. In this study, we examined the inflammatory and ECM modulating effects of PDL irradiation on normal vocal fold tissues and cultured vocal fold fibroblasts (VFFs). We evaluated the effects of 585 nm PDL irradiation on inflammatory cytokine and collagen/collagenase gene transcription in normal rat vocal folds in vivo (3-168 hours following delivery of approximately 39.46 J/cm(2) fluence) and VFFs in vitro (3-72 hours following delivery of 4.82 or 9.64 J/cm(2) fluence). We also examined morphological vocal fold tissue changes 3 hours, 1 week, and 1 month post-irradiation. PDL irradiation altered inflammatory cytokine and procollagen/collagenase expression at the transcript level, both in vitro and in vivo. Additionally, PDL irradiation induced an inflammatory repair process in vivo that was completed by 1 month with preservation of normal tissue morphology. PDL irradiation can modulate ECM turnover in phenotypically normal vocal folds. Additional work is required to determine if these findings extend to disordered ECM, such as is seen in vocal fold scar. Lasers Surg. Med. 41:585-594, 2009. (c) 2009 Wiley-Liss, Inc.
Source and Portal of Entry of Bacteria Found in Bruised Poultry Tissue1
Hamdy, M. K.; Barton, N. D.; Brown, W. E.
1964-01-01
Bacteriological studies revealed that normal tissue, air sacs, feathers, skin of birds, poultry feed, gut, and chicken droppings were sources of the predominant organisms, including staphylococci, found in bruised poultry tissue. Further investigation of normal tissue revealed that after the intramuscular injection of Staphylococcus aureus, marker strain (MS), the organism was eliminated from these tissues within 7 days. However, when these tissues were traumatized 3 days after injection, the number of the test organism increased, and the organism was present on the 7th day after inoculation. Poultry feed and fecal material contained a large number of staphylococci identical to those isolated from bruised tissue (McCarthy, Brown, and Hamdy, 1963), thereby implicating the gut as a possible portal of entry. When a pathogenic marker strain of S. aureus was established in the intestinal tract of chickens by administering an active culture of this organism either in their drinking water or by gavage, it was recovered from the traumatized tissue. The incidence of positive culture of S. aureus MS in these tissues correlated with age of bruise, reaching 22 to 33% immediately after contusion and at the early stages of healing (1 to 3 days post bruise) and decreasing thereafter from 11 to 0% on the 4th through 6th days after bruise infliction. The air sac was also found to be a site by which bacteria may enter the traumatized tissues, but to a limited extent. PMID:14239576
Informing Stem Cell-Based Tendon Tissue Engineering Approaches with Embryonic Tendon Development.
Okech, William; Kuo, Catherine K
Adult tendons fail to regenerate normal tissue after injury, and instead form dysfunctional scar tissue with abnormal mechanical properties. Surgical repair with grafts is the current standard to treat injuries, but faces significant limitations including pain and high rates of re-injury. To address this, we aim to regenerate new, normal tendons to replace dysfunctional tendons. A common approach to tendon tissue engineering is to design scaffolds and bioreactors based on adult tendon properties that can direct adult stem cell tenogenesis. Despite significant progress, advances have been limited due, in part, to a need for markers and potent induction cues. Our goal is to develop novel tendon tissue engineering approaches informed by embryonic tendon development. We are characterizing structure-property relationships of embryonic tendon to identify design parameters for three-dimensional scaffolds and bioreactor mechanical loading systems to direct adult stem cell tenogenesis. We will review studies in which we quantified changes in the mechanical and biochemical properties of tendon during embryonic development and elucidated specific mechanisms of functional property elaboration. We then examined the effects of these mechanical and biochemical factors on embryonic tendon cell behavior. Using custom-designed bioreactors, we also examined the effects of dynamic mechanical loading and growth factor treatment on embryonic tendon cells. Our findings have established cues to induce tenogenesis as well as metrics to evaluate differentiation. We finish by discussing how we have evaluated the tenogenic differentiation potential of adult stem cells by comparing their responses to that of embryonic tendon cells in these culture systems.
Epidermal growth factor expression in esophageal adenocarcinoma: a clinically relevant target?
Harper, Nicholas; Li, Yan; Farmer, Russell; Martin, Robert C G
2012-05-01
There has been recent widespread enthusiasm in epidermal growth factor (EGFR) as a molecularly active target in esophageal adenocarcinoma (EAC). However, there is limited data on the extent of EGFR expression in EAC. Thus, the aim of this study was to evaluated EGFR, pErk1/2, and total Erk1/2 expression in malignant and benign specimens. Baseline expression of EGFR in the human normal squamous, Barrett's, and EAC cell lines were determined as well as after bile acid treatment and curcumin pretreatment. In addition, EGFR expression was also evaluated in 60 matched normal and malignant EAC resected specimens. The in vitro studies in the Het-1a, BarT, and OE19 cell lines failed to show any measurable expression of EGFR via Western blot technique. The marker serving as the positive control for the study, MnSOD, showed expression in each cell line for all three treatment regimens at approximately 24 kDa EGFR, showing moderate staining in the malignant tumor specimens and low staining in the benign tissue specimens. pErk1/2 showed low staining in the malignant tumor specimens and no staining in the benign tissue specimens. Total Erk1/2 showed high staining in both the malignant tumor specimens and benign tissue specimens. The differences in the mean staining scores for the malignant versus benign tissue specimens for pErk1/2 and total Erk1/2 are not statistically significant (p = 0.0726 and p = 0.7054, respectively). Thus, in conclusion, EGFR expression has been confirmed to be limited to non-existent in EAC and thus its use as a clinically active target is limited at best. Prior to the use of these expensive anti-EGFR therapies, confirmation of overexpression should be verified.
Subtraction of cap-trapped full-length cDNA libraries to select rare transcripts.
Hirozane-Kishikawa, Tomoko; Shiraki, Toshiyuki; Waki, Kazunori; Nakamura, Mari; Arakawa, Takahiro; Kawai, Jun; Fagiolini, Michela; Hensch, Takao K; Hayashizaki, Yoshihide; Carninci, Piero
2003-09-01
The normalization and subtraction of highly expressed cDNAs from relatively large tissues before cloning dramatically enhanced the gene discovery by sequencing for the mouse full-length cDNA encyclopedia, but these methods have not been suitable for limited RNA materials. To normalize and subtract full-length cDNA libraries derived from limited quantities of total RNA, here we report a method to subtract plasmid libraries excised from size-unbiased amplified lambda phage cDNA libraries that avoids heavily biasing steps such as PCR and plasmid library amplification. The proportion of full-length cDNAs and the gene discovery rate are high, and library diversity can be validated by in silico randomization.
Autofluorescence polarization spectroscopy of cancerous and normal colorectal tissues
NASA Astrophysics Data System (ADS)
Genova, Ts.; Borisova, E.; Penkov, N.; Vladimirov, B.; Terziev, I.; Zhelyazkova, Al.; Avramov, L.
2016-01-01
The wide spread of colorectal cancer and high mortality rate among the patients, brings it to a level of high public health concern. Implementation of standard endoscopic surveillance proves to be effective for reduction of colorectal cancer patients' mortality, since its early diagnosis allows eradication of the disease prior to invasive cancer development, but its application in common clinical practice is still limited. Therefore the development of complimentary diagnostic techniques of the standard white-light endoscopy is on high demand. The non-invasive and highly informative nature of the fluorescence spectroscopy allow to use it as the most realistic prospect of an add-on "red flag" technique for early endoscopy detection of colorectal cancer. Synchronous fluorescence spectroscopy (SFS) is a steady-state approach that is used for evaluation of specific fluorescence characteristics of cancerous colorectal tissues in our studies. The feasibility of polarization fluorescence technique to enhance the contrast between normal and cancerous tissues was investigated as well. Additional linear polarizing optics was used on the way of the excitation and emission fluorescence light beams. The polarizing effects were investigated in parallel and perpendicular linear polarization modes respectively. The excitation applied was in the region of 280 - 440 nm, with 10 nm scanning step, and the fluorescence emission was detected in the region of 300 - 800 nm. Our previous experience with SFS technique showed its great potential for accurate, highly sensitive and specific discrimination between cancerous and normal colorectal tissue. Since one of the major sources of endogenous fluorescence with diagnostic meaning is the structural protein - collagen, which is characterized with high anisotropy, we've expected and observed an enhancement of the spectral differences between cancerous and normal colorectal tissue, which could be beneficial for the colorectal tumour' diagnostics using SFS.
Zhu, G H; Wang, S T; Yao, M Z; Cai, J H; Chen, C Y; Yang, Z X; Hong, L; Yang, S Y
2014-04-16
The objective of this study was to explore the feasibility and methods of screening the residual normal ovarian tissue adjacent to orthotopic ovarian carcinomas in nude mice. Human epithelial ovarian cancer cells (OVCAR3) were subcutaneously implanted for a tumor source and ovarian orthotopic transplantation. The cancer tissue, proximal paraneoplastic tissue, middle paraneoplastic tissue, remote paraneoplastic tissue, and normal ovarian tissue were removed. CK-7, CA125, p53, survivin, MMP-2, and TIMP-2 expression was detected by reverse transcription polymerase chain reaction. We obtained 35 paraneoplastic residual ovarian tissues with normal biopsies from 40 cases of an orthotopic epithelial ovarian carcinoma model (87.5%). CK-7, CA125, p53, survivin, MMP-2, and TIMP-2 expression was lower in proximal paraneoplastic tissue than in cancer tissue (P < 0.05) and higher than in middle and remote paraneoplastic tissue (P < 0.01). There was no statistically significant difference between the expression of these genes in middle and proximal paraneoplastic tissue as well as among residual normal ovarian tissues with different severity (P > 0.05). In ovarian tissues of 20 normal nude mice, the expression of CK- 7, CA125, p53, survivin, MMP-2, and TIMP-2 was negative. Overall, the expression levels of CK-7, CA125, p53, survivin, MMP-2, TIMP-2, and other molecular markers showed a decreasing trend in the non-cancer tissue direction. The expression levels can be used as standards to screen residual normal ovarian tissue. We can obtain relatively safe normal ovarian tissues adjacent to epithelial ovarian cancer.
Girod, Marion; Shi, Yunzhou; Cheng, Ji-Xin; Cooks, R. Graham
2010-01-01
Desorption electrospray ionization (DESI) mass spectrometry is used in an imaging mode to interrogate the lipid profiles of 15 µm thin tissues cross sections of injured rat spinal cord and normal healthy tissue. Increased relative intensities of fatty acids, diacylglycerols and lysolipids (between +120% and +240%) as well as a small decrease in intensities of lipids (−30%) were visualized in the lesion epi-center and adjacent areas after spinal cord injury. This indicates the hydrolysis of lipids during the demyelination process due to activation of phospholipase A2 enzyme. In addition, signals corresponding to oxidative degradation products, such as prostaglandin and hydroxyeicosatetraenoic acid, exhibited increased signal intensity by a factor of two in the negative ion mode in lesions relative to the normal healthy tissue. Analysis of malondialdehyde, a product of lipid peroxidation and marker of oxidative stress, was accomplished in the ambient environment using reactive DESI mass spectrometry imaging. This was achieved by electrospraying reagent solution containing dinitrophenylhydrazine as high velocity charged droplets onto the tissue section. The hydrazine reacts selectively and rapidly with the carbonyl groups of malondialdehyde and signal intensity of twice the intensity was detected in the lesions compared to healthy spinal cord. With a small amount of tissue sample, DESI-MS imaging provides information on the composition and distribution of specific compounds (limited by the occurrence of isomeric lipids with very similar fragmentation patterns) in lesions after spinal cord injury in comparison with normal healthy tissue allowing identification of the extent of the lesion and its repair. PMID:21142140
2017-10-01
expression is elevated in DCIS samples compared to normal mammary tissue, invasive ductal carcinoma (IDC) compared to normal mammary tissue, and DCIS... compared to IDC. (2) BCAR3 is significantly upregulated in triple negative breast cancer and normal tissue; (3) BCAR3 expression shows a modest...expression was seen to be elevated in DCIS samples compared to normal mammary tissue, invasive ductal carcinoma (IDC) compared to normal mammary tissue, and
Zhou, Haoyan; Goss, Monika; Hernandez, Christopher; Mansour, Joseph M; Exner, Agata
2016-05-01
Ultrasound elastography (UE) has been widely used as a "digital palpation" tool to characterize tissue mechanical properties in the clinic. UE benefits from the capability of noninvasively generating 2-D elasticity encoded maps. This spatial distribution of elasticity can be especially useful in the in vivo assessment of tissue engineering scaffolds and implantable drug delivery platforms. However, the detection limitations have not been fully characterized and thus its true potential has not been completely discovered. Characterization studies have focused primarily on the range of moduli corresponding to soft tissues, 20-600 kPa. However, polymeric biomaterials used in biomedical applications such as tissue scaffolds, stents, and implantable drug delivery devices can be much stiffer. In order to explore UE's potential to assess mechanical properties of biomaterials in a broader range of applications, this work investigated the detection limit of UE strain imaging beyond soft tissue range. To determine the detection limit, measurements using standard mechanical testing and UE on the same polydimethylsiloxane samples were compared and statistically evaluated. The broadest detection range found based on the current optimized setup is between 47 kPa and 4 MPa which exceeds the modulus of normal soft tissue suggesting the possibility of using this technique for stiffer materials' mechanical characterization. The detectable difference was found to be as low as 157 kPa depending on sample stiffness and experimental setup.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Georgiades, Christos, E-mail: g_christos@hotmail.com; Rodriguez, Ronald, E-mail: rrodrig@jhmi.edu; Azene, Ezana, E-mail: eazene1@jhmi.edu
2013-06-15
Objective. The study was designed to determine the distance between the visible 'ice-ball' and the lethal temperature isotherm for normal renal tissue during cryoablation. Methods. The Animal Care Committee approved the study. Nine adult swine were used: three to determine the optimum tissue stain and six to test the hypotheses. They were anesthetized and the left renal artery was catheterized under fluoroscopy. Under MR guidance, the kidney was ablated and (at end of a complete ablation) the nonfrozen renal tissue (surrounding the 'ice-ball') was stained via renal artery catheter. Kidneys were explanted and sent for slide preparation and examination. Frommore » each slide, we measured the maximum, minimum, and an in-between distance from the stained to the lethal tissue boundaries (margin). We examined each slide for evidence of 'heat pump' effect. Results. A total of 126 measurements of the margin (visible 'ice-ball'-lethal margin) were made. These measurements were obtained from 29 slides prepared from the 6 test animals. Mean width was 0.75 {+-} 0.44 mm (maximum 1.15 {+-} 0.51 mm). It was found to increase adjacent to large blood vessels. No 'heat pump' effect was noted within the lethal zone. Data are limited to normal swine renal tissue. Conclusions. Considering the effects of the 'heat pump' phenomenon for normal renal tissue, the margin was measured to be 1.15 {+-} 0.51 mm. To approximate the efficacy of the 'gold standard' (partial nephrectomy, {approx}98 %), a minimum margin of 3 mm is recommended (3 Multiplication-Sign SD). Given these assumptions and extrapolating for renal cancer, which reportedly is more cryoresistant with a lethal temperature of -40 Degree-Sign C, the recommended margin is 6 mm.« less
Alu-derived cis-element regulates tumorigenesis-dependent gastric expression of GASDERMIN B (GSDMB).
Komiyama, Hiromitsu; Aoki, Aya; Tanaka, Shigekazu; Maekawa, Hiroshi; Kato, Yoriko; Wada, Ryo; Maekawa, Takeo; Tamura, Masaru; Shiroishi, Toshihiko
2010-02-01
GASDERMIN B (GSDMB) belongs to the novel gene family GASDERMIN (GSDM). All GSDM family members are located in amplicons, genomic regions often amplified during cancer development. Given that GSDMB is highly expressed in cancerous cells and the locus resides in an amplicon, GSDMB may be involved in cancer development and/or progression. However, only limited information is available on GSDMB expression in tissues, normal and cancerous, from cancer patients. Furthermore, the molecular mechanisms that regulate GSDMB expression in gastric tissues are poorly understood. We investigated the spatiotemporal expression patterns of GSDMB in gastric cancer patients and the 5' regulatory sequences upstream of GSDMB. GSDMB was not expressed in the majority of normal gastric-tissue samples, and the expression level was very low in the few normal samples with GSDMB expression. Most pre-cancer samples showed moderate GSDMB expression, and most cancerous samples showed augmented GSDMB expression. Analysis of genome sequences revealed that an Alu element resides in the 5' region upstream of GSDMB. Reporter assays using intact, deleted, and mutated Alu elements clearly showed that this Alu element positively regulates GSDMB expression and that a putative IKZF binding motif in this element is crucial to upregulate GSDMB expression.
Frame Rate Considerations for Real-Time Abdominal Acoustic Radiation Force Impulse Imaging
Fahey, Brian J.; Palmeri, Mark L.; Trahey, Gregg E.
2008-01-01
With the advent of real-time Acoustic Radiation Force Impulse (ARFI) imaging, elevated frame rates are both desirable and relevant from a clinical perspective. However, fundamental limitations on frame rates are imposed by thermal safety concerns related to incident radiation force pulses. Abdominal ARFI imaging utilizes a curvilinear scanning geometry that results in markedly different tissue heating patterns than those previously studied for linear arrays or mechanically-translated concave transducers. Finite Element Method (FEM) models were used to simulate these tissue heating patterns and to analyze the impact of tissue heating on frame rates available for abdominal ARFI imaging. A perfusion model was implemented to account for cooling effects due to blood flow and frame rate limitations were evaluated in the presence of normal, reduced and negligible tissue perfusions. Conventional ARFI acquisition techniques were also compared to ARFI imaging with parallel receive tracking in terms of thermal efficiency. Additionally, thermocouple measurements of transducer face temperature increases were acquired to assess the frame rate limitations imposed by cumulative heating of the imaging array. Frame rates sufficient for many abdominal imaging applications were found to be safely achievable utilizing available ARFI imaging techniques. PMID:17521042
NASA Astrophysics Data System (ADS)
Masterson, Timothy A.; Dill, Allison L.; Eberlin, Livia S.; Mattarozzi, Monica; Cheng, Liang; Beck, Stephen D. W.; Bianchi, Federica; Cooks, R. Graham
2011-08-01
Desorption electrospray ionization mass spectrometry (DESI-MS) has been successfully used to discriminate between normal and cancerous human tissue from different anatomical sites. On the basis of this, DESI-MS imaging was used to characterize human seminoma and adjacent normal tissue. Seminoma and adjacent normal paired human tissue sections (40 tissues) from 15 patients undergoing radical orchiectomy were flash frozen in liquid nitrogen and sectioned to 15 μm thickness and thaw mounted to glass slides. The entire sample was two-dimensionally analyzed by the charged solvent spray to form a molecular image of the biological tissue. DESI-MS images were compared with formalin-fixed, hematoxylin and eosin (H&E) stained slides of the same material. Increased signal intensity was detected for two seminolipids [seminolipid (16:0/16:0) and seminolipid (30:0)] in the normal tubule testis tissue; these compounds were undetectable in seminoma tissue, as well as from the surrounding fat, muscle, and blood vessels. A glycerophosphoinositol [PI(18:0/20:4)] was also found at increased intensity in the normal testes tubule tissue when compared with seminoma tissue. Ascorbic acid (i.e., vitamin C) was found at increased amounts in seminoma tissue when compared with normal tissue. DESI-MS analysis was successfully used to visualize the location of several types of molecules across human seminoma and normal tissues. Discrimination between seminoma and adjacent normal testes tubules was achieved on the basis of the spatial distributions and varying intensities of particular lipid species as well as ascorbic acid. The increased presence of ascorbic acid within seminoma compared with normal seminiferous tubules was previously unknown.
Williams, Jacqueline P.; Johnston, Carl J.; Finkelstein, Jacob N.
2010-01-01
Due to the radiosensitivity of the lung, toxic endpoints, in the form of radiation pneumonitis and pulmonary fibrosis, are relatively frequent outcomes following radiation treatment of thoracic neoplasms. Because of the potential lethal nature of these normal tissue reactions, they not only lead to quality-of-life issues in survivors, but also are deemed dose-limiting and thereby compromise treatment. The mitigation and treatment of lung normal tissue late effects has therefore been the goal of many investigations; however, the complexity of both the organ itself and its response to injury has resulted in little success. Nonetheless, current technology allows us to propose likely targets that are either currently being researched or should be considered in future studies. PMID:20583979
Palmer, Caroline V; Roth, Melissa S; Gates, Ruth D
2009-02-01
Reports of coral disease have increased dramatically over the last decade; however, the biological mechanisms that corals utilize to limit infection and resist disease remain poorly understood. Compromised coral tissues often display non-normal pigmentation that potentially represents an inflammation-like response, although these pigments remain uncharacterized. Using spectral emission analysis and cryo-histological and electrophoretic techniques, we investigated the pink pigmentation associated with trematodiasis, infection with Podocotyloides stenometre larval trematode, in Porites compressa. Spectral emission analysis reveals that macroscopic areas of pink pigmentation fluoresce under blue light excitation (450 nm) and produce a broad emission peak at 590 nm (+/-6) with a 60-nm full width at half maximum. Electrophoretic protein separation of pigmented tissue extract confirms the red fluorescence to be a protein rather than a low-molecular-weight compound. Histological sections demonstrate green fluorescence in healthy coral tissue and red fluorescence in the trematodiasis-compromised tissue. The red fluorescent protein (FP) is limited to the epidermis, is not associated with cells or granules, and appears unstructured. These data collectively suggest that the red FP is produced and localized in tissue infected by larval trematodes and plays a role in the immune response in corals.
Navarro, Alfons; Tejero, Rut; Viñolas, Nuria; Cordeiro, Anna; Marrades, Ramon M; Fuster, Dolors; Caritg, Oriol; Moises, Jorge; Muñoz, Carmen; Molins, Laureano; Ramirez, Josep; Monzo, Mariano
2015-10-13
The expression of Piwi-interacting RNAs, small RNAs that bind to PIWI proteins, was until recently believed to be limited to germinal stem cells. We have studied the expression of PIWI genes during human lung embryogenesis and in paired tumor and normal tissue prospectively collected from 71 resected non-small-cell lung cancer patients. The mRNA expression analysis showed that PIWIL1 was highly expressed in 7-week embryos and downregulated during the subsequent weeks of development. PIWIL1 was expressed in 11 of the tumor samples but in none of the normal tissue samples. These results were validated by immunohistochemistry, showing faint cytoplasmic reactivity in the PIWIL1-positive samples. Interestingly, the patients expressing PIWIL1 had a shorter time to relapse (TTR) (p = 0.006) and overall survival (OS) (p = 0.0076) than those without PIWIL1 expression. PIWIL2 and 4 were downregulated in tumor tissue in comparison to the normal tissue (p < 0.001) and the patients with lower levels of PIWIL4 had shorter TTR (p = 0.048) and OS (p = 0.033). In the multivariate analysis, PIWIL1 expression emerged as an independent prognostic marker. Using 5-Aza-dC treatment and bisulfite sequencing, we observed that PIWIL1 expression could be regulated in part by methylation. Finally, an in silico study identified a stem-cell expression signature associated with PIWIL1 expression.
Elloumi, Fathi; Hu, Zhiyuan; Li, Yan; Parker, Joel S; Gulley, Margaret L; Amos, Keith D; Troester, Melissa A
2011-06-30
Genomic tests are available to predict breast cancer recurrence and to guide clinical decision making. These predictors provide recurrence risk scores along with a measure of uncertainty, usually a confidence interval. The confidence interval conveys random error and not systematic bias. Standard tumor sampling methods make this problematic, as it is common to have a substantial proportion (typically 30-50%) of a tumor sample comprised of histologically benign tissue. This "normal" tissue could represent a source of non-random error or systematic bias in genomic classification. To assess the performance characteristics of genomic classification to systematic error from normal contamination, we collected 55 tumor samples and paired tumor-adjacent normal tissue. Using genomic signatures from the tumor and paired normal, we evaluated how increasing normal contamination altered recurrence risk scores for various genomic predictors. Simulations of normal tissue contamination caused misclassification of tumors in all predictors evaluated, but different breast cancer predictors showed different types of vulnerability to normal tissue bias. While two predictors had unpredictable direction of bias (either higher or lower risk of relapse resulted from normal contamination), one signature showed predictable direction of normal tissue effects. Due to this predictable direction of effect, this signature (the PAM50) was adjusted for normal tissue contamination and these corrections improved sensitivity and negative predictive value. For all three assays quality control standards and/or appropriate bias adjustment strategies can be used to improve assay reliability. Normal tissue sampled concurrently with tumor is an important source of bias in breast genomic predictors. All genomic predictors show some sensitivity to normal tissue contamination and ideal strategies for mitigating this bias vary depending upon the particular genes and computational methods used in the predictor.
SU-G-TeP3-09: Proton Minibeam Radiation Therapy Increases Normal Tissue Resistance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prezado, Y; Gonzalez-Infantes, W; Juchaux, M
Purpose: The dose tolerances of normal tissues continue being the main limitation in radiotherapy. To overcome it, we recently proposed a novel concept: proton minibeam radiation therapy (pMBRT) [1]. It allies the physical advantages of protons with the normal tissue preservation observed when irradiated with submillimetric spatially fractionated beams (minibeam radiation therapy) [2]. The dose distributions are such that the tumor receives a homogeneous dose distribution, while normal tissues benefit from the spatial fractionation of the dose. The objective of our work was to implement this promising technique at a clinical center (Proton therapy center in Orsay) in order tomore » evaluate the potential gain in tissue sparing. Methods: Dose distributions were measured by means of gafchromic films and a PTW microdiamond detector (60019). Once the dosimetry was established, the whole brain of 7 weeks old male Fischer 344 rats was irradiated. Half of the animals received conventional seamless proton irradiation (25 Gy in one fraction). The other rats were irradiated with pMBRT (58 Gy peak dose in one fraction). The average dose deposited in the same targeted volume was in both cases 25 Gy. Results: The first complete set of dosimetric data in such small proton field sizes was obtained [3]. Rats treated with conventional proton irradiation exhibited severe moist desquamation and permanent epilation afterwards. The minibeam group, on the other hand, exhibited no skin damage and no clinical symptoms. MRI imaging and histological analysis are planned at 6 months after irradiation. Conclusion: Our preliminary results indicate that pMBRT leads to an increase in tissue resistance. This can open the door to an efficient treatment of very radioresistant tumours. [1] Prezado et al. Med. Phys. 40, 031712, 1–8 (2013).[2] Prezado et al., Rad. Research. 184, 314-21 (2015). [3] Peucelle et al., Med. Phys. 42 7108-13 (2015).« less
Rodriguez-Sinovas, Antonio; García-Dorado, David; Ruiz-Meana, Marisol; Soler-Soler, Jordi
2004-01-01
Transient inhibition of gap junction (GJ)-mediated communication with heptanol during myocardial reperfusion limits infarct size. However, inhibition of cell coupling in normal myocardium may be arrhythmogenic. The purpose of this study was to test the hypothesis that the consequences of GJ inhibition may be magnified in reperfused myocardium compared with normal tissue, thus allowing the inhibition of GJs in reperfused tissue while only minimally modifying overall macroscopic cell coupling in normal myocardium. Concentration–response curves were defined for the effects of heptanol, 18α-glycyrrhetinic acid, halothane, and palmitoleic acid on conduction velocity, tissue electrical impedance, developed tension and lactate dehydrogenase (LDH) release in normoxically perfused rat hearts (n = 17). Concentrations lacking significant effects on tissue impedance were added during the initial 15 min of reperfusion in hearts submitted to 60 min (n = 43) or 30 min (n = 35) of ischaemia. These concentrations markedly increased myocardial electrical impedance (resistivity and phase angle) in myocardium reperfused after either 30 or 60 min of ischaemia, and reduced reperfusion-induced LDH release after 1 h of ischaemia by 83.6, 57.9, 51.7 and 52.5% for heptanol, 18α-glycyrrhetinic acid, halothane and palmitoleic acid, respectively. LDH release was minimal in hearts submitted to 30 min of ischaemia, independently of group allocation. In conclusion, the present results strongly support the hypothesis that intercellular communication in postischaemic myocardium may be effectively reduced by concentrations of GJ inhibitors affecting only minimally overall electrical impedance in normal myocardium. Reduction of cell coupling during initial reperfusion was consistently associated with attenuated lethal reperfusion injury. PMID:15218064
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Ingelise, E-mail: inje@rn.d; Carl, Jesper; Lund, Bente
2011-07-01
Dose escalation in prostate radiotherapy is limited by normal tissue toxicities. The aim of this study was to assess the impact of margin size on tumor control and side effects for intensity-modulated radiation therapy (IMRT) and 3D conformal radiotherapy (3DCRT) treatment plans with increased dose. Eighteen patients with localized prostate cancer were enrolled. 3DCRT and IMRT plans were compared for a variety of margin sizes. A marker detectable on daily portal images was presupposed for narrow margins. Prescribed dose was 82 Gy within 41 fractions to the prostate clinical target volume (CTV). Tumor control probability (TCP) calculations based on themore » Poisson model including the linear quadratic approach were performed. Normal tissue complication probability (NTCP) was calculated for bladder, rectum and femoral heads according to the Lyman-Kutcher-Burman method. All plan types presented essentially identical TCP values and very low NTCP for bladder and femoral heads. Mean doses for these critical structures reached a minimum for IMRT with reduced margins. Two endpoints for rectal complications were analyzed. A marked decrease in NTCP for IMRT plans with narrow margins was seen for mild RTOG grade 2/3 as well as for proctitis/necrosis/stenosis/fistula, for which NTCP <7% was obtained. For equivalent TCP values, sparing of normal tissue was demonstrated with the narrow margin approach. The effect was more pronounced for IMRT than 3DCRT, with respect to NTCP for mild, as well as severe, rectal complications.« less
Preclinical studies of photodynamic therapy of intracranial tissues
NASA Astrophysics Data System (ADS)
Lilge, Lothar D.; Sepers, Marja; Park, Jane; O'Carroll, Cindy; Pournazari, Poupak; Prosper, Joe; Wilson, Brian C.
1997-05-01
The applicability and limitations of the photodynamic threshold model were investigated for an intracranial tumor (VX2) and normal brain tissues in a rabbit model. Photodynamic threshold values for four different photosensitizers, i.e., Photofrin, 5(delta) -aminolaevulinic acid (5(delta) -ALA) induced Protoporphyrin IX (PPIX), Tin Ethyl Etiopurpurin (SnET2), and chloroaluminum phthalocyanine (AlClPc), were determined based on measured light fluence distributions, macroscopic photosensitizer concentration in various brain structures, and histologically determined extent of tissue necrosis following PDT. For Photofrin, AlClPc, and SnET2, normal brain displayed a significantly lower threshold value than VX2 tumor. For 5(delta) -ALA induced PPIX and SnET2 no or very little white matter damage, equalling to very high or infinite threshold values, was observed. Additionally, the latter two photosensitizers showed significantly lower uptake in white matter compared to other brain structures and VX2 tumor. Normal brain structures lacking a blood- brain-barrier, such as the choroid plexus and the meninges, showed high photosensitizer uptake for all photosensitizers, and, hence, are at risk when exposed to light. Results to date suggest that the photodynamic threshold values iares valid for white matter, cortex and VX2 tumor. For clinical PDT of intracranial neoplasms 5(delta) -ALA induced PPIX and SnET2 appear to be the most promising for selective tumor necrosis.However, the photosensitizer concentration in each normal brain structure and the fluence distribution throughout the treatment volume and adjacent tissues at risk must be monitored to maximize the selectivity of PDT for intracranial tumors.
Schuh, Elizabeth M; Portela, Roberta; Gardner, Heather L; Schoen, Christian; London, Cheryl A
2017-10-02
Hyperthermia is an established anti-cancer treatment but is limited by tolerance of adjacent normal tissues. Parenteral administration of gold nanorods (NRs) as a photosensitizer amplifies the effects of hyperthermia treatment while sparing normal tissues. This therapy is well tolerated and has demonstrated anti-tumor effects in mouse models. The purpose of this phase 1 study was to establish the safety and observe the anti-tumor impact of gold NR enhanced (plasmonic) photothermal therapy (PPTT) in client owned canine patients diagnosed with spontaneous neoplasia. Seven dogs underwent gold NR administration and subsequent NIR PPTT. Side effects were mild and limited to local reactions to NIR laser. All of the dogs enrolled in the study experienced stable disease, partial remission or complete remission. The overall response rate (ORR) was 28.6% with partial or complete remission of tumors at study end. PPTT utilizing gold nanorod therapy can be safely administered to canine patients. Further studies are needed to determine the true efficacy in a larger population of canine cancer patients and to and identify those patients most likely to benefit from this therapy.
Gangopadhyay, A; Bhattacharya, M; Chatterjee, S K; Barlow, J J; Tsukada, Y
1985-04-01
The distribution of an antigen recognized by murine monoclonal antibody 1D3 (Bhattacharya, M., Chatterjee, S.K., Barlow, J. J., and Fuji, H. Cancer Res., 42: 1650-1654, 1982) was investigated in various types of human malignant and normal adult tissues by indirect immunoperoxidase assay in fixed paraffin-embedded sections. One hundred percent of ovarian mucinous cystadenocarcinomas expressed high levels of the antigen with intense staining of 80 to 100% of the tumoral area, thus confirming our previous finding with radioimmunoassay and absorption analyses. About 51% of colonic carcinomas, 33% of gastric carcinomas, and 22% of pancreatic carcinomas were also positive for this high-molecular-weight mucoprotein antigen. All other ovarian and nonovarian carcinomas tested including carcinoma of lung, breast, endometrium, cervix, and prostate were not stained by 1D3. In addition, sarcomas, melanomas, and lymphomas also did not express any detectable level of the antigen. When surveyed against various normal adult tissues, 1D3 had reactivity limited to the colon. Normal colon, however, exhibited reduced staining intensities compared to tumors or to the apparently normal colon adjacent to tumors. The antigen thus appears to be a colorectal tissue-specific antigen showing increased levels in ovarian mucinous cystadenocarcinomas and in some gastrointestinal tumors. 1D3 antigen is a potential tumor marker for mucinous ovarian and colonic tumors.
NASA Astrophysics Data System (ADS)
Xiong, Honglian; Guo, Zhouyi; Zeng, Changchun; Wang, Like; He, Yonghong; Liu, Songhao
2009-03-01
Noninvasive tumor imaging could lead to the early detection and timely treatment of cancer. Optical coherence tomography (OCT) has been reported as an ideal diagnostic tool for distinguishing tumor tissues from normal tissues based on structural imaging. In this study, the capability of OCT for functional imaging of normal and tumor tissues based on time- and depth-resolved quantification of the permeability of biomolecules through these tissues is investigated. The orthotopic graft model of gastric cancer in nude mice is used, normal and tumor tissues from the gastric wall are imaged, and a diffusion of 20% aqueous solution of glucose in normal stomach tissues and gastric tumor tissues is monitored and quantified as a function of time and tissue depth by an OCT system. Our results show that the permeability coefficient is (0.94+/-0.04)×10-5 cm/s in stomach tissues and (5.32+/-0.17)×10-5 cm/s in tumor tissues, respectively, and that tumor tissues have a higher permeability coefficient compared to normal tissues in optical coherence tomographic images. From the results, it is found that the accurate and sensitive assessment of the permeability coefficients of normal and tumor tissues offers an effective OCT image method for detection of tumor tissues and clinical diagnosis.
Pachori, Alok S; Melo, Luis G; Hart, Melanie L; Noiseux, Nicholas; Zhang, Lunan; Morello, Fulvio; Solomon, Scott D; Stahl, Gregory L; Pratt, Richard E; Dzau, Victor J
2004-08-17
Ischemia and reperfusion represent major mechanisms of tissue injury and organ failure. The timing of administration and the duration of action limit current treatment approaches using pharmacological agents. In this study, we have successfully developed a preemptive strategy for tissue protection using an adenoassociated vector system containing erythropoietin hypoxia response elements for ischemia-regulated expression of the therapeutic gene human heme-oxygenase-1 (hHO-1). We demonstrate that a single administration of this vector several weeks in advance of ischemia/reperfusion injury to multiple tissues such as heart, liver, and skeletal muscle yields rapid and timely induction of hHO-1 during ischemia that resulted in dramatic reduction in tissue damage. In addition, overexpression of therapeutic transgene prevented long-term pathological tissue remodeling and normalized tissue function. Application of this regulatable system using an endogenous physiological stimulus for expression of a therapeutic gene may be a feasible strategy for protecting tissues at risk of ischemia/reperfusion injury.
Pachori, Alok S.; Melo, Luis G.; Hart, Melanie L.; Noiseux, Nicholas; Zhang, Lunan; Morello, Fulvio; Solomon, Scott D.; Stahl, Gregory L.; Pratt, Richard E.; Dzau, Victor J.
2004-01-01
Ischemia and reperfusion represent major mechanisms of tissue injury and organ failure. The timing of administration and the duration of action limit current treatment approaches using pharmacological agents. In this study, we have successfully developed a preemptive strategy for tissue protection using an adenoassociated vector system containing erythropoietin hypoxia response elements for ischemia-regulated expression of the therapeutic gene human heme-oxygenase-1 (hHO-1). We demonstrate that a single administration of this vector several weeks in advance of ischemia/reperfusion injury to multiple tissues such as heart, liver, and skeletal muscle yields rapid and timely induction of hHO-1 during ischemia that resulted in dramatic reduction in tissue damage. In addition, overexpression of therapeutic transgene prevented long-term pathological tissue remodeling and normalized tissue function. Application of this regulatable system using an endogenous physiological stimulus for expression of a therapeutic gene may be a feasible strategy for protecting tissues at risk of ischemia/reperfusion injury. PMID:15302924
NASA Astrophysics Data System (ADS)
Pachori, Alok S.; Melo, Luis G.; Hart, Melanie L.; Noiseux, Nicholas; Zhang, Lunan; Morello, Fulvio; Solomon, Scott D.; Stahl, Gregory L.; Pratt, Richard E.; Dzau, Victor J.
2004-08-01
Ischemia and reperfusion represent major mechanisms of tissue injury and organ failure. The timing of administration and the duration of action limit current treatment approaches using pharmacological agents. In this study, we have successfully developed a preemptive strategy for tissue protection using an adenoassociated vector system containing erythropoietin hypoxia response elements for ischemia-regulated expression of the therapeutic gene human heme-oxygenase-1 (hHO-1). We demonstrate that a single administration of this vector several weeks in advance of ischemia/reperfusion injury to multiple tissues such as heart, liver, and skeletal muscle yields rapid and timely induction of hHO-1 during ischemia that resulted in dramatic reduction in tissue damage. In addition, overexpression of therapeutic transgene prevented long-term pathological tissue remodeling and normalized tissue function. Application of this regulatable system using an endogenous physiological stimulus for expression of a therapeutic gene may be a feasible strategy for protecting tissues at risk of ischemia/reperfusion injury.
Liu, Jun-Feng; Ke, Chang-Shu; Chen, Xi; Xu, Yu; Zhang, Hua-Qiu; Chen, Juan; Gan, Chao; Li, Chao-Xi; Lei, Ting
2013-05-01
To determine appropriate protocols for the identification and management of intra operative suspicious tissues during transsphenoidal surgery. Clinical data and pathological reports of 20 patients with intra-operative suspicious tissues during transsphenoidal surgeries were analyzed retrospectively. The methods for discriminating between adenoma and normal pituitary tissues were reviewed. The postoperative pathological reports revealed that adenoma and normal pituitary tissues coexisted in 9 samples, while 5 samples were identified as normal pituitary tissues, 2 as adenoma tissues, and 4 as other tissues. Adenomas were distinguished from normal pituitary tissues on the basis of intra-operative appearance, texture, blood supply and possible existence of boundary. If decisions are difficult to made during surgeries from the appearance of the suspicious tissues, pathological examinations are advised as a guidance for the next steps.
A Device for Long-Term Perfusion, Imaging, and Electrical Interfacing of Brain Tissue In vitro
Killian, Nathaniel J.; Vernekar, Varadraj N.; Potter, Steve M.; Vukasinovic, Jelena
2016-01-01
Distributed microelectrode array (MEA) recordings from consistent, viable, ≥500 μm thick tissue preparations over time periods from days to weeks may aid in studying a wide range of problems in neurobiology that require in vivo-like organotypic morphology. Existing tools for electrically interfacing with organotypic slices do not address necrosis that inevitably occurs within thick slices with limited diffusion of nutrients and gas, and limited removal of waste. We developed an integrated device that enables long-term maintenance of thick, functionally active, brain tissue models using interstitial perfusion and distributed recordings from thick sections of explanted tissue on a perforated multi-electrode array. This novel device allows for automated culturing, in situ imaging, and extracellular multi-electrode interfacing with brain slices, 3-D cell cultures, and potentially other tissue culture models. The device is economical, easy to assemble, and integrable with standard electrophysiology tools. We found that convective perfusion through the culture thickness provided a functional benefit to the preparations as firing rates were generally higher in perfused cultures compared to their respective unperfused controls. This work is a step toward the development of integrated tools for days-long experiments with more consistent, healthier, thicker, and functionally more active tissue cultures with built-in distributed electrophysiological recording and stimulation functionality. The results may be useful for the study of normal processes, pathological conditions, and drug screening strategies currently hindered by the limitations of acute (a few hours long) brain slice preparations. PMID:27065793
NASA Astrophysics Data System (ADS)
Wu, Binlin; Gayen, S. K.; Xu, M.
2014-03-01
Native fluorescence spectrum of normal and cancerous human prostate tissues is studied to distinguish between normal and cancerous tissues, and cancerous tissues at different cancer grade. The tissue samples were obtained from Cooperative Human Tissue Network (CHTN) and National Disease Research Interchange(NDRI). An excitation and emission matrix (EEM) was generated for each tissue sample by acquiring native fluorescence spectrum of the sample using multiple excitation wavelengths. The non-negative matrix factorization algorithm was used to generate fluorescence EEMs that correspond to the fluorophores in biological tissues, including tryptophan, collagen, elastin, nicotinamide adenine dinucleotide (NADH), flavin adenine dinucleotide (FAD) and the background paraffin. We hypothesize that, as a consequence of metabolic changes associated with the development of cancer, the concentrations of NADH and FAD are different in normal and cancerous tissues, and also different for different cancer grades. We used the ratio of the abundances of FAD and NADH to distinguish between normal and cancerous tissues, and the tissue cancer grade. The FAD-to-NADH ratio was found to be the highest for normal tissue and decreased as the cancer grade increased.
Cao, Xuan; van Oosten, Anne; Shenoy, Vivek B.; Janmey, Paul A.; Wells, Rebecca G.
2016-01-01
Tissues including liver stiffen and acquire more extracellular matrix with fibrosis. The relationship between matrix content and stiffness, however, is non-linear, and stiffness is only one component of tissue mechanics. The mechanical response of tissues such as liver to physiological stresses is not well described, and models of tissue mechanics are limited. To better understand the mechanics of the normal and fibrotic rat liver, we carried out a series of studies using parallel plate rheometry, measuring the response to compressive, extensional, and shear strains. We found that the shear storage and loss moduli G’ and G” and the apparent Young's moduli measured by uniaxial strain orthogonal to the shear direction increased markedly with both progressive fibrosis and increasing compression, that livers shear strain softened, and that significant increases in shear modulus with compressional stress occurred within a range consistent with increased sinusoidal pressures in liver disease. Proteoglycan content and integrin-matrix interactions were significant determinants of liver mechanics, particularly in compression. We propose a new non-linear constitutive model of the liver. A key feature of this model is that, while it assumes overall liver incompressibility, it takes into account water flow and solid phase compressibility. In sum, we report a detailed study of non-linear liver mechanics under physiological strains in the normal state, early fibrosis, and late fibrosis. We propose a constitutive model that captures compression stiffening, tension softening, and shear softening, and can be understood in terms of the cellular and matrix components of the liver. PMID:26735954
Detecting skin malignancy using elastic light scattering spectroscopy
NASA Astrophysics Data System (ADS)
Canpolat, Murat; Akman, Ayşe; Çiftçioğlu, M. Akif; Alpsoy, Erkan
2007-07-01
We have used elastic light scattering spectroscopy to differentiate between malign and benign skin lesions. The system consists of a UV spectrometer, a single optical fiber probe and a laptop. The single optical fiber probe was used for both delivery and detection of white light to tissue and from the tissue. The single optical fiber probe received singly scattered photons rather than diffused photons in tissue. Therefore, the spectra are correlated with morphological differences of the cells. It has been shown that spectra of malign skin lesions are different than spectra of benign skin lesions. While slopes of the spectra taken on benign lesions or normal skin tissues were positive, slopes of the spectra taken on malign skin lesions tissues were negative. In vivo experiments were conducted on 20 lesions from 18 patients (11 men with mean age of 68 +/- 9 years and 7 women with mean age of 52 +/- 20 years) applied to the Department of Dermatology and Venerology. Before the biopsy, spectra were taken on the lesion and adjacent (approximately 1 cm distant) normal-appearing skin. Spectra of the normal skin were used as a control group. The spectra were correlated to the pathology results with sensitivity and specificity of 82% and 89%, respectively. Due to small diameter of fiber probe and limited number of sampling (15), some positive cases are missed, which is lowered the sensitivity of the system. The results are promising and could suggest that the system may be able to detect malignant skin lesion non-invasively and in real time.
PAF levels and PAF-AH activities in placentas from normal and preeclamptic pregnancies.
Gu, Y; Burlison, S A; Wang, Y
2006-01-01
The aim of this study was to determine: (1) platelet-activating factor (PAF) levels and PAF-acetylhydrolase (PAF-AH) activities in normal and preeclamptic placentas; (2) lipid peroxide production by placental tissues stimulated with PAF. Placentas were obtained immediately after delivery from normal and preeclamptic pregnancies. Tissue pieces were snap frozen in liquid nitrogen and stored at -70 degrees C. One gram of tissue from each placenta was used for PAF extraction and for total RNA isolation. PAF was measured by PAF [3H] scintillation proximity assay (SPA) system. Trophoblast PAF-AH activity was determined by enzyme-linked immunosorbent assay (ELISA). mRNA expression for PAF receptor was assessed by RNase protection assay (RPA). Normal placental explants were incubated with PAF at concentrations of 1 and 10 microg/ml for 48 h. Lipid peroxide productions of 8-isoprostane and malondialdehyde (MDA) were measured by ELISA and thiobarbituric acid reaction, respectively. Data were presented as mean+/-SE and analyzed by nonparametric Mann-Whitney U test and ANOVA. A p level less than 0.05 was considered statistically significant. (1) The mean tissue level for PAF was elevated, but not statistically different, in preeclamptic (n=7) than in normal (n=8) placentas, 6.45+/-1.05 versus 4.47+/-0.60 ng/g, p=0.42. (2) PAF-AH activity was higher in trophoblasts from preeclamptic (n=7) placentas than that in trophoblasts from normal (n=8) placentas, 0.69+/-0.16 versus 0.38+/-0.03 micromol/min/microg protein, p<0.05. (3) The relative mRNA expression for PAF receptor was not different between normal (0.70+/-0.08) and preeclamptic (0.76+/-0.13) placental tissues, p=0.60. (4) Productions of 8-isoprostane and MDA were not increased in tissues with PAF in culture, 8-isoprostane: 0.37+/-0.09 ng/mg (control) versus 0.32+/-0.09 ng/mg (1 microg/ml) and 0.37+/-0.07 ng/mg (10 microg/ml), p>0.5; MDA: 0.62+/-0.05 nmol/mg (control) versus 0.68+/-0.04 nmol/mg (1 microg/ml) and 0.69+/-0.03 nmol/mg (10 microg/ml), p>0.5. Increased PAF-AH activity in trophoblasts may be a compensatory effect to control PAF level in the preeclamptic placenta. The co-existence of PAF-AH and PAF receptor in trophoblasts suggests an autocrine regulation of PAF in these cells to limit PAF and its metabolites within the placenta.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baardwijk, Angela van; Bosmans, Geert; Boersma, Liesbeth
2008-08-01
Purpose: Local recurrence is a major problem after (chemo-)radiation for non-small-cell lung cancer. We hypothesized that for each individual patient, the highest therapeutic ratio could be achieved by increasing total tumor dose (TTD) to the limits of normal tissues, delivered within 5 weeks. We report first results of a prospective feasibility trial. Methods and Materials: Twenty-eight patients with medically inoperable or locally advanced non-small-cell lung cancer, World Health Organization performance score of 0-1, and reasonable lung function (forced expiratory volume in 1 second > 50%) were analyzed. All patients underwent irradiation using an individualized prescribed TTD based on normal tissuemore » dose constraints (mean lung dose, 19 Gy; maximal spinal cord dose, 54 Gy) up to a maximal TTD of 79.2 Gy in 1.8-Gy fractions twice daily. No concurrent chemoradiation was administered. Toxicity was scored using the Common Terminology Criteria for Adverse Events criteria. An {sup 18}F-fluoro-2-deoxy-glucose-positron emission tomography-computed tomography scan was performed to evaluate (metabolic) response 3 months after treatment. Results: Mean delivered dose was 63.0 {+-} 9.8 Gy. The TTD was most often limited by the mean lung dose (32.1%) or spinal cord (28.6%). Acute toxicity generally was mild; only 1 patient experienced Grade 3 cough and 1 patient experienced Grade 3 dysphagia. One patient (3.6%) died of pneumonitis. For late toxicity, 2 patients (7.7%) had Grade 3 cough or dyspnea; none had severe dysphagia. Complete metabolic response was obtained in 44% (11 of 26 patients). With a median follow-up of 13 months, median overall survival was 19.6 months, with a 1-year survival rate of 57.1%. Conclusions: Individualized maximal tolerable dose irradiation based on normal tissue dose constraints is feasible, and initial results are promising.« less
Elastic light single-scattering spectroscopy for detection of dysplastic tissues
NASA Astrophysics Data System (ADS)
Canpolat, Murat; Denkçeken, Tuba; Akman, Ayşe.; Alpsoy, Erkan; Tuncer, Recai; Akyüz, Mahmut; Baykara, Mehmet; Yücel, Selçuk; Başsorgun, Ibrahim; ćiftçioǧlu, M. Akif; Gökhan, Güzide Ayşe.; Gürer, ElifInanç; Peştereli, Elif; Karaveli, Šeyda
2013-11-01
Elastic light single-scattering spectroscopy (ELSSS) system has been developed and tested in diagnosis of cancerous tissues of different organs. ELSSS system consists of a miniature visible light spectrometer, a single fiber optical probe, a halogen tungsten light source and a laptop. Measurements were performed on excised brain, skin, cervix and prostate tumor specimens and surrounding normal tissues. Single fiber optical probe with a core diameter of 100 μm was used to deliver white light to and from tissue. Single optical fiber probe mostly detects singly scattered light from tissue rather than diffused light. Therefore, measured spectra are sensitive to size of scatters in tissue such as cells, nuclei, mitochondria and other organelles of cells. Usually, nuclei of tumor cells are larger than nuclei of normal cells. Therefore, spectrum of singly scattered light of tumor tissue is different than normal tissue. The spectral slopes were shown to be positive for normal brain, skin and prostate and cervix tissues and negative for the tumors of the same tissues. Signs of the spectral slopes were used as a discrimination parameter to differentiate tumor from normal tissues for the three organ tissues. Sensitivity and specificity of the system in differentiation between tumors from normal tissues were 93% and %100 for brain, 87% and 85% for skin, 93.7% and 46.1% for cervix and 98% and 100% for prostate.
Creep behaviour and creep mechanisms of normal and healing ligaments
NASA Astrophysics Data System (ADS)
Thornton, Gail Marilyn
Patients with knee ligament injuries often undergo ligament reconstructions to restore joint stability and, potentially, abate osteoarthritis. Careful literature review suggests that in 10% to 40% of these patients the graft tissue "stretches out". Some graft elongation is likely due to creep (increased elongation of tissue under repeated or sustained load). Quantifying creep behaviour and identifying creep mechanisms in both normal and healing ligaments is important for finding clinically relevant means to prevent creep. Ligament creep was accurately predicted using a novel yet simple structural model that incorporated both collagen fibre recruitment and fibre creep. Using the inverse stress relaxation function to model fibre creep in conjunction with fibre recruitment produced a superior prediction of ligament creep than that obtained from the inverse stress relaxation function alone. This implied mechanistic role of fibre recruitment during creep was supported using a new approach to quantify crimp patterns at stresses in the toe region (increasing stiffness) and linear region (constant stiffness) of the stress-strain curve. Ligament creep was relatively insensitive to increases in stress in the toe region; however, creep strain increased significantly when tested at the linear region stress. Concomitantly, fibre recruitment was evident at the toe region stresses; however, recruitment was limited at the linear region stress. Elevating the water content of normal ligament using phosphate buffered saline increased the creep response. Therefore, both water content and fibre recruitment are important mechanistic factors involved in creep of normal ligaments. Ligament scars had inferior creep behaviour compared to normal ligaments even after 14 weeks. In addition to inferior collagen properties affecting fibre recruitment and increased water content, increased glycosaminoglycan content and flaws in scar tissue were implicated as potential mechanisms of scar creep. Similarly, ligament autografts had persistently abnormal creep behaviour and creep recovery after 2 years likely due to infiltration by scar tissue. Short-term immobilization of autografts had long-term detrimental consequences perhaps due to re-injury of the graft at remobilization. Treatments that restore normal properties to these mechanistic factors in order to control creep would improve joint healing by restoring joint kinematics and maintaining normal joint loading.
Genomic Changes in Normal Breast Tissue in Women at Normal Risk or at High Risk for Breast Cancer
Danforth, David N.
2016-01-01
Sporadic breast cancer develops through the accumulation of molecular abnormalities in normal breast tissue, resulting from exposure to estrogens and other carcinogens beginning at adolescence and continuing throughout life. These molecular changes may take a variety of forms, including numerical and structural chromosomal abnormalities, epigenetic changes, and gene expression alterations. To characterize these abnormalities, a review of the literature has been conducted to define the molecular changes in each of the above major genomic categories in normal breast tissue considered to be either at normal risk or at high risk for sporadic breast cancer. This review indicates that normal risk breast tissues (such as reduction mammoplasty) contain evidence of early breast carcinogenesis including loss of heterozygosity, DNA methylation of tumor suppressor and other genes, and telomere shortening. In normal tissues at high risk for breast cancer (such as normal breast tissue adjacent to breast cancer or the contralateral breast), these changes persist, and are increased and accompanied by aneuploidy, increased genomic instability, a wide range of gene expression differences, development of large cancerized fields, and increased proliferation. These changes are consistent with early and long-standing exposure to carcinogens, especially estrogens. A model for the breast carcinogenic pathway in normal risk and high-risk breast tissues is proposed. These findings should clarify our understanding of breast carcinogenesis in normal breast tissue and promote development of improved methods for risk assessment and breast cancer prevention in women. PMID:27559297
Localization and molecular forms of galanin in human adrenals: elevated levels in pheochromocytomas.
Bauer, F E; Hacker, G W; Terenghi, G; Adrian, T E; Polak, J M; Bloom, S R
1986-12-01
Galanin immunoreactivity was measured by RIA, using antibodies directed against both the non-C- and C-terminal positions of porcine galanin, in tissue extracts of normal adrenals and pheochromocytomas and also in the plasma of normal subjects and patients with pheochromocytomas. No C-terminal galanin-like immunoreactivity was detected in plasma or tissue, suggesting differences in the amino acid sequence of human compared with porcine galanin. A non-C-terminally directed antibody was, therefore, used to characterize human galanin immunoreactivity by gel permeation chromatography and reverse phase high pressure liquid chromatography and to localize it by immunocytochemistry. The galanin content of whole adrenal gland was 2.6 +/- 0.9 (+/- SEM) pmol/g (n = 5). In contrast, however, pheochromocytomas had much greater concentrations (21 +/- 2.3 pmol/g; n = 16). Gel chromatography and reverse phase high pressure liquid chromatography revealed 2 molecular forms of galanin immunoreactivity with identical elution positions in both normal adrenals and tumors. The concentration of galanin in plasma from both normal subjects and pheochromocytoma patients was below the detection limit of the assay (less than 10 pmol/liter). Using immunocytochemistry, galanin was localized to scattered cells or clusters of tumor cells in 5 of 11 pheochromocytomas and only a few chromaffin cells and cortical nerve fibers in normal adrenals.
Yang, Qiuyun; Zhao, Jinghe; Cui, Manhua; Gi, Shuting; Wang, Wei; Han, Xiaole
2015-12-01
Recent studies have demonstrated that the neural precursor cell expressed, developmentally downregulated 4-like (Nedd4L) gene plays a role in the progression of various cancers. However, reports describing Nedd4L expression in ovarian cancer tissues are limited. A cohort (n = 117) of archival formalin-fixed, paraffin embedded resected normal ovarian epithelial tissues (n = 10), benign ovarian epithelial tumor tissues (n = 10), serous borderline ovarian epithelial tumor tissues (n = 14), mucous borderline ovarian epithelial tumor tissues (n = 11), and invasive ovarian epithelial cancer tissues (n = 72) were assessed for Nedd4L protein expression using immunohistochemistry. Nedd4L protein expression was significantly decreased in invasive ovarian epithelial cancer tissues compared to non-cancer tissues (P < 0.05). Decreased Nedd4L protein expression correlated with clinical stage, pathological grade, lymph node metastasis and survival (P < 0.05). Nedd4L protein expression may be an independent prognostic marker of ovarian cancer development. © 2015 Japan Society of Obstetrics and Gynecology.
Selective and self-guided micro-ablation of tissue with plasmonic nanobubbles
Lukianova-Hleb, Ekaterina Y.; Koneva, Irina I.; Oginsky, Alexander O.; La Francesca, Saverio; Lapotko, Dmitri O.
2010-01-01
Background The accuracy, selectivity and safety of surgical and laser methods for tissue elimination are often limited at microscale. Materials and methods We developed a novel agent, the plasmonic nanobubble (PNB), for optically guided selective elimination of the target tissue with micrometer precision. PNBs were tested in vitro in the two different models of superficial tumors and vascular plaques. Results PNBs were selectively generated around gold nanoparticles (delivered to the target tissues) with short laser pulses. Monolayers of cancerous cells and atherosclerotic plaque tissue were eliminated with PNBs with micrometer accuracy and without thermal and mechanical damage to collateral normal tissues. The effect of the PNB was dynamically controlled through the fluence of laser pulses (532 nm, duration 0.5 and 10 ns) and was guided through the optical scattering by PNB. Conclusions plasmonic nanobubbles were shown to provide precise, tunable, selective and guided ablation of tissue at a microcscopic level and could be employed as a new generation of surgical tools. PMID:21176913
Selective and self-guided micro-ablation of tissue with plasmonic nanobubbles.
Lukianova-Hleb, Ekaterina Y; Koneva, Irina I; Oginsky, Alexander O; La Francesca, Saverio; Lapotko, Dmitri O
2011-03-01
The accuracy, selectivity, and safety of surgical and laser methods for tissue elimination are often limited at microscale. We developed a novel agent, the plasmonic nanobubble (PNB), for optically guided selective elimination of the target tissue with micrometer precision. PNBs were tested in vitro in the two different models of superficial tumors and vascular plaques. PNBs were selectively generated around gold nanoparticles (delivered to the target tissues) with short laser pulses. Monolayers of cancerous cells and atherosclerotic plaque tissue were eliminated with PNBs with micrometer accuracy and without thermal and mechanical damage to collateral normal tissues. The effect of the PNB was dynamically controlled through the fluence of laser pulses (532 nm, duration 0.5 and 10 ns) and was guided through the optical scattering by PNB. Plasmonic nanobubbles were shown to provide precise, tunable, selective, and guided ablation of tissue at a microscopic level and could be employed as a new generation of surgical tools. Copyright © 2011 Elsevier Inc. All rights reserved.
Jensen, Ingelise; Carl, Jesper; Lund, Bente; Larsen, Erik H; Nielsen, Jane
2011-01-01
Dose escalation in prostate radiotherapy is limited by normal tissue toxicities. The aim of this study was to assess the impact of margin size on tumor control and side effects for intensity-modulated radiation therapy (IMRT) and 3D conformal radiotherapy (3DCRT) treatment plans with increased dose. Eighteen patients with localized prostate cancer were enrolled. 3DCRT and IMRT plans were compared for a variety of margin sizes. A marker detectable on daily portal images was presupposed for narrow margins. Prescribed dose was 82 Gy within 41 fractions to the prostate clinical target volume (CTV). Tumor control probability (TCP) calculations based on the Poisson model including the linear quadratic approach were performed. Normal tissue complication probability (NTCP) was calculated for bladder, rectum and femoral heads according to the Lyman-Kutcher-Burman method. All plan types presented essentially identical TCP values and very low NTCP for bladder and femoral heads. Mean doses for these critical structures reached a minimum for IMRT with reduced margins. Two endpoints for rectal complications were analyzed. A marked decrease in NTCP for IMRT plans with narrow margins was seen for mild RTOG grade 2/3 as well as for proctitis/necrosis/stenosis/fistula, for which NTCP <7% was obtained. For equivalent TCP values, sparing of normal tissue was demonstrated with the narrow margin approach. The effect was more pronounced for IMRT than 3DCRT, with respect to NTCP for mild, as well as severe, rectal complications. Copyright © 2011 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
Kimmich, Tanja; Brüning, Ansgar; Käufl, Stephanie D; Makovitzky, Josef; Kuhn, Christina; Jeschke, Udo; Friese, Klaus; Mylonas, Ioannis
2010-08-01
Inhibins and activins are important regulators of the female reproductive system. Recently, two novel inhibin subunits, named betaC and betaE, have been identified and shown to be expressed in several human tissues. However, only limited data on the expression of these novel inhibin subunits in normal human endometrial tissue and endometrial adenocarcinoma cell lines exist. Samples of proliferative and secretory human endometrium were obtained from five premenopausal, non-pregnant patients undergoing gynecological surgery for benign diseases. Normal endometrial tissue and Ishikawa endometrial adenocarcinoma cell lines were analyzed by immunohistochemistry, immunofluorescence and RT-PCR. Expression of the inhibin betaC and betaE subunits could be demonstrated at the protein level by means of immunohistochemical evaluation and at the transcriptional level by establishing a betaC- and betaE-specific RT-PCR analysis in normal human endometrial tissue and the parental Ishikawa cell line. Interestingly, in a highly de-differentiated subclone of the Ishikawa cell line lacking estrogen receptor expression, the expression of the inhibin-betaC subunit appeared strongly reduced. Here, we show for the first time that the novel inhibin/activin-betaC and -betaE subunits are expressed in normal human endometrium and the estrogen receptor positive human endometrial carcinoma cell line Ishikawa using RT-PCR and immunohistochemical detection methods. Interestingly, the Ishikawa minus cell line (lacking estrogen receptor expression) demonstrated no to minimal expression of the betaC subunit as observed with immunofluorescence and RT-PCR, suggesting a possible hormone- dependency of this subunit in human endometrial cancer cells. Moreover, because the Ishikawa cell line minus is thought to be a more malignant endometrial cell line than its estrogen receptor positive counterpart, inhibin-betaC subunit might be substantially involved in the pathogenesis and malignant transformation in human endometrium.
Navarro, Alfons; Tejero, Rut; Viñolas, Nuria; Cordeiro, Anna; Marrades, Ramon M.; Fuster, Dolors; Caritg, Oriol; Moises, Jorge; Muñoz, Carmen; Molins, Laureano; Ramirez, Josep; Monzo, Mariano
2015-01-01
The expression of Piwi-interacting RNAs, small RNAs that bind to PIWI proteins, was until recently believed to be limited to germinal stem cells. We have studied the expression of PIWI genes during human lung embryogenesis and in paired tumor and normal tissue prospectively collected from 71 resected non-small-cell lung cancer patients. The mRNA expression analysis showed that PIWIL1 was highly expressed in 7-week embryos and downregulated during the subsequent weeks of development. PIWIL1 was expressed in 11 of the tumor samples but in none of the normal tissue samples. These results were validated by immunohistochemistry, showing faint cytoplasmic reactivity in the PIWIL1-positive samples. Interestingly, the patients expressing PIWIL1 had a shorter time to relapse (TTR) (p = 0.006) and overall survival (OS) (p = 0.0076) than those without PIWIL1 expression. PIWIL2 and 4 were downregulated in tumor tissue in comparison to the normal tissue (p < 0.001) and the patients with lower levels of PIWIL4 had shorter TTR (p = 0.048) and OS (p = 0.033). In the multivariate analysis, PIWIL1 expression emerged as an independent prognostic marker. Using 5-Aza-dC treatment and bisulfite sequencing, we observed that PIWIL1 expression could be regulated in part by methylation. Finally, an in silico study identified a stem-cell expression signature associated with PIWIL1 expression. PMID:25742785
Role of Breast Cancer Resistance Protein (BCRP/ABCG2) in Cancer Drug Resistance
Natarajan, Karthika; Xie, Yi; Baer, Maria R.; Ross, Douglas D.
2012-01-01
Since cloning of the ATP-binding cassette (ABC) family member breast cancer resistance protein (BCRP/ABCG2) and its characterization as a multidrug resistance efflux transporter in 1998, BCRP has been the subject of more than two thousand scholarly articles. In normal tissues, BCRP functions as a defense mechanism against toxins and xenobiotics, with expression in the gut, bile canaliculi, placenta, blood-testis and blood-brain barriers facilitating excretion and limiting absorption of potentially toxic substrate molecules, including many cancer chemotherapeutic drugs. BCRP also plays a key role in heme and folate homeostasis, which may help normal cells survive under conditions of hypoxia. BCRP expression appears to be a characteristic of certain normal tissue stem cells termed “side population cells,” which are identified on flow cytometric analysis by their ability to exclude Hoechst 33342, a BCRP substrate fluorescent dye. Hence, BCRP expression may contribute to the natural resistance and longevity of these normal stem cells. Malignant tissues can exploit the properties of BCRP to survive hypoxia and to evade exposure to chemotherapeutic drugs. Evidence is mounting that many cancers display subpopulations of stem cells that are responsible for tumor self-renewal. Such stem cells frequently manifest the “side population” phenotype characterized by expression of BCRP and other ABC transporters. Along with other factors, these transporters may contribute to the inherent resistance of these neoplasms and their failure to be cured. PMID:22248732
Hoffmann, Aswin L; Nahum, Alan E
2013-10-07
The simple Linear-Quadratic (LQ)-based Withers iso-effect formula (WIF) is widely used in external-beam radiotherapy to derive a new tumour dose prescription such that there is normal-tissue (NT) iso-effect when changing the fraction size and/or number. However, as conventionally applied, the WIF is invalid unless the normal-tissue response is solely determined by the tumour dose. We propose a generalized WIF (gWIF) which retains the tumour prescription dose, but replaces the intrinsic fractionation sensitivity measure (α/β) by a new concept, the normal-tissue effective fractionation sensitivity, [Formula: see text], which takes into account both the dose heterogeneity in, and the volume effect of, the late-responding normal-tissue in question. Closed-form analytical expressions for [Formula: see text] ensuring exact normal-tissue iso-effect are derived for: (i) uniform dose, and (ii) arbitrary dose distributions with volume-effect parameter n = 1 from the normal-tissue dose-volume histogram. For arbitrary dose distributions and arbitrary n, a numerical solution for [Formula: see text] exhibits a weak dependence on the number of fractions. As n is increased, [Formula: see text] increases from its intrinsic value at n = 0 (100% serial normal-tissue) to values close to or even exceeding the tumour (α/β) at n = 1 (100% parallel normal-tissue), with the highest values of [Formula: see text] corresponding to the most conformal dose distributions. Applications of this new concept to inverse planning and to highly conformal modalities are discussed, as is the effect of possible deviations from LQ behaviour at large fraction sizes.
Advances in biomimetic regeneration of elastic matrix structures
Sivaraman, Balakrishnan; Bashur, Chris A.
2012-01-01
Elastin is a vital component of the extracellular matrix, providing soft connective tissues with the property of elastic recoil following deformation and regulating the cellular response via biomechanical transduction to maintain tissue homeostasis. The limited ability of most adult cells to synthesize elastin precursors and assemble them into mature crosslinked structures has hindered the development of functional tissue-engineered constructs that exhibit the structure and biomechanics of normal native elastic tissues in the body. In diseased tissues, the chronic overexpression of proteolytic enzymes can cause significant matrix degradation, to further limit the accumulation and quality (e.g., fiber formation) of newly deposited elastic matrix. This review provides an overview of the role and importance of elastin and elastic matrix in soft tissues, the challenges to elastic matrix generation in vitro and to regenerative elastic matrix repair in vivo, current biomolecular strategies to enhance elastin deposition and matrix assembly, and the need to concurrently inhibit proteolytic matrix disruption for improving the quantity and quality of elastogenesis. The review further presents biomaterial-based options using scaffolds and nanocarriers for spatio-temporal control over the presentation and release of these biomolecules, to enable biomimetic assembly of clinically relevant native elastic matrix-like superstructures. Finally, this review provides an overview of recent advances and prospects for the application of these strategies to regenerating tissue-type specific elastic matrix structures and superstructures. PMID:23355960
Laser-induced differential normalized fluorescence method for cancer diagnosis
Vo-Dinh, Tuan; Panjehpour, Masoud; Overholt, Bergein F.
1996-01-01
An apparatus and method for cancer diagnosis are disclosed. The diagnostic method includes the steps of irradiating a tissue sample with monochromatic excitation light, producing a laser-induced fluorescence spectrum from emission radiation generated by interaction of the excitation light with the tissue sample, and dividing the intensity at each wavelength of the laser-induced fluorescence spectrum by the integrated area under the laser-induced fluorescence spectrum to produce a normalized spectrum. A mathematical difference between the normalized spectrum and an average value of a reference set of normalized spectra which correspond to normal tissues is calculated, which provides for amplifying small changes in weak signals from malignant tissues for improved analysis. The calculated differential normalized spectrum is correlated to a specific condition of a tissue sample.
Laser-induced differential normalized fluorescence method for cancer diagnosis
Vo-Dinh, T.; Panjehpour, M.; Overholt, B.F.
1996-12-03
An apparatus and method for cancer diagnosis are disclosed. The diagnostic method includes the steps of irradiating a tissue sample with monochromatic excitation light, producing a laser-induced fluorescence spectrum from emission radiation generated by interaction of the excitation light with the tissue sample, and dividing the intensity at each wavelength of the laser-induced fluorescence spectrum by the integrated area under the laser-induced fluorescence spectrum to produce a normalized spectrum. A mathematical difference between the normalized spectrum and an average value of a reference set of normalized spectra which correspond to normal tissues is calculated, which provides for amplifying small changes in weak signals from malignant tissues for improved analysis. The calculated differential normalized spectrum is correlated to a specific condition of a tissue sample. 5 figs.
Increased variability in ApcMin/+ intestinal tissue can be measured with microultrasound
NASA Astrophysics Data System (ADS)
Fatehullah, A.; Sharma, S.; Newton, I. P.; Langlands, A. J.; Lay, H.; Nelson, S. A.; McMahon, R. K.; McIlvenny, N.; Appleton, P. L.; Cochran, S.; Näthke, I. S.
2016-07-01
Altered tissue structure is a feature of many disease states and is usually measured by microscopic methods, limiting analysis to small areas. Means to rapidly and quantitatively measure the structure and organisation of large tissue areas would represent a major advance not just for research but also in the clinic. Here, changes in tissue organisation that result from heterozygosity in Apc, a precancerous situation, are comprehensively measured using microultrasound and three-dimensional high-resolution microscopy. Despite its normal appearance in conventionally examined cross-sections, both approaches revealed a significant increase in the variability of tissue organisation in Apc heterozygous tissue. These changes preceded the formation of aberrant crypt foci or adenoma. Measuring these premalignant changes using microultrasound provides a potential means to detect microscopically abnormal regions in large tissue samples, independent of visual examination or biopsies. Not only does this provide a powerful tool for studying tissue structure in experimental settings, the ability to detect and monitor tissue changes by microultrasound could be developed into a powerful adjunct to screening endoscopy in the clinic.
Primary cilia are increased in number and demonstrate structural abnormalities in human cancer.
Yasar, Binnaz; Linton, Kim; Slater, Christian; Byers, Richard
2017-07-01
Primary cilia play an important role in the regulation of cell signalling pathways and are thought to have a role in cancer but have seldom been studied in human cancer samples. Primary cilia were visualised by dual immunofluorescence for anti-CROCC (ciliary rootlet coiled-coil) and anti-tubulin in a range of human cancers (including carcinomas of stomach, pancreas, prostate, lung and colon, lobular and ductal breast cancers and follicular lymphoma) and in matched normal tissue (stomach, pancreas, lung, large and small intestines, breast and reactive lymph nodes) samples using a tissue microarray; their frequency, association with proliferation, was measured by Ki-67 staining and their structure was analysed. Compared with normal tissues, primary cilia frequency was significantly elevated in adenocarcinoma of the lung (2.75% vs 1.85%, p=0.016), adenocarcinoma of the colon (3.80% vs 2.43%, respectively, p=0.017), follicular lymphoma (1.18% vs 0.83%, p=0.003) and pancreatic adenocarcinoma (7.00% vs 5.26%, p=0.002); there was no statistically significant difference compared with normal control tissue for gastric and prostatic adenocarcinomas or for lobular and ductal breast cancers. Additionally, structural abnormalities of primary cilia were identified in cancer tissues, including elongation of the axoneme, multiple basal bodies and branching of the axoneme. Ki-67 scores ranged from 0.7% to 78.4% and showed no statistically significant correlation with primary cilia frequency across all tissues (p=0.1501). The results show upregulation of primary cilia and the presence of structural defects in a wide range of human cancer tissue samples demonstrating association of dysregulation of primary cilia with human cancer. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Mohammadzadeh, G S; Nasseri Moghadam, S; Rasaee, M J; Zaree, A B; Mahmoodzadeh, H; Allameh, A
2003-06-01
To develop an indirect enzyme-linked immunosorbent assay (ELISA) for measuring class-pi glutathione S-transferase (GST) in plasma, and tissue biopsies obtained from upper gastrointestinal cancer (UGI Ca) patients. GST activity and GST-pi concentration were detected in normal human squamous esophageal epithelium, normal gastric cardia and their corresponding malignant tumor biopsies. Plasma GST was significantly higher (p < 0.05) in UGI Ca patients as compared to those obtained from normal individuals. Plasma GST-pi concentration in normal subjects was 6.6 +/- 1.9 ng/mg protein, whereas it was higher in UGI Ca patients (esophageal, 10.0 +/- 1.8; gastric, 10.7 +/- 1.7 ng/mL, p
UCP1 in adipose tissues: two steps to full browning.
Kalinovich, Anastasia V; de Jong, Jasper M A; Cannon, Barbara; Nedergaard, Jan
2017-03-01
The possibility that brown adipose tissue thermogenesis can be recruited in order to combat the development of obesity has led to a high interest in the identification of "browning agents", i.e. agents that increase the amount and activity of UCP1 in brown and brite/beige adipose tissues. However, functional analysis of the browning process yields confusingly different results when the analysis is performed in one of two alternative steps. Thus, in one of the steps, using cold acclimation as a potent model browning agent, we find that if the browning process is followed in mice initially housed at 21 °C (the most common procedure), there is only weak molecular evidence for increases in UCP1 gene expression or UCP1 protein abundance in classical brown adipose tissue; however, in brite/beige adipose depots, there are large increases, apparently associating functional browning with events only in the brite/beige tissues. Contrastingly, in another step, if the process is followed starting with mice initially housed at 30 °C (thermoneutrality for mice, thus similar to normal human conditions), large increases in UCP1 gene expression and UCP1 protein abundance are observed in the classical brown adipose tissue depots; there is then practically no observable UCP1 gene expression in brite/beige tissues. This apparent conundrum can be resolved when it is realized that the classical brown adipose tissue at 21 °C is already essentially fully differentiated and thus expands extensively through proliferation upon further browning induction, rather than by further enhancing cellular differentiation. When the limiting factor for thermogenesis, i.e. the total amount of UCP1 protein per depot, is analyzed, classical brown adipose tissue is by far the predominant site for the browning process, irrespective of which of the two steps is analyzed. There are to date no published data demonstrating that alternative browning agents would selectively promote brite/beige tissues versus classical brown tissue to a higher degree than does cold acclimation. Thus, to restrict investigations to examine adipose tissue depots where only a limited part of the adaptation process occurs (i.e. the brite/beige tissues) and to use initial conditions different from the thermoneutrality normally experienced by adult humans may seriously hamper the identification of therapeutically valid browning agents. The data presented here have therefore important implications for the analysis of the potential of browning agents and the nature of human brown adipose tissue. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Lee, Nancy Y.; Mechalakos, James G.; Nehmeh, Sadek; Lin, Zhixiong; Squire, Olivia D.; Cai, Shangde; Chan, Kelvin; Zanzonico, Pasquale B.; Greco, Carlo; Ling, Clifton C.; Humm, John L.; Schöder, Heiko
2010-01-01
Purpose Hypoxia renders tumor cells radioresistant, limiting locoregional control from radiotherapy (RT). Intensity-modulated RT (IMRT) allows for targeting of the gross tumor volume (GTV) and can potentially deliver a greater dose to hypoxic subvolumes (GTVh) while sparing normal tissues. A Monte Carlo model has shown that boosting the GTVh increases the tumor control probability. This study examined the feasibility of fluorine-18–labeled fluoromisonidazole positron emission tomography/computed tomography (18F-FMISO PET/CT)–guided IMRT with the goal of maximally escalating the dose to radioresistant hypoxic zones in a cohort of head and neck cancer (HNC) patients. Methods and Materials 18F-FMISO was administered intravenously for PET imaging. The CT simulation, fluorodeoxyglucose PET/CT, and 18F-FMISO PET/CT scans were co-registered using the same immobilization methods. The tumor boundaries were defined by clinical examination and available imaging studies, including fluorodeoxyglucose PET/CT. Regions of elevated 18F-FMISO uptake within the fluorodeoxyglucose PET/CT GTV were targeted for an IMRT boost. Additional targets and/or normal structures were contoured or transferred to treatment planning to generate 18F-FMISO PET/CT-guided IMRT plans. Results The heterogeneous distribution of 18F-FMISO within the GTV demonstrated variable levels of hypoxia within the tumor. Plans directed at performing 18F-FMISO PET/CT–guided IMRT for 10 HNC patients achieved 84 Gy to the GTVh and 70 Gy to the GTV, without exceeding the normal tissue tolerance. We also attempted to deliver 105 Gy to the GTVh for 2 patients and were successful in 1, with normal tissue sparing. Conclusion It was feasible to dose escalate the GTVh to 84 Gy in all 10 patients and in 1 patient to 105 Gy without exceeding the normal tissue tolerance. This information has provided important data for subsequent hypoxia-guided IMRT trials with the goal of further improving locoregional control in HNC patients. PMID:17869020
Preferential expression of cystein-rich secretory protein-3 (CRISP-3) in chronic pancreatitis.
Liao, Q; Kleeff, J; Xiao, Y; Guweidhi, A; Schambony, A; Töpfer-Petersen, E; Zimmermann, A; Büchler, M W; Friess, H
2003-04-01
Chronic pancreatitis (CP) is a progressive inflammatory process resulting in exocrine and endocrine pancreatic insufficiency in advanced stages. Cysteine-rich secretory protein (CRISP-3) has been identified as a defense-associated molecule with predominant expression in the salivary gland, pancreas and prostate. In this study, we investigated CRISP-3 expression in normal pancreatic tissues, chronic pancreatitis tissues, pancreatic cancer tissues and pancreatic cancer cell lines, as well as in other gastrointestinal organs. 15 normal pancreatic tissues, 14 chronic pancreatitis tissues and 14 pancreatic cancer tissues as well as three pancreatic cancer cell lines were analyzed. Moreover, hepatocellular carcinoma and esophageal, stomach and colon cancers were also analyzed together with the corresponding normal controls. CRISP-3 was expressed at moderate to high levels in chronic pancreatitis tissues and at moderate levels in pancreatic cancer tissues but at low levels in normal pancreatic tissues, and was absent in three pancreatic cancer cell lines. CRISP-3 expression was below the level of detection in all cancerous gastrointestinal tissues and in all normal tissues except 2 of 16 colon tissue samples. CRISP-3 mRNA signals and immunoreactivity were strongly present in the cytoplasm of degenerating acinar cells and in small proliferating ductal cells in CP tissues and CP-like lesions in pancreatic cancer tissues. In contrast, CRISP-3 expression was weak to absent in the cytoplasm of cancer cells as well as in acinar cells and ductal cells in pancreatic cancer tissues and normal pancreatic tissues. These results reveal that the distribution of CRISP-3 in gastrointestinal tissues is predominantly in the pancreas. High levels of CRISP-3 in acinar cells dedifferentiating into small proliferating ductal cells in CP and CP-like lesions in pancreatic cancer suggests a role of this molecule in the pathophysiology of CP.
Lamb, John R.; Zhang, Chunsheng; Xie, Tao; Wang, Kai; Zhang, Bin; Hao, Ke; Chudin, Eugene; Fraser, Hunter B.; Millstein, Joshua; Ferguson, Mark; Suver, Christine; Ivanovska, Irena; Scott, Martin; Philippar, Ulrike; Bansal, Dimple; Zhang, Zhan; Burchard, Julja; Smith, Ryan; Greenawalt, Danielle; Cleary, Michele; Derry, Jonathan; Loboda, Andrey; Watters, James; Poon, Ronnie T. P.; Fan, Sheung T.; Yeung, Chun; Lee, Nikki P. Y.; Guinney, Justin; Molony, Cliona; Emilsson, Valur; Buser-Doepner, Carolyn; Zhu, Jun; Friend, Stephen; Mao, Mao; Shaw, Peter M.; Dai, Hongyue; Luk, John M.; Schadt, Eric E.
2011-01-01
Background In hepatocellular carcinoma (HCC) genes predictive of survival have been found in both adjacent normal (AN) and tumor (TU) tissues. The relationships between these two sets of predictive genes and the general process of tumorigenesis and disease progression remains unclear. Methodology/Principal Findings Here we have investigated HCC tumorigenesis by comparing gene expression, DNA copy number variation and survival using ∼250 AN and TU samples representing, respectively, the pre-cancer state, and the result of tumorigenesis. Genes that participate in tumorigenesis were defined using a gene-gene correlation meta-analysis procedure that compared AN versus TU tissues. Genes predictive of survival in AN (AN-survival genes) were found to be enriched in the differential gene-gene correlation gene set indicating that they directly participate in the process of tumorigenesis. Additionally the AN-survival genes were mostly not predictive after tumorigenesis in TU tissue and this transition was associated with and could largely be explained by the effect of somatic DNA copy number variation (sCNV) in cis and in trans. The data was consistent with the variance of AN-survival genes being rate-limiting steps in tumorigenesis and this was confirmed using a treatment that promotes HCC tumorigenesis that selectively altered AN-survival genes and genes differentially correlated between AN and TU. Conclusions/Significance This suggests that the process of tumor evolution involves rate-limiting steps related to the background from which the tumor evolved where these were frequently predictive of clinical outcome. Additionally treatments that alter the likelihood of tumorigenesis occurring may act by altering AN-survival genes, suggesting that the process can be manipulated. Further sCNV explains a substantial fraction of tumor specific expression and may therefore be a causal driver of tumor evolution in HCC and perhaps many solid tumor types. PMID:21750698
Strategies for optimizing the response of cancer and normal tissues to radiation
Moding, Everett J.; Kastan, Michael B.; Kirsch, David G.
2014-01-01
Approximately 50% of all patients with cancer receive radiation therapy at some point during the course of their treatment, and the majority of these patients are treated with curative intent. Despite recent advances in the planning of radiation treatment and the delivery of image-guided radiation therapy, acute toxicity and potential long-term side effects often limit the ability to deliver a sufficient dose of radiation to control tumours locally. In the past two decades, a better understanding of the hallmarks of cancer and the discovery of specific signalling pathways by which cells respond to radiation have provided new opportunities to design molecularly targeted therapies to increase the therapeutic window of radiation therapy. Here, we review efforts to develop approaches that could improve outcomes with radiation therapy by increasing the probability of tumour cure or by decreasing normal tissue toxicity. PMID:23812271
O'Rourke, Ann P; Lazebnik, Mariya; Bertram, John M; Converse, Mark C; Hagness, Susan C; Webster, John G; Mahvi, David M
2007-08-07
Hepatic malignancies have historically been treated with surgical resection. Due to the shortcomings of this technique, there is interest in other, less invasive, treatment modalities, such as microwave hepatic ablation. Crucial to the development of this technique is the accurate knowledge of the dielectric properties of human liver tissue at microwave frequencies. To this end, we characterized the dielectric properties of in vivo and ex vivo normal, malignant and cirrhotic human liver tissues from 0.5 to 20 GHz. Analysis of our data at 915 MHz and 2.45 GHz indicates that the dielectric properties of ex vivo malignant liver tissue are 19 to 30% higher than normal tissue. The differences in the dielectric properties of in vivo malignant and normal liver tissue are not statistically significant (with the exception of effective conductivity at 915 MHz, where malignant tissue properties are 16% higher than normal). Also, the dielectric properties of in vivo normal liver tissue at 915 MHz and 2.45 GHz are 16 to 43% higher than ex vivo. No statistically significant differences were found between the dielectric properties of in vivo and ex vivo malignant tissue (with the exception of effective conductivity at 915 MHz, where malignant tissue properties are 28% higher than normal). We report the one-pole Cole-Cole parameters for ex vivo normal, malignant and cirrhotic liver tissue in this frequency range. We observe that wideband dielectric properties of in vivo liver tissue are different from the wideband dielectric properties of ex vivo liver tissue, and that the in vivo data cannot be represented in terms of a Cole-Cole model. Further work is needed to uncover the mechanisms responsible for the observed wideband trends in the in vivo liver data.
A New In Vitro Model of Breast Cancer Metastasis to Bone
2010-04-01
excessive cell vacuolization, ruffled cell margins , and increasing rates of cell-surface detachment. Thus, conventional tissue-culture strategies...determined. 3050 DHURJATI ET AL. apoptotic bodies, cytoplasmic vesiculation, and chromatin margination (Fig. 3) and a distinct loss of insoluble ECM...respond abnormally to various hor- mones and cytokines compared to normal, differen- tiated human osteoblasts. In effort to overcome these limitations
NASA Astrophysics Data System (ADS)
Pu, Yang
Optical spectroscopy and imaging using near-infrared (NIR) light provides powerful tools for non-invasive detection of cancer in tissue. Optical techniques are capable of quantitative reconstructions maps of tissue absorption and scattering properties, thus can map in vivo the differences in the content of certain marker chromophores and/or fluorophores in normal and cancerous tissues (for example: water, tryptophan, collagen and NADH contents). Potential clinical applications of optical spectroscopy and imaging include functional tumor detection and photothermal therapeutics. Optical spectroscopy and imaging apply contrasts from intrinsic tissue chromophores such as water, collagen and NADH, and extrinsic optical contrast agents such as Indocyanine Green (ICG) to distinguish disease tissue from the normal one. Fluorescence spectroscopy and imaging also gives high sensitivity and specificity for biomedical diagnosis. Recent developments on specific-targeting fluorophores such as small receptor-targeted dye-peptide conjugate contrast agent offer high contrast between normal and cancerous tissues hence provide promising future for early tumour detection. This thesis focus on a study to distinguish the cancerous prostate tissue from the normal prostate tissues with enhancement of specific receptor-targeted prostate cancer contrast agents using optical spectroscopy and imaging techniques. The scattering and absorption coefficients, and anisotropy factor of cancerous and normal prostate tissues were investigated first as the basis for the biomedical diagnostic and optical imaging. Understanding the receptors over-expressed prostate cancer cells and molecular target mechanism of ligand, two small ICG-derivative dye-peptides, namely Cypate-Bombesin Peptide Analogue Conjugate (Cybesin) and Cypate-Octreotate Peptide Conjugate (Cytate), were applied to study their clinical potential for human prostate cancer detection. In this work, the steady-state and time-resolved fluorescence spectroscopy of Cybesin (Cytate) in solution, and in cancerous and normal prostate tissues were studied. It was found that more Cybesin (Cytate) was uptaken in the cancerous prostate tissue than those in the normal tissue. The preferential uptake of Cybesin (Cytate) in cancerous tissue was used to image and distinguish cancerous areas from the normal tissue. To investigate rotational dynamics and fluorescence polarization anisotropy of the contrast agents in prostate tissues, an analytical model was used to extract the rotational times and polarization anisotropies, which were observed for higher values of Cybesin (Cytate)-stained cancerous prostate tissue in comparison with the normal tissue. These reflect changes of microstructures of cancerous and normal tissues and their different binding affinity with contrast agents. The results indicate that the use of optical spectroscopy and imaging combined with receptor-targeted contrast agents is a valuable tool to study microenvironmental changes of tissue, and detect prostate cancer in early stage.
Raman spectroscopy of bio fluids: an exploratory study for oral cancer detection
NASA Astrophysics Data System (ADS)
Brindha, Elumalai; Rajasekaran, Ramu; Aruna, Prakasarao; Koteeswaran, Dornadula; Ganesan, Singaravelu
2016-03-01
ion for various disease diagnosis including cancers. Oral cancer is one of the most common cancers in India and it accounts for one third of the global oral cancer burden. Raman spectroscopy of tissues has gained much attention in the diagnostic oncology, as it provides unique spectral signature corresponding to metabolic alterations under different pathological conditions and micro-environment. Based on these, several studies have been reported on the use of Raman spectroscopy in the discrimination of diseased conditions from their normal counterpart at cellular and tissue level but only limited studies were available on bio-fluids. Recently, optical characterization of bio-fluids has also geared up for biomarker identification in the disease diagnosis. In this context, an attempt was made to study the metabolic variations in the blood, urine and saliva of oral cancer patients and normal subjects using Raman spectroscopy. Principal Component based Linear Discriminant Analysis (PC-LDA) followed by Leave-One-Out Cross-Validation (LOOCV) was employed to find the statistical significance of the present technique in discriminating the malignant conditions from normal subjects.
Issues in characterizing resting energy expenditure in obesity and after weight loss
Bosy-Westphal, Anja; Braun, Wiebke; Schautz, Britta; Müller, Manfred J.
2013-01-01
Limitations of current methods: Normalization of resting energy expenditure (REE) for body composition using the 2-compartment model fat mass (FM), and fat-free mass (FFM) has inherent limitations for the interpretation of REE and may lead to erroneous conclusions when comparing people with a wide range of adiposity as well as before and after substantial weight loss. Experimental objectives: We compared different methods of REE normalization: (1) for FFM and FM (2) by the inclusion of %FM as a measure of adiposity and (3) based on organ and tissue masses. Results were compared between healthy subjects with different degrees of adiposity as well as within subject before and after weight loss. Results: Normalizing REE from an “REE vs. FFM and FM equation” that (1) was derived in obese participants and applied to lean people or (2) was derived before weight loss and applied after weight loss leads to the erroneous conclusion of a lower metabolic rate (i) in lean persons and (ii) after weight loss. This is revealed by the normalization of REE for organ and tissue masses that was not significantly different between lean and obese or between baseline and after weight loss. There is evidence for an increasing specific metabolic rate of FFM with increasing %FM that could be explained by a higher contribution of liver, kidney and heart mass to FFM in obesity. Using “REE vs. FFM and FM equations” specific for different levels of adiposity (%FM) eliminated differences in REE before and after weight loss in women. Conclusion: The most established method for normalization of REE based on FFM and FM may lead to spurious conclusions about metabolic rate in obesity and the phenomenon of weight loss-associated adaptive thermogenesis. Using %FM-specific REE prediction from FFM and FM in kg may improve the normalization of REE when subjects with wide differences in %FM are investigated. PMID:23532370
Problems and potentialities of cultured plant cells in retrospect and prospect
NASA Technical Reports Server (NTRS)
Steward, F. C.; Krikorian, A. D.
1979-01-01
The past, present and expected future accomplishments and limitations of plant cell and tissue culture are reviewed. Consideration is given to the pioneering insights of Haberlandt in 1902, the development of culture techniques, and past work on cell division, cell and tissue growth and development, somatic embryogenesis, and metabolism and respiration. Current activity in culture media and technique development for plant regions, organs, tissues, cells, protoplasts, organelles and embryos, totipotency, somatic embryogenesis and clonal propagation under normal and space conditions, biochemical potentialities, and genetic engineering is surveyed. Prospects for the investigation of the induced control of somatic cell division, the division of isolated protoplasts, the improvement of haploid cell cultures, liquid cultures for somatic embryogenesis, and the genetic control of development are outlined.
Vasilescu, Dragoş M.; Klinge, Christine; Knudsen, Lars; Yin, Leilei; Wang, Ge; Weibel, Ewald R.; Ochs, Matthias
2013-01-01
Quantitative assessment of the lung microstructure using standard stereological methods such as volume fractions of tissue, alveolar surface area, or number of alveoli, are essential for understanding the state of normal and diseased lung. These measures are traditionally obtained from histological sections of the lung tissue, a process that ultimately destroys the three-dimensional (3-D) anatomy of the tissue. In comparison, a novel X-ray-based imaging method that allows nondestructive sectioning and imaging of fixed lungs at multiple resolutions can overcome this limitation. Scanning of the whole lung at high resolution and subsequent regional sampling at ultrahigh resolution without physically dissecting the organ allows the application of design-based stereology for assessment of the whole lung structure. Here we validate multiple stereological estimates performed on micro–computed tomography (μCT) images by comparing them with those obtained via conventional histology on the same mouse lungs. We explore and discuss the potentials and limitations of the two approaches. Histological examination offers higher resolution and the qualitative differentiation of tissues by staining, but ultimately loses 3-D tissue relationships, whereas μCT allows for the integration of morphometric data with the spatial complexity of lung structure. However, μCT has limited resolution satisfactory for the sterological estimates presented in this study but not for differentiation of tissues. We conclude that introducing stereological methods in μCT studies adds value by providing quantitative information on internal structures while not curtailing more complex approaches to the study of lung architecture in the context of physiological or pathological studies. PMID:23264542
Choi, Jiwoong; Hoffman, Eric A; Lin, Ching-Long; Milhem, Mohammed M; Tessier, Jean; Newell, John D
2017-01-01
Extra-thoracic tumors send out pilot cells that attach to the pulmonary endothelium. We hypothesized that this could alter regional lung mechanics (tissue stiffening or accumulation of fluid and inflammatory cells) through interactions with host cells. We explored this with serial inspiratory computed tomography (CT) and image matching to assess regional changes in lung expansion. We retrospectively assessed 44 pairs of two serial CT scans on 21 sarcoma patients: 12 without lung metastases and 9 with lung metastases. For each subject, two or more serial inspiratory clinically-derived CT scans were retrospectively collected. Two research-derived control groups were included: 7 normal nonsmokers and 12 asymptomatic smokers with two inspiratory scans taken the same day or one year apart respectively. We performed image registration for local-to-local matching scans to baseline, and derived local expansion and density changes at an acinar scale. Welch two sample t test was used for comparison between groups. Statistical significance was determined with a p value < 0.05. Lung regions of metastatic sarcoma patients (but not the normal control group) demonstrated an increased proportion of normalized lung expansion between the first and second CT. These hyper-expanded regions were associated with, but not limited to, visible metastatic lung lesions. Compared with the normal control group, the percent of increased normalized hyper-expanded lung in sarcoma subjects was significantly increased (p < 0.05). There was also evidence of increased lung "tissue" volume (non-air components) in the hyper-expanded regions of the cancer subjects relative to non-hyper-expanded regions. "Tissue" volume increase was present in the hyper-expanded regions of metastatic and non-metastatic sarcoma subjects. This putatively could represent regional inflammation related to the presence of tumor pilot cell-host related interactions. This new quantitative CT (QCT) method for linking serial acquired inspiratory CT images may provide a diagnostic and prognostic means to objectively characterize regional responses in the lung following oncological treatment and monitoring for lung metastases.
Motion compensation for in vivo subcellular optical microscopy.
Lucotte, B; Balaban, R S
2014-04-01
In this review, we focus on the impact of tissue motion on attempting to conduct subcellular resolution optical microscopy, in vivo. Our position is that tissue motion is one of the major barriers in conducting these studies along with light induced damage, optical probe loading as well as absorbing and scattering effects on the excitation point spread function and collection of emitted light. Recent developments in the speed of image acquisition have reached the limit, in most cases, where the signal from a subcellular voxel limits the speed and not the scanning rate of the microscope. Different schemes for compensating for tissue displacements due to rigid body and deformation are presented from tissue restriction, gating, adaptive gating and active tissue tracking. We argue that methods that minimally impact the natural physiological motion of the tissue are desirable because the major reason to perform in vivo studies is to evaluate normal physiological functions. Towards this goal, active tracking using the optical imaging data itself to monitor tissue displacement and either prospectively or retrospectively correct for the motion without affecting physiological processes is desirable. Critical for this development was the implementation of near real time image processing in conjunction with the control of the microscope imaging parameters. Clearly, the continuing development of methods of motion compensation as well as significant technological solutions to the other barriers to tissue subcellular optical imaging in vivo, including optical aberrations and overall signal-to-noise ratio, will make major contributions to the understanding of cell biology within the body.
Meier, Jeremy D; Xie, Hongtao; Sun, Yang; Sun, Yinghua; Hatami, Nisa; Poirier, Brian; Marcu, Laura; Farwell, D Gregory
2010-06-01
The objectives of this study were to 1) determine differences in lifetime fluorescence between normal and malignant tissue of the upper aerodigestive tract, and 2) evaluate the potential of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as a diagnostic instrument for head and neck squamous cell carcinoma (HNSCC). Cross-sectional study. University-based medical center. Nine patients with suspected HNSCC were included. In the operating room, a nitrogen pulse laser (337 nm, 700-picosecond pulse width) was used to induce tissue autofluorescence of normal tissue and suspected malignant lesions. Spectral intensities and time-domain measurements were obtained and compared with the histopathology at each site. A total of 53 sites were measured. The fluorescence parameters that provided the most discrimination were determined. Differences in spectral intensities allowed for discrimination between malignant and normal tissue. The spectral intensity of malignant tissue was lower than that of normal tissue, and a shift of peak intensity to a longer wavelength was observed in the normalized spectrum of malignant tissue in the range of 360 to approximately 660 nm. Multiple time-resolved fluorescence parameters provided the best diagnostic discrimination between normal tissue and carcinoma, including average lifetimes (i.e., at 390 nm: 1.7 +/- 0.06 ns [not significant] for normal and 1.3 +/- 0.06 ns for tumor, P = 0.0025) and the second-order Laguerre expansion coefficient (LEC-2) (i.e., at 460 nm: 0.135 +/- 0.001 for normal and 0.155 +/- 0.007 for tumor, P < 0.05). These findings highlight some of the differences in lifetime fluorescence between normal and malignant tissue. TR-LIFS has potential as a noninvasive diagnostic technique for HNSCC. Copyright 2010 American Academy of Otolaryngology-Head and Neck Surgery Foundation. Published by Mosby, Inc. All rights reserved.
Meier, Jeremy D.; Xie, Hongtao; Sun, Yang; Sun, Yinghua; Hatami, Nisa; Poirier, Brian; Marcu, Laura; Farwell, D. Gregory
2011-01-01
OBJECTIVE 1) Determine differences in lifetime fluorescence between normal and malignant tissue of the upper aerodigestive tract. 2) Evaluate the potential of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as a diagnostic instrument for head and neck squamous cell carcinoma (HNSCC). STUDY DESIGN Cross-sectional study. SETTING University-based medical center. SUBJECTS AND METHODS Nine patients with suspected HNSCC were included. In the operating room, a nitrogen pulse laser (337 nm, 700 ps pulse width) was used to induce tissue autofluorescence of normal tissue and suspected malignant lesions. Spectral intensities and time-domain measurements were obtained and compared to the histopathology at each site. A total of 53 sites were measured. The fluorescence parameters that provided the most discrimination were determined. RESULTS Differences in spectral intensities allowed for discrimination between malignant and normal tissue. The spectral intensity of malignant tissue was lower than the normal tissue, and a shift of peak intensity to a longer wavelength was observed in the normalized spectrum of malignant tissue in the range of 360~660 nm. Multiple time-resolved fluorescence parameters provided the best diagnostic discrimination between normal tissue and carcinoma, including average lifetimes (i.e., at 390 nm: 1.7±0.06 ns for normal and 1.3±0.06 ns for tumor, P=0.0025), and the Laguerre coefficients, LEC-2 (i.e., at 460 nm: 0.135±0.001 for normal and 0.155±0.007 for tumor, P<0.05). CONCLUSION These findings highlight some of the differences in lifetime fluorescence between normal and malignant tissue. TR-LIFS has potential as a non-invasive diagnostic technique for HNSCC. PMID:20493355
Studying tumor growth in Drosophila using the tissue allograft method.
Rossi, Fabrizio; Gonzalez, Cayetano
2015-10-01
This protocol describes a method to allograft Drosophila larval tissue into adult fly hosts that can be used to assay the tumorigenic potential of mutant tissues. The tissue of interest is dissected, loaded into a fine glass needle and implanted into a host. Upon implantation, nontransformed tissues do not overgrow beyond their normal size, but malignant tumors grow without limit, are invasive and kill the host. By using this method, Drosophila malignant tumors can be transplanted repeatedly, for years, and therefore they can be aged beyond the short life span of flies. Because several hosts can be implanted using different pieces from a single tumor, the method also allows the tumor mass to be increased to facilitate further studies that may require large amounts of tissue (i.e., genomics, proteomics and so on). This method also provides an operational definition of hyperplastic, benign and malignant growth. The injection procedure itself requires only ∼1 d. Tumor development can then be monitored until the death of the implanted hosts.
Haemmerich, Dieter; Schutt, David J; Wright, Andrew W; Webster, John G; Mahvi, David M
2009-05-01
We measured the ex vivo electrical conductivity of eight human metastatic liver tumours and six normal liver tissue samples from six patients using the four electrode method over the frequency range 10 Hz to 1 MHz. In addition, in a single patient we measured the electrical conductivity before and after the thermal ablation of normal and tumour tissue. The average conductivity of tumour tissue was significantly higher than normal tissue over the entire frequency range (from 4.11 versus 0.75 mS cm(-1) at 10 Hz, to 5.33 versus 2.88 mS cm(-1) at 1 MHz). We found no significant correlation between tumour size and measured electrical conductivity. While before ablation tumour tissue had considerably higher conductivity than normal tissue, the two had similar conductivity throughout the frequency range after ablation. Tumour tissue conductivity changed by +25% and -7% at 10 Hz and 1 MHz after ablation (0.23-0.29 at 10 Hz, and 0.43-0.40 at 1 MHz), while normal tissue conductivity increased by +270% and +10% at 10 Hz and 1 MHz (0.09-0.32 at 10 Hz and 0.37-0.41 at 1 MHz). These data can potentially be used to differentiate tumour from normal tissue diagnostically.
Rusina, Tatsiana P; Carlsson, Pernilla; Vrana, Branislav; Smedes, Foppe
2017-10-03
Passive sampling is widely used to measure levels of contaminants in various environmental matrices, including fish tissue. Equilibrium passive sampling (EPS) of persistent organic pollutants (POP) in fish tissue has been hitherto limited to application in lipid-rich tissue. We tested several exposure methods to extend EPS applicability to lean tissue. Thin-film polydimethylsiloxane (PDMS) passive samplers were exposed statically to intact fillet and fish homogenate and dynamically by rolling with cut fillet cubes. The release of performance reference compounds (PRC) dosed to passive samplers prior to exposure was used to monitor the exchange process. The sampler-tissue exchange was isotropic, and PRC were shown to be good indicators of sampler-tissue equilibration status. The dynamic exposures demonstrated equilibrium attainment in less than 2 days for all three tested fish species, including lean fish containing 1% lipid. Lipid-based concentrations derived from EPS were in good agreement with lipid-normalized concentrations obtained using conventional solvent extraction. The developed in-tissue EPS method is robust and has potential for application in chemical monitoring of biota and bioaccumulation studies.
Zhou, Iris Yuwen; Guo, Yingkun; Igarashi, Takahiro; Wang, Yu; Mandeville, Emiri; Chan, Suk-Tak; Wen, Lingyi; Vangel, Mark; Lo, Eng H; Ji, Xunming; Sun, Phillip Zhe
2016-12-01
Diffusion kurtosis imaging (DKI) has been shown to augment diffusion-weighted imaging (DWI) for the definition of irreversible ischemic injury. However, the complexity of cerebral structure/composition makes the kurtosis map heterogeneous, limiting the specificity of kurtosis hyperintensity to acute ischemia. We propose an Inherent COrrelation-based Normalization (ICON) analysis to suppress the intrinsic kurtosis heterogeneity for improved characterization of heterogeneous ischemic tissue injury. Fast DKI and relaxation measurements were performed on normal (n = 10) and stroke rats following middle cerebral artery occlusion (MCAO) (n = 20). We evaluated the correlations between mean kurtosis (MK), mean diffusivity (MD) and fractional anisotropy (FA) derived from the fast DKI sequence and relaxation rates R 1 and R 2 , and found a highly significant correlation between MK and R 1 (p < 0.001). We showed that ICON analysis suppressed the intrinsic kurtosis heterogeneity in normal cerebral tissue, enabling automated tissue segmentation in an animal stroke model. We found significantly different kurtosis and diffusivity lesion volumes: 147 ± 59 and 180 ± 66 mm 3 , respectively (p = 0.003, paired t-test). The ratio of kurtosis to diffusivity lesion volume was 84% ± 19% (p < 0.001, one-sample t-test). We found that relaxation-normalized MK (RNMK), but not MD, values were significantly different between kurtosis and diffusivity lesions (p < 0.001, analysis of variance). Our study showed that fast DKI with ICON analysis provides a promising means of demarcation of heterogeneous DWI stroke lesions. Copyright © 2016 John Wiley & Sons, Ltd.
Henein, Michael; Mörner, Stellan; Lindmark, Krister; Lindqvist, Per
2013-09-30
Heart failure (HF) patients with preserved left ventricular (LV) ejection fraction (EF) (HFpEF) due to systemic hypertension (SHT) are known to have limited exercise tolerance. Despite having normal EF at rest, we hypothesize that these patients have abnormal systolic function reserve limiting their exercise capacity. Seventeen patients with SHT (mean age 68 ± 9 years) but no valve disease and 14 healthy individuals (mean age of 65 ± 10 years) underwent resting and peak exercise echocardiography using conventional, tissue Doppler and speckle tracking techniques. The differences between resting and peak exercise values were also analyzed (Δ). Exercise capacity was determined as the workload divided by body surface area. Resting values for left atrial (LA) volume/BSA (r=-0.66, p<0.001) and global longitudinal strain rate (GLSR) in early (e) and late (a) diastole (r=0.47 and 0.46, p<0.05 for both) correlated with exercise capacity. LVEF increased during exercise in normals (mean Δ EF=10 ± 8%) but failed to do so in patients (mean Δ EF=0.6 ± 9%, p<0.001 between groups). LV GLSR during systole (s) also failed to increase with exercise in patients, to the same extent as it did in normals (0.2 ± 0.2 vs. 0.6 ± 0.3 1/s, p<0.001). The difference between rest and exercise (Δ) in LV lateral wall systolic velocity from tissue Doppler (s') (0.71, p<0.001), Δ in cardiac output (r=0.60, p<0.001) and Δ GLSRs (r=0.48, p<0.05) all correlated with exercise capacity independent of changes in heart rate. HFpEF patients with hypertensive LV disease have significantly limited exercise capacity which is related to left atrial enlargement as well as compromised LV systolic function at the time of the symptoms. The limited myocardial systolic function reserve seems to be underlying important explanation for their limited exercise capacity. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Microarray expression profiling in adhesion and normal peritoneal tissues.
Ambler, Dana R; Golden, Alicia M; Gell, Jennifer S; Saed, Ghassan M; Carey, David J; Diamond, Michael P
2012-05-01
To identify molecular markers associated with adhesion and normal peritoneal tissue using microarray expression profiling. Comparative study. University hospital. Five premenopausal women. Adhesion and normal peritoneal tissue samples were obtained from premenopausal women. Ribonucleic acid was extracted using standard protocols and processed for hybridization to Affymetrix Whole Transcript Human Gene Expression Chips. Microarray data were obtained from five different patients, each with adhesion tissue and normal peritoneal samples. Real-time polymerase chain reaction was performed for confirmation using standard protocols. Gene expression in postoperative adhesion and normal peritoneal tissues. A total of 1,263 genes were differentially expressed between adhesion and normal tissues. One hundred seventy-three genes were found to be up-regulated and 56 genes were down-regulated in the adhesion tissues compared with normal peritoneal tissues. The genes were sorted into functional categories according to Gene Ontology annotations. Twenty-six up-regulated genes and 11 down-regulated genes were identified with functions potentially relevant to the pathophysiology of postoperative adhesions. We evaluated and confirmed expression of 12 of these specific genes via polymerase chain reaction. The pathogenesis, natural history, and optimal treatment of postoperative adhesive disease remains unanswered. Microarray analysis of adhesions identified specific genes with increased and decreased expression when compared with normal peritoneum. Knowledge of these genes and ontologic pathways with altered expression provide targets for new therapies to treat patients who have or are at risk for postoperative adhesions. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Expression of BMI-1 and Mel-18 in breast tissue - a diagnostic marker in patients with breast cancer
2010-01-01
Background Polycomb Group (PcG) proteins are epigenetic silencers involved in maintaining cellular identity, and their deregulation can result in cancer. Expression of Mel-18 and Bmi-1 has been studied in tumor tissue, but not in adjacent non-cancerous breast epithelium. Our study compares the expression of the two genes in normal breast epithelium of cancer patients and relates it to the level of expression in the corresponding tumors as well as in breast epithelium of healthy women. Methods A total of 79 tumors, of which 71 malignant tumors of the breast, 6 fibroadenomas, and 2 DCIS were studied and compared to the reduction mammoplastic specimens of 11 healthy women. In addition there was available adjacent cancer free tissue for 23 of the malignant tumors. The tissue samples were stored in RNAlater, RNA was isolated to create expression microarray profile. These two genes were then studied more closely first on mRNA transcription level by microarrays (Agilent 44 K) and quantitative RT-PCR (TaqMan) and then on protein expression level using immunohistochemistry. Results Bmi-1 mRNA is significantly up-regulated in adjacent normal breast tissue in breast cancer patients compared to normal breast tissue from noncancerous patients. Conversely, mRNA transcription level of Mel-18 is lower in normal breast from patients operated for breast cancer compared to breast tissue from mammoplasty. When protein expression of these two genes was evaluated, we observed that most of the epithelial cells were positive for Bmi-1 in both groups of tissue samples, although the expression intensity was stronger in normal tissue from cancer patients compared to mammoplasty tissue samples. Protein expression of Mel-18 showed inversely stronger intensity in tissue samples from mammoplasty compared to normal breast tissue from patients operated for breast cancer. Conclusion Bmi-1 mRNA level is consistently increased and Mel-18 mRNA level is consistently decreased in adjacent normal breast tissue of cancer patients as compared to normal breast tissue in women having had reduction mammoplasties. Bmi-1/Mel-18 ratio can be potentially used as a tool for stratifying women at risk of developing malignancy. PMID:21162745
Raman spectroscopy of normal oral buccal mucosa tissues: study on intact and incised biopsies
NASA Astrophysics Data System (ADS)
Deshmukh, Atul; Singh, S. P.; Chaturvedi, Pankaj; Krishna, C. Murali
2011-12-01
Oral squamous cell carcinoma is one of among the top 10 malignancies. Optical spectroscopy, including Raman, is being actively pursued as alternative/adjunct for cancer diagnosis. Earlier studies have demonstrated the feasibility of classifying normal, premalignant, and malignant oral ex vivo tissues. Spectral features showed predominance of lipids and proteins in normal and cancer conditions, respectively, which were attributed to membrane lipids and surface proteins. In view of recent developments in deep tissue Raman spectroscopy, we have recorded Raman spectra from superior and inferior surfaces of 10 normal oral tissues on intact, as well as incised, biopsies after separation of epithelium from connective tissue. Spectral variations and similarities among different groups were explored by unsupervised (principal component analysis) and supervised (linear discriminant analysis, factorial discriminant analysis) methodologies. Clusters of spectra from superior and inferior surfaces of intact tissues show a high overlap; whereas spectra from separated epithelium and connective tissue sections yielded clear clusters, though they also overlap on clusters of intact tissues. Spectra of all four groups of normal tissues gave exclusive clusters when tested against malignant spectra. Thus, this study demonstrates that spectra recorded from the superior surface of an intact tissue may have contributions from deeper layers but has no bearing from the classification of a malignant tissues point of view.
Big Data Analytics for Prostate Radiotherapy.
Coates, James; Souhami, Luis; El Naqa, Issam
2016-01-01
Radiation therapy is a first-line treatment option for localized prostate cancer and radiation-induced normal tissue damage are often the main limiting factor for modern radiotherapy regimens. Conversely, under-dosing of target volumes in an attempt to spare adjacent healthy tissues limits the likelihood of achieving local, long-term control. Thus, the ability to generate personalized data-driven risk profiles for radiotherapy outcomes would provide valuable prognostic information to help guide both clinicians and patients alike. Big data applied to radiation oncology promises to deliver better understanding of outcomes by harvesting and integrating heterogeneous data types, including patient-specific clinical parameters, treatment-related dose-volume metrics, and biological risk factors. When taken together, such variables make up the basis for a multi-dimensional space (the "RadoncSpace") in which the presented modeling techniques search in order to identify significant predictors. Herein, we review outcome modeling and big data-mining techniques for both tumor control and radiotherapy-induced normal tissue effects. We apply many of the presented modeling approaches onto a cohort of hypofractionated prostate cancer patients taking into account different data types and a large heterogeneous mix of physical and biological parameters. Cross-validation techniques are also reviewed for the refinement of the proposed framework architecture and checking individual model performance. We conclude by considering advanced modeling techniques that borrow concepts from big data analytics, such as machine learning and artificial intelligence, before discussing the potential future impact of systems radiobiology approaches.
Big Data Analytics for Prostate Radiotherapy
Coates, James; Souhami, Luis; El Naqa, Issam
2016-01-01
Radiation therapy is a first-line treatment option for localized prostate cancer and radiation-induced normal tissue damage are often the main limiting factor for modern radiotherapy regimens. Conversely, under-dosing of target volumes in an attempt to spare adjacent healthy tissues limits the likelihood of achieving local, long-term control. Thus, the ability to generate personalized data-driven risk profiles for radiotherapy outcomes would provide valuable prognostic information to help guide both clinicians and patients alike. Big data applied to radiation oncology promises to deliver better understanding of outcomes by harvesting and integrating heterogeneous data types, including patient-specific clinical parameters, treatment-related dose–volume metrics, and biological risk factors. When taken together, such variables make up the basis for a multi-dimensional space (the “RadoncSpace”) in which the presented modeling techniques search in order to identify significant predictors. Herein, we review outcome modeling and big data-mining techniques for both tumor control and radiotherapy-induced normal tissue effects. We apply many of the presented modeling approaches onto a cohort of hypofractionated prostate cancer patients taking into account different data types and a large heterogeneous mix of physical and biological parameters. Cross-validation techniques are also reviewed for the refinement of the proposed framework architecture and checking individual model performance. We conclude by considering advanced modeling techniques that borrow concepts from big data analytics, such as machine learning and artificial intelligence, before discussing the potential future impact of systems radiobiology approaches. PMID:27379211
2010-01-01
Introduction Normal and neoplastic breast tissues are comprised of heterogeneous populations of epithelial cells exhibiting various degrees of maturation and differentiation. While cultured cell lines have been derived from both normal and malignant tissues, it remains unclear to what extent they retain similar levels of differentiation and heterogeneity as that found within breast tissues. Methods We used 12 reduction mammoplasty tissues, 15 primary breast cancer tissues, and 20 human breast epithelial cell lines (16 cancer lines, 4 normal lines) to perform flow cytometry for CD44, CD24, epithelial cell adhesion molecule (EpCAM), and CD49f expression, as well as immunohistochemistry, and in vivo tumor xenograft formation studies to extensively analyze the molecular and cellular characteristics of breast epithelial cell lineages. Results Human breast tissues contain four distinguishable epithelial differentiation states (two luminal phenotypes and two basal phenotypes) that differ on the basis of CD24, EpCAM and CD49f expression. Primary human breast cancer tissues also contain these four cellular states, but in altered proportions compared to normal tissues. In contrast, cultured cancer cell lines are enriched for rare basal and mesenchymal epithelial phenotypes, which are normally present in small numbers within human tissues. Similarly, cultured normal human mammary epithelial cell lines are enriched for rare basal and mesenchymal phenotypes that represent a minor fraction of cells within reduction mammoplasty tissues. Furthermore, although normal human mammary epithelial cell lines exhibit features of bi-potent progenitor cells they are unable to differentiate into mature luminal breast epithelial cells under standard culture conditions. Conclusions As a group breast cancer cell lines represent the heterogeneity of human breast tumors, but individually they exhibit increased lineage-restricted profiles that fall short of truly representing the intratumoral heterogeneity of individual breast tumors. Additionally, normal human mammary epithelial cell lines fail to retain much of the cellular diversity found in human breast tissues and are enriched for differentiation states that are a minority in breast tissues, although they do exhibit features of bi-potent basal progenitor cells. These findings suggest that collections of cell lines representing multiple cell types can be used to model the cellular heterogeneity of tissues. PMID:20964822
MiR-32 promotes gastric carcinoma tumorigenesis by targeting Kruppel-like factor 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Chao; Yu, Jianchun, E-mail: yu_jchpumch@163.com; Liu, Yuqin
Gastric cancer (GC) is a prevalent malignant cancer worldwide and is highly lethal because of its fast growth. Currently, the clinical therapy options for GC remain limited. MiR-32 has been reported as an oncogenic microRNA in many cancers, but its role in GC is unclear. Here, we found that miR-32 was overexpressed in GC tissues compared with adjacent normal tissue, and miR-32 was higher in GC patients' plasma compared with healthy individuals. Furthermore, we have identified miR-32 to be oncogenic, by promoting gastric cell proliferation, migration and invasion. We also identified Kruppel-like factor 4 (KLF4) as a direct target ofmore » miR-32. Knockdown of KLF4 promoted proliferation, migration and invasion of GC cells. We conclude that miR-32 promotes GC cell proliferation, migration and invasion by targeting KLF4, suggesting that the miR-32-KLF4 pathway may be useful in clinical diagnosis and therapeutics. - Highlights: • miR-32 was overexpression in GC tissues than adjacent normal tissue. • miR-32 was higher in GC patients' plasma compared with healthy people. • miR-32 promotes GC cell proliferation, migration and invasion by targeting KLF4.« less
NASA Astrophysics Data System (ADS)
Goryachuk, A. A.; Khodzitsky, M. K.; Borovkova, M. A.; Khamid, A. K.; Dutkinskii, P. S.; Shishlo, D. A.
2016-08-01
Samples of fresh excised tissues obtained from patients who had undergone gastric cancer have been investigated. Samples were consisted of cancer zone, normal zone and zone mixed of normal and cancer tissues. Their optical properties and spectral features were investigated by terahertz time-domain spectroscopy (TDS) in reflection mode. It was found that waveforms of reflected signals from normal and cancer tissues were well distinguished so it can be concluded that it is easy to discriminate gastric cancer tissue from normal by using THz TDS.
Prabha, S; Suganthi, S S; Sujatha, C M
2015-01-01
Breast thermography is a potential imaging method for the early detection of breast cancer. The pathological conditions can be determined by measuring temperature variations in the abnormal breast regions. Accurate delineation of breast tissues is reported as a challenging task due to inherent limitations of infrared images such as low contrast, low signal to noise ratio and absence of clear edges. Segmentation technique is attempted to delineate the breast tissues by detecting proper lower breast boundaries and inframammary folds. Characteristic features are extracted to analyze the asymmetrical thermal variations in normal and abnormal breast tissues. An automated analysis of thermal variations of breast tissues is attempted using nonlinear adaptive level sets and Riesz transform. Breast thermal images are initially subjected to Stein's unbiased risk estimate based orthonormal wavelet denoising. These denoised images are enhanced using contrast-limited adaptive histogram equalization method. The breast tissues are then segmented using non-linear adaptive level set method. The phase map of enhanced image is integrated into the level set framework for final boundary estimation. The segmented results are validated against the corresponding ground truth images using overlap and regional similarity metrics. The segmented images are further processed with Riesz transform and structural texture features are derived from the transformed coefficients to analyze pathological conditions of breast tissues. Results show that the estimated average signal to noise ratio of denoised images and average sharpness of enhanced images are improved by 38% and 6% respectively. The interscale consideration adopted in the denoising algorithm is able to improve signal to noise ratio by preserving edges. The proposed segmentation framework could delineate the breast tissues with high degree of correlation (97%) between the segmented and ground truth areas. Also, the average segmentation accuracy and sensitivity are found to be 98%. Similarly, the maximum regional overlap between segmented and ground truth images obtained using volume similarity measure is observed to be 99%. Directionality as a feature, showed a considerable difference between normal and abnormal tissues which is found to be 11%. The proposed framework for breast thermal image analysis that is aided with necessary preprocessing is found to be useful in assisting the early diagnosis of breast abnormalities.
NASA Astrophysics Data System (ADS)
Niazi, M. Khalid Khan; Beamer, Gillian; Gurcan, Metin N.
2017-03-01
Accurate detection and quantification of normal lung tissue in the context of Mycobacterium tuberculosis infection is of interest from a biological perspective. The automatic detection and quantification of normal lung will allow the biologists to focus more intensely on regions of interest within normal and infected tissues. We present a computational framework to extract individual tissue sections from whole slide images having multiple tissue sections. It automatically detects the background, red blood cells and handwritten digits to bring efficiency as well as accuracy in quantification of tissue sections. For efficiency, we model our framework with logical and morphological operations as they can be performed in linear time. We further divide these individual tissue sections into normal and infected areas using deep neural network. The computational framework was trained on 60 whole slide images. The proposed computational framework resulted in an overall accuracy of 99.2% when extracting individual tissue sections from 120 whole slide images in the test dataset. The framework resulted in a relatively higher accuracy (99.7%) while classifying individual lung sections into normal and infected areas. Our preliminary findings suggest that the proposed framework has good agreement with biologists on how define normal and infected lung areas.
Changes in NAA and lactate following ischemic stroke: a serial MR spectroscopic imaging study.
Muñoz Maniega, S; Cvoro, V; Chappell, F M; Armitage, P A; Marshall, I; Bastin, M E; Wardlaw, J M
2008-12-09
Although much tissue damage may occur within the first few hours of ischemic stroke, the duration of tissue injury is not well defined. We assessed the temporal pattern of neuronal loss and ischemia after ischemic stroke using magnetic resonance spectroscopic imaging (MRSI) and diffusion-weighted imaging (DWI). We measured N-acetylaspartate (NAA) and lactate in 51 patients with acute ischemic stroke at five time points, from admission to 3 months, in voxels classified as normal, possibly or definitely abnormal (ischemic) according to the appearance of the stroke lesion on the admission DWI. We compared changes in NAA and lactate in different voxel classes using linear mixed models. NAA was significantly reduced from admission in definitely and possibly abnormal (p < 0.01) compared to contralateral normal voxels, reaching a nadir by 2 weeks and remaining reduced at 3 months. Lactate was significantly increased in definitely and possibly abnormal voxels (p < 0.01) during the first 5 days, falling to normal at 2 weeks, rising again later in these voxels. The progressive fall in N-acetylaspartate suggests that some additional neuronal death may continue beyond the first few hours for up to 2 weeks or longer. The mechanism is unclear but, if correct, then it is possible that interventions to limit this ongoing subacute tissue damage might add to the benefit of hyperacute treatment, making further improvements in outcome possible.
Detection and characterisation of multi-drug resistance protein 1 (MRP-1) in human mitochondria.
Roundhill, E A; Burchill, S A
2012-03-13
Overexpression of plasma membrane multi-drug resistance protein 1 (MRP-1) can lead to multidrug resistance. In this study, we describe for the first time the expression of mitochondrial MRP-1 in untreated human normal and cancer cells and tissues. MRP-1 expression and subcellular localisation in normal and cancer cells and tissues was examined by differential centrifugation and western blotting, and immunofluorescence microscopy. Viable mitochondria were isolated and MRP-1 efflux activity measured using the calcein-AM functional assay. MRP-1 expression was increased using retroviral infection and specific overexpression confirmed by RNA array. Cell viability was determined by trypan blue exclusion and annexin V-propidium iodide labelling of cells. MRP-1 was detected in the mitochondria of cancer and normal cells and tissues. The efflux activity of mitochondrial MRP-1 was more efficient (55-64%) than that of plasma membrane MRP-1 (11-22%; P<0.001). Induced MRP-1 expression resulted in a preferential increase in mitochondrial MRP-1, suggesting selective targeting to this organelle. Treatment with a non-lethal concentration of doxorubicin (0.85 nM, 8 h) increased mitochondrial and plasma membrane MRP-1, increasing resistance to MRP-1 substrates. For the first time, we have identified MRP-1 with efflux activity in human mitochondria. Mitochondrial MRP-1 may be an exciting new therapeutic target where historically MRP-1 inhibitor strategies have limited clinical success.
Network recruitment to coherent oscillations in a hippocampal computer model
Krieger, Abba; Litt, Brian
2011-01-01
Coherent neural oscillations represent transient synchronization of local neuronal populations in both normal and pathological brain activity. These oscillations occur at or above gamma frequencies (>30 Hz) and often are propagated to neighboring tissue under circumstances that are both normal and abnormal, such as gamma binding or seizures. The mechanisms that generate and propagate these oscillations are poorly understood. In the present study we demonstrate, via a detailed computational model, a mechanism whereby physiological noise and coupling initiate oscillations and then recruit neighboring tissue, in a manner well described by a combination of stochastic resonance and coherence resonance. We develop a novel statistical method to quantify recruitment using several measures of network synchrony. This measurement demonstrates that oscillations spread via preexisting network connections such as interneuronal connections, recurrent synapses, and gap junctions, provided that neighboring cells also receive sufficient inputs in the form of random synaptic noise. “Epileptic” high-frequency oscillations (HFOs), produced by pathologies such as increased synaptic activity and recurrent connections, were superior at recruiting neighboring tissue. “Normal” HFOs, associated with fast firing of inhibitory cells and sparse pyramidal cell firing, tended to suppress surrounding cells and showed very limited ability to recruit. These findings point to synaptic noise and physiological coupling as important targets for understanding the generation and propagation of both normal and pathological HFOs, suggesting potential new diagnostic and therapeutic approaches to human disorders such as epilepsy. PMID:21273309
NASA Astrophysics Data System (ADS)
Zhao, Q. L.; Guo, Z. Y.; Si, J. L.; Wei, H. J.; Yang, H. Q.; Wu, G. Y.; Xie, S. S.; Guo, X.; Zhong, H. Q.; Li, L. Q.; Li, X. Y.
2011-03-01
The main objective of the present work is to study the influence of heat treatment on the esophageal cancer detection using the diffuse reflectance (DR) spectral intensity ratio R540/R575 of oxygenated hemoglobin (HbO2) absorption bands to distinguish the epithelial tissues of normal human esophagus and moderately differentiated esophageal squamous cell carcinoma (ESCC) at different heat treatment temperature of 20, 37, 42, 50, and 60°C, respectively. The DR spectra for the epithelial tissues of the normal esophagus and ESCC in vitro at different heat-treatment temperature in the wavelength range 400-650 nm were measured with a commercial optical fiber spectrometer. The results indicate that the average DR spectral intensity overall enhancement with concomitant increase of heat-treatment temperature for the epithelial tissues of normal esophagus and ESCC, but the average DR spectral intensity for the normal esophageal epithelial tissues is relatively higher than that for ESCC epithelial tissues at the same heat-treatment temperature. The mean R540/R575 ratios of ESCC epithelial tissues were always lower than that of normal esophageal epithelial tissues at the same temperature, and the mean R540/R575 ratios of the epithelial tissues of the normal esophagus and ESCC were decreasing with the increase of different heat-treatment temperatures. The differences in the mean R540/R575 ratios between the epithelial tissues of normal esophagus and ESCC were 13.33, 13.59, 11.76, and 11.11% at different heat-treatment temperature of 20, 37, 42, and 50°C, respectively. These results also indicate that the DR intensity ratio R540/R575 of the hemoglobin bands is a useful tool for discrimination between the epithelial tissues of normal esophagus and ESCC in the temperature range from room temperature to 50°C, but it was non-effective at 60°C or over 60°C.
Enhancing Tumor Drug Delivery by Laser-Activated Vascular Barrier Disruption
2006-12-01
increased, which leads to normal tissue toxicity . This delivery problem not only limits the clinical application of existing chemotherapeutics, but also...principles and uses photochemical reactions to generate biological effectors, such as reactive oxygen species (ROS), which cause oxidative damage to...liposomes, mi- celles, and biodegradable nanoparticles , or conju- gated with hydrophilic polymers.6 It is likely that although some level of
Normal levels of anticoagulant heparan sulfate are not essential for normal hemostasis
HajMohammadi, Sassan; Enjyoji, Keiichi; Princivalle, Marc; Christi, Patricia; Lech, Miroslav; Beeler, David; Rayburn, Helen; Schwartz, John J.; Barzegar, Samad; de Agostini, Ariane I.; Post, Mark J.; Rosenberg, Robert D.; Shworak, Nicholas W.
2003-01-01
Endothelial cell production of anticoagulant heparan sulfate (HSact) is controlled by the Hs3st1 gene, which encodes the rate-limiting enzyme heparan sulfate 3-O-sulfotransferase-1 (3-OST-1). In vitro, HSact dramatically enhances the neutralization of coagulation proteases by antithrombin. The in vivo role of HSact was evaluated by generating Hs3st1–/– knockout mice. Hs3st1–/– animals were devoid of 3-OST-1 enzyme activity in plasma and tissue extracts. Nulls showed dramatic reductions in tissue levels of HSact but maintained wild-type levels of tissue fibrin accumulation under both normoxic and hypoxic conditions. Given that vascular HSact predominantly occurs in the subendothelial matrix, mice were subjected to a carotid artery injury assay in which ferric chloride administration induces de-endothelialization and occlusive thrombosis. Hs3st1–/– and Hs3st1+/+ mice yielded indistinguishable occlusion times and comparable levels of thrombin•antithrombin complexes. Thus, Hs3st1–/– mice did not show an obvious procoagulant phenotype. Instead, Hs3st1–/– mice exhibited genetic background–specific lethality and intrauterine growth retardation, without evidence of a gross coagulopathy. Our results demonstrate that the 3-OST-1 enzyme produces the majority of tissue HSact. Surprisingly, this bulk of HSact is not essential for normal hemostasis in mice. Instead, 3-OST-1–deficient mice exhibited unanticipated phenotypes suggesting that HSact or additional 3-OST-1–derived structures may serve alternate biologic roles. PMID:12671048
Audi, Said; Li, Zhixin; Capacete, Joseph; Liu, Yu; Fang, Wei; Shu, Laura G.; Zhao, Ming
2013-01-01
Introduction 99mTc-Duramycin is a peptide-based molecular probe that binds specifically to phosphatidylethanolamine (PE). The goal was to characterize the kinetics of molecular interactions between 99mTc-Duramycin and the target tissue. Methods High level of accessible PE is induced in cardiac tissues by myocardial ischemia (30 min) and reperfusion (120 min) in Sprague Dawley rats. Target binding and biodistribution of 99mTc-duramycin was captured using SPECT/CT. To quantify the binding kinetics, the presence of radioactivity in ischemic versus normal cardiac tissues was measured by gamma counting at 3, 10, 20, 60 and 180 min after injection. A partially inactivated form of 99mTc-Duramycin was analyzed in the same fashion. A compartment model was developed to quantify the uptake kinetics of 99mTc-Duramycin in normal and ischemic myocardial tissue. Results 99mTc-duramycin binds avidly to the damaged tissue with a high target-to-background radio. Compartment modeling shows that accessibility of binding sites in myocardial tissue to 99mTc-Duramycin is not a limiting factor and the rate constant of target binding in the target tissue is at 2.2 ml/nmol/min/g. The number of available binding sites for 99mTc-Duramycin in ischemic myocardium was estimated at 0.14 nmol/g. Covalent modification of D15 resulted in a 9 fold reduction in binding affinity. Conclusion 99mTc-Duramycin accumulates avidly in target tissues in a PE-dependent fashion. Model results reflect an efficient uptake mechanism, consistent with the low molecular weight of the radiopharmaceutical and the relatively high density of available binding sites. These data help better define the imaging utilities of 99mTc-Duramycin as a novel PE-binding agent. PMID:22534031
Automated classification of tissue by type using real-time spectroscopy
NASA Astrophysics Data System (ADS)
Benaron, David A.; Cheong, Wai-Fung; Duckworth, Joshua L.; Noles, Kenneth; Nezhat, Camran; Seidman, Daniel; Hintz, Susan R.; Levinson, Carl J.; Murphy, Aileen L.; Price, John W., Jr.; Liu, Frank W.; Stevenson, David K.; Kermit, Eben L.
1997-12-01
Each tissue type has a unique spectral signature (e.g. liver looks distinct from bowel due to differences in both absorbance and in the way the tissue scatters light). While differentiation between normal tissues and tumors is not trivial, automated discrimination among normal tissue types (e.g. nerve, artery, vein, muscle) is feasible and clinically important, as many medical errors in medicine involve the misidentification of normal tissues. In this study, we have found that spectroscopic differentiation of tissues can be successfully applied to tissue samples (kidney and uterus) and model systems (fruit). Such optical techniques may usher in use of optical tissue diagnosis, leading to automated and portable diagnostic devices which can identify tissues, and guide use of medical instruments, such as during ablation or biopsy.
Quantitative ultrasound backscatter for pulsed cavitational ultrasound therapy- histotripsy.
Wang, Tzu-yin; Xu, Zhen; Winterroth, Frank; Hall, Timothy L; Fowlkes, J Brian; Rothman, Edward D; Roberts, William W; Cain, Charles A
2009-05-01
Histotripsy is a well-controlled ultrasonic tissue ablation technology that mechanically and progressively fractionates tissue structures using cavitation. The fractionated tissue volume can be monitored with ultrasound imaging because a significant ultrasound backscatter reduction occurs.This paper correlates the ultrasound backscatter reduction with the degree of tissue fractionation characterized by the percentage of remaining normal-appearing cell nuclei on histology.Different degrees of tissue fractionation were generated in vitro in freshly excised porcine kidneys by varying the number of therapeutic ultrasound pulses from 100 to 2000 pulses per treatment location. All ultrasound pulses were 15 cycles at 1 MHz delivered at 100 Hz pulse repetition frequency and 19 MPa peak negative pressure. The results showed that the normalized backscatter intensity decreased exponentially with increasing number of pulses. Correspondingly, the percentage of normal appearing nuclei in the treated area decreased exponentially as well. A linear correlation existed between the normalized backscatter intensity and the percentage of normal appearing cell nuclei in the treated region. This suggests that the normalized backscatter intensity may be a potential quantitative real-time feedback parameter for histotripsy-induced tissue fractionation. This quantitative feedback may allow the prediction of local clinical outcomes, i.e., when a tissue volume has been sufficiently treated.
Cardiac Uptake of Minocycline and Mechanisms for In Vivo Cardioprotection
Romero-Perez, Diego; Fricovsky, Eduardo; Yamasaki, Katrina Go; Griffin, Michael; Barraza-Hidalgo, Maraliz; Dillmann, Wolfgang; Villarreal, Francisco
2008-01-01
Objectives The ability of minocycline to be transported into cardiac cells, concentrate in normal and ischemic myocardium and act as in vivo cardioprotector was examined. We also determined minocycline's capacity to act as a reducer of myocardial oxidative stress and matrix metalloproteinase (MMP) activity. Background The identification of compounds with the potential to reduce myocardial ischemic injury is of great interest. Tetracyclines (TTCs) are antibiotics with pleiotropic cytoprotective properties that accumulate in normal and diseased tissues. Minocycline is highly lipophilic and has shown promise as a possible cardioprotector. However, minocycline's potential as an in vivo cardioprotector as well as the means by which this action is attained are not well understood. Methods Rats were subjected to 45 min of ischemia and 48 h of reperfusion. Animals were treated 48 h before and 48 h after thoracotomy with either vehicle or 50 mg/kg/day minocycline. Tissue samples were used for biochemical assays and cultured cardiac cells for minocycline uptake experiments. Results Minocycline significantly reduced infarct size (∼33%), tissue MMP-9 activity and oxidative stress. Minocycline was concentrated ∼24-fold in normal (0.5 mM) and ∼50-fold in ischemic regions (1.1 mM) vs. blood. Neonatal rat cardiac fibroblasts, myocytes and adult fibroblasts demonstrate a time- and temperature-dependent uptake of minocycline to levels that approximate those of normal myocardium. Conclusions Given the high intracellular levels observed and results from the assessment of in vitro antioxidant and MMP inhibitor capacities, it is likely that minocycline acts to limit myocardial ischemic injury via mass action effects. PMID:18848143
Diagnosis of breast cancer by tissue analysis
Bhattacharyya, Debnath; Bandyopadhyay, Samir Kumar
2013-01-01
In this paper, we propose a technique to locate abnormal growth of cells in breast tissue and suggest further pathological test, when require. We compare normal breast tissue with malignant invasive breast tissue by a series of image processing steps. Normal ductal epithelial cells and ductal/lobular invasive carcinogenic cells also consider for comparison here in this paper. In fact, features of cancerous breast tissue (invasive) are extracted and analyses with normal breast tissue. We also suggest the breast cancer recognition technique through image processing and prevention by controlling p53 gene mutation to some extent. PMID:23372340
MMP13 is potentially a new tumor marker for breast cancer diagnosis.
Chang, Hui-Jen; Yang, Ming-Je; Yang, Yu-Hsiang; Hou, Ming-Feng; Hsueh, Er-Jung; Lin, Shiu-Ru
2009-11-01
Within the past decade, the incidence of breast cancer in Taiwan has been rising year after year. Breast cancer is the first most prevalent cancer and the fourth leading cause of cancer-related deaths among women in Taiwan. The early stage of breast cancer not only have a wider range of therapeutic options, but also obtain a higher success rate of therapy than those with advanced breast cancer. A test for tumor markers is the most convenient method to screen for breast cancer. However, the tumor markers currently available for breast cancer detection include carcinoembryonic antigen (CEA), carbohydrate antigen 15.3 (CA15.3), and carbohydrate antigen 27.29 (CA27.29) exhibited certain limitations. Poor sensitivity and specificity greatly limits the diagnostic accuracy of these markers. This study aims to identify potential tumor markers for breast cancer. At first, we analyzed genes expression in infiltrating lobular carcinoma, metaplastic carcinoma, and infiltrating ductal carcinoma of paired specimens (tumor and normal tissue) from breast cancer patients using microarray technology. We selected 371 overexpressed genes in all of the three cell type. In advanced breast cancer tissue, we detected four genes MMP13, CAMP, COL10A1 and FLJ25416 from 25 overexpressed genes which encoded secretion protein more specifically for breast cancer than other genes. After validation with 15 pairs of breast cancer tissue and paired to normal adjacent tissues by membrane array and quantitative RT-PCR, we found MMP13 was 100% overexpressed and confirmed to be a secreted protein by Western blot analysis of the cell culture medium. The expression level of MMP13 was also measured by immunohistochemical staining. We suggest that MMP13 is a highly overexpressed secretion protein in breast cancer tissue. It has potential to be a new tumor marker for breast cancer diagnosis.
Abend, M; Pfeiffer, R M; Ruf, C; Hatch, M; Bogdanova, T I; Tronko, M D; Hartmann, J; Meineke, V; Mabuchi, K; Brenner, A V
2013-10-15
A strong, consistent association between childhood irradiation and subsequent thyroid cancer provides an excellent model for studying radiation carcinogenesis. We evaluated gene expression in 63 paired RNA specimens from frozen normal and tumour thyroid tissues with individual iodine-131 (I-131) doses (0.008-8.6 Gy, no unirradiated controls) received from Chernobyl fallout during childhood (Ukrainian-American cohort). Approximately half of these randomly selected samples (32 tumour/normal tissue RNA specimens) were hybridised on 64 whole-genome microarrays (Agilent, 4 × 44 K). Associations between I-131 dose and gene expression were assessed separately in normal and tumour tissues using Kruskal-Wallis and linear trend tests. Of 155 genes significantly associated with I-131 after Bonferroni correction and with ≥2-fold increase per dose category, we selected 95 genes. On the remaining 31 RNA samples these genes were used for validation purposes using qRT-PCR. Expression of eight genes (ABCC3, C1orf9, C6orf62, FGFR1OP2, HEY2, NDOR1, STAT3, and UCP3) in normal tissue and six genes (ANKRD46, CD47, HNRNPH1, NDOR1, SCEL, and SERPINA1) in tumour tissue was significantly associated with I-131. PANTHER/DAVID pathway analyses demonstrated significant over-representation of genes coding for nucleic acid binding in normal and tumour tissues, and for p53, EGF, and FGF signalling pathways in tumour tissue. The multistep process of radiation carcinogenesis begins in histologically normal thyroid tissue and may involve dose-dependent gene expression changes.
PIXE analysis of tumors and localization behavior of a lanthanide in nude mice
NASA Astrophysics Data System (ADS)
Chang, Pei-Jiun; Yang, Czau-Siung; Chou, Ming-Ji; Wei, Chau-Chin; Hsu, Chu-Chung; Wang, Chia-Yu
1984-04-01
We have used particle induced X-ray emission (PIXE) to analyze the elemental compositions and uptakes of a lanthanide, yttrium in this report, in tumors and normal tissues of nude mice. A small amount of yttrium nitrate was injected into nude mice with tumors. Samples of normal and malignant tissues taken from these mice were bombarded by the 2 MeV proton beam from a 3 MeV Van de Graaff accelerator with a Ge detector system to determine the relative elemental compositions of tissues and the relative concentrations of yttrium taken up by these tissues. We found that the uptakes of yttrium by tumors were at least five times more than those by normal tissues. Substantial differences were often observed between the trace element weight (or concentration) pattern of the cancerous and normal tissues. The present result is compared with human tissues.
Fahlén, M; Zhang, H; Löfgren, L; Masironi, B; von Schoultz, E; von Schoultz, B; Sahlin, L
2017-05-01
Stromal factors have been identified as important for tumorigenesis and metastases of breast cancer. From 49 premenopausal women, samples were collected from benign or malignant tumors and the seemingly normal tissue adjacent to the tumor. The factors studied, with real-time polymerase chain reaction (PCR) and immunohistochemistry, were cyclooxygenase-1 and cyclooxygenase-2 (COX-1 and COX-2), syndecan-1 (S-1) and connective tissue growth factor (CTGF). COX-1 and S-1 mRNA levels were higher in the malignant tumors than in normal and benign tissues. The COX-2 mRNA level was lower in the malignant tumor than in the normal tissue, while CTGF mRNA did not differ between the groups. COX-1 immunostaining was higher in stroma from malignant tumors than in benign tissues, whereas COX-2 immunostaining was higher in the malignant tissue. Glandular S-1 immunostaining was lower in malignant tumors compared to benign and normal tissues, and the opposite was found in stroma. Conclusively, mRNA levels of COX-1 and COX-2 were oppositely regulated, with COX-1 being increased in the malignant tumor while COX-2 was decreased. S-1 protein localization switched from glandular to stromal cells in malignant tissues. Thus, these markers are, in premenopausal women, localized and regulated differently in normal/benign breast tissue as compared to the malignant tumor.
Resonance Raman of BCC and normal skin
NASA Astrophysics Data System (ADS)
Liu, Cheng-hui; Sriramoju, Vidyasagar; Boydston-White, Susie; Wu, Binlin; Zhang, Chunyuan; Pei, Zhe; Sordillo, Laura; Beckman, Hugh; Alfano, Robert R.
2017-02-01
The Resonance Raman (RR) spectra of basal cell carcinoma (BCC) and normal human skin tissues were analyzed using 532nm laser excitation. RR spectral differences in vibrational fingerprints revealed skin normal and cancerous states tissues. The standard diagnosis criterion for BCC tissues are created by native RR biomarkers and its changes at peak intensity. The diagnostic algorithms for the classification of BCC and normal were generated based on SVM classifier and PCA statistical method. These statistical methods were used to analyze the RR spectral data collected from skin tissues, yielding a diagnostic sensitivity of 98.7% and specificity of 79% compared with pathological reports.
Liu, Xiaohang; Zhou, Liangping; Peng, Weijun; Wang, He; Zhang, Yong
2015-10-01
To compare stretched-exponential and monoexponential model diffusion-weighted imaging (DWI) in prostate cancer and normal tissues. Twenty-seven patients with prostate cancer underwent DWI exam using b-values of 0, 500, 1000, and 2000 s/mm(2) . The distributed diffusion coefficients (DDC) and α values of prostate cancer and normal tissues were obtained with stretched-exponential model and apparent diffusion coefficient (ADC) values using monoexponential model. The ADC, DDC (both in 10(-3) mm(2)/s), and α values (range, 0-1) were compared among different prostate tissues. The ADC and DDC were also compared and correlated in each tissue, and the standardized differences between DDC and ADC were compared among different tissues. Data were obtained for 31 cancers, 36 normal peripheral zone (PZ) and 26 normal central gland (CG) tissues. The ADC (0.71 ± 0.12), DDC (0.60 ± 0.18), and α value (0.64 ± 0.05) of tumor were all significantly lower than those of the normal PZ (1.41 ± 0.22, 1.47 ± 0.20, and 0.85 ± 0.09) and CG (1.25 ± 0.14, 1.32 ± 0.13, and 0.82 ± 0.06) (all P < 0.05). ADC was significantly higher than DDC in cancer, but lower than DDC in the PZ and CG (all P < 0.05). The ADC and DDC were strongly correlated (R(2) = 0.99, 0.98, 0.99, respectively, all P < 0.05) in all the tissue, and standardized difference between ADC and DDC of cancer was slight but significantly higher than that in normal tissue. The stretched-exponential model DWI provides more parameters for distinguishing prostate cancer and normal tissue and reveals slight differences between DDC and ADC values. © 2015 Wiley Periodicals, Inc.
The Resistance of Certain Tissues to Invasion
Eisenstein, Reuben; Sorgente, Nino; Soble, Lawrence W.; Miller, Alexander; Kuettner, Klaus E.
1973-01-01
If puppy tissues are explanted onto the chick chorioallantoic membrane, those tissues which normally have a blood supply are rapidly invaded by vascularized mesenchyme of host origin. Hyaline cartilage, a tissue virtually devoid of blood vessels, is impenetrable by proliferating mesenchyme of the host, while calcified cartilage, which normally is vascularized, is penetrable. The stroma of the cornea, another normally avascular tissue, is readily penetrable, but Descemet's membrane forms a barrier to invasion by host tissues. The experimental system used permits the design of experiments in which the study of factors responsible for the resistance of tissues such as cartilage to invasion can be undertaken. ImagesFig 1Fig 2Fig 3Fig 4 PMID:4129060
Trace elemental analysis in cancer-afflicted tissues of penis and testis by PIXE technique
NASA Astrophysics Data System (ADS)
Naga Raju, G. J.; John Charles, M.; Bhuloka Reddy, S.; Sarita, P.; Seetharami Reddy, B.; Rama Lakshmi, P. V. B.; Vijayan, V.
2005-04-01
PIXE technique was employed to estimate the trace elemental concentrations in the biological samples of cancerous penis and testis. A 3 MeV proton beam was employed to excite the samples. From the present results it can be seen that the concentrations of Cl, Fe and Co are lower in the cancerous tissue of the penis when compared with those in normal tissue while the concentrations of Cu, Zn and As are relatively higher. The concentrations of K, Ca, Ti, Cr, Mn, Br, Sr and Pb are in agreement within standard deviations in both cancerous and normal tissues. In the cancerous tissue of testis, the concentrations of K, Cr and Cu are higher while the concentrations of Fe, Co and Zn are lower when compared to those in normal tissue of testis. The concentrations of Cl, Ca, Ti and Mn are in agreement in both cancerous and normal tissues of testis. The higher levels of Cu lead to the development of tumor. Our results also support the underlying hypothesis of an anticopper, antiangiogenic approach to cancer therapy. The Cu/Zn ratios of both penis and testis were higher in cancer tissues compared to that of normal.
NASA Astrophysics Data System (ADS)
Kiris, Tugba; Akbulut, Saadet; Kiris, Aysenur; Gucin, Zuhal; Karatepe, Oguzhan; Bölükbasi Ates, Gamze; Tabakoǧlu, Haşim Özgür
2015-03-01
In order to develop minimally invasive, fast and precise diagnostic and therapeutic methods in medicine by using optical methods, first step is to examine how the light propagates, scatters and transmitted through medium. So as to find out appropriate wavelengths, it is required to correctly determine the optical properties of tissues. The aim of this study is to measure the optical properties of both cancerous and normal ex-vivo pancreatic tissues. Results will be compared to detect how cancerous and normal tissues respond to different wavelengths. Double-integrating-sphere system and computational technique inverse adding doubling method (IAD) were used in the study. Absorption and reduced scattering coefficients of normal and cancerous pancreatic tissues have been measured within the range of 500-650 nm. Statistical significant differences between cancerous and normal tissues have been obtained at 550 nm and 630 nm for absorption coefficients. On the other hand; there were no statistical difference found for scattering coefficients at any wavelength.
NASA Astrophysics Data System (ADS)
Wang, Leana; Zhou, Yan; Liu, Cheng-hui; Zhou, Lixin; He, Yong; Pu, Yang; Nguyen, Thien An; Alfano, Robert R.
2015-03-01
The objective of this study was to find out the emission spectral fingerprints for discrimination of human colorectal and gastric cancer from normal tissue in vitro by applying native fluorescence. The native fluorescence (NFL) and Stokes shift spectra of seventy-two human cancerous and normal colorectal (colon, rectum) and gastric tissues were analyzed using three selected excitation wavelengths (e.g. 300 nm, 320 nm and 340 nm). Three distinct biomarkers, tryptophan, collagen and reduced nicotinamide adenine dinucleotide hydrate (NADH), were found in the samples of cancerous and normal tissues from eighteen subjects. The spectral profiles of tryptophan exhibited a sharp peak in cancerous colon tissues under a 300 nm excitation when compared with normal tissues. The changes in compositions of tryptophan, collagen, and NADH were found between colon cancer and normal tissues under an excitation of 300 nm by the non-negative basic biochemical component analysis (BBCA) model.
Normalization of periodontal tissues in osteopetrotic mib mutant rats, treated with CSF-1
NASA Technical Reports Server (NTRS)
Wojtowicz, A.; Yamauchi, M.; Sotowski, R.; Ostrowski, K.
1998-01-01
The osteopetrotic mib mutation in rats causes defects in the skeletal bone tissue in young animals. These defects, i.e. slow bone remodelling, changes in both crystallinity and mineral content, are transient and undergo normalization, even without any treatment in 6-wk-old animals. Treatment with CSF-1 (colony stimulating factor-1) accelerates the normalization process in skeletal bones. The periodontal tissues around the apices of incisors show abnormalities caused by the slow remodelling process of the mandible bone tissue, the deficiency of osteoclasts and their abnormal morphology, as well as the disorganization of periodontal ligament fibres. In contrast to the skeletal tissues, these abnormalities would not undergo spontaneous normalization. Under treatment with colony stimulating factor 1 (CSF-1), the primitive bone trabeculae of mandible are resorbed and the normalization of the number of osteoclasts and their cytology occurs. The organization of the periodontal ligament fibres is partially restored, resembling the histological structure of the normal one.
Cultured normal mammalian tissue and process
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J. (Inventor); Prewett, Tacey L. (Inventor); Wolf, David A. (Inventor); Spaulding, Glenn F. (Inventor)
1993-01-01
Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cell aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.
Microscopic fluorescence spectral analysis of basal cell carcinomas
NASA Astrophysics Data System (ADS)
He, Qingli; Lui, Harvey; Zloty, David; Cowan, Bryce; Warshawski, Larry; McLean, David I.; Zeng, Haishan
2007-05-01
Background and Objectives. Laser-induced autofluorescence (LIAF) is a promising tool for cancer diagnosis. This method is based on the differences in autofluorescence spectra between normal and cancerous tissues, but the underlined mechanisms are not well understood. The objective of this research is to study the microscopic origins and intrinsic fluorescence properties of basal cell carcinoma (BCC) for better understanding of the mechanism of in vivo fluorescence detection and margin delineation of BCCs on skin patients. A home-made micro- spectrophotometer (MSP) system was used to image the fluorophore distribution and to measure the fluorescence spectra of various microscopic structures and regions on frozen tissue sections. Materials and Methods. BCC tissue samples were obtained from 14 patients undergoing surgical resections. After surgical removal, each tissue sample was immediately embedded in OCT medium and snap-frozen in liquid nitrogen. The frozen tissue block was then cut into 16-μm thickness sections using a cryostat microtome and placed on microscopic glass slides. The sections for fluorescence study were kept unstained and unfixed, and then analyzed by the MSP system. The adjacent tissue sections were H&E stained for histopathological examination and also served to help identify various microstructures on the adjacent unstained sections. The MSP system has all the functions of a conventional microscope, plus the ability of performing spectral analysis on selected micro-areas of a microscopic sample. For tissue fluorescence analysis, 442nm He-Cd laser light is used to illuminate and excite the unstained tissue sections. A 473-nm long pass filter was inserted behind the microscope objective to block the transmitted laser light while passing longer wavelength fluorescence signal. The fluorescence image of the sample can be viewed through the eyepieces and also recorded by a CCD camera. An optical fiber is mounted onto the image plane of the photograph port of the microscope to collect light from a specific micro area of the sample. The collected light is transmitted via the fiber to a disperserve type CCD spectrometer for spectral analysis. Results. The measurement results showed significant spectral differences between normal and cancerous tissues. For normal tissue regions, the spectral results agreed with our previous findings on autofluorescence of normal skin sections. For the cancerous regions, the epidermis showed very weak fluorescence signal, while the stratum corneum exhibited fluorescence emissions peaking at about 510 nm. In the dermis, the basal cell island and a band of surrounding areas showed very weak fluorescence signal, while distal dermis above and below the basal cell island showed greater fluorescence signal but with different spectral shapes. The very weak autofluorescence from the basal cell island and its surrounding area may be attributed to their degenerative properties that limited the production of collagens. Conclusions. The obtained microscopic results very well explain the in vivo fluorescence properties of BCC lesions in that they have decreased fluorescence intensity compared to the surrounding normal skin. The intrinsic spectra of various microstructures and the microscopic fluorescence images (corresponding fluorophore distribution in tissue) obtained in this study will be used for further theoretical modeling of in vivo fluorescence spectroscopy and imaging of skin cancers.
Al-Lamki, Rafia S; Bradley, John R; Pober, Jordan S
2017-01-01
Human studies, critical for developing new diagnostics and therapeutics, are limited by ethical and logistical issues, and preclinical animal studies are often poor predictors of human responses. Standard human cell cultures can address some of these concerns but the absence of the normal tissue microenvironment can alter cellular responses. Three-dimensional cultures that position cells on synthetic matrices, or organoid or organ-on-a-chip cultures, in which different cell spontaneously organize contacts with other cells and natural matrix only partly overcome this limitation. Here, we review how human organ cultures (HOCs) can more faithfully preserve in vivo tissue architecture and can better represent disease-associated changes. We will specifically describe how HOCs can be combined with both traditional and more modern morphological techniques to reveal how anatomic location can alter cellular responses at a molecular level and permit comparisons among different cells and different cell types within the same tissue. Examples are provided involving use of HOCs to study inflammation, cancer, and stem cell biology.
Al-Lamki, Rafia S.; Bradley, John R.; Pober, Jordan S.
2017-01-01
Human studies, critical for developing new diagnostics and therapeutics, are limited by ethical and logistical issues, and preclinical animal studies are often poor predictors of human responses. Standard human cell cultures can address some of these concerns but the absence of the normal tissue microenvironment can alter cellular responses. Three-dimensional cultures that position cells on synthetic matrices, or organoid or organ-on-a-chip cultures, in which different cell spontaneously organize contacts with other cells and natural matrix only partly overcome this limitation. Here, we review how human organ cultures (HOCs) can more faithfully preserve in vivo tissue architecture and can better represent disease-associated changes. We will specifically describe how HOCs can be combined with both traditional and more modern morphological techniques to reveal how anatomic location can alter cellular responses at a molecular level and permit comparisons among different cells and different cell types within the same tissue. Examples are provided involving use of HOCs to study inflammation, cancer, and stem cell biology. PMID:28955710
NASA Astrophysics Data System (ADS)
Pu, Yang; Wang, Wubao; Tang, Guichen; Budansky, Yury; Sharonov, Mikhail; Xu, Min; Achilefu, Samuel; Eastham, James A.; Alfano, Robert R.
2012-01-01
A portable near infrared scanning polarization imaging unit with an optical fiber-based rectal probe, namely Photonic Finger, was designed and developed o locate the 3D position of abnormal prostate site inside normal prostate tissue. An inverse algorithm, Optical Tomography using Independent Component Analysis (OPTICA) was improved particularly to unmix the signal from targets (cancerous tissue) embedded in a turbid medium (normal tissue) in the backscattering imaging geometry. Photonic Finger combined with OPTICA was tested to characterize different target(s) inside different tissue medium, including cancerous prostate tissue embedded by large piece of normal tissue.
Raman spectroscopy of oral tissues: correlation of spectral and biochemical markers
NASA Astrophysics Data System (ADS)
Singh, S. P.; Krishna, C. Murali
2014-03-01
Introduction Optical spectroscopic methods are being explored as novel tools for early and non-invasive cancer diagnosis. Both ex vivo and in vivo Raman spectroscopic studies carried out in oral cancer over the past decade have demonstrated that spectra of normal tissues are rich in lipids while tumor spectra show predominance of proteins. An accurate understanding of spectral features with respect to the biochemical composition is a pre-requisite before transferring these technologies for routine clinical usage. Therefore, in the present study, we have carried out Raman and biochemical studies on same tissues to correlate spectral markers and biochemical composition of normal and tumor oral tissues. Materials and Methods Spectra of 20 pairs of normal and tumor oral tissues were acquired using fiber-optic probe coupled HE-785 Raman spectrometer. Intensity associated with lipid (1440 cm-1) and protein (1450 and 1660 cm-1) bands were computed using curve-deconvolution method. Same tissues were then subjected to biochemical estimations of major biomolecules i.e., protein, lipid and phospholipids. Results and Discussion The intensity of the lipid band was found to be higher in normal tissues with respect to tumors, and the protein band was higher in tumors compared to normal tissues. Biochemical estimation yielded similar results i.e. high protein to lipid or phospholipid ratio in tumors with-respect to normal tissues. These differences were found to be statistically significant. Conclusion Findings of curve-deconvolution and biochemical estimation correlate very well and corroborate the spectral profile noted in earlier studies.
NASA Astrophysics Data System (ADS)
Theodorakou, Chrysoula; Farquharson, Michael J.
2009-08-01
The motivation behind this study is to assess whether angular dispersive x-ray diffraction (ADXRD) data, processed using multivariate analysis techniques, can be used for classifying secondary colorectal liver cancer tissue and normal surrounding liver tissue in human liver biopsy samples. The ADXRD profiles from a total of 60 samples of normal liver tissue and colorectal liver metastases were measured using a synchrotron radiation source. The data were analysed for 56 samples using nonlinear peak-fitting software. Four peaks were fitted to all of the ADXRD profiles, and the amplitude, area, amplitude and area ratios for three of the four peaks were calculated and used for the statistical and multivariate analysis. The statistical analysis showed that there are significant differences between all the peak-fitting parameters and ratios between the normal and the diseased tissue groups. The technique of soft independent modelling of class analogy (SIMCA) was used to classify normal liver tissue and colorectal liver metastases resulting in 67% of the normal tissue samples and 60% of the secondary colorectal liver tissue samples being classified correctly. This study has shown that the ADXRD data of normal and secondary colorectal liver cancer are statistically different and x-ray diffraction data analysed using multivariate analysis have the potential to be used as a method of tissue classification.
Human cells and cell cultures: availability, authentication and future prospects.
Hay, R J
1996-09-01
The availability of well characterized, viable human cells, tissues and cell lines along with pertinent data on the specific patient donors is a prerequisite for much current transplantation and biomedical research. In the USA, institutional and multi-center networks have been established for provision of primary human cells and tissues to qualified clinicians and research scientists. Monetary support derives from government, university, institutional and fee sources. Problems involved include concern for the rights and privacy of tissue donors, cultural reservations relating to tissue provision, the need for safe and expeditious transport, short term survival and limited supply, adequate correlation of patient data with samples provided, presence of infectious viruses and microorganisms, as well as state or government regulations regarding national or international shipping. The use of human cell lines with continuous or even somewhat limited doubling potentials overcomes many of the above difficulties. National cell banks have been established to provide reference lines for use by multiple investigators. Use of such cell lines assures improved research comparability both geographically and with time. Authentication procedures are critically important for all of these programs. Verification of tissue types and conditions is required through histological, biochemical and immunological assays. Tests for microbial and viral contaminants must be applied. In addition to such procedures utilized for tissues, with cell lines the banking agency must also verify species and where possible identity, properties and functions. The literature is replete with descriptions documenting incorrect identifications and infections of proliferating cell strains used for research. The availability of viable tissue through local sources and distribution agencies in the USA is becoming more commonplace even including full family participation and collection of related, detailed histories. Increased support for this developmental activity is needed, coupled with provision of blood and normal cells and cell lines from family members in many disease categories. Modern techniques, new and improved culture ware, serum-free media, reagents such as growth, adherence and transfer factors will permit isolation, propagation and wide spread distribution not only of human tumor cells but also normal and functional human cells of most renewing and expanding tissue types. Hybridization and immortalization techniques are enhancing this capability such that virtually all human cell types should be available for short or longer-term propagation and study in the foreseeable future.
Chari, Divya M; Gilson, Jennifer M; Franklin, Robin J M; Blakemore, William F
2006-03-01
Oligodendrocyte lineage cells [oligodendrocytes and their parent cells, the oligodendrocyte progenitor cells (OPCs)] are depleted by X-irradiation and progenitor cell transplantation has been proposed as a therapeutic strategy to counteract radiation induced myelopathy. Previous studies have demonstrated that oligodendrocyte progenitor cell (OPC) depletion is a prerequisite for establishing transplanted OPCs in normal tissue. One can therefore predict that the extent and timing of OPC depletion and regeneration following X-irradiation will be crucial factors in determining the feasibility of this therapeutic approach. To address this issue, we have examined the time course of OPC depletion and regeneration following a range of X-irradiation doses (5 to 40 Gy), and its relationship to establishing transplanted OPCs in X-irradiated tissue. Doses above 10 Gy resulted in rapid death of OPCs. With doses up to 20 Gy, surviving X-irradiated OPCs were capable of robust regeneration, restoring normal densities within 6 weeks. Transplanted OPCs could only be established in tissue that had been exposed to > or =20 Gy. Since 20 Gy is close to the ED50 for radiation necrosis, our findings demonstrate the limitation of OPC replacement strategies.
Li, Zhou; Deng, Guanhua; Li, Zhe; Xin, Sherman Xuegang; Duan, Song; Lan, Maoying; Zhang, Sa; Gao, Yixin; He, Jun; Zhang, Songtao; Tang, Hongming; Wang, Weiwei; Han, Shuai; Yang, Qing X; Zhuang, Ling; Hu, Jiani; Liu, Feng
2016-11-01
Knowledge of dielectric properties of malignant human tissues is necessary for the recently developed magnetic resonance (MR) technique called MR electrical property tomography. This technique may be used in early tumor detection based on the obvious differentiation of the dielectric properties between normal and malignant tissues. However, the dielectric properties of malignant human tissues in the scale of the Larmor frequencies are not completely available in the literature. In this study, the authors focused only on the dielectric properties of colorectal tumor tissue. The dielectric properties of 504 colorectal malignant samples excised from 85 patients in the scale of the Larmor frequencies were measured using the precision open-ended coaxial probe method. The obtained complex-permittivity data were fitted to the single-pole Cole-Cole model. The median permittivity and conductivity for the malignant tissue sample were 79.3 and 0.881 S/m at 128 MHz, which were 14.6% and 17.0% higher, respectively, than those of normal tissue samples. Significant differences between normal and malignant tissues were found for the dielectric properties (p < 0.05). Experimental results indicated that the dielectric properties were significantly different between normal and malignant tissues for colorectal tissue. This large-scale clinical measurement provides more subtle base data to validate the technique of MR electrical property tomography.
Yfanti, Christina; Mengele, Karin; Gkazepis, Apostolos; Weirich, Gregor; Giersig, Cecylia; Kuo, Wen-Liang; Tang, Wei-Jen; Rosner, Marsha; Schmitt, Manfred
2008-10-01
Insulin-degrading enzyme (IDE, insulysin, insulinase; EC 3.4.22.11), a thiol metalloendopeptidase, is involved in intracellular degradation of insulin, thereby inhibiting its translocation and accumulation to the nucleus. Recently, protein expression of IDE has been demonstrated in the epithelial ducts of normal breast and breast cancer tissue. Utilizing four different antibodies generated against different epitopes of the IDE molecule, we performed Western blot analysis and immunohistochemical staining on several normal human tissues, on a plethora of tumor cell lines of different tissue origin, and on malignant breast and ovarian tissue. Applying the four IDE-directed antibodies, we demonstrated IDE expression at the protein level, by means of immunoblotting and immunocytochemistry, in each of the tumor cell lines analyzed. Insulin-degrading enzyme protein expression was found in normal tissues of the kidney, liver, lung, brain, breast and skeletal muscle, as well as in breast and ovarian cancer tissues. Immunohistochemical visualization of IDE indicated cytoplasmic localization of IDE in each of the cell lines and tissues assessed. In conclusion, we performed for the first time a wide-ranging survey on IDE protein expression in normal and malignant tissues and cells thus extending our knowledge on the cellular and tissue distribution of IDE, an enzyme which to date has mainly been studied in connection with Alzheimer's disease and diabetes but not in cancer.
Quantitative Ultrasound Backscatter for Pulsed Cavitational Ultrasound Therapy—Histotripsy
Wang, Tzu-Yin; Xu, Zhen; Winterroth, Frank; Hall, Timothy L.; Fowlkes, J. Brian; Rothman, Edward D.; Roberts, William W.; Cain, Charles A.
2011-01-01
Histotripsy is a well-controlled ultrasonic tissue ablation technology that mechanically and progressively fractionates tissue structures using cavitation. The fractionated tissue volume can be monitored with ultrasound imaging because a significant ultrasound backscatter reduction occurs. This paper correlates the ultrasound backscatter reduction with the degree of tissue fractionation characterized by the percentage of remaining normal-appearing cell nuclei on histology. Different degrees of tissue fractionation were generated in vitro in freshly excised porcine kidneys by varying the number of therapeutic ultrasound pulses from 100 to 2000 pulses per treatment location. All ultrasound pulses were 15 cycles at 1 MHz delivered at 100 Hz pulse repetition frequency and 19 MPa peak negative pressure. The results showed that the normalized backscatter intensity decreased exponentially with increasing number of pulses. Correspondingly, the percentage of normal appearing nuclei in the treated area decreased exponentially as well. A linear correlation existed between the normalized backscatter intensity and the percentage of normal appearing cell nuclei in the treated region. This suggests that the normalized backscatter intensity may be a potential quantitative real-time feedback parameter for histotripsy-induced tissue fractionation. This quantitative feedback may allow the prediction of local clinical outcomes, i.e., when a tissue volume has been sufficiently treated. PMID:19750596
Evaluation of immunoreactivity of normal tissues from dogs, using monoclonal antibody B72.3.
Clemo, F A; DeNicola, D B; Zimmermann, J L
1994-08-01
Monoclonal antibody (MAB) B72.3, which recognizes human tumor-associated glycoprotein-72, has immunoreactivity for malignant epithelial neoplasms in human beings and dogs. To further characterize the range of immunoreactivity of MAB B72.3 in canine tissues, MAB B72.3 and 2 other tumor-associated glycoprotein-72 antibodies (MAB CC49 and CC83) were tested against a wide spectrum of normal tissues from dogs. Immunoreactivity was detected, using an avidin-biotin-complex immunoperoxidase method. Monoclonal antibody B72.3 did not stain most types of normal canine tissues, but various types of epithelial cells within the gastrointestinal and respiratory tract mucosae, salivary gland, esophagus, epididymis, uterus, thymus, hair follicle, and apocrine glands of the anal sac had variable staining with MAB B72.3. A similar range of immunoreactivity in comparable types of normal tissues was seen for MAB CC49 and CC83; however, MAB CC49, but not MAB B72.3 and CC83, stained the endothelium of capillaries and small vessels in most normal tissues. Staining of frozen and paraffin-embedded tissues was similar. In conclusion, we found that MAB B72.3, CC49, and CC83 had selected immunoreactivity for specific types of normal canine epithelial cells, especially those involved with mucin production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao Qingliang; Guo Zhouyi; Wei Huajiang
2011-10-31
Depth-resolved monitoring with differentiation and quantification of glucose diffusion in healthy and abnormal esophagus tissues has been studied in vitro. Experiments have been performed using human normal esophagus and esophageal squamous cell carcinoma (ESCC) tissues by the optical coherence tomography (OCT). The images have been continuously acquired for 120 min in the experiments, and the depth-resolved and average permeability coefficients of the 40 % glucose solution have been calculated by the OCT amplitude (OCTA) method. We demonstrate the capability of the OCT technique for depth-resolved monitoring, differentiation, and quantifying of glucose diffusion in normal esophagus and ESCC tissues. It ismore » found that the permeability coefficients of the 40 % glucose solution are not uniform throughout the normal esophagus and ESCC tissues and increase from (3.30 {+-} 0.09) Multiplication-Sign 10{sup -6} and (1.57 {+-} 0.05) Multiplication-Sign 10{sup -5} cm s{sup -1} at the mucous membrane of normal esophagus and ESCC tissues to (1.82 {+-} 0.04) Multiplication-Sign 10{sup -5} and (3.53 {+-} 0.09) Multiplication-Sign 10{sup -5} cm s{sup -1} at the submucous layer approximately 742 {mu}m away from the epithelial surface of normal esophagus and ESCC tissues, respectively. (optical coherence tomography)« less
Expression and clinical significance of ATM and PUMA gene in patients with colorectal cancer.
Xiong, Hui; Zhang, Jiangnan
2017-12-01
The expression of ataxia-telangiectasia mutated (ATM) and p53 upregulated modulator of apoptosis (PUMA) genes in patients with colorectal cancer were investigated, to explore the correlation between the expression of ATM and PUMA and tumor development, to evaluate the clinical significance of ATM and PUMA in the treatment of colorectal cancer. Quantitative real-time PCR was used to detect the expression of ATM and PUMA in tumor tissue and adjacent healthy tissue of 67 patients with colorectal cancer and in normal colorectal tissue of 33 patients with colorectal polyps at mRNA level. The expression level of ATM mRNA in colorectal cancer tissues was significantly higher than that in normal mucosa tissues and adjacent non-cancerous tissue (P≤0.05), while no significant differences in expression level of ATM mRNA were found between normal mucosa tissues and adjacent noncancerous tissue (P=0.07). There was a negative correlation between the expression of ATM mRNA and the degree of differentiation of colorectal cancer (r= -0.312, P=0.013), while expression level of ATM mRNA was not significantly correlated with the age, sex, tumor invasion, lymph node metastasis or clinical stage (P>0.05). Expression levels of PUMA mRNA in colorectal cancer tissues, adjacent noncancerous tissue and normal tissues were 0.68±0.07, 0.88±0.04 and 1.76±0.06, respectively. Expression level of PUMA mRNA in colorectal cancer tissues and adjacent noncancerous tissue was significantly lower than that in normal colorectal tissues (P<0.05). The results showed that ATM mRNA is expressed abnormally in colorectal cancer tissues. Expression of PUMA gene in colorectal carcinoma is downregulated, and is negatively correlated with the occurrence of cancer.
Human brain cancer studied by resonance Raman spectroscopy
NASA Astrophysics Data System (ADS)
Zhou, Yan; Liu, Cheng-Hui; Sun, Yi; Pu, Yang; Boydston-White, Susie; Liu, Yulong; Alfano, Robert R.
2012-11-01
The resonance Raman (RR) spectra of six types of human brain tissues are examined using a confocal micro-Raman system with 532-nm excitation in vitro. Forty-three RR spectra from seven subjects are investigated. The spectral peaks from malignant meningioma, stage III (cancer), benign meningioma (benign), normal meningeal tissues (normal), glioblastoma multiforme grade IV (cancer), acoustic neuroma (benign), and pituitary adenoma (benign) are analyzed. Using a 532-nm excitation, the resonance-enhanced peak at 1548 cm-1 (amide II) is observed in all of the tissue specimens, but is not observed in the spectra collected using the nonresonance Raman system. An increase in the intensity ratio of 1587 to 1605 cm-1 is observed in the RR spectra collected from meningeal cancer tissue as compared with the spectra collected from the benign and normal meningeal tissue. The peak around 1732 cm-1 attributed to fatty acids (lipids) are diminished in the spectra collected from the meningeal cancer tumors as compared with the spectra from normal and benign tissues. The characteristic band of spectral peaks observed between 2800 and 3100 cm-1 are attributed to the vibrations of methyl (-CH3) and methylene (-CH2-) groups. The ratio of the intensities of the spectral peaks of 2935 to 2880 cm-1 from the meningeal cancer tissues is found to be lower in comparison with that of the spectral peaks from normal, and benign tissues, which may be used as a distinct marker for distinguishing cancerous tissues from normal meningeal tissues. The statistical methods of principal component analysis and the support vector machine are used to analyze the RR spectral data collected from meningeal tissues, yielding a diagnostic sensitivity of 90.9% and specificity of 100% when two principal components are used.
Accumulation of rare earth elements in human bone within the lifespan.
Zaichick, Sofia; Zaichick, Vladimir; Karandashev, Vasilii; Nosenko, Sergey
2011-02-01
For the first time, the contents of rare earth elements (REEs) in a rib bone of a healthy human were determined. The mean value of the contents of Ce, Dy, Er, Gd, La, Nd, Pr, Sm, Tb, and Yb (10 elements out of 17 total REEs), as well as the upper limit of means for Ho, Lu, Tm, and Y (4 elements) were measured in the rib bone tissue of 38 females and 42 males (15 to 55 years old) using inductively coupled plasma mass spectrometry (ICP-MS). We found age-related accumulation of REEs in the bone tissue of healthy individuals who lived in a non-industrial region. It was calculated that during a lifespan the content of REEs in a skeleton of non-industrial region residents may increase by one to two orders of magnitude. Using our results as indicative normal values and published data we estimated relative Gd accumulation in the bone tissue of patients according to magnetic resonance imaging with contrast agent and La accumulation in the bone tissue of patients receiving hemodialysis after treatment with lanthanum carbonate as a phosphate binder. It was shown that after such procedures contents of Gd and La in the bone tissue of patients are two to three orders of magnitude higher than normal levels. In our opinion, REEs incorporation may affect bone quality and health similar to other potentially toxic trace metals. The impact of elevated REEs content on bone physiology, biochemistry and morphology requires further investigation.
NASA Astrophysics Data System (ADS)
Kassinopoulos, Michalis; Dong, Jing; Tearney, Guillermo J.; Pitris, Costas
2018-02-01
Catheter-based Optical Coherence Tomography (OCT) devices allow real-time and comprehensive imaging of the human esophagus. Hence, they provide the potential to overcome some of the limitations of endoscopy and biopsy, allowing earlier diagnosis and better prognosis for esophageal adenocarcinoma patients. However, the large number of images produced during every scan makes manual evaluation of the data exceedingly difficult. In this study, we propose a fully automated tissue characterization algorithm, capable of discriminating normal tissue from Barrett's Esophagus (BE) and dysplasia through entire three-dimensional (3D) data sets, acquired in vivo. The method is based on both the estimation of the scatterer size of the esophageal epithelial cells, using the bandwidth of the correlation of the derivative (COD) method, as well as intensity-based characteristics. The COD method can effectively estimate the scatterer size of the esophageal epithelium cells in good agreement with the literature. As expected, both the mean scatterer size and its standard deviation increase with increasing severity of disease (i.e. from normal to BE to dysplasia). The differences in the distribution of scatterer size for each tissue type are statistically significant, with a p value of < 0.0001. However, the scatterer size by itself cannot be used to accurately classify the various tissues. With the addition of intensity-based statistics the correct classification rates for all three tissue types range from 83 to 100% depending on the lesion size.
Neurocognitive sparing of desktop microbeam irradiation.
Bazyar, Soha; Inscoe, Christina R; Benefield, Thad; Zhang, Lei; Lu, Jianping; Zhou, Otto; Lee, Yueh Z
2017-08-11
Normal tissue toxicity is the dose-limiting side effect of radiotherapy. Spatial fractionation irradiation techniques, like microbeam radiotherapy (MRT), have shown promising results in sparing the normal brain tissue. Most MRT studies have been conducted at synchrotron facilities. With the aim to make this promising treatment more available, we have built the first desktop image-guided MRT device based on carbon nanotube x-ray technology. In the current study, our purpose was to evaluate the effects of MRT on the rodent normal brain tissue using our device and compare it with the effect of the integrated equivalent homogenous dose. Twenty-four, 8-week-old male C57BL/6 J mice were randomly assigned to three groups: MRT, broad-beam (BB) and sham. The hippocampal region was irradiated with two parallel microbeams in the MRT group (beam width = 300 μm, center-to-center = 900 μm, 160 kVp). The BB group received the equivalent integral dose in the same area of their brain. Rotarod, marble burying and open-field activity tests were done pre- and every month post-irradiation up until 8 months to evaluate the cognitive changes and potential irradiation side effects on normal brain tissue. The open-field activity test was substituted by Barnes maze test at 8th month. A multilevel model, random coefficients approach was used to evaluate the longitudinal and temporal differences among treatment groups. We found significant differences between BB group as compared to the microbeam-treated and sham mice in the number of buried marble and duration of the locomotion around the open-field arena than shams. Barnes maze revealed that BB mice had a lower capacity for spatial learning than MRT and shams. Mice in the BB group tend to gain weight at the slower pace than shams. No meaningful differences were found between MRT and sham up until 8-month follow-up using our measurements. Applying MRT with our newly developed prototype compact CNT-based image-guided MRT system utilizing the current irradiation protocol can better preserve the integrity of normal brain tissue. Consequently, it enables applying higher irradiation dose that promises better tumor control. Further studies are required to evaluate the full extent effects of this novel modality.
Iima, Mami; Kataoka, Masako; Kanao, Shotaro; Kawai, Makiko; Onishi, Natsuko; Koyasu, Sho; Murata, Katsutoshi; Ohashi, Akane; Sakaguchi, Rena; Togashi, Kaori
2018-01-01
We prospectively examined the variability of non-Gaussian diffusion magnetic resonance imaging (MRI) and intravoxel incoherent motion (IVIM) measurements with different numbers of b-values and excitations in normal breast tissue and breast lesions. Thirteen volunteers and fourteen patients with breast lesions (seven malignant, eight benign; one patient had bilateral lesions) were recruited in this prospective study (approved by the Internal Review Board). Diffusion-weighted MRI was performed with 16 b-values (0-2500 s/mm2 with one number of excitations [NEX]) and five b-values (0-2500 s/mm2, 3 NEX), using a 3T breast MRI. Intravoxel incoherent motion (flowing blood volume fraction [fIVIM] and pseudodiffusion coefficient [D*]) and non-Gaussian diffusion (theoretical apparent diffusion coefficient [ADC] at b value of 0 sec/mm2 [ADC0] and kurtosis [K]) parameters were estimated from IVIM and Kurtosis models using 16 b-values, and synthetic apparent diffusion coefficient (sADC) values were obtained from two key b-values. The variabilities between and within subjects and between different diffusion acquisition methods were estimated. There were no statistical differences in ADC0, K, or sADC values between the different b-values or NEX. A good agreement of diffusion parameters was observed between 16 b-values (one NEX), five b-values (one NEX), and five b-values (three NEX) in normal breast tissue or breast lesions. Insufficient agreement was observed for IVIM parameters. There were no statistical differences in the non-Gaussian diffusion MRI estimated values obtained from a different number of b-values or excitations in normal breast tissue or breast lesions. These data suggest that a limited MRI protocol using a few b-values might be relevant in a clinical setting for the estimation of non-Gaussian diffusion MRI parameters in normal breast tissue and breast lesions.
Kataoka, Masako; Kanao, Shotaro; Kawai, Makiko; Onishi, Natsuko; Koyasu, Sho; Murata, Katsutoshi; Ohashi, Akane; Sakaguchi, Rena; Togashi, Kaori
2018-01-01
We prospectively examined the variability of non-Gaussian diffusion magnetic resonance imaging (MRI) and intravoxel incoherent motion (IVIM) measurements with different numbers of b-values and excitations in normal breast tissue and breast lesions. Thirteen volunteers and fourteen patients with breast lesions (seven malignant, eight benign; one patient had bilateral lesions) were recruited in this prospective study (approved by the Internal Review Board). Diffusion-weighted MRI was performed with 16 b-values (0–2500 s/mm2 with one number of excitations [NEX]) and five b-values (0–2500 s/mm2, 3 NEX), using a 3T breast MRI. Intravoxel incoherent motion (flowing blood volume fraction [fIVIM] and pseudodiffusion coefficient [D*]) and non-Gaussian diffusion (theoretical apparent diffusion coefficient [ADC] at b value of 0 sec/mm2 [ADC0] and kurtosis [K]) parameters were estimated from IVIM and Kurtosis models using 16 b-values, and synthetic apparent diffusion coefficient (sADC) values were obtained from two key b-values. The variabilities between and within subjects and between different diffusion acquisition methods were estimated. There were no statistical differences in ADC0, K, or sADC values between the different b-values or NEX. A good agreement of diffusion parameters was observed between 16 b-values (one NEX), five b-values (one NEX), and five b-values (three NEX) in normal breast tissue or breast lesions. Insufficient agreement was observed for IVIM parameters. There were no statistical differences in the non-Gaussian diffusion MRI estimated values obtained from a different number of b-values or excitations in normal breast tissue or breast lesions. These data suggest that a limited MRI protocol using a few b-values might be relevant in a clinical setting for the estimation of non-Gaussian diffusion MRI parameters in normal breast tissue and breast lesions. PMID:29494639
Monti Hughes, Andrea; Pozzi, Emiliano C C; Heber, Elisa M; Thorp, Silvia; Miller, Marcelo; Itoiz, Maria E; Aromando, Romina F; Molinari, Ana J; Garabalino, Marcela A; Nigg, David W; Trivillin, Verónica A; Schwint, Amanda E
2011-11-01
Given the clinical relevance of locoregional recurrences in head and neck cancer, we developed a novel experimental model of premalignant tissue in the hamster cheek pouch for long-term studies and demonstrated the partial inhibitory effect of a single application of Boron Neutron Capture Therapy (BNCT) on tumor development from premalignant tissue. The aim of the present study was to evaluate the effect of a double application of BNCT with a 6 week interval in terms of inhibitory effect on tumor development, toxicity and DNA synthesis. We performed a double application, 6 weeks apart, of (1) BNCT mediated by boronophenylalanine (BPA-BNCT); (2) BNCT mediated by the combined application of decahydrodecaborate (GB-10) and BPA [(GB-10+BPA)-BNCT] or (3) beam-only, at RA-3 nuclear reactor and followed the animals for 8 months. The control group was cancerized and sham-irradiated. BPA-BNCT, (GB-10+BPA)-BNCT and beam-only induced a reduction in tumor development from premalignant tissue that persisted until 8, 3, and 2 months respectively. An early maximum inhibition of 100% was observed for all 3 protocols. No normal tissue radiotoxicity was detected. Reversible mucositis was observed in premalignant tissue, peaking at 1 week and resolving by the third week after each irradiation. Mucositis after the second application was not exacerbated by the first application. DNA synthesis was significantly reduced in premalignant tissue 8 months post-BNCT. A double application of BPA-BNCT and (GB-10+BPA)-BNCT, 6 weeks apart, could be used therapeutically at no additional cost in terms of radiotoxicity in normal and dose-limiting tissues. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrea Monti Hughes; Emiliano C.C. Pozzi; Elisa M. Heber
Given the clinical relevance of locoregional recurrences in head and neck cancer, we developed a novel experimental model of premalignant tissue in the hamster cheek pouch for long-term studies and demonstrated the partial inhibitory effect of a single application of Boron Neutron Capture Therapy (BNCT) on tumor development from premalignant tissue. The aim of the present study was to evaluate the effect of a double application of BNCT with a 6 week interval in terms of inhibitory effect on tumor development, toxicity and DNA synthesis. We performed a double application, 6 weeks apart, of (1) BNCT mediated by boronophenylalanine (BPA-BNCT);more » (2) BNCT mediated by the combined application of decahydrodecaborate (GB-10) and BPA [(GB-10 + BPA)-BNCT] or (3) beam-only, at RA-3 nuclear reactor and followed the animals for 8 months. The control group was cancerized and sham-irradiated. BPA-BNCT, (GB- 10 + BPA)-BNCT and beam-only induced a reduction in tumor development from premalignant tissue that persisted until 8, 3, and 2 months respectively. An early maximum inhibition of 100% was observed for all 3 protocols. No normal tissue radiotoxicity was detected. Reversible mucositis was observed in premalignant tissue, peaking at 1 week and resolving by the third week after each irradiation. Mucositis after the second application was not exacerbated by the first application. DNA synthesis was significantly reduced in premalignant tissue 8 months post-BNCT. A double application of BPA-BNCT and (GB-10 + BPA)-BNCT, 6 weeks apart, could be used therapeutically at no additional cost in terms of radiotoxicity in normal and dose-limiting tissues.« less
Quasi-resonance enhancement of laser-induced-fluorescence diagnosis of endometriosis
NASA Astrophysics Data System (ADS)
Hill, Ralph H., Jr.; Vancaillie, Thierry G.
1990-05-01
Endometriosis, a common disease in women in the reproductive age group, is defined pathologically by the presence of endometrial tissue (inner lining of the uterus) outside the uterus. The displaced tissue is histologically identical to endometrium. In addition to being a highly prevalent disease, this disease is associated with many distressing and debilitating symptoms. Motivated by the need to improve diagnosis by endoscopic imaging instrumentation, we have previously used several drugs to cause selective laser-induced fluorescence of active surgically induced endometriosis in the rabbit model in vivo using ultraviolet-wavelength (351.1 and 363.8 nm) excitation from an argon-ion laser. In the present study we have investigated methods of enhancing differentiation between normal and abnormal tissue by using other excitation wavelengths. In addition to an enhanced capability for detecting abnormal tissue, there are several other advantages associated with using visible-wavelength excitation, such as deeper penetration into the tissue, as well as increased equipment performance, reliability, versatility, and availability. The disadvantage is that because only wavelengths longer than the excitation wavelength can be used for detection, some of the spectral information is lost. Because human endomeiriosis samples were somewhat limited in quantity, as well as specimen size, we used normal ovarian tissue for the laser-induced-fluorescence differentiation-enhancement studies. Positive enhancement of the laser-induced- fluorescence differentiation was found in human ovarian tissue in vitro utilizing 514.5-nm excitation from an argonion laser. Additionally, preliminary verification of this concept was accomplished in active surgically induced endometriosis in the rabbit model in vivo with visible argon-ion laser excitation of two tetracycline-based drugs. Future experiments with other drug treatments and excitation/detection parameters are planned.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinkham, D.W.; Shultz, D.; Loo, B.W.
Purpose: The advent of electromagnetic navigation bronchoscopy has enabled minimally invasive access to peripheral lung tumors previously inaccessible by optical bronchoscopes. As an adjunct to Stereotactic Ablative Radiosurgery (SABR), implantation of HDR catheters can provide focal treatments for multiple metastases and sites of retreatments. The authors evaluate a procedure to deliver ablative doses via Electromagnetically-Guided HDR (EMG-HDR) to lung metastases, quantify the resulting dosimetry, and assess its role in the comprehensive treatment of lung cancer. Methods: A retrospective study was conducted on ten patients, who, from 2009 to 2011, received a hypo-fractionated SABR regimen with 6MV VMAT to lesions inmore » various lobes ranging from 1.5 to 20 cc in volume. A CT visible pathway was delineated for EM guided placement of an HDR applicator (catheter) and dwell times were optimized to ensure at least 98% prescription dose coverage of the GTV. Normal tissue doses were calculated using inhomogeneity corrections via a grid-based Boltzmann solver (Acuros-BV-1.5.0). Results: With EMG-HDR, an average of 83% (+/−9% standard deviation) of each patient’s GTV received over 200% of the prescription dose, as compared to SABR where the patients received an average maximum dose of 125% (+/−5%). EMG-HDR enabled a 59% (+/−12%) decrease in the aorta maximum dose, a 63% (+/−26%) decrease in the spinal cord max dose, and 57% (+/−23%) and 70% (+/−17%) decreases in the volume of the body receiving over 50% and 25% of the prescription dose, respectively. Conclusion: EMG-HDR enables delivery of higher ablative doses to the GTV, while concurrently reducing surrounding normal tissue doses. The single catheter approach shown here is limited to targets smaller than 20 cc. As such, the technique enables ablation of small lesions and a potentially safe and effective retreatment option in situations where external beam utility is limited by normal tissue constraints.« less
Engineering stromal-epithelial interactions in vitro for ...
Background: Crosstalk between epithelial and stromal cells drives the morphogenesis of ectodermal organs during development and promotes normal mature adult epithelial tissue function. Epithelial-mesenchymal interactions (EMIs) have been examined using mammalian models, ex vivo tissue recombination, and in vitro co-cultures. Although these approaches have elucidated signaling mechanisms underlying morphogenetic processes and adult mammalian epithelial tissue function, they are limited by the availability of human tissue, low throughput, and human developmental or physiological relevance. Objectives: Bioengineering strategies to promote EMIs using human epithelial and mesenchymal cells have enabled the development of human in vitro models of adult epidermal and glandular tissues. In this review, we describe recent bioengineered models of human epithelial tissue and organs that can instruct the design of organotypic models of human developmental processes.Methods: We reviewed current bioengineering literature and here describe how bioengineered EMIs have enabled the development of human in vitro epithelial tissue models.Discussion: Engineered models to promote EMIs have recapitulated the architecture, phenotype, and function of adult human epithelial tissue, and similar engineering principles could be used to develop models of developmental morphogenesis. We describe how bioengineering strategies including bioprinting and spheroid culture could be implemented to
Khosrawipour, Veria; Bellendorf, Alexander; Khosrawipour, Carolina; Hedayat-Pour, Yousef; Diaz-Carballo, David; Förster, Eckart; Mücke, Ralph; Kabakci, Burak; Adamietz, Irenäus Anton; Fakhrian, Khashayar
To compare the impact of single fractional with bi-fractional irradiation on the depth of doxorubicin penetration into the normal tissue after pressurized intra-peritoneal aerosol chemotherapy (PIPAC) in our ex vivo model. Fresh post mortem swine peritoneum was cut into 12 proportional sections. Two control samples were treated with PIPAC only (no irradiation), one sample on day 1, the other on day 2. Five samples were irradiated with 1, 2, 4, 7 or 14 Gy followed by PIPAC. Four samples were treated on day one with 0.5, 1, 2, 3.5 or 7 Gy and with the same radiation dose 24 h later followed by PIPAC. Doxorubicin was aerosolized in an ex vivo PIPAC model at 12 mmHg/36°C. In-tissue doxorubicin penetration was measured using fluorescence microscopy on frozen thin sections. Doxorubicin penetration (DP) after PIPAC for the control samples was 407 μm and 373 μm, respectively. DP for samples with single fraction irradiation was 396 μm after 1 Gy, 384 μm after 2 Gy, 327 μm after 4 Gy, 280 μm after 7 Gy and 243 μm after 14 Gy. DP for samples with 2 fractions of irradiation was 376 μm after 0.5+0.5 Gy, 363 μm after 1+1 Gy, 372 μm after 2+2 Gy, 341 μm after 3.5+3.5 and 301 μm after 7+7 Gy irradiation. Fractionating of the irradiation did not significantly change DP into normal tissue. Irradiation does not increase the penetration depth of doxorubicin into the normal tissue but might have a limiting impact on penetration and distribution of doxorubicin. Further studies are warranted to investigate the impact of addition of irradiation to PIPAC of tumor cells and to find out if irradiation can be used safely as chemopotenting agent for patients with peritoneal metastases treated with PIPAC. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
On the possibility of spectroscopic cancer diagnostics
NASA Astrophysics Data System (ADS)
Khairullina, Alphiya Y.; Oleinik, Tatiana V.; Korolevich, Alexander N.; Sevkovsky, Yacob I.
1993-07-01
The diffuse reflection and transmission coefficients, other optical parameters of normal and cancer tissues have been investigated in visible and infrared spectra. The optimal spectral range for distinguishing the cancer is found. The spectral absorption coefficients and size of cells parameter determined using our approach are analyzed to be different for normal and pathological tissues. The method is proposed for calculating the diffuse reflectance and transmittance of multiple tissue layers. The investigations have shown that cancer may be distinguished under the layers of skin and normal tissue.
NASA Astrophysics Data System (ADS)
Yazdani, Mohammad Reza; Setayeshi, Saeed; Arabalibeik, Hossein; Akbari, Mohammad Esmaeil
2017-05-01
Intraoperative electron radiation therapy (IOERT), which uses electron beams for irradiating the target directly during the surgery, has the advantage of delivering a homogeneous dose to a controlled layer of tissue. Since the dose falls off quickly below the target thickness, the underlying normal tissues are spared. In selecting the appropriate electron energy, the accuracy of the target tissue thickness measurement is critical. In contrast to other procedures applied in IOERT, the routine measurement method is considered to be completely traditional and approximate. In this work, a novel mechanism is proposed for measuring the target tissue thickness with an acceptable level of accuracy. An electronic system has been designed and manufactured with the capability of measuring the tissue thickness based on the recorded electron density under the target. The results indicated the possibility of thickness measurement with a maximum error of 2 mm for 91.35% of data. Aside from system limitation in estimating the thickness of 5 mm phantom, for 88.94% of data, maximum error is 1 mm.
Wang, Hwai-Shi; Kuo, Pei-Yin; Yang, Chih-Chang; Lyu, Shaw-Ruey
2011-03-01
The severity of cartilage degeneration is positively correlated with the severity of the pathologic change of medial plica. However, knowledge of the pathogenic mechanisms and the impact of plica on cartilage destruction is limited. The aim of the present study was therefore to investigate matrix metalloprotease-3 (MMP-3) expression in the plica isolated from patients with medial compartment osteoarthritis of the knee. Immunohistochemistry showed that MMP-3 was highly expressed in pannus-like tissue and the plica. Western blotting of culture supernatants showed that interleukin-1β (IL-1β) treatment induced MMP-3 release by cells isolated from pannus tissue or the plica. Furthermore, reverse transcriptase polymerase chain reaction and real-time polymerase chain reaction analysis showed that MMP-3 mRNA levels were increased after IL-1β treatment of the cultured cells. MMP-3 and IL-1β mRNAs were expressed in the plica and pannus-like tissue, with MMP-3 mRNA being expressed at significantly higher levels in the plica than in normal synovial membrane and highly expressed in the plica at different stages in osteoarthritis (OA) patients. Pannus-like tissue and the plica express IL-1β and MMP-3. Moreover, MMP-3 mRNA and protein expression in the plica may contribute to the pathogenesis of OA. © 2011 Blackwell Publishing Limited.
Hariri, Lida P.; Applegate, Matthew B.; Mino-Kenudson, Mari; Mark, Eugene J.; Medoff, Benjamin D.; Luster, Andrew D.; Bouma, Brett E.; Tearney, Guillermo J.
2013-01-01
Background: Lung cancer is the leading cause of cancer-related mortality. Radiology and bronchoscopy techniques do not have the necessary resolution to evaluate lung lesions on the microscopic scale, which is critical for diagnosis. Bronchial biopsy specimens can be limited by sampling error and small size. Optical frequency domain imaging (OFDI) provides volumetric views of tissue microstructure at near-histologic resolution and may be useful for evaluating pulmonary lesions to increase diagnostic accuracy. Bronchoscopic OFDI has been evaluated in vivo, but a lack of correlated histopathology has limited the ability to develop accurate image interpretation criteria. Methods: We performed OFDI through two approaches (airway-centered and parenchymal imaging) in 22 ex vivo lung specimens, using tissue dye to precisely correlate imaging and histology. Results: OFDI of normal airway allowed visualization of epithelium, lamina propria, cartilage, and alveolar attachments. Carcinomas exhibited architectural disarray, loss of normal airway and alveolar structure, and rapid light attenuation. Squamous cell carcinomas showed nested architecture. Atypical glandular formation was appreciated in adenocarcinomas, and uniform trabecular gland formation was seen in salivary gland carcinomas. Mucinous adenocarcinomas showed alveolar wall thickening with intraalveolar mucin. Interstitial fibrosis was visualized as signal-dense tissue, with an interstitial distribution in mild interstitial fibrotic disease and a diffuse subpleural pattern with cystic space formation in usual interstitial pneumonitis. Conclusions: To our knowledge, this study is the first demonstration of volumetric OFDI with precise correlation to histopathology in lung pathology. We anticipate that OFDI may play a role in assessing airway and parenchymal pathology, providing fresh insights into the volumetric features of pulmonary disease. PMID:22459781
Werneck de Castro, Joao Pedro; Fonseca, Tatiana L.; Ueta, Cintia B.; McAninch, Elizabeth A.; Abdalla, Sherine; Wittmann, Gabor; Lechan, Ronald M.; Gereben, Balazs; Bianco, Antonio C.
2015-01-01
The current treatment for patients with hypothyroidism is levothyroxine (L-T4) along with normalization of serum thyroid-stimulating hormone (TSH). However, normalization of serum TSH with L-T4 monotherapy results in relatively low serum 3,5,3′-triiodothyronine (T3) and high serum thyroxine/T3 (T4/T3) ratio. In the hypothalamus-pituitary dyad as well as the rest of the brain, the majority of T3 present is generated locally by T4 deiodination via the type 2 deiodinase (D2); this pathway is self-limited by ubiquitination of D2 by the ubiquitin ligase WSB-1. Here, we determined that tissue-specific differences in D2 ubiquitination account for the high T4/T3 serum ratio in adult thyroidectomized (Tx) rats chronically implanted with subcutaneous L-T4 pellets. While L-T4 administration decreased whole-body D2-dependent T4 conversion to T3, D2 activity in the hypothalamus was only minimally affected by L-T4. In vivo studies in mice harboring an astrocyte-specific Wsb1 deletion as well as in vitro analysis of D2 ubiquitination driven by different tissue extracts indicated that D2 ubiquitination in the hypothalamus is relatively less. As a result, in contrast to other D2-expressing tissues, the hypothalamus is wired to have increased sensitivity to T4. These studies reveal that tissue-specific differences in D2 ubiquitination are an inherent property of the TRH/TSH feedback mechanism and indicate that only constant delivery of L-T4 and L-T3 fully normalizes T3-dependent metabolic markers and gene expression profiles in Tx rats. PMID:25555216
Tumor vessel normalization after aerobic exercise enhances chemotherapeutic efficacy.
Schadler, Keri L; Thomas, Nicholas J; Galie, Peter A; Bhang, Dong Ha; Roby, Kerry C; Addai, Prince; Till, Jacob E; Sturgeon, Kathleen; Zaslavsky, Alexander; Chen, Christopher S; Ryeom, Sandra
2016-10-04
Targeted therapies aimed at tumor vasculature are utilized in combination with chemotherapy to improve drug delivery and efficacy after tumor vascular normalization. Tumor vessels are highly disorganized with disrupted blood flow impeding drug delivery to cancer cells. Although pharmacologic anti-angiogenic therapy can remodel and normalize tumor vessels, there is a limited window of efficacy and these drugs are associated with severe side effects necessitating alternatives for vascular normalization. Recently, moderate aerobic exercise has been shown to induce vascular normalization in mouse models. Here, we provide a mechanistic explanation for the tumor vascular normalization induced by exercise. Shear stress, the mechanical stimuli exerted on endothelial cells by blood flow, modulates vascular integrity. Increasing vascular shear stress through aerobic exercise can alter and remodel blood vessels in normal tissues. Our data in mouse models indicate that activation of calcineurin-NFAT-TSP1 signaling in endothelial cells plays a critical role in exercise-induced shear stress mediated tumor vessel remodeling. We show that moderate aerobic exercise with chemotherapy caused a significantly greater decrease in tumor growth than chemotherapy alone through improved chemotherapy delivery after tumor vascular normalization. Our work suggests that the vascular normalizing effects of aerobic exercise can be an effective chemotherapy adjuvant.
Kondo, H; Rabin, B S; Rodnan, G P
1976-01-01
Cell-mediated immunity to skin extracts was studied by the macrophage migration inhibition test, lymphocyte transformation, and direct cytotoxicity to skin fibroblasts, in normal individuals and patients with progressive systemic sclerosis. The latter included 18 individuals with diffuse scleroderma and 12 with the CREST syndrome, a variant form of systemic sclerosis in which there is more limited involvement of the skin. Controls consisted of 13 patients with other connective tissue diseases and 16 normal individuals. Phosphate-buffered saline and 3 M KCl extracts of both normal and sclerodermatous skin were used as antigens. No evidence of lymphocyte reactivity was found by the lymphocyte transformation and direct cytotoxicity test procedures. However, the lymphocytes of patients with diffuse scleroderma did respond to extracts of both normal and sclerodermatous skin in the migration inhibition assay. 10 of 16 patients (62.5%) had migration indices below 2 SD of the normal range, 1 of 10 CREST patients and 1 of 13 patients with other connective tissue diseases showed similar reactivity. Antisera specific for immunoglobulin-bearing lymphocytes (B lymphocytes) and T lymphocytes were used to characterize the lymphocytes found in skin biopsies of patients with diffuse scleroderma. T lymphocytes made up the majority of lymphocytes in the skin infiltrates. These findings suggest that lymphocytes sensitized to skin extracts are present in patients with diffuse scleroderma. The cell-mediated immune reaction to skin antigens may be a factor in the pathogenesis of diffuse scleroderma. Images PMID:791970
A Compendium of Canine Normal Tissue Gene Expression
Chen, Qing-Rong; Wen, Xinyu; Khan, Javed; Khanna, Chand
2011-01-01
Background Our understanding of disease is increasingly informed by changes in gene expression between normal and abnormal tissues. The release of the canine genome sequence in 2005 provided an opportunity to better understand human health and disease using the dog as clinically relevant model. Accordingly, we now present the first genome-wide, canine normal tissue gene expression compendium with corresponding human cross-species analysis. Methodology/Principal Findings The Affymetrix platform was utilized to catalogue gene expression signatures of 10 normal canine tissues including: liver, kidney, heart, lung, cerebrum, lymph node, spleen, jejunum, pancreas and skeletal muscle. The quality of the database was assessed in several ways. Organ defining gene sets were identified for each tissue and functional enrichment analysis revealed themes consistent with known physio-anatomic functions for each organ. In addition, a comparison of orthologous gene expression between matched canine and human normal tissues uncovered remarkable similarity. To demonstrate the utility of this dataset, novel canine gene annotations were established based on comparative analysis of dog and human tissue selective gene expression and manual curation of canine probeset mapping. Public access, using infrastructure identical to that currently in use for human normal tissues, has been established and allows for additional comparisons across species. Conclusions/Significance These data advance our understanding of the canine genome through a comprehensive analysis of gene expression in a diverse set of tissues, contributing to improved functional annotation that has been lacking. Importantly, it will be used to inform future studies of disease in the dog as a model for human translational research and provides a novel resource to the community at large. PMID:21655323
Comparative study of Hsp27, GSK3β, Wnt1 and PRDX3 in Hirschsprung's disease.
Gao, Hong; Liu, Xiaomei; Chen, Dong; Lv, Liangying; Wu, Mei; Mi, Jie; Wang, Weilin
2014-06-01
Hirschsprung's disease (HSCR) is a developmental disorder of the enteric nervous system characterized by aganglionosis in distal gut. In this study, we used two-dimensional gel electrophoresis (2-DE) technology coupled with matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis to identify differentially expressed proteins in the aganglionic (stenotic) and ganglionic (normal) colon segment tissues from patients with HSCR. We identified 15 proteins with different expression levels between the stenotic and the normal colon segment tissues from patients with HSCR. Nine proteins were upregulated and six proteins downregulated in the stenotic colon segment tissues compared to the normal colon segment tissues. Based on the biological functions, we selected the Hsp27 upregulated proteins and the PRDX3 downregulated proteins to confirm their expression in 20 patients. The protein and mRNA expressions of Hsp27 were statistically higher in the stenotic colon segment tissues than in the normal colon segment tissues, whereas the protein and mRNA expressions of PRDX3 were statistically lower in the stenotic colon segment tissues than in the normal colon segment tissues. These findings of changes in mRNA and protein in tissues from patients with HSCR provide information which may be helpful in understanding the pathomechanism that is implicated in the disease. © 2014 The Authors. International Journal of Experimental Pathology © 2014 International Journal of Experimental Pathology.
Detection and characterisation of multi-drug resistance protein 1 (MRP-1) in human mitochondria
Roundhill, E A; Burchill, S A
2012-01-01
Background: Overexpression of plasma membrane multi-drug resistance protein 1 (MRP-1) can lead to multidrug resistance. In this study, we describe for the first time the expression of mitochondrial MRP-1 in untreated human normal and cancer cells and tissues. Methods: MRP-1 expression and subcellular localisation in normal and cancer cells and tissues was examined by differential centrifugation and western blotting, and immunofluorescence microscopy. Viable mitochondria were isolated and MRP-1 efflux activity measured using the calcein-AM functional assay. MRP-1 expression was increased using retroviral infection and specific overexpression confirmed by RNA array. Cell viability was determined by trypan blue exclusion and annexin V-propidium iodide labelling of cells. Results: MRP-1 was detected in the mitochondria of cancer and normal cells and tissues. The efflux activity of mitochondrial MRP-1 was more efficient (55–64%) than that of plasma membrane MRP-1 (11–22% P<0.001). Induced MRP-1 expression resulted in a preferential increase in mitochondrial MRP-1, suggesting selective targeting to this organelle. Treatment with a non-lethal concentration of doxorubicin (0.85 n, 8 h) increased mitochondrial and plasma membrane MRP-1, increasing resistance to MRP-1 substrates. For the first time, we have identified MRP-1 with efflux activity in human mitochondria. Conclusion: Mitochondrial MRP-1 may be an exciting new therapeutic target where historically MRP-1 inhibitor strategies have limited clinical success. PMID:22353810
Venables, Julian P.; Brosseau, Jean-Philippe; Gadea, Gilles; Klinck, Roscoe; Prinos, Panagiotis; Beaulieu, Jean-François; Lapointe, Elvy; Durand, Mathieu; Thibault, Philippe; Tremblay, Karine; Rousset, François; Tazi, Jamal; Abou Elela, Sherif
2013-01-01
Alternative splicing provides a critical and flexible layer of regulation intervening in many biological processes to regulate the diversity of proteins and impact cell phenotype. To identify alternative splicing differences that distinguish epithelial from mesenchymal tissues, we have investigated hundreds of cassette exons using a high-throughput reverse transcription-PCR (RT-PCR) platform. Extensive changes in splicing were noted between epithelial and mesenchymal tissues in both human colon and ovarian tissues, with many changes from mostly one splice variant to predominantly the other. Remarkably, many of the splicing differences that distinguish normal mesenchymal from normal epithelial tissues matched those that differentiate normal ovarian tissues from ovarian cancer. Furthermore, because splicing profiling could classify cancer cell lines according to their epithelial/mesenchymal characteristics, we used these cancer cell lines to identify regulators for these specific splicing signatures. By knocking down 78 potential splicing factors in five cell lines, we provide an extensive view of the complex regulatory landscape associated with the epithelial and mesenchymal states, thus revealing that RBFOX2 is an important driver of mesenchymal tissue-specific splicing. PMID:23149937
NASA Astrophysics Data System (ADS)
Luo, Shuwen; Chen, Changshui; Mao, Hua; Jin, Shaoqin
2013-06-01
The feasibility of early detection of gastric cancer using near-infrared (NIR) Raman spectroscopy (RS) by distinguishing premalignant lesions (adenomatous polyp, n=27) and cancer tissues (adenocarcinoma, n=33) from normal gastric tissues (n=45) is evaluated. Significant differences in Raman spectra are observed among the normal, adenomatous polyp, and adenocarcinoma gastric tissues at 936, 1003, 1032, 1174, 1208, 1323, 1335, 1450, and 1655 cm-1. Diverse statistical methods are employed to develop effective diagnostic algorithms for classifying the Raman spectra of different types of ex vivo gastric tissues, including principal component analysis (PCA), linear discriminant analysis (LDA), and naive Bayesian classifier (NBC) techniques. Compared with PCA-LDA algorithms, PCA-NBC techniques together with leave-one-out, cross-validation method provide better discriminative results of normal, adenomatous polyp, and adenocarcinoma gastric tissues, resulting in superior sensitivities of 96.3%, 96.9%, and 96.9%, and specificities of 93%, 100%, and 95.2%, respectively. Therefore, NIR RS associated with multivariate statistical algorithms has the potential for early diagnosis of gastric premalignant lesions and cancer tissues in molecular level.
Oros Klein, Kathleen; Grinek, Stepan; Bernatsky, Sasha; Bouchard, Luigi; Ciampi, Antonio; Colmegna, Ines; Fortin, Jean-Philippe; Gao, Long; Hivert, Marie-France; Hudson, Marie; Kobor, Michael S; Labbe, Aurelie; MacIsaac, Julia L; Meaney, Michael J; Morin, Alexander M; O'Donnell, Kieran J; Pastinen, Tomi; Van Ijzendoorn, Marinus H; Voisin, Gregory; Greenwood, Celia M T
2016-02-15
DNA methylation patterns are well known to vary substantially across cell types or tissues. Hence, existing normalization methods may not be optimal if they do not take this into account. We therefore present a new R package for normalization of data from the Illumina Infinium Human Methylation450 BeadChip (Illumina 450 K) built on the concepts in the recently published funNorm method, and introducing cell-type or tissue-type flexibility. funtooNorm is relevant for data sets containing samples from two or more cell or tissue types. A visual display of cross-validated errors informs the choice of the optimal number of components in the normalization. Benefits of cell (tissue)-specific normalization are demonstrated in three data sets. Improvement can be substantial; it is strikingly better on chromosome X, where methylation patterns have unique inter-tissue variability. An R package is available at https://github.com/GreenwoodLab/funtooNorm, and has been submitted to Bioconductor at http://bioconductor.org. © The Author 2015. Published by Oxford University Press.
Optical diagnostic of breast cancer using Raman, polarimetric and fluorescence spectroscopy
NASA Astrophysics Data System (ADS)
Anwar, Shahzad; Firdous, Shamaraz; Rehman, Aziz-ul; Nawaz, Muhammed
2015-04-01
We presented the optical diagnostic of normal and cancerous human breast tissues using Raman, polarimetric and fluorescence spectroscopic techniques. Breast cancer is the second leading cause of cancer death among women worldwide. Optical diagnostics of cancer offered early intervention and the greatest chance of cure. Spectroscopic data were collected from freshly excised surgical specimens of normal tissues with Raman bands at 800, 1171 and 1530 cm-1 arising mainly by lipids, nucleic acids, proteins, carbohydrates and amino acids. For breast cancer, Raman bands are observed at 1070, 1211, 1495, 1583 and 1650 cm-1. Results demonstrate that the spectra of normal tissue are dominated by lipids and amino acids. Polarization decomposition of the Mueller matrix and confocal microscopic fluorescence provides detailed description of cancerous tissue and distinguishes between the normal and malignant one. Based on these findings, we successfully differentiate normal and malignant breast tissues at an early stage of disease. There is a need to develop a new tool for noninvasive, real-time diagnosis of tissue abnormalities and a test procedure for detecting breast cancer at an early stage.
Concentration of cadmium, nickel and aluminium in female breast cancer.
Romanowicz-Makowska, Hanna; Forma, Ewa; Bryś, Magdalena; Krajewska, Wanda M; Smolarz, Beata
2011-12-01
The aim of this study was to investigate the cadmium (Cd), nickel (Ni) and aluminium (Al) concentrations in female breast cancer and normal tissue. The concentration of metals in 16 non-cancerous breast tissues and 67 breast cancer samples was measured by flame atomic absorption spectrometry. In the case of normal breast tissue the concentrations were 0.61 ± 0.24 μg Cd/g dry tissue, 1.84 ± 0.67 μg Ni/g dry tissue, and 3.63 ± 1.00 μg Al/g dry tissue, whereas in breast cancer concentrations of metals were 0.76 ± 0.38 μg/g dry tissue, 2.26 ± 0.79 μg/g dry tissue, and 4.40 ± 1.82 μg/g dry tissue, respectively. The concentration of Cd and Al in normal breast tissue was significantly lower than in breast cancer. In the case of Ni concentration, we did not observe statistically significant differences between normal and cancerous tissue. There were no significant differences in concentration of studied metals, in breast cancer, in the context of age, menopausal status, and cancer histological grading. The data obtained show higher concentration of cadmium and aluminium and support a possible relationship between those metals and breast cancer.
NASA Astrophysics Data System (ADS)
Huang, H.; Shi, H.; Feng, S.; Lin, J.; Chen, W.; Huang, Z.; Li, Y.; Yu, Y.; Lin, D.; Xu, Q.; Chen, R.
2013-04-01
This paper presents the use of high spatial resolution silver nanoparticle based near-infrared surface enhanced Raman scattering (SERS) from rat pancreatic tissue to obtain biochrmical information about the tissue. A high quality SERS signal from a mixture of pancreatic tissues and silver nanoparticles can be obtained within 10 s using a Renishaw micro-Raman system. Prominent SERS bands of pancreatic tissue were assigned to known molecular vibrations, such as the vibrations of DNA bases, RNA bases, proteins and lipids. Different tissue structures of diabetic and normal rat pancreatic tissues have characteristic features in SERS spectra. This exploratory study demonstrated great potential for using SERS imaging to distinguish diabetic and normal pancreatic tissues on frozen sections without using dye labeling of functionalized binding sites.
NASA Astrophysics Data System (ADS)
Zhang, Hui; Li, Zhifang; Li, Hui
2012-12-01
In order to study scattering properties of normal and cancerous tissues from human stomach, we collect images for human gastric specimens by using phase-contrast microscope. The images were processed by the way of mathematics morphology. The equivalent particle size distribution of tissues can be obtained. Combining with Mie scattering theory, the scattering properties of tissues can be calculated. Assume scattering of light in biological tissue can be seen as separate scattering events by different particles, total scattering properties can be equivalent to as scattering sum of particles with different diameters. The results suggest that scattering coefficient of the cancerous tissue is significantly higher than that of normal tissue. The scattering phase function is different especially in the backscattering area. Those are significant clinical benefits to diagnosis cancerous tissue
Dickson, Mark A.; Hahn, William C.; Ino, Yasushi; Ronfard, Vincent; Wu, Jenny Y.; Weinberg, Robert A.; Louis, David N.; Li, Frederick P.; Rheinwald, James G.
2000-01-01
Normal human cells exhibit a limited replicative life span in culture, eventually arresting growth by a process termed senescence. Progressive telomere shortening appears to trigger senescence in normal human fibroblasts and retinal pigment epithelial cells, as ectopic expression of the telomerase catalytic subunit, hTERT, immortalizes these cell types directly. Telomerase expression alone is insufficient to enable certain other cell types to evade senescence, however. Such cells, including keratinocytes and mammary epithelial cells, appear to require loss of the pRB/p16INK4a cell cycle control mechanism in addition to hTERT expression to achieve immortality. To investigate the relationships among telomerase activity, cell cycle control, senescence, and differentiation, we expressed hTERT in two epithelial cell types, keratinocytes and mesothelial cells, and determined the effect on proliferation potential and on the function of cell-type-specific growth control and differentiation systems. Ectopic hTERT expression immortalized normal mesothelial cells and a premalignant, p16INK4a-negative keratinocyte line. In contrast, when four keratinocyte strains cultured from normal tissue were transduced to express hTERT, they were incompletely rescued from senescence. After reaching the population doubling limit of their parent cell strains, hTERT+ keratinocytes entered a slow growth phase of indefinite length, from which rare, rapidly dividing immortal cells emerged. These immortal cell lines frequently had sustained deletions of the CDK2NA/INK4A locus or otherwise were deficient in p16INK4a expression. They nevertheless typically retained other keratinocyte growth controls and differentiated normally in culture and in xenografts. Thus, keratinocyte replicative potential is limited by a p16INK4a-dependent mechanism, the activation of which can occur independent of telomere length. Abrogation of this mechanism together with telomerase expression immortalizes keratinocytes without affecting other major growth control or differentiation systems. PMID:10648628
Tissue Expanders and Proton Beam Radiotherapy: What You Need to Know
Howarth, Ashley L.; Niska, Joshua R.; Brooks, Kenneth; Anand, Aman; Bues, Martin; Vargas, Carlos E.
2017-01-01
Summary: Proton beam radiotherapy (PBR) has gained acceptance for the treatment of breast cancer because of unique beam characteristics that allow superior dose distributions with optimal dose to the target and limited collateral damage to adjacent normal tissue, especially to the heart and lungs. To determine the compatibility of breast tissue expanders (TEs) with PBR, we evaluated the structural and dosimetric properties of 2 ex vivo models: 1 model with internal struts and another model without an internal structure. Although the struts appeared to have minimal impact, we found that the metal TE port alters PBR dynamics, which may increase proton beam range uncertainty. Therefore, submuscular TE placement may be preferable to subcutaneous TE placement to reduce the interaction of the TE and proton beam. This will reduce range uncertainty and allow for more ideal radiation dose distribution. PMID:28740794
Yfanti, Christina; Mengele, Karin; Gkazepis, Apostolos; Weirich, Gregor; Giersig, Cecylia; Kuo, Wen-Liang; Tang, Wei-Jen; Rosner, Marsha; Schmitt, Manfred
2013-01-01
Background Insulin-degrading enzyme (IDE, insulysin, insulinase; EC 3.4.22.11), a thiol metalloendopeptidase, is involved in intracellular degradation of insulin, thereby inhibiting its translocation and accumulation to the nucleus. Recently, protein expression of IDE has been demonstrated in the epithelial ducts of normal breast and in breast cancer tissue (Radulescu et al., Int J Oncol 30:73; 2007). Materials and Methods Utilizing four different antibodies generated against different epitopes of the IDE molecule, we performed western blot analysis and immunohistochemical staining on several normal human tissues, on a plethora of tumor cell lines of different tissue origin, and on malignant breast and ovarian tissue. Results Applying the four IDE-directed antibodies, we demonstrate IDE expression at the protein level, both by means of immunoblotting and immunocytochemistry, in all of the tumor cell lines analyzed. Besides, IDE protein expression was found in normal tissues of the kidney, liver, lung, brain, breast and skeletal muscle, as well as in breast and ovarian cancer tissues. Immunohistochemical visualization of IDE indicated cytoplasmic localization of IDE in all of the cell lines and tissues assessed. Conclusions We performed for the first time a wide-ranging survey on IDE protein expression in normal and malignant tissues and cells and thus extend knowledge about cellular and tissue distribution of IDE, an enzyme which so far has mainly been studied in connection with Alzheimer’s disease and diabetes but not in cancer. PMID:18813847
How Can We Treat Cancer Disease Not Cancer Cells?
Kim, Kyu-Won; Lee, Su-Jae; Kim, Woo-Young; Seo, Ji Hae; Lee, Ho-Young
2017-01-01
Since molecular biology studies began, researches in biological science have centered on proteins and genes at molecular level of a single cell. Cancer research has also focused on various functions of proteins and genes that distinguish cancer cells from normal cells. Accordingly, most contemporary anticancer drugs have been developed to target abnormal characteristics of cancer cells. Despite the great advances in the development of anticancer drugs, vast majority of patients with advanced cancer have shown grim prognosis and high rate of relapse. To resolve this problem, we must reevaluate our focuses in current cancer research. Cancer should be considered as a systemic disease because cancer cells undergo a complex interaction with various surrounding cells in cancer tissue and spread to whole body through metastasis under the control of the systemic modulation. Human body relies on the cooperative interaction between various tissues and organs, and each organ performs its specialized function through tissue-specific cell networks. Therefore, investigation of the tumor-specific cell networks can provide novel strategy to overcome the limitation of current cancer research. This review presents the limitations of the current cancer research, emphasizing the necessity of studying tissue-specific cell network which could be a new perspective on treating cancer disease, not cancer cells.
Isidro, Raymond A; Cruz, Myrella L; Isidro, Angel A; Baez, Axel; Arroyo, Axel; González-Marqués, William A; González-Keelan, Carmen; Torres, Esther A; Appleyard, Caroline B
2015-01-01
AIM: To determine the expression of neurokinin-1 receptor (NK-1R), phosphorylated epidermal growth factor receptor (pEGFR), cyclooxygenase-2 (Cox-2), and vitamin D receptor (VDR) in normal, inflammatory bowel disease (IBD), and colorectal neoplasia tissues from Puerto Ricans. METHODS: Tissues from patients with IBD, colitis-associated colorectal cancer (CAC), sporadic dysplasia, and sporadic colorectal cancer (CRC), as well as normal controls, were identified at several centers in Puerto Rico. Archival formalin-fixed, paraffin-embedded tissues were de-identified and processed by immunohistochemistry for NK-1R, pEGFR, Cox-2, and VDR. Pictures of representative areas of each tissues diagnosis were taken and scored by three observers using a 4-point scale that assessed intensity of staining. Tissues with CAC were further analyzed by photographing representative areas of IBD and the different grades of dysplasia, in addition to the areas of cancer, within each tissue. Differences in the average age between the five patient groups were assessed with one-way analysis of variance and Tukey-Kramer multiple comparisons test. The mean scores for normal tissues and tissues with IBD, dysplasia, CRC, and CAC were calculated and statistically compared using one-way analysis of variance and Dunnett’s multiple comparisons test. Correlations between protein expression patterns were analyzed with the Pearson’s product-moment correlation coefficient. Data are presented as mean ± SE. RESULTS: On average, patients with IBD were younger (34.60 ± 5.81) than normal (63.20 ± 6.13, P < 0.01), sporadic dysplasia (68.80 ± 4.42, P < 0.01), sporadic cancer (74.80 ± 4.91, P < 0.001), and CAC (57.50 ± 5.11, P < 0.05) patients. NK-1R in cancer tissue (sporadic CRC, 1.73 ± 0.34; CAC, 1.57 ± 0.53) and sporadic dysplasia (2.00 ± 0.45) were higher than in normal tissues (0.73 ± 0.19). pEGFR was significantly increased in sporadic CRC (1.53 ± 0.43) and CAC (2.25 ± 0.47) when compared to normal tissue (0.07 ± 0.25, P < 0.05, P < 0.001, respectively). Cox-2 was significantly increased in sporadic colorectal cancer (2.20 ± 0.23 vs 0.80 ± 0.37 for normal tissues, P < 0.05). In comparison to normal (2.80 ± 0.13) and CAC (2.50 ± 0.33) tissues, VDR was significantly decreased in sporadic dysplasia (0.00 ± 0.00, P < 0.001 vs normal, P < 0.001 vs CAC) and sporadic CRC (0.47 ± 0.23, P < 0.001 vs normal, P < 0.001 vs CAC). VDR levels negatively correlated with NK-1R (r = -0.48) and pEGFR (r = -0.56) in normal, IBD, sporadic dysplasia and sporadic CRC tissue, but not in CAC. CONCLUSION: Immunohistochemical NK-1R and pEGFR positivity with VDR negativity can be used to identify areas of sporadic colorectal neoplasia. VDR immunoreactivity can distinguish CAC from sporadic cancer. PMID:25684939
NASA Astrophysics Data System (ADS)
Chen, Long; Wang, Yue; Liu, Nenrong; Lin, Duo; Weng, Cuncheng; Zhang, Jixue; Zhu, Lihuan; Chen, Weisheng; Chen, Rong; Feng, Shangyuan
2013-06-01
The diagnostic capability of using tissue intrinsic micro-Raman signals to obtain biochemical information from human esophageal tissue is presented in this paper. Near-infrared micro-Raman spectroscopy combined with multivariate analysis was applied for discrimination of esophageal cancer tissue from normal tissue samples. Micro-Raman spectroscopy measurements were performed on 54 esophageal cancer tissues and 55 normal tissues in the 400-1750 cm-1 range. The mean Raman spectra showed significant differences between the two groups. Tentative assignments of the Raman bands in the measured tissue spectra suggested some changes in protein structure, a decrease in the relative amount of lactose, and increases in the percentages of tryptophan, collagen and phenylalanine content in esophageal cancer tissue as compared to those of a normal subject. The diagnostic algorithms based on principal component analysis (PCA) and linear discriminate analysis (LDA) achieved a diagnostic sensitivity of 87.0% and specificity of 70.9% for separating cancer from normal esophageal tissue samples. The result demonstrated that near-infrared micro-Raman spectroscopy combined with PCA-LDA analysis could be an effective and sensitive tool for identification of esophageal cancer.
Kim, Jin You; Suh, Hie Bum; Kang, Hyun Jung; Shin, Jong Ki; Choo, Ki Seok; Nam, Kyung Jin; Lee, Seok Won; Jung, Young Lae; Bae, Young Tae
2016-05-01
The purpose of this study was to investigate prospectively whether the apparent diffusion coefficients (ADCs) of both breast cancer and normal fibroglandular tissue vary with the menstrual cycle and menopausal status. Institutional review board approval was obtained, and informed consent was obtained from each participant. Fifty-seven women (29 premenopausal, 28 postmenopausal) with newly diagnosed breast cancer underwent diffusion-weighted imaging twice (interval 12-20 days) before surgery. Two radiologists independently measured ADC of breast cancer and normal contralateral breast tissue, and we quantified the differences according to the phases of menstrual cycle and menopausal status. With normal fibroglandular tissue, ADC was significantly lower in postmenopausal than in premenopausal women (P = 0.035). In premenopausal women, ADC did not differ significantly between proliferative and secretory phases in either breast cancer or normal fibroglandular tissue (P = 0.969 and P = 0.519, respectively). In postmenopausal women, no significant differences were found between ADCs measured at different time intervals in either breast cancer or normal fibroglandular tissue (P = 0.948 and P = 0.961, respectively). The within-subject variability of the ADC measurements was quantified using the coefficient of variation (CV) and was small: the mean CVs of tumor ADC were 2.90 % (premenopausal) and 3.43 % (postmenopausal), and those of fibroglandular tissue ADC were 4.37 % (premenopausal) and 2.55 % (postmenopausal). Both intra- and interobserver agreements were excellent for ADC measurements, with intraclass correlation coefficients in the range of 0.834-0.974. In conclusion, the measured ADCs of breast cancer and normal fibroglandular tissue were not affected significantly by menstrual cycle, and the measurements were highly reproducible both within and between observers.
Foldager, Casper Bindzus; Toh, Wei Seong; Gomoll, Andreas H; Olsen, Bjørn Reino; Spector, Myron
2014-04-01
The objective of the present study was to investigate the presence and distribution of 2 basement membrane (BM) molecules, laminin and collagen type IV, in healthy and degenerative cartilage tissues. Normal and degenerated tissues were obtained from goats and humans, including articular knee cartilage, the intervertebral disc, and meniscus. Normal tissue was also obtained from patella-tibial enthesis in goats. Immunohistochemical analysis was performed using anti-laminin and anti-collagen type IV antibodies. Human and goat skin were used as positive controls. The percentage of cells displaying the pericellular presence of the protein was graded semiquantitatively. When present, laminin and collagen type IV were exclusively found in the pericellular matrix, and in a discrete layer on the articulating surface of normal articular cartilage. In normal articular (hyaline) cartilage in the human and goat, the proteins were found co-localized pericellularly. In contrast, in human osteoarthritic articular cartilage, collagen type IV but not laminin was found in the pericellular region. Nonpathological fibrocartilaginous tissues from the goat, including the menisci and the enthesis, were also positive for both laminin and collagen type IV pericellularly. In degenerated fibrocartilage, including intervertebral disc, as in degenerated hyaline cartilage only collagen type IV was found pericellularly around chondrocytes but with less intense staining than in non-degenerated tissue. In calcified cartilage, some cells were positive for laminin but not type IV collagen. We report differences in expression of the BM molecules, laminin and collagen type IV, in normal and degenerative cartilaginous tissues from adult humans and goats. In degenerative tissues laminin is depleted from the pericellular matrix before collagen type IV. The findings may inform future studies of the processes underlying cartilage degeneration and the functional roles of these 2 extracellular matrix proteins, normally associated with BM.
Immunohistochemical analysis of S6K1 and S6K2 localization in human breast tumors.
Filonenko, Valeriy V; Tytarenko, Ruslana; Azatjan, Sergey K; Savinska, Lilya O; Gaydar, Yuriy A; Gout, Ivan T; Usenko, Vasiliy S; Lyzogubov, Valeriy V
2004-12-01
To perform an immunohistochemical analysis of human breast adenomas and adenocarcinomas as well as normal breast tissues in respect of S6 ribosomal protein kinase (S6K) expression and localization in normal and transformed cells. The expression level and localization of S6K have been detected in formalin fixed, paraffin embedded sections of normal human breast tissues, adenomas and adenocarcinomas with different grade of differentiation. Immunohistochemical detection of S6K1 and S6K2 in normal human breast tissues and breast tumors were performed using specific monoclonal and polyclonal antibodies against S6K1 and S6K2 with following semiquantitative analysis. The increase of S6K content in the cytoplasm of epithelial cells in benign and malignant tumors has been detected. Nuclear accumulation of S6K1 and to a greater extend S6K2 have been found in breast adenocarcinomas. About 80% of breast adenocarcinomas cases revealed S6K2 nuclear staining comparing to normal tissues. In 31% of cases more then 50% of cancer cells had strong nuclear staining. Accumulation of S6K1 in the nucleus of neoplastic cells has been demonstrated in 25% of cases. Nuclear localization of S6K in the epithelial cells in normal breast tissues has not been detected. Immunohistochemical analysis of S6K1 and S6K2 expression in normal human breast tissues, benign and malignant breast tumors clearly indicates that both kinases are overexpressed in breast tumors. Semiquantitative analysis of peculiarities of S6K localization in normal tissues and tumors revealed that nucleoplasmic accumulation of S6K (especially S6K2) is a distinguishing feature of cancer cells.
Radiation-induced second cancers: the impact of 3D-CRT and IMRT
NASA Technical Reports Server (NTRS)
Hall, Eric J.; Wuu, Cheng-Shie
2003-01-01
Information concerning radiation-induced malignancies comes from the A-bomb survivors and from medically exposed individuals, including second cancers in radiation therapy patients. The A-bomb survivors show an excess incidence of carcinomas in tissues such as the gastrointestinal tract, breast, thyroid, and bladder, which is linear with dose up to about 2.5 Sv. There is great uncertainty concerning the dose-response relationship for radiation-induced carcinogenesis at higher doses. Some animal and human data suggest a decrease at higher doses, usually attributed to cell killing; other data suggest a plateau in dose. Radiotherapy patients also show an excess incidence of carcinomas, often in sites remote from the treatment fields; in addition there is an excess incidence of sarcomas in the heavily irradiated in-field tissues. The transition from conventional radiotherapy to three-dimensional conformal radiation therapy (3D-CRT) involves a reduction in the volume of normal tissues receiving a high dose, with an increase in dose to the target volume that includes the tumor and a limited amount of normal tissue. One might expect a decrease in the number of sarcomas induced and also (less certain) a small decrease in the number of carcinomas. All around, a good thing. By contrast, the move from 3D-CRT to intensity-modulated radiation therapy (IMRT) involves more fields, and the dose-volume histograms show that, as a consequence, a larger volume of normal tissue is exposed to lower doses. In addition, the number of monitor units is increased by a factor of 2 to 3, increasing the total body exposure, due to leakage radiation. Both factors will tend to increase the risk of second cancers. Altogether, IMRT is likely to almost double the incidence of second malignancies compared with conventional radiotherapy from about 1% to 1.75% for patients surviving 10 years. The numbers may be larger for longer survival (or for younger patients), but the ratio should remain the same.
Introduction for Diffusion Chamber Culture Symposium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carsten, A. L.
The diffusion-chamber system has been applied to studies of cell kinetics, progenitor cell quantitation, humoral effects, immunological effects, cytogenetics, organogenesis, and the cellular effects of drugs and physical factors such as radiation, hypoxia, etc. Chamber contents have been analyzed by clot dissolution with measuring of cell content, limiting dilution evaluation, radionuclide utilization (tritiated thymidine labeling), growth of colony number, size and type, CFU-S or CFU-C content, or proliferation by secondary culture in mice or in vitro systems, and chromosome changes. Cell types ranging from embryonal tissues to adult normal and neoplastic tissues have been grown in hosts across species barriers.more » Advantages and disadvantages of this system are discussed.« less
Ocular Toxicity Testing of Lunar Dust
NASA Technical Reports Server (NTRS)
Meyers, Valerie E.
2010-01-01
This slide presentation reviews the use of ocular testing to determine the toxicity of lunar dust. The OECD recommendations are reviewed. With these recommendations in mind the test methodology was to use EpiOcular, tissues derived from normal human epidermal keratinocytes, the cells of which have been differentiated on cell culture inserts to form a multi-layered structure, which closely parallels the corneal epithelium and to dose the tissue with 100 mg dust from various sources. The in-vitro study provides evidence that lunar dust is not severely corrosive or irritating, however, in vitro tests have limitations, and in vivo tests provides a more complete scenario, and information, it is recommended that in vivo tests be performed.
Actinium-225 in targeted alpha-particle therapeutic applications
Scheinberg, David A.; McDevit, Michael R.
2017-01-01
Alpha particle-emitting isotopes are being investigated in radioimmunotherapeutic applications because of their unparalleled cytotoxicity when targeted to cancer and their relative lack of toxicity towards untargeted normal tissue. Actinium-225 has been developed into potent targeting drug constructs and is in clinical use against acute myelogenous leukemia. The key properties of the alpha particles generated by 225Ac are the following: i) limited range in tissue of a few cell diameters; ii) high linear energy transfer leading to dense radiation damage along each alpha track; iii) a 10 day half-life; and iv) four net alpha particles emitted per decay. Targeting 225Ac-drug constructs have potential in the treatment of cancer. PMID:22202153
Echocardiographic assessment of left ventricular diastolic function.
Pirat, Bahar; Zoghbi, William A
2007-09-01
Assessment of diastolic function and left ventricular filling pressures in the setting of both normal and reduced systolic function is of major importance particularly in patients with dyspnea. Since multiple echocardiography parameters are used to assess diastolic function each with some limitations, a comprehensive approach should be applied. Transmitral Doppler flow should be evaluated in combination with newer, less load dependent Doppler techniques. Tissue Doppler imaging provides accurate, well validated data regarding diastolic properties and filling pressures of the left ventricle. Tissue Doppler imaging should be the part of a routine echocardiography study due to its ease of use and high reproducibility. Pulmonary vein Doppler and flow propagation velocity should be incorporated into the evaluation when needed.
Relationship Between Speed of Sound in and Density of Normal and Diseased Rat Livers
NASA Astrophysics Data System (ADS)
Hachiya, Hiroyuki; Ohtsuki, Shigeo; Tanaka, Motonao
1994-05-01
Speed of sound is an important acoustic parameter for quantitative characterization of living tissues. In this paper, the relationship between speed of sound in and density of rat liver tissues are investigated. The speed of sound was measured by the nondeformable technique based on frequency-time analysis of a 3.5 MHz pulse response. The speed of sound in normal livers varied minimally between individuals and was not related to body weight or age. In liver tissues which were administered CCl4, the speed of sound was lower than the speed of sound in normal tissues. The relationship between speed of sound and density in normal, fatty and cirrhotic livers can be fitted well on the line which is estimated using the immiscible liquid model assuming a mixture of normal liver and fat tissues. For 3.5 MHz ultrasound, it is considered that the speed of sound in fresh liver with fatty degeneration is responsible for the fat content and is not strongly dependent on the degree of fibrosis.
Cooper, Colin S; Eeles, Rosalind; Wedge, David C; Van Loo, Peter; Gundem, Gunes; Alexandrov, Ludmil B; Kremeyer, Barbara; Butler, Adam; Lynch, Andrew G; Camacho, Niedzica; Massie, Charlie E; Kay, Jonathan; Luxton, Hayley J; Edwards, Sandra; Kote-Jarai, ZSofia; Dennis, Nening; Merson, Sue; Leongamornlert, Daniel; Zamora, Jorge; Corbishley, Cathy; Thomas, Sarah; Nik-Zainal, Serena; O'Meara, Sarah; Matthews, Lucy; Clark, Jeremy; Hurst, Rachel; Mithen, Richard; Bristow, Robert G; Boutros, Paul C; Fraser, Michael; Cooke, Susanna; Raine, Keiran; Jones, David; Menzies, Andrew; Stebbings, Lucy; Hinton, Jon; Teague, Jon; McLaren, Stuart; Mudie, Laura; Hardy, Claire; Anderson, Elizabeth; Joseph, Olivia; Goody, Victoria; Robinson, Ben; Maddison, Mark; Gamble, Stephen; Greenman, Christopher; Berney, Dan; Hazell, Steven; Livni, Naomi; Fisher, Cyril; Ogden, Christopher; Kumar, Pardeep; Thompson, Alan; Woodhouse, Christopher; Nicol, David; Mayer, Erik; Dudderidge, Tim; Shah, Nimish C; Gnanapragasam, Vincent; Voet, Thierry; Campbell, Peter; Futreal, Andrew; Easton, Douglas; Warren, Anne Y; Foster, Christopher S; Stratton, Michael R; Whitaker, Hayley C; McDermott, Ultan; Brewer, Daniel S; Neal, David E
2015-04-01
Genome-wide DNA sequencing was used to decrypt the phylogeny of multiple samples from distinct areas of cancer and morphologically normal tissue taken from the prostates of three men. Mutations were present at high levels in morphologically normal tissue distant from the cancer, reflecting clonal expansions, and the underlying mutational processes at work in morphologically normal tissue were also at work in cancer. Our observations demonstrate the existence of ongoing abnormal mutational processes, consistent with field effects, underlying carcinogenesis. This mechanism gives rise to extensive branching evolution and cancer clone mixing, as exemplified by the coexistence of multiple cancer lineages harboring distinct ERG fusions within a single cancer nodule. Subsets of mutations were shared either by morphologically normal and malignant tissues or between different ERG lineages, indicating earlier or separate clonal cell expansions. Our observations inform on the origin of multifocal disease and have implications for prostate cancer therapy in individual cases.
Grading of cervical intraepithelial neoplasia using spatial frequency for optical histology
NASA Astrophysics Data System (ADS)
Pu, Yang; Jagtap, Jaidip; Pradhan, Asima; Alfano, Robert R.
2014-03-01
It is important to detect cervical dysplasia, Cervical Intraepithelial Neoplasia (CIN). CIN is the potentially premalignant and abnormal squamous cells on surface of cervix. In this study, the spatial frequency spectra of pre-cancer cervical tissues are used to detect differences among different grades of human cervical tissues. Seven sets of thick tissue sections of human cervix of normal, CIN 1, CIN 2, and CIN 3 tissues are studied. The confocal microscope images of the stromal region of normal and CIN human tissues were analyzed using Fast Fourier Transform (FFT) to generate the spatial spectra. It is observed that higher frequency components exist in CIN tissues than those in normal tissue, as well as those in higher grade CIN tissue than those in lower grade CIN tissue. The width of the spatial frequency of different types of tissues is used to create a criterion for CIN grading by training a support vector machine (SVM) classifier. The results show that the randomness of tissue structures from normal to different stages of precancer in cervical tissue can be recognized by fingerprints of the spatial frequency. The efficacy of spatial frequency analysis for CIN grading is evaluated as excellent since high AUC (area under the ROC curve), sensitivity and specificity are obtained by the statistics study. This works lays the foundation of using spatial frequency spectra for a histology evaluation.
Karsten, Stanislav L.; Van Deerlin, Vivianna M. D.; Sabatti, Chiara; Gill, Lisa H.; Geschwind, Daniel H.
2002-01-01
Archival formalin-fixed, paraffin-embedded and ethanol-fixed tissues represent a potentially invaluable resource for gene expression analysis, as they are the most widely available material for studies of human disease. Little data are available evaluating whether RNA obtained from fixed (archival) tissues could produce reliable and reproducible microarray expression data. Here we compare the use of RNA isolated from human archival tissues fixed in ethanol and formalin to frozen tissue in cDNA microarray experiments. Since an additional factor that can limit the utility of archival tissue is the often small quantities available, we also evaluate the use of the tyramide signal amplification method (TSA), which allows the use of small amounts of RNA. Detailed analysis indicates that TSA provides a consistent and reproducible signal amplification method for cDNA microarray analysis, across both arrays and the genes tested. Analysis of this method also highlights the importance of performing non-linear channel normalization and dye switching. Furthermore, archived, fixed specimens can perform well, but not surprisingly, produce more variable results than frozen tissues. Consistent results are more easily obtainable using ethanol-fixed tissues, whereas formalin-fixed tissue does not typically provide a useful substrate for cDNA synthesis and labeling. PMID:11788730
Accuracy of Raman spectroscopy in differentiating brain tumor from normal brain tissue.
Zhang, Jing; Fan, Yimeng; He, Min; Ma, Xuelei; Song, Yanlin; Liu, Ming; Xu, Jianguo
2017-05-30
Raman spectroscopy could be applied to distinguish tumor from normal tissues. This meta-analysis was conducted to assess the accuracy of Raman spectroscopy in differentiating brain tumor from normal brain tissue. PubMed and Embase were searched to identify suitable studies prior to Jan 1st, 2016. We estimated the pooled sensitivity, specificity, positive and negative likelihood ratios (LR), diagnostic odds ratio (DOR), and constructed summary receiver operating characteristics (SROC) curves to identity the accuracy of Raman spectroscopy in differentiating brain tumor from normal brain tissue. A total of six studies with 1951 spectra were included. For glioma, the pooled sensitivity and specificity of Raman spectroscopy were 0.96 (95% CI 0.94-0.97) and 0.99 (95% CI 0.98-0.99), respectively. The area under the curve (AUC) was 0.9831. For meningioma, the pooled sensitivity and specificity were 0.98 (95% CI 0.94-1.00) and 1.00 (95% CI 0.98-1.00), respectively. The AUC was 0.9955. This meta-analysis suggested that Raman spectroscopy could be an effective and accurate tool for differentiating glioma and meningioma from normal brain tissue, which would help us both avoid removal of normal tissue and minimize the volume of residual tumor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bingsong Lei; Xiaoyuan Deng; Huajiang Wei
2014-12-31
We report our preliminary results on quantification of glucose and dimethyl sulfoxide (DMSO) diffusion in normal and cancerous human bladder tissues in vitro by using a spectral domain optical coherence tomography (SD-OCT). The permeability coefficients (PCs) of a 30% aqueous solution of glucose are found to be (7.92 ± 0.81) × 10{sup -6} cm s{sup -1} and (1.19 ± 0.13) × 10{sup -5} cm s{sup -1} in normal and cancerous bladder tissues, respectively. The PCs of 50% DMSO are calculated to be (8.99 ± 0.93) × 10{sup -6} cm s{sup -1} and (1.43 ± 0.17) × 10{sup -5} cm s{supmore » -1} in normal and cancerous bladder tissues, respectively. The obtained results show a statistically significant difference in permeability of normal and cancerous tissue and indicate that the PC of 50% DMSO is about 1.13-and 1.21-fold higher than that of 30% glucose in normal bladder and cancerous bladder tissues, respectively. Thus, the quantitative measurements with the help of PCs from OCT images can be a potentially powerful method for bladder cancer detection. (optical coherence tomography)« less
NASA Astrophysics Data System (ADS)
Wan, Yuqing
Approximately 240,890 men were diagnosed with prostate cancer and 33,720 men were expected to die from it in the year of 2011 in the United States. Unfortunately, the current clinical diagnostic methods (e.g. prostate-specific antigen (PSA), digital rectal examination, ultrasound guided biopsy) used for detecting and staging prostate cancer are limited. It has been shown that cancerous prostate tissue has significantly different electrical properties when compared to benign tissues. Based on these electrical property findings, a transrectal electrical impedance tomography (TREIT) system is proposed as a novel prostate imaging modality. An ultrasound probe is incorporated with TREIT to achieve anatomic information of the prostate and guide electrical property reconstruction. Without the guidance of the ultrasound, the TREIT system can easily discern high contrast inclusions of 1 cm in diameter at distances centered at two times the radius of the TREIT probe away from the probe surface. Furthermore, we have demonstrated that our system is able to detect low contrast inclusions. With the guidance of the ultrasound, our system is capable of detecting a plastic inclusion embedded in a gelatin phantom, indicating the potential to detect cancer. In addition, the results of preliminary in vivo clinical trials using the imaging system are also presented in the thesis. After collecting data for a total 66 patients, we demonstrated that the in vivo conductivity of cancerous tissue is significantly greater than that of benign tissue (p=0.0015 at 400 Hz) and the conductivity of BPH tissue is significantly lower than that of normal tissue (p=0.0009 at 400 Hz). Additionally at 25.6 kHz, the dual-modal imaging system is able to differentiate cancerous tissue from benign tissue with sensitivity of 0.6012 and specificity of 0.5498, normal tissue from BPH tissue with sensitivity of 0.6085 and specificity of 0.5813 and differentiate cancerous tissue from BPH tissue with sensitivity of 0.6510 and specificity of 0.6539, respectively. This research demonstrated the potential and feasibility of detecting the prostate cancer by measuring electrical properties. We hope to incorporate needle electrodes to improve the system performance in the future.
NASA Astrophysics Data System (ADS)
Devpura, Suneetha; Thakur, Jagdish S.; Poulik, Janet M.; Rabah, Raja; Naik, Vaman M.; Naik, Ratna
2012-02-01
We have investigated the cellular regions in neuroblastoma and ganglioneuroma using Raman spectroscopy and compared their spectral characteristics with those of normal adrenal gland. Thin sections from both frozen and deparaffinized tissues, obtained from the same tissue specimen, were studied in conjunction with the pathological examination of the tissues. We found a significant difference in the spectral features of frozen sections of normal adrenal gland, neuroblastoma, and ganglioneuroma when compared to deparaffinized tissues. The quantitative analysis of the Raman data using chemometric methods of principal component analysis and discriminant function analysis obtained from the frozen tissues show a sensitivity and specificity of 100% each. The biochemical identification based on the spectral differences shows that the normal adrenal gland tissues have higher levels of carotenoids, lipids, and cholesterol compared to the neuroblastoma and ganglioneuroma frozen tissues. However, deparaffinized tissues show complete removal of these biochemicals in adrenal tissues. This study demonstrates that Raman spectroscopy combined with chemometric methods can successfully distinguish neuroblastoma and ganglioneuroma at cellular level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozak, Kevin R.; Adams, Judith; Krejcarek, Stephanie J.
Purpose: We compared tumor and normal tissue dosimetry of proton radiation therapy with intensity-modulated radiation therapy (IMRT) for pediatric parameningeal rhabdomyosarcomas (PRMS). Methods and Materials: To quantify dosimetric differences between contemporary proton and photon treatment for pediatric PRMS, proton beam plans were compared with IMRT plans. Ten patients treated with proton radiation therapy at Massachusetts General Hospital had IMRT plans generated. To facilitate dosimetric comparisons, clinical target volumes and normal tissue volumes were held constant. Plans were optimized for target volume coverage and normal tissue sparing. Results: Proton and IMRT plans provided acceptable and comparable target volume coverage, with atmore » least 99% of the CTV receiving 95% of the prescribed dose in all cases. Improved dose conformality provided by proton therapy resulted in significant sparing of all examined normal tissues except for ipsilateral cochlea and mastoid; ipsilateral parotid gland sparing was of borderline statistical significance (p = 0.05). More profound sparing of contralateral structures by protons resulted in greater dose asymmetry between ipsilateral and contralateral retina, optic nerves, cochlea, and mastoids; dose asymmetry between ipsilateral and contralateral parotids was of borderline statistical significance (p = 0.05). Conclusions: For pediatric PRMS, superior normal tissue sparing is achieved with proton radiation therapy compared with IMRT. Because of enhanced conformality, proton plans also demonstrate greater normal tissue dose distribution asymmetry. Longitudinal studies assessing the impact of proton radiotherapy and IMRT on normal tissue function and growth symmetry are necessary to define the clinical consequences of these differences.« less
Bruzzoni-Giovanelli, Heriberto; Fernandez, Plinio; Veiga, Lucía; Podgorniak, Marie-Pierre; Powell, Darren J; Candeias, Marco M; Mourah, Samia; Calvo, Fabien; Marín, Mónica
2010-02-09
SIAH proteins are the human members of an highly conserved family of E3 ubiquitin ligases. Several data suggest that SIAH proteins may have a role in tumor suppression and apoptosis. Previously, we reported that SIAH-1 induces the degradation of Kid (KIF22), a chromokinesin protein implicated in the normal progression of mitosis and meiosis, by the ubiquitin proteasome pathway. In human breast cancer cells stably transfected with SIAH-1, Kid/KIF22 protein level was markedly reduced whereas, the Kid/KIF22 mRNA level was increased. This interaction has been further elucidated through analyzing SIAH and Kid/KIF22 expression in both paired normal and tumor tissues and cell lines. It was observed that SIAH-1 protein is widely expressed in different normal tissues, and in cells lines but showing some differences in western blotting profiles. Immunofluorescence microscopy shows that the intracellular distribution of SIAH-1 and Kid/KIF22 appears to be modified in human tumor tissues compared to normal controls. When mRNA expression of SIAH-1 and Kid/KIF22 was analyzed by real-time PCR in normal and cancer breast tissues from the same patient, a large variation in the number of mRNA copies was detected between the different samples. In most cases, SIAH-1 mRNA is decreased in tumor tissues compared to their normal counterparts. Interestingly, in all breast tumor tissues analyzed, variations in the Kid/KIF22 mRNA levels mirrored those seen with SIAH-1 mRNAs. This concerted variation of SIAH-1 and Kid/KIF22 messengers suggests the existence of an additional level of control than the previously described protein-protein interaction and protein stability regulation. Our observations also underline the need to re-evaluate the results of gene expression obtained by qRT-PCR and relate it to the protein expression and cellular localization when matched normal and tumoral tissues are analyzed.
Recent Tissue Engineering Advances for the Treatment of Temporomandibular Joint Disorders.
Aryaei, Ashkan; Vapniarsky, Natalia; Hu, Jerry C; Athanasiou, Kyriacos A
2016-12-01
Temporomandibular disorders (TMDs) are among the most common maxillofacial complaints and a major cause of orofacial pain. Although current treatments provide short- and long-term relief, alternative tissue engineering solutions are in great demand. Particularly, the development of strategies, providing long-term resolution of TMD to help patients regain normal function, is a high priority. An absolute prerequisite of tissue engineering is to understand normal structure and function. The current knowledge of anatomical, mechanical, and biochemical characteristics of the temporomandibular joint (TMJ) and associated tissues will be discussed, followed by a brief description of current TMD treatments. The main focus is on recent tissue engineering developments for regenerating TMJ tissue components, with or without a scaffold. The expectation for effectively managing TMD is that tissue engineering will produce biomimetic TMJ tissues that recapitulate the normal structure and function of the TMJ.
Recent tissue engineering advances for the treatment of temporomandibular joint disorders
Aryaei, Ashkan; Vapniarsky, Natalia; Hu, Jerry C; Athanasiou, Kyriacos A
2016-01-01
Temporomandibular disorders (TMD) are among the most common maxillofacial complaints and a major cause of orofacial pain. Although, current treatments provide short- and long-term relief, alternative tissue engineering solutions are in great demand. Particularly, the development of strategies, providing long-term resolution of TMD to help patients regain normal function is a high priority. An absolute prerequisite of tissue engineering is to understand normal structure and function. The current knowledge of anatomical, mechanical, and biochemical characteristics of the temporomandibular joint (TMJ) and associated tissues will be discussed, followed by a brief description of current TMD treatments. The main focus is on recent tissue engineering developments for regenerating TMJ tissue components, with or without a scaffold. The expectation for effectively managing TMD is that tissue engineering will produce biomimetic TMJ tissues that recapitulate the normal structure and function of the TMJ. PMID:27704395
Role of biomechanics in the understanding of normal, injured, and healing ligaments and tendons
Jung, Ho-Joong; Fisher, Matthew B; Woo, Savio L-Y
2009-01-01
Ligaments and tendons are soft connective tissues which serve essential roles for biomechanical function of the musculoskeletal system by stabilizing and guiding the motion of diarthrodial joints. Nevertheless, these tissues are frequently injured due to repetition and overuse as well as quick cutting motions that involve acceleration and deceleration. These injuries often upset this balance between mobility and stability of the joint which causes damage to other soft tissues manifested as pain and other morbidity, such as osteoarthritis. The healing of ligament and tendon injuries varies from tissue to tissue. Tendinopathies are ubiquitous and can take up to 12 months for the pain to subside before one could return to normal activity. A ruptured medial collateral ligament (MCL) can generally heal spontaneously; however, its remodeling process takes years and its biomechanical properties remain inferior when compared to the normal MCL. It is also known that a midsubstance anterior cruciate ligament (ACL) tear has limited healing capability, and reconstruction by soft tissue grafts has been regularly performed to regain knee function. However, long term follow-up studies have revealed that 20–25% of patients experience unsatisfactory results. Thus, a better understanding of the function of ligaments and tendons, together with knowledge on their healing potential, may help investigators to develop novel strategies to accelerate and improve the healing process of ligaments and tendons. With thousands of new papers published in the last ten years that involve biomechanics of ligaments and tendons, there is an increasing appreciation of this subject area. Such attention has positively impacted clinical practice. On the other hand, biomechanical data are complex in nature, and there is a danger of misinterpreting them. Thus, in these review, we will provide the readers with a brief overview of ligaments and tendons and refer them to appropriate methodologies used to obtain their biomechanical properties. Specifically, we hope the reader will pay attention to how the properties of these tissues can be altered due to various experimental and biologic factors. Following this background material, we will present how biomechanics can be applied to gain an understanding of the mechanisms as well as clinical management of various ligament and tendon ailments. To conclude, new technology, including imaging and robotics as well as functional tissue engineering, that could form novel treatment strategies to enhance healing of ligament and tendon are presented. PMID:19457264
Moniri Javadhesari, Solmaz; Gharechahi, Javad; Hosseinpour Feizi, Mohammad Ali; Montazeri, Vahid; Halimi, Monireh
2013-04-01
Survivin, which is a novel member of the inhibitor of apoptosis family proteins, is known to play an important role in the regulation of cell cycle and apoptosis. Differential expression of survivin in tumor tissues introduces it as a new candidate molecular marker for cancer. Here we investigated the expression of survivin and its splice variants in breast tumors, as well as normal adjacent tissues obtained from the same patients. Thirty five tumors and 17 normal adjacent tissues from women diagnosed with breast cancer were explored in this study. Differential expression of different survivin splice variants was detected and semiquantitatively analyzed using reverse transcription-polymerase chain reaction. Results showed that survivin and its splice variants were differentially expressed in tumor specimens compared with normal adjacent tissues. The expression of survivin-3B and survivin-3α was specifically detected in tumor tissues compared with normal adjacent ones (53% in tumor tissues compared to 5% in normal adjacent for survivin-3B and 65% in tumor tissues and 0.0% in normal adjacent tissues for survivin-3α). Statistical analysis showed that survivin and survivin-ΔEx3 were upregulated in benign (90%, p<0.034) and malignant (76%, p<0.042) tumors, respectively. On the other hand, our results showed that survivin-2α (100% of the cases) was the dominant expressed variant of survivin in breast cancer. The data presented here showed that survivin splice variants were differentially expressed in benign and malignant breast cancer tissues, suggesting their potential role in breast cancer development. Differential expression of survivin-2α and survivin-3α splice variants highlights their usefulness as new candidate markers for breast cancer diagnosis and prognosis.
The effects of thyroid hormones on brown adipose tissue in humans: a PET-CT study.
Zhang, Qiongyue; Miao, Qing; Ye, Hongying; Zhang, Zhaoyun; Zuo, Chuantao; Hua, Fengchun; Guan, Yihui; Li, Yiming
2014-09-01
Brown adipose tissue (BAT) is important for energy expenditure through thermogenesis, although its regulatory factors are not well known in humans. There is evidence suggesting that thyroid hormones affect BAT functions in some mammals, but the effects of thyroid hormones on BAT activity in humans are still unclear. The aim of this study was to investigate the effects of thyroid hormones on glucose metabolism of BAT and other organs in humans. Nine Graves' disease-caused hyperthyroid patients who were newly diagnosed and untreated were studied. Putative brown adipose tissue activity was determined by the integrated ¹⁸F-fluorodeoxyglucose (¹⁸F-FDG) positron-emission tomography and computed tomography (PET-CT). All hyperthyroid patients were treated with methimazole and had been monitored until their symptoms disappeared and thyroid hormone levels returned to normal. At the end, a second PET-CT scan was performed. The average follow-up period was 77 days. Meanwhile, compared with a group of seventy-five brown adipose tissue-negative controls, thyroid hormones of seventy-five BAT-positive healthy subjects were measured. Active brown adipose tissue was not present in any of the hyperthyroid patients. However, one patient with normalized thyroid function showed active BAT after therapy. The free T3 levels and free T4 levels were significantly lower in the 75 BAT-positive subjects than in the BAT-negative subjects. All hyperthyroid patients showed symmetrically increased uptake of fluorodeoxyglucose in skeletal muscles before treatment, whereas, the standardized uptake value was substantially decreased after treatment. Abnormally high circulating thyroid hormone levels may not increase brown adipose tissue activity, which may be limited by the increased obligatory thermogenesis of muscle in adult humans. Copyright © 2014 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clair, Geremy; Piehowski, Paul D.; Nicola, Teodora
Global proteomics approaches allow characterization of whole tissue lysates to an impressive depth. However, it is now increasingly recognized that to better understand the complexity of multicellular organisms, global protein profiling of specific spatially defined regions/substructures of tissues (i.e. spatially-resolved proteomics) is essential. Laser capture microdissection (LCM) enables microscopic isolation of defined regions of tissues preserving crucial spatial information. However, current proteomics workflows entail several manual sample preparation steps and are challenged by the microscopic mass-limited samples generated by LCM, and that impact measurement robustness, quantification, and throughput. Here, we coupled LCM with a fully automated sample preparation workflow thatmore » with a single manual step allows: protein extraction, tryptic digestion, peptide cleanup and LC-MS/MS analysis of proteomes from microdissected tissues. Benchmarking against the current state of the art in ultrasensitive global proteomic analysis, our approach demonstrated significant improvements in quantification and throughput. Using our LCM-SNaPP proteomics approach, we characterized to a depth of more than 3,400 proteins, the ontogeny of protein changes during normal lung development in laser capture microdissected alveolar tissue containing ~4,000 cells per sample. Importantly, the data revealed quantitative changes for 350 low abundance transcription factors and signaling molecules, confirming earlier transcript-level observations and defining seven modules of coordinated transcription factor/signaling molecule expression patterns, suggesting that a complex network of temporal regulatory control directs normal lung development with epigenetic regulation fine-tuning pre-natal developmental processes. Our LCM-proteomics approach facilitates efficient, spatially-resolved, ultrasensitive global proteomics analyses in high-throughput that will be enabling for several clinical and biological applications.« less
Pancreatic tissue assessment using fluorescence and reflectance spectroscopy
NASA Astrophysics Data System (ADS)
Chandra, Malavika; Heidt, David; Simeone, Diane; McKenna, Barbara; Scheiman, James; Mycek, Mary-Ann
2007-07-01
The ability of multi-modal optical spectroscopy to detect signals from pancreatic tissue was demonstrated by studying human pancreatic cancer xenografts in mice and freshly excised human pancreatic tumor tissue. Measured optical spectra and fluorescence decays were correlated with tissue morphological and biochemical properties. The measured spectral features and decay times correlated well with expected pathological differences in normal, pancreatitis and adenocarcinoma tissue states. The observed differences between the fluorescence and reflectance properties of normal, pancreatitis and adenocarcinoma tissue indicate a possible application of multi-modal optical spectroscopy to differentiating between the three tissue classifications.
NASA Astrophysics Data System (ADS)
Du, Huiping; Wang, Shu; Wang, Xingfu; Zhu, Xiaoqin; Zhuo, Shuangmu; Chen, Jianxin
2016-10-01
Ischemic stroke is one of the common neurological diseases, and it is becoming the leading causes of death and permanent disability around the world. Early and accurate identification of the potentially salvageable boundary region of ischemia brain tissues may enable selection of the most appropriate candidates for early stroke therapies. In this work, TPEF microscopy was used to image the microstructures of normal brain tissues, ischemia regions and the boundary region between normal and ischemia brain tissues. The ischemia brain tissues from Sprague-Dawley (SD) rats were subjected to 6 hours of middle cerebral artery occlusion (MCAO). Our study demonstrates that TPEF microscopy has the ability to not only reveal the morphological changes of the neurons but also identify the boundary between normal brain tissue and ischemia region, which correspond well to the hematoxylin and eosin (H and E) stained images. With the development of miniaturized TPEF microscope imaging devices, TPEF microscopy can be developed into an effectively diagnostic and monitoring tool for cerebral ischemia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ai, H; Zhang, H
Purpose: To evaluate normal tissue toxicity in patients with head and neck cancer by calculating average survival fraction (SF) and equivalent uniform dose (EUD) for normal tissue cells. Methods: 20 patients with head and neck cancer were included in this study. IMRT plans were generated using EclipseTM treatment planning system by dosimetrist following clinical radiotherapy treatment guidelines. The average SF for three different normal tissue cells of each concerned structure can be calculated from dose spectrum acquired from differential dose volume histogram (DVH) using linear quadratic model. The three types of normal tissues include radiosensitive, moderately radiosensitive and radio-resistant thatmore » represents 70%, 50% and 30% survival fractions, respectively, for a 2-Gy open field. Finally, EUDs for three types of normal tissue of each structure were calculated from average SF. Results: The EUDs of the brainstem, spinal cord, parotid glands, brachial plexus and etc were calculated. Our analysis indicated that the brainstem can absorb as much as 14.3% of prescription dose to the tumor if the cell line is radiosensitive. In addition, as much as 16.1% and 18.3% of prescription dose were absorbed by the brainstem for moderately radiosensitive and radio-resistant cells, respectively. For the spinal cord, the EUDs reached up to 27.6%, 35.0% and 42.9% of prescribed dose for the three types of radiosensitivities respectively. Three types of normal cells for parotid glands can get up to 65.6%, 71.2% and 78.4% of prescription dose, respectively. The maximum EUDs of brachial plexsus were calculated as 75.4%, 76.4% and 76.7% of prescription for three types of normal cell lines. Conclusion: The results indicated that EUD can be used to quantify and evaluate the radiation damage to surrounding normal tissues. Large variation of normal tissue EUDs may come from variation of target volumes and radiation beam orientations among the patients.« less
TU-AB-BRB-01: Coverage Evaluation and Probabilistic Treatment Planning as a Margin Alternative
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siebers, J.
The accepted clinical method to accommodate targeting uncertainties inherent in fractionated external beam radiation therapy is to utilize GTV-to-CTV and CTV-to-PTV margins during the planning process to design a PTV-conformal static dose distribution on the planning image set. Ideally, margins are selected to ensure a high (e.g. >95%) target coverage probability (CP) in spite of inherent inter- and intra-fractional positional variations, tissue motions, and initial contouring uncertainties. Robust optimization techniques, also known as probabilistic treatment planning techniques, explicitly incorporate the dosimetric consequences of targeting uncertainties by including CP evaluation into the planning optimization process along with coverage-based planning objectives. Themore » treatment planner no longer needs to use PTV and/or PRV margins; instead robust optimization utilizes probability distributions of the underlying uncertainties in conjunction with CP-evaluation for the underlying CTVs and OARs to design an optimal treated volume. This symposium will describe CP-evaluation methods as well as various robust planning techniques including use of probability-weighted dose distributions, probability-weighted objective functions, and coverage optimized planning. Methods to compute and display the effect of uncertainties on dose distributions will be presented. The use of robust planning to accommodate inter-fractional setup uncertainties, organ deformation, and contouring uncertainties will be examined as will its use to accommodate intra-fractional organ motion. Clinical examples will be used to inter-compare robust and margin-based planning, highlighting advantages of robust-plans in terms of target and normal tissue coverage. Robust-planning limitations as uncertainties approach zero and as the number of treatment fractions becomes small will be presented, as well as the factors limiting clinical implementation of robust planning. Learning Objectives: To understand robust-planning as a clinical alternative to using margin-based planning. To understand conceptual differences between uncertainty and predictable motion. To understand fundamental limitations of the PTV concept that probabilistic planning can overcome. To understand the major contributing factors to target and normal tissue coverage probability. To understand the similarities and differences of various robust planning techniques To understand the benefits and limitations of robust planning techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, H.
The accepted clinical method to accommodate targeting uncertainties inherent in fractionated external beam radiation therapy is to utilize GTV-to-CTV and CTV-to-PTV margins during the planning process to design a PTV-conformal static dose distribution on the planning image set. Ideally, margins are selected to ensure a high (e.g. >95%) target coverage probability (CP) in spite of inherent inter- and intra-fractional positional variations, tissue motions, and initial contouring uncertainties. Robust optimization techniques, also known as probabilistic treatment planning techniques, explicitly incorporate the dosimetric consequences of targeting uncertainties by including CP evaluation into the planning optimization process along with coverage-based planning objectives. Themore » treatment planner no longer needs to use PTV and/or PRV margins; instead robust optimization utilizes probability distributions of the underlying uncertainties in conjunction with CP-evaluation for the underlying CTVs and OARs to design an optimal treated volume. This symposium will describe CP-evaluation methods as well as various robust planning techniques including use of probability-weighted dose distributions, probability-weighted objective functions, and coverage optimized planning. Methods to compute and display the effect of uncertainties on dose distributions will be presented. The use of robust planning to accommodate inter-fractional setup uncertainties, organ deformation, and contouring uncertainties will be examined as will its use to accommodate intra-fractional organ motion. Clinical examples will be used to inter-compare robust and margin-based planning, highlighting advantages of robust-plans in terms of target and normal tissue coverage. Robust-planning limitations as uncertainties approach zero and as the number of treatment fractions becomes small will be presented, as well as the factors limiting clinical implementation of robust planning. Learning Objectives: To understand robust-planning as a clinical alternative to using margin-based planning. To understand conceptual differences between uncertainty and predictable motion. To understand fundamental limitations of the PTV concept that probabilistic planning can overcome. To understand the major contributing factors to target and normal tissue coverage probability. To understand the similarities and differences of various robust planning techniques To understand the benefits and limitations of robust planning techniques.« less
TU-AB-BRB-02: Stochastic Programming Methods for Handling Uncertainty and Motion in IMRT Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unkelbach, J.
The accepted clinical method to accommodate targeting uncertainties inherent in fractionated external beam radiation therapy is to utilize GTV-to-CTV and CTV-to-PTV margins during the planning process to design a PTV-conformal static dose distribution on the planning image set. Ideally, margins are selected to ensure a high (e.g. >95%) target coverage probability (CP) in spite of inherent inter- and intra-fractional positional variations, tissue motions, and initial contouring uncertainties. Robust optimization techniques, also known as probabilistic treatment planning techniques, explicitly incorporate the dosimetric consequences of targeting uncertainties by including CP evaluation into the planning optimization process along with coverage-based planning objectives. Themore » treatment planner no longer needs to use PTV and/or PRV margins; instead robust optimization utilizes probability distributions of the underlying uncertainties in conjunction with CP-evaluation for the underlying CTVs and OARs to design an optimal treated volume. This symposium will describe CP-evaluation methods as well as various robust planning techniques including use of probability-weighted dose distributions, probability-weighted objective functions, and coverage optimized planning. Methods to compute and display the effect of uncertainties on dose distributions will be presented. The use of robust planning to accommodate inter-fractional setup uncertainties, organ deformation, and contouring uncertainties will be examined as will its use to accommodate intra-fractional organ motion. Clinical examples will be used to inter-compare robust and margin-based planning, highlighting advantages of robust-plans in terms of target and normal tissue coverage. Robust-planning limitations as uncertainties approach zero and as the number of treatment fractions becomes small will be presented, as well as the factors limiting clinical implementation of robust planning. Learning Objectives: To understand robust-planning as a clinical alternative to using margin-based planning. To understand conceptual differences between uncertainty and predictable motion. To understand fundamental limitations of the PTV concept that probabilistic planning can overcome. To understand the major contributing factors to target and normal tissue coverage probability. To understand the similarities and differences of various robust planning techniques To understand the benefits and limitations of robust planning techniques.« less
TU-AB-BRB-00: New Methods to Ensure Target Coverage
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2015-06-15
The accepted clinical method to accommodate targeting uncertainties inherent in fractionated external beam radiation therapy is to utilize GTV-to-CTV and CTV-to-PTV margins during the planning process to design a PTV-conformal static dose distribution on the planning image set. Ideally, margins are selected to ensure a high (e.g. >95%) target coverage probability (CP) in spite of inherent inter- and intra-fractional positional variations, tissue motions, and initial contouring uncertainties. Robust optimization techniques, also known as probabilistic treatment planning techniques, explicitly incorporate the dosimetric consequences of targeting uncertainties by including CP evaluation into the planning optimization process along with coverage-based planning objectives. Themore » treatment planner no longer needs to use PTV and/or PRV margins; instead robust optimization utilizes probability distributions of the underlying uncertainties in conjunction with CP-evaluation for the underlying CTVs and OARs to design an optimal treated volume. This symposium will describe CP-evaluation methods as well as various robust planning techniques including use of probability-weighted dose distributions, probability-weighted objective functions, and coverage optimized planning. Methods to compute and display the effect of uncertainties on dose distributions will be presented. The use of robust planning to accommodate inter-fractional setup uncertainties, organ deformation, and contouring uncertainties will be examined as will its use to accommodate intra-fractional organ motion. Clinical examples will be used to inter-compare robust and margin-based planning, highlighting advantages of robust-plans in terms of target and normal tissue coverage. Robust-planning limitations as uncertainties approach zero and as the number of treatment fractions becomes small will be presented, as well as the factors limiting clinical implementation of robust planning. Learning Objectives: To understand robust-planning as a clinical alternative to using margin-based planning. To understand conceptual differences between uncertainty and predictable motion. To understand fundamental limitations of the PTV concept that probabilistic planning can overcome. To understand the major contributing factors to target and normal tissue coverage probability. To understand the similarities and differences of various robust planning techniques To understand the benefits and limitations of robust planning techniques.« less
NASA Astrophysics Data System (ADS)
Gharekhan, Anita H.; Biswal, Nrusingh C.; Gupta, Sharad; Pradhan, Asima; Sureshkumar, M. B.; Panigrahi, Prasanta K.
2008-02-01
The statistical and characteristic features of the polarized fluorescence spectra from cancer, normal and benign human breast tissues are studied through wavelet transform and singular value decomposition. The discrete wavelets enabled one to isolate high and low frequency spectral fluctuations, which revealed substantial randomization in the cancerous tissues, not present in the normal cases. In particular, the fluctuations fitted well with a Gaussian distribution for the cancerous tissues in the perpendicular component. One finds non-Gaussian behavior for normal and benign tissues' spectral variations. The study of the difference of intensities in parallel and perpendicular channels, which is free from the diffusive component, revealed weak fluorescence activity in the 630nm domain, for the cancerous tissues. This may be ascribable to porphyrin emission. The role of both scatterers and fluorophores in the observed minor intensity peak for the cancer case is experimentally confirmed through tissue-phantom experiments. Continuous Morlet wavelet also highlighted this domain for the cancerous tissue fluorescence spectra. Correlation in the spectral fluctuation is further studied in different tissue types through singular value decomposition. Apart from identifying different domains of spectral activity for diseased and non-diseased tissues, we found random matrix support for the spectral fluctuations. The small eigenvalues of the perpendicular polarized fluorescence spectra of cancerous tissues fitted remarkably well with random matrix prediction for Gaussian random variables, confirming our observations about spectral fluctuations in the wavelet domain.
Buhs, Sophia; Nollau, Peter
2017-01-01
Among posttranslational modifications, the phosphorylation of tyrosine residues is a key modification in cell signaling. Because of its biological importance, characterization of the cellular state of tyrosine phosphorylation is of great interest. Based on the unique properties of endogenously expressed SH2 domains recognizing tyrosine phosphorylated signaling proteins with high specificity we have developed an alternative approach, coined SH2 profiling, enabling us to decipher complex patterns of tyrosine phosphorylation in various normal and cancerous tissues. So far, SH2 profiling has largely been applied for the analysis of protein extracts with the limitation that information on spatial distribution and intensity of tyrosine phosphorylation within a tissue is lost. Here, we describe a novel SH2 domain based strategy for differential characterization of the state of tyrosine phosphorylation in formaldehyde-fixed and paraffin-embedded tissues. This approach demonstrates that SH2 domains may serve as very valuable tools for the analysis of the differential state of tyrosine phosphorylation in primary tissues fixed and processed under conditions frequently applied by routine pathology laboratories.
Nanowired three-dimensional cardiac patches
NASA Astrophysics Data System (ADS)
Dvir, Tal; Timko, Brian P.; Brigham, Mark D.; Naik, Shreesh R.; Karajanagi, Sandeep S.; Levy, Oren; Jin, Hongwei; Parker, Kevin K.; Langer, Robert; Kohane, Daniel S.
2011-11-01
Engineered cardiac patches for treating damaged heart tissues after a heart attack are normally produced by seeding heart cells within three-dimensional porous biomaterial scaffolds. These biomaterials, which are usually made of either biological polymers such as alginate or synthetic polymers such as poly(lactic acid) (PLA), help cells organize into functioning tissues, but poor conductivity of these materials limits the ability of the patch to contract strongly as a unit. Here, we show that incorporating gold nanowires within alginate scaffolds can bridge the electrically resistant pore walls of alginate and improve electrical communication between adjacent cardiac cells. Tissues grown on these composite matrices were thicker and better aligned than those grown on pristine alginate and when electrically stimulated, the cells in these tissues contracted synchronously. Furthermore, higher levels of the proteins involved in muscle contraction and electrical coupling are detected in the composite matrices. It is expected that the integration of conducting nanowires within three-dimensional scaffolds may improve the therapeutic value of current cardiac patches.
Reduction of thermal damage in photodynamic therapy by laser irradiation techniques.
Lim, Hyun Soo
2012-12-01
General application of continuous-wave (CW) laser irradiation modes in photodynamic therapy can cause thermal damage to normal tissues in addition to tumors. A new photodynamic laser therapy system using a pulse irradiation mode was optimized to reduce nonspecific thermal damage. In in vitro tissue specimens, tissue energy deposition rates were measured in three irradiation modes, CW, pulse, and burst-pulse. In addition, methods were tested for reducing variations in laser output and specific wavelength shifts using a thermoelectric cooler and thermistor. The average temperature elevation per 10 J/cm2 was 0.27°C, 0.09°C, and 0.08°C using the three methods, respectively, in pig muscle tissue. Variations in laser output were controlled within ± 0.2%, and specific wavelength shift was limited to ± 3 nm. Thus, optimization of a photodynamic laser system was achieved using a new pulse irradiation mode and controlled laser output to reduce potential thermal damage during conventional CW-based photodynamic therapy.
Hybrid phosphorescence and fluorescence native spectroscopy for breast cancer detection.
Alimova, Alexandra; Katz, A; Sriramoju, Vidyasagar; Budansky, Yuri; Bykov, Alexei A; Zeylikovich, Roman; Alfano, R R
2007-01-01
Fluorescence and phosphorescence measurements are performed on normal and malignant ex vivo human breast tissues using UV LED and xenon lamp excitation. Tryptophan (trp) phosphorescence intensity is higher in both normal glandular and adipose tissue when compared to malignant tissue. An algorithm based on the ratio of trp fluorescence intensity at 345 nm to phosphorescence intensity at 500 nm is successfully used to separate normal from malignant tissue types. Normal specimens consistently exhibited a low I(345)I(500) ratio (<10), while for malignant specimens, the I(345)I(500) ratio is consistently high (>15). The ratio analysis correlates well with histopathology. Intensity ratio maps with a spatial resolution of 0.5 mm are generated in which local regions of malignancy could be identified.
Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials
Jenrow, Kenneth A.; Brown, Stephen L.
2014-01-01
To summarize current knowledge regarding mechanisms of radiation-induced normal tissue injury and medical countermeasures available to reduce its severity. Advances in radiation delivery using megavoltage and intensity-modulated radiation therapy have permitted delivery of higher doses of radiation to well-defined tumor target tissues. Injury to critical normal tissues and organs, however, poses substantial risks in the curative treatment of cancers, especially when radiation is administered in combination with chemotherapy. The principal pathogenesis is initiated by depletion of tissue stem cells and progenitor cells and damage to vascular endothelial microvessels. Emerging concepts of radiation-induced normal tissue toxicity suggest that the recovery and repopulation of stromal stem cells remain chronically impaired by long-lived free radicals, reactive oxygen species, and pro-inflammatory cytokines/chemokines resulting in progressive damage after radiation exposure. Better understanding the mechanisms mediating interactions among excessive generation of reactive oxygen species, production of pro-inflammatory cytokines and activated macrophages, and role of bone marrow-derived progenitor and stem cells may provide novel insight on the pathogenesis of radiation-induced injury of tissues. Further understanding the molecular signaling pathways of cytokines and chemokines would reveal novel targets for protecting or mitigating radiation injury of tissues and organs. PMID:25324981
Expression and Significance of Cyclophilin J in Primary Gastric Adenocarcinoma.
Gong, Zhaohua; Mu, Yuling; Chen, Jian; Chu, Hongjin; Lian, Peiwen; Wang, Congcong; Wang, Jiahui; Jiang, Lixin
2017-08-01
Biomarkers are essential in early diagnosis and understanding of the molecular mechanism of human cancer. The expression of cyclophilin J, a novel member of the cyclophilin family, was investigated in primary gastric adenocarcinoma. Western blot analysis was carried out on 36 paired tumor and normal tissue samples; immunohistochemical analysis was carried out on 120 gastric carcinoma tissues and normal adjacent tissue. Cyclophilin J protein was overexpressed in 72.2% of gastric carcinoma tissues compared to adjacent normal tissues. Immunohistochemical analysis revealed that cyclophilin J was overexpressed in 49.2% (59/120) and 23.3% (28/120) of gastric carcinoma tissues and adjacent tissues, respectively (p<0.05). Expression of cyclophilin J was associated with the degree of differentiation, but not with lymph node metastasis, gender or depth of tumor infiltration. The overall survival of patients showed no association with the overexpression of cyclophilin J protein. Cyclophilin J expression was up-regulated in gastric carcinoma compared to normal gastric tissues. However, in order to confirm its association with the survival of patients with gastric cancer, more cases need to be studied. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
A Cancer-Indicative microRNA Pattern in Normal Prostate Tissue
Hellwinkel, Olaf J. C.; Sellier, Christina; Sylvester, Yu-Mi Jessica; Brase, Jan C.; Isbarn, Hendrik; Erbersdobler, Andreas; Steuber, Thomas; Sültmann, Holger; Schlomm, Thorsten; Wagner, Christina
2013-01-01
We analyzed the levels of selected micro-RNAs in normal prostate tissue to assess their potential to indicate tumor foci elsewhere in the prostate. Histologically normal prostate tissue samples from 31 prostate cancer patients and two cancer negative control groups with either unsuspicious or elevated prostate specific antigen (PSA) levels (14 and 17 individuals, respectively) were analyzed. Based on the expression analysis of 157 microRNAs in a pool of prostate tissue samples and information from data bases/literature, we selected eight microRNAs for quantification by real-time polymerase chain reactions (RT-PCRs). Selected miRNAs were analyzed in histologically tumor-free biopsy samples from patients and healthy controls. We identified seven microRNAs (miR-124a, miR-146a & b, miR-185, miR-16 and let-7a & b), which displayed significant differential expression in normal prostate tissue from men with prostate cancer compared to both cancer negative control groups. Four microRNAs (miR-185, miR-16 and let-7a and let-7b) remained to significantly discriminate normal tissues from prostate cancer patients from those of the cancer negative control group with elevated PSA levels. The transcript levels of these microRNAs were highly indicative for the presence of cancer in the prostates, independently of the PSA level. Our results suggest a microRNA-pattern in histologically normal prostate tissue, indicating prostate cancer elsewhere in the organ. PMID:23459235
Rødgaard, Tina; Skovgaard, Kerstin; Stagsted, Jan; Heegaard, Peter M H
2013-06-01
The objective of this study was to evaluate the usefulness of cloned pigs as porcine obesity models reflecting obesity-associated changes in innate immune factor gene expression profiles. Liver and adipose tissue expression of 43 innate immune genes as well as serum concentrations of six immune factors were analyzed in lean and diet-induced obese cloned domestic pigs and compared to normal domestic pigs (obese and lean). The number of genes affected by obesity was lower in cloned animals than in control animals. All genes affected by obesity in adipose tissues of clones were downregulated; both upregulation and downregulation were observed in the controls. Cloning resulted in a less differentiated adipose tissue expression pattern. Finally, the serum concentrations of two acute-phase proteins (APPs), haptoglobin (HP) and orosomucoid (ORM), were increased in obese clones as compared to obese controls as well as lean clones and controls. Generally, the variation in phenotype between individual pigs was not reduced in cloned siblings as compared to normal siblings. Therefore, we conclude that cloning limits both the number of genes responding to obesity as well as the degree of tissue-differentiated gene expression, concomitantly with an increase in APP serum concentrations only seen in cloned, obese pigs. This may suggest that the APP response seen in obese, cloned pigs is a consequence of the characteristic skewed gene response to obesity in cloned pigs, as described in this work. This should be taken into consideration when using cloned animals as models for innate responses to obesity.
Rødgaard, Tina; Skovgaard, Kerstin; Stagsted, Jan
2013-01-01
Abstract The objective of this study was to evaluate the usefulness of cloned pigs as porcine obesity models reflecting obesity-associated changes in innate immune factor gene expression profiles. Liver and adipose tissue expression of 43 innate immune genes as well as serum concentrations of six immune factors were analyzed in lean and diet-induced obese cloned domestic pigs and compared to normal domestic pigs (obese and lean). The number of genes affected by obesity was lower in cloned animals than in control animals. All genes affected by obesity in adipose tissues of clones were downregulated; both upregulation and downregulation were observed in the controls. Cloning resulted in a less differentiated adipose tissue expression pattern. Finally, the serum concentrations of two acute-phase proteins (APPs), haptoglobin (HP) and orosomucoid (ORM), were increased in obese clones as compared to obese controls as well as lean clones and controls. Generally, the variation in phenotype between individual pigs was not reduced in cloned siblings as compared to normal siblings. Therefore, we conclude that cloning limits both the number of genes responding to obesity as well as the degree of tissue-differentiated gene expression, concomitantly with an increase in APP serum concentrations only seen in cloned, obese pigs. This may suggest that the APP response seen in obese, cloned pigs is a consequence of the characteristic skewed gene response to obesity in cloned pigs, as described in this work. This should be taken into consideration when using cloned animals as models for innate responses to obesity. PMID:23668862
NASA Astrophysics Data System (ADS)
Xu, Xiaoyun; Li, Xiaoyan; Cheng, Jie; Liu, Zhengfan; Thrall, Michael J.; Wang, Xi; Wang, Zhiyong; Wong, Stephen T. C.
2013-03-01
The development of real-time, label-free imaging techniques has recently attracted research interest for in situ differentiation of cancerous lesions from normal tissues. Molecule-specific intrinsic contrast can arise from label-free imaging techniques such as Coherent Anti-Stokes Raman Scattering (CARS), Two-Photon Excited AutoFluorescence (TPEAF), and Second Harmonic Generation (SHG), which, in combination, would hold the promise of a powerful label-free tool for cancer diagnosis. Among cancer-related deaths, lung carcinoma is the leading cause for both sexes. Although early treatment can increase the survival rate dramatically, lesion detection and precise diagnosis at an early stage is unusual due to its asymptomatic nature and limitations of current diagnostic techniques that make screening difficult. We investigated the potential of using multimodality nonlinear optical microscopy that incorporates CARS, TPEAF, and SHG techniques for differentiation of lung cancer from normal tissue. Cancerous and non-cancerous lung tissue samples from patients were imaged using CARS, TPEAF, and SHG techniques for comparison. These images showed good pathology correlation with hematoxylin and eosin (H and E) stained sections from the same tissue samples. Ongoing work includes imaging at various penetration depths to show three-dimensional morphologies of tumor cell nuclei using CARS, elastin using TPEAF, and collagen using SHG and developing classification algorithms for quantitative feature extraction to enable lung cancer diagnosis. Our results indicate that via real-time morphology analyses, a multimodality nonlinear optical imaging platform potentially offers a powerful minimally-invasive way to differentiate cancer lesions from surrounding non-tumor tissues in vivo for clinical applications.
Derivation of the expressions for γ50 and D50 for different individual TCP and NTCP models
NASA Astrophysics Data System (ADS)
Stavreva, N.; Stavrev, P.; Warkentin, B.; Fallone, B. G.
2002-10-01
This paper presents a complete set of formulae for the position (D50) and the normalized slope (γ50) of the dose-response relationship based on the most commonly used radiobiological models for tumours as well as for normal tissues. The functional subunit response models (critical element and critical volume) are used in the derivation of the formulae for the normal tissue. Binomial statistics are used to describe the tumour control probability, the functional subunit response as well as the normal tissue complication probability. The formulae are derived for the single hit and linear quadratic models of cell kill in terms of the number of fractions and dose per fraction. It is shown that the functional subunit models predict very steep, almost step-like, normal tissue individual dose-response relationships. Furthermore, the formulae for the normalized gradient depend on the cellular parameters α and β when written in terms of number of fractions, but not when written in terms of dose per fraction.
Matsushita, Y; Yonezawa, S; Nakamura, T; Shimizu, S; Ozawa, M; Muramatsu, T; Sato, E
1985-08-01
Glycoproteins binding to Ulex europaeus agglutinin-I (UEA-I) lectin, which recognizes the terminal alpha-L-fucose residue, were analyzed in 18 cases of human colorectal carcinoma by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by the Western blotting method. In the distal large bowel (descending and sigmoid colon and rectum), high-molecular-weight glycoproteins binding to UEA-I existed in carcinoma tissue but not in normal mucosa. In the proximal large bowel (ascending and transverse colon), high-molecular-weight glycoproteins binding to UEA-I were found both in normal mucosa and in carcinoma tissue, whereas those from the carcinoma tissue had an apparently lower molecular weight as compared to the weight of those from the normal mucosa. Thus there is a biochemical difference in UEA-I binding glycoproteins between the normal mucosa and the carcinoma tissue, although in our previous histochemical study no difference was observed in UEA-I binding glycoproteins of the proximal large bowel between the carcinoma tissue and the normal mucosa. Furthermore, carcinoembryonic antigen from the carcinoma tissue was found to have the same electrophoretical mobility as the UEA-I binding glycoproteins.
NASA Astrophysics Data System (ADS)
Sujatha, N.; Anand, B. S. Suresh; Nivetha, K. Bala; Narayanamurthy, V. B.; Seshadri, V.; Poddar, R.
2015-07-01
Light-based diagnostic techniques provide a minimally invasive way for selective biomarker estimation when tissues transform from a normal to a malignant state. Spectroscopic techniques based on diffuse reflectance characterize the changes in tissue hemoglobin/oxygenation levels during the tissue transformation process. Recent clinical investigations have shown that changes in tissue oxygenation and microcirculation are observed in diabetic subjects in the initial and progressive stages. In this pilot study, we discuss the potential of diffuse reflectance spectroscopy (DRS) in the visible (Vis) range to differentiate the skin microcirculatory hemoglobin levels between normal and advanced diabetic subjects with and without neuropathy. Average concentration of hemoglobin as well as hemoglobin oxygen saturation within the probed tissue volume is estimated for a total of four different sites in the foot sole. The results indicate a statistically significant decrease in average total hemoglobin and increase in hemoglobin oxygen saturation levels for diabetic foot compared with a normal foot. The present study demonstrates the ability of reflectance spectroscopy in the Vis range to determine and differentiate the changes in tissue hemoglobin and hemoglobin oxygen saturation levels in normal and diabetic subjects.
NASA Astrophysics Data System (ADS)
Pu, Yang; Chen, Jun; Wang, Wubao
2014-02-01
The scattering coefficient, μs, the anisotropy factor, g, the scattering phase function, p(θ), and the angular dependence of scattering intensity distributions of human cancerous and normal prostate tissues were systematically investigated as a function of wavelength, scattering angle and scattering particle size using Mie theory and experimental parameters. The Matlab-based codes using Mie theory for both spherical and cylindrical models were developed and applied for studying the light propagation and the key scattering properties of the prostate tissues. The optical and structural parameters of tissue such as the index of refraction of cytoplasm, size of nuclei, and the diameter of the nucleoli for cancerous and normal human prostate tissues obtained from the previous biological, biomedical and bio-optic studies were used for Mie theory simulation and calculation. The wavelength dependence of scattering coefficient and anisotropy factor were investigated in the wide spectral range from 300 nm to 1200 nm. The scattering particle size dependence of μs, g, and scattering angular distributions were studied for cancerous and normal prostate tissues. The results show that cancerous prostate tissue containing larger size scattering particles has more contribution to the forward scattering in comparison with the normal prostate tissue. In addition to the conventional simulation model that approximately considers the scattering particle as sphere, the cylinder model which is more suitable for fiber-like tissue frame components such as collagen and elastin was used for developing a computation code to study angular dependence of scattering in prostate tissues. To the best of our knowledge, this is the first study to deal with both spherical and cylindrical scattering particles in prostate tissues.
Telomere length in normal and neoplastic canine tissues.
Cadile, Casey D; Kitchell, Barbara E; Newman, Rebecca G; Biller, Barbara J; Hetler, Elizabeth R
2007-12-01
To determine the mean telomere restriction fragment (TRF) length in normal and neoplastic canine tissues. 57 solid-tissue tumor specimens collected from client-owned dogs, 40 samples of normal tissue collected from 12 clinically normal dogs, and blood samples collected from 4 healthy blood donor dogs. Tumor specimens were collected from client-owned dogs during diagnostic or therapeutic procedures at the University of Illinois Veterinary Medical Teaching Hospital, whereas 40 normal tissue samples were collected from 12 control dogs. Telomere restriction fragment length was determined by use of an assay kit. A histologic diagnosis was provided for each tumor by personnel at the Veterinary Diagnostic Laboratory at the University of Illinois. Mean of the mean TRF length for 44 normal samples was 19.0 kilobases (kb; range, 15.4 to 21.4 kb), and the mean of the mean TRF length for 57 malignant tumors was 19.0 kb (range, 12.9 to 23.5 kb). Although the mean of the mean TRF length for tumors and normal tissues was identical, tumor samples had more variability in TRF length. Telomerase, which represents the main mechanism by which cancer cells achieve immortality, is an attractive therapeutic target. The ability to measure telomere length is crucial to monitoring the efficacy of telomerase inhibition. In contrast to many other mammalian species, the length of canine telomeres and the rate of telomeric DNA loss are similar to those reported in humans, making dogs a compelling choice for use in the study of human anti-telomerase strategies.
Effect of Shock Wave Lithotripsy on Renal Hemodynamics
NASA Astrophysics Data System (ADS)
Handa, Rajash K.; Willis, Lynn R.; Evan, Andrew P.; Connors, Bret A.
2008-09-01
Extracorporeal shock wave lithotripsy (SWL) can injure tissue and decrease blood flow in the SWL-treated kidney, both tissue and functional effects being largely localized to the region targeted with shock waves (SWs). A novel method of limiting SWL-induced tissue injury is to employ the "protection" protocol, where the kidney is pretreated with low-energy SWs prior to the application of a standard clinical dose of high-energy SWs. Resistive index measurements of renal vascular resistance/impedance to blood flow during SWL treatment protocols revealed that a standard clinical dose of high-energy SWs did not alter RI during SW application. However, there was an interaction between low- and high-energy SWL treatment phases of the "protection" protocol such that an increase in RI (vasoconstriction) was observed during the later half of SW application, a time when tissue damage is occurring during the standard high-energy SWL protocol. We suggest that renal vasoconstriction may be responsible for reducing the degree of tissue damage that normally results from a standard clinical dose of high-energy SWs.
NASA Astrophysics Data System (ADS)
Fontaine, Arjun K.; Kirchner, Matthew S.; Caldwell, John H.; Weir, Richard F.; Gibson, Emily A.
2018-02-01
Two-photon microscopy is a powerful tool of current scientific research, allowing optical visualization of structures below the surface of tissues. This is of particular value in neuroscience, where optically accessing regions within the brain is critical for the continued advancement in understanding of neural circuits. However, two-photon imaging at significant depths have typically used Ti:Sapphire based amplifiers that are prohibitively expensive and bulky. In this study, we demonstrate deep tissue two-photon imaging using a compact, inexpensive, turnkey operated Ytterbium fiber laser (Y-Fi, KM Labs). The laser is based on all-normal dispersion (ANDi) that provides short pulse durations and high pulse energies. Depth measurements obtained in ex vivo mouse cortex exceed those obtainable with standard two-photon microscopes using Ti:Sapphire lasers. In addition to demonstrating the capability of deep-tissue imaging in the brain, we investigated imaging depth in highly-scattering white matter with measurements in sciatic nerve showing limited optical penetration of heavily myelinated nerve tissue relative to grey matter.
Audi, Said; Li, Zhixin; Capacete, Joseph; Liu, Yu; Fang, Wei; Shu, Laura G; Zhao, Ming
2012-08-01
(99m)Tc-Duramycin is a peptide-based molecular probe that binds specifically to phosphatidylethanolamine (PE). The goal was to characterize the kinetics of molecular interactions between (99m)Tc-Duramycin and the target tissue. High level of accessible PE is induced in cardiac tissues by myocardial ischemia (30 min) and reperfusion (120 min) in Sprague-Dawley rats. Target binding and biodistribution of (99m)Tc-duramycin were captured using SPECT/CT. To quantify the binding kinetics, the presence of radioactivity in ischemic versus normal cardiac tissues was measured by gamma counting at 3, 10, 20, 60 and 180 min after injection. A partially inactivated form of (99m)Tc-Duramycin was analyzed in the same fashion. A compartment model was developed to quantify the uptake kinetics of (99m)Tc-Duramycin in normal and ischemic myocardial tissue. (99m)Tc-duramycin binds avidly to the damaged tissue with a high target-to-background radio. Compartment modeling shows that accessibility of binding sites in myocardial tissue to (99m)Tc-Duramycin is not a limiting factor and the rate constant of target binding in the target tissue is at 2.2 ml/nmol/min/g. The number of available binding sites for (99m)Tc-Duramycin in ischemic myocardium was estimated at 0.14 nmol/g. Covalent modification of D15 resulted in a 9-fold reduction in binding affinity. (99m)Tc-Duramycin accumulates avidly in target tissues in a PE-dependent fashion. Model results reflect an efficient uptake mechanism, consistent with the low molecular weight of the radiopharmaceutical and the relatively high density of available binding sites. These data help better define the imaging utilities of (99m)Tc-Duramycin as a novel PE-binding agent. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sharma, S. K.; Kamemoto, L. E.; Misra, A. K.; Goodman, M. T.; Luk, H. W.; Killeen, J. L.
2010-04-01
We present results of in vitro micro-Raman spectroscopy of normal and cancerous cervical and ovarian tissues excited with 785 nm near-infrared (NIR) laser. Micro- Raman spectra of squamous cervical cells of both cervix and ovarian tissues show significant differences in the spectra of normal and cancerous cells. In particular, several well-defined Raman peaks in the 775-975 cm-1 region are observed in the spectra of normal cervix squamous cells but are completely missing in the spectra of invasive cervical cancer cells. In the high-frequency 2800-3100 cm-1 region it is shown that the peak area under CH stretching band is much lower than the corresponding area in the spectra of normal cells. In the case of ovarian tissues, the micro-Raman spectra show noticeable spectral differences between normal cells and ovarian serous cancer cells. In particular, we observed the accumulation of β-carotene in ovarian serous cancer cells compared to normal ovarian cells from women with no ovarian cancer. The NIR micro-Raman spectroscopy offers a potential molecular technique for detecting cervical and ovarian cancer from the respective tissues.
HPLC assisted Raman spectroscopic studies on bladder cancer
NASA Astrophysics Data System (ADS)
Zha, W. L.; Cheng, Y.; Yu, W.; Zhang, X. B.; Shen, A. G.; Hu, J. M.
2015-04-01
We applied confocal Raman spectroscopy to investigate 12 normal bladder tissues and 30 tumor tissues, and then depicted the spectral differences between the normal and the tumor tissues and the potential canceration mechanism with the aid of the high-performance liquid chromatographic (HPLC) technique. Normal tissues were demonstrated to contain higher tryptophan, cholesterol and lipid content, while bladder tumor tissues were rich in nucleic acids, collagen and carotenoids. In particular, β-carotene, one of the major types of carotenoids, was found through HPLC analysis of the extract of bladder tissues. The statistical software SPSS was applied to classify the spectra of the two types of tissues according to their differences. The sensitivity and specificity of 96.7 and 66.7% were obtained, respectively. In addition, different layers of the bladder wall including mucosa (lumps), muscle and adipose bladder tissue were analyzed by Raman mapping technique in response to previous Raman studies of bladder tissues. All of these will play an important role as a directive tool for the future diagnosis of bladder cancer in vivo.
Terahertz spectroscopy of brain tissue from a mouse model of Alzheimer's disease
NASA Astrophysics Data System (ADS)
Shi, Lingyan; Shumyatsky, Pavel; Rodríguez-Contreras, Adrián; Alfano, Robert
2016-01-01
The terahertz (THz) absorption and index of refraction of brain tissues from a mouse model of Alzheimer's disease (AD) and a control wild-type (normal) mouse were compared using THz time-domain spectroscopy (THz-TDS). Three dominating absorption peaks associated to torsional-vibrational modes were observed in AD tissue, at about 1.44, 1.8, and 2.114 THz, closer to the peaks of free tryptophan molecules than in normal tissue. A possible reason is that there is more free tryptophan in AD brain tissue, while in normal brain tissue more tryptophan is attached to other molecules. Our study suggests that THz-absorption modes may be used as an AD biomarker fingerprint in brain, and that THz-TDS is a promising technique for early diagnosis of AD.
Terahertz spectroscopy for the study of paraffin-embedded gastric cancer samples
NASA Astrophysics Data System (ADS)
Wahaia, Faustino; Kasalynas, Irmantas; Seliuta, Dalius; Molis, Gediminas; Urbanowicz, Andrzej; Carvalho Silva, Catia D.; Carneiro, Fatima; Valusis, Gintaras; Granja, Pedro L.
2015-01-01
Terahertz (THz) spectroscopy constitute promising technique for biomedical applications as a complementary and powerful tool for diseases screening specially for early cancer diagnostic. The THz radiation is not harmful to biological tissues. As increased blood supply in cancer-affected tissues and consequent local increase in tissue water content makes THz technology a potentially attractive. In the present work, samples of healthy and adenocarcinoma-affected gastric tissue were analyzed using transmission time-domain THz spectroscopy (THz-TDS). The work shows the capability of the technique to distinguish between normal and cancerous regions in dried and paraffin-embedded samples. Plots of absorption coefficient α and refractive index n of normal and cancer affected tissues, are presented and the conditions for discrimination between normal and affected tissues are discussed.
Watanabe, Tsubasa; Hattori, Yoshihide; Ohta, Youichiro; Ishimura, Miki; Nakagawa, Yosuke; Sanada, Yu; Tanaka, Hiroki; Fukutani, Satoshi; Masunaga, Shin-Ichiro; Hiraoka, Masahiro; Ono, Koji; Suzuki, Minoru; Kirihata, Mitsunori
2016-11-08
Boron neutron capture therapy (BNCT) is a cellular-level particle radiation therapy that combines the selective delivery of boron compounds to tumour tissue with neutron irradiation. L-p-Boronophenylalanine (L-BPA) is a boron compound now widely used in clinical situations. Determination of the boron distribution is required for successful BNCT prior to neutron irradiation. Thus, positron emission tomography with [ 18 F]-L-FBPA, an 18 F-labelled radiopharmaceutical analogue of L-BPA, was developed. However, several differences between L-BPA and [ 18 F]-L-FBPA have been highlighted, including the different injection doses and administration protocols. The purpose of this study was to clarify the equivalence between L-BPA and [ 19 F]-L-FBPA as alternatives to [ 18 F]-L-FBPA. SCC-VII was subcutaneously inoculated into the legs of C3H/He mice. The same dose of L-BPA or [ 19 F]-L-FBPA was subcutaneously injected. The time courses of the boron concentrations in blood, tumour tissue, and normal tissue were compared between the groups. Next, we administered the therapeutic dose of L-BPA or the same dose of [ 19 F]-L-FBPA by continuous infusion and compared the effects of the administration protocol on boron accumulation in tissues. There were no differences between L-BPA and [ 19 F]-L-FBPA in the transition of boron concentrations in blood, tumour tissue, and normal tissue using the same administration protocol. However, the normal tissue to blood ratio of the boron concentrations in the continuous-infusion group was lower than that in the subcutaneous injection group. No difference was noted in the time course of the boron concentrations in tumour tissue and normal tissues between L-BPA and [ 19 F]-L-FBPA. However, the administration protocol had effects on the normal tissue to blood ratio of the boron concentration. In estimating the BNCT dose in normal tissue by positron emission tomography (PET), we should consider the possible overestimation of the normal tissue to blood ratio of the boron concentrations derived from the values measured by PET on dose calculation.
Fox, Sara A; Shanblatt, Ashley A; Beckman, Hugh; Strasswimmer, John; Terentis, Andrew C
2014-12-01
The number of cases of non-melanoma skin cancer (NMSC), which include squamous cell carcinoma (SCC) and basal cell carcinoma (BCC), continues to rise as the aging population grows. Mohs micrographic surgery has become the treatment of choice in many cases but is not always necessary or feasible. Ablation with a high-powered CO2 laser offers the advantage of highly precise, hemostatic tissue removal. However, confirmation of complete cancer removal following ablation is difficult. In this study we tested for the first time the feasibility of using Raman spectroscopy as an in situ diagnostic method to differentiate NMSC from normal tissue following partial ablation with a high-powered CO2 laser. Twenty-five tissue samples were obtained from eleven patients undergoing Mohs micrographic surgery to remove NMSC tumors. Laser treatment was performed with a SmartXide DOT Fractional CO2 Laser (DEKA Laser Technologies, Inc.) emitting a wavelength of 10.6 μm. Treatment levels ranged from 20 mJ to 1200 mJ total energy delivered per laser treatment spot (350 μm spot size). Raman spectra were collected from both untreated and CO2 laser-treated samples using a 785 nm diode laser. Principal Component Analysis (PCA) and Binary Logistic Regression (LR) were used to classify spectra as originating from either normal or NMSC tissue, and from treated or untreated tissue. Partial laser ablation did not adversely affect the ability of Raman spectroscopy to differentiate normal from cancerous residual tissue, with the spectral classification model correctly identifying SCC tissue with 95% sensitivity and 100% specificity following partial laser ablation, compared with 92% sensitivity and 60% selectivity for untreated NMSC tissue. The main biochemical difference identified between normal and NMSC tissue was high levels of collagen in the normal tissue, which was lacking in the NMSC tissue. The feasibility of a combined high-powered CO2 laser ablation, Raman diagnostic procedure for the treatment of NMSC is demonstrated since CO2 laser treatment does not hinder the ability of Raman spectroscopy to differentiate normal from diseased tissue. This combined approach could be employed clinically to greatly enhance the speed and effectiveness of NMSC treatment in many cases. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Zhang, Xiao-Dong; Luo, Zhentao; Chen, Jie; Song, Shasha; Yuan, Xun; Shen, Xiu; Wang, Hao; Sun, Yuanming; Gao, Kai; Zhang, Lianfeng; Fan, Saijun; Leong, David Tai; Guo, Meili; Xie, Jianping
2015-03-01
Radiotherapy is often the most straightforward first line cancer treatment for solid tumors. While it is highly effective against tumors, there is also collateral damage to healthy proximal tissues especially with high doses. The use of radiosensitizers is an effective way to boost the killing efficacy of radiotherapy against the tumor while drastically limiting the received dose and reducing the possible damage to normal tissues. Here, we report the design and application of a good radiosensitizer by using ultrasmall Au29-43(SG)27-37 nanoclusters (<2 nm) with a naturally-occurring peptide (e.g., glutathione or GSH) as the protecting shell. The GSH-coated Au29-43(SG)27-37 nanoclusters can escape the RES absorption, leading to a good tumor uptake (~8.1% ID/g at 24 h post injection). As a result, the as-designed Au nanoclusters led to a strong enhancement for radiotherapy, as well as a negligible damage to normal tissues. After the treatment, the ultrasmall Au29-43(SG)27-37 nanoclusters can be efficiently cleared by the kidney, thereby avoiding potential long-term side-effects caused by the accumulation of gold atoms in the body. Our data suggest that the ultrasmall peptide-protected Au nanoclusters are a promising radiosensitizer for cancer radiotherapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ana J. Molinari; Andrea Monti Hughes; Elisa M. Heber
2011-04-01
Boron Neutron Capture Therapy (BNCT) is a binary treatment modality that involves the selective accumulation of 10B carriers in tumors followed by irradiation with a thermal or epithermal neutron beam. The minor abundance stable isotope of boron, 10B, interacts with low energy (thermal) neutrons to produce high linear energy transfer (LET) a-particles and 7Li ions. These disintegration products are known to have a high relative biological effectiveness (RBE). Their short range (<10 {micro}m) would limit the damage to cells containing 10B (1,2). Thus, BNCT would target tumor tissue selectively, sparing normal tissue. Clinical trials of BNCT for the treatment ofmore » glioblastoma multiforme and/or melanoma and, more recently, head and neck tumors and liver metastases, using boronophenylalanine (BPA) or sodium mercaptoundecahydrododecaborane (BSH) as the 10B carriers, have been performed or are underway in Argentina, Japan, the US and Europe (e.g. 3-8). To date, the clinical results have shown a potential, albeit inconclusive, therapeutic advantage for this technique. Contributory translational studies have been carried out employing a variety of experimental models based on the implantation of tumor cells in normal tissue (e.g. 5).« less
Optical spectroscopic studies of animal skin used in modeling of human cutaneous tissue
NASA Astrophysics Data System (ADS)
Drakaki, E.; Makropoulou, M.; Serafetinides, A. A.; Borisova, E.; Avramov, L.; Sianoudis, J. A.
2007-03-01
Optical spectroscopy and in particular laser-induced autofluorescence spectroscopy (LIAFS) and diffuse reflectance spectroscopy (DRS), provide excellent possibilities for real-time, noninvasive diagnosis of different skin tissue pathologies. However, the introduction of optical spectroscopy in routine medical practice demands a statistically important data collection, independent from the laser sources and detectors used. The scientists collect databases either from patients, in vivo, or they study different animal models to obtain objective information for the optical properties of various types of normal and diseased tissue. In the present work, the optical properties (fluorescence and reflectance) of two animal skin models are investigated. The aim of using animal models in optical spectroscopy investigations is to examine the statistics of the light induced effects firstly on animals, before any extrapolation effort to humans. A nitrogen laser (λ=337.1 nm) was used as an excitation source for the autofluorescence measurements, while a tungsten-halogen lamp was used for the reflectance measurements. Samples of chicken and pig skin were measured in vitro and were compared with results obtained from measurements of normal human skin in vivo. The specific features of the measured reflectance and fluorescence spectra are discussed, while the limits of data extrapolation for each skin type are also depicted.
Regulatory systems for hypoxia-inducible gene expression in ischemic heart disease gene therapy.
Kim, Hyun Ah; Rhim, Taiyoun; Lee, Minhyung
2011-07-18
Ischemic heart diseases are caused by narrowed coronary arteries that decrease the blood supply to the myocardium. In the ischemic myocardium, hypoxia-responsive genes are up-regulated by hypoxia-inducible factor-1 (HIF-1). Gene therapy for ischemic heart diseases uses genes encoding angiogenic growth factors and anti-apoptotic proteins as therapeutic genes. These genes increase blood supply into the myocardium by angiogenesis and protect cardiomyocytes from cell death. However, non-specific expression of these genes in normal tissues may be harmful, since growth factors and anti-apoptotic proteins may induce tumor growth. Therefore, tight gene regulation is required to limit gene expression to ischemic tissues, to avoid unwanted side effects. For this purpose, various gene expression strategies have been developed for ischemic-specific gene expression. Transcriptional, post-transcriptional, and post-translational regulatory strategies have been developed and evaluated in ischemic heart disease animal models. The regulatory systems can limit therapeutic gene expression to ischemic tissues and increase the efficiency of gene therapy. In this review, recent progresses in ischemic-specific gene expression systems are presented, and their applications to ischemic heart diseases are discussed. Copyright © 2011 Elsevier B.V. All rights reserved.
Identifying pathological biomarkers: histochemistry still ranks high in the omics era
Pellicciari, C.; Malatesta, M.
2011-01-01
In recent years, omic analyses have been proposed as possible approaches to diagnosis, in particular for tumours, as they should be able to provide quantitative tools to detect and measure abnormalities in gene and protein expression, through the evaluation of transcription and translation products in the abnormal vs normal tissues. Unfortunately, this approach proved to be much less powerful than expected, due to both intrinsic technical limits and the nature itself of the pathological tissues to be investigated, the heterogeneity deriving from polyclonality and tissue phenotype variability between patients being a major limiting factor in the search for unique omic biomarkers. Especially in the last few years, the application of refined techniques for investigating gene expression in situ has greatly increased the diagnostic/prognostic potential of histochemistry, while the progress in light microscopy technology and in the methods for imaging molecules in vivo have provided valuable tools for elucidating the molecular events and the basic mechanisms leading to a pathological condition. Histochemical techniques thus remain irreplaceable in pathologist's armamentarium, and it may be expected that even in the future histochemistry will keep a leading position among the methodological approaches for clinical pathology. PMID:22297448
Grover, Chander; Khurana, Ananta; Bhattacharya, Sambit Nath; Sharma, Arun
2015-01-01
Partial nail avulsion with lateral chemical matricectomy is the treatment of choice for ingrown toenails. Phenol (88%) is the most widely used chemical agent but prolonged postoperative drainage and collateral damage are common. Sodium hydroxide (NaOH) 10% has fewer side-effects. Adult, consenting patients with ingrown toenails were alternately allocated into two treatment groups in the order of their joining the study, to receive either 88% phenol (Group 1, n = 26) or 10% NaOH (Group 0, n = 23) chemical matricectomy. The patients as well as the statistician were blinded to the agent being used. Post-procedure follow-up evaluated median duration of pain, discharge, and healing along with recurrence, if any, in both the groups. The group wise data was statistically analyzed. Both the groups responded well to treatment with the median duration of postoperative pain being 7.92 days in Group 0 and 16.25 days in Group 1 (P < 0.202). Postoperative discharge continued for a median period of 15.42 days (Group 0) and 18.13 days (Group 1) (P < 0.203). The tissue condition normalized in 7.50 days (Group 0) and 15.63 days (Group 1) (P < 0.007). Limited postsurgical follow up of 6 months is a limitation of the study. Chemical matricectomy using NaOH is as efficacious as phenolisation, with the advantage of faster tissue normalization.
Goodwin, Thomas J.; McCarthy, Maureen; Osterrieder, Nikolaus; Cohrs, Randall J.; Kaufer, Benedikt B.
2013-01-01
Varicella-zoster virus (VZV) is a neurotropic human alphaherpesvirus that causes varicella upon primary infection, establishes latency in multiple ganglionic neurons, and can reactivate to cause zoster. Live attenuated VZV vaccines are available; however, they can also establish latent infections and reactivate. Studies of VZV latency have been limited to the analyses of human ganglia removed at autopsy, as the virus is strictly a human pathogen. Recently, terminally differentiated human neurons have received much attention as a means to study the interaction between VZV and human neurons; however, the short life-span of these cells in culture has limited their application. Herein, we describe the construction of a model of normal human neural progenitor cells (NHNP) in tissue-like assemblies (TLAs), which can be successfully maintained for at least 180 days in three-dimensional (3D) culture, and exhibit an expression profile similar to that of human trigeminal ganglia. Infection of NHNP TLAs with cell-free VZV resulted in a persistent infection that was maintained for three months, during which the virus genome remained stable. Immediate-early, early and late VZV genes were transcribed, and low-levels of infectious VZV were recurrently detected in the culture supernatant. Our data suggest that NHNP TLAs are an effective system to investigate long-term interactions of VZV with complex assemblies of human neuronal cells. PMID:23935496
3D Normal Human Neural Progenitor Tissue-Like Assemblies: A Model of Persistent VZV Infection
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J.
2013-01-01
Varicella-zoster virus (VZV) is a neurotropic human alphaherpesvirus that causes varicella upon primary infection, establishes latency in multiple ganglionic neurons, and can reactivate to cause zoster. Live attenuated VZV vaccines are available; however, they can also establish latent infections and reactivate. Studies of VZV latency have been limited to the analyses of human ganglia removed at autopsy, as the virus is strictly a human pathogen. Recently, terminally differentiated human neurons have received much attention as a means to study the interaction between VZV and human neurons; however, the short life-span of these cells in culture has limited their application. Herein, we describe the construction of a model of normal human neural progenitor cells (NHNP) in tissue-like assemblies (TLAs), which can be successfully maintained for at least 180 days in three-dimensional (3D) culture, and exhibit an expression profile similar to that of human trigeminal ganglia. Infection of NHNP TLAs with cell-free VZV resulted in a persistent infection that was maintained for three months, during which the virus genome remained stable. Immediate-early, early and late VZV genes were transcribed, and low-levels of infectious VZV were recurrently detected in the culture supernatant. Our data suggest that NHNP TLAs are an effective system to investigate long-term interactions of VZV with complex assemblies of human neuronal cells.
Topoisomerase II Inhibitors and Poisons, and the Influence of Cell Cycle Checkpoints.
D Arcy, Nicholas; Gabrielli, Brian
2017-01-01
Interactions between the decatenation checkpoint and Topoisomerase II (TopoII) are vital for maintaining integrity of the genome. Agents that target this enzyme have been in clinical use in cancer therapy for over 30 years with great success. The types of compounds that have been developed to target TopoII are broadly divided into poisons and catalytic inhibitors. The TopoII poisons are in clinical use as anti-cancer therapies, although in common to most chemotherapeutic agents, they display considerable normal tissue toxicity. Inhibition of the TopoIIb isoform has been implicated in this cytotoxicity. Response to TopoII active agents is determined by several factors, but cell cycle checkpoints play a large role in sensitivity and resistance. The G2/M phase checkpoints are of particular importance in considering the effectiveness of these drugs and are reviewed in this article. Functionality of the ATM dependent decatenation checkpoint may represent a new avenue for selective cancer therapy. Here we review the function of TopoII, the anti-cancer mechanisms and limitations of current catalytic inhibitors and poisons, and their influence on cell cycle checkpoints. We will also assess potential new mechanisms for targeting this enzyme to limit normal tissue toxicity, and how the cell cycle checkpoint triggered by these drugs may provide an alternative and possibly better target for novel therapies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Xiao, Zhujun; Li, Bingsheng; Wang, Guozhen; Zhu, Weisi; Wang, Zhongqiu; Lin, Jinfeng; Xu, Angao; Wang, Xinying
2014-04-20
Methylation-sensitive high-resolution melting (MS-HRM) is a new technique for assaying DNA methylation, but its feasibility for assaying stool in patients with colorectal cancer (CRC) is unknown. First, the MS-HRM and methylation-specific PCR (MSP) detection limits were tested. Second, the methylation statuses of SFRP2 and VIM were analyzed in stool samples by MS-HRM, and in matching tumor and normal colon tissues via bisulfite sequencing PCR (BSP). Third, a case-control study evaluated the diagnostic sensitivity and specificity of MS-HRM relative to results obtained with MSP and the fecal immunochemical test (FIT). Finally, the linearity and reproducibility of MS-HRM were assessed. The detection limits of MS-HRM and MSP were 1% and 5%, respectively. The diagnostic sensitivities of MS-HRM (87.3%, 55/63) in stool and BSP in matching tumor tissue (92.1%, 58/63) were highly consistent (κ=0.744). The MS-HRM assay detected 92.5% (37/40) methylation in CRCs, 94.4% (34/36) in advanced adenomas, and 8.8% (5/57) in normal controls. The results of MS-HRM analysis were stable and reliable and showed fairly good linearity for both SFRP2 (P<0.001, R(2)=0.957) and VIM (P<0.001, R(2)=0.954). MS-HRM shows potential for CRC screening. Copyright © 2014 Elsevier B.V. All rights reserved.
van Loon, Judith; Offermann, Claudia; Bosmans, Geert; Wanders, Rinus; Dekker, André; Borger, Jacques; Oellers, Michel; Dingemans, Anne-Marie; van Baardwijk, Angela; Teule, Jaap; Snoep, Gabriel; Hochstenbag, Monique; Houben, Ruud; Lambin, Philippe; De Ruysscher, Dirk
2008-04-01
To investigate the influence of selective irradiation of 18FDG-PET positive mediastinal nodes on radiation fields and normal tissue exposure in limited disease small cell lung cancer (LD-SCLC). Twenty-one patients with LD-SCLC, of whom both CT and PET images were available, were studied. For each patient, two three-dimensional conformal treatment plans were made with selective irradiation of involved lymph nodes, based on CT and on PET, respectively. Changes in treatment plans as well as dosimetric factors associated with lung and esophageal toxicity were analyzed and compared. FDG-PET information changed the treatment field in 5 patients (24%). In 3 patients, this was due to a decrease and in 2 patients to an increase in the number of involved nodal areas. However, there were no significant differences in gross tumor volume (GTV), lung, and esophageal parameters between CT- and PET-based plans. Incorporating FDG-PET information in radiotherapy planning for patients with LD-SCLC changed the treatment plan in 24% of patients compared to CT. Both increases and decreases of the GTV were observed, theoretically leading to the avoidance of geographical miss or a decrease of radiation exposure of normal tissues, respectively. Based on these findings, a phase II trial, evaluating PET-scan based selective nodal irradiation, is ongoing in our department.
High-resolution, 2- and 3-dimensional imaging of uncut, unembedded tissue biopsy samples.
Torres, Richard; Vesuna, Sam; Levene, Michael J
2014-03-01
Despite continuing advances in tissue processing automation, traditional embedding, cutting, and staining methods limit our ability for rapid, comprehensive visual examination. These limitations are particularly relevant to biopsies for which immediate therapeutic decisions are most necessary, faster feedback to the patient is desired, and preservation of tissue for ancillary studies is most important. The recent development of improved tissue clearing techniques has made it possible to consider use of multiphoton microscopy (MPM) tools in clinical settings, which could address difficulties of established methods. To demonstrate the potential of MPM of cleared tissue for the evaluation of unembedded and uncut pathology samples. Human prostate, liver, breast, and kidney specimens were fixed and dehydrated by using traditional histologic techniques, with or without incorporation of nucleic acid fluorescent stains into dehydration steps. A benzyl alcohol/benzyl benzoate clearing protocol was substituted for xylene. Multiphoton microscopy was performed on a home-built system. Excellent morphologic detail was achievable with MPM at depths greater than 500 μm. Pseudocoloring produced images analogous to hematoxylin-eosin-stained images. Concurrent second-harmonic generation detection allowed mapping of collagen. Subsequent traditional section staining with hematoxylin-eosin did not reveal any detrimental morphologic effects. Sample immunostains on renal tissue showed preservation of normal reactivity. Complete reconstructions of 1-mm cubic samples elucidated 3-dimensional architectural organization. Multiphoton microscopy on cleared, unembedded, uncut biopsy specimens shows potential as a practical clinical tool with significant advantages over traditional histology while maintaining compatibility with gold standard techniques. Further investigation to address remaining implementation barriers is warranted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Q; Lei, Y; Zheng, D
Purpose: To evaluate dose fall-off in normal tissue for lung stereotactic body radiation therapy (SBRT) cases planned with different prescription isodose levels (IDLs), by calculating the dose dropping speed (DDS) in normal tissue on plans computed with both Pencil Beam (PB) and Monte-Carlo (MC) algorithms. Methods: The DDS was calculated on 32 plans for 8 lung SBRT patients. For each patient, 4 dynamic conformal arc plans were individually optimized for prescription isodose levels (IDL) ranging from 60% to 90% of the maximum dose with 10% increments to conformally cover the PTV. Eighty non-overlapping rind structures each of 1mm thickness weremore » created layer by layer from each PTV surface. The average dose in each rind was calculated and fitted with a double exponential function (DEF) of the distance from the PTV surface, which models the steep- and moderate-slope portions of the average dose curve in normal tissue. The parameter characterizing the steep portion of the average dose curve in the DEF quantifies the DDS in the immediate normal tissue receiving high dose. Provided that the prescription dose covers the whole PTV, a greater DDS indicates better normal tissue sparing. The DDS were compared among plans with different prescription IDLs, for plans computed with both PB and MC algorithms. Results: For all patients, the DDS was found to be the lowest for 90% prescription IDL and reached a highest plateau region for 60% or 70% prescription. The trend was the same for both PB and MC plans. Conclusion: Among the range of prescription IDLs accepted by lung SBRT RTOG protocols, prescriptions to 60% and 70% IDLs were found to provide best normal tissue sparing.« less
Chen, Liangliang; Ye, Yufeng; Chen, Hanwei; Chen, Shihui; Jiang, Jinzhao; Dan, Guo; Huang, Bingsheng
2018-06-01
To study the difference of the Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) parameters among the primary tumor, metastatic node and peripheral normal tissue of head and neck cancer. Consecutive newly-diagnosed head and neck cancer patients with nodal metastasis between December 2010 and July 2013 were recruited, and 25 patients (8 females; 24~63,mean 43±11 years old) were enrolled. DCE-MRI was performed in the primary tumor region including the regional lymph nodes on a 3.0-T MRI system. Three quantitative parameters: Ktrans (volume transfer constant), ve (volume fraction of extravascular extracellular space) and kep (the rate constant of contrast transfer) were calculated for the largest node. A repeated-measure ANOVA with a Greenhouse-Geisser correction and post hoc tests using the Bonferroni correction were used to evaluate the differences in Ktrans, ve and kep among primary tumors, metastatic nodes and normal tissue. The values of both Ktrans and ve of normal tissue differed significantly from those of nodes (both P < 0.001) and primary tumors (both P < 0.001) respectively, while no significant differences of Ktrans and ve were observed between nodes and primary tumors (P = 0.075 and 0.365 respectively). The kep values of primary tumors were significantly different from those of nodes (P = 0.001) and normal tissue (P = 0.002), while no significant differences between nodes and normal tissue (P > 0.999). The DCE-MRI parameters were different in the tumors, metastatic nodes and normal tissue in head and neck cancer. These findings may be useful in the characterization of head and neck cancer.
Total marrow irradiation using Helical TomoTherapy
NASA Astrophysics Data System (ADS)
Garcia-Fernandez, Lourdes Maria
Clinical dose response data of human tumours are limited or restricted to a radiation dose range determined by the level of toxicity to the normal tissues. This is the case for the most common disseminated plasma cell neoplasm, multiple myeloma, where the maximum dose deliverable to the entire bony skeleton using a standard total body irradiation (TBI) technique is limited to about 12 Gy. This study is part of scientific background of a phase I/II dose escalation clinical trial for multiple myeloma using image-guided intensity modulated radiotherapy (IG-IMRT) to deliver high dose to the entire volume of bone marrow with Helical TomoTherapy (HT). This relatively new technology can deliver highly conformal dose distributions to complex target shapes while reducing the dose to critical normal tissues. In this study tools for comparing and predicting the effectiveness of different approaches to total marrow irradiation (TMI) using HT were provided. The expected dose response for plasma cell neoplasms was computed and a radiobiological evaluation of different treatment cohorts in a dose escalating study was performed. Normal tissue complication probability (NTCP) and tumour control probability (TCP) models were applied to an actual TMI treatment plan for a patient and the implications of using different longitudinal field widths were assessed. The optimum dose was ˜39 Gy for which a predicted tumour control of 95% (+/-3%) was obtained, with a predicted 3% (0, 8%) occurrence of radiation pneumonitis. Tissue sparing was seen by using smaller field widths only in the organs of the head. This suggests it would be beneficial to use the small fields in the head only since using small fields for the whole treatment would lead to long treatment times. In TMI it may be necessary to junction two longitudinally adjacent treatment volumes to form a contiguous planning target volume PTV. For instance, this is the case when a different SUP-INF spatial resolution is required or when the PTV length exceeds the bed travel distance. In this work, the dosimetric challenges associated with junctioning longitudinally adjacent PTVs with HT were analyzed and the feasibility of PTV junctioning was demonstrated. The benefits of spatially dividing or splitting the treatment into a few sub-treatments along the longitudinal direction were also investigated.
Pharmacokinetics and distribution of SN 28049, a novel DNA binding anticancer agent, in mice.
Lukka, Pradeep B; Paxton, James W; Kestell, Philip; Baguley, Bruce C
2010-05-01
N-[2-(Dimethylamino)ethyl]-2,6-dimethyl-1-oxo-1,2-dihydrobenzo[b]-1,6-naphthyridine-4-carboxamide (SN 28049) is a potent DNA binding topoisomerase II poison that shows excellent antitumour activity in a colon-38 murine tumour model in comparison to standard topoisomerase II poisons. We report here the preclinical pharmacokinetics of SN 28049. C57 Bl/6 mice (n = 3 per time point) were treated with a single i.v., i.p. or p.o. administration (8.9 mg/kg). Plasma and tissue samples were analysed using a validated LC/MS method utilizing a homologue as an internal standard. The assay range was 0.062-2.5 microM with a quantitation limit of 0.062 microM and a detection limit of 0.025 microM. Acceptable intra- and inter-assay accuracy (95-105%) and precision (<6.5% RSD) were achieved. Following i.v. administration, SN 28049 demonstrated 2-compartment model kinetics with a volume of distribution of 42.3 +/- 4.1 l/kg, a plasma clearance of 12.1 +/- 0.5 l/h per kg and distribution and elimination half-lives of 0.15 +/- 0.02 and 2.8 +/- 0.2 h (mean +/- SE), respectively. For all administration routes, SN 28049 concentrations in normal tissues (brain, heart, liver, lung, and kidney) were 12- to 120-fold higher than those in plasma, but half-lives and mean residence times were similar. The i.p. and p.o. bioavailabilities were 83.1 +/- 1.5 and 54.5 +/- 1.1%, respectively. In the tumour tissue, elimination half-life (9.1 +/- 0.7 h) and the mean residence time (18.2 +/- 0.7 h) were significantly (P < 0.001) longer than those of plasma and normal tissues. The tumour area under the concentration-time curve (AUC) (1,316 +/- 66 microM h) was also 693-fold greater than the plasma AUC, and considerably higher (approximately 5-fold) than any other tissue examined, indicating selective uptake and retention of SN 28049 in the tumour. We conclude that SN 28049's high tumour exposure and long tumour retention time is likely to contribute to its high antitumour activity in vivo.
Bartlett, David C; Newsome, Philip N
2017-01-01
Successful hepatocyte isolation is critical for continued development of cellular transplantation. However, most tissue available for research is from diseased liver and the results of hepatocyte isolation from such tissue are inferior compared to normal tissue. Here we describe a modified method, combining the use of Liberase and N-acetylcysteine (NAC), for the isolation of primary human hepatocytes with high viability from normal and diseased liver.
Karbasi, Ashraf; Borhani, Nasim; Daliri, Karim; Kazemi, Bahram; Manoochehri, Mehdi
2015-06-01
Human papillomaviruses (HPV) have frequently been detected in colorectal cancer tumor samples, and may play a role in the pathogenesis of colorectal cancer. This study was designed to investigate the presence of DNA and RNA for the high-risk HPV genotypes 16 and 18 in samples of colorectal cancer tumors and adjacent normal tissues. We also investigated the expression of proapoptotic genes in HPV-positive colorectal tumors compared to normal tissue samples. Samples of tumoral and adjacent normal tissues were fresh-frozen, and HPV DNA was identified by nested and semiquantitative PCR. Real time PCR was used to quantitatively compare the expression of HPV-18 E6 and nine proapoptotic genes in HPV-positive tumors and samples of adjacent normal tissue. HPV-16 DNA was found in 10.5% of the tumor samples, and HPV-18 DNA was found in 23.6% of the samples. Real time PCR results showed lower expression of the E6 gene in HPV-positive tumors than in adjacent normal tissue. The expression of two proapoptotic genes, FAS and DR5, was significantly lower in tumor samples than in adjacent normal tissues. HPV infection, especially HPV-18, may play a role in colorectal cancer tumorigenesis by downregulating death receptor genes and interfering with the extrinsic pathway of apoptosis. Copyright © 2015 Elsevier GmbH. All rights reserved.
THE PROS AND CONS OF APOPTOSIS ASSAYS FOR USE IN THE STUDY OF CELLS, TISSUES AND ORGANS
Abstract
Programmed cell death or apoptosis occurs in many tissues during normal development and in the normal homeostasis of adult tissues. Apoptosis also plays a significant role in abnormal development and disease. Increased interest in apoptosis and cell death in general...
Prostate Cancer Detection Using Near Infrared Spectral Polarization Imaging
2005-07-01
position. This indicates the polarization preservation nature of Cybesin. Time Resolved Fluorescence Intensity of Cybesin 60000 Perpendicular 3000 0...absorption than that of normal tissue at water absorption peaks indicating cancer tissue has less water content than that of normal tissue; (5) preliminary...rectum-and-membrane tissues.’ This indicates that our proposed approach of imaging a prostate gland through rectum using spectral polarization imaging
NASA Astrophysics Data System (ADS)
Renschler, Markus F.; Yuen, Alan R.; Panella, Timothy J.; Wieman, Thomas J.; Dougherty, Shona; Esserman, Laura; Panjehpour, Masoud; Taber, Scott W.; Fingar, Victor H.; Lowe, Elizabeth; Engel, Julie S.; Lum, Bert; Woodburn, Kathryn W.; Cheong, Wai-Fung; Miller, Richard A.
1998-05-01
Photodynamic therapy (PDT) of locally recurrent breast cancer has been limited to treatment of small lesions because of non- selective necrosis of adjacent normal tissues in the treatment field. Lutetium Texaphyrin (PCI-0123, Lu-Tex) is a photosensitizer with improved tumor localization that is activated by 732 nm light, which can penetrate through larger tumors. We have evaluated Lu-Tex in a Phase I trial and in an ongoing Phase II trial in women with locally recurrent breast cancer with large tumors who have failed radiation therapy. Patients received Lu-Tex intravenously by rapid infusion 3 hours before illumination of cutaneous or subcutaneous lesions. In Phase I, Lu-Tex doses were escalated from 0.6 to 7.2 mg/kg in 7 cohorts. Sixteen patients with locally recurrent breast cancer lesions were treated. Dose limiting toxicities above 5.5 mg/kg were pain in the treatment field during therapy, and dysesthesias in light exposed areas. No necrosis of normal tissues in the treated field was noticed. Responses were observed in 60% of evaluable patients [n equals 15, 27% complete remission (CR), 33% partial remission (PR)], with 63% of lesions responding (n equals 73: 45% CR, 18% PR). In Phase II, 25 patients have been studied to date, receiving two treatments ranging from 1.0 to 3.0 mg/kg at a 21 day interval. Treatment fields up to 480 cm2 in size were treated successfully and activity has been observed. Patients have experienced pain at the treatment site but no tissue necrosis. These studies demonstrate the feasibility of Lu-Tex PDT to large chest wall areas in women who have failed radiation therapy for the treatment of locally recurrent breast cancer. Treatment conditions are currently being optimized in the ongoing Phase II trials.
Proton Therapy in Children: A Systematic Review of Clinical Effectiveness in 15 Pediatric Cancers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leroy, Roos, E-mail: Roos.leroy@kce.fgov.be; Benahmed, Nadia; Hulstaert, Frank
Because it spares many normal tissues and reduces the integral dose, proton therapy (PT) is the preferred tumor irradiation technique for treating childhood cancer. However, to the best of our knowledge, no systematic review of the clinical effectiveness of PT in children has been reported in the scientific literature. A systematic search for clinical outcome studies on PT published between 2007 and 2015 was performed in Medline (through OVID), EMBASE, and the Cochrane Library. Twenty-three primary studies were identified, including approximately 650 patients overall. The median/mean follow-up times were limited (range, 19-91 months). None of the studies were randomized, 2 weremore » comparative, and 20 were retrospective. Most suffered from serious methodologic limitations, yielding a very low level of clinical evidence for the outcomes in all indications. For example, for retinoblastoma, very low-level evidence was found that PT might decrease the incidence of second malignancies. For chondrosarcoma, chordoma, craniopharyngioma, ependymoma, esthesioneuroblastoma, Ewing sarcoma, central nervous system germinoma, glioma, medulloblastoma, osteosarcoma, and rhabdomyosarcoma, there was insufficient evidence to either support or refute PT in children. For pelvic sarcoma (ie, nonrhabdomyosarcoma and non-Ewing sarcoma), pineal parenchymal tumor, primitive neuroectodermal tumor, and “adult-type” soft tissue sarcoma, no studies were identified that fulfilled the inclusion criteria. Although there is no doubt that PT reduces the radiation dose to normal tissues and organs, to date the critical clinical data on the long-term effectiveness and harm associated with the use of PT in the 15 pediatric cancers under investigation are lacking. High-quality clinical research in this area is needed.« less
De Silva, Sonali S; Payne, Geoffrey S; Thomas, Valerie; Carter, Paul G; Ind, Thomas E J; deSouza, Nandita M
2009-02-01
The aim of this study was to determine the metabolic changes in the transition from pre-invasive to invasive cervical cancer using high-resolution magic angle spinning (HR-MAS) MRS. Biopsy specimens were obtained from women with histologically normal cervix (n = 5), cervical intraepithelial neoplasia (CIN; mild, n = 5; moderate/severe, n = 40), and invasive cancer (n = 23). (1)H HR-MAS MRS data were acquired using a Bruker Avance 11.74 T spectrometer (Carr-Purcell-Meiboom-Gill sequence; TR = 4.8 s; TE = 135 ms; 512 scans; 41 min acquisition). (31)P HR-MAS spectra were obtained from the normal subjects and cancer patients only (as acetic acid applied before tissue sampling in patients with CIN impaired spectral quality) using a (1)H-decoupled pulse-acquire sequence (TR = 2.82 s; 2048 scans; 96 min acquisition). Peak assignments were based on values reported in the literature. Peak areas were measured using the AMARES algorithm. Estimated metabolite concentrations were compared between patient diagnostic categories and tissue histology using independent samples t tests. Comparisons based on patient category at diagnosis showed significantly higher estimated concentrations of choline (P = 0.0001) and phosphocholine (P = 0.002) in tissue from patients with cancer than from patients with high-grade dyskaryosis, but no differences between non-cancer groups. Division by histology of the sample also showed increases in choline (P = 0.002) and phosphocholine (P = 0.002) in cancer compared with high-grade CIN tissue. Phosphoethanolamine was increased in cancer compared with normal tissue (P = 0.0001). Estimated concentrations of alanine (P = 0.01) and creatine (P = 0.008) were significantly reduced in normal tissue from cancer patients compared with normal tissue from non-cancer patients. The estimated concentration of choline was significantly increased in CIN tissue from cancer patients compared with CIN tissue from non-cancer patients (P = 0.0001). Estimated concentrations of choline-containing metabolites increased from pre-invasive to invasive cervical cancer. Concurrent metabolite depletion occurs in normal tissue adjacent to cancer tissue. Copyright (c) 2008 John Wiley & Sons, Ltd.
Chetboul, Valérie; Blot, Stephane; Sampedrano, Carolina Carlos; Thibaud, Jean-Laurent; Granger, Nicolas; Tissier, Renaud; Bruneval, Patrick; Gaschen, Frederic; Gouni, Vassiliki; Nicolle, Audrey P; Pouchelon, Jean-Louis
2006-01-01
Diagnosis of feline hypertrophic cardiomyopathy currently is based on the presence of myocardial hypertrophy detected using conventional echocardiography. The accuracy of tissue Doppler imaging (TDI) for earlier detection of the disease has never been described. The objective of this sudy was to quantify left ventricular free wall (LVFW) velocities in cats with hypertrophic muscular dystrophy (HFMD) during preclinical cardiomyopathy using TDI. The study animals included 22 healthy controls and 7 cats belonging to a family of cats with HFMD (2 affected adult males, 2 heterozygous adult females, one 2.5-month-old affected male kitten, and 2 phenotypically normal female kittens from the same litter). All cats were examined via conventional echocardiography and 2-dimensional color TDI. No LVFW hypertrophy was detected in the 2 carriers or in the affected kitten when using conventional echocardiography and histologic examination, respectively. The LVFW also was normal for 1 affected male and at the upper limit of normal for the 2nd male. Conversely, LVFW dysfunction was detected in all affected and carrier cats with HFMD when using TDI. TDI consistently detects LVFW dysfunction in cats with HFMD despite the absence of myocardial hypertrophy. Therefore, TDI appears more sensitive than conventional echocardiography in detecting regional myocardial abnormalities.
[Dose rate-dependent cellular and molecular effects of ionizing radiation].
Przybyszewski, Waldemar M; Wideł, Maria; Szurko, Agnieszka; Maniakowski, Zbigniew
2008-09-11
The aim of radiation therapy is to kill tumor cells while minimizing damage to normal cells. The ultimate effect of radiation can be apoptotic or necrotic cell death as well as cytogenetic damage resulting in genetic instability and/or cell death. The destructive effects of radiation arise from direct and indirect ionization events leading to peroxidation of macromolecules, especially those present in lipid-rich membrane structures as well as chromatin lipids. Lipid peroxidative end-products may damage DNA and proteins. A characteristic feature of radiation-induced peroxidation is an inverse dose-rate effect (IDRE), defined as an increase in the degree of oxidation(at constant absorbed dose) accompanying a lower dose rate. On the other hand, a low dose rate can lead to the accumulation of cells in G2, the radiosensitive phase of the cell cycle since cell cycle control points are not sensitive to low dose rates. Radiation dose rate may potentially be the main factor improving radiotherapy efficacy as well as affecting the intensity of normal tissue and whole-body side effects. A better understanding of dose rate-dependent biological effects may lead to improved therapeutic intervention and limit normal tissue reaction. The study reviews basic biological effects that depend on the dose rate of ionizing radiation.
NASA Astrophysics Data System (ADS)
Paul, Akshay; Chang, Theodore H.; Chou, Li-Dek; Ramalingam, Tirunelveli S.
2016-03-01
Evaluation of neurodegenerative disease often requires examination of brain morphology. Volumetric analysis of brain regions and structures can be used to track developmental changes, progression of disease, and the presence of transgenic phenotypes. Current standards for microscopic investigation of brain morphology are limited to detection of superficial structures at a maximum depth of 300μm. While histological techniques can provide detailed cross-sections of brain structures, they require complicated tissue preparation and the ultimate destruction of the sample. A non-invasive, label-free imaging modality known as Optical Coherence Tomography (OCT) can produce 3-dimensional reconstructions through high-speed, cross-sectional scans of biological tissue. Although OCT allows for the preservation of intact samples, the highly scattering and absorbing properties of biological tissue limit imaging depth to 1-2mm. Optical clearing agents have been utilized to increase imaging depth by index matching and lipid digestion, however, these contemporary techniques are expensive and harsh on tissues, often irreversibly denaturing proteins. Here we present an ideal optical clearing agent that offers ease-of-use and reversibility. Similar to how SeeDB has been effective for microscopy, our fructose-based, reversible optical clearing technique provides improved OCT imaging and functional immunohistochemical mapping of disease. Fructose is a natural, non-toxic sugar with excellent water solubility, capable of increasing tissue transparency and reducing light scattering. We will demonstrate the improved depth-resolving performance of OCT for enhanced whole-brain imaging of normal and diseased murine brains following a fructose clearing treatment. This technique potentially enables rapid, 3-dimensional evaluation of biological tissues at axial and lateral resolutions comparable to histopathology.
Kleemann, D.; MacRobert, A. J.; Mentzel, T.; Speight, P. M.; Bown, S. G.
1996-01-01
Photodynamic therapy (PDT) is a promising technique for the treatment of small tumours in organs where it is essential to minimise damage to immediately adjacent normal tissue as PDT damage to many tissues heals by regeneration rather than scarring. As preservation of function is one of the main aims of treating laryngeal tumours, this project studied the effects of PDT on the normal rabbit larynx with two photosensitisers, endogenous protoporphyrin IX (PPIX) induced by the administration of 5-aminolaevulinic acid (ALA) and disulphonated aluminium phthalocyanine (AIS2Pc). The main aims of the study were to examine the distribution of protoporphyrin IX and AIS2Pc by fluorescence microscopy in the different regions of the larnyx and to assess the nature and subsequent healing of PDT damage. Peak levels of PPIX were found 0.5-4 h after administration of ALA (depending on dose) with highest levels in the epithelium of the mucosa. With 100 mg kg-1, PDT necrosis was limited to the mucosa, whereas with 200 mg kg-1 necrosis extended to the muscle. With 1 mg kg-1 AIS2Pc, 1 h after administration, the drug was mainly in the submucosa and muscle, whereas after 24 h, it was predominantly in the mucosa. PDT at 1 h caused deep necrosis whereas at 24 h it was limited to the mucosa. All mucosal necrosis healed by regeneration whereas deeper effects left some fibrosis. No damage to cartilage was seen in any of the animals studied. The results of this study have shown that both photosensitisers are suitable for treating mucosal lesions of the larynx, but that for both it is important to optimise the drug dose and time interval between drug and light to avoid unacceptable changes in normal areas. Images Figure 2 Figure 3 Figure 5 Figure 6 Figure 7 Figure 8 PMID:8679457
An infant with mos45,X/46,XY/47,XYY/48,XYYY: Genetic and clinical findings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, J.; Blumenthal, D.; Brock, W.
1994-09-01
We report on an infant with mos45,X/46,XY/47,XYY/48,XYYY who presented with ambiguous genitalia. The patient was the 2,637 gram product of a 38 week gestation and elective repeat C-section born to a 35 year old G3P2 mother. The pregnancy was complicated by placenta previa. There was no history of maternal health problems or drug or steroid use. At birth bilateral epicanthal folds and overfolded helices were noted without webbing of the neck or lymphedema. There was a phallic structure measuring 1.5 cm with dorsal hood and midline cleft with a normal female introitus, urethra, and vagina. Congenital adrenal hyperplaxia was excluded.more » Renal ultrasound was normal. Periperal blood chromosomes revealed a mos45,X(38%)/47,XYY(29%)/48,XYYY(33%) karyotype. Echocardiography revealed coarctation of the aorta and a bicuspid aortic valve. An additional cell line, 46,XY, was identified in aortic tissue obtained at the time of surgery. At age 15 months she was 25% in height and weight and had bilateral ptosis. Her development was within normal limits, but no words except {open_quotes}Mama{close_quotes} or {open_quotes}Dada{close_quotes} were spoken. A left intraabdominal testis with epididymis and dilated tubules and bilateral Fallopian tubes were removed at laparoscopy/reconstruction. Cell cultures were initiated from gonadal tissue, and karyotypes are pending. Patients with mosaic Y chromosome aneuploidy involving 2 Y chromosomes are rare. Eighteen patients with 45,X/47,XYY have been described; prenatally diagnosed cases appeared to be normal male whereas cases diagnosed postnally presented with ambiguous genitalia and/or other anomalies. The phenotype of Y chromosome aneuploidy with 3 Y chromosomes is even more unpredictable due to the paucity of reported cases. To our knowledge this is the first patient described with this unusual karyotype, thus adding to the limited information of patients with rare mosaic Y chromosome aneuploidy.« less
Smart biomaterials design for tissue engineering and regenerative medicine.
Furth, Mark E; Atala, Anthony; Van Dyke, Mark E
2007-12-01
As a prominent tool in regenerative medicine, tissue engineering (TE) has been an active field of scientific research for nearly three decades. Clinical application of TE technologies has been relatively restricted, however, owing in part to the limited number of biomaterials that are approved for human use. While many excellent biomaterials have been developed in recent years, their translation into clinical practice has been slow. As a consequence, many investigators still employ biodegradable polymers that were first approved for use in humans over 30 years ago. During normal development tissue morphogenesis is heavily influenced by the interaction of cells with the extracellular matrix (ECM). Yet simple polymers, while providing architectural support for neo-tissue development, do not adequately mimic the complex interactions between adult stem and progenitor cells and the ECM that promote functional tissue regeneration. Future advances in TE and regenerative medicine will depend on the development of "smart" biomaterials that actively participate in the formation of functional tissue. Clinical translation of these new classes of biomaterials will be supported by many of the same evaluation tools as those developed and described by Professor David F. Williams and colleagues over the past 30 years.
An overview of cartilage tissue engineering.
Kim, H W; Han, C D
2000-12-01
Articular cartilage regeneration refers to the formation of new tissue that is indistinguishable from the native articular cartilage with respect to zonal organization, biochemical composition, and mechanical properties. Due to a limited capacity to repair cartilage, scar tissue frequently has a poorly organized structure and lacks the functional characteristics of normal cartilage. The degree of success to date achieved using a purely cell- or biological-based approach has been modest. Potentially the development of a hybrid strategy, whereby, chondrocytes or chondrogenic stem cells are combined with a matrix, making cartilage in vitro, which is then subsequently transplanted, offers a route towards a new successful treatment modality. The success of this approach depends upon the material being biocompatible, processable into a suitable three-dimensional structure and eventually biodegradable without harmful effects. In addition, the material should have a sufficient porosity to facilitate high cell loading and tissue ingrowth, and it should be able to support cell proliferation, differentiation, and function. The cell-polymer-bioreactor system provides a basis for studying the structural and functional properties of the cartilaginous matrix during its development, because tissue concentrations of glycosaminoglycan and collagen can be modulated by altering the conditions of tissue cultivation.
Sensory Innervation of the Nonspecialized Connective Tissues in the Low Back of the Rat
Corey, Sarah M.; Vizzard, Margaret A.; Badger, Gary J.; Langevin, Helene M.
2011-01-01
Chronic musculoskeletal pain, including low back pain, is a worldwide debilitating condition; however, the mechanisms that underlie its development remain poorly understood. Pathological neuroplastic changes in the sensory innervation of connective tissue may contribute to the development of nonspecific chronic low back pain. Progress in understanding such potentially important abnormalities is hampered by limited knowledge of connective tissue's normal sensory innervation. The goal of this study was to evaluate and quantify the sensory nerve fibers terminating within the nonspecialized connective tissues in the low back of the rat. With 3-dimensional reconstructions of thick (30–80 μm) tissue sections we have for the first time conclusively identified sensory nerve fiber terminations within the collagen matrix of connective tissue in the low back. Using dye labeling techniques with Fast Blue, presumptive dorsal root ganglia cells that innervate the low back were identified. Of the Fast Blue-labeled cells, 60–88% also expressed calcitonin gene-related peptide (CGRP) immunoreactivity. Based on the immunolabeling with CGRP and the approximate size of these nerve fibers (≤2 μm) we hypothesize that they are Aδ or C fibers and thus may play a role in the development of chronic pain. PMID:21411968
Hyaluronic Acid (HA) Scaffolds and Multipotent Stromal Cells (MSCs) in Regenerative Medicine.
Prè, Elena Dai; Conti, Giamaica; Sbarbati, Andrea
2016-12-01
Traditional methods for tissue regeneration commonly used synthetic scaffolds to regenerate human tissues. However, they had several limitations, such as foreign body reactions and short time duration. In order to overcome these problems, scaffolds made of natural polymers are preferred. One of the most suitable and widely used materials to fabricate these scaffolds is hyaluronic acid. Hyaluronic acid is the primary component of the extracellular matrix of the human connective tissue. It is an ideal material for scaffolds used in tissue regeneration, thanks to its properties of biocompatibility, ease of chemical functionalization and degradability. In the last few years, especially from 2010, scientists have seen that the cell-based engineering of these natural scaffolds allows obtaining even better results in terms of tissue regeneration and the research started to grow in this direction. Multipotent stromal cells, also known as mesenchymal stem cells, plastic-adherent cells isolated from bone marrow and other mesenchymal tissues, with self-renew and multi-potency properties are ideal candidates for this aim. Normally, they are pre-seeded onto these scaffolds before their implantation in vivo. This review discusses the use of hyaluronic acid-based scaffolds together with multipotent stromal cells, as a very promising tool in regenerative medicine.
Timoshenko, O S; Gureeva, T A; Kugaevskaya, E V; Zavalishina, L E; Andreeva, Yu Yu; Solovyeva, N I
to investigate the expression of the membrane-bound matrix metalloproteinase MT1-MMP (MMP-14), its tissue inhibitor TIMP-2, and the proMMP-14 activator furin in the corpus uteri from the vaginal wall to the bottom of the uterine cavity in squamous cell carcinoma of the cervix (SCCC). Hysterectomy material was examined in patients with SCCC. Reverse transcriptase polymerase chain reaction (RT-PCR), immunohistochemistry (IHC), and enzyme assays were used. In SCCC, higher levels of MMP-14 expression were established in tumor cells, as evidenced by IHC (+3) and RT-PCR. IHC showed that the expression of MMP-14 was absent or insignificant in the normal uterine endometrial and myometrial tissues. However, that of MMP-14 mRNA was also found in the normal tissues to the bottom of the uterine cavity. Furin activity in the tumor was much higher than that in normal tissues. IHC indicated that TIMP-2 expression was low or absent in both the tumor and normal tissues. The expression of TIMP-2 mRNA was sufficiently obvious in both the tumor and normal tissues to the bottom of the uterine cavity. In SCCC, MMP-14 expression was substantially increased in tumors. The expression of MMP-14 and regulators of its activity is aimed at enhancing the tumor destructive (invasive) potential in the pericellular space and can occur (be induced) in the morphologically normal uterine tissue apparently with involvement of signaling through the epithelial-mesenchymal interaction. Data are important for understanding the role of MMP-14 in the development of a multistage process of carcinogenesis and may have prognostic value and an impact on therapeutic strategy for the patient.
Differentiation of Normal and Malignant Breast Tissues using Infrared Spectroscopy
NASA Astrophysics Data System (ADS)
Mehrotra, Ranjana; Jangir, Deepak Kumar; Gupta, Alka; Kandpal, H. C.
2008-11-01
Infrared spectra of carcinomatous and their normal fore bearing tissues were collected in the 600 cm-1 to 4000 cm-1 region. Fourier Transform Infrared (FTIR) data of infiltrating ductal carcinoma of breast with different grades of malignancy from patients of different age groups were analyzed. Infrared spectra demonstrate significant spectral differences between the tumor sections of normal and the malignant breast tissues. In particular, changes in frequency and intensity in the spectra of protein, nucleic acid and glycogen were observed. This allows to make a qualitative and semi quantitative evaluation of the changes in proliferation activities from normal to diseased tissue. The findings establish a framework for additional studies, which may enable us to establish a relation of the diseased state with its infrared spectra.
Brain tumor imaging of rat fresh tissue using terahertz spectroscopy
NASA Astrophysics Data System (ADS)
Yamaguchi, Sayuri; Fukushi, Yasuko; Kubota, Oichi; Itsuji, Takeaki; Ouchi, Toshihiko; Yamamoto, Seiji
2016-07-01
Tumor imaging by terahertz spectroscopy of fresh tissue without dye is demonstrated using samples from a rat glioma model. The complex refractive index spectrum obtained by a reflection terahertz time-domain spectroscopy system can discriminate between normal and tumor tissues. Both the refractive index and absorption coefficient of tumor tissues are higher than those of normal tissues and can be attributed to the higher cell density and water content of the tumor region. The results of this study indicate that terahertz technology is useful for detecting brain tumor tissue.
Fusobacterium nucleatum as a prognostic marker of colorectal cancer in a Japanese population.
Yamaoka, Yuko; Suehiro, Yutaka; Hashimoto, Shinichi; Hoshida, Tomomi; Fujimoto, Michiyo; Watanabe, Michiya; Imanaga, Daiki; Sakai, Kouhei; Matsumoto, Toshihiko; Nishioka, Mitsuaki; Takami, Taro; Suzuki, Nobuaki; Hazama, Shoichi; Nagano, Hiroaki; Sakaida, Isao; Yamasaki, Takahiro
2018-04-01
Accumulating evidence shows an overabundance of Fusobacterium nucleatum in colorectal tumor tissues. However, the correlation between the absolute copy number of F. nucleatum in colorectal cancer tissues and colorectal cancer progression is unclear from previous reports. Therefore, we performed a study to compare the abundance of F. nucleatum in colorectal tissues with clinicopathologic and molecular features of colorectal cancer. We collected 100 colorectal cancer tissues and 72 matched normal-appearing mucosal tissues. Absolute copy numbers of F. nucleatum were measured by droplet digital PCR. The detection rates of F. nucleatum were 63.9% (46/72) in normal-appearing mucosal tissues and 75.0% (75/100) in CRC tissue samples. The median copy number of F. nucleatum was 0.4/ng DNA in the normal-appearing colorectal mucosa in patients with colorectal cancer and 1.9/ng DNA in the colorectal cancer tissues (P = 0.0031). F. nucleatum copy numbers in stage IV colorectal cancer tissues were significantly higher than those in the normal-appearing mucosa in patients with colorectal cancer (P = 0.0016). The abundance of F. nucleatum in colorectal cancer tissues correlated with tumor size and KRAS mutation and was significantly associated with shorter overall survival times; this trend was notable in the patients with stage IV colorectal cancer. Focusing on normal-appearing mucosa in the patients with colorectal cancer, the F. nucleatum copy number was significantly higher in the patients with stage IV rather than stages I-III. These results suggest that determining F. nucleatum levels may help predict clinical outcomes in colorectal cancer patients. Further confirmatory studies using independent datasets are required to confirm our findings.
NASA Astrophysics Data System (ADS)
Spinelli, Pasquale; Dal Fante, Marco; Mancini, Andrea
1995-03-01
Selectivity is the most emphasized advantage of photodynamic therapy (PDT). However, at drug and light doses used for clinical applications, response from normal tissue surrounding the tumor reduces the real selectivity of the drug-light system and increases the surface of the area responding to the treatment. It is now evident that light irradiation of a sensitized patient produces damage at a various degree not only in the tumor but also in non-neoplastic tissues included in the field of irradiation. We report our experience in endoscopic PDT of early stage tumors in tracheobronchial, gastrointestinal and urinary tracts, describing early and late local complications caused by the damage of normal tissues adjacent to the tumors and included in the field of light irradiation. Among 44 patients treated, local complications, attributable to a poor selectivity of the modality, occurred in 6 patients (14%). In particular, the rate of local complications was 9% in patients treated for esophageal tumors, 14% in patients with gastric tumors, 9% in patients with tracheobronchial tumors, and 67% in bladder cancer patients. Clinical pictures as well as endoscopic findings at various intervals from treatment showed that mucositis is a common event following endoscopic PDT. It causes exudation and significant tissue inflammatory response, whose consequences are different in the various organs treated. Photoradiation must be, as much as possible, limited to the malignant area.
Larson, Nicholas B; McDonnell, Shannon K; Fogarty, Zach; Larson, Melissa C; Cheville, John; Riska, Shaun; Baheti, Saurabh; Weber, Alexandra M; Nair, Asha A; Wang, Liang; O'Brien, Daniel; Davila, Jaime; Schaid, Daniel J; Thibodeau, Stephen N
2017-10-17
Large-scale genome-wide association studies have identified multiple single-nucleotide polymorphisms associated with risk of prostate cancer. Many of these genetic variants are presumed to be regulatory in nature; however, follow-up expression quantitative trait loci (eQTL) association studies have to-date been restricted largely to cis -acting associations due to study limitations. While trans -eQTL scans suffer from high testing dimensionality, recent evidence indicates most trans -eQTL associations are mediated by cis -regulated genes, such as transcription factors. Leveraging a data-driven gene co-expression network, we conducted a comprehensive cis -mediator analysis using RNA-Seq data from 471 normal prostate tissue samples to identify downstream regulatory associations of previously identified prostate cancer risk variants. We discovered multiple trans -eQTL associations that were significantly mediated by cis -regulated transcripts, four of which involved risk locus 17q12, proximal transcription factor HNF1B , and target trans -genes with known HNF response elements ( MIA2 , SRC , SEMA6A , KIF12 ). We additionally identified evidence of cis -acting down-regulation of MSMB via rs10993994 corresponding to reduced co-expression of NDRG1 . The majority of these cis -mediator relationships demonstrated trans -eQTL replicability in 87 prostate tissue samples from the Gene-Tissue Expression Project. These findings provide further biological context to known risk loci and outline new hypotheses for investigation into the etiology of prostate cancer.
Glucose Transporter-1 Distribution in Fibrotic Lung Disease
Malide, Daniela; Yao, Jianhua; Nathan, Steven D.; Rosas, Ivan O.; Gahl, William A.; Moss, Joel; Gochuico, Bernadette R.
2013-01-01
Background: [18F]-2-fluoro-2-deoxyglucose (FDG)-PET scan uptake is increased in areas of fibrosis and honeycombing in patients with idiopathic pulmonary fibrosis (IPF). Glucose transporter-1 (Glut-1) is known to be the main transporter for FDG. There is a paucity of data regarding the distribution of Glut-1 and the cells responsible for FDG binding in fibrotic lung diseases. Methods: We applied immunofluorescence to localize Glut-1 in normal, IPF, and Hermansky-Pudlak syndrome (HPS) pulmonary fibrosis lung tissue specimens as well as an array of 19 different lung neoplasms. In addition, we investigated Glut-1 expression in inflammatory cells from BAL fluid (BALF) from healthy volunteers, subjects with IPF, and subjects with HPS pulmonary fibrosis. Results: In normal lung tissue, Glut-1 immunoreactivity was seen on the surface of erythrocytes. In tissue sections from fibrotic lung diseases (IPF and HPS pulmonary fibrosis), Glut-1 immunoreactivity was present on the surface of erythrocytes and inflammatory cells. BALF inflammatory cells from healthy control subjects showed no immunoreactivity; BALF cells from subjects with IPF and HPS pulmonary fibrosis showed Glut-1 immunoreactivity associated with neutrophils and alveolar macrophages. Conclusions: Glut-1 transporter expression in normal lung is limited to erythrocytes. In fibrotic lung, erythrocytes and inflammatory cells express Glut-1. Together, these data suggest that FDG-PET scan uptake in IPF could be explained by enhanced inflammatory and erythrocytes uptake due to neovascularization seen in IPF and not an upregulation of metabolic rate in pneumocytes. Thus, FDG-PET scan may detect inflammation and neovascularization in lung fibrosis. PMID:23699745
Toh, Wei Seong; Gomoll, Andreas H.; Olsen, Bjørn Reino; Spector, Myron
2014-01-01
Objective: The objective of the present study was to investigate the presence and distribution of 2 basement membrane (BM) molecules, laminin and collagen type IV, in healthy and degenerative cartilage tissues. Design: Normal and degenerated tissues were obtained from goats and humans, including articular knee cartilage, the intervertebral disc, and meniscus. Normal tissue was also obtained from patella-tibial enthesis in goats. Immunohistochemical analysis was performed using anti-laminin and anti–collagen type IV antibodies. Human and goat skin were used as positive controls. The percentage of cells displaying the pericellular presence of the protein was graded semiquantitatively. Results: When present, laminin and collagen type IV were exclusively found in the pericellular matrix, and in a discrete layer on the articulating surface of normal articular cartilage. In normal articular (hyaline) cartilage in the human and goat, the proteins were found co-localized pericellularly. In contrast, in human osteoarthritic articular cartilage, collagen type IV but not laminin was found in the pericellular region. Nonpathological fibrocartilaginous tissues from the goat, including the menisci and the enthesis, were also positive for both laminin and collagen type IV pericellularly. In degenerated fibrocartilage, including intervertebral disc, as in degenerated hyaline cartilage only collagen type IV was found pericellularly around chondrocytes but with less intense staining than in non-degenerated tissue. In calcified cartilage, some cells were positive for laminin but not type IV collagen. Conclusions: We report differences in expression of the BM molecules, laminin and collagen type IV, in normal and degenerative cartilaginous tissues from adult humans and goats. In degenerative tissues laminin is depleted from the pericellular matrix before collagen type IV. The findings may inform future studies of the processes underlying cartilage degeneration and the functional roles of these 2 extracellular matrix proteins, normally associated with BM. PMID:26069692
Use of donor bladder tissues for in vitro research.
Garthwaite, Mary; Hinley, Jennifer; Cross, William; Warwick, Ruth M; Ambrose, Anita; Hardaker, Henry; Eardley, Ian; Southgate, Jennifer
2014-01-01
To evaluate deceased non-heart beating (DNHB) donors and deceased heart beating (DHB) brain-stem dead donors, as sources of viable urological tissue for use in biomedical research. To identify sources of viable human bladder tissue as an essential resource for cell biological research aimed at understanding human diseases of the bladder and for developing new tissue engineering and regenerative medicine strategies for bladder reconstruction. Typically, normal human urinary tract tissue is obtained from adult or paediatric surgical patients with benign urological conditions, but few surgical procedures yield useful quantities of healthy bladder tissue for research. Research ethics committee approval was obtained for collection of donor bladder tissue. Consent for DHB donors was undertaken by the Donor Transplant Coordinators. Tissue Donor Coordinators were responsible for consent for DNHB donors and the retrieval of bladders was coordinated through the National Blood Service Tissue Banking Service. All retrievals were performed by practicing urologists and care was taken to maintain sterility and to minimise bacterial contamination. Two bladders were retrieved from DNHB donors and four were retrieved from DHB donors. By histology, DNHB donor bladder tissue exhibited marked urothelial tissue damage and necrosis, with major loss or absence of urothelium. No cell cultures could be established from these specimens, as the urothelial cells were not viable in primary culture. Bladder urothelium from DHB donors was intact, but showed some damage, including loss of superficial cells and variable separation from the basement membrane. All four DHB bladder specimens yielded viable urothelial cells that attached in primary culture, but cell growth was slow to establish and cultures showed a limited capacity to form a functional barrier epithelium and a propensity to senesce early. We have shown that normal human bladder urothelial cell cultures can be established and serially propagated from DHB donor bladders. However, our study suggests that rapid post-mortem changes to the bladder affect the quality and viability of the urothelium, rendering tissue from DNHB donors an inadequate source for urothelial cell culture. Our experience is that whereas patients are willing to donate surgical tissue for research, there is a barrier to obtaining consent from next of kin for retrieved tissues to be used for research purposes. © 2013 The Authors. BJU International © 2013 BJU International.
Poulin, Patrick; Hop, Cornelis Eca; Salphati, Laurent; Liederer, Bianca M
2013-04-01
Understanding drug distribution and accumulation in tumors would be informative in the assessment of efficacy in targeted therapy; however, existing methods for predicting tissue drug distribution focus on normal tissues and do not incorporate tumors. The main objective of this study was to describe the relationships between tissue-plasma concentration ratios (Kp ) of normal tissues and those of subcutaneous xenograft tumors under nonsteady-state conditions, and establish regression equations that could potentially be used for the prediction of drug levels in several human tumor xenografts in mouse, based solely on a Kp value determined in a normal tissue (e.g., muscle). A dataset of 17 compounds was collected from the literature and from Genentech. Tissue and plasma concentration data in mouse were obtained following oral gavage or intraperitoneal administration. Linear regression analyses were performed between Kp values in several normal tissues (muscle, lung, liver, or brain) and those in human tumor xenografts (CL6, EBC-1, HT-29, PC3, U-87, MCF-7-neo-Her2, or BT474M1.1). The tissue-plasma ratios in normal tissues reasonably correlated with the tumor-plasma ratios in CL6, EBC-1, HT-29, U-87, BT474M1.1, and MCF-7-neo-Her2 xenografts (r(2) in the range 0.62-1) but not with the PC3 xenograft. In general, muscle and lung exhibited the strongest correlation with tumor xenografts, followed by liver. Regression coefficients from brain were low, except between brain and the glioblastoma U-87 xenograft (r(2) in the range 0.62-0.94). Furthermore, reasonably strong correlations were observed between muscle and lung and between muscle and liver (r(2) in the range 0.67-0.96). The slopes of the regressions differed depending on the class of drug (strong vs. weak base) and type of tissue (brain vs. other tissues and tumors). Overall, this study will contribute to our understanding of tissue-plasma partition coefficients for tumors and facilitate the use of physiologically based pharmacokinetics (PBPK) modeling for chemotherapy in oncology studies. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:1355-1369, 2013. Copyright © 2013 Wiley Periodicals, Inc.
Chen, Jing; Toghi Eshghi, Shadi; Bova, George Steven; Li, Qing Kay; Li, Xingde; Zhang, Hui
2013-12-01
The rapid advancement of high-throughput tools for quantitative measurement of proteins has demonstrated the potential for the identification of proteins associated with cancer. However, the quantitative results on cancer tissue specimens are usually confounded by tissue heterogeneity, e.g. regions with cancer usually have significantly higher epithelium content yet lower stromal content. It is therefore necessary to develop a tool to facilitate the interpretation of the results of protein measurements in tissue specimens. Epithelial cell adhesion molecule (EpCAM) and cathepsin L (CTSL) are two epithelial proteins whose expressions in normal and tumorous prostate tissues were confirmed by measuring staining intensity with immunohistochemical staining (IHC). The expressions of these proteins were measured by ELISA in protein extracts from OCT embedded frozen prostate tissues. To eliminate the influence of tissue heterogeneity on epithelial protein quantification measured by ELISA, a color-based segmentation method was developed in-house for estimation of epithelium content using H&E histology slides from the same prostate tissues and the estimated epithelium percentage was used to normalize the ELISA results. The epithelium contents of the same slides were also estimated by a pathologist and used to normalize the ELISA results. The computer based results were compared with the pathologist's reading. We found that both EpCAM and CTSL levels, measured by ELISA assays itself, were greatly affected by epithelium content in the tissue specimens. Without adjusting for epithelium percentage, both EpCAM and CTSL levels appeared significantly higher in tumor tissues than normal tissues with a p value less than 0.001. However, after normalization by the epithelium percentage, ELISA measurements of both EpCAM and CTSL were in agreement with IHC staining results, showing a significant increase only in EpCAM with no difference in CTSL expression in cancer tissues. These results were obtained with normalization by both the computer estimated and pathologist estimated epithelium percentage. Our results show that estimation of tissue epithelium percentage using our color-based segmentation method correlates well with pathologists' estimation of tissue epithelium percentages. The epithelium contents estimated by color-based segmentation may be useful in immuno-based analysis or clinical proteomic analysis of tumor proteins. The codes used for epithelium estimation as well as the micrographs with estimated epithelium content are available online.
NASA Astrophysics Data System (ADS)
Tate, Tyler; Baggett, Brenda; Rice, Photini; Watson, Jennifer; Orsinger, Gabe; Nymeyer, Ariel C.; Welge, Weston A.; Keenan, Molly; Saboda, Kathylynn; Roe, Denise J.; Hatch, Kenneth; Chambers, Setsuko; Black, John; Utzinger, Urs; Barton, Jennifer
2015-03-01
With early detection, five year survival rates for ovarian cancer are over 90%, yet no effective early screening method exists. Emerging consensus suggests that perhaps over 50% of the most lethal form of the disease, high grade serous ovarian cancer, originates in the Fallopian tube. Cancer changes molecular concentrations of various endogenous fluorophores. Using specific excitation wavelengths and emissions bands on a Multispectral Fluorescence Imaging (MFI) system, spatial and spectral data over a wide field of view can be collected from endogenous fluorophores. Wavelength specific reflectance images provide additional information to normalize for tissue geometry and blood absorption. Ratiometric combination of the images may create high contrast between neighboring normal and abnormal tissue. Twenty-six women undergoing oophorectomy or debulking surgery consented the use of surgical discard tissue samples for MFI imaging. Forty-nine pieces of ovarian tissue and thirty-two pieces of Fallopian tube tissue were collected and imaged with excitation wavelengths between 280 nm and 550 nm. After imaging, each tissue sample was fixed, sectioned and HE stained for pathological evaluation. Comparison of mean intensity values between normal, benign, and cancerous tissue demonstrate a general trend of increased fluorescence of benign tissue and decreased fluorescence of cancerous tissue when compared to normal tissue. The predictive capabilities of the mean intensity measurements are tested using multinomial logistic regression and quadratic discriminant analysis. Adaption of the system for in vivo Fallopian tube and ovary endoscopic imaging is possible and is briefly described.
Oxygenated hemoglobin diffuse reflectance ratio for in vitro detection of human gastric pre-cancer
NASA Astrophysics Data System (ADS)
Li, L. Q.; Wei, H. J.; Guo, Z. Y.; Yang, H. Q.; Wu, G. Y.; Xie, S. S.; Zhong, H. Q.; Li, X. Y.; Zhao, Q. L.; Guo, X.
2010-07-01
Oxygenated hemoglobin diffuse reflectance (DR) ratio (R540/R575) method based on DR spectral signatures is used for early diagnosis of malignant lesions of human gastric epithelial tissues in vitro. The DR spectra for four different kinds of gastric epithelial tissues were measured using a spectrometer with an integrating sphere detector in the spectral range from 400 to 650 nm. The results of measurement showed that the average DR spectral intensity for the epithelial tissues of normal stomach is higher than that for the epithelial tissues of chronic and malignant stomach and that for the epithelial tissues of chronic gastric ulcer is higher than that for the epithelial tissues of malignant stomach. The average DR spectra for four different kinds of gastric epithelial tissues show dips at 542 and 577 nm owing to absorption from oxygenated Hemoglobin (HbO2). The differences in the mean R540/R575 ratios of HbO2 bands are 6.84% between the epithelial tissues of normal stomach and chronic gastric ulcer, 14.7% between the epithelial tissues of normal stomach and poorly differentiated gastric adenocarcinoma and 22.6% between the epithelial tissues of normal stomach and undifferentiated gastric adenocarcinoma. It is evident from results that there were significant differences in the mean R540/R575 ratios of HbO2 bands for four different kinds of gastric epithelial tissues in vitro ( P < 0.01).
Busk, Morten; Munk, Ole L; Jakobsen, Steen; Frøkiær, Jørgen; Overgaard, Jens; Horsman, Michael R
2017-05-01
Current [F-18]-fluorodeoxyglucose positron emission tomography (FDG-PET) procedures in tumor-bearing mice typically includes fasting, anesthesia, and standardized uptake value (SUV)-based quantification. Such procedures may be inappropriate for prolonged multiscan experiments. We hypothesize that normalization of tumor FDG retention relative to a suitable reference tissue may improve accuracy as this method may be less susceptible to uncontrollable day-to-day changes in blood glucose levels, physical activity, or unnoticed imperfect tail vein injections. Fed non-anesthetized tumor-bearing mice were administered FDG intravenously (i.v.) or intraperitoneally (i.p.) and PET scanned on consecutive days using a Mediso nanoScan PET/magnetic resonance imaging (MRI). Reproducibility of various PET-deduced measures of tumor FDG retention, including normalization to FDG signal in reference organs and a conventional SUV approach, was evaluated. Day-to-day variability in i.v. injected mice was lower when tumor FDG retention was normalized to brain signal (T/B), compared to normalization to other tissues or when using SUV-based normalization. Assessment of tissue radioactivity in dissected tissues confirmed the validity of PET-derived T/B ratios. Mean T/B and SUV values were similar in i.v. and i.p. administered animals, but SUV normalization was more robust in the i.p. group than in the i.v. group. Multimodality scanners allow tissue delineation and normalization of tumor FDG uptake relative to reference tissues. Normalization to brain, but not liver or kidney, improved scan reproducibility considerably and was superior to traditional SUV quantification in i.v. tracer-injected animals. Day-to-day variability in SUV's was lower in i.p. than in i.v. injected animals, and i.p. injections may therefore be a valuable alternative in prolonged rodent studies, where repeated vein injections are undesirable.
Future potentials for using osteogenic stem cells and biomaterials in orthopedics.
Oreffo, R O; Triffitt, J T
1999-08-01
Ideal skeletal reconstruction depends on regeneration of normal tissues that result from initiation of progenitor cell activity. However, knowledge of the origins and phenotypic characteristics of these progenitors and the controlling factors that govern bone formation and remodeling to give a functional skeleton adequate for physiological needs is limited. Practical methods are currently being investigated to amplify in in vitro culture the appropriate autologous cells to aid skeletal healing and reconstruction. Recent advances in the fields of biomaterials, biomimetics, and tissue engineering have focused attention on the potentials for clinical application. Current cell therapy procedures include the use of tissue-cultured skin cells for treatment of burns and ulcers, and in orthopedics, the use of cultured cartilage cells for articular defects. As mimicry of natural tissues is the goal, a fuller understanding of the development, structures, and functions of normal tissues is necessary. Practically all tissues are capable of being repaired by tissue engineering principles. Basic requirements include a scaffold conducive to cell attachment and maintenance of cell function, together with a rich source of progenitor cells. In the latter respect, bone is a special case and there is a vast potential for regeneration from cells with stem cell characteristics. The development of osteoblasts, chondroblasts, adipoblasts, myoblasts, and fibroblasts results from colonies derived from such single cells. They may thus, theoretically, be useful for regeneration of all tissues that this variety of cells comprise: bone, cartilage, fat, muscle, tendons, and ligaments. Also relevant to tissue reconstruction is the field of genetic engineering, which as a principal step in gene therapy would be the introduction of a functional specific human DNA into cells of a patient with a genetic disease that affects mainly a particular tissue or organ. Such a situation is pertinent to osteogenesis imperfecta, for example, where in more severely affected individuals any improvements in long bone quality would be beneficial to the patient. In conclusion, the potentials for using osteogenic stem cells and biomaterials in orthopedics for skeletal healing is immense, and work in this area is likely to expand significantly in the future.
Autofluorescence spectroscopy of oral mucosa
NASA Astrophysics Data System (ADS)
Majumdar, S. K.; Uppal, A.; Gupta, P. K.
1998-06-01
We report the results of an in-vitro study on autofluorescence from pathologically characterized normal and malignant squamous tissues from the oral cavity. The study involved biopsy samples from 47 patients with oral cancer of which 11 patients had cancer of tongue, 17 of buccal mucosa and 19 of alveolus. The results of excitation and emission spectroscopy at several wavelengths (280 nm less than or equal to (lambda) exless than or equal to 460 nm; 340 nm less than or equal to (lambda) em less than or equal to 520 nm) showed that at (lambda) ex equals 337 nm and 400 nm the mean value for the spectrally integrated fluorescence intensity [(Sigma) (lambda ) IF((lambda) )] from the normal tissue sites was about a factor of 2 larger than that from the malignant tissue sites. At other excitation wavelengths the difference in (Sigma) (lambda ) IF((lambda) ) was not statistically significant. Similarly, for (lambda) em equals 390 nm and 460 nm, the intensity of the 340 nm band of the excitation spectra from normal tissues was observed to be a factor of 2 larger than that from malignant tissues. Analysis of these results suggests that NADH concentration is higher in normal oral tissues compared to the malignant. This contrasts with our earlier observation of an reduced NADH concentration in normal sites of breast tissues vis a vis malignant sites. For the 337 nm excited emission spectra a 10-variable MVLR score (using (Sigma) (lambda ) IF((lambda) ) and normalized intensities at nine wavelengths as input parameters) provided a sensitivity and specificity of 95.7% and 93.1% over the sample size investigated.
Gay, Hiram A.; Barthold, H. Joseph; O’Meara, Elizabeth; Bosch, Walter R.; El Naqa, Issam; Al-Lozi, Rawan; Rosenthal, Seth A.; Lawton, Colleen; Lee, W. Robert; Sandler, Howard; Zietman, Anthony; Myerson, Robert; Dawson, Laura A.; Willett, Christopher; Kachnic, Lisa A.; Jhingran, Anuja; Portelance, Lorraine; Ryu, Janice; Small, William; Gaffney, David; Viswanathan, Akila N.; Michalski, Jeff M.
2012-01-01
Purpose To define a male and female pelvic normal tissue contouring atlas for Radiation Therapy Oncology Group (RTOG) trials. Methods and Materials One male pelvis computed tomography (CT) data set and one female pelvis CT data set were shared via the Image-Guided Therapy QA Center. A total of 16 radiation oncologists participated. The following organs at risk were contoured in both CT sets: anus, anorectum, rectum (gastrointestinal and genitourinary definitions), bowel NOS (not otherwise specified), small bowel, large bowel, and proximal femurs. The following were contoured in the male set only: bladder, prostate, seminal vesicles, and penile bulb. The following were contoured in the female set only: uterus, cervix, and ovaries. A computer program used the binomial distribution to generate 95% group consensus contours. These contours and definitions were then reviewed by the group and modified. Results The panel achieved consensus definitions for pelvic normal tissue contouring in RTOG trials with these standardized names: Rectum, AnoRectum, SmallBowel, Colon, BowelBag, Bladder, UteroCervix, Adnexa_R, Adnexa_L, Prostate, SeminalVesc, PenileBulb, Femur_R, and Femur_L. Two additional normal structures whose purpose is to serve as targets in anal and rectal cancer were defined: AnoRectumSig and Mesorectum. Detailed target volume contouring guidelines and images are discussed. Conclusions Consensus guidelines for pelvic normal tissue contouring were reached and are available as a CT image atlas on the RTOG Web site. This will allow uniformity in defining normal tissues for clinical trials delivering pelvic radiation and will facilitate future normal tissue complication research. PMID:22483697
Identifying DNA Methylation Features that Underlie Prostate Cancer Disparities
2016-10-01
Report We will continue to recruit African American patients and bank their prostate tissue . We will continue dissecting tumor samples into tumor...in prostate tumors and adjacent normal tissue derived from both AA and EA individuals. We will determine if DNA methylation patterns in prostate... tissue (both cancerous and normal tissue ) differ between AA and EA individuals. We will also identify methylation features that differ between tumor
NASA Astrophysics Data System (ADS)
Yang, Yi; Wang, Tianheng; Biswal, Nrusingh C.; Wang, Xiaohong; Sanders, Melinda; Brewer, Molly; Zhu, Quing
2011-09-01
Optical scattering coefficient from ex vivo unfixed normal and malignant ovarian tissue was quantitatively extracted by fitting optical coherence tomography (OCT) A-line signals to a single scattering model. 1097 average A-line measurements at a wavelength of 1310 nm were performed at 108 sites obtained from 18 ovaries. The average scattering coefficient obtained from the normal tissue group consisted of 833 measurements from 88 sites was 2.41 mm-1 (+/-0.59), while the average coefficient obtained from the malignant tissue group consisted of 264 measurements from 20 sites was 1.55 mm-1 (+/-0.46). The malignant ovarian tissue showed significant lower scattering than the normal group (p < 0.001). The amount of collagen within OCT imaging depth was analyzed from the tissue histological section stained with Sirius Red. The average collagen area fraction (CAF) obtained from the normal tissue group was 48.4% (+/-12.3%), while the average CAF obtained from the malignant tissue group was 11.4% (+/-4.7%). A statistical significance of the collagen content was found between the two groups (p < 0.001). These results demonstrated that quantitative measurements of optical scattering coefficient from OCT images could be a potential powerful method for ovarian cancer detection.
Tissue Physiology and Pathology of Aromatase
Stocco, Carlos
2011-01-01
Summary Aromatase is expressed in multiple tissues, indicating a crucial role for locally produced oestrogens in the differentiation, regulation and normal function of several organs and processes. This review is an overview of the role of aromatase in different tissues under normal physiological conditions and its contribution to the development of some oestrogen-related pathologies. PMID:22108547
2010-01-01
SIAH proteins are the human members of an highly conserved family of E3 ubiquitin ligases. Several data suggest that SIAH proteins may have a role in tumor suppression and apoptosis. Previously, we reported that SIAH-1 induces the degradation of Kid (KIF22), a chromokinesin protein implicated in the normal progression of mitosis and meiosis, by the ubiquitin proteasome pathway. In human breast cancer cells stably transfected with SIAH-1, Kid/KIF22 protein level was markedly reduced whereas, the Kid/KIF22 mRNA level was increased. This interaction has been further elucidated through analyzing SIAH and Kid/KIF22 expression in both paired normal and tumor tissues and cell lines. It was observed that SIAH-1 protein is widely expressed in different normal tissues, and in cells lines but showing some differences in western blotting profiles. Immunofluorescence microscopy shows that the intracellular distribution of SIAH-1 and Kid/KIF22 appears to be modified in human tumor tissues compared to normal controls. When mRNA expression of SIAH-1 and Kid/KIF22 was analyzed by real-time PCR in normal and cancer breast tissues from the same patient, a large variation in the number of mRNA copies was detected between the different samples. In most cases, SIAH-1 mRNA is decreased in tumor tissues compared to their normal counterparts. Interestingly, in all breast tumor tissues analyzed, variations in the Kid/KIF22 mRNA levels mirrored those seen with SIAH-1 mRNAs. This concerted variation of SIAH-1 and Kid/KIF22 messengers suggests the existence of an additional level of control than the previously described protein-protein interaction and protein stability regulation. Our observations also underline the need to re-evaluate the results of gene expression obtained by qRT-PCR and relate it to the protein expression and cellular localization when matched normal and tumoral tissues are analyzed. PMID:20144232
NASA Astrophysics Data System (ADS)
Hu, Yaogai; Shen, Aiguo; Jiang, Tao; Ai, Yong; Hu, Jiming
2008-02-01
Thirty-two samples from the human gastric mucosa tissue, including 13 normal and 19 malignant tissue samples were measured by confocal Raman microspectroscopy. The low signal-to-background ratio spectra from human gastric mucosa tissues were obtained by this technique without any sample preparation. Raman spectral interferences include a broad featureless sloping background due to fluorescence and noise. They mask most Raman spectral feature and lead to problems with precision and quantitation of the original spectral information. A preprocessed algorithm based on wavelet analysis was used to reduce noise and eliminate background/baseline of Raman spectra. Comparing preprocessed spectra of malignant gastric mucosa tissues with those of counterpart normal ones, there were obvious spectral changes, including intensity increase at ˜1156 cm -1 and intensity decrease at ˜1587 cm -1. The quantitative criterion based upon the intensity ratio of the ˜1156 and ˜1587 cm -1 was extracted for classification of the normal and malignant gastric mucosa tissue samples. This could result in a new diagnostic method, which would assist the early diagnosis of gastric cancer.
Terahertz spectroscopic investigation of human gastric normal and tumor tissues
NASA Astrophysics Data System (ADS)
Hou, Dibo; Li, Xian; Cai, Jinhui; Ma, Yehao; Kang, Xusheng; Huang, Pingjie; Zhang, Guangxin
2014-09-01
Human dehydrated normal and cancerous gastric tissues were measured using transmission time-domain terahertz spectroscopy. Based on the obtained terahertz absorption spectra, the contrasts between the two kinds of tissue were investigated and techniques for automatic identification of cancerous tissue were studied. Distinctive differences were demonstrated in both the shape and amplitude of the absorption spectra between normal and tumor tissue. Additionally, some spectral features in the range of 0.2~0.5 THz and 1~1.5 THz were revealed for all cancerous gastric tissues. To systematically achieve the identification of gastric cancer, principal component analysis combined with t-test was used to extract valuable information indicating the best distinction between the two types. Two clustering approaches, K-means and support vector machine (SVM), were then performed to classify the processed terahertz data into normal and cancerous groups. SVM presented a satisfactory result with less false classification cases. The results of this study implicate the potential of the terahertz technique to detect gastric cancer. The applied data analysis methodology provides a suggestion for automatic discrimination of terahertz spectra in other applications.
NASA Astrophysics Data System (ADS)
Zhou, Yan; Wang, Leana; Liu, Cheng-hui; He, Yong; Yu, Xinguang; Cheng, Gangge; Wang, Peng; Shu, Cheng; Alfano, Robert R.
2016-03-01
In this report, optical biopsy was applied to diagnose human brain cancer in vitro for the identification of brain cancer from normal tissues by native fluorescence and Stokes shift spectra (SSS). 77 brain specimens including three types of human brain tissues (normal, glioma and brain metastasis of lung cancers) were studied. In order to observe spectral changes of fluorophores via fluorescence, the selected excitation wavelength of UV at 300 and 340 nm for emission spectra and a different Stokes Shift spectra with intervals Δλ = 40 nm were measured. The fluorescence spectra and SSS from multiple key native molecular markers, such as tryptophan, collagen, NADH, alanine, ceroid and lipofuscin were observed in normal and diseased brain tissues. Two diagnostic criteria were established based on the ratios of the peak intensities and peak position in both fluorescence and SSS spectra. It was observed that the ratio of the spectral peak intensity of tryptophan (340 nm) to NADH (440 nm) increased in glioma, meningioma (benign), malignant meninges tumor, and brain metastasis of lung cancer tissues in comparison with normal tissues. The ratio of the SS spectral peak (Δλ = 40 nm) intensities from 292 nm to 366 nm had risen similarly in all grades of tumors.
A ratiometric threshold for determining presence of cancer during fluorescence-guided surgery.
Warram, Jason M; de Boer, Esther; Moore, Lindsay S; Schmalbach, Cecelia E; Withrow, Kirk P; Carroll, William R; Richman, Joshua S; Morlandt, Anthony B; Brandwein-Gensler, Margaret; Rosenthal, Eben L
2015-07-01
Fluorescence-guided imaging to assist in identification of malignant margins has the potential to dramatically improve oncologic surgery. However, a standardized method for quantitative assessment of disease-specific fluorescence has not been investigated. Introduced here is a ratiometric threshold derived from mean fluorescent tissue intensity that can be used to semi-quantitatively delineate tumor from normal tissue. Open-field and a closed-field imaging devices were used to quantify fluorescence in punch biopsy tissues sampled from primary tumors collected during a phase 1 trial evaluating the safety of cetuximab-IRDye800 in patients (n = 11) undergoing surgical intervention for head and neck cancer. Fluorescence ratios were calculated using mean fluorescence intensity (MFI) from punch biopsy normalized by MFI of patient-matched tissues. Ratios were compared to pathological assessment and a ratiometric threshold was established to predict presence of cancer. During open-field imaging using an intraoperative device, the threshold for muscle normalized tumor fluorescence was found to be 2.7, which produced a sensitivity of 90.5% and specificity of 78.6% for delineating disease tissue. The skin-normalized threshold generated greater sensitivity (92.9%) and specificity (81.0%). Successful implementation of a semi-quantitative threshold can provide a scientific methodology for delineating disease from normal tissue during fluorescence-guided resection of cancer. © 2015 Wiley Periodicals, Inc.
Prostate-derived Ets factor, an oncogenic driver in breast cancer.
Sood, Ashwani K; Geradts, Joseph; Young, Jessica
2017-05-01
Prostate-derived Ets factor (PDEF), a member of the Ets family of transcription factors, differs from other family members in its restricted expression in normal tissues and its unique DNA-binding motif. These interesting attributes coupled with its aberrant expression in cancer have rendered PDEF a focus of increasing interest by tumor biologists. This review provides a current understanding of the characteristics of PDEF expression and its role in breast cancer. The bulk of the evidence is consistent with PDEF overexpression in most breast tumors and an oncogenic role for this transcription factor in breast cancer. In addition, high PDEF expression in estrogen receptor-positive breast tumors showed significant correlation with poor overall survival in several independent cohorts of breast cancer patients. Together, these findings demonstrate PDEF to be an oncogenic driver of breast cancer and a biomarker of poor prognosis in this cancer. Based on this understanding and the limited expression of PDEF in normal human tissues, the development of PDEF-based therapeutics for prevention and treatment of breast cancer is also discussed.
Shepard, Michelle T.; Bonney, Elizabeth A.
2014-01-01
The regulation of T cell homeostasis during pregnancy has important implications for maternal tolerance and immunity. Evidence suggests that Programmed Death-1 (PD-1) participates in regulation of T cell homeostasis and peripheral tolerance. To examine the contribution of PD-1 signaling on T cell homeostasis during normal mouse pregnancy, we examined T cell number or proportion, PD-1 expression, proliferation, and apoptosis by flow cytometry, BrdU incorporation, and TUNEL assay in pregnant mice given anti-PD-1 blocking antibody or control on days 10, 12, and 14 of gestation. We observed tissue, treatment, and T cell-specific differences in PD-1 expression. Both pregnancy and PD-1 blockade increased T cell proliferation in the spleen while this effect was limited to CD4 T cells in the uterine- draining nodes. In the uterus, PD-1 blockade markedly altered the composition of the T cell pool. These studies support the idea that pregnancy is a state of dynamic T cell homeostasis and suggest that this state is partially supported by PD-1 signaling. PMID:23782245
Prezado, Y; Dos Santos, M; Gonzalez, W; Jouvion, G; Guardiola, C; Heinrich, S; Labiod, D; Juchaux, M; Jourdain, L; Sebrie, C; Pouzoulet, F
2017-12-11
Minibeam radiation therapy (MBRT) is an innovative synchrotron radiotherapy technique able to shift the normal tissue complication probability curves to significantly higher doses. However, its exploration was hindered due to the limited and expensive beamtime at synchrotrons. The aim of this work was to develop a cost-effective equipment to perform systematic radiobiological studies in view of MBRT. Tumor control for various tumor entities will be addressable as well as studies to unravel the distinct biological mechanisms involved in normal and tumor tissues responses when applying MBRT. With that aim, a series of modifications of a small animal irradiator were performed to make it suitable for MBRT experiments. In addition, the brains of two groups of rats were irradiated. Half of the animals received a standard irradiation, the other half, MBRT. The animals were followed-up for 6.5 months. Substantial brain damage was observed in the group receiving standard RT, in contrast to the MBRT group, where no significant lesions were observed. This work proves the feasibility of the transfer of MBRT outside synchrotron sources towards a small animal irradiator.
[The expression and clinical significance of EphA2 and E-cadherin in papillary thyroid carcinoma].
Liu, Yan; Miao, Yuhua; Li, Xiaoming
2015-06-01
To investigate the expression and clinical significance of EphA2 and E cadherin proteins in papillary thyroid carcinoma tissues, and to explore the relationship between them. Using immunohistochemical SP/PV method, we detected the expression of EphA2 and E cadherin in tumors of 43 papillary thyroid carcinomas, 11 thyroid adenoma and 10 normal thyroid tissues, then studied their relationships with clinic pathological factors. The total positive rates of EphA2 and E cadherin expression were 58. 14% and 32. 56% in papillary thyroid carcinoma tissues, 18. 18% and 81. 81% in thyroid adenoma.tissues and they were 10. 00% and 100. 00% in normal thyroid tissues respectively. The positive expression of EphA2 in carcinoma tissues was higher than in the thyroid adenoma tissues and normal thyroid tissues (P<0. 05) and the positive expression of E cadherin in carcinoma tissues was lower than that in the thyroid adenoma tissues and normal thyroid tissues (P<0. 05). The positive expression of EphA2 and E cadherin was associated with lymph node metastasis and histological grade (P<0. 05), but it was not associated with all the clinic-pathological factors including age, sex and the tumor size (P>0. 05). In papillary thyroid carcinoma tissues, the expression of EphA2 was negatively correlated with the expression of E cadherin protein (r= -0. 416, P<0. 01). EphA2 and E cadherin may be involved in carcinogenesis and development of papillary thyroid carcinoma.
NASA Astrophysics Data System (ADS)
Zhao, Xiaojie; Vinson, Michael A.; Malins, Donald C.; Spiro, Thomas G.
2000-05-01
We report significant differences in UV resonance Raman (UVRR) spectra of DNA samples from normal and cancerous tissues. The four bases of DNA, adenosine, thymine, guanosine and cytidine, can be enhanced in UVRR spectra, and their intensities are very sensitive to base stacking and DNA H-bonding. 14 DNA samples from patients at different stages of ovarian cancer, 5 from normal, 2 from primary, 3 from metastasis primary and 4 from distant metastasis tumor tissues, were characterized by 257, 238, 229, 220 and 210 nm-excited UVRR spectra. Raman spectral difference between normal and tumor DNA could be readily detected.
Bachmayr-Heyda, Anna; Reiner, Agnes T; Auer, Katharina; Sukhbaatar, Nyamdelger; Aust, Stefanie; Bachleitner-Hofmann, Thomas; Mesteri, Ildiko; Grunt, Thomas W; Zeillinger, Robert; Pils, Dietmar
2015-01-27
Circular RNAs are a recently (re-)discovered abundant RNA species with presumed function as miRNA sponges, thus part of the competing endogenous RNA network. We analysed the expression of circular and linear RNAs and proliferation in matched normal colon mucosa and tumour tissues. We predicted >1,800 circular RNAs and proved the existence of five randomly chosen examples using RT-qPCR. Interestingly, the ratio of circular to linear RNA isoforms was always lower in tumour compared to normal colon samples and even lower in colorectal cancer cell lines. Furthermore, this ratio correlated negatively with the proliferation index. The correlation of global circular RNA abundance (the circRNA index) and proliferation was validated in a non-cancerous proliferative disease, idiopathic pulmonary fibrosis, ovarian cancer cells compared to cultured normal ovarian epithelial cells, and 13 normal human tissues. We are the first to report a global reduction of circular RNA abundance in colorectal cancer cell lines and cancer compared to normal tissues and discovered a negative correlation of global circular RNA abundance and proliferation. This negative correlation seems to be a general principle in human tissues as validated with three different settings. Finally, we present a simple model how circular RNAs could accumulate in non-proliferating cells.
Bachmayr-Heyda, Anna; Reiner, Agnes T.; Auer, Katharina; Sukhbaatar, Nyamdelger; Aust, Stefanie; Bachleitner-Hofmann, Thomas; Mesteri, Ildiko; Grunt, Thomas W.; Zeillinger, Robert; Pils, Dietmar
2015-01-01
Circular RNAs are a recently (re-)discovered abundant RNA species with presumed function as miRNA sponges, thus part of the competing endogenous RNA network. We analysed the expression of circular and linear RNAs and proliferation in matched normal colon mucosa and tumour tissues. We predicted >1,800 circular RNAs and proved the existence of five randomly chosen examples using RT-qPCR. Interestingly, the ratio of circular to linear RNA isoforms was always lower in tumour compared to normal colon samples and even lower in colorectal cancer cell lines. Furthermore, this ratio correlated negatively with the proliferation index. The correlation of global circular RNA abundance (the circRNA index) and proliferation was validated in a non-cancerous proliferative disease, idiopathic pulmonary fibrosis, ovarian cancer cells compared to cultured normal ovarian epithelial cells, and 13 normal human tissues. We are the first to report a global reduction of circular RNA abundance in colorectal cancer cell lines and cancer compared to normal tissues and discovered a negative correlation of global circular RNA abundance and proliferation. This negative correlation seems to be a general principle in human tissues as validated with three different settings. Finally, we present a simple model how circular RNAs could accumulate in non-proliferating cells. PMID:25624062
NASA Astrophysics Data System (ADS)
Zhou, Yan; Liu, Cheng-hui; Pu, Yang; Cheng, Gangge; Zhou, Lixin; Chen, Jun; Zhu, Ke; Alfano, Robert R.
2016-03-01
Raman spectroscopy has become widely used for diagnostic purpose of breast, lung and brain cancers. This report introduced a new approach based on spatial frequency spectra analysis of the underlying tissue structure at different stages of brain tumor. Combined spatial frequency spectroscopy (SFS), Resonance Raman (RR) spectroscopic method is used to discriminate human brain metastasis of lung cancer from normal tissues for the first time. A total number of thirty-one label-free micrographic images of normal and metastatic brain cancer tissues obtained from a confocal micro- Raman spectroscopic system synchronously with examined RR spectra of the corresponding samples were collected from the identical site of tissue. The difference of the randomness of tissue structures between the micrograph images of metastatic brain tumor tissues and normal tissues can be recognized by analyzing spatial frequency. By fitting the distribution of the spatial frequency spectra of human brain tissues as a Gaussian function, the standard deviation, σ, can be obtained, which was used to generate a criterion to differentiate human brain cancerous tissues from the normal ones using Support Vector Machine (SVM) classifier. This SFS-SVM analysis on micrograph images presents good results with sensitivity (85%), specificity (75%) in comparison with gold standard reports of pathology and immunology. The dual-modal advantages of SFS combined with RR spectroscopy method may open a new way in the neuropathology applications.
Danda, Ravikanth; Krishnan, Gopinath; Ganapathy, Kalaivani; Krishnan, Uma Maheswari; Vikas, Khetan; Elchuri, Sailaja; Chatterjee, Nivedita; Krishnakumar, Subramanian
2013-01-01
In order to realise the full potential of cancer suicide gene therapy that allows the precise expression of suicide gene in cancer cells, we used a tissue specific Epithelial cell adhesion molecule (EpCAM) promoter (EGP-2) that directs transgene Herpes simplex virus-thymidine kinase (HSV-TK) expression preferentially in EpCAM over expressing cancer cells. EpCAM levels are considerably higher in retinoblastoma (RB), a childhood eye cancer with limited expression in normal cells. Use of miRNA regulation, adjacent to the use of the tissue-specific promoter, would provide the second layer of control to the transgene expression only in the tumor cells while sparing the normal cells. To test this hypothesis we cloned let-7b miRNA targets in the 3'UTR region of HSV-TK suicide gene driven by EpCAM promoter because let-7 family miRNAs, including let-7b, were found to be down regulated in the RB tumors and cell lines. We used EpCAM over expressing and let-7 down regulated RB cell lines Y79, WERI-Rb1 (EpCAM (+ve)/let-7b(down-regulated)), EpCAM down regulated, let-7 over expressing normal retinal Müller glial cell line MIO-M1(EpCAM (-ve)/let-7b(up-regulated)), and EpCAM up regulated, let-7b up-regulated normal thyroid cell line N-Thy-Ori-3.1(EpCAM (+ve)/let-7b(up-regulated)) in the study. The cell proliferation was measured by MTT assay, apoptosis was measured by probing cleaved Caspase3, EpCAM and TK expression were quantified by Western blot. Our results showed that the EGP2-promoter HSV-TK (EGP2-TK) construct with 2 or 4 copies of let-7b miRNA targets expressed TK gene only in Y79, WERI-Rb-1, while the TK gene did not express in MIO-M1. In summary, we have developed a tissue-specific, miRNA-regulated dual control vector, which selectively expresses the suicide gene in EpCAM over expressing cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mumbrekar, Kamalesh Dattaram; Bola Sadashiva, Satish Rao; Kabekkodu, Shama Prasada
Purpose: Heterogeneity in radiation therapy (RT)-induced normal tissue toxicity is observed in 10% of cancer patients, limiting the therapeutic outcomes. In addition to treatment-related factors, normal tissue adverse reactions also manifest from genetic alterations in distinct pathways majorly involving DNA damage–repair genes, inflammatory cytokine genes, cell cycle regulation, and antioxidant response. Therefore, the common sequence variants in these radioresponsive genes might modify the severity of normal tissue toxicity, and the identification of the same could have clinical relevance as a predictive biomarker. Methods and Materials: The present study was conducted in a cohort of patients with breast cancer to evaluatemore » the possible associations between genetic variants in radioresponsive genes described previously and the risk of developing RT-induced acute skin adverse reactions. We tested 22 genetic variants reported in 18 genes (ie, NFE2L2, OGG1, NEIL3, RAD17, PTTG1, REV3L, ALAD, CD44, RAD9A, TGFβR3, MAD2L2, MAP3K7, MAT1A, RPS6KB2, ZNF830, SH3GL1, BAX, and XRCC1) using TaqMan assay-based real-time polymerase chain reaction. At the end of RT, the severity of skin damage was scored, and the subjects were dichotomized as nonoverresponders (Radiation Therapy Oncology Group grade <2) and overresponders (Radiation Therapy Oncology Group grade ≥2) for analysis. Results: Of the 22 single nucleotide polymorphisms studied, the rs8193 polymorphism lying in the micro-RNA binding site of 3′-UTR of CD44 was significantly (P=.0270) associated with RT-induced adverse skin reactions. Generalized multifactor dimensionality reduction analysis showed significant (P=.0107) gene–gene interactions between MAT1A and CD44. Furthermore, an increase in the total number of risk alleles was associated with increasing occurrence of overresponses (P=.0302). Conclusions: The genetic polymorphisms in radioresponsive genes act as genetic modifiers of acute normal tissue toxicity outcomes after RT by acting individually (rs8193), by gene–gene interactions (MAT1A and CD44), and/or by the additive effects of risk alleles.« less
Excitation-scanning hyperspectral imaging as a means to discriminate various tissues types
NASA Astrophysics Data System (ADS)
Deal, Joshua; Favreau, Peter F.; Lopez, Carmen; Lall, Malvika; Weber, David S.; Rich, Thomas C.; Leavesley, Silas J.
2017-02-01
Little is currently known about the fluorescence excitation spectra of disparate tissues and how these spectra change with pathological state. Current imaging diagnostic techniques have limited capacity to investigate fluorescence excitation spectral characteristics. This study utilized excitation-scanning hyperspectral imaging to perform a comprehensive assessment of fluorescence spectral signatures of various tissues. Immediately following tissue harvest, a custom inverted microscope (TE-2000, Nikon Instruments) with Xe arc lamp and thin film tunable filter array (VersaChrome, Semrock, Inc.) were used to acquire hyperspectral image data from each sample. Scans utilized excitation wavelengths from 340 nm to 550 nm in 5 nm increments. Hyperspectral images were analyzed with custom Matlab scripts including linear spectral unmixing (LSU), principal component analysis (PCA), and Gaussian mixture modeling (GMM). Spectra were examined for potential characteristic features such as consistent intensity peaks at specific wavelengths or intensity ratios among significant wavelengths. The resultant spectral features were conserved among tissues of similar molecular composition. Additionally, excitation spectra appear to be a mixture of pure endmembers with commonalities across tissues of varied molecular composition, potentially identifiable through GMM. These results suggest the presence of common autofluorescent molecules in most tissues and that excitationscanning hyperspectral imaging may serve as an approach for characterizing tissue composition as well as pathologic state. Future work will test the feasibility of excitation-scanning hyperspectral imaging as a contrast mode for discriminating normal and pathological tissues.
Hoffman, Joel C; Sierszen, Michael E; Cotter, Anne M
2015-11-15
Normalizing δ(13) C values of animal tissue for lipid content is necessary to accurately interpret food-web relationships from stable isotope analysis. To reduce the effort and expense associated with chemical extraction of lipids, various studies have tested arithmetic mass balance to mathematically normalize δ(13) C values for lipid content; however, the approach assumes that lipid content is related to the tissue C:N ratio. We evaluated two commonly used models for estimating tissue lipid content based on C:N ratio (a mass balance model and a stoichiometric model) by comparing model predictions to measure the lipid content of white muscle tissue. We then determined the effect of lipid model choice on δ(13) C values normalized using arithmetic mass balance. To do so, we used a collection of fish from Lake Superior spanning a wide range in lipid content (5% to 73% lipid). We found that the lipid content was positively related to the bulk muscle tissue C:N ratio. The two different lipid models produced similar estimates of lipid content based on tissue C:N, within 6% for tissue C:N values <7. Normalizing δ(13) C values using an arithmetic mass-balance equation based on either model yielded similar results, with a small bias (<1‰) compared with results based on chemical extraction. Among-species consistency in the relationship between fish muscle tissue C:N ratio and lipid content supports the application of arithmetic mass balance to normalize δ(13) C values for lipid content. The uncertainty associated with both lipid extraction quality and choice of model parameters constrains the achievable precision of normalized δ(13) C values to about ±1.0‰. Published in 2015. This article is a U.S. Government work and is in the public domain in the U.S.A.
Ex vivo human bile duct radiofrequency ablation with a bipolar catheter.
Atar, Mustafa; Kadayifci, Abdurrahman; Daglilar, Ebubekir; Hagen, Catherine; Fernandez-Del Castillo, Carlos; Brugge, William R
2018-06-01
Management of the primary and secondary tumors of the bile ducts still remains as a major clinical challenge. Radiofrequency (RF) ablation (RFA) of these tumors is feasible but the effect of RF energy on the human common bile duct (CBD) and surrounding tissues has not been investigated. This pilot study aimed to determine the relationship between RF energy and the depth of ablation in the normal human CBD. The study was performed on fresh ex vivo human biliary-pancreatic tissue which had been resected for a pancreatic cyst or mass. The study was conducted within 15 min after resection. A bipolar Habib RFA catheter was placed into the middle of the intact CBD, and three different (5, 7, 10 W) power settings were applied over a 90-s period by an RF generator. Gross and histological examinations were performed. The depth of coagulation necrosis in CBD and the effect of RFA on CBD wall and surrounding pancreas tissue were determined by microscopic examination. The study included eight tissue samples. 5 W power was applied to three sites and RFA caused only focal epithelial necrosis limited to the CBD mucosa. 7 and 10 W were applied to five sites and coagulation necrosis occurred in all cases. Microscopically, necrosis was transmural, involved accessory bile duct glands, and extended to the surrounding pancreatic tissue in four of these cases. Macroscopically, RFA resulted in circumferential white-yellowish color change extending approximately 2 cm of the CBD. Bipolar RF energy application with 5 W resulted in limited ablation on CBD wall. However, 7 and 10 W generated tissue necrosis which extended through the CBD wall and into surrounding pancreas tissue. Endoscopic biliary RFA is an effective technique for local biliary tissue ablation but the use of high energy may injure surrounding tissue.
Does telomere elongation lead to a longer lifespan if cancer is considered?
NASA Astrophysics Data System (ADS)
Masa, Michael; Cebrat, Stanisław; Stauffer, Dietrich
2006-05-01
As cell proliferation is limited due to the loss of telomere repeats in DNA of normal somatic cells during division, telomere attrition can possibly play an important role in determining the maximum life span of organisms as well as contribute to the process of biological ageing. With computer simulations of cell culture development in organisms, which consist of tissues of normal somatic cells with finite growth, we obtain an increase of life span and life expectancy for longer telomeric DNA in the zygote. By additionally considering a two-mutation model for carcinogenesis and indefinite proliferation by the activation of telomerase, we demonstrate that the risk of dying due to cancer can outweigh the positive effect of longer telomeres on the longevity.
Koontz, Laura M; Liu-Chittenden, Yi; Yin, Feng; Zheng, Yonggang; Yu, Jianzhong; Huang, Bo; Chen, Qian; Wu, Shian; Pan, Duojia
2013-05-28
The Hippo tumor suppressor pathway restricts tissue growth by inactivating the transcriptional coactivator Yki. Although Sd has been implicated as a DNA-binding transcription factor partner for Yki and can genetically account for gain-of-function Yki phenotypes, how Yki regulates normal tissue growth remains a long-standing puzzle because Sd, unlike Yki, is dispensable for normal growth in most Drosophila tissues. Here we show that the yki mutant phenotypes in multiple developmental contexts are rescued by inactivation of Sd, suggesting that Sd functions as a default repressor and that Yki promotes normal tissue growth by relieving Sd-mediated default repression. We further identify Tgi as a cofactor involved in Sd's default repressor function and demonstrate that the mammalian ortholog of Tgi potently suppresses the YAP oncoprotein in transgenic mice. These findings fill a major gap in Hippo-mediated transcriptional regulation and open up possibilities for modulating the YAP oncoprotein in cancer and regenerative medicine. Copyright © 2013 Elsevier Inc. All rights reserved.
FT-IR Spectroscopic Analysis of Normal and Malignant Human Oral Tissues
NASA Astrophysics Data System (ADS)
Krishnakumar, N.; Madhavan, R. Nirmal; Sumesh, P.; Palaniappan, Pl. Rm.; Venkatachalam, P.; Ramachandran, C. R.
2008-11-01
FT-IR spectroscopy has been used to explore the changes in the vibrational bands of normal and oral squamous cell carcinoma (OSCC) tissues in the region 4000-400 cm-1. Significant changes in the spectral features were observed. The spectral changes were the results of characteristics structural alterations at the molecular level in the malignant tissues. These alterations include structural changes of proteins and possible increase of its content, an increase in the nucleic-to-cytoplasm ratio, an increase in the relative amount of DNA, an increase in the rate of phosphorylation process induced by carcinogenesis, a loss of hydrogen bonding of the C-OH groups in the amino acid residues of proteins, a decrease in the relative amount of lipids compared to normal epithelial oral tissues. The results of the present study demonstrate that the FT-IR technique has the feasibility of discriminating malignant from normal tissues and other pathological states in a short period of time and may detect malignant transformation earlier than the standard histological examination stage.
Brain cancer probed by native fluorescence and stokes shift spectroscopy
NASA Astrophysics Data System (ADS)
Zhou, Yan; Liu, Cheng-hui; He, Yong; Pu, Yang; Li, Qingbo; Wang, Wei; Alfano, Robert R.
2012-12-01
Optical biopsy spectroscopy was applied to diagnosis human brain cancer in vitro. The spectra of native fluorescence, Stokes shift and excitation spectra were obtained from malignant meningioma, benign, normal meningeal tissues and acoustic neuroma benign tissues. The wide excitation wavelength ranges were used to establish the criterion for distinguishing brain diseases. The alteration of fluorescence spectra between normal and abnormal brain tissues were identified by the characteristic fluorophores under the excitation with UV to visible wavelength range. It was found that the ratios of the peak intensities and peak position in both spectra of fluorescence and Stokes shift may be used to diagnose human brain meninges diseases. The preliminary analysis of fluorescence spectral data from cancer and normal meningeal tissues by basic biochemical component analysis model (BBCA) and Bayes classification model based on statistical methods revealed the changes of components, and classified the difference between cancer and normal human brain meningeal tissues in a predictions accuracy rate is 0.93 in comparison with histopathology and immunohistochemistry reports (gold standard).
Alpay, Nilüfer; Artim-Esen, Bahar; Kamali, Sevil; Gül, Ahmet; Kalayoğlu-Beşişik, Sevgi
2009-12-01
We report two patients who suffered from symmetrical polyarthritis simulating rheumatoid arthritis. Acute phase response was almost within normal limits, and autoantibodies including rheumatoid factor were negative. Both of them were diagnosed as having amyloid arthropathy (AmyA) secondary to kappa multiple myeloma based on deposition of kappa-light chain-immunoreactive amyloid in biopsied tissue and Bence Jones protein in urine. Systemic AL amyloidosis may be important in the differential diagnosis of chronic polyarthralgia.
[Experimental therapy of cardiac remodeling with quercetin-containing drugs].
Kuzmenko, M A; Pavlyuchenko, V B; Tumanovskaya, L V; Dosenko, V E; Moybenko, A A
2013-01-01
It was shown that continuous beta-adrenergic hyperstimulation resulted in cardiac function disturbances and fibrosis of cardiac tissue. Treatment with quercetin-containing drugs, particularly, water-soluble corvitin and tableted quertin exerted favourable effect on cardiac hemodynamics, normalized systolic and diastolic function in cardiac remodeling, induced by sustained beta-adrenergic stimulation. It was estimated that conducted experimental therapy limited cardiac fibrosis area almost three-fold, that could be associated with first and foremost improved cardiac distensibility, characteristics of diastolic and also pump function in cardiac remodeling.
Lactational ectopic breast tissue of the vulva: case report and brief historical review.
Pieh-Holder, Kelly L
2013-04-01
Ectopic breast tissue is defined as glands of breast tissue located outside of the normal anatomic breasts. Historically, ectopic breast tissue has been thought to arise from a remnant of the embryonic mammary ridge along the "milk line" or the midaxillary line from the axilla to the groin, including the vulvar region. Extramammary tissue displays the same pathologic and physiologic changes as normal breast tissue and is often discovered in multiparous women as the result of swelling from lactational activity. We present a case report of a gravid patient with lactating vulvar mass and a brief historical perspective of vulvar ectopic breast tissue.
Ling, C. R.; Foster, M. A.; Mallard, J. R.
1979-01-01
In separate experiments, normal foreign tissue and malignant tumour were implanted s.c. into the rat thigh. NMR T1 values of the adjacent normal muscle, resulting from local inflammatory reactions or from malignant invasion, were measured. Elevations in T1 of the underlying muscle occurred within 24 h in both experiments, and it is believed these were caused by rapid inflammatory and immunological reactions to the implants. However the T1 values of muscle samples adjacent to the non-malignant implants decreased during the 11 days after implantation, dropping to values within the normal range. In the second experiment there was progressive malignant invasion into the normal adjacent tissue and the elevated T1 values were maintained throughout the 12-day period. The effects of the implantation on tissue water content are discussed in relation to NMR T1 relaxation times, and the relevance to whole-body NMR imaging of elevated T1 values due to nonmalignant pathological states is considered. PMID:526431
Lee, Richard Y; Nichols, Romaine C; Huh, Soon N; Ho, Meng W; Li, Zuofeng; Zaiden, Robert; Awad, Ziad T; Ahmed, Bestoun; Hoppe, Bradfors S
2013-12-01
Neoadjuvant radiotherapy has the potential to improve local disease control for patients with localized pancreatic cancers. Concern about an increased risk of surgical complications due to small bowel and gastric exposure, however, has limited enthusiasm for this approach. Dosimetric studies have demonstrated the potential for proton therapy to reduce intestinal exposure compared with X-ray-based therapy. We sought to determine if neoadjuvant proton therapy allowed for field expansions to cover high-risk nodal stations in addition to the primary tumor. Twelve consecutive patients with nonmetastatic cancers of the pancreatic head underwent proton-based planning for neoadjuvant radiotherapy. Gross tumor volume was contoured using diagnostic computed tomography (CT) scans with oral and intravenous contrast. Four-dimensional planning scans were utilized to define an internal clinical target volume (ICTV). Five-mm planning target volume (PTV) expansions on the ICTV were generated to establish an initial PTV (PTV1). A second PTV was created using the initial PTV but was expanded to include the high-risk nodal targets as defined by the RTOG contouring atlas (PTV2). Optimized proton plans were generated for both PTVs for each patient. All PTVs received a dose of 50.4 cobalt gray equivalent (CGE). Normal-tissue exposures to the small bowel space, stomach, right kidney, left kidney and liver were recorded. Point spinal cord dose was limited to 45 CGE. Median PTV1 volume was 308.75 cm(3) (range, 133.33-495.61 cm(3)). Median PTV2 volume was 541.75 cm(3) (range, 399.44-691.14 cm(3)). In spite of the substantial enlargement of the PTV when high-risk lymph nodes were included in the treatment volume, normal-tissue exposures (stomach, bowel space, liver, and kidneys) were only minimally increased relative to the exposures seen when only the gross tumor target was treated. Proton therapy appears to allow for field expansions to cover high-risk lymph nodes without significantly increasing critical normal-tissue exposure in the neoadjuvant setting.
Trace elemental correlation study in malignant and normal breast tissue by PIXE technique
NASA Astrophysics Data System (ADS)
Raju, G. J. Naga; Sarita, P.; Kumar, M. Ravi; Murty, G. A. V. Ramana; Reddy, B. Seetharami; Lakshminarayana, S.; Vijayan, V.; Lakshmi, P. V. B. Rama; Gavarasana, Satyanarayana; Reddy, S. Bhuloka
2006-06-01
Particle induced X-ray emission technique was used to study the variations in trace elemental concentrations between normal and malignant human breast tissue specimens and to understand the effects of altered homeostasis of these elements in the etiology of breast cancer. A 3 MeV proton beam was used to excite the biological samples of normal and malignant breast tissues. The elements Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb and Sr were identified and their relative concentrations were estimated. Almost all the elements were found to be elevated (p < 0.05, Wilcoxon signed-ranks test) in the cancerous tissues when compared with normal tissues. The excess levels of trace elements observed in the cancerous breast tissues could either be a cause or a consequence of breast cancer. Regarding their role in the initiation or promotion of breast cancer, one possible interpretation is that the elevated levels of Cu, Fe and Cr could have led to the formation of free radicals or other reactive oxygen species (ROS) that adversely affect DNA thereby causing breast cancer, which is mainly attributed to genetic abnormalities. Moreover, since Cu and Fe are required for angiogenesis, elevated concentrations of these elements are likely to promote breast cancer by increasing the blood supply for tumor growth. On the other hand elevated concentrations of elements in breast cancer tissues might also be a consequence of the cancer. This can be understood in terms of the biochemical and histological differences between normal and cancerous breast tissues. Tumors, characterized by unregulated multiplication of cells, need an ever-increasing supply of essential nutrients including trace elements. This probably results in an increased vascularity of malignant tissues, which in turn leads to enhancement of elemental concentrations in tumors.
Li, Xia; Wang, Yibaina; Zhang, Zuoming; Yao, Xiaoping; Ge, Jie; Zhao, Yashuang
2013-11-01
CpG island methylation in the promoter regions of the DNA mismatch repair gene mutator L homologue 1 ( MLH1 ) and DNA repair gene O 6 -methylguanine-DNA methyltransferase ( MGMT ) genes has been shown to occur in the leukocytes of peripheral blood and colorectal tissue. However, it is unclear whether the methylation levels in the blood leukocytes and colorectal tissue are correlated. The present study analyzed and compared the levels of MGMT and MLH1 gene methylation in the leukocytes of peripheral blood and colorectal tissues obtained from patients with colorectal cancer (CRC). The methylation levels of MGMT and MLH1 were examined using methylation-sensitive high-resolution melting (MS-HRM) analysis. A total of 44 patients with CRC were selected based on the MLH1 and MGMT gene methylation levels in the leukocytes of the peripheral blood. Corresponding colorectal tumor and normal tissues were obtained from each patient and the DNA methylation levels were determined. The correlation coefficients were evaluated using Spearman's rank test. Agreement was determined by generalized κ-statistics. Spearman's rank correlation coefficients (r) for the methylation levels of the MGMT and MLH1 genes in the leukocytes of the peripheral blood and normal colorectal tissue were 0.475 and 0.362, respectively (P=0.001 and 0.016, respectively). The agreement of the MGMT and MLH1 gene methylation levels in the leukocytes of the peripheral blood and normal colorectal tissue were graded as fair and poor (κ=0.299 and 0.126, respectively). The methylation levels of MGMT and MLH1 were moderately and weakly correlated between the patient-matched leukocytes and the normal colorectal tissue, respectively. Blood-derived DNA methylation measurements may not always represent the levels of normal colorectal tissue methylation.
Shams Mofarahe, Zahra; Salehnia, Mojdeh; Ghaffari Novin, Marefat; Ghorbanmehr, Nassim; Fesharaki, Mohammad Gholami
2017-01-01
This study was designed to evaluate the effects of vitrification and in vitro culture of human ovarian tissue on the expression of oocytic and follicular cell-related genes. In this experimental study, ovarian tissue samples were obtained from eight transsexual women. Samples were cut into small fragments and were then assigned to vitrified and non-vitrified groups. In each group, some tissue fragments were divided into un-cultured and cultured (in α-MEM medium for 2 weeks) subgroups. The normality of follicles was assessed by morphological observation under a light microscope using hematoxylin and eosin (H&E) staining. Expression levels of factor in the germ line alpha ( FIGLA ), KIT ligand ( KL ), growth differentiation factor 9 ( GDF-9 ) and follicle stimulating hormone receptor ( FSHR ) genes were quantified in both groups by real-time reverse transcriptase polymerase chain reaction (RT-PCR) at the beginning and the end of culture. The percentage of normal follicles was similar between non-cultured vitrified and non-vitrified groups (P>0.05), however, cultured tissues had significantly fewer normal follicles than non-cultured tissues in both vitrified and non-vitrified groups (P<0.05). In both cultured groups the rate of primary and secondary follicles was significantly higher than non-cultured tissues (P<0.05). The expression of all examined genes was not significantly altered in both non-cultured groups. Whiles, in comparison with cultured tissues non-cultured tissues, the expression of FIGLA gene was significantly decreased, KL gene was not changed, GDF-9 and FSHR genes was significantly increased (P<0.05). Human ovarian vitrification following in vitro culture has no impairing effects on follicle normality and development and expression of related-genes. However, in vitro culture condition has deleterious effects on normality of follicles.
Trujillo, Kristina A.; Heaphy, Christopher M.; Mai, Minh; Vargas, Keith M.; Jones, Anna C.; Vo, Phung; Butler, Kimberly S.; Joste, Nancy E.; Bisoffi, Marco; Griffith, Jeffrey K
2011-01-01
Previous studies have shown that a field of genetically altered but histologically normal tissue extends 1 cm or more from the margins of human breast tumors. The extent, composition and biological significance of this field are only partially understood, but the molecular alterations in affected cells could provide mechanisms for limitless replicative capacity, genomic instability and a microenvironment that supports tumor initiation and progression. We demonstrate by microarray, qRT-PCR and immunohistochemistry a signature of differential gene expression that discriminates between patient-matched, tumor-adjacent histologically normal breast tissues located 1 cm and 5 cm from the margins of breast adenocarcinomas (TAHN-1 and TAHN-5, respectively). The signature includes genes involved in extracellular matrix remodeling, wound healing, fibrosis and epithelial to mesenchymal transition (EMT). Myofibroblasts, which are mediators of wound healing and fibrosis, and intra-lobular fibroblasts expressing MMP2, SPARC, TGF-β3, which are inducers of EMT, were both prevalent in TAHN-1 tissues, sparse in TAHN-5 tissues, and absent in normal tissues from reduction mammoplasty. Accordingly, EMT markers S100A4 and vimentin were elevated in both luminal and myoepithelial cells, and EMT markers α-smooth muscle actin and SNAIL were elevated in luminal epithelial cells of TAHN-1 tissues. These results identify cellular processes that are differentially activated between TAHN-1 and TAHN-5 breast tissues, implicate myofibroblasts as likely mediators of these processes, provide evidence that EMT is occurring in histologically normal tissues within the affected field and identify candidate biomarkers to investigate whether or how field cancerization contributes to the development of primary or recurrent breast tumors. PMID:21105047
NASA Astrophysics Data System (ADS)
Giese, A.; Böhringer, H. J.; Leppert, J.; Kantelhardt, S. R.; Lankenau, E.; Koch, P.; Birngruber, R.; Hüttmann, G.
2006-02-01
Optical coherence tomography (OCT) is a non-invasive imaging technique with a micrometer resolution. It allows non-contact / non-invasive analysis of central nervous system tissues with a penetration depth of 1-3,5 mm reaching a spatial resolution of approximately 4-15 μm. We have adapted spectral-domain OCT (SD-OCT) and time-domain OCT (TD-OCT) for intraoperative detection of residual tumor during brain tumor surgery. Human brain tumor tissue and areas of the resection cavity were analyzed during the resection of gliomas using this new technology. The site of analysis was registered using a neuronavigation system and biopsies were taken and submitted to routine histology. We have used post image acquisition processing to compensate for movements of the brain and to realign A-scan images for calculation of a light attenuation factor. OCT imaging of normal cortex and white matter showed a typical light attenuation profile. Tumor tissue depending on the cellularity of the specimen showed a loss of the normal light attenuation profile resulting in altered light attenuation coefficients compared to normal brain. Based on this parameter and the microstructure of the tumor tissue, which was entirely absent in normal tissue, OCT analysis allowed the discrimination of normal brain tissue, invaded brain, solid tumor tissue, and necrosis. Following macroscopically complete resections OCT analysis of the resection cavity displayed the typical microstructure and light attenuation profile of tumor tissue in some specimens, which in routine histology contained microscopic residual tumor tissue. We have demonstrated that this technology may be applied to the intraoperative detection of residual tumor during resection of human gliomas.
NASA Astrophysics Data System (ADS)
Bottiroli, Giovanni F.; Croce, Anna C.; Locatelli, Donata; Nano, Rosanna; Giombelli, Ermanno; Messina, Alberto; Benericetti, Eugenio
1998-01-01
Light-induced autofluorescence measurements were made on normal and tumor brain tissues to assess their spectroscopic properties and to verify the potential of this parameter for an intraoperative delineation of tumor resection margins. Spectrofluorometric analysis was performed both at the microscope on tissue sections from surgical resection, and on patients affected by glioblastoma, during surgical operation. Significant differences in autofluorescence emission properties were found between normal and tumor tissues in both ex vivo and in vivo measurements, indicating that the lesion can be distinguished from the informal surrounding tissues by the signal amplitude and the spectral shape. The non-invasiveness of the technique opens interesting prospects for improving the efficacy of neurosurgical operation, by allowing an intraoperative delimitation of tumor resection margins.
NASA Astrophysics Data System (ADS)
Feng, Shangyuan; Lin, Juqiang; Huang, Zufang; Chen, Guannan; Chen, Weisheng; Wang, Yue; Chen, Rong; Zeng, Haishan
2013-01-01
The capability of using silver nanoparticle based near-infrared surface enhanced Raman scattering (SERS) spectroscopy combined with principal component analysis (PCA) and linear discriminate analysis (LDA) to differentiate esophageal cancer tissue from normal tissue was presented. Significant differences in Raman intensities of prominent SERS bands were observed between normal and cancer tissues. PCA-LDA multivariate analysis of the measured tissue SERS spectra achieved diagnostic sensitivity of 90.9% and specificity of 97.8%. This exploratory study demonstrated great potential for developing label-free tissue SERS analysis into a clinical tool for esophageal cancer detection.
NASA Astrophysics Data System (ADS)
Haifler, Miki; Pence, Isaac J.; Zisman, Amnon; Uzzo, Robert G.; Greenberg, Richard; Kutikov, Alexander; Smaldone, Marc; Chen, David; Viterbo, Rosalia; Ristau, Benjamin; Mahadevan-Jansen, Anita; Dumont, Alexander; Patil, Chetan A.
2017-02-01
Kidney cancer affects 65,000 new patients every. As computerized tomography became ubiquitous, the number of small, incidentally detected renal masses increased. About 6,000 benign cases are misclassified radiographically as malignant and removed surgically. Raman spectroscopy (RS) has been widely demonstrated for disease discrimination, however intense near-infrared auto-fluorescence of certain tissues (e.g kidney) can present serious challenges to bulk tissue diagnosis. A 1064nm excitation dispersive detection RS system demonstrated the ability to collect spectra with superior quality in tissues with strong auto-fluorescence. Our objective is to develop a 1064 nm dispersive detection RS system capable of differentiating normal and malignant renal tissue. We will report on the design and development of a clinical system for use in nephron sparing surgeries. We will present pilot data that has been collected from normal and malignant ex vivo kidney specimens using a benchtop RS system. A total of 93 measurements were collected from 12 specimens (6 Renal Cell Carcinoma, 6 Normal ). Spectral classification was performed using sparse multinomial logistic regression (SMLR). Correct classification by SMLR was obtained in 78% of the trials with sensitivity and specificity of 82% and 75% respectively. We will present the association of spectral features with biological indicators of healthy and diseased kidney tissue. Our findings indicate that 1064nm RS is a promising technique for differentiation of normal and malignant renal tissue. This indicates the potential for accurately separating healthy and cancerous tissues and suggests implications for utilizing RS for optical biopsy and surgical guidance in nephron sparing surgery.
Roberts, Michael D.; Grau, Vicente; Grimm, Jonathan; Reynaud, Juan; Bellezza, Anthony J.; Burgoyne, Claude F.; Downs, J. Crawford
2009-01-01
Purpose To characterize the trabeculated connective tissue microarchitecture of the lamina cribrosa (LC) in terms of total connective tissue volume (CTV), connective tissue volume fraction (CTVF), predominant beam orientation, and material anisotropy in monkeys with early experimental glaucoma (EG). Methods The optic nerve heads from three monkeys with unilateral EG and four bilaterally normal monkeys were three dimensionally reconstructed from tissues perfusion fixed at an intraocular pressure of 10 mm Hg. A three-dimensional segmentation algorithm was used to extract a binary, voxel-based representation of the porous LC connective tissue microstructure that was regionalized into 45 subvolumes, and the following quantities were calculated: total CTV within the LC, mean and regional CTVF, regional predominant beam orientation, and mean and regional material anisotropy. Results Regional variation within the laminar microstructure was considerable within the normal eyes of all monkeys. The laminar connective tissue was generally most dense in the central and superior regions for the paired normal eyes, and laminar beams were radially oriented at the periphery for all eyes considered. CTV increased substantially in EG eyes compared with contralateral normal eyes (82%, 44%, 45% increases; P < 0.05), but average CTVF changed little (−7%, 1%, and −2% in the EG eyes). There were more laminar beams through the thickness of the LC in the EG eyes than in the normal controls (46%, 18%, 17% increases). Conclusions The substantial increase in laminar CTV with little change in CTVF suggests that significant alterations in connective and nonconnective tissue components in the laminar region occur in the early stages of glaucomatous damage. PMID:18806292
Adnet, J J; Pinteaux, A; Pousse, G; Caulet, T
1976-04-01
Three simple methods (adapted from optical techniques) for normal and pathological elastic tissue caracterisation in electron microscopy on thin and ultrathin sections are proposed. Two of these methods (orcein and fuchsin resorcin) seem to have a specificity for arterial and breast cancer elastic tissue. Weigert's method gives the best contrast.
NASA Astrophysics Data System (ADS)
Laughney, Ashley; Krishnaswamy, Venkat; Schwab, Mary; Wells, Wendy A.; Paulsen, Keith D.; Pogue, Brian W.
2009-02-01
The purpose of this study was to extract scatter parameters related to tissue ultra-structures from freshly excised breast tissue and to assess whether evident changes in scatter across diagnostic categories is primarily influenced by variation in the composition of each tissues subtypes or by physical remodeling of the extra-cellular environment. Pathologists easily distinguish between epithelium, stroma and adipose tissues, so this classification was adopted for macroscopic subtype classification. Micro-sampling reflectance spectroscopy was used to characterize single-backscattered photons from fresh, excised tumors and normal reduction specimens with sub-millimeter resolution. Phase contrast microscopy (sub-micron resolution) was used to characterize forward-scattered light through frozen tissue from the DHMC Tissue Bank, representing normal, benign and malignant breast tissue, sectioned at 10 microns. The packing density and orientation of collagen fibers in the extracellular matrix (ECM) associated with invasive, normal and benign epithelium was evaluated using transmission electron microscopy (TEM). Regions of interest (ROIs) in the H&E stained tissues were identified for analysis, as outlined by a pathologist as the gold standard. We conclude that the scatter parameters associated with tumor specimens (Npatients=6, Nspecimens=13) significantly differs from that of normal reductions (Npatients=6, Nspecimens=10). Further, tissue subtypes may be identified by their scatter spectra at sub-micron resolution. Stromal tissue scatters significantly more than the epithelial cells embedded in its ECM and adipose tissue scatters much less. However, the scatter signature of the stroma at the sub-micron level is not particularly differentiating in terms of a diagnosis.
Heber, Elisa M; Hawthorne, M Frederick; Kueffer, Peter J; Garabalino, Marcela A; Thorp, Silvia I; Pozzi, Emiliano C C; Monti Hughes, Andrea; Maitz, Charles A; Jalisatgi, Satish S; Nigg, David W; Curotto, Paula; Trivillin, Verónica A; Schwint, Amanda E
2014-11-11
The application of boron neutron capture therapy (BNCT) mediated by liposomes containing (10)B-enriched polyhedral borane and carborane derivatives for the treatment of head and neck cancer in the hamster cheek pouch oral cancer model is presented. These liposomes are composed of an equimolar ratio of cholesterol and 1,2-distearoyl-sn-glycero-3-phosphocholine, incorporating K[nido-7-CH3(CH2)15-7,8-C2B9H11] (MAC) in the bilayer membrane while encapsulating the hydrophilic species Na3[ae-B20H17NH3] (TAC) in the aqueous core. Unilamellar liposomes with a mean diameter of 83 nm were administered i.v. in hamsters. After 48 h, the boron concentration in tumors was 67 ± 16 ppm whereas the precancerous tissue contained 11 ± 6 ppm, and the tumor/normal pouch tissue boron concentration ratio was 10:1. Neutron irradiation giving a 5-Gy dose to precancerous tissue (corresponding to 21 Gy in tumor) resulted in an overall tumor response (OR) of 70% after a 4-wk posttreatment period. In contrast, the beam-only protocol gave an OR rate of only 28%. Once-repeated BNCT treatment with readministration of liposomes at an interval of 4, 6, or 8 wk resulted in OR rates of 70-88%, of which the complete response ranged from 37% to 52%. Because of the good therapeutic outcome, it was possible to extend the follow-up of BNCT treatment groups to 16 wk after the first treatment. No radiotoxicity to normal tissue was observed. A salient advantage of these liposomes was that only mild mucositis was observed in dose-limiting precancerous tissue with a sustained tumor response of 70-88%.
Hou, Huagang; Dong, Ruhong; Li, Hongbin; Williams, Benjamin; Lariviere, Jean P.; Hekmatyar, S.K.; Kauppinen, Risto A.; Khan, Nadeem; Swartz, Harold
2013-01-01
Introduction Several techniques currently exist for measuring tissue oxygen; however technical difficulties have limited their usefulness and general application. We report a recently developed electron paramagnetic resonance (EPR) oximetry approach with multiple probe implantable resonators (IRs) that allow repeated measurements of oxygen in tissue at depths of greater than 10 mm. Methods The EPR signal to noise (S/N) ratio of two probe IRs was compared with that of LiPc deposits. The feasibility of intracranial tissue pO2 measurements by EPR oximetry using IRs was tested in normal rats and rats bearing intracerebral F98 tumors. The dynamic changes in the tissue pO2 were assessed during repeated hyperoxia with carbogen breathing. Results A 6–10 times increase in the S/N ratio was observed with IRs as compared to LiPc deposits. The mean brain pO2 of normal rats was stable and increased significantly during carbogen inhalation in experiments repeated for 3 months. The pO2 of F98 glioma declined gradually, while the pO2 of contralateral brain essentially remained the same. Although a significant increase in the glioma pO2 was observed during carbogen inhalation, this effect declined in experiments repeated over days. Conclusion EPR oximetry with IRs provides a significant increase in S/N ratio. The ability to repeatedly assess orthotopic glioma pO2 is likely to play a vital role in understanding the dynamics of tissue pO2 during tumor growth and therapies designed to modulate tumor hypoxia. This information could then be used to optimize chemoradiation by scheduling treatments at times of increased glioma oxygenation. PMID:22033225
Heber, Elisa M.; Hawthorne, M. Frederick; Kueffer, Peter J.; Garabalino, Marcela A.; Thorp, Silvia I.; Pozzi, Emiliano C. C.; Hughes, Andrea Monti; Maitz, Charles A.; Jalisatgi, Satish S.; Nigg, David W.; Curotto, Paula; Trivillin, Verónica A.; Schwint, Amanda E.
2014-01-01
The application of boron neutron capture therapy (BNCT) mediated by liposomes containing 10B-enriched polyhedral borane and carborane derivatives for the treatment of head and neck cancer in the hamster cheek pouch oral cancer model is presented. These liposomes are composed of an equimolar ratio of cholesterol and 1,2-distearoyl-sn-glycero-3-phosphocholine, incorporating K[nido-7-CH3(CH2)15-7,8-C2B9H11] (MAC) in the bilayer membrane while encapsulating the hydrophilic species Na3[ae-B20H17NH3] (TAC) in the aqueous core. Unilamellar liposomes with a mean diameter of 83 nm were administered i.v. in hamsters. After 48 h, the boron concentration in tumors was 67 ± 16 ppm whereas the precancerous tissue contained 11 ± 6 ppm, and the tumor/normal pouch tissue boron concentration ratio was 10:1. Neutron irradiation giving a 5-Gy dose to precancerous tissue (corresponding to 21 Gy in tumor) resulted in an overall tumor response (OR) of 70% after a 4-wk posttreatment period. In contrast, the beam-only protocol gave an OR rate of only 28%. Once-repeated BNCT treatment with readministration of liposomes at an interval of 4, 6, or 8 wk resulted in OR rates of 70–88%, of which the complete response ranged from 37% to 52%. Because of the good therapeutic outcome, it was possible to extend the follow-up of BNCT treatment groups to 16 wk after the first treatment. No radiotoxicity to normal tissue was observed. A salient advantage of these liposomes was that only mild mucositis was observed in dose-limiting precancerous tissue with a sustained tumor response of 70–88%. PMID:25349432
Cholinergic regulation of epithelial ion transport in the mammalian intestine
Hirota, C L; McKay, D M
2006-01-01
Acetylcholine (ACh) is critical in controlling epithelial ion transport and hence water movements for gut hydration. Here we review the mechanism of cholinergic control of epithelial ion transport across the mammalian intestine. The cholinergic nervous system affects basal ion flux and can evoke increased active ion transport events. Most studies rely on measuring increases in short-circuit current (ISC = active ion transport) evoked by adding ACh or cholinomimetics to intestinal tissue mounted in Ussing chambers. Despite subtle species and gut regional differences, most data indicate that, under normal circumstances, the effect of ACh on intestinal ion transport is mainly an increase in Cl- secretion due to interaction with epithelial M3 muscarinic ACh receptors (mAChRs) and, to a lesser extent, neuronal M1 mAChRs; however, AChR pharmacology has been plagued by a lack of good receptor subtype-selective compounds. Mice lacking M3 mAChRs display intact cholinergically-mediated intestinal ion transport, suggesting a possible compensatory mechanism. Inflamed tissues often display perturbations in the enteric cholinergic system and reduced intestinal ion transport responses to cholinomimetics. The mechanism(s) underlying this hyporesponsiveness are not fully defined. Inflammation-evoked loss of mAChR-mediated control of epithelial ion transport in the mouse reveals a role for neuronal nicotinic AChRs, representing a hitherto unappreciated braking system to limit ACh-evoked Cl- secretion. We suggest that: i) pharmacological analyses should be supported by the use of more selective compounds and supplemented with molecular biology techniques targeting specific ACh receptors and signalling molecules, and ii) assessment of ion transport in normal tissue must be complemented with investigations of tissues from patients or animals with intestinal disease to reveal control mechanisms that may go undetected by focusing on healthy tissue only. PMID:16981004
Everson, Carol A.; Szabo, Aniko
2011-01-01
Chronic sleep disruption in laboratory rats leads to increased energy expenditure, connective tissue abnormalities, and increased weights of major organs relative to body weight. Here we report on expanded findings and the extent to which abnormalities become long-lasting, potentially permanent changes to health status after apparent recuperation from chronic sleep disruption. Rats were exposed 6 times to long periods of disrupted sleep or control conditions during 10 weeks to produce adaptations and then were permitted nearly 4 months of undisturbed sleep. Measurements were made in tissues from these groups and in preserved tissue from the experimental and control groups of an antecedent study that lacked a lengthy recuperation period. Cycles of sleep restriction resulted in energy deficiency marked by a progressive course of hyperphagia and major (15%) weight loss. Analyses of tissue composition in chronically sleep-restricted rats indicated that protein and lipid amounts in internal organs were largely spared, while adipose tissue depots appeared depleted. This suggests high metabolic demands may have preserved the size of the vital organs relative to expectations of severe energy deficiency alone. Low plasma corticosterone and leptin concentrations appear to reflect low substrate availability and diminished adiposity. After nearly 4 months of recuperation, sleep-restricted rats were consuming 20% more food and 35% more water than did comparison control rats, despite normalized weight, normalized adipocytes, and elevated plasma leptin concentrations. Plasma cholesterol levels in recuperated sleep-restricted rats were diminished relative to those of controls. The chronically increased intake of nutriments and water, along with altered negative feedback regulation and substrate use, indicate that internal processes are modified long after a severe period of prolonged and insufficient sleep has ended. PMID:21853062
Chokechanachaisakul, Uraiwan; Kaneko, Tomoatsu; Yamanaka, Yusuke; Okiji, Takashi; Suda, Hideaki
2012-10-01
In conventional whole-tooth culture systems, limitation exists regarding maintenance of the vitality of the dental pulp, because this tissue is encased in rigid dentin walls that hinder nutrition supply. We here report a whole tooth-in-jaw-bone culture system of rat mandibular first molars, where transcardiac perfusion with culture medium was carried out before placement of the jaw bone into culture medium, aiming to facilitate longer time preservation of the dental pulp tissue. Following 7 days of culture, the pulp tissues were analyzed by histology and immunohistochemistry to ED2 (antiresident macrophage). ED2-positive macrophages were also analyzed for their Class II MHC, interleukin-6 (IL-6), and p53 mRNA expression levels by means of immune-laser capture microdissection (immune-LCM). Dentin sialophosphoprotein (DSPP) mRNA expression in odontobalstic layer was also examined by LCM. Teeth cultured following saline-perfusion and nonperfusion served as cultured controls. Normal teeth also served as noncultured controls. Histological examination demonstrated that the structure of the pulp tissue was well preserved in the medium-perfused explants in contrast to the cultured control groups. The Class II MHC, IL-6, and p53 mRNA expression levels of ED2-positive cells and DSPP expression levels of odontoblastic layer tissues in the pulp of medium-perfused explants were not significantly different from those in the noncultured normal teeth. In conclusion, the structural integrity and mRNA expression in the pulp were maintained at the in vivo level in the ex vivo whole tooth-in-jaw-bone culture system. The system may lay the foundation for studies aiming at defining further histological and molecular mechanism of the pulp. Copyright © 2012 Wiley Periodicals, Inc.
Signs of antimetastatic activity of palladium complexes of methylenediphosphonic acid in IR spectra
NASA Astrophysics Data System (ADS)
Tolstorozhev, G. B.; Skornyakov, I. V.; Pekhnio, V. I.; Kozachkova, A. N.; Sharykina, N. I.
2012-07-01
We have used Fourier transform IR spectroscopy methods to study normal mouse lung tissue and also after subcutaneous transplantation of a B-16 melanoma tumor in the tissue. We also studied tissues with B-16 melanoma after they were treated with coordination compounds based on palladium complexes of methylenediphosphonic acid. The IR spectra of the lung tissues with metastases in the region of the C = O stretching vibrations are different from the IR spectra of normal tissue. We identified spectroscopic signs of the presence of metastases in the lung. We show that when a cancerous tumor is treated with a preparation of palladium complexes of methylenediphosphonic acid, the spectroscopic signs of the presence of metastases in the lung are missing. After treatment with the optimal dose of this drug, the IR spectrum of the lung tissue in which multiple metastases were present before treatment corresponds to the spectrum of normal tissue. We have determined the efficacy of the antitumor activity of coordination compounds based on palladium complexes of methylenediphosphonic acid.
NASA Astrophysics Data System (ADS)
Galmed, A. H.; Elshemey, Wael M.
2017-08-01
Differentiating between normal, benign and malignant excised breast tissues is one of the major worldwide challenges that need a quantitative, fast and reliable technique in order to avoid personal errors in diagnosis. Laser induced fluorescence (LIF) is a promising technique that has been applied for the characterization of biological tissues including breast tissue. Unfortunately, only few studies have adopted a quantitative approach that can be directly applied for breast tissue characterization. This work provides a quantitative means for such characterization via introduction of several LIF characterization parameters and determining the diagnostic accuracy of each parameter in the differentiation between normal, benign and malignant excised breast tissues. Extensive analysis on 41 lyophilized breast samples using scatter diagrams, cut-off values, diagnostic indices and receiver operating characteristic (ROC) curves, shows that some spectral parameters (peak height and area under the peak) are superior for characterization of normal, benign and malignant breast tissues with high sensitivity (up to 0.91), specificity (up to 0.91) and accuracy ranking (highly accurate).
Epoxyeicosanoids promote organ and tissue regeneration.
Panigrahy, Dipak; Kalish, Brian T; Huang, Sui; Bielenberg, Diane R; Le, Hau D; Yang, Jun; Edin, Matthew L; Lee, Craig R; Benny, Ofra; Mudge, Dayna K; Butterfield, Catherine E; Mammoto, Akiko; Mammoto, Tadanori; Inceoglu, Bora; Jenkins, Roger L; Simpson, Mary A; Akino, Tomoshige; Lih, Fred B; Tomer, Kenneth B; Ingber, Donald E; Hammock, Bruce D; Falck, John R; Manthati, Vijaya L; Kaipainen, Arja; D'Amore, Patricia A; Puder, Mark; Zeldin, Darryl C; Kieran, Mark W
2013-08-13
Epoxyeicosatrienoic acids (EETs), lipid mediators produced by cytochrome P450 epoxygenases, regulate inflammation, angiogenesis, and vascular tone. Despite pleiotropic effects on cells, the role of these epoxyeicosanoids in normal organ and tissue regeneration remains unknown. EETs are produced predominantly in the endothelium. Normal organ and tissue regeneration require an active paracrine role of the microvascular endothelium, which in turn depends on angiogenic growth factors. Thus, we hypothesize that endothelial cells stimulate organ and tissue regeneration via production of bioactive EETs. To determine whether endothelial-derived EETs affect physiologic tissue growth in vivo, we used genetic and pharmacological tools to manipulate endogenous EET levels. We show that endothelial-derived EETs play a critical role in accelerating tissue growth in vivo, including liver regeneration, kidney compensatory growth, lung compensatory growth, wound healing, corneal neovascularization, and retinal vascularization. Administration of synthetic EETs recapitulated these results, whereas lowering EET levels, either genetically or pharmacologically, delayed tissue regeneration, demonstrating that pharmacological modulation of EETs can affect normal organ and tissue growth. We also show that soluble epoxide hydrolase inhibitors, which elevate endogenous EET levels, promote liver and lung regeneration. Thus, our observations indicate a central role for EETs in organ and tissue regeneration and their contribution to tissue homeostasis.
Johnson, Kevin C; Houseman, E Andres; King, Jessica E; Christensen, Brock C
2017-07-10
The underlying biological mechanisms through which epidemiologically defined breast cancer risk factors contribute to disease risk remain poorly understood. Identification of the molecular changes associated with cancer risk factors in normal tissues may aid in determining the earliest events of carcinogenesis and informing cancer prevention strategies. Here we investigated the impact cancer risk factors have on the normal breast epigenome by analyzing DNA methylation genome-wide (Infinium 450 K array) in cancer-free women from the Susan G. Komen Tissue Bank (n = 100). We tested the relation of established breast cancer risk factors, age, body mass index, parity, and family history of disease, with DNA methylation adjusting for potential variation in cell-type proportions. We identified 787 cytosine-guanine dinucleotide (CpG) sites that demonstrated significant associations (Q value <0.01) with subject age. Notably, DNA methylation was not strongly associated with the other evaluated breast cancer risk factors. Age-related DNA methylation changes are primarily increases in methylation enriched at breast epithelial cell enhancer regions (P = 7.1E-20), and binding sites of chromatin remodelers (MYC and CTCF). We validated the age-related associations in two independent populations, using normal breast tissue samples (n = 18) and samples of normal tissue adjacent to tumor tissue (n = 97). The genomic regions classified as age-related were more likely to be regions altered in both pre-invasive (n = 40, P = 3.0E-03) and invasive breast tumors (n = 731, P = 1.1E-13). DNA methylation changes with age occur at regulatory regions, and are further exacerbated in cancer, suggesting that age influences breast cancer risk in part through its contribution to epigenetic dysregulation in normal breast tissue.
Shahzadeh, Sara; Gholami, Somayeh; Aghamiri, Seyed Mahmood Reza; Mahani, Hojjat; Nabavi, Mansoure; Kalantari, Faraz
2018-06-01
The present study was conducted to investigate normal lung tissue complication probability in gated and conventional radiotherapy (RT) as a function of diaphragm motion, lesion size, and its location using 4D-XCAT digital phantom in a simulation study. Different time series of 3D-CT images were generated using the 4D-XCAT digital phantom. The binary data obtained from this phantom were then converted to the digital imaging and communication in medicine (DICOM) format using an in-house MATLAB-based program to be compatible with our treatment planning system (TPS). The 3D-TPS with superposition computational algorithm was used to generate conventional and gated plans. Treatment plans were generated for 36 different XCAT phantom configurations. These included four diaphragm motions of 20, 25, 30 and 35 mm, three lesion sizes of 3, 4, and 5 cm in diameter and each tumor was placed in four different lung locations (right lower lobe, right upper lobe, left lower lobe and left upper lobe). The complication of normal lung tissue was assessed in terms of mean lung dose (MLD), the lung volume receiving ≥20 Gy (V20), and normal tissue complication probability (NTCP). The results showed that the gated RT yields superior outcomes in terms of normal tissue complication compared to the conventional RT. For all cases, the gated radiation therapy technique reduced the mean dose, V20, and NTCP of lung tissue by up to 5.53 Gy, 13.38%, and 23.89%, respectively. The results of this study showed that the gated RT provides significant advantages in terms of the normal lung tissue complication, compared to the conventional RT, especially for the lesions near the diaphragm. Copyright © 2018 Elsevier Ltd. All rights reserved.
Radovich, Milan; Clare, Susan E.; Atale, Rutuja; Pardo, Ivanesa; Hancock, Bradley A.; Solzak, Jeffrey P.; Kassem, Nawal; Mathieson, Theresa; Storniolo, Anna Maria V.; Rufenbarger, Connie; Lillemoe, Heather A.; Blosser, Rachel J.; Choi, Mi Ran; Sauder, Candice A.; Doxey, Diane; Henry, Jill E.; Hilligoss, Eric E.; Sakarya, Onur; Hyland, Fiona C.; Hickenbotham, Matthew; Zhu, Jin; Glasscock, Jarret; Badve, Sunil; Ivan, Mircea; Liu, Yunlong; Sledge, George W.; Schneider, Bryan P.
2014-01-01
Triple-negative breast cancers (TNBCs) are a heterogeneous set of tumors defined by an absence of actionable therapeutic targets (ER−,PR−,HER2−). Microdissected normal ductal epithelium from healthy volunteers represents a novel comparator to reveal insights into TNBC heterogeneity and to inform drug development. Using RNA-sequencing data from our institution and The Cancer Genome Atlas (TCGA) we compared the transcriptomes of 94 TNBCs, 20 microdissected normal breast tissues from healthy volunteers from the Susan G. Komen for the Cure Tissue Bank, and 10 histologically normal tissues adjacent to tumor. Pathway analysis comparing TNBCs to optimized normal controls of microdissected normal epithelium versus classic controls composed of adjacent normal tissue revealed distinct molecular signatures. Differential gene expression of TNBC compared with normal comparators demonstrated important findings for TNBC-specific clinical trials testing targeted agents; lack of over-expression for negative studies and over-expression in studies with drug activity. Next, by comparing each individual TNBC to the set of microdissected normals, we demonstrate that TNBC heterogeneity is attributable to transcriptional chaos, is associated with non-silent DNA mutational load, and explains transcriptional heterogeneity in addition to known molecular subtypes. Finally, chaos analysis identified 146 core genes dysregulated in >90% of TNBCs revealing an over-expressed central network. In conclusion, Use of microdissected normal ductal epithelium from healthy volunteers enables an optimized approach for studying TNBC and uncovers biological heterogeneity mediated by transcriptional chaos. PMID:24292813
Radovich, Milan; Clare, Susan E; Atale, Rutuja; Pardo, Ivanesa; Hancock, Bradley A; Solzak, Jeffrey P; Kassem, Nawal; Mathieson, Theresa; Storniolo, Anna Maria V; Rufenbarger, Connie; Lillemoe, Heather A; Blosser, Rachel J; Choi, Mi Ran; Sauder, Candice A; Doxey, Diane; Henry, Jill E; Hilligoss, Eric E; Sakarya, Onur; Hyland, Fiona C; Hickenbotham, Matthew; Zhu, Jin; Glasscock, Jarret; Badve, Sunil; Ivan, Mircea; Liu, Yunlong; Sledge, George W; Schneider, Bryan P
2014-01-01
Triple-negative breast cancers (TNBCs) are a heterogeneous set of tumors defined by an absence of actionable therapeutic targets (ER, PR, and HER-2). Microdissected normal ductal epithelium from healthy volunteers represents a novel comparator to reveal insights into TNBC heterogeneity and to inform drug development. Using RNA-sequencing data from our institution and The Cancer Genome Atlas (TCGA) we compared the transcriptomes of 94 TNBCs, 20 microdissected normal breast tissues from healthy volunteers from the Susan G. Komen for the Cure Tissue Bank, and 10 histologically normal tissues adjacent to tumor. Pathway analysis comparing TNBCs to optimized normal controls of microdissected normal epithelium versus classic controls composed of adjacent normal tissue revealed distinct molecular signatures. Differential gene expression of TNBC compared with normal comparators demonstrated important findings for TNBC-specific clinical trials testing targeted agents; lack of over-expression for negative studies and over-expression in studies with drug activity. Next, by comparing each individual TNBC to the set of microdissected normals, we demonstrate that TNBC heterogeneity is attributable to transcriptional chaos, is associated with non-silent DNA mutational load, and explains transcriptional heterogeneity in addition to known molecular subtypes. Finally, chaos analysis identified 146 core genes dysregulated in >90 % of TNBCs revealing an over-expressed central network. In conclusion, use of microdissected normal ductal epithelium from healthy volunteers enables an optimized approach for studying TNBC and uncovers biological heterogeneity mediated by transcriptional chaos.
SBRT for recurrent head and neck cancer
NASA Astrophysics Data System (ADS)
Garg, M.; Kabarriti, R.; Baliga, S.; Guha, C.; Tome, W.; Kalnicki, S.
2017-01-01
The management of patients with recurrent head and neck cancers is complex. Concerns over toxicity with re-irradiation have limited its use in the clinical setting. Stereotactic Body Radiation Therapy (SBRT) has emerged as a highly conformal and precise type of radiotherapy and has the advantage of sparing normal tissue. Although SBRT is an attractive treatment modality, its use in the clinic is limited, given the technically challenging nature of the procedure. In this review, we attempt to provide a comprehensive overview of the role of re-irradiation in patients with recurrent head and neck cancers, with particular attention to the advent of SBRT and its use with systemic therapies such as cetuximab.
NASA Astrophysics Data System (ADS)
Oshtrakh, M. I.; Alenkina, I. V.; Vinogradov, A. V.; Konstantinova, T. S.; Semionkin, V. A.
2015-04-01
Study of human spleen and liver tissues from healthy persons and two patients with mantle cell lymphoma and acute myeloid leukemia was carried out using Mössbauer spectroscopy with a high velocity resolution. Small variations in the 57Fe hyperfine parameters for normal and patient's tissues were detected and related to small variations in the 57Fe local microenvironment in ferrihydrite cores. The differences in the relative parts of more crystalline and more amorphous core regions were also supposed for iron storage proteins in normal and patients' spleen and liver tissues.
Malignant Transformation and Stromal Invasion from Normal or Hyperplastic Tissues: True or False?
Man, Yan-gao; Grinkemeyer, Michael; Izadjoo, Mina; Stojadinovic, Alexander
2011-01-01
Carcinogenesis is believed to be a multi-step process, progressing sequentially from normal to hyperplastic, to in situ, and to invasive stages. A number of studies, however, have detected malignancy-associated alterations in normal or hyperplastic tissues. As the molecular profile and clinical features of these tissues have not been defined, the authors invited several well-recognized pathologist, oncologists, biologist, surgeons, and molecular biologist to offer their opinion on: (1) whether these tissues belong to a previously unrevealed malignant entity or focal alterations with no significant consequence? (2) whether these alterations are linked to early onset of cancer or cancer of unknown primary site, and (3) how to further define these lesions? PMID:21811519
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gay, Hiram A., E-mail: hgay@radonc.wustl.edu; Barthold, H. Joseph; Beth Israel Deaconess Medical Center, Boston, MA
2012-07-01
Purpose: To define a male and female pelvic normal tissue contouring atlas for Radiation Therapy Oncology Group (RTOG) trials. Methods and Materials: One male pelvis computed tomography (CT) data set and one female pelvis CT data set were shared via the Image-Guided Therapy QA Center. A total of 16 radiation oncologists participated. The following organs at risk were contoured in both CT sets: anus, anorectum, rectum (gastrointestinal and genitourinary definitions), bowel NOS (not otherwise specified), small bowel, large bowel, and proximal femurs. The following were contoured in the male set only: bladder, prostate, seminal vesicles, and penile bulb. The followingmore » were contoured in the female set only: uterus, cervix, and ovaries. A computer program used the binomial distribution to generate 95% group consensus contours. These contours and definitions were then reviewed by the group and modified. Results: The panel achieved consensus definitions for pelvic normal tissue contouring in RTOG trials with these standardized names: Rectum, AnoRectum, SmallBowel, Colon, BowelBag, Bladder, UteroCervix, Adnexa{sub R}, Adnexa{sub L}, Prostate, SeminalVesc, PenileBulb, Femur{sub R}, and Femur{sub L}. Two additional normal structures whose purpose is to serve as targets in anal and rectal cancer were defined: AnoRectumSig and Mesorectum. Detailed target volume contouring guidelines and images are discussed. Conclusions: Consensus guidelines for pelvic normal tissue contouring were reached and are available as a CT image atlas on the RTOG Web site. This will allow uniformity in defining normal tissues for clinical trials delivering pelvic radiation and will facilitate future normal tissue complication research.« less
Morales, Angélica; Vilchis, Felipe; Chávez, Bertha; Chan, Carlos; Robles-Díaz, Guillermo; Díaz-Sánchez, Vicente
2007-10-01
Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) was recently identified as the first tissue-specific angiogenic molecule. EG-VEGF (the gene product of PROK-1) appears to be expressed exclusively in steroid-producing organs such as the ovary, testis, adrenals and placenta. Since the human pancreatic cells retain steroidogenic activity, in the present study we ascertained whether this angiogenic factor is expressed in normal pancreas and pancreatic adenocarcinoma. Tissue samples from normal males (n=5), normal females (n=5) and from surgically resected adenocarcinomas (n=2) were processed for RT-PCR and immunohistochemical studies. Results from semi-quantitative analysis by RT-PCR suggest a distinct expression level for EG-VEGF in the different tissue samples. The relative amount of EG-VEGF mRNA in pancreas was more abundant in female adenocarcinoma (0.89) followed by male adenocarcinoma (0.71), than normal female (0.64) and normal male (0.38). The expression of mRNA for EG-VEGF in normal tissue was significantly higher in females than in males. All samples examined showed specific immunostaining for EG-VEGF. In male preparations, the positive labeling was localized predominantly within the pancreatic islets while in female preparations the main staining was detected towards the exocrine portion. Specific immunolabeling was also observed in endothelial cells of pancreatic blood vessels. Our data provide evidence that the human pancreas expresses the EG-VEGF, a highly specific mitogen which regulates proliferation and differentiation of the vascular endothelium. The significance of this finding could be interpreted as either, EG-VEGF is not exclusive of endocrine organs, or the pancreas should be considered as a functional steroidogenic tissue. The extent of the expression of EG-VEGF appears to have a dimorphic pattern in normal and tumoral pancreatic tissue.
Study of gastric cancer samples using terahertz techniques
NASA Astrophysics Data System (ADS)
Wahaia, Faustino; Kasalynas, Irmantas; Seliuta, Dalius; Molis, Gediminas; Urbanowicz, Andrzej; Carvalho Silva, Catia D.; Carneiro, Fatima; Valusis, Gintaras; Granja, Pedro L.
2014-08-01
In the present work, samples of healthy and adenocarcinoma-affected human gastric tissue were analyzed using transmission time-domain THz spectroscopy (THz-TDS) and spectroscopic THz imaging at 201 and 590 GHz. The work shows that it is possible to distinguish between normal and cancerous regions in dried and paraffin-embedded samples. Plots of absorption coefficient α and refractive index n of normal and cancer affected tissues, as well as 2-D transmission THz images are presented and the conditions for discrimination between normal and affected tissues are discussed.
Wang, X H; Mao, T T; Pan, Y Y; Xie, H H; Zhang, H Y; Xiao, J; Jiang, L P
2016-03-01
To observe the expressions of tumor necrosis factor alpha (TNF-α), matrix metalloproteinase 2 (MMP-2) and collagen in local skin tissue of pressure ulcer of rats, and to explore the possible mechanism of the pathogenesis of pressure ulcer. Forty male SD rats were divided into normal control group, 3 d compression group, 5 d compression group, 7 d compression group, and 9 d compression group according to the random number table, with 8 rats in each group. The rats in normal control group did not receive any treatment, whereas the rats in the latter 4 groups were established the deep tissue injury model (3 d compression group) and pressure ulcer model (the other 3 groups) on the gracilis muscle on both hind limbs using a way of cycle compression of ischemia-reperfusion magnet. The rats in 3 d compression group received only three cycles of compression, while the compressed skin of the rats in 5 d compression group, 7 d compression group, and 9 d compression group were cut through and received pressure to 5, 7 and 9 cycles after three cycles of compression, respectively. The rats in 3 d compression group were sacrificed immediately after receiving compression for 3 d (the rats in normal control group were sacrificed at the same time), and the rats in the other 3 groups were respectively sacrificed after receiving compression for 5, 7, and 9 d, and the skin tissue on the central part of gracilis muscle on both hind limbs were harvested. The morphology of the skin tissue was observed with HE staining. The expression of collagen fiber was observed with Masson staining. The expressions of collagen type Ⅳ and MMP-2 were detected by immunohistochemical method. The expressions of TNF-α and phosphorylated NF kappa B (NF-κB) were determined by Western blotting. Data were processed with one-way analysis of variance and LSD test. (1) In normal control group, the skin tissue of rats was stratified squamous epithelium, with the clear skin structure, and there was no obvious infiltration of inflammatory cells. In 3 d compression group, the skin layers of rats were clear, with quite a few fibroblasts, and the inflammatory cells began to infiltrate. In 5 d compression group, 7 d compression group, and 9 d compression group, the epidermis of rats thickened, with the number of fibroblasts reduced, and the infiltration of inflammatory cells enhanced with the compressed time prolonging. (2) In normal control group, the collagen fibers in skin tissue of rats were arranged in order, with rich content. In 3 d compression group, the collagen fibers in skin tissue of rats were arranged orderly, with high expression level, which was similar to that in normal control group (P>0.05). In 5 d compression group and 7 d compression group, the collagen fibers in skin tissue of rats were arranged in disorder, with the expression level gradually reduced, which were significantly lower than that in normal control group (with P values below 0.01). In 9 d compression group, the expression of collagen fiber in skin tissue of rats was a little higher than that in 7 d compression group, but it was still significantly lower than that in normal control group (P<0.01). (3) The expressions of collagen type Ⅳ in skin tissue of rats in normal control group, 3 d compression group, 5 d compression group, 7 d compression group, and 9 d compression group were respectively 11.0±2.8, 9.0±1.7, 8.3±2.8, 5.1±1.8, and 5.4±1.2. The expression of collagen type Ⅳ in skin tissue of rats in 3 d compression group was similar to that in normal control group (P>0.05). The expressions of collagen type Ⅳ in skin tissue of rats in 5 d compression group, 7 d compression group, and 9 d compression group were significantly lower than that in normal control group (P<0.05 or P<0.01). The expression of MMP-2 in skin tissue of rats in 3 d compression group was similar to that in normal control group (P>0.05). The expressions of MMP-2 in skin tissue of rats in 5 d compression group, 7 d compression group, and 9 d compression group were significantly higher than that in normal control group (P<0.05 or P<0.01). (4) The expression of TNF-α in skin tissue of rats in normal control group was 0.48±0.11, and the expressions of TNF-α in skin tissue of rats in 3 d compression group, 5 d compression group, 7 d compression group, and 9 d compression group were respectively 0.84±0.08, 1.13±0.19, 1.34±0.16, and 1.52±0.23, which were all significantly higher than that in normal control group (with P values below 0.01). The expressions of phosphorylated NF-κB in skin tissue of rats in 3 d compression group and 9 d compression group were similar to that in normal control group (with P values above 0.05), and the expressions of phosphorylated NF-κB in skin tissue of rats in 5 d compression group and 7 d compression group were significantly higher than that in normal control group (P<0.05 or P<0.01). The high expression of MMP-2 and reduction of collagen induced by inflammatory reaction mediated by the high expression of TNF-α in local skin tissue of pressure ulcer of rats may be one of the important reasons for the formation of pressure ulcer.
Fluorescence Spectroscopic Properties of Normal and Abnormal Biomedical Materials
NASA Astrophysics Data System (ADS)
Pradhan, Asima
Steady state and time-resolved optical spectroscopy and native fluorescence is used to study the physical and optical properties occurring in diseased and non-diseased biological human tissue, in particular, cancer of the human breast, artery and the dynamics of a photosensitizer useful in photodynamic therapy. The main focus of the research is on the optical properties of cancer and atherosclerotic tissues as compared to their normal counterparts using the different luminescence based spectroscopic techniques such as steady state fluorescence, time-resolved fluorescence, excitation spectroscopy and phosphorescence. The excitation and steady-state spectroscopic fluorescence using visible excitation wavelength displays a difference between normal and malignant tissues. This difference is attributed to absorption of the emission by hemoglobin in normal tissues. This method using 488nm fails to distinguish neoplastic tissue such as benign tissues and tumors from malignant tumors. The time-resolved fluorescence at visible, near -uv and uv excitation wavelengths display non-exponential profiles which are significantly different for malignant tumors as compared to non-malignant tissues only with uv excitation. The differences observed with visible and near-uv excitation wavelengths are not as significant. The non-exponential profiles are interpreted as due to a combination of fluorophores along with the action of non-radiative processes. Low temperature luminescence studies confirm the occurrence of non-radiative decay processes while temporal studies of various relevant biomolecules indicate the probable fluorophores responsible for the observed signal in tissues. Phosphorescence from human tissues have been observed for the first time and lifetimes of a few hundred nanoseconds are measured for malignant and benign tissues. Time-resolved fluorescence studies of normal artery and atherosclerotic plaque have shown that a combination of two excitation wavelengths can distinguish fibrous and calcified atherosclerotic plaque from normal artery. A minor effort of the study involves the high intensity effects on the optical properties of the dye, doxycycline (a particular photosensitizer of the tetracycline group) occurring during relaxation when excited at different laser intensities. This study has been performed by observing the fluorescence lifetimes and quantum yields of DOTC at different excitation intensities. The results obtained support the sequential excited state absorption model.
NASA Astrophysics Data System (ADS)
Anand, Suresh; Cicchi, Riccardo; Giordano, Flavio; Conti, Valerio; Buccoliero, Anna Maria; Guerrini, Renzo; Pavone, Francesco S.
2017-02-01
Focal cortical dysplasia (FCD) is an abnormality in the cerebral cortex that is caused by malformations during cortical development. Currently, magnetic resonance imaging (MRI) and electro-corticography (ECoG) are used for detecting FCD. On the downside, MRI is very much insensitive to small malformations in the brain, while ECoG is an invasive and time consuming procedure. Recently, optical techniques were widely exploited as a minimally invasive and quantitative approaches for disease diagnosis. These techniques include fluorescence and Raman spectroscopy. The aim of this investigation is to study the diagnostic performances of optical spectroscopy incorporating fluorescence (at 378 nm and 445 nm excitation wavelengths) and Raman spectroscopy (at 785 nm excitation) for the discrimination of FCD from normal brain in pediatric subjects. The study included 10 normal and 17 FCD tissue sites from 3 normal and 7 FCD samples. The emission spectra of FCD at 378 nm excitation wavelength presented a blue-shifted peak with respect to normal tissue. Prominent spectral differences between normal and FCD tissue were observed at 1298 cm-1, 1302 cm-1, 1445 cm-1 and 1660 cm-1 using Raman spectroscopy. Tissue classification models were developed using a multivariate statistical method, principal component analysis. This study demonstrates that a combined spectroscopic approach can provide a better diagnostic capability for classifying normal and FCD tissues. Further, the implementation of the technology within a fiber probe could open the way for in vivo diagnostics and intra-operative surgical guidance.
Caprodossi, Sara; Lucciarini, Roberta; Amantini, Consuelo; Nabissi, Massimo; Canesin, Giacomo; Ballarini, Patrizia; Di Spilimbergo, Adriana; Cardarelli, Marco Andrea; Servi, Lucilla; Mammana, Gabriele; Santoni, Giorgio
2008-09-01
To evaluate the expression of transient receptor potential vanilloid type 2 (TRPV2) in normal human bladder and urothelial carcinoma (UC) tissues. Bladder specimens were obtained by transurethral resection or radical cystectomy. TRPV2 mRNA expression in normal human urothelial cells (NHUCs), UC cell lines, and formalin-fixed paraffin-embedded normal (n=6) and cancer bladder tissues (n=58) was evaluated by polymerase chain reaction (PCR) and quantitative real-time PCR (RT-PCR). TRPV2 protein expression was assessed by cytofluorimetric and confocal microscopy analyses in NHUCs and UC cells and by Western blotting and immunohistochemistry in normal and UC tissues. Enhanced TRPV2 mRNA and protein expression was found in high-grade and -stage UC specimens and UC cell lines. Both the full-length TRPV2 (hTRPV2) and a short splice-variant (s-TRPV2) were detected in NHUC and normal bladder specimens, whereas a progressive decline of s-TRPV2 in pTa, pT1, and pT2 stages was observed, up to a complete loss in pT3 and pT4 UC specimens. Normal human urothelial cells and bladder tissue specimens express TRPV2 at both the mRNA and protein levels. A progressive loss of s-TRPV2 accompanied by a marked increase of hTRPV2 expression was found in high-grade and -stage UC tissues.
Quan, Zifang; Ye, Ni; Hao, Zhongxiang; Wen, Caifang; Liao, Hong; Zhang, Manli; Luo, Lu; Cao, Sanjie; Wen, Xintian; Wu, Rui; Yan, Qigui
2015-10-01
The aim of the present study was to investigate the promoter methylation status and mRNA expression of goat tumor‑associated genes, in addition to the mRNA expression of DNA methyltransferase genes in enzootic nasal tumors (ENT). Methylation‑specific polymerase chain reaction and SYBR Green reverse transcription‑quantitative polymerase chain reaction were used to detect the methylation status and the mRNA expression levels of DNA methyltransferases (DNMTs), O6‑methylguanine‑DNA methyltransferase (MGMT), the tumor suppressor genes P73, P53, GADD45G, CHFR and THBS1, the transcription factor CEBPA, the proto‑oncogenes KRAS, NRAS and C‑myc and EGFR in 24 nasal tumor tissue samples and 20 normal nasal epithelia tissue samples. The associations between promoter methylation and DNMT, and promoter methylation and mRNA expression of the genes were analyzed. The results indicated that the expression levels of DNMT1 increased by 56% compared with those in normal nasal epithelial tissues, while MGMT, DNMT3a and DNMT3b had similar expression levels in the two tissue types. The expression levels of P53 decreased by 36.8% and those of THBS1 by 43%, while C‑myc increased by 2.9‑fold and CEBPA by 2‑fold compared with that in normal nasal epithelial tissues. GADD45G, P73, CHFR and NRAS were observed to have similar expression levels in the two tissue types. However, no expression was observed for EGFR and KRAS. CHFR, GADD45G and THBS1 were identified to be methylated in tumor suppressor genes. The methylation expression rate of the CHFR gene was ~60% in the two tissue types and for THBS1 it was 100% in the nasal tumor tissues as opposed to 20% in the normal nasal epithelial tissues. The exhaustive methylation expression rate of GADD45G was 62.5% and the partial methylation expression rate was 37.5% in nasal tumor tissue, while no methylation was observed in normal nasal epithelial tissues. C‑myc was the only gene identified to be methylated amongst proto‑oncogenes. The methylation expression rate of C‑myc was 87.5% in nasal tumor tissues and 15% in normal nasal epithelial tissues. The methylation expression rate of CEBPA was 100% in nasal tumor tissues and 40% in normal nasal epithelial tissues. The methylation expression rate of the EGFR gene was ~80% in the two tissues. In summary, the present study identified abnormal methylation of the C‑myc, CEBPA, GADD45G and THBS1 genes in nasal tumor tissues. The expression levels of DNMT1, C‑myc and CEBPA were upregulated and the expression of P53 and THBSI were downregulated in nasal tumor tissues, with a significant difference between the two groups (P<0.05). Therefore, it is suggested that these six genes may be used as diagnostic marker candidates for ENT. The results may serve as a foundation for screening of tumor‑specific markers for early diagnosis of ENT and further investigate the epigenetic mechanisms of enzootic nasal tumor virus (ENTV)‑induced nasal epithelium cell carcinoma.
Protective Effect of Adansonia digitata against Isoproterenol-Induced Myocardial Injury in Rats.
Ghoneim, Mona A M; Hassan, Amal I; Mahmoud, Manal G; Asker, Mohsen S
2016-01-01
The baobab fruit (Adansonia digitata) was analyzed for proximate composition, amino acids, and minerals. The fruit pulp was found to be a good source of carbohydrates, proteins, phenols, and substantial quantities of K, Ca, and Mg. Amino acid analyses revealed high glutamic and aspartic acid, but the sulfur amino acids were the most limited. The present study was designed to investigate the role of Adansonia digitata (Baobab fruit pulp) against isoproterenol induced myocardial oxidative stress in experimental rats by demonstrating the changes in tissue cardiac markers, some antioxidant enzymes, interleukin-1 β (IL-1 β), monocyte chemoattractant protein-1(MCP-1), myeloperoxidase (MPO), Collagen-1, galectin-3, and serum corticosterone. The activities of enzymatic antioxidant glutathione peroxidase (GPX) and non-enzymatic antioxidant reduced glutathione (GSH) in the heart tissue; additionally, histopathological examination of the heart was estimated. Male albino rats were randomly divided into four groups of ten animals each. Group I served as normal control animal. Group II animals received isoproterenol (ISP) (85 mg/kg body weight intraperitonealy (i.p.) to develop myocardial injury. Group III were myocardial oxidative animals treated with Baobab fruit pulp (200 µg/rats/day) for 4 weeks. Group IV received Baobab fruit pulp only. The data suggested an isoproterenol increase in levels of cardiac marker enzymes [creatine kinase MB (CK- MB), lactate dehydrogenase (LDH), and aspartate aminotransferase (AST)], IL-1ß, MCP-1, MPO, Collagen, and galectin-3, with concomitant decrease in the activities GPX and GSH in heart tissue as well as corticosterone in serum. Baobab fruit pulp brings all the parameters to near normal level in ISP-induced myocardial infarction in rats. Histopathological examination of heart tissue of ISP-administered model rat showed infiltration of inflammatory cells and congestion in the blood vessels. However, treatment with Baobab fruit pulp (200 µg/rats/day) showed predominantly normal myocardial structure and no inflammatory cell infiltration. It has been concluded that Baobab fruit pulp has cardio protective effect against ISP-induced oxidative stress in rats.
Yun, Joho; Kim, Jinhwan; Lee, Jong-Hyun
2017-11-28
We have introduced a fabrication method for electrical impedance spectroscopy (EIS)-on-a-needle (EoN: EIS-on-a-needle) to locate target tissues in the body by measuring and analyzing differences in the electrical impedance between dissimilar biotissues. This paper describes the fabrication method of fine interdigitated electrodes (IDEs) at the tip of a hypodermic needle using a photoresist spray coating and flexible film photomask in the photolithography process. A polyethylene terephthalate (PET) heat shrink tube (HST) with a wall thickness of 25 µm is employed as the insulation and passivation layer. The PET HST shows a higher mechanical durability compared with poly(p-xylylene) polymers, which have been widely used as a dielectric coating material. Furthermore, the HST shows good chemical resistance to most acids and bases, which is advantageous for limiting chemical damage to the EoN. The use of the EoN is especially preferred for the characterization of chemicals/biomaterials or fabrication using acidic/basic chemicals. The fabricated gap and width of the IDEs are as small as 20 µm, and the overall width and length of the IDEs are 400 µm and 860 µm, respectively. The fabrication margin from the tip (distance between the tip of hypodermic needle and starting point of the IDEs) of the hypodermic needle is as small as 680 µm, which indicates that unnecessarily excessive invasion into biotissues can be avoided during the electrical impedance measurement. The EoN has a high potential for clinical use, such as for thyroid biopsies and anesthesia drug delivery in a spinal space. Further, even in surgery that involves the partial resection of tumors, the EoN can be employed to preserve as much normal tissue as possible by detecting the surgical margin (normal tissue that is removed with the surgical excision of a tumor) between the normal and lesion tissues.
Joshi, Mandar A.; Jeoung, Nam Ho; Obayashi, Mariko; Hattab, Eyas M.; Brocken, Eric G.; Liechty, Edward A.; Kubek, Michael J.; Vattem, Krishna M.; Wek, Ronald C.; Harris, Robert A.
2006-01-01
The BCKDH (branched-chain α-keto acid dehydrogenase complex) catalyses the rate-limiting step in the oxidation of BCAAs (branched-chain amino acids). Activity of the complex is regulated by a specific kinase, BDK (BCKDH kinase), which causes inactivation, and a phosphatase, BDP (BCKDH phosphatase), which causes activation. In the present study, the effect of the disruption of the BDK gene on growth and development of mice was investigated. BCKDH activity was much greater in most tissues of BDK−/− mice. This occurred in part because the E1 component of the complex cannot be phosphorylated due to the absence of BDK and also because greater than normal amounts of the E1 component were present in tissues of BDK−/− mice. Lack of control of BCKDH activity resulted in markedly lower blood and tissue levels of the BCAAs in BDK−/− mice. At 12 weeks of age, BDK−/− mice were 15% smaller than wild-type mice and their fur lacked normal lustre. Brain, muscle and adipose tissue weights were reduced, whereas weights of the liver and kidney were greater. Neurological abnormalities were apparent by hind limb flexion throughout life and epileptic seizures after 6–7 months of age. Inhibition of protein synthesis in the brain due to hyperphosphorylation of eIF2α (eukaryotic translation initiation factor 2α) might contribute to the neurological abnormalities seen in BDK−/− mice. BDK−/− mice show significant improvement in growth and appearance when fed a high protein diet, suggesting that higher amounts of dietary BCAA can partially compensate for increased oxidation in BDK−/− mice. Disruption of the BDK gene establishes that regulation of BCKDH by phosphorylation is critically important for the regulation of oxidative disposal of BCAAs. The phenotype of the BDK−/− mice demonstrates the importance of tight regulation of oxidative disposal of BCAAs for normal growth and neurological function. PMID:16875466
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pyakuryal, A; Moroz, B; Lee, C
2016-06-15
Purpose: Epidemiological studies of second cancer risk in radiotherapy patients often require individualized dose estimates of normal tissues. Prior to 3D conformal radiation therapy planning, patient anatomy information was mostly limited to 2D radiological images or not even available. Generic patient CT images are often used in commercial radiotherapy treatment planning system (TPS) to reconstruct normal tissue doses. The objective of the current work was to develop a series of reference size computational human phantoms in DICOM-RT format for direct use in dose reconstruction in TPS. Methods: Contours of 93 organs and tissues were extracted from a series of pediatricmore » and adult hybrid computational human phantoms (newborn, 1-, 5-, 10-, 15-year-old, and adult males and females) using Rhinoceros software. A MATLAB script was created to convert the contours into the DICOM-RT structure format. The simulated CT images with the resolution of 1×1×3 mm3 were also generated from the binary phantom format and coupled with the DICOM-structure files. Accurate volumes of the organs were drawn in the format using precise delineation of the contours in converted format. Due to complex geometry of organs, higher resolution (1×1×1 mm3) was found to be more efficient in the conversion of newborn and 1-year-old phantoms. Results: Contour sets were efficiently converted into DICOM-RT structures in relatively short time (about 30 minutes for each phantom). A good agreement was observed in the volumes between the original phantoms and the converted contours for large organs (NRMSD<1.0%) and small organs (NRMSD<7.7%). Conclusion: A comprehensive series of computational human phantoms in DICOM-RT format was created to support epidemiological studies of second cancer risks in radiotherapy patients. We confirmed the DICOM-RT phantoms were successfully imported into the TPS programs of major vendors.« less
Greiner, Joachim; Sankarankutty, Aparna C; Seemann, Gunnar; Seidel, Thomas; Sachse, Frank B
2018-01-01
Computational modeling is an important tool to advance our knowledge on cardiac diseases and their underlying mechanisms. Computational models of conduction in cardiac tissues require identification of parameters. Our knowledge on these parameters is limited, especially for diseased tissues. Here, we assessed and quantified parameters for computational modeling of conduction in cardiac tissues. We used a rabbit model of myocardial infarction (MI) and an imaging-based approach to derive the parameters. Left ventricular tissue samples were obtained from fixed control hearts (animals: 5) and infarcted hearts (animals: 6) within 200 μm (region 1), 250-750 μm (region 2) and 1,000-1,250 μm (region 3) of the MI border. We assessed extracellular space, fibroblasts, smooth muscle cells, nuclei and gap junctions by a multi-label staining protocol. With confocal microscopy we acquired three-dimensional (3D) image stacks with a voxel size of 200 × 200 × 200 nm. Image segmentation yielded 3D reconstructions of tissue microstructure, which were used to numerically derive extracellular conductivity tensors. Volume fractions of myocyte, extracellular, interlaminar cleft, vessel and fibroblast domains in control were (in %) 65.03 ± 3.60, 24.68 ± 3.05, 3.95 ± 4.84, 7.71 ± 2.15, and 2.48 ± 1.11, respectively. Volume fractions in regions 1 and 2 were different for myocyte, myofibroblast, vessel, and extracellular domains. Fibrosis, defined as increase in fibrotic tissue constituents, was (in %) 21.21 ± 1.73, 16.90 ± 9.86, and 3.58 ± 8.64 in MI regions 1, 2, and 3, respectively. For control tissues, image-based computation of longitudinal, transverse and normal extracellular conductivity yielded (in S/m) 0.36 ± 0.11, 0.17 ± 0.07, and 0.1 ± 0.06, respectively. Conductivities were markedly increased in regions 1 ( + 75 , + 171, and + 100%), 2 ( + 53 , + 165, and + 80%), and 3 ( + 42 , + 141, and + 60%) . Volume fractions of the extracellular space including interlaminar clefts strongly correlated with conductivities in control and MI hearts. Our study provides novel quantitative data for computational modeling of conduction in normal and MI hearts. Notably, our study introduces comprehensive statistical information on tissue composition and extracellular conductivities on a microscopic scale in the MI border zone. We suggest that the presented data fill a significant gap in modeling parameters and extend our foundation for computational modeling of cardiac conduction.
Spectroscopic analysis of normal and neoplastic (WI-FTC) thyroid tissue.
Depciuch, Joanna; Stanek-Widera, Agata; Lange, Dariusz; Biskup-Frużyńska, Magdalena; Stanek-Tarkowska, Jadwiga; Czarny, Wojciech; Cebulski, Jozef
2018-06-07
Thyroid cancer holds the first place of the malignant tumors of the endocrine system. One of the less common thyroid cancers is follicular thyroid carcinoma (FTC), which is very difficult to diagnose because it gives the same image as adenoma, which is benign. Certainty of the diagnosis is gained only when FTC gives metastases. Therefore, it was decided to compare normal and neoplastic (FTC) thyroid tissues with Fourier Transform Infrared (FTIR) spectroscopy. The obtained FTIR spectra and Principal Component Analysis (PCA) allowed us to conclude that there are differences in the FTIR spectrum between normal tissues and those affected by cancer. In addition, the results indicate that there is a decrease in the number of functional groups that build cellular and tissue structures in tumoral tissues. The shifts of wave numbers corresponding to the protein and lipid function group vibrations, as well as the calculated second derivative of the FTIR spectra showed the structural changes in neoplastic tissues. Moreover, the deconvolution of the amide I massif indicates that in cancerous tissues the prevailing secondary structure is β-sheet structure, while in normal tissues it is α-helix. The obtained results allow us to conclude that infrared spectroscopy, in addition to providing information on the composition of tested samples, can be an excellent diagnostic tool contributing to understanding the FTC substrate. Copyright © 2018. Published by Elsevier B.V.
Lipoprotein lipase activity in surgical patients: influence of trauma and infection.
Robin, A P; Askanazi, J; Greenwood, M R; Carpentier, Y A; Gump, F E; Kinney, J M
1981-08-01
Hypertriglyceridemia commonly accompanies clinical sepsis and may be caused by increased hepatic production or decreased clearance of triglyceride from the bloodstream. In contrast, enhanced lipid clearing capacity is usually seen after uncomplicated trauma. The purpose of the study was to determine the role of lipoprotein lipase (LPL) in effecting the above changes. Enzyme activity was assayed in skeletal muscle and adipose tissue biopsy samples from 11 normal subjects and from 17 injured and 11 infected surgical patients. Normal subjects after 4 days of 5% dextrose infusion (D5) showed a significant decrease in adipose tissue LPL activity but no change in skeletal muscle activity. Trauma patients after several days of D5 had higher activity in adipose tissue and higher plasma insulin levels than diet-matched control subjects but showed no change in skeletal muscle activity. Infected patients with high plasma triglyceride levels had significantly decreased LPL activity in both tissues. A linear relationship was found between insulin concentration and adipose tissue LPL activity in normal subjects. We conclude that: (1) low tissue LPL activity in sepsis may result in diminished lipid clearance and contribute to hypertriglyceridemia, (2) after trauma, changes in tissue LPL activity as well as other factors such as altered hemodynamics play a role in determining in vivo lipid clearance, and (3) adipose tissue LPL activity is related to the plasma insulin concentration in normal subjects.
Legan, Mateja; Tevžič, Spela; Tolar, Ana; Luzar, Boštjan; Marolt, Vera Ferlan
2011-03-01
GLUT-1 is a transmembrane glucose transport protein that allows the facilitated transport of glucose into cells, normally expressed in tissues which depend mainly on glucose metabolism. Enhanced expression of GLUT-1 can also be found in a large spectrum of carcinomas. This study aimed to investigate GLUT-1 expression in gallbladder tissue: from normal tissue samples, hyperplasias, low-grade and high-grade dysplasias to gallbladder carcinomas. In all, 115 archived samples of gallbladder tissue from 68 patients, presented after cholecystectomy, were immunohistochemically stained for GLUT-1. According to the intensity of GLUT-1 immunoreactivity, samples were divided into negative (stained 0-10% of cells stained), positive with weak to moderate (10-50%) and positive with strong (>50%) GLUT-1 expression. The GLUT-1 immunoreactivity of the samples showed a characteristic increase from premalignant lesions to carcinomas. Normal gallbladder tissue samples did not express GLUT-1 (100%). Weak expression was shown only focally in hyperplasias, but to a greater extent with low-grade dysplasias (20%), high-grade dysplasias (40%) and carcinomas (51.8%). Normal gallbladder tissue is GLUT-1 negative. GLUT-1 expression in carcinoma tissue is significantly higher than in dysplastic lesions. Strong GLUT-1 expression indicates 100% specificity for detecting gallbladder carcinomas. Therefore, GLUT-1 is a candidate as a diagnostic as well as a tissue prognostic marker in gallbladder carcinoma patients.
Electrical impedance characterization of normal and cancerous human hepatic tissue.
Laufer, Shlomi; Ivorra, Antoni; Reuter, Victor E; Rubinsky, Boris; Solomon, Stephen B
2010-07-01
The four-electrode method was used to measure the ex vivo complex electrical impedance of tissues from 14 hepatic tumors and the surrounding normal liver from six patients. Measurements were done in the frequency range 1-400 kHz. It was found that the conductivity of the tumor tissue was much higher than that of the normal liver tissue in this frequency range (from 0.14 +/- 0.06 S m(-1) versus 0.03 +/- 0.01 S m(-1) at 1 kHz to 0.25 +/- 0.06 S m(-1) versus 0.15 +/- 0.03 S m(-1) at 400 kHz). The Cole-Cole models were estimated from the experimental data and the four parameters (rho(0), rho(infinity), alpha, f(c)) were obtained using a least-squares fit algorithm. The Cole-Cole parameters for the cancerous and normal liver are 9 +/- 4 Omega m(-1), 2.2 +/- 0.7 Omega m(-1), 0.5 +/- 0.2, 140 +/- 103 kHz and 50 +/- 28 Omega m(-1), 3.2 +/- 0.6 Omega m(-1), 0.64 +/- 0.04, 10 +/- 7 kHz, respectively. These data can contribute to developing bioelectric applications for tissue diagnostics and in tissue treatment planning with electrical fields such as radiofrequency tissue ablation, electrochemotherapy and gene therapy with reversible electroporation, nanoscale pulsing and irreversible electroporation.
Value of in vitro acoustic radiation force impulse application on uterine adenomyosis.
Bildaci, Tevfik Berk; Cevik, Halime; Yilmaz, Birnur; Desteli, Guldeniz Aksan
2017-11-24
Adenomyosis is the presence of endometrial glandular and stromal tissue in the myometrium. This phenomenon can be the cause of excessive bleeding and menstrual pain in premenopausal women. Diagnosis of adenomyosis may present difficulty with conventional methods such as ultrasound and magnetic resonance imaging. Frequently, diagnosis is accomplished retrospectively based on the hysterectomy specimen. This is a prospective case control study done in vitro on 90 patients' hysterectomy specimens. Acoustic radiation force impulse (ARFI) and color elastography were used to determine the elasticity of hysterectomy specimens of patients undergoing indicated surgeries. Based on histopathological examinations, two groups were formed: a study group (n = 28-with adenomyosis) and a control group (n = 62-without adenomyosis). Elasticity measurements of tissue with adenomyosis were observed to be significantly higher than measurements of normal myometrial tissue (p < 0.01). Uterine fibroids were found to have higher values on ARFI study compared to normal myometrial tissues (p < 0.01). The findings lead to the conclusion that adenomyosis tissue is significantly softer than the normal myometrium. ARFI was found to be beneficial in differentiating myometrial tissue with adenomyosis from normal myometrial tissue. It was found to be feasible and beneficial to implement ARFI in daily gynecology practice for diagnosis of adenomyosis.
Maccabi, Ashkan; Shin, Andrew; Namiri, Nikan K; Bajwa, Neha; St John, Maie; Taylor, Zachary D; Grundfest, Warren; Saddik, George N
2018-01-01
Viscoelasticity of soft tissue is often related to pathology, and therefore, has become an important diagnostic indicator in the clinical assessment of suspect tissue. Surgeons, particularly within head and neck subsites, typically use palpation techniques for intra-operative tumor detection. This detection method, however, is highly subjective and often fails to detect small or deep abnormalities. Vibroacoustography (VA) and similar methods have previously been used to distinguish tissue with high-contrast, but a firm understanding of the main contrast mechanism has yet to be verified. The contributions of tissue mechanical properties in VA images have been difficult to verify given the limited literature on viscoelastic properties of various normal and diseased tissue. This paper aims to investigate viscoelasticity theory and present a detailed description of viscoelastic experimental results obtained in tissue-mimicking phantoms (TMPs) and ex vivo tissues to verify the main contrast mechanism in VA and similar imaging modalities. A spherical-tip micro-indentation technique was employed with the Hertzian model to acquire absolute, quantitative, point measurements of the elastic modulus (E), long term shear modulus (η), and time constant (τ) in homogeneous TMPs and ex vivo tissue in rat liver and porcine liver and gallbladder. Viscoelastic differences observed between porcine liver and gallbladder tissue suggest that imaging modalities which utilize the mechanical properties of tissue as a primary contrast mechanism can potentially be used to quantitatively differentiate between proximate organs in a clinical setting. These results may facilitate more accurate tissue modeling and add information not currently available to the field of systems characterization and biomedical research.
Shin, Andrew; Namiri, Nikan K.; Bajwa, Neha; St. John, Maie; Taylor, Zachary D.; Grundfest, Warren; Saddik, George N.
2018-01-01
Viscoelasticity of soft tissue is often related to pathology, and therefore, has become an important diagnostic indicator in the clinical assessment of suspect tissue. Surgeons, particularly within head and neck subsites, typically use palpation techniques for intra-operative tumor detection. This detection method, however, is highly subjective and often fails to detect small or deep abnormalities. Vibroacoustography (VA) and similar methods have previously been used to distinguish tissue with high-contrast, but a firm understanding of the main contrast mechanism has yet to be verified. The contributions of tissue mechanical properties in VA images have been difficult to verify given the limited literature on viscoelastic properties of various normal and diseased tissue. This paper aims to investigate viscoelasticity theory and present a detailed description of viscoelastic experimental results obtained in tissue-mimicking phantoms (TMPs) and ex vivo tissues to verify the main contrast mechanism in VA and similar imaging modalities. A spherical-tip micro-indentation technique was employed with the Hertzian model to acquire absolute, quantitative, point measurements of the elastic modulus (E), long term shear modulus (η), and time constant (τ) in homogeneous TMPs and ex vivo tissue in rat liver and porcine liver and gallbladder. Viscoelastic differences observed between porcine liver and gallbladder tissue suggest that imaging modalities which utilize the mechanical properties of tissue as a primary contrast mechanism can potentially be used to quantitatively differentiate between proximate organs in a clinical setting. These results may facilitate more accurate tissue modeling and add information not currently available to the field of systems characterization and biomedical research. PMID:29373598
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hossain, S; Keeling, V; Ahmad, S
Purpose: To determine the effects of multileaf collimator (MLC) leaf width on normal-brain-tissue doses and dose conformity of SRS RapidArc treatment plans for brain tumors. Methods: Ten patients with 24 intracranial tumors (seven with 1–2 and three with 4–6 lesions) were planned using RapidArc for both Varian Millennium 120 MLC (5 mm leaf width) and high definition (HD) MLC (2.5 mm leaf width). Between 2 and 8 arcs were used with two full coplanar arcs and the rest non-coplanar half arcs. 6 MV beams were used and plans were optimized with a high priority to the Normal Tissue Objective (tomore » achieve dose conformity and sharp dose fall-off) and normal brain tissue. Calculation was done using AAA on a 1 mm grid size. The prescription dose ranged from 14–22 Gy. Plans were normalized such that 99% of the target received the prescription dose. Identical beam geometries, optimizations, calculations, and normalizations were used for both plans. Paddick Conformity Index (PCI), V4, V8 and V12 Gy for normal brain tissue and Integral Dose were used for analysis. Results: In all cases, HD MLC plans performed better in sparing normal brain tissue, achieving a higher PCI with a lower Integral Dose. The average PCI for all 24 targets was 0.75±0.23 and 0.70±0.23 (p ≤0.0015) for HD MLC and Millennium MLC plans, respectively. The average ratio of normal brain doses for Millennium MLC to HD MLC plans was 1.30±0.16, 1.27±0.15, and 1.31±0.18 for the V4, V8, and V12, respectively. The differences in normal brain dose for all criteria were statistically significant with p-value < 0.02. On average Millennium MLC plans had a 16% higher integral dose than HD MLC plans. Conclusion: Significantly better dose conformity with reduced volume of normal brain tissue and integral dose was achieved with HD MLC plans compared to Millennium MLC plans.« less
A Ratiometric Threshold for Determining Presence of Cancer During Fluorescence-guided Surgery
Warram, Jason M; de Boer, Esther; Moore, Lindsay S.; Schmalbach, Cecelia E; Withrow, Kirk P; Carroll, William R; Richman, Joshua S; Morlandt, Anthony B; Brandwein-Gensler, Margaret; Rosenthal, Eben L
2015-01-01
Background&Objective Fluorescence-guided imaging to assist in identification of malignant margins has the potential to dramatically improve oncologic surgery. However a standardized method for quantitative assessment of disease-specific fluorescence has not been investigated. Introduced here is a ratiometric threshold derived from mean fluorescent tissue intensity that can be used to semi-quantitatively delineate tumor from normal tissue. Methods Open-field and a closed-field imaging devices were used to quantify fluorescence in punch biopsy tissues sampled from primary tumors collected during a phase 1 trial evaluating the safety of cetuximab-IRDye800 in patients (n=11) undergoing surgical intervention for head and neck cancer. Fluorescence ratios were calculated using mean fluorescence intensity (MFI) from punch biopsy normalized by MFI of patient-matched tissues. Ratios were compared to pathological assessment and a ratiometric threshold was established to predict presence of cancer. Results During open-field imaging using an intraoperative device, the threshold for muscle normalized tumor fluorescence was found to be 2.7, which produced a sensitivity of 90.5% and specificity of 78.6% for delineating disease tissue. The skin-normalized threshold generated greater sensitivity (92.9%) and specificity (81.0%). Conclusion Successful implementation of a semi-quantitative threshold can provide a scientific methodology for delineating disease from normal tissue during fluorescence-guided resection of cancer. PMID:26074273
Estimation of stress relaxation time for normal and abnormal breast phantoms using optical technique
NASA Astrophysics Data System (ADS)
Udayakumar, K.; Sujatha, N.
2015-03-01
Many of the early occurring micro-anomalies in breast may transform into a deadliest cancer tumor in future. Probability of curing early occurring abnormalities in breast is more if rightly identified. Even in mammogram, considered as a golden standard technique for breast imaging, it is hard to pick up early occurring changes in the breast tissue due to the difference in mechanical behavior of the normal and abnormal tissue when subjected to compression prior to x-ray or laser exposure. In this paper, an attempt has been made to estimate the stress relaxation time of normal and abnormal breast mimicking phantom using laser speckle image correlation. Phantoms mimicking normal breast is prepared and subjected to precise mechanical compression. The phantom is illuminated by a Helium Neon laser and by using a CCD camera, a sequence of strained phantom speckle images are captured and correlated by the image mean intensity value at specific time intervals. From the relation between mean intensity versus time, tissue stress relaxation time is quantified. Experiments were repeated for phantoms with increased stiffness mimicking abnormal tissue for similar ranges of applied loading. Results shows that phantom with more stiffness representing abnormal tissue shows uniform relaxation for varying load of the selected range, whereas phantom with less stiffness representing normal tissue shows irregular behavior for varying loadings in the given range.
Adipose Tissues Characteristics of Normal, Obesity, and Type 2 Diabetes in Uygurs Population
Zhang, Jun; Zhang, Zhiwei; Ding, Yulei; Xu, Peng; Wang, Tingting; Xu, Wenjing; Lu, Huan; Li, Jun; Wang, Yan; Li, Siyuan; Liu, Zongzhi; An, Na; Yang, Li; Xie, Jianxin
2015-01-01
Our results showed that, at the same BMI level, Uygurs have greater WHR values, abdominal visceral fat content, and diabetes risks than Kazaks. In addition, values of HDL-C in Uygur subjects were lower than those in Kazak subjects, and values of creatinine, uric acid, diastolic blood pressure, blood glucose, and fructosamine in Uygur male subjects were lower than those in Kazak male subjects. In contrast, systolic blood pressure values in Uygur subjects were greater than those in Kazak subjects, and blood glucose values were greater in Uygur female subjects than in Kazak female subjects. Additionally, in Uygurs, visceral adipose tissue expression levels of TBX1 and TCF21 were greater in obesity group than in normal and T2DM groups and lower in T2DM group than in normal group (P < 0.01). The visceral adipose tissue expression levels of APN in normal group was greater than those in obesity and T2DM groups, and visceral adipose tissue expression levels of TNF-α and MCP-1 in normal group were lower than those in obesity and T2DM groups (P < 0.01). In conclusion, T2DM in Uygurs was mainly associated with not only distribution of adipose tissue in body, but also change in metabolic activity and adipocytokines secretion of adipose tissue. PMID:26273678
Ashktorab, Hassan; Daremipouran, M; Goel, Ajay; Varma, Sudhir; Leavitt, R; Sun, Xueguang; Brim, Hassan
2014-04-01
The identification of genes that are differentially methylated in colorectal cancer (CRC) has potential value for both diagnostic and therapeutic interventions specifically in high-risk populations such as African Americans (AAs). However, DNA methylation patterns in CRC, especially in AAs, have not been systematically explored and remain poorly understood. Here, we performed DNA methylome profiling to identify the methylation status of CpG islands within candidate genes involved in critical pathways important in the initiation and development of CRC. We used reduced representation bisulfite sequencing (RRBS) in colorectal cancer and adenoma tissues that were compared with DNA methylome from a healthy AA subject's colon tissue and peripheral blood DNA. The identified methylation markers were validated in fresh frozen CRC tissues and corresponding normal tissues from AA patients diagnosed with CRC at Howard University Hospital. We identified and validated the methylation status of 355 CpG sites located within 16 gene promoter regions associated with CpG islands. Fifty CpG sites located within CpG islands-in genes ATXN7L1 (2), BMP3 (7), EID3 (15), GAS7 (1), GPR75 (24), and TNFAIP2 (1)-were significantly hypermethylated in tumor vs. normal tissues (P<0.05). The methylation status of BMP3, EID3, GAS7, and GPR75 was confirmed in an independent, validation cohort. Ingenuity pathway analysis mapped three of these markers (GAS7, BMP3 and GPR) in the insulin and TGF-β1 network-the two key pathways in CRC. In addition to hypermethylated genes, our analysis also revealed that LINE-1 repeat elements were progressively hypomethylated in the normal-adenoma-cancer sequence. We conclude that DNA methylome profiling based on RRBS is an effective method for screening aberrantly methylated genes in CRC. While previous studies focused on the limited identification of hypermethylated genes, ours is the first study to systematically and comprehensively identify novel hypermethylated genes, as well as hypomethylated LINE-1 sequences, which may serve as potential biomarkers for CRC in African Americans. Our discovered biomarkers were intimately linked to the insulin/TGF-B1 pathway, further strengthening the association of diabetic disorders with colon oncogenic transformation.
Hua, Kun; Schindler, Matthew K; McQuail, Joseph A; Forbes, M Elizabeth; Riddle, David R
2012-01-01
Radiation therapy has proven efficacy for treating brain tumors and metastases. Higher doses and larger treatment fields increase the probability of eliminating neoplasms and preventing reoccurrence, but dose and field are limited by damage to normal tissues. Normal tissue injury is greatest during development and in populations of proliferating cells but also occurs in adults and older individuals and in non-proliferative cell populations. To better understand radiation-induced normal tissue injury and how it may be affected by aging, we exposed young adult, middle-aged, and old rats to 10 Gy of whole brain irradiation and assessed in gray- and white matter the responses of microglia, the primary cellular mediators of radiation-induced neuroinflammation, and oligodendrocyte precursor cells, the largest population of proliferating cells in the adult brain. We found that aging and/or irradiation caused only a few microglia to transition to the classically "activated" phenotype, e.g., enlarged cell body, few processes, and markers of phagocytosis, that is seen following more damaging neural insults. Microglial changes in response to aging and irradiation were relatively modest and three markers of reactivity - morphology, proliferation, and expression of the lysosomal marker CD68- were regulated largely independently within individual cells. Proliferation of oligodendrocyte precursors did not appear to be altered during normal aging but increased following irradiation. The impacts of irradiation and aging on both microglia and oligodendrocyte precursors were heterogeneous between white- and gray matter and among regions of gray matter, indicating that there are regional regulators of the neural response to brain irradiation. By several measures, the CA3 region of the hippocampus appeared to be differentially sensitive to effects of aging and irradiation. The changes assessed here likely contribute to injury following inflammatory challenges like brain irradiation and represent important end-points for analysis in studies of therapeutic strategies to protect patients from neural dysfunction.
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J. (Inventor)
1998-01-01
Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J. (Inventor)
1998-01-01
Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue.The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.
NASA Astrophysics Data System (ADS)
Gordon, J. J.; Weiss, E.; Abayomi, O. K.; Siebers, J. V.; Dogan, N.
2011-05-01
In intensity modulated radiation therapy (IMRT) of cervical cancer, uterine motion can be larger than cervix motion, requiring a larger clinical target volume to planning target volume (CTV-to-PTV) margin around the uterine fundus. This work simulates different motion models and margins to estimate the dosimetric consequences. A virtual study used image sets from ten patients. Plans were created with uniform margins of 1 cm (PTVA) and 2.4 cm (PTVC), and a margin tapering from 2.4 cm at the fundus to 1 cm at the cervix (PTVB). Three inter-fraction motion models (MM) were simulated. In MM1, all structures moved with normally distributed rigid body translations. In MM2, CTV motion was progressively magnified as one moved superiorly from the cervix to the fundus. In MM3, both CTV and normal tissue motion were magnified as in MM2, modeling the scenario where normal tissues move into the void left by the mobile uterus. Plans were evaluated using static and percentile DVHs. For a conventional margin (PTVA), quasi-realistic uterine motion (MM3) reduces fundus dose by about 5 Gy and increases normal tissue volumes receiving 30-50 Gy by ~5%. A tapered CTV-to-PTV margin can restore fundus and CTV doses, but will increase normal tissue volumes receiving 30-50 Gy by a further ~5%.
[The elemental composition of teeth hard tissues depending on the state of the environment].
Suladze, N; Shishniashvili, T; Margvelashvili, V; Kobakhidze, K
2014-01-01
At present, great attention is paid to the origin of man-made micro elemental anomalies. To monitor the state of the environment and its effects on the human body, of great importance is the determination of the amount and distribution of various chemical elements in the dentin and enamel of the teeth. To determine the essential (Ca, Zn, Mn, Ni), conditionally essential (Rb, Ni, Sr) and toxic (Pb, Hg) trace elements in the mineralized tissues of the teeth and to identify the relationship between the elemental composition of the tooth structure and the state of the general and dental health depending on the state of the environment, we have examined 29 children aged 3-4 years who have carried out analysis of hard tissue of teeth (teeth used for remote medical reasons) for the maintenance of nine chemical elements. Children living in a relatively environmentally favorable conditions essential value and conditionally essential elements in the mineralized tissues of the teeth were within normal limits, and toxic elements slightly increased limits that differ from those of children living in environmentally disadvantaged areas. In particular, these essential elements were significantly reduced (except for zinc), as indicators of toxic elements - mercury and lead, increased by 12.5% and 44.5%, respectively, which is clearly reflected on the state of dental health because noted decompensated form of tooth decay. Thus, deviations in a state of general and dental health of children associated with an imbalance of macro-and microelements in the mineralized tissues of the teeth.
CUBIC pathology: three-dimensional imaging for pathological diagnosis.
Nojima, Satoshi; Susaki, Etsuo A; Yoshida, Kyotaro; Takemoto, Hiroyoshi; Tsujimura, Naoto; Iijima, Shohei; Takachi, Ko; Nakahara, Yujiro; Tahara, Shinichiro; Ohshima, Kenji; Kurashige, Masako; Hori, Yumiko; Wada, Naoki; Ikeda, Jun-Ichiro; Kumanogoh, Atsushi; Morii, Eiichi; Ueda, Hiroki R
2017-08-24
The examination of hematoxylin and eosin (H&E)-stained tissues on glass slides by conventional light microscopy is the foundation for histopathological diagnosis. However, this conventional method has some limitations in x-y axes due to its relatively narrow range of observation area and in z-axis due to its two-dimensionality. In this study, we applied a CUBIC pipeline, which is the most powerful tissue-clearing and three-dimensional (3D)-imaging technique, to clinical pathology. CUBIC was applicable to 3D imaging of both normal and abnormal patient-derived, human lung and lymph node tissues. Notably, the combination of deparaffinization and CUBIC enabled 3D imaging of specimens derived from paraffin-embedded tissue blocks, allowing quantitative evaluation of nuclear and structural atypia of an archival malignant lymphoma tissue. Furthermore, to examine whether CUBIC can be applied to practical use in pathological diagnosis, we performed a histopathological screening of a lymph node metastasis based on CUBIC, which successfully improved the sensitivity in detecting minor metastatic carcinoma nodules in lymph nodes. Collectively, our results indicate that CUBIC significantly contributes to retrospective and prospective clinicopathological diagnosis, which might lead to the establishment of a novel field of medical science based on 3D histopathology.
Lazarides, Alexander L; Whitley, Melodi J; Strasfeld, David B; Cardona, Diana M; Ferrer, Jorge M; Mueller, Jenna L; Fu, Henry L; Bartholf DeWitt, Suzanne; Brigman, Brian E; Ramanujam, Nimmi; Kirsch, David G; Eward, William C
2016-01-01
The treatment of soft tissue sarcoma (STS) generally involves tumor excision with a wide margin. Although advances in fluorescence imaging make real-time detection of cancer possible, removal is limited by the precision of the human eye and hand. Here, we describe a novel pulsed Nd:YAG laser ablation system that, when used in conjunction with a previously described molecular imaging system, can identify and ablate cancer in vivo. Mice with primary STS were injected with the protease-activatable probe LUM015 to label tumors. Resected tissues from the mice were then imaged and treated with the laser using the paired fluorescence-imaging/ laser ablation device, generating ablation clefts with sub-millimeter precision and minimal underlying tissue damage. Laser ablation was guided by fluorescence to target tumor tissues, avoiding normal structures. The selective ablation of tumor implants in vivo improved recurrence-free survival after tumor resection in a cohort of 14 mice compared to 12 mice that received no ablative therapy. This prototype system has the potential to be modified so that it can be used during surgery to improve recurrence-free survival in patients with cancer.
Shalaby, Nourhan; Al-Ebraheem, Alia; Le, Du; Cornacchi, Sylvie; Fang, Qiyin; Farrell, Thomas; Lovrics, Peter; Gohla, Gabriela; Reid, Susan; Hodgson, Nicole; Farquharson, Michael
2018-03-01
One of the major problems in breast cancer surgery is defining surgical margins and establishing complete tumor excision within a single surgical procedure. The goal of this work is to establish instrumentation that can differentiate between tumor and normal breast tissue with the potential to be implemented in vivo during a surgical procedure. A time-resolved fluorescence and reflectance spectroscopy (tr-FRS) system is used to measure fluorescence intensity and lifetime as well as collect diffuse reflectance (DR) of breast tissue, which can subsequently be used to extract optical properties (absorption and reduced scatter coefficient) of the tissue. The tr-FRS data obtained from patients with Invasive Ductal Carcinoma (IDC) whom have undergone lumpectomy and mastectomy surgeries is presented. A preliminary study was conducted to determine the validity of using banked pre-frozen breast tissue samples to study the fluorescence response and optical properties. Once the validity was established, the tr-FRS system was used on a data-set of 40 pre-frozen matched pair cases to differentiate between tumor and normal breast tissue. All measurements have been conducted on excised normal and tumor breast samples post surgery. Our results showed the process of freezing and thawing did not cause any significant differences between fresh and pre-frozen normal or tumor breast tissue. The tr-FRS optical data obtained from 40 banked matched pairs showed significant differences between normal and tumor breast tissue. The work detailed in the main study showed the tr-FRS system has the potential to differentiate malignant from normal breast tissue in women undergoing surgery for known invasive ductal carcinoma. With further work, this successful outcome may result in the development of an accurate intraoperative real-time margin assessment system. Lasers Surg. Med. 50:236-245, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Illek, Beate; Lei, Dachuan; Fischer, Horst; Gruenert, Dieter C
2010-01-01
While the Cl(-) efflux assays are relatively straightforward, their ability to assess the efficacy of phenotypic correction in cystic fibrosis (CF) tissue or cells may be limited. Accurate assessment of therapeutic efficacy, i.e., correlating wild type CF transmembrane conductance regulator (CFTR) levels with phenotypic correction in tissue or individual cells, requires a sensitive assay. Radioactive chloride ((36)Cl) efflux was compared to Ussing chamber analysis for measuring cAMP-dependent Cl(-) transport in mixtures of human normal (16HBE14o-) and cystic fibrosis (CF) (CFTE29o- or CFBE41o-, respectively) airway epithelial cells. Cell mixtures with decreasing amounts of 16HBE14o- cells were evaluated. Efflux and Ussing chamber studies on mixed populations of normal and CF airway epithelial cells showed that, as the number of CF cells within the population was progressively increased, the cAMP-dependent Cl(-) decreased. The (36)Cl efflux assay was effective for measuring Cl(-) transport when ≥ 25% of the cells were normal. If < 25% of the cells were phenotypically wild-type (wt), the (36)Cl efflux assay was no longer reliable. Polarized CFBE41o- cells, also homozygous for the ΔF508 mutation, were used in the Ussing chamber studies. Ussing analysis detected cAMP-dependent Cl(-) currents in mixtures with ≥1% wild-type cells indicating that Ussing analysis is more sensitive than (36)Cl efflux analysis for detection of functional CFTR. Assessment of CFTR function by Ussing analysis is more sensitive than (36)Cl efflux analysis. Ussing analysis indicates that cell mixtures containing 10% 16HBE14o- cells showed 40-50% of normal cAMP-dependent Cl(-) transport that drops off exponentially between 10-1% wild-type cells. Copyright © 2010 S. Karger AG, Basel.
Yang, Hee Jung; Youn, HyeSook; Seong, Ki Moon; Yun, Young Ju; Kim, Wanyeon; Kim, Young Ha; Lee, Ji Young; Kim, Cha Soon; Jin, Young-Woo; Youn, BuHyun
2011-09-01
Radiotherapy is the most significant non-surgical cure for the elimination of tumor, however it is restricted by two major problems: radioresistance and normal tissue damage. Efficiency improvement on radiotherapy is demanded to achieve cancer treatment. We focused on radiation-induced normal cell damage, and are concerned about inflammation reported to act as a main limiting factor in the radiotherapy. Psoralidin, a coumestan derivative isolated from the seed of Psoralea corylifolia, has been studied for anti-cancer and anti-bacterial properties. However, little is known regarding its effects on IR-induced pulmonary inflammation. The aim of this study is to investigate mechanisms of IR-induced inflammation and to examine therapeutic mechanisms of psoralidin in human normal lung fibroblasts and mice. Here, we demonstrated that IR-induced ROS activated cyclooxygenases-2 (COX-2) and 5-lipoxygenase (5-LOX) pathway in HFL-1 and MRC-5 cells. Psoralidin inhibited the IR-induced COX-2 expression and PGE(2) production through regulation of PI3K/Akt and NF-κB pathway. Also, psoralidin blocked IR-induced LTB(4) production, and it was due to direct interaction of psoralidin and 5-lipoxygenase activating protein (FLAP) in 5-LOX pathway. IR-induced fibroblast migration was notably attenuated in the presence of psoralidin. Moreover, in vivo results from mouse lung indicate that psoralidin suppresses IR-induced expression of pro-inflammatory cytokines (TNF-α, TGF-β, IL-6 and IL-1 α/β) and ICAM-1. Taken together, our findings reveal a regulatory mechanism of IR-induced pulmonary inflammation in human normal lung fibroblast and mice, and suggest that psoralidin may be useful as a potential lead compound for development of a better radiopreventive agent against radiation-induced normal tissue injury. Copyright © 2011 Elsevier Inc. All rights reserved.
Bone Regeneration in Rat Cranium Critical-Size Defects Induced by Cementum Protein 1 (CEMP1)
Serrano, Janeth; Romo, Enrique; Bermúdez, Mercedes; Narayanan, A. Sampath; Zeichner-David, Margarita; Santos, Leticia; Arzate, Higinio
2013-01-01
Gene therapy approaches to bone and periodontal tissue engineering are being widely explored. While localized delivery of osteogenic factors like BMPs is attractive for promotion of bone regeneration; method of delivery, dosage and side effects could limit this approach. A novel protein, Cementum Protein 1 (CEMP1), has recently been shown to promote regeneration of periodontal tissues. In order to address the possibility that CEMP1 can be used to regenerate other types of bone, experiments were designed to test the effect of hrCEMP1 in the repair/regeneration of a rat calvaria critical-size defect. Histological and microcomputed tomography (µCT) analyses of the calvaria defect sites treated with CEMP1 showed that after 16 weeks, hrCEMP1 is able to induce 97% regeneration of the defect. Furthermore, the density and characteristics of the new mineralized tissues were normal for bone. This study demonstrates that hrCEMP1 stimulates bone formation and regeneration and has therapeutic potential for the treatment of bone defects and regeneration of mineralized tissues. PMID:24265720
Scary gas: pathways in the axial body for soft tissue gas dissection (part I).
Sandstrom, Claire K; Osman, Sherif F; Linnau, Ken F
2017-10-01
Gas is often encountered in abnormal locations in the torso, including within soft tissue compartments, vessels, and bones. The clinical significance of this gas ranges from incidental, benign, and self-limited to aggressive infection requiring immediate surgery. As a result of fascial interconnectivity and pressure differences between compartments, gas can dissect distant from its source. Gas can easily dissect between spaces of the extrapleural thorax, subperitoneal abdomen, deep cervical spaces, and subcutaneous tissues. The pleural and peritoneal cavities are normally isolated but may communicate with the other spaces in select situations. Dissection of gas may cause confusion as to its origin, potentially delaying treatment or prompting unnecessary and/or distracting workup and therapies. The radiologist might be the first to suggest and identify a remote source of dissecting gas when the clinical manifestation alone might be misleading. The purpose of this paper, the first in a three-part series on soft tissue gas, is to explore the various pathways by which gas dissects through the superficial and deep compartments of the torso.
Prospective treatment planning to improve locoregional hyperthermia for oesophageal cancer.
Kok, H P; van Haaren, P M A; van de Kamer, J B; Zum Vörde Sive Vörding, P J; Wiersma, J; Hulshof, M C C M; Geijsen, E D; van Lanschot, J J B; Crezee, J
2006-08-01
In the Academic Medical Center (AMC) Amsterdam, locoregional hyperthermia for oesophageal tumours is applied using the 70 MHz AMC-4 phased array system. Due to the occurrence of treatment-limiting hot spots in normal tissue and systemic stress at high power, the thermal dose achieved in the tumour can be sub-optimal. The large number of degrees of freedom of the heating device, i.e. the amplitudes and phases of the antennae, makes it difficult to avoid treatment-limiting hot spots by intuitive amplitude/phase steering. Prospective hyperthermia treatment planning combined with high resolution temperature-based optimization was applied to improve hyperthermia treatment of patients with oesophageal cancer. All hyperthermia treatments were performed with 'standard' clinical settings. Temperatures were measured systemically, at the location of the tumour and near the spinal cord, which is an organ at risk. For 16 patients numerically optimized settings were obtained from treatment planning with temperature-based optimization. Steady state tumour temperatures were maximized, subject to constraints to normal tissue temperatures. At the start of 48 hyperthermia treatments in these 16 patients temperature rise (DeltaT) measurements were performed by applying a short power pulse with the numerically optimized amplitude/phase settings, with the clinical settings and with mixed settings, i.e. numerically optimized amplitudes combined with clinical phases. The heating efficiency of the three settings was determined by the measured DeltaT values and the DeltaT-ratio between the DeltaT in the tumour (DeltaToes) and near the spinal cord (DeltaTcord). For a single patient the steady state temperature distribution was computed retrospectively for all three settings, since the temperature distributions may be quite different. To illustrate that the choice of the optimization strategy is decisive for the obtained settings, a numerical optimization on DeltaT-ratio was performed for this patient and the steady state temperature distribution for the obtained settings was computed. A higher DeltaToes was measured with the mixed settings compared to the calculated and clinical settings; DeltaTcord was higher with the mixed settings compared to the clinical settings. The DeltaT-ratio was approximately 1.5 for all three settings. These results indicate that the most effective tumour heating can be achieved with the mixed settings. DeltaT is proportional to the Specific Absorption Rate (SAR) and a higher SAR results in a higher steady state temperature, which implies that mixed settings are likely to provide the most effective heating at steady state as well. The steady state temperature distributions for the clinical and mixed settings, computed for the single patient, showed some locations where temperatures exceeded the normal tissue constraints used in the optimization. This demonstrates that the numerical optimization did not prescribe the mixed settings, because it had to comply with the constraints set to the normal tissue temperatures. However, the predicted hot spots are not necessarily clinically relevant. Numerical optimization on DeltaT-ratio for this patient yielded a very high DeltaT-ratio ( approximately 380), albeit at the cost of excessive heating of normal tissue and lower steady state tumour temperatures compared to the conventional optimization. Treatment planning can be valuable to improve hyperthermia treatments. A thorough discussion on clinically relevant objectives and constraints is essential.
Yang, Tao; Liu, Shan; Wang, Chang-Hong; Tao, Yan-Yan; Zhou, Hua; Liu, Cheng-Hai
2015-10-10
Fuzheng Huayu recipe (FZHY) is a herbal product for the treatment of liver fibrosis approved by the Chinese State Food and Drug Administration (SFDA), but its pharmacokinetics and tissue distribution had not been investigated. In this study, the liver fibrotic model was induced with intraperitoneal injection of dimethylnitrosamine (DMN), and FZHY was given orally to the model and normal rats. The plasma pharmacokinetics and tissue distribution profiles of four major bioactive components from FZHY were analyzed in the normal and fibrotic rat groups using an ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method. Results revealed that the bioavailabilities of danshensu (DSS), salvianolic acid B (SAB) and rosmarinic acid (ROS) in liver fibrotic rats increased 1.49, 3.31 and 2.37-fold, respectively, compared to normal rats. There was no obvious difference in the pharmacokinetics of amygdalin (AMY) between the normal and fibrotic rats. The tissue distribution of DSS, SAB, and AMY trended to be mostly in the kidney and lung. The distribution of DSS, SAB, and AMY in liver tissue of the model rats was significantly decreased compared to the normal rats. Significant differences in the pharmacokinetics and tissue distribution profiles of DSS, ROS, SAB and AMY were observed in rats with hepatic fibrosis after oral administration of FZHY. These results provide a meaningful basis for developing a clinical dosage regimen in the treatment of hepatic fibrosis by FZHY. Copyright © 2015 Elsevier B.V. All rights reserved.
Saraco, Nora; Nesi-Franca, Suzana; Sainz, Romina; Marino, Roxana; Marques-Pereira, Rosana; La Pastina, Julia; Perez Garrido, Natalia; Sandrini, Romolo; Rivarola, Marco Aurelio; de Lacerda, Luiz; Belgorosky, Alicia
2015-01-01
Splicing CYP19 gene variants causing aromatase deficiency in 46,XX disorder of sexual development (DSD) patients have been reported in a few cases. A misbalance between normal and aberrant splicing variants was proposed to explain spontaneous pubertal breast development but an incomplete sex maturation progress. The aim of this study was to functionally characterize a novel CYP19A1 intronic homozygote mutation (IVS9+5G>A) in a 46,XX DSD girl presenting spontaneous breast development and primary amenorrhea, and to evaluate similar splicing variant expression in normal steroidogenic tissues. Genomic DNA analysis, splicing prediction programs, splicing assays, and in vitro protein expression and enzyme activity analyses were carried out. CYP19A1 mRNA expression in human steroidogenic tissues was also studied. A novel IVS9+5G>A homozygote mutation was found. In silico analysis predicts the disappearance of the splicing donor site in intron 9, confirmed by patient peripheral leukocyte cP450arom and in vitro studies. Protein analysis showed a shorter and inactive protein. The intron 9 transcript variant was also found in human steroidogenic tissues. The mutation IVS9+5G>A generates a splicing variant that includes intron 9 which is also present in normal human steroidogenic tissues, suggesting that a misbalance between normal and aberrant splicing variants might occur in target tissues, explaining the clinical phenotype in the affected patient. © 2015 S. Karger AG, Basel.
Differential Expression of c-fos Proto-Oncogene in Normal Oral Mucosa versus Squamous Cell Carcinoma
Krishna, Akhilesh; Bhatt, Madan Lal Brahma; Singh, Vineeta; Singh, Shraddha; Gangwar, Pravin Kumar; Singh, Uma Shankar; Kumar, Vijay; Mehrotra, Divya
2018-01-01
Background: The c-Fos nuclear protein dimerizes with Jun family proteins to form the transcription factor AP-1 complex which participates in signal transduction and regulation of normal cellular processes. In tumorigenesis, c-Fos promotes invasive growth through down-regulation of tumor suppressor genes but its role in oral carcinogenesis is not clear. Objectives: This study concerned c-fos gene expression in normal and malignant tissues of the oral cavity, with attention to associations between expression status and clinico-pathological profiles of OSCC patients. Method: A total of 65 histopathologically confirmed OSCC tissue samples were included in case group along with an equal number of age and sex-matched normal tissue samples of oral cavity for the control group. c-Fos protein and m-RNA expressions were analyzed using immunohistochemistry and qRT-PCR, respectively. Results: A significant low expression of c-Fos protein was observed in OSCC cases than normal control subjects (p= <0.001). The mean percent positivity of c-Fos protein in cases vs. controls was 24.91± 2.7 vs. 49.68± 2.2 (p= <0.001). Most OSCC tissue samples showed weak or moderate c-Fos expression whereas 53.8% of normal tissue sections presented with strong immunostaining. Moreover, the relative m-RNA expression for the c-fos gene was significantly decreased in case group (0.93± 0.48) as compared to the control group (1.22± 0.87). Majority of c-Fos positive cases were diagnosed with well developed tumor. The mean percent positivity of c-Fos protein was significantly lower in higher grade tumor as compared with normal oral mucosa (p= < 0.001). Conclusion: The present study suggested that the c-fos gene is downregulated in oral carcinomas. The disparity of c-Fos protein levels in different pathological grades of tumor and normal oral tissue samples may indicate that loss of c-Fos expression is related with the progression of OSCC. PMID:29582647
Huo, Xinkai; Zhang, Lei; Li, Tao
2018-03-01
Colorectal cancer is a common malignant tumor of the digestive tract with high morbidity and mortality rates. The aim of the present study was to examine the expression level of KiSS-1 in tumor tissues of patients with colorectal cancer, and to explore the relationship with the clinicopathology and prognosis of patients with colorectal cancer. Frozen tumor tissue and corresponding cancer-adjacent normal tissue specimens were selected from 56 patients with colorectal cancer who were treated in the Department of Surgery of our hospital from May 2009 to December 2011. The expression levels of KiSS-1 messenger ribonucleic acid (mRNA) in tumor tissues and cancer-adjacent normal tissues were detected by reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR). The expression levels of KiSS-1 proteins in colorectal cancer tissues and cancer-adjacent normal tissues were further detected by immunohistochemistry. In addition, the association of the expression level of KiSS-1 proteins in tissues of colorectal cancer patients with pathological parameters and the prognosis of patients with colorectal cancer was analyzed combined with clinical data. The RT-qPCR results showed that the expression of KiSS-1 mRNA in colorectal cancer tissues was significantly lower than that in cancer-adjacent normal tissues (P<0.05). Immunohistochemistry results indicated that the positive expression rate of KiSS-1 proteins in colorectal cancer tissues (26.79%) was significantly lower than that in cancer-adjacent normal tissues (80.36%). The low expression of KiSS-1 in colorectal cancer tissues was associated with the degree of differentiation, invasion and metastasis, as well as clinical staging. The 5-year overall survival rate of patients with colorectal cancer was 55.36% (31/56). The univariate survival analysis showed that patients with lowly expressed KiSS-1 had worse prognosis. The low expression of KiSS-1 is closely associated with the occurrence and development of colorectal cancer, especially to the degree of differentiation, invasion and metastasis, as well as clinical staging. Thus, the expression of KiSS-1 in colorectal cancer tissues can be used as a reference for the prognosis of colorectal cancer, and KiSS-1 is a potential new target for the treatment of colorectal cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Raef S.; Shen, Sui; Ove, Roger
We wanted to describe a technique for the implementation of intensity-modulated radiotherapy (IMRT) with a real-time position monitor (RPM) respiratory gating system for the treatment of pleural space with intact lung. The technique is illustrated by a case of pediatric osteosarcoma, metastatic to the pleura of the right lung. The patient was simulated in the supine position where a breathing tracer and computed tomography (CT) scans synchronized at end expiration were acquired using the RPM system. The gated CT images were used to define target volumes and critical structures. Right pleural gated IMRT delivered at end expiration was prescribed tomore » a dose of 44 Gy, with 55 Gy delivered to areas of higher risk via simultaneous integrated boost (SIB) technique. IMRT was necessary to avoid exceeding the tolerance of intact lung. Although very good coverage of the target volume was achieved with a shell-shaped dose distribution, dose over the targets was relatively inhomogeneous. Portions of target volumes necessarily intruded into the right lung, the liver, and right kidney, limiting the degree of normal tissue sparing that could be achieved. The radiation doses to critical structures were acceptable and well tolerated. With intact lung, delivering a relatively high dose to the pleura with acceptable doses to surrounding normal tissues using respiratory gated pleural IMRT is feasible. Treatment delivery during a limited part of the respiratory cycle allows for reduced CT target volume motion errors, with reduction in the portion of the planning margin that accounts for respiratory motion, and subsequent increase in the therapeutic ratio.« less
The Research Progress of Targeted Drug Delivery Systems
NASA Astrophysics Data System (ADS)
Zhan, Jiayin; Ting, Xizi Liang; Zhu, Junjie
2017-06-01
Targeted drug delivery system (DDS) means to selectively transport drugs to targeted tissues, organs, and cells through a variety of drugs carrier. It is usually designed to improve the pharmacological and therapeutic properties of conventional drugs and to overcome problems such as limited solubility, drug aggregation, poor bio distribution and lack of selectivity, controlling drug release carrier and to reduce normal tissue damage. With the characteristics of nontoxic and biodegradable, it can increase the retention of drug in lesion site and the permeability, improve the concentration of the drug in lesion site. at present, there are some kinds of DDS using at test phase, such as slow controlled release drug delivery system, targeted drug delivery systems, transdermal drug delivery system, adhesion dosing system and so on. This paper makes a review for DDS.
NASA Astrophysics Data System (ADS)
Zheng, Wenli; Wang, Chaojian; Chang, Shufang; Zhang, Shiwu; Xu, Ronald X.
2015-12-01
Hyperspectral reflectance imaging technique has been used for in vivo detection of cervical intraepithelial neoplasia. However, the clinical outcome of this technique is suboptimal owing to multiple limitations such as nonuniform illumination, high-cost and bulky setup, and time-consuming data acquisition and processing. To overcome these limitations, we acquired the hyperspectral data cube in a wavelength ranging from 600 to 800 nm and processed it by a wide gap second derivative analysis method. This method effectively reduced the image artifacts caused by nonuniform illumination and background absorption. Furthermore, with second derivative analysis, only three specific wavelengths (620, 696, and 772 nm) are needed for tissue classification with optimal separability. Clinical feasibility of the proposed image analysis and classification method was tested in a clinical trial where cervical hyperspectral images from three patients were used for classification analysis. Our proposed method successfully classified the cervix tissue into three categories of normal, inflammation and high-grade lesion. These classification results were coincident with those by an experienced gynecology oncologist after applying acetic acid. Our preliminary clinical study has demonstrated the technical feasibility for in vivo and noninvasive detection of cervical neoplasia without acetic acid. Further clinical research is needed in order to establish a large-scale diagnostic database and optimize the tissue classification technique.
Zheng, Wenli; Wang, Chaojian; Chang, Shufang; Zhang, Shiwu; Xu, Ronald X
2015-12-01
Hyperspectral reflectance imaging technique has been used for in vivo detection of cervical intraepithelial neoplasia. However, the clinical outcome of this technique is suboptimal owing to multiple limitations such as nonuniform illumination, high-cost and bulky setup, and time-consuming data acquisition and processing. To overcome these limitations, we acquired the hyperspectral data cube in a wavelength ranging from 600 to 800 nm and processed it by a wide gap second derivative analysis method. This method effectively reduced the image artifacts caused by nonuniform illumination and background absorption. Furthermore, with second derivative analysis, only three specific wavelengths (620, 696, and 772 nm) are needed for tissue classification with optimal separability. Clinical feasibility of the proposed image analysis and classification method was tested in a clinical trial where cervical hyperspectral images from three patients were used for classification analysis. Our proposed method successfully classified the cervix tissue into three categories of normal, inflammation and high-grade lesion. These classification results were coincident with those by an experienced gynecology oncologist after applying acetic acid. Our preliminary clinical study has demonstrated the technical feasibility for in vivo and noninvasive detection of cervical neoplasia without acetic acid. Further clinical research is needed in order to establish a large-scale diagnostic database and optimize the tissue classification technique.
van Leengoed, H. L.; Schuitmaker, J. J.; van der Veen, N.; Dubbelman, T. M.; Star, W. M.
1993-01-01
Bacteriochlorin a (BCA), a derivative of bacteriochlorphyll a, is an effective photosensitiser in vitro and in vivo. BCA has a major absorption peak at 760 nm where tissue penetration is optimal. This property, together with rapid tissue clearance promises minor skin photosensitivity. The tissue localising and photodynamic properties of BCA were studied using isogeneic RMA mammary tumours, transplanted into subcutaneous tissue in transparent 'sandwich' observation chambers on the back of WAG/Rij rats. The fluorescence kinetics following an i.v. administration of 20 mg kg-1 BCA was assessed in blood vessels, tumour and normal tissue. Subsequently, the development of vascular- and tissue damage after a therapeutic light dose (760 nm, 600 J cm-2) was observed. Fifteen minutes post injection (p.i.), the fluorescence of BCA in the tumour reached a plateau value of 2.5 times the fluorescence in the normal tissue. From 1 h post injection the tumour fluorescence diminished gradually; after 24 h, the tumour fluorescence signal did not exceed that of the normal tissue. Following photodynamic therapy (PDT), 24 h p.i., complete vascular stasis was observed 2 h post treatment in the tumour only, with subsequent recovery. The presence of viable tumour cells following PDT was assessed by histology and re-transplantation of treated tumour tissue from the chamber into the flank immediately or 7 days after treatment. In both cases tumour regrowth was observed. BCA-PDT (20 mg kg-1, 760 nm, 100 J cm-2) 1 h after BCA administration, an interval which gives the optimal differential between tumour and normal tissue, was sufficient to prevent tumour regrowth. However, this only occurred when re-transplantation was performed 7 days after PDT. During PDT, 1 h p.i., vascular damage in tumour and normal tissue was considerable. Complete vascular shut-down was observed in the tumour 2 h after therapy and in the surrounding tissues at 24 h. Circulation damage was associated with vascular spasm and occlusion probably due to thrombi formation. Oedema was notable, especially following PDT with 600 J cm-2 at 24 h p.i. Images Figure 1 PMID:8494722
Reid, Tirissa J; Jin, Zhezhen; Shen, Wei; Reyes-Vidal, Carlos M; Fernandez, Jean Carlos; Bruce, Jeffrey N; Kostadinov, Jane; Post, Kalmon D; Freda, Pamela U
2015-12-01
Activity of acromegaly is gauged by levels of GH and IGF-1 and epidemiological studies demonstrate that their normalization reduces acromegaly's excess mortality rate. However, few data are available linking IGF-1 levels to features of the disease that may relate to cardiovascular (CV) risk. Therefore, we tested the hypothesis that serum IGF-1 levels relative to the upper normal limit relate to insulin sensitivity, serum CV risk markers and body composition in acromegaly. In this prospective, cross-sectional study conducted at a pituitary tumor referral center we studied 138 adult acromegaly patients, newly diagnosed and previously treated surgically, with fasting and post-oral glucose levels of endocrine and CV risk markers and body composition assessed by DXA. Active acromegaly is associated with lower insulin sensitivity, body fat and CRP levels than acromegaly in remission. %ULN IGF-1 strongly predicts insulin sensitivity, better than GH and this persists after adjustment for body fat and lean tissue mass. %ULN IGF-1 also relates inversely to CRP levels and fat mass, positively to lean tissue and skeletal muscle estimated (SM(E)) by DXA, but not to blood pressure, lipids, BMI or waist circumference. Gender interacts with the IGF-1-lean tissue mass relationship. Active acromegaly presents a unique combination of features associated with CV risk, reduced insulin sensitivity yet lower body fat and lower levels of some serum CV risk markers, a pattern that is reversed in remission. %ULN IGF-1 levels strongly predict these features. Given the known increased CV risk of active acromegaly, these findings suggest that of these factors insulin resistance is most strongly related to disease activity and potentially to the increased CV risk of active acromegaly.
Electromechanical Coupling Factor of Breast Tissue as a Biomarker for Breast Cancer.
Park, Kihan; Chen, Wenjin; Chekmareva, Marina A; Foran, David J; Desai, Jaydev P
2018-01-01
This research aims to validate a new biomarker of breast cancer by introducing electromechanical coupling factor of breast tissue samples as a possible additional indicator of breast cancer. Since collagen fibril exhibits a structural organization that gives rise to a piezoelectric effect, the difference in collagen density between normal and cancerous tissue can be captured by identifying the corresponding electromechanical coupling factor. The design of a portable diagnostic tool and a microelectromechanical systems (MEMS)-based biochip, which is integrated with a piezoresistive sensing layer for measuring the reaction force as well as a microheater for temperature control, is introduced. To verify that electromechanical coupling factor can be used as a biomarker for breast cancer, the piezoelectric model for breast tissue is described with preliminary experimental results on five sets of normal and invasive ductal carcinoma (IDC) samples in the 25-45 temperature range. While the stiffness of breast tissues can be captured as a representative mechanical signature which allows one to discriminate among tissue types especially in the higher strain region, the electromechanical coupling factor shows more distinct differences between the normal and IDC groups over the entire strain region than the mechanical signature. From the two-sample -test, the electromechanical coupling factor under compression shows statistically significant differences ( 0.0039) between the two groups. The increase in collagen density in breast tissue is an objective and reproducible characteristic of breast cancer. Although characterization of mechanical tissue property has been shown to be useful for differentiating cancerous tissue from normal tissue, using a single parameter may not be sufficient for practical usage due to inherent variation among biological samples. The portable breast cancer diagnostic tool reported in this manuscript shows the feasibility of measuring multiple parameters of breast tissue allowing for practical application.
Various clinical application of phase contrast X-ray
NASA Astrophysics Data System (ADS)
Oh, Chilhwan; Park, Sangyong; Ha, Seunghan; Park, Gyuman; Lee, Gunwoo; Lee, Onseok; Je, Jungho
2008-02-01
In biomedical application study using phase contrast X-ray, both sample thickness or density and absorption difference are very important factors in aspects of contrast enhancement. We present experimental evidence that synchrotron hard X-ray are suitable for radiological imaging of biological samples down to the cellular level. We investigated the potential of refractive index radiology using un-monochromatized synchrotron hard X-rays for the imaging of cell and tissue in various diseases. Material had been adopted various medical field, such as apoE knockout mouse in cardiologic field, specimen from renal and prostatic carcinoma patient in urology, basal cell epithelioma in dermatology, brain tissue from autosy sample of pakinson's disease, artificially induced artilrtis tissue from rabbits and extracted tooth from patients of crack tooth syndrome. Formalin and paraffin fixed tissue blocks were cut in 3 mm thickness for the X-ray radiographic imaging. From adjacent areas, 4 μm thickness sections were also prepared for hematoxylin-eosin staining. Radiographic images of dissected tissues were obtained using the hard X-rays from the 7B2 beamline of the Pohang Light Source (PLS). The technique used for the study was the phase contrast images were compared with the optical microscopic images of corresponding histological slides. Radiographic images of various diseased tissues showed clear histological details of organelles in normal tissues. Most of cancerous lesions were well differentiated from adjacent normal tissues and detailed histological features of each tumor were clearly identified. Also normal microstructures were identifiable by the phase contrast imaging. Tissue in cancer or other disease showed clearly different findings from those of surrounding normal tissue. For the first time we successfully demonstrated that synchrotron hard X-rays can be used for radiological imaging of relatively thick tissue samples with great histological details.
De Santis, Silvia; Bastiani, Matteo; Droby, Amgad; Kolber, Pierre; Zipp, Frauke; Pracht, Eberhard; Stoecker, Tony; Groppa, Sergiu; Roebroeck, Alard
2018-04-07
The recent introduction of advanced magnetic resonance (MR) imaging techniques to characterize focal and global degeneration in multiple sclerosis (MS), like the Composite Hindered and Restricted Model of Diffusion, or CHARMED, diffusional kurtosis imaging (DKI) and Neurite Orientation Dispersion and Density Imaging (NODDI) made available new tools to image axonal pathology non-invasively in vivo. These methods already showed greater sensitivity and specificity compared to conventional diffusion tensor-based metrics (e.g., fractional anisotropy), overcoming some of its limitations. While previous studies uncovered global and focal axonal degeneration in MS patients compared to healthy controls, here our aim is to investigate and compare different diffusion MRI acquisition protocols in their ability to highlight microstructural differences between MS and control tissue over several much used models. For comparison, we contrasted the ability of fractional anisotropy measurements to uncover differences between lesion, normal-appearing white matter (WM), gray matter and healthy tissue under the same imaging protocols. We show that: (1) focal and diffuse differences in several microstructural parameters are observed under clinical settings; (2) advanced models (CHARMED, DKI and NODDI) have increased specificity and sensitivity to neurodegeneration when compared to fractional anisotropy measurements; and (3) both high (3 T) and ultra-high fields (7 T) are viable options for imaging tissue change in MS lesions and normal appearing WM, while higher b-values are less beneficial under the tested short-time (10 min acquisition) conditions. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Progestins in the menopause in healthy women and breast cancer patients.
Pasqualini, Jorge R
2009-04-20
At present, more than 200 progestin compounds are synthetized, but their biological effects are different: this is function of their structure, receptor affinity, metabolic transformations, the target tissues considered, dose. The action of progestins in breast cancer is controversial; some studies indicate an increase in breast cancer incidence, others show no differences, and yet others indicate a decrease. Many studies agree that treatment with progestins plus estrogens at a low dose and during a limited period (less than 5 years) can have beneficial effects in peri- and post-menopausal women. It was demonstrated that various progestins (e.g. nomegestrol acetate, medrogestone, promegestone), as well as tibolone and its metabolites, can block the enzymes involved in estradiol bioformation (sulfatase, 17beta-hydroxysteroid dehydrogenase) in breast cancer. Progesterone is converted into various metabolic products: in normal breast tissue the transformation is mainly to 4-ene derivatives, whereas in the tumor tissue 5alpha-pregane derivatives are predominant. Aromatase activity is the last step in the formation of estrogens by the conversion of androgens. In recent studies it was shown that 20alpha-dihydroprogesterone, a metabolite found mainly in normal breast tissue and having anti-proliferative properties, can act as an anti-aromatase agent. The data suggest the possible utilization of this compound in breast cancer prevention. In conclusion, in order to clarify and better understand the response of progestins in breast cancer (incidence and mortality), as well as in hormone replacement therapy or in endocrine dysfunction, new clinical trials are necessary using other progestins in function of the dose and period of treatment.
Anti-inflammatory and cytoprotective properties of hydrogen sulfide.
Gemici, Burcu; Wallace, John L
2015-01-01
Hydrogen sulfide is an endogenous gaseous mediator that plays important roles in many physiological processes in microbes, plants, and animals. This chapter focuses on the important roles of hydrogen sulfide in protecting tissues against injury, promoting the repair of damage, and downregulating the inflammatory responses. The chapter focuses largely, but not exclusively, on these roles of hydrogen sulfide in the gastrointestinal tract. Hydrogen sulfide is produced throughout the gastrointestinal tract, and it contributes to maintenance of mucosal integrity. Suppression of hydrogen sulfide synthesis renders the tissue more susceptible to injury and it impairs repair. In contrast, administration of hydrogen sulfide donors can increase resistance to injury and accelerate repair. Hydrogen sulfide synthesis is rapidly and dramatically enhanced in the gastrointestinal tract after injury is induced. These increases occur specifically at the site of tissue injury. Hydrogen sulfide also plays an important role in promoting resolution of inflammation, and restoration of normal tissue function. In recent years, these beneficial actions of hydrogen sulfide have provided the basis for development of novel hydrogen sulfide-releasing drugs. Nonsteroidal anti-inflammatory drugs that release small amounts of hydrogen sulfide are among the most advanced of the hydrogen sulfide-based drugs. Unlike the parent drugs, these modified drugs do not cause injury in the gastrointestinal tract, and do not interfere with healing of preexisting damage. Because of the increased safety profile of these drugs, they can be used in circumstances in which the toxicity of the parent drug would normally limit their use, such as in chemoprevention of cancer. © 2015 Elsevier Inc. All rights reserved.
van Zanten, Malou C; Mistry, Raakhi M; Suami, Hiroo; Campbell-Lloyd, Andrew; Finkemeyer, James P; Piller, Neil B; Caplash, Yugesh
2017-02-01
Severe compound tibial fractures are associated with extensive soft-tissue damage, resulting in disruption of lymphatic pathways that leave the patient at risk of developing chronic lymphedema. There are limited data on lymphatic response following lower limb trauma. Indocyanine green fluorescence lymphography is a novel, real-time imaging technique for superficial lymphatic mapping. The authors used this technique to image the superficial lymphatic vessels of the lower limbs in patients with severe compound tibial fracture. Baseline demographics and clinical and operative details were recorded in a prospective cohort of 17 patients who had undergone bone and soft-tissue reconstruction after severe compound tibial fracture between 2009 and 2014. Normal lymphatic images were obtained from the patients' noninjured limbs as a control. In this way, the authors investigated any changes to the normal anatomy of the lymphatic system in the affected limbs. Of the 17 patients, eight had free muscle flaps with split-thickness skin grafting, one had a free fasciocutaneous flap, one had a full-thickness skin graft, six had local fasciocutaneous flaps, and one had a pedicled gastrocnemius flap. None of the free flaps demonstrated any functional lymphatic vessels; the fasciocutaneous flaps and the skin graft demonstrated impaired lymphatic vessel function and dermal backflow pattern similar to that in lymphedema. Local flaps demonstrated lymphatic blockage at the scar edge. Severe compound fractures and the associated soft-tissue injury can result in significant lymphatic disruption and an increased risk for the development of chronic lymphedema.
Fontana, Luigi
2009-01-01
Acute inflammation is usually a self-limited life preserving response, triggered by pathogens and/or traumatic injuries. This transient response normally leads to removal of harmful agents and to healing of the damaged tissues. In contrast, unchecked or chronic inflammation can lead to persistent tissue and organ damage by activated leukocytes, cytokines, or collagen deposition. Excessive energy intake and adiposity cause systemic inflammation, whereas calorie restriction without malnutrition exerts a potent anti-inflammatory effect. As individuals accumulate fat and their adipocytes enlarge, adipose tissue undergoes molecular and cellular alterations, macrophages accumulate, and inflammation ensues. Overweight/obese subjects have significantly higher plasma concentrations of C-reactive protein and several cytokines, including IL-6, IL-8, IL-18, and TNF-alpha. Experimental animals on a chronic CR regimen, instead, have low levels of circulating inflammatory cytokines, low blood lymphocyte levels, reduced production of inflammatory cytokines by the white blood cells in response to stimulation, and cortisol levels in the high normal range. Recent data demonstrate that CR exerts a powerful anti-inflammatory effect also in non-human primates and humans. Multiple metabolic and neuroendocrine mechanisms are responsible for the CR-mediated anti-inflammatory effects, including reduced adiposity and secretion of pro-inflammatory adipokines, enhanced glucocorticoid production, reduced plasma glucose and advanced glycation end-product concentrations, increased parasympathetic tone, and increased ghrelin production. Measuring tissue specific effects of CR using genomic, proteomic and metabolomic techniques in humans will foster the understanding of the complex biological processes involved in the anti-inflammatory and anti-aging effects of CR. PMID:18502597
Reversal of Type 1 Diabetes in Mice by Brown Adipose Tissue Transplant
Gunawardana, Subhadra C.; Piston, David W.
2012-01-01
Current therapies for type 1 diabetes (T1D) involve insulin replacement or transplantation of insulin-secreting tissue, both of which suffer from numerous limitations and complications. Here, we show that subcutaneous transplants of embryonic brown adipose tissue (BAT) can correct T1D in streptozotocin-treated mice (both immune competent and immune deficient) with severely impaired glucose tolerance and significant loss of adipose tissue. BAT transplants result in euglycemia, normalized glucose tolerance, reduced tissue inflammation, and reversal of clinical diabetes markers such as polyuria, polydipsia, and polyphagia. These effects are independent of insulin but correlate with recovery of the animals’ white adipose tissue. BAT transplants lead to significant increases in adiponectin and leptin, but with levels that are static and not responsive to glucose. Pharmacological blockade of the insulin receptor in BAT transplant mice leads to impaired glucose tolerance, similar to what is seen in nondiabetic animals, indicating that insulin receptor activity plays a role in the reversal of diabetes. One possible candidate for activating the insulin receptor is IGF-1, whose levels are also significantly elevated in BAT transplant mice. Thus, we propose that the combined action of multiple adipokines establishes a new equilibrium in the animal that allows for chronic glycemic control without insulin. PMID:22315305
Pulmonary ultrasound elastography: a feasibility study with phantoms and ex-vivo tissue
NASA Astrophysics Data System (ADS)
Nguyen, Man Minh; Xie, Hua; Paluch, Kamila; Stanton, Douglas; Ramachandran, Bharat
2013-03-01
Elastography has become widely used for minimally invasive diagnosis in many tumors as seen with breast, liver and prostate. Among different modalities, ultrasound-based elastography stands out due to its advantages including being safe, real-time, and relatively low-cost. While lung cancer is the leading cause of cancer mortality among both men and women, the use of ultrasound elastography for lung cancer diagnosis has hardly been investigated due to the limitations of ultrasound in air. In this work, we investigate the use of static-compression based endobronchial ultrasound elastography by a 3D trans-oesophageal echocardiography (TEE) transducer for lung cancer diagnosis. A water-filled balloon was designed to 1) improve the visualization of endobronchial ultrasound and 2) to induce compression via pumping motion inside the trachea and bronchiole. In a phantom study, we have successfully generated strain images indicating the stiffness difference between the gelatin background and agar inclusion. A similar strain ratio was confirmed with Philips ultrasound strain-based elastography product. For ex-vivo porcine lung study, different tissue ablation methods including chemical injection, Radio Frequency (RF) ablation, and direct heating were implemented to achieve tumor-mimicking tissue. Stiff ablated lung tissues were obtained and detected with our proposed method. These results suggest the feasibility of pulmonary elastography to differentiate stiff tumor tissue from normal tissue.
Rutkowski, Joseph M.; Markhus, Carl Erik; Gyenge, Christina C.; Alitalo, Kari; Wiig, Helge; Swartz, Melody A.
2010-01-01
Primary lymphedema is a congenital pathology of dysfunctional lymphatic drainage characterized by swelling of the limbs, thickening of the dermis, and fluid and lipid accumulation in the underlying tissue. Two mouse models of primary lymphedema, the Chy mouse and the K14-VEGFR-3-Ig mouse, both lack dermal lymphatic capillaries and exhibit a lymphedematous phenotype attributable to disrupted VEGFR-3 signaling. Here we show that the differences in edematous tissue composition between these two models correlated with drastic differences in hydraulic conductivity. The skin of Chy mice possessed significantly higher levels of collagen and fat, whereas K14-VEGFR-3-Ig mouse skin composition was relatively normal, as compared with their respective wild-type controls. Functionally, this resulted in a greatly increased dermal hydraulic conductivity in K14-VEGFR3-Ig, but not Chy, mice. Our data suggest that lymphedema associated with increased collagen and lipid accumulation counteracts an increased hydraulic conductivity associated with dermal swelling, which in turn further limits interstitial transport and swelling. Without lipid and collagen accumulation, hydraulic conductivity is increased and overall swelling is minimized. These opposing tissue responses to primary lymphedema imply that tissue remodeling—predominantly collagen and fat deposition—may dictate tissue swelling and govern interstitial transport in lymphedema. PMID:20110415
Rutkowski, Joseph M; Markhus, Carl Erik; Gyenge, Christina C; Alitalo, Kari; Wiig, Helge; Swartz, Melody A
2010-03-01
Primary lymphedema is a congenital pathology of dysfunctional lymphatic drainage characterized by swelling of the limbs, thickening of the dermis, and fluid and lipid accumulation in the underlying tissue. Two mouse models of primary lymphedema, the Chy mouse and the K14-VEGFR-3-Ig mouse, both lack dermal lymphatic capillaries and exhibit a lymphedematous phenotype attributable to disrupted VEGFR-3 signaling. Here we show that the differences in edematous tissue composition between these two models correlated with drastic differences in hydraulic conductivity. The skin of Chy mice possessed significantly higher levels of collagen and fat, whereas K14-VEGFR-3-Ig mouse skin composition was relatively normal, as compared with their respective wild-type controls. Functionally, this resulted in a greatly increased dermal hydraulic conductivity in K14-VEGFR3-Ig, but not Chy, mice. Our data suggest that lymphedema associated with increased collagen and lipid accumulation counteracts an increased hydraulic conductivity associated with dermal swelling, which in turn further limits interstitial transport and swelling. Without lipid and collagen accumulation, hydraulic conductivity is increased and overall swelling is minimized. These opposing tissue responses to primary lymphedema imply that tissue remodeling--predominantly collagen and fat deposition--may dictate tissue swelling and govern interstitial transport in lymphedema.
Positive cell-free fetal DNA testing for trisomy 13 reveals confined placental mosaicism.
Hall, April L; Drendel, Holli M; Verbrugge, Jennifer L; Reese, Angela M; Schumacher, Katherine L; Griffith, Christopher B; Weaver, David D; Abernathy, Mary P; Litton, Christian G; Vance, Gail H
2013-09-01
We report on a case in which cell-free fetal DNA was positive for trisomy 13 most likely due to confined placental mosaicism. Cell-free fetal DNA testing analyzes DNA derived from placental trophoblast cells and can lead to incorrect results that are not representative of the fetus. We sought to confirm commercial cell-free fetal DNA testing results by chorionic villus sampling and amniocentesis. These results were followed up by postnatal chromosome analysis of cord blood and placental tissue. First-trimester cell-free fetal DNA test results were positive for trisomy 13. Cytogenetic analysis of chorionic villus sampling yielded a mosaic karyotype of 47,XY,+13[10]/46,XY[12]. G-banded analysis of amniotic fluid was normal, 46,XY. Postnatal cytogenetic analysis of cord blood was normal. Karyotyping of tissues from four quadrants of the placenta demonstrated mosaicism for trisomy 13 in two of the quadrants and a normal karyotype in the other two. Our case illustrates several important aspects of this new testing methodology: that cell-free fetal DNA may not be representative of the fetal karyotype; that follow-up with diagnostic testing of chorionic villus sampling and/or amniotic fluid for abnormal test results should be performed; and that pretest counseling regarding the full benefits, limitations, and possible testing outcomes of cell-free fetal DNA screening is important.
Sun, Ying; Jiang, Yi-Na; Xu, Chang-Fu; Du, Yun-Xia; Zhang, Jiao-Jiao; Yan, Yang; Gao, Xiao-Li
2014-02-01
Applying a model of bladder epithelial hyperplasia (BEH) caused by melamine-induced bladder calculus (BC), the recovery of BEH after melamine withdrawal was investigated. One experiment, comprising untreated, melamine and recovery groups, was conducted in Balb/c mice. Each group included 4 subgroups. Mice were fed normal-diet in untreated or a melamine-diet in other groups. The melamine-diet was then substituted with normal-diet in recovery group. Both of BC and BEH were observed after 14 and 56 days of melamine-diet. The BC is relatively uniform at the same melamine-diet durations. The BEH was diffuse with many mitotic figures, 4-7 rows of nuclei, and well-defined umbrella/intermediate cells. No marked differences in BEH degree were observed in the two different melamine-diet durations. On 4-42 days after melamine withdrawal, BC was not found, as the progressive regression with complete regression of BEH was observed, along with well-defined ageing/apoptotic cells in the superficial regions of BEH regression tissue. Conclusion, the melamine-induced BEH is relatively uniform, may be self-limiting in rows of nuclei, and can return to normal. Melamine withdrawal duration is critical for the BEH regression. Tissue of the BEH and its regression is ideal for exploring the renewal as well as growth biology of mammalian urothelium. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Ham, Won Sik; Lee, Joo Hyoung; Yu, Ho Song; Choi, Young Deuk
2008-10-01
An analysis of differentially expressed genes (DEGs) between bladder transitional cell carcinoma (TCC) and the surrounding urothelium to help identify what lies behind the mechanism of multifocal tumor development has not yet been performed. We sought to find a new DEG related to the development of bladder TCC. Thirty-nine bladder TCC tissues paired with normal-appearing urothelium tissues obtained from the same patient were used as subjects. Initially, we compared the messenger RNA (mRNA) profiles between normal-appearing urothelium and TCC tissue of 1 patient by using annealing control primer (ACP)-based GeneFishing polymerase chain reaction (PCR) and selective amplification of family members (SAFM) PCR to identify potential DEGs. To validate the results of the ACP data, reverse transcriptase-polymerase chain reaction (RT-PCR) was performed on those of all 39 patients. Among the several DEGs discovered in the ACP data, 1 DEG was chosen as the candidate for the RT-PCR, that is present or markedly upregulated in normal-appearing urothelial tissue compared with TCC tissue. Gene sequence searching revealed that this DEG is chicken ovalbumin upstream promoter-transcription factor I (COUP-TFI). Downregulation of COUP-TFI mRNA expression in TCC tissue compared to normal-appearing urothelium tissue of the same patient, irrespective of tumor stage and grade, was confirmed by RT-PCR in 39 patients. Our results suggest that the loss of COUP-TFI may play a role in the transition from normal epithelium to TCC. Further characterization of the COUP-TFI gene is expected to give us informations about bladder TCC tumorigenesis.
Autophagy-associated proteins BAG3 and p62 in testicular cancer.
Bartsch, Georg; Jennewein, Lukas; Harter, Patrick N; Antonietti, Patrick; Blaheta, Roman A; Kvasnicka, Hans-Michael; Kögel, Donat; Haferkamp, Axel; Mittelbronn, Michel; Mani, Jens
2016-03-01
Testicular germ cell tumors (TGCT) represent the most common malignant tumor group in the age group of 20 to 40-years old men. The potentially curable effect of cytotoxic therapy in TGCT is mediated mainly by the induction of apoptosis. Autophagy has been discussed as an alternative mechanism of cell death but also of treatment resistance in various types of tumors. However, in TGCT the expression and role of core autophagy-associated factors is hitherto unknown. We designed the study in order to evaluate the potential role of autophagy-associated factors in the development and progression of testicular cancers. Eighty-four patients were assessed for autophagy (BAG3, p62) and apoptosis (cleaved caspase 3) markers using immunohistochemistry (IHC) on tissue micro- arrays. In addition, western blot analyses of frozen tissue of seminoma and non-seminoma were performed. Our findings show that BAG3 was significantly upregulated in seminoma as compared to non-seminoma but not to normal testicular tissue. No significant difference of p62 expression was detected between neoplastic and normal tissue or between seminoma and non-seminoma. BAG3 and p62 showed distinct loco‑regional expression patterns in normal and neoplastic human testicular tissues. In contrast to the autophagic markers, apoptosis rate was significantly higher in testicular tumors as compared to normal testicular tissue, but not between different TGCT subtypes. The present study, for the first time, examined the expression of central autophagy proteins BAG3 and p62 in testicular cancer. Our findings imply that in general apoptosis but not autophagy induction differs between normal and neoplastic testis tissue.
Sjö, Nicolai Christian; von Buchwald, Christian; Cassonnet, Patricia; Norrild, Bodil; Prause, Jan Ulrik; Vinding, Troels; Heegaard, Steffen
2007-08-01
To examine conjunctival papilloma and normal conjunctival tissue for the presence of human papillomavirus (HPV). Archival paraffin wax-embedded tissue from 165 conjunctival papillomas and from 20 histological normal conjunctival biopsy specimens was analysed for the presence of HPV by PCR. Specimens considered HPV positive using consensus primers, but with a negative or uncertain PCR result using type-specific HPV probes, were analysed with DNA sequencing. HPV was present in 86 of 106 (81%) beta-globin-positive papillomas. HPV type 6 was positive in 80 cases, HPV type 11 was identified in 5 cases and HPV type 45 was present in a single papilloma. All the 20 normal conjunctival biopsy specimens were beta-globin positive and HPV negative. There is a strong association between HPV and conjunctival papilloma. The study presents the largest material of conjunctival papilloma investigated for HPV and the first investigation of HPV in normal conjunctival tissue. HPV types 6 and 11 are the most common HPV types in conjunctival papilloma. This also is the first report of HPV type 45 in conjunctival papilloma.
The effect of diabetes on the wound healing potential of adipose-tissue derived stem cells.
Kim, Sue Min; Kim, Yun Ho; Jun, Young Joon; Yoo, Gyeol; Rhie, Jong Won
2016-03-01
To investigate whether diabetes mellitus affects the wound-healing-promoting potential of adipose tissue-derived stem cells, we designed a wound-healing model using diabetic mice. We compared the degree of wound healing between wounds treated with normal adipose tissue-derived stem cells and wounds treated with diabetic adipose tissue-derived stem cells. We evaluated the wound-healing rate, the epithelial tongue distance, the area of granulation tissue, the number of capillary and the number of Ki-67-stained cells. The wound-healing rate was significantly higher in the normal adipose tissue-derived stem cells group than in the diabetic adipose tissue-derived stem cells group; it was also significantly higher in the normal adipose tissue-derived stem cells group than in the control group. Although the diabetic adipose tissue-derived stem cells group showed a better wound-healing rate than the control group, the difference was not statistically significant. Similar trends were observed for the other parameters examined: re-epithelisation and keratinocyte proliferation; granulation tissue formation; and dermal regeneration. However, with regard to the number of capillary, diabetic adipose tissue-derived stem cells retained their ability to promote neovasculisation and angiogenesis. These results reflect the general impairment of the therapeutic potential of diabetic adipose tissue-derived stem cells in vivo. © 2016 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
Magnetoacoustic imaging of human liver tumor with magnetic induction
NASA Astrophysics Data System (ADS)
Hu, Gang; Cressman, Erik; He, Bin
2011-01-01
Magnetoacoustic tomography with magnetic induction (MAT-MI) is an imaging technique under development to achieve imaging of electrical impedance contrast in biological tissues with spatial resolution close to ultrasound imaging. However, previously reported MAT-MI experimental results are obtained either from low salinity gel phantoms, or from normal animal tissue samples. In this study, we report the experimental study on the performance of the MAT-MI imaging method for imaging in vitro human liver tumor tissue. The present promising experimental results suggest the feasibility of MAT-MI to image electrical impedance contrast between the cancerous tissue and its surrounding normal tissues.
Development of a Novel Tissue Specific Aromatase Activity Regulation Therapeutic Method
2009-09-01
Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Estrogen is essential for normal growth and development of the female ...the ovaries and other tissues of the body using an enzyme called aromatase. Once women have reached menopause, the ovaries no longer produce estrogen...Introduction Estrogen is essential for normal growth and development of the female reproductive system, including breast tissue, and lifetime
Field, James B.; Larsen, P. Reed; Yamashita, Kamejiro; Mashiter, Keith; Dekker, Andrew
1973-01-01
Benign and malignant nodules in human thyroid glands, which did not concentrate iodide in vivo, were also unable to accumulate iodide in vitro. The mean thyroid-to-medium ratio (T/M) in seven benign nodules was 0.8±0.2 compared with 7±2 in adjacent normal thyroid tissue. In four malignant thyroid nodules, the mean T/M was 0.5±0.1 compared with 11±4 in adjacent normal thyroid. Despite the inability of such nodules to concentrate iodide, iodide organification was present but was only one-half to one-third as active as in surrounding normal thyroid. Thyroid-stimulating hormone (TSH) increased iodide organification equally in both benign nodules and normal thyroid although it had no effect in three of the four malignant lesions. The reduction in organification is probably related to the absence of iodide transport, since incubation of normal thyroid slices with perchlorate caused similar diminution in iodide incorporation but no change in the response to TSH. Monoiodotyrosine (MIT) and di-iodotyrosine (DIT) accounted for most of the organic iodide in both the nodules and normal tissue. The MIT/DIT ratio was similar in normal and nodule tissue. The normal tissue contained much more inorganic iodide than the nodules, consistent with the absence of the iodide trap in the latter tissue. The thyroxine content of normal thyroid was 149±17 μg/g wet wt and 18±4 μg/g wet wt in the nodules. The transport defect in the nodules was not associated with any reduction in total, Na+-K+- or Mg++-activated ATPase activities or the concentration of ATP. Basal adenylate cyclase was higher in nodules than normal tissue. Although there was no difference between benign and malignant nodules, the response of adenylate cyclase to TSH was greater in the benign lesions. These studies demonstrate that nonfunctioning thyroid nodules, both benign and malignant, have a specific defect in iodide transport that accounts for their failure to accumulate radioactive iodide in vivo. In benign nodules, iodide organification was increased by TSH while no such effect was found in three of four malignant lesions, suggesting additional biochemical defects in thyroid carcinomas. PMID:4353998
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silaev, M.P.
1962-01-01
Normal female rabbits, 2.5 to 3.0 kilograms in weight, were given a Co/ sup 60/ gamma dose of 800 r. Tissue samples of the Musculus longissimus dorsi were analyzed for glycogen content by the anthranone method, for monosacharrides, inorganic phosphate, adenosine phosphate, and lactic acid. The maximum drop in glycogen content was found to occur 24 hours after the irradiation. A whole-body dose of 800 r resulted in a significant drop in total carbohydrate content (both monosacharride content and glycogen content). The content of adenosinephosphate remained essentially unchanged. Irradiated muscle tissue, stored at --5 to +3 deg C decomposed moremore » rapidly than normal tissue. The content of glycogen was lower, and the free phosphate content was higher than in normal tissue. The adenosinephosphate decomposed more readily in the irradiated tissue. These differences in autolytic processes may be due to shifts in fermentative activity as a result of irradiation. (TTT).« less
Quantitative analysis of rectal cancer by spectral domain optical coherence tomography
NASA Astrophysics Data System (ADS)
Zhang, Q. Q.; Wu, X. J.; Tang, T.; Zhu, S. W.; Yao, Q.; Gao, Bruce Z.; Yuan, X. C.
2012-08-01
To quantify OCT images of rectal tissue for clinic diagnosis, the scattering coefficient of the tissue is extracted by curve fitting the OCT signals to a confocal single model. A total of 1000 measurements (half and half of normal and malignant tissues) were obtained from 16 recta. The normal rectal tissue has a larger scattering coefficient ranging from 1.09 to 5.41 mm-1 with a mean value of 2.29 mm-1 (std:±0.32), while the malignant group shows lower scattering property and the values ranging from 0.25 to 2.69 mm-1 with a mean value of 1.41 mm-1 (std:±0.18). The peri-cancer of recta has also been investigated to distinguish the difference between normal and malignant rectal tissue. The results demonstrate that the quantitative analysis of the rectal tissue can be used as a promising diagnostic criterion of early rectal cancer, which has great value for clinical medical applications.
Direct tissue oxygen monitoring by in vivo photoacoustic lifetime imaging (PALI)
NASA Astrophysics Data System (ADS)
Shao, Qi; Morgounova, Ekaterina; Ashkenazi, Shai
2014-03-01
Tissue oxygen plays a critical role in maintaining tissue viability and in various diseases, including response to therapy. Images of oxygen distribution provide the history of tissue hypoxia and evidence of oxygen availability in the circulatory system. Currently available methods of direct measuring or imaging tissue oxygen all have significant limitations. Previously, we have reported a non-invasive in vivo imaging modality based on photoacoustic lifetime. The technique maps the excited triplet state of oxygen-sensitive dye, thus reflects the spatial and temporal distribution of tissue oxygen. We have applied PALI on tumor hypoxia in small animals, and the hypoxic region imaged by PALI is consistent with the site of the tumor imaged by ultrasound. Here, we present two studies of applying PALI to monitor changes of tissue oxygen by modulations. The first study involves an acute ischemia model using a thin thread tied around the hind limb of a normal mouse to reduce the blood flow. PALI images were acquired before, during, and after the restriction. The drop of muscle pO2 and recovery from hypoxia due to reperfusion were observed by PALI tracking the same region. The second study modulates tissue oxygen by controlling the percentage of oxygen the mouse inhales. We demonstrate that PALI is able to reflect the change of oxygen level with respect to both hyperbaric and hypobaric conditions. We expect this technique to be very attractive for a range of clinical applications in which tissue oxygen mapping would improve therapy decision making and treatment planning.
Lee, Hojung; Ro, Jae Y
2015-01-01
Glycogen synthase kinase 3β (GSK3β) and phosphorylated GSK3β at Ser9 (pS9GSK3β) are crucial in cellular proliferation and metabolism. GSK3β and pS9GSK3β are deregulated in many diseases including tumors. Data on altered expression of GSK3β and pS9GSK3β are mainly limited to tumor tissues, thus the expression of GSK3β and pS9GSK3β in normal human tissue has been largely unknown. Thus, we examined the immunohistochemical localization of GSK3β and pS9GSK3β in human fetal and adult tissues, and also compared the expression pattern of GSK3β and pS9GSK3β with that of the CK7 and CK20. We found GSK3β expression in neurons of brain, myenteric plexus in gastrointestinal tract, squamous epithelium of skin, and mammary gland. The expression of pS9GSK3β was restricted to the epithelial cells of breast and pancreaticobiliary duct, distal nephron of kidney, gastrointestinal tract, fallopian tube, epididymis, secretory cell of prostatic gland, and umbrella cell of urinary tract. The staining pattern of pS9GSK3β and CK7 was overlapped in most organs except for gastrointestinal tract where CK7 was negative and CK20 was positive. Our results show that the expression of GSK3β may be associated with differentiation of ectodermal derived tissues and pS9GSK3β with that of epithelial cells of endodermal derived tissues in human. In addition, the expression of pS9GSK3β in the selective epithelial cells may indicate its association with secretory or barrier function of specific cells and may serve as another immunohistochemical marker for epithelial cells.
Tribbles in normal and malignant haematopoiesis.
Stein, Sarah J; Mack, Ethan A; Rome, Kelly S; Pear, Warren S
2015-10-01
The tribbles protein family, an evolutionarily conserved group of pseudokinases, have been shown to regulate multiple cellular events including those involved in normal and malignant haematopoiesis. The three mammalian Tribbles homologues, Trib1, Trib2 and Trib3 are characterized by conserved motifs, including a pseudokinase domain and a C-terminal E3 ligase-binding domain. In this review, we focus on the role of Trib (mammalian Tribbles homologues) proteins in mammalian haematopoiesis and leukaemia. The Trib proteins show divergent expression in haematopoietic cells, probably indicating cell-specific functions. The roles of the Trib proteins in oncogenesis are also varied and appear to be tissue-specific. Finally, we discuss the potential mechanisms by which the Trib proteins preferentially regulate these processes in multiple cell types. © 2015 Authors; published by Portland Press Limited.
Reversal of the multidrug resistance by drug combination using multifunctional liposomes
NASA Astrophysics Data System (ADS)
Patel, Niravkumar R.
One of the major obstacles to the success of cancer chemotherapy is the multi-drug resistance (MDR) that results due mainly to the over-expression of drug efflux transporter pumps such as P-glycoprotein (P-gp). Highly efficacious third generation P-gp inhibitors, like tariquidar, have shown promising results against MDR. However, P-gp is also expressed in normal tissues like the blood-brain barrier, gastrointestinal tract, liver and kidney. It is therefore important to limit the exposure of P-gp inhibitors to normal tissues and increase their co-localization with anticancer agents in tumor tissues to maximize the efficacy of a P-gp inhibitor. To minimize non-specific binding and increase its delivery to tumor tissues, liposomes, self-assembling phospholipid vesicles, were chosen as a drug delivery vehicle. The liposome has been identified as a system capable of carrying molecules with diverse physicochemical properties. It can also alter the pharmacokinetic profile of loaded molecules which is a concern with both tariquidar and paclitaxel. Liposomes can easily be surface-modified rendering them cell-specific as well as organelle-specific. The main objective of present study was to develop an efficient liposomal delivery system which would deliver therapeutic molecules of interest to tumor tissues and avoid interaction with normal tissues. In this study, the co-delivery of tariquidar and paclitaxel into tumor cells to reverse the MDR using long-circulating cationic liposomes was investigated. SKOV-3TR, the resistant variant of SKOV-3 and MCF-7/ADR, the resistant variant of MCF-7 were used as model cell lines. Uniform liposomal formulations were generated with high incorporation efficiency and no apparent decrease in tariquidar potency towards P-gp. Tariquidar- and paclitaxel- co-loaded long-circulating liposomes showed significant re-sensitization of SKOV-3TR and MCF-7/ADR for paclitaxel in vitro. Further modification of these liposomes with antitumor 2C5 resulted in increased cell association with these cancer cells. The 2C5-modified immunoliposomes, along with unmodified liposomes co-loaded with tariquidar and paclitaxel were tested for their antitumor effects in vivo. Significant tumor growth inhibition occurred with combination therapy in resistant as well as sensitive cell lines. However, immunoliposomes failed to increase antitumor effect in vivo as spontaneous accumulation of liposomes at added dose may have saturated tumor accumulation. We were also interested in evaluating physiological factors responsible for the MDR. Spheroids grown in vitro provided platform to demonstrate many characteristics of tumor tissues such as cell-cell interaction, a hypoxic core, low pH environment at core and a relevant genetic profile. In this study, spheroids were utilized to evaluate paclitaxel cytotoxity and to evaluate effects of 2C5 modification on cellular uptake. Lack of cytotoxicity was observed in spheroids treated with paclitaxel alone as well as in combination with tariquidar. Likely explanations could be the presence of cells in diverse cell cycle stages and limited penetration. Also, increased uptake was observed in spheroids when treated with 2C5-modified Rh-labeled liposomes compared to UPC10-modified Rh-labeled liposomes. Such results have clearly demonstrated the importance of using this novel research model in cancer research.
Detection of nasopharyngeal cancer using confocal Raman spectroscopy and genetic algorithm technique
NASA Astrophysics Data System (ADS)
Li, Shao-Xin; Chen, Qiu-Yan; Zhang, Yan-Jiao; Liu, Zhi-Ming; Xiong, Hong-Lian; Guo, Zhou-Yi; Mai, Hai-Qiang; Liu, Song-Hao
2012-12-01
Raman spectroscopy (RS) and a genetic algorithm (GA) were applied to distinguish nasopharyngeal cancer (NPC) from normal nasopharyngeal tissue. A total of 225 Raman spectra are acquired from 120 tissue sites of 63 nasopharyngeal patients, 56 Raman spectra from normal tissue and 169 Raman spectra from NPC tissue. The GA integrated with linear discriminant analysis (LDA) is developed to differentiate NPC and normal tissue according to spectral variables in the selected regions of 792-805, 867-880, 996-1009, 1086-1099, 1288-1304, 1663-1670, and 1742-1752 cm-1 related to proteins, nucleic acids and lipids of tissue. The GA-LDA algorithms with the leave-one-out cross-validation method provide a sensitivity of 69.2% and specificity of 100%. The results are better than that of principal component analysis which is applied to the same Raman dataset of nasopharyngeal tissue with a sensitivity of 63.3% and specificity of 94.6%. This demonstrates that Raman spectroscopy associated with GA-LDA diagnostic algorithm has enormous potential to detect and diagnose nasopharyngeal cancer.
Gharekhan, Anita H; Arora, Siddharth; Oza, Ashok N; Sureshkumar, Mundan B; Pradhan, Asima; Panigrahi, Prasanta K
2011-08-01
Using the multiresolution ability of wavelets and effectiveness of singular value decomposition (SVD) to identify statistically robust parameters, we find a number of local and global features, capturing spectral correlations in the co- and cross-polarized channels, at different scales (of human breast tissues). The copolarized component, being sensitive to intrinsic fluorescence, shows different behavior for normal, benign, and cancerous tissues, in the emission domain of known fluorophores, whereas the perpendicular component, being more prone to the diffusive effect of scattering, points out differences in the Kernel-Smoother density estimate employed to the principal components, between malignant, normal, and benign tissues. The eigenvectors, corresponding to the dominant eigenvalues of the correlation matrix in SVD, also exhibit significant differences between the three tissue types, which clearly reflects the differences in the spectral correlation behavior. Interestingly, the most significant distinguishing feature manifests in the perpendicular component, corresponding to porphyrin emission range in the cancerous tissue. The fact that perpendicular component is strongly influenced by depolarization, and porphyrin emissions in cancerous tissue has been found to be strongly depolarized, may be the possible cause of the above observation.
Hossler, Fred E.; Douglas, John E.
2001-05-01
Vascular corrosion casting has been used for about 40 years to produce replicas of normal and abnormal vasculature and microvasculature of various tissues and organs that could be viewed at the ultrastructural level. In combination with scanning electron microscopy (SEM), the primary application of corrosion casting has been to describe the morphology and anatomical distribution of blood vessels in these tissues. However, such replicas should also contain quantitative information about that vasculature. This report summarizes some simple quantitative applications of vascular corrosion casting. Casts were prepared by infusing Mercox resin or diluted Mercox resin into the vasculature. Surrounding tissues were removed with KOH, hot water, and formic acid, and the resulting dried casts were observed with routine SEM. The orientation, size, and frequency of vascular endothelial cells were determined from endothelial nuclear imprints on various cast surfaces. Vascular volumes of heart, lung, and avian salt gland were calculated using tissue and resin densities, and weights. Changes in vascular volume and functional capillary density in an experimentally induced emphysema model were estimated from confocal images of casts. Clearly, corrosion casts lend themselves to quantitative analysis. However, because blood vessels differ in their compliances, in their responses to the toxicity of casting resins, and in their response to varying conditions of corrosion casting procedures, it is prudent to use care in interpreting this quantitative data. Some of the applications and limitations of quantitative methodology with corrosion casts are reviewed here.
Lactose digestion by human jejunal biopsies: the relationship between hydrolysis and absorption.
Dawson, D J; Lobley, R W; Burrows, P C; Miller, V; Holmes, R
1986-01-01
The relationship between lactose hydrolysis and absorption of released glucose was investigated by determining the kinetics of lactose digestion by jejunal biopsies incubated in vitro. Lactase activity in intact biopsies correlated with conventional assay of tissue homogenates (r = 0.85, p less than 0.001), and glucose uptake from 28 mM lactose was directly proportional to lactase activity (r = 0.95, p less than 0.001) in 21 subjects with normal lactase levels, six with hypolactasia (primary or secondary to coeliac disease) and two with lactose intolerance but normal lactase activity. Kinetic analysis at 0.56-56 mM lactose in five normal subjects showed saturable kinetics for hydrolysis (app Km = 33.9 +/- 2.2 mM; app Vmax = 26.5 +/- 1.1 nmol/min/mg dry weight) but glucose uptake could be fitted to a model either of saturable uptake (app Kt = 47.2 +/- 0.3 mM; app Jmax = 14.1 +/- 0.2 nmol/min/mg) or saturable uptake plus a linear component (app Kt = 21.3 +/- 1.15; app Jmax = 4.59 +/- 0.12; app Kd = 0.093 +/- 0.010 nmol/min/mg/mM). The proportion of glucose taken into the tissue did not significantly exceed 50% of the total released at any lactose concentration suggesting the lack of an efficient capture mechanism for the released glucose. The results suggest that lactose hydrolysis is the rate limiting step in the overall absorption of glucose from lactose in vitro, and that the relationship between hydrolysis and absorption is the same in normal subjects and in hypolactasic subjects. PMID:3084346
Gu, Y R; Li, M Z; Zhang, K; Chen, L; Jiang, A A; Wang, J Y; Li, X W
2011-08-01
To normalize a set of quantitative real-time PCR (q-PCR) data, it is essential to determine an optimal number/set of housekeeping genes, as the abundance of housekeeping genes can vary across tissues or cells during different developmental stages, or even under certain environmental conditions. In this study, of the 20 commonly used endogenous control genes, 13, 18 and 17 genes exhibited credible stability in 56 different tissues, 10 types of adipose tissue and five types of muscle tissue, respectively. Our analysis clearly showed that three optimal housekeeping genes are adequate for an accurate normalization, which correlated well with the theoretical optimal number (r ≥ 0.94). In terms of economical and experimental feasibility, we recommend the use of the three most stable housekeeping genes for calculating the normalization factor. Based on our results, the three most stable housekeeping genes in all analysed samples (TOP2B, HSPCB and YWHAZ) are recommended for accurate normalization of q-PCR data. We also suggest that two different sets of housekeeping genes are appropriate for 10 types of adipose tissue (the HSPCB, ALDOA and GAPDH genes) and five types of muscle tissue (the TOP2B, HSPCB and YWHAZ genes), respectively. Our report will serve as a valuable reference for other studies aimed at measuring tissue-specific mRNA abundance in porcine samples. © 2011 Blackwell Verlag GmbH.
Analysis of molecular pathways in pancreatic ductal adenocarcinomas with a bioinformatics approach.
Wang, Yan; Li, Yan
2015-01-01
Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer death worldwide. Our study aimed to reveal molecular mechanisms. Microarray data of GSE15471 (including 39 matching pairs of pancreatic tumor tissues and patient-matched normal tissues) was downloaded from Gene Expression Omnibus (GEO) database. We identified differentially expressed genes (DEGs) in PDAC tissues compared with normal tissues by limma package in R language. Then GO and KEGG pathway enrichment analyses were conducted with online DAVID. In addition, principal component analysis was performed and a protein-protein interaction network was constructed to study relationships between the DEGs through database STRING. A total of 532 DEGs were identified in the 38 PDAC tissues compared with 33 normal tissues. The results of principal component analysis of the top 20 DEGs could differentiate the PDAC tissues from normal tissues directly. In the PPI network, 8 of the 20 DEGs were all key genes of the collagen family. Additionally, FN1 (fibronectin 1) was also a hub node in the network. The genes of the collagen family as well as FN1 were significantly enriched in complement and coagulation cascades, ECM-receptor interaction and focal adhesion pathways. Our results suggest that genes of collagen family and FN1 may play an important role in PDAC progression. Meanwhile, these DEGs and enriched pathways, such as complement and coagulation cascades, ECM-receptor interaction and focal adhesion may be important molecular mechanisms involved in the development and progression of PDAC.
NASA Astrophysics Data System (ADS)
Jabbour, Joey M.; Cheng, Shuna; Malik, Bilal H.; Cuenca, Rodrigo; Jo, Javier A.; Wright, John; Cheng, Yi-Shing Lisa; Maitland, Kristen C.
2013-04-01
Optical imaging techniques using a variety of contrast mechanisms are under evaluation for early detection of epithelial precancer; however, tradeoffs in field of view (FOV) and resolution may limit their application. Therefore, we present a multiscale multimodal optical imaging system combining macroscopic biochemical imaging of fluorescence lifetime imaging (FLIM) with subcellular morphologic imaging of reflectance confocal microscopy (RCM). The FLIM module images a 16×16 mm2 tissue area with 62.5 μm lateral and 320 ps temporal resolution to guide cellular imaging of suspicious regions. Subsequently, coregistered RCM images are acquired at 7 Hz with 400 μm diameter FOV, <1 μm lateral and 3.5 μm axial resolution. FLIM-RCM imaging was performed on a tissue phantom, normal porcine buccal mucosa, and a hamster cheek pouch model of oral carcinogenesis. While FLIM is sensitive to biochemical and macroscopic architectural changes in tissue, RCM provides images of cell nuclear morphology, all key indicators of precancer progression.
Komar, Carolyn M
2005-01-01
The peroxisome proliferator-activated receptors (PPARs) are a family of transcription factors involved in varied and diverse processes such as steroidogenesis, angiogenesis, tissue remodeling, cell cycle, apoptosis, and lipid metabolism. These processes are critical for normal ovarian function, and all three PPAR family members – alpha, delta, and gamma, are expressed in the ovary. Most notably, the expression of PPARgamma is limited primarily to granulosa cells in developing follicles, and is regulated by luteinizing hormone (LH). Although much has been learned about the PPARs since their initial discovery, very little is known regarding their function in ovarian tissue. This review highlights what is known about the roles of PPARs in ovarian cells, and discusses potential mechanisms by which PPARs could influence ovarian function. Because PPARs are activated by drugs currently in clinical use (fibrates and thiazolidinediones), it is important to understand their role in the ovary, and how manipulation of their activity may impact ovarian physiology as well as ovarian pathology. PMID:16131403
MET amplification, expression, and exon 14 mutations in colorectal adenocarcinoma.
Zhang, Meng; Li, Guichao; Sun, Xiangjie; Ni, Shujuan; Tan, Cong; Xu, Midie; Huang, Dan; Ren, Fei; Li, Dawei; Wei, Ping; Du, Xiang
2018-04-08
MET amplification, expression, and splice mutations at exon 14 result in dysregulation of the MET signaling pathway. The aim of this study was to identify the relationship between MET amplification, protein or mRNA expression, and mutations in colorectal cancer (CRC). MET immunohistochemistry (IHC) was used for MET protein expression analysis and fluorescence in situ hybridization (FISH) was used for MET amplification detection. Both analyses were performed in tissue microarrays (TMA) containing 294 of colorectal adenocarcinoma tissue samples and 131 samples of adjacent normal epithelial tissue. MET mRNA expression was examined by real-time quantitative polymerase chain reaction (qRT-PCR) in 72 fresh colorectal adenocarcinoma tissue samples and adjacent normal colon tissue. PCR sequencing was performed to screen for MET exon 14 splice mutations in 59 fresh CRC tissue samples. Our results showed that MET protein expression was higher in colorectal tumor tissue than in adjacent normal intestinal epithelium. Positive MET protein expression was associated with significantly poorer overall survival (OS) and disease-free survival (DFS). Multivariate analysis revealed that positive MET protein expression was an independent risk factor for DFS, but not for OS. MET mRNA expression was upregulated in tumor tissues compared with the adjacent normal tissues. The incidence of MET amplification was 4.4%. None of the patients was positive for MET mutation. Collectively, MET was overexpressed in colorectal adenocarcinoma, and its positive protein expression predicted a poorer outcome in CRC patients. Furthermore, according to our results, MET amplification and 14 exon mutation are extremely rare events in colorectal adenocarcinoma. Copyright © 2018. Published by Elsevier Inc.
Han, Wei; Wang, Zhen-jun; Zhao, Bo; Yang, Xin-qing; Wang, Dong; Wang, Jian-pin; Tang, Xiu-ying; Zhao, Fa; Hung, Yan-ting
2005-01-01
To investigate the pathological variations in internal hemorrhoid and evaluate the expression of nitric- oxide synthase(NOS),vascular endothelial growth factor(VEGF),matrix metalloproteinase- 2(MMP2) and MMP9. Normal anal cushion and internal hemorrhoids tissue samples were obtained from 24 patients with iii degree hemorrhoids after procedure for prolapse and hemorrhoids(PPH) procedure. The expression of NOS, VEGF, MMP2, MMP9 and CD34 were detected by immunohistochemical staining; the microvessel density (MVD) was counted by anti- CD34 antibody; the elastic fibers were detected by orcein staining. There were statistically significant differences in the expression of MVD, VEGF, MMP9 between internal hemorrhoid tissue and normal anal cushions(P< 0.05). iNOS was significantly increased in hemorrhoid tissue, but no significant difference between normal anal cushions and hemorrhoid tissue. Morphological abnormalities such as breaking, distortion, mortality, hyaline degeneration were found in elastic fibers of internal hemorrhoid tissue, but not in normal anal cushions. Angiogenesis is evident in hemorrhoid tissue, suggesting the possible mechanism in the pathogenesis of hemorrhoids. The direct degeneration effect of MMP9 on supporting structure elastic fibers in anal cushion is another important mechanism. The high expression of iNOS suggests the inflammatory factors involve in the pathogenesis of hemorrhoids, and NO may be involve in pathological effect on hemorrhoids.
The expression of Egfl7 in human normal tissues and epithelial tumors.
Fan, Chun; Yang, Lian-Yue; Wu, Fan; Tao, Yi-Ming; Liu, Lin-Sen; Zhang, Jin-Fan; He, Ya-Ning; Tang, Li-Li; Chen, Guo-Dong; Guo, Lei
2013-04-23
To investigate the expression of Egfl7 in normal adult human tissues and human epithelial tumors. RT-PCR and Western blot were employed to detect Egfl7 expression in normal adult human tissues and 10 human epithelial tumors including hepatocellular carcinoma (HCC), lung cancer, breast cancer, prostate cancer, colorectal cancer, gastric cancer, esophageal cancer, malignant glioma, ovarian cancer and renal cancer. Immunohistochemistry and cytoimmunofluorescence were subsequently used to determine the localization of Egfl7 in human epithelial tumor tissues and cell lines. ELISA was also carried out to examine the serum Egfl7 levels in cancer patients. In addition, correlations between Egfl7 expression and clinicopathological features as well as prognosis of HCC and breast cancer were also analyzed on the basis of immunohistochemistry results. Egfl7 was differentially expressed in 19 adult human normal tissues and was overexpressed in all 10 human epithelial tumor tissues. The serum Egfl7 level was also significantly elevated in cancer patients. The increased Egfl7 expression in HCC correlated with vein invasion, absence of capsule formation, multiple tumor nodes and poor prognosis. Similarly, upregulation of Egfl7 in breast cancer correlated strongly with TNM stage, lymphatic metastasis, estrogen receptor positivity, Her2 positivity and poor prognosis. Egfl7 is significantly upregulated in human epithelial tumor tissues, suggesting Egfl7 to be a potential biomarker for human epithelial tumors, especially HCC and breast cancer.
Yang, Ting; Chen, Fei; Xu, Feifei; Wang, Fengliang; Xu, Qingqing; Chen, Yun
2014-09-25
P-glycoprotein (P-gp) can efflux drugs from cancer cells, and its overexpression is commonly associated with multi-drug resistance (MDR). Thus, the accurate quantification of P-gp would help predict the response to chemotherapy and for prognosis of breast cancer patients. An advanced liquid chromatography-tandem mass spectrometry (LC/MS/MS)-based targeted proteomics assay was developed and validated for monitoring P-gp levels in breast tissue. Tryptic peptide 368IIDNKPSIDSYSK380 was selected as a surrogate analyte for quantification, and immuno-depleted tissue extract was used as a surrogate matrix. Matched pairs of breast tissue samples from 60 patients who were suspected to have drug resistance were subject to analysis. The levels of P-gp were quantified. Using data from normal tissue, we suggested a P-gp reference interval. The experimental values of tumor tissue samples were compared with those obtained from Western blotting and immunohistochemistry (IHC). The result indicated that the targeted proteomics approach was comparable to IHC but provided a lower limit of quantification (LOQ) and could afford more reliable results at low concentrations than the other two methods. LC/MS/MS-based targeted proteomics may allow the quantification of P-gp in breast tissue in a more accurate manner. Copyright © 2014 Elsevier B.V. All rights reserved.
The thorny path linking cellular senescence to organismalaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patil, Christopher K.; Mian, Saira; Campisi, Judith
2005-08-09
Half a century is fast approaching since Hayflick and colleagues formally described the limited ability of normal human cells to proliferate in culture (Hayflick and Moorhead, 1961). This finding--that normal somatic cells, in contrast to cancer cells, cannot divide indefinitely--challenged the prevailing idea that cells from mortal multicellular organisms were intrinsically ''immortal'' (Carrell, 1912). It also spawned two hypotheses, essential elements of which persist today. The first held that the restricted proliferation of normal cells, now termed cellular senescence, suppresses cancer (Hayflick, 1965; Sager, 1991; Campisi, 2001). The second hypothesis, as explained in the article by Lorenzini et al., suggestedmore » that the limited proliferation of cells in culture recapitulated aspects of organismal aging (Hayflick, 1965; Martin, 1993). How well have these hypotheses weathered the ensuing decades? Before answering this question, we first consider current insights into the causes and consequences of cellular senescence. Like Lorenzini et al., we limit our discussion to mammals. We also focus on fibroblasts, the cell type studied by Lorenzini et al., but consider other types as well. We suggest that replicative capacity in culture is not a straightforward assessment, and that it correlates poorly with both longevity and body mass. We speculate this is due to the malleable and variable nature of replicative capacity, which renders it an indirect metric of qualitative and quantitative differences among cells to undergo senescence, a response that directly alters cellular phenotype and might indirectly alter tissue structure and function.« less
Nagel, Thomas; Kelly, Daniel J
2013-04-01
The biomechanical functionality of articular cartilage is derived from both its biochemical composition and the architecture of the collagen network. Failure to replicate this normal Benninghoff architecture in regenerating articular cartilage may in turn predispose the tissue to failure. In this article, the influence of the maturity (or functionality) of a tissue-engineered construct at the time of implantation into a tibial chondral defect on the likelihood of recapitulating a normal Benninghoff architecture was investigated using a computational model featuring a collagen remodeling algorithm. Such a normal tissue architecture was predicted to form in the intact tibial plateau due to the interplay between the depth-dependent extracellular matrix properties, foremost swelling pressures, and external mechanical loading. In the presence of even small empty defects in the articular surface, the collagen architecture in the surrounding cartilage was predicted to deviate significantly from the native state, indicating a possible predisposition for osteoarthritic changes. These negative alterations were alleviated by the implantation of tissue-engineered cartilage, where a mature implant was predicted to result in the formation of a more native-like collagen architecture than immature implants. The results of this study highlight the importance of cartilage graft functionality to maintain and/or re-establish joint function and suggest that engineering a tissue with a native depth-dependent composition may facilitate the establishment of a normal Benninghoff collagen architecture after implantation into load-bearing defects.
Cheng, Jun; Song, Xuekun; Ao, Lu; Chen, Rou; Chi, Meirong; Guo, You; Zhang, Jiahui; Li, Hongdong; Zhao, Wenyuan; Guo, Zheng; Wang, Xianlong
2018-01-01
Background & Aims : Primary tumors of colorectal carcinoma (CRC) with liver metastasis might gain some liver-specific characteristics to adapt the liver micro-environment. This study aims to reveal potential liver-like transcriptional characteristics associated with the liver metastasis in primary colorectal carcinoma. Methods: Among the genes up-regulated in normal liver tissues versus normal colorectal tissues, we identified "liver-specific" genes whose expression levels ranked among the bottom 10% ("unexpressed") of all measured genes in both normal colorectal tissues and primary colorectal tumors without metastasis. These liver-specific genes were investigated for their expressions in both the primary tumors and the corresponding liver metastases of seven primary CRC patients with liver metastasis using microdissected samples. Results: Among the 3958 genes detected to be up-regulated in normal liver tissues versus normal colorectal tissues, we identified 12 liver-specific genes and found two of them, ANGPTL3 and CFHR5 , were unexpressed in microdissected primary colorectal tumors without metastasis but expressed in both microdissected liver metastases and corresponding primary colorectal tumors (Fisher's exact test, P < 0.05). Genes co-expressed with ANGPTL3 and CFHR5 were significantly enriched in metabolism pathways characterizing liver tissues, including "starch and sucrose metabolism" and "drug metabolism-cytochrome P450". Conclusions: For primary CRC with liver metastasis, both the liver metastases and corresponding primary colorectal tumors may express some liver-specific genes which may help the tumor cells adapt the liver micro-environment.
DNA methylation markers for diagnosis and prognosis of common cancers
Hao, Xiaoke; Luo, Huiyan; Krawczyk, Michal; Wei, Wei; Wang, Wenqiu; Wang, Juan; Flagg, Ken; Hou, Jiayi; Zhang, Heng; Yi, Shaohua; Jafari, Maryam; Lin, Danni; Chung, Christopher; Caughey, Bennett A.; Li, Gen; Dhar, Debanjan; Shi, William; Zheng, Lianghong; Hou, Rui; Zhu, Jie; Zhao, Liang; Fu, Xin; Zhang, Edward; Zhang, Charlotte; Zhu, Jian-Kang; Karin, Michael; Xu, Rui-Hua; Zhang, Kang
2017-01-01
The ability to identify a specific cancer using minimally invasive biopsy holds great promise for improving the diagnosis, treatment selection, and prediction of prognosis in cancer. Using whole-genome methylation data from The Cancer Genome Atlas (TCGA) and machine learning methods, we evaluated the utility of DNA methylation for differentiating tumor tissue and normal tissue for four common cancers (breast, colon, liver, and lung). We identified cancer markers in a training cohort of 1,619 tumor samples and 173 matched adjacent normal tissue samples. We replicated our findings in a separate TCGA cohort of 791 tumor samples and 93 matched adjacent normal tissue samples, as well as an independent Chinese cohort of 394 tumor samples and 324 matched adjacent normal tissue samples. The DNA methylation analysis could predict cancer versus normal tissue with more than 95% accuracy in these three cohorts, demonstrating accuracy comparable to typical diagnostic methods. This analysis also correctly identified 29 of 30 colorectal cancer metastases to the liver and 32 of 34 colorectal cancer metastases to the lung. We also found that methylation patterns can predict prognosis and survival. We correlated differential methylation of CpG sites predictive of cancer with expression of associated genes known to be important in cancer biology, showing decreased expression with increased methylation, as expected. We verified gene expression profiles in a mouse model of hepatocellular carcinoma. Taken together, these findings demonstrate the utility of methylation biomarkers for the molecular characterization of cancer, with implications for diagnosis and prognosis. PMID:28652331
Orntoft, T F; Greenwell, P; Clausen, H; Watkins, W M
1991-01-01
Blood group antigen expression in the distal human colon is related to the development of the organ and is modified by malignant transformation. To elucidate the biochemical basis for these changes, we have (a) analysed the activity of glycosyltransferases coded for by the H, Se, Le, X, and A genes, in tissue biopsy specimens from normal and malignant proximal and distal human colon; (b) characterised the glycosphingolipids expressed in the various regions of normal and malignant colon by immunostaining of high performance thin layer chromatography plates; and (c) located the antigens on tissue sections from the same subjects by immunohistochemistry. In both secretors and non-secretors we found a significantly higher activity of alpha-2-L-fucosyltransferases in carcinomatous rectal tissue than in tissue from normal subjects, whereas the other transferase activities studied showed no significant differences. The acceptor substrate specificity suggested that both the Se and the H gene dependent alpha-2-L-fucosyltransferases are increased in carcinomas. In non-malignant tissue the only enzyme which showed appreciably higher activity in caecum than in rectum was alpha-2-L-fucosyltransferase. Immunochemistry and immunohistochemistry showed alpha-2-L-fucosylated structures in normal caecum from secretors and in tumour tissue from both secretors and non-secretors. We conclude that the alpha-2-L-fucosyltransferases control the expression of ABH, and Lewis(b) structures in normal and malignant colon. Images Figure 4 PMID:1826491
Dihydrotestosterone in prostatic hypertrophy
Siiteri, Pentti K.; Wilson, Jean D.
1970-01-01
To explore the relation between androgens and prostatic hypertrophy in man, the concentrations of testosterone, dihydrotestosterone, and androstenedione and the rate of conversion of testosterone to dihydrotestosterone have been measured in normal and hypertrophic prostate tissue. First, a double isotope derivative technique was adapted for the measurement of tissue androgen content in 15 normal and 10 hypertrophic prostates. Although there was no significant difference in the content of androstenedione and testosterone between the two types of tissue, the content of dihydrotestosterone was significantly greater in the hypertrophic tissue (0.60 ±0.10 μg/100 g) than in the normal glands (0.13 ±0.05 μg/100 g). Second, a regional study was performed in three normal prostates and four glands with early hypertrophy, and it was demonstrated that the dihydrotestosterone content was two and three fold greater in the periurethral area where prostatic hypertrophy usually commences than in the outer regions of the gland. Finally, the rate of conversion of testosterone to dihydrotestosterone has been measured under standardized conditions in tissue slices from 4 normal and 20 hypertrophic prostates. There was no significant difference in the rate of dihydrotestosterone formation between the two types of gland (6.0 ±0.8 and 7.8 ±0.5 μμmoles/15 mg of tissue per hr). While the mechanism by which dihydrotestosterone accumulation occurs remains unexplained, it is possible that the local accumulation of dihydrotestosterone may be involved in the pathogenesis of prostatic hypertrophy in man. Images PMID:4194768
Phosphorus magnetic resonance spectroscopic imaging at 7 T in patients with prostate cancer.
Lagemaat, Miriam W; Vos, Eline K; Maas, Marnix C; Bitz, Andreas K; Orzada, Stephan; van Uden, Mark J; Kobus, Thiele; Heerschap, Arend; Scheenen, Tom W J
2014-05-01
The aim of this study was to identify characteristics of phosphorus (P) spectra of the human prostate and to investigate changes of individual phospholipid metabolites in prostate cancer through in vivo P magnetic resonance spectroscopic imaging (MRSI) at 7 T. In this institutional review board-approved study, 15 patients with biopsy-proven prostate cancer underwent T2-weighted magnetic resonance imaging and 3-dimensional P MRSI at 7 T. Voxels were selected at the tumor location, in normal-appearing peripheral zone tissue, normal-appearing transition zone tissue, and in the base of the prostate close to the seminal vesicles. Phosphorus metabolite ratios were determined and compared between tissue types. Signals of phosphoethanolamine (PE) and phosphocholine (PC) were present and well resolved in most P spectra in the prostate. Glycerophosphocholine signals were observable in 43% of the voxels in malignant tissue, but in only 10% of the voxels in normal-appearing tissue away from the seminal vesicles. In many spectra, independent of tissue type, 2 peaks resonated in the chemical shift range of inorganic phosphate, possibly representing 2 separate pH compartments. The PC/PE ratio in the seminal vesicles was highly elevated compared with the prostate in 5 patients. A considerable overlap of P metabolite ratios was found between prostate cancer and normal-appearing prostate tissue, preventing direct discrimination of these tissues. The only 2 patients with high Gleason scores tumors (≥4+5) presented with high PC and glycerophosphocholine levels in their cancer lesions. Phosphorus MRSI at 7 T shows distinct features of phospholipid metabolites in the prostate gland and its surrounding structures. In this exploratory study, no differences in P metabolite ratios were observed between prostate cancer and normal-appearing prostate tissue possibly because of the partial volume effects of small tumor foci in large MRSI voxels.
NASA Astrophysics Data System (ADS)
Wei, Yiping; Chen, Liru; Zhou, Wei; Chingin, Konstantin; Ouyang, Yongzhong; Zhu, Tenggao; Wen, Hua; Ding, Jianhua; Xu, Jianjun; Chen, Huanwen
2015-05-01
Tissue spray ionization mass spectrometry (TSI-MS) directly on small tissue samples has been shown to provide highly specific molecular information. In this study, we apply this method to the analysis of 38 pairs of human lung squamous cell carcinoma tissue (cancer) and adjacent normal lung tissue (normal). The main components of pulmonary surfactants, dipalmitoyl phosphatidylcholine (DPPC, m/z 757.47), phosphatidylcholine (POPC, m/z 782.52), oleoyl phosphatidylcholine (DOPC, m/z 808.49), and arachidonic acid stearoyl phosphatidylcholine (SAPC, m/z 832.43), were identified using high-resolution tandem mass spectrometry. Monte Carlo sampling partial least squares linear discriminant analysis (PLS-LDA) was used to distinguish full-mass-range mass spectra of cancer samples from the mass spectra of normal tissues. With 5 principal components and 30 - 40 Monte Carlo samplings, the accuracy of cancer identification in matched tissue samples reached 94.42%. Classification of a tissue sample required less than 1 min, which is much faster than the analysis of frozen sections. The rapid, in situ diagnosis with minimal sample consumption provided by TSI-MS is advantageous for surgeons. TSI-MS allows them to make more informed decisions during surgery.
Elasticity-based identification of tumor margins using Brillouin spectroscopy
NASA Astrophysics Data System (ADS)
Troyanova-Wood, Maria; Meng, Zhaokai; Yakovlev, Vladislav V.
2016-03-01
The purpose of this study is to demonstrate the efficacy of using Brillouin spectroscopy for differentiation between healthy and cancerous tissues. Previous studies of various cancers indicate that elasticity of the tumor differs from that of the surrounding tissue. We hypothesize that it is possible to distinguish between normal and malignant areas based on their Brillouin measurements. Brillouin spectroscopy is an emerging spectroscopic technique capable of assessing the local elasticity of samples by measuring the Brillouin shift. In the present study, we have used malignant melanoma tissue samples from Sinclair miniature swine to demonstrate the validity of our proposed application. We performed Brillouin measurements on healthy tissue, normal tumor and regressing tumor (as indicated by depigmentation of tissue). Overall, the tumors were found to be stiffer than the surrounding healthy tissue. However, the regressing tumor displayed the elastic properties closer to that of the healthy tissue. Based on the Brillouin measurements, we have successfully differentiated between the tumor and healthy tissues with a high degree of confidence (p<104 for normal tumor, p<0.05 for regressing tumor). Our results indicate that Brillouin spectroscopy is an appropriate tool to not only pinpoint tumor boundaries, but also to monitor tumor growth or evaluate its response to treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horie, S.
Using a modified semi-micro gradient elution method of chromatography, the distribution of the acid-soluble nucleotides in various normal and neoplastic tissues of rats was compared and the variations of the distribution are described. The distribution and phosphate turnover of the acid-soluble phosphorus compounds were also studied by intraperitoneal injection of P/sup 32/ followed by the chromatographic analysis. The distribution patterns of nucleotides and radioactivity in liver, muscle, heart, lung, thymus, spleen, testicles, brain, fetal liver, and experimental hepatomas are illustrated and the differences between these tissues were pointed out. The characteristics of the experimental hepatoma tissue as compared with themore » normal liver tissue are as follows: The concentration of oxidized DPN was low; the incorporation of P/sup 32/ inorganic phosphate into glucose 6-phosphate and L- alpha -glycerophosphate was absent or, if any, very low; radioactivity of inorganic phosphate in the total acid-soluble radioactivity was extraordinarily high as compared with other tissues besides the liver tissue. (Abstr. Japan Med., 1: No. 9, 1961)« less
Differentiating cancerous from normal breast tissue by redox imaging
NASA Astrophysics Data System (ADS)
Xu, He N.; Tchou, Julia; Feng, Min; Zhao, Huaqing; Li, Lin Z.
2015-02-01
Abnormal metabolism can be a hallmark of cancer occurring early before detectable histological changes and may serve as an early detection biomarker. The current gold standard to establish breast cancer (BC) diagnosis is histological examination of biopsy. Previously we have found that pre-cancer and cancer tissues in animal models displayed abnormal mitochondrial redox state. Our technique of quantitatively measuring the mitochondrial redox state has the potential to be implemented as an early detection tool for cancer and may provide prognostic value. We therefore in this present study, investigated the feasibility of quantifying the redox state of tumor samples from 16 BC patients. Tumor tissue aliquots were collected from both normal and cancerous tissue from the affected cancer-bearing breasts of 16 female patients (5 TNBC, 9 ER+, 2 ER+/Her2+) shortly after surgical resection. All specimens were snap-frozen with liquid nitrogen on site and scanned later with the Chance redox scanner, i.e., the 3D cryogenic NADH/oxidized flavoprotein (Fp) fluorescence imager. Our preliminary results showed that both NADH and Fp (including FAD, i.e., flavin adenine dinucleotide) signals in the cancerous tissues roughly tripled to quadrupled those in the normal tissues (p<0.05) and the redox ratio Fp/(NADH+Fp) was about 27% higher in the cancerous tissues than in the normal ones (p<0.05). Our findings suggest that the redox state could differentiate between cancer and non-cancer breast tissues in human patients and this novel redox scanning procedure may assist in tissue diagnosis in freshly procured biopsy samples prior to tissue fixation. We are in the process of evaluating the prognostic value of the redox imaging indices for BC.
Human Tissues Investigation Using PALS Technique
NASA Astrophysics Data System (ADS)
Jasińska, B.; Zgardzińska, B.; Chołubek, G.; Gorgol, M.; Wiktor, K.; Wysogląd, K.; Białas, P.; Curceanu, C.; Czerwiński, E.; Dulski, K.; Gajos, A.; Głowacz, B.; Hiesmayr, B.; Jodłowska-Jędrych, B.; Kamińska, D.; Korcyl, G.; Kowalski, P.; Kozik, T.; Krawczyk, N.; Krzemień, W.; Kubicz, E.; Mohammed, M.; Pawlik-Niedźwiecka, M.; Niedźwiecki, S.; Pałka, M.; Raczyński, L.; Rudy, Z.; Sharma, N. G.; Sharma, S.; Shopa, R.; Silarski, M.; Skurzok, M.; Wieczorek, A.; Wiktor, H.; Wiślicki, W.; Zieliński, M.; Moskal, P.
Samples of uterine leiomyomatis and normal tissues taken from patients after surgery were investigated using the Positron Annihilation Lifetime Spectroscopy (PALS). Significant differences in all PALS parameters between normal and diseased tissues were observed. For all studied patients, it was found that the values of the free annihilation and ortho-positronium lifetime are larger for the tumorous tissues than for the healthy ones. For most of the patients, the intensity of the free annihilation and ortho-positronium annihilation was smaller for the tumorous than for the healthy tissues. For the first time, in this kind of studies, the $3\\gamma$ fraction of positron annihilation was determined to describe changes in the tissue porosity during morphologic alteration.
Molinari, Ana J; Thorp, Silvia I; Portu, Agustina M; Saint Martin, Gisela; Pozzi, Emiliano C C; Heber, Elisa M; Bortolussi, Silva; Itoiz, Maria E; Aromando, Romina F; Monti Hughes, Andrea; Garabalino, Marcela A; Altieri, Saverio; Trivillin, Verónica A; Schwint, Amanda E
2015-01-01
We previously demonstrated the therapeutic success of sequential boron neutron capture therapy (Seq-BNCT) in the hamster cheek pouch oral cancer model. It consists of BPA-BNCT followed by GB-10-BNCT 24 or 48 hours later. Additionally, we proved that tumor blood vessel normalization with thalidomide prior to BPA-BNCT improves tumor control. The aim of the present study was to evaluate the therapeutic efficacy and explore potential boron microdistribution changes in Seq-BNCT preceded by tumor blood vessel normalization. Tumor bearing animals were treated with thalidomide for tumor blood vessel normalization, followed by Seq-BNCT (Th+ Seq-BNCT) or Seq-Beam Only (Th+ Seq-BO) in the window of normalization. Boron microdistribution was assessed by neutron autoradiography. Th+ Seq-BNCT induced overall tumor response of 100%, with 87 (4)% complete tumor response. No cases of severe mucositis in dose-limiting precancerous tissue were observed. Differences in boron homogeneity between tumors pre-treated and not pre-treated with thalidomide were observed. Th+ Seq-BNCT achieved, for the first time, response in all treated tumors. Increased homogeneity in tumor boron microdistribution is associated to an improvement in tumor control.
Hyperspectral imaging fluorescence excitation scanning for detecting colorectal cancer: pilot study
NASA Astrophysics Data System (ADS)
Leavesley, Silas J.; Wheeler, Mikayla; Lopez, Carmen; Baker, Thomas; Favreau, Peter F.; Rich, Thomas C.; Rider, Paul F.; Boudreaux, Carole W.
2016-03-01
Optical spectroscopy and hyperspectral imaging have shown the theoretical potential to discriminate between cancerous and non-cancerous tissue with high sensitivity and specificity. To date, these techniques have not been able to be effectively translated to endoscope platforms. Hyperspectral imaging of the fluorescence excitation spectrum represents a new technology that may be well-suited for endoscopic implementation. However, the feasibility of detecting differences between normal and cancerous mucosa using fluorescence excitation-scanning hyperspectral imaging has not been evaluated. The objective of this pilot study was to evaluate the changes in the fluorescence excitation spectrum of resected specimen pairs of colorectal adenocarcinoma and normal colorectal mucosa. Patients being treated for colorectal adenocarcinoma were enrolled. Representative adenocarcinoma and normal colonic mucosa specimens were collected from each case. Specimens were flash frozen in liquid nitrogen. Adenocarcinoma was confirmed by histologic evaluation of H&E permanent sections. Hyperspectral image data of the fluorescence excitation of adenocarcinoma and surrounding normal tissue were acquired using a custom microscope configuration previously developed in our lab. Results demonstrated consistent spectral differences between normal and cancerous tissues over the fluorescence excitation spectral range of 390-450 nm. We conclude that fluorescence excitation-scanning hyperspectral imaging may offer an alternative approach for differentiating adenocarcinoma and surrounding normal mucosa of the colon. Future work will focus on expanding the number of specimen pairs analyzed and will utilize fresh tissues where possible, as flash freezing and reconstituting tissues may have altered the autofluorescence properties.
Gu, Yuan; Qi, Chunting; Sun, Xiaoxiao; Ma, Xiuquan; Zhang, Haohao; Hu, Lihong; Yuan, Junying; Yu, Qiang
2012-08-15
Selectively eradicating cancer cells with minimum adverse effects on normal cells is a major challenge in the development of anticancer therapy. We hypothesize that nutrient-limiting conditions frequently encountered by cancer cells in poorly vascularized solid tumors might provide an opportunity for developing selective therapy. In this study, we investigated the function and molecular mechanisms of a natural compound, arctigenin, in regulating tumor cell growth. We demonstrated that arctigenin selectively promoted glucose-starved A549 tumor cells to undergo necrosis by inhibiting mitochondrial respiration. In doing so, arctigenin elevated cellular level of reactive oxygen species (ROS) and blocked cellular energy metabolism in the glucose-starved tumor cells. We also demonstrated that cellular ROS generation was caused by intracellular ATP depletion and played an essential role in the arctigenin-induced tumor cell death under the glucose-limiting condition. Furthermore, we combined arctigenin with the glucose analogue 2-deoxyglucose (2DG) and examined their effects on tumor cell growth. Interestingly, this combination displayed preferential cell-death inducing activity against tumor cells compared to normal cells. Hence, we propose that the combination of arctigenin and 2DG may represent a promising new cancer therapy with minimal normal tissue toxicity. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.
Real time cancer prediction based on objective tissue compliance measurement in endoscopic surgery.
Fakhry, Morkos; Bello, Fernando; Hanna, George B
2014-02-01
To investigate the feasibility of real time cancer tissue diagnosis intraoperatively based on in vivo tissue compliance measurements obtained by a recently developed laparoscopic smart device. Cancer tissue is stiffer than its normal counterpart. Modern forms of remote surgery such as laparoscopic and robotic surgical techniques diminish direct assessment of this important tissue property. In vivo human tissue compliance of the normal and cancer gastrointestinal tissue is unknown. A Clinical Real Time Tissue Compliance Mapping System (CRTCMS) with a predictive power comparable to the human hand and useable in routine surgical practice has been recently developed. The CRTCMS is employed in the operating theater to collect data from 50 patients undergoing intra-abdominal surgical interventions [40 men, 10 women, aged between 32 and 89 (mean = 66.4, range = 57)]. This includes 10 esophageal and 27 gastric cancer patients. A total of 1212 compliance measurements of normal and cancerous in vivo gastrointestinal tissues were taken. The data were used to calibrate the CRTCMS to predict cancerous tissue in a further 12 patients (3 cancer esophagus and 9 cancer stomach) involving 175 measurements. The system demonstrated a high prediction power to diagnose cancer tissue in real time during routine surgical procedures (sensitivity = 98.7%, specificity = 99%). An in vivo human tissue compliance data bank of the gastrointestinal tract was produced. Real time cancer diagnosis based on in vivo tissue compliance measurements is feasible. The reported data open new avenues in cancer diagnostics, surgical robotics, and development of more realistic surgical simulators.
van Niekerk, Cornelis G; van der Laak, Jeroen A W M; Börger, M Elisa; Huisman, Henk-Jan; Witjes, J Alfred; Barentsz, Jelle O; Hulsbergen-van de Kaa, Christina A
2009-01-01
Contrast enhanced imaging enables powerful, non-invasive diagnostics, important for detection and staging of early prostate cancer. The uptake of contrast agent is increased in prostate cancer as compared to normal prostate tissue. To reveal the underlying physiological mechanisms, quantification of tissue components in pathology specimens may yield important information. Aim of this study was to investigate whether microvascularity is increased in prostate confined cancer (pT2). Radical prostatectomy specimens of 26 patients were selected for organ confined peripheral zone tumors which were restricted to one side of the prostate. Microvessels were visualized by immunohistochemistry against CD31. Specimens were scanned using a computer controlled microscope and scanning stage and vessels were recognized automatically. Pseudocolor mappings were produced showing number of vascular profiles (MVD), vascular area (MVA) and perimeter (MVP) in an overview of the entire prostate transection. MVD is a common measure for vascularity, whereas MVA represents the 3D vascular volume and MVP the perfused surface area. Mean, coefficient of variation and 75th percentile of these parameters were calculated automatically in manually indicated areas, consisting of the entire tumor area and the corresponding normal area in the contra lateral side of the prostate. The mappings clearly indicate areas of increased vascularity in prostate transections. In tumor tissue an increase was found compared to normal tissue of 81%, 49%, and 62% for mean MVD, mean MVA and mean MVP, respectively (P < 0.001 for all comparisons). In contrast, the heterogeneity in tumor vasculature was significantly decreased as compared to normal prostate (P < 0.001). Characteristics of microvasculature deviated significantly in pT2 prostate tumor as compared to normal tissue. Copyright 2008 Wiley-Liss, Inc.
Stubbs, Sharron A; Webber, Lisa J; Stark, Jaroslav; Rice, Suman; Margara, Raul; Lavery, Stuart; Trew, Geoffrey H; Hardy, Kate; Franks, Stephen
2013-08-01
Polycystic ovary syndrome (PCOS), the commonest cause of anovulatory infertility, is characterized by disordered follicle development including increased activation and accelerated growth of preantral follicles. Data from experimental animals and preliminary results from studies of human ovarian tissue suggest that IGFs affect preantral follicle development. Our objectives were to investigate the expression of the type-1 IGF receptor (IGFR-1) in the human ovary and to determine whether IGFs are involved in stimulating the transition of follicles from primordial to primary stage in normal and polycystic ovaries. We used archived ovarian tissue for protein expression studies and small cortical biopsies for follicle isolation and for tissue culture. This was a laboratory-based study, using clinical tissue samples. A total of 54 women, 33 with normal ovaries and 21 with polycystic ovaries, were classified by reference to menstrual cycle history and ultrasonography. We evaluated expression of IGFR-1 mRNA in isolated preantral follicles and of IGFR-1 protein in archived ovarian tissue samples from normal and polycystic ovaries and effects of exogenous IGF-1 on preantral follicle development and survival in cultured fragments of normal and polycystic ovaries. IGFR-1 mRNA and protein was expressed in preantral follicles at all stages of development and enhanced expression was noted in PCOS follicles during early preantral development. IGF-1 stimulated initiation of follicle growth in normal tissue but had little effect on preantral follicle growth in polycystic ovaries in which, characteristically, there was a higher proportion of follicles that had entered the growing phase even before culture. IGFs are plausible candidates in regulation of initiation of human follicle growth, and accelerated preantral follicle growth in PCOS may be due to increased activity of endogenous IGFs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, SH.; Ballmann, C.; Quarles, C. A.
2009-03-10
The application of positron annihilation lifetime spectroscopy (PALS) and Doppler broadening spectroscopy (DBS) to the study of animal or human tissue has only recently been reported [G. Liu, et al. phys. stat. sol. (C) 4, Nos. 10, 3912-3915 (2007)]. We have initiated a study of normal brain section and brain section with glioma derived from a rat glioma model. For the rat glioma model, 200,000 C6 cells were implanted in the basal ganglion of adult Sprague Dawley rats. The rats were sacrificed at 21 days after implantation. The brains were harvested, sliced into 2 mm thick coronal sections, and fixedmore » in 4% formalin. PALS lifetime runs were made with the samples soaked in formalin, and there was not significant evaporation of formalin during the runs. The lifetime spectra were analyzed into two lifetime components. While early results suggested a small decrease in ortho-Positronium (o-Ps) pickoff lifetime between the normal brain section and brain section with glioma, further runs with additional samples have showed no statistically significant difference between the normal and tumor tissue for this type of tumor. The o-Ps lifetime in formalin alone was lower than either the normal tissue or glioma sample. So annihilation in the formalin absorbed in the samples would lower the o-Ps lifetime and this may have masked any difference due to the glioma itself. DBS was also used to investigate the difference in positronium formation between tumor and normal tissue. Tissue samples are heterogeneous and this needs to be carefully considered if PALS and DBS are to become useful tools in distinguishing tissue samples.« less
A soma-to-germline transformation in long-lived C. elegans mutants
Curran, Sean P.; Wu, Xiaoyun; Riedel, Christian G.; Ruvkun, Gary
2009-01-01
Unlike the soma which ages during the lifespan of multicellular organisms, the germline traces an essentially immortal lineage. Genomic instability in somatic cells increases with age, and this decline in somatic maintenance might be regulated to facilitate resource reallocation toward reproduction at the expense of cellular senescence. We report here that C. elegans mutants with increased longevity exhibit a soma-to-germline transformation of gene expression programs normally limited to the germline. Decreased insulin-like signaling causes the somatic misexpression of germline-limited pie-1 and pgl family of genes in intestinal and ectodermal tissues. DAF-16/FoxO, the major transcriptional effector of insulin-like signaling, regulates pie-1 expression by directly binding to the pie-1 promoter. The somatic tissues of insulin-like mutants are more germline-like and protected from genotoxic stress. Gene inactivation of components of the cytosolic chaperonin complex that induce increased longevity also cause somatic misexpression of PGL-1. These results suggest that the acquisition of germline characteristics by the somatic cells of C. elegans mutants with increased longevity contributes to their increased health and survival. PMID:19506556