Khan, Soobia Saad; Khan, Saad Jawaid; Usman, Juliana
2017-03-01
Toe-out/-in gait has been prescribed in reducing knee joint load to medial knee osteoarthritis patients. This study focused on the effects of toe-out/-in at different walking speeds on first peak knee adduction moment (fKAM), second peak KAM (sKAM), knee adduction angular impulse (KAAI), net mechanical work by lower limb as well as joint-level contribution to the total limb work during level walking. Gait analysis of 20 healthy young adults was done walking at pre-defined normal (1.18m/s), slow (0.85m/s) and fast (1.43m/s) walking speeds with straight-toe (natural), toe-out (15°>natural) and toe-in (15°
Protas, Elizabeth J; Raines, Mary Lynn; Tissier, Sandrine
2007-06-01
To compare temporal, spatial, and oxygen costs of gait while elderly subjects walked without an assistive device, with a new assistive device, and with 2 other commercially available assistive devices. Descriptive, repeated measures. University-based research laboratory. Thirteen healthy older subjects who could walk without an assistive device. Not applicable. Gait speed, normalized gait speed, cadence, stride lengths, 5-minute walk distance and gait speed, oxygen consumption (Vo2) per meter walked, respiratory exchange ratio (RER) per meter walked, and minute ventilation per meter walked. Gait speed, normalized gait speed, and stride lengths decreased when the Merry Walker device was used, compared with walking without an assistive device. Outcome measures when walking with either the wheeled walker or the WalkAbout did not differ significantly from walking without a device except for a faster cadence with the WalkAbout. The distance walked and gait speed were decreased and the RER and minute ventilation were increased during the 5-minute walk with the Merry Walker compared with normal walking. The Vo2 was higher with the wheeled walker and Merry Walker than when walking without an assistive device, but there was no difference when the WalkAbout was used. Older adults walked in the new assistive device, the WalkAbout, with parameters that did not differ significantly from their gait without a device. The oxygen demands of walking were similar to unassisted walking for the WalkAbout, but were higher for the wheeled walker and Merry Walker. These results may help guide the prescription of assistive devices for older adults.
Ghosh, A K; Ganguli, S; Bose, K S
1982-12-01
The metabolic demand, using the relationship between speed and energy cost, and the optimal speed of walking, estimated by means of speed and energy cost per unit distance travelled, were studied in 16 post-polio subjects with lower limb affliction and 20 normal subjects with sedentary habits. It was observed that the post-polio subjects consumed higher energy than the normal persons at each walking speed between 0.28 and 1.26 m/s. The optimal speed of walking in post-polio subjects was lower than that of the normal persons and was associated with a higher energy demand per unit distance travelled. It was deduced that the post-polio subjects. not having used any assistive devices for a long time, have acquired severe degrees of disability which not only hindered their normal gait but also demanded extra energy from them.
The influence of gait speed on the stability of walking among the elderly.
Fan, Yifang; Li, Zhiyu; Han, Shuyan; Lv, Changsheng; Zhang, Bo
2016-06-01
Walking speed is a basic factor to consider when walking exercises are prescribed as part of a training programme. Although associations between walking speed, step length and falling risk have been identified, the relationship between spontaneous walking pattern and falling risk remains unclear. The present study, therefore, examined the stability of spontaneous walking at normal, fast and slow speed among elderly (67.5±3.23) and young (21.4±1.31) individuals. In all, 55 participants undertook a test that involved walking on a plantar pressure platform. Foot-ground contact data were used to calculate walking speed, step length, pressure impulse along the plantar-impulse principal axis and pressure record of time series along the plantar-impulse principal axis. A forward dynamics method was used to calculate acceleration, velocity and displacement of the centre of mass in the vertical direction. The results showed that when the elderly walked at different speeds, their average step length was smaller than that observed among the young (p=0.000), whereas their anterior/posterior variability and lateral variability had no significant difference. When walking was performed at normal or slow speed, no significant between-group difference in cadence was found. When walking at a fast speed, the elderly increased their stride length moderately and their cadence greatly (p=0.012). In summary, the present study found no correlation between fast walking speed and instability among the elderly, which indicates that healthy elderly individuals might safely perform fast-speed walking exercises. Copyright © 2016 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Meyns, Pieter; Van Gestel, Leen; Massaad, Firas; Desloovere, Kaat; Molenaers, Guy; Duysens, Jacques
2011-01-01
Children with Cerebral Palsy (CP) have difficulties walking at a normal or high speed. It is known that arm movements play an important role to achieve higher walking speeds in healthy subjects. However, the role played by arm movements while walking at different speeds has received no attention in children with CP. Therefore we investigated the…
Seethapathi, Nidhi; Srinivasan, Manoj
2015-09-01
Humans do not generally walk at constant speed, except perhaps on a treadmill. Normal walking involves starting, stopping and changing speeds, in addition to roughly steady locomotion. Here, we measure the metabolic energy cost of walking when changing speed. Subjects (healthy adults) walked with oscillating speeds on a constant-speed treadmill, alternating between walking slower and faster than the treadmill belt, moving back and forth in the laboratory frame. The metabolic rate for oscillating-speed walking was significantly higher than that for constant-speed walking (6-20% cost increase for ±0.13-0.27 m s(-1) speed fluctuations). The metabolic rate increase was correlated with two models: a model based on kinetic energy fluctuations and an inverted pendulum walking model, optimized for oscillating-speed constraints. The cost of changing speeds may have behavioural implications: we predicted that the energy-optimal walking speed is lower for shorter distances. We measured preferred human walking speeds for different walking distances and found people preferred lower walking speeds for shorter distances as predicted. Further, analysing published daily walking-bout distributions, we estimate that the cost of changing speeds is 4-8% of daily walking energy budget. © 2015 The Author(s).
Seethapathi, Nidhi; Srinivasan, Manoj
2015-01-01
Humans do not generally walk at constant speed, except perhaps on a treadmill. Normal walking involves starting, stopping and changing speeds, in addition to roughly steady locomotion. Here, we measure the metabolic energy cost of walking when changing speed. Subjects (healthy adults) walked with oscillating speeds on a constant-speed treadmill, alternating between walking slower and faster than the treadmill belt, moving back and forth in the laboratory frame. The metabolic rate for oscillating-speed walking was significantly higher than that for constant-speed walking (6–20% cost increase for ±0.13–0.27 m s−1 speed fluctuations). The metabolic rate increase was correlated with two models: a model based on kinetic energy fluctuations and an inverted pendulum walking model, optimized for oscillating-speed constraints. The cost of changing speeds may have behavioural implications: we predicted that the energy-optimal walking speed is lower for shorter distances. We measured preferred human walking speeds for different walking distances and found people preferred lower walking speeds for shorter distances as predicted. Further, analysing published daily walking-bout distributions, we estimate that the cost of changing speeds is 4–8% of daily walking energy budget. PMID:26382072
Influence of Systematic Increases in Treadmill Walking Speed on Gait Kinematics After Stroke
Tyrell, Christine M.; Roos, Margaret A.; Rudolph, Katherine S.
2011-01-01
Background Fast treadmill training improves walking speed to a greater extent than training at a self-selected speed after stroke. It is unclear whether fast treadmill walking facilitates a more normal gait pattern after stroke, as has been suggested for treadmill training at self-selected speeds. Given the massed stepping practice that occurs during treadmill training, it is important for therapists to understand how the treadmill speed selected influences the gait pattern that is practiced on the treadmill. Objective The purpose of this study was to characterize the effect of systematic increases in treadmill speed on common gait deviations observed after stroke. Design A repeated-measures design was used. Methods Twenty patients with stroke walked on a treadmill at their self-selected walking speed, their fastest speed, and 2 speeds in between. Using a motion capture system, spatiotemporal gait parameters and kinematic gait compensations were measured. Results Significant improvements in paretic- and nonparetic-limb step length and in single- and double-limb support were found. Asymmetry of these measures improved only for step length. Significant improvements in paretic hip extension, trailing limb position, and knee flexion during swing also were found as speed increased. No increases in circumduction or hip hiking were found with increasing speed. Limitations Caution should be used when generalizing these results to survivors of a stroke with a self-selected walking speed of less than 0.4 m/s. This study did not address changes with speed during overground walking. Conclusions Faster treadmill walking facilitates a more normal walking pattern after stroke, without concomitant increases in common gait compensations, such as circumduction. The improvements in gait deviations were observed with small increases in walking speed. PMID:21252308
Obesity does not increase External Mechanical Work per kilogram body mass during Walking
Browning, Raymond C.; McGowan, Craig P.; Kram, Rodger
2009-01-01
Walking is the most common type of physical activity prescribed for the treatment of obesity. The net metabolic rate during level walking (Watts/kg) is ~10% greater in obese vs. normal weight adults. External mechanical work (Wext) is one of the primary determinants of the metabolic cost of walking, but the effects of obesity on Wext have not been clearly established. The purpose of this study was to compare Wext between obese and normal weight adults across a range of walking speeds. We hypothesized that Wext (J/step) would be greater in obese adults but Wext normalized to body mass would be similar in obese and normal weight adults. We collected right leg three-dimensional ground reaction forces (GRF) while twenty adults (10 obese, BMI=35.6 kg/m2 and 10 normal weight, BMI=22.1 kg/m2) walked on a level, dual-belt force measuring treadmill at six speeds (0.50–1.75 m/s). We used the individual limb method (ILM) to calculate external work done on the center of mass. Absolute Wext (J/step) was greater in obese vs. normal weight adults at each walking speed, but relative Wext (J/step/kg) was similar between the groups. Step frequencies were not different. These results suggest that Wext is not responsible for the greater metabolic cost of walking (W/kg) in moderately obese adults. PMID:19646701
Godi, Marco; Giardini, Marica; Arcolin, Ilaria; Nardone, Antonio; Giordano, Andrea; Schieppati, Marco
2018-01-01
Background Several patients with Parkinson´s disease (PD) can walk normally along straight trajectories, and impairment in their stride length and cadence may not be easily discernible. Do obvious abnormalities occur in these high-functioning patients when more challenging trajectories are travelled, such as circular paths, which normally implicate a graded modulation in the duration of the interlimb gait cycle phases? Methods We compared a cohort of well-treated mildly to moderately affected PD patients to a group of age-matched healthy subjects (HS), by deliberately including HS spontaneously walking at the same speed of the patients with PD. All participants performed, in random order: linear and circular walking (clockwise and counter-clockwise) at self-selected speed. By means of pressure-sensitive insoles, we recorded walking speed, cadence, duration of single support, double support, swing phase, and stride time. Stride length-cadence relationships were built for linear and curved walking. Stride-to-stride variability of temporal gait parameters was also estimated. Results Walking speed, cadence or stride length were not different between PD and HS during linear walking. Speed, cadence and stride length diminished during curved walking in both groups, stride length more in PD than HS. In PD compared to HS, the stride length-cadence relationship was altered during curved walking. Duration of the double-support phase was also increased during curved walking, as was variability of the single support, swing phase and double support phase. Conclusion The spatio-temporal gait pattern and variability are significantly modified in well-treated, high-functioning patients with PD walking along circular trajectories, even when they exhibit no changes in speed in straight-line walking. The increased variability of the gait phases during curved walking is an identifying characteristic of PD. We discuss our findings in term of interplay between control of balance and of locomotor progression: the former is challenged by curved trajectories even in high-functioning patients, while the latter may not be critically affected. PMID:29750815
Yu, Lili; Zhang, Qi; Hu, Chunying; Huang, Qiuchen; Ye, Miao; Li, Desheng
2015-02-01
[Purpose] The aim of this study was to explore the effects of different frequencies of rhythmic auditory cueing (RAC) on stride length, cadence, and gait speed in healthy young females. The findings of this study might be used as clinical guidance of physical therapy for choosing the suitable frequency of RAC. [Subjects] Thirteen healthy young females were recruited in this study. [Methods] Ten meters walking tests were measured in all subjects under 4 conditions with each repeated 3 times and a 3-min seated rest period between repetitions. Subjects first walked as usual and then were asked to listen carefully to the rhythm of a metronome and walk with 3 kinds of RAC (90%, 100%, and 110% of the mean cadence). The three frequencies (90%, 100%, and 110%) of RAC were randomly assigned. Gait speed, stride length, and cadence were calculated, and a statistical analysis was performed using the SPSS (version 17.0) computer package. [Results] The gait speed and cadence of 90% RAC walking showed significant decreases compared with normal walking and 100% and 110% RAC walking. The stride length, cadence, and gait speed of 110% RAC walking showed significant increases compared with normal walking and 90% and 100% RAC walking. [Conclusion] Our results showed that 110% RAC was the best of the 3 cueing frequencies for improvement of stride length, cadence, and gait speed in healthy young females.
Rapp, Walter; Brauner, Torsten; Weber, Linda; Grau, Stefan; Mündermann, Annegret; Horstmann, Thomas
2015-10-12
Retraining walking in patients after hip or knee arthroplasty is an important component of rehabilitation especially in older persons whose social interactions are influenced by their level of mobility. The objective of this study was to test the effect of an intensive inpatient rehabilitation program on walking speed and gait symmetry in patients after hip arthroplasty (THA) using inertial sensor technology. Twenty-nine patients undergoing a 4-week inpatient rehabilitation program following THA and 30 age-matched healthy subjects participated in this study. Walking speed and gait symmetry parameters were measured using inertial sensor device for standardized walking trials (2*20.3 m in a gym) at their self-selected normal and fast walking speeds on postoperative days 15, 21, and 27 in patients and in a single session in control subjects. Walking speed was measured using timing lights. Gait symmetry was determined using autocorrelation calculation of the cranio-caudal (CC) acceleration signals from an inertial sensor placed at the lower spine. Walking speed and gait symmetry improved from postoperative days 15-27 (speed, female: 3.2 and 4.5 m/s; male: 4.2 and 5.2 m/s; autocorrelation, female: 0.77 and 0.81; male: 0.70 and 0.79; P <0.001 for all). After the 4-week rehabilitation program, walking speed and gait symmetry were still lower than those in control subjects (speed, female 4.5 m/s vs. 5.7 m/s; male: 5.2 m/s vs. 5.3 m/s; autocorrelation, female: 0.81 vs. 0.88; male: 0.79 vs. 0.90; P <0.001 for all). While patients with THA improved their walking capacity during a 4-week inpatient rehabilitation program, subsequent intensive gait training is warranted for achieving normal gait symmetry. Inertial sensor technology may be a useful tool for evaluating the rehabilitation process during the post-inpatient period.
Fino, Peter; Lockhart, Thurmon E
2014-04-11
This study investigated the relationship of required coefficient of friction to gait speed, obstacle height, and turning strategy as participants walked around obstacles of various heights. Ten healthy, young adults performed 90° turns around corner pylons of four different heights at their self selected normal, slow, and fast walking speeds using both step and spin turning strategies. Kinetic data was captured using force plates. Results showed peak required coefficient of friction (RCOF) at push off increased with increased speed (slow μ=0.38, normal μ=0.45, and fast μ=0.54). Obstacle height had no effect on RCOF values. The average peak RCOF for fast turning exceeded the OSHA safety guideline for static COF of μ>0.50, suggesting further research is needed into the minimum static COF to prevent slips and falls, especially around corners. Copyright © 2014 Elsevier Ltd. All rights reserved.
Patel, P; Lamar, M; Bhatt, T
2014-02-28
We aimed to determine the effect of distinctly different cognitive tasks and walking speed on cognitive-motor interference of dual-task walking. Fifteen healthy adults performed four cognitive tasks: visuomotor reaction time (VMRT) task, word list generation (WLG) task, serial subtraction (SS) task, and the Stroop (STR) task while sitting and during walking at preferred-speed (dual-task normal walking) and slow-speed (dual-task slow-speed walking). Gait speed was recorded to determine effect on walking. Motor and cognitive costs were measured. Dual-task walking had a significant effect on motor and cognitive parameters. At preferred-speed, the motor cost was lowest for the VMRT task and highest for the STR task. In contrast, the cognitive cost was highest for the VMRT task and lowest for the STR task. Dual-task slow walking resulted in increased motor cost and decreased cognitive cost only for the STR task. Results show that the motor and cognitive cost of dual-task walking depends heavily on the type and perceived complexity of the cognitive task being performed. Cognitive cost for the STR task was low irrespective of walking speed, suggesting that at preferred-speed individuals prioritize complex cognitive tasks requiring higher attentional and processing resources over walking. While performing VMRT task, individuals preferred to prioritize more complex walking task over VMRT task resulting in lesser motor cost and increased cognitive cost for VMRT task. Furthermore, slow walking can assist in diverting greater attention towards complex cognitive tasks, improving its performance while walking. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Perera, Subashan; VanSwearingen, Jessie M.; Hile, Elizabeth S.; Wert, David M.; Studenski, Stephanie A.
2011-01-01
Background Mobility often is tested under a low challenge condition (ie, over a straight, uncluttered path), which often fails to identify early mobility difficulty. Tests of walking during challenging conditions may uncover mobility difficulty that is not identified with usual gait testing. Objective The purpose of this study was to determine whether gait during challenging conditions predicts decline in gait speed over 1 year in older people with apparently normal gait (ie, gait speed of ≥1.0 m/s). Design This was a prospective cohort study. Methods Seventy-one older adults (mean age=75.9 years) with a usual gait speed of ≥1.0 m/s participated. Gait was tested at baseline under 4 challenging conditions: (1) narrow walk (15 cm wide), (2) stepping over obstacles (15.24 cm [6 in] and 30.48 cm [12 in]), (3) simple walking while talking (WWT), and (4) complex WWT. Usual gait speed was recorded over a 4-m course at baseline and 1 year later. A 1-year change in gait speed was calculated, and participants were classified as declined (decreased ≥0.10 m/s, n=18), stable (changed <0.10 m/s, n=43), or improved (increased ≥0.10 m/s, n=10). Analysis of variance was used to compare challenging condition cost (usual − challenging condition gait speed difference) among the 3 groups. Results Participants who declined in the ensuing year had a greater narrow walk and obstacle walk cost than those who were stable or who improved in gait speed (narrow walk cost=0.43 versus 0.33 versus 0.22 m/s and obstacle walk cost=0.35 versus 0.26 versus 0.13 m/s). Simple and complex WWT cost did not differ among the groups. Limitations The participants who declined in gait speed over time walked the fastest, and those who improved walked the slowest at baseline; thus, the potential contribution of regression to the mean to the findings should not be overlooked. Conclusions In older adults with apparently normal gait, the assessment of gait during challenging conditions appears to uncover mobility difficulty that is not identified by usual gait testing. PMID:22003167
Invariant aspects of human locomotion in different gravitational environments.
Minetti, A E
2001-01-01
Previous literature showed that walking gait follows the same mechanical paradigm, i.e. the straight/inverted pendulum, regardless the body size, the number of legs, and the amount of gravity acceleration. The Froude number, a dimensionless parameter originally designed to normalize the same (pendulum-like) motion in differently sized subjects, proved to be useful also in the comparison, within the same subject, of walking in heterogravity. In this paper the theory of dynamic similarity is tested by comparing the predictive power of the Froude number in terms of walking speed to previously published data on walking in hypogravity simulators. It is concluded that the Froude number is a good first predictor of the optimal walking speed and of the transition speed between walking and running in different gravitational conditions. According to the Froude number a dynamically similar walking speed on another planet can be calculated as [formula: see text] where V(Earth) is the reference speed on Earth. c 2001. Elsevier Science Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Abustan, M. S.; Ali, M. F. M.; Talib, S. H. A.
2018-04-01
Walking velocity is a vector quantity that can be determined by calculating the time taken and displacement of a moving objects. In Malaysia, there are very few researches that were done to determine the walking velocity of citizens to be compared with other countries such as the study about walking upstairs during evacuation process is important when emergency case happen, if there are people in underground garages, they have to walk upstairs for exits and look for shelter and the walking velocity of pedestrian in such cases are necessary to be analysed. Therefore, the objective of this study is to determine the walking speed of pedestrian during walking upstairs situation, finding the relationship between pedestrian walking speed and the characteristics of the pedestrian as well as analysing the energy reduction by comparing the walking speed of pedestrian at the beginning and at the end of staircase. In this case study, an experiment was done to determine the average walking speed of pedestrian. The pedestrian has been selected from different gender, physical character, and age. Based on the data collected, the average normal walking speed of male pedestrian was 1.03 m/s while female was 1.08 m/s. During walking upstairs, the walking speed of pedestrian decreased as the number of floor increased. The average speed for the first stairwell was 0.90 m/s and the number decreased to 0.73 m/s for the second stairwell. From the reduction of speed, the energy used has been calculated and the average kinetic energy used was 1.69 J. Hence, the data collected can be used for further research of staircase design and plan of evacuation process.
Deshpande, Nandini; Zhang, Fang
2014-01-01
The ability to maintain stability in the frontal plane (medialateral direction) while walking is commonly included as a component of motor performance assessment. Postural control in the frontal plane may deteriorate faster and earlier with increasing age, compared to that in the sagittal plane (anteroposterior direction). Fifteen young (20-30 years old) and 15 older (>65 years old) healthy participants were recruited to investigate age-related differences in postural control during the normal and narrow-based walking when performed under suboptimal vestibular and lower limb somatosensory conditions achieved by galvanic stimulation and compliant surfaces, respectively. Gait speed decreased in the narrow-based walking condition, with larger decrease in the elderly (by 6%). In the elderly head roll increased with perturbed vestibular information in impaired somatosensory condition (by 40.70%). In both age groups trunk roll increased under impaired somatosensation in the narrow-based walking condition (by 43.62%) but not in normal walking condition. Older participants adopted a more cautious strategy characterized by lower walking speed when walking on a narrow base and exhibited deteriorated integrative ability of the CNS for head control. Accurate lower limb somatosensation may play a critical role in narrow-based walking.
Locomotor Recovery in Spinal Cord Injury: Insights Beyond Walking Speed and Distance.
Awai, Lea; Curt, Armin
2016-08-01
Recovery of locomotor function after incomplete spinal cord injury (iSCI) is clinically assessed through walking speed and distance, while improvements in these measures might not be in line with a normalization of gait quality and are, on their own, insensitive at revealing potential mechanisms underlying recovery. The objective of this study was to relate changes of gait parameters to the recovery of walking speed while distinguishing between parameters that rather reflect speed improvements from factors contributing to overall recovery. Kinematic data of 16 iSCI subjects were repeatedly recorded during in-patient rehabilitation. The responsiveness of gait parameters to walking speed was assessed by linear regression. Principal component analysis (PCA) was applied on the multivariate data across time to identify factors that contribute to recovery after iSCI. Parameters of gait cycle and movement dynamics were both responsive and closely related to the recovery of walking speed, which increased by 96%. Multivariate analysis revealed specific gait parameters (intralimb shape normality and consistency) that, although less related to speed increments, loaded highly on principal component one (PC1) (58.6%) explaining the highest proportion of variance (i.e., recovery of outcome over time). Interestingly, measures of hip, knee, and ankle range of motion showed varying degrees of responsiveness (from very high to very low) while not contributing to gait recovery as revealed by PCA. The conjunct application of two analysis methods distinguishes gait parameters that simply reflect increased walking speed from parameters that actually contribute to gait recovery in iSCI. This distinction may be of value for the evaluation of interventions for locomotor recovery.
Why is walker-assisted gait metabolically expensive?
Priebe, Jonathon R; Kram, Rodger
2011-06-01
Walker-assisted gait is reported to be ∼200% more metabolically expensive than normal bipedal walking. However, previous studies compared different walking speeds. Here, we compared the metabolic power consumption and basic stride temporal-spatial parameters for 10 young, healthy adults walking without assistance and using 2-wheeled (2W), 4-wheeled (4W) and 4-footed (4F) walker devices, all at the same speed, 0.30m/s. We also measured the metabolic power demand for walking without any assistive device using a step-to gait at 0.30m/s, walking normally at 1.25m/s, and for repeated lifting of the 4F walker mimicking the lifting pattern used during 4F walker-assisted gait. Similar to previous studies, we found that the cost per distance walked was 217% greater with a 4F walker at 0.30m/s compared to unassisted, bipedal walking at 1.25m/s. Compared at the same speed, 0.30m/s, using a 4F walker was still 82%, 74%, and 55% energetically more expensive than walking unassisted, with a 4W walker and a 2W walker respectively. The sum of the metabolic cost of step-to walking plus the cost of lifting itself was equivalent to the cost of walking with a 4F walker. Thus, we deduce that the high cost of 4F walker assisted gait is due to three factors: the slow walking speed, the step-to gait pattern and the repeated lifting of the walker. Copyright © 2011 Elsevier B.V. All rights reserved.
Validation of the ADAMO Care Watch for step counting in older adults.
Magistro, Daniele; Brustio, Paolo Riccardo; Ivaldi, Marco; Esliger, Dale Winfield; Zecca, Massimiliano; Rainoldi, Alberto; Boccia, Gennaro
2018-01-01
Accurate measurement devices are required to objectively quantify physical activity. Wearable activity monitors, such as pedometers, may serve as affordable and feasible instruments for measuring physical activity levels in older adults during their normal activities of daily living. Currently few available accelerometer-based steps counting devices have been shown to be accurate at slow walking speeds, therefore there is still lacking appropriate devices tailored for slow speed ambulation, typical of older adults. This study aimed to assess the validity of step counting using the pedometer function of the ADAMO Care Watch, containing an embedded algorithm for measuring physical activity in older adults. Twenty older adults aged ≥ 65 years (mean ± SD, 75±7 years; range, 68-91) and 20 young adults (25±5 years, range 20-40), wore a care watch on each wrist and performed a number of randomly ordered tasks: walking at slow, normal and fast self-paced speeds; a Timed Up and Go test (TUG); a step test and ascending/descending stairs. The criterion measure was the actual number of steps observed, counted with a manual tally counter. Absolute percentage error scores, Intraclass Correlation Coefficients (ICC), and Bland-Altman plots were used to assess validity. ADAMO Care Watch demonstrated high validity during slow and normal speeds (range 0.5-1.5 m/s) showing an absolute error from 1.3% to 1.9% in the older adult group and from 0.7% to 2.7% in the young adult group. The percentage error for the 30-metre walking tasks increased with faster pace in both young adult (17%) and older adult groups (6%). In the TUG test, there was less error in the steps recorded for older adults (1.3% to 2.2%) than the young adults (6.6% to 7.2%). For the total sample, the ICCs for the ADAMO Care Watch for the 30-metre walking tasks at each speed and for the TUG test were ranged between 0.931 to 0.985. These findings provide evidence that the ADAMO Care Watch demonstrated highly accurate measurements of the steps count in all activities, particularly walking at normal and slow speeds. Therefore, these data support the inclusion of the ADAMO Care Watch in clinical applications for measuring the number of steps taken by older adults at normal, slow walking speeds.
An elaborate data set on human gait and the effect of mechanical perturbations
Hnat, Sandra K.; van den Bogert, Antonie J.
2015-01-01
Here we share a rich gait data set collected from fifteen subjects walking at three speeds on an instrumented treadmill. Each trial consists of 120 s of normal walking and 480 s of walking while being longitudinally perturbed during each stance phase with pseudo-random fluctuations in the speed of the treadmill belt. A total of approximately 1.5 h of normal walking (>5000 gait cycles) and 6 h of perturbed walking (>20,000 gait cycles) is included in the data set. We provide full body marker trajectories and ground reaction loads in addition to a presentation of processed data that includes gait events, 2D joint angles, angular rates, and joint torques along with the open source software used for the computations. The protocol is described in detail and supported with additional elaborate meta data for each trial. This data can likely be useful for validating or generating mathematical models that are capable of simulating normal periodic gait and non-periodic, perturbed gaits. PMID:25945311
Toda, Haruki; Nagano, Akinori; Luo, Zhiwei
2016-01-01
[Purpose] The purpose of this study was to clarify whether walking speed affects acceleration variability of the head, lumbar, and lower extremity by simultaneously evaluating of acceleration. [Subjects and Methods] Twenty young individuals recruited from among the staff at Kurashiki Heisei Hospital participated in this study. Eight accelerometers were used to measure the head, lumbar and lower extremity accelerations. The participants were instructed to walk at five walking speeds prescribed by a metronome. Acceleration variability was assessed by a cross-correlation analysis normalized using z-transform in order to evaluate stride-to-stride variability. [Results] Vertical acceleration variability was the smallest in all body parts, and walking speed effect had laterality. Antero-posterior acceleration variability was significantly associated with walking speed at sites other than the head. Medio-lateral acceleration variability of the bilateral hip alone was smaller than the antero-posterior variability. [Conclusion] The findings of this study suggest that the effect of walking speed changes on the stride-to-stride acceleration variability was individual for each body parts, and differs among directions. PMID:27390419
Physiotherapy Effects in Gait Speed in Patients with Knee Osteoarthritis.
Tani, Klejda; Kola, Irena; Dhamaj, Fregen; Shpata, Vjollca; Zallari, Kiri
2018-03-15
Knee osteoarthritis is a chronic degenerative disease, known as the most common cause of difficulty walking in older adults and subsequently is associated with slow walking. Also one of the main symptoms is a degenerative and mechanics type of pain. Pain is very noticeable while walking in rugged terrain, during ascent and descent of stairs, when changing from sitting to standing position as well as staying in one position for a long time. Many studies have shown that the strength of the quadriceps femoris muscle can affect gait, by improving or weakening it. Kinesio Tape is a physiotherapeutic technique, which reduces pain and increases muscular strength by irritating the skin receptors. The aims of this study was first to verify if the application of Kinesio Tape on quadriceps femoris muscle increases gait speed in patients with knee osteoarthritis and secondly if applying Kinesio Tape on quadriceps femoris muscle reduces pain while walking. Seventy-four patients with primary knee osteoarthritis, aged 50 - 73 years, participated in this study. Firstly we observed the change of gait speed, while walking for 10 meters at normal speed for each patient, before, one day and three days after the application of Kinesio Tape on quadriceps femoris muscle, with the help of the 10 - meter walk test. Secondly, we observed the change of pain, while walking for 10 meters at normal speed for each patient, before, one day and three days after the application, with the help of Numerical Pain Rating Scale - NRS. Our results indicated that there was a significant increase in gait speed while walking for 10 meters one day and also three days after application of Kinesio Tape on quadriceps femoris muscle. Also, there was a significant reduction of pain level 1 and 3 days after application of Kinesio Tape, compared to the level of pain before its application. Our results indicated that there was a significant decrease in pain and increase of gait speed while walking for 10 meters. Kinesio Tape can be used in patients with knee osteoarthritis, especially when changing walking stereotypes is a long-term goal of the treatment.
Hejrati, Babak; Chesebrough, Sam; Bo Foreman, K; Abbott, Jake J; Merryweather, Andrew S
2016-10-01
Previous studies have shown that inclusion of arm swing in gait rehabilitation leads to more effective walking recovery in patients with walking impairments. However, little is known about the correct arm-swing trajectories to be used in gait rehabilitation given the fact that changes in walking conditions affect arm-swing patterns. In this paper we present a comprehensive look at the effects of a variety of conditions on arm-swing patterns during walking. The results describe the effects of surface slope, walking speed, and physical characteristics on arm-swing patterns in healthy individuals. We propose data-driven mathematical models to describe arm-swing trajectories. Thirty individuals (fifteen females and fifteen males) with a wide range of height (1.58-1.91m) and body mass (49-98kg), participated in our study. Based on their self-selected walking speed, each participant performed walking trials with four speeds on five surface slopes while their whole-body kinematics were recorded. Statistical analysis showed that walking speed, surface slope, and height were the major factors influencing arm swing during locomotion. The results demonstrate that data-driven models can successfully describe arm-swing trajectories for normal gait under varying walking conditions. The findings also provide insight into the behavior of the elbow during walking. Copyright © 2016. Published by Elsevier B.V.
Takahashi, Kota Z; Stanhope, Steven J
2013-09-01
Over the last half-century, the field of prosthetic engineering has continuously evolved with much attention being dedicated to restoring the mechanical energy properties of ankle joint musculatures during gait. However, the contributions of 'distal foot structures' (e.g., foot muscles, plantar soft tissue) have been overlooked. Therefore, the purpose of this study was to quantify the total mechanical energy profiles (e.g., power, work, and work-ratio) of the natural ankle-foot system (NAFS) by combining the contributions of the ankle joint and all distal foot structures during stance in level-ground steady state walking across various speeds (0.4, 0.6, 0.8 and 1.0 statures/s). The results from eleven healthy subjects walking barefoot indicated ankle joint and distal foot structures generally performed opposing roles: the ankle joint performed net positive work that systematically increased its energy generation with faster walking speeds, while the distal foot performed net negative work that systematically increased its energy absorption with faster walking speeds. Accounting for these simultaneous effects, the combined ankle-foot system exhibited increased work-ratios with faster walking. Most notably, the work-ratio was not significantly greater than 1.0 during the normal walking speed of 0.8 statures/s. Therefore, a prosthetic design that strategically exploits passive-dynamic properties (e.g., elastic energy storage and return) has the potential to replicate the mechanical energy profiles of the NAFS during level-ground steady-state walking. Copyright © 2013 Elsevier B.V. All rights reserved.
Development of Independent Locomotion in Children with a Severe Visual Impairment
ERIC Educational Resources Information Center
Hallemans, Ann; Ortibus, Els; Truijen, Steven; Meire, Francoise
2011-01-01
Locomotion of children and adults with a visual impairment (ages 1-44, n = 28) was compared to that of age-related individuals with normal vision (n = 60). Participants walked barefoot at preferred speed while their gait was recorded by a Vicon[R] system. Walking speed, heading angle, step frequency, stride length, step width, stance phase…
Caravaggi, Paolo; Leardini, Alberto; Giacomozzi, Claudia
2016-10-03
Plantar load can be considered as a measure of the foot ability to transmit forces at the foot/ground, or foot/footwear interface during ambulatory activities via the lower limb kinematic chain. While morphological and functional measures have been shown to be correlated with plantar load, no exhaustive data are currently available on the possible relationships between range of motion of foot joints and plantar load regional parameters. Joints' kinematics from a validated multi-segmental foot model were recorded together with plantar pressure parameters in 21 normal-arched healthy subjects during three barefoot walking trials. Plantar pressure maps were divided into six anatomically-based regions of interest associated to corresponding foot segments. A stepwise multiple regression analysis was performed to determine the relationships between pressure-based parameters, joints range of motion and normalized walking speed (speed/subject height). Sagittal- and frontal-plane joint motion were those most correlated to plantar load. Foot joints' range of motion and normalized walking speed explained between 6% and 43% of the model variance (adjusted R 2 ) for pressure-based parameters. In general, those joints' presenting lower mobility during stance were associated to lower vertical force at forefoot and to larger mean and peak pressure at hindfoot and forefoot. Normalized walking speed was always positively correlated to mean and peak pressure at hindfoot and forefoot. While a large variance in plantar pressure data is still not accounted for by the present models, this study provides statistical corroboration of the close relationship between joint mobility and plantar pressure during stance in the normal healthy foot. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sullivan, Katherine J; Knowlton, Barbara J; Dobkin, Bruce H
2002-05-01
To investigate the effect of practice paradigms that varied treadmill speed during step training with body weight support in subjects with chronic hemiparesis after stroke. Randomized, repeated-measures pilot study with 1- and 3-month follow-ups. Outpatient locomotor laboratory. Twenty-four individuals with hemiparetic gait deficits whose walking speeds were at least 50% below normal. Participants were stratified by locomotor severity based on initial walking velocity and randomly assigned to treadmill training at slow (0.5mph), fast (2.0mph), or variable (0.5, 1.0, 1.5, 2.0mph) speeds. Participants received 20 minutes of training per session for 12 sessions over 4 weeks. Self-selected overground walking velocity (SSV) was assessed at the onset, middle, and end of training, and 1 and 3 months later. SSV improved in all groups compared with baseline (P<.001). All groups increased SSV in the 1-month follow-up (P<.01) and maintained these gains at the 3-month follow-up (P=.77). The greatest improvement in SSV across training occurred with fast training speeds compared with the slow and variable groups combined (P=.04). Effect size (ES) was large between fast compared with slow (ES=.75) and variable groups (ES=.73). Training at speeds comparable with normal walking velocity was more effective in improving SSV than training at speeds at or below the patient's typical overground walking velocity. Copyright 2002 by the American Congress of Rehabilitation Medicine and the American Academy of Physical Medicine and Rehabilitation
Women with fibromyalgia walk with an altered muscle synergy.
Pierrynowski, Michael R; Tiidus, Peter M; Galea, Victoria
2005-11-01
Most individuals can use different movement and muscle recruitment patterns to perform a stated task but often only one pattern is selected which optimizes an unknown global objective given the individual's neuromusculoskeletal characteristics. Patients with fibromyalgia syndrome (FS), characterized by their chronic pain, reduced physical work capacity and muscular fatigue, could exhibit a different control signature compared to asymptomatic control volunteers (CV). To test this proposal, 22 women with FS, and 11 CV, were assessed in a gait analysis laboratory. Each subject walked repeatedly at self-selected slow, comfortable, and fast walking speeds. The gait analysis provided, for each walk, each subject's stride time, length, and velocity, and ground reaction force, and lower extremity joint kinematics, moments and powers. The data were then anthropometrically scaled and velocity normalized to reduce the influence of subject mass, leg length, and walking speed on the measured gait outcomes. Similarities and differences in the two groups' scaled and normalized gait patterns were then determined. Results show that FS and CV walk with externally similar stride lengths, times, and velocities, and joint angles and ground reaction forces but they use internally different muscle recruitment patterns. Specifically, FS preferentially power gait using their hip flexors instead of their ankle plantarflexors. Interestingly, CV use a similar muscle fatiguing recruitment pattern to walk fast which parallels the common complaint of fatigue reported by FS walking at comfortable speed.
Dynamic Visual Acuity While Walking in Normals and Labyrinthine-Deficient Patients
NASA Technical Reports Server (NTRS)
Hillman, Edward J.; Bloomberg, Jacob J.; McDonald, P. Vernon; Cohen, Helen S.
1996-01-01
We describe a new, objective, easily administered test of dynamic visual acuity (DVA) while walking. Ten normal subjects and five patients with histories of severe bilateral vestibular dysfunctions participated in this study. Subjects viewed a visual display of numerals of different font sizes presented on a laptop computer while they stood still and while they walked on a motorized treadmill. Treadmill speed was adapted for 4 of 5 patients. Subjects were asked to identify the numerals as they appeared on the computer screen. Test results were reasonably repeatable in normals. The percent correct responses at each font size dropped slightly while walking in normals and dropped significantly more in patients. Patients performed significantly worse than normals while standing still and while walking. This task may be useful for evaluating post-flight astronauts and vestibularly impaired patients.
Effects of Unstable Shoes on Energy Cost During Treadmill Walking at Various Speeds
Koyama, Keiji; Naito, Hisashi; Ozaki, Hayao; Yanagiya, Toshio
2012-01-01
In recent years, shoes having rounded soles in the anterior-posterior direction have been commercially introduced, which are commonly known as unstable shoes (US). However, physiological responses during walking in US, particularly at various speeds, have not been extensively studied to date. The purpose of this study was to investigate the effect of wearing unstable shoes while walking at low to high speeds on the rate of perceived exertion (RPE), muscle activation, oxygen consumption (VO2), and optimum speed. Healthy male adults wore US or normal walking shoes (WS), and walked at various speeds on a treadmill with no inclination. In experiment 1, subjects walked at 3, 4, 5, 6, and 7 km·h-1 (duration, 3 min for all speeds) and were recorded on video from the right sagittal plane to calculate the step length and cadence. Simultaneously, electromyogram (EMG) was recorded from six different thigh and calf muscles, and the integrated EMG (iEMG) was calculated. In experiment 2, RPE, heart rate and VO2 were measured with the walking speed being increased from 3.6 to 7.2 km·h-1 incrementally by 0.9 km·h-1 every 6 min. The optimum speed, defined by the least oxygen cost, was calculated from the fitted quadratic relationship between walking speed and oxygen cost. Wearing US resulted in significantly longer step length and lower cadence compared with WS condition at any given speed. For all speeds, iEMG in the medial gastrocnemius and soleus muscles, heart rate, and VO2 were significantly higher in US than WS. However, RPE and optimum speed (US, 4.75 ± 0.32 km·h-1; WS, 4. 79 ± 0.18 km·h-1) did not differ significantly between the two conditions. These results suggest that unstable shoes can increase muscle activity of lower legs and energy cost without influencing RPE and optimum speed during walking at various speeds. Key points During walking at various speeds, wearing unstable shoes results in longer step length and lower cadence compared with wearing WS. Wearing unstable shoes increases muscle activities of lower leg. Wearing unstable shoes shifts the quadratic relationship between walking speed and oxygen cost upward and increases energy cost about 4% without changes in RPE and optimum speed. PMID:24150072
Effect of reduced gravity on the preferred walk-run transition speed
NASA Technical Reports Server (NTRS)
Kram, R.; Domingo, A.; Ferris, D. P.
1997-01-01
We investigated the effect of reduced gravity on the human walk-run gait transition speed and interpreted the results using an inverted-pendulum mechanical model. We simulated reduced gravity using an apparatus that applied a nearly constant upward force at the center of mass, and the subjects walked and ran on a motorized treadmill. In the inverted pendulum model for walking, gravity provides the centripetal force needed to keep the pendulum in contact with the ground. The ratio of the centripetal and gravitational forces (mv2/L)/(mg) reduces to the dimensionless Froude number (v2/gL). Applying this model to a walking human, m is body mass, v is forward velocity, L is leg length and g is gravity. In normal gravity, humans and other bipeds with different leg lengths all choose to switch from a walk to a run at different absolute speeds but at approximately the same Froude number (0.5). We found that, at lower levels of gravity, the walk-run transition occurred at progressively slower absolute speeds but at approximately the same Froude number. This supports the hypothesis that the walk-run transition is triggered by the dynamics of an inverted-pendulum system.
Schättin, Alexandra; Arner, Rendel; Gennaro, Federico; de Bruin, Eling D.
2016-01-01
During aging, the prefrontal cortex (PFC) undergoes age-dependent neuronal changes influencing cognitive and motor functions. Motor-learning interventions are hypothesized to ameliorate motor and cognitive deficits in older adults. Especially, video game-based physical exercise might have the potential to train motor in combination with cognitive abilities in older adults. The aim of this study was to compare conventional balance training with video game-based physical exercise, a so-called exergame, on the relative power (RP) of electroencephalographic (EEG) frequencies over the PFC, executive function (EF), and gait performance. Twenty-seven participants (mean age 79.2 ± 7.3 years) were randomly assigned to one of two groups. All participants completed 24 trainings including three times a 30 min session/week. The EEG measurements showed that theta RP significantly decreased in favor of the exergame group [L(14) = 6.23, p = 0.007]. Comparing pre- vs. post-test, EFs improved both within the exergame (working memory: z = −2.28, p = 0.021; divided attention auditory: z = −2.51, p = 0.009; divided attention visual: z = −2.06, p = 0.040; go/no-go: z = −2.55, p = 0.008; set-shifting: z = −2.90, p = 0.002) and within the balance group (set-shifting: z = −2.04, p = 0.042). Moreover, spatio-temporal gait parameters primarily improved within the exergame group under dual-task conditions (speed normal walking: z = −2.90, p = 0.002; speed fast walking: z = −2.97, p = 0.001; cadence normal walking: z = −2.97, p = 0.001; stride length fast walking: z = −2.69, p = 0.005) and within the balance group under single-task conditions (speed normal walking: z = −2.54, p = 0.009; speed fast walking: z = −1.98, p = 0.049; cadence normal walking: z = −2.79, p = 0.003). These results indicate that exergame training as well as balance training positively influence prefrontal cortex activity and/or function in varying proportion. PMID:27932975
Two Independent Contributions to Step Variability during Over-Ground Human Walking
Collins, Steven H.; Kuo, Arthur D.
2013-01-01
Human walking exhibits small variations in both step length and step width, some of which may be related to active balance control. Lateral balance is thought to require integrative sensorimotor control through adjustment of step width rather than length, contributing to greater variability in step width. Here we propose that step length variations are largely explained by the typical human preference for step length to increase with walking speed, which itself normally exhibits some slow and spontaneous fluctuation. In contrast, step width variations should have little relation to speed if they are produced more for lateral balance. As a test, we examined hundreds of overground walking steps by healthy young adults (N = 14, age < 40 yrs.). We found that slow fluctuations in self-selected walking speed (2.3% coefficient of variation) could explain most of the variance in step length (59%, P < 0.01). The residual variability not explained by speed was small (1.5% coefficient of variation), suggesting that step length is actually quite precise if not for the slow speed fluctuations. Step width varied over faster time scales and was independent of speed fluctuations, with variance 4.3 times greater than that for step length (P < 0.01) after accounting for the speed effect. That difference was further magnified by walking with eyes closed, which appears detrimental to control of lateral balance. Humans appear to modulate fore-aft foot placement in precise accordance with slow fluctuations in walking speed, whereas the variability of lateral foot placement appears more closely related to balance. Step variability is separable in both direction and time scale into balance- and speed-related components. The separation of factors not related to balance may reveal which aspects of walking are most critical for the nervous system to control. PMID:24015308
Elastic coupling of limb joints enables faster bipedal walking
Dean, J.C.; Kuo, A.D.
2008-01-01
The passive dynamics of bipedal limbs alone are sufficient to produce a walking motion, without need for control. Humans augment these dynamics with muscles, actively coordinated to produce stable and economical walking. Present robots using passive dynamics walk much slower, perhaps because they lack elastic muscles that couple the joints. Elastic properties are well known to enhance running gaits, but their effect on walking has yet to be explored. Here we use a computational model of dynamic walking to show that elastic joint coupling can help to coordinate faster walking. In walking powered by trailing leg push-off, the model's speed is normally limited by a swing leg that moves too slowly to avoid stumbling. A uni-articular spring about the knee allows faster but uneconomical walking. A combination of uni-articular hip and knee springs can speed the legs for improved speed and economy, but not without the swing foot scuffing the ground. Bi-articular springs coupling the hips and knees can yield high economy and good ground clearance similar to humans. An important parameter is the knee-to-hip moment arm that greatly affects the existence and stability of gaits, and when selected appropriately can allow for a wide range of speeds. Elastic joint coupling may contribute to the economy and stability of human gait. PMID:18957360
Van Kammen, Klaske; Boonstra, Annemarijke; Reinders-Messelink, Heleen; den Otter, Rob
2014-01-01
Background For the development of specialized training protocols for robot assisted gait training, it is important to understand how the use of exoskeletons alters locomotor task demands, and how the nature and magnitude of these changes depend on training parameters. Therefore, the present study assessed the combined effects of gait speed and body weight support (BWS) on muscle activity, and compared these between treadmill walking and walking in the Lokomat exoskeleton. Methods Ten healthy participants walked on a treadmill and in the Lokomat, with varying levels of BWS (0% and 50% of the participants’ body weight) and gait speed (0.8, 1.8, and 2.8 km/h), while temporal step characteristics and muscle activity from Erector Spinae, Gluteus Medius, Vastus Lateralis, Biceps Femoris, Gastrocnemius Medialis, and Tibialis Anterior muscles were recorded. Results The temporal structure of the stepping pattern was altered when participants walked in the Lokomat or when BWS was provided (i.e. the relative duration of the double support phase was reduced, and the single support phase prolonged), but these differences normalized as gait speed increased. Alternations in muscle activity were characterized by complex interactions between walking conditions and training parameters: Differences between treadmill walking and walking in the exoskeleton were most prominent at low gait speeds, and speed effects were attenuated when BWS was provided. Conclusion Walking in the Lokomat exoskeleton without movement guidance alters the temporal step regulation and the neuromuscular control of walking, although the nature and magnitude of these effects depend on complex interactions with gait speed and BWS. If normative neuromuscular control of gait is targeted during training, it is recommended that very low speeds and high levels of BWS should be avoided when possible. PMID:25226302
Anticipatory postural adjustments for altering direction during walking.
Xu, Dali; Carlton, Les G; Rosengren, Karl S
2004-09-01
The authors examined how individuals adapt their gait and regulate their body configuration before altering direction during walking. Eight young adults were asked to change direction during walking with different turning angles (0 degree, 45 degree, 90 degree), pivot foot (left, right), and walking speeds (normal and fast). The authors used video and force platform systems to determine participants' whole-body center of mass and the center of pressure during the step before they changed direction. The results showed that anticipatory postural adjustments occurred during the prior step and occurred earlier for the fast walking speed. Anticipatory postural adjustments were affected by all 3 variables (turn angle, pivot foot, and speed). Participants leaned backward and sideward on the prior step in anticipation of the turn. Those findings indicate that the motor system uses central control mechanisms to predict the required anticipatory adjustments and organizes the body configuration on the basis of the movement goal.
Chehab, E F; Andriacchi, T P; Favre, J
2017-06-14
The increased use of gait analysis has raised the need for a better understanding of how walking speed and demographic variations influence asymptomatic gait. Previous analyses mainly reported relationships between subsets of gait features and demographic measures, rendering it difficult to assess whether gait features are affected by walking speed or other demographic measures. The purpose of this study was to conduct a comprehensive analysis of the kinematic and kinetic profiles during ambulation that tests for the effect of walking speed in parallel to the effects of age, sex, and body mass index. This was accomplished by recruiting a population of 121 asymptomatic subjects and analyzing characteristic 3-dimensional kinematic and kinetic features at the ankle, knee, hip, and pelvis during walking trials at slow, normal, and fast speeds. Mixed effects linear regression models were used to identify how each of 78 discrete gait features is affected by variations in walking speed, age, sex, and body mass index. As expected, nearly every feature was associated with variations in walking speed. Several features were also affected by variations in demographic measures, including age affecting sagittal-plane knee kinematics, body mass index affecting sagittal-plane pelvis and hip kinematics, body mass index affecting frontal-plane knee kinematics and kinetics, and sex affecting frontal-plane kinematics at the pelvis, hip, and knee. These results could aid in the design of future studies, as well as clarify how walking speed, age, sex, and body mass index may act as potential confounders in studies with small populations or in populations with insufficient demographic variations for thorough statistical analyses. Copyright © 2017 Elsevier Ltd. All rights reserved.
Validity and Reliability of Dynamic Visual Acuity (DVA) Measurement During Walking
NASA Technical Reports Server (NTRS)
Deshpande, Nandini; Peters, Brian T.; Bloomberg, Jacob J.
2014-01-01
DVA is primarily subserved by the vestibulo-ocular reflex mechanism. Individuals with vestibular hypofunction commonly experience highly debilitating illusory movement or blurring of visual images during daily activities possibly, due to impaired DVA. Even without pathologies, gradual age-related morphological deterioration is evident in all components of the vestibular system. We examined the construct validity to detect age-related differences and test-retest reliability of DVA measurements performed during walking. METHODS: Healthy adults were recruited into 3 groups: 1. young (20-39years, n=18), 2. middle-aged (40-59years, n=14), and 3. older adults (60-80years, n=15). Randomly selected seven participants from each group (n=21) participated in retesting. Participants were excluded if they had a history of vestibular or neuromuscular pathologies, dizziness/vertigo or >1 falls in the past year. Older persons with MMSE scores <29/30 were excluded to minimize cognitive errors. Participants' age, height, weight and normal walking speed were recorded. The binocular DVA was measured while walking on a treadmill at 0.8 m/s, 1.0 m/s and 1.2 m/s speeds. The walking speeds chosen represent a range of slow to moderate walking speeds for adult life span in participants who have no current mobility problems. The monitor that displayed Landolt 'C' optotypes was placed at 50 cm from the eyes for nearDVA (primary compensation by otolith organs) and at 3.0 m for farDVA (primary compensation by semicircular canals). A mixed factor ANOVA (age group x speed) was performed separately for the Near and FarDVA for detecting group differences. Intraclass correlation coefficients (ICCs) were calculated for each condition to determine test-retest reliability. RESULTS: The three age groups were not different in their height, weight and normal walking speed (p>0.05). The post hoc analyses for DVA measurements demonstrated that each group was significantly different from the other two groups for Near as well as FarDVA (p<0.001-p=0.031). The effect of speed was significant for both NearDVA (p=0.012) and FarDVA (p=0.014), however, there was no age group x speed interaction (FarDVA p=0.607, NearDVA p=0.343). The ICCs for Near and FarDVA ranged between 0.85- 0.88 and 0.71-0.87, respectively. CONCLUSIONS: Differences in DVA between the three age groups were detected by using both Near and FarDVA protocols irrespective of the walking speed. Therefore, age group-specific reference values should be used for detecting malfunction. Further, consistency in walking speed is critical for comparing between studies. NearDVA at all walking speeds and FarDVA at the speed of 1.2 m/s demonstrated excellent testretest reliability. FarDVA at 0.8 m/s and 1.0 m/s demonstrated good test-retest reliability (ICCs 0.71 and 0.77, respectively).
Rising Energetic Cost of Walking Predicts Gait Speed Decline With Aging.
Schrack, Jennifer A; Zipunnikov, Vadim; Simonsick, Eleanor M; Studenski, Stephanie; Ferrucci, Luigi
2016-07-01
Slow gait is a robust biomarker of health and a predictor of functional decline and death in older adults, yet factors contributing to the decline in gait speed with aging are not well understood. Previous research suggests that the energetic cost of walking at preferred speed is inversely associated with gait speed, but whether individuals with a rising energetic cost of walking experience a steeper rate of gait speed decline has not been investigated. In participants of the Baltimore Longitudinal Study of Aging, the energetic cost of overground walking at preferred speed (mL/kg/m) was assessed between 2007 and 2014 using a portable indirect calorimeter. The longitudinal association between the energetic cost of walking and usual gait speed over 6 meters (m/s) was assessed with multivariate linear regression models, and the risk of slow gait (<1.0 m/s) was analyzed using Cox proportional hazards models. The study population consisted of 457 participants aged 40 and older who contributed 1,121 person-visits to the analysis. In fully adjusted models, increases in the energetic cost of walking predicted the rate of gait speed decline in those older than 65 years (β = -0.008 m/s, p < .001). Moreover, those with a higher energetic cost of walking (>0.17mL/kg/m) had a 57% greater risk of developing slow gait compared with a normal energetic cost of walking (≤0.17mL/kg/m; adjusted hazard ratio = 1.57, 95% confidence interval: 1.01-2.46). These findings suggest that strategies to maintain walking efficiency hold significant implications for maintaining mobility in late life. Efforts to curb threats to walking efficiency should focus on therapies to treat gait and balance impairments, and reduce clinical disease burden. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Vitamin D and walking speed in older adults: Systematic review and meta-analysis.
Annweiler, Cedric; Henni, Samir; Walrand, Stéphane; Montero-Odasso, Manuel; Duque, Gustavo; Duval, Guillaume T
2017-12-01
Vitamin D is involved in musculoskeletal health. There is no consensus on a possible association between circulating 25-hydroxyvitamin D (25OHD) concentrations and walking speed, a 'vital sign' in older adults. Our objective was to systematically review and quantitatively assess the association of 25OHD concentration with walking speed. A Medline search was conducted on June 2017, with no limit of date, using the MeSH terms "Vitamin D" OR "Vitamin D Deficiency" combined with "Gait" OR "Gait disorders, Neurologic" OR "Walking speed" OR "Gait velocity". Fixed-effect meta-analyses were performed to compute: i) mean differences in usual and fast walking speeds and Timed Up and Go test (TUG) between participants with severe vitamin D deficiency (≤25nmol/L) (SVDD), vitamin D deficiency (≤50nmol/L) (VDD), vitamin D insufficiency (≤75nmol/L) (VDI) and normal vitamin D (>75nmol/L) (NVD); ii) risk of slow walking speed according to vitamin D status. Of the 243 retrieved studies, 22 observational studies (17 cross-sectional, 5 longitudinal) met the selection criteria. The number of participants ranged between 54 and 4100 (0-100% female). Usual walking speed was slower among participants with hypovitaminosis D, with a clinically relevant difference compared with NVD of -0.18m/s for SVDD, -0.08m/s for VDD and -0.12m/s for VDI. We found similar results regarding the fast walking speed (mean differences -0.04m/s for VDD and VDI compared with NVD) and TUG (mean difference 0.48s for SVDD compared with NVD). A slow usual walking speed was positively associated with SVDD (summary OR=2.17[95%CI:1.52-3.10]), VDD (OR=1.38[95%CI:1.01-1.89]) and VDI (OR=1.38[95%CI:1.04-1.83]), using NVD as the reference. In conclusion, this meta-analysis provides robust evidence that 25OHD concentrations are positively associated with walking speed among adults. Copyright © 2017. Published by Elsevier B.V.
Functional implications of muscle co-contraction during gait in advanced age.
Lo, Justine; Lo, On-Yee; Olson, Erin A; Habtemariam, Daniel; Iloputaife, Ikechukwu; Gagnon, Margaret M; Manor, Brad; Lipsitz, Lewis A
2017-03-01
Older adults often exhibit high levels of lower extremity muscle co-contraction, which may be the cause or effect of age-related impairments in gait and associated falls. Normal gait requires intact executive function and thus can be slowed by challenging executive resources available to the neuromuscular system through the performance of a dual task. We therefore investigated associations between lower limb co-contraction and gait characteristics under normal and dual task conditions in healthy older adults (85.4±5.9years). We hypothesized that greater co-contraction is associated with slower gait speed during dual task conditions that stress executive and attentional abilities. Co-contraction was quantified during different phases of the gait cycle using surface electromyography (EMG) signals obtained from the anterior tibialis and lateral gastrocnemius while walking at preferred speed during normal and dual task conditions. Variables included the time difference to complete the Trail Making Test A and B (ΔTMT) and gait measures during normal or dual task walking. Higher co-contraction levels during the swing phase of both normal and dual task walking were associated with longer ΔTMT (normal: R 2 =0.25, p=0.02; dual task: R 2 =0.27, p=0.01). Co-contraction was associated with gait measures during dual task walking only; greater co-contraction levels during stride and stance were associated with slower gait speed (stride: R 2 =0.38, p=0.04; stance: R 2 =0.38, p=0.04), and greater co-contraction during stride was associated with longer stride time (R 2 =0.16, p=0.03). Our results suggest that relatively high lower limb co-contraction may explain some of the mobility impairments associated with the conduct of executive tasks in older adults. Copyright © 2017 Elsevier B.V. All rights reserved.
Effects of obesity on lower extremity muscle function during walking at two speeds.
Lerner, Zachary F; Board, Wayne J; Browning, Raymond C
2014-03-01
Walking is a recommended form of physical activity for obese adults, yet the effects of obesity and walking speed on the biomechanics of walking are not well understood. The purpose of this study was to examine joint kinematics, muscle force requirements and individual muscle contributions to the walking ground reaction forces (GRFs) at two speeds (1.25 ms(-1) and 1.50 ms(-1)) in obese and nonobese adults. Vasti (VAS), gluteus medius (GMED), gastrocnemius (GAST), and soleus (SOL) forces and their contributions to the GRFs were estimated using three-dimensional musculoskeletal models scaled to the anthropometrics of nine obese (35.0 (3.78 kg m(-2))); body mass index mean (SD)) and 10 nonobese (22.1 (1.02 kg m(-2))) subjects. The obese individuals walked with a straighter knee in early stance at the faster speed and greater pelvic obliquity during single limb support at both speeds. Absolute force requirements were generally greater in obese vs. nonobese adults, the main exception being VAS, which was similar between groups. At both speeds, lean mass (LM) normalized force output for GMED was greater in the obese group. Obese individuals appear to adopt a gait pattern that reduces VAS force output, especially at speeds greater than their preferred walking velocity. Greater relative GMED force requirements in obese individuals may contribute to altered kinematics and increased risk of musculoskeletal injury/pathology. Our results suggest that obese individuals may have relative weakness of the VAS and hip abductor muscles, specifically GMED, which may act to increase their risk of musculoskeletal injury/pathology during walking, and therefore may benefit from targeted muscle strengthening. Copyright © 2013 Elsevier B.V. All rights reserved.
Chang, Sarah R; Kobetic, Rudi; Triolo, Ronald J
2017-01-01
An important consideration in the design of a practical system to restore walking in individuals with spinal cord injury is to minimize metabolic energy demand on the user. In this study, the effects of exoskeletal constraints on metabolic energy expenditure were evaluated in able-bodied volunteers to gain insight into the demands of walking with a hybrid neuroprosthesis after paralysis. The exoskeleton had a hydraulic mechanism to reciprocally couple hip flexion and extension, unlocked hydraulic stance controlled knee mechanisms, and ankles fixed at neutral by ankle-foot orthoses. These mechanisms added passive resistance to the hip (15 Nm) and knee (6 Nm) joints while the exoskeleton constrained joint motion to the sagittal plane. The average oxygen consumption when walking with the exoskeleton was 22.5 ± 3.4 ml O2/min/kg as compared to 11.7 ± 2.0 ml O2/min/kg when walking without the exoskeleton at a comparable speed. The heart rate and physiological cost index with the exoskeleton were at least 30% and 4.3 times higher, respectively, than walking without it. The maximum average speed achieved with the exoskeleton was 1.2 ± 0.2 m/s, at a cadence of 104 ± 11 steps/min, and step length of 70 ± 7 cm. Average peak hip joint angles (25 ± 7°) were within normal range, while average peak knee joint angles (40 ± 8°) were less than normal. Both hip and knee angular velocities were reduced with the exoskeleton as compared to normal. While the walking speed achieved with the exoskeleton could be sufficient for community ambulation, metabolic energy expenditure was significantly increased and unsustainable for such activities. This suggests that passive resistance, constraining leg motion to the sagittal plane, reciprocally coupling the hip joints, and weight of exoskeleton place considerable limitations on the utility of the device and need to be minimized in future designs of practical hybrid neuroprostheses for walking after paraplegia.
The influence of the Re-Link Trainer on gait symmetry in healthy adults.
Ward, Sarah; Wiedemann, Lukas; Stinear, Cathy; Stinear, James; McDaid, Andrew
2017-07-01
Walking function post-stroke is characterized by asymmetries in gait cycle parameters and joint kinematics. The Re-Link Trainer is designed to provide kinematic constraint to the paretic lower limb, to guide a physiologically normal and symmetrical gait pattern. The purpose of this pilot study was to assess the immediate influence of the Re-Link Trainer on measures of gait symmetry in healthy adults. Participants demonstrated a significantly lower cadence and a 62% reduction in walking speed in the Re-Link Trainer compared to normal walking. The step length ratio had a significant increase from 1.0 during normal walking to 2.5 when walking in the Re-Link Trainer. The results from this pilot study suggest in its current iteration the Re-Link Trainer imposes an asymmetrical constraint on lower limb kinematics.
McCaig, Cassandra M; Adams, Scott G; Dykstra, Allyson D; Jog, Mandar
2016-01-01
Previous studies have demonstrated a negative effect of concurrent walking and talking on gait in Parkinson's disease (PD) but there is limited information about the effect of concurrent walking on speech production. The present study examined the effect of sitting, standing, and three concurrent walking tasks (slow, normal, fast) on conversational speech intensity and speech rate in fifteen individuals with hypophonia related to idiopathic Parkinson's disease (PD) and fourteen age-equivalent controls. Interlocuter (talker-to-talker) distance effects and walking speed were also examined. Concurrent walking was found to produce a significant increase in speech intensity, relative to standing and sitting, in both the control and PD groups. Faster walking produced significantly greater speech intensity than slower walking. Concurrent walking had no effect on speech rate. Concurrent walking and talking produced significant reductions in walking speed in both the control and PD groups. In general, the results of the present study indicate that concurrent walking tasks and the speed of concurrent walking can have a significant positive effect on conversational speech intensity. These positive, "energizing" effects need to be given consideration in future attempts to develop a comprehensive model of speech intensity regulation and they may have important implications for the development of new evaluation and treatment procedures for individuals with hypophonia related to PD. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
Zhang, Fang; Deshpande, Nandini
2016-01-01
Fifteen young (20-30 years old) and 15 older (>65 years old) healthy participants were recruited to investigate age-related differences in head and trunk control under suboptimal vestibular conditions (galvanic vestibular stimulation, or GVS) and vision conditions during normal and narrow-based walking. Head-roll velocity decreased in the blurred-vision condition and marginally increased with GVS in older but not in young participants. Head pitch increased, whereas head-roll velocity decreased in narrow-base walking. Trunk pitch, trunk-pitch velocity, and gait speed increased with GVS, whereas trunk-pitch velocity and gait speed decreased in narrow-base walking. Marginally increased head-roll velocity in the older participants possibly suggests decreased integrative ability of the central nervous system in elderly people. The changes in head control during narrow-base walking may be an attempt to simplify the interpretation of the vestibular signal and increase otolith sensitivity. The complexity of controlling the trunk in the mediolateral direction was suggested by different strategies used for trunk control in different conditions.
RICE, JOHN; SEELEY, MATTHEW K.
2010-01-01
Functional asymmetry is an idea that is often used to explain documented bilateral asymmetries during able-bodied gait. Within this context, this idea suggests that the non-dominant and dominant legs, considered as whole entities, contribute asymmetrically to support and propulsion during walking. The degree of functional asymmetry may depend upon walking speed. The purpose of this study was to better understand the potential relationship between functional asymmetry and walking speed. Bilateral ground reaction forces (GRF) were measured for 20 healthy subjects who walked at nine different speeds: preferred, +10%, +20%, +30%, +40, −10%, −20%, −30%, and −40%. Contribution to support was determined to be the support impulse: the time integral of the vertical GRF during stance. Contribution to propulsion was determined to be the propulsion impulse: the time integral of the anterior-posterior GRF, while this force was directed forward. Repeated measures ANOVA (α = 0.05) revealed leg × speed interactions for normalized support (p = 0.001) and propulsion (p = 0.001) impulse, indicating that speed does affect the degree of functional asymmetry during gait. Post hoc comparisons (α = 0.05) showed that support impulse was approximately 2% greater for the dominant leg, relative to the non-dominant leg, for the −10%, −20%, and −40% speeds. Propulsion impulse was 12% greater for the dominant leg than for the non-dominant leg at the +20% speed. Speed does appear to affect the magnitude of bilateral asymmetry during walking, however, only the bilateral difference for propulsion impulse at one fast speed (+20%) was supportive of the functional asymmetry idea. PMID:27182346
Chin, Takaaki; Machida, Katsuhiro; Sawamura, Seishi; Shiba, Ryouichi; Oyabu, Hiroko; Nagakura, Yuji; Takase, Izumi; Nakagawa, Akio
2006-04-01
The purpose of this study was to investigate the characteristic differences between the IP and C-Leg by making a comparative study of energy consumption and walking speeds in trans-femoral amputees. The subjects consisted of four persons with traumatic trans-femoral amputations aged 17 - 33 years who had been using the IP and were active in society. Fourteen able-bodied persons served as controls. First the energy consumption at walking speeds of 30, 50, 70, and 90 m/min was measured when using the IP. Then the knee joint was switched to the C-Leg. The same energy consumption measurement was taken once the subjects were accustomed to using the C-Leg. The most metabolically efficient walking speed was also determined. At a walking speed of 30 m/min using the IP and C-Leg, the oxygen rate (ml/kg/ min) was, on average, 42.5% and 33.3% higher (P< 0.05) than for the able-bodied group. At 50 m/min, the equivalent figures were 56.6% and 49.5% (P< 0.05), while at 70 m/min the figures were 57.8% and 51.2% (P<0.05), and at 90m/min the figures were 61.9% and 55.2% (P<0.05%). Comparing the oxygen rates for the subjects using the IP and C-Leg at walking speeds of 30 m/min and 90 m/min it was found that subjects who used C-Leg walked somewhat more efficiently than those who used IP. However, there was no significant difference between the two types at each walking speed. It was also determined that the most energy-efficient walking speed for subjects using the IP and C-Leg was the same as for the controls. Although the subjects in this study walked with comparable speed and efficiency whether they used the IP or C-Leg, the subjects' energy consumption while walking with the IP and C-Leg at normal speeds were much lower than previously reported. This study suggested that the microprocessor controlled knee joints appeared to be valid alternative for improving walking performance of trans-femoral amputees.
Tanigawa, Takanori; Takechi, Hajime; Arai, Hidenori; Yamada, Minoru; Nishiguchi, Shu; Aoyama, Tomoki
2014-10-01
It is very important to maintain cognitive function in patients with mild cognitive disorder. The aim of the present study was to determine whether the amount of physical activity is associated with memory function in older adults with mild cognitive disorder. A total of 47 older adults with mild cognitive disorder were studied; 30 were diagnosed with mild Alzheimer's disease and 17 with mild cognitive impairment. The global cognitive function, memory function, physical performance and amount of physical activity were measured in these patients. We divided these patients according to their walking speed (<1 m/s or >1 m/s). A total of 26 elderly patients were classified as the slow walking group, whereas 21 were classified as the normal walking group. The normal walking group was younger and had significantly better scores than the slow walking group in physical performance. Stepwise multiple linear regression analysis showed that only the daily step counts were associated with the Scenery Picture Memory Test in patients of the slow walking group (β=0.471, P=0.031), but not other variables. No variable was significantly associated with the Scenery Picture Memory Test in the normal walking group. Memory function was strongly associated with the amount of physical activity in patients with mild cognitive disorder who showed slow walking speed. The results show that lower physical activities could be a risk factor for cognitive decline, and that cognitive function in the elderly whose motor function and cognitive function are declining can be improved by increasing the amount of physical activity. © 2014 Japan Geriatrics Society.
Balance and gait in children with dyslexia.
Moe-Nilssen, Rolf; Helbostad, Jorunn L; Talcott, Joel B; Toennessen, Finn Egil
2003-05-01
Tests of postural stability have provided some evidence of a link between deficits in gross motor skills and developmental dyslexia. The ordinal-level scales used previously, however, have limited measurement sensitivity, and no studies have investigated motor performance during walking in participants with dyslexia. The purpose of this study was to investigate if continuous-scaled measures of standing balance and gait could discriminate between groups of impaired and normal readers when investigators were blind to group membership during testing. Children with dyslexia ( n=22) and controls ( n=18), aged 10-12 years, performed walking tests at four different speeds (slow-preferred-fast-very fast) on an even and an uneven surface, and tests of unperturbed and perturbed body sway during standing. Body movements were registered by a triaxial accelerometer over the lower trunk, and measures of reaction time, body sway, walking speed, step length and cadence were calculated. Results were controlled for gender differences. Tests of standing balance with eyes closed did not discriminate between groups. All unperturbed standing tests with eyes open showed significant group differences ( P<0.05) and classified correctly 70-77.5% of the subjects into their respective groups. Mean walking speed during very fast walking on both flat and uneven surface was > or =0.2 m/s ( P< or =0.01) faster for controls than for the group with dyslexia. This test classified 77.5% and 85% of the subjects correctly on flat and uneven surface, respectively. Cadence at preferred or very fast speed did not differ statistically between groups, but revealed significant group differences when all subjects were compared at a normalised walking speed ( P< or =0.04). Very fast walking speed as well as cadence at a normalised speed discriminated better between groups when subjects were walking on an uneven surface compared to a flat floor. Continuous-scaled walking tests performed in field settings may be suitable for motor skill assessment as a component of a screening tool for developmental dyslexia.
Yamaguchi, Takeshi; Suzuki, Akito; Hokkirigawa, Kazuo
2017-01-01
This study investigated the required coefficient of friction (RCOF) and the tangent of center of mass (COM)–center of pressure (COP) angle in the mediolateral (ML) and anteroposterior (AP) directions during turning at different walking speeds. Sixteen healthy young adults (8 males and 8 females) participated in this study. The participants were instructed to conduct trials of straight walking and 90° step and spin turns to the right at each of three self-selected speeds (slow, normal, and fast). The ML and AP directions during turning gait were defined using the orientation of the pelvis to construct a body-fixed reference frame. The RCOF values and COM–COP angle tangent in the ML direction during turning at weight acceptance phase were higher than those during straight walking, and those values increased with increasing walking speed. The ML component of the RCOF and COM–COP tangent values during weight acceptance for step turns were higher than those for spin turns. The mean centripetal force during turning tended to increase with an increase in walking speed and had a strong positive correlation with the RCOF values in the ML direction (R = 0.97 during the weight acceptance phase; R = 0.95 during the push-off phase). Therefore, turning, particularly step turn, is likely to cause lateral slip at weight acceptance because of the increased centripetal force compared with straight walking. Future work should test at-risk population and compare with the present results. PMID:28640853
Yamaguchi, Takeshi; Suzuki, Akito; Hokkirigawa, Kazuo
2017-01-01
This study investigated the required coefficient of friction (RCOF) and the tangent of center of mass (COM)-center of pressure (COP) angle in the mediolateral (ML) and anteroposterior (AP) directions during turning at different walking speeds. Sixteen healthy young adults (8 males and 8 females) participated in this study. The participants were instructed to conduct trials of straight walking and 90° step and spin turns to the right at each of three self-selected speeds (slow, normal, and fast). The ML and AP directions during turning gait were defined using the orientation of the pelvis to construct a body-fixed reference frame. The RCOF values and COM-COP angle tangent in the ML direction during turning at weight acceptance phase were higher than those during straight walking, and those values increased with increasing walking speed. The ML component of the RCOF and COM-COP tangent values during weight acceptance for step turns were higher than those for spin turns. The mean centripetal force during turning tended to increase with an increase in walking speed and had a strong positive correlation with the RCOF values in the ML direction (R = 0.97 during the weight acceptance phase; R = 0.95 during the push-off phase). Therefore, turning, particularly step turn, is likely to cause lateral slip at weight acceptance because of the increased centripetal force compared with straight walking. Future work should test at-risk population and compare with the present results.
Motyl, Jillian M; Driban, Jeffrey B; McAdams, Erica; Price, Lori Lyn; McAlindon, Timothy E
2013-05-10
The 20-meter walk test is a physical function measure commonly used in clinical research studies and rehabilitation clinics to measure gait speed and monitor changes in patients' physical function over time. Unfortunately, the reliability and sensitivity of this walk test are not well defined and, therefore, limit our ability to evaluate real changes in gait speed not attributable to normal variability. The aim of this study was to assess the test-restest reliability and sensitivity of the 20-meter walk test, at a self-selected pace, among patients with mild to moderate knee osteoarthritis (OA) and to suggest a standardized protocol for future test administration. This was a measurement reliability study. Fifteen consecutive people enrolled in a randomized-controlled trial of intra-articular corticosteroid injections for knee OA participated in this study. All participants completed 4 trials on 2 separate days, 7 to 21 days apart (8 trials total). Each day was divided into 2 sessions, which each involved 2 walking trials. We compared walk times between trials with Wilcoxon signed-rank tests. Similar analyses compared average walk times between sessions. To confirm these analyses, we also calculated Spearman correlation coefficients to assess the relationship between sessions. Finally, smallest detectable differences (SDD) were calculated to estimate the sensitivity of the 20-meter walk test. Wilcoxon signed-rank tests between trials within the same session demonstrated that trials in session 1 were significantly different and in the subsequent 3 sessions, the median differences between trials were not significantly different. Therefore, the first session of each day was considered a practice session, and the SDD between the second session of each day were calculated. SDD was -1.59 seconds (walking slower) and 0.15 seconds (walking faster). Practice trials and a standardized protocol should be used in administration of the 20-meter walk test. Changes in walk time between -1.59 seconds (walking slower) and 0.15 seconds (walking faster) should be considered within the range of normal variability of 20-meter walking speed. The primary limitation of our study was a small sample size, which may influence the generalizability of our findings.
The validity and reliability of a novel activity monitor as a measure of walking
Ryan, C G; Grant, P M; Tigbe, W W; Granat, M H
2006-01-01
Background The accurate measurement of physical activity is crucial to understanding the relationship between physical activity and disease prevention and treatment. Objective The primary purpose of this study was to investigate the validity and reliability of the activPAL physical activity monitor in measuring step number and cadence. Methods The ability of the activPAL monitor to measure step number and cadence in 20 healthy adults (age 34.5±6.9 years; BMI 26.8±4.8 (mean±SD)) was evaluated against video observation. Concurrently, the accuracy of two commonly used pedometers, the Yamax Digi‐Walker SW‐200 and the Omron HJ‐109‐E, was compared to observation for measuring step number. Participants walked on a treadmill at five different speeds (0.90, 1.12, 1.33, 1.56, and 1.78 m/s) and outdoors at three self selected speeds (slow, normal, and fast). Results At all speeds, inter device reliability was excellent for the activPAL (ICC (2,1)⩾0.99) for both step number and cadence. The absolute percentage error for the activPAL was <1.11% for step number and cadence regardless of walking speed. The accuracy of the pedometers was adversely affected by slow walking speeds. Conclusion The activPAL monitor is a valid and reliable measure of walking in healthy adults. Its accuracy is not influenced by walking speed. The activPAL may be a useful device in sports medicine. PMID:16825270
Oakley, C; Spafford, C; Beard, J D
2017-05-01
The objective of this study was to collect 1 year follow-up information on walking distance, speed, compliance, and cost in patients with intermittent claudication who took part in a previously reported 12 week randomised clinical trial of a home exercise programme augmented with Nordic pole walking versus controls who walked normally. A second objective was to look at quality of life and ankle brachial pressure indices (ABPIs) after a 12 week augmented home exercise programme. Thirty-two of the 38 patients who completed the original trial were followed-up after 6 and 12 months. Frequency, duration, speed, and distance of walking were recorded using diaries and pedometers. A new observational cohort of 29 patients was recruited to the same augmented home exercise programme. ABPIs, walking improvement, and quality of life questionnaire were recorded at baseline and 12 weeks (end of the programme). Both groups in the follow-up study continued to improve their walking distance and speed over the following year. Compliance was excellent: 98% of the augmented group were still walking with poles at both 6 and 12 months, while 74% of the control group were still walking at the same point. The augmented group increased their mean walking distance to 17.5 km by 12 months, with a mean speed of 4.2 km/hour. The control group only increased their mean walking distance from 4.2 km to 5.6 km, and speed to 3.3 km/hour. Repeated ANOVA showed the results to be highly significant (p = .002). The 21/29 patients who completed the observational study showed a statistically significant increase in resting ABPIs from baseline (mean ± SD 0.75 ± 0.12) to week 12 (mean ± SD 0.85 ± 0.12) (t = (20) -8.89, p = .000 [two-tailed]). All their walking improvement and quality of life parameters improved significantly (p = .002 or less in the six categories) over the same period and their mean health scores improved by 79%. Following a 12 week augmented home exercise programme, most patients with intermittent claudication continued to significantly improve their walking distance and walking speed at 1 year compared with normal walking. Quality of life and ABPIs improved significantly after only 12 weeks and it is postulated that the improvement in ABPI was due to collateral development. These results justify the belief that an augmented home exercise programme will be as clinically effective as existing supervised exercise programmes, with the added benefits of lower cost and better compliance. Funding for a multicentre trial comparing an augmented home exercise programme with existing supervised exercise programme is now urgently required. Copyright © 2017 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.
Konagaya, Yoko; Watanabe, Tomoyuki; Ohta, Toshiki
2012-01-01
The purpose of this study was to evaluate whether physical activities reduce the risk of cognitive decline in community-dwelling elderly. We investigated correlations between cognitive functions at baseline and physical activities, correlations between cognitive functions at baseline and cognitive decline over 4 years, as well as correlations between physical activity at baseline and cognitive decline over 4 years. At baseline, 2,431 community-dwelling elderly completed the cognitive screening by telephone (TICS-J), and answered the questionnaires about physical activities. Of these, 1,040 subjects again completed the TICS-J over 4 years. Physical activities contained moving ability, walking frequency, walking speed, the exercise frequency. At baseline, 870 elderly (age 75.87±4.96 (mean±SD) years, duration of education 11.05±2.41) showed normal cognitive functions and 170 (79.19±6.22, 9.61±2.23) showed cognitive impairment. The total TICS-J score was significantly higher in cognitive normal subjects compared with that of cognitive impaired subjects (36.02±1.89, 30.19±2.25, respectively, p<0.001). Logistic regression analyses showed that moving ability significantly reduced the risk of cognitive impairment in an unadjusted model, and walking speed also reduced the risk of cognitive impairment at baseline even in an adjusted model. Cognitive function at baseline might be a predictor of cognitive function over 4 years. The longitudinal study revealed that walking speed and exercise frequency significantly correlate with maintenance of cognitive function over 4 years. This study provides that physical activities, especially walking speed have significant correlation with cognitive function.
Metabolic cost and mechanics of walking in women with fibromyalgia syndrome.
MacPhee, Renée S; McFall, Kristen; Perry, Stephen D; Tiidus, Peter M
2013-10-18
Fibromyalgia syndrome (FS) is characterized by the presence of widespread pain, fatigue, muscle weakness and reduced work capacity. Previous research has demonstrated that women with fibromyalgia have altered walking (gait) patterns, which may be a consequence of muscular pain. This altered gait is characterized by greater reliance on hip flexors rather than ankle plantar flexors and resembles gait patterns seen in normal individuals walking at higher speeds, suggesting that gait of individuals with fibromyalgia may be less efficient.This study compared rates of energy expenditure of 6 females with FS relative to 6 normal, age and weight matched controls, at various walking speeds on a motorized treadmill. Metabolic measurements including V02 (ml/kg/min), respirations, heart rate and calculated energy expenditures as well as the Borg Scale of Perceived Exertion scale ratings were determined at baseline and for 10 min while walking at each of 2, 4 and 5 km/hour on 1% grade. Kinematic recordings of limb and body movements while treadmill walking and separate measurements of ground reaction forces while walking over ground were also determined. In addition, all subjects completed the RAND 36-Item Health Survey (1.0). Gait analysis results were similar to previous reports of altered gait patterns in FS females. Despite noticeable differences in gait patterns, no significant differences (p > 0.05) existed between the FS and control subjects on any metabolic measures at any walking speed. Total number of steps taken was also similar between groups. Ratings on the Borg Scale of Perceived Exertion, the RAND and self-reported levels of pain indicated significantly greater (p < 0.05) perceived effort and pain in FS subjects relative to control subjects during walking and daily activities. The altered gait patterns and greater perceptions of effort and pain did not significantly increase the metabolic costs of walking in women with FS and hence, increased sensations of fatigue in FS women may not be related to alteration in metabolic cost of ambulation.
Metabolic cost and mechanics of walking in women with fibromyalgia syndrome
2013-01-01
Background Fibromyalgia syndrome (FS) is characterized by the presence of widespread pain, fatigue, muscle weakness and reduced work capacity. Previous research has demonstrated that women with fibromyalgia have altered walking (gait) patterns, which may be a consequence of muscular pain. This altered gait is characterized by greater reliance on hip flexors rather than ankle plantar flexors and resembles gait patterns seen in normal individuals walking at higher speeds, suggesting that gait of individuals with fibromyalgia may be less efficient. This study compared rates of energy expenditure of 6 females with FS relative to 6 normal, age and weight matched controls, at various walking speeds on a motorized treadmill. Metabolic measurements including V02 (ml/kg/min), respirations, heart rate and calculated energy expenditures as well as the Borg Scale of Perceived Exertion scale ratings were determined at baseline and for 10 min while walking at each of 2, 4 and 5 km/hour on 1% grade. Kinematic recordings of limb and body movements while treadmill walking and separate measurements of ground reaction forces while walking over ground were also determined. In addition, all subjects completed the RAND 36-Item Health Survey (1.0). Findings Gait analysis results were similar to previous reports of altered gait patterns in FS females. Despite noticeable differences in gait patterns, no significant differences (p > 0.05) existed between the FS and control subjects on any metabolic measures at any walking speed. Total number of steps taken was also similar between groups. Ratings on the Borg Scale of Perceived Exertion, the RAND and self-reported levels of pain indicated significantly greater (p < 0.05) perceived effort and pain in FS subjects relative to control subjects during walking and daily activities. Conclusions The altered gait patterns and greater perceptions of effort and pain did not significantly increase the metabolic costs of walking in women with FS and hence, increased sensations of fatigue in FS women may not be related to alteration in metabolic cost of ambulation. PMID:24139565
Liang, Bo Wei; Wu, Wen Hua; Meijer, Onno G; Lin, Jian Hua; Lv, Go Rong; Lin, Xiao Cong; Prins, Maarten R; Hu, Hai; van Dieën, Jaap H; Bruijn, Sjoerd M
2014-01-01
Transverse plane pelvis rotations during walking may be regarded as the "first determinant of gait". This would assume that pelvis rotations increase step length, and thereby reduce the vertical movements of the centre of mass-"the pelvic step". We analysed the pelvic step using 20 healthy young male subjects, walking on a treadmill at 1-5 km/h, with normal or big steps. Step length, pelvis rotation amplitude, leg-pelvis relative phase, and the contribution of pelvis rotation to step length were calculated. When speed increased in normal walking, pelvis rotation changed from more out-of-phase to in-phase with the upper leg. Consequently, the contribution of pelvis rotation to step length was negative at lower speeds, switching to positive at 3 km/h. With big steps, leg and pelvis were more in-phase, and the contribution of pelvis rotation to step length was always positive, and relatively large. Still, the overall contribution of pelvis rotations to step length was small, less than 3%. Regression analysis revealed that leg-pelvis relative phase predicted about 60% of the variance of this contribution. The results of the present study suggest that, during normal slow walking, pelvis rotations increase, rather than decrease, the vertical movements of the centre of mass. With large steps, this does not happen, because leg and pelvis are in-phase at all speeds. Finally, it has been suggested that patients with hip flexion limitation may use larger pelvis rotations to increase step length. This, however, may only work as long as the pelvis rotates in-phase with the leg. Copyright © 2013 Elsevier B.V. All rights reserved.
The Association of Clinic-Based Mobility Tasks and Measures of Community Performance and Risk.
Callisaya, Michele L; Verghese, Joe
2018-01-10
Gait speed is recognized as an important predictor of adverse outcomes in older people. However, it is unknown whether other more complex mobility tasks are better predictors of such outcomes. To examine a range of clinic-based mobility tests and determine which were most strongly associated with measures of community performance and risk (CP&R). Cross-sectional study. Central Control Mobility and Aging Study, Westchester County, New York. Aged ≥65 years (n = 424). Clinic-based mobility measures included gait speed measured during normal and dual-task conditions, the Floor Maze Immediate and Delay tasks, and stair ascending and descending. CP&R measures were self-reported by the use of standardized questionnaires and classified into measures of performance (distance walked, travel outside one's home [life space], activities of daily living, and participation in cognitive leisure activities) or risk (balance confidence, fear of falling, and past falls). Linear and logistic regression were used to examine associations between the clinic-based mobility measures and CP&R measures adjusting for covariates. The mean age of the sample was 77.8 (SD 6.4) years, and 55.2% (n = 234) were female. In final models, faster normal walking speed was most strongly associated with 5 of the 7 community measures (greater distance walked, greater life space, better activities of daily living function, higher balance confidence, and less fear of falling; all P < .05). More complex tasks (walking while talking and maze immediate) were associated with cognitive leisure activity (P < .05), and ascending stairs was the only measure associated with a history of falls (P < .05). Normal walking speed is a simple and inexpensive clinic-based mobility test that is associated with a wide range of CP&R measures. In addition, poorer performance ascending stairs may assist in identifying those at risk of falls. Poorer performance in more complex mobility tasks (walking while talking and maze immediate) may suggest inability to participate in cognitive leisure activities. III. Copyright © 2018 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Kobetic, Rudi; Triolo, Ronald J.
2017-01-01
An important consideration in the design of a practical system to restore walking in individuals with spinal cord injury is to minimize metabolic energy demand on the user. In this study, the effects of exoskeletal constraints on metabolic energy expenditure were evaluated in able-bodied volunteers to gain insight into the demands of walking with a hybrid neuroprosthesis after paralysis. The exoskeleton had a hydraulic mechanism to reciprocally couple hip flexion and extension, unlocked hydraulic stance controlled knee mechanisms, and ankles fixed at neutral by ankle-foot orthoses. These mechanisms added passive resistance to the hip (15 Nm) and knee (6 Nm) joints while the exoskeleton constrained joint motion to the sagittal plane. The average oxygen consumption when walking with the exoskeleton was 22.5 ± 3.4 ml O2/min/kg as compared to 11.7 ± 2.0 ml O2/min/kg when walking without the exoskeleton at a comparable speed. The heart rate and physiological cost index with the exoskeleton were at least 30% and 4.3 times higher, respectively, than walking without it. The maximum average speed achieved with the exoskeleton was 1.2 ± 0.2 m/s, at a cadence of 104 ± 11 steps/min, and step length of 70 ± 7 cm. Average peak hip joint angles (25 ± 7°) were within normal range, while average peak knee joint angles (40 ± 8°) were less than normal. Both hip and knee angular velocities were reduced with the exoskeleton as compared to normal. While the walking speed achieved with the exoskeleton could be sufficient for community ambulation, metabolic energy expenditure was significantly increased and unsustainable for such activities. This suggests that passive resistance, constraining leg motion to the sagittal plane, reciprocally coupling the hip joints, and weight of exoskeleton place considerable limitations on the utility of the device and need to be minimized in future designs of practical hybrid neuroprostheses for walking after paraplegia. PMID:28817701
Effects of Spontaneous Locomotion on the Cricket's Walking Response to a Wind Stimulus
NASA Astrophysics Data System (ADS)
Gras, Heribert; Bartels, Anke
Tethered walking crickets often respond to single wind puffs (50ms duration) directed from 45° left or right to the abdominal cerci with a short running bout of about 300ms, followed by normal locomotion. To test for an effect of the current behavioral state on the running response, we applied wind stimuli when the insect attained a predefined translatorial and/or rotatorial velocity during spontaneous walking. The latency, duration, and velocity profile of the running bout always proved to be constant, representing a reflexlike all-or-nothing reaction, while the probability of this response was low after even brief standing and increased with the forward speed of spontaneous walking at the moment of stimulation. In contrast, the current rotatorial speed did not affect the stimulus response.
Simonsick, Eleanor M; Chia, Chee W; Mammen, Jennifer S; Egan, Josephine M; Ferrucci, Luigi
2016-07-01
Emerging evidence suggests that mildly down-regulated thyroid function in older persons may protect and/or reflect maintained health. Using observational data collected between January 2006 and March 2014 on a volunteer sample of 602 men and women aged 68-97 years with normal thyroid function participating in the Baltimore Longitudinal Study of Aging, this study examines the concurrent relationship between reported walking ability, usual and rapid gait speed, endurance walk performance, fatigability, and reported energy level with respect to free thyroxine (FT4) within the normal range (0.76-1.50ng/dL) as a continuous variable and categorized as low (lower quartile), medium (interquartile), or high (upper quartile). Adjusting for sex, age, race, height, weight, exercise and smoking, reported walking ability, usual and rapid gait speed, 400-m time, fatigability, and reported energy level were less favorable with increasing FT4 (p = .013 to <.001). In sex-strata, similar associations were observed except for walking ability in men and energy level in women. Categorical analyses revealed that persons with low FT4 exhibited better functional mobility, fitness, and reported energy than persons with intermediate or high levels (p < .05 for all). Persons with high-normal versus medium FT4 had slower usual and rapid gait speed (p < .05) only. Older adults with low-normal FT4 exhibit better mobility, fitness, and fatigue profiles. Mildly down-regulated thyroid function appears to align with better function in old age and may serve as a biomarker of healthy longevity. Published by Oxford University Press on behalf of the Gerontological Society of America 2016.
Effects of walking speed on asymmetry and bilateral coordination of gait
Plotnik, Meir; Bartsch, Ronny P.; Zeev, Aviva; Giladi, Nir; Hausdorff, Jeffery M.
2013-01-01
The mechanisms regulating the bilateral coordination of gait in humans are largely unknown. Our objective was to study how bilateral coordination changes as a result of gait speed modifications during over ground walking. 15 young adults wore force sensitive insoles that measured vertical forces used to determine the timing of the gait cycle events under three walking conditions (i.e., usual-walking, fast and slow). Ground reaction force impact (GRFI) associated with heel-strikes was also quantified, representing the potential contribution of sensory feedback to the regulation of gait. Gait asymmetry (GA) was quantified based on the differences between right and left swing times and the bilateral coordination of gait was assessed using the phase coordination index (PCI), a metric that quantifies the consistency and accuracy of the anti-phase stepping pattern. GA was preserved in the three different gait speeds. PCI was higher (reduced coordination) in the slow gait condition, compared to usual-walking (3.51% vs. 2.47%, respectively, p=0.002), but was not significantly affected in the fast condition. GRFI values were lower in the slow walking as compared to usual-walking and higher in the fast walking condition (p<0.001). Stepwise regression revealed that slowed gait related changes in PCI were not associated with the slowed gait related changes in GRFI. The present findings suggest that left-right anti-phase stepping is similar in normal and fast walking, but altered during slowed walking. This behavior might reflect a relative increase in attention resources required to regulate a slow gait speed, consistent with the possibility that cortical function and supraspinal input influences the bilateral coordination of gait. PMID:23680424
Somers, Tamara J.; Keefe, Francis J.; Pells, Jennifer J.; Dixon, Kim E.; Waters, Sandra J.; Riordan, Paul A.; Blumenthal, James A.; McKee, Daphne C.; LaCaille, Lara; Tucker, Jessica M.; Schmitt, Daniel; Caldwell, David S.; Kraus, Virginia B.; Sims, Ershela L.; Shelby, Rebecca A.; Rice, John R.
2009-01-01
This study examined the degree to which pain catastrophizing and pain-related fear explain pain, psychological disability, physical disability, and walking speed in patients with osteoarthritis (OA) of the knee. Participants in this study were 106 individuals diagnosed as having OA of at least one knee, who reported knee pain persisting six months or longer. Results suggest that pain catastrophizing explained a significant proportion (all P's ≤ 0.05) of variance in measures of pain (partial r2 [pr2] = 0.10), psychological disability (pr2 = 0.20), physical disability (pr2 = 0.11), and gait velocity at normal (pr2 = 0.04), fast (pr2 = 0.04), and intermediate speeds (pr2 = 0.04). Pain-related fear explained a significant proportion of the variance in measures of psychological disability (pr2 = 0.07) and walking at a fast speed (pr2 = 0.05). Pain cognitions, particularly pain catastrophizing, appear to be important variables in understanding pain, disability, and walking at normal, fast, and intermediate speeds in knee OA patients. Clinicians interested in understanding variations in pain and disability in this population may benefit by expanding the focus of their inquiries beyond traditional medical and demographic variables to include an assessment of pain catastrophizing and pain-related fear. PMID:19041218
Wu, Amy R.; Dzeladini, Florin; Brug, Tycho J. H.; Tamburella, Federica; Tagliamonte, Nevio L.; van Asseldonk, Edwin H. F.; van der Kooij, Herman; Ijspeert, Auke J.
2017-01-01
Versatility is important for a wearable exoskeleton controller to be responsive to both the user and the environment. These characteristics are especially important for subjects with spinal cord injury (SCI), where active recruitment of their own neuromuscular system could promote motor recovery. Here we demonstrate the capability of a novel, biologically-inspired neuromuscular controller (NMC) which uses dynamical models of lower limb muscles to assist the gait of SCI subjects. Advantages of this controller include robustness, modularity, and adaptability. The controller requires very few inputs (i.e., joint angles, stance, and swing detection), can be decomposed into relevant control modules (e.g., only knee or hip control), and can generate walking at different speeds and terrains in simulation. We performed a preliminary evaluation of this controller on a lower-limb knee and hip robotic gait trainer with seven subjects (N = 7, four with complete paraplegia, two incomplete, one healthy) to determine if the NMC could enable normal-like walking. During the experiment, SCI subjects walked with body weight support on a treadmill and could use the handrails. With controller assistance, subjects were able to walk at fast walking speeds for ambulatory SCI subjects—from 0.6 to 1.4 m/s. Measured joint angles and NMC-provided joint torques agreed reasonably well with kinematics and biological joint torques of a healthy subject in shod walking. Some differences were found between the torques, such as the lack of knee flexion near mid-stance, but joint angle trajectories did not seem greatly affected. The NMC also adjusted its torque output to provide more joint work at faster speeds and thus greater joint angles and step length. We also found that the optimal speed-step length curve observed in healthy humans emerged for most of the subjects, albeit with relatively longer step length at faster speeds. Therefore, with very few sensors and no predefined settings for multiple walking speeds or adjustments for subjects of differing anthropometry and walking ability, NMC enabled SCI subjects to walk at several speeds, including near healthy speeds, in a healthy-like manner. These preliminary results are promising for future implementation of neuromuscular controllers on wearable prototypes for real-world walking conditions. PMID:28676752
Wu, Amy R; Dzeladini, Florin; Brug, Tycho J H; Tamburella, Federica; Tagliamonte, Nevio L; van Asseldonk, Edwin H F; van der Kooij, Herman; Ijspeert, Auke J
2017-01-01
Versatility is important for a wearable exoskeleton controller to be responsive to both the user and the environment. These characteristics are especially important for subjects with spinal cord injury (SCI), where active recruitment of their own neuromuscular system could promote motor recovery. Here we demonstrate the capability of a novel, biologically-inspired neuromuscular controller (NMC) which uses dynamical models of lower limb muscles to assist the gait of SCI subjects. Advantages of this controller include robustness, modularity, and adaptability. The controller requires very few inputs (i.e., joint angles, stance, and swing detection), can be decomposed into relevant control modules (e.g., only knee or hip control), and can generate walking at different speeds and terrains in simulation. We performed a preliminary evaluation of this controller on a lower-limb knee and hip robotic gait trainer with seven subjects ( N = 7, four with complete paraplegia, two incomplete, one healthy) to determine if the NMC could enable normal-like walking. During the experiment, SCI subjects walked with body weight support on a treadmill and could use the handrails. With controller assistance, subjects were able to walk at fast walking speeds for ambulatory SCI subjects-from 0.6 to 1.4 m/s. Measured joint angles and NMC-provided joint torques agreed reasonably well with kinematics and biological joint torques of a healthy subject in shod walking. Some differences were found between the torques, such as the lack of knee flexion near mid-stance, but joint angle trajectories did not seem greatly affected. The NMC also adjusted its torque output to provide more joint work at faster speeds and thus greater joint angles and step length. We also found that the optimal speed-step length curve observed in healthy humans emerged for most of the subjects, albeit with relatively longer step length at faster speeds. Therefore, with very few sensors and no predefined settings for multiple walking speeds or adjustments for subjects of differing anthropometry and walking ability, NMC enabled SCI subjects to walk at several speeds, including near healthy speeds, in a healthy-like manner. These preliminary results are promising for future implementation of neuromuscular controllers on wearable prototypes for real-world walking conditions.
Plasschaert, Frank; Jones, Kim; Forward, Malcolm
2008-12-01
To examine the effect of simulating weight gain on the energy cost of walking in children with cerebral palsy (CP) compared with unimpaired children. Repeated measures, matched subjects, controlled. University hospital clinical gait and movement analysis laboratory. Children (n=42) with CP and unimpaired children (n=42). Addition of 10% of body mass in weight belt. Energy cost of walking parameters consisting of walking speed, Physiological Cost Index, Total Heart Beat Index, oxygen uptake (VO2), gross oxygen cost, nondimensional net oxygen cost, and net oxygen cost with speed normalized to height were measured by using a breath-by-breath gas analysis system (K4b2) and a light beam timing gate system arranged around a figure 8 track. Two walking trials were performed in random order, with and the other without wearing a weighted belt. Children with CP and their unimpaired counterparts responded in fundamentally different ways to weight gain. The unimpaired population maintained speed and VO2 but the children with CP trended toward a drop in their speed and an increase in their VO2. The oxygen consumption of children with CP showed a greater dependence on mass than the unimpaired group (P=.043). An increase of a relatively small percentage in body mass began to significantly impact the energy cost of walking in children with CP. This result highlights the need for weight control to sustain the level of functional walking in these children.
Waller, B; Munukka, M; Rantalainen, T; Lammentausta, E; Nieminen, M T; Kiviranta, I; Kautiainen, H; Häkkinen, A; Kujala, U M; Heinonen, A
2017-08-01
To investigate the effects of 4-months intensive aquatic resistance training on body composition and walking speed in post-menopausal women with mild knee osteoarthritis (OA), immediately after intervention and after 12-months follow-up. Additionally, influence of leisure time physical activity (LTPA) will be investigated. This randomised clinical trial assigned eighty-seven volunteer postmenopausal women into two study arms. The intervention group (n = 43) participated in 48 supervised intensive aquatic resistance training sessions over 4-months while the control group (n = 44) maintained normal physical activity. Eighty four participants continued into the 12-months' follow-up period. Body composition was measured with dual-energy X-ray absorptiometry (DXA). Walking speed over 2 km and the knee injury and osteoarthritis outcome score (KOOS) were measured. LTPA was recorded with self-reported diaries. After the 4-month intervention there was a significant decrease (P = 0.002) in fat mass (mean change: -1.17 kg; 95% CI: -2.00 to -0.43) and increase (P = 0.002) in walking speed (0.052 m/s; 95% CI: 0.018 to 0.086) in favour of the intervention group. Body composition returned to baseline after 12-months. In contrast, increased walking speed was maintained (0.046 m/s; 95% CI 0.006 to 0.086, P = 0.032). No change was seen in lean mass or KOOS. Daily LTPA over the 16-months had a significant effect (P = 0.007) on fat mass loss (f 2 = 0.05) but no effect on walking speed. Our findings show that high intensity aquatic resistance training decreases fat mass and improves walking speed in post-menopausal women with mild knee OA. Only improvements in walking speed were maintained at 12-months follow-up. Higher levels of LTPA were associated with fat mass loss. ISRCTN65346593. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Perception of Visual Speed While Moving
ERIC Educational Resources Information Center
Durgin, Frank H.; Gigone, Krista; Scott, Rebecca
2005-01-01
During self-motion, the world normally appears stationary. In part, this may be due to reductions in visual motion signals during self-motion. In 8 experiments, the authors used magnitude estimation to characterize changes in visual speed perception as a result of biomechanical self-motion alone (treadmill walking), physical translation alone…
Miki, Hidenobu; Sugano, Nobuhiko; Hagio, Keisuke; Nishii, Takashi; Kawakami, Hideo; Kakimoto, Akihiro; Nakamura, Nobuo; Yoshikawa, Hideki
2004-04-01
In 17 patients with unilateral hip disease who underwent total hip arthroplasty (THA), the gait was analyzed preoperatively and 1, 3, 6, and 12 months after unilateral THA using a Vicon system to assess the recovery of walking speed and symmetrical movement of the hip, knee, ankle, and pelvis. The walking speed of these patients reached that of normal Japanese persons by 12 months after surgery. Walking speed was correlated with the range of hip motion on the operated side at 1 month postoperatively, and was correlated with the hip joint extension moment of force on both sides from 3 to 6 months after surgery. Before THA, asymmetry was observed in the range of the hip motion, maximum hip flexion, maximum hip extension, maximum knee flexion, as well as in pelvic obliquity, pelvic tilt, and pelvic rotation. There were no differences of the stride length or step length between both sides throughout the observation period. The preoperative range of hip flexion on the operated side during a gait cycle (21.3+/-7.9 degrees ) was significantly smaller than on the non-operated side (46.7+/-7.1 degrees ), and the difference between sides was still significant at 12 months after surgery (35.1+/-6.2 degrees on the operated side and 43.6+/-5.7 degrees on the non-operated side). The majority (74%) of the difference in hip motion range during this period was due to the difference in maximum extension of the hip. The increase in the range of pelvic tilt and the range of motion of the opposite hip showed an inverse correlation with the range of motion of the operated hip, suggesting a compensatory preoperative role. However, this correlation became insignificant after 6 months postoperatively. Asymmetry of the range of hip motion persisted at 12 months after THA in patients with unilateral coxoarthropathy during free level walking, while the operation normalized the spatial asymmetry of other joints and the walking speed prior to the recovery of hip motion.
Development of independent locomotion in children with a severe visual impairment.
Hallemans, Ann; Ortibus, Els; Truijen, Steven; Meire, Francoise
2011-01-01
Locomotion of children and adults with a visual impairment (ages 1-44, n = 28) was compared to that of age-related individuals with normal vision (n = 60). Participants walked barefoot at preferred speed while their gait was recorded by a Vicon(®) system. Walking speed, heading angle, step frequency, stride length, step width, stance phase duration and double support time were determined. Differences between groups, relationships with age and possible interaction effects were investigated. With increasing age overall improvements in gait parameters are observed. Differences between groups were a slower walking speed, a shorter stride length, a prolonged duration of stance and of double support in the individuals with a visual impairment. These may be considered either as adaptations to balance problems or as strategies to allow to foot to probe the ground. Copyright © 2011 Elsevier Ltd. All rights reserved.
McGinnis, Ryan S; Mahadevan, Nikhil; Moon, Yaejin; Seagers, Kirsten; Sheth, Nirav; Wright, John A; DiCristofaro, Steven; Silva, Ikaro; Jortberg, Elise; Ceruolo, Melissa; Pindado, Jesus A; Sosnoff, Jacob; Ghaffari, Roozbeh; Patel, Shyamal
2017-01-01
Gait speed is a powerful clinical marker for mobility impairment in patients suffering from neurological disorders. However, assessment of gait speed in coordination with delivery of comprehensive care is usually constrained to clinical environments and is often limited due to mounting demands on the availability of trained clinical staff. These limitations in assessment design could give rise to poor ecological validity and limited ability to tailor interventions to individual patients. Recent advances in wearable sensor technologies have fostered the development of new methods for monitoring parameters that characterize mobility impairment, such as gait speed, outside the clinic, and therefore address many of the limitations associated with clinical assessments. However, these methods are often validated using normal gait patterns; and extending their utility to subjects with gait impairments continues to be a challenge. In this paper, we present a machine learning method for estimating gait speed using a configurable array of skin-mounted, conformal accelerometers. We establish the accuracy of this technique on treadmill walking data from subjects with normal gait patterns and subjects with multiple sclerosis-induced gait impairments. For subjects with normal gait, the best performing model systematically overestimates speed by only 0.01 m/s, detects changes in speed to within less than 1%, and achieves a root-mean-square-error of 0.12 m/s. Extending these models trained on normal gait to subjects with gait impairments yields only minor changes in model performance. For example, for subjects with gait impairments, the best performing model systematically overestimates speed by 0.01 m/s, quantifies changes in speed to within 1%, and achieves a root-mean-square-error of 0.14 m/s. Additional analyses demonstrate that there is no correlation between gait speed estimation error and impairment severity, and that the estimated speeds maintain the clinical significance of ground truth speed in this population. These results support the use of wearable accelerometer arrays for estimating walking speed in normal subjects and their extension to MS patient cohorts with gait impairment.
Perception of Self-Motion and Regulation of Walking Speed in Young-Old Adults.
Lalonde-Parsi, Marie-Jasmine; Lamontagne, Anouk
2015-07-01
Whether a reduced perception of self-motion contributes to poor walking speed adaptations in older adults is unknown. In this study, speed discrimination thresholds (perceptual task) and walking speed adaptations (walking task) were compared between young (19-27 years) and young-old individuals (63-74 years), and the relationship between the performance on the two tasks was examined. Participants were evaluated while viewing a virtual corridor in a helmet-mounted display. Speed discrimination thresholds were determined using a staircase procedure. Walking speed modulation was assessed on a self-paced treadmill while exposed to different self-motion speeds ranging from 0.25 to 2 times the participants' comfortable speed. For each speed, participants were instructed to match the self-motion speed described by the moving corridor. On the walking task, participants displayed smaller walking speed errors at comfortable walking speeds compared with slower of faster speeds. The young-old adults presented larger speed discrimination thresholds (perceptual experiment) and larger walking speed errors (walking experiment) compared with young adults. Larger walking speed errors were associated with higher discrimination thresholds. The enhanced performance on the walking task at comfortable speed suggests that intersensory calibration processes are influenced by experience, hence optimized for frequently encountered conditions. The altered performance of the young-old adults on the perceptual and walking tasks, as well as the relationship observed between the two tasks, suggest that a poor perception of visual motion information may contribute to the poor walking speed adaptations that arise with aging.
The Effects of Walking Workstations on Biomechanical Performance.
Grindle, Daniel M; Baker, Lauren; Furr, Mike; Puterio, Tim; Knarr, Brian; Higginson, Jill
2018-04-03
Prolonged sitting has been associated with negative health effects. Walking workstations have become increasingly popular in the workplace. There is a lack of research on the biomechanical effect of walking workstations. This study analyzed whether walking while working alters normal gait patterns. Nine participants completed four walking trials at 2.4 km·h -1 and 4.0 km·h -1 : baseline walking condition, walking while performing a math task, a reading task, and a typing task. Biomechanical data were collected using standard motion capture procedures. The first maximum vertical ground reaction force, stride width, stride length, minimum toe clearance, peak swing hip abduction and flexion angles, peak swing and stance ankle dorsiflexion and knee flexion angles were analyzed. Differences between conditions were evaluated using analysis of variance tests with Bonferroni correction (p ≤ 0.05). Stride width decreased during the reading task at both speeds. Although other parameters exhibited significant differences when multitasking, these changes were within the normal range of gait variability. It appears that for short periods, walking workstations do not negatively impact gait in healthy young adults.
Community walking speed, sedentary or lying down time, and mortality in peripheral artery disease
McDermott, Mary M; Guralnik, Jack M; Ferrucci, Luigi; Tian, Lu; Kibbe, Melina R; Greenland, Philip; Green, David; Liu, Kiang; Zhao, Lihui; Wilkins, John T; Huffman, Mark D; Shah, Sanjiv J; Liao, Yihua; Gao, Ying; Lloyd-Jones, Donald M; Criqui, Michael H
2017-01-01
We studied whether slower community walking speed and whether greater time spent lying down or sleeping were associated with higher mortality in people with lower extremity peripheral artery disease (PAD). Participants with an ankle–brachial index (ABI) < 0.90 were identified from Chicago medical centers. At baseline, participants reported their usual walking speed outside their home and the number of hours they spent lying down or sleeping per day. Cause of death was adjudicated using death certificates and medical record review. Analyses were adjusted for age, sex, race, comorbidities, ABI, and other confounders. Of 1314 PAD participants, 189 (14.4%) died, including 63 cardiovascular disease (CVD) deaths. Mean follow-up was 34.9 months ± 18.1. Relative to average or normal pace (2–3 miles/hour), slower walking speed was associated with greater CVD mortality: no walking at all: hazard ratio (HR) = 4.17, 95% confidence interval (CI) = 1.46–11.89; casual strolling (0–2 miles/hour): HR = 2.24, 95% CI = 1.16–4.32; brisk or striding (>3 miles/hour): HR = 0.55, 95% CI = 0.07–4.30. These associations were not significant after additional adjustment for the six-minute walk. Relative to sleeping or lying down for 8–9 hours, fewer or greater hours sleeping or lying down were associated with higher CVD mortality: 4–7 hours: HR = 2.08, 95% CI = 1.06–4.05; 10–11 hours: HR = 4.07, 95% CI = 1.86–8.89; ⩾12 hours: HR = 3.75, 95% CI = 1.47–9.62. These associations were maintained after adjustment for the six-minute walk. In conclusion, slower walking speed outside the home and less than 8 hours or more than 9 hours lying down per day are potentially modifiable behaviors associated with increased CVD mortality in patients with PAD. PMID:26873873
Hernandez, Ivan; Preston, Jesse Lee; Hepler, Justin
2014-01-01
Research on the timescale bias has found that observers perceive more capacity for mind in targets moving at an average speed, relative to slow or fast moving targets. The present research revisited the timescale bias as a type of halo effect, where normal-speed people elicit positive evaluations and abnormal-speed (slow and fast) people elicit negative evaluations. In two studies, participants viewed videos of people walking at a slow, average, or fast speed. We find evidence for a timescale halo effect: people walking at an average-speed were attributed more positive mental traits, but fewer negative mental traits, relative to slow or fast moving people. These effects held across both cognitive and emotional dimensions of mind and were mediated by overall positive/negative ratings of the person. These results suggest that, rather than eliciting greater perceptions of general mind, the timescale bias may reflect a generalized positivity toward average speed people relative to slow or fast moving people. PMID:24421882
Muscle Synergies Facilitate Computational Prediction of Subject-Specific Walking Motions
Meyer, Andrew J.; Eskinazi, Ilan; Jackson, Jennifer N.; Rao, Anil V.; Patten, Carolynn; Fregly, Benjamin J.
2016-01-01
Researchers have explored a variety of neurorehabilitation approaches to restore normal walking function following a stroke. However, there is currently no objective means for prescribing and implementing treatments that are likely to maximize recovery of walking function for any particular patient. As a first step toward optimizing neurorehabilitation effectiveness, this study develops and evaluates a patient-specific synergy-controlled neuromusculoskeletal simulation framework that can predict walking motions for an individual post-stroke. The main question we addressed was whether driving a subject-specific neuromusculoskeletal model with muscle synergy controls (5 per leg) facilitates generation of accurate walking predictions compared to a model driven by muscle activation controls (35 per leg) or joint torque controls (5 per leg). To explore this question, we developed a subject-specific neuromusculoskeletal model of a single high-functioning hemiparetic subject using instrumented treadmill walking data collected at the subject’s self-selected speed of 0.5 m/s. The model included subject-specific representations of lower-body kinematic structure, foot–ground contact behavior, electromyography-driven muscle force generation, and neural control limitations and remaining capabilities. Using direct collocation optimal control and the subject-specific model, we evaluated the ability of the three control approaches to predict the subject’s walking kinematics and kinetics at two speeds (0.5 and 0.8 m/s) for which experimental data were available from the subject. We also evaluated whether synergy controls could predict a physically realistic gait period at one speed (1.1 m/s) for which no experimental data were available. All three control approaches predicted the subject’s walking kinematics and kinetics (including ground reaction forces) well for the model calibration speed of 0.5 m/s. However, only activation and synergy controls could predict the subject’s walking kinematics and kinetics well for the faster non-calibration speed of 0.8 m/s, with synergy controls predicting the new gait period the most accurately. When used to predict how the subject would walk at 1.1 m/s, synergy controls predicted a gait period close to that estimated from the linear relationship between gait speed and stride length. These findings suggest that our neuromusculoskeletal simulation framework may be able to bridge the gap between patient-specific muscle synergy information and resulting functional capabilities and limitations. PMID:27790612
Hsiao, HaoYuan; Zabielski, Thomas M; Palmer, Jacqueline A; Higginson, Jill S; Binder-Macleod, Stuart A
2016-12-08
Recent rehabilitation approaches for individuals poststroke have focused on improving walking speed because it is a reliable measurement that is associated with quality of life. Previous studies have demonstrated that propulsion, the force used to propel the body forward, determines walking speed. However, there are several different ways of measuring propulsion and no studies have identified which measurement best reflects differences in walking speed. The primary purposes of this study were to determine for individuals poststroke, which measurement of propulsion (1) is most closely related to their self-selected walking speeds and (2) best reflects changes in walking speed within a session. Participants (N=43) with chronic poststroke hemiparesis walked at their self-selected and maximal walking speeds on a treadmill. Propulsive impulse, peak propulsive force, and mean propulsive value (propulsive impulse divided by duration) were analyzed. In addition, each participant׳s cadence was calculated. Pearson correlation coefficients were used to determine the relationships between different measurements of propulsion versus walking speed as well as changes in propulsion versus changes in walking speed. Stepwise linear regression was used to determine which measurement of propulsion best predicted walking speed and changes in walking speed. The results showed that all 3 measurements of propulsion were correlated to walking speed, with peak propulsive force showed the strongest correlation. Similarly, when participants increased their walking speeds, changes in peak propulsive forces showed the strongest correlation to changes in walking speed. In addition, multiplying each measurement by cadence improved the correlations. The present study suggests that measuring peak propulsive force and cadence may be most appropriate of the variables studied to characterize propulsion in individuals poststroke. Copyright © 2016 Elsevier Ltd. All rights reserved.
Holewijn, R M; Kingma, I; de Kleuver, M; Schimmel, J J P; Keijsers, N L W
2017-09-01
Previous studies show a limited alteration of gait at normal walking speed after spinal fusion surgery for adolescent idiopathic scoliosis (AIS), despite the presumed essential role of spinal mobility during gait. This study analyses how spinal fusion affects gait at more challenging walking speeds. More specifically, we investigated whether thoracic-pelvic rotations are reduced to a larger extent at higher gait speeds and whether compensatory mechanisms above and below the stiffened spine are present. 18 AIS patients underwent gait analysis at increasing walking speeds (0.45 to 2.22m/s) before and after spinal fusion. The range of motion (ROM) of the upper (thorax, thoracic-pelvic and pelvis) and lower body (hip, knee and ankle) was determined in all three planes. Spatiotemporal parameters of interest were stride length and cadence. Spinal fusion diminished transverse plane thoracic-pelvic ROM and this difference was more explicit at higher walking speeds. Transversal pelvis ROM was also decreased but this effect was not affected by speed. Lower body ROM, step length and cadence remained unaffected. Despite the reduction of upper body ROM after spine surgery during high speed gait, no altered spatiotemporal parameters or increased compensatory ROM above or below the fusion (i.e. in the shoulder girdle or lower extremities) was identified. Thus, it remains unclear how patients can cope so well with such major surgery. Future studies should focus on analyzing the kinematics of individual spinal levels above and below the fusion during gait to investigate possible compensatory mechanisms within the spine. Copyright © 2017 Elsevier B.V. All rights reserved.
Gallo, Paul M; McIsaac, Tara L; Garber, Carol Ewing
2014-01-01
Gait impairments related to Parkinson's disease (PD) include variable step length and decreased walking velocity, which may result in poorer walking economy. Auditory cueing is a common method used to improve gait mechanics in PD that has been shown to worsen walking economy at set treadmill walking speeds. It is unknown if auditory cueing has the same effects on walking economy at self-selected treadmill walking speeds. To determine if auditory cueing will affect walking economy at self-selected treadmill walking speeds and at speeds slightly faster and slower than self-selected. Twenty-two participants with moderate PD performed three, 6-minute bouts of treadmill walking at three speeds (self-selected and ± 0.22 m·sec-1). One session used cueing and the other without cueing. Energy expenditure was measured and walking economy was calculated (energy expenditure/power). Poorer walking economy and higher energy expenditure occurred during cued walking at a self-selected and a slightly faster walking speed, but there was no apparent difference at the slightly slower speed. These results suggest that potential gait benefits of auditory cueing may come at an energy cost and poorer walking economy for persons with PD at least at some treadmill walking speeds.
Gowda, Swetha B. M.; Paranjpe, Pushkar D.; Reddy, O. Venkateswara; Thiagarajan, Devasena; Palliyil, Sudhir; Reichert, Heinrich
2018-01-01
Walking is a complex rhythmic locomotor behavior generated by sequential and periodical contraction of muscles essential for coordinated control of movements of legs and leg joints. Studies of walking in vertebrates and invertebrates have revealed that premotor neural circuitry generates a basic rhythmic pattern that is sculpted by sensory feedback and ultimately controls the amplitude and phase of the motor output to leg muscles. However, the identity and functional roles of the premotor interneurons that directly control leg motoneuron activity are poorly understood. Here we take advantage of the powerful genetic methodology available in Drosophila to investigate the role of premotor inhibition in walking by genetically suppressing inhibitory input to leg motoneurons. For this, we have developed an algorithm for automated analysis of leg motion to characterize the walking parameters of wild-type flies from high-speed video recordings. Further, we use genetic reagents for targeted RNAi knockdown of inhibitory neurotransmitter receptors in leg motoneurons together with quantitative analysis of resulting changes in leg movement parameters in freely walking Drosophila. Our findings indicate that targeted down-regulation of the GABAA receptor Rdl (Resistance to Dieldrin) in leg motoneurons results in a dramatic reduction of walking speed and step length without the loss of general leg coordination during locomotion. Genetically restricting the knockdown to the adult stage and subsets of motoneurons yields qualitatively identical results. Taken together, these findings identify GABAergic premotor inhibition of motoneurons as an important determinant of correctly coordinated leg movements and speed of walking in freely behaving Drosophila. PMID:29440493
Gowda, Swetha B M; Paranjpe, Pushkar D; Reddy, O Venkateswara; Thiagarajan, Devasena; Palliyil, Sudhir; Reichert, Heinrich; VijayRaghavan, K
2018-02-27
Walking is a complex rhythmic locomotor behavior generated by sequential and periodical contraction of muscles essential for coordinated control of movements of legs and leg joints. Studies of walking in vertebrates and invertebrates have revealed that premotor neural circuitry generates a basic rhythmic pattern that is sculpted by sensory feedback and ultimately controls the amplitude and phase of the motor output to leg muscles. However, the identity and functional roles of the premotor interneurons that directly control leg motoneuron activity are poorly understood. Here we take advantage of the powerful genetic methodology available in Drosophila to investigate the role of premotor inhibition in walking by genetically suppressing inhibitory input to leg motoneurons. For this, we have developed an algorithm for automated analysis of leg motion to characterize the walking parameters of wild-type flies from high-speed video recordings. Further, we use genetic reagents for targeted RNAi knockdown of inhibitory neurotransmitter receptors in leg motoneurons together with quantitative analysis of resulting changes in leg movement parameters in freely walking Drosophila Our findings indicate that targeted down-regulation of the GABA A receptor Rdl (Resistance to Dieldrin) in leg motoneurons results in a dramatic reduction of walking speed and step length without the loss of general leg coordination during locomotion. Genetically restricting the knockdown to the adult stage and subsets of motoneurons yields qualitatively identical results. Taken together, these findings identify GABAergic premotor inhibition of motoneurons as an important determinant of correctly coordinated leg movements and speed of walking in freely behaving Drosophila . Copyright © 2018 the Author(s). Published by PNAS.
ERIC Educational Resources Information Center
Rota, Viviana; Perucca, Laura; Simone, Anna; Tesio, Luigi
2011-01-01
In healthy adults, the step length/cadence ratio [walk ratio (WR) in mm/(steps/min) and normalized for height] is known to be constant around 6.5 mm/(step/min). It is a speed-independent index of the overall neuromotor gait control, in as much as it reflects energy expenditure, balance, between-step variability, and attentional demand. The speed…
Mechanics of competition walking.
Cavagna, G A; Franzetti, P
1981-06-01
1. The work done at each step to lift and accelerate the centre of mass of the body has been measured in competition walkers during locomotion from 2 to 20 km/hr. 2. Three distinct phases characterize the mechanics of walking. From 2 to 6 km/hr the vertical displacement during each step, Sv, increases to a maximum (3.5 vs. 6 cm in normal walking) due to an increase in the amplitude of the rotation over the supporting leg. 3. The transfer, R, between potential energy of vertical displacement and kinetic energy of forward motion during this rotation, reaches a maximum at 4-5 km/hr (R = 65%). From 6 to 10 km/hr R decreases more steeply than in normal walking, indicating a smaller utilization of the pendulum-like mechanism characteristic of walking. 4. Above 10 km/hr potential and kinetic energies vary during each step because both are simultaneously taken up and released by the muscles with almost no transfer between them (R = 2-10%). Above 13-14 km/hr an aerial phase (25-60 msec) takes place during the step. 5. Speeds considerably greater than in normal walking are attained thanks to a greater efficiency of doing positive work. This is made possible by a mechanism of locomotion allowing an important storage and recovery of mechanical energy by the muscles.
Rodrigues-Baroni, Juliana M; Nascimento, Lucas R; Ada, Louise; Teixeira-Salmela, Luci F
2014-01-01
To systematically review the available evidence on the efficacy of walking training associated with virtual reality-based training in patients with stroke. The specific questions were: Is walking training associated with virtual reality-based training effective in increasing walking speed after stroke? Is this type of intervention more effective in increasing walking speed, than non-virtual reality-based walking interventions? A systematic review with meta-analysis of randomized clinical trials was conducted. Participants were adults with chronic stroke and the experimental intervention was walking training associated with virtual reality-based training to increase walking speed. The outcome data regarding walking speed were extracted from the eligible trials and were combined using a meta-analysis approach. Seven trials representing eight comparisons were included in this systematic review. Overall, the virtual reality-based training increased walking speed by 0.17 m/s (IC 95% 0.08 to 0.26), compared with placebo/nothing or non-walking interventions. In addition, the virtual reality-based training increased walking speed by 0.15 m/s (IC 95% 0.05 to 0.24), compared with non-virtual reality walking interventions. This review provided evidence that walking training associated with virtual reality-based training was effective in increasing walking speed after stroke, and resulted in better results than non-virtual reality interventions.
Rodrigues-Baroni, Juliana M.; Nascimento, Lucas R.; Ada, Louise; Teixeira-Salmela, Luci F.
2014-01-01
OBJECTIVE: To systematically review the available evidence on the efficacy of walking training associated with virtual reality-based training in patients with stroke. The specific questions were: Is walking training associated with virtual reality-based training effective in increasing walking speed after stroke? Is this type of intervention more effective in increasing walking speed, than non-virtual reality-based walking interventions? METHOD: A systematic review with meta-analysis of randomized clinical trials was conducted. Participants were adults with chronic stroke and the experimental intervention was walking training associated with virtual reality-based training to increase walking speed. The outcome data regarding walking speed were extracted from the eligible trials and were combined using a meta-analysis approach. RESULTS: Seven trials representing eight comparisons were included in this systematic review. Overall, the virtual reality-based training increased walking speed by 0.17 m/s (IC 95% 0.08 to 0.26), compared with placebo/nothing or non-walking interventions. In addition, the virtual reality-based training increased walking speed by 0.15 m/s (IC 95% 0.05 to 0.24), compared with non-virtual reality walking interventions. CONCLUSIONS: This review provided evidence that walking training associated with virtual reality-based training was effective in increasing walking speed after stroke, and resulted in better results than non-virtual reality interventions. PMID:25590442
Navigational strategies during fast walking: a comparison between trained athletes and non-athletes.
Gérin-Lajoie, Martin; Ronsky, Janet L; Loitz-Ramage, Barbara; Robu, Ion; Richards, Carol L; McFadyen, Bradford J
2007-10-01
Many common activities such as walking in a shopping mall, moving in a busy subway station, or even avoiding opponents during sports, all require different levels of navigational skills. Obstacle circumvention is beginning to be understood across age groups, but studying trained athletes with greater levels of motor ability will further our understanding of skillful adaptive locomotor behavior. The objective of this work was to compare navigational skills during fast walking between elite athletes (e.g. soccer, field hockey, basketball) and aged-matched non-athletes under different levels of environmental complexity in relation to obstacle configuration and visibility. The movements of eight women athletes and eight women non-athletes were measured as they walked as fast as possible through different obstacle courses in both normal and low lighting conditions. Results showed that athletes, despite similar unobstructed maximal speeds to non-athletes, had faster walking times during the navigation of all obstructed environments. It appears that athletes can process visuo-spatial information faster since both groups can make appropriate navigational decisions, but athletes can navigate through complex, novel, environments at greater speeds. Athletes' walking times were also more affected by the low lighting conditions suggesting that they normally scan the obstructed course farther ahead. This study also uses new objective measures to assess functional locomotor capacity in order to discriminate individuals according to their level of navigational ability. The evaluation paradigm and outcome measures developed may be applicable to the evaluation of skill level in athletic training and selection, as well as in gait rehabilitation following impairment.
Smith, Victoria Mj; Varsanik, Jonathan S; Walker, Rachel A; Russo, Andrew W; Patel, Kevin R; Gabel, Wendy; Phillips, Glenn A; Kimmel, Zebadiah M; Klawiter, Eric C
2018-01-01
Gait disturbance is a major contributor to clinical disability in multiple sclerosis (MS). A sensor was developed to assess walking speed at home for people with MS using infrared technology in real-time without the use of wearables. To develop continuous in-home outcome measures to assess gait in adults with MS. Movement measurements were collected continuously for 8 months from six people with MS. Average walking speed and peak walking speed were calculated from movement data, then analyzed for variability over time, by room (location), and over the course of the day. In-home continuous gait outcomes and variability were correlated with standard in-clinic gait outcomes. Measured in-home average walking speed of participants ranged from 0.33 m/s to 0.96 m/s and peak walking speed ranged from 0.89 m/s to 1.51 m/s. Mean total within-participant coefficient of variation for daily average walking speed and peak walking speed were 10.75% and 10.93%, respectively. Average walking speed demonstrated a moderately strong correlation with baseline Timed 25-Foot Walk (r s = 0.714, P = 0.111). New non-wearable technology provides reliable and continuous in-home assessment of walking speed.
Aaslund, Mona Kristin; Helbostad, Jorunn Lægdheim; Moe-Nilssen, Rolf
2013-05-01
Rehabilitating walking in ambulatory patients post-stroke, with training that is safe, task-specific, intensive, and of sufficient duration, can be challenging. Some challenges can be met by using body-weight-supported treadmill training (BWSTT). However, it is not known to what degree walking characteristics are similar during BWSTT and overground walking. In addition, important questions regarding the training protocol of BWSTT remain unanswered, such as how proportion of body-weight support (BWS) and walking speed affect walking characteristics during training. The objective was therefore to investigate if and how kinematic walking characteristics are different between overground walking and treadmill walking with BWS in ambulatory patients post-stroke, and the acute response of altering walking speed and percent BWS during treadmill walking with BWS. A cross-sectional repeated-measures design was used. Ambulating patients post-stroke walked in slow, preferred, and fast walking speed overground and at comparable speeds on the treadmill with 20% and 40% BWS. Kinematic walking characteristics were obtained using a kinematic sensor attached over the lower back. Forty-four patients completed the protocol. Kinematic walking characteristics were similar during treadmill walking with BWS, compared to walking overground. During treadmill walking, choice of walking speed had greater impact on kinematic walking characteristics than proportion of BWS. Faster walking speeds tended to affect the kinematic walking characteristics positively. This implies that in order to train safely and with sufficient intensity and duration, therapists may choose to include BWSTT in walking rehabilitation also for ambulatory patients post-stroke without aggravating gait pattern during training.
Roos, Paulien E; Dingwell, Jonathan B
2013-06-21
Older adults and those with increased fall risk tend to walk slower. They may do this voluntarily to reduce their fall risk. However, both slower and faster walking speeds can predict increased risk of different types of falls. The mechanisms that contribute to fall risk across speeds are not well known. Faster walking requires greater forward propulsion, generated by larger muscle forces. However, greater muscle activation induces increased signal-dependent neuromuscular noise. These speed-related increases in neuromuscular noise may contribute to the increased fall risk observed at faster walking speeds. Using a 3D dynamic walking model, we systematically varied walking speed without and with physiologically-appropriate neuromuscular noise. We quantified how actual fall risk changed with gait speed, how neuromuscular noise affected speed-related changes in fall risk, and how well orbital and local dynamic stability measures predicted changes in fall risk across speeds. When we included physiologically-appropriate noise to the 'push-off' force in our model, fall risk increased with increasing walking speed. Changes in kinematic variability, orbital, and local dynamic stability did not predict these speed-related changes in fall risk. Thus, the increased neuromuscular variability that results from increased signal-dependent noise that is necessitated by the greater muscular force requirements of faster walking may contribute to the increased fall risk observed at faster walking speeds. The lower fall risk observed at slower speeds supports experimental evidence that slowing down can be an effective strategy to reduce fall risk. This may help explain the slower walking speeds observed in older adults and others. Copyright © 2013 Elsevier Ltd. All rights reserved.
Roos, Paulien E.; Dingwell, Jonathan B.
2013-01-01
Older adults and those with increased fall risk tend to walk slower. They may do this voluntarily to reduce their fall risk. However, both slower and faster walking speeds can predict increased risk of different types of falls. The mechanisms that contribute to fall risk across speeds are not well known. Faster walking requires greater forward propulsion, generated by larger muscle forces. However, greater muscle activation induces increased signal-dependent neuromuscular noise. These speed-related increases in neuromuscular noise may contribute to the increased fall risk observed at faster walking speeds. Using a 3D dynamic walking model, we systematically varied walking speed without and with physiologically-appropriate neuromuscular noise. We quantified how actual fall risk changed with gait speed, how neuromuscular noise affected speed-related changes in fall risk, and how well orbital and local dynamic stability measures predicted changes in fall risk across speeds. When we included physiologically-appropriate noise to the ‘push-off’ force in our model, fall risk increased with increasing walking speed. Changes in kinematic variability, orbital, and local dynamic stability did not predict these speed-related changes in fall risk. Thus, the increased neuromuscular variability that results from increased signal-dependent noise that is necessitated by the greater muscular force requirements of faster walking may contribute to the increased fall risk observed at faster walking speeds. The lower fall risk observed at slower speeds supports experimental evidence that slowing down can be an effective strategy to reduce fall risk. This may help explain the slower walking speeds observed in older adults and others. PMID:23659911
Brehm, Merel-Anne; Beelen, Anita; Doorenbosch, Caroline A M; Harlaar, Jaap; Nollet, Frans
2007-10-01
To investigate the effects of total-contact fitted carbon-composite knee-ankle-foot orthoses (KAFOs) on energy cost of walking in patients with former polio who normally wear a conventional leather/metal KAFO or plastic/metal KAFO. A prospective uncontrolled study with a multiple baseline and follow-up design. Follow-up measurements continued until 26 weeks after intervention. Twenty adults with polio residuals (mean age 55 years). Each participant received a new carbon-composite KAFO, fitted according to a total-contact principle, which resulted in a rigid, lightweight and well-fitting KAFO. Energy cost of walking, walking speed, biomechanics of gait, physical functioning and patient satisfaction. The energy cost decreased significantly, by 8%, compared with the original KAFO. Furthermore, the incremention energy cost during walking with the carbon-composite KAFO was reduced by 18% towards normative values. An improvement in knee flexion, forward excursion of the centre of pressure, peak ankle moment, and timing of peak ankle power were significantly associated with the decrease in energy cost. Walking speed and physical functioning remained unchanged. In patients with former polio, carbon-composite KAFOs are superior to conventional leather/metal and plastic/metal KAFOs with respect to improving walking efficiency and gait, and are therefore important in reducing overuse and maintaining functional abilities in polio survivors.
Peng, Joshua; Fey, Nicholas P; Kuiken, Todd A; Hargrove, Levi J
2016-02-29
The majority of fall-related accidents are during stair ambulation-occurring commonly at the top and bottom stairs of each flight, locations in which individuals are transitioning to stairs. Little is known about how individuals adjust their biomechanics in anticipation of walking-stair transitions. We identified the anticipatory stride mechanics of nine able-bodied individuals as they approached transitions from level ground walking to stair ascent and descent. Unlike prior investigations of stair ambulation, we analyzed two consecutive "anticipation" strides preceding the transitions strides to stairs, and tested a comprehensive set of kinematic and electromyographic (EMG) data from both the leading and trailing legs. Subjects completed ten trials of baseline overground walking and ten trials of walking to stair ascent and descent. Deviations relative to baseline were assessed. Significant changes in mechanics and EMG occurred in the earliest anticipation strides analyzed for both ascent and descent transitions. For stair descent, these changes were consistent with observed reductions in walking speed, which occurred in all anticipation strides tested. For stair ascent, subjects maintained their speed until the swing phase of the latest anticipation stride, and changes were found that would normally be observed for decreasing speed. Given the timing and nature of the observed changes, this study has implications for enhancing intent recognition systems and evaluating fall-prone or disabled individuals, by testing their abilities to sense upcoming transitions and decelerate during locomotion. Copyright © 2016 Elsevier Ltd. All rights reserved.
2012-01-01
Background Previous studies demonstrated that stroke survivors have a limited capacity to increase their walking speeds beyond their self-selected maximum walking speed (SMWS). The purpose of this study was to determine the capacity of stroke survivors to reach faster speeds than their SMWS while walking on a treadmill belt or while being pushed by a robotic system (i.e. “push mode”). Methods Eighteen chronic stroke survivors with hemiplegia were involved in the study. We calculated their self-selected comfortable walking speed (SCWS) and SMWS overground using a 5-meter walk test (5-MWT). Then, they were exposed to walking at increased speeds, on a treadmill and while in “push mode” in an overground robotic device, the KineAssist, until they were tested at a speed that they could not sustain without losing balance. We recorded the time and number of steps during each trial and calculated gait speed, average cadence and average step length. Results Maximum walking speed in the “push mode” was 13% higher than the maximum walking speed on the treadmill and both were higher (“push mode”: 61%; treadmill: 40%) than the maximum walking speed overground. Subjects achieved these faster speeds by initially increasing both step length and cadence and, once individuals stopped increasing their step length, by only increasing cadence. Conclusions With post-stroke hemiplegia, individuals are able to walk at faster speeds than their SMWS overground, when provided with a safe environment that provides external forces that requires them to attempt dynamic stability maintenance at higher gait speeds. Therefore, this study suggests the possibility that, given the appropriate conditions, people post-stroke can be trained at higher speeds than previously attempted. PMID:23057500
Brach, Jennifer S.; Van Swearingen, Jessie M.; Perera, Subashan; Wert, David M.; Studenski, Stephanie
2013-01-01
Background Current exercise recommendationsfocus on endurance and strength, but rarely incorporate principles of motor learning. Motor learning exerciseis designed to address neurological aspects of movement. Motor learning exercise has not been evaluated in older adults with subclinical gait dysfunction. Objectives Tocompare motor learning versus standard exercise on measures of mobility and perceived function and disability. Design Single-blind randomized trial. Setting University research center. Participants Olderadults (n=40), mean age 77.1±6.0 years), who had normal walking speed (≥1.0 m/s) and impaired motor skill (Figure of 8 walk time > 8 s). Interventions The motor learning program (ML) incorporated goal-oriented stepping and walking to promote timing and coordination within the phases of the gait cycle. The standard program (S) employed endurance training by treadmill walking.Both included strength training and were offered twice weekly for one hour for 12 weeks. Measurements Primary outcomes included mobility performance (gait efficiency, motor skill in walking, gait speed, and walking endurance)and secondary outcomes included perceived function and disability (Late Life Function and Disability Instrument). Results 38 of 40 participants completed the trial (ML, n=18; S, n=20). ML improved more than Sin gait speed (0.13 vs. 0.05 m/s, p=0.008) and motor skill (−2.2 vs. −0.89 s, p<0.0001). Both groups improved in walking endurance (28.3 and 22.9m, but did not differ significantly p=0.14). Changes in gait efficiency and perceived function and disability were not different between the groups (p>0.10). Conclusion In older adults with subclinical gait dysfunction, motor learning exercise improved some parameters of mobility performance more than standard exercise. PMID:24219189
Accuracy of the Microsoft Kinect for measuring gait parameters during treadmill walking.
Xu, Xu; McGorry, Raymond W; Chou, Li-Shan; Lin, Jia-Hua; Chang, Chien-Chi
2015-07-01
The measurement of gait parameters normally requires motion tracking systems combined with force plates, which limits the measurement to laboratory settings. In some recent studies, the possibility of using the portable, low cost, and marker-less Microsoft Kinect sensor to measure gait parameters on over-ground walking has been examined. The current study further examined the accuracy level of the Kinect sensor for assessment of various gait parameters during treadmill walking under different walking speeds. Twenty healthy participants walked on the treadmill and their full body kinematics data were measured by a Kinect sensor and a motion tracking system, concurrently. Spatiotemporal gait parameters and knee and hip joint angles were extracted from the two devices and were compared. The results showed that the accuracy levels when using the Kinect sensor varied across the gait parameters. Average heel strike frame errors were 0.18 and 0.30 frames for the right and left foot, respectively, while average toe off frame errors were -2.25 and -2.61 frames, respectively, across all participants and all walking speeds. The temporal gait parameters based purely on heel strike have less error than the temporal gait parameters based on toe off. The Kinect sensor can follow the trend of the joint trajectories for the knee and hip joints, though there was substantial error in magnitudes. The walking speed was also found to significantly affect the identified timing of toe off. The results of the study suggest that the Kinect sensor may be used as an alternative device to measure some gait parameters for treadmill walking, depending on the desired accuracy level. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Punt, Ilona M; Ziltener, Jean-Luc; Laidet, Magali; Armand, Stéphane; Allet, Lara
2015-01-01
To assess ankle function 4 weeks after conservative management and to examine the correlation of function with gait. A prospective comparison study. Thirty patients with grade I or II acute ankle sprains were followed up after 4 weeks of conservative management not involving physical therapy. Participants underwent a clinical assessment and had to walk at a normal self-selected walking speed. Their results were compared with the data of 15 healthy subjects. Participants' joint swelling, muscle strength, passive mobility, and pain were assessed. In addition, patients' temporal-spatial, kinematic, and kinetic gait data were measured while walking. Muscle strength and passive mobility were significantly reduced on the injured side compared with the noninjured side (P < .001). During gait analysis, patients with ankle sprains showed slower walking speed, shorter step length, shorter single support time, reduced and delayed maximum plantar flexion, decreased maximum power, and decreased maximum moment (P < .050) compared with healthy persons. Decreased walking speed was mainly correlated with pain (R = -0.566, P = .001) and deficits in muscle strength of dorsiflexors (R = 0.506, P = .004). Four weeks after an ankle sprain, patients who did not receive physical therapy showed physical impairments of the ankle that were correlated with gait parameters. These findings might help fine-tune rehabilitation protocols. Copyright © 2015 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
The effects of narrow and elevated path walking on aperture crossing.
Hackney, Amy L; Cinelli, Michael E; Denomme, Luke T; Frank, James S
2015-06-01
The study investigated the impact that action capabilities have on identifying possibilities for action, particularly how postural threat influences the passability of apertures. To do this, the ability to maintain balance was challenged by manipulating the level of postural threat while walking. First, participants walked along a 7m path and passed through two vertical obstacles spaced 1.1-1.5×the shoulder width apart during normal walking. Next, postural threat was manipulated by having participants complete the task either walking on a narrow, ground level path or on an elevated/narrow path. Despite a decrease in walking speed as well as an increase in trunk sway in both the narrow and elevated/narrow walking conditions, the passability of apertures was only affected when the consequence of instability was greatest. In the elevated/narrow walking condition, individuals maintained a larger critical point (rotated their shoulders for larger aperture widths) compared to normal walking. However, this effect was not observed for the narrow path walking suggesting that the level of postural threat was not enough to impose similar changes to the critical point. Therefore, it appears that manipulating action capabilities by increasing postural threat does indeed influence aperture crossing behavior, however the consequence associated with instability must be high before both gait characteristics and the critical point are affected. Copyright © 2015 Elsevier B.V. All rights reserved.
Effects of changing speed on knee and ankle joint load during walking and running.
de David, Ana Cristina; Carpes, Felipe Pivetta; Stefanyshyn, Darren
2015-01-01
Joint moments can be used as an indicator of joint loading and have potential application for sports performance and injury prevention. The effects of changing walking and running speeds on joint moments for the different planes of motion still are debatable. Here, we compared knee and ankle moments during walking and running at different speeds. Data were collected from 11 recreational male runners to determine knee and ankle joint moments during different conditions. Conditions include walking at a comfortable speed (self-selected pacing), fast walking (fastest speed possible), slow running (speed corresponding to 30% slower than running) and running (at 4 m · s(-1) ± 10%). A different joint moment pattern was observed between walking and running. We observed a general increase in joint load for sagittal and frontal planes as speed increased, while the effects of speed were not clear in the transverse plane moments. Although differences tend to be more pronounced when gait changed from walking to running, the peak moments, in general, increased when speed increased from comfortable walking to fast walking and from slow running to running mainly in the sagittal and frontal planes. Knee flexion moment was higher in walking than in running due to larger knee extension. Results suggest caution when recommending walking over running in an attempt to reduce knee joint loading. The different effects of speed increments during walking and running should be considered with regard to the prevention of injuries and for rehabilitation purposes.
Humans do not have direct access to retinal flow during walking
Souman, Jan L.; Freeman, Tom C.A.; Eikmeier, Verena; Ernst, Marc O.
2013-01-01
Perceived visual speed has been reported to be reduced during walking. This reduction has been attributed to a partial subtraction of walking speed from visual speed (Durgin & Gigone, 2007; Durgin, Gigone, & Scott, 2005). We tested whether observers still have access to the retinal flow before subtraction takes place. Observers performed a 2IFC visual speed discrimination task while walking on a treadmill. In one condition, walking speed was identical in the two intervals, while in a second condition walking speed differed between intervals. If observers have access to the retinal flow before subtraction, any changes in walking speed across intervals should not affect their ability to discriminate retinal flow speed. Contrary to this “direct-access hypothesis”, we found that observers were worse at discrimination when walking speed differed between intervals. The results therefore suggest that observers do not have access to retinal flow before subtraction. We also found that the amount of subtraction depended on the visual speed presented, suggesting that the interaction between the processing of visual input and of self-motion is more complex than previously proposed. PMID:20884509
Kinematic and biomimetic assessment of a hydraulic ankle/foot in level ground and camber walking.
Bai, Xuefei; Ewins, David; Crocombe, Andrew D; Xu, Wei
2017-01-01
Improved walking comfort has been linked with better bio-mimicking of the prosthetic ankle. This study investigated if a hydraulic ankle/foot can provide enough motion in both the sagittal and frontal planes during level and camber walking and if the hydraulic ankle/foot better mimics the biological ankle moment pattern compared with a fixed ankle/foot device. Five active male unilateral trans-femoral amputees performed level ground walking at normal and fast speeds and 2.5° camber walking in both directions using their own prostheses fitted with an "Echelon" hydraulic ankle/foot and an "Esprit" fixed ankle/foot. Ankle angles and the Trend Symmetry Index of the ankle moments were compared between prostheses and walking conditions. Significant differences between prostheses were found in the stance plantarflexion and dorsiflexion peaks with a greater range of motion being reached with the Echelon foot. The Echelon foot also showed significantly improved bio-mimicry of the ankle resistance moment in all walking conditions, either compared with the intact side of the same subject or with the "normal" mean curve from non-amputees. During camber walking, both types of ankle/foot devices showed similar changes in the frontal plane ankle angles. Results from a questionnaire showed the subjects were more satisfied with Echelon foot.
Mobility performance in glaucoma.
Turano, K A; Rubin, G S; Quigley, H A
1999-11-01
To determine whether glaucoma affects mobility performance and whether there is a relationship between mobility performance and stage of disease as estimated from vision-function measures. The mobility performance of 47 glaucoma subjects was compared with that of 47 normal-vision subjects who were of similar age. Mobility performance was assessed by the time required to complete an established travel path and the number of mobility incidents. The subjective assessment of falling and fear of falling were also compared. Vision function was assessed by measures of visual acuity, contrast sensitivity, monocular automated threshold perimetry, and suprathreshold; binocular visual fields were assessed with the Esterman test. The glaucoma subjects walked on average 10% more slowly than did the normal-vision subjects. The number of people who experienced bumps, stumbles, or orientation problems was almost twice as high in the glaucoma group than the normal-vision group, but the difference did not reach statistical significance. The difference between groups also was not significant with respect to the number of people who reported falling in the past year (38% for the glaucoma group and 30% for the normal-vision group) or a fear of falling (28% for the glaucoma group and 23% for the normal-vision group). The visual fields assessed with a Humphrey 24-2 test were more highly correlated with walking speed in glaucoma than the visual fields scored by the Esterman scale or than visual acuity or contrast sensitivity. Glaucoma is associated with a modest decrease in mobility performance. Walking speed decreases with severity of the disease as estimated by threshold perimetry.
Treadmill Adaptation and Verification of Self-Selected Walking Speed: A Protocol for Children
ERIC Educational Resources Information Center
Amorim, Paulo Roberto S.; Hills, Andrew; Byrne, Nuala
2009-01-01
Walking is a common activity of daily life and researchers have used the range 3-6 km.h[superscript -1] as reference for walking speeds habitually used for transportation. The term self-selected (i.e., individual or comfortable walking pace or speed) is commonly used in the literature and is identified as the most efficient walking speed, with…
Does dynamic stability govern propulsive force generation in human walking?
Browne, Michael G.
2017-01-01
Before succumbing to slower speeds, older adults may walk with a diminished push-off to prioritize stability over mobility. However, direct evidence for trade-offs between push-off intensity and balance control in human walking, independent of changes in speed, has remained elusive. As a critical first step, we conducted two experiments to investigate: (i) the independent effects of walking speed and propulsive force (FP) generation on dynamic stability in young adults, and (ii) the extent to which young adults prioritize dynamic stability in selecting their preferred combination of walking speed and FP generation. Subjects walked on a force-measuring treadmill across a range of speeds as well as at constant speeds while modulating their FP according to a visual biofeedback paradigm based on real-time force measurements. In contrast to improvements when walking slower, walking with a diminished push-off worsened dynamic stability by up to 32%. Rather, we find that young adults adopt an FP at their preferred walking speed that maximizes dynamic stability. One implication of these findings is that the onset of a diminished push-off in old age may independently contribute to poorer balance control and precipitate slower walking speeds. PMID:29291129
Does dynamic stability govern propulsive force generation in human walking?
Browne, Michael G; Franz, Jason R
2017-11-01
Before succumbing to slower speeds, older adults may walk with a diminished push-off to prioritize stability over mobility. However, direct evidence for trade-offs between push-off intensity and balance control in human walking, independent of changes in speed, has remained elusive. As a critical first step, we conducted two experiments to investigate: (i) the independent effects of walking speed and propulsive force ( F P ) generation on dynamic stability in young adults, and (ii) the extent to which young adults prioritize dynamic stability in selecting their preferred combination of walking speed and F P generation. Subjects walked on a force-measuring treadmill across a range of speeds as well as at constant speeds while modulating their F P according to a visual biofeedback paradigm based on real-time force measurements. In contrast to improvements when walking slower, walking with a diminished push-off worsened dynamic stability by up to 32%. Rather, we find that young adults adopt an F P at their preferred walking speed that maximizes dynamic stability. One implication of these findings is that the onset of a diminished push-off in old age may independently contribute to poorer balance control and precipitate slower walking speeds.
The Effect of Cognitive-Task Type and Walking Speed on Dual-Task Gait in Healthy Adults.
Wrightson, James G; Ross, Emma Z; Smeeton, Nicholas J
2016-01-01
In a number of studies in which a dual-task gait paradigm was used, researchers reported a relationship between cognitive function and gait. However, it is not clear to what extent these effects are dependent on the type of cognitive and walking tasks used in the dual-task paradigm. This study examined whether stride-time variability (STV) and trunk range of motion (RoM) are affected by the type of cognitive task and walking speed used during dual-task gait. Participants walked at both their preferred walking speed and at 25% of their preferred walking speed and performed a serial subtraction and a working memory task at both speeds. Although both tasks significantly reduced STV at both walking speeds, there was no difference between the two tasks. Trunk RoM was affected by the walking speed and type of cognitive task used during dual-task gait: Mediolateral trunk RoM was increased at the slow walking speed, and anterior-posterior trunk RoM was higher only when performing the serial subtraction task at the slow walking speed. The reduction of STV, regardless of cognitive-task type, suggests that healthy adults may redirect cognitive processes away from gait toward cognitive-task performance during dual-task gait.
Hinton, Dorelle Clare; Cheng, Yeu-Yao; Paquette, Caroline
2018-01-01
With increasing numbers of adults owning a cell phone, walking while texting has become common in daily life. Previous research has shown that walking is not entirely automated and when challenged with a secondary task, normal walking patterns are disrupted. This study investigated the effects of texting on the walking patterns of healthy young adults while walking on a split-belt treadmill. Following full adaptation to the split-belt treadmill, thirteen healthy adults (23±3years) walked on a tied-belt and split-belt treadmill, both with and without a simultaneous texting task. Inertial-based movement monitors recorded spatiotemporal components of gait and stability. Measures of spatial and temporal gait symmetry were calculated to compare gait patterns between treadmill (tied-belt and split-belt) and between texting (absent or present) conditions. Typing speed and accuracy were recorded to monitor texting performance. Similar to previous research, the split-belt treadmill caused an alteration to both spatial and temporal aspects of gait, but not to time spent in dual support or stability. However, all participants successfully maintained balance while walking and were able to perform the texting task with no significant change to accuracy or speed on either treadmill. From this paradigm it is evident that when university students are challenged to text while walking on either a tied-belt or split-belt treadmill, without any other distraction, their gait is minimally affected and they are able to maintain texting performance. Copyright © 2017 Elsevier B.V. All rights reserved.
Hurt, Christopher P; Burgess, Jamie K; Brown, David A
2015-03-01
Individuals poststroke walk at faster self-selected speeds under some nominal level of body weight support (BWS) whereas nonimpaired individuals walk slower after adding BWS. The purpose of this study was to determine whether increases in self-selected overground walking speed under BWS conditions of individuals poststroke can be explained by changes in their paretic and nonparetic ground reaction forces (GRF). We hypothesize that increased self-selected walking speed, recorded at some nominal level of BWS, will relate to decreased braking GRFs by the paretic limb. We recruited 10 chronic (>12 months post-ictus, 57.5±9.6 y.o.) individuals poststroke and eleven nonimpaired participants (53.3±4.1 y.o.). Participants walked overground in a robotic device, the KineAssist Walking and Balance Training System that provided varying degrees of BWS (0-20% in 5% increments) while individuals self-selected their walking speed. Self-selected walking speed and braking and propulsive GRF impulses were quantified. Out of 10 poststroke individuals, 8 increased their walking speed 13% (p=0.004) under some level of BWS (5% n=2, 10% n=3, 20% n=3) whereas nonimpaired controls did not change speed (p=0.470). In individuals poststroke, changes to self-selected walking speed were correlated with changes in paretic propulsive impulses (r=0.68, p=0.003) and nonparetic braking impulses (r=-0.80, p=0.006), but were not correlated with decreased paretic braking impulses (r=0.50 p=0.14). This investigation demonstrates that when individuals poststroke are provided with BWS and allowed to self-select their overground walking speed, they are capable of achieving faster speeds by modulating braking impulses on the nonparetic limb and propulsive impulses of the paretic limb. Copyright © 2015 Elsevier B.V. All rights reserved.
Loftin, Mark; Waddell, Dwight E; Robinson, James H; Owens, Scott G
2010-10-01
We compared the energy expenditure to walk or run a mile in adult normal weight walkers (NWW), overweight walkers (OW), and marathon runners (MR). The sample consisted of 19 NWW, 11 OW, and 20 MR adults. Energy expenditure was measured at preferred walking speed (NWW and OW) and running speed of a recently completed marathon. Body composition was assessed via dual-energy x-ray absorptiometry. Analysis of variance was used to compare groups with the Scheffe's procedure used for post hoc analysis. Multiple regression analysis was used to predict energy expenditure. Results that indicated OW exhibited significantly higher (p < 0.05) mass and fat weight than NWW or MR. Similar values were found between NWW and MR. Absolute energy expenditure to walk or run a mile was similar between groups (NWW 93.9 ± 15.0, OW 98.4 ± 29.9, MR 99.3 ± 10.8 kcal); however, significant differences were noted when energy expenditure was expressed relative to mass (MR > NWW > OW). When energy expenditure was expressed per kilogram of fat-free mass, similar values were found across groups. Multiple regression analysis yielded mass and gender as significant predictors of energy expenditure (R = 0.795, SEE = 10.9 kcal). We suggest that walking is an excellent physical activity for energy expenditure in overweight individuals that are capable of walking without predisposed conditions such as osteoarthritis or cardiovascular risk factors. Moreover, from a practical perspective, our regression equation (kcal = mass (kg) × 0.789 - gender (men = 1, women = 2) × 7.634 + 51.109) allows for the prediction of energy expenditure for a given distance (mile) rather than predicting energy expenditure for a given time (minutes).
Neural decoding of treadmill walking from noninvasive electroencephalographic signals
Presacco, Alessandro; Goodman, Ronald; Forrester, Larry
2011-01-01
Chronic recordings from ensembles of cortical neurons in primary motor and somatosensory areas in rhesus macaques provide accurate information about bipedal locomotion (Fitzsimmons NA, Lebedev MA, Peikon ID, Nicolelis MA. Front Integr Neurosci 3: 3, 2009). Here we show that the linear and angular kinematics of the ankle, knee, and hip joints during both normal and precision (attentive) human treadmill walking can be inferred from noninvasive scalp electroencephalography (EEG) with decoding accuracies comparable to those from neural decoders based on multiple single-unit activities (SUAs) recorded in nonhuman primates. Six healthy adults were recorded. Participants were asked to walk on a treadmill at their self-selected comfortable speed while receiving visual feedback of their lower limbs (i.e., precision walking), to repeatedly avoid stepping on a strip drawn on the treadmill belt. Angular and linear kinematics of the left and right hip, knee, and ankle joints and EEG were recorded, and neural decoders were designed and optimized with cross-validation procedures. Of note, the optimal set of electrodes of these decoders were also used to accurately infer gait trajectories in a normal walking task that did not require subjects to control and monitor their foot placement. Our results indicate a high involvement of a fronto-posterior cortical network in the control of both precision and normal walking and suggest that EEG signals can be used to study in real time the cortical dynamics of walking and to develop brain-machine interfaces aimed at restoring human gait function. PMID:21768121
Application of a system for measuring foot plantar pressure for evaluation of human mobility
NASA Astrophysics Data System (ADS)
Klimiec, Ewa; Jasiewicz, Barbara; Zaraska, Krzysztof; Piekarski, Jacek; Guzdek, Piotr; Kołaszczyński, Grzegorz
2016-11-01
The paper presents evaluation of human mobility by gait analysis, carried out in natural conditions (outside laboratory). Foot plantar pressure is measured using a shoe insole with 8 sensors placed in different anatomical zones of the foot, and placed inside a sports footwear. Polarized PVDF foil is used as a sensor material. A wireless transmission system is used to transmit voltage values to the computer. Due to linear relationship between force and transducer voltage, energy released during walking in arbitrary units can be calculated as integral of the square of transducer voltage over time. Gait measurements have been done over the next few days on healthy person during normal walking and slow walking. Performed measurements allow determination of walking speed (number of steps per second), gait rhythm and manner of walking (applying force to inside versus outside part of the sole). It is found that switching from normal to slow walk increases gait energy by 25% while the pressure distribution across the anatomical regions of the foot remains unchanged. The results will be used for developing a programme for evaluation of patients with cardiac failure and future integration of actimetry with pulse and spirometry measurements.
Development of an automatic rotational orthosis for walking with arm swing.
Fang, Juan; Yang, Guo-Yuan; Xie, Le
2017-07-01
Interlimb neural coupling is often observed during normal gait and is postulated to be important for gait restoration. In order to provide a testbed for investigation of interlimb neural coupling, we previously developed a rotational orthosis for walking with arm swing (ROWAS). The present study aimed to develop and evaluate the feasibility of a new system, viz. an automatic ROWAS (aROWAS). We developed the mechanical structures of aROWAS in SolidWorks, and implemented the concept in a prototype. Normal gait data from walking at various speeds were used as reference trajectories of the shoulder, hip, knee and ankle joints. The aROWAS prototype was tested in three able-bodied subjects. The prototype could automatically adjust to size and height, and automatically produced adaptable coordinated performance in the upper and lower limbs, with joint profiles similar to those occurring in normal gait. The subjects reported better acceptance in aROWAS than in ROWAS. The aROWAS system was deemed feasible among able-bodied subjects.
DePaul, Vincent G; Wishart, Laurie R; Richardson, Julie; Thabane, Lehana; Ma, Jinhui; Lee, Timothy D
2015-05-01
Although task-related walking training has been recommended after stroke, the theoretical basis, content, and impact of interventions vary across the literature. There is a need for a comparison of different approaches to task-related walking training after stroke. To compare the impact of a motor-learning-science-based overground walking training program with body-weight-supported treadmill training (BWSTT) in ambulatory, community-dwelling adults within 1 year of stroke onset. In this rater-blinded, 1:1 parallel, randomized controlled trial, participants were stratified by baseline gait speed. Participants assigned to the Motor Learning Walking Program (MLWP) practiced various overground walking tasks under the supervision of 1 physiotherapist. Cognitive effort was encouraged through random practice and limited provision of feedback and guidance. The BWSTT program emphasized repetition of the normal gait cycle while supported on a treadmill and assisted by 1 to 3 therapy staff. The primary outcome was comfortable gait speed at postintervention assessment (T2). In total, 71 individuals (mean age = 67.3; standard deviation = 11.6 years) with stroke (mean onset = 20.9 [14.1] weeks) were randomized (MLWP, n = 35; BWSTT, n = 36). There was no significant between-group difference in gait speed at T2 (0.002 m/s; 95% confidence interval [CI] = -0.11, 0.12; P > .05). The MLWP group improved by 0.14 m/s (95% CI = 0.09, 0.19), and the BWSTT group improved by 0.14 m/s (95% CI = 0.08, 0.20). In this sample of community-dwelling adults within 1 year of stroke, a 15-session program of varied overground walking-focused training was not superior to a BWSTT program of equal frequency, duration, and in-session step activity. © The Author(s) 2014.
Balance and postural skills in normal-weight and overweight prepubertal boys.
Deforche, Benedicte I; Hills, Andrew P; Worringham, Charles J; Davies, Peter S W; Murphy, Alexia J; Bouckaert, Jacques J; De Bourdeaudhuij, Ilse M
2009-01-01
This study investigated differences in balance and postural skills in normal-weight versus overweight prepubertal boys. Fifty-seven 8-10-year-old boys were categorized overweight (N = 25) or normal-weight (N = 32) according to the International Obesity Task Force cut-off points for overweight in children. The Balance Master, a computerized pressure plate system, was used to objectively measure six balance skills: sit-to-stand, walk, step up/over, tandem walk (walking on a line), unilateral stance and limits of stability. In addition, three standardized field tests were employed: standing on one leg on a balance beam, walking heel-to-toe along the beam and the multiple sit-to-stand test. Overweight boys showed poorer performances on several items assessed on the Balance Master. Overweight boys had slower weight transfer (p < 0.05), lower rising index (p < 0.05) and greater sway velocity (p < 0.001) in the sit-to-stand test, greater step width while walking (p < 0.05) and lower speed when walking on a line (p < 0.01) compared with normal-weight counterparts. Performance on the step up/over test, the unilateral stance and the limits of stability were comparable between both groups. On the balance beam, overweight boys could not hold their balance on one leg as long (p < 0.001) and had fewer correct steps in the heel-to-toe test (p < 0.001) than normal-weight boys. Finally, overweight boys were slower in standing up and sitting down five times in the multiple sit-to-stand task (p < 0.01). This study demonstrates that when categorised by body mass index (BMI) level, overweight prepubertal boys displayed lower capacity on several static and dynamic balance and postural skills.
Arazpour, Mokhtar; Chitsazan, Ahmad; Bani, Monireh Ahmadi; Rouhi, Gholamreza; Ghomshe, Farhad Tabatabai; Hutchins, Stephen W
2013-10-01
The aim of this case study was to identify the effect of a powered stance control knee ankle foot orthosis on the kinematics and temporospatial parameters of walking by a person with poliomyelitis when compared to a knee ankle foot orthosis. A knee ankle foot orthosis was initially manufactured by incorporating drop lock knee joints and custom molded ankle foot orthoses and fitted to a person with poliomyelitis. The orthosis was then adapted by adding electrically activated powered knee joints to provide knee extension torque during stance and also flexion torque in swing phase. Lower limb kinematic and kinetic data plus data for temporospatial parameters were acquired from three test walks using each orthosis. Walking speed, step length, and vertical and horizontal displacement of the pelvis decreased when walking with the powered stance control knee ankle foot orthosis compared to the knee ankle foot orthosis. When using the powered stance control knee ankle foot orthosis, the knee flexion achieved during swing and also the overall pattern of walking more closely matched that of normal human walking. The reduced walking speed may have caused the smaller compensatory motions detected when the powered stance control knee ankle foot orthosis was used. The new powered SCKAFO facilitated controlled knee flexion and extension during ambulation for a volunteer poliomyelitis person.
Lusa, Amanda L; Amigues, Isabelle; Kramer, Henry R; Dam, Thuy-Tien; Giles, Jon T
2015-01-01
To explore the contributions from and interactions between articular swelling and damage, psychosocial factors, and body composition characteristics on walking speed in rheumatoid arthritis (RA). RA patients underwent the timed 400-meter long-corridor walk. Demographics, self-reported levels of depressive symptoms and fatigue, RA characteristics, and body composition (using whole-body dual X-ray absorptiometry, and abdominal and thigh computed tomography) were assessed and their associations with walking speed explored. A total of 132 RA patients had data for the 400-meter walk, among whom 107 (81%) completed the full 400 meters. Significant multivariable indicators of slower walking speed were older age, higher depression scores, higher reported pain and fatigue, higher swollen and replaced joint counts, higher cumulative prednisone exposure, nontreatment with disease-modifying antirheumatic drugs, and worse body composition. These features accounted for 60% of the modeled variability in walking speed. Among specific articular features, slower walking speed was primarily correlated with large/medium lower-extremity joint involvement. However, these articular features accounted for only 21% of the explainable variability in walking speed. Having any relevant articular characteristic was associated with a 20% lower walking speed among those with worse body composition (P < 0.001), compared with only a 6% lower speed among those with better body composition (P = 0.010 for interaction). Psychosocial factors and body composition are potentially reversible contributors to walking speed in RA. Relative to articular disease activity and damage, nonarticular indicators were collectively more potent indicators of an individual's mobility limitations. Copyright © 2015 by the American College of Rheumatology.
Validation of an ambient measurement system (AMS) for walking speed.
Varsanik, Jonathan S; Kimmel, Zebadiah M; de Moor, Carl; Gabel, Wendy; Phillips, Glenn A
2017-07-01
Walking speed is an important indicator of worsening in a variety of neurological and neuromuscular diseases, yet typically is measured only infrequently and in a clinical setting. Passive measurement of walking speed at home could provide valuable information to track the progression of many neuromuscular conditions. The purpose of this study was to validate the measurement of walking speed by a shelf-top ambient measurement system (AMS) that can be placed in a patient's home. Twenty-eight healthy adults (16 male, 12 female) were asked to walk three pre-defined routes two times each (total of 168 traversals). For each traversal, walking speed was measured simultaneously by five sources: two independent AMSs and three human timers with stopwatches. Measurements across the five sources were compared by generalised estimating equations (GEE). Correlation coefficients compared pairwise for walking speeds across the two AMSs, three human timers, and three routes all exceeded 0.86 (p < .0001), and for AMS-to-AMS exceeded 0.92 (p < .0001). Aggregated across all routes, there was no significant difference in measured walking speeds between the two AMSs (p = .596). There was a statistically significant difference between the AMSs and human timers of 8.5 cm/s (p < .0001), which is comparable to differences reported for other non-worn sensors. The tested AMS demonstrated the ability to automatically measure walking speeds comparable to manual observation and recording, which is the current standard for assessing walking speed in a clinical setting. The AMS may be used to detect changes in walking speed in community settings.
Reliability and Validity of Ten Consumer Activity Trackers Depend on Walking Speed.
Fokkema, Tryntsje; Kooiman, Thea J M; Krijnen, Wim P; VAN DER Schans, Cees P; DE Groot, Martijn
2017-04-01
To examine the test-retest reliability and validity of ten activity trackers for step counting at three different walking speeds. Thirty-one healthy participants walked twice on a treadmill for 30 min while wearing 10 activity trackers (Polar Loop, Garmin Vivosmart, Fitbit Charge HR, Apple Watch Sport, Pebble Smartwatch, Samsung Gear S, Misfit Flash, Jawbone Up Move, Flyfit, and Moves). Participants walked three walking speeds for 10 min each; slow (3.2 km·h), average (4.8 km·h), and vigorous (6.4 km·h). To measure test-retest reliability, intraclass correlations (ICC) were determined between the first and second treadmill test. Validity was determined by comparing the trackers with the gold standard (hand counting), using mean differences, mean absolute percentage errors, and ICC. Statistical differences were calculated by paired-sample t tests, Wilcoxon signed-rank tests, and by constructing Bland-Altman plots. Test-retest reliability varied with ICC ranging from -0.02 to 0.97. Validity varied between trackers and different walking speeds with mean differences between the gold standard and activity trackers ranging from 0.0 to 26.4%. Most trackers showed relatively low ICC and broad limits of agreement of the Bland-Altman plots at the different speeds. For the slow walking speed, the Garmin Vivosmart and Fitbit Charge HR showed the most accurate results. The Garmin Vivosmart and Apple Watch Sport demonstrated the best accuracy at an average walking speed. For vigorous walking, the Apple Watch Sport, Pebble Smartwatch, and Samsung Gear S exhibited the most accurate results. Test-retest reliability and validity of activity trackers depends on walking speed. In general, consumer activity trackers perform better at an average and vigorous walking speed than at a slower walking speed.
Control of interjoint coordination during the swing phase of normal gait at different speeds
Shemmell, Jonathan; Johansson, Jennifer; Portra, Vanessa; Gottlieb, Gerald L; Thomas, James S; Corcos, Daniel M
2007-01-01
Background It has been suggested that the control of unconstrained movements is simplified via the imposition of a kinetic constraint that produces dynamic torques at each moving joint such that they are a linear function of a single motor command. The linear relationship between dynamic torques at each joint has been demonstrated for multijoint upper limb movements. The purpose of the current study was to test the applicability of such a control scheme to the unconstrained portion of the gait cycle – the swing phase. Methods Twenty-eight neurologically normal individuals walked along a track at three different speeds. Angular displacements and dynamic torques produced at each of the three lower limb joints (hip, knee and ankle) were calculated from segmental position data recorded during each trial. We employed principal component (PC) analysis to determine (1) the similarity of kinematic and kinetic time series at the ankle, knee and hip during the swing phase of gait, and (2) the effect of walking speed on the range of joint displacement and torque. Results The angular displacements of the three joints were accounted for by two PCs during the swing phase (Variance accounted for – PC1: 75.1 ± 1.4%, PC2: 23.2 ± 1.3%), whereas the dynamic joint torques were described by a single PC (Variance accounted for – PC1: 93.8 ± 0.9%). Increases in walking speed were associated with increases in the range of motion and magnitude of torque at each joint although the ratio describing the relative magnitude of torque at each joint remained constant. Conclusion Our results support the idea that the control of leg swing during gait is simplified in two ways: (1) the pattern of dynamic torque at each lower limb joint is produced by appropriately scaling a single motor command and (2) the magnitude of dynamic torque at all three joints can be specified with knowledge of the magnitude of torque at a single joint. Walking speed could therefore be altered by modifying a single value related to the magnitude of torque at one joint. PMID:17466065
The Effect of Auditory Cueing on the Spatial and Temporal Gait Coordination in Healthy Adults.
Almarwani, Maha; Van Swearingen, Jessie M; Perera, Subashan; Sparto, Patrick J; Brach, Jennifer S
2017-12-27
Walk ratio, defined as step length divided by cadence, indicates the coordination of gait. During free walking, deviation from the preferential walk ratio may reveal abnormalities of walking patterns. The purpose of this study was to examine the impact of rhythmic auditory cueing (metronome) on the neuromotor control of gait at different walking speeds. Forty adults (mean age 26.6 ± 6.0 years) participated in the study. Gait characteristics were collected using a computerized walkway. In the preferred walking speed, there was no significant difference in walk ratio between uncued (walk ratio = .0064 ± .0007 m/steps/min) and metronome-cued walking (walk ratio = .0064 ± .0007 m/steps/min; p = .791). A higher value of walk ratio at the slower speed was observed with metronome-cued (walk ratio = .0071 ± .0008 m/steps/min) compared to uncued walking (walk ratio = .0068 ± .0007 m/steps/min; p < .001). The walk ratio was less at faster speed with metronome-cued (walk ratio = .0060 ± .0009 m/steps/min) compared to uncued walking (walk ratio = .0062 ± .0009 m/steps/min; p = .005). In healthy adults, the metronome cues may become an attentional demanding task, and thereby disrupt the spatial and temporal integration of gait at nonpreferred speeds.
Díaz Villegas, Gregory Mishell; Runzer Colmenares, Fernando
2015-01-01
To evaluate the association between calf circumference and gait speed in elderly patients 65 years or older at Geriatric day clinic at Peruvian Centro Médico Naval. Cross-sectional, retrospective study. We assessed 139 participants, 65 years or older at Peruvian Centro Médico Naval including calf circumference, gait speed and Short Physical Performance Battery. With bivariate analyses and logistic regression model we search for association between variables. The age mean was 79.37 years old (SD: 8.71). 59.71% were male, the 30.97% had a slow walking speed and the mean calf circumference was 33.42cm (SD: 5.61). After a bivariate analysis, we found a calf circumference mean of 30.35cm (SD: 3.74) in the slow speed group and, in normal gait group, a mean of 33.51cm (SD: 3.26) with significantly differences. We used logistic regression to analyze association with slow gait speed, founding statistically significant results adjusting model by disability and age. Low calf circumference is associated with slow speed walk in population over 65 years old. Copyright © 2014. Published by Elsevier Espana.
Human H-reflexes are smaller in difficult beam walking than in normal treadmill walking.
Llewellyn, M; Yang, J F; Prochazka, A
1990-01-01
Hoffman (H) reflexes were elicited from the soleus (SOL) muscle while subjects walked on a treadmill and on a narrow beam (3.5 cm wide, raised 34 cm from the floor). The speed of walking on the treadmill was selected for each subject to match the background activation level of their SOL muscle during beam walking. The normal reciprocal activation pattern of the tibialis anterior and SOL muscles in treadmill walking was replaced by a pattern dominated by co-contraction on the beam. In addition, the step cycle duration was more variable and the time spent in the swing phase was reduced on the beam. The H-reflexes were highly modulated in both tasks, the amplitude being high in the stance phase and low in the swing phase. The H-reflex amplitude was on average 40% lower during beam walking than treadmill walking. The relationship between the H-reflex amplitude and the SOL EMG level was quantified by a regression line relating the two variables. The slope of this line was on average 41% lower in beam walking than treadmill walking. The lower H-reflex gain observed in this study and the high level of fusimotor drive observed in cats performing similar tasks suggest that the two mechanisms which control the excitability of this reflex pathway (i.e. fusimotor action and control of transmission at the muscle spindle to moto-neuron synapse) may be controlled independently.
Gait speed is limited but improves over the course of acute care physical therapy.
Braden, Heather J; Hilgenberg, Sean; Bohannon, Richard W; Ko, Man-Soo; Hasson, Scott
2012-01-01
Gait is a common focus of physical therapists' management of patients in acute care settings. Walking speed, the distance a patient covers per unit time, has been advocated as a "sixth vital sign." However, the feasibility of measuring walking speed and the degree to which walking speed is limited or improves over the course of therapy in the acute care setting are unclear. The purpose of this study of patients undergoing physical therapy during acute care hospitalization, therefore, was to determine whether walking speed can be measured in acute care and whether walking speed is limited and changes over the course of therapy. This was an observational cross-sectional study. Participants were 46 hospital inpatients, mean age 75.0 years (SD = 7.8), referred to physical therapy and able to walk at least 20 ft. Information regarding diagnosis, comorbidities, physical assistance, device use, body height, and weight was obtained. Speed was determined during initial and final physical therapy visits while patients walked at their self-selected speed over a marked course in a hospital corridor. Therapists reported that walking speed was clinically feasible, requiring inexpensive, available resources, 4 minutes' additional time, and simple calculations for documentation. Initial walking speed was a mean of 0.33 m/s (SD = 0.21; 95% confidence interval [CI]: 0.27-0.39), whereas final speed was 0.37 m/s (SD = 0.20; 95% CI: 0.31-0.43). The Wilcoxon test showed the increase in walking speed (0.04 m/s) to be significant (P = .005) over a mean therapy period of 2.0 days (SD = 1.4) and total hospitalization period of 5.5 days (SD = 3.6). The effect size and standardized response mean were 0.19 and 0.36, respectively. Minimal detectable change was 0.18 m/s. Walking speed is a feasible measure for patients admitted to an acute care hospital. It shows that patients walk slowly relative to community requirements but that their speed improves even over a short course of therapy.
A Case Study on the Walking Speed of Pedestrian at the Bus Terminal Area
NASA Astrophysics Data System (ADS)
Firdaus Mohamad Ali, Mohd; Salleh Abustan, Muhamad; Hidayah Abu Talib, Siti; Abustan, Ismail; Rahman, Noorhazlinda Abd; Gotoh, Hitoshi
2018-03-01
Walking speed is one of the factors in understanding the pedestrian walking behaviours. Every pedestrian has different level of walking speed that are regulated by some factors such as gender and age. This study was conducted at a bus terminal area with two objectives in which the first one was to determine the average walking speed of pedestrian by considering the factors of age, gender, people with and without carrying baggage; and the second one was to make a comparison of the average walking speed that considered age as the factor of comparison between pedestrian at the bus terminal area and crosswalk. Demographic factor of pedestrian walking speed in this study are gender and age consist of male, female, and 7 groups of age categories that are children, adult men and women, senior adult men and women, over 70 and disabled person. Data of experiment was obtained by making a video recording of the movement of people that were walking and roaming around at the main lobby for 45 minutes by using a camcorder. Hence, data analysis was done by using software named Human Behaviour Simulator (HBS) for analysing the data extracted from the video. The result of this study was male pedestrian walked faster than female with the average of walking speed 1.13m/s and 1.07m/s respectively. Averagely, pedestrian that walked without carrying baggage had higher walking speed compared to pedestrian that were carrying baggage with the speed of 1.02m/s and 0.70m/s respectively. Male pedestrian walks faster than female because they have higher level of stamina and they are mostly taller than female pedestrian. Furthermore, pedestrian with baggage walks slower because baggage will cause distractions such as pedestrian will have more weight to carry and people tend to walk slower.
Ground reaction forces during level ground walking with body weight unloading
Barela, Ana M. F.; de Freitas, Paulo B.; Celestino, Melissa L.; Camargo, Marcela R.; Barela, José A.
2014-01-01
Background: Partial body weight support (BWS) systems have been broadly used with treadmills as a strategy for gait training of individuals with gait impairments. Considering that we usually walk on level ground and that BWS is achieved by altering the load on the plantar surface of the foot, it would be important to investigate some ground reaction force (GRF) parameters in healthy individuals walking on level ground with BWS to better implement rehabilitation protocols for individuals with gait impairments. Objective: To describe the effects of body weight unloading on GRF parameters as healthy young adults walked with BWS on level ground. Method: Eighteen healthy young adults (27±4 years old) walked on a walkway, with two force plates embedded in the middle of it, wearing a harness connected to a BWS system, with 0%, 15%, and 30% BWS. Vertical and horizontal peaks and vertical valley of GRF, weight acceptance and push-off rates, and impulse were calculated and compared across the three experimental conditions. Results: Overall, participants walked more slowly with the BWS system on level ground compared to their normal walking speed. As body weight unloading increased, the magnitude of the GRF forces decreased. Conversely, weight acceptance rate was similar among conditions. Conclusions: Different amounts of body weight unloading promote different outputs of GRF parameters, even with the same mean walk speed. The only parameter that was similar among the three experimental conditions was the weight acceptance rate. PMID:25590450
Kirkness, Carmen S; Ren, Jinma
2015-07-01
Onset of disability, risk for future falls, frailty, functional decline, and mortality are strongly associated with a walking speed of less than 1.0 m/s. The study objective was to determine whether there were differences in slow walking speed (<1.0 m/s) between community-dwelling African American and white American adult women with osteoarthritis symptoms. An additional aim was to examine whether racial differences in walking speed can be attributed to age, obesity, socioeconomic factors, disease severity, or comorbidities. A cross-sectional design was used. Community-dwelling adults were recruited from Baltimore, Maryland; Columbus, Ohio; Pittsburgh, Pennsylvania; and Pawtucket, Rhode Island. Participants were 2,648 women (23% African American) who were 45 to 79 years of age and had a self-selected baseline walking speed of 20 m/s in the Osteoarthritis Initiative Study. Mixed-effects logistic regression models were used to examine racial differences in walking speed (<1.0 m/s versus ≥1.0 m/s), with adjustments for demographic factors, socioeconomic factors, disease severity, and comorbidities. Walking speed was significantly slower for African American women than for white American women (mean walking speed=1.19 and 1.33 m/s, respectively). The prevalence of a walking speed of less than 1.0 m/s in this cohort of middle-aged women was 9%; about 50% of the women with a walking speed of less than 1.0 m/s were younger than 65 years. Women with a walking speed of less than 1.0 m/s had lower values for socioeconomic factors, higher values for disease severity, and higher prevalences of obesity and comorbidities than those with a walking speed of ≥1.0 m/s. After controlling for these covariates, it was found that African American women were 3 times (odds ratio=2.9; 95% confidence interval=2.0, 4.1) more likely to have a walking speed of less than 1.0 m/s than white American women. The study design made it impossible to know whether a walking speed of less than 1.0 m/s in women who were 45 years of age or older was a predictor of future poor health outcomes. In this study, race was independently associated with a walking speed of less than 1.0 m/s in community-dwelling women who had or were at risk for osteoarthritis, with African American women having 3 times the risk for slow walking as white American women. This finding suggests that middle-aged African American women have an increased risk for poor health outcomes. Further longitudinal evaluations are needed to confirm the long-term health outcomes in a middle-aged population and to establish walking speed as a useful tool for identifying middle-aged women at high risk for poor health outcomes. © 2015 American Physical Therapy Association.
Xie, Yanjun J; Liu, Elizabeth Y; Anson, Eric R; Agrawal, Yuri
Walking speed is an important dimension of gait function and is known to decline with age. Gait function is a process of dynamic balance and motor control that relies on multiple sensory inputs (eg, visual, proprioceptive, and vestibular) and motor outputs. These sensory and motor physiologic systems also play a role in static postural control, which has been shown to decline with age. In this study, we evaluated whether imbalance that occurs as part of healthy aging is associated with slower walking speed in a nationally representative sample of older adults. We performed a cross-sectional analysis of the previously collected 1999 to 2002 National Health and Nutrition Examination Survey (NHANES) data to evaluate whether age-related imbalance is associated with slower walking speed in older adults aged 50 to 85 years (n = 2116). Balance was assessed on a pass/fail basis during a challenging postural task-condition 4 of the modified Romberg Test-and walking speed was determined using a 20-ft (6.10 m) timed walk. Multivariable linear regression was used to evaluate the association between imbalance and walking speed, adjusting for demographic and health-related covariates. A structural equation model was developed to estimate the extent to which imbalance mediates the association between age and slower walking speed. In the unadjusted regression model, inability to perform the NHANES balance task was significantly associated with 0.10 m/s slower walking speed (95% confidence interval: -0.13 to -0.07; P < .01). In the multivariable regression analysis, inability to perform the balance task was significantly associated with 0.06 m/s slower walking speed (95% confidence interval: -0.09 to -0.03; P < .01), an effect size equivalent to 12 years of age. The structural equation model estimated that age-related imbalance mediates 12.2% of the association between age and slower walking speed in older adults. In a nationally representative sample, age-related balance limitation was associated with slower walking speed. Balance impairment may lead to walking speed declines. In addition, reduced static postural control and dynamic walking speed that occur with aging may share common etiologic origins, including the decline in visual, proprioceptive, and vestibular sensory and motor functions.
Kline, Julia E.; Poggensee, Katherine; Ferris, Daniel P.
2014-01-01
When humans walk in everyday life, they typically perform a range of cognitive tasks while they are on the move. Past studies examining performance changes in dual cognitive-motor tasks during walking have produced a variety of results. These discrepancies may be related to the type of cognitive task chosen, differences in the walking speeds studied, or lack of controlling for walking speed. The goal of this study was to determine how young, healthy subjects performed a spatial working memory task over a range of walking speeds. We used high-density electroencephalography to determine if electrocortical activity mirrored changes in cognitive performance across speeds. Subjects stood (0.0 m/s) and walked (0.4, 0.8, 1.2, and 1.6 m/s) with and without performing a Brooks spatial working memory task. We hypothesized that performance of the spatial working memory task and the associated electrocortical activity would decrease significantly with walking speed. Across speeds, the spatial working memory task caused subjects to step more widely compared with walking without the task. This is typically a sign that humans are adapting their gait dynamics to increase gait stability. Several cortical areas exhibited power fluctuations time-locked to memory encoding during the cognitive task. In the somatosensory association cortex, alpha power increased prior to stimulus presentation and decreased during memory encoding. There were small significant reductions in theta power in the right superior parietal lobule and the posterior cingulate cortex around memory encoding. However, the subjects did not show a significant change in cognitive task performance or electrocortical activity with walking speed. These findings indicate that in young, healthy subjects walking speed does not affect performance of a spatial working memory task. These subjects can devote adequate cortical resources to spatial cognition when needed, regardless of walking speed. PMID:24847239
Schimpl, Michaela; Lederer, Christian; Daumer, Martin
2011-01-01
Walking speed is a fundamental indicator for human well-being. In a clinical setting, walking speed is typically measured by means of walking tests using different protocols. However, walking speed obtained in this way is unlikely to be representative of the conditions in a free-living environment. Recently, mobile accelerometry has opened up the possibility to extract walking speed from long-time observations in free-living individuals, but the validity of these measurements needs to be determined. In this investigation, we have developed algorithms for walking speed prediction based on 3D accelerometry data (actibelt®) and created a framework using a standardized data set with gold standard annotations to facilitate the validation and comparison of these algorithms. For this purpose 17 healthy subjects operated a newly developed mobile gold standard while walking/running on an indoor track. Subsequently, the validity of 12 candidate algorithms for walking speed prediction ranging from well-known simple approaches like combining step length with frequency to more sophisticated algorithms such as linear and non-linear models was assessed using statistical measures. As a result, a novel algorithm employing support vector regression was found to perform best with a concordance correlation coefficient of 0.93 (95%CI 0.92–0.94) and a coverage probability CP1 of 0.46 (95%CI 0.12–0.70) for a deviation of 0.1 m/s (CP2 0.78, CP3 0.94) when compared to the mobile gold standard while walking indoors. A smaller outdoor experiment confirmed those results with even better coverage probability. We conclude that walking speed thus obtained has the potential to help establish walking speed in free-living environments as a patient-oriented outcome measure. PMID:21850254
Social inequality in walking speed in early old age in the Whitehall II study.
Brunner, Eric; Shipley, Martin; Spencer, Victoria; Kivimaki, Mika; Chandola, Tarani; Gimeno, David; Singh-Manoux, Archana; Guralnik, Jack; Marmot, Michael
2009-10-01
We investigated social inequalities in walking speed in early old age. Walking speed was measured by timed 8-ft (2.44 m) test in 6,345 individuals, with mean age of 61.1 (SD 6.0) years. Current or last known civil service employment grade defined socioeconomic position. Mean walking speed was 1.36 (SD 0.29) m/s in men and 1.21 (SD 0.30) in women. Average age- and ethnicity-adjusted walking speed was approximately 13% higher in the highest employment grade compared with the lowest. Based on the relative index of inequality (RII), the difference in walking speed across the social hierarchy was 0.15 m/s (95% confidence interval [CI] 0.12-0.18) in men and 0.17 m/s (0.12-0.22) in women, corresponding to an age-related difference of 18.7 (13.6-23.8) years in men and 14.9 (9.9-19.9) years in women. The RII for slow walking speed (logistic model for lowest sex-specific quartile vs others) adjusted for age, sex, and ethnicity was 3.40 (2.64-4.36). Explanatory factors for the social gradient in walking speed included Short-Form 36 physical functioning, labor market status, financial insecurity, height, and body mass index. Demographic, psychosocial, behavioral, biologic, and health factors in combination accounted for 40% of social inequality in walking speed. Social inequality in walking speed is substantial in early old age and reflects many factors beyond the direct effects of physical health.
Modulation of walking speed by changing optic flow in persons with stroke
Lamontagne, Anouk; Fung, Joyce; McFadyen, Bradford J; Faubert, Jocelyn
2007-01-01
Background Walking speed, which is often reduced after stroke, can be influenced by the perception of optic flow (OF) speed. The present study aims to: 1) compare the modulation of walking speed in response to OF speed changes between persons with stroke and healthy controls and 2) investigate whether virtual environments (VE) manipulating OF speed can be used to promote volitional changes in walking speed post stroke. Methods Twelve persons with stroke and 12 healthy individuals walked on a self-paced treadmill while viewing a virtual corridor in a helmet-mounted display. Two experiments were carried out on the same day. In experiment 1, the speed of an expanding OF was varied sinusoidally at 0.017 Hz (sine duration = 60 s), from 0 to 2 times the subject's comfortable walking speed, for a total duration of 5 minutes. In experiment 2, subjects were exposed to expanding OFs at discrete speeds that ranged from 0.25 to 2 times their comfortable speed. Each test trial was paired with a control trial performed at comfortable speed with matching OF. For each of the test trials, subjects were instructed to walk the distance within the same time as during the immediately preceding control trial. VEs were controlled by the CAREN-2 system (Motek). Instantaneous changes in gait speed (experiment 1) and the ratio of speed changes in the test trial over the control trial (experiment 2) were contrasted between the two groups of subjects. Results When OF speed was changing continuously (experiment 1), an out-of-phase modulation was observed in the gait speed of healthy subjects, such that slower OFs induced faster walking speeds, and vice versa. Persons with stroke displayed weaker (p < 0.05, T-test) correlation coefficients between gait speed and OF speed, due to less pronounced changes and an altered phasing of gait speed modulation. When OF speed was manipulated discretely (experiment 2), a negative linear relationship was generally observed between the test-control ratio of gait speed and OF speed in healthy and stroke individuals. The slope of this relationship was similar between the stroke and healthy groups (p > 0.05, T-test). Conclusion Stroke affects the modulation of gait speed in response to changes in the perception of movement through different OF speeds. Nevertheless, the preservation of even a modest modulation enabled the persons with stroke to increase walking speed when presented with slower OFs. Manipulation of OF speed using virtual reality technology could be implemented in a gait rehabilitation intervention to promote faster walking speeds after stroke. PMID:17594501
2004-08-01
To discover if the provision of additional inpatient physiotherapy after stroke speeds the recovery of mobility. A multisite single-blind randomized controlled trial (RCT) comparing the effects of augmented physiotherapy input with normal input on the recovery of mobility after stroke. Three rehabilitation hospitals in North Glasgow, Scotland. Patients admitted to hospital with a clinical diagnosis of stroke, who were able to tolerate and benefit from mobility rehabilitation. We aimed to provide double the amount of physiotherapy to the augmented group. Primary outcomes were mobility milestones (ability to stand, step and walk), Rivermead Mobility Index (RMI) and walking speed. Seventy patients were recruited. The augmented therapy group received more direct contact with a physiotherapist (62 versus 35 minutes per weekday) and were more active (8.0% versus 4.8% time standing or walking) than normal therapy controls. The augmented group tended to achieve independent walking earlier (hazard ratio 1.48, 95% confidence interval 0.90-2.43; p=0.12) and had higher Rivermead Mobility Index scores at three months (mean difference 1.6; -0.1 to 3.3; p=0.068) but these differences did not reach statistical significance. There was no significant difference in any other outcome. A modest augmented physiotherapy programme resulted in patients having more direct physiotherapy time and being more active. The inability to show statistically significant changes in outcome measures could indicate either that this intervention is ineffective or that our study could not detect modest changes.
Motor hypertonia and lack of locomotor coordination in mutant mice lacking DSCAM.
Lemieux, Maxime; Laflamme, Olivier D; Thiry, Louise; Boulanger-Piette, Antoine; Frenette, Jérôme; Bretzner, Frédéric
2016-03-01
Down syndrome cell adherence molecule (DSCAM) contributes to the normal establishment and maintenance of neural circuits. Whereas there is abundant literature regarding the role of DSCAM in the neural patterning of the mammalian retina, less is known about motor circuits. Recently, DSCAM mutation has been shown to impair bilateral motor coordination during respiration, thus causing death at birth. DSCAM mutants that survive through adulthood display a lack of locomotor endurance and coordination in the rotarod test, thus suggesting that the DSCAM mutation impairs motor control. We investigated the motor and locomotor functions of DSCAM(2J) mutant mice through a combination of anatomical, kinematic, force, and electromyographic recordings. With respect to wild-type mice, DSCAM(2J) mice displayed a longer swing phase with a limb hyperflexion at the expense of a shorter stance phase during locomotion. Furthermore, electromyographic activity in the flexor and extensor muscles was increased and coactivated over 20% of the step cycle over a wide range of walking speeds. In contrast to wild-type mice, which used lateral walk and trot at walking speed, DSCAM(2J) mice used preferentially less coordinated gaits, such as out-of-phase walk and pace. The neuromuscular junction and the contractile properties of muscles, as well as their muscle spindles, were normal, and no signs of motor rigidity or spasticity were observed during passive limb movements. Our study demonstrates that the DSCAM mutation induces dystonic hypertonia and a disruption of locomotor gaits. Copyright © 2016 the American Physiological Society.
Minimizing center of mass vertical movement increases metabolic cost in walking.
Ortega, Justus D; Farley, Claire T
2005-12-01
A human walker vaults up and over each stance limb like an inverted pendulum. This similarity suggests that the vertical motion of a walker's center of mass reduces metabolic cost by providing a mechanism for pendulum-like mechanical energy exchange. Alternatively, some researchers have hypothesized that minimizing vertical movements of the center of mass during walking minimizes the metabolic cost, and this view remains prevalent in clinical gait analysis. We examined the relationship between vertical movement and metabolic cost by having human subjects walk normally and with minimal center of mass vertical movement ("flat-trajectory walking"). In flat-trajectory walking, subjects reduced center of mass vertical displacement by an average of 69% (P = 0.0001) but consumed approximately twice as much metabolic energy over a range of speeds (0.7-1.8 m/s) (P = 0.0001). In flat-trajectory walking, passive pendulum-like mechanical energy exchange provided only a small portion of the energy required to accelerate the center of mass because gravitational potential energy fluctuated minimally. Thus, despite the smaller vertical movements in flat-trajectory walking, the net external mechanical work needed to move the center of mass was similar in both types of walking (P = 0.73). Subjects walked with more flexed stance limbs in flat-trajectory walking (P < 0.001), and the resultant increase in stance limb force generation likely helped cause the doubling in metabolic cost compared with normal walking. Regardless of the cause, these findings clearly demonstrate that human walkers consume substantially more metabolic energy when they minimize vertical motion.
Fast visual prediction and slow optimization of preferred walking speed.
O'Connor, Shawn M; Donelan, J Maxwell
2012-05-01
People prefer walking speeds that minimize energetic cost. This may be accomplished by directly sensing metabolic rate and adapting gait to minimize it, but only slowly due to the compounded effects of sensing delays and iterative convergence. Visual and other sensory information is available more rapidly and could help predict which gait changes reduce energetic cost, but only approximately because it relies on prior experience and an indirect means to achieve economy. We used virtual reality to manipulate visually presented speed while 10 healthy subjects freely walked on a self-paced treadmill to test whether the nervous system beneficially combines these two mechanisms. Rather than manipulating the speed of visual flow directly, we coupled it to the walking speed selected by the subject and then manipulated the ratio between these two speeds. We then quantified the dynamics of walking speed adjustments in response to perturbations of the visual speed. For step changes in visual speed, subjects responded with rapid speed adjustments (lasting <2 s) and in a direction opposite to the perturbation and consistent with returning the visually presented speed toward their preferred walking speed, when visual speed was suddenly twice (one-half) the walking speed, subjects decreased (increased) their speed. Subjects did not maintain the new speed but instead gradually returned toward the speed preferred before the perturbation (lasting >300 s). The timing and direction of these responses strongly indicate that a rapid predictive process informed by visual feedback helps select preferred speed, perhaps to complement a slower optimization process that seeks to minimize energetic cost.
Delabastita, Tijs; Desloovere, Kaat; Meyns, Pieter
2016-01-01
Observational research suggests that in children with cerebral palsy, the altered arm swing is linked to instability during walking. Therefore, the current study investigates whether children with cerebral palsy use their arms more than typically developing children, to enhance gait stability. Evidence also suggests an influence of walking speed on gait stability. Moreover, previous research highlighted a link between walking speed and arm swing. Hence, the experiment aimed to explore differences between typically developing children and children with cerebral palsy taking into account the combined influence of restricting arm swing and increasing walking speed on gait stability. Spatiotemporal gait characteristics, trunk movement parameters and margins of stability were obtained using three dimensional gait analysis to assess gait stability of 26 children with cerebral palsy and 24 typically developing children. Four walking conditions were evaluated: (i) free arm swing and preferred walking speed; (ii) restricted arm swing and preferred walking speed; (iii) free arm swing and high walking speed; and (iv) restricted arm swing and high walking speed. Double support time and trunk acceleration variability increased more when arm swing was restricted in children with bilateral cerebral palsy compared to typically developing children and children with unilateral cerebral palsy. Trunk sway velocity increased more when walking speed was increased in children with unilateral cerebral palsy compared to children with bilateral cerebral palsy and typically developing children and in children with bilateral cerebral palsy compared to typically developing children. Trunk sway velocity increased more when both arm swing was restricted and walking speed was increased in children with bilateral cerebral palsy compared to typically developing children. It is proposed that facilitating arm swing during gait rehabilitation can improve gait stability and decrease trunk movements in children with cerebral palsy. The current results thereby partly support the suggestion that facilitating arm swing in specific situations possibly enhances safety and reduces the risk of falling in children with cerebral palsy. PMID:27471457
Hazuda, Helen P.
2015-01-01
Background Mexican Americans comprise the most rapidly growing segment of the older US population and are reported to have poorer functional health than European Americans, but few studies have examined factors contributing to ethnic differences in walking speed between Mexican Americans and European Americans. Objective The purpose of this study was to examine factors that contribute to walking speed and observed ethnic differences in walking speed in older Mexican Americans and European Americans using the disablement process model (DPM) as a guide. Design This was an observational, cross-sectional study. Methods Participants were 703 Mexican American and European American older adults (aged 65 years and older) who completed the baseline examination of the San Antonio Longitudinal Study of Aging (SALSA). Hierarchical regression models were performed to identify the contribution of contextual, lifestyle/anthropometric, disease, and impairment variables to walking speed and to ethnic differences in walking speed. Results The ethic difference in unadjusted mean walking speed (Mexican Americans=1.17 m/s, European Americans=1.29 m/s) was fully explained by adjustment for contextual (ie, age, sex, education, income) and lifestyle/anthropometric (ie, body mass index, height, physical activity) variables; adjusted mean walking speed in both ethnic groups was 1.23 m/s. Contextual variables explained 20.3% of the variance in walking speed, and lifestyle/anthropometric variables explained an additional 8.4%. Diseases (ie, diabetes, stroke, chronic obstructive pulmonary disease) explained an additional 1.9% of the variance in walking speed; impairments (ie, FEV1, upper leg pain, and lower extremity strength and range of motion) contributed an additional 5.5%. Thus, both nonmodifiable (ie, contextual, height) and modifiable (ie, impairments, body mass index, physical activity) factors contributed to walking speed in older Mexican Americans and European Americans. Limitations The study was conducted in a single geographic area and included only Mexican American Hispanic individuals. Conclusions Walking speed in older Mexican Americans and European Americans is influenced by modifiable and nonmodifiable factors, underscoring the importance of the DPM framework, which incorporates both factors into the physical therapist patient/client management process. PMID:25592187
Preferred gait and walk-run transition speeds in ostriches measured using GPS-IMU sensors.
Daley, Monica A; Channon, Anthony J; Nolan, Grant S; Hall, Jade
2016-10-15
The ostrich (Struthio camelus) is widely appreciated as a fast and agile bipedal athlete, and is a useful comparative bipedal model for human locomotion. Here, we used GPS-IMU sensors to measure naturally selected gait dynamics of ostriches roaming freely over a wide range of speeds in an open field and developed a quantitative method for distinguishing walking and running using accelerometry. We compared freely selected gait-speed distributions with previous laboratory measures of gait dynamics and energetics. We also measured the walk-run and run-walk transition speeds and compared them with those reported for humans. We found that ostriches prefer to walk remarkably slowly, with a narrow walking speed distribution consistent with minimizing cost of transport (CoT) according to a rigid-legged walking model. The dimensionless speeds of the walk-run and run-walk transitions are slower than those observed in humans. Unlike humans, ostriches transition to a run well below the mechanical limit necessitating an aerial phase, as predicted by a compass-gait walking model. When running, ostriches use a broad speed distribution, consistent with previous observations that ostriches are relatively economical runners and have a flat curve for CoT against speed. In contrast, horses exhibit U-shaped curves for CoT against speed, with a narrow speed range within each gait for minimizing CoT. Overall, the gait dynamics of ostriches moving freely over natural terrain are consistent with previous lab-based measures of locomotion. Nonetheless, ostriches, like humans, exhibit a gait-transition hysteresis that is not explained by steady-state locomotor dynamics and energetics. Further study is required to understand the dynamics of gait transitions. © 2016. Published by The Company of Biologists Ltd.
Predictive Simulations of Neuromuscular Coordination and Joint-Contact Loading in Human Gait.
Lin, Yi-Chung; Walter, Jonathan P; Pandy, Marcus G
2018-04-18
We implemented direct collocation on a full-body neuromusculoskeletal model to calculate muscle forces, ground reaction forces and knee contact loading simultaneously for one cycle of human gait. A data-tracking collocation problem was solved for walking at the normal speed to establish the practicality of incorporating a 3D model of articular contact and a model of foot-ground interaction explicitly in a dynamic optimization simulation. The data-tracking solution then was used as an initial guess to solve predictive collocation problems, where novel patterns of movement were generated for walking at slow and fast speeds, independent of experimental data. The data-tracking solutions accurately reproduced joint motion, ground forces and knee contact loads measured for two total knee arthroplasty patients walking at their preferred speeds. RMS errors in joint kinematics were < 2.0° for rotations and < 0.3 cm for translations while errors in the model-computed ground-reaction and knee-contact forces were < 0.07 BW and < 0.4 BW, respectively. The predictive solutions were also consistent with joint kinematics, ground forces, knee contact loads and muscle activation patterns measured for slow and fast walking. The results demonstrate the feasibility of performing computationally-efficient, predictive, dynamic optimization simulations of movement using full-body, muscle-actuated models with realistic representations of joint function.
Multidirectional walk test in individuals with Parkinson's disease: a validity study.
Bryant, Mon S; Workman, Craig D; Jackson, George R
2015-03-01
Gait parameters of forward, backward, and sideways walk were studied when the participants walked overground in four directions at their self-selected speed and were compared with walking in the four directions on an instrumented GAITRite walkway. Intraclass correlation coefficients between the overground walk test measures and the instrumented walkway measures of gait speed, cadence, and stride length for the forward walk were 0.85, 0.88, and 0.87, respectively. For the backward walk, the coefficients were 0.91 for gait speed, 0.75 for cadence, and 0.93 for stride length. For the sideways walk, the coefficients were 0.92 for gait speed, 0.93 for cadence, and 0.94 for stride length. Gait parameters of forward, backward, and sideways walk obtained by the overground walk test had excellent agreement with those obtained by the instrumented walkway. The quick timed test provided quantitative data for gait evaluation and was valid for clinical use.
Wrobel, James S; Edgar, Sarah; Cozzetto, Dana; Maskill, James; Peterson, Paul; Najafi, Bijan
2010-01-01
This pilot study examined the effect of custom and prefabricated foot orthoses on self-selected walking speed, walking speed variability, and dynamic balance in the mediolateral direction. The gait of four healthy participants was analyzed with a body-worn sensor system across a distance of at least 30 m outside of the gait laboratory. Participants walked at their habitual speed in four conditions: barefoot, regular shoes, prefabricated foot orthoses, and custom foot orthoses. In the custom foot orthoses condition, gait speed was improved on average 13.5% over the barefoot condition and 9.8% over the regular shoe condition. The mediolateral range of motion of center of mass was reduced 55% and 56% compared with the shoes alone and prefabricated foot orthoses conditions, respectively. This may suggest better gait efficiency and lower energy cost with custom foot orthoses. This tendency remained after normalizing center of mass by gait speed, suggesting that irrespective of gait speed, custom foot orthoses improve center of mass motion in the mediolateral direction compared with other footwear conditions. Gait intercycle variability, measured by intercycle coefficient of variation of gait speed, was decreased on average by 25% and 19% compared with the barefoot and shoes-alone conditions, respectively. The decrease in gait unsteadiness after wearing custom foot orthoses may suggest improved proprioception from the increased contact area of custom foot orthoses versus the barefoot condition. These findings may open new avenues for objective assessment of the impact of prescribed footwear on dynamic balance and spatiotemporal parameters of gait and assess gait adaptation after use of custom foot orthoses.
9 CFR 313.2 - Handling of livestock.
Code of Federal Regulations, 2012 CFR
2012-01-01
... CERTIFICATION HUMANE SLAUGHTER OF LIVESTOCK § 313.2 Handling of livestock. (a) Driving of livestock from the... normal walking speed. (b) Electric prods, canvas slappers, or other implements employed to drive animals..., would cause injury or unnecessary pain to the animal shall not be used to drive livestock. (d) Disabled...
9 CFR 313.2 - Handling of livestock.
Code of Federal Regulations, 2011 CFR
2011-01-01
... CERTIFICATION HUMANE SLAUGHTER OF LIVESTOCK § 313.2 Handling of livestock. (a) Driving of livestock from the... normal walking speed. (b) Electric prods, canvas slappers, or other implements employed to drive animals..., would cause injury or unnecessary pain to the animal shall not be used to drive livestock. (d) Disabled...
9 CFR 313.2 - Handling of livestock.
Code of Federal Regulations, 2013 CFR
2013-01-01
... CERTIFICATION HUMANE SLAUGHTER OF LIVESTOCK § 313.2 Handling of livestock. (a) Driving of livestock from the... normal walking speed. (b) Electric prods, canvas slappers, or other implements employed to drive animals..., would cause injury or unnecessary pain to the animal shall not be used to drive livestock. (d) Disabled...
9 CFR 313.2 - Handling of livestock.
Code of Federal Regulations, 2010 CFR
2010-01-01
... minimum of excitement and discomfort to the animals. Livestock shall not be forced to move faster than a normal walking speed. (b) Electric prods, canvas slappers, or other implements employed to drive animals... livestock and other animals unable to move. (1) Disabled animals and other animals unable to move shall be...
Hoga-Miura, Koji; Ae, Michiyoshi; Fujii, Norihisa; Yokozawa, Toshiharu
2016-10-01
This study investigated the function of the upper extremities of elite race walkers during official 20 km races, focusing on the angular momentum about the vertical axis and other parameters of the upper extremities. Sixteen walkers were analysed using the three-dimensional direct linear transformation method during three official men's 20 km walking races. The subjects, included participants at the Olympics and World Championships, who finished without disqualification and had not been disqualified during the two years prior to or following the races analysed in the present study. The angular momenta of the upper and lower body were counterbalanced as in running and normal walking. The momentum of the upper body was mainly generated by the upper extremities. The joint force moment of the right shoulder and the joint torque at the left shoulder just before right toe-off were significantly correlated with the walking speed. These were counterbalanced by other moments and torques to the torso torque, which worked to obtain a large mechanical energy flow from the recovery leg to the support leg in the final phase of the support phase. Therefore, a function of the shoulder torque was to counterbalance the torso torque to gain a fast walking speed with substantial mechanical energy flow.
Braking and Propulsive Impulses Increase with Speed during Accelerated and Decelerated Walking
Peterson, Carrie L.; Kautz, Steven A.; Neptune, Richard R.
2011-01-01
The ability to accelerate and decelerate is important for daily activities and likely more demanding than maintaining a steady-state walking speed. Walking speed is modulated by anterior-posterior (AP) ground reaction force (GRF) impulses. The purpose of this study was to investigate AP impulses across a wide range of speeds during accelerated and decelerated walking. Kinematic and GRF data were collected from ten healthy subjects walking on an instrumented treadmill. Subjects completed trials at steady-state speeds and at four rates of acceleration and deceleration across a speed range of 0 to 1.8 m/s. Mixed regression models were generated to predict AP impulses, step length and frequency from speed, and joint moment impulses from AP impulses during non-steady-state walking. Braking and propulsive impulses were positively related to speed. The braking impulse had a greater relationship with speed than the propulsive impulse, suggesting that subjects modulate the braking impulse more than the propulsive impulse to change speed. Hip and knee extensor, and ankle plantarflexor moment impulses were positively related to the braking impulse, and knee flexor and ankle plantarflexor moment impulses were positively related to the propulsive impulse. Step length and frequency increased with speed and were near the subjects’ preferred combination at steady-state speeds, at which metabolic cost is minimized in nondisabled walking. Thus, these variables may be modulated to minimize metabolic cost while accelerating and decelerating. The outcomes of this work provide the foundation to investigate motor coordination in pathological subjects in response to the increased task demands of non-steady-state walking. PMID:21356590
Effects of optic flow on spontaneous overground walk-to-run transition.
De Smet, Kristof; Malcolm, P; Lenoir, M; Segers, V; De Clercq, D
2009-03-01
Perturbations of optic flow can induce changes in walking speed since subjects modulate their speed with respect to the speed perceived from optic flow. The purpose of this study was to examine the effects of optic flow on steady-state as well as on non steady-state locomotion, i.e. on spontaneous overground walk-to-run transitions (WRT) during which subjects were able to accelerate in their preferred way. In this experiment, while subjects moved along a specially constructed hallway, a series of stripes projected on the side walls and ceiling were made to move backward (against the locomotion direction) at an absolute speed of -2 m s(-1) (condition B), or to move forward at an absolute speed of +2 m s(-1) (condition F), or to remain stationary (condition C). While condition B and condition F entailed a decrease and an increase in preferred walking speed, respectively, the spatiotemporal characteristics of the spontaneous walking acceleration prior to reaching WRT were not influenced by modified visual information. However, backward moving stripes induced a smaller speed increase when making the actual transition to running. As such, running speeds after making the WRT were lower in condition B. These results indicate that the walking acceleration prior to reaching the WRT is more robust against visual perturbations compared to walking at preferred walking speed. This could be due to a higher contribution from spinal control during the walking acceleration phase. However, the finding that subjects started to run at a lower running speed when experiencing an approaching optic flow faster than locomotion speed shows that the actual realization of the WRT is not totally independent of external cues.
Huang Hua-Lin; Mo Ling-Fei; Liu Ying-Jie; Li Cheng-Yang; Xu Qi-Meng; Wu Zhi-Tong
2015-08-01
The number of the apoplectic people is increasing while population aging is quickening its own pace. The precise measurement of walking speed is very important to the rehabilitation guidance of the apoplectic people. The precision of traditional measuring methods on speed such as stopwatch is relatively low, and high precision measurement instruments because of the high cost cannot be used widely. What's more, these methods have difficulty in measuring the walking speed of the apoplectic people accurately. UHF RFID tag has the advantages of small volume, low price, long reading distance etc, and as a wearable sensor, it is suitable to measure walking speed accurately for the apoplectic people. In order to measure the human walking speed, this paper uses four reader antennas with a certain distance to reads the signal strength of RFID tag. Because RFID tag has different RSSI (Received Signal Strength Indicator) in different distances away from the reader, researches on the changes of RSSI with time have been done by this paper to calculate walking speed. The verification results show that the precise measurement of walking speed can be realized by signal processing method with Gaussian Fitting-Kalman Filter. Depending on the variance of walking speed, doctors can predict the rehabilitation training result of the apoplectic people and give the appropriate rehabilitation guidance.
Leutwyler, H; Hubbard, E; Cooper, B A; Dowling, G
2017-11-10
The purpose of this report is to describe the impact of a videogame-based physical activity program using the Kinect for Xbox 360 game system (Microsoft, Redmond, WA) on walking speed in adults with schizophrenia. In this randomized controlled trial, 28 participants played either an active videogame for 30 min (intervention group) or played a sedentary videogame for 30 min (control group), once a week for 6 weeks. Walking speed was measured objectively with the Short Physical Performance Battery at enrollment and at the end of the 6-week program. The intervention group (n = 13) showed an average improvement in walking speed of 0.08 m/s and the control group (n = 15) showed an average improvement in walking speed of 0.03 m/s. Although the change in walking speed was not statistically significant, the intervention group had between a small and substantial clinically meaningful change. The results suggest a videogame based physical activity program provides clinically meaningful improvement in walking speed, an important indicator of health status.
Effects of walking speed on the step-by-step control of step width.
Stimpson, Katy H; Heitkamp, Lauren N; Horne, Joscelyn S; Dean, Jesse C
2018-02-08
Young, healthy adults walking at typical preferred speeds use step-by-step adjustments of step width to appropriately redirect their center of mass motion and ensure mediolateral stability. However, it is presently unclear whether this control strategy is retained when walking at the slower speeds preferred by many clinical populations. We investigated whether the typical stabilization strategy is influenced by walking speed. Twelve young, neurologically intact participants walked on a treadmill at a range of prescribed speeds (0.2-1.2 m/s). The mediolateral stabilization strategy was quantified as the proportion of step width variance predicted by the mechanical state of the pelvis throughout a step (calculated as R 2 magnitude from a multiple linear regression). Our ability to accurately predict the upcoming step width increased over the course of a step. The strength of the relationship between step width and pelvis mechanics at the start of a step was reduced at slower speeds. However, these speed-dependent differences largely disappeared by the end of a step, other than at the slowest walking speed (0.2 m/s). These results suggest that mechanics-dependent adjustments in step width are a consistent component of healthy gait across speeds and contexts. However, slower walking speeds may ease this control by allowing mediolateral repositioning of the swing leg to occur later in a step, thus encouraging slower walking among clinical populations with limited sensorimotor control. Published by Elsevier Ltd.
DePaul, Vincent G; Wishart, Laurie R; Richardson, Julie; Lee, Timothy D; Thabane, Lehana
2011-10-21
Although task-oriented training has been shown to improve walking outcomes after stroke, it is not yet clear whether one task-oriented approach is superior to another. The purpose of this study is to compare the effectiveness of the Motor Learning Walking Program (MLWP), a varied overground walking task program consistent with key motor learning principles, to body-weight-supported treadmill training (BWSTT) in community-dwelling, ambulatory, adults within 1 year of stroke. A parallel, randomized controlled trial with stratification by baseline gait speed will be conducted. Allocation will be controlled by a central randomization service and participants will be allocated to the two active intervention groups (1:1) using a permuted block randomization process. Seventy participants will be assigned to one of two 15-session training programs. In MLWP, one physiotherapist will supervise practice of various overground walking tasks. Instructions, feedback, and guidance will be provided in a manner that facilitates self-evaluation and problem solving. In BWSTT, training will emphasize repetition of the normal gait cycle while supported over a treadmill, assisted by up to three physiotherapists. Outcomes will be assessed by a blinded assessor at baseline, post-intervention and at 2-month follow-up. The primary outcome will be post-intervention comfortable gait speed. Secondary outcomes include fast gait speed, walking endurance, balance self-efficacy, participation in community mobility, health-related quality of life, and goal attainment. Groups will be compared using analysis of covariance with baseline gait speed strata as the single covariate. Intention-to-treat analysis will be used. In order to direct clinicians, patients, and other health decision-makers, there is a need for a head-to-head comparison of different approaches to active, task-related walking training after stroke. We hypothesize that outcomes will be optimized through the application of a task-related training program that is consistent with key motor learning principles related to practice, guidance and feedback. ClinicalTrials.gov # NCT00561405.
2011-01-01
Background Although task-oriented training has been shown to improve walking outcomes after stroke, it is not yet clear whether one task-oriented approach is superior to another. The purpose of this study is to compare the effectiveness of the Motor Learning Walking Program (MLWP), a varied overground walking task program consistent with key motor learning principles, to body-weight-supported treadmill training (BWSTT) in community-dwelling, ambulatory, adults within 1 year of stroke. Methods/Design A parallel, randomized controlled trial with stratification by baseline gait speed will be conducted. Allocation will be controlled by a central randomization service and participants will be allocated to the two active intervention groups (1:1) using a permuted block randomization process. Seventy participants will be assigned to one of two 15-session training programs. In MLWP, one physiotherapist will supervise practice of various overground walking tasks. Instructions, feedback, and guidance will be provided in a manner that facilitates self-evaluation and problem solving. In BWSTT, training will emphasize repetition of the normal gait cycle while supported over a treadmill, assisted by up to three physiotherapists. Outcomes will be assessed by a blinded assessor at baseline, post-intervention and at 2-month follow-up. The primary outcome will be post-intervention comfortable gait speed. Secondary outcomes include fast gait speed, walking endurance, balance self-efficacy, participation in community mobility, health-related quality of life, and goal attainment. Groups will be compared using analysis of covariance with baseline gait speed strata as the single covariate. Intention-to-treat analysis will be used. Discussion In order to direct clinicians, patients, and other health decision-makers, there is a need for a head-to-head comparison of different approaches to active, task-related walking training after stroke. We hypothesize that outcomes will be optimized through the application of a task-related training program that is consistent with key motor learning principles related to practice, guidance and feedback. Trial Registration ClinicalTrials.gov # NCT00561405 PMID:22018267
Optimal speeds for walking and running, and walking on a moving walkway.
Srinivasan, Manoj
2009-06-01
Many aspects of steady human locomotion are thought to be constrained by a tendency to minimize the expenditure of metabolic cost. This paper has three parts related to the theme of energetic optimality: (1) a brief review of energetic optimality in legged locomotion, (2) an examination of the notion of optimal locomotion speed, and (3) an analysis of walking on moving walkways, such as those found in some airports. First, I describe two possible connotations of the term "optimal locomotion speed:" that which minimizes the total metabolic cost per unit distance and that which minimizes the net cost per unit distance (total minus resting cost). Minimizing the total cost per distance gives the maximum range speed and is a much better predictor of the speeds at which people and horses prefer to walk naturally. Minimizing the net cost per distance is equivalent to minimizing the total daily energy intake given an idealized modern lifestyle that requires one to walk a given distance every day--but it is not a good predictor of animals' walking speeds. Next, I critique the notion that there is no energy-optimal speed for running, making use of some recent experiments and a review of past literature. Finally, I consider the problem of predicting the speeds at which people walk on moving walkways--such as those found in some airports. I present two substantially different theories to make predictions. The first theory, minimizing total energy per distance, predicts that for a range of low walkway speeds, the optimal absolute speed of travel will be greater--but the speed relative to the walkway smaller--than the optimal walking speed on stationary ground. At higher walkway speeds, this theory predicts that the person will stand still. The second theory is based on the assumption that the human optimally reconciles the sensory conflict between the forward speed that the eye sees and the walking speed that the legs feel and tries to equate the best estimate of the forward speed to the naturally preferred speed. This sensory conflict theory also predicts that people would walk slower than usual relative to the walkway yet move faster than usual relative to the ground. These predictions agree qualitatively with available experimental observations, but there are quantitative differences.
Duncan, Ryan P; Combs-Miller, Stephanie A; McNeely, Marie E; Leddy, Abigail L; Cavanaugh, James T; Dibble, Leland E; Ellis, Terry D; Ford, Matthew P; Foreman, K Bo; Earhart, Gammon M
2017-02-01
We investigated the relationships between average gait speed collected with the 10Meter Walk Test (Comfortable and Fast) and 6Minute Walk Test (6MWT) in 346 people with Parkinson disease (PD) and how the relationships change with increasing disease severity. Pearson correlation and linear regression analyses determined relationships between 10Meter Walk Test and 6MWT gait speed values for the entire sample and for sub-samples stratified by Hoehn & Yahr (H&Y) stage I (n=53), II (n=141), III (n=135) and IV (n=17). We hypothesized that redundant tests would be highly and significantly correlated (i.e. r>0.70, p<0.05) and would have a linear regression model slope of 1 and intercept of 0. For the entire sample, 6MWT gait speed was significantly (p<0.001) related to the Comfortable 10 Meter Walk Test (r=0.75) and Fast 10Meter Walk Test (r=0.79) gait speed, with 56% and 62% of the variance in 6MWT gait speed explained, respectively. The regression model of 6MWT gait speed predicted by Comfortable 10 Meter Walk gait speed produced slope and intercept values near 1 and 0, respectively, especially for participants in H&Y stages II-IV. In contrast, slope and intercept values were further from 1 and 0, respectively, for the Fast 10Meter Walk Test. Comfortable 10 Meter Walk Test and 6MWT gait speeds appeared to be redundant in people with moderate to severe PD, suggesting the Comfortable 10 Meter Walk Test can be used to estimate 6MWT distance in this population. Copyright © 2016 Elsevier B.V. All rights reserved.
Duncan, Ryan P.; Combs-Miller, Stephanie A.; McNeely, Marie E.; Leddy, Abigail L.; Cavanaugh, James T.; Dibble, Leland E.; Ellis, Terry D.; Ford, Matthew P.; Foreman, K. Bo; Earhart, Gammon M.
2016-01-01
We investigated the relationships between average gait speed collected with the 10 Meter Walk Test (Comfortable and Fast) and 6 Minute Walk Test (6MWT) in 346 people with Parkinson disease (PD) and how the relationships change with increasing disease severity. Pearson correlation and linear regression analyses determined relationships between 10 Meter Walk Test and 6MWT gait speed values for the entire sample and for sub-samples stratified by Hoehn & Yahr (H&Y) stage I (n=53), II (n=141), III (n=135) and IV (n=17). We hypothesized that redundant tests would be highly and significantly correlated (i.e. r > 0.70, p < 0.05) and would have a linear regression model slope of 1 and intercept of 0. For the entire sample, 6MWT gait speed was significantly (p<0.001) related to the Comfortable 10 Meter Walk Test (r=0.75) and Fast 10 Meter Walk Test (r=0.79) gait speed, with 56% and 62% of the variance in 6MWT gait speed explained, respectively. The regression model of 6MWT gait speed predicted by Comfortable 10 Meter Walk gait speed produced slope and intercept values near 1 and 0, respectively, especially for participants in H&Y stages II–IV. In contrast, slope and intercept values were further from 1 and 0, respectively, for the Fast 10 Meter Walk Test. Comfortable 10 Meter Walk Test and 6MWT gait speeds appeared to be redundant in people with moderate to severe PD, suggesting the Comfortable 10 Meter Walk Test can be used to estimate 6MWT distance in this population. PMID:27915221
Oude Lansink, I L B; van Kouwenhove, L; Dijkstra, P U; Postema, K; Hijmans, J M
2017-10-01
Step width is increased during dual-belt treadmill walking, in self-paced mode with virtual reality. Generally a familiarization period is thought to be necessary to normalize step width. The aim of this randomised study was to analyze the effects of two interventions on step width, to reduce the familiarization period. We used the GRAIL (Gait Real-time Analysis Interactive Lab), a dual-belt treadmill with virtual reality in the self-paced mode. Thirty healthy young adults were randomly allocated to three groups and asked to walk at their preferred speed for 5min. In the first session, the control-group received no intervention, the 'walk-on-the-line'-group was instructed to walk on a line, projected on the between-belt gap of the treadmill and the feedback-group received feedback about their current step width and were asked to reduce it. Interventions started after 1min and lasted 1min. During the second session, 7-10days later, no interventions were given. Linear mixed modeling showed that interventions did not have an effect on step width after the intervention period in session 1. Initial step width (second 30s) of session 1 was larger than initial step width of session 2. Step width normalized after 2min and variation in step width stabilized after 1min. Interventions do not reduce step width after intervention period. A 2-min familiarization period is sufficient to normalize and stabilize step width, in healthy young adults, regardless of interventions. A standardized intervention to normalize step width is not necessary. Copyright © 2017 Elsevier B.V. All rights reserved.
Cellular telephone use during free-living walking significantly reduces average walking speed.
Barkley, Jacob E; Lepp, Andrew
2016-03-31
Cellular telephone (cell phone) use decreases walking speed in controlled laboratory experiments and there is an inverse relationship between free-living walking speed and heart failure risk. The purpose of this study was to examine the impact of cell phone use on walking speed in a free-living environment. Subjects (n = 1142) were randomly observed walking on a 50 m University campus walkway. The time it took each subject to walk 50 m was recorded and subjects were coded into categories: cell phone held to the ear (talking, n = 95), holding and looking at the cell phone (texting, n = 118), not visibly using the cell phone (no use, n = 929). Subjects took significantly (p < 0.001) longer traversing the walkway when talking (39.3 s) and texting (37.9 s) versus no use (35.3 s). As was the case with the previous laboratory experiments, cell phone use significantly reduces average speed during free-living walking.
NASA Astrophysics Data System (ADS)
Sun, Wei; Ding, Wei; Yan, Huifang; Duan, Shunli
2018-06-01
Shoe-mounted pedestrian navigation systems based on micro inertial sensors rely on zero velocity updates to correct their positioning errors in time, which effectively makes determining the zero velocity interval play a key role during normal walking. However, as walking gaits are complicated, and vary from person to person, it is difficult to detect walking gaits with a fixed threshold method. This paper proposes a pedestrian gait classification method based on a hidden Markov model. Pedestrian gait data are collected with a micro inertial measurement unit installed at the instep. On the basis of analyzing the characteristics of the pedestrian walk, a single direction angular rate gyro output is used to classify gait features. The angular rate data are modeled into a univariate Gaussian mixture model with three components, and a four-state left–right continuous hidden Markov model (CHMM) is designed to classify the normal walking gait. The model parameters are trained and optimized using the Baum–Welch algorithm and then the sliding window Viterbi algorithm is used to decode the gait. Walking data are collected through eight subjects walking along the same route at three different speeds; the leave-one-subject-out cross validation method is conducted to test the model. Experimental results show that the proposed algorithm can accurately detect different walking gaits of zero velocity interval. The location experiment shows that the precision of CHMM-based pedestrian navigation improved by 40% when compared to the angular rate threshold method.
Dobkin, Bruce H; Xu, Xiaoyu; Batalin, Maxim; Thomas, Seth; Kaiser, William
2011-08-01
Outcome measures of mobility for large stroke trials are limited to timed walks for short distances in a laboratory, step counters and ordinal scales of disability and quality of life. Continuous monitoring and outcome measurements of the type and quantity of activity in the community would provide direct data about daily performance, including compliance with exercise and skills practice during routine care and clinical trials. Twelve adults with impaired ambulation from hemiparetic stroke and 6 healthy controls wore triaxial accelerometers on their ankles. Walking speed for repeated outdoor walks was determined by machine-learning algorithms and compared to a stopwatch calculation of speed for distances not known to the algorithm. The reliability of recognizing walking, exercise, and cycling by the algorithms was compared to activity logs. A high correlation was found between stopwatch-measured outdoor walking speed and algorithm-calculated speed (Pearson coefficient, 0.98; P=0.001) and for repeated measures of algorithm-derived walking speed (P=0.01). Bouts of walking >5 steps, variations in walking speed, cycling, stair climbing, and leg exercises were correctly identified during a day in the community. Compared to healthy subjects, those with stroke were, as expected, more sedentary and slower, and their gait revealed high paretic-to-unaffected leg swing ratios. Test-retest reliability and concurrent and construct validity are high for activity pattern-recognition Bayesian algorithms developed from inertial sensors. This ratio scale data can provide real-world monitoring and outcome measurements of lower extremity activities and walking speed for stroke and rehabilitation studies.
The independent effects of speed and propulsive force on joint power generation in walking
Browne, Michael G.; Franz, Jason R.
2017-01-01
Walking speed is modulated using propulsive forces (FP) during push-off and both preferred speed and FP decrease with aging. However, even prior to walking slower, reduced FP may be accompanied by potentially unfavorable changes in joint power generation. For example, compared to young adults, older adults exhibit a redistribution of mechanical power generation from the propulsive plantarflexor muscles to more proximal muscles acting across the knee and hip. Here, we used visual biofeedback based on real-time FP measurements to decouple and investigate the interaction between joint-level coordination, whole-body FP, and walking speed. 12 healthy young subjects walked on a dual-belt instrumented treadmill at a range of speeds (0.9 – 1.3 m/s). We immediately calculated the average FP from each speed. Subjects then walked at 1.3 m/s while completing a series of biofeedback trials with instructions to match their instantaneous FP to their averaged FP from slower speeds. Walking slower decreased FP and total positive joint work with little effect on relative joint-level contributions. Conversely, subjects walked at a constant speed with reduced FP, not by reducing total positive joint work, but by redistributing the mechanical demands of each step from the plantarflexor muscles during push-off to more proximal leg muscles during single support. Interestingly, these naturally emergent joint- and limb-level biomechanical changes, in the absence of neuromuscular constraints, resemble those due to aging. Our findings provide important reference data to understand the presumably complex interactions between joint power generation, whole-body FP, and walking speed in our aging population. PMID:28262285
Validity of the Nike+ device during walking and running.
Kane, N A; Simmons, M C; John, D; Thompson, D L; Bassett, D R; Basset, D R
2010-02-01
We determined the validity of the Nike+ device for estimating speed, distance, and energy expenditure (EE) during walking and running. Twenty trained individuals performed a maximal oxygen uptake test and underwent anthropometric and body composition testing. Each participant was outfitted with a Nike+ sensor inserted into the shoe and an Apple iPod nano. They performed eight 6-min stages on the treadmill, including level walking at 55, 82, and 107 m x min(-1), inclined walking (82 m x min(-1)) at 5 and 10% grades, and level running at 134, 161, and 188 m x min(-1). Speed was measured using a tachometer and EE was measured by indirect calorimetry. Results showed that the Nike+ device overestimated the speed of level walking at 55 m x min(-1) by 20%, underestimated the speed of level walking at 107 m x min(-1) by 12%, but closely estimated the speed of level walking at 82 m x min(-1), and level running at all speeds (p<0.05). Similar results were found for distance. The Nike+ device overestimated the EE of level walking by 18-37%, but closely estimated the EE of level running (p<0.05). In conclusion the Nike+ in-shoe device provided reasonable estimates of speed and distance during level running at the three speeds tested in this study. However, it overestimated EE during level walking and it did not detect the increased cost of inclined locomotion.
Cao, Wujing; Yu, Hongliu; Zhao, Weiliang; Meng, Qiaoling; Chen, Wenming
2018-04-20
The microprocessor-controlled prosthetic knees have been introduced to transfemoral amputees due to advances in biomedical engineering. A body of scientific literature has shown that the microprocessor-controlled prosthetic knees improve the gait and functional abilities of persons with transfemoral amputation. The aim of this study was to propose a new microprocessor-controlled prosthetic knee (MPK) and compare it with non-microprocessor-controlled prosthetic knees (NMPKs) under different walking speeds. The microprocessor-controlled prosthetic knee (i-KNEE) with hydraulic damper was developed. The comfortable self-selected walking speeds of 12 subjects with i-KNEE and NMPK were obtained. The maximum swing flexion knee angle and gait symmetry were compared in i-KNEE and NMPK condition. The comfortable self-selected walking speeds of some subjects were higher with i-KNEE while some were not. There was no significant difference in comfortable self-selected walking speed between the i-KNEE and the NMPK condition (P= 0.138). The peak prosthetic knee flexion during swing in the i-KNEE condition was between sixty and seventy degree under any walking speed. In the NMPK condition, the maximum swing flexion knee angle changed significantly. And it increased with walking speed. There is no significant difference in knee kinematic symmetry when the subjects wear the i-KNEE or NMPK. The results of this study indicated that the new microprocessor-controlled prosthetic knee was suitable for transfemoral amputees. The maximum swing flexion knee angle under different walking speeds showed different properties in the NMPK and i-KNEE condition. The i-KNEE was more adaptive to speed changes. There was little difference of comfortable self-selected walking speed between i-KNEE and NMPK condition.
Economy, Movement Dynamics, and Muscle Activity of Human Walking at Different Speeds.
Raffalt, P C; Guul, M K; Nielsen, A N; Puthusserypady, S; Alkjær, T
2017-03-08
The complex behaviour of human walking with respect to movement variability, economy and muscle activity is speed dependent. It is well known that a U-shaped relationship between walking speed and economy exists. However, it is an open question if the movement dynamics of joint angles and centre of mass and muscle activation strategy also exhibit a U-shaped relationship with walking speed. We investigated the dynamics of joint angle trajectories and the centre of mass accelerations at five different speeds ranging from 20 to 180% of the predicted preferred speed (based on Froude speed) in twelve healthy males. The muscle activation strategy and walking economy were also assessed. The movement dynamics was investigated using a combination of the largest Lyapunov exponent and correlation dimension. We observed an intermediate stage of the movement dynamics of the knee joint angle and the anterior-posterior and mediolateral centre of mass accelerations which coincided with the most energy-efficient walking speed. Furthermore, the dynamics of the joint angle trajectories and the muscle activation strategy was closely linked to the functional role and biomechanical constraints of the joints.
Franěk, Marek; Režný, Lukáš
2017-01-01
This study examined the effect of priming with photographs of various environmental settings on the speed of a subsequent outdoor walk in an urban environment. Either photographs of urban greenery, conifer forests, or shopping malls were presented or no prime was employed. Three experiments were conducted ( N = 126, N = 88, and N = 121). After being exposed to the priming or no-priming conditions, the participants were asked to walk along an urban route 1.9 km long with vegetation and mature trees (Experiment 1, Experiment 3) or along a route in a modern suburb (Experiment 2). In accord with the concept of approach-avoidance behavior, it was expected that priming with photographs congruent with the environmental setting of the walking route would result in slower walking speed. Conversely, priming with photographs incongruent with the environmental setting should result in faster walking speed. The results showed that priming with the photographs with vegetation caused a decrease in overall walking speed on the route relative to other experimental conditions. However, priming with incongruent primes did not lead to a significant increase in walking speed. In all experimental conditions, the slowest walking speed was found in sections with the highest natural character. The results are explained in terms of congruency between the prime and the environment, as well as by the positive psychological effects of viewing nature.
Franěk, Marek; Režný, Lukáš
2017-01-01
This study examined the effect of priming with photographs of various environmental settings on the speed of a subsequent outdoor walk in an urban environment. Either photographs of urban greenery, conifer forests, or shopping malls were presented or no prime was employed. Three experiments were conducted (N = 126, N = 88, and N = 121). After being exposed to the priming or no-priming conditions, the participants were asked to walk along an urban route 1.9 km long with vegetation and mature trees (Experiment 1, Experiment 3) or along a route in a modern suburb (Experiment 2). In accord with the concept of approach-avoidance behavior, it was expected that priming with photographs congruent with the environmental setting of the walking route would result in slower walking speed. Conversely, priming with photographs incongruent with the environmental setting should result in faster walking speed. The results showed that priming with the photographs with vegetation caused a decrease in overall walking speed on the route relative to other experimental conditions. However, priming with incongruent primes did not lead to a significant increase in walking speed. In all experimental conditions, the slowest walking speed was found in sections with the highest natural character. The results are explained in terms of congruency between the prime and the environment, as well as by the positive psychological effects of viewing nature. PMID:28184208
Brincks, John; Christensen, Lars Ejsing; Rehnquist, Mette Voigt; Petersen, Jesper; Sørensen, Henrik; Dalgas, Ulrik
2018-01-01
To improve walking in persons with multiple sclerosis (MS), it is essential to understand the underlying mechanisms of walking. This study examined strategies in net joint power generated or absorbed by hip flexors, hip extensors, hip abductors, knee extensors, and plantar flexors in mildly disabled persons with MS and healthy controls at different walking speeds. Thirteen persons with MS and thirteen healthy controls participated and peak net joint power was calculated using 3D motion analysis. In general, no differences were found between speed-matched healthy controls and persons with MS, but the fastest walking speed was significantly higher in healthy controls (2.42 m/s vs. 1.70 m/s). The net joint power increased in hip flexors, hip extensors, hip abductors, knee extensors and plantar flexors in both groups, when walking speed increased. Significant correlations between changes in walking speed and changes in net joint power of plantar flexors, hip extensors and hip flexors existed in healthy controls and persons with MS, and in net knee extensor absorption power of persons with MS only. In contrast to previous studies, these findings suggest that mildly disabled persons with MS used similar kinetic strategies as healthy controls to increase walking speed.
Roper, Jaimie A; Stegemöller, Elizabeth L; Tillman, Mark D; Hass, Chris J
2013-03-01
During split-belt treadmill walking the speed of the treadmill under one limb is faster than the belt under the contralateral limb. This unique intervention has shown evidence of acutely improving gait impairments in individuals with neurologic impairment such as stroke and Parkinson's disease. However, oxygen use, heart rate and perceived effort associated with split-belt treadmill walking are unknown and may limit the utility of this locomotor intervention. To better understand the intensity of this new intervention, this study was undertaken to examine the oxygen consumption, oxygen cost, heart rate, and rating of perceived exertion associated with split-belt treadmill walking in young healthy adults. Fifteen participants completed three sessions of treadmill walking: slow speed with belts tied, fast speed with belts tied, and split-belt walking with one leg walking at the fast speed and one leg walking at the slow speed. Oxygen consumption, heart rate, and rating of perceived exertion were collected during each walking condition and oxygen cost was calculated. Results revealed that oxygen consumption, heart rate, and perceived effort associated with split-belt walking were higher than slow treadmill walking, but only oxygen consumption was significantly lower during both split-belt walking than fast treadmill walking. Oxygen cost associated with slow treadmill walking was significantly higher than fast treadmill walking. These findings have implications for using split-belt treadmill walking as a rehabilitation tool as the cost associated with split-belt treadmill walking may not be higher or potentially more detrimental than that associated with previously used treadmill training rehabilitation strategies.
McDermott, Mary McGrae; Ferrucci, Luigi; Simonsick, Eleanor M; Balfour, Jennifer; Fried, Linda; Ling, Shari; Gibson, Daniel; Guralnik, Jack M
2002-02-01
To define the association between baseline ankle brachial index (ABI) level and subsequent onset of severe disability. Prospective cohort study. Baltimore community. Eight hundred forty-seven disabled women aged 65 and older participating in the Women's Health and Aging Study. At baseline, participants underwent measurement of ABI and lower extremity functioning. Measures of lower extremity functioning included patient's report of their ability to walk one-quarter of a mile, number of city blocks walked last week, number of stair flights climbed last week, and performance-based measures including walking speed over 4 meters, five repeated chair stands, and a summary performance score. Functioning was remeasured every 6 months for 3 years. Definitions of severe disability were developed a priori, and participants who met these definitions at baseline were excluded from subsequent analyses. Participants with an ABI of less than 0.60 at baseline had significantly higher cumulative probabilities of developing severe disability than participants with a baseline ABI of 0.90 to 1.50 for walking-specific outcomes (ability to walk a quarter of a mile, number of city blocks walked last week, and walking velocity) but not for the remaining functional outcomes. In age-adjusted Cox proportional hazards analyses, hazard ratios for participants with a baseline ABI of less than 0.60 were 1.63 for becoming unable to walk a quarter of a mile (P = .044), 2.00 for developing severe disability in the number of blocks walked last week (P = .004), and 1.61 for developing severe disability in walking speed (P = .041), compared with participants with a baseline ABI of 0.90 to 1.50. Adjusting for age, race, baseline performance, and comorbidities, an ABI of less than 0.60 remained associated with becoming severely disabled in the number of blocks walked last week (hazard ratio = 1.97, P = .009) and nearly significantly associated with becoming unable to walk a quarter of a mile (hazard ratio = 1.54, P = .09). In fully adjusted random effects models, a baseline ABI of less than 0.60 was associated with significantly greater decline in walking speed per year (P = .019) and nearly significantly greater decline in number of blocks walked last week per year (P = .053) compared with a baseline ABI of 0.90 to 1.50. In community-dwelling disabled older women, a low ABI is associated with a greater incidence of severe disability in walking-specific but not other lower extremity functional outcomes, compared with persons with a normal ABI over 3 years.
The independent effects of speed and propulsive force on joint power generation in walking.
Browne, Michael G; Franz, Jason R
2017-04-11
Walking speed is modulated using propulsive forces (F P ) during push-off and both preferred speed and F P decrease with aging. However, even prior to walking slower, reduced F P may be accompanied by potentially unfavorable changes in joint power generation. For example, compared to young adults, older adults exhibit a redistribution of mechanical power generation from the propulsive plantarflexor muscles to more proximal muscles acting across the knee and hip. Here, we used visual biofeedback based on real-time F P measurements to decouple and investigate the interaction between joint-level coordination, whole-body F P , and walking speed. 12 healthy young subjects walked on a dual-belt instrumented treadmill at a range of speeds (0.9-1.3m/s). We immediately calculated the average F P from each speed. Subjects then walked at 1.3m/s while completing a series of biofeedback trials with instructions to match their instantaneous F P to their averaged F P from slower speeds. Walking slower decreased F P and total positive joint work with little effect on relative joint-level contributions. Conversely, subjects walked at a constant speed with reduced F P , not by reducing total positive joint work, but by redistributing the mechanical demands of each step from the plantarflexor muscles during push-off to more proximal leg muscles during single support. Interestingly, these naturally emergent joint- and limb-level biomechanical changes, in the absence of neuromuscular constraints, resemble those due to aging. Our findings provide important reference data to understand the presumably complex interactions between joint power generation, whole-body F P , and walking speed in our aging population. Copyright © 2017 Elsevier Ltd. All rights reserved.
Biomechanical and energetic determinants of the walk-trot transition in horses.
Griffin, Timothy M; Kram, Rodger; Wickler, Steven J; Hoyt, Donald F
2004-11-01
We studied nine adult horses spanning an eightfold range in body mass (M(b)) (90-720 kg) and a twofold range in leg length (L) (0.7-1.4 m). We measured the horses' walk-trot transition speeds using step-wise speed increments as they locomoted on a motorized treadmill. We then measured their rates of oxygen consumption over a wide range of walking and trotting speeds. We interpreted the transition speed results using a simple inverted-pendulum model of walking in which gravity provides the centripetal force necessary to keep the leg in contact with the ground. By studying a large size range of horses, we were naturally able to vary the absolute walking speed that would produce the same ratio of centripetal to gravitational forces. This ratio, (M(b)v2/L)/(M(b)g), reduces to the dimensionless Froude number (v2/gL), where v is forward speed, L is leg length and g is gravitational acceleration. We found that the absolute walk-trot transition speed increased with size from 1.6 to 2.3 m s(-1), but it occurred at nearly the same Froude number (0.35). In addition, horses spontaneously switched between gaits in a narrow range of speeds that corresponded to the metabolically optimal transition speed. These results support the hypotheses that the walk-trot transition is triggered by inverted-pendulum dynamics and occurs at the speed that maximizes metabolic economy.
Toots, Annika; Littbrand, Håkan; Holmberg, Henrik; Nordström, Peter; Lundin-Olsson, Lillemor; Gustafson, Yngve; Rosendahl, Erik
2017-03-01
To investigate the effects of exercise on gait speed, when tested using walking aids and without, and whether effects differed according to amount of support in the test. A cluster-randomized controlled trial. The Umeå Dementia and Exercise (UMDEX) study was set in 16 nursing homes in Umeå, Sweden. One hundred forty-one women and 45 men (mean age 85 years) with dementia, of whom 145 (78%) habitually used walking aids. Participants were randomized to the high-intensity functional exercise program or a seated attention control activity. Blinded assessors measured 4-m usual gait speed with walking aids if any gait speed (GS), and without walking aids and with minimum amount of support, at baseline, 4 months (on intervention completion), and 7 months. Linear mixed models showed no between-group effect in either gait speed test at 4 or 7 months. In interaction analyses exercise effects differed significantly between participants who walked unsupported compared with when walking aids or minimum support was used. Positive between-group exercise effects on gait speed (m/s) were found in subgroups that walked unsupported at 4 and 7 months (GS: 0.07, P = .009 and 0.13, P < .001; and GS test without walking aids: 0.05, P = .011 and 0.07, P = .029, respectively). In people with dementia living in nursing homes exercise had positive effects on gait when tested unsupported compared with when walking aids or minimum support was used. The study suggests that the use of walking aids in gait speed tests may conceal exercise effects. Copyright © 2016 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.
Carotenoids as protection against disability in older persons.
Lauretani, Fulvio; Semba, Richard D; Bandinelli, Stefania; Dayhoff-Brannigan, Margaret; Lauretani, Fabrizio; Corsi, Anna Maria; Guralnik, Jack M; Ferrucci, Luigi
2008-06-01
The purpose was to examine the relationship of total plasma carotenoids, an indicator of fruit and vegetable intake, with walking speed and severe walking disability in older adults. Nine hundred twenty-eight men and women aged 65 to 102 years from the Invecchiare in Chianti (Aging in the Chianti Area [InCHIANTI]) study, a population-based cohort in Tuscany, Italy, were studied. Plasma carotenoids were measured at enrollment (1998-2000), and walking speed over 4 meters and 400 meters distance were assessed at enrollment and 6 years later (2004-2006). At enrollment, 85 of 928 (9.2%) participants had severe walking disability (defined as being unable to walk or having a walking speed at the 4-meter walking test < 0.4 m/sec). After adjusting for potential confounders, participants with high total plasma carotenoids were significantly less likely to have prevalent severe walking disability (odds ration [OR] 0.59, 95% confidence interval [CI] 0.38-0.90, p = 0.01) and had higher walking speed over 4 meters (beta = 0.024, standard error [SE] = 0.011, p = 0.03) and over 400 meters (beta = 0.019, SE = 0.010, p = 0.04). Of 621 participants without severe walking disability at enrollment who were seen 6 years later, 68 (11.0%) developed severe walking disability. After adjusting for potential confounders, higher total plasma carotenoids were associated with a significantly lower risk of developing severe walking disability (OR 0.51, 95% CI 0.30-0.86, p = 0.01) and were associated with a less steep decline in 4-meter walking speed over a 6-year follow-up (n = 579; beta = 0.026, SE = 0.012, p = 0.03) and with lower incidence rates of being unable to successfully complete the 400-meter walking test at the 6-year follow-up visit (beta = -0.054, SE = 0.03, p = 0.04). High plasma carotenoids concentrations may be protective against the decline in walking speed and the development of severe walking disability in older adults.
NASA Astrophysics Data System (ADS)
Klimiec, E.; Jasiewicz, B.; Piekarski, J.; Zaraska, K.; Guzdek, P.; Kołaszczyński, G.
2017-04-01
The paper presents an evaluation of human mobility by gait analysis, carried out in natural conditions (outside of the laboratory). Foot plantar pressure is measured using a shoe insole with 8 sensors placed in different anatomical zones of the foot, and placed inside a sports shoe. Polarized polyvinylidene fluoride (PVDF) foil is used as a sensor material. A wireless transmission system is used to transmit voltage values to the computer. Miniaturization was the priority during the design of the system. Due to the linear relationship between force and transducer voltage, energy and power released during walking in arbitrary units can be calculated as an integral of the square of the transducer voltage over time. Gait measurements were carried out over several days on healthy persons during normal walking and slow walking. The performed measurements allowed for the determination of walking speed (number of steps per second), gait rhythm and manner of walking (applying force to inside versus outside part of the sole). It was found that switching from normal to slow walk increases gait energy by 25% while the pressure distribution across the anatomical regions of the foot remains unchanged. The results will be used to develop a programme for the evaluation of patients with orthopedic diseases or even with cardiac failures, for an estimation of the results of health recovery and training efficiency in many sports activities.
Long, Leroy L; Srinivasan, Manoj
2013-04-06
On a treadmill, humans switch from walking to running beyond a characteristic transition speed. Here, we study human choice between walking and running in a more ecological (non-treadmill) setting. We asked subjects to travel a given distance overground in a given allowed time duration. During this task, the subjects carried, and could look at, a stopwatch that counted down to zero. As expected, if the total time available were large, humans walk the whole distance. If the time available were small, humans mostly run. For an intermediate total time, humans often use a mixture of walking at a slow speed and running at a higher speed. With analytical and computational optimization, we show that using a walk-run mixture at intermediate speeds and a walk-rest mixture at the lowest average speeds is predicted by metabolic energy minimization, even with costs for transients-a consequence of non-convex energy curves. Thus, sometimes, steady locomotion may not be energy optimal, and not preferred, even in the absence of fatigue. Assuming similar non-convex energy curves, we conjecture that similar walk-run mixtures may be energetically beneficial to children following a parent and animals on long leashes. Humans and other animals might also benefit energetically from alternating between moving forward and standing still on a slow and sufficiently long treadmill.
Effect of walking speed on lower extremity joint loading in graded ramp walking.
Schwameder, Hermann; Lindenhofer, Elke; Müller, Erich
2005-07-01
Lower extremity joint loading during walking is strongly affected by the steepness of the slope and might cause pain and injuries in lower extremity joint structures. One feasible measure to reduce joint loading is the reduction of walking speed. Positive effects have been shown for level walking, but not for graded walking or hiking conditions. The aim of the study was to quantify the effect of walking speed (separated into the two components, step length and cadence) on the joint power of the hip, knee and ankle and to determine the knee joint forces in uphill and downhill walking. Ten participants walked up and down a ramp with step lengths of 0.46, 0.575 and 0.69 m and cadences of 80, 100 and 120 steps per minute. The ramp was equipped with a force platform and the locomotion was filmed with a 60 Hz video camera. Loading of the lower extremity joints was determined using inverse dynamics. A two-dimensional knee model was used to calculate forces in the knee structures during the stance phase. Walking speed affected lower extremity joint loading substantially and significantly. Change of step length caused much greater loading changes for all joints compared with change of cadence; the effects were more distinct in downhill than in uphill walking. The results indicate that lower extremity joint loading can be effectively controlled by varying step length and cadence during graded uphill and downhill walking. Hikers can avoid or reduce pain and injuries by reducing walking speed, particularly in downhill walking.
An anterior ankle-foot orthosis improves walking economy in Charcot-Marie-Tooth type 1A patients.
Menotti, Federica; Laudani, Luca; Damiani, Antonello; Mignogna, Teresa; Macaluso, Andrea
2014-10-01
Ankle-foot orthoses are commonly prescribed in Charcot-Marie-Tooth type 1A disease to improve quality of walking and reduce the risk of falling due to the foot drop. This study aimed at assessing the effect of an anterior ankle-foot orthosis on walking economy in a group of Charcot-Marie-Tooth type 1A patients. Within-group comparisons. 7 Charcot-Marie-Tooth type 1A patients (four women and three men; 37 ± 11 years; age range = 22-53 years) were asked to walk on a circuit at their self-selected speeds ('slow', 'comfortable' and 'fast') in two walking conditions: (1) with shoes only and (2) with Taloelast(®) anterior elastic ankle-foot orthoses. Speed of walking and metabolic cost of walking energy cost per unit of distance were assessed at the three self-selected speeds of walking for both walking conditions. Speed of walking at the three self-selected speeds did not differ between shoes only and anterior elastic ankle-foot orthoses, whereas walking energy cost per unit of distance at comfortable speed was lower in patients using anterior elastic ankle-foot orthoses with respect to shoes only (2.39 ± 0.22 vs 2.70 ± 0.19 J kg(-1) m(-1); P < 0.05). In Charcot-Marie-Tooth type 1A patients, the use of anterior elastic ankle-foot orthoses improved walking economy by reducing the energy cost of walking per unit of distance, thus reflecting a lower level of metabolic effort and improved mechanical efficiency in comparison with shoes only. From a practical perspective, Charcot-Marie-Tooth type 1A patients with anterior elastic ankle-foot orthoses can walk for a longer duration with a lower level of physical effort. Improvements in walking economy due to ankle-foot orthoses are likely a consequence of the reduction in steppage gait. © The International Society for Prosthetics and Orthotics 2013.
Kaneda, Koichi; Ohgi, Yuji; Tanaka, Chiaki; Burkett, Brendan
2014-01-01
The aim of this study was to develop an estimation equation for energy expenditure during water walking based on the acceleration and walking speed. Cross-validation study. Fifty participants, males (n=29, age: 27-73) and females (n=21, age: 33-70) volunteered for this study. Based on their physical condition water walking was conducted at three self-selected walking speeds from a range of: 20, 25, 30, 35 and 40 m/min. Energy expenditure during each trial was calculated. During water walking, an accelerometer was attached to the occipital region and recorded three-dimensional accelerations at 100 Hz. A stopwatch was used for timing the participant's walking speed. The estimation model for energy expenditure included three components; (i) resting metabolic rate, (ii) internal energy expenditure for moving participants' body, and (iii) external energy expenditure due to water drag force. When comparing the measured and estimated energy expenditure with the acceleration data being the third component of the estimation model, high correlation coefficients were found in both male (r=0.73) and female (r=0.77) groups. When walking speeds were applied to the third component of the model, higher correlation coefficients were found (r=0.82 in male and r=0.88 in female). Good agreements of the developed estimation model were found in both methods, regardless of gender. This study developed a valid estimation model for energy expenditure during water walking by using head acceleration and walking speed. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Plasschaert, Frank; Jones, Kim; Forward, Malcolm
2009-02-01
Measurement of the energy cost of walking in children with cerebral palsy is used for baseline and outcome assessment. However, such testing relies on the establishment of steady state that is deemed present when oxygen consumption is stable. This is often assumed when walking speed is constant but in practice, speed can and does vary naturally. Whilst constant speed is achievable on a treadmill, this is often impractical clinically, thus rendering an energy cost test to an element of subjectivity. This paper attempts to address this issue by presenting a new method for calculating energy cost of walking that automatically applies a mathematically defined threshold for steady state within a (non-treadmill) walking trial and then strips out all of the non-steady state events within that trial. The method is compared with a generic approach that does not remove non-steady state data but rather uses an average value over a complete walking trial as is often used in the clinical environment. Both methods were applied to the calculation of several energy cost of walking parameters of self-selected walking speed in a cohort of unimpaired subjects and children with cerebral palsy. The results revealed that both methods were strongly correlated for each parameter but showed systematic significant differences. It is suggested that these differences are introduced by the rejection of non-steady state data that would otherwise have incorrectly been incorporated into the calculation of the energy cost of walking indices during self-selected walking with its inherent speed variation.
Polese, Janaine C; Ada, Louise; Teixeira-Salmela, Luci F
2018-01-01
Since physical inactivity is the major risk factor for recurrent stroke, it is important to understand how level of disability impacts oxygen uptake by people after stroke. This study investigated the nature of the relationship between level of disability and oxygen cost in people with chronic stroke. Level of walking disability was measured as comfortable walking speed using the 10-m Walk Test reported in m/s with 55 ambulatory people 2 years after stroke. Oxygen cost was measured during 3 walking tasks: overground walking at comfortable speed, overground walking at fast speed, and stair walking at comfortable speed. Oxygen cost was calculated from oxygen uptake divided by distance covered during walking and reported in ml∙kg -1 ∙m -1 . The relationship between level of walking disability and oxygen cost was curvilinear for all 3 walking tasks. One quadratic model accounted for 81% (95% CI [74, 88]) of the variance in oxygen cost during the 3 walking tasks: [Formula: see text] DISCUSSION: The oxygen cost of walking was related the level of walking disability in people with chronic stroke, such that the more disabled the individual, the higher the oxygen cost of walking; with oxygen cost rising sharply as disability became severe. An equation that relates oxygen cost during different walking tasks according to the level of walking disability allows clinicians to determine oxygen cost indirectly without the difficulty of measuring oxygen uptake directly. Copyright © 2017 John Wiley & Sons, Ltd.
Mary, P; Gallisa, J-M; Laroque, S; Bedou, G; Maillard, A; Bousquet, C; Negre, C; Gaillard, N; Dutray, A; Fadat, B; Jurici, S; Olivier, N; Cisse, B; Sablot, D
2013-04-01
Normal pressure hydrocephalus (NPH) was described by Adams et al. (1965). The common clinical presentation is the triad: gait disturbance, cognitive decline and urinary incontinence. Although these symptoms are suggestive, they are not specific to diagnosis. The improvement of symptoms after high-volume lumbar puncture (hVLP) could be a strong criterion for diagnosis. We tried to determine a specific pattern of dynamic walking and posture parameters in NPH. Additionally, we tried to specify the evolution of these criteria after hVLP and to determine predictive values of ventriculoperitoneal shunting (VPS) efficiency. Sixty-four patients were followed during seven years from January 2002 to June 2009. We identified three periods: before (S1), after hVLP (S2) and after VPS (S3). The following criteria concerned walking and posture parameters: walking parameters were speed, step length and step rhythm; posture parameters were statokinesigram total length and surface, length according to the surface (LFS), average value of equilibration for lateral movements (Xmoyen), anteroposterior movements (Ymoyen), total movement length in lateral axis (longX) and anteroposterior axis (longY). Among the 64 patients included, 22 had VPS and 16 were investigated in S3. All kinematic criteria are decreased in S1 compared with normal values. hVLP improved these criteria significantly (S2). Among posture parameters, only total length and surface of statokinesigram showed improvement in S1, but no improvement in S2. A gain in speed greater or equal to 0.15m/s between S1 and S2 predicted the efficacy of VPS with a positive predictive value (PPV) of 87.1% and a negative predictive value (NPV) of 69.7% (area under the ROC curve [AUC]: 0.86). Kinematic walking parameters are the most disruptive and are partially improved after hVLP. These parameters could be an interesting test for selecting candidates for VPS. These data have to be confirmed in a larger cohort. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Reference data for normal subjects obtained with an accelerometric device.
Auvinet, Bernard; Berrut, Gilles; Touzard, Claude; Moutel, Laurent; Collet, Nadine; Chaleil, Denis; Barrey, Eric
2002-10-01
We collected gait analysis data for 282 healthy adults and elderly people (144 women and 138 men aged 20-98) using an accelerometric device, whose reproducibility (intra-tester and inter-testers) has been validated for gait studies. The subjects walked at their own speed along a corridor (40 m). Stride frequency (SF) (after correction for height), step symmetry (Sym), stride regularity (Reg), and vertical harmonic (slope) were all independent of age or gender. The median-lateral harmonic (slope) (MSH) was influenced by gender, but not by age. Other variables (walking speed, stride length (SL), cranial-caudal activity and raw accelerations at heel contact, mid-stance and initial push-off) were dependent on gender and age. They were higher in men than in women, and began to decrease during the sixth decade in men and the seventh decade in women. The raw acceleration at foot flat was independent of gender but was influenced by age. This accelerometric device is easy to use and requires no specialized equipment and could be used to analyze walking in clinical practice.
Masumoto, Kenji; Nishizaki, Yoshiko; Hamada, Ayako
2013-06-01
We investigated the effect of stride frequency (SF) on metabolic costs and rating of perceived exertion (RPE) during walking in water and on dry land. Eleven male subjects walked on a treadmill on dry land and on an underwater treadmill at their preferred SF (PSF) and walked at an SF which was lower and higher than the PSF (i.e., PSF ± 5, 10, and 15 strides min(-1)). Walking speed was kept constant at each subject's preferred walking speed in water and on dry land. Oxygen uptake, heart rate, RPE, PSF and preferred walking speeds were measured. Metabolic costs and RPE were significantly higher when walking at low and high SF conditions than when walking at the PSF condition both in water and on dry land (P<0.05). Additionally, the high SF condition produced significantly higher metabolic costs and RPE than the equivalent low SF condition during walking in water (P<0.01). Furthermore, metabolic costs, RPE, PSF, and the preferred walking speed were significantly lower in water than on dry land when walking at the PSF (P<0.05). These observations indicate that a change in SF influences metabolic costs and RPE during walking in water. Copyright © 2012 Elsevier B.V. All rights reserved.
Why does walking economy improve after weight loss in obese adolescents?
Peyrot, Nicolas; Thivel, David; Isacco, Laurie; Morin, Jean-Benoît; Belli, Alain; Duche, Pascale
2012-04-01
This study tested the hypothesis that the increase in walking economy (i.e., decrease in net metabolic rate per kilogram) after weight loss in obese adolescents is induced by a lower metabolic rate required to support the lower body weight and maintain balance during walking. Sixteen obese adolescent boys and girls were tested before and after a weight reduction program. Body composition and oxygen uptake while standing and walking at four preset speeds (0.75, 1, 1.25, and 1.5 m·s⁻¹) and at the preferred speed were quantified. Net metabolic rate and gross metabolic cost of walking-versus-speed relationships were determined. A three-compartment model was used to distinguish the respective parts of the metabolic rate associated with standing (compartment 1), maintaining balance and supporting body weight during walking (compartment 2), and muscle contractions required to move the center of mass and limbs (compartment 3). Standing metabolic rate per kilogram (compartment 1) significantly increased after weight loss, whereas net metabolic rate per kilogram during walking decreased by 9% on average across speeds. Consequently, the gross metabolic cost of walking per unit of distance-versus-speed relationship and hence preferred walking speeds did not change with weight loss. Compartment 2 of the model was significantly lower after weight loss, whereas compartment 3 did not change. The model showed that the improvement in walking economy after weight loss in obese adolescents was likely related to the lower metabolic rate of the isometric muscular contractions required to support the lower body weight and maintain balance during walking. Contrastingly, the part of the total metabolic rate associated with muscle contractions required to move the center of mass and limbs did not seem to be related to the improvement in walking economy in weight-reduced individuals.
Prilutsky, B I; Gregor, R J
2001-07-01
There has been no consistent explanation as to why humans prefer changing their gait from walking to running and from running to walking at increasing and decreasing speeds, respectively. This study examined muscle activation as a possible determinant of these gait transitions. Seven subjects walked and ran on a motor-driven treadmill for 40s at speeds of 55, 70, 85, 100, 115, 130 and 145% of the preferred transition speed. The movements of subjects were videotaped, and surface electromyographic activity was recorded from seven major leg muscles. Resultant moments at the leg joints during the swing phase were calculated. During the swing phase of locomotion at preferred running speeds (115, 130, 145%), swing-related activation of the ankle, knee and hip flexors and peaks of flexion moments were typically lower (P<0.05) during running than during walking. At preferred walking speeds (55, 70, 85%), support-related activation of the ankle and knee extensors was typically lower during stance of walking than during stance of running (P<0.05). These results support the hypothesis that the preferred walk-run transition might be triggered by the increased sense of effort due to the exaggerated swing-related activation of the tibialis anterior, rectus femoris and hamstrings; this increased activation is necessary to meet the higher joint moment demands to move the swing leg during fast walking. The preferred run-walk transition might be similarly triggered by the sense of effort due to the higher support-related activation of the soleus, gastrocnemius and vastii that must generate higher forces during slow running than during walking at the same speed.
Walking energetics, fatigability, and fatigue in older adults: the study of energy and aging pilot.
Richardson, Catherine A; Glynn, Nancy W; Ferrucci, Luigi G; Mackey, Dawn C
2015-04-01
Slow gait speed increases morbidity and mortality in older adults. We examined how preferred gait speed is associated with energetic requirements of walking, fatigability, and fatigue. Older adults (n = 36, 70-89 years) were categorized as slow or fast walkers based on median 400-m gait speed. We measured VO2peak by graded treadmill exercise test and VO2 during 5-minute treadmill walking tests at standard (0.72 m/s) and preferred gait speeds. Fatigability was assessed with the Situational Fatigue Scale and the Borg rating of perceived exertion at the end of walking tests. Fatigue was assessed by questionnaire. Preferred gait speed over 400 m (range: 0.75-1.58 m/s) averaged 1.34 m/s for fast walkers versus 1.05 m/s for slow walkers (p < .001). VO2peak was 26% lower (18.5 vs 25.1ml/kg/min, p = .001) in slow walkers than fast walkers. To walk at 0.72 m/s, slow walkers used a larger percentage of VO2peak (59% vs 42%, p < .001). To walk at preferred gait speed, slow walkers used more energy per unit distance (0.211 vs 0.186ml/kg/m, p = .047). Slow walkers reported higher rating of perceived exertion during walking and greater overall fatigability on the Situational Fatigue Scale, but no differences in fatigue. Slow walking was associated with reduced aerobic capacity, greater energetic cost of walking, and greater fatigability. Interventions to improve aerobic capacity or decrease energetic cost of walking may prevent slowing of gait speed and promote mobility in older adults. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Walking Energetics, Fatigability, and Fatigue in Older Adults: The Study of Energy and Aging Pilot
Richardson, Catherine A.; Glynn, Nancy W.; Ferrucci, Luigi G.
2015-01-01
Background. Slow gait speed increases morbidity and mortality in older adults. We examined how preferred gait speed is associated with energetic requirements of walking, fatigability, and fatigue. Methods. Older adults (n = 36, 70–89 years) were categorized as slow or fast walkers based on median 400-m gait speed. We measured VO2peak by graded treadmill exercise test and VO2 during 5-minute treadmill walking tests at standard (0.72 m/s) and preferred gait speeds. Fatigability was assessed with the Situational Fatigue Scale and the Borg rating of perceived exertion at the end of walking tests. Fatigue was assessed by questionnaire. Results. Preferred gait speed over 400 m (range: 0.75–1.58 m/s) averaged 1.34 m/s for fast walkers versus 1.05 m/s for slow walkers (p < .001). VO2peak was 26% lower (18.5 vs 25.1ml/kg/min, p = .001) in slow walkers than fast walkers. To walk at 0.72 m/s, slow walkers used a larger percentage of VO2peak (59% vs 42%, p < .001). To walk at preferred gait speed, slow walkers used more energy per unit distance (0.211 vs 0.186ml/kg/m, p = .047). Slow walkers reported higher rating of perceived exertion during walking and greater overall fatigability on the Situational Fatigue Scale, but no differences in fatigue. Conclusions. Slow walking was associated with reduced aerobic capacity, greater energetic cost of walking, and greater fatigability. Interventions to improve aerobic capacity or decrease energetic cost of walking may prevent slowing of gait speed and promote mobility in older adults. PMID:25190069
The largest Lyapunov exponent of gait in young and elderly individuals: A systematic review.
Mehdizadeh, Sina
2018-02-01
The largest Lyapunov exponent (LyE) is an accepted method to quantify gait stability in young and old adults. However, a range of LyE values has been reported in the literature for healthy young and elderly adults in normal walking. Therefore, it has been impractical to use the LyE as a clinical measure of gait stability. The aims of this systematic review were to summarize different methodological approaches of quantifying LyE, as well as to classify LyE values of different body segments and joints in young and elderly individuals during normal walking. The Pubmed, Ovid Medline, Scopus and ISI Web of Knowledge databases were searched using keywords related to gait, stability, variability, and LyE. Only English language articles using the Lyapunov exponent to quantify the stability of healthy normal young and old subjects walking on a level surface were considered. 102 papers were included for full-text review and data extraction. Data associated with the walking surface, data recording method, sampling rate, walking speed, body segments and joints, number of strides/steps, variable type, filtering, time-normalizing, state space dimension, time delay, LyE algorithm, and the LyE values were extracted. The disparity in implementation and calculation of the LyE was from, (i) experiment design, (ii) data pre-processing, and (iii) LyE calculation method. For practical implementation of LyE as a measure of gait stability in clinical settings, a standard and universally accepted approach of calculating LyE is required. Therefore, future studies should look for a standard and generalized procedure to apply and calculate LyE. Copyright © 2017 Elsevier B.V. All rights reserved.
Tomovic, Sara; Münzer, Thomas; de Bruin, Eling D.
2017-01-01
Slow walking speed is strongly associated with adverse health outcomes, including cognitive impairment, in the older population. Moreover, adequate walking speed is crucial to maintain older pedestrians’ mobility and safety in urban areas. This study aimed to identify the proportion of Swiss older adults that didn’t reach 1.2 m/s, which reflects the requirements to cross streets within the green–yellow phase of pedestrian lights, when walking fast under cognitive challenge. A convenience sample, including 120 older women (65%) and men, was recruited from the community (88%) and from senior residences and divided into groups of 70–79 years (n = 59, 74.8 ± 0.4 y; mean ± SD) and ≥80 years (n = 61, 85.5 ± 0.5 y). Steady state walking speed was assessed under single- and dual-task conditions at preferred and fast walking speed. Additionally, functional lower extremity strength (5-chair-rises test), subjective health rating, and retrospective estimates of fall frequency were recorded. Results showed that 35.6% of the younger and 73.8% of the older participants were not able to walk faster than 1.2 m/s under the fast dual-task walking condition. Fast dual-task walking speed was higher compared to the preferred speed single- and dual-task conditions (all p < .05, r = .31 to .48). Average preferred single-task walking speed was 1.19 ± 0.24 m/s (70–79 y) and 0.94 ± 0.27 m/s (≥80 y), respectively, and correlated with performance in the 5-chair-rises test (rs = −.49, p < .001), subjective health (τ = .27, p < .001), and fall frequency (τ = −.23, p = .002). We conclude that the fitness status of many older people is inadequate to safely cross streets at pedestrian lights and maintain mobility in the community’s daily life in urban areas. Consequently, training measures to improve the older population’s cognitive and physical fitness should be promoted to enhance walking speed and safety of older pedestrians. PMID:28759587
Gait and energy consumption in adolescent idiopathic scoliosis: A literature review.
Daryabor, Aliyeh; Arazpour, Mokhtar; Sharifi, Guive; Bani, Monireh Ahmadi; Aboutorabi, Atefeh; Golchin, Navid
2017-04-01
Adolescent idiopathic scoliosis (AIS) is a progressive growth disease that affects spinal anatomy, mobility, and left-right trunk symmetry. The disease can modify human gait. We aimed to review articles describing the measurement of gait parameters and energy consumption in AIS during walking without any intervention. Literature review. The search strategy was based on the Population Intervention Comparison Outcome method and included all relevant articles published from 1996 to 2015. Articles were searched in MEDLINE via PubMed, Science Direct, Google Scholar, and ISI Web of Knowledge databases. We selected 33 studies investigating the effect of scoliosis deformity on gait parameters and energy expenditure during walking. Most of the studies concluded no significant differences in walking speed, cadence and step width in scoliosis patients and normal participants. However, patients showed decreased hip and pelvic motion, excessive energy cost of walking, stepping pattern asymmetry and ground reaction force asymmetry. We lack consistent evidence of the effect of scoliosis on temporal spatial and kinematic parameters in AIS patients as compared with normal people. However, further research is needed to assess the effect of scoliosis on gait and energy consumption. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
In vivo fascicle behavior of the flexor hallucis longus muscle at different walking speeds.
Péter, A; Hegyi, A; Finni, T; Cronin, N J
2017-12-01
Ankle plantar flexor muscles support and propel the body in the stance phase of locomotion. Besides the triceps surae, flexor hallucis longus muscle (FHL) may also contribute to this role, but very few in vivo studies have examined FHL function during walking. Here, we investigated FHL fascicle behavior at different walking speeds. Ten healthy males walked overground at three different speeds while FHL fascicle length changes were recorded with ultrasound and muscle activity was recorded with surface electromyography (EMG). Fascicle length at heel strike at toe off and at peak EMG activity did not change with speed. Range of FHL fascicle length change (3.5-4.5 and 1.9-2.9 mm on average in stance and push-off phase, respectively), as well as minimum (53.5-54.9 and 53.8-55.7 mm) and maximum (58-58.4 and 56.8-57.7 mm) fascicle length did not change with speed in the stance or push-off phase. Mean fascicle velocity did not change in the stance phase, but increased significantly in the push-off phase between slow and fast walking speeds (P=.021). EMG activity increased significantly in both phases from slow to preferred and preferred to fast speed (P<.02 in all cases). FHL muscle fascicles worked near-isometrically during the whole stance phase (at least during slow walking) and operated at approximately the same length at different walking speeds. FHL and medial gastrocnemius (MG) have similar fiber length to muscle belly length ratios and, according to our results, also exhibit similar fascicle behavior at different walking speeds. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Negative Perceptions of Aging and Decline in Walking Speed: A Self-Fulfilling Prophecy
Robertson, Deirdre A.; Savva, George M.; King-Kallimanis, Bellinda L.; Kenny, Rose Anne
2015-01-01
Introduction Walking speed is a meaningful marker of physical function in the aging population. While it is a primarily physical measure, experimental studies have shown that merely priming older adults with negative stereotypes about aging results in immediate declines in objective walking speed. What is not clear is whether this is a temporary experimental effect or whether negative aging stereotypes have detrimental effects on long term objective health. We sought to explore the association between baseline negative perceptions of aging in the general population and objective walking speed 2 years later. Method 4,803 participations were assessed over 2 waves of The Irish Longitudinal Study on Ageing (TILDA), a prospective, population representative study of adults aged 50+ in the Republic of Ireland. Wave 1 measures – which included the Aging Perceptions Questionnaire, walking speed and all covariates - were taken between 2009 and 2011. Wave 2 measures – which included a second measurement of walking speed and covariates - were collected 2 years later between March and December 2012. Walking speed was measured as the number of seconds to complete the Timed Up-And-Go (TUG) task. Participations with a history of stroke, Parkinson’s disease or an MMSE < 18 were excluded. Results After full adjustment for all covariates (age, gender, level of education, disability, chronic conditions, medications, global cognition and baseline TUG) negative perceptions of aging at baseline were associated with slower TUG speed 2 years later (B=.03, 95% CI = .01 to 05, p< .05). Conclusions Walking speed has previously been considered to be a consequence of physical decline but these results highlight the direct role of psychological state in predicting an objective aging outcome. Negative perceptions about aging are a potentially modifiable risk factor of some elements of physical decline in aging. PMID:25923334
Masaki, Mitsuhiro; Ikezoe, Tome; Fukumoto, Yoshihiro; Minami, Seigo; Aoyama, Junichi; Ibuki, Satoko; Kimura, Misaka; Ichihashi, Noriaki
2016-06-01
Age-related change of spinal alignment in the standing position is known to be associated with decreases in walking speed, and alteration in muscle quantity (i.e., muscle mass) and muscle quality (i.e., increases in the amount of intramuscular non-contractile tissue) of lumbar back muscles. Additionally, the lumbar lordosis angle in the standing position is associated with walking speed, independent of lower-extremity muscle strength, in elderly individuals. However, it is unclear whether spinal alignment in the standing position is associated with walking speed in the elderly, independent of trunk muscle quantity and quality. The present study investigated the association of usual and maximum walking speed with age, sagittal spinal alignment in the standing position, muscle quantity measured as thickness, and quality measured as echo intensity of lumbar muscles in 35 middle-aged and elderly women. Sagittal spinal alignment in the standing position (thoracic kyphosis, lumbar lordosis, and sacral anterior inclination angle) using a spinal mouse, and muscle thickness and echo intensity of the lumbar muscles (erector spinae, psoas major, and lumbar multifidus) using an ultrasound imaging device were also measured. Stepwise regression analysis showed that only age was a significant determinant of usual walking speed. The thickness of the lumbar erector spinae muscle was a significant, independent determinant of maximal walking speed. The results of this study suggest that a decrease in maximal walking speed is associated with the decrease in lumbar erector spinae muscles thickness rather than spinal alignment in the standing position in middle-aged and elderly women.
How humans use visual optic flow to regulate stepping during walking.
Salinas, Mandy M; Wilken, Jason M; Dingwell, Jonathan B
2017-09-01
Humans use visual optic flow to regulate average walking speed. Among many possible strategies available, healthy humans walking on motorized treadmills allow fluctuations in stride length (L n ) and stride time (T n ) to persist across multiple consecutive strides, but rapidly correct deviations in stride speed (S n =L n /T n ) at each successive stride, n. Several experiments verified this stepping strategy when participants walked with no optic flow. This study determined how removing or systematically altering optic flow influenced peoples' stride-to-stride stepping control strategies. Participants walked on a treadmill with a virtual reality (VR) scene projected onto a 3m tall, 180° semi-cylindrical screen in front of the treadmill. Five conditions were tested: blank screen ("BLANK"), static scene ("STATIC"), or moving scene with optic flow speed slower than ("SLOW"), matched to ("MATCH"), or faster than ("FAST") walking speed. Participants took shorter and faster strides and demonstrated increased stepping variability during the BLANK condition compared to the other conditions. Thus, when visual information was removed, individuals appeared to walk more cautiously. Optic flow influenced both how quickly humans corrected stride speed deviations and how successful they were at enacting this strategy to try to maintain approximately constant speed at each stride. These results were consistent with Weber's law: healthy adults more-rapidly corrected stride speed deviations in a no optic flow condition (the lower intensity stimuli) compared to contexts with non-zero optic flow. These results demonstrate how the temporal characteristics of optic flow influence ability to correct speed fluctuations during walking. Copyright © 2017 Elsevier B.V. All rights reserved.
Ilich, J Z; Inglis, J E; Kelly, O J; McGee, D L
2015-11-01
We determined the prevalence of osteosarcopenic obesity (loss of bone and muscle coexistent with increased adiposity) in overweight/obese postmenopausal women and compared their functionality to obese-only women. Results showed that osteosarcopenic obese women were outperformed by obese-only women in handgrip strength and walking/balance abilities indicating their higher risk for mobility impairments. Osteosarcopenic obesity (OSO) is a recently defined triad of osteopenia/osteoporosis, sarcopenia, and adiposity. We identified women with OSO in overweight/obese postmenopausal women and evaluated their functionality comparing them with obese-only (OB) women. Additionally, women with osteopenic/osteoporotic obesity (OO), but no sarcopenia, and those with sarcopenic obesity (SO), but no osteopenia/osteoporosis, were identified and compared. We hypothesized that OSO women will have the lowest scores for each of the functionality measures. Participants (n = 258; % body fat ≥35) were assessed using a Lunar iDXA instrument for bone and body composition. Sarcopenia was determined from negative residuals of linear regression modeled on appendicular lean mass, height, and body fat, using 20th percentile as a cutoff. Participants with T-scores of L1-L4 vertebrae and/or total femur <-1, but without sarcopenia, were identified as OO (n = 99) and those with normal T-scores, but with sarcopenia, as SO (n = 28). OSO (n = 32) included women with both osteopenia/osteoporosis and sarcopenia, while those with normal bone and no sarcopenia were classified as OB (n = 99). Functionality measures such as handgrip strength, normal/brisk walking speed, and right/left leg stance were evaluated and compared among groups. Women with OSO presented with the lowest handgrip scores, slowest normal and brisk walking speed, and shortest time for each leg stance, but these results were statistically significantly different only from the OB group. These findings indicate a poorer functionality in women presenting with OSO, particularly compared to OB women, increasing the risk for bone fractures and immobility from the combined decline in bone and muscle mass, and increased fat mass.
Ducharme, Scott W; Liddy, Joshua J; Haddad, Jeffrey M; Busa, Michael A; Claxton, Laura J; van Emmerik, Richard E A
2018-04-01
Human locomotion is an inherently complex activity that requires the coordination and control of neurophysiological and biomechanical degrees of freedom across various spatiotemporal scales. Locomotor patterns must constantly be altered in the face of changing environmental or task demands, such as heterogeneous terrains or obstacles. Variability in stride times occurring at short time scales (e.g., 5-10 strides) is statistically correlated to larger fluctuations occurring over longer time scales (e.g., 50-100 strides). This relationship, known as fractal dynamics, is thought to represent the adaptive capacity of the locomotor system. However, this has not been tested empirically. Thus, the purpose of this study was to determine if stride time fractality during steady state walking associated with the ability of individuals to adapt their gait patterns when locomotor speed and symmetry are altered. Fifteen healthy adults walked on a split-belt treadmill at preferred speed, half of preferred speed, and with one leg at preferred speed and the other at half speed (2:1 ratio asymmetric walking). The asymmetric belt speed condition induced gait asymmetries that required adaptation of locomotor patterns. The slow speed manipulation was chosen in order to determine the impact of gait speed on stride time fractal dynamics. Detrended fluctuation analysis was used to quantify the correlation structure, i.e., fractality, of stride times. Cross-correlation analysis was used to measure the deviation from intended anti-phasing between legs as a measure of gait adaptation. Results revealed no association between unperturbed walking fractal dynamics and gait adaptability performance. However, there was a quadratic relationship between perturbed, asymmetric walking fractal dynamics and adaptive performance during split-belt walking, whereby individuals who exhibited fractal scaling exponents that deviated from 1/f performed the poorest. Compared to steady state preferred walking speed, fractal dynamics increased closer to 1/f when participants were exposed to asymmetric walking. These findings suggest there may not be a relationship between unperturbed preferred or slow speed walking fractal dynamics and gait adaptability. However, the emergent relationship between asymmetric walking fractal dynamics and limb phase adaptation may represent a functional reorganization of the locomotor system (i.e., improved interactivity between degrees of freedom within the system) to be better suited to attenuate externally generated perturbations at various spatiotemporal scales. Copyright © 2018 Elsevier B.V. All rights reserved.
Shahar, Danit R.; Houston, Denise K.; Hue, Trisha F.; Lee, Jung-Sun; Sahyoun, Nadine R.; Tylavsky, Frances A.; Geva, Diklah; Vardi, Hillel; Harris, Tamara B.
2012-01-01
Background Walking speed is an indirect marker of overall mobility performance. Data regarding its association with diet is lacking. Objectives To determine the association between the Mediterranean Diet (MedDiet) score with 20m walking-speed over 8 years. Design Health-ABC cohort study beginning in 1997–1998. Setting and participants We analyzed data of 2,225 well-functioning participants aged ≥70y. Measurements Walking-speed was assessed in relation to low, medium, and high adherence to the MedDiet (0–2, 3–5, 6–9 points, respectively). Results Individuals in the highest vs. the lowest MedDiet adherence groups were more likely to be men, less likely to be smokers, with lower BMI, higher energy intake and physical activity (p<0.05). Usual and rapid 20m walking speed were highest in the high MedDiet adherence group compared with the other groups, 1.19±0.19, 1.16±0.21, and 1.15±0.19m/s, respectively, (p=0.02) for usual speed and 1.65±0.30, 1.59±0.32, and 1.55±0.30m/s, respectively (p=0.001) for rapid speed. Over 8y, both usual and rapid 20m walking speed declined in all MedDiet adherence groups. Higher MedDiet adherence was an independent predictor of less decline in usual 20m walking speed (p=0.049) in Generalized Estimating Equations adjusted for age, race, gender, site, education, smoking, physical activity, energy intake, health status, depression, and cognitive score. The effect decreased after adding total body-fat-percent to the model (p=0.134). Similar results were observed for MedDiet adherence and rapid 20m walking speed; the association remained significant after adjustment for total body-fat-percent (p=0.012). In all models the interaction between time and MedDiet adherence was not significant. Conclusion Walking speed over 8 years was faster among those with higher MedDiet adherence at baseline. The differences remained significant over 8y, suggesting a long-term effect of diet on mobility performance with aging. PMID:23035758
Dorsch, Andrew K.; Thomas, Seth; Xu, Xiaoyu; Kaiser, William; Dobkin, Bruce H.
2014-01-01
Background Walking-related disability is the most frequent reason for inpatient stroke rehabilitation. Task-related practice is a critical component for improving patient outcomes. Objective To test the feasibility of providing quantitative feedback about daily walking performance and motivating greater skills practice via remote sensing. Methods In this phase III randomized, single blind clinical trial, patients participated in conventional therapies while wearing wireless sensors (tri-axial accelerometers) at both ankles. Activity-recognition algorithms calculated the speed, distance, and duration of walking bouts. Three times a week, therapists provided either feedback about performance on a 10-meter walk (speed-only) or walking speed feedback plus a review of walking activity recorded by the sensors (augmented). Primary outcomes at discharge included total daily walking time, derived from the sensors, and a timed 15-meter walk. Results Sixteen rehabilitation centers in 11 countries enrolled 135 participants over 15 months. Sensors recorded more than 1800 days of therapy, 37,000 individual walking bouts, and 2.5 million steps. No significant differences were found between the two feedback groups in daily walking time (15.1±13.1min vs. 16.6±14.3min, p=0.54) or 15-meter walking speed (0.93±0.47m/s vs. 0.91±0.53m/s, p=0.96). Remarkably, 30% of participants decreased their total daily walking time over their rehabilitation stay. Conclusions In this first trial of remote monitoring of inpatient stroke rehabilitation, augmented feedback beyond speed alone did not increase the time spent practicing or improve walking outcomes. Remarkably modest time was spent walking. Wireless sensing, however, allowed clinicians to audit skills practice and provided ground truth regarding changes in clinically important, mobility-related activities. PMID:25261154
Relation between aerobic capacity and walking ability in older adults with a lower-limb amputation.
Wezenberg, Daphne; van der Woude, Lucas H; Faber, Willemijn X; de Haan, Arnold; Houdijk, Han
2013-09-01
To determine the relative aerobic load, walking speed, and walking economy of older adults with a lower-limb prosthesis, and to predict the effect of an increased aerobic capacity on their walking ability. Cross-sectional. Human motion laboratory at a rehabilitation center. Convenience sample of older adults (n=36) who underwent lower-limb amputation because of vascular deficiency or trauma and able-bodied controls (n=21). Not applicable. Peak aerobic capacity and oxygen consumption while walking were determined. The relative aerobic load and walking economy were assessed as a function of walking speed, and a data-based model was constructed to predict the effect of an increased aerobic capacity on walking ability. People with a vascular amputation walked at a substantially higher (45.2%) relative aerobic load than people with an amputation because of trauma. The preferred walking speed in both groups of amputees was slower than that of able-bodied controls and below their most economical walking speed. We predicted that a 10% increase in peak aerobic capacity could potentially result in a reduction in the relative aerobic load of 9.1%, an increase in walking speed of 17.3% and 13.9%, and an improvement in the walking economy of 6.8% and 2.9%, for people after a vascular or traumatic amputation, respectively. Current findings corroborate the notion that, especially in people with a vascular amputation, the peak aerobic capacity is an important determinant for walking ability. The data provide quantitative predictions on the effect of aerobic training; however, future research is needed to experimentally confirm these predictions. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Walking Perception by Walking Observers
ERIC Educational Resources Information Center
Jacobs, Alissa; Shiffrar, Maggie
2005-01-01
People frequently analyze the actions of other people for the purpose of action coordination. To understand whether such self-relative action perception differs from other-relative action perception, the authors had observers either compare their own walking speed with that of a point-light walker or compare the walking speeds of 2 point-light…
Morice, Antoine H P; Wallet, Grégory; Montagne, Gilles
2014-04-30
While it has been shown that the Global Optic Flow Rate (GOFR) is used in the control of self-motion speed, this study examined its relevance in the control of interceptive actions while walking. We asked participants to intercept approaching targets by adjusting their walking speed in a virtual environment, and predicted that the influence of the GOFR depended on their interception strategy. Indeed, unlike the Constant Bearing Angle (CBA), the Modified Required Velocity (MRV) strategy relies on the perception of self-displacement speed. On the other hand, the CBA strategy involves specific speed adjustments depending on the curvature of the target's trajectory, whereas the MRV does not. We hypothesized that one strategy is selected among the two depending on the informational content of the environment. We thus manipulated the curvature and display of the target's trajectory, and the relationship between physical walking speed and the GOFR (through eye height manipulations). Our results showed that when the target trajectory was not displayed, walking speed profiles were affected by curvature manipulations. Otherwise, walking speed profiles were less affected by curvature manipulations and were affected by the GOFR manipulations. Taken together, these results show that the use of the GOFR for intercepting a moving target while walking depends on the informational content of the environment. Finally we discuss the complementary roles of these two perceptual-motor strategies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Wang, Wei-Te; Huang, Ling-Tzu; Chou, Ya-Hui; Wei, Ta-Sen; Lin, Chung-Che
2014-01-01
Objective. To investigate the relationship among walking speed, exercise capacity, and leg strength in community dwelling stroke subjects and to evaluate which one was the leading determinant factor of them. Design. This is a descriptive, cross-sectional study. Thirty-five chronic stroke patients who were able to walk independently in their community were enrolled. Walking speed was evaluated by using the 12-meter walking test. A maximal exercise test was used to determine the stroke subjects' exercise capacity. Knee extensor strength, measured as isokinetic torque, was assessed by isokinetic dynamometer. Results. The main walking speed of our subjects was 0.52 m/s. Peak oxygen uptake (VO2 peak) was 1.21 ± 0.43 L/min. Knee extensor strength, no matter whether paretic or nonparetic side, was significantly correlated to 12-meter walking speed and exercise capacity. Linear regression also showed the strength of the affected knee extensor was the determinant of walking speed and that of the nonparetic knee extensor was the determinant of exercise capacity in community dwelling stroke subjects. Conclusions. Walking speed and peak oxygen uptake were markedly decreased after stroke. Knee extensor strength of nonparetic leg was the most important determinant of exercise capacity of the community-dwelling stroke subjects. Knee extensor strengthening should be emphasized to help stroke patient to achieve optimal community living. PMID:25197712
Wang, Wei-Te; Huang, Ling-Tzu; Chou, Ya-Hui; Wei, Ta-Sen; Lin, Chung-Che
2014-01-01
To investigate the relationship among walking speed, exercise capacity, and leg strength in community dwelling stroke subjects and to evaluate which one was the leading determinant factor of them. This is a descriptive, cross-sectional study. Thirty-five chronic stroke patients who were able to walk independently in their community were enrolled. Walking speed was evaluated by using the 12-meter walking test. A maximal exercise test was used to determine the stroke subjects' exercise capacity. Knee extensor strength, measured as isokinetic torque, was assessed by isokinetic dynamometer. The main walking speed of our subjects was 0.52 m/s. Peak oxygen uptake (VO₂ peak) was 1.21 ± 0.43 L/min. Knee extensor strength, no matter whether paretic or nonparetic side, was significantly correlated to 12-meter walking speed and exercise capacity. Linear regression also showed the strength of the affected knee extensor was the determinant of walking speed and that of the nonparetic knee extensor was the determinant of exercise capacity in community dwelling stroke subjects. Walking speed and peak oxygen uptake were markedly decreased after stroke. Knee extensor strength of nonparetic leg was the most important determinant of exercise capacity of the community-dwelling stroke subjects. Knee extensor strengthening should be emphasized to help stroke patient to achieve optimal community living.
Powell, Wendy; Simmonds, Maureen J
2014-06-01
Musculoskeletal pain (MSP) is the most expensive nonmalignant health problem and the most common reason for activity limitation. Treatment approaches to improve movement without aggravating pain are urgently needed. Virtual reality (VR) can decrease acute pain, as well as influence movement speed. It is not clear whether VR can improve movement speed in individuals with MSP without aggravating pain. This study investigated the extent to which different audio and optic flow cues in a VR environment influenced walking speed in people with and without MSP. A total of 36 subjects participated, 19 with MSP and 17 controls. All walked on a motorized self-paced treadmill interfaced with a three-dimensional virtual walkway. The audio tempo was scaled (75%, 100%, and 125%) from baseline cadence, and optic flow was either absent, or scaled to 50% or 100% of preferred walking speed. Gait speed was measured during each condition, and pain was measured before and after the experiment. Repeated measures analysis of variance showed that audio tempo above baseline cadence significantly increased walking speed in both groups, F(3, 99)=10.41, p<0.001. Walking speed increases of more than 25% occurred in both groups in the 125% audio tempo condition, without any significant increase in pain. There was also a trend toward increased walking speeds with the use of optic flow, but the results in this study did not achieve significance at the p<0.05 level, F(2, 66)=2.01, p=0.14. Further research is needed to establish the generalizability of increasing movement speed across different physical performance tasks in VR.
[Factors associated with slow walking speed in older adults of a district in Lima, Peru].
Rodríguez, Gabriela; Burga-Cisneros, Daniella; Cipriano, Gabriela; Ortiz, Pedro J; Tello, Tania; Casas, Paola; Aliaga, Elizabeth; Varela, Luis F
2017-01-01
To determine the factors associated with slow walking speed in older adults living in a district of Lima, Peru. Analysis of secondary data. Adults older than 60 years were included in the study, while adults with physical conditions who did not allow the evaluation of the walking speed were excluded. The dependent variable was slow walking speed (less than 1 m/s), and the independent variables were sociodemographic, clinical, and geriatric data. Raw and adjusted prevalence ratios (PR) were calculated with 95% confidence intervals (95% CI). The study sample included 416 older adults aged 60 to 99 years, and 41% of the participants met the slow walking speed criterion. The factors associated with slow walking speed in this sample were female gender (PR, 1.45; 95% CI, 1.13-1.88), age > 70 years (PR, 1.73; 95% CI, 1.30- 2.30), lower level of education (PR, 2.07, 95% CI, 1.20-3.55), social-familial problems (PR, 1.66; 95% CI, 1.08-2.54), diabetes mellitus (PR, 1.35; 95% CI, 1.01-1.80), and depression (PR, 1.41; 95% CI, 1.02-1.95). The modifiable factors associated with slow walking speed in older adults included clinical and social-familial problems, and these factors are susceptible to interventions from the early stages of life.
Ko, Mansoo; Hughes, Lynne; Lewis, Harriet
2012-03-01
The impact of walking speed has not been evaluated as a feasible outcome measure associated with peak plantar pressure (PPP) distribution, which may result in tissue damage in persons with diabetic foot complications. The objective of this pilot study was to determine the walking speed and PPP distribution during barefoot walking in persons with diabetes. Nine individuals with diabetes and nine age-gender matched individuals without diabetes participated in this study. Each individual was marked at 10 anatomical landmarks for vibration and tactile pressure sensation tests to determine the severity of sensory deficits on the plantar surface of the dominant limb foot. A steady state walking speed, PPP, the fore and rear foot (F/R) PPP ratio and gait variables were measured during barefoot walking. Persons with diabetes had a significantly slower walking speed than the age-gender matched group resulting in a significant reduction of PPP at the F/R foot during barefoot walking (p < 0.05). There was no significant difference in F/R foot PPP ratio in the diabetic group compared with the age-gender matched group during barefoot walking (p > 0.05). There was a significant difference between the diabetic and non-diabetic groups for cadence, step time, toe out angle and the anterior-posterior excursion (APE) for centre of force (p < 0.05). Walking speed may be a potential indicator for persons with diabetes to identify PPP distribution during barefoot walking in a diabetic foot. However, the diabetic group demonstrated a more cautious walking pattern than the age-gender matched group by decreasing cadence, step length and APE, and increasing step time and toe in/out angle. People with diabetes may reduce the risk of foot ulcerations as long as they are able to prevent severe foot deformities such as callus, hammer toe or charcot foot. Copyright © 2011 John Wiley & Sons, Ltd.
Measurement of children's physical activity using a pedometer with a built-in memory.
Trapp, Georgina S A; Giles-Corti, Billie; Bulsara, Max; Christian, Hayley E; Timperio, Anna F; McCormack, Gavin R; Villanueva, Karen
2013-05-01
We evaluated the accuracy of the Accusplit AH120 pedometer (built-in memory) for recording step counts of children during treadmill walking against (1) observer counted steps and (2) concurrently measured steps using the previously validated Yamax Digiwalker SW-700 pedometer. This was a cross-sectional validation study performed under controlled settings. Forty five 9-12-year-olds walked on treadmills at speeds of 42, 66 and 90m/min to simulate slow, moderate and fast walking wearing Accusplit and Yamax pedometers concurrently on their right hip. Observer counted steps were captured by video camera and manually counted. Absolute value of percent error was calculated for each comparison. Bland-Altman plots were constructed to show the distribution of the individual (criterion-comparison) scores around zero. Both pedometers under-recorded observer counted steps at all three walk speeds. Absolute value of percent error was highest at the slowest walk speed (Accusplit=46.9%; Yamax=44.1%) and lowest at the fastest walk speed (Accusplit=8.6%; Yamax=8.9%). Bland-Altman plots showed high agreement between the pedometers for all three walk speeds. Using pedometers with built-in memory capabilities eliminates the need for children to manually log step counts daily, potentially improving data accuracy and completeness. Step counts from the Accusplit (built-in memory) and Yamax (widely used) pedometers were comparable across all speeds, but their level of accuracy was dependent on walking pace. Pedometers should be used with caution in children as they significantly undercount steps, and this error is greatest at slower walk speeds. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Walking speed and subclinical atherosclerosis in healthy older adults: the Whitehall II study.
Hamer, Mark; Kivimaki, Mika; Lahiri, Avijit; Yerramasu, Ajay; Deanfield, John E; Marmot, Michael G; Steptoe, Andrew
2010-03-01
Extended walking speed is a predictor of incident cardiovascular disease (CVD) in older individuals, but the ability of an objective short-distance walking speed test to stratify the severity of preclinical conditions remains unclear. This study examined whether performance in an 8-ft walking speed test is associated with metabolic risk factors and subclinical atherosclerosis. Cross-sectional. Setting Epidemiological cohort. 530 adults (aged 63 + or - 6 years, 50.3% male) from the Whitehall II cohort study with no known history or objective signs of CVD. Electron beam computed tomography and ultrasound was used to assess the presence and extent of coronary artery calcification (CAC) and carotid intima-media thickness (IMT), respectively. High levels of CAC (Agatston score >100) were detected in 24% of the sample; the mean IMT was 0.75 mm (SD 0.15). Participants with no detectable CAC completed the walking course 0.16 s (95% CI 0.04 to 0.28) faster than those with CAC > or = 400. Objectively assessed, but not self-reported, faster walking speed was associated with a lower risk of high CAC (odds ratio 0.62, 95% CI 0.40 to 0.96) and lower IMT (beta=-0.04, 95% CI -0.01 to -0.07 mm) in comparison with the slowest walkers (bottom third), after adjusting for conventional risk factors. Faster walking speed was also associated with lower adiposity, C-reactive protein and low-density lipoprotein cholesterol. Short-distance walking speed is associated with metabolic risk and subclinical atherosclerosis in older adults without overt CVD. These data suggest that a non-aerobically challenging walking test reflects the presence of underlying vascular disease.
Walking speed and subclinical atherosclerosis in healthy older adults: the Whitehall II study
Kivimaki, Mika; Lahiri, Avijit; Yerramasu, Ajay; Deanfield, John E; Marmot, Michael G; Steptoe, Andrew
2010-01-01
Objective Extended walking speed is a predictor of incident cardiovascular disease (CVD) in older individuals, but the ability of an objective short-distance walking speed test to stratify the severity of preclinical conditions remains unclear. This study examined whether performance in an 8-ft walking speed test is associated with metabolic risk factors and subclinical atherosclerosis. Design Cross-sectional. Setting Epidemiological cohort. Participants 530 adults (aged 63±6 years, 50.3% male) from the Whitehall II cohort study with no known history or objective signs of CVD. Main outcome Electron beam computed tomography and ultrasound was used to assess the presence and extent of coronary artery calcification (CAC) and carotid intima-media thickness (IMT), respectively. Results High levels of CAC (Agatston score >100) were detected in 24% of the sample; the mean IMT was 0.75 mm (SD 0.15). Participants with no detectable CAC completed the walking course 0.16 s (95% CI 0.04 to 0.28) faster than those with CAC ≥400. Objectively assessed, but not self-reported, faster walking speed was associated with a lower risk of high CAC (odds ratio 0.62, 95% CI 0.40 to 0.96) and lower IMT (β=−0.04, 95% CI −0.01 to −0.07 mm) in comparison with the slowest walkers (bottom third), after adjusting for conventional risk factors. Faster walking speed was also associated with lower adiposity, C-reactive protein and low-density lipoprotein cholesterol. Conclusions Short-distance walking speed is associated with metabolic risk and subclinical atherosclerosis in older adults without overt CVD. These data suggest that a non-aerobically challenging walking test reflects the presence of underlying vascular disease. PMID:19955091
Combs, Stephanie A; Diehl, M Dyer; Filip, Jacqueline; Long, Erin
2014-02-01
The aims of this study were to determine test-retest reliability and responsiveness of short-distance walking speed tests for persons with Parkinson disease (PD). Discriminant and convergent validity of walking speed tests were also examined. Eighty-eight participants with PD (mean age, 66 years) with mild to moderate severity (stages 1-4 on the Hoehn and Yahr Scale) were tested on medications. Measures of activity included the comfortable and fast 10-m walk tests (CWT, FWT), 6-min walk test (6MWT), mini balance evaluations systems test (mini-BEST Test), fear of falling (FoF), and the Activity-Specific Balance Confidence Scale (ABC). The mobility subsection of the PD quality of life-39 (PDQ39-M) served as a participation-based measure. Test-retest reliability was high for both walking speed measures (CWT, ICC(2,1) = 0.98; FWT, ICC(2,1) = 0.99). Minimal detectable change (MDC(95)) for the CWT and FWT was 0.09 m/s and 0.13 m/s respectively. Participants at Hoehn & Yahr levels 3/4 demonstrated significantly slower walking speed with the CWT and FWT than participants at Hoehn & Yahr levels 1 and 2 (P < .01). The CWT and FWT were both significantly (P ≤ .002) correlated with all activity and participation-based measures. Short-distance walking speed tests are clinically useful measures for persons with PD. The CWT and FWT are highly reliable and responsive to change in persons with PD. Short distance walking speed can be used to discriminate differences in gait function between persons with mild and moderate PD severity. The CWT and FWT had moderate to strong associations with other activity and participation based measures demonstrating convergent validity. Copyright © 2013 Elsevier B.V. All rights reserved.
The mechanics and energetics of human walking and running: a joint level perspective.
Farris, Dominic James; Sawicki, Gregory S
2012-01-07
Humans walk and run at a range of speeds. While steady locomotion at a given speed requires no net mechanical work, moving faster does demand both more positive and negative mechanical work per stride. Is this increased demand met by increasing power output at all lower limb joints or just some of them? Does running rely on different joints for power output than walking? How does this contribute to the metabolic cost of locomotion? This study examined the effects of walking and running speed on lower limb joint mechanics and metabolic cost of transport in humans. Kinematic and kinetic data for 10 participants were collected for a range of walking (0.75, 1.25, 1.75, 2.0 m s(-1)) and running (2.0, 2.25, 2.75, 3.25 m s(-1)) speeds. Net metabolic power was measured by indirect calorimetry. Within each gait, there was no difference in the proportion of power contributed by each joint (hip, knee, ankle) to total power across speeds. Changing from walking to running resulted in a significant (p = 0.02) shift in power production from the hip to the ankle which may explain the higher efficiency of running at speeds above 2.0 m s(-1) and shed light on a potential mechanism behind the walk-run transition.
Energy cost and lower leg muscle activities during erect bipedal locomotion under hyperoxia.
Abe, Daijiro; Fukuoka, Yoshiyuki; Maeda, Takafumi; Horiuchi, Masahiro
2018-06-19
Energy cost of transport per unit distance (CoT) against speed shows U-shaped fashion in walking and linear fashion in running, indicating that there exists a specific walking speed minimizing the CoT, being defined as economical speed (ES). Another specific gait speed is the intersection speed between both fashions, being called energetically optimal transition speed (EOTS). We measured the ES, EOTS, and muscle activities during walking and running at the EOTS under hyperoxia (40% fraction of inspired oxygen) on the level and uphill gradients (+ 5%). Oxygen consumption [Formula: see text] and carbon dioxide output [Formula: see text] were measured to calculate the CoT values at eight walking speeds (2.4-7.3 km h -1 ) and four running speeds (7.3-9.4 km h - 1 ) in 17 young males. Electromyography was recorded from gastrocnemius medialis, gastrocnemius lateralis (GL), and tibialis anterior (TA) to evaluate muscle activities. Mean power frequency (MPF) was obtained to compare motor unit recruitment patterns between walking and running. [Formula: see text], [Formula: see text], and CoT values were lower under hyperoxia than normoxia at faster walking speeds and any running speeds. A faster ES on the uphill gradient and slower EOTS on both gradients were observed under hyperoxia than normoxia. GL and TA activities became lower when switching from walking to running at the EOTS under both FiO 2 conditions on both gradients, so did the MPF in the TA. ES and EOTS were influenced by reduced metabolic demands induced by hyperoxia. GL and TA activities in association with a lower shift of motor unit recruitment patterns in the TA would be related to the gait selection when walking or running at the EOTS. UMIN000017690 ( R000020501 ). Registered May 26, 2015, before the first trial.
de Groot, Maartje H; van der Jagt-Willems, Hanna C; van Campen, Jos P C M; Lems, Willem F; Beijnen, Jos H; Lamoth, Claudine J C
2014-02-01
A flexed posture (FP) is characterized by protrusion of the head and an increased thoracic kyphosis (TK), which may be caused by osteoporotic vertebral fractures (VFs). These impairments may affect motor function, and consequently increase the risk of falling and fractures. The aim of the current study was therefore to examine postural control during walking in elderly patients with FP, and to investigate the relationship with geriatric phenomena that may cause FP, such as increased TK, VFs, frailty, polypharmacy and cognitive impairments. Fifty-six elderly patients (aged 80 ± 5.2 years; 70% female) walked 160 m at self-selected speed while trunk accelerations were recorded. Walking speed, mean stride time and coefficient of variation (CV) of stride time were recorded. In addition, postural control during walking was quantified by time-dependent variability measures derived from the theory of stochastic dynamics, indicating smoothness, degree of predictability, and local stability of trunk acceleration patterns. Twenty-five patients (45%) had FP and demonstrated a more variable and less structured gait pattern, and a more irregular trunk acceleration pattern than patients with normal posture. FP was significantly associated with an increased TK, but not with other geriatric phenomena. An increased TK may bring the body's centre of mass forward, which requires correcting responses, and reduces the ability to respond on perturbation, which was reflected by higher variation in the gait pattern in FP-patients. Impairments in postural control during walking are a major risk factor for falling: the results indicate that patients with FP have impaired postural control during walking and might therefore be at increased risk of falling. Copyright © 2013 Elsevier B.V. All rights reserved.
Choi, Seongjin; Reiter, David A; Shardell, Michelle; Simonsick, Eleanor M; Studenski, Stephanie; Spencer, Richard G; Fishbein, Kenneth W; Ferrucci, Luigi
2016-12-01
Aerobic fitness and muscle bioenergetic capacity decline with age; whether such declines explain age-related slowing of walking speed is unclear. We hypothesized that muscle energetics and aerobic capacity are independent correlates of walking speed in simple and challenging performance tests and that they account for the observed age-related decline in walking speed in these same tests. Muscle bioenergetics was assessed as postexercise recovery rate of phosphocreatine (PCr), k PCr , using phosphorus magnetic resonance spectroscopy ( 31 P-MRS) in 126 participants (53 men) of the Baltimore Longitudinal Study of Aging aged 26-91 years (mean = 72 years). Four walking tasks were administered-usual pace over 6 m and 150 seconds and fast pace over 6 m and 400 m. Separately, aerobic fitness was assessed as peak oxygen consumption (peak VO 2 ) using a graded treadmill test. All gait speeds, k PCr , and peak VO 2 were lower with older age. Independent of age, sex, height, and weight, both k PCr and peak VO 2 were positively and significantly associated with fast pace and long distance walking but only peak VO 2 and not k PCr was significantly associated with usual gait speed over 6 m. Both k PCr and peak VO 2 substantially attenuated the association between age and gait speed for all but the least stressful walking task of 6 m at usual pace. Muscle bioenergetics assessed using 31 P-MRS is highly correlated with walking speed and partially explains age-related poorer performance in fast and long walking tasks. Published by Oxford University Press on behalf of The Gerontological Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Zaninotto, Paola; Sacker, Amanda; Head, Jenny
2013-12-01
Slow walking speed is associated with higher risk of accidents, disability, and mortality in older adults, with people in more disadvantaged socioeconomic positions being at higher risk. We explore the relationship between wealth and age trajectories of walking speed among older adults. Data come from three waves (2002-2003 to 2006-2007) of the English Longitudinal Study of Ageing. We use latent growth curve models and aging-vector graphs to explore individual changes and average population age trajectories of walking speed by wealth among 7,225 individuals aged 60 and older. For someone aged 71 in the poorest wealth quintile, the baseline mean walking speed was 0.75 m/s, which decreased to 0.71 m/s 4 years later, whereas that of a person in the richest wealth quintile was 0.91 m/s, which decreased to 0.82 m/s. Although the decline in walking speed was faster among people in the richest wealth (net of covariates), the gaps in walking speed between richest and poorest did not close. Even after accounting for covariates, people in the richest wealth only reached critical values (0.60 m/s) of walking speed at the age of 90, whereas people in the poorest wealth reached that level 6 years earlier. Our findings showed continuing gaps in physical functioning by wealth, even among people with the same health, psychosocial, and demographic conditions. As wealth reflects both past and current socioeconomic status, the implications of our findings are that reducing socioeconomic inequalities at all stages of the life course may have a positive impact on functioning in old age.
Inertial sensor-based methods in walking speed estimation: a systematic review.
Yang, Shuozhi; Li, Qingguo
2012-01-01
Self-selected walking speed is an important measure of ambulation ability used in various clinical gait experiments. Inertial sensors, i.e., accelerometers and gyroscopes, have been gradually introduced to estimate walking speed. This research area has attracted a lot of attention for the past two decades, and the trend is continuing due to the improvement of performance and decrease in cost of the miniature inertial sensors. With the intention of understanding the state of the art of current development in this area, a systematic review on the exiting methods was done in the following electronic engines/databases: PubMed, ISI Web of Knowledge, SportDiscus and IEEE Xplore. Sixteen journal articles and papers in proceedings focusing on inertial sensor based walking speed estimation were fully reviewed. The existing methods were categorized by sensor specification, sensor attachment location, experimental design, and walking speed estimation algorithm.
Inertial Sensor-Based Methods in Walking Speed Estimation: A Systematic Review
Yang, Shuozhi; Li, Qingguo
2012-01-01
Self-selected walking speed is an important measure of ambulation ability used in various clinical gait experiments. Inertial sensors, i.e., accelerometers and gyroscopes, have been gradually introduced to estimate walking speed. This research area has attracted a lot of attention for the past two decades, and the trend is continuing due to the improvement of performance and decrease in cost of the miniature inertial sensors. With the intention of understanding the state of the art of current development in this area, a systematic review on the exiting methods was done in the following electronic engines/databases: PubMed, ISI Web of Knowledge, SportDiscus and IEEE Xplore. Sixteen journal articles and papers in proceedings focusing on inertial sensor based walking speed estimation were fully reviewed. The existing methods were categorized by sensor specification, sensor attachment location, experimental design, and walking speed estimation algorithm. PMID:22778632
The effect of changing condition of walking speed on the knee angle of rats with osteoarthritis.
Nam, Chan-Woo; Kim, Kyoung; Na, Sang-Su
2017-08-01
[Purpose] The purpose of this study was to investigate the positive effect of exercise on knee osteoarthritis in rats with osteoarthritis induced by applying effective walking speed when changing speed conditions during walking. [Subjects and Methods] The rats used in this study were male Sprague-Dawley rats weighing 300 g and 7 weeks old, and 20 rats were used. The Osteoarthritis (OA) rats model was induced by MIA (monoiodoacetate). The rats was randomly divided into experimental group (MIA injection group) and control group (normal cell line injection group). Treadmill exercise was provided two groups for 2 weeks, 4 days per week. The knee joint angle of the stance was divided into pre-test and post-test, and each group was subjected to paired sample test. Independent sample t-test was conducted to examine the difference between experimental group and control group. [Results] There were statistically significant changes in the control and experimental groups. The knee angle was changed from 99.70 ± 2.40 to 85.60 ± 2.67 in the control group. The knee angle was changed from 100.96 ± 1.36 to 87.71 ± 1.57 in the experimental group. [Conclusion] In conclusion, the angle of the knee gradually decreases. It is considered a characteristic of progressive osteoarthritis. The change of knee angle was less in the experimental group than in the control group. This means that the stiffness of the joints during the walking exercise was less progressed in the experimental group than in the control group.
The effect of changing condition of walking speed on the knee angle of rats with osteoarthritis
Nam, Chan-Woo; Kim, Kyoung; Na, Sang-Su
2017-01-01
[Purpose] The purpose of this study was to investigate the positive effect of exercise on knee osteoarthritis in rats with osteoarthritis induced by applying effective walking speed when changing speed conditions during walking. [Subjects and Methods] The rats used in this study were male Sprague-Dawley rats weighing 300 g and 7 weeks old, and 20 rats were used. The Osteoarthritis (OA) rats model was induced by MIA (monoiodoacetate). The rats was randomly divided into experimental group (MIA injection group) and control group (normal cell line injection group). Treadmill exercise was provided two groups for 2 weeks, 4 days per week. The knee joint angle of the stance was divided into pre-test and post-test, and each group was subjected to paired sample test. Independent sample t-test was conducted to examine the difference between experimental group and control group. [Results] There were statistically significant changes in the control and experimental groups. The knee angle was changed from 99.70 ± 2.40 to 85.60 ± 2.67 in the control group. The knee angle was changed from 100.96 ± 1.36 to 87.71 ± 1.57 in the experimental group. [Conclusion] In conclusion, the angle of the knee gradually decreases. It is considered a characteristic of progressive osteoarthritis. The change of knee angle was less in the experimental group than in the control group. This means that the stiffness of the joints during the walking exercise was less progressed in the experimental group than in the control group. PMID:28878468
The effects of gum chewing while walking on physical and physiological functions.
Hamada, Yuka; Yanaoka, Takuma; Kashiwabara, Kyoko; Kurata, Kuran; Yamamoto, Ryo; Kanno, Susumu; Ando, Tomonori; Miyashita, Masashi
2018-04-01
[Purpose] This study examined the effects of gum chewing while walking on physical and physiological functions. [Subjects and Methods] This study enrolled 46 male and female participants aged 21-69 years. In the experimental trial, participants walked at natural paces for 15 minutes while chewing two gum pellets after a 1-hour rest period. In the control trial, participants walked at natural paces for 15 minutes after ingesting powder containing the same ingredient, except the gum base, as the chewing gum. Heart rates, walking distances, walking speeds, steps, and energy expenditure were measured. [Results] Heart rates during walking and heart rate changes (i.e., from at rest to during walking) significantly increased during the gum trial compared with the control trial. Walking distance, walking speed, walking heart rate, and heart rate changes in male participants and walking heart rate and heart rate changes in female participants were significantly higher during the gum trial than the control trial. In middle-aged and elderly male participants aged ≥40 years, walking distance, walking speed, steps, and energy expenditure significantly increased during the gum trial than the control trial. [Conclusion] Gum chewing while walking measurably affects physical and physiological functions.
The effects of gum chewing while walking on physical and physiological functions
Hamada, Yuka; Yanaoka, Takuma; Kashiwabara, Kyoko; Kurata, Kuran; Yamamoto, Ryo; Kanno, Susumu; Ando, Tomonori; Miyashita, Masashi
2018-01-01
[Purpose] This study examined the effects of gum chewing while walking on physical and physiological functions. [Subjects and Methods] This study enrolled 46 male and female participants aged 21–69 years. In the experimental trial, participants walked at natural paces for 15 minutes while chewing two gum pellets after a 1-hour rest period. In the control trial, participants walked at natural paces for 15 minutes after ingesting powder containing the same ingredient, except the gum base, as the chewing gum. Heart rates, walking distances, walking speeds, steps, and energy expenditure were measured. [Results] Heart rates during walking and heart rate changes (i.e., from at rest to during walking) significantly increased during the gum trial compared with the control trial. Walking distance, walking speed, walking heart rate, and heart rate changes in male participants and walking heart rate and heart rate changes in female participants were significantly higher during the gum trial than the control trial. In middle-aged and elderly male participants aged ≥40 years, walking distance, walking speed, steps, and energy expenditure significantly increased during the gum trial than the control trial. [Conclusion] Gum chewing while walking measurably affects physical and physiological functions. PMID:29706720
Mechanical external work and recovery at preferred walking speed in obese subjects.
Malatesta, Davide; Vismara, Luca; Menegoni, Francesco; Galli, Manuela; Romei, Marianna; Capodaglio, Paolo
2009-02-01
The aim of this study was to compare the mechanical external work (per kg) and pendular energy transduction at preferred walking speed (PWS) in obese versus normal body mass subjects to investigate whether obese adults adopt energy conserving gait mechanics. The mechanical external work (Wext) and the fraction of mechanical energy recovered by the pendular mechanism (Rstep) were computed using kinematic data acquired by an optoelectronic system and were compared in 30 obese (OG; body mass index [BMI] = 39.6 +/- 0.6 kg m(-2); 29.5 +/- 1.3 yr) and 19 normal body mass adults (NG; BMI = 21.4 +/- 0.5 kg m(-2); 31.2 +/- 1.2 yr) walking at PWS. PWS was significantly lower in OG (1.18 +/- 0.02 m s(-1)) than in NG (1.33 +/- 0.02 m s(-1); P
Balance ability and cognitive impairment influence sustained walking in an assisted living facility.
Bowen, Mary Elizabeth; Crenshaw, Jeremy; Stanhope, Steven J
The purpose of this study was to determine the influence of cognitive impairment (CI), 1 gait quality, and balance ability on walking distance and speed in an assisted living facility. This was a longitudinal cohort study of institutionalized older adults (N = 26; 555 observations) followed for up to 8 months. Hierarchical linear modeling statistical techniques were used to examine the effects of gait quality and balance ability (using the Tinetti Gait and Balance Test) and cognitive status (using the Montreal Cognitive Assessment) on walking activity (distance, sustained distance, sustained speed). The latter were measured objectively and continuously by a real-time locating system (RTLS). A one-point increase in balance ability was associated with an 8% increase in sustained walking distance (p = 0.03) and a 4% increase in sustained gait speed (p = 0.00). Gait quality was associated with decreased sustained gait speed (p = 0.03). Residents with moderate (ERR = 2.34;p = 0.01) or severe CI (trend with an ERR = 1.62; p = 0.06) had longer sustained walking distances at slower speeds when compared to residents with no CI. After accounting for cognitive status, it was balance ability, not gait quality, that was a determinant of sustained walking distances and speeds. Therefore, balance interventions for older adults in assisted living may enable sustained walking activity. Given that CI was associated with more sustained walking, limiting sustained walking in the form of wandering behavior, especially for those with balance impairments, may prevent adverse events, including fall-related injury. Published by Elsevier B.V.
Arnold, Edith M.; Hamner, Samuel R.; Seth, Ajay; Millard, Matthew; Delp, Scott L.
2013-01-01
SUMMARY The lengths and velocities of muscle fibers have a dramatic effect on muscle force generation. It is unknown, however, whether the lengths and velocities of lower limb muscle fibers substantially affect the ability of muscles to generate force during walking and running. We examined this issue by developing simulations of muscle–tendon dynamics to calculate the lengths and velocities of muscle fibers from electromyographic recordings of 11 lower limb muscles and kinematic measurements of the hip, knee and ankle made as five subjects walked at speeds of 1.0–1.75 m s−1 and ran at speeds of 2.0–5.0 m s−1. We analyzed the simulated fiber lengths, fiber velocities and forces to evaluate the influence of force–length and force–velocity properties on force generation at different walking and running speeds. The simulations revealed that force generation ability (i.e. the force generated per unit of activation) of eight of the 11 muscles was significantly affected by walking or running speed. Soleus force generation ability decreased with increasing walking speed, but the transition from walking to running increased the force generation ability by reducing fiber velocities. Our results demonstrate the influence of soleus muscle architecture on the walk-to-run transition and the effects of muscle–tendon compliance on the plantarflexors' ability to generate ankle moment and power. The study presents data that permit lower limb muscles to be studied in unprecedented detail by relating muscle fiber dynamics and force generation to the mechanical demands of walking and running. PMID:23470656
Walking smoothness is associated with self-reported function after accounting for gait speed.
Lowry, Kristin A; Vanswearingen, Jessie M; Perera, Subashan; Studenski, Stephanie A; Brach, Jennifer S
2013-10-01
Gait speed has shown to be an indicator of functional status in older adults; however, there may be aspects of physical function not represented by speed but by the quality of movement. The purpose of this study was to determine the relations between walking smoothness, an indicator of the quality of movement based on trunk accelerations, and physical function. Thirty older adults (mean age, 77.7±5.1 years) participated. Usual gait speed was measured using an instrumented walkway. Walking smoothness was quantified by harmonic ratios derived from anteroposterior, vertical, and mediolateral trunk accelerations recorded during overground walking. Self-reported physical function was recorded using the function subscales of the Late-Life Function and Disability Instrument. Anteroposterior smoothness was positively associated with all function components of the Late-Life Function and Disability Instrument, whereas mediolateral smoothness exhibited negative associations. Adjusting for gait speed, anteroposterior smoothness remained associated with the overall and lower extremity function subscales, whereas mediolateral smoothness remained associated with only the advanced lower extremity subscale. These findings indicate that walking smoothness, particularly the smoothness of forward progression, represents aspects of the motor control of walking important for physical function not represented by gait speed alone.
NASA Astrophysics Data System (ADS)
Yosritzal; Kemal, B. M.; Purnawan; Putra, H.
2018-04-01
This paper presents a simulation study to observe the walking speed of evacuee in the case of tsunami evacuation in Padang, West Sumatera, Indonesia. A number of 9 volunteers, 6 observers, 1 route with 5 segments were involved in the simulation. The chosen route is the easiest path and the volunteers were ordered to walk in hurry to a particular place which was assumed as a shelter. The observers were placed at some particular places to record the time when an evacuee passes their place. The distance between the observers were measured using a manual distance meter. The study found that the average walking speed during the evacuation was 1.419 m/s. Walking speed is varied by age and gender of the evacuee.
Maestas, Gabrielle; Hu, Jiyao; Trevino, Jessica; Chunduru, Pranathi; Kim, Seung-Jae; Lee, Hyunglae
2018-01-01
The use of visual feedback in gait rehabilitation has been suggested to promote recovery of locomotor function by incorporating interactive visual components. Our prior work demonstrated that visual feedback distortion of changes in step length symmetry entails an implicit or unconscious adaptive process in the subjects’ spatial gait patterns. We investigated whether the effect of the implicit visual feedback distortion would persist at three different walking speeds (slow, self-preferred and fast speeds) and how different walking speeds would affect the amount of adaption. In the visual feedback distortion paradigm, visual vertical bars portraying subjects’ step lengths were distorted so that subjects perceived their step lengths to be asymmetric during testing. Measuring the adjustments in step length during the experiment showed that healthy subjects made spontaneous modulations away from actual symmetry in response to the implicit visual distortion, no matter the walking speed. In all walking scenarios, the effects of implicit distortion became more significant at higher distortion levels. In addition, the amount of adaptation induced by the visual distortion was significantly greater during walking at preferred or slow speed than at the fast speed. These findings indicate that although a link exists between supraspinal function through visual system and human locomotion, sensory feedback control for locomotion is speed-dependent. Ultimately, our results support the concept that implicit visual feedback can act as a dominant form of feedback in gait modulation, regardless of speed. PMID:29632481
Kerkum, Yvette L.; Buizer, Annemieke I.; van den Noort, Josien C.; Becher, Jules G.; Harlaar, Jaap; Brehm, Merel-Anne
2015-01-01
Introduction Rigid Ankle-Foot Orthoses (AFOs) are commonly prescribed to counteract excessive knee flexion during the stance phase of gait in children with cerebral palsy (CP). While rigid AFOs may normalize knee kinematics and kinetics effectively, it has the disadvantage of impeding push-off power. A spring-like AFO may enhance push-off power, which may come at the cost of reducing the knee flexion less effectively. Optimizing this trade-off between enhancing push-off power and normalizing knee flexion in stance is expected to maximize gait efficiency. This study investigated the effects of varying AFO stiffness on gait biomechanics and efficiency in children with CP who walk with excessive knee flexion in stance. Fifteen children with spastic CP (11 boys, 10±2 years) were prescribed with a ventral shell spring-hinged AFO (vAFO). The hinge was set into a rigid, or spring-like setting, using both a stiff and flexible performance. At baseline (i.e. shoes-only) and for each vAFO, a 3D-gait analysis and 6-minute walk test with breath-gas analysis were performed at comfortable speed. Lower limb joint kinematics and kinetics were calculated. From the 6-minute walk test, walking speed and the net energy cost were determined. A generalized estimation equation (p<0.05) was used to analyze the effects of different conditions. Compared to shoes-only, all vAFOs improved the knee angle and net moment similarly. Ankle power generation and work were preserved only by the spring-like vAFOs. All vAFOs decreased the net energy cost compared to shoes-only, but no differences were found between vAFOs, showing that the effects of spring-like vAFOs to promote push-off power did not lead to greater reductions in walking energy cost. These findings suggest that, in this specific group of children with spastic CP, the vAFO stiffness that maximizes gait efficiency is primarily determined by its effect on knee kinematics and kinetics rather than by its effect on push-off power. Trial Registration Dutch Trial Register NTR3418 PMID:26600039
Kerkum, Yvette L; Buizer, Annemieke I; van den Noort, Josien C; Becher, Jules G; Harlaar, Jaap; Brehm, Merel-Anne
2015-01-01
Rigid Ankle-Foot Orthoses (AFOs) are commonly prescribed to counteract excessive knee flexion during the stance phase of gait in children with cerebral palsy (CP). While rigid AFOs may normalize knee kinematics and kinetics effectively, it has the disadvantage of impeding push-off power. A spring-like AFO may enhance push-off power, which may come at the cost of reducing the knee flexion less effectively. Optimizing this trade-off between enhancing push-off power and normalizing knee flexion in stance is expected to maximize gait efficiency. This study investigated the effects of varying AFO stiffness on gait biomechanics and efficiency in children with CP who walk with excessive knee flexion in stance. Fifteen children with spastic CP (11 boys, 10±2 years) were prescribed with a ventral shell spring-hinged AFO (vAFO). The hinge was set into a rigid, or spring-like setting, using both a stiff and flexible performance. At baseline (i.e. shoes-only) and for each vAFO, a 3D-gait analysis and 6-minute walk test with breath-gas analysis were performed at comfortable speed. Lower limb joint kinematics and kinetics were calculated. From the 6-minute walk test, walking speed and the net energy cost were determined. A generalized estimation equation (p<0.05) was used to analyze the effects of different conditions. Compared to shoes-only, all vAFOs improved the knee angle and net moment similarly. Ankle power generation and work were preserved only by the spring-like vAFOs. All vAFOs decreased the net energy cost compared to shoes-only, but no differences were found between vAFOs, showing that the effects of spring-like vAFOs to promote push-off power did not lead to greater reductions in walking energy cost. These findings suggest that, in this specific group of children with spastic CP, the vAFO stiffness that maximizes gait efficiency is primarily determined by its effect on knee kinematics and kinetics rather than by its effect on push-off power. Dutch Trial Register NTR3418.
Changes in Gait over a 30-min Walking Session in Obese Females.
Singh, Bhupinder; Vo, Huy; Francis, Shelby L; Janz, Kathleen F; Yack, H John
2017-03-01
This study assessed the biomechanical gait changes in obese and normal-weight female adult subjects after a commonly recommended 30-min walking session. Hip and knee adduction and extensor moments, which are the primary modulators of frontal and sagittal plane load distribution, were hypothesized to increase in obese females after a 30-min walking period, resulting in more stress across the hip and knee joint. Ten obese (37.7 ± 4.8 yr of age, body mass index [BMI] = 36.1 ± 4.2 kg·m) and 10 normal-weight control female subjects (38.1 ± 4.5 yr of age, BMI = 22.6 ± 2.3 kg·m) walked 30 min continuously on the treadmill at their self-selected speed. V˙O2max was estimated using Ebbeling protocol. A three-dimensional pre- and posttreadmill gait analysis was conducted using infrared markers and force plates to calculate hip and knee moments. Knee extensor moments increased in both obese, pretreadmill (0.54 ± 0.28 N·m·kg) to posttreadmill (0.78 ± 0.43 N·m·kg) (P = 0.01), and control subjects, pretreadmill (0.57 ± 0.34 N·m·kg) to posttreadmill (0.80 ± 0.49 N·m·kg) (P = 0.02). Hip extensor moments decreased for both obese and control subjects. Knee adduction moments did not change in either obese or control subjects. Knee extensor and adductor moments showed good to moderate relationships with V˙O2max, but not BMI or waist circumference. Obese and normal-weight subjects experienced an increase in knee extensor moments after 30 min of walking similarly; therefore, clinicians do not need special consideration for obese individuals when recommending 30-min walking sessions. Fitness may be the important factor in judging the implications of exercise on joint mechanics and parameters of a walking program.
Walking modulates speed sensitivity in Drosophila motion vision.
Chiappe, M Eugenia; Seelig, Johannes D; Reiser, Michael B; Jayaraman, Vivek
2010-08-24
Changes in behavioral state modify neural activity in many systems. In some vertebrates such modulation has been observed and interpreted in the context of attention and sensorimotor coordinate transformations. Here we report state-dependent activity modulations during walking in a visual-motor pathway of Drosophila. We used two-photon imaging to monitor intracellular calcium activity in motion-sensitive lobula plate tangential cells (LPTCs) in head-fixed Drosophila walking on an air-supported ball. Cells of the horizontal system (HS)--a subgroup of LPTCs--showed stronger calcium transients in response to visual motion when flies were walking rather than resting. The amplified responses were also correlated with walking speed. Moreover, HS neurons showed a relatively higher gain in response strength at higher temporal frequencies, and their optimum temporal frequency was shifted toward higher motion speeds. Walking-dependent modulation of HS neurons in the Drosophila visual system may constitute a mechanism to facilitate processing of higher image speeds in behavioral contexts where these speeds of visual motion are relevant for course stabilization. Copyright 2010 Elsevier Ltd. All rights reserved.
Denton, Amanda L; Hough, Alan D; Freeman, Jennifer A; Marsden, Jonathan F
2018-03-01
Cooling of the lower limb in people with Hereditary and Spontaneous Spastic Paraparesis (pwHSSP) has been shown to affect walking speed and neuromuscular impairments. The investigation of practical strategies, which may help to alleviate these problems is important. The potential of superficial heat to improve walking speed has not been explored in pwHSSP. Primary objective was to explore whether the application of superficial heat (hot packs) to lower limbs in pwHSSP improves walking speed. Secondary objective was to explore whether wearing insulation after heating would prolong any benefits. A randomised crossover study design with 21 pwHSSP. On two separate occasions two hot packs and an insulating wrap (Neo-G™) were applied for 30minutes to the lower limbs of pwHSSP. On one occasion the insulating wrap was maintained for a further 30minutes and on the other occasion it was removed. Measures of temperature (skin, room and core), walking speed (10 metre timed walk) and co-ordination (foot tap time) were taken at baseline (T1), after 30 mins (T2) and at one hour (T3). All 21 pwHSSP reported increased lower limb stiffness and decreased walking ability when their legs were cold. After thirty minutes of heating, improvements were seen in walking speed (12.2%, P<0.0001, effect size 0.18) and foot tap time (21.5%, P<0.0001, effect size 0.59). Continuing to wear insulation for a further 30minutes gave no additional benefit; with significant improvements in walking speed maintained at one hour (9.9%, P>0.001) in both conditions. Application of 30minutes superficial heating moderately improved walking speed in pwHSSP with effects maintained at 1hour. The use of hot packs applied to lower limbs should be the focus of further research for the clinical management of pwHSSP who report increased stiffness of limbs in cold weather and do not have sensory deficits. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Rouxel, Patrick; Webb, Elizabeth; Chandola, Tarani
2017-01-01
Objectives Although there is some evidence that public transport use confers public health benefits, the evidence is limited by cross-sectional study designs and health-related confounding factors. This study examines the effect of public transport use on changes in walking speed among older adults living in England, comparing frequent users of public transport to their peers who did not use public transport because of structural barriers (poor public transport infrastructure) or through choice. Design Prospective cohort study. Setting England, UK. Participants Older adults aged ≥60 years eligible for the walking speed test. 6246 individuals at wave 2 (2004–2005); 5909 individuals at wave 3 (2006–2007); 7321 individuals at wave 4 (2008–2009); 7535 individuals at wave 5 (2010–2011) and 7664 individuals at wave 6 (2012–2013) of the English Longitudinal Study of Ageing. Main outcome measure The walking speed was estimated from the time taken to walk 2.4 m. Fixed effects models and growth curve models were used to examine the associations between public transport use and walking speed. Results Older adults who did not use public transport through choice or because of structural reasons had slower walking speeds (−0.02 m/s (95% CI −0.03 to –0.003) and −0.02 m/s (95% CI −0.03 to –0.01), respectively) and took an extra 0.07 s to walk 2.4 m compared with their peers who used public transport frequently. The age-related trajectories of decline in walking speed were slower for frequent users of public transport compared with non-users. Conclusions Frequent use of public transport may prevent age-related decline in physical capability by promoting physical activity and lower limb muscle strength among older adults. The association between public transport use and slower decline in walking speed among older adults is unlikely to be confounded by health-related selection factors. Improving access to good quality public transport could improve the health of older adults. PMID:28963309
Szturm, Tony; Maharjan, Pramila; Marotta, Jonathan J; Shay, Barbara; Shrestha, Shiva; Sakhalkar, Vedant
2013-09-01
Mobility limitations and cognitive impairments, each common with aging, reduce levels of physical and mental activity, are prognostic of future adverse health events, and are associated with an increased fall risk. The purpose of this study was to examine whether divided attention during walking at a constant speed would decrease locomotor rhythm, stability, and cognitive performance. Young healthy participants (n=20) performed a visuo-spatial cognitive task in sitting and while treadmill walking at 2 speeds (0.7 and 1.0 m/s).Treadmill speed had a significant effect on temporal gait variables and ML-COP excursion. Cognitive load did not have a significant effect on average temporal gait variables or COP excursion, but variation of gait variables increased during dual-task walking. ML and AP trunk motion was found to decrease during dual-task walking. There was a significant decrease in cognitive performance (success rate, response time and movement time) while walking, but no effect due to treadmill speed. In conclusion walking speed is an important variable to be controlled in studies that are designed to examine effects of concurrent cognitive tasks on locomotor rhythm, pacing and stability. Divided attention during walking at a constant speed did result in decreased performance of a visuo-spatial cognitive task and an increased variability in locomotor rhythm. Copyright © 2013 Elsevier B.V. All rights reserved.
Kim, Ha Yeon; Yang, Sung Phil; Park, Gyu Lee; Kim, Eun Joo; You, Joshua Sung Hyun
2016-01-01
Robot-assisted and treadmill-gait training are promising neurorehabilitation techniques, with advantages over conventional gait training, but the neural substrates underpinning locomotor control remain unknown particularly during different gait training modes and speeds. The present optical imaging study compared cortical activities during conventional stepping walking (SW), treadmill walking (TW), and robot-assisted walking (RW) at different speeds. Fourteen healthy subjects (6 women, mean age 30.06, years ± 4.53) completed three walking training modes (SW, TW, and RW) at various speeds (self-selected, 1.5, 2.0, 2.5, and 3.0 km/h). A functional near-infrared spectroscopy (fNIRS) system determined cerebral hemodynamic changes associated with cortical locomotor network areas in the primary sensorimotor cortex (SMC), premotor cortex (PMC), supplementary motor area (SMA), prefrontal cortex (PFC), and sensory association cortex (SAC). There was increased cortical activation in the SMC, PMC, and SMA during different walking training modes. More global locomotor network activation was observed during RW than TW or SW. As walking speed increased, multiple locomotor network activations were observed, and increased activation power spectrum. This is the first empirical evidence highlighting the neural substrates mediating dynamic locomotion for different gait training modes and speeds. Fast, robot-assisted gait training best facilitated cortical activation associated with locomotor control.
Contributions of muscles and passive dynamics to swing initiation over a range of walking speeds.
Fox, Melanie D; Delp, Scott L
2010-05-28
Stiff-knee gait is a common walking problem in cerebral palsy characterized by insufficient knee flexion during swing. To identify factors that may limit knee flexion in swing, it is necessary to understand how unimpaired subjects successfully coordinate muscles and passive dynamics (gravity and velocity-related forces) to accelerate the knee into flexion during double support, a critical phase just prior to swing that establishes the conditions for achieving sufficient knee flexion during swing. It is also necessary to understand how contributions to swing initiation change with walking speed, since patients with stiff-knee gait often walk slowly. We analyzed muscle-driven dynamic simulations of eight unimpaired subjects walking at four speeds to quantify the contributions of muscles, gravity, and velocity-related forces (i.e. Coriolis and centrifugal forces) to preswing knee flexion acceleration during double support at each speed. Analysis of the simulations revealed contributions from muscles and passive dynamics varied systematically with walking speed. Preswing knee flexion acceleration was achieved primarily by hip flexor muscles on the preswing leg with assistance from biceps femoris short head. Hip flexors on the preswing leg were primarily responsible for the increase in preswing knee flexion acceleration during double support with faster walking speed. The hip extensors and abductors on the contralateral leg and velocity-related forces opposed preswing knee flexion acceleration during double support. Copyright 2010 Elsevier Ltd. All rights reserved.
Contributions of muscles and passive dynamics to swing initiation over a range of walking speeds
Fox, Melanie D.; Delp, Scott L.
2010-01-01
Stiff-knee gait is a common walking problem in cerebral palsy characterized by insufficient knee flexion during swing. To identify factors that may limit knee flexion in swing, it is necessary to understand how unimpaired subjects successfully coordinate muscles and passive dynamics (gravity and velocity-related forces) to accelerate the knee into flexion during double support, a critical phase just prior to swing that establishes the conditions for achieving sufficient knee flexion during swing. It is also necessary to understand how contributions to swing initiation change with walking speed, since patients with stiff-knee gait often walk slowly. We analyzed muscle-driven dynamic simulations of eight unimpaired subjects walking at four speeds to quantify the contributions of muscles, gravity, and velocity-related forces (i.e. Coriolis and centrifugal forces) to preswing knee flexion acceleration during double support at each speed. Analysis of the simulations revealed contributions from muscles and passive dynamics varied systematically with walking speed. Preswing knee flexion acceleration was achieved primarily by hip flexor muscles on the preswing leg with assistance from biceps femoris short head. Hip flexors on the preswing leg were primarily responsible for the increase in preswing knee flexion acceleration during double support with faster walking speed. The hip extensors and abductors on the contralateral leg and velocity-related forces opposed preswing knee flexion acceleration during double support. PMID:20236644
Morone, G; Iosa, M; Pratesi, L; Paolucci, S
2014-03-01
Falls are common in patients who have had a stroke who return home after neurorehabilitation. Some studies have found that walking speed inversely correlates with the risk of falls. This study examined whether comparison between comfortable self-selected walking speed and maximum maintainable speed is informative with regard to the risk of falls in patients with stroke. A prospective cohort study was performed with 75 ambulant stroke patients. At discharge, the Barthel Index score and performance at the 10-m and 6-min walking tests were assessed. Number of falls was recorded by telephone interview every two months for one year. Regression analysis was performed to identify factors that were related to the risk of falls. Using forward multiple linear regression, only the ratio between walking speeds on the 6-min and 10-m tests was linked to the number of falls in the year after discharge (R=-0.451, p<0.001, OR=0.046). Patients who chose a walking speed for short distances that was not maintainable long term fell more frequently. A discrepancy between short and long-term walking speed can help in identifying subjects in the subacute stage after stroke with an increased risk of suffering a fall. Copyright © 2014 Elsevier B.V. All rights reserved.
Combs-Miller, Stephanie A; Kalpathi Parameswaran, Anu; Colburn, Dawn; Ertel, Tara; Harmeyer, Amanda; Tucker, Lindsay; Schmid, Arlene A
2014-09-01
To compare the effects of body weight-supported treadmill training and overground walking training when matched for task and dose (duration/frequency/intensity) on improving walking function, activity, and participation after stroke. Single-blind, pilot randomized controlled trial with three-month follow-up. University and community settings. A convenience sample of participants (N = 20) at least six months post-stroke and able to walk independently were recruited. Thirty-minute walking interventions (body weight-supported treadmill training or overground walking training) were administered five times a week for two weeks. Intensity was monitored with the Borg Rating of Perceived Exertion Scale at five-minute increments to maintain a moderate training intensity. Walking speed (comfortable/fast 10-meter walk), walking endurance (6-minute walk), spatiotemporal symmetry, and the ICF Measure of Participation and ACTivity were assessed before, immediately after, and three months following the intervention. The overground walking training group demonstrated significantly greater improvements in comfortable walking speed compared with the body weight-supported treadmill training group immediately (change of 0.11 m/s vs. 0.06 m/s, respectively; p = 0.047) and three months (change of 0.14 m/s vs. 0.08 m/s, respectively; p = 0.029) after training. Only the overground walking training group significantly improved comfortable walking speed (p = 0.001), aspects of gait symmetry (p = 0.032), and activity (p = 0.003) immediately after training. Gains were maintained at the three-month follow-up (p < 0.05) for all measures except activity. Improvements in participation were not demonstrated. Overgound walking training was more beneficial than body weight-supported treadmill training at improving self-selected walking speed for the participants in this study. © The Author(s) 2014.
Swenor, Bonnielin K; Bandeen-Roche, Karen; Muñoz, Beatriz; West, Sheila K
2014-08-01
To determine whether performance speeds mediate the association between visual impairment and self-reported mobility disability over an 8-year period. Longitudinal analysis. Salisbury, Maryland. Salisbury Eye Evaluation Study participants aged 65 and older (N=2,520). Visual impairment was defined as best-corrected visual acuity worse than 20/40 in the better-seeing eye or visual field less than 20°. Self-reported mobility disability on three tasks was assessed: walking up stairs, walking down stairs, and walking 150 feet. Performance speed on three similar tasks was measured: walking up steps (steps/s), walking down steps (steps/s), and walking 4 m (m/s). For each year of observation, the odds of reporting mobility disability was significantly greater for participants who were visually impaired (VI) than for those who were not (NVI) (odds ratio (OR) difficulty walking up steps=1.58, 95% confidence interval (CI)=1.32-1.89; OR difficulty walking down steps=1.90, 95% CI=1.59-2.28; OR difficulty walking 150 feet=2.11, 95% CI=1.77-2.51). Once performance speed on a similar mobility task was included in the models, VI participants were no longer more likely to report mobility disability than those who were NVI (OR difficulty walking up steps=0.84, 95% CI=0.65-1.11; OR difficulty walking down steps=0.96, 95% CI=0.74-1.24; OR difficulty walking 150 feet=1.22, 95% CI=0.98-1.50). Slower performance speed in VI individuals largely accounted for the difference in the odds of reporting mobility disability, suggesting that VI older adults walk slower and are therefore more likely to report mobility disability than those who are NVI. Improving mobility performance in older adults with visual impairment may minimize the perception of mobility disability. © 2014, Copyright the Authors Journal compilation © 2014, The American Geriatrics Society.
Kinematic and biomimetic assessment of a hydraulic ankle/foot in level ground and camber walking
Bai, Xuefei; Ewins, David; Crocombe, Andrew D.
2017-01-01
Improved walking comfort has been linked with better bio-mimicking of the prosthetic ankle. This study investigated if a hydraulic ankle/foot can provide enough motion in both the sagittal and frontal planes during level and camber walking and if the hydraulic ankle/foot better mimics the biological ankle moment pattern compared with a fixed ankle/foot device. Five active male unilateral trans-femoral amputees performed level ground walking at normal and fast speeds and 2.5° camber walking in both directions using their own prostheses fitted with an “Echelon” hydraulic ankle/foot and an “Esprit” fixed ankle/foot. Ankle angles and the Trend Symmetry Index of the ankle moments were compared between prostheses and walking conditions. Significant differences between prostheses were found in the stance plantarflexion and dorsiflexion peaks with a greater range of motion being reached with the Echelon foot. The Echelon foot also showed significantly improved bio-mimicry of the ankle resistance moment in all walking conditions, either compared with the intact side of the same subject or with the “normal” mean curve from non-amputees. During camber walking, both types of ankle/foot devices showed similar changes in the frontal plane ankle angles. Results from a questionnaire showed the subjects were more satisfied with Echelon foot. PMID:28704428
Dual-Task Does Not Increase Slip and Fall Risk in Healthy Young and Older Adults during Walking
Soangra, Rahul
2017-01-01
Dual-task tests can identify gait characteristics peculiar to fallers and nonfallers. Understanding the relationship between gait performance and dual-task related cognitive-motor interference is important for fall prevention. Dual-task adapted changes in gait instability/variability can adversely affect fall risks. Although implicated, it is unclear if healthy participants' fall risks are modified by dual-task walking conditions. Seven healthy young and seven healthy older adults were randomly assigned to normal walking and dual-task walking sessions with a slip perturbation. In the dual-task session, the participants walked and simultaneously counted backwards from a randomly provided number. The results indicate that the gait changes in dual-task walking have no destabilizing effect on gait and slip responses in healthy individuals. We also found that, during dual-tasking, healthy individuals adopted cautious gait mode (CGM) strategy that is characterized by reduced walking speed, shorter step length, increased step width, and reduced heel contact velocity and is likely to be an adaptation to minimize attentional demand and decrease slip and fall risk during limited available attentional resources. Exploring interactions between gait variability and cognitive functions while walking may lead to designing appropriate fall interventions among healthy and patient population with fall risk. PMID:28255224
Gender differences exist in the hip joint moments of healthy older walkers.
Boyer, Katherine A; Beaupre, Gary S; Andriacchi, Thomas P
2008-12-05
Gender differences in the incidence of symptomatic hip osteoarthritis (OA), changes in hip cartilage volume and hip joint space and rates hip arthroplasty of older people are reported in the literature. As the rate of progression of OA is in part mechanically modulated it is possible that this gender bias may be related to inherent differences (if they exist) in walking mechanics between older males and females. The purpose of this study was to examine potential mechanisms for gender differences in hip joint mechanics during walking by testing the hypotheses that females would exhibit higher hip flexion, adduction and internal rotation moments but not significantly greater normalized ground reaction forces (GRFs). Forty-two healthy subjects (21 male, 21 female), ages 50-79yr were recruited for gait analysis. In support of the hypotheses, greater external hip adduction and internal rotation along with hip extension moments were found for females compared to males after normalizing for body size for all self-selected walking speeds. Differences in walking style (kinematics) were the main determinants in the joint kinetic differences as no differences in the normalized GRFs were found. As external joint moments are surrogate measures of the joint contact forces, the results of this study suggest the hip joint stress for the female population is higher compared to male population. This is in favor of a hypothesis that the increased joint contact stress in a female population could contribute to a greater joint degeneration at the hip in females as compared with males.
Reliability of segmental accelerations measured using a new wireless gait analysis system.
Kavanagh, Justin J; Morrison, Steven; James, Daniel A; Barrett, Rod
2006-01-01
The purpose of this study was to determine the inter- and intra-examiner reliability, and stride-to-stride reliability, of an accelerometer-based gait analysis system which measured 3D accelerations of the upper and lower body during self-selected slow, preferred and fast walking speeds. Eight subjects attended two testing sessions in which accelerometers were attached to the head, neck, lower trunk, and right shank. In the initial testing session, two different examiners attached the accelerometers and performed the same testing procedures. A single examiner repeated the procedure in a subsequent testing session. All data were collected using a new wireless gait analysis system, which features near real-time data transmission via a Bluetooth network. Reliability for each testing condition (4 locations, 3 directions, 3 speeds) was quantified using a waveform similarity statistic known as the coefficient of multiple determination (CMD). CMD's ranged from 0.60 to 0.98 across all test conditions and were not significantly different for inter-examiner (0.86), intra-examiner (0.87), and stride-to-stride reliability (0.86). The highest repeatability for the effect of location, direction and walking speed were for the shank segment (0.94), the vertical direction (0.91) and the fast walking speed (0.91), respectively. Overall, these results indicate that a high degree of waveform repeatability was obtained using a new gait system under test-retest conditions involving single and dual examiners. Furthermore, differences in acceleration waveform repeatability associated with the reapplication of accelerometers were small in relation to normal motor variability.
Ferrarin, Maurizio; Rabuffetti, Marco; Geda, Elisabetta; Sirolli, Silvia; Marzegan, Alberto; Bruno, Valentina; Sacco, Katiuscia
2018-06-01
Several robotic devices have been developed for the rehabilitation of treadmill walking in patients with movement disorders due to injuries or diseases of the central nervous system. These robots induce coordinated multi-joint movements aimed at reproducing the physiological walking or stepping patterns. Control strategies developed for robotic locomotor training need a set of predefined lower limb joint angular trajectories as reference input for the control algorithm. Such trajectories are typically taken from normative database of overground unassisted walking. However, it has been demonstrated that gait speed and the amount of body weight support significantly influence joint trajectories during walking. Moreover, both the speed and the level of body weight support must be individually adjusted according to the rehabilitation phase and the residual locomotor abilities of the patient. In this work, 10 healthy participants (age range: 23-48 years) were asked to walk in movement analysis laboratory on a treadmill at five different speeds and four different levels of body weight support; besides, a trial with full body weight support, that is, with the subject suspended on air, was performed at two different cadences. The results confirm that lower limb kinematics during walking is affected by gait speed and by the amount of body weight support, and that on-air stepping is radically different from treadmill walking. Importantly, the results provide normative data in a numerical form to be used as reference trajectories for controlling robot-assisted body weight support walking training. An electronic addendum is provided to easily access to such reference data for different combinations of gait speeds and body weight support levels.
Gait Transitions of Persons with and without Intellectual Disability
ERIC Educational Resources Information Center
Agiovlasitis, Stamatis; Yun, Joonkoo; Pavol, Michael J.; McCubbin, Jeffrey A.; Kim, So-Yeun
2008-01-01
This study examined whether the walk-to-run transition speed (W-RTS) and the run-to-walk transition speed (R-WTS) were different or more variable between participants with and without intellectual disability (ID). Nine adults with ID and 10 adults without ID completed in a series of walk-to-run and run-to-walk trials on a treadmill. W-RTS and…
Wuehr, M; Schniepp, R; Pradhan, C; Ilmberger, J; Strupp, M; Brandt, T; Jahn, K
2013-01-01
Healthy persons exhibit relatively small temporal and spatial gait variability when walking unimpeded. In contrast, patients with a sensory deficit (e.g., polyneuropathy) show an increased gait variability that depends on speed and is associated with an increased fall risk. The purpose of this study was to investigate the role of vision in gait stabilization by determining the effects of withdrawing visual information (eyes closed) on gait variability at different locomotion speeds. Ten healthy subjects (32.2 ± 7.9 years, 5 women) walked on a treadmill for 5-min periods at their preferred walking speed and at 20, 40, 70, and 80 % of maximal walking speed during the conditions of walking with eyes open (EO) and with eyes closed (EC). The coefficient of variation (CV) and fractal dimension (α) of the fluctuations in stride time, stride length, and base width were computed and analyzed. Withdrawing visual information increased the base width CV for all walking velocities (p < 0.001). The effects of absent visual information on CV and α of stride time and stride length were most pronounced during slow locomotion (p < 0.001) and declined during fast walking speeds. The results indicate that visual feedback control is used to stabilize the medio-lateral (i.e., base width) gait parameters at all speed sections. In contrast, sensory feedback control in the fore-aft direction (i.e., stride time and stride length) depends on speed. Sensory feedback contributes most to fore-aft gait stabilization during slow locomotion, whereas passive biomechanical mechanisms and an automated central pattern generation appear to control fast locomotion.
Roach, Kathryn E.
2011-01-01
Background Impaired walking limits function after spinal cord injury (SCI), but training-related improvements are possible even in people with chronic motor incomplete SCI. Objective The objective of this study was to compare changes in walking speed and distance associated with 4 locomotor training approaches. Design This study was a single-blind, randomized clinical trial. Setting This study was conducted in a rehabilitation research laboratory. Participants Participants were people with minimal walking function due to chronic SCI. Intervention Participants (n=74) trained 5 days per week for 12 weeks with the following approaches: treadmill-based training with manual assistance (TM), treadmill-based training with stimulation (TS), overground training with stimulation (OG), and treadmill-based training with robotic assistance (LR). Measurements Overground walking speed and distance were the primary outcome measures. Results In participants who completed the training (n=64), there were overall effects for speed (effect size index [d]=0.33) and distance (d=0.35). For speed, there were no significant between-group differences; however, distance gains were greatest with OG. Effect sizes for speed and distance were largest with OG (d=0.43 and d=0.40, respectively). Effect sizes for speed were the same for TM and TS (d=0.28); there was no effect for LR. The effect size for distance was greater with TS (d=0.16) than with TM or LR, for which there was no effect. Ten participants who improved with training were retested at least 6 months after training; walking speed at this time was slower than that at the conclusion of training but remained faster than before training. Limitations It is unknown whether the training dosage and the emphasis on training speed were optimal. Robotic training that requires active participation would likely yield different results. Conclusions In people with chronic motor incomplete SCI, walking speed improved with both overground training and treadmill-based training; however, walking distance improved to a greater extent with overground training. PMID:21051593
Chwała, Wiesław; Klimek, Andrzej; Mirek, Wacław
2014-01-01
The aim of the study was to assess energy cost and total external work (total energy) depending on the speed of race walking. Another objective was to determine the contribution of external work to total energy cost of walking at technical, threshold and racing speed in elite competitive race walkers. The study involved 12 competitive race walkers aged 24.9 4.10 years with 6 to 20 years of experience, who achieved a national or international sports level. Their aerobic endurance was determined by means of a direct method involving an incremental exercise test on the treadmill. The participants performed three tests walking each time with one of the three speeds according to the same protocol: an 8-minute walk with at steady speed was followed by a recovery phase until the oxygen debt was repaid. To measure exercise energy cost, an indirect method based on the volume of oxygen uptake was employed. The gait of the participants was recorded using the 3D Vicon opto-electronic motion capture system. Values of changes in potential energy and total kinetic energy in a gate cycle were determined based on vertical displacements of the centre of mass. Changes in mechanical energy amounted to the value of total external work of muscles needed to accelerate and lift the centre of mass during a normalised gait cycle. The values of average energy cost and of total external work standardised to body mass and distance covered calculated for technical speed, threshold and racing speeds turned out to be statistically significant (p 0.001). The total energy cost ranged from 51.2 kJ.m-1 during walking at technical speed to 78.3 kJ.m-1 during walking at a racing speed. Regardless of the type of speed, the total external work of muscles accounted for around 25% of total energy cost in race walking. Total external work mainly increased because of changes in the resultant kinetic energy of the centre of mass movement. PMID:25713673
Smith, Beth A.; Kubo, Masayoshi; Ulrich, Beverly D.
2012-01-01
The combined effects of ligamentous laxity, hypotonia, and decrements associated with aging lead to stability-enhancing foot placement adaptations during routine overground walking at a younger age in adults with Down syndrome (DS) compared to their peers with typical development (TD). Our purpose here was to examine real-time adaptations in older adults with DS by testing their responses to walking on a treadmill at their preferred speed and at speeds slower and faster than preferred. We found that older adults with DS were able to adapt their gait to slower and faster than preferred treadmill speeds; however, they maintained their stability-enhancing foot placements at all speeds compared to their peers with TD. All adults adapted their gait patterns similarly in response to faster and slower than preferred treadmill-walking speeds. They increased stride frequency and stride length, maintained step width, and decreased percent stance as treadmill speed increased. Older adults with DS, however, adjusted their stride frequencies significantly less than their peers with TD. Our results show that older adults with DS have the capacity to adapt their gait parameters in response to different walking speeds while also supporting the need for intervention to increase gait stability. PMID:22693497
Treadmill sideways gait training with visual blocking for patients with brain lesions.
Kim, Tea-Woo; Kim, Yong-Wook
2014-09-01
[Purpose] The aim of this study was to verify the effect of sideways treadmill training with and without visual blocking on the balance and gait function of patients with brain lesions. [Subjects] Twenty-four stroke and traumatic brain injury subjects participated in this study. They were divided into two groups: an experimental group (12 subjects) and a control group (12 subjects). [Methods] Each group executed a treadmill training session for 20 minutes, three times a week, for 6 weeks. The sideways gait training on the treadmill was performed with visual blocking by the experimental group and with normal vision by the control group. A Biodex Gait Trainer 2 was used to assess the gait function. It was used to measure walking speed, walking distance, step length, and stance time on each foot. The Five-Times-Sit-To-Stand test (FTSST) and Timed Up and Go test (TUG) were used as balance measures. [Results] The sideways gait training with visual blocking group showed significantly improved walking speed, walking distance, step length, and stance time on each foot after training; FTSST and TUG times also significantly improved after training in the experimental group. Compared to the control group, the experimental group showed significant increases in stance time on each foot. [Conclusion] Sideways gait training on a treadmill with visual blocking performed by patients with brain lesions significantly improved their balance and gait function.
Effects of Age, Walking Speed, and Body Composition on Pedometer Accuracy in Children
ERIC Educational Resources Information Center
Duncan, J. Scott; Schofield, Grant; Duncan, Elizabeth K.; Hinckson, Erica A.
2007-01-01
The objective of this study was to investigate the effects of age group, walking speed, and body composition on the accuracy of pedometer-determined step counts in children. Eighty-five participants (43 boys, 42 girls), ages 5-7 and 9-11 years, walked on a treadmill for two-minute bouts at speeds of 42, 66, and 90 m[middle dot]min[superscript -1]…
Clinical relevance of gait research applied to clinical trials in spinal cord injury.
Ditunno, John; Scivoletto, Giorgio
2009-01-15
The restoration of walking function following SCI is extremely important to consumers and has stimulated a response of new treatments by scientists, the pharmaceutical industry and clinical entrepreneurs. Several of the proposed interventions: (1) the use of functional electrical stimulation (FES) and (2) locomotor training have been examined in clinical trials and recent reviews of the scientific literature. Each of these interventions is based on research of human locomotion. Therefore, the systematic study of walking function and gait in normal individuals and those with injury to the spinal cord has contributed to the identification of the impairments of walking, the development of new treatments and how they will be measured to determine effectiveness. In this context gait research applied to interventions to improve walking function is of high clinical relevance. This research helps identify walking impairments to be corrected and measures of walking function to be utilized as endpoints for clinical trials. The most common impairments following SCI diagnosed by observational gait analysis include inadequate hip extension during stance, persistent plantar flexion and hip/knee flexion during swing and foot placement at heel strike. FES has been employed as one strategy for correcting these impairments based on analysis that range from simple measures of speed, cadence and stride length to more sophisticated systems of three- dimensional video motion analysis and multichannel EMG tracings of integrated walking. A recent review of the entire FES literature identified 36 studies that merit comment and the full range of outcome measures for walking function were used from simple velocity to the video analysis of motion. In addition to measures of walking function developed for FES interventions, the first randomized multicenter clinical trial on locomotor training in subacute SCI was recently published with an extensive review of these measures. In this study outcome measures of motor strength (impairment), balance, Walking Index for SCI (WISCI), speed, 5min walk (walking capacities) and locomotor functional independence measure (L-FIM), a disability measure all showed improvement in walking function based on the strategy of the response of activity based plasticity to step training. Although the scientific basis for this intervention will be covered in other articles in this series, the evolution of clinical outcome measures of walking function continues to be important for the determination of effectiveness in clinical trials.
Stegemöller, Elizabeth L; Wilson, Jonathan P; Hazamy, Audrey; Shelley, Mack C; Okun, Michael S; Altmann, Lori J P; Hass, Chris J
2014-06-01
Cognitive impairments in Parkinson disease (PD) manifest as deficits in speed of processing, working memory, and executive function and attention abilities. The gait impairment in PD is well documented to include reduced speed, shortened step lengths, and increased step-to-step variability. However, there is a paucity of research examining the relationship between overground walking and cognitive performance in people with PD. This study sought to examine the relationship between both the mean and variability of gait spatiotemporal parameters and cognitive performance across a broad range of cognitive domains. A cross-sectional design was used. Thirty-five participants with no dementia and diagnosed with idiopathic PD completed a battery of 12 cognitive tests that yielded 3 orthogonal factors: processing speed, working memory, and executive function and attention. Participants completed 10 trials of overground walking (single-task walking) and 5 trials of overground walking while counting backward by 3's (dual-task walking). All gait measures were impaired by the dual task. Cognitive processing speed correlated with stride length and walking speed. Executive function correlated with step width variability. There were no significant associations with working memory. Regression models relating speed of processing to gait spatiotemporal variables revealed that including dual-task costs in the model significantly improved the fit of the model. Participants with PD were tested only in the on-medication state. Different characteristics of gait are related to distinct types of cognitive processing, which may be differentially affected by dual-task walking due to the pathology of PD. © 2014 American Physical Therapy Association.
Kanzaki, Noriyuki; Ono, Yoshiko; Shibata, Hiroshi; Moritani, Toshio
2015-01-01
Background The aim of this study was to investigate the ability of a glucosamine-containing supplement to improve locomotor functions in subjects with knee pain. Methods A randomized, double-blind, placebo-controlled, parallel-group comparative study was conducted for 16 weeks in 100 Japanese subjects (age, 51.8±0.8 years) with knee pain. Subjects were randomly assigned to one of the two supplements containing 1) 1,200 mg of glucosamine hydrochloride, 60 mg of chondroitin sulfate, 45 mg of type II collagen peptides, 90 mg of quercetin glycosides, 10 mg of imidazole peptides, and 5 μg of vitamin D per day (GCQID group, n=50) or 2) a placebo (placebo group, n=50). Japanese Knee Osteoarthritis Measure, visual analog scale score, normal walking speed, and knee-extensor strength were measured to evaluate the effects of the supplement on knee-joint functions and locomotor functions. Results In subjects eligible for efficacy assessment, there was no significant group × time interaction, and there were improvements in knee-joint functions and locomotor functions in both groups, but there was no significant difference between the groups. In subjects with mild-to-severe knee pain at baseline, knee-extensor strength at week 8 (104.6±5.0% body weight vs 92.3±5.5% body weight, P=0.030) and the change in normal walking speed at week 16 (0.11±0.03 m/s vs 0.05±0.02 m/s, P=0.038) were significantly greater in the GCQID group than in the placebo group. Further subgroup analysis based on Kellgren–Lawrence (K–L) grade showed that normal walking speed at week 16 (1.36±0.05 m/s vs 1.21±0.02 m/s, P<0.05) was significantly greater in the GCQID group than in the placebo group in subjects with K–L grade I. No adverse effect of treatment was identified in the safety assessment. Conclusion In subjects with knee pain, GCQID supplementation was effective for relieving knee pain and improving locomotor functions. PMID:26604721
Kanzaki, Noriyuki; Ono, Yoshiko; Shibata, Hiroshi; Moritani, Toshio
2015-01-01
The aim of this study was to investigate the ability of a glucosamine-containing supplement to improve locomotor functions in subjects with knee pain. A randomized, double-blind, placebo-controlled, parallel-group comparative study was conducted for 16 weeks in 100 Japanese subjects (age, 51.8±0.8 years) with knee pain. Subjects were randomly assigned to one of the two supplements containing 1) 1,200 mg of glucosamine hydrochloride, 60 mg of chondroitin sulfate, 45 mg of type II collagen peptides, 90 mg of quercetin glycosides, 10 mg of imidazole peptides, and 5 μg of vitamin D per day (GCQID group, n=50) or 2) a placebo (placebo group, n=50). Japanese Knee Osteoarthritis Measure, visual analog scale score, normal walking speed, and knee-extensor strength were measured to evaluate the effects of the supplement on knee-joint functions and locomotor functions. In subjects eligible for efficacy assessment, there was no significant group × time interaction, and there were improvements in knee-joint functions and locomotor functions in both groups, but there was no significant difference between the groups. In subjects with mild-to-severe knee pain at baseline, knee-extensor strength at week 8 (104.6±5.0% body weight vs 92.3±5.5% body weight, P=0.030) and the change in normal walking speed at week 16 (0.11±0.03 m/s vs 0.05±0.02 m/s, P=0.038) were significantly greater in the GCQID group than in the placebo group. Further subgroup analysis based on Kellgren-Lawrence (K-L) grade showed that normal walking speed at week 16 (1.36±0.05 m/s vs 1.21±0.02 m/s, P<0.05) was significantly greater in the GCQID group than in the placebo group in subjects with K-L grade I. No adverse effect of treatment was identified in the safety assessment. In subjects with knee pain, GCQID supplementation was effective for relieving knee pain and improving locomotor functions.
Mandic, Sandra; Walker, Robert; Stevens, Emily; Nye, Edwin R; Body, Dianne; Barclay, Leanne; Williams, Michael J A
2013-01-01
Compared with symptom-limited cardiopulmonary exercise test (CPET), timed walking tests are cheaper, well-tolerated and simpler alternative for assessing exercise capacity in coronary artery disease (CAD) patients. We developed multivariate models for predicting peak oxygen consumption (VO2peak) from 6-minute walk test (6MWT) distance and peak shuttle walk speed for elderly stable CAD patients. Fifty-eight CAD patients (72 SD 6 years, 66% men) completed: (1) CPET with expired gas analysis on a cycle ergometer, (2) incremental 10-meter shuttle walk test, (3) two 6MWTs, (4) anthropometric assessment and (5) 30-second chair stands. Linear regression models were developed for estimating VO2peak from 6MWT distance and peak shuttle walk speed as well as demographic, anthropometric and functional variables. Measured VO2peak was significantly related to 6MWT distance (r = 0.719, p < 0.001) and peak shuttle walk speed (r = 0.717, p < 0.001). The addition of demographic (age, gender), anthropometric (height, weight, body mass index, body composition) and functional characteristics (30-second chair stands) increased the accuracy of predicting VO2peak from both 6MWT distance and peak shuttle walk speed (from 51% to 73% of VO2peak variance explained). Addition of demographic, anthropometric and functional characteristics improves the accuracy of VO2peak estimate based on walking tests in elderly individuals with stable CAD. Implications for Rehabilitation Timed walking tests are cheaper, well-tolerated and simpler alternative for assessing exercise capacity in cardiac patients. Walking tests could be used to assess individual's functional capacity and response to therapeutic interventions when symptom-limited cardiopulmonary exercise testing is not practical or not necessary for clinical reasons. Addition of demographic, anthropometric and functional characteristics improves the accuracy of peak oxygen consumption estimate based on 6-minute walk test distance and peak shuttle walk speed in elderly patients with coronary artery disease.
Tempo and walking speed with music in the urban context
Franěk, Marek; van Noorden, Leon; Režný, Lukáš
2014-01-01
The study explored the effect of music on the temporal aspects of walking behavior in a real outdoor urban setting. First, spontaneous synchronization between the beat of the music and step tempo was explored. The effect of motivational and non-motivational music (Karageorghis et al., 1999) on the walking speed was also studied. Finally, we investigated whether music can mask the effects of visual aspects of the walking route environment, which involve fluctuation of walking speed as a response to particular environmental settings. In two experiments, we asked participants to walk around an urban route that was 1.8 km in length through various environments in the downtown area of Hradec Králové. In Experiment 1, the participants listened to a musical track consisting of world pop music with a clear beat. In Experiment 2, participants were walking either with motivational music, which had a fast tempo and a strong rhythm, or with non-motivational music, which was slower, nice music, but with no strong implication to movement. Musical beat, as well as the sonic character of the music listened to while walking, influenced walking speed but did not lead to precise synchronization. It was found that many subjects did not spontaneously synchronize with the beat of the music at all, and some subjects synchronized only part of the time. The fast, energetic music increases the speed of the walking tempo, while slower, relaxing music makes the walking tempo slower. Further, it was found that listening to music with headphones while walking can mask the influence of the surrounding environment to some extent. Both motivational music and non-motivational music had a larger effect than the world pop music from Experiment 1. Individual differences in responses to the music listened to while walking that were linked to extraversion and neuroticism were also observed. The findings described here could be useful in rhythmic stimulation for enhancing or recovering the features of movement performance. PMID:25520682
Minetti, Alberto E; Gaudino, Paolo; Seminati, Elena; Cazzola, Dario
2013-02-15
Although most of the literature on locomotion energetics and biomechanics is about constant-speed experiments, humans and animals tend to move at variable speeds in their daily life. This study addresses the following questions: 1) how much extra metabolic energy is associated with traveling a unit distance by adopting acceleration/deceleration cycles in walking and running, with respect to constant speed, and 2) how can biomechanics explain those metabolic findings. Ten males and ten females walked and ran at fluctuating speeds (5 ± 0, ± 1, ± 1.5, ± 2, ± 2.5 km/h for treadmill walking, 11 ± 0, ± 1, ± 2, ± 3, ± 4 km/h for treadmill and field running) in cycles lasting 6 s. Field experiments, consisting of subjects following a laser spot projected from a computer-controlled astronomic telescope, were necessary to check the noninertial bias of the oscillating-speed treadmill. Metabolic cost of transport was found to be almost constant at all speed oscillations for running and up to ±2 km/h for walking, with no remarkable differences between laboratory and field results. The substantial constancy of the metabolic cost is not explained by the predicted cost of pure acceleration/deceleration. As for walking, results from speed-oscillation running suggest that the inherent within-stride, elastic energy-free accelerations/decelerations when moving at constant speed work as a mechanical buffer for among-stride speed fluctuations, with no extra metabolic cost. Also, a recent theory about the analogy between sprint (level) running and constant-speed running on gradients, together with the mechanical determinants of gradient locomotion, helps to interpret the present findings.
Frailty prevalence and slow walking speed in persons age 65 and older: implications for primary care
2013-01-01
Background Frailty in the elderly increases their vulnerability and leads to a greater risk of adverse events. According to various studies, the prevalence of the frailty syndrome in persons age 65 and over ranges between 3% and 37%, depending on age and sex. Walking speed in itself is considered a simple indicator of health status and of survival in older persons. Detecting frailty in primary care consultations can help improve care of the elderly, and walking speed may be an indicator that could facilitate the early diagnosis of frailty in primary care. The objective of this work was to estimate frailty-syndrome prevalence and walking speed in an urban population aged 65 years and over, and to analyze the relationship between the two indicators from the perspective of early diagnosis of frailty in the primary care setting. Methods Population cohort of persons age 65 and over from two urban neighborhoods in northern Madrid (Spain). Cross-sectional analysis. Bivariate and multivariate analysis with binary logistic regression to study the variables associated with frailty. Different cut-off points between 0.4 and 1.4 m/s were used to study walking speed in this population. The relationship between frailty and walking speed was analyzed using likelihood ratios. Results The study sample comprised 1,327 individuals age 65 and older with mean age 75.41 ± 7.41 years; 53.4% were women. Estimated frailty in the study population was 10.5% [95% CI: 8.9-12.3]. Frailty increased with age (OR = 1.14; 95% CI: 1.10-1.19) and was associated with poor self-rated health (OR = 2.52; 95% CI: 1.43-4.44), number of drugs prescribed (OR = 1.17; 95% CI: 1.08-1.26) and disability (OR = 6.58; 95% CI: 3.92-11.05). Walking speed less than 0.8 m/s was found in 42.6% of cases and in 56.4% of persons age 75 and over. Walking speed greater than 0.9 m/s ruled out frailty in the study sample. Persons age 75 and older with walking speed <0.8 m/s are at particularly high risk of frailty (32.1%). Conclusions Frailty-syndrome prevalence is high in persons aged 75 and over. Detection of walking speed <0.8 m/s is a simple approach to the diagnosis of frailty in the primary care setting. PMID:23782891
Functional roles of the calf and vastus muscles in locomotion.
Brandell, B R
1977-04-01
Simultaneous and synchronized electromyography and cinematography were used to record the co-ordination of calf and vastus muscle activity with the angular motions of the segments and joints of the lower limb in two female and three male subjects, while each performed one complete series of tests in which they walked at 2.5, 3.2 and 4.2 mph on a treadmill, which was level, or held at upward tilts of 5 and 10 degrees. The raw EMG recordings were also integrated into uniform pulses, which were electronically counted in 5 second time blocks for each of the walking conditions tested. The objectives of this study were to: 1) quantitatively measure the relative increases of EMG activity in thses two groups of muscles under the various degrees of stress, which resulted from walking at increased speeds and degrees of upward tilt, and 2) correlate these gross quantitative relationships of activity with the patterns of co-ordination found between these two groups of muscles under the corresponding stressed conditions of walking. The results of this study indicate that although with increases of speed and upward tilt the absolute values of integrated EMG increased more for the calf than for the vastus muscles, the relative increases of EMG were consistently greater for the vasti, which reached their peak intensity of activity at moments during the walking stride, when their knee extending action stretched the gastrocnemius heads across the back of the knee joint, and thereby assisted the calf muscles lift the heel, and plantar flex the ankle joint--the most essential actions for producing the push-off and thrust in the normal walking stride.
Lange, G W; Hintermeister, R A; Schlegel, T; Dillman, C J; Steadman, J R
1996-05-01
Muscle activity, joints, angles, and heart rate during uphill walking were compared for application in knee rehabilitation. The objectives of this study were to quantify muscle activation levels at different treadmill grades and to determine the grade(s) at which knee range of motion would not further compromise the joint. Average and peak electromyographic activity of the quadriceps (vastus medialis oblique and vastus lateralis) and hamstrings (biceps femoris and medial hamstrings (semimembranosus/semitendinosus)] was recorded during walking at 0, 12, and 24% grade. Six subjects (age = 28.5 +/- 3.7 years, stature = 1.79 +/- .05 m, and mass = 74.7 +/- 7.9 kg) walked at self-selected speeds at each grade while ankle, knee and hip angles, heart rate, and electromyographic activity (surface electrodes) were recorded. Maximum voluntary contractions provided a relative reference for the electromyographic activity during walking. Average and peak electromyographic activity increased significantly across grades for the vastus medialis oblique (125 and 154%), vastus lateralis (109 and 139%), and biceps femoris (53 and 46%), but remained similar for the medial hamstrings. Maximum knee flexion at heel strike increased significantly with grade. Despite decreased self-selected speeds with increasing grade, there were significant increases in heart rate across grades. The results of this study provide a basic understanding of the quadriceps and hamstrings activity levels, lower extremity joint range of motion, and cardiovascular requirements of graded treadmill walking in normal subjects. The results also suggest that a grade just greater than 12% may be most beneficial for knee rehabilitation to minimize patellofemoral discomfort or potential strain on the anterior cruciate ligament. The benefits achieved through this functional activity encourage its implementation in rehabilitation and provide a basis for comparison with injured patients.
Aminian, Saeideh; Hinckson, Erica A
2012-10-02
Decreasing sedentary activities that involve prolonged sitting may be an important strategy to reduce obesity and other physical and psychosocial health problems in children. The first step to understanding the effect of sedentary activities on children's health is to objectively assess these activities with a valid measurement tool. To examine the validity of the ActivPAL monitor in measuring sitting/lying, standing, and walking time, transition counts and step counts in children in a laboratory setting. Twenty five healthy elementary school children (age 9.9 ± 0.3 years; BMI 18.2 ± 1.9; mean ± SD) were randomly recruited across the Auckland region, New Zealand. Children were fitted with ActivPAL monitors and observed during simulated free-living activities involving sitting/lying, standing and walking, followed by treadmill and over-ground activities at various speeds (slow, normal, fast) against video observation (criterion measure). The ActivPAL sit-to-stand and stand-to-sit transition counts and steps were also compared with video data. The accuracy of step counts measured by the ActivPAL was also compared against the New Lifestyles NL-2000 and the Yamax Digi-Walker SW-200 pedometers. We observed a perfect correlation between the ActivPAL monitor in time spent sitting/lying, standing, and walking in simulated free-living activities with direct observation. Correlations between the ActivPAL and video observation in total numbers of sit-to-stand and stand-to-sit transitions were high (r = 0.99 ± 0.01). Unlike pedometers, the ActivPAL did not misclassify fidgeting as steps taken. Strong correlations (r = 0.88-1.00) between ActivPAL step counts and video observation in both treadmill and over-ground slow and normal walking were also observed. During treadmill and over-ground fast walking and running, the correlations were low (r = 0.21-0.46). The ActivPAL monitor is a valid measurement tool for assessing time spent sitting/lying, standing, and walking, sit-to-stand and stand-to-sit transition counts and step counts in slow and normal walking. The device did not measure accurately steps taken during treadmill and over-ground fast walking and running in children.
Index of mechanical work in gait of children with cerebral palsy.
Dziuba, Alicja Katarzyna; Tylkowska, Małgorzata; Jaroszczuk, Sebastian
2014-01-01
The pathological gait of children with cerebral palsy involves higher mechanical work, which limits their ability to function properly in society. Mechanical work is directly related to walking speed and, although a number of studies have been carried out in this field, few of them analysed the effect of the speed. The study aimed to develop standards for mechanical work during gait of children with cerebral palsy depending on the walking speed. The study covered 18 children with cerebral palsy and 14 healthy children. The BTS Smart software and the author's software were used to evaluate mechanical work, kinetic, potential and rotational energy connected with motion of the children body during walk. Compared to healthy subjects, mechanical work in children with cerebral palsy increases with the degree of disability. It can be expressed as a linear function of walking speed and shows strong and statistically significant correlations with walking gait. A negative statistically significant correlation between the degree of disability and walking speed can be observed. The highest contribution to the total mechanical energy during gait is from mechanical energy of the feet. Instantaneous value of rotational energy is 700 times lower than the instantaneous mechanical energy. An increase in walking speed causes the increase in the effect of the index of kinetic energy on total mechanical work. The method described can provide an objective supplementation for doctors and physical therapists to perform a simple and immediate diagnosis without much technical knowledge.
McDonald, Cody L; Kramer, Patricia A; Morgan, Sara J; Halsne, Elizabeth G; Cheever, Sarah M; Hafner, Brian J
2018-05-01
Energy storing feet are unable to reduce the energy required for normal locomotion among people with transtibial amputation. Crossover feet, which incorporate aspects of energy storing and running specific feet, are designed to maximize energy return while providing stability for everyday activities. Do crossover prosthetic feet reduce the energy expenditure of walking across a range of speeds, when compared with energy storing feet among people with transtibial amputation due to non-dysvascular causes? A randomized within-subject study was conducted with a volunteer sample of twenty-seven adults with unilateral transtibial amputation due to non-dysvascular causes. Participants were fit with two prostheses. One had an energy storing foot (Össur Variflex) and the other a crossover foot (Össur Cheetah Xplore). Other components, including sockets, suspension, and interface were standardized. Energy expenditure was measured with a portable respirometer (Cosmed K4b2) while participants walked on a treadmill at self-selected slow, comfortable, and fast speeds with each prosthesis. Gross oxygen consumption rates (VO 2 ml/min) were compared between foot conditions. Energy storing feet were used as the baseline condition because they are used by most people with a lower limb prosthesis. Analyses were performed to identify people who may benefit from transition to crossover feet. On average, participants had lower oxygen consumption in the crossover foot condition compared to the energy storing foot condition at each self-selected walking speed, but this difference was not statistically significant. Participants with farther six-minute walk test distances, higher daily step counts, and higher Medicare Functional Classification Levels at baseline were more likely to use less energy in the crossover foot. Crossover feet may be most beneficial for people with higher activity levels and physical fitness. Further research is needed to examine the effect of crossover feet on energy expenditure during high-level activities. Copyright © 2018 Elsevier B.V. All rights reserved.
Walking performance and muscle strength in the later stage poststroke: a nonlinear relationship.
Carvalho, Cristiane; Sunnerhagen, Katharina S; Willén, Carin
2013-05-01
To evaluate the relation between muscle strength in the lower extremities and walking performance (speed and distance) in subjects in the later stage poststroke and to compare this with normative data. A cross-sectional observational study. University hospital department. Subjects poststroke (n=41; 31 men, 10 women) with a mean age of 59±5.8 years and a time from stroke onset of 52±36 months were evaluated. An urban sample (n=144) of 40- to 79-year-olds (69 men, 75 women) formed the healthy reference group. Not applicable. Muscle strength in the lower extremities was measured with an isokinetic dynamometer and combined into a strength index. Values for the 30-meter walk test for self-selected and maximum speed and the 6-minute walk test were measured. A nonlinear regression model was used. The average strength index was 730±309 in the subjects after stroke compared with 1112±362 in the healthy group. A nonlinear relation between walking performance and muscle strength was evident. The model explained 37% of the variance in self-selected speed in the stroke group and 20% in the healthy group, and 63% and 38%, respectively, in the maximum walking speed. For the 6-minute walk test, the model explained 44% of the variance in the stroke group. Subjects in the later stage poststroke were weaker than the healthy reference group, and their weakness was associated with walking performance. At the same strength index, subjects walked at lower speeds and shorter distances after stroke, indicating that there are multiple impairments that affect walking ability. Treatments focused on increasing muscle strength thus continue to hold promise. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Daily intermittent hypoxia enhances walking after chronic spinal cord injury
Hayes, Heather B.; Jayaraman, Arun; Herrmann, Megan; Mitchell, Gordon S.; Rymer, William Z.
2014-01-01
Objectives: To test the hypothesis that daily acute intermittent hypoxia (dAIH) and dAIH combined with overground walking improve walking speed and endurance in persons with chronic incomplete spinal cord injury (iSCI). Methods: Nineteen subjects completed the randomized, double-blind, placebo-controlled, crossover study. Participants received 15, 90-second hypoxic exposures (dAIH, fraction of inspired oxygen [Fio2] = 0.09) or daily normoxia (dSHAM, Fio2 = 0.21) at 60-second normoxic intervals on 5 consecutive days; dAIH was given alone or combined with 30 minutes of overground walking 1 hour later. Walking speed and endurance were quantified using 10-Meter and 6-Minute Walk Tests. The trial is registered at ClinicalTrials.gov (NCT01272349). Results: dAIH improved walking speed and endurance. Ten-Meter Walk time improved with dAIH vs dSHAM after 1 day (mean difference [MD] 3.8 seconds, 95% confidence interval [CI] 1.1–6.5 seconds, p = 0.006) and 2 weeks (MD 3.8 seconds, 95% CI 0.9–6.7 seconds, p = 0.010). Six-Minute Walk distance increased with combined dAIH + walking vs dSHAM + walking after 5 days (MD 94.4 m, 95% CI 17.5–171.3 m, p = 0.017) and 1-week follow-up (MD 97.0 m, 95% CI 20.1–173.9 m, p = 0.014). dAIH + walking increased walking distance more than dAIH after 1 day (MD 67.7 m, 95% CI 1.3–134.1 m, p = 0.046), 5 days (MD 107.0 m, 95% CI 40.6–173.4 m, p = 0.002), and 1-week follow-up (MD 136.0 m, 95% CI 65.3–206.6 m, p < 0.001). Conclusions: dAIH ± walking improved walking speed and distance in persons with chronic iSCI. The impact of dAIH is enhanced by combination with walking, demonstrating that combinatorial therapies may promote greater functional benefits in persons with iSCI. Classification of evidence: This study provides Class I evidence that transient hypoxia (through measured breathing treatments), along with overground walking training, improves walking speed and endurance after iSCI. PMID:24285617
Fractal fluctuations in spatiotemporal variables when walking on a self-paced treadmill.
Choi, Jin-Seung; Kang, Dong-Won; Seo, Jeong-Woo; Tack, Gye-Rae
2017-12-08
This study investigated the fractal dynamic properties of stride time (ST), stride length (SL) and stride speed (SS) during walking on a self-paced treadmill (STM) in which the belt speed is automatically controlled by the walking speed. Twelve healthy young subjects participated in the study. The subjects walked at their preferred walking speed under four conditions: STM, STM with a metronome (STM+met), fixed-speed (conventional) treadmill (FTM), and FTM with a metronome (FTM+met). To compare the fractal dynamics between conditions, the mean, variability, and fractal dynamics of ST, SL, and SS were compared. Moreover, the relationship among the variables was examined under each walking condition using three types of surrogates. The mean values of all variables did not differ between the two treadmills, and the variability of all variables was generally larger for STM than for FTM. The use of a metronome resulted in a decrease in variability in ST and SS for all conditions. The fractal dynamic characteristics of SS were maintained with STM, in contrast to FTM, and only the fractal dynamic characteristics of ST disappeared when using a metronome. In addition, the fractal dynamic patterns of the cross-correlated surrogate results were identical to those of all variables for the two treadmills. In terms of the fractal dynamic properties, STM walking was generally closer to overground walking than FTM walking. Although further research is needed, the present results will be useful in research on gait fractal dynamics and rehabilitation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Street, Tamsyn; Taylor, Paul; Swain, Ian
2015-04-01
To determine the effectiveness of functional electrical stimulation (FES) on drop foot in patients with multiple sclerosis (MS), using data from standard clinical practice. Case series with a consecutive sample of FES users collected between 2008 and 2013. Specialist FES center at a district general hospital. Patients with MS who have drop foot (N=187) (117 women, 70 men; mean age, 55y [range, 27-80y]; mean duration since diagnosis, 11.7y [range, 1-56y]). A total of 166 patients were still using FES after 20 weeks, with 153 patients completing the follow-up measures. FES of the common peroneal nerve (178 unilateral, 9 bilateral FES users). Clinically meaningful changes (ie, >.05m/s and >0.1m/s) and functional walking category derived from 10-m walking speed. An increase in walking speed was found to be highly significant (P<.001), both initially where a minimum clinically meaningful change was observed (.07m/s) and after 20 weeks with a substantial clinically meaningful change (.11m/s). After 20 weeks, treatment responders displayed a 27% average improvement in their walking speed. No significant training effect was found. Overall functional walking category was maintained or improved in 95% of treatment responders. FES of the dorsiflexors is a well-accepted intervention that enables clinically meaningful changes in walking speed, leading to a preserved or an increased functional walking category. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Insect-computer hybrid legged robot with user-adjustable speed, step length and walking gait.
Cao, Feng; Zhang, Chao; Choo, Hao Yu; Sato, Hirotaka
2016-03-01
We have constructed an insect-computer hybrid legged robot using a living beetle (Mecynorrhina torquata; Coleoptera). The protraction/retraction and levation/depression motions in both forelegs of the beetle were elicited by electrically stimulating eight corresponding leg muscles via eight pairs of implanted electrodes. To perform a defined walking gait (e.g., gallop), different muscles were individually stimulated in a predefined sequence using a microcontroller. Different walking gaits were performed by reordering the applied stimulation signals (i.e., applying different sequences). By varying the duration of the stimulation sequences, we successfully controlled the step frequency and hence the beetle's walking speed. To the best of our knowledge, this paper presents the first demonstration of living insect locomotion control with a user-adjustable walking gait, step length and walking speed. © 2016 The Author(s).
Insect–computer hybrid legged robot with user-adjustable speed, step length and walking gait
Cao, Feng; Zhang, Chao; Choo, Hao Yu
2016-01-01
We have constructed an insect–computer hybrid legged robot using a living beetle (Mecynorrhina torquata; Coleoptera). The protraction/retraction and levation/depression motions in both forelegs of the beetle were elicited by electrically stimulating eight corresponding leg muscles via eight pairs of implanted electrodes. To perform a defined walking gait (e.g. gallop), different muscles were individually stimulated in a predefined sequence using a microcontroller. Different walking gaits were performed by reordering the applied stimulation signals (i.e. applying different sequences). By varying the duration of the stimulation sequences, we successfully controlled the step frequency and hence the beetle's walking speed. To the best of our knowledge, this paper presents the first demonstration of living insect locomotion control with a user-adjustable walking gait, step length and walking speed. PMID:27030043
In vivo behavior of the human soleus muscle with increasing walking and running speeds.
Lai, Adrian; Lichtwark, Glen A; Schache, Anthony G; Lin, Yi-Chung; Brown, Nicholas A T; Pandy, Marcus G
2015-05-15
The interaction between the muscle fascicle and tendon components of the human soleus (SO) muscle influences the capacity of the muscle to generate force and mechanical work during walking and running. In the present study, ultrasound-based measurements of in vivo SO muscle fascicle behavior were combined with an inverse dynamics analysis to investigate the interaction between the muscle fascicle and tendon components over a broad range of steady-state walking and running speeds: slow-paced walking (0.7 m/s) through to moderate-paced running (5.0 m/s). Irrespective of a change in locomotion mode (i.e., walking vs. running) or an increase in steady-state speed, SO muscle fascicles were found to exhibit minimal shortening compared with the muscle-tendon unit (MTU) throughout stance. During walking and running, the muscle fascicles contributed only 35 and 20% of the overall MTU length change and shortening velocity, respectively. Greater levels of muscle activity resulted in increasingly shorter SO muscle fascicles as locomotion speed increased, both of which facilitated greater tendon stretch and recoil. Thus the elastic tendon contributed the majority of the MTU length change during walking and running. When transitioning from walking to running near the preferred transition speed (2.0 m/s), greater, more economical ankle torque development is likely explained by the SO muscle fascicles shortening more slowly and operating on a more favorable portion (i.e., closer to the plateau) of the force-length curve. Copyright © 2015 the American Physiological Society.
Vazquez, Alejandro; Statton, Matthew A.; Busgang, Stefanie A.
2015-01-01
Motor learning during reaching not only recalibrates movement but can also lead to small but consistent changes in the sense of arm position. Studies have suggested that this sensory effect may be the result of recalibration of a forward model that associates motor commands with their sensory consequences. Here we investigated whether similar perceptual changes occur in the lower limbs after learning a new walking pattern on a split-belt treadmill—a task that critically involves proprioception. Specifically, we studied how this motor learning task affects perception of leg speed during walking, perception of leg position during standing or walking, and perception of contact force during stepping. Our results show that split-belt adaptation leads to robust motor aftereffects and alters the perception of leg speed during walking. This is specific to the direction of walking that was trained during adaptation (i.e., backward or forward). The change in leg speed perception accounts for roughly half of the observed motor aftereffect. In contrast, split-belt adaptation does not alter the perception of leg position during standing or walking and does not change the perception of stepping force. Our results demonstrate that there is a recalibration of a sensory percept specific to the domain of the perturbation that was applied during walking (i.e., speed but not position or force). Furthermore, the motor and sensory consequences of locomotor adaptation may be linked, suggesting overlapping mechanisms driving changes in the motor and sensory domains. PMID:26424576
Karimi, Mohammad Taghi
2015-01-01
Heart rate is an accurate and easy to use method to represent the energy expenditure during walking, based on physiological cost index (PCI). However, in some conditions the heart rate during walking does not reach to a steady state. Therefore, it is not possible to determine the energy expenditure by use of the PCI index. The total heart beat index (THBI) is a new method to solve the aforementioned problem. The aim of this research project was to find the sensitivity of both the physiological cost index (PCI) and total heart beat index (THBI). Fifteen normal subjects and ten patients with flatfoot disorder and two subjects with spinal cord injury were recruited in this research project. The PCI and THBI indexes were determined by use of heart beats with respect to walking speed and total distance walked, respectively. The sensitivity of PCI was more than that of THBI index in the three groups of subjects. Although the PCI and THBI indexes are easy to use and reliable parameters to represent the energy expenditure during walking, their sensitivity is not high to detect the influence of some orthotic interventions, such as use of insoles or using shoes on energy expenditure during walking.
Physiological and Perceptual Responses to Nordic Walking in a Natural Mountain Environment
Grainer, Alessandro; Zerbini, Livio; Reggiani, Carlo; Pavei, Gaspare
2017-01-01
Background: Interest around Nordic Walking (NW) has increased in recent years. However, direct comparisons of NW with normal walking (W), particularly in ecologically valid environments is lacking. The aim of our study was to compare NW and W, over long distances in a natural mountain environment. Methods: Twenty one subjects (13 male/8 female, aged 41 ± 12 years, body mass index BMI 24.1 ± 3.7), walked three distinct uphill paths (length 2.2/3.4/7 km) with (NW) or without (W) walking poles over two separate days. Heart rate (HR), energy expenditure (EE), step length (SL), walking speed (WS), total steps number (SN) and rating of perceived exertion (RPE) were monitored. Results: HR (+18%) and EE (+20%) were higher in NW than in W whilst RPE was similar. SN (−12%) was lower and SL (+15%) longer in NW. WS was higher (1.64 vs. 1.53 m s−1) in NW. Conclusions: Our data confirm that, similarly to previous laboratory studies, differences in a range of walking variables are present between NW and W when performed in a natural environment. NW appears to increase EE compared to W, despite a similar RPE. Thus, NW could be a useful as aerobic training modality for weight control and cardiorespiratory fitness. PMID:29039775
Physiological and Perceptual Responses to Nordic Walking in a Natural Mountain Environment.
Grainer, Alessandro; Zerbini, Livio; Reggiani, Carlo; Marcolin, Giuseppe; Steele, James; Pavei, Gaspare; Paoli, Antonio
2017-10-17
Background: Interest around Nordic Walking (NW) has increased in recent years. However, direct comparisons of NW with normal walking (W), particularly in ecologically valid environments is lacking. The aim of our study was to compare NW and W, over long distances in a natural mountain environment. Methods: Twenty one subjects (13 male/8 female, aged 41 ± 12 years, body mass index BMI 24.1 ± 3.7), walked three distinct uphill paths (length 2.2/3.4/7 km) with (NW) or without (W) walking poles over two separate days. Heart rate (HR), energy expenditure (EE), step length (SL), walking speed (WS), total steps number (SN) and rating of perceived exertion (RPE) were monitored. Results: HR (+18%) and EE (+20%) were higher in NW than in W whilst RPE was similar. SN (-12%) was lower and SL (+15%) longer in NW. WS was higher (1.64 vs. 1.53 m s -1 ) in NW. Conclusions: Our data confirm that, similarly to previous laboratory studies, differences in a range of walking variables are present between NW and W when performed in a natural environment. NW appears to increase EE compared to W, despite a similar RPE. Thus, NW could be a useful as aerobic training modality for weight control and cardiorespiratory fitness.
Pliske, Gerald; Emmermacher, Peter; Weinbeer, Veronika; Witte, Kerstin
2016-12-01
Demographic changes resulting in an aging population are major factors for an increase of fall-related injuries. Especially in situations where dual tasks such as walking whilst talking have to be performed simultaneously the risk of a fall-related injury increases. It is well known that some types of martial art (e.g. Tai Chi) can reduce the risk of a fall. It is unknown if the same is true for karate. In this randomized, controlled study 68 people with a mean age of 69 years underwent 5-month karate training, 5-month fitness training or were part of a control group. Before and after the time of intervention a gait analysis with normal walk, a cognitive dual task and a motor dual task were performed. The gait parameter step frequency, walking speed, single-step time and single-step length were investigated. It could be seen that all groups improved their gait parameters after a 5-month period, even the control group. A sporty intervention seems to affect mainly the temporal gait parameters positively. This effect was especially demonstrated for normal walk and cognitive dual task. An improvement of the human walk seems to be possible through karate and fitness training, even under dual-task conditions. A prolonged intervention time with multiple repetitions of gait analysis could give better evidence if karate is a useful tool to increase fall prevention.
Härdi, Irene; Bridenbaugh, Stephanie A; Gschwind, Yves J; Kressig, Reto W
2014-04-01
Gait and balance impairments lead to falls and injuries in older people. Walking aids are meant to increase gait safety and prevent falls, yet little is known about how their use alters gait parameters. This study aimed to quantify gait in older adults during walking without and with different walking aids and to compare gait parameters to matched controls. This retrospective study included 65 older (≥60 years) community dwellers who used a cane, crutch or walker and 195 independently mobile-matched controls. Spatio-temporal gait parameters were measured with an electronic walkway system during normal walking. When walking unaided or aided, walking aid users had significantly worse gait than matched controls. Significant differences between the walking aid groups were found for stride time variability (cane vs. walker) in walking unaided only. Gait performances significantly improved when assessed with vs. without the walking aid for the cane (increased stride time and length, decreased cadence and stride length variability), crutch (increased stride time and length, decreased cadence, stride length variability and double support) and walker (increased gait speed and stride length, decreased base of support and double support) users. Gait in older adults who use a walking aid is more irregular and unstable than gait in independently mobile older adults. Walking aid users have better gait when using their walking aid than when walking without it. The changes in gait were different for the different types of walking aids used. These study results may help better understand gait in older adults and differentiate between pathological gait changes and compensatory gait changes due to the use of a walking aid.
De Asha, Alan R; Munjal, Ramesh; Kulkarni, Jai; Buckley, John G
2013-10-17
Passive prosthetic devices are set up to provide optimal function at customary walking speed and thus may function less effectively at other speeds. This partly explains why joint kinetic adaptations become more apparent in lower-limb amputees when walking at speeds other than customary. The present study determined whether a trans-tibial prosthesis incorporating a dynamic-response foot that was attached to the shank via an articulating hydraulic device (hyA-F) lessened speed-related adaptations in joint kinetics compared to when the foot was attached via a rigid, non-articulating attachment (rigF). Eight active unilateral trans-tibial amputees completed walking trials at their customary walking speed, and at speeds they deemed to be slow-comfortable and fast-comfortable whilst using each type of foot attachment. Moments and powers at the distal end of the prosthetic shank and at the intact joints of both limbs were compared between attachment conditions. There was no change in the amount of intact-limb ankle work across speed or attachment conditions. As speed level increased there was an increase on both limbs in the amount of hip and knee joint work done, and increases on the prosthetic side were greater when using the hyA-F. However, because all walking speed levels were higher when using the hyA-F, the intact-limb ankle and combined joints work per meter travelled were significantly lower; particularly so at the customary speed level. This was the case despite the hyA-F dissipating more energy during stance. In addition, the amount of eccentric work done per meter travelled became increased at the residual knee when using the hyA-F, with increases again greatest at customary speed. Findings indicate that a trans-tibial prosthesis incorporating a dynamic-response foot reduced speed-related changes in compensatory intact-limb joint kinetics when the foot was attached via an articulating hydraulic device compared to rigid attachment. As differences between attachment conditions were greatest at customary speed, findings indicate a hydraulic ankle-foot device is most effectual at the speed it is set-up for.
Speed adaptation in a powered transtibial prosthesis controlled with a neuromuscular model.
Markowitz, Jared; Krishnaswamy, Pavitra; Eilenberg, Michael F; Endo, Ken; Barnhart, Chris; Herr, Hugh
2011-05-27
Control schemes for powered ankle-foot prostheses would benefit greatly from a means to make them inherently adaptive to different walking speeds. Towards this goal, one may attempt to emulate the intact human ankle, as it is capable of seamless adaptation. Human locomotion is governed by the interplay among legged dynamics, morphology and neural control including spinal reflexes. It has been suggested that reflexes contribute to the changes in ankle joint dynamics that correspond to walking at different speeds. Here, we use a data-driven muscle-tendon model that produces estimates of the activation, force, length and velocity of the major muscles spanning the ankle to derive local feedback loops that may be critical in the control of those muscles during walking. This purely reflexive approach ignores sources of non-reflexive neural drive and does not necessarily reflect the biological control scheme, yet can still closely reproduce the muscle dynamics estimated from biological data. The resulting neuromuscular model was applied to control a powered ankle-foot prosthesis and tested by an amputee walking at three speeds. The controller produced speed-adaptive behaviour; net ankle work increased with walking speed, highlighting the benefits of applying neuromuscular principles in the control of adaptive prosthetic limbs.
2013-01-01
Background. Lower ambulatory performance with aging may be related to a reduced oxidative capacity within skeletal muscle. This study examined the associations between skeletal muscle mitochondrial capacity and efficiency with walking performance in a group of older adults. Methods. Thirty-seven older adults (mean age 78 years; 21 men and 16 women) completed an aerobic capacity (VO2 peak) test and measurement of preferred walking speed over 400 m. Maximal coupled (State 3; St3) mitochondrial respiration was determined by high-resolution respirometry in saponin-permeabilized myofibers obtained from percutanous biopsies of vastus lateralis (n = 22). Maximal phosphorylation capacity (ATPmax) of vastus lateralis was determined in vivo by 31P magnetic resonance spectroscopy (n = 30). Quadriceps contractile volume was determined by magnetic resonance imaging. Mitochondrial efficiency (max ATP production/max O2 consumption) was characterized using ATPmax per St3 respiration (ATPmax/St3). Results. In vitro St3 respiration was significantly correlated with in vivo ATPmax (r 2 = .47, p = .004). Total oxidative capacity of the quadriceps (St3*quadriceps contractile volume) was a determinant of VO2 peak (r 2 = .33, p = .006). ATPmax (r 2 = .158, p = .03) and VO2 peak (r 2 = .475, p < .0001) were correlated with preferred walking speed. Inclusion of both ATPmax/St3 and VO2 peak in a multiple linear regression model improved the prediction of preferred walking speed (r 2 = .647, p < .0001), suggesting that mitochondrial efficiency is an important determinant for preferred walking speed. Conclusions. Lower mitochondrial capacity and efficiency were both associated with slower walking speed within a group of older participants with a wide range of function. In addition to aerobic capacity, lower mitochondrial capacity and efficiency likely play roles in slowing gait speed with age. PMID:23051977
Coen, Paul M; Jubrias, Sharon A; Distefano, Giovanna; Amati, Francesca; Mackey, Dawn C; Glynn, Nancy W; Manini, Todd M; Wohlgemuth, Stephanie E; Leeuwenburgh, Christiaan; Cummings, Steven R; Newman, Anne B; Ferrucci, Luigi; Toledo, Frederico G S; Shankland, Eric; Conley, Kevin E; Goodpaster, Bret H
2013-04-01
Lower ambulatory performance with aging may be related to a reduced oxidative capacity within skeletal muscle. This study examined the associations between skeletal muscle mitochondrial capacity and efficiency with walking performance in a group of older adults. Thirty-seven older adults (mean age 78 years; 21 men and 16 women) completed an aerobic capacity (VO2 peak) test and measurement of preferred walking speed over 400 m. Maximal coupled (State 3; St3) mitochondrial respiration was determined by high-resolution respirometry in saponin-permeabilized myofibers obtained from percutanous biopsies of vastus lateralis (n = 22). Maximal phosphorylation capacity (ATPmax) of vastus lateralis was determined in vivo by (31)P magnetic resonance spectroscopy (n = 30). Quadriceps contractile volume was determined by magnetic resonance imaging. Mitochondrial efficiency (max ATP production/max O2 consumption) was characterized using ATPmax per St3 respiration (ATPmax/St3). In vitro St3 respiration was significantly correlated with in vivo ATPmax (r (2) = .47, p = .004). Total oxidative capacity of the quadriceps (St3*quadriceps contractile volume) was a determinant of VO2 peak (r (2) = .33, p = .006). ATPmax (r (2) = .158, p = .03) and VO2 peak (r (2) = .475, p < .0001) were correlated with preferred walking speed. Inclusion of both ATPmax/St3 and VO2 peak in a multiple linear regression model improved the prediction of preferred walking speed (r (2) = .647, p < .0001), suggesting that mitochondrial efficiency is an important determinant for preferred walking speed. Lower mitochondrial capacity and efficiency were both associated with slower walking speed within a group of older participants with a wide range of function. In addition to aerobic capacity, lower mitochondrial capacity and efficiency likely play roles in slowing gait speed with age.
Mohammadi, Roghayeh; Ershad, Navid; Rezayinejad, Marziyeh; Fatemi, Elham; Phadke, Chetan P
2017-09-01
To examine the functional effects of walking retraining at faster than self-selected speed (SSS). Ten individuals with chronic stroke participated in a 4-week training over a treadmill at walking speeds 40% faster than SSS, three times per week, 30 min/session. Outcome measures assessed before, after, and 2 months after the end of intervention were the Timed Up and Go, the 6-Minute Walk, the 10-Meter Walk test, the Modified Ashworth Scale, SSS, and fastest comfortable speed. After 4 weeks of training, all outcome measures showed clinically meaningful and statistically significant improvements (P<0.05) that were maintained at 2 months after the end of the training. The results showed that a strategy of training at a speed 40% faster than SSS can improve functional activity in individuals with chronic stroke, with effects lasting up to 2 months after the intervention.
Sánchez, Marina Castel; Bussmann, Johannes; Janssen, Wim; Horemans, Herwin; Chastin, Sebastian; Heijenbrok, Majanka; Stam, Henk
2015-09-01
To describe the course of walking behaviour over a period of 1 year after stroke, using accelerometry, and to compare 1-year data with those from a healthy group. One-year follow-up cohort study. Twenty-three stroke patients and 20 age-matched healthy subjects. Accelerometer assessments were made in the participants' daily environment for 8 h/day during the 1st (T1), 12th (T2) and 48th (T3) weeks after stroke, and at one time-point in healthy subjects. Primary outcomes were: percentage of time walking and upright (amount); mean duration and number of walking periods (distribution); step regularity and gait symmetry (quality); and walking speed. Time walking, time upright, and number of walking bouts increased during T1 and T2 (p < 0.01) and then levelled off (p > 0.30). Mean duration of walking periods showed no significant improvements (p > 0.30) during all phases. Step regularity, gait symmetry and gait speed showed a tendency to increase consistently from T1 to T3. At T3, amount and distribution variables reached the level of the healthy group, but significant differences remained (p < 0.02) in step regularity and gait speed. In this cohort, different outcomes of walking behaviour showed different patterns and levels of recovery, which supports the multi-dimensional character of gait.
Dierick, Frédéric; Bouché, Anne-France; Scohier, Mikaël; Guille, Clément; Buisseret, Fabien
2018-05-15
Previous research on unstable footwear has suggested that it may induce mechanical noise during walking. The purpose of this study was to explore whether unstable footwear could be considered as a noise-based training gear to exercise body center of mass (CoM) motion during walking. Ground reaction forces were collected among 24 healthy young women walking at speeds between 3 and 6 km h -1 with control running shoes and unstable rocker-bottom shoes. The external mechanical work, the recovery of mechanical energy of the CoM during and within the step cycles, and the phase shift between potential and kinetic energy curves of the CoM were computed. Our findings support the idea that unstable rocker-bottom footwear could serve as a speed-dependent noise-based training gear to exercise CoM motion during walking. At slow speed, it acts as a stochastic resonance or facilitator that reduces external mechanical work; whereas at brisk speed it acts as a constraint that increases external mechanical work and could mimic a downhill slope.
Yang, Mingliang; Li, Jianjun; Guan, Xinyu; Gao, Lianjun; Gao, Feng; Du, Liangjie; Zhao, Hongmei; Yang, Degang; Yu, Yan; Wang, Qimin; Wang, Rencheng; Ji, Linhong
2017-09-01
The high energy cost of paraplegic walking using a reciprocating gait orthosis (RGO) is attributed to limited hip motion and excessive upper limb loading for support. To address the limitation, we designed the hip energy storage walking orthosis (HESWO) which uses a spring assembly on the pelvic shell to store energy from the movements of the healthy upper limbs and flexion-extension of the lumbar spine and hip and returns this energy to lift the pelvis and lower limb to assist with the swing and stance components of a stride. Our aim was to evaluate gait and energy cost indices for the HESWO compared to the RGO in patients with paraplegia. The cross-over design was used in the pilot study. Twelve patients with a complete T4-L5 chronic spinal cord injury underwent gait training using the HESWO and RGO. Gait performance (continuous walking distance, as well as the maximum and comfortable walking speeds) and energy expenditure (at a walking speed of 3.3m/min on a treadmill) were measured at the end of the 4-week training session. Compared to the RGO, the HESWO increased continuous walking distance by 24.7% (P<0.05), maximum walking speed by 20.4% (P<0.05) and the comfortable walking speed by 15.3% (P<0.05), as well as decreasing energy expenditure by 13.9% (P<0.05). Our preliminary results provide support for the use of the HESWO as an alternative support for paraplegic walking. Copyright © 2017. Published by Elsevier B.V.
Activating and Relaxing Music Entrains the Speed of Beat Synchronized Walking
Leman, Marc; Moelants, Dirk; Varewyck, Matthias; Styns, Frederik; van Noorden, Leon; Martens, Jean-Pierre
2013-01-01
Inspired by a theory of embodied music cognition, we investigate whether music can entrain the speed of beat synchronized walking. If human walking is in synchrony with the beat and all musical stimuli have the same duration and the same tempo, then differences in walking speed can only be the result of music-induced differences in stride length, thus reflecting the vigor or physical strength of the movement. Participants walked in an open field in synchrony with the beat of 52 different musical stimuli all having a tempo of 130 beats per minute and a meter of 4 beats. The walking speed was measured as the walked distance during a time interval of 30 seconds. The results reveal that some music is ‘activating’ in the sense that it increases the speed, and some music is ‘relaxing’ in the sense that it decreases the speed, compared to the spontaneous walked speed in response to metronome stimuli. Participants are consistent in their observation of qualitative differences between the relaxing and activating musical stimuli. Using regression analysis, it was possible to set up a predictive model using only four sonic features that explain 60% of the variance. The sonic features capture variation in loudness and pitch patterns at periods of three, four and six beats, suggesting that expressive patterns in music are responsible for the effect. The mechanism may be attributed to an attentional shift, a subliminal audio-motor entrainment mechanism, or an arousal effect, but further study is needed to figure this out. Overall, the study supports the hypothesis that recurrent patterns of fluctuation affecting the binary meter strength of the music may entrain the vigor of the movement. The study opens up new perspectives for understanding the relationship between entrainment and expressiveness, with the possibility to develop applications that can be used in domains such as sports and physical rehabilitation. PMID:23874469
Activating and relaxing music entrains the speed of beat synchronized walking.
Leman, Marc; Moelants, Dirk; Varewyck, Matthias; Styns, Frederik; van Noorden, Leon; Martens, Jean-Pierre
2013-01-01
Inspired by a theory of embodied music cognition, we investigate whether music can entrain the speed of beat synchronized walking. If human walking is in synchrony with the beat and all musical stimuli have the same duration and the same tempo, then differences in walking speed can only be the result of music-induced differences in stride length, thus reflecting the vigor or physical strength of the movement. Participants walked in an open field in synchrony with the beat of 52 different musical stimuli all having a tempo of 130 beats per minute and a meter of 4 beats. The walking speed was measured as the walked distance during a time interval of 30 seconds. The results reveal that some music is 'activating' in the sense that it increases the speed, and some music is 'relaxing' in the sense that it decreases the speed, compared to the spontaneous walked speed in response to metronome stimuli. Participants are consistent in their observation of qualitative differences between the relaxing and activating musical stimuli. Using regression analysis, it was possible to set up a predictive model using only four sonic features that explain 60% of the variance. The sonic features capture variation in loudness and pitch patterns at periods of three, four and six beats, suggesting that expressive patterns in music are responsible for the effect. The mechanism may be attributed to an attentional shift, a subliminal audio-motor entrainment mechanism, or an arousal effect, but further study is needed to figure this out. Overall, the study supports the hypothesis that recurrent patterns of fluctuation affecting the binary meter strength of the music may entrain the vigor of the movement. The study opens up new perspectives for understanding the relationship between entrainment and expressiveness, with the possibility to develop applications that can be used in domains such as sports and physical rehabilitation.
Fransen, Erik; Perkisas, Stany; Verhoeven, Veronique; Beauchet, Olivier; Remmen, Roy
2017-01-01
Background Gait characteristics measured at usual pace may allow profiling in patients with cognitive problems. The influence of age, gender, leg length, modified speed or dual tasking is unclear. Methods Cross-sectional analysis was performed on a data registry containing demographic, physical and spatial-temporal gait parameters recorded in five walking conditions with a GAITRite® electronic carpet in community-dwelling older persons with memory complaints. Four cognitive stages were studied: cognitively healthy individuals, mild cognitive impaired patients, mild dementia patients and advanced dementia patients. Results The association between spatial-temporal gait characteristics and cognitive stages was the most prominent: in the entire study population using gait speed, steps per meter (translation for mean step length), swing time variability, normalised gait speed (corrected for leg length) and normalised steps per meter at all five walking conditions; in the 50-to-70 years old participants applying step width at fast pace and steps per meter at usual pace; in the 70-to-80 years old persons using gait speed and normalised gait speed at usual pace, fast pace, animal walk and counting walk or steps per meter and normalised steps per meter at all five walking conditions; in over-80 years old participants using gait speed, normalised gait speed, steps per meter and normalised steps per meter at fast pace and animal dual-task walking. Multivariable logistic regression analysis adjusted for gender predicted in two compiled models the presence of dementia or cognitive impairment with acceptable accuracy in persons with memory complaints. Conclusion Gait parameters in multiple walking conditions adjusted for age, gender and leg length showed a significant association with cognitive impairment. This study suggested that multifactorial gait analysis could be more informative than using gait analysis with only one test or one variable. Using this type of gait analysis in clinical practice could facilitate screening for cognitive impairment. PMID:28570662
Subjective assessments of floor slipperiness before and after walk under two lighting conditions.
Li, Kai Way; Zhao, Caijun; Peng, Lu; Liu, Ai-Qun
2018-06-01
A gait experiment was performed. The participants were tested under shoes, floors, surface and lighting conditions. They gave floor slipperiness ratings before and after a gait trial. The perceived sense of slip (PSOS) was collected. It was found that the perceived floor slipperiness (PFS) before walking was affected significantly by the lighting, floor and surface conditions. Relative low PFS values were recorded under wet and detergent-contaminated conditions in the normal daylight condition as compared with those in the dimmed condition. The PFS after the gait was significantly affected by the floor and surface conditions. The PSOS was highly correlated with the PFS after trial. The regression analyses results indicated that both the coefficient of friction (COF) of the floor and lighting were primary predictors of the PFS before a gait. The COF and walking speed were the primary predictors of the PFS after a gait.
Costa, Paul T.; Terracciano, Antonio; Ferrucci, Luigi; Faulkner, Kimberly; Coday, Mathilda (Mace) C.; Ayonayon, Hilsa N.; Simonsick, Eleanor M.
2012-01-01
Objectives. The objective of this study was to explore the associations between openness to experience and conscientiousness, two dimensions of the five-factor model of personality, and usual gait speed and gait speed decline. Method. Baseline analyses were conducted on 907 men and women aged 71–82 years participating in the Cognitive Vitality substudy of the Health, Aging, and Body Composition study. The longitudinal analytic sample consisted of 740 participants who had walking speed assessed 3 years later. Results. At baseline, gait speed averaged 1.2 m/s, and an average decline of 5% over the 3-year follow-up period was observed. Higher conscientiousness was associated with faster initial walking speed and less decline in walking speed over the study period, independent of sociodemographic characteristics. Lifestyle factors and disease status appear to play a role in the baseline but not the longitudinal association between conscientiousness and gait speed. Openness was not associated with either initial or decline in gait speed. Discussion. These findings extend the body of evidence suggesting a protective association between conscientiousness and physical function to performance-based assessment of gait speed. Future studies are needed to confirm these associations and to explore mechanisms that underlie the conscientiousness mobility connection in aging adults. PMID:22451484
Effect of divided attention on gait in subjects with and without cognitive impairment.
Pettersson, Anna F; Olsson, Elisabeth; Wahlund, Lars-Olof
2007-03-01
The aim of this study was to investigate the influence of cognition on motor function using 2 simple everyday tasks, talking and walking, in younger subjects with Alzheimer's disease and mild cognitive impairment. A second aim was to evaluate reliability for the dual-task test Talking While Walking. Walking speed during single and dual task and time change between single and dual task were compared between groups. The test procedure was repeated after 1 week. Subjects with AD had lower walking speed and greater time change between single and dual task compared with healthy controls. Reliability for Talking While Walking was very good. The results show that motor function in combination with a cognitive task, as well as motor function alone, influences subjects with Alzheimer's disease in a negative way and that decreased walking speed during single- and dual-task performance may be an early symptom in Alzheimer's disease.
The effect of repeated bouts of backward walking on physiologic efficiency.
Childs, John D; Gantt, Christy; Higgins, Dan; Papazis, Janet A; Franklin, Ronald; Metzler, Terri; Underwood, Frank B
2002-08-01
Previous studies have demonstrated an increased energy expenditure with novel tasks. With practice, the energy cost decreases as the body more efficiently recruits motor units. This study examined whether one becomes more efficient after repeated bouts of backward walking. The subjects were 7 healthy subjects between the ages of 23 and 49 years. A backward walking speed was calculated to elicit a VO(2) equal to 60% of the VO(2)max. There were 18 training sessions at the prescribed walking speed 3 d x wk(-1) for 20 min x d(-1). The backward walking speed required to elicit a fixed VO(2) increased between weeks 4 and 6 of the training period. This finding suggests that backward walking is indeed a novel task and that motor learning occurs as a result of practice, leading to a more efficient recruitment of motor units.
Determinants of Slow Walking Speed in Ambulatory Patients Undergoing Maintenance Hemodialysis
Matsuzawa, Ryota; Kutsuna, Toshiki; Yamamoto, Shuhei; Yoneki, Kei; Harada, Manae; Ishikawa, Ryoma; Watanabe, Takaaki; Yoshida, Atsushi
2016-01-01
Walking ability is significantly lower in hemodialysis patients compared to healthy people. Decreased walking ability characterized by slow walking speed is associated with adverse clinical events, but determinants of decreased walking speed in hemodialysis patients are unknown. The purpose of this study was to identify factors associated with slow walking speed in ambulatory hemodialysis patients. Subjects were 122 outpatients (64 men, 58 women; mean age, 68 years) undergoing hemodialysis. Clinical characteristics including comorbidities, motor function (strength, flexibility, and balance), and maximum walking speed (MWS) were measured and compared across sex-specific tertiles of MWS. Univariate and multivariate logistic regression analyses were performed to examine whether clinical characteristics and motor function could discriminate between the lowest, middle, and highest tertiles of MWS. Significant and common factors that discriminated the lowest and highest tertiles of MWS from other categories were presence of cardiac disease (lowest: odds ratio [OR] = 3.33, 95% confidence interval [CI] = 1.26–8.83, P<0.05; highest: OR = 2.84, 95% CI = 1.18–6.84, P<0.05), leg strength (OR = 0.62, 95% CI = 0.40–0.95, P<0.05; OR = 0.57, 95% CI = 0.39–0.82, P<0.01), and standing balance (OR = 0.76, 95% CI = 0.63–0.92, P<0.01; OR = 0.81, 95% CI = 0.68–0.97, P<0.05). History of fracture (OR = 3.35, 95% CI = 1.08–10.38; P<0.05) was a significant factor only in the lowest tertile. Cardiac disease, history of fracture, decreased leg strength, and poor standing balance were independently associated with slow walking speed in ambulatory hemodialysis patients. These findings provide useful data for planning effective therapeutic regimens to prevent decreases in walking ability in ambulatory hemodialysis patients. PMID:27018891
Effects of Aging on Arm Swing during Gait: The Role of Gait Speed and Dual Tasking.
Mirelman, Anat; Bernad-Elazari, Hagar; Nobel, Tomer; Thaler, Avner; Peruzzi, Agnese; Plotnik, Meir; Giladi, Nir; Hausdorff, Jeffrey M
2015-01-01
Healthy walking is characterized by pronounced arm swing and axial rotation. Aging effects on gait speed, stride length and stride time variability have been previously reported, however, less is known about aging effects on arm swing and axial rotation and their relationship to age-associated gait changes during usual walking and during more challenging conditions like dual tasking. Sixty healthy adults between the ages of 30-77 were included in this study designed to address this gap. Lightweight body fixed sensors were placed on each wrist and lower back. Participants walked under 3 walking conditions each of 1 minute: 1) comfortable speed, 2) walking while serially subtracting 3's (Dual Task), 3) walking at fast speed. Aging effects on arm swing amplitude, range, symmetry, jerk and axial rotation amplitude and jerk were compared between decades of age (30-40; 41-50; 51-60; 61-77 years). As expected, older adults walked slower (p = 0.03) and with increased stride variability (p = 0.02). Arm swing amplitude decreased with age under all conditions (p = 0.04). In the oldest group, arm swing decreased during dual task and increased during the fast walking condition (p<0.0001). Similarly, arm swing asymmetry increased during the dual task in the older groups (p<0.004), but not in the younger groups (p = 0.67). Significant differences between groups and within conditions were observed in arm swing jerk (p<0.02), axial rotation amplitude (p<0.02) and axial jerk (p<0.001). Gait speed, arm swing amplitude of the dominant arm, arm swing asymmetry and axial rotation jerk were all independent predictors of age in a multivariate model. These findings suggest that the effects of gait speed and dual tasking on arm swing and axial rotation during walking are altered among healthy older adults. Follow-up work is needed to examine if these effects contribute to reduced stability in aging.
Effects of Aging on Arm Swing during Gait: The Role of Gait Speed and Dual Tasking
Mirelman, Anat; Bernad-Elazari, Hagar; Nobel, Tomer; Thaler, Avner; Peruzzi, Agnese; Plotnik, Meir; Giladi, Nir; Hausdorff, Jeffrey M.
2015-01-01
Healthy walking is characterized by pronounced arm swing and axial rotation. Aging effects on gait speed, stride length and stride time variability have been previously reported, however, less is known about aging effects on arm swing and axial rotation and their relationship to age-associated gait changes during usual walking and during more challenging conditions like dual tasking. Sixty healthy adults between the ages of 30–77 were included in this study designed to address this gap. Lightweight body fixed sensors were placed on each wrist and lower back. Participants walked under 3 walking conditions each of 1 minute: 1) comfortable speed, 2) walking while serially subtracting 3’s (Dual Task), 3) walking at fast speed. Aging effects on arm swing amplitude, range, symmetry, jerk and axial rotation amplitude and jerk were compared between decades of age (30–40; 41–50; 51–60; 61–77 years). As expected, older adults walked slower (p = 0.03) and with increased stride variability (p = 0.02). Arm swing amplitude decreased with age under all conditions (p = 0.04). In the oldest group, arm swing decreased during dual task and increased during the fast walking condition (p<0.0001). Similarly, arm swing asymmetry increased during the dual task in the older groups (p<0.004), but not in the younger groups (p = 0.67). Significant differences between groups and within conditions were observed in arm swing jerk (p<0.02), axial rotation amplitude (p<0.02) and axial jerk (p<0.001). Gait speed, arm swing amplitude of the dominant arm, arm swing asymmetry and axial rotation jerk were all independent predictors of age in a multivariate model. These findings suggest that the effects of gait speed and dual tasking on arm swing and axial rotation during walking are altered among healthy older adults. Follow-up work is needed to examine if these effects contribute to reduced stability in aging. PMID:26305896
Awad, Louis N.; Reisman, Darcy S.; Pohlig, Ryan T.; Binder-Macleod, Stuart A.
2015-01-01
Background Neurorehabilitation efforts have been limited in their ability to restore walking function after stroke. Recent work has demonstrated proof-of-concept for a Functional Electrical Stimulation (FES)-based combination therapy designed to improve poststroke walking by targeting deficits in paretic propulsion. Objectives To determine the effects on the energy cost of walking (EC) and long-distance walking ability of locomotor training that combines fast walking with FES to the paretic ankle musculature (FastFES). Methods Fifty participants >6 months poststroke were randomized to 12 weeks of gait training at self-selected speeds (SS), fast speeds (Fast), or FastFES. Participants’ 6-Minute Walk Test (6MWT) distance and EC at comfortable (EC-CWS) and fast (EC-Fast) walking speeds were measured pretraining, posttraining, and at a 3-month follow-up. A reduction in EC-CWS, independent of changes in speed, was the primary outcome. Also evaluated were group differences in the number of 6MWT responders and moderation by baseline speed. Results When compared with SS and Fast, FastFES produced larger reductions in EC (p’s ≤0.03). FastFES produced reductions of 24% and 19% in EC-CWS and EC-Fast (p’s <0.001), whereas neither Fast nor SS influenced EC. Between-group 6MWT differences were not observed; however, 73% of FastFES and 68% of Fast participants were responders, in contrast to 35% of SS participants. Conclusions Combining fast locomotor training with FES is an effective approach to reducing the high EC of persons poststroke. Surprisingly, differences in 6MWT gains were not observed between groups. Closer inspection of the 6MWT and EC relationship and elucidation of how reduced EC may influence walking-related disability is warranted. PMID:26621366
The Effects of Walking Speed on Tibiofemoral Loading Estimated Via Musculoskeletal Modeling
Lerner, Zachary F.; Haight, Derek J.; DeMers, Matthew S.; Board, Wayne J.; Browning, Raymond C.
2015-01-01
Net muscle moments (NMMs) have been used as proxy measures of joint loading, but musculoskeletal models can estimate contact forces within joints. The purpose of this study was to use a musculoskeletal model to estimate tibiofemoral forces and to examine the relationship between NMMs and tibiofemoral forces across walking speeds. We collected kinematic, kinetic, and electromyographic data as ten adult participants walked on a dual-belt force-measuring treadmill at 0.75, 1.25, and 1.50 m/s. We scaled a musculoskeletal model to each participant and used OpenSim to calculate the NMMs and muscle forces through inverse dynamics and weighted static optimization, respectively. We determined tibiofemoral forces from the vector sum of intersegmental and muscle forces crossing the knee. Estimated tibiofemoral forces increased with walking speed. Peak early-stance compressive tibiofemoral forces increased 52% as walking speed increased from 0.75 to 1.50 m/s, whereas peak knee extension NMMs increased by 168%. During late stance, peak compressive tibiofemoral forces increased by 18% as speed increased. Although compressive loads at the knee did not increase in direct proportion to NMMs, faster walking resulted in greater compressive forces during weight acceptance and increased compressive and anterior/posterior tibiofemoral loading rates in addition to a greater abduction NMM. PMID:23878264
McClelland, Jodie A; Webster, Kate E; Ramteke, Alankar A; Feller, Julian A
2017-06-01
Computer-assisted navigation in total knee arthroplasty (TKA) reduces variability and may improve accuracy in the postoperative static alignment. The effect of navigation on alignment and biomechanics during more dynamic movements has not been investigated. This study compared knee biomechanics during level walking of 121 participants: 39 with conventional TKA, 42 with computer-assisted navigation TKA and 40 unimpaired control participants. Standing lower-limb alignment was significantly closer to ideal in participants with navigation TKA. During gait, when differences in walking speed were accounted for, participants with conventional TKA had less knee flexion during stance and swing than controls (P<0.01), but there were no differences between participants with navigation TKA and controls for the same variables. Both groups of participants with TKA had lower knee adduction moments than controls (P<0.01). In summary, there were fewer differences in the biomechanics of computer-assisted navigation TKA patients compared to controls than for patients with conventional TKA. Computer-assisted navigation TKA may restore biomechanics during walking that are closer to normal than conventional TKA. Copyright © 2017 Elsevier B.V. All rights reserved.
Loading of Hip Measured by Hip Contact Forces at Different Speeds of Walking and Running.
Giarmatzis, Georgios; Jonkers, Ilse; Wesseling, Mariska; Van Rossom, Sam; Verschueren, Sabine
2015-08-01
Exercise plays a pivotal role in maximizing peak bone mass in adulthood and maintaining it through aging, by imposing mechanical loading on the bone that can trigger bone mineralization and growth. The optimal type and intensity of exercise that best enhances bone strength remains, however, poorly characterized, partly because the exact peak loading of the bone produced by the diverse types of exercises is not known. By means of integrated motion capture as an input to dynamic simulations, contact forces acting on the hip of 20 young healthy adults were calculated during walking and running at different speeds. During walking, hip contact forces (HCFs) have a two-peak profile whereby the first peak increases from 4.22 body weight (BW) to 5.41 BW and the second from 4.37 BW to 5.74 BW, by increasing speed from 3 to 6 km/h. During running, there is only one peak HCF that increases from 7.49 BW to 10.01 BW, by increasing speed from 6 to 12 km/h. Speed related profiles of peak HCFs and ground reaction forces (GRFs) reveal a different progression of the two peaks during walking. Speed has a stronger impact on peak HCFs rather than on peak GRFs during walking and running, suggesting an increasing influence of muscle activity on peak HCF with increased speed. Moreover, results show that the first peak of HCF during walking can be predicted best by hip adduction moment, and the second peak of HCF by hip extension moment. During running, peak HCF can be best predicted by hip adduction moment. The present study contributes hereby to a better understanding of musculoskeletal loading during walking and running in a wide range of speeds, offering valuable information to clinicians and scientists exploring bone loading as a possible nonpharmacological osteogenic stimulus. © 2015 American Society for Bone and Mineral Research. © 2015 American Society for Bone and Mineral Research.
Chua, Karen S G; Chee, Johnny; Wong, Chin J; Lim, Pang H; Lim, Wei S; Hoo, Chuan M; Ong, Wai S; Shen, Mira L; Yu, Wei S
2015-01-01
Impairments in walking speed and capacity are common problems after stroke which may benefit from treadmill training. However, standard treadmills, are unable to adapt to the slower walking speeds of stroke survivors and are unable to automate training progression. This study tests a Variable Automated Speed and Sensing Treadmill (VASST) using a standard clinical protocol. VASST is a semi-automated treadmill with multiple sensors and micro controllers, including wireless control to reposition a fall-prevention harness, variable pre-programmed exercise parameters and laser beam foot sensors positioned on the belt to detect subject's foot positions. An open-label study with assessor blinding was conducted in 10 community-dwelling chronic hemiplegic patients who could ambulate at least 0.1 m/s. Interventions included physiotherapist-supervised training on VASST for 60 min three times per week for 4 weeks (total 12 h). Outcome measures of gait speed, quantity, balance, and adverse events were assessed at baseline, 2, 4, and 8 weeks. Ten subjects (8 males, mean age 55.5 years, 2.1 years post stroke) completed VASST training. Mean 10-m walk test speed was 0.69 m/s (SD = 0.29) and mean 6-min walk test distance was 178.3 m (84.0). After 4 weeks of training, 70% had significant positive gains in gait speed (0.06 m/s, SD = 0.08 m/s, P = 0.037); and 90% improved in walking distance. (54.3 m, SD = 30.9 m, P = 0.005). There were no adverse events. This preliminary study demonstrates the initial feasibility and short-term efficacy of VASST for walking speed and distance for people with chronic post-stroke hemiplegia.
Determinants of physical activity in minimally impaired people with multiple sclerosis.
Kahraman, Turhan; Savci, Sema; Coskuner-Poyraz, Esra; Ozakbas, Serkan; Idiman, Egemen
2015-11-01
Despite the commonly known benefits of physical activity, evidence shows that people with multiple sclerosis (pwMS) are relatively inactive. There are several studies about factors affecting physical activity in pwMS. However, these factors have not investigated in minimally impaired pwMS who do not have remarkable symptoms and walking disturbance. The objective was to determine factors affecting physical activity in minimally impaired pwMS. We recruited 52 minimally impaired pwMS and measured physical activity with Godin Leisure-Time Exercise Questionnaire (GLTEQ) and an accelerometer used for the 7-day period. Demographic data were recorded. Walking (speed, endurance, dexterity, and quality), fatigue, depression, and quality of life were measured. We recruited 52 minimally impaired pwMS and measured physical activity with Godin Leisure-Time Exercise Questionnaire (GLTEQ) and an accelerometer used for the 7-day period. Demographic data were recorded. Walking (speed, endurance, dexterity, and quality), fatigue, depression, and quality of life were measured. The walking speed assessed by the Timed 25-Foot Walk and gender were found the determinants of physical activity level assessed by the GLTEQ and accelerometer, respectively. Walking (speed, endurance, and dexterity), gender, employment status, and quality of life were associated with physical activity. Either female or unemployed participants had significantly less physical activity. There were no significant difference between physical activity levels and the other subgroups. Either to be a female or to have slower walking speed was associated with less physical activity. Strategies to improve walking should be focused on female pwMS with minimal impairment. Copyright © 2015 Elsevier B.V. All rights reserved.
Pedometer accuracy in slow walking older adults.
Martin, Jessica B; Krč, Katarina M; Mitchell, Emily A; Eng, Janice J; Noble, Jeremy W
2012-07-03
The purpose of this study was to determine pedometer accuracy during slow overground walking in older adults (Mean age = 63.6 years). A total of 18 participants (6 males, 12 females) wore 5 different brands of pedometers over 3 pre-set cadences that elicited walking speeds between 0.3 and 0.9 m/s and one self-selected cadence over 80 meters of indoor track. Pedometer accuracy decreased with slower walking speeds with mean percent errors across all devices combined of 56%, 40%, 19% and 9% at cadences of 50, 66, and 80 steps/min, and self selected cadence, respectively. Percent error ranged from 45.3% for Omron HJ105 to 66.9% for Yamax Digiwalker 200. Due to the high level of error across the slowest cadences of all 5 devices, the use of pedometers to monitor step counts in healthy older adults with slower gait speeds is problematic. Further research is required to develop pedometer mechanisms that accurately measure steps at slower walking speeds.
Pedometer accuracy in slow walking older adults
Martin, Jessica B.; Krč, Katarina M.; Mitchell, Emily A.; Eng, Janice J.; Noble, Jeremy W.
2013-01-01
The purpose of this study was to determine pedometer accuracy during slow overground walking in older adults (Mean age = 63.6 years). A total of 18 participants (6 males, 12 females) wore 5 different brands of pedometers over 3 pre-set cadences that elicited walking speeds between 0.3 and 0.9 m/s and one self-selected cadence over 80 meters of indoor track. Pedometer accuracy decreased with slower walking speeds with mean percent errors across all devices combined of 56%, 40%, 19% and 9% at cadences of 50, 66, and 80 steps/min, and self selected cadence, respectively. Percent error ranged from 45.3% for Omron HJ105 to 66.9% for Yamax Digiwalker 200. Due to the high level of error across the slowest cadences of all 5 devices, the use of pedometers to monitor step counts in healthy older adults with slower gait speeds is problematic. Further research is required to develop pedometer mechanisms that accurately measure steps at slower walking speeds. PMID:24795762
Harrison, Samantha L; Horton, Elizabeth J; Smith, Robert; Sandland, Carolyn J; Steiner, Michael C; Morgan, Mike D L; Singh, Sally J
2013-01-01
To test the accuracy of a multi-sensor activity monitor (SWM) in detecting slow walking speeds in patients with chronic obstructive pulmonary disease (COPD). Concerns have been expressed regarding the use of pedometers in patient populations. Although activity monitors are more sophisticated devices, their accuracy at detecting slow walking speeds common in patients with COPD has yet to be proven. A prospective observational study design was employed. An incremental shuttle walk test (ISWT) was completed by 57 patients with COPD wearing an SWM. The ISWT was repeated by 20 patients wearing the same SWM. Differences were identified between metabolic equivalents (METS) and between step-count across five levels of the ISWT (p < 0.001). Good within monitor reproducibility between two ISWT was identified for total energy expenditure and step-count (p < 0.001). The SWM is able to detect slow (standardized) speeds of walking and is an acceptable method for measuring physical activity in individuals disabled by COPD. Copyright © 2013 Elsevier Inc. All rights reserved.
Energy expenditure and activity among Hadza hunter-gatherers.
Pontzer, Herman; Raichlen, David A; Wood, Brian M; Emery Thompson, Melissa; Racette, Susan B; Mabulla, Audax Z P; Marlowe, Frank W
2015-01-01
Studies of total energy expenditure, (TEE; kcal/day) among traditional populations have challenged current models relating habitual physical activity to daily energy requirements. Here, we examine the relationship between physical activity and TEE among traditional Hadza hunter-gatherers living in northern Tanzania. Hadza adults were studied at two camps, with minimal intervention so as to monitor energy expenditure and activity during normal daily life. We measured daily walking distance and walking speed using wearable GPS units for 41 adults. For a subset of 30 adults, we measured TEE using doubly labeled water, three indices of work load (foraging return rate, maternal status, and number of dependent children), and urinary biomarkers of metabolic activity and stress (8-hydroxydeoxyguanosine, cortisol, and testosterone). Fat-free mass was the single strongest predictor of TEE among Hadza adults (r(2) = 0.66, P < 0.001). Hadza men used greater daily walking distances and faster walking speeds compared with that of Hadza women, but neither sex nor any measure of physical activity or work load were correlated with TEE in analyses controlling for fat-free mass. Compared with developed, industrial populations, Hadza adults had similar TEE but elevated levels of metabolic stress as measured by 8-hydroxydeoxyguanosine. Our results indicate that daily physical activity may not predict TEE within traditional hunter-gatherer populations like the Hadza. Instead, adults with high levels of habitual physical activity may adapt by reducing energy allocation to other physiological activity. © 2015 Wiley Periodicals, Inc.
Rapp, Kilian; Klenk, Jochen; Benzinger, Petra; Franke, Sebastian; Denkinger, Michael D; Peter, Richard
2012-10-01
Several tests of physical performance like gait speed or standing balance are part of the geriatric assessment. Measures of physical activity like daily walking duration are more difficult to assess but may be of higher relevance for daily requirements. It is therefore of interest to what extent physical performance measures are associated with physical activity. In a cohort study, baseline screening was performed in 1271 community-living people aged 65-90 years from Ulm, Germany. Average daily walking duration was assessed in all participants by accelerometers over a one-week period. Habitual gait speed, 5-Chair-Rise test, standing balance and handgrip strength served as measures of physical performance. The association between measures of physical performance and physical activity was calculated by linear regression analysis. The mean daily walking duration was 104.8 minutes in men and 103.0 minutes in women. A positive relationship between gait speed and walking duration was observed in men and women with low gait speed (≤0.8 m/s) but not in participants above this threshold. Standing balance and hand grip strength were positively and 5-Chair-Rise test inversely related with average daily walking duration. A relationship between hand grip strength and walking duration was only observed in women aged 75 years and more. Physical performance measures and objectively measured walking duration are related with each other but only a small percentage of the variance of daily walking duration was explained by physical performance measures. Therefore, factors other than physical performance seem to influence daily walking duration to a great extent.
Evans, Nicholas; Hartigan, Clare; Kandilakis, Casey; Pharo, Elizabeth; Clesson, Ismari
2015-01-01
Lower extremity robotic exoskeleton technology is being developed with the promise of affording people with spinal cord injury (SCI) the opportunity to stand and walk. The mobility benefits of exoskeleton-assisted walking can be realized immediately, however the cardiorespiratory and metabolic benefits of this technology have not been thoroughly investigated. The purpose of this pilot study was to evaluate the acute cardiorespiratory and metabolic responses associated with exoskeleton-assisted walking overground and to determine the degree to which these responses change at differing walking speeds. Five subjects (4 male, 1 female) with chronic SCI (AIS A) volunteered for the study. Expired gases were collected during maximal graded exercise testing and two, 6-minute bouts of exoskeleton-assisted walking overground. Outcome measures included peak oxygen consumption (V̇O2peak), average oxygen consumption (V̇O2avg), peak heart rate (HRpeak), walking economy, metabolic equivalent of tasks for SCI (METssci), walk speed, and walk distance. Significant differences were observed between walk-1 and walk-2 for walk speed, total walk distance, V̇O2avg, and METssci. Exoskeleton-assisted walking resulted in %V̇O2peak range of 51.5% to 63.2%. The metabolic cost of exoskeleton-assisted walking ranged from 3.5 to 4.3 METssci. Persons with motor-complete SCI may be limited in their capacity to perform physical exercise to the extent needed to improve health and fitness. Based on preliminary data, cardiorespiratory and metabolic demands of exoskeleton-assisted walking are consistent with activities performed at a moderate intensity.
Hartigan, Clare; Kandilakis, Casey; Pharo, Elizabeth; Clesson, Ismari
2015-01-01
Background: Lower extremity robotic exoskeleton technology is being developed with the promise of affording people with spinal cord injury (SCI) the opportunity to stand and walk. The mobility benefits of exoskeleton-assisted walking can be realized immediately, however the cardiorespiratory and metabolic benefits of this technology have not been thoroughly investigated. Objective: The purpose of this pilot study was to evaluate the acute cardiorespiratory and metabolic responses associated with exoskeleton-assisted walking overground and to determine the degree to which these responses change at differing walking speeds. Methods: Five subjects (4 male, 1 female) with chronic SCI (AIS A) volunteered for the study. Expired gases were collected during maximal graded exercise testing and two, 6-minute bouts of exoskeleton-assisted walking overground. Outcome measures included peak oxygen consumption (V̇O2peak), average oxygen consumption (V̇O2avg), peak heart rate (HRpeak), walking economy, metabolic equivalent of tasks for SCI (METssci), walk speed, and walk distance. Results: Significant differences were observed between walk-1 and walk-2 for walk speed, total walk distance, V̇O2avg, and METssci. Exoskeleton-assisted walking resulted in %V̇O2peak range of 51.5% to 63.2%. The metabolic cost of exoskeleton-assisted walking ranged from 3.5 to 4.3 METssci. Conclusion: Persons with motor-complete SCI may be limited in their capacity to perform physical exercise to the extent needed to improve health and fitness. Based on preliminary data, cardiorespiratory and metabolic demands of exoskeleton-assisted walking are consistent with activities performed at a moderate intensity. PMID:26364281
EFFECTS OF THE GENIUM MICROPROCESSOR KNEE SYSTEM ON KNEE MOMENT SYMMETRY DURING HILL WALKING.
Highsmith, M Jason; Klenow, Tyler D; Kahle, Jason T; Wernke, Matthew M; Carey, Stephanie L; Miro, Rebecca M; Lura, Derek J
2016-09-01
Use of the Genium microprocessor knee (MPK) system reportedly improves knee kinematics during walking and other functional tasks compared to other MPK systems. This improved kinematic pattern was observed when walking on different hill conditions and at different speeds. Given the improved kinematics associated with hill walking while using the Genium, a similar improvement in the symmetry of knee kinetics is also feasible. The purpose of this study was to determine if Genium MPK use would reduce the degree of asymmetry (DoA) of peak stance knee flexion moment compared to the C-Leg MPK in transfemoral amputation (TFA) patients. This study used a randomized experimental crossover of TFA patients using Genium and C-Leg MPKs ( n = 20). Biomechanical gait analysis by 3D motion tracking with floor mounted force plates of TFA patients ambulating at different speeds on 5° ramps was completed. Knee moment DoA was significantly different between MPK conditions in the slow and fast uphill as well as the slow and self-selected downhill conditions. In a sample of high-functioning TFA patients, Genium knee system accommodation and use improved knee moment symmetry in slow speed walking up and down a five degree ramp compared with C-Leg. Additionally, the Genium improved knee moment symmetry when walking downhill at comfortable speed. These results likely have application in other patients who could benefit from more consistent knee function, such as older patients and others who have slower walking speeds.
Novel approach to ambulatory assessment of human segmental orientation on a wearable sensor system.
Liu, Kun; Liu, Tao; Shibata, Kyoko; Inoue, Yoshio; Zheng, Rencheng
2009-12-11
A new method using a double-sensor difference based algorithm for analyzing human segment rotational angles in two directions for segmental orientation analysis in the three-dimensional (3D) space was presented. A wearable sensor system based only on triaxial accelerometers was developed to obtain the pitch and yaw angles of thigh segment with an accelerometer approximating translational acceleration of the hip joint and two accelerometers measuring the actual accelerations on the thigh. To evaluate the method, the system was first tested on a 2 degrees of freedom mechanical arm assembled out of rigid segments and encoders. Then, to estimate the human segmental orientation, the wearable sensor system was tested on the thighs of eight volunteer subjects, who walked in a straight forward line in the work space of an optical motion analysis system at three self-selected speeds: slow, normal and fast. In the experiment, the subject was assumed to walk in a straight forward way with very little trunk sway, skin artifacts and no significant internal/external rotation of the leg. The root mean square (RMS) errors of the thigh segment orientation measurement were between 2.4 degrees and 4.9 degrees during normal gait that had a 45 degrees flexion/extension range of motion. Measurement error was observed to increase with increasing walking speed probably because of the result of increased trunk sway, axial rotation and skin artifacts. The results show that, without integration and switching between different sensors, using only one kind of sensor, the wearable sensor system is suitable for ambulatory analysis of normal gait orientation of thigh and shank in two directions of the segment-fixed local coordinate system in 3D space. It can then be applied to assess spatio-temporal gait parameters and monitoring the gait function of patients in clinical settings.
Control of Walking Speed in Children With Cerebral Palsy.
Davids, Jon R; Cung, Nina Q; Chen, Suzy; Sison-Williamson, Mitell; Bagley, Anita M
2017-03-21
Children's ability to control the speed of gait is important for a wide range of activities. It is thought that the ability to increase the speed of gait for children with cerebral palsy (CP) is common. This study considered 3 hypotheses: (1) most ambulatory children with CP can increase gait speed, (2) the characteristics of free (self-selected) and fast walking are related to motor impairment level, and (3) the strategies used to increase gait speed are distinct among these levels. A retrospective review of time-distance parameters (TDPs) for 212 subjects with CP and 34 typically developing subjects walking at free and fast speeds was performed. Only children who could increase their gait speed above the minimal clinically important difference were defined as having a fast walk. Analysis of variance was used to compare TDPs of children with CP, among Gross Motor Function Classification System (GMFCS) levels, and children in typically developing group. Eight-five percent of the CP group (GMFCS I, II, III; 96%, 99%, and 34%, respectively) could increase gait speed on demand. At free speed, children at GMFCS I and II were significantly faster than children at GMFCS level III. At free speed, children at GMFCS I and II had significantly greater stride length than those at GMFCS levels III. At free speed, children at GMFCS level III had significantly lower cadence than those at GMFCS I and II. There were no significant differences in cadence among GMFCS levels at fast speeds. There were no significant differences among GMFCS levels for percent change in any TDP between free and fast walking. Almost all children with CP at GMFCS levels I and II can control the speed of gait, however, only one-third at GMFCS III level have this ability. This study suggests that children at GMFCS III level can be divided into 2 groups based on their ability to control gait speed; however, the prognostic significance of such categorization remains to be determined. Diagnostic level II.
Running for exercise mitigates age-related deterioration of walking economy.
Ortega, Justus D; Beck, Owen N; Roby, Jaclyn M; Turney, Aria L; Kram, Rodger
2014-01-01
Impaired walking performance is a key predictor of morbidity among older adults. A distinctive characteristic of impaired walking performance among older adults is a greater metabolic cost (worse economy) compared to young adults. However, older adults who consistently run have been shown to retain a similar running economy as young runners. Unfortunately, those running studies did not measure the metabolic cost of walking. Thus, it is unclear if running exercise can prevent the deterioration of walking economy. To determine if and how regular walking vs. running exercise affects the economy of locomotion in older adults. 15 older adults (69 ± 3 years) who walk ≥ 30 min, 3x/week for exercise, "walkers" and 15 older adults (69 ± 5 years) who run ≥ 30 min, 3x/week, "runners" walked on a force-instrumented treadmill at three speeds (0.75, 1.25, and 1.75 m/s). We determined walking economy using expired gas analysis and walking mechanics via ground reaction forces during the last 2 minutes of each 5 minute trial. We compared walking economy between the two groups and to non-aerobically trained young and older adults from a prior study. Older runners had a 7-10% better walking economy than older walkers over the range of speeds tested (p = .016) and had walking economy similar to young sedentary adults over a similar range of speeds (p = .237). We found no substantial biomechanical differences between older walkers and runners. In contrast to older runners, older walkers had similar walking economy as older sedentary adults (p = .461) and ∼ 26% worse walking economy than young adults (p<.0001). Running mitigates the age-related deterioration of walking economy whereas walking for exercise appears to have minimal effect on the age-related deterioration in walking economy.
Ficanha, Evandro M; Rastgaar, Mohammad; Kaufman, Kenton R
2015-01-01
The ankle joint of currently available powered prostheses is capable of controlling one degree of freedom (DOF), focusing on improved mobility in the sagittal plane. To increase agility, the requirements of turning in prosthesis design need to be considered. Ankle kinematics and kinetics were studied during sidestep cutting and straight walking. There were no significant differences between the ankle sagittal plane mechanics when comparing sidestep cutting and straight walking; however, significant differences were observed in ankle frontal plane mechanics. During straight walking, the inversion-eversion (IE) angles were smaller than with sidestep cutting. The ankle that initiated the sidestep cutting showed progressively increasing inversion from 2 to 13 degrees while the following contralateral step showed progressively decreasing inversion from 8 to -4 degrees during normal walking speed. The changes in IE kinematics were the most significant during sidestep cutting compared with straight walking. The IE moments of the step that initiated the sidestep cutting were always in eversion, acting as a braking moment opposing the inverting motion. This suggests that an ankle-foot prosthesis with active DOFs in the sagittal and frontal planes will increase the agility of gait for patients with limb loss.
Spiess, Martina R; Jaramillo, Jeffrey P; Behrman, Andrea L; Teraoka, Jeffrey K; Patten, Carolynn
2012-08-01
To investigate the effect of walking speed on the emergence of locomotor electromyogram (EMG) patterns in an individual with chronic incomplete spinal cord injury (SCI), and to determine whether central pattern generator activity during robotic locomotor training (RLT) transfers to volitional EMG activity during overground walking. Single-case (B-A-B; experimental treatment-withdrawal-experimental treatment) design. Freestanding rehabilitation research center. A 50-year-old man who was nonambulatory for 16 months after incomplete SCI (sub-T11). The participant completed two 6-week blocks of RLT, training 4 times per week for 30 minutes per session at walking speeds up to 5km/h (1.4m/s) over continuous bouts lasting up to 17 minutes. Surface EMG was recorded weekly during RLT and overground walking. The Walking Index for Spinal Cord Injury (WISCI-II) was assessed daily during training blocks. During week 4, reciprocal, patterned EMG emerged during RLT. EMG amplitude modulation revealed a curvilinear relationship over the range of walking speeds from 1.5 to 5km/h (1.4m/s). Functionally, the participant improved from being nonambulatory (WISCI-II 1/20), to walking overground with reciprocal stepping using knee-ankle-foot orthoses and a walker (WISCI-II 9/20). EMG was also observed during overground walking. These functional gains were maintained greater than 4 years after locomotor training (LT). Here we report an unexpected course of locomotor recovery in an individual with chronic incomplete SCI. Through RLT at physiologic walking speeds, it was possible to activate the central pattern generator even 16 months postinjury. Further, to a certain degree, improvements from RLT transferred to overground walking. Our results suggest that LT-induced changes affect the central pattern generator and allow supraspinal inputs to engage residual spinal pathways. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Static and dynamic postural control in low-vision and normal-vision adults.
Tomomitsu, Mônica S V; Alonso, Angelica Castilho; Morimoto, Eurica; Bobbio, Tatiana G; Greve, Julia M D
2013-04-01
This study aimed to evaluate the influence of reduced visual information on postural control by comparing low-vision and normal-vision adults in static and dynamic conditions. Twenty-five low-vision subjects and twenty-five normal sighted adults were evaluated for static and dynamic balance using four protocols: 1) the Modified Clinical Test of Sensory Interaction on Balance on firm and foam surfaces with eyes opened and closed; 2) Unilateral Stance with eyes opened and closed; 3) Tandem Walk; and 4) Step Up/Over. The results showed that the low-vision group presented greater body sway compared with the normal vision during balance on a foam surface (p≤0.001), the Unilateral Stance test for both limbs (p≤0.001), and the Tandem Walk test. The low-vision group showed greater step width (p≤0.001) and slower gait speed (p≤0.004). In the Step Up/Over task, low-vision participants were more cautious in stepping up (right p≤0.005 and left p≤0.009) and in executing the movement (p≤0.001). These findings suggest that visual feedback is crucial for determining balance, especially for dynamic tasks and on foam surfaces. Low-vision individuals had worse postural stability than normal-vision adults in terms of dynamic tests and balance on foam surfaces.
Association of slower walking speed with incident knee osteoarthritis-related outcomes.
Purser, Jama L; Golightly, Yvonne M; Feng, Qiushi; Helmick, Charles G; Renner, Jordan B; Jordan, Joanne M
2012-07-01
To determine whether slower walking speed was associated with an increased risk of incident hip and knee osteoarthritis (OA)-related outcomes. After providing informed consent, community-dwelling participants in the Johnston County Osteoarthritis Project completed 2 home-based interviews and an additional clinic visit for radiographic and physical evaluation. One thousand eight hundred fifty-eight noninstitutionalized residents ages ≥ 45 years living for at least 1 year in 1 of 6 townships in Johnston County, North Carolina, completed the study's questionnaires and clinical examinations at baseline and at followup testing. Walking time was assessed using a manual stopwatch in 2 trials over an 8-foot distance, and walking speed was calculated as the average of both trials. For the hip and knee, we examined 3 outcomes per joint site: radiographic OA (weight-bearing anteroposterior knee radiographs, supine anteroposterior pelvic radiographs of the hip), chronic joint symptoms, and symptomatic OA. Covariates included age, sex, race, education, marital status, body mass index, number of self-reported chronic conditions diagnosed by a health care provider, number of prescriptions, depressive symptoms, self-rated health, number of lower body functional limitations, smoking, and physical activity. Faster walking speed was consistently associated with a lower incidence of radiographic (adjusted odds ratio [OR] 0.88, 95% confidence interval [95% CI] 0.79-0.97) and symptomatic knee OA (adjusted OR 0.84, 95% CI 0.75-0.95); slower walking speed was associated with a greater incidence of these outcomes across a broad range of different clinical and radiographic OA outcomes. Slower walking speed may be a marker for incident knee OA, but other studies must confirm this finding. Copyright © 2012 by the American College of Rheumatology.
Obesity does not impair walking economy across a range of speeds and grades.
Browning, Raymond C; Reynolds, Michelle M; Board, Wayne J; Walters, Kellie A; Reiser, Raoul F
2013-05-01
Despite the popularity of walking as a form of physical activity for obese individuals, relatively little is known about how obesity affects the metabolic rate, economy, and underlying mechanical energetics of walking across a range of speeds and grades. The purpose of this study was to quantify metabolic rate, stride kinematics, and external mechanical work during level and gradient walking in obese and nonobese adults. Thirty-two obese [18 women, mass = 102.1 (15.6) kg, BMI = 33.9 (3.6) kg/m(2); mean (SD)] and 19 nonobese [10 women, mass = 64.4 (10.6) kg, BMI = 21.6 (2.0) kg/m(2)] volunteers participated in this study. We measured oxygen consumption, ground reaction forces, and lower extremity kinematics while subjects walked on a dual-belt force-measuring treadmill at 11 speeds/grades (0.50-1.75 m/s, -3° to +9°). We calculated metabolic rate, stride kinematics, and external work. Net metabolic rate (Ė net/kg, W/kg) increased with speed or grade across all individuals. Surprisingly and in contrast with previous studies, Ė net/kg was 0-6% less in obese compared with nonobese adults (P = 0.013). External work, although a primary determinant of Ė net/kg, was not affected by obesity across the range of speeds/grades used in this study. We also developed new prediction equations to estimate oxygen consumption and Ė net/kg and found that Ė net/kg was positively related to relative leg mass and step width and negatively related to double support duration. These results suggest that obesity does not impair walking economy across a range of walking speeds and grades.
Effects of Walking Speed and Visual-Target Distance on Toe Trajectory During Swing Phase
NASA Technical Reports Server (NTRS)
Miller, Chris; Peters, Brian; Brady, Rachel; Warren, Liz; Richards, Jason; Mulavara, Ajitkumar; Sung, Hsi-Guang; Bloomberg, Jacob
2006-01-01
After spaceflight, astronauts experience disturbances in their ability to walk and maintain postural stability (Bloomberg, et al., 1997). One of the post-flight neurovestibular assessments requires that the astronaut walk on a treadmill at 1.8 m/sec (4.0 mph), while performing a visual acuity test, set at two different distances ( far and near ). For the first few days after landing, some crewmembers can not maintain the required pace, so a lower speed may be used. The slower velocity must be considered in the kinematic analysis, because Andriacchi, et al. (1977) showed that in clinical populations, changes in gait parameters may be attributable more to slower gait speed than pathology. Studying toe trajectory gives a global view of control of the leg, since it involves coordination of muscles and joints in both the swing and stance legs (Karst, et al., 1999). Winter (1992) and Murray, et al. (1984) reported that toe clearance during overground walking increased slightly as speed increased, but not significantly. Also, toe vertical peaks in both early and late swing phase did increase significantly with increasing speed. During conventional testing of overground locomotion, subjects are usually asked to fix their gaze on the end of the walkway a far target. But target (i.e., visual fixation) distance has been shown to affect head and trunk motion during treadmill walking (Bloomberg, et al., 1992; Peters, et al., in review). Since the head and trunk can not maintain stable gaze without proper coordination with the lower body (Mulavara & Bloomberg, 2003), it would stand to reason that lower body kinematics may be altered as well when target distance is modified. The purpose of this study was to determine changes in toe vertical trajectory during treadmill walking due to changes in walking speed and target distance.
Distinct sets of locomotor modules control the speed and modes of human locomotion
Yokoyama, Hikaru; Ogawa, Tetsuya; Kawashima, Noritaka; Shinya, Masahiro; Nakazawa, Kimitaka
2016-01-01
Although recent vertebrate studies have revealed that different spinal networks are recruited in locomotor mode- and speed-dependent manners, it is unknown whether humans share similar neural mechanisms. Here, we tested whether speed- and mode-dependence in the recruitment of human locomotor networks exists or not by statistically extracting locomotor networks. From electromyographic activity during walking and running over a wide speed range, locomotor modules generating basic patterns of muscle activities were extracted using non-negative matrix factorization. The results showed that the number of modules changed depending on the modes and speeds. Different combinations of modules were extracted during walking and running, and at different speeds even during the same locomotor mode. These results strongly suggest that, in humans, different spinal locomotor networks are recruited while walking and running, and even in the same locomotor mode different networks are probably recruited at different speeds. PMID:27805015
Kelly, Valerie E; Shumway-Cook, Anne
2014-01-01
Gait impairments are a common and consequential motor symptom in Parkinson's disease (PD). A cognitive strategy that incorporates instructions to concentrate on specific parameters of walking is an effective approach to gait rehabilitation for persons with PD during single-task and simple dual-task walking conditions. This study examined the ability to modify dual-task walking in response to instructions during a complex walking task in people with PD compared to healthy older adults (HOA). Eleven people with PD and twelve HOA performed a cognitive task while walking with either a usual base or a narrow base of support. Dual-task walking and cognitive task performance were characterized under two conditions-when participants were instructed focus on walking and when they were instructed to focus on the cognitive task. During both usual base and narrow base walking, instructions affected cognitive task response latency, with slower performance when instructed to focus on walking compared to the cognitive task. Regardless of task or instructions, cognitive task performance was slower in participants with PD compared to HOA. During usual base walking, instructions influenced gait speed for both people with PD and HOA, with faster gait speed when instructed to focus on walking compared to the cognitive task. In contrast, during the narrow base walking, instructions affected gait speed only for HOA, but not for people with PD. This suggests that among people with PD the ability to modify walking in response to instructions depends on the complexity of the walking task.
Effects of visual focus and gait speed on walking balance in the frontal plane.
Goodworth, Adam; Perrone, Kathryn; Pillsbury, Mark; Yargeau, Michelle
2015-08-01
We investigated how head position and gait speed influenced frontal plane balance responses to external perturbations during gait. Thirteen healthy participants walked on a treadmill at three different gait speeds. Visual conditions included either focus downward on lower extremities and walking surface only or focus forward on a stationary scene with horizontal and vertical lines. The treadmill was positioned on a platform that was stationary (non-perturbed) or moving in a pattern that appeared random to the subjects (perturbed). In non-perturbed walking, medial-lateral upper body motion was very similar between visual conditions. However, in perturbed walking, there was significantly less body motion when focus was on the stationary visual scene, suggesting visual feedback of stationary vertical and horizontal cues are particularly important when balance is challenged. Sensitivity of body motion to perturbations was significantly decreased by increasing gait speed, suggesting that faster walking was less sensitive to frontal plane perturbations. Finally, our use of external perturbations supported the idea that certain differences in balance control mechanisms can only be detected in more challenging situations, which is an important consideration for approaches to investigating sensory contribution to balance during gait. Copyright © 2015 Elsevier B.V. All rights reserved.
Moving characteristics of single file passengers considering the effect of ship trim and heeling
NASA Astrophysics Data System (ADS)
Sun, Jinlu; Lu, Shouxiang; Lo, Siuming; Ma, Jian; Xie, Qimiao
2018-01-01
Ship listing and motion affects the movement pattern of passengers on board, thus pedestrian traffic and evacuation dynamics would be significantly different from those on level ground. To quantify the influence of ship listing and motion on passenger evacuation, we designed a ship corridor simulator, with which we performed single-file pedestrian movement experiments considering the effect of trim and heeling. Results indicated that density is not the only factor that affects pedestrian speed under ship trim or heeling conditions, for that both individual walking speed and group walking speed would be greatly attenuated due to the influence of the trim angles. However, heeling angles show less impact on speed when compared with trim angles. In addition, the speed correlation coefficient between the adjacent experimental subjects would be higher with larger angles and lower speed. Moreover, both female and male experimental subjects need similar distance headway for walking in different trim or heeling conditions. Furthermore, experimental subjects with lower individual walking speed need longer time headway to keep enough distance headway. This work will provide fundamental guidance to the development of evacuation models and the design of evacuation facilities on board.
Weber, Daniela
2016-01-28
Physical functioning and mobility of older populations are of increasing interest when populations are aging. Lower body functioning such as walking is a fundamental part of many actions in daily life. Limitations in mobility threaten independent living as well as quality of life in old age. In this study we examine differences in physical aging and convert those differences into the everyday measure of single years of age. We use the English Longitudinal Study of Ageing, which was collected biennially between 2002 and 2012. Data on physical performance, health as well as information on economics and demographics of participants were collected. Lower body performance was assessed with two timed walks at normal pace each of 8 ft (2.4 m) of survey participants aged at least 60 years. We employed growth curve models to study differences in physical aging and followed the characteristic-based age approach to illustrate those differences in single years of age. First, we examined walking speed of about 11,700 English individuals, and identified differences in aging trajectories by sex and other characteristics (e.g. education, occupation, regional wealth). Interestingly, higher educated and non-manual workers outperformed their counterparts for both men and women. Moreover, we transformed the differences between subpopulations into single years of age to demonstrate the magnitude of those gaps, which appear particularly high at early older ages. This paper expands research on aging and physical performance. In conclusion, higher education provides an advantage in walking of up to 15 years for men and 10 years for women. Thus, enhancements in higher education have the potential to ensure better mobility and independent living in old age for a longer period.
Design and Pilot Study of a Gait Enhancing Mobile Shoe.
Handzic, Ismet; Barno, Eileen M; Vasudevan, Erin V; Reed, Kyle B
2011-12-01
Hemiparesis is a frequent and disabling consequence of stroke and can lead to asymmetric and inefficient walking patterns. Training on a split-belt treadmill, which has two separate treads driving each leg at a different speed, can correct such asymmetries post-stroke. However, the effects of split-belt treadmill training only partially transfer to everyday walking over ground and extended training sessions are required to achieve long-lasting effects. Our aim is to develop an alternative device, the Gait Enhancing Mobile Shoe (GEMS), that mimics the actions of the split-belt treadmill, but can be used during overground walking and in one's own home, thus enabling long-term training. The GEMS does not require any external power and is completely passive; all necessary forces are redirected from the natural forces present during walking. Three healthy subjects walked on the shoes for twenty minutes during which one GEMS generated a backward motion and the other GEMS generated a forward motion. Our preliminary experiments suggest that wearing the GEMS did cause subjects to modify coordination between the legs and these changes persisted when subjects returned to normal over-ground walking. The largest effects were observed in measures of temporal coordination (e.g., duration of double-support). These results suggest that the GEMS is capable of altering overground walking coordination in healthy controls and could potentially be used to correct gait asymmetries post-stroke.
Paul, L; Rafferty, D; Young, S; Miller, L; Mattison, P; McFadyen, A
2008-08-01
Functional electrical stimulation (FES) is used clinically in the management of drop foot in people suffering from neurological conditions. The aim of the study was to investigate the effects of FES, in terms of speed and physiological cost of gait, in people with multiple sclerosis (pwMS). Twelve pwMS and 12 healthy matched controls walked at their own preferred walking speed (PWS) for 5 min around a 10 m elliptical course. Subjects with MS completed the protocol with and without using their FES. In addition, control subjects completed the protocol twice more walking at the same PWS of the pwMS to which they were matched. Wearing FES lead to a significant improvement in walking speed (0.49 ms(-1) and 0.43 ms(-1) with and without their FES respectively; P<0.001) and a significant reduction in the physiological cost of gait (0.41 mL min(-1) kg(-1) m(-1) and 0.46 mL min(-1) kg(-1) m(-1) with and without FES respectively; P=0.017) in pwMS. The speed of walking, oxygen uptake, and physiological cost were significantly different between pwMS and controls both at preferred and matched speeds. Although pwMS exhibit a higher physiological cost of walking, FES offers an orthotic benefit to pwMS and should be considered as a possible treatment option.
An Evaluation of Commercial Pedometers for Monitoring Slow Walking Speed Populations.
Beevi, Femina H A; Miranda, Jorge; Pedersen, Christian F; Wagner, Stefan
2016-05-01
Pedometers are considered desirable devices for monitoring physical activity. Two population groups of interest include patients having undergone surgery in the lower extremities or who are otherwise weakened through disease, medical treatment, or surgery procedures, as well as the slow walking senior population. For these population groups, pedometers must be able to perform reliably and accurately at slow walking speeds. The objectives of this study were to evaluate the step count accuracy of three commercially available pedometers, the Yamax (Tokyo, Japan) Digi-Walker(®) SW-200 (YM), the Omron (Kyoto, Japan) HJ-720 (OM), and the Fitbit (San Francisco, CA) Zip (FB), at slow walking speeds, specifically at 1, 2, and 3 km/h, and to raise awareness of the necessity of focusing research on step-counting devices and algorithms for slow walking populations. Fourteen participants 29.93 ±4.93 years of age were requested to walk on a treadmill at the three specified speeds, in four trials of 100 steps each. The devices were worn by the participants on the waist belt. The pedometer counts were recorded, and the error percentage was calculated. The error rate of all three evaluated pedometers decreased with the increase of speed: at 1 km/h the error rates varied from 87.11% (YM) to 95.98% (FB), at 2 km/h the error rates varied from 17.27% (FB) to 46.46% (YM), and at 3 km/h the error rates varied from 22.46% (YM) to a slight overcount of 0.70% (FB). It was observed that all the evaluated devices have high error rates at 1 km/h and mixed error rates at 2 km/h, and at 3 km/h the error rates are the smallest of the three assessed speeds, with the OM and the FB having a slight overcount. These results show that research on pedometers' software and hardware should focus more on accurate step detection at slow walking speeds.
Within-day variability on short and long walking tests in persons with multiple sclerosis.
Feys, Peter; Bibby, Bo; Romberg, Anders; Santoyo, Carme; Gebara, Benoit; de Noordhout, Benoit Maertens; Knuts, Kathy; Bethoux, Francois; Skjerbæk, Anders; Jensen, Ellen; Baert, Ilse; Vaney, Claude; de Groot, Vincent; Dalgas, Ulrik
2014-03-15
To compare within-day variability of short (10 m walking test at usual and fastest speed; 10MWT) and long (2 and 6-minute walking test; 2MWT/6MWT) tests in persons with multiple sclerosis. Observational study. MS rehabilitation and research centers in Europe and US within RIMS (European network for best practice and research in MS rehabilitation). Ambulatory persons with MS (Expanded Disability Status Scale 0-6.5). Subjects of different centers performed walking tests at 3 time points during a single day. 10MWT, 2MWT and 6MWT at fastest speed and 10MWT at usual speed. Ninety-five percent limits of agreement were computed using a random effects model with individual pwMS as random effect. Following this model, retest scores are with 95% certainty within these limits of baseline scores. In 102 subjects, within-day variability was constant in absolute units for the 10MWT, 2MWT and 6MWT at fastest speed (+/-0.26, 0.16 and 0.15m/s respectively, corresponding to +/-19.2m and +/-54 m for the 2MWT and 6MWT) independent on the severity of ambulatory dysfunction. This implies a greater relative variability with increasing disability level, often above 20% depending on the applied test. The relative within-day variability of the 10MWT at usual speed was +/-31% independent of ambulatory function. Absolute values of within-day variability on walking tests at fastest speed were independent of disability level and greater with short compared to long walking tests. Relative within-day variability remained overall constant when measured at usual speed. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Miller, Christopher A.; Feiveson, Al; Bloomberg, Jacob J.
2007-01-01
Toe trajectory during swing phase is a precise motor control task that can provide insights into the sensorimotor control of the legs. The purpose of this study was to determine changes in vertical toe trajectory during treadmill walking due to changes in walking speed and target distance. For each trial, subjects walked on a treadmill at one of five speeds while performing a dynamic visual acuity task at either a far or near target distance (five speeds two targets distances = ten trials). Toe clearance decreased with increasing speed, and the vertical toe peak just before heel strike increased with increasing speed, regardless of target distance. The vertical toe peak just after toe-off was lower during near-target visual acuity tasks than during far-target tasks, but was not affected by speed. The ankle of the swing leg appeared to be the main joint angle that significantly affected all three toe trajectory events. The foot angle of the swing leg significantly affected toe clearance and the toe peak just before heel strike. These results will be used to enhance the analysis of lower limb kinematics during the sensorimotor treadmill testing, where differing speeds and/or visual target distances may be used.
Arena, Sara L; Garman, Christina R; Nussbaum, Maury A; Madigan, Michael L
2017-07-01
Obesity and aging have been independently associated with altered required friction during walking, but it is unclear how these factors interact to influence the likelihood of slipping. Therefore, the purpose of this study was to determine whether there are differences related to obesity and aging on required friction during overground walking. Fourteen older non-obese, 11 older obese, 20 younger non-obese, and 20 younger obese adults completed walking trials at both a self-selected and hurried speed. When walking at a hurried speed, older obese men walked at a slower gait speed and exhibited lower frictional demands compared both to older non-obese men and to younger obese men. No differences in required friction were found between non-obese and obese younger adults. These results suggest that the increased rate of falls among obese or older adults is not likely due to a higher risk of slip initiation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Motor fatigue measurement by distance-induced slow down of walking speed in multiple sclerosis.
Phan-Ba, Rémy; Calay, Philippe; Grodent, Patrick; Delrue, Gael; Lommers, Emilie; Delvaux, Valérie; Moonen, Gustave; Belachew, Shibeshih
2012-01-01
Motor fatigue and ambulation impairment are prominent clinical features of people with multiple sclerosis (pMS). We hypothesized that a multimodal and comparative assessment of walking speed on short and long distance would allow a better delineation and quantification of gait fatigability in pMS. Our objectives were to compare 4 walking paradigms: the timed 25-foot walk (T25FW), a corrected version of the T25FW with dynamic start (T25FW(+)), the timed 100-meter walk (T100MW) and the timed 500-meter walk (T500MW). Thirty controls and 81 pMS performed the 4 walking tests in a single study visit. The 4 walking tests were performed with a slower WS in pMS compared to controls even in subgroups with minimal disability. The finishing speed of the last 100-meter of the T500MW was the slowest measurable WS whereas the T25FW(+) provided the fastest measurable WS. The ratio between such slowest and fastest WS (Deceleration Index, DI) was significantly lower only in pMS with EDSS 4.0-6.0, a pyramidal or cerebellar functional system score reaching 3 or a maximum reported walking distance ≤ 4000 m. The motor fatigue which triggers gait deceleration over a sustained effort in pMS can be measured by the WS ratio between performances on a very short distance and the finishing pace on a longer more demanding task. The absolute walking speed is abnormal early in MS whatever the distance of effort when patients are unaware of ambulation impairment. In contrast, the DI-measured ambulation fatigability appears to take place later in the disease course.
Tefertiller, Candy; Hays, Kaitlin; Jones, Janell; Jayaraman, Arun; Hartigan, Clare; Bushnik, Tamara; Forrest, Gail F
2018-01-01
Objective: To assess safety and mobility outcomes utilizing the Indego powered exoskeleton in indoor and outdoor walking conditions with individuals previously diagnosed with a spinal cord injury (SCI). Methods: We conducted a multicenter prospective observational cohort study in outpatient clinics associated with 5 rehabilitation hospitals. A convenience sample of nonambulatory individuals with SCI ( N = 32) completed an 8-week training protocol consisting of walking training 3 times per week utilizing the Indego powered exoskeleton in indoor and outdoor conditions. Participants were also trained in donning/doffing the exoskeleton during each session. Safety measures such as adverse events (AEs) were monitored and reported. Time and independence with donning/doffing the exoskeleton as well as walking outcomes to include the 10-meter walk test (10MWT), 6-minute walk test (6MWT), Timed Up & Go test (TUG), and 600-meter walk test were evaluated from midpoint to final evaluations. Results: All 32 participants completed the training protocol with limited device-related AEs, which resulted in no interruption in training. The majority of participants in this trial were able to don and doff the Indego independently. Final walking speed ranged from 0.19 to 0.55 m/s. Final average indoor and outdoor walking speeds among all participants were 0.37 m/s ( SD = 0.08, 0.09, respectively), after 8 weeks of training. Significant ( p < .05) improvements were noted between midpoint and final gait speeds in both indoor and outdoor conditions. Average walking endurance also improved among participants after training. Conclusion: The Indego was shown to be safe for providing upright mobility to 32 individuals with SCIs who were nonambulatory. Improvements in speed and independence were noted with walking in indoor and outdoor conditions as well as with donning/doffing the exoskeleton.
The Use of Cuff Weights for Aquatic Gait Training in People Post-Stroke with Hemiparesis.
Nishiyori, Ryota; Lai, Byron; Lee, Do Kyeong; Vrongistinos, Konstantinos; Jung, Taeyou
2016-03-01
This study aimed to examine how spatiotemporal and kinematic gait variables are influenced by the application of a cuff weight during aquatic walking in people post-stroke. The secondary purpose was to compare the differences in gait responses between the placements of cuff weights on the proximal (knee weight) and distal end (ankle weight) of the shank. Twenty-one participants post-stroke with hemiparesis aged 66.3 ± 11.3 years participated in a cross-sectional comparative study. Participants completed two aquatic walking trials at their self-selected maximum walking speed across an 8-m walkway under each of the three conditions: 1) walking with a knee weight; 2) walking with an ankle weight; and 3) walking with no weight. Cuff weights were worn on the paretic leg of each participant. Gait speed, cadence, step width and joint kinematics of the hip, knee and ankle joints were recorded by a customized three-dimensional underwater motion analysis system. Mean aquatic walking speeds significantly increased with the use of cuff weights when compared to walking with no weight. Changes in gait variables were found in the non-paretic leg with the addition of weight, while no significant changes were found in the paretic leg. The results suggest that the use of additional weight can be helpful if the goal of gait training is to improve walking speed of people post-stroke during pool floor walking. However, it is interesting to note that changes in gait variables were not found in the paretic limb where favourable responses were expected to occur. Copyright © 2014 John Wiley & Sons, Ltd.
2012-01-01
Background Decreasing sedentary activities that involve prolonged sitting may be an important strategy to reduce obesity and other physical and psychosocial health problems in children. The first step to understanding the effect of sedentary activities on children’s health is to objectively assess these activities with a valid measurement tool. Purpose To examine the validity of the ActivPAL monitor in measuring sitting/lying, standing, and walking time, transition counts and step counts in children in a laboratory setting. Methods Twenty five healthy elementary school children (age 9.9 ± 0.3 years; BMI 18.2 ± 1.9; mean ± SD) were randomly recruited across the Auckland region, New Zealand. Children were fitted with ActivPAL monitors and observed during simulated free-living activities involving sitting/lying, standing and walking, followed by treadmill and over-ground activities at various speeds (slow, normal, fast) against video observation (criterion measure). The ActivPAL sit-to-stand and stand-to-sit transition counts and steps were also compared with video data. The accuracy of step counts measured by the ActivPAL was also compared against the New Lifestyles NL-2000 and the Yamax Digi-Walker SW-200 pedometers. Results We observed a perfect correlation between the ActivPAL monitor in time spent sitting/lying, standing, and walking in simulated free-living activities with direct observation. Correlations between the ActivPAL and video observation in total numbers of sit-to-stand and stand-to-sit transitions were high (r = 0.99 ± 0.01). Unlike pedometers, the ActivPAL did not misclassify fidgeting as steps taken. Strong correlations (r = 0.88-1.00) between ActivPAL step counts and video observation in both treadmill and over-ground slow and normal walking were also observed. During treadmill and over-ground fast walking and running, the correlations were low (r = 0.21-0.46). Conclusion The ActivPAL monitor is a valid measurement tool for assessing time spent sitting/lying, standing, and walking, sit-to-stand and stand-to-sit transition counts and step counts in slow and normal walking. The device did not measure accurately steps taken during treadmill and over-ground fast walking and running in children. PMID:23031188
When Human Walking is a Random Walk
NASA Astrophysics Data System (ADS)
Hausdorff, J. M.
1998-03-01
The complex, hierarchical locomotor system normally does a remarkable job of controlling an inherently unstable, multi-joint system. Nevertheless, the stride interval --- the duration of a gait cycle --- fluctuates from one stride to the next, even under stationary conditions. We used random walk analysis to study the dynamical properties of these fluctuations under normal conditions and how they change with disease and aging. Random walk analysis of the stride-to-stride fluctuations of healthy, young adult men surprisingly reveals a self-similar pattern: fluctuations at one time scale are statistically similar to those at multiple other time scales (Hausdorff et al, J Appl Phsyiol, 1995). To study the stability of this fractal property, we analyzed data obtained from healthy subjects who walked for 1 hour at their usual pace, as well as at slower and faster speeds. The stride interval fluctuations exhibited long-range correlations with power-law decay for up to a thousand strides at all three walking rates. In contrast, during metronomically-paced walking, these long-range correlations disappeared; variations in the stride interval were uncorrelated and non-fractal (Hausdorff et al, J Appl Phsyiol, 1996). To gain insight into the mechanism(s) responsible for this fractal property, we examined the effects of aging and neurological impairment. Using detrended fluctuation analysis (DFA), we computed α, a measure of the degree to which one stride interval is correlated with previous and subsequent intervals over different time scales. α was significantly lower in healthy elderly subjects compared to young adults (p < .003) and in subjects with Huntington's disease, a neuro-degenerative disorder of the central nervous system, compared to disease-free controls (p < 0.005) (Hausdorff et al, J Appl Phsyiol, 1997). α was also significantly related to degree of functional impairment in subjects with Huntington's disease (r=0.78). Recently, we have observed that just as there are changes with α during aging, there also changes with development. Apparently, the fractal scaling of walking does not become mature until children are eleven years old. Conclusions: The fractal dynamics of spontaneous stride interval fluctuations are normally quite robust and are apparently intrinsic to the healthy adult locomotor system. However, alterations in this fractal scaling property are associated with impairment in central nervous system control, aging and neural development.
Lee, Sunghee; Shin, Chol
2017-07-01
to investigate whether slow gait speed is associated with cognitive impairment and further whether the association is modified by obstructive sleep apnoea (OSA). in total, 2,222 adults aged 49-80 years, free from dementia, stroke and head injury were asked to walk a 4-m course at fast and usual gait speeds. The time taken to walk was measured. All participants completed the Korean Mini-Mental State Examination, which was validated in the Korean language, to assess cognitive function. Additionally, the participants completed a polysomnography test to ascertain OSA (defined as an apnoea-hypopnoea index ≥15). Multivariable linear regression models were utilised to test the associations. time taken to walk 4 m showed significant inverse associations with cognitive scores (P value = 0.001 at fast gait speed and P = 0.002 at usual gait speed). Furthermore, a significant interaction according to OSA on the association between time to walk and cognitive impairment was found (P value for interaction = 0.003 at fast gait speed and P value for interaction = 0.007 at usual gait speed). we found that the inverse association between the time taken to walk 4 m and a cognitive score became significantly stronger, if an individual had OSA. © The Author 2017. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Hysteresis in Center of Mass Velocity Control during the Stance Phase of Treadmill Walking
Lee, Kyoung-Hyun; Chong, Raymond K.
2017-01-01
Achieving a soft landing during walking can be quantified by analyzing changes in the vertical velocity of the body center of mass (CoM) just prior to the landing of the swing limb. Previous research suggests that walking speed and step length may predictably influence the extent of this CoM control. Here we ask how stable this control is. We altered treadmill walking speed by systematically increasing or decreasing it at fixed intervals. We then reversed direction. We hypothesized that the control of the CoM vertical velocity during the late stance of the walking gait may serve as an order parameter which has an attribute of hysteresis. The presence of hysteresis implies that the CoM control is not based on simply knowing the current input conditions to predict the output response. Instead, there is also the influence of previous speed conditions on the ongoing responses. We found that the magnitudes of CoM control were different depending on whether the treadmill speed (as the control parameter) was ramped up or down. Changes in step length also influenced CoM control. A stronger effect was observed when the treadmill speed was speeded up compared to down. However, the effect of speed direction remained significant after controlling for step length. The hysteresis effect of CoM control as a function of speed history demonstrated in the current study suggests that the regulation of CoM vertical velocity during late stance is influenced by previous external conditions and constraints which combine to influence the desired behavioral outcome. PMID:28496403
Stackhouse, Scott K.; Binder-Macleod, Stuart A.; Stackhouse, Carrie A.; McCarthy, James J.; Prosser, Laura A.; Lee, Samuel C. K.
2011-01-01
Background To date, no reports have investigated neuromuscular electrical stimulation (NMES) to increase muscle force production of children with cerebral palsy (CP) using high-force contractions and low repetitions. Objective The aims of this study were to determine if isometric NMES or volitional training in children with CP could increase muscle strength and walking speed and to examine the mechanisms that may contribute to increased force production. Methods Eleven children with spastic diplegia were assigned to an NMES training group or to a volitional training group. Participants in the NMES group had electrodes implanted percutaneously to activate the quadriceps femoris and triceps surae muscles. The volitional group trained with maximal effort contractions. Both groups performed a 12-week isometric strength-training program. Maximum voluntary isometric contract ion (MVIC) force, voluntary muscle activation, quadriceps and triceps surae cross-sectional area (CSA), and walking speed were measured pre- and post-strength training. Results The NMES-trained group had greater increases in normalized force production for both die quadriceps femoris and triceps surae. Similarly only the NMES group showed an increase in walking speed after training. Changes in voluntary muscle activation explained approximately 67% and 37% of the changes seen in the MVIC of the NMES and volitional groups, respectively. Quadriceps femoris maximum CSA increased significantly for the NMES group only. Conclusions This study was the first to quantitatively show strength gains with the use of NMES in children with CP. These results support the need for future experimental studies that will examine the clinical effectiveness of NMES strength training. PMID:17369515
The interrelationship between disease severity, dynamic stability, and falls in cerebellar ataxia.
Schniepp, Roman; Schlick, Cornelia; Pradhan, Cauchy; Dieterich, Marianne; Brandt, Thomas; Jahn, Klaus; Wuehr, Max
2016-07-01
Cerebellar ataxia (CA) results in discoordination of body movements (ataxia), a gait disorder, and falls. All three aspects appear to be obviously interrelated; however, experimental evidence is sparse. This study systematically correlated the clinical rating of the severity of ataxia with dynamic stability measures and the fall frequency in patients with CA. Clinical severity of CA in patients with sporadic (n = 34) and hereditary (n = 24) forms was assessed with the Scale for the Assessment and Rating of Ataxia (SARA). Gait performance was examined during slow, preferred, and maximally fast walking speeds. Spatiotemporal variability parameters in the fore-aft and medio-lateral directions were analyzed. The fall frequency was assessed using a standardized interview about fall events within the last 6 months. Fore-aft gait variability showed significant speed-dependent characteristics with highest magnitudes during slow and fast walking. The SARA score correlated positively with fore-aft gait variability, most prominently during fast walking. The fall frequency was significantly associated to fore-aft gait variability during slow walking. Severity of ataxia, dynamic stability, and the occurrence of falls were interrelated in a speed-dependent manner: (a) Severity of ataxia symptoms was closely related to instability during fast walking. (b) Fall frequency was associated with instability during slow walking. These findings suggest the presence of a speed-dependent, twofold cerebellar locomotor control. Assessment of gait performance during non-preferred, slow and fast walking speeds provides novel insights into the pathophysiology of cerebellar locomotor control and may become a useful approach in the clinical evaluation of patients with CA.
Effects of walking speed and age on the muscle forces of unimpaired gait subjects
NASA Astrophysics Data System (ADS)
Fliger, Carlos G.; Crespo, Marcos J.; Braidot, Ariel A.; Ravera, Emiliano P.
2016-04-01
Clinical gait analysis provides great contributions to the understanding of gait disorders and also provides a mean for a more comprehensive treatment plan. However, direct measures of muscle forces are difficult to obtain in clinical settings because it generally requires invasive techniques. Techniques of musculoskeletal modeling have been used for several decades to improve the benefits of clinical gait analysis, but many of the previous studies were focused on analyzing separately the muscle forces distribution of children or adult subjects with only one condition of walking speed. For these reason, the present study aims to enhance the current literature by describing the age and speed gait effects on muscle forces during walking. We used a musculoskeletal model with 23 degrees of freedom and 92 musculotendon actuators to represent 76 muscles in the lower extremities and torso. The computed muscle control algorithm was used to estimate the muscle forces from the kinematics and to adjust the model obtained in the residual reduction algorithm. We find that hamstrings has an important peak in the mid-stance phase in the adult group but this peak disappears in the children group with the same walking speed condition. Furthermore, the rectus femoris presents an increase in the muscle force during the pre- and mid-swing in concordance with the increment in the walking speed of subjects. This behavior could be associated with the role that the rectus femoris has in the acceleration of the knee joint. Finally, we show that the soleus is the muscle that perform the major force throughout the gait cycle regardless of age and walking speed.
Williams, Gavin; Banky, Megan; Olver, John
2016-01-01
The main aim of this project was to determine the impact of plantarflexor spasticity on muscle performance for ambulant people with traumatic brain injury (TBI). A large metropolitan rehabilitation hospital. Seventy-two ambulant people with TBI who were attending physiotherapy for mobility limitations. Twenty-four participants returned for a 6-month follow-up reassessment. Cross-sectional cohort study. Self-selected walking speed, Tardieu scale, ankle plantarflexor strength, and ankle power generation (APG). Participants with ankle plantarflexor spasticity had significantly lower self-selected walking speed; however, there was no significant difference in ankle plantarflexor strength or APG. Participants with ankle plantarflexor spasticity were not restricted in the recovery of self-selected walking speed, ankle plantarflexor strength, or APG, indicating equivalent ability to improve their mobility over time despite the presence of spasticity. Following TBI, people with ankle plantarflexor spasticity have significantly greater mobility limitations than those without spasticity, yet retain the capacity for recovery of self-selected walking speed, ankle plantarflexor strength, and APG.
Long, Leroy L.; Srinivasan, Manoj
2013-01-01
On a treadmill, humans switch from walking to running beyond a characteristic transition speed. Here, we study human choice between walking and running in a more ecological (non-treadmill) setting. We asked subjects to travel a given distance overground in a given allowed time duration. During this task, the subjects carried, and could look at, a stopwatch that counted down to zero. As expected, if the total time available were large, humans walk the whole distance. If the time available were small, humans mostly run. For an intermediate total time, humans often use a mixture of walking at a slow speed and running at a higher speed. With analytical and computational optimization, we show that using a walk–run mixture at intermediate speeds and a walk–rest mixture at the lowest average speeds is predicted by metabolic energy minimization, even with costs for transients—a consequence of non-convex energy curves. Thus, sometimes, steady locomotion may not be energy optimal, and not preferred, even in the absence of fatigue. Assuming similar non-convex energy curves, we conjecture that similar walk–run mixtures may be energetically beneficial to children following a parent and animals on long leashes. Humans and other animals might also benefit energetically from alternating between moving forward and standing still on a slow and sufficiently long treadmill. PMID:23365192
Boyne, Pierce; Welge, Jeffrey; Kissela, Brett; Dunning, Kari
2017-03-01
To assess the influence of dosing parameters and patient characteristics on the efficacy of aerobic exercise (AEX) poststroke. A systematic review was conducted using PubMed, MEDLINE, Cumulative Index of Nursing and Allied Health Literature, Physiotherapy Evidence Database, and Academic Search Complete. Studies were selected that compared an AEX group with a nonaerobic control group among ambulatory persons with stroke. Extracted outcome data included peak oxygen consumption (V˙o 2 peak) during exercise testing, walking speed, and walking endurance (6-min walk test). Independent variables of interest were AEX mode (seated or walking), AEX intensity (moderate or vigorous), AEX volume (total hours), stroke chronicity, and baseline outcome scores. Significant between-study heterogeneity was confirmed for all outcomes. Pooled AEX effect size estimates (AEX group change minus control group change) from random effects models were V˙o 2 peak, 2.2mL⋅kg -1 ⋅min -1 (95% confidence interval [CI], 1.3-3.1mL⋅kg -1 ⋅min -1 ); walking speed, .06m/s (95% CI, .01-.11m/s); and 6-minute walk test distance, 29m (95% CI, 15-42m). In meta-regression, larger V˙o 2 peak effect sizes were significantly associated with higher AEX intensity and higher baseline V˙o 2 peak. Larger effect sizes for walking speed and the 6-minute walk test were significantly associated with a walking AEX mode. In contrast, seated AEX did not have a significant effect on walking outcomes. AEX significantly improves aerobic capacity poststroke, but may need to be task specific to affect walking speed and endurance. Higher AEX intensity is associated with better outcomes. Future randomized studies are needed to confirm these results. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Yoon, Jungwon; Park, Hyung-Soon; Damiano, Diane Louise
2012-08-28
Virtual reality (VR) technology along with treadmill training (TT) can effectively provide goal-oriented practice and promote improved motor learning in patients with neurological disorders. Moreover, the VR + TT scheme may enhance cognitive engagement for more effective gait rehabilitation and greater transfer to over ground walking. For this purpose, we developed an individualized treadmill controller with a novel speed estimation scheme using swing foot velocity, which can enable user-driven treadmill walking (UDW) to more closely simulate over ground walking (OGW) during treadmill training. OGW involves a cyclic acceleration-deceleration profile of pelvic velocity that contrasts with typical treadmill-driven walking (TDW), which constrains a person to walk at a preset constant speed. In this study, we investigated the effects of the proposed speed adaptation controller by analyzing the gait kinematics of UDW and TDW, which were compared to those of OGW at three pre-determined velocities. Ten healthy subjects were asked to walk in each mode (TDW, UDW, and OGW) at three pre-determined speeds (0.5 m/s, 1.0 m/s, and 1.5 m/s) with real time feedback provided through visual displays. Temporal-spatial gait data and 3D pelvic kinematics were analyzed and comparisons were made between UDW on a treadmill, TDW, and OGW. The observed step length, cadence, and walk ratio defined as the ratio of stride length to cadence were not significantly different between UDW and TDW. Additionally, the average magnitude of pelvic acceleration peak values along the anterior-posterior direction for each step and the associated standard deviations (variability) were not significantly different between the two modalities. The differences between OGW and UDW and TDW were mainly in swing time and cadence, as have been reported previously. Also, step lengths between OGW and TDW were different for 0.5 m/s and 1.5 m/s gait velocities, and walk ratio between OGS and UDW was different for 1.0 m/s gait velocities. Our treadmill control scheme implements similar gait biomechanics of TDW, which has been used for repetitive gait training in a small and constrained space as well as controlled and safe environments. These results reveal that users can walk as stably during UDW as TDW and employ similar strategies to maintain walking speed in both UDW and TDW. Furthermore, since UDW can allow a user to actively participate in the virtual reality (VR) applications with variable walking velocity, it can induce more cognitive activities during the training with VR, which may enhance motor learning effects.
Tsukahara, Atsushi; Hasegawa, Yasuhisa; Eguchi, Kiyoshi; Sankai, Yoshiyuki
2015-03-01
This paper proposes a novel gait intention estimator for an exoskeleton-wearer who needs gait support owing to walking impairment. The gait intention estimator not only detects the intention related to the start of the swing leg based on the behavior of the center of ground reaction force (CoGRF), but also infers the swing speed depending on the walking velocity. The preliminary experiments categorized into two stages were performed on a mannequin equipped with the exoskeleton robot [Hybrid Assistive Limb: (HAL)] including the proposed estimator. The first experiment verified that the gait support system allowed the mannequin to walk properly and safely. In the second experiment, we confirmed the differences in gait characteristics attributed to the presence or absence of the proposed swing speed profile. As a feasibility study, we evaluated the walking capability of a severe spinal cord injury patient supported by the system during a 10-m walk test. The results showed that the system enabled the patient to accomplish a symmetrical walk from both spatial and temporal standpoints while adjusting the speed of the swing leg. Furthermore, the critical differences of gait between our system and a knee-ankle-foot orthosis were obtained from the CoGRF distribution and the walking time. Through the tests, we demonstrated the effectiveness and practical feasibility of the gait support algorithms.
Sloot, Lizeth H; Harlaar, Jaap; van der Krogt, Marjolein M
2015-10-01
While feedback-controlled treadmills with a virtual reality could potentially offer advantages for clinical gait analysis and training, the effect of self-paced walking and the virtual environment on the gait pattern of children and different patient groups remains unknown. This study examined the effect of self-paced (SP) versus fixed speed (FS) walking and of walking with and without a virtual reality (VR) in 11 typically developing (TD) children and nine children with cerebral palsy (CP). We found that subjects walked in SP mode with twice as much between-stride walking speed variability (p<0.01), fluctuating over multiple strides. There was no main effect of SP on kinematics or kinetics, but small interaction effects between SP and group (TD versus CP) were found for five out of 33 parameters. This suggests that children with CP might need more time to familiarize to SP walking, however, these differences were generally too small to be clinically relevant. The VR environment did not affect the kinematic or kinetic parameters, but walking with VR was rated as more similar to overground walking by both groups (p=0.02). The results of this study indicate that both SP and FS walking, with and without VR, can be used interchangeably for treadmill-based clinical gait analysis in children with and without CP. Copyright © 2015 Elsevier B.V. All rights reserved.
Comparison of two 6-minute walk tests to assess walking capacity in polio survivors.
Brehm, Merel-Anne; Verduijn, Suzan; Bon, Jurgen; Bredt, Nicoline; Nollet, Frans
2017-11-21
To compare walking dynamics and test-retest reliability for 2 frequently applied walk tests in polio survivors: the 6-minute walk test (6MWT) to walk as far as possible; and the 6-minute walking energy cost test (WECT) at comfortable speed. Observational study. Thirty-three polio survivors, able to walk ≥ 150 m. On the same day participants performed a 6MWT and a WECT, which were repeated 1-3 weeks later. For each test, distance walked, heart rate and reduction in speed were assessed. The mean distance walked and mean heart rate were significantly higher in the 6MWT (441 m (standard deviation) (SD 79.7); 118 bpm (SD 19.2)) compared with the WECT (366 m (SD 67.3); 103 bpm (SD 14.3)); p< 0.001. Furthermore, during the 6MWT, patients continuously slowed down (-6%), while during the WECT speed dropped only slightly during the first 2 min, by -1.8% in total. Test-retest reliability of both tests was excellent (intraclass correlation coefficient (ICC) ≥ 0.95; lower bound 95% confidence interval (95% CI) ≥ 0.87). The smallest detectable change for the walked distance was 42 m (9.7% change from the mean) and 50 m (13.7%) on the 6MWT and WECT, respectively. Both the 6MWT and the WECT are reliable to assess walking capacity in polio survivors, with slightly superior sensitivity to detect change for the 6MWT. Differences in walking dynamics confirm that the tests cannot be used interchangeably. The 6MWT is recommended for measuring maximal walking capacity and the WECT for measuring submaximal walking capacity.
Cubo, Esther; Leurgans, Sue; Goetz, Christopher G
2004-12-01
In a randomized single blind parallel study, we tested the efficacy of an auditory metronome on walking speed and freezing in Parkinson's disease (PD) patients with freezing gait impairment during their 'on' function. No pharmacological treatment is effective in managing 'on' freezing in PD. Like visual cues that can help overcome freezing, rhythmic auditory pacing may provide cues that help normalize walking pace and overcome freezing. Non-demented PD patients with freezing during their 'on' state walked under two conditions, in randomized order: unassisted walking and walking with the use of an audiocassette with a metronome recording. The walking trials were randomized and gait variables were rated from videotapes by a blinded evaluator. Outcome measures were total walking time (total trial time-total freezing time), which was considered the time over a course of specified length, freezing time, average freeze duration and number of freezes. All outcomes were averaged across trials for each person and then compared across conditions using Signed Rank tests. Twelve non-demented PD patients with a mean age of 65.8 +/- 11.2 years, and mean PD duration of 12.4 +/- 7.3 years were included. The use of the metronome slowed ambulation and increased the total walking time (P < 0.0005) only during the first visit, without affecting any freezing variable. In the nine patients who took the metronome recording home and used it daily for 1 week while walking, freezing remained unimproved. Though advocated in prior publications as a walking aid for PD patients, auditory metronome pacing slows walking and is not a beneficial intervention for freezing during their 'on' periods.
Santhiranayagam, Braveena K; Lai, Daniel T H; Sparrow, W A; Begg, Rezaul K
2015-07-12
Falls in older adults during walking frequently occur while performing a concurrent task; that is, dividing attention to respond to other demands in the environment. A particularly hazardous fall-related event is tripping due to toe-ground contact during the swing phase of the gait cycle. The aim of this experiment was to determine the effects of divided attention on tripping risk by investigating the gait cycle event Minimum Toe Clearance (MTC). Fifteen older adults (mean 73.1 years) and 15 young controls (mean 26.1 years) performed three walking tasks on motorized treadmill: (i) at preferred walking speed (preferred walking), (ii) while carrying a glass of water at a comfortable walking speed (dual task walking), and (iii) speed-matched control walking without the glass of water (control walking). Position-time coordinates of the toe were acquired using a 3 dimensional motion capture system (Optotrak NDI, Canada). When MTC was present, toe height at MTC (MTC_Height) and MTC timing (MTC_Time) were calculated. The proportion of non-MTC gait cycles was computed and for non-MTC gait cycles, toe-height was extracted at the mean MTC_Time. Both groups maintained mean MTC_Height across all three conditions. Despite greater MTC_Height SD in preferred gait, the older group reduced their variability to match the young group in dual task walking. Compared to preferred speed walking, both groups attained MTC earlier in dual task and control conditions. The older group's MTC_Time SD was greater across all conditions; in dual task walking, however, they approximated the young group's SD. Non-MTC gait cycles were more frequent in the older group across walking conditions (for example, in preferred walking: young - 2.9 %; older - 18.7 %). In response to increased attention demands older adults preserve MTC_Height but exercise greater control of the critical MTC event by reducing variability in both MTC_Height and MTC_Time. A further adaptive locomotor control strategy to reduce the likelihood of toe-ground contacts is to attain higher mid-swing clearance by eliminating the MTC event, i.e. demonstrating non-MTC gaits cycles.
Highsmith, M. Jason; Kahle, Jason T.; Miro, Rebecca M.; Mengelkoch, Larry J.
2016-01-01
Transfemoral amputation (TFA) patients require considerably more energy to walk and run than non-amputees. The purpose of this study was to examine potential bioenergetic differences (oxygen uptake (VO2), heart rate (HR), and ratings of perceived exertion (RPE)) for TFA patients utilizing a conventional running prosthesis with an articulating knee mechanism versus a running prosthesis with a non-articulating knee joint. Four trained TFA runners (n = 4) were accommodated to and tested with both conditions. VO2 and HR were significantly lower (p ≤ 0.05) in five of eight fixed walking and running speeds for the prosthesis with an articulating knee mechanism. TFA demonstrated a trend for lower RPE at six of eight walking speeds using the prosthesis with the articulated knee condition. A trend was observed for self-selected walking speed, self-selected running speed, and maximal speed to be faster for TFA subjects using the prosthesis with the articulated knee condition. Finally, all four TFA participants subjectively preferred running with the prosthesis with the articulated knee condition. These findings suggest that, for trained TFA runners, a running prosthesis with an articulating knee prosthesis reduces ambulatory energy costs and enhances subjective perceptive measures compared to using a non-articulating knee prosthesis. PMID:28066524
Gait variability in community dwelling adults with Alzheimer disease.
Webster, Kate E; Merory, John R; Wittwer, Joanne E
2006-01-01
Studies have shown that measures of gait variability are associated with falling in older adults. However, few studies have measured gait variability in people with Alzheimer disease, despite the high incidence of falls in Alzheimer disease. The purpose of this study was to compare gait variability of community-dwelling older adults with Alzheimer disease and control subjects at various walking speeds. Ten subjects with mild-moderate Alzheimer disease and ten matched control subjects underwent gait analysis using an electronic walkway. Participants were required to walk at self-selected slow, preferred, and fast speeds. Stride length and step width variability were determined using the coefficient of variation. Results showed that stride length variability was significantly greater in the Alzheimer disease group compared with the control group at all speeds. In both groups, increases in walking speed were significantly correlated with decreases in stride length variability. Step width variability was significantly reduced in the Alzheimer disease group compared with the control group at slow speed only. In conclusion, there is an increase in stride length variability in Alzheimer disease at all walking speeds that may contribute to the increased incidence of falls in Alzheimer disease.
Reuter, I.; Mehnert, S.; Leone, P.; Kaps, M.; Oechsner, M.; Engelhardt, M.
2011-01-01
Symptoms of Parkinson's disease (PD) progress despite optimized medical treatment. The present study investigated the effects of a flexibility and relaxation programme, walking, and Nordic walking (NW) on walking speed, stride length, stride length variability, Parkinson-specific disability (UPDRS), and health-related quality of life (PDQ 39). 90 PD patients were randomly allocated to the 3 treatment groups. Patients participated in a 6-month study with 3 exercise sessions per week, each lasting 70 min. Assessment after completion of the training showed that pain was reduced in all groups, and balance and health-related quality of life were improved. Furthermore, walking, and Nordic walking improved stride length, gait variability, maximal walking speed, exercise capacity at submaximal level, and PD disease-specific disability on the UPDRS in addition. Nordic walking was superior to the flexibility and relaxation programme and walking in improving postural stability, stride length, gait pattern and gait variability. No significant injuries occurred during the training. All patients of the Nordic walking group continued Nordic walking after completing the study. PMID:21603199
The desert ant odometer: a stride integrator that accounts for stride length and walking speed.
Wittlinger, Matthias; Wehner, Rüdiger; Wolf, Harald
2007-01-01
Desert ants, Cataglyphis, use path integration as a major means of navigation. Path integration requires measurement of two parameters, namely, direction and distance of travel. Directional information is provided by a celestial compass, whereas distance measurement is accomplished by a stride integrator, or pedometer. Here we examine the recently demonstrated pedometer function in more detail. By manipulating leg lengths in foraging desert ants we could also change their stride lengths. Ants with elongated legs ('stilts') or shortened legs ('stumps') take larger or shorter strides, respectively, and misgauge travel distance. Travel distance is overestimated by experimental animals walking on stilts, and underestimated by animals walking on stumps - strongly indicative of stride integrator function in distance measurement. High-speed video analysis was used to examine the actual changes in stride length, stride frequency and walking speed caused by the manipulations of leg length. Unexpectedly, quantitative characteristics of walking behaviour remained almost unaffected by imposed changes in leg length, demonstrating remarkable robustness of leg coordination and walking performance. These data further allowed normalisation of homing distances displayed by manipulated animals with regard to scaling and speed effects. The predicted changes in homing distance are in quantitative agreement with the experimental data, further supporting the pedometer hypothesis.
Maciejczyk, Marcin; Wiecek, Magdalena; Szymura, Jadwiga; Szygula, Zbigniew
2016-01-01
One of the new products which can be used to increase physical activity and energy expenditure is the Torqway vehicle, powered by the upper limbs. The aim of this study was to (1) assess the usefulness and repeatability of the Torqway vehicle for physical exercise, (2) compare energy expenditure and physiological responses during walking on a treadmill and during physical effort while moving on the Torqway at a constant speed. The participants (11 men, aged 20.2 ± 1.3) performed the incremental test and submaximal exercises (walking on the treadmill and moving on the Torqway vehicle at the same speed). Energy expenditure during the exercise on the Torqway was significantly higher (p = 0.001) than during the walking performed at the same speed. The intensity of the exercise performed on the Torqway expressed as %VO2max and %HRmax was significantly ( p < 0.001) higher than during walking (respectively: 35.0 ± 6.0 vs. 29.4 ± 7.4 %VO2max and 65.1 ± 7.3 vs. 47.2 ± 7.4 %HRmax). Exercise on the Torqway vehicle allows for the intensification of the exercise at a low movement speed, comparable to walking. Moving on the Torqway vehicle could be an effective alternative activity for physical fitness and exercise rehabilitation programs.
Plantarflexor passive-elastic properties related to BMI and walking performance in older women.
LaRoche, Dain P
2017-03-01
The objective of this study was to examine the influence of BMI on the passive-elastic properties of the ankle plantarflexors in older women. Twenty-three women, 65-80 yr, were separated into normal weight (NW, BMI <25.0kgm -2 , n=11) and overweight-obese (OW, BMI≥25.0kgm -2 , n=12) groups. Resistive torque of the ankle plantarflexors was recorded on an isokinetic dynamometer by passively moving the ankle into dorsiflexion. Stiffness, work absorption, and hysteresis were calculated across an ankle dorsiflexion angle of 10-15°. Maximal plantarflexor strength was assessed, then participants walked at maximal speed on an instrumented gait analysis treadmill while muscle activation (EMG) was recorded. Plantarflexor stiffness was 34% lower in OW (26.4±12.7Nmrad -1 ) than NW (40.0±15.7Nmrad -1 , p=0.032). Neither work absorption nor hysteresis were different between OW and NW. Stiffness per kg was positively correlated to strength (r=0.66, p<0.001), peak vertical ground reaction force during walking (r=0.72, p<0.001), weight acceptance rate of force (r=0.51, p=0.007), push-off rate of force (r=0.41, p=0.026), maximal speed (r=0.61, p=0.001), and inversely correlated to BMI (r=-0.61, p=0.001), and peak plantarflexor EMG (r=-0.40, p=0.046). Older women who are OW have low plantarflexor stiffness, which may limit propulsive forces during walking and necessitate greater muscle activation for active force generation. Copyright © 2017 Elsevier B.V. All rights reserved.
Evaluation of Dalfampridine Extended Release 5 and 10 mg in Multiple Sclerosis
Yapundich, Robert; Applebee, Angela; Bethoux, Francois; Goldman, Myla D.; Hutton, George J.; Mass, Michele; Pardo, Gabriel; Klingler, Michael; Henney, Herbert R.; Carrazana, Enrique J.
2015-01-01
Background: Dalfampridine extended-release (ER) tablets, 10 mg twice daily, have been shown to improve walking in people with multiple sclerosis. We evaluated the safety and efficacy of dalfampridine-ER 5 mg compared with 10 mg. Methods: Patients were randomized to double-blind treatment with twice-daily dalfampridine-ER tablets, 5 mg (n = 144) or 10 mg (n = 143), or placebo (n = 143) for 4 weeks. Primary efficacy endpoint was change from baseline walking speed by the Timed 25-Foot Walk 3 to 4 hours after the last dose. At 40% of sites, 2-week change from baseline walking distance was measured by the 6-Minute Walk test. Results: At 4 weeks, walking speed changes from baseline were 0.363, 0.423, and 0.478 ft/s (placebo, dalfampridine-ER 5 mg, and dalfampridine-ER 10 mg, respectively [P = NS]). Post hoc analysis of average changes between pretreatment and on-treatment showed that relative to placebo, only dalfampridine-ER 10 mg demonstrated a significant increase in walking speed (mean ± SE): 0.443 ± 0.042 ft/s versus 0.303 ± 0.038 ft/s (P = .014). Improvement in 6-Minute Walk distance was significantly greater with dalfampridine-ER 10 mg (128.6 ft, P = .014) but not with 5 mg (76.8 ft, P = .308) relative to placebo (41.7 ft). Adverse events were consistent with previous studies. No seizures were reported. Conclusions: Dalfampridine-ER 5 and 10 mg twice daily did not demonstrate efficacy on the planned endpoint. Post hoc analyses demonstrated significant increases in walking speed relative to placebo with dalfampridine-ER 10 mg. No new safety signals were observed. PMID:26052259
Clark, David J; Chatterjee, Sudeshna A; McGuirk, Theresa E; Porges, Eric C; Fox, Emily J; Balasubramanian, Chitralakshmi K
2018-02-01
Walking adaptability tasks are challenging for people with motor impairments. The construct of perceived challenge is typically measured by self-report assessments, which are susceptible to subjective measurement error. The development of an objective physiologically-based measure of challenge may help to improve the ability to assess this important aspect of mobility function. The objective of this study to investigate the use of sympathetic nervous system (SNS) activity measured by skin conductance to gauge the physiological stress response to challenging walking adaptability tasks in people post-stroke. Thirty adults with chronic post-stroke hemiparesis performed a battery of seventeen walking adaptability tasks. SNS activity was measured by skin conductance from the palmar surface of each hand. The primary outcome variable was the percent change in skin conductance level (ΔSCL) between the baseline resting and walking phases of each task. Task difficulty was measured by performance speed and by physical therapist scoring of performance. Walking function and balance confidence were measured by preferred walking speed and the Activities-specific Balance Confidence Scale, respectively. There was a statistically significant negative association between ΔSCL and task performance speed and between ΔSCL and clinical score, indicating that tasks with greater SNS activity had slower performance speed and poorer clinical scores. ΔSCL was significantly greater for low functioning participants versus high functioning participants, particularly during the most challenging walking adaptability tasks. This study supports the use of SNS activity measured by skin conductance as a valuable approach for objectively quantifying the perceived challenge of walking adaptability tasks in people post-stroke. Published by Elsevier B.V.
Clark, David J.; Chatterjee, Sudeshna A.; McGuirk, Theresa E.; Porges, Eric C.; Fox, Emily J.; Balasubramanian, Chitralakshmi K.
2018-01-01
Background Walking adaptability tasks are challenging for people with motor impairments. The construct of perceived challenge is typically measured by self-report assessments, which are susceptible to subjective measurement error. The development of an objective physiologically-based measure of challenge may help to improve the ability to assess this important aspect of mobility function. The objective of this study to investigate the use of sympathetic nervous system (SNS) activity measured by skin conductance to gauge the physiological stress response to challenging walking adaptability tasks in people post-stroke. Methods Thirty adults with chronic post-stroke hemiparesis performed a battery of seventeen walking adaptability tasks. SNS activity was measured by skin conductance from the palmar surface of each hand. The primary outcome variable was the percent change in skin conductance level (ΔSCL) between the baseline resting and walking phases of each task. Task difficulty was measured by performance speed and by physical therapist grading of performance. Walking function and balance confidence were measured by preferred walking speed and the Activities Specific Balance Confidence Scale, respectively. Results There was a statistically significant negative association between ΔSCL and task performance speed and between ΔSCL and clinical score, indicating that tasks with greater SNS activity had slower performance speed and poorer clinical scores. ΔSCL was significantly greater for low functioning participants versus high functioning participants, particularly during the most challenging walking adaptability tasks. Conclusion This study supports the use of SNS activity measured by skin conductance as a valuable approach for objectively quantifying the perceived challenge of walking adaptability tasks in people post-stroke. PMID:29216598
Muñoz-Organero, Mario; Davies, Richard; Mawson, Sue
2017-01-01
Insole pressure sensors capture the force distribution patterns during the stance phase while walking. By comparing patterns obtained from healthy individuals to patients suffering different medical conditions based on a given similarity measure, automatic impairment indexes can be computed in order to help in applications such as rehabilitation. This paper uses the data sensed from insole pressure sensors for a group of healthy controls to train an auto-encoder using patterns of stochastic distances in series of consecutive steps while walking at normal speeds. Two experiment groups are compared to the healthy control group: a group of patients suffering knee pain and a group of post-stroke survivors. The Mahalanobis distance is computed for every single step by each participant compared to the entire dataset sensed from healthy controls. The computed distances for consecutive steps are fed into the previously trained autoencoder and the average error is used to assess how close the walking segment is to the autogenerated model from healthy controls. The results show that automatic distortion indexes can be used to assess each participant as compared to normal patterns computed from healthy controls. The stochastic distances observed for the group of stroke survivors are bigger than those for the people with knee pain.
Risk of falls in older people during fast-walking--the TASCOG study.
Callisaya, M L; Blizzard, L; McGinley, J L; Srikanth, V K
2012-07-01
To investigate the relationship between fast-walking and falls in older people. Individuals aged 60-86 years were randomly selected from the electoral roll (n=176). Gait speed, step length, cadence and a walk ratio were recorded during preferred- and fast-walking using an instrumented walkway. Falls were recorded prospectively over 12 months. Log multinomial regression was used to estimate the relative risk of single and multiple falls associated with gait variables during fast-walking and change between preferred- and fast-walking. Covariates included age, sex, mood, physical activity, sensorimotor and cognitive measures. The risk of multiple falls was increased for those with a smaller walk ratio (shorter steps, faster cadence) during fast-walking (RR 0.92, CI 0.87, 0.97) and greater reduction in the walk ratio (smaller increase in step length, larger increase in cadence) when changing to fast-walking (RR 0.73, CI 0.63, 0.85). These gait patterns were associated with poorer physiological and cognitive function (p<0.05). A higher risk of multiple falls was also seen for those in the fastest quarter of gait speed (p=0.01) at fast-walking. A trend for better reaction time, balance, memory and physical activity for higher categories of gait speed was stronger for fallers than non-fallers (p<0.05). Tests of fast-walking may be useful in identifying older individuals at risk of multiple falls. There may be two distinct groups at risk--the frail person with short shuffling steps, and the healthy person exposed to greater risk. Copyright © 2012 Elsevier B.V. All rights reserved.
Examination of sustained gait speed during extended walking in individuals with chronic stroke.
Altenburger, Peter A; Dierks, Tracy A; Miller, Kristine K; Combs, Stephanie A; Van Puymbroeck, Marieke; Schmid, Arlene A
2013-12-01
To determine if individuals with chronic stroke were able to sustain their peak gait speed during the 6-minute walk test (6MWT), and to explore this sustainability across community ambulation potential subgroups. Prospective cross-sectional study. University-based research laboratory, hospitals, and stroke support groups. A sample of individuals with chronic stroke (N=48) completed a series of questionnaires and physical outcome measures, including gait mat assessment, during a single visit. Not applicable; 1-time cross-sectional data collection. During the 6MWT, we measured peak gait speed and end gait speed to assess sustainability, along with beginning gait speed, total distance walked, and rating of perceived exertion. We also assessed maximum gait speed during the 10-meter walk test (10MWT). Finally, we examined these gait outcomes across the subgroups. During the 6MWT, peak gait speed declined from .89m/s (SD=.38) to an end speed of .82m/s (SD=.36), whereas perceived exertion increased from 7.7 (SD=2.6) to 11.8 (SD=3.6). This peak gait speed was slower than the 10MWT maximum speed of 1.06m/s (SD=.51), but faster than the 6MWT beginning speed of .81m/s (SD=.34). The unlimited community ambulator subgroup was the primary contributor to sustainability differences. Predicting community ambulation potential based on the discrete gait speed from the 10MWT and endurance based on the average from the 6MWT might be incomplete if gait speed sustainability is not also assessed. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Haltere removal alters responses to gravity in standing flies.
Daltorio, Kathryn; Fox, Jessica
2018-05-31
Animals detect the force of gravity with multiple sensory organs, from subcutaneous receptors at body joints to specialized sensors like the vertebrate inner ear. The halteres of flies, specialized mechanoreceptive organs derived from hindwings, are known to detect body rotations during flight, and some groups of flies also oscillate their halteres while walking. The dynamics of halteres are such that they could act as gravity detectors for flies standing on substrates, but their utility during non-flight behaviors is not known. We observed the behaviors of intact and haltere-ablated flies during walking and during perturbations in which the acceleration due to gravity suddenly changed. We found that intact halteres are necessary for flies to maintain normal walking speeds on vertical surfaces and to respond to sudden changes in gravity. Our results suggest that halteres can serve multiple sensory purposes during different behaviors, expanding their role beyond their canonical use in flight. © 2018. Published by The Company of Biologists Ltd.
Mechanics and energetics of human locomotion on sand.
Lejeune, T M; Willems, P A; Heglund, N C
1998-07-01
Moving about in nature often involves walking or running on a soft yielding substratum such as sand, which has a profound effect on the mechanics and energetics of locomotion. Force platform and cinematographic analyses were used to determine the mechanical work performed by human subjects during walking and running on sand and on a hard surface. Oxygen consumption was used to determine the energetic cost of walking and running under the same conditions. Walking on sand requires 1.6-2.5 times more mechanical work than does walking on a hard surface at the same speed. In contrast, running on sand requires only 1.15 times more mechanical work than does running on a hard surface at the same speed. Walking on sand requires 2.1-2.7 times more energy expenditure than does walking on a hard surface at the same speed; while running on sand requires 1.6 times more energy expenditure than does running on a hard surface. The increase in energy cost is due primarily to two effects: the mechanical work done on the sand, and a decrease in the efficiency of positive work done by the muscles and tendons.
Yang, Yea-Ru; Tsai, Meng-Pin; Chuang, Tien-Yow; Sung, Wen-Hsu; Wang, Ray-Yau
2008-08-01
This is a single blind randomized controlled trial to examine the effect of virtual reality-based training on the community ambulation in individuals with stroke. Twenty subjects with stroke were assigned randomly to either the control group (n=9) or the experimental group (n=11). Subjects in the control group received the treadmill training. Subjects in the experimental group underwent the virtual reality-based treadmill training. Walking speed, community walking time, walking ability questionnaire (WAQ), and activities-specific balance confidence (ABC) scale were evaluated. Subjects in the experimental group improved significantly in walking speed, community walking time, and WAQ score at posttraining and 1-month follow-up periods. Their ABC score also significantly increased at posttraining but did not maintain at follow-up period. Regarding the between-group comparisons, the experimental group improved significantly more than control group in walking speed (P=0.03) and community walking time (P=0.04) at posttraining period and in WAQ score (P=0.03) at follow-up period. Our results support the perceived benefits of gait training programs that incorporate virtual reality to augment the community ambulation of individuals with stroke.
Goodman, Andrew D; Bethoux, Francois; Brown, Theodore R; Schapiro, Randall T; Cohen, Ron; Marinucci, Lawrence N; Henney, Herbert R
2015-01-01
Background: In Phase 3 double-blind trials (MS-F203 and MS-F204), dalfampridine extended release tablets 10 mg twice daily (dalfampridine-ER; prolonged-release fampridine in Europe; fampridine modified or sustained release elsewhere) improved walking speed relative to placebo in patients with multiple sclerosis (MS). Objectives: Evaluation of long-term safety and efficacy of dalfampridine-ER in open-label extensions (MS-F203EXT, MS-F204EXT). Methods: Patients received dalfampridine-ER 10 mg twice daily; and had Timed 25-Foot Walk (T25FW) assessments at 2, 14 and 26 weeks, and then every 6 months. Subjects were categorized as dalfampridine-ER responders or non-responders, based on their treatment response in the double-blind parent trials that assessed T25FW. Results: We had 269 patients enter MS-F203EXT and 154 patients complete it; for a maximum exposure of 5 years. We had 214 patients enter MS-F204EXT and 146 complete it; for a maximum exposure of 3.3 years. No new safety signals emerged and dalfampridine-ER tolerability was consistent with the double-blind phase. Improvements in walking speed were lost after dalfampridine-ER was discontinued in the parent trial, but returned by the 2-week assessment after re-initiation of the drug. Throughout the extensions, mean improvement in walking speed declined, but remained improved, among the double-blind responders as compared with non-responders. Conclusions: The dalfamipridine-ER safety profile was consistent with the parent trials. Although walking speed decreased over time, dalfampridine-ER responders continued to show improved walking speed, which was sustained compared with non-responders. PMID:25583832
Liphart, Jodi; Gallichio, Joann; Tilson, Julie K; Pei, Qinglin; Wu, Samuel S; Duncan, Pamela W
2016-01-01
Objective To ascertain the existence of discordance between perceived and measured balance in persons with stroke and to examine the impact on walking speed and falls. Design A secondary analysis of a phase three, multicentered randomized controlled trial examining walking recovery following stroke. Subjects A total of 352 participants from the Locomotor Experience Applied Post-Stroke (LEAPS) trial. Methods Participants were categorized into four groups: two concordant and two discordant groups in relation to measured and perceived balance. Number and percentage of individuals with concordance and discordance were evaluated at two and 12 months. Walking speed and fall incidence between groups were examined. Main measures Perceived balance was measured by the Activity-specific Balance Confidence scale, measured balance was determined by the Berg Balance Scale and gait speed was measured by the 10-meter walk test. Results Discordance was present for 35.8% of participants at two months post-stroke with no statistically significant change in proportion at 12 months. Discordant participants with high perceived balance and low measured balance walked 0.09 m/s faster at two months than participants with concordant low perceived and measured balance (p < 0.05). Discordant participants with low perceived balance and high measured balance walked 0.15 m/s slower than those that were concordant with high perceived and measured balance (p ⩽ 0.0001) at 12 months. Concordant participants with high perceived and measured balance walked fastest and had fewer falls. Conclusions Discordance existed between perceived and measured balance in one-third of individuals at two and 12 months post-stroke. Perceived balance impacted gait speed but not fall incidence. PMID:25810426
Walking economy in people with Parkinson's disease.
Christiansen, Cory L; Schenkman, Margaret L; McFann, Kim; Wolfe, Pamela; Kohrt, Wendy M
2009-07-30
Gait dysfunction is an early problem identified by patients with Parkinson's disease (PD). Alterations in gait may result in an increase in the energy cost of walking (i.e., walking economy). The purpose of this study was to determine whether walking economy is atypical in patients with PD when compared with healthy controls. A secondary purpose was to evaluate the associations of age, sex, and level of disease severity with walking economy in patients with PD. The rate of oxygen consumption (VO(2)) and other responses to treadmill walking were compared in 90 patients (64.4 +/- 10.3 years) and 44 controls (64.6 +/- 7.3 years) at several walking speeds. Pearson correlation coefficients (r) were calculated to determine relationships of age, sex, and disease state with walking economy in PD patients. Walking economy was significantly worse in PD patients than in controls at all speeds above 1.0 mph. Across all speeds, VO(2) was 6 to 10% higher in PD patients. Heart rate, minute ventilation, respiratory exchange ratio, and rating of perceived exertion were correspondingly elevated. No significant relationship of age, sex, or UPDRS score with VO(2) was found for patients with PD. The findings suggest that the physiologic stress of daily physical activities is increased in patients with early to mid-stage PD, and this may contribute to the elevated level of fatigue that is characteristic of PD. Copyright 2009 Movement Disorder Society.
Miyoshi, Tasuku; Shirota, Takashi; Yamamoto, Shin-ichiro; Nakazawa, Kimitaka; Akai, Masami
2004-06-17
The purpose of this study was to compare the changes in ground reaction forces (GRF), joint angular displacements (JAD), joint moments (JM) and electromyographic (EMG) activities that occur during walking at various speeds in water and on land. Fifteen healthy adults participated in this study. In the water experiments, the water depth was adjusted so that body weight was reduced by 80%. A video-motion analysis system and waterproof force platform was used to obtain kinematics and kinetics data and to calculate the JMs. Results revealed that (1) the anterior-posterior GRF patterns differed between walking in water and walking on land, whereas the medio-lateral GRF patterns were similar, (2) the JAD patterns of the hip and ankle were similar between water- and land-walking, whereas the range of motion at the knee joint was lower in water than on land, (3) the JMs in all three joints were lower in water than on land throughout the stance phase, and (4) the hip joint extension moment and hip extensor muscle EMG activity were increased as walking speed increase during walking in water. Rehabilitative water-walking exercise could be designed to incorporate large-muscle activities, especially of the lower-limb extensor muscles, through full joint range of motion and minimization of joint moments.
2013-01-01
The purpose of this study was to characterize responses in oxygen uptake ( V·O2), heart rate (HR), perceived exertion (OMNI scale) and integrated electromyogram (iEMG) readings during incremental Nordic walking (NW) and level walking (LW) on a treadmill. Ten healthy adults (four men, six women), who regularly engaged in physical activity in their daily lives, were enrolled in the study. All subjects were familiar with NW. Each subject began walking at 60 m/min for 3 minutes, with incremental increases of 10 m/min every 2 minutes up to 120 m/min V·O2 , V·E and HR were measured every 30 seconds, and the OMNI scale was used during the final 15 seconds of each exercise. EMG readings were recorded from the triceps brachii, vastus lateralis, biceps femoris, gastrocnemius, and tibialis anterior muscles. V·O2 was significantly higher during NW than during LW, with the exception of the speed of 70 m/min (P < 0.01). V·E and HR were higher during NW than LW at all walking speeds (P < 0.05 to 0.001). OMNI scale of the upper extremities was significantly higher during NW than during LW at all speeds (P < 0.05). Furthermore, the iEMG reading for the VL was lower during NW than during LW at all walking speeds, while the iEMG reading for the BF and GA muscles were significantly lower during NW than LW at some speeds. These data suggest that the use of poles in NW attenuates muscle activity in the lower extremities during the stance and push-off phases, and decreases that of the lower extremities and increase energy expenditure of the upper body and respiratory system at certain walking speeds. PMID:23406834
Nordic Walking Practice Might Improve Plantar Pressure Distribution
ERIC Educational Resources Information Center
Perez-Soriano, Pedro; Llana-Belloch, Salvador; Martinez-Nova, Alfonso; Morey-Klapsing, G.; Encarnacion-Martinez, Alberto
2011-01-01
Nordic walking (NW), characterized by the use of two walking poles, is becoming increasingly popular (Morgulec-Adamowicz, Marszalek, & Jagustyn, 2011). We studied walking pressure patterns of 20 experienced and 30 beginner Nordic walkers. Plantar pressures from nine foot zones were measured during trials performed at two walking speeds (preferred…
Lindemann, Ulrich; Schwenk, Michael; Schmitt, Syn; Weyrich, Michael; Schlicht, Wolfgang; Becker, Clemens
2017-08-01
Wheeled walkers are recommended to improve walking performance in older persons and to encourage and assist participation in daily life. Nevertheless, using a wheeled walker can cause serious problems in the natural environment. This study aimed to compare uphill and downhill walking with walking level in geriatric patients using a wheeled walker. Furthermore, we investigated the effect of using a wheeled walker with respect to dual tasking when walking level. A total of 20 geriatric patients (median age 84.5 years) walked 10 m at their habitual pace along a level surface, uphill and downhill, with and without a standard wheeled walker. Gait speed, stride length and cadence were assessed by wearable sensors and the walk ratio was calculated. When using a wheeled walker while walking level the walk ratio improved (0.58 m/[steps/min] versus 0.57 m/[steps/min], p = 0.023) but gait speed decreased (1.07 m/s versus 1.12 m/s, p = 0.020) when compared to not using a wheeled walker. With respect to the walk ratio, uphill and downhill walking with a wheeled walker decreased walking performance when compared to level walking (0.54 m/[steps/min] versus 0.58 m/[steps/min], p = 0.023 and 0.55 m/[steps/min] versus 0.58 m/[steps/min], p = 0.001, respectively). At the same time, gait speed decreased (0.079 m/s versus 1.07 m/s, p < 0.0001) or was unaffected. The use of a wheeled walker improved the quality of level walking but the performance of uphill and downhill walking was worse compared to walking level when using a wheeled walker.
Louie, Dennis R; Eng, Janice J; Lam, Tania
2015-10-14
Powered robotic exoskeletons are an emerging technology of wearable orthoses that can be used as an assistive device to enable non-ambulatory individuals with spinal cord injury (SCI) to walk, or as a rehabilitation tool to improve walking ability in ambulatory individuals with SCI. No studies to date have systematically reviewed the literature on the efficacy of powered exoskeletons on restoring walking function. Our objective was to systematically review the literature to determine the gait speed attained by individuals with SCI when using a powered exoskeleton to walk, factors influencing this speed, and characteristics of studies involving a powered exoskeleton (e.g. inclusion criteria, screening, and training processes). A systematic search in computerized databases was conducted to identify articles that reported on walking outcomes when using a powered exoskeleton. Individual gait speed data from each study was extracted. Pearson correlations were performed between gait speed and 1) age, 2) years post-injury, 3) injury level, and 4) number of training sessions. Fifteen articles met inclusion criteria, 14 of which investigated the powered exoskeleton as an assistive device for non-ambulatory individuals and one which used it as a training intervention for ambulatory individuals with SCI. The mean gait speed attained by non-ambulatory participants (n = 84) while wearing a powered exoskeleton was 0.26 m/s, with the majority having a thoracic-level motor-complete injury. Twelve articles reported individual data for the non-ambulatory participants, from which a positive correlation was found between gait speed and 1) age (r = 0.27, 95 % CI 0.02-0.48, p = 0.03, 63 participants), 2) injury level (r = 0.27, 95 % CI 0.02-0.48, p = 0.03, 63 participants), and 3) training sessions (r = 0.41, 95 % CI 0.16-0.61, p = 0.002, 55 participants). In conclusion, powered exoskeletons can provide non-ambulatory individuals with thoracic-level motor-complete SCI the ability to walk at modest speeds. This speed is related to level of injury as well as training time.
Effect of using a treadmill workstation on performance of simulated office work tasks.
John, Dinesh; Bassett, David; Thompson, Dixie; Fairbrother, Jeffrey; Baldwin, Debora
2009-09-01
Although using a treadmill workstation may change the sedentary nature of desk jobs, it is unknown if walking while working affects performance on office-work related tasks. To assess differences between seated and walking conditions on motor skills and cognitive function tests. Eleven males (24.6 +/- 3.5 y) and 9 females (27.0 +/- 3.9 y) completed a test battery to assess selective attention and processing speed, typing speed, mouse clicking/drag-and-drop speed, and GRE math and reading comprehension. Testing was performed under seated and walking conditions on 2 separate days using a counterbalanced, within subjects design. Participants did not have an acclimation period before the walking condition. Paired t tests (P < .05) revealed that in the seated condition, completion times were shorter for mouse clicking (26.6 +/- 3.0 vs. 28.2 +/- 2.5s) and drag-and-drop (40.3 +/- 4.2 vs. 43.9 +/- 2.5s) tests, typing speed was greater (40.2 +/- 9.1 vs. 36.9 +/- 10.2 adjusted words x min(-1)), and math scores were better (71.4 +/- 15.2 vs. 64.3 +/- 13.4%). There were no significant differences between conditions in selective attention and processing speed or in reading comprehension. Compared with the seated condition, treadmill walking caused a 6% to 11% decrease in measures of fine motor skills and math problem solving, but did not affect selective attention and processing speed or reading comprehension.
Wenkstetten-Holub, Alfa; Kandioler-Honetz, Elisabeth; Kraus, Ingrid; Müller, Rudolf; Kurz, Robert Wolfgang
2012-08-01
Aim of the study was to evaluate the effects of supervised exercise training for peripheral arterial disease (PAD) on walking speed, claudication distance and quality of life. Ninety-four patients in stage IIa/IIb according to Fontaine underwent a six-month exercise training at the Center for Outpatient Rehabilitation Vienna (ZAW). Walking speed and Absolute Claudication Distance (ACD) improved significantly (p < 0,001 and p = 0,007 respectively). Increase of the Initial Claudication Distance (ICD) did not reach statistical significance (p = 0,14). Quality of life, as assessed by the questionnaire "PLC" manifested no significant change. The exercise training achieved considerable effects on walking speed and claudication distance. Despite these improvements, patient's quality of life revealed no relevant change. This outcome could be explained by the fact that aspects of physical functioning relevant to patients with claudicatio intermittens may be underrepresented in the PLC-questionnaire core module.
Yang, Peng-Fei; Sanno, Maximilian; Ganse, Bergita; Koy, Timmo; Brüggemann, Gert-Peter; Müller, Lars Peter; Rittweger, Jörn
2014-01-01
Bending, in addition to compression, is recognized to be a common loading pattern in long bones in animals. However, due to the technical difficulty of measuring bone deformation in humans, our current understanding of bone loading patterns in humans is very limited. In the present study, we hypothesized that bending and torsion are important loading regimes in the human tibia. In vivo tibia segment deformation in humans was assessed during walking and running utilizing a novel optical approach. Results suggest that the proximal tibia primarily bends to the posterior (bending angle: 0.15°–1.30°) and medial aspect (bending angle: 0.38°–0.90°) and that it twists externally (torsion angle: 0.67°–1.66°) in relation to the distal tibia during the stance phase of overground walking at a speed between 2.5 and 6.1 km/h. Peak posterior bending and peak torsion occurred during the first and second half of stance phase, respectively. The peak-to-peak antero-posterior (AP) bending angles increased linearly with vertical ground reaction force and speed. Similarly, peak-to-peak torsion angles increased with the vertical free moment in four of the five test subjects and with the speed in three of the test subjects. There was no correlation between peak-to-peak medio-lateral (ML) bending angles and ground reaction force or speed. On the treadmill, peak-to-peak AP bending angles increased with walking and running speed, but peak-to-peak torsion angles and peak-to-peak ML bending angles remained constant during walking. Peak-to-peak AP bending angle during treadmill running was speed-dependent and larger than that observed during walking. In contrast, peak-to-peak tibia torsion angle was smaller during treadmill running than during walking. To conclude, bending and torsion of substantial magnitude were observed in the human tibia during walking and running. A systematic distribution of peak amplitude was found during the first and second parts of the stance phase. PMID:24732724
Yang, Peng-Fei; Sanno, Maximilian; Ganse, Bergita; Koy, Timmo; Brüggemann, Gert-Peter; Müller, Lars Peter; Rittweger, Jörn
2014-01-01
Bending, in addition to compression, is recognized to be a common loading pattern in long bones in animals. However, due to the technical difficulty of measuring bone deformation in humans, our current understanding of bone loading patterns in humans is very limited. In the present study, we hypothesized that bending and torsion are important loading regimes in the human tibia. In vivo tibia segment deformation in humans was assessed during walking and running utilizing a novel optical approach. Results suggest that the proximal tibia primarily bends to the posterior (bending angle: 0.15°-1.30°) and medial aspect (bending angle: 0.38°-0.90°) and that it twists externally (torsion angle: 0.67°-1.66°) in relation to the distal tibia during the stance phase of overground walking at a speed between 2.5 and 6.1 km/h. Peak posterior bending and peak torsion occurred during the first and second half of stance phase, respectively. The peak-to-peak antero-posterior (AP) bending angles increased linearly with vertical ground reaction force and speed. Similarly, peak-to-peak torsion angles increased with the vertical free moment in four of the five test subjects and with the speed in three of the test subjects. There was no correlation between peak-to-peak medio-lateral (ML) bending angles and ground reaction force or speed. On the treadmill, peak-to-peak AP bending angles increased with walking and running speed, but peak-to-peak torsion angles and peak-to-peak ML bending angles remained constant during walking. Peak-to-peak AP bending angle during treadmill running was speed-dependent and larger than that observed during walking. In contrast, peak-to-peak tibia torsion angle was smaller during treadmill running than during walking. To conclude, bending and torsion of substantial magnitude were observed in the human tibia during walking and running. A systematic distribution of peak amplitude was found during the first and second parts of the stance phase.
Yentes, Jennifer M; Rennard, Stephen I; Schmid, Kendra K; Blanke, Daniel; Stergiou, Nicholas
2017-06-01
Compared with control subjects, patients with chronic obstructive pulmonary disease (COPD) have an increased incidence of falls and demonstrate balance deficits and alterations in mediolateral trunk acceleration while walking. Measures of gait variability have been implicated as indicators of fall risk, fear of falling, and future falls. To investigate whether alterations in gait variability are found in patients with COPD as compared with healthy control subjects. Twenty patients with COPD (16 males; mean age, 63.6 ± 9.7 yr; FEV 1 /FVC, 0.52 ± 0.12) and 20 control subjects (9 males; mean age, 62.5 ± 8.2 yr) walked for 3 minutes on a treadmill while their gait was recorded. The amount (SD and coefficient of variation) and structure of variability (sample entropy, a measure of regularity) were quantified for step length, time, and width at three walking speeds (self-selected and ±20% of self-selected speed). Generalized linear mixed models were used to compare dependent variables. Patients with COPD demonstrated increased mean and SD step time across all speed conditions as compared with control subjects. They also walked with a narrower step width that increased with increasing speed, whereas the healthy control subjects walked with a wider step width that decreased as speed increased. Further, patients with COPD demonstrated less variability in step width, with decreased SD, compared with control subjects at all three speed conditions. No differences in regularity of gait patterns were found between groups. Patients with COPD walk with increased duration of time between steps, and this timing is more variable than that of control subjects. They also walk with a narrower step width in which the variability of the step widths from step to step is decreased. Changes in these parameters have been related to increased risk of falling in aging research. This provides a mechanism that could explain the increased prevalence of falls in patients with COPD.
[Factors related to sarcopenia in community-dwelling elderly subjects in Japan].
Tanimoto, Yoshimi; Watanabe, Misuzu; Sugiura, Yumiko; Hayashida, Itsushi; Kusabiraki, Toshiyuki; Kono, Koichi
2013-01-01
This study aimed at determining the factors associated with sarcopenia, defined as low muscle mass and strength and low physical performance, in community-dwelling elderly subjects in Japan. The subjects included 1,074 elderly, community-dwelling Japanese people aged 65 years or older. We measured appendicular muscle mass (AMM) by bioelectrical impedance analysis, grip strength, and usual walking speed. A low muscle mass was defined by the AMM index (AMI, weight [kg]/height [m(2)] as >2 standard deviations below the mean AMI for normal young subjects. The lowest quartile for grip strength and usual walking speed were classified as low muscle strength and low physical performance, respectively. "Sarcopenia" was characterized by a low muscle mass, combined with either a low muscle strength or low physical performance. Subjects without low muscle mass or strength and low physical performance were classified as "normal." Subjects were classified as being "intermediate" if they were neither "sarcopenic" nor "normal." Items in the questionnaire included residential status, past medical history, admission during the past year, smoking and drinking habits, leisure-time physical activity, health status, depression, masticatory ability, and dietary variety score. Sarcopenia was identified in 13.7% of men and 15.5% of women. Among men, a large proportion of subjects with sarcopenia had poor masticatory ability and a low dietary variety score compared with normal or intermediate subjects. Among women, a large proportion of the subjects with sarcopenia lived alone, had poor exercise habits, considered themselves to be unhealthy, and had poor masticatory ability compared with normal or intermediate subjects. A multiple logistic regression analysis showed that age and dietary variety in men and age and masticatory ability in women were associated with sarcopenia. The present study carried out in Japan showed that sarcopenia, assessed by muscle mass, muscle strength, and physical performance, was associated with age, dietary variety score (in men), and masticatory ability (in women).
A kinematic model to assess spinal motion during walking.
Konz, Regina J; Fatone, Stefania; Stine, Rebecca L; Ganju, Aruna; Gard, Steven A; Ondra, Stephen L
2006-11-15
A 3-dimensional multi-segment kinematic spine model was developed for noninvasive analysis of spinal motion during walking. Preliminary data from able-bodied ambulators were collected and analyzed using the model. Neither the spine's role during walking nor the effect of surgical spinal stabilization on gait is fully understood. Typically, gait analysis models disregard the spine entirely or regard it as a single rigid structure. Data on regional spinal movements, in conjunction with lower limb data, associated with walking are scarce. KinTrak software (Motion Analysis Corp., Santa Rosa, CA) was used to create a biomechanical model for analysis of 3-dimensional regional spinal movements. Measuring known angles from a mechanical model and comparing them to the calculated angles validated the kinematic model. Spine motion data were collected from 10 able-bodied adults walking at 5 self-selected speeds. These results were compared to data reported in the literature. The uniaxial angles measured on the mechanical model were within 5 degrees of the calculated kinematic model angles, and the coupled angles were within 2 degrees. Regional spine kinematics from able-bodied subjects calculated with this model compared well to data reported by other authors. A multi-segment kinematic spine model has been developed and validated for analysis of spinal motion during walking. By understanding the spine's role during ambulation and the cause-and-effect relationship between spine motion and lower limb motion, preoperative planning may be augmented to restore normal alignment and balance with minimal negative effects on walking.
Caplan, Nick; Forbes, Andrew; Radha, Sarkhell; Stewart, Su; Ewen, Alistair; St Clair Gibson, Alan; Kader, Deiary
2015-05-01
Ankle immobilization is often used after ankle injury. To determine the influence of 1 week's unilateral ankle immobilization on plantar-flexor strength, balance, and walking gait in asymptomatic volunteers. Repeated-measures laboratory study. University laboratory. 6 physically active male participants with no recent history of lower-limb injury. Participants completed a 1-wk period of ankle immobilization achieved through wearing a below-knee ankle cast. Before the cast was applied, as well as immediately, 24 h, and 48 h after cast removal, their plantar-flexor strength was assessed isokinetically, and they completed a single-leg balance task as a measure of proprioceptive function. An analysis of their walking gait was also completed Main Outcome Measures: Peak plantar-flexor torque and balance were used to determine any effect on muscle strength and proprioception after cast removal. Ranges of motion (3D) of the ankle, knee, and hip, as well as walking speed, were used to assess any influence on walking gait. After cast removal, plantar-flexor strength was reduced for the majority of participants (P = .063, CI = -33.98 to 1.31) and balance performance was reduced in the immobilized limb (P < .05, CI = 0.84-5.16). Both strength and balance were not significantly different from baseline levels by 48 h. Walking speed was not significantly different immediately after cast removal but increased progressively above baseline walking speed over the following 48 h. Joint ranges of motion were not significantly different at any time point. The reduction in strength and balance after such a short period of immobilization suggested compromised central and peripheral neural mechanisms. This suggestion appeared consistent with the delayed increase in walking speed that could occur as a result of the excitability of the neural pathways increasing toward baseline levels.
2012-01-01
Background Virtual reality (VR) technology along with treadmill training (TT) can effectively provide goal-oriented practice and promote improved motor learning in patients with neurological disorders. Moreover, the VR + TT scheme may enhance cognitive engagement for more effective gait rehabilitation and greater transfer to over ground walking. For this purpose, we developed an individualized treadmill controller with a novel speed estimation scheme using swing foot velocity, which can enable user-driven treadmill walking (UDW) to more closely simulate over ground walking (OGW) during treadmill training. OGW involves a cyclic acceleration-deceleration profile of pelvic velocity that contrasts with typical treadmill-driven walking (TDW), which constrains a person to walk at a preset constant speed. In this study, we investigated the effects of the proposed speed adaptation controller by analyzing the gait kinematics of UDW and TDW, which were compared to those of OGW at three pre-determined velocities. Methods Ten healthy subjects were asked to walk in each mode (TDW, UDW, and OGW) at three pre-determined speeds (0.5 m/s, 1.0 m/s, and 1.5 m/s) with real time feedback provided through visual displays. Temporal-spatial gait data and 3D pelvic kinematics were analyzed and comparisons were made between UDW on a treadmill, TDW, and OGW. Results The observed step length, cadence, and walk ratio defined as the ratio of stride length to cadence were not significantly different between UDW and TDW. Additionally, the average magnitude of pelvic acceleration peak values along the anterior-posterior direction for each step and the associated standard deviations (variability) were not significantly different between the two modalities. The differences between OGW and UDW and TDW were mainly in swing time and cadence, as have been reported previously. Also, step lengths between OGW and TDW were different for 0.5 m/s and 1.5 m/s gait velocities, and walk ratio between OGS and UDW was different for 1.0 m/s gait velocities. Conclusions Our treadmill control scheme implements similar gait biomechanics of TDW, which has been used for repetitive gait training in a small and constrained space as well as controlled and safe environments. These results reveal that users can walk as stably during UDW as TDW and employ similar strategies to maintain walking speed in both UDW and TDW. Furthermore, since UDW can allow a user to actively participate in the virtual reality (VR) applications with variable walking velocity, it can induce more cognitive activities during the training with VR, which may enhance motor learning effects. PMID:22929169
Theoretical analysis of evaporative cooling of classic heat stroke patients
NASA Astrophysics Data System (ADS)
Alzeer, Abdulaziz H.; Wissler, E. H.
2018-05-01
Heat stroke is a serious health concern globally, which is associated with high mortality. Newer treatments must be designed to improve outcomes. The aim of this study is to evaluate the effect of variations in ambient temperature and wind speed on the rate of cooling in a simulated heat stroke subject using the dynamic model of Wissler. We assume that a 60-year-old 70-kg female suffers classic heat stroke after walking fully exposed to the sun for 4 h while the ambient temperature is 40 °C, relative humidity is 20%, and wind speed is 2.5 m/s-1. Her esophageal and skin temperatures are 41.9 and 40.7 °C at the time of collapse. Cooling is accomplished by misting with lukewarm water while exposed to forced airflow at a temperature of 20 to 40 °C and a velocity of 0.5 or 1 m/s-1. Skin blood flow is assumed to be either normal, one-half of normal, or twice normal. At wind speed of 0.5 m/s-1 and normal skin blood flow, the air temperature decreased from 40 to 20 °C, increased cooling, and reduced time required to reach to a desired temperature of 38 °C. This relationship was also maintained in reduced blood flow states. Increasing wind speed to 1 m/s-1 increased cooling and reduced the time to reach optimal temperature both in normal and reduced skin blood flow states. In conclusion, evaporative cooling methods provide an effective method for cooling classic heat stroke patients. The maximum heat dissipation from the simulated model of Wissler was recorded when the entire body was misted with lukewarm water and applied forced air at 1 m/s at temperature of 20 °C.
Compliant walking appears metabolically advantageous at extreme step lengths.
Kim, Jaehoon; Bertram, John E A
2018-05-19
Humans alter gait in response to unusual gait circumstances to accomplish the task of walking. For instance, subjects spontaneously increase leg compliance at a step length threshold as step length increases. Here we test the hypothesis that this transition occurs based on the level of energy expenditure, where compliant walking becomes less energetically demanding at long step lengths. To map and compare the metabolic cost of normal and compliant walking as step length increases. 10 healthy individuals walked on a treadmill using progressively increasing step lengths (100%, 120%, 140% and 160% of preferred step length), in both normal and compliant leg walking as energy expenditure was recorded via indirect calorimetry. Leg compliance was controlled by lowering the center-of-mass trajectory during stance, forcing the leg to flex and extend as the body moved over the foot contact. For normal step lengths, compliant leg walking was more costly than normal walking gait, but compliant leg walking energetic cost did not increase as rapidly for longer step lengths. This led to an intersection between normal and compliant walking cost curves at 114% relative step length (regression analysis; r 2 = 0.92 for normal walking; r 2 = 0.65 for compliant walking). Compliant leg walking is less energetically demanding at longer step lengths where a spontaneous shift to compliant walking has been observed, suggesting the human motor control system is sensitive to energetic requirements and will employ alternate movement patterns if advantageous strategies are available. The transition could be attributed to the interplay between (i) leg work controlling body travel during single stance and (ii) leg work to control energy loss in the step-to-step transition. Compliant leg walking requires more stance leg work at normal step lengths, but involves less energy loss at the step-to-step transition for very long steps. Copyright © 2018 Elsevier B.V. All rights reserved.
Walking economy is predictably determined by speed, grade, and gravitational load.
Ludlow, Lindsay W; Weyand, Peter G
2017-11-01
The metabolic energy that human walking requires can vary by more than 10-fold, depending on the speed, surface gradient, and load carried. Although the mechanical factors determining economy are generally considered to be numerous and complex, we tested a minimum mechanics hypothesis that only three variables are needed for broad, accurate prediction: speed, surface grade, and total gravitational load. We first measured steady-state rates of oxygen uptake in 20 healthy adult subjects during unloaded treadmill trials from 0.4 to 1.6 m/s on six gradients: -6, -3, 0, 3, 6, and 9°. Next, we tested a second set of 20 subjects under three torso-loading conditions (no-load, +18, and +31% body weight) at speeds from 0.6 to 1.4 m/s on the same six gradients. Metabolic rates spanned a 14-fold range from supine rest to the greatest single-trial walking mean (3.1 ± 0.1 to 43.3 ± 0.5 ml O 2 ·kg -body -1 ·min -1 , respectively). As theorized, the walking portion (V̇o 2-walk = V̇o 2-gross - V̇o 2-supine-rest ) of the body's gross metabolic rate increased in direct proportion to load and largely in accordance with support force requirements across both speed and grade. Consequently, a single minimum-mechanics equation was derived from the data of 10 unloaded-condition subjects to predict the pooled mass-specific economy (V̇o 2-gross , ml O 2 ·kg -body + load -1 ·min -1 ) of all the remaining loaded and unloaded trials combined ( n = 1,412 trials from 90 speed/grade/load conditions). The accuracy of prediction achieved ( r 2 = 0.99, SEE = 1.06 ml O 2 ·kg -1 ·min -1 ) leads us to conclude that human walking economy is predictably determined by the minimum mechanical requirements present across a broad range of conditions. NEW & NOTEWORTHY Introduced is a "minimum mechanics" model that predicts human walking economy across a broad range of conditions from only three variables: speed, surface grade, and body-plus-load mass. The derivation/validation data set includes steady-state loaded and unloaded walking trials ( n = 3,414) that span a fourfold range of walking speeds on each of six different surface gradients (-6 to +9°). The accuracy of our minimum mechanics model ( r 2 = 0.99; SEE = 1.06 ml O 2 ·kg -1 ·min -1 ) appreciably exceeds that of currently used standards. Copyright © 2017 the American Physiological Society.
Suresh, R; Bhalla, S; Singh, C; Kaur, N; Hao, J; Anand, S
2015-01-01
Clinical monitoring of planar pressure is vital in several pathological conditions, such as diabetes, where excess pressure might have serious repercussions on health of the patient, even to the extent of amputation. The main objective of this paper is to experimentally evaluate the combined application of the Fibre Bragg Grating (FBG) and the lead zirconate titanate (PZT) piezoceramic sensors for plantar pressure monitoring during walk at low and high speeds. For fabrication of the pressure sensors, the FBGs are embedded within layers of carbon composite material and stacked in an arc shape. From this embedding technique, average pressure sensitivity of 1.3 pm/kPa and resolution of nearly 0.8 kPa is obtained. These sensors are found to be suitable for measuring the static and the low-speed walk generated foot pressure. Simultaneously, PZT patches of size 10 × 10 × 0.3 mm were used as sensors, utilizing the d
Gait Phase Estimation Based on Noncontact Capacitive Sensing and Adaptive Oscillators.
Zheng, Enhao; Manca, Silvia; Yan, Tingfang; Parri, Andrea; Vitiello, Nicola; Wang, Qining
2017-10-01
This paper presents a novel strategy aiming to acquire an accurate and walking-speed-adaptive estimation of the gait phase through noncontact capacitive sensing and adaptive oscillators (AOs). The capacitive sensing system is designed with two sensing cuffs that can measure the leg muscle shape changes during walking. The system can be dressed above the clothes and free human skin from contacting to electrodes. In order to track the capacitance signals, the gait phase estimator is designed based on the AO dynamic system due to its ability of synchronizing with quasi-periodic signals. After the implementation of the whole system, we first evaluated the offline estimation performance by experiments with 12 healthy subjects walking on a treadmill with changing speeds. The strategy achieved an accurate and consistent gait phase estimation with only one channel of capacitance signal. The average root-mean-square errors in one stride were 0.19 rad (3.0% of one gait cycle) for constant walking speeds and 0.31 rad (4.9% of one gait cycle) for speed transitions even after the subjects rewore the sensing cuffs. We then validated our strategy in a real-time gait phase estimation task with three subjects walking with changing speeds. Our study indicates that the strategy based on capacitive sensing and AOs is a promising alternative for the control of exoskeleton/orthosis.
Bouwman, B M; van Lier, H; Nitert, H E J; Drinkenburg, W H I M; Coenen, A M L; van Rijn, C M
2005-01-30
The relationship between hippocampal electroencephalogram (EEG) theta activity and locomotor speed in both spontaneous and forced walking conditions was studied in rats after vigabatrin injection (500 mg/kg i.p.). Vigabatrin increased the percentage of time that rats spent being immobile. During spontaneous walking in the open field, the speed of locomotion was increased by vigabatrin, while theta peak frequency was decreased. Vigabatrin also reduced the theta peak frequency during forced (speed controlled) walking. There was only a weak positive correlation (r=0.22) between theta peak frequency and locomotor speed for the saline condition. Furthermore, vigabatrin abolishes the weak relationship between speed of locomotion and theta peak frequency. Vigabatrin and saline did not differ in the slope of the regression line, but showed different offset points at the theta peak frequency axis. Thus, other factors than speed of locomotion seem to be involved in determination of the theta peak frequency.
Senden, R; Savelberg, H H C M; Adam, J; Grimm, B; Heyligers, I C; Meijer, K
2014-01-01
Dynamic imbalance caused by external perturbations to gait can successfully be counteracted by adequate recovery responses. The current study investigated how the recovery response is moderated by age, walking speed, muscle strength and speed of information processing. The gait pattern of 50 young and 45 elderly subjects was repeatedly perturbed at 20% and 80% of the first half of the swing phase using the Timed Rapid impact Perturbation (TRiP) set-up. Recovery responses were identified using 2D cameras. Muscular factors (dynamometer) and speed of information processing parameters (computer-based reaction time task) were determined. The stronger, faster reacting and faster walking young subjects recovered more often by an elevating strategy than elderly subjects. Twenty three per cent of the differences in recovery responses were explained by a combination of walking speed (B=-13.85), reaction time (B=-0.82), maximum extension strength (B=0.01) and rate of extension moment development (B=0.19). The recovery response that subjects employed when gait was perturbed by the TRiP set-up was modified by several factors; the individual contribution of walking speed, muscle strength and speed of information processing was small. Insight into remaining modifying factors is needed to assist and optimise fall prevention programmes. Copyright © 2013 Elsevier B.V. All rights reserved.
Locomotion with loads: practical techniques for predicting performance outcomes
including load), speed, and grade algorithms proposed will allow walking metabolic rates to be predicted to within 6.0 and 12.0 in laboratory and field...speeds to be predicted to within6.0 in both laboratory and field settings. Respective load-carriage algorithms for walking energy expenditure and...running speed will be developed and tested( Technical Objectives 1.0 and 2.0) in the laboratory and the field.
Kaewkaen, Kitchana; Wongsamud, Phongphat; Ngaothanyaphat, Jiratchaya; Supawarapong, Papawarin; Uthama, Suraphong; Ruengsirarak, Worasak; Chanabun, Suthin; Kaewkaen, Pratchaya
2018-02-01
The walking gait of older adults with balance impairment is affected by dual tasking. Several studies have shown that external cues can stimulate improvement in older adults' performance. There is, however, no current evidence to support the usefulness of external cues, such as audio-visual cueing, in dual task walking in older adults. Thus, the aim of this study was to investigate the influence of an audio-visual cue (simulated traffic light) on dual task walking in healthy older adults and in older adults with balance impairments. A two-way repeated measures study was conducted on 14 healthy older adults and 14 older adults with balance impairment, who were recruited from the community in Chiang Rai, Thailand. Their walking performance was assessed using a four-metre walking test at their preferred gait speed and while walking under two further gait conditions, in randomised order: dual task walking and dual task walking with a simulated traffic light. Each participant was tested individually, with the testing taking between 15 and 20 minutes to perform, including two-minute rest periods between walking conditions. Two Kinect cameras recorded the spatio-temporal parameters using MFU gait analysis software. Each participant was tested for each condition twice. The mean parameters for each condition were analysed using a two-way repeated measures analysis of variance (ANOVA) with participant group and gait condition as factors. There was no significant between-group effect for walking speed, stride length and cadence. There were also no significant effects between gait condition and stride length or cadence. However, the effect between gait condition and walking speed was found to be significant [F(1.557, 40.485) = 4.568, P = 0.024, [Formula: see text
Cardiorespiratory Responses to Pool Floor Walking in People Poststroke.
Jeng, Brenda; Fujii, Takuto; Lim, Hyosok; Vrongistinos, Konstantinos; Jung, Taeyou
2018-03-01
To compare cardiorespiratory responses between pool floor walking and overground walking (OW) in people poststroke. Cross-sectional study. University-based therapeutic exercise facility. Participants (N=28) were comprised of 14 community-dwelling individuals poststroke (5.57±3.57y poststroke) and 14 age- and sex-matched healthy adults (mean age, 58.00±15.51y; male/female ratio, 9:5). Not applicable. A telemetric metabolic system was used to collect cardiorespiratory variables, including oxygen consumption (V˙o 2 ), energy expenditure (EE), and expired volume per unit time (V˙e), during 6-minute walking sessions in chest-depth water and on land at a matched speed, determined by average of maximum walking speed in water. Individuals poststroke elicited no significant differences in cardiorespiratory responses between pool floor walking and OW. However, healthy controls showed significant increases in mean V˙o 2 values by 94%, EE values by 109%, and V˙e values by 94% (all P<.05) during pool floor walking compared with OW. A 2×2 mixed model analysis of variance revealed a significant group × condition interaction in V˙o 2 , in which the control group increased V˙o 2 from OW to pool floor walking, whereas the stroke group did not. Our results indicate that people poststroke, unlike healthy adults, do not increase EE while walking in water compared with on land. Unlike stationary walking on an aquatic treadmill, forward locomotion during pool floor walking at faster speeds may have increased drag force, which requires greater EE from healthy adults. Without demanding excessive EE, walking in water may offer a naturally supportive environment for gait training in the early stages of rehabilitation. Copyright © 2017 American Congress of Rehabilitation Medicine. All rights reserved.
The effects of a skeletal muscle titin mutation on walking in mice.
Pace, Cinnamon M; Mortimer, Sarah; Monroy, Jenna A; Nishikawa, Kiisa C
2017-01-01
Titin contributes to sarcomere assembly, muscle signaling, and mechanical properties of muscle. The mdm mouse exhibits a small deletion in the titin gene resulting in dystrophic mutants and phenotypically normal heterozygotes. We examined the effects of this mutation on locomotion to assess how, and if, changes to muscle phenotype explain observed locomotor differences. Mutant mice are much smaller in size than their siblings and gait abnormalities may be driven by differences in limb proportions and/or by changes to muscle phenotype caused by the titin mutation. We quantified differences in walking gait among mdm genotypes and also determined whether genotypes vary in limb morphometrics. Mice were filmed walking, and kinematic and morphological variables were measured. Mutant mice had a smaller range of motion at the ankle, shorter stride lengths, and shorter stance duration, but walked at the same relative speeds as the other genotypes. Although phenotypically similar to wildtype mice, heterozygous mice frequently exhibited intermediate gait mechanics. Morphological differences among genotypes in hindlimb proportions were small and do not explain the locomotor differences. We suggest that differences in locomotion among mdm genotypes are due to changes in muscle phenotype caused by the titin mutation.
Isolating gait-related movement artifacts in electroencephalography during human walking
Kline, Julia E.; Huang, Helen J.; Snyder, Kristine L.; Ferris, Daniel P.
2016-01-01
Objective High-density electroencephelography (EEG) can provide insight into human brain function during real-world activities with walking. Some recent studies have used EEG to characterize brain activity during walking, but the relative contributions of movement artifact and electrocortical activity have been difficult to quantify. We aimed to characterize movement artifact recorded by EEG electrodes at a range of walking speeds and to test the efficacy of artifact removal methods. We also quantified the similarity between movement artifact recorded by EEG electrodes and a head-mounted accelerometer. Approach We used a novel experimental method to isolate and record movement artifact with EEG electrodes during walking. We blocked electrophysiological signals using a nonconductive layer (silicone swim cap) and simulated an electrically conductive scalp on top of the swim cap using a wig coated with conductive gel. We recorded motion artifact EEG data from nine young human subjects walking on a treadmill at speeds from 0.4–1.6 m/s. We then tested artifact removal methods including moving average and wavelet-based techniques. Main Results Movement artifact recorded with EEG electrodes varied considerably, across speed, subject, and electrode location. The movement artifact measured with EEG electrodes did not correlate well with head acceleration. All of the tested artifact removal methods attenuated low-frequency noise but did not completely remove movement artifact. The spectral power fluctuations in the movement artifact data resembled data from some previously published studies of EEG during walking. Significance Our results suggest that EEG data recorded during walking likely contains substantial movement artifact that: cannot be explained by head accelerations; varies across speed, subject, and channel; and cannot be removed using traditional signal processing methods. Future studies should focus on more sophisticated methods for removing of EEG movement artifact to advance the field. PMID:26083595
Dalfampridine Effects Beyond Walking Speed in Multiple Sclerosis
Fjeldstad, Cecilie; Suárez, Gustavo; Klingler, Michael; Henney, Herbert R.; Rabinowicz, Adrian L.
2015-01-01
Background: Dalfampridine extended release (ER) improves walking in people with multiple sclerosis (MS), as demonstrated by walking speed improvement. This exploratory study evaluated treatment effects of dalfampridine-ER on gait, balance, and walking through treatment withdrawal and reinitiation. Methods: Dalfampridine-ER responders, based on Timed 25-Foot Walk (T25FW) assessment before study entry, were included in this open-label, three-period, single-center study. Period 1: on-drug evaluations performed at screening and 1 week after screening. Period 2: dalfampridine-ER withdrawal and off-drug evaluations (days 5 and 11). Period 3: dalfampridine-ER reinitiation/final on-drug evaluation (day 15). Primary outcome variables: NeuroCom composite scores for gait and balance; balance was evaluated if gait changes were significant. Secondary variables: individual NeuroCom scores, walking speed (T25FW) and distance (2-Minute Walk Test [2MWT]), and balance (Berg Balance Scale [BBS]). Results: All 20 patients completed the study: mean age, 53.1 years; mean MS duration, 11.3 years; mean time taking dalfampridine-ER, 315.3 days. NeuroCom gait composite scores worsened during period 2 relative to period 1 and improved during period 3; the mean ± SD difference in gait composite scores on drug was 4.03 ± 1.51 points (P = .015). Balance composite scores did not change significantly. Improvements were observed for off-drug versus on-drug for T25FW (0.36 ft/sec, P < .001), 2MWT (25.4 ft, P = .006), and BBS (1.7 points, P = .003). Safety profile was consistent with previous studies. Conclusions: Significant improvements in gait, walking speed, distance, and balance were demonstrated by dalfampridine-ER reinitiation after a 10-day withdrawal period. PMID:26664333
Differences in foot kinematics between young and older adults during walking.
Arnold, John B; Mackintosh, Shylie; Jones, Sara; Thewlis, Dominic
2014-02-01
Our understanding of age-related changes to foot function during walking has mainly been based on plantar pressure measurements, with little information on differences in foot kinematics between young and older adults. The purpose of this study was to investigate the differences in foot kinematics between young and older adults during walking using a multi-segment foot model. Joint kinematics of the foot and ankle for 20 young (mean age 23.2 years, standard deviation (SD) 3.0) and 20 older adults (mean age 73.2 years, SD 5.1) were quantified during walking with a 12 camera Vicon motion analysis system using a five segment kinematic model. Differences in kinematics were compared between older adults and young adults (preferred and slow walking speeds) using Student's t-tests or if indicated, Mann-Whitney U tests. Effect sizes (Cohen's d) for the differences were also computed. The older adults had a less plantarflexed calcaneus at toe-off (-9.6° vs. -16.1°, d = 1.0, p = <0.001), a smaller sagittal plane range of motion (ROM) of the midfoot (11.9° vs. 14.8°, d = 1.3, p = <0.001) and smaller coronal plane ROM of the metatarsus (3.2° vs. 4.3°, d = 1.1, p = 0.006) compared to the young adults. Walking speed did not influence these differences, as they remained present when groups walked at comparable speeds. The findings of this study indicate that independent of walking speed, older adults exhibit significant differences in foot kinematics compared to younger adults, characterised by less propulsion and reduced mobility of multiple foot segments. Copyright © 2013 Elsevier B.V. All rights reserved.
Isolating gait-related movement artifacts in electroencephalography during human walking.
Kline, Julia E; Huang, Helen J; Snyder, Kristine L; Ferris, Daniel P
2015-08-01
High-density electroencephelography (EEG) can provide an insight into human brain function during real-world activities with walking. Some recent studies have used EEG to characterize brain activity during walking, but the relative contributions of movement artifact and electrocortical activity have been difficult to quantify. We aimed to characterize movement artifact recorded by EEG electrodes at a range of walking speeds and to test the efficacy of artifact removal methods. We also quantified the similarity between movement artifact recorded by EEG electrodes and a head-mounted accelerometer. We used a novel experimental method to isolate and record movement artifact with EEG electrodes during walking. We blocked electrophysiological signals using a nonconductive layer (silicone swim cap) and simulated an electrically conductive scalp on top of the swim cap using a wig coated with conductive gel. We recorded motion artifact EEG data from nine young human subjects walking on a treadmill at speeds from 0.4 to 1.6 m s(-1). We then tested artifact removal methods including moving average and wavelet-based techniques. Movement artifact recorded with EEG electrodes varied considerably, across speed, subject, and electrode location. The movement artifact measured with EEG electrodes did not correlate well with head acceleration. All of the tested artifact removal methods attenuated low-frequency noise but did not completely remove movement artifact. The spectral power fluctuations in the movement artifact data resembled data from some previously published studies of EEG during walking. Our results suggest that EEG data recorded during walking likely contains substantial movement artifact that: cannot be explained by head accelerations; varies across speed, subject, and channel; and cannot be removed using traditional signal processing methods. Future studies should focus on more sophisticated methods for removal of EEG movement artifact to advance the field.
Changes in resting and walking energy expenditure and walking speed during pregnancy in obese women.
Byrne, Nuala M; Groves, Ainsley M; McIntyre, H David; Callaway, Leonie K
2011-09-01
Energy-conserving processes reported in undernourished women during pregnancy are a recognized strategy for providing the energy required to support fetal development. Women who are obese before conceiving arguably have sufficient fat stores to support the energy demands of pregnancy without the need to provoke energy-conserving mechanisms. We tested the hypothesis that obese women would show behavioral adaptation [ie, a decrease in self-selected walking (SSW) speed] but not metabolic compensation [ie, a decrease in resting metabolic rate (RMR) or the metabolic cost of walking] during gestation. RMR, SSW speed, metabolic cost of walking, and anthropometric variables were measured in 23 women aged 31 ± 4 y with a BMI (in kg/m(2)) of 33.6 ± 2.5 (mean ± SD) at ≈15 and 30 wk of gestation. RMR was also measured in 2 cohorts of nonpregnant control subjects matched for the age, weight, and height of the pregnant cohort at 15 (n = 23) and 30 (n = 23) wk. Gestational weight gain varied widely (11.3 ± 5.4 kg), and 52% of the women gained more weight than is recommended. RMR increased significantly by an average of 177 ± 176 kcal/d (11 ± 12%; P < 0.0001); however, the within-group variability was large. Both the metabolic cost of walking and SSW speed decreased significantly (P < 0.01). Whereas RMR increased in >80% of the cohort, the net oxygen cost of walking decreased in the same proportion of women. Although the increase in RMR was greater than that explained by weight gain, evidence of both behavioral and biological compensation in the metabolic cost of walking was observed in obese women during gestation. The trial is registered with the Australian Clinical Trials Registry as ACTRN012606000271505.
Stevens, Sandra L; Caputo, Jennifer L; Fuller, Dana K; Morgan, Don W
2015-01-01
To document the effects of underwater treadmill training (UTT) on leg strength, balance, and walking performance in adults with incomplete spinal cord injury (iSCI). Pre-test and post-test design. Exercise physiology laboratory. Adult volunteers with iSCI (n = 11). Participants completed 8 weeks (3 × /week) of UTT. Each training session consisted of three walks performed at a personalized speed, with adequate rest between walks. Body weight support remained constant for each participant and ranged from 29 to 47% of land body weight. Increases in walking speed and duration were staggered and imposed in a gradual and systematic fashion. Lower-extremity strength (LS), balance (BL), preferred and rapid walking speeds (PWS and RWS), 6-minute walk distance (6MWD), and daily step activity (DSA). Significant (P < 0.05) increases were observed in LS (13.1 ± 3.1 to 20.6 ± 5.1 N·kg(-1)), BL (23 ± 11 to 32 ± 13), PWS (0.41 ± 0.27 to 0.55 ± 0.28 m·s(-1)), RWS (0.44 ± 0.31 to 0.71 ± 0.40 m·s(-1)), 6MWD (97 ± 80 to 177 ± 122 m), and DSA (593 ± 782 to 1310 ± 1258 steps) following UTT. Physical function and walking ability were improved in adults with iSCI following a structured program of UTT featuring individualized levels of body weight support and carefully staged increases in speed and duration. From a clinical perspective, these findings highlight the potential of UTT in persons with physical disabilities and diseases that would benefit from weight-supported exercise.
Nogueira, Leandro Alberto Calazans; Santos, Luciano Teixeira Dos; Sabino, Pollyane Galinari; Alvarenga, Regina Maria Papais; Thuler, Luiz Claudio Santos
2013-08-01
We analysed the cognitive influence on walking in multiple sclerosis (MS) patients, in the absence of clinical disability. A case-control study was conducted with 12 MS patients with no disability and 12 matched healthy controls. Subjects were referred for completion a timed walk test of 10 m and a 3D-kinematic analysis. Participants were instructed to walk at a comfortable speed in a dual-task (arithmetic task) condition, and motor planning was measured by mental chronometry. Scores of walking speed and cadence showed no statistically significant differences between the groups in the three conditions. The dual-task condition showed an increase in the double support duration in both groups. Motor imagery analysis showed statistically significant differences between real and imagined walking in patients. MS patients with no disability did not show any influence of divided attention on walking execution. However, motor planning was overestimated as compared with real walking.
Zamparo, P; Pagliaro, P
1998-08-01
In this study the energy cost of level walking was measured in 23 patients with stationary spastic paresis before and after a two-week treatment (45 min daily) of hydro-kinesi therapy, the latter consisting of passive and active movements in warm (32 degrees C) sea water, free swimming and water immersion walking. Among the subjects (80.2 +/- 13.2 kg body mass; 56.0 +/- 14.6 years of age; 10.7 +/- 6.6 years of duration of spasticity), 12 were affected by hemiparesis, 4 by multiple sclerosis and 7 by spinal cord injury. The energy cost of level walking (Cw) was measured before and after therapy from the ratio of the overall steady-state oxygen consumption to the effective speed of progression. The differences in Cw due to the treatment, at matched speeds, were found to be negligible at speeds higher than 0.75 m.s-1 (less than 5%) but to increase, with decreasing speed, up to about 17% at 0.1 m.s-1. The treatment was therefore effective in improving the gait characteristics of the subjects, through a decrease of their Cw, mainly at low speeds of progression.
The Pandolf equation under-predicts the metabolic rate of contemporary military load carriage.
Drain, Jace R; Aisbett, Brad; Lewis, Michael; Billing, Daniel C
2017-11-01
This investigation assessed the accuracy of error of the Pandolf load carriage energy expenditure equation when simulating contemporary military conditions (load distribution, external load and walking speed). Within-participant design. Sixteen male participants completed 10 trials comprised of five walking speeds (2.5, 3.5, 4.5, 5.5 and 6.5km·h -1 ) and two external loads (22.7 and 38.4kg). The Pandolf equation demonstrated poor predictive precision, with a mean bias of 124.9W and -48.7 to 298.5W 95% limits of agreement. Furthermore, the Pandolf equation systematically under-predicted metabolic rate (p<0.05) across the 10 speed-load combinations. Predicted metabolic rate error ranged from 12-33% across all conditions with the 'moderate' walking speeds (i.e. 4.5-5.5km·h -1 ) yielding less prediction error (12-17%) when compared to the slower and faster walking speeds (21-33%). Factors such as mechanical efficiency and load distribution contribute to the impaired predictive accuracy. The authors suggest the Pandolf equation should be applied to military load carriage with caution. Copyright © 2017 Sports Medicine Australia. All rights reserved.
Reilly, Stephen M; McElroy, Eric J; Andrew Odum, R; Hornyak, Valerie A
2006-01-01
The lumbering locomotor behaviours of tuataras and salamanders are the best examples of quadrupedal locomotion of early terrestrial vertebrates. We show they use the same walking (out-of-phase) and running (in-phase) patterns of external mechanical energy fluctuations of the centre-of-mass known in fast moving (cursorial) animals. Thus, walking and running centre-of-mass mechanics have been a feature of tetrapods since quadrupedal locomotion emerged over 400 million years ago. When walking, these sprawling animals save external mechanical energy with the same pendular effectiveness observed in cursorial animals. However, unlike cursorial animals (that change footfall patterns and mechanics with speed), tuataras and salamanders use only diagonal couplet gaits and indifferently change from walking to running mechanics with no significant change in total mechanical energy. Thus, the change from walking to running is not related to speed and the advantage of walking versus running is unclear. Furthermore, lumbering mechanics in primitive tetrapods is reflected in having total mechanical energy driven by potential energy (rather than kinetic energy as in cursorial animals) and relative centre-of-mass displacements an order of magnitude greater than cursorial animals. Thus, large vertical displacements associated with lumbering locomotion in primitive tetrapods may preclude their ability to increase speed. PMID:16777753
Thijssen, Dick H; Paulus, Rebecca; van Uden, Caro J; Kooloos, Jan G; Hopman, Maria T
2007-02-01
To measure energy cost and gait analysis in persons with stroke with and without a newly developed orthosis. Immediate and long-term (3wk) intervention (before-after trial). University medical center. Volunteer sample of 27 persons with long-term (range, 0.6-19y) hemiparetic stroke. Three-week familiarization to the new walking aid. Energy cost (per distance walked), preferred walking speed (PWS), and step length. Energy cost was examined in all subjects while walking on a treadmill at 3 different velocities (PWS, PWS+30%, PWS-30%) during 3 different situations (without orthosis, with orthosis, after 3-wk orthosis familiarization). Spatiotemporal aspects of the gait pattern were examined using a 6-m instrumented walkway system. Using the orthosis immediately decreased energy cost in persons with stroke during walking at the PWS (P<.001) and significantly increased walking speed (P<.005) and step length (P<.001). After 3 weeks of familiarization to the orthosis, energy cost at the PWS and at PWS+30% showed further improvement in energy cost (P<.05). The newly developed orthosis immediately decreases energy cost and improves walking speed and step length in persons with long-term stroke. After only 3 weeks of orthosis familiarization, energy cost shows additional improvement.
McGough, Ellen L; Kelly, Valerie E; Weaver, Kurt E; Logsdon, Rebecca G; McCurry, Susan M; Pike, Kenneth C; Grabowski, Thomas J; Teri, Linda
2018-04-01
This study aimed to examine differences in spatiotemporal gait parameters between older adults with amnestic mild cognitive impairment and normal cognition and to examine limbic and basal ganglia neural correlates of gait and executive function in older adults without dementia. This was a cross-sectional study of 46 community-dwelling older adults, ages 70-95 yrs, with amnestic mild cognitive impairment (n = 23) and normal cognition (n = 23). Structural magnetic resonance imaging was used to attain volumetric measures of limbic and basal ganglia structures. Quantitative motion analysis was used to measure spatiotemporal parameters of gait. The Trail Making Test was used to assess executive function. During fast-paced walking, older adults with amnestic mild cognitive impairment demonstrated significantly slower gait speed and shorter stride length compared with older adults with normal cognition. Stride length was positively correlated with hippocampal, anterior cingulate, and nucleus accumbens volumes (P < 0.05). Executive function was positively correlated with hippocampal, anterior cingulate, and posterior cingulate volumes (P < 0.05). Compared with older adults with normal cognition, those with amnestic mild cognitive impairment demonstrated slower gait speed and shorter stride length, during fast-paced walking, and lower executive function. Hippocampal and anterior cingulate volumes demonstrated moderate positive correlation with both gait and executive function, after adjusting for age. Complete the self-assessment activity and evaluation online at http://www.physiatry.org/JournalCME CME OBJECTIVES: Upon completion of this article, the reader should be able to: (1) discuss gait performance and cognitive function in older adults with amnestic mild cognitive impairment versus normal cognition, (2) discuss neurocorrelates of gait and executive function in older adults without dementia, and (3) recognize the importance of assessing gait speed and cognitive function in the clinical management of older adults at risk for dementia. Advanced ACCREDITATION: The Association of Academic Physiatrists is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians.The Association of Academic Physiatrists designates this Journal-based CME activity for a maximum of 0.5 AMA PRA Category 1 Credit(s)™. Physicians should only claim credit commensurate with the extent of their participation in the activity.
Balasubramanian, Chitralakshmi K.; Neptune, Richard R.; Kautz, Steven A.
2010-01-01
Background Foot placement during walking is closely linked to the body position, yet it is typically quantified relative to the other foot. The purpose of this study was to quantify foot placement patterns relative to body post-stroke and investigate its relationship to hemiparetic walking performance. Methods Thirty-nine participants with hemiparesis walked on a split-belt treadmill at their self-selected speeds and twenty healthy participants walked at matched slow speeds. Anterior-posterior and medial-lateral foot placements (foot center-of-mass) relative to body (pelvis center-of-mass) quantified stepping in body reference frame. Walking performance was quantified using step length asymmetry ratio, percent of paretic propulsion and paretic weight support. Findings Participants with hemiparesis placed their paretic foot further anterior than posterior during walking compared to controls walking at matched slow speeds (p < .05). Participants also placed their paretic foot further lateral relative to pelvis than non-paretic (p < .05). Anterior-posterior asymmetry correlated with step length asymmetry and percent paretic propulsion but some persons revealed differing asymmetry patterns in the translating reference frame. Lateral foot placement asymmetry correlated with paretic weight support (r = .596; p < .001), whereas step widths showed no relation to paretic weight support. Interpretation Post-stroke gait is asymmetric when quantifying foot placement in a body reference frame and this asymmetry related to the hemiparetic walking performance and explained motor control mechanisms beyond those explained by step lengths and step widths alone. We suggest that biomechanical analyses quantifying stepping performance in impaired populations should investigate foot placement in a body reference frame. PMID:20193972
Balasubramanian, Chitralakshmi K; Neptune, Richard R; Kautz, Steven A
2010-06-01
Foot placement during walking is closely linked to the body position, yet it is typically quantified relative to the other foot. The purpose of this study was to quantify foot placement patterns relative to body post-stroke and investigate its relationship to hemiparetic walking performance. Thirty-nine participants with hemiparesis walked on a split-belt treadmill at their self-selected speeds and 20 healthy participants walked at matched slow speeds. Anterior-posterior and medial-lateral foot placements (foot center-of-mass) relative to body (pelvis center-of-mass) quantified stepping in body reference frame. Walking performance was quantified using step length asymmetry ratio, percent of paretic propulsion and paretic weight support. Participants with hemiparesis placed their paretic foot further anterior than posterior during walking compared to controls walking at matched slow speeds (P<.05). Participants also placed their paretic foot further lateral relative to pelvis than non-paretic (P<.05). Anterior-posterior asymmetry correlated with step length asymmetry and percent paretic propulsion but some persons revealed differing asymmetry patterns in the translating reference frame. Lateral foot placement asymmetry correlated with paretic weight support (r=.596; P<.001), whereas step widths showed no relation to paretic weight support. Post-stroke gait is asymmetric when quantifying foot placement in a body reference frame and this asymmetry related to the hemiparetic walking performance and explained motor control mechanisms beyond those explained by step lengths and step widths alone. We suggest that biomechanical analyses quantifying stepping performance in impaired populations should investigate foot placement in a body reference frame. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Understanding the Physiological, Biomechanical, and Performance Effects of Body Armor Use
2008-12-01
force plates were collected through a single data acquisition (DAQ) system and were time-synchronized. 2.1 Testing Equipment Figure 1. Examples of 3...For analysis purposes, it was scaled to the volunteer’s body mass (ml/kg/min). For walking trials, the force plate treadmill was set at a speed of...familiarized with walking and running on the force plate treadmill at these speeds. For familiarization, a volunteer first walked at 1.34 mls without any
The basic mechanics of bipedal walking lead to asymmetric behavior.
Gregg, Robert D; Degani, Amir; Dhaher, Yasin; Lynch, Kevin M
2011-01-01
This paper computationally investigates whether gait asymmetries can be attributed in part to basic bipedal mechanics independent of motor control. Using a symmetrical rigid-body model known as the compass-gait biped, we show that changes in environmental or physiological parameters can facilitate asymmetry in gait kinetics at fast walking speeds. In the environmental case, the asymmetric family of high-speed gaits is in fact more stable than the symmetric family of low-speed gaits. These simulations suggest that lower extremity mechanics might play a direct role in functional and pathological asymmetries reported in human walking, where velocity may be a common variable in the emergence and growth of asymmetry. © 2011 IEEE
Predictive neuromechanical simulations indicate why walking performance declines with ageing.
Song, Seungmoon; Geyer, Hartmut
2018-04-01
Although the natural decline in walking performance with ageing affects the quality of life of a growing elderly population, its physiological origins remain unknown. By using predictive neuromechanical simulations of human walking with age-related neuro-musculo-skeletal changes, we find evidence that the loss of muscle strength and muscle contraction speed dominantly contribute to the reduced walking economy and speed. The findings imply that focusing on recovering these muscular changes may be the only effective way to improve performance in elderly walking. More generally, the work is of interest for investigating the physiological causes of altered gait due to age, injury and disorders. Healthy elderly people walk slower and energetically less efficiently than young adults. This decline in walking performance lowers the quality of life for a growing ageing population, and understanding its physiological origin is critical for devising interventions that can delay or revert it. However, the origin of the decline in walking performance remains unknown, as ageing produces a range of physiological changes whose individual effects on gait are difficult to separate in experiments with human subjects. Here we use a predictive neuromechanical model to separately address the effects of common age-related changes to the skeletal, muscular and nervous systems. We find in computer simulations of this model that the combined changes produce gait consistent with elderly walking and that mainly the loss of muscle strength and mass reduces energy efficiency. In addition, we find that the slower preferred walking speed of elderly people emerges in the simulations when adapting to muscle fatigue, again mainly caused by muscle-related changes. The results suggest that a focus on recovering these muscular changes may be the only effective way to improve performance in elderly walking. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Lockhart, Thurmon; Kim, Sukwon; Kapur, Radhika; Jarrott, Shannon
2009-01-01
The objective of the present study was to evaluate the relationship between gait adaptation and slip/fall risk of older adults with cognitive impairments. The study investigated the gait characteristics of six healthy older adults and five older adults with dementia. Participants walked on an instrumented walkway at their preferred walking speeds. After ensuring that the preferred walking speeds were consistent, participants' natural posture and ground reaction forces were measured. The results suggested that participants with dementia walked more cautiously yet demanded more friction at the shoe/floor interface at the time of heel contact, increasing the risk of slip initiation. To reduce the risk of slip-induced falls among older adults with dementia, specific gait training to reduce friction demand requirements by increasing the transfer speed of the whole body mass is suggested.
Ebrahimi, Samaneh; Kamali, Fahimeh; Razeghi, Mohsen; Haghpanah, Seyyed Arash
2017-04-01
Inter-segmental coordination can be influenced by chronic low back pain (CLBP). The sagittal plane lower extremities inter-segmental coordination pattern and variability, in conjunction with the pelvis and trunk, were assessed in subjects with and without non-specific CLBP during free-speed walking. Kinematic data were collected from 10 non-specific CLBP and 10 non-CLBP control volunteers while the subjects were walking at their preferred speed. Sagittal plane time-normalized segmental angles and velocities were used to calculate continuous relative phase for each data point. Mean absolute relative phase (MARP) and deviation phase (DP) were derived to quantify the trunk-pelvis and bilateral pelvis-thigh, thigh-shank and shank-foot coordination pattern and variability over the stance and swing phases of gait. Mann-Whitney U test was employed to compare the means of DP and MARP values between two groups (same side comparison). Statistical analysis revealed more in-phase/less variable trunk-pelvis coordination in the CLBP group (P<0.05). CLBP group demonstrated less variable right or left pelvis-thigh coordination pattern (P<0.05). Moreover, the left thigh-shank and left shank-foot MARP values in the CLBP group, were more in-phase than left MARP values in the non-CLBP control group during the swing phase (P<0.05). In conclusion, the sagittal plane lower extremities, pelvis and trunk coordination pattern and variability could be generally affected by CLBP during walking. These changes can be possible compensatory strategies of the motor control system which can be considered in the CLBP subjects. Copyright © 2017 Elsevier B.V. All rights reserved.
Morard, Marie-Doriane; Besson, Delphine; Laroche, Davy; Naaïm, Alexandre; Gremeaux, Vincent; Casillas, Jean-Marie
2017-01-01
There is ambiguity concerning the walk tests available for functional assessment of coronary patients, particularly for the walking speed. This study explores the psychometric properties of two walking tests, based on fixed-distance tests, at comfortable and fast velocity, in stabilized patients at the end of a cardiac rehabilitation program. At a three-day interval 58 coronary patients (mean age of 64.85±6.03 years, 50 men) performed three walk tests, the first two at a comfortable speed in a random order (6-minute walk test - 6MWT - and 400-metre comfortable walk test - 400mCWT) and the third at a brisk speed (200-metre fast walk test - 200mFWT). A modified Bruce treadmill test was associated at the end of the second phase. Monitored main parameters were: heart rate, walking velocity, VO 2 . Tolerance to the 3 tests was satisfactory. The reliability of the main parameters was good (intraclass correlation coefficient>0.8). The VO 2 concerning 6MWT and 400mCWT were not significantly different (P=0.33) and were lower to the first ventilatory threshold determined by the stress test (P<0.001): 16.2±3.0 vs. 16.5±2.6 vs. 20.7±5.1mL·min -1 ·kg -1 respectively. The VO 2 of the 200mFWT (20.2±3.7) was not different from the first ventilatory threshold. 400mCWT and 200mFWT are feasible, well-tolerated and reliable. They explore two levels of effort intensity (lower and not different to the first ventilatory threshold respectively). 400mCWT is a possible alternative to 6MWT. Associated with 200mFWT it should allow a better measurement of physical capacities and better customization of exercise training. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Measuring moderate-intensity walking in older adults using the ActiGraph accelerometer.
Barnett, Anthony; van den Hoek, Daniel; Barnett, David; Cerin, Ester
2016-12-08
Accelerometry is the method of choice for objectively assessing physical activity in older adults. Many studies have used an accelerometer count cut point corresponding to 3 metabolic equivalents (METs) derived in young adults during treadmill walking and running with a resting metabolic rate (RMR) assumed at 3.5 mL · kg -1 · min -1 (corresponding to 1 MET). RMR is lower in older adults; therefore, their 3 MET level occurs at a lower absolute energy expenditure making the cut point derived from young adults inappropriate for this population. The few studies determining older adult specific moderate-to-vigorous intensity physical activity (MVPA) cut points had methodological limitations, such as not measuring RMR and using treadmill walking. This study determined a MVPA hip-worn accelerometer cut point for older adults using measured RMR and overground walking. Following determination of RMR, 45 older adults (mean age 70.2 ± 7 years, range 60-87.6 years) undertook an outdoor, overground walking protocol with accelerometer count and energy expenditure determined at five walking speeds. Mean RMR was 2.8 ± 0.6 mL · kg -1 · min -1 . The MVPA cut points (95% CI) determined using linear mixed models were: vertical axis 1013 (734, 1292) counts · min -1 ; vector magnitude 1924 (1657, 2192) counts · min -1 ; and walking speed 2.5 (2.2, 2.8) km · hr -1 . High levels of inter-individual variability in cut points were found. These MVPA accelerometer and speed cut points for walking, the most popular physical activity in older adults, were lower than those for younger adults. Using cut points determined in younger adults for older adult population studies is likely to underestimate time spent engaged in MVPA. In addition, prescription of walking speed based on the adult cut point is likely to result in older adults working at a higher intensity than intended.
Houdijk, Han; van Ooijen, Mariëlle W; Kraal, Jos J; Wiggerts, Henri O; Polomski, Wojtek; Janssen, Thomas W J; Roerdink, Melvyn
2012-11-01
Gait adaptability, including the ability to avoid obstacles and to take visually guided steps, is essential for safe movement through a cluttered world. This aspect of walking ability is important for regaining independent mobility but is difficult to assess in clinical practice. The objective of this study was to investigate the validity of an instrumented treadmill with obstacles and stepping targets projected on the belt's surface for assessing prosthetic gait adaptability. This was an observational study. A control group of people who were able bodied (n=12) and groups of people with transtibial (n=12) and transfemoral (n=12) amputations participated. Participants walked at a self-selected speed on an instrumented treadmill with projected visual obstacles and stepping targets. Gait adaptability was evaluated in terms of anticipatory and reactive obstacle avoidance performance (for obstacles presented 4 steps and 1 step ahead, respectively) and accuracy of stepping on regular and irregular patterns of stepping targets. In addition, several clinical tests were administered, including timed walking tests and reports of incidence of falls and fear of falling. Obstacle avoidance performance and stepping accuracy were significantly lower in the groups with amputations than in the control group. Anticipatory obstacle avoidance performance was moderately correlated with timed walking test scores. Reactive obstacle avoidance performance and stepping accuracy performance were not related to timed walking tests. Gait adaptability scores did not differ in groups stratified by incidence of falls or fear of falling. Because gait adaptability was affected by walking speed, differences in self-selected walking speed may have diminished differences in gait adaptability between groups. Gait adaptability can be validly assessed by use of an instrumented treadmill with a projected visual context. When walking speed is taken into account, this assessment provides unique, quantitative information about walking ability in people with a lower-limb amputation.
Altered vision destabilizes gait in older persons.
Helbostad, Jorunn L; Vereijken, Beatrix; Hesseberg, Karin; Sletvold, Olav
2009-08-01
This study assessed the effects of dim light and four experimentally induced changes in vision on gait speed and footfall and trunk parameters in older persons walking on level ground. Using a quasi-experimental design, gait characteristics were assessed in full light, dim light, and in dim light combined with manipulations resulting in reduced depth vision, double vision, blurred vision, and tunnel vision, respectively. A convenience sample of 24 home-dwelling older women and men (mean age 78.5 years, SD 3.4) with normal vision for their age and able to walk at least 10 m without assistance participated. Outcome measures were gait speed and spatial and temporal parameters of footfall and trunk acceleration, derived from an electronic gait mat and accelerometers. Dim light alone had no effect. Vision manipulations combined with dim light had effect on most footfall parameters but few trunk parameters. The largest effects were found regarding double and tunnel vision. Men increased and women decreased gait speed following manipulations (p=0.017), with gender differences also in stride velocity variability (p=0.017) and inter-stride medio-lateral trunk acceleration variability (p=0.014). Gender effects were related to differences in body height and physical functioning. Results indicate that visual problems lead to a more cautious and unstable gait pattern even under relatively simple conditions. This points to the importance of assessing vision in older persons and correcting visual impairments where possible.
Physical activity patterns in morbidly obese and normal-weight women.
Kwon, Soyang; Mohammad, Jamal; Samuel, Isaac
2011-01-01
To compare physical activity patterns between morbidly obese and normal-weight women. Daily physical activity of 18 morbidly obese and 7 normal-weight women aged 30-58 years was measured for 2 days using the Intelligent Device for Energy Expenditure and Activity (IDEEA) device. The obese group spent about 2 hr/day less standing and 30 min/day less walking than did the normal-weight group. Time spent standing (standing time) was positively associated with time spent walking (walking time). Age- and walking time-adjusted standing time did not differ according to weight status. Promoting standing may be a strategy to increase walking.
ERIC Educational Resources Information Center
Huang, Liang; Chen, Peijie; Zhuang, Jie; Zhang, Yanxin; Walt, Sharon
2013-01-01
Purpose: This study aimed to investigate the influence of childhood obesity on energetic cost during normal walking and to determine if obese children choose a walking strategy optimizing their gait pattern. Method: Sixteen obese children with no functional abnormalities were matched by age and gender with 16 normal-weight children. All…
Kwakkel, Gert; Wagenaar, Robert C
2002-05-01
The effects of different durations of rehabilitation sessions for the upper extremities (UEs) and lower extremities (LEs) on the recovery of interlimb coordination in hemiplegic gait in patients who have had a stroke were investigated. Fifty-three subjects who had strokes involving their middle cerebral arteries were assigned to rehabilitation programs with (1) an emphasis on the LEs, (2) an emphasis on the paretic UE, or (3) a condition in which the paretic arm (UE) and leg (LE) were immobilized with an inflatable pressure splint (control treatment). The 3 treatment regimens were applied for 30 minutes, 5 days a week, during the first 20 weeks after onset of stroke. All subjects also participated in a rehabilitation program 5 days a week that consisted of 15 minutes of UE exercises and 15 minutes of LE exercises in addition to a weekly 11/2-hour session of training in activities of daily living. A repeated-measures design was used. Differences among the 3 treatment regimens were evaluated in terms of comfortable and maximal walking speeds. In addition, mean continuous relative phase (CRP) between paretic arm and leg (PAL) movements and nonparetic arm and leg (NAL) movements and standard deviations of CRP of both limb pairs as a measurement of stability (variability) were evaluated. Comfortable walking speed improved in the group that received interventions involving the LEs compared with the group that received interventions involving the UEs and the group that received the control treatment. No differences among the 3 treatment conditions were found for the mean CRP of NAL and PAL as well as the standard deviation of CRP of both limb pairs. With the exception of an improved comfortable walking speed as a result of a longer duration of rehabilitation sessions, no differential effects of duration of rehabilitation sessions for the LEs and UEs on the variable we measured related to hemiplegic gait were found. Increasing walking speed, however, resulted in a larger mean CRP for both limb pairs, with increased stability and asymmetry of walking, indicating that walking speed influences interlimb coordination in hemiplegic gait.
Walking economy during cued versus non-cued treadmill walking in persons with Parkinson's disease.
Gallo, Paul M; McIsaac, Tara L; Garber, Carol Ewing
2013-01-01
Gait impairment is common in Parkinson's disease (PD) and may result in greater energy expenditure, poorer walking economy, and fatigue during activities of daily living. Auditory cueing is an effective technique to improve gait; but the effects on energy expenditure are unknown. To determine whether energy expenditure differs in individuals with PD compared with healthy controls and if auditory cueing improves walking economy in PD. Twenty participants (10 PD and 10 controls) came to the laboratory for three sessions. Participants performed two, 6-minute bouts of treadmill walking at two speeds (1.12 m·sec-1 and 0.67 m·sec-1). One session used cueing and the other without cueing. A metabolic cart measured energy expenditure and walking economy was calculated (energy expenditure/power). PD had worse walking economy and higher energy expenditure than control participants during cued and non-cued walking at the 0.67 m·sec-1 speed and during non-cued walking at the 1.12 m·sec-1. With auditory cueing, energy expenditure and walking economy worsened in both participant groups. People with PD use more energy and have worse walking economy than adults without PD. Walking economy declines further with auditory cuing in persons with PD.
Gait analysis and weight bearing in pre-clinical joint pain research.
Ängeby Möller, Kristina; Svärd, Heta; Suominen, Anni; Immonen, Jarmo; Holappa, Johanna; Stenfors, Carina
2018-04-15
There is a need for better joint pain treatment, but development of new medication has not been successful. Pre-clinical models with readouts that better reflect the clinical situation are needed. In patients with joint pain, pain at rest and pain at walking are two major complaints. We describe a new way of calculating results from gait analysis using the CatWalk™ setup. Rats with monoarthritis induced by injection of Complete Freund's Adjuvant (CFA) intra-articularly into the ankle joint of one hind limb were used to assess gait and dynamic weight bearing. The results show that dynamic weight bearing was markedly reduced for the injected paw. Gait parameters such as amount of normal step sequences, walking speed and duration of step placement were also affected. Treatment with naproxen (an NSAID commonly used for inflammatory pain) attenuated the CFA-induced effects. Pregabalin, which is used for neuropathic pain, had no effect. Reduced dynamic weight bearing during locomotion, assessed and calculated in the way we present here, showed a dose-dependent and lasting normalization after naproxen treatment. In contrast, static weight bearing while standing (Incapacitance tester) showed a significant effect for a limited time only. Mechanical sensitivity (von Frey Optihairs) was completely normalized by naproxen, and the window for testing pharmacological effect disappeared. Objective and reproducible effects, with an endpoint showing face validity compared to pain while walking in patients with joint pain, are achieved by a new way of calculating dynamic weight bearing in monoarthritic rats. Copyright © 2017 Elsevier B.V. All rights reserved.
Mulroy, Sara J; Klassen, Tara; Gronley, JoAnne K; Eberly, Valerie J; Brown, David A; Sullivan, Katherine J
2010-02-01
Task-specific training programs after stroke improve walking function, but it is not clear which biomechanical parameters of gait are most associated with improved walking speed. The purpose of this study was to identify gait parameters associated with improved walking speed after a locomotor training program that included body-weight-supported treadmill training (BWSTT). A prospective, between-subjects design was used. Fifteen people, ranging from approximately 9 months to 5 years after stroke, completed 1 of 3 different 6-week training regimens. These regimens consisted of 12 sessions of BWSTT alternated with 12 sessions of: lower-extremity resistive cycling; lower-extremity progressive, resistive strengthening; or a sham condition of arm ergometry. Gait analysis was conducted before and after the 6-week intervention program. Kinematics, kinetics, and electromyographic (EMG) activity were recorded from the hemiparetic lower extremity while participants walked at a self-selected pace. Changes in gait parameters were compared in participants who showed an increase in self-selected walking speed of greater than 0.08 m/s (high-response group) and in those with less improvement (low-response group). Compared with participants in the low-response group, those in the high-response group displayed greater increases in terminal stance hip extension angle and hip flexion power (product of net joint moment and angular velocity) after the intervention. The intensity of soleus muscle EMG activity during walking also was significantly higher in participants in the high-response group after the intervention. Only sagittal-plane parameters were assessed, and the sample size was small. Task-specific locomotor training alternated with strength training resulted in kinematic, kinetic, and muscle activation adaptations that were strongly associated with improved walking speed. Changes in both hip and ankle biomechanics during late stance were associated with greater increases in gait speed.
Alexeeva, Natalia; Sames, Carol; Jacobs, Patrick L.; Hobday, Lori; DiStasio, Marcello M.; Mitchell, Sarah A.; Calancie, Blair
2011-01-01
Objective To compare two forms of device-specific training – body-weight-supported (BWS) ambulation on a fixed track (TRK) and BWS ambulation on a treadmill (TM) – to comprehensive physical therapy (PT) for improving walking speed in persons with chronic, motor-incomplete spinal cord injury (SCI). Methods Thirty-five adult subjects with a history of chronic SCI (>1 year; AIS ‘C’ or ‘D’) participated in a 13-week (1 hour/day; 3 days per week) training program. Subjects were randomized into one of the three training groups. Subjects in the two BWS groups trained without the benefit of additional input from a physical therapist or gait expert. For each training session, performance values and heart rate were monitored. Pre- and post-training maximal 10-m walking speed, balance, muscle strength, fitness, and quality of life were assessed in each subject. Results All three training groups showed significant improvement in maximal walking speed, muscle strength, and psychological well-being. A significant improvement in balance was seen for PT and TRK groups but not for subjects in the TM group. In all groups, post-training measures of fitness, functional independence, and perceived health and vitality were unchanged. Conclusions Our results demonstrate that persons with chronic, motor-incomplete SCI can improve walking ability and psychological well-being following a concentrated period of ambulation therapy, regardless of training method. Improvement in walking speed was associated with improved balance and muscle strength. In spite of the fact that we withheld any formal input of a physical therapist or gait expert from subjects in the device-specific training groups, these subjects did just as well as subjects receiving comprehensive PT for improving walking speed and strength. It is likely that further modest benefits would accrue to those subjects receiving a combination of device-specific training with input from a physical therapist or gait expert to guide that training. PMID:21903010
Kim, Jaeeun; Yim, Jongeun
2017-11-13
BACKGROUND Handgrip strength and walking speed predict and influence cognitive function. We aimed to investigate an exercise protocol for improving handgrip strength and walking speed, applied to patients with chronic stroke who had cognitive function disorder. MATERIAL AND METHODS Twenty-nine patients with cognitive function disorder participated in this study, and were randomly divided into one of two groups: exercise group (n=14) and control group (n=15). Both groups underwent conventional physical therapy for 60 minutes per day. Additionally, the exercise group followed an exercise protocol for handgrip using the hand exerciser, power web exerciser, Digi-Flex (15 minutes); and treadmill-based weight loading training on their less-affected leg (15 minutes) using a sandbag for 30 minutes, three times per day, for six weeks. Outcomes, including cognitive function and gait ability, were measured before and after the training. RESULTS The Korean version of Montreal Cognitive Assessment (K-MoCA), Stroop test (both simple and interference), Trail Making-B, Timed Up and Go, and 10-Meter Walk tests (p<0.05) yielded improved results for the exercise group compared with the control group. Importantly, the K-MoCA, Timed Up and Go, and 10-Meter Walk test results were significantly different between the two groups (p<0.05). CONCLUSIONS The exercise protocol for improving handgrip strength and walking speed had positive effects on cognitive function in patients with chronic stroke.
Efficacy of a hybrid assistive limb in post-stroke hemiplegic patients: a preliminary report
2011-01-01
Background Robotic devices are expected to be widely used in various applications including support for the independent mobility of the elderly with muscle weakness and people with impaired motor function as well as support for nursing care that involves heavy laborious work. We evaluated the effects of a hybrid assistive limb robot suit on the gait of stroke patients undergoing rehabilitation. Methods The study group comprised 16 stroke patients with severe hemiplegia. All patients underwent gait training. Four patients required assistance, and 12 needed supervision while walking. The stride length, walking speed and physiological cost index on wearing the hybrid assistive limb suit and a knee-ankle-foot orthosis were compared. Results The hybrid assistive limb suit increased the stride length and walking speed in 4 of 16 patients. The patients whose walking speed decreased on wearing the hybrid assistive limb suit either had not received sufficient gait training or had an established gait pattern with a knee-ankle-foot orthosis using a quad cane. The physiological cost index increased after wearing the hybrid assistive limb suit in 12 patients, but removal of the suit led to a decrease in the physiological cost index values to equivalent levels prior to the use of the suit. Conclusions Although the hybrid assistive limb suit is not useful for all hemiplegic patients, it may increase the walking speed and affect the walking ability. Further investigation would clarify its indication for the possibility of gait training. PMID:21943320
Corbetta, Davide; Imeri, Federico; Gatti, Roberto
2015-07-01
In people after stroke, does virtual reality based rehabilitation (VRBR) improve walking speed, balance and mobility more than the same duration of standard rehabilitation? In people after stroke, does adding extra VRBR to standard rehabilitation improve the effects on gait, balance and mobility? Systematic review with meta-analysis of randomised trials. Adults with a clinical diagnosis of stroke. Eligible trials had to include one these comparisons: VRBR replacing some or all of standard rehabilitation or VRBR used as extra rehabilitation time added to a standard rehabilitation regimen. Walking speed, balance, mobility and adverse events. In total, 15 trials involving 341 participants were included. When VRBR replaced some or all of the standard rehabilitation, there were statistically significant benefits in walking speed (MD 0.15 m/s, 95% CI 0.10 to 0.19), balance (MD 2.1 points on the Berg Balance Scale, 95% CI 1.8 to 2.5) and mobility (MD 2.3 seconds on the Timed Up and Go test, 95% CI 1.2 to 3.4). When VRBR was added to standard rehabilitation, mobility showed a significant benefit (0.7 seconds on the Timed Up and Go test, 95% CI 0.4 to 1.1), but insufficient evidence was found to comment about walking speed (one trial) and balance (high heterogeneity). Substituting some or all of a standard rehabilitation regimen with VRBR elicits greater benefits in walking speed, balance and mobility in people with stroke. Although the benefits are small, the extra cost of applying virtual reality to standard rehabilitation is also small, especially when spread over many patients in a clinic. Adding extra VRBR time to standard rehabilitation also has some benefits; further research is needed to determine if these benefits are clinically worthwhile. Copyright © 2015 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.
Kinematic Adaptations of Forward And Backward Walking on Land and in Water
Cadenas-Sanchez, Cristina; Arellano, Raúl; Vanrenterghem, Jos; López-Contreras, Gracia
2015-01-01
The aim of this study was to compare sagittal plane lower limb kinematics during walking on land and submerged to the hip in water. Eight healthy adults (age 22.1 ± 1.1 years, body height 174.8 ± 7.1 cm, body mass 63.4 ± 6.2 kg) were asked to cover a distance of 10 m at comfortable speed with controlled step frequency, walking forward or backward. Sagittal plane lower limb kinematics were obtained from three dimensional video analysis to compare spatiotemporal gait parameters and joint angles at selected events using two-way repeated measures ANOVA. Key findings were a reduced walking speed, stride length, step length and a support phase in water, and step length asymmetry was higher compared to the land condition (p<0.05). At initial contact, knees and hips were more flexed during walking forward in water, whilst, ankles were more dorsiflexed during walking backward in water. At final stance, knees and ankles were more flexed during forward walking, whilst the hip was more flexed during backward walking. These results show how walking in water differs from walking on land, and provide valuable insights into the development and prescription of rehabilitation and training programs. PMID:26839602
Liu, Yan-Ci; Yang, Yea-Ru; Tsai, Yun-An; Wang, Ray-Yau
2017-06-22
This study investigated effects of cognitive and motor dual task gait training on dual task gait performance in stroke. Participants (n = 28) were randomly assigned to cognitive dual task gait training (CDTT), motor dual task gait training (MDTT), or conventional physical therapy (CPT) group. Participants in CDTT or MDTT group practiced the cognitive or motor tasks respectively during walking. Participants in CPT group received strengthening, balance, and gait training. The intervention was 30 min/session, 3 sessions/week for 4 weeks. Three test conditions to evaluate the training effects were single walking, walking while performing cognitive task (serial subtraction), and walking while performing motor task (tray-carrying). Parameters included gait speed, dual task cost of gait speed (DTC-speed), cadence, stride time, and stride length. After CDTT, cognitive-motor dual task gait performance (stride length and DTC-speed) was improved (p = 0.021; p = 0.015). After MDTT, motor dual task gait performance (gait speed, stride length, and DTC-speed) was improved (p = 0.008; p = 0.008; p = 0.008 respectively). It seems that CDTT improved cognitive dual task gait performance and MDTT improved motor dual task gait performance although such improvements did not reach significant group difference. Therefore, different types of dual task gait training can be adopted to enhance different dual task gait performance in stroke.
Usherwood, James Richard
2005-01-01
Bipedal walking following inverted pendulum mechanics is constrained by two requirements: sufficient kinetic energy for the vault over midstance and sufficient gravity to provide the centripetal acceleration required for the arc of the body about the stance foot. While the acceleration condition identifies a maximum walking speed at a Froude number of 1, empirical observation indicates favoured walk–run transition speeds at a Froude number around 0.5 for birds, humans and humans under manipulated gravity conditions. In this study, I demonstrate that the risk of ‘take-off’ is greatest at the extremes of stance. This is because before and after kinetic energy is converted to potential, velocities (and so required centripetal accelerations) are highest, while concurrently the component of gravity acting in line with the leg is least. Limitations to the range of walking velocity and stride angle are explored. At walking speeds approaching a Froude number of 1, take-off is only avoidable with very small steps. With realistic limitations on swing-leg frequency, a novel explanation for the walk–run transition at a Froude number of 0.5 is shown. PMID:17148201
The one-dimensional asymmetric persistent random walk
NASA Astrophysics Data System (ADS)
Rossetto, Vincent
2018-04-01
Persistent random walks are intermediate transport processes between a uniform rectilinear motion and a Brownian motion. They are formed by successive steps of random finite lengths and directions travelled at a fixed speed. The isotropic and symmetric 1D persistent random walk is governed by the telegrapher’s equation, also called the hyperbolic heat conduction equation. These equations have been designed to resolve the paradox of the infinite speed in the heat and diffusion equations. The finiteness of both the speed and the correlation length leads to several classes of random walks: Persistent random walk in one dimension can display anomalies that cannot arise for Brownian motion such as anisotropy and asymmetries. In this work we focus on the case where the mean free path is anisotropic, the only anomaly leading to a physics that is different from the telegrapher’s case. We derive exact expression of its Green’s function, for its scattering statistics and distribution of first-passage time at the origin. The phenomenology of the latter shows a transition for quantities like the escape probability and the residence time.
Mazaheri, Masood; Negahban, Hossein; Soltani, Maryam; Mehravar, Mohammad; Tajali, Shirin; Hessam, Masumeh; Salavati, Mahyar; Kingma, Idsart
2017-08-01
The present experiment was conducted to examine the hypothesis that challenging control through narrow-base walking and/or dual tasking affects ACL-injured adults more than healthy control adults. Twenty male ACL-injured adults and twenty healthy male adults walked on a treadmill at a comfortable speed under two base-of-support conditions, normal-base versus narrow-base, with and without a cognitive task. Gait patterns were assessed using mean and variability of step length and mean and variability of step velocity. Cognitive performance was assessed using the number of correct counts in a backward counting task. Narrow-base walking resulted in a larger decrease in step length and a more pronounced increase in variability of step length and of step velocity in ACL-injured adults than in healthy adults. For most of the gait parameters and for backward counting performance, the dual-tasking effect was similar between the two groups. ACL-injured adults adopt a more conservative and more unstable gait pattern during narrow-base walking. This can be largely explained by deficits of postural control in ACL-injured adults, which impairs gait under more balance-demanding conditions. The observation that the dual-tasking effect did not differ between the groups may be explained by the fact that walking is an automatic process that involves minimal use of attentional resources, even after ACL injury. Clinicians should consider the need to include aspects of terrain complexity, such as walking on a narrow walkway, in gait assessment and training of patients with ACL injury. III.
Walking adaptability therapy after stroke: study protocol for a randomized controlled trial.
Timmermans, Celine; Roerdink, Melvyn; van Ooijen, Marielle W; Meskers, Carel G; Janssen, Thomas W; Beek, Peter J
2016-08-26
Walking in everyday life requires the ability to adapt walking to the environment. This adaptability is often impaired after stroke, and this might contribute to the increased fall risk after stroke. To improve safe community ambulation, walking adaptability training might be beneficial after stroke. This study is designed to compare the effects of two interventions for improving walking speed and walking adaptability: treadmill-based C-Mill therapy (therapy with augmented reality) and the overground FALLS program (a conventional therapy program). We hypothesize that C-Mill therapy will result in better outcomes than the FALLS program, owing to its expected greater amount of walking practice. This is a single-center parallel group randomized controlled trial with pre-intervention, post-intervention, retention, and follow-up tests. Forty persons after stroke (≥3 months) with deficits in walking or balance will be included. Participants will be randomly allocated to either C-Mill therapy or the overground FALLS program for 5 weeks. Both interventions will incorporate practice of walking adaptability and will be matched in terms of frequency, duration, and therapist attention. Walking speed, as determined by the 10 Meter Walking Test, will be the primary outcome measure. Secondary outcome measures will pertain to walking adaptability (10 Meter Walking Test with context or cognitive dual-task and Interactive Walkway assessments). Furthermore, commonly used clinical measures to determine walking ability (Timed Up-and-Go test), walking independence (Functional Ambulation Category), balance (Berg Balance Scale), and balance confidence (Activities-specific Balance Confidence scale) will be used, as well as a complementary set of walking-related assessments. The amount of walking practice (the number of steps taken per session) will be registered using the treadmill's inbuilt step counter (C-Mill therapy) and video recordings (FALLS program). This process measure will be compared between the two interventions. This study will assess the effects of treadmill-based C-Mill therapy compared with the overground FALLS program and thereby the relative importance of the amount of walking practice as a key aspect of effective intervention programs directed at improving walking speed and walking adaptability after stroke. Netherlands Trial Register NTR4030 . Registered on 11 June 2013, amendment filed on 17 June 2016.
Lemaire, Edward D; Samadi, Reza; Goudreau, Louis; Kofman, Jonathan
2013-01-01
A linear piston hydraulic angular-velocity-based control knee joint was designed for people with knee-extensor weakness to engage knee-flexion resistance when knee-flexion angular velocity reaches a preset threshold, such as during a stumble, but to otherwise allow free knee motion. During mechanical testing at the lowest angular-velocity threshold, the device engaged within 2 degrees knee flexion and resisted moment loads of over 150 Nm. The device completed 400,000 loading cycles without mechanical failure or wear that would affect function. Gait patterns of nondisabled participants were similar to normal at walking speeds that produced below-threshold knee angular velocities. Fast walking speeds, employed purposely to attain the angular-velocity threshold and cause knee-flexion resistance, reduced maximum knee flexion by approximately 25 degrees but did not lead to unsafe gait patterns in foot ground clearance during swing. In knee collapse tests, the device successfully engaged knee-flexion resistance and stopped knee flexion with peak knee moments of up to 235.6 Nm. The outcomes from this study support the potential for the linear piston hydraulic knee joint in knee and knee-ankle-foot orthoses for people with lower-limb weakness.
The preferred walk to run transition speed in actual lunar gravity.
De Witt, John K; Edwards, W Brent; Scott-Pandorf, Melissa M; Norcross, Jason R; Gernhardt, Michael L
2014-09-15
Quantifying the preferred transition speed (PTS) from walking to running has provided insight into the underlying mechanics of locomotion. The dynamic similarity hypothesis suggests that the PTS should occur at the same Froude number across gravitational environments. In normal Earth gravity, the PTS occurs at a Froude number of 0.5 in adult humans, but previous reports found the PTS occurred at Froude numbers greater than 0.5 in simulated lunar gravity. Our purpose was to (1) determine the Froude number at the PTS in actual lunar gravity during parabolic flight and (2) compare it with the Froude number at the PTS in simulated lunar gravity during overhead suspension. We observed that Froude numbers at the PTS in actual lunar gravity (1.39±0.45) and simulated lunar gravity (1.11±0.26) were much greater than 0.5. Froude numbers at the PTS above 1.0 suggest that the use of the inverted pendulum model may not necessarily be valid in actual lunar gravity and that earlier findings in simulated reduced gravity are more accurate than previously thought. © 2014. Published by The Company of Biologists Ltd.
Effect of cold indoor environment on physical performance of older women living in the community.
Lindemann, Ulrich; Oksa, Juha; Skelton, Dawn A; Beyer, Nina; Klenk, Jochen; Zscheile, Julia; Becker, Clemens
2014-07-01
the effects of cold on older persons' body and mind are not well documented, but with an increased number of older people with decreasing physical performance, these possible effects need to be understood. to investigate the effect of cold indoor environment on physical performance of older women. cross-sectional experimental study with two test conditions. movement laboratory in a climate chamber. eighty-eight community-dwelling, cognitively unimpaired older women (mean age 78 years). participants were exposed to moderately cold (15°C) and warm/normal (25°C) temperature in a climate chamber in random order with an interval of 1 week. The assessment protocol included leg extensor power (Nottingham Power Rig), sit-to-stand performance velocity (linear encoder), gait speed, walk-ratio (i.e. step length/cadence on an instrumented walk way), maximal quadriceps and hand grip strength. physical performance was lower in 15°C room temperature compared with 25°C room temperature for leg extensor power (P < 0.0001), sit-to-stand performance velocity (P < 0.0001), gait speed (P < 0.0001), walk-ratio (P = 0.016) and maximal quadriceps strength (P = 0.015), but not for hand grip strength. in healthy older women a moderately cold indoor environment decreased important physical performance measures necessary for independent living. © The Author 2014. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Activity of upper limb muscles during human walking.
Kuhtz-Buschbeck, Johann P; Jing, Bo
2012-04-01
The EMG activity of upper limb muscles during human gait has rarely been studied previously. It was examined in 20 normal volunteers in four conditions: walking on a treadmill (1) with unrestrained natural arm swing (Normal), (2) while volitionally holding the arms still (Held), (3) with the arms immobilized (Bound), and (4) with the arms swinging in phase with the ipsilateral legs, i.e. opposite-to-normal phasing (Anti-Normal). Normal arm swing involved weak rhythmical lengthening and shortening contractions of arm and shoulder muscles. Phasic muscle activity was needed to keep the unrestricted arms still during walking (Held), indicating a passive component of arm swing. An active component, possibly programmed centrally, existed as well, because some EMG signals persisted when the arms were immobilized during walking (Bound). Anti-Normal gait involved stronger EMG activity than Normal walking and was uneconomical. The present results indicate that normal arm swing has both passive and active components. Copyright © 2011 Elsevier Ltd. All rights reserved.
Sandler, Evan B; Roach, Kathryn E; Field-Fote, Edelle C
2017-05-15
Outcomes of training are thought to be related to the amount of training (training dose). Although various approaches to locomotor training have been used to improve walking function in persons with spinal cord injury (SCI), little is known about the relationship between dose of locomotor training and walking outcomes. This secondary analysis aimed to identify the relationship between training dose and improvement in walking distance and speed associated with locomotor training in participants with chronic motor-incomplete spinal cord injury (MISCI). We compared the dose-response relationships associated with each of four different locomotor training approaches. Participants were randomized to either: treadmill-based training with manual assistance (TM = 17), treadmill-based training with stimulation (TS = 18), overground training with stimulation (OG = 15), and treadmill-based training with locomotor robotic device assistance (LR = 14). Subjects trained 5 days/week for 12 weeks, with a target of 60 training sessions. The distance-dose and time-dose were calculated based on the total distance and total time, respectively, participants engaged in walking over all sessions combined. Primary outcome measures included walking distance (traversed in 2 min) and walking speed (over 10 m). Only OG training showed a good correlation between distance-dose and change in walking distance and speed walked over ground (r = 0.61, p = 0.02; r = 0.62, p = 0.01). None of the treadmill-based training approaches were associated with significant correlations between training dose and improvement of functional walking outcome. The findings suggest that greater distance achieved over the course of OG training is associated with better walking outcomes in the studied population. Further investigation to identify the essential elements that determine outcomes would be valuable for guiding rehabilitation.
Booth, Adam T C; Buizer, Annemieke I; Meyns, Pieter; Oude Lansink, Irene L B; Steenbrink, Frans; van der Krogt, Marjolein M
2018-03-07
The aim of this systematic review was to investigate the effects of functional gait training on walking ability in children and young adults with cerebral palsy (CP). The review was conducted using standardized methodology, searching four electronic databases (PubMed, Embase, CINAHL, Web of Science) for relevant literature published between January 1980 and January 2017. Included studies involved training with a focus on actively practising the task of walking as an intervention while reporting outcome measures relating to walking ability. Forty-one studies were identified, with 11 randomized controlled trials included. There is strong evidence that functional gait training results in clinically important benefits for children and young adults with CP, with a therapeutic goal of improved walking speed. Functional gait training was found to have a moderate positive effect on walking speed over standard physical therapy (effect size 0.79, p=0.04). Further, there is weaker yet relatively consistent evidence that functional gait training can also benefit walking endurance and gait-related gross motor function. There is promising evidence that functional gait training is a safe, feasible, and effective intervention to target improved walking ability in children and young adults with CP. The addition of virtual reality and biofeedback can increase patient engagement and magnify effects. Functional gait training is a safe, feasible, and effective intervention to improve walking ability. Functional gait training shows larger positive effects on walking speed than standard physical therapy. Walking endurance and gait-related gross motor function can also benefit from functional gait training. Addition of virtual reality and biofeedback shows promise to increase engagement and improve outcomes. © 2018 The Authors. Developmental Medicine & Child Neurology published by John Wiley & Sons Ltd on behalf of Mac Keith Press.
Gait Kinematic Analysis in Water Using Wearable Inertial Magnetic Sensors.
Fantozzi, Silvia; Giovanardi, Andrea; Borra, Davide; Gatta, Giorgio
2015-01-01
Walking is one of the fundamental motor tasks executed during aquatic therapy. Previous kinematics analyses conducted using waterproofed video cameras were limited to the sagittal plane and to only one or two consecutive steps. Furthermore, the set-up and post-processing are time-consuming and thus do not allow a prompt assessment of the correct execution of the movements during the aquatic session therapy. The aim of the present study was to estimate the 3D joint kinematics of the lower limbs and thorax-pelvis joints in sagittal and frontal planes during underwater walking using wearable inertial and magnetic sensors. Eleven healthy adults were measured during walking both in shallow water and in dry-land conditions. Eight wearable inertial and magnetic sensors were inserted in waterproofed boxes and fixed to the body segments by means of elastic modular bands. A validated protocol (Outwalk) was used. Gait cycles were automatically segmented and selected if relevant intraclass correlation coefficients values were higher than 0.75. A total of 704 gait cycles for the lower limb joints were normalized in time and averaged to obtain the mean cycle of each joint, among participants. The mean speed in water was 40% lower than that of the dry-land condition. Longer stride duration and shorter stride distance were found in the underwater walking. In the sagittal plane, the knee was more flexed (≈ 23°) and the ankle more dorsiflexed (≈ 9°) at heel strike, and the hip was more flexed at toe-off (≈ 13°) in water than on land. On the frontal plane in the underwater walking, smoother joint angle patterns were observed for thorax-pelvis and hip, and ankle was more inversed at toe-off (≈ 7°) and showed a more inversed mean value (≈ 7°). The results were mainly explained by the effect of the speed in the water as supported by the linear mixed models analysis performed. Thus, it seemed that the combination of speed and environment triggered modifications in the joint angles in underwater gait more than these two factors considered separately. The inertial and magnetic sensors, by means of fast set-up and data analysis, can supply an immediate gait analysis report to the therapist during the aquatic therapy session.
Kosonen, Jukka; Kulmala, Juha-Pekka; Müller, Erich; Avela, Janne
2017-03-21
Anti-pronation orthoses, like medially posted insoles (MPI), have traditionally been used to treat various of lower limb problems. Yet, we know surprisingly little about their effects on overall foot motion and lower limb mechanics across walking and running, which represent highly different loading conditions. To address this issue, multi-segment foot and lower limb mechanics was examined among 11 overpronating men with normal (NORM) and MPI insoles during walking (self-selected speed 1.70±0.19m/s vs 1.72±0.20m/s, respectively) and running (4.04±0.17m/s vs 4.10±0.13m/s, respectively). The kinematic results showed that MPI reduced the peak forefoot eversion movement in respect to both hindfoot and tibia across walking and running when compared to NORM (p<0.05-0.01). No differences were found in hindfoot eversion between conditions. The kinetic results showed no insole effects in walking, but during running MPI shifted center of pressure medially under the foot (p<0.01) leading to an increase in frontal plane moments at the hip (p<0.05) and knee (p<0.05) joints and a reduction at the ankle joint (p<0.05). These findings indicate that MPI primarily controlled the forefoot motion across walking and running. While kinetic response to MPI was more pronounced in running than walking, kinematic effects were essentially similar across both modes. This suggests that despite higher loads placed upon lower limb during running, there is no need to have a stiffer insoles to achieve similar reduction in the forefoot motion than in walking. Copyright © 2017 Elsevier Ltd. All rights reserved.
Escalante, Agustín; Haas, Roy W; del Rincón, Inmaculada
2004-01-01
Outcome assessment in patients with rheumatoid arthritis (RA) includes measurement of physical function. We derived a scale to quantify global physical function in RA, using three performance-based rheumatology function tests (RFTs). We measured grip strength, walking velocity, and shirt button speed in consecutive RA patients attending scheduled appointments at six rheumatology clinics, repeating these measurements after a median interval of 1 year. We extracted the underlying latent variable using principal component factor analysis. We used the Bayesian information criterion to assess the global physical function scale's cross-sectional fit to criterion standards. The criteria were joint tenderness, swelling, and deformity, pain, physical disability, current work status, and vital status at 6 years after study enrolment. We computed Guyatt's responsiveness statistic for improvement according to the American College of Rheumatology (ACR) definition. Baseline functional performance data were available for 777 patients, and follow-up data were available for 681. Mean ± standard deviation for each RFT at baseline were: grip strength, 14 ± 10 kg; walking velocity, 194 ± 82 ft/min; and shirt button speed, 7.1 ± 3.8 buttons/min. Grip strength and walking velocity departed significantly from normality. The three RFTs loaded strongly on a single factor that explained ≥70% of their combined variance. We rescaled the factor to vary from 0 to 100. Its mean ± standard deviation was 41 ± 20, with a normal distribution. The new global scale had a stronger fit than the primary RFT to most of the criterion standards. It correlated more strongly with physical disability at follow-up and was more responsive to improvement defined according to the ACR20 and ACR50 definitions. We conclude that a performance-based physical function scale extracted from three RFTs has acceptable distributional and measurement properties and is responsive to clinically meaningful change. It provides a parsimonious scale to measure global physical function in RA. PMID:15225367
Pugh, L. G. C. E.
1971-01-01
1. O2 intakes were determined on subjects running and walking at various constant speeds, (a) against wind of up to 18·5 m/sec (37 knots) in velocity, and (b) on gradients ranging from 2 to 8%. 2. In running and walking against wind, O2 intakes increased as the square of wind velocity. 3. In running on gradients the relation of O2 intake and lifting work was linear and independent of speed. In walking on gradients the relation was linear at work rates above 300 kg m/min, but curvilinear at lower work rates. 4. In a 65 kg athlete running at 4·45 m/sec (marathon speed) V̇O2 increased from 3·0 l./min with minimal wind to 5·0 l./min at a wind velocity of 18·5 m/sec. The corresponding values for a 75 kg subject walking at 1·25 m/sec were 0·8 l./min with minimal wind and 3·1 l./min at a wind velocity of 18·5 m/sec. 5. Direct measurements of wind pressure on shapes of similar area to one of the subjects yielded higher values than those predicted from the relation of wind velocity and lifting work at equal O2 intakes. Horizontal work against wind was more efficient than vertical work against gravity. 6. The energy cost of overcoming air resistance in track running may be 7·5% of the total energy cost at middle distance speed and 13% at sprint speed. Running 1 m behind another runner virtually eliminated air resistance and reduced V̇O2 by 6·5% at middle distance speed. PMID:5574828
Imposed Faster and Slower Walking Speeds Influence Gait Stability Differently in Parkinson Fallers.
Cole, Michael H; Sweeney, Matthew; Conway, Zachary J; Blackmore, Tim; Silburn, Peter A
2017-04-01
To evaluate the effect of imposed faster and slower walking speeds on postural stability in people with Parkinson disease (PD). Cross-sectional cohort study. General community. Patients with PD (n=84; 51 with a falls history; 33 without) and age-matched controls (n=82) were invited to participate via neurology clinics and preexisting databases. Of those contacted, 99 did not respond (PD=36; controls=63) and 27 were not interested (PD=18; controls=9). After screening, a further 10 patients were excluded; 5 had deep brain stimulation surgery and 5 could not accommodate to the treadmill. The remaining patients (N=30) completed all assessments and were subdivided into PD fallers (n=10), PD nonfallers (n=10), and age-matched controls (n=10) based on falls history. Not applicable. Three-dimensional accelerometers assessed head and trunk accelerations and allowed calculation of harmonic ratios and root mean square (RMS) accelerations to assess segment control and movement amplitude. Symptom severity, balance confidence, and medical history were established before participants walked on a treadmill at 70%, 100%, and 130% of their preferred speed. Head and trunk control was lower for PD fallers than PD nonfallers and older adults. Significant interactions indicated head and trunk control increased with speed for PD nonfallers and older adults, but did not improve at faster speeds for PD fallers. Vertical head and trunk accelerations increased with walking speed for PD nonfallers and older adults, while the PD fallers demonstrated greater anteroposterior RMS accelerations compared with both other groups. The results suggest that improved gait dynamics do not necessarily represent improved walking stability, and this must be respected when rehabilitating gait in patients with PD. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Cognitive-Based Interventions to Improve Mobility: A Systematic Review and Meta-analysis.
Marusic, Uros; Verghese, Joe; Mahoney, Jeannette R
2018-06-01
A strong relation between cognition and mobility has been identified in aging, supporting a role for enhancement mobility through cognitive-based interventions. However, a critical evaluation of the consistency of treatment effects of cognitive-based interventions is currently lacking. The objective of this study was 2-fold: (1) to review the existing literature on cognitive-based interventions aimed at improving mobility in older adults and (2) to assess the clinical effectiveness of cognitive interventions on gait performance. A systematic review of randomized controlled trials (RCT) of cognitive training interventions for improving simple (normal walking) and complex (dual task walking) gait was conducted in February 2018. Older adults without major cognitive, psychiatric, neurologic, and/or sensory impairments were included. Random effect meta-analyses and a subsequent meta-regression were performed to generate overall cognitive intervention effects on single- and dual-task walking conditions. Ten RCTs met inclusion criteria, with a total of 351 participants included in this meta-analysis. Cognitive training interventions revealed a small effect of intervention on complex gait [effect size (ES) = 0.47, 95% confidence interval (CI) 0.13 to 0.81, P = .007, I 2 = 15.85%], but not simple gait (ES = 0.35, 95% CI -0.01 to 0.71, P = .057, I 2 = 57.32%). Moreover, a meta-regression analysis revealed that intervention duration, training frequency, total number of sessions, and total minutes spent in intervention were not significant predictors of improvement in dual-task walking speed, though there was a suggestive trend toward a negative association between dual-task walking speed improvements and individual training session duration (P = .067). This meta-analysis provides support for the fact that cognitive training interventions can improve mobility-related outcomes, especially during challenging walking conditions requiring higher-order executive functions. Additional evidence from well-designed large-scale randomized clinical trials is warranted to confirm the observed effects. Copyright © 2018 AMDA – The Society for Post-Acute and Long-Term Care Medicine. All rights reserved.
Nau, Amy Catherine; Pintar, Christine; Fisher, Christopher; Jeong, Jong-Hyeon; Jeong, KwonHo
2014-01-01
We describe an indoor, portable, standardized course that can be used to evaluate obstacle avoidance in persons who have ultralow vision. Six sighted controls and 36 completely blind but otherwise healthy adult male (n=29) and female (n=13) subjects (age range 19-85 years), were enrolled in one of three studies involving testing of the BrainPort sensory substitution device. Subjects were asked to navigate the course prior to, and after, BrainPort training. They completed a total of 837 course runs in two different locations. Means and standard deviations were calculated across control types, courses, lights, and visits. We used a linear mixed effects model to compare different categories in the PPWS (percent preferred walking speed) and error percent data to show that the course iterations were properly designed. The course is relatively inexpensive, simple to administer, and has been shown to be a feasible way to test mobility function. Data analysis demonstrates that for the outcome of percent error as well as for percentage preferred walking speed, that each of the three courses is different, and that within each level, each of the three iterations are equal. This allows for randomization of the courses during administration. Abbreviations: preferred walking speed (PWS) course speed (CS) percentage preferred walking speed (PPWS) PMID:24561717
Cognitive processing speed is related to fall frequency in older adults with multiple sclerosis.
Sosnoff, Jacob J; Balantrapu, Swathi; Pilutti, Lara A; Sandroff, Brian M; Morrison, Steven; Motl, Robert W
2013-08-01
To examine mobility, balance, fall risk, and cognition in older adults with multiple sclerosis (MS) as a function of fall frequency. Retrospective, cross-sectional design. University research laboratory. Community-dwelling persons with MS (N=27) aged between 50 and 75 years were divided into 2 groups-single-time (n=11) and recurrent (n=16; >2 falls/12 mo) fallers-on the basis of fall history. Not applicable. Mobility was assessed using a variety of measures including Multiple Sclerosis Walking Scale-12, walking speed (Timed 25-Foot Walk test), endurance (6-Minute Walk test), and functional mobility (Timed Up and Go test). Balance was assessed with the Berg Balance Scale, posturography, and self-reported balance confidence. Fall risk was assessed with the Physiological Profile Assessment. Cognitive processing speed was quantified with the Symbol Digit Modalities Test and the Paced Auditory Serial Addition Test. Recurrent fallers had slower cognitive processing speed than single-time fallers (P ≤.01). There was no difference in mobility, balance, or fall risk between recurrent and single-time fallers (P>.05). Results indicated that cognitive processing speed is associated with fall frequency and may have implications for fall prevention strategies targeting recurrent fallers with MS. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Impact of an implanted neuroprosthesis on community ambulation in incomplete SCI.
Lombardo, Lisa M; Kobetic, Rudolf; Pinault, Gilles; Foglyano, Kevin M; Bailey, Stephanie N; Selkirk, Stephen; Triolo, Ronald J
2018-03-01
Test the effect of a multi-joint control with implanted electrical stimulation on walking after spinal cord injury (SCI). Single subject research design with repeated measures. Hospital-based biomechanics laboratory and user assessment of community use. Female with C6 AIS C SCI 30 years post injury. Lower extremity muscle activation with an implanted pulse generator and gait training. Walking speed, maximum distance, oxygen consumption, upper extremity (UE) forces, kinematics and self-assessment of technology. Short distance walking speed at one-year follow up with or without stimulation was not significantly different from baseline. However, average walking speed was significantly faster (0.22 m/s) with stimulation over longer distances than volitional walking (0.12 m/s). In addition, there was a 413% increase in walking distance from 95 m volitionally to 488 m with stimulation while oxygen consumption and maximum upper extremity forces decreased by 22 and 16%, respectively. Stimulation also produced significant (P ≤ 0.001) improvements in peak hip and knee flexion, ankle angle at foot off and at mid-swing. An implanted neuroprosthesis enabled a subject with incomplete SCI to walk longer distances with improved hip and knee flexion and ankle dorsiflexion resulting in decreased oxygen consumption and UE support. Further research is required to determine the robustness, generalizability and functional implications of implanted neuroprostheses for community ambulation after incomplete SCI.
Detection of Abnormal Muscle Activations during Walking Following Spinal Cord Injury (SCI)
ERIC Educational Resources Information Center
Wang, Ping; Low, K. H.; McGregor, Alison H.; Tow, Adela
2013-01-01
In order to identify optimal rehabilitation strategies for spinal cord injury (SCI) participants, assessment of impaired walking is required to detect, monitor and quantify movement disorders. In the proposed assessment, ten healthy and seven SCI participants were recruited to perform an over-ground walking test at slow walking speeds. SCI…
Brincks, John; Andersen, Elisabeth Due; Sørensen, Henrik; Dalgas, Ulrik
2017-01-01
It is relevant to understand the possible influence of impaired postural balance on walking performance in multiple sclerosis (MS) gait rehabilitation. We expected associations between impaired postural balance and complex walking performance in mildly disabled persons with MS, but not in healthy controls. Thirteen persons with MS (Expanded Disability Status Scale = 2.5) and 13 healthy controls' walking performance were measured at fast walking speed, Timed Up & Go and Timed 25 Feet Walking. Postural balance was measured by stabilometry, 95% confidence ellipse sway area and sway velocity. Except from sway velocity (p = 0.07), significant differences were found between persons with MS and healthy controls in postural balance and walking. Significant correlations were observed between sway area and Timed Up & Go (r = 0.67) and fastest safe walking speed (r = -0.63) in persons with MS but not in healthy controls (r = 0.52 and r = 0.24, respectively). No other significant correlations were observed between postural balance and walking performance in neither persons with MS nor healthy controls. Findings add to the understanding of postural balance and walking in persons with MS, as impaired postural balance was related to complex walking performance. Exercises addressing impaired postural balance are encouraged in early MS gait rehabilitation.
1983-01-01
CH, Morrison JF, Viljoen JH, Heyns Aj (1968) The influence of boot weight on the energy expenditure of men walking on a treadmill and climbing stairs ...speed (4.0 km "h). These data indicate that energy expenditure is increased by wearing boots. A large portion of this increase may be attributed to...both shoes and boots except at the slowest walking speed (4.0 km ° h-1 ). These data indicate that energy expenditure is increased by wearing boots
Welmer, Anna-Karin; Kåreholt, Ingemar; Angleman, Sara; Rydwik, Elisabeth; Fratiglioni, Laura
2012-10-01
It is known that physical performance declines with age in general, however there remains much to be understood in terms of age-related differences amongst older adults across a variety of physical components (such as speed, strength and balance), and particularly in terms of the role played by multimorbidity of chronic diseases. We aimed to detect the age-related differences across four components of physical performance and to explore to what extent chronic diseases and multimorbidity may explain such differences. We analyzed cross-sectional data from a population-based sample of 3323 people, aged 60 years and older from the SNAC-K study, Stockholm, Sweden. Physical performance was assessed by trained nurses using several tests (grip strength, walking speed, balance and chair stands). Clinical diagnoses were made by the examining physician based on clinical history and examination. Censored normal regression analyses showed that the 72-90+ year-old persons had 17-40% worse grip strength, 44-86% worse balance, 30-86% worse chair stand score, and 21-59% worse walking speed, compared with the 60-66 year-old persons. Chronic diseases were strongly associated with physical impairment, and this association was particularly strong among the younger men. However, chronic diseases explained only some of the age-related differences in physical performance. When controlling for chronic diseases in the analyses, the age-related differences in physical performance changed 1-11%. In spite of the strong association between multimorbidity and physical impairment, chronic morbidities explained only a small part of the age-related differences in physical performance.
DenHartog, Emiel A; Rubenstein, Candace D; Deaton, A Shawn; Bogerd, Cornelis Peter
2017-03-01
A major concern for responders to hazardous materials (HazMat) incidents is the heat strain that is caused by fully encapsulated impermeable (NFPA 1991) suits. In a research project, funded by the US Department of Defense, the thermal strain experienced when wearing these suits was studied. Forty human subjects between the ages of 25 and 50 participated in a protocol approved by the local ethical committee. Six different fully encapsulated impermeable HazMat suits were evaluated in three climates: moderate (24°C, 50% RH, 20°C WBGT), warm-wet (32°C, 60% RH, 30°C WBGT), and hot-dry (45°C, 20% RH, 37°C WBGT, 200 W m-2 radiant load) and at three walking speeds: 2.5, 4, and 5.5 km h-1. The medium speed, 4 km h-1, was tested in all three climates and the other two walking speeds were only tested in the moderate climate. Prior to the test a submaximal exercise test in normal clothing was performed to determine a relationship between heart rate and oxygen consumption (pretest). In total, 163 exposures were measured. Tolerance time ranged from as low as 20 min in the hot-dry condition to 60 min (the maximum) in the moderate climate, especially common at the lowest walking speed. Between the six difference suits limited differences were found, a two-layered aluminized suit exhibited significant shorter tolerance times in the moderate climate, but no other major significant differences were found for the other climates or workloads. An important characteristic of the overall dataset is the large variability between the subjects. Although the average responses seem suitable to be predicted, the variability in the warmer strain conditions ranged from 20 min up to 60 min. The work load in these encapsulated impermeable suits was also significantly higher than working in normal clothing and higher than predicted by the Pandolf equation. Heart rate showed a very strong correlation to body core temperature and was in many cases the limiting factor. Setting the heart rate maximum at 80% of predicted individual maximum (age based) would have prevented 95% of the cases with excessive heat strain. Monitoring of heart rate under operational conditions would further allow individually optimize working times and help in preventing exertional heat stroke. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Fernández-Del-Olmo, Miguel Angel; Sanchez, Jose Andres; Bello, Olalla; Lopez-Alonso, Virginia; Márquez, Gonzalo; Morenilla, Luis; Castro, Xabier; Giraldez, Manolo; Santos-García, Diego
2014-01-01
Gait disturbances are one of the principal and most incapacitating symptoms of Parkinson's disease (PD). In addition, walking economy is impaired in PD patients and could contribute to excess fatigue in this population. An important number of studies have shown that treadmill training can improve kinematic parameters in PD patients. However, the effects of treadmill and overground walking on the walking economy remain unknown. The goal of this study was to explore the walking economy changes in response to a treadmill and an overground training program, as well as the differences in the walking economy during treadmill and overground walking. Twenty-two mild PD patients were randomly assigned to a treadmill or overground training group. The training program consisted of 5 weeks (3 sessions/week). We evaluated the energy expenditure of overground walking, before and after each of the training programs. The energy expenditure of treadmill walking (before the program) was also evaluated. The treadmill, but not the overground training program, lead to an improvement in the walking economy (the rate of oxygen consumed per distance during overground walking at a preferred speed) in PD patients. In addition, walking on a treadmill required more energy expenditure compared with overground walking at the same speed. This study provides evidence that in mild PD patients, treadmill training is more beneficial compared with that of walking overground, leading to a greater improvement in the walking economy. This finding is of clinical importance for the therapeutic administration of exercise in PD.
Influence of Pedometer Position on Pedometer Accuracy at Various Walking Speeds: A Comparative Study
Lovis, Christian
2016-01-01
Background Demographic growth in conjunction with the rise of chronic diseases is increasing the pressure on health care systems in most OECD countries. Physical activity is known to be an essential factor in improving or maintaining good health. Walking is especially recommended, as it is an activity that can easily be performed by most people without constraints. Pedometers have been extensively used as an incentive to motivate people to become more active. However, a recognized problem with these devices is their diminishing accuracy associated with decreased walking speed. The arrival on the consumer market of new devices, worn indifferently either at the waist, wrist, or as a necklace, gives rise to new questions regarding their accuracy at these different positions. Objective Our objective was to assess the performance of 4 pedometers (iHealth activity monitor, Withings Pulse O2, Misfit Shine, and Garmin vívofit) and compare their accuracy according to their position worn, and at various walking speeds. Methods We conducted this study in a controlled environment with 21 healthy adults required to walk 100 m at 3 different paces (0.4 m/s, 0.6 m/s, and 0.8 m/s) regulated by means of a string attached between their legs at the level of their ankles and a metronome ticking the cadence. To obtain baseline values, we asked the participants to walk 200 m at their own pace. Results A decrease of accuracy was positively correlated with reduced speed for all pedometers (12% mean error at self-selected pace, 27% mean error at 0.8 m/s, 52% mean error at 0.6 m/s, and 76% mean error at 0.4 m/s). Although the position of the pedometer on the person did not significantly influence its accuracy, some interesting tendencies can be highlighted in 2 settings: (1) positioning the pedometer at the waist at a speed greater than 0.8 m/s or as a necklace at preferred speed tended to produce lower mean errors than at the wrist position; and (2) at a slow speed (0.4 m/s), pedometers worn at the wrist tended to produce a lower mean error than in the other positions. Conclusions At all positions, all tested pedometers generated significant errors at slow speeds and therefore cannot be used reliably to evaluate the amount of physical activity for people walking slower than 0.6 m/s (2.16 km/h, or 1.24 mph). At slow speeds, the better accuracy observed with pedometers worn at the wrist could constitute a valuable line of inquiry for the future development of devices adapted to elderly people. PMID:27713114
Wheeled and standard walkers in Parkinson's disease patients with gait freezing.
Cubo, Esther; Moore, Charity G; Leurgans, Sue; Goetz, Christopher G
2003-10-01
Compare the efficacy of two walking assistance devices (wheeled walker and standard walker) to unassisted walking for patients with PD and gait freezing. Although numerous walking devices are used clinically, their relative effects on freezing and walking speed have never been systematically tested. Nineteen PD patients (14 non-demented) walked under three conditions in randomized order: unassisted walking, standard walker, and wheeled walker. Patients walked up to three times in each condition through a standard course that included rising from a chair, walking through a doorway, straightway walking, pivoting, and return. Total walking time, freezing time and number of freezes were compared for the three conditions using mixed models (walking time) and Friedman's test (freezing). The wheeled walker was further studied by comparing the effect of an attached laser that projected a bar of light on the floor as a visual walking cue. Use of either type of device significantly slowed walking compared to unassisted walking. Neither walker reduced any index of freezing, nor the laser attachment offered any advantage to the wheeled walker. The standard walker increased freezing, and the wheeled walker had no effect on freezing. Among the non-demented subjects (n=14), the same patterns occurred, although the walking speed was less impaired by the wheeled walker than the standard walker in this group. Though walkers may stabilize patients and increase confidence, PD patients walk more slowly when using them, without reducing freezing. Because the wheeled walker was intermediate for walking time and does not aggravate freezing, if walkers are used for these subjects, this type of walker should be favored.
Mehrholz, J; Harvey, L A; Thomas, S; Elsner, B
2017-08-01
Systematic review about randomised trials comparing different training strategies to improve gait in people with spinal cord injuries (SCI). The aim of this systematic review was to compare the effectiveness of body-weight-supported treadmill training (BWSTT) and robotic-assisted gait training with overground gait training and other forms of physiotherapy in people with traumatic SCI. Systematic review conducted by researchers from Germany and Australia. An extensive search was conducted for randomised controlled trials involving people with traumatic SCI that compared either BWSTT or robotic-assisted gait training with overground gait training and other forms of physiotherapy. The two outcomes of interest were walking speed (m s -1 ) and walking distance (m). BWSTT and robotic-assisted gait training were analysed separately, and data were pooled across trials to derive mean between-group differences using a random-effects model. Thirteen randomised controlled trials involving 586 people were identified. Ten trials involving 462 participants compared BWSTT to overground gait training and other forms of physiotherapy, but only nine trials provided useable data. The pooled mean (95% confidence interval (CI)) between-group differences for walking speed and walking distance were -0.03 m s -1 (-0.10 to 0.04) and -7 m (-45 to 31), respectively, favouring overground gait training. Five trials involving 344 participants compared robotic-assisted gait training to overground gait training and other forms of physiotherapy but only three provided useable data. The pooled mean (95% CI) between-group differences for walking speed and walking distance were -0.04 m s -1 (95% CI -0.21 to 0.13) and -6 m (95% CI -86 to 74), respectively, favouring overground gait training. BWSTT and robotic-assisted gait training do not increase walking speed more than overground gait training and other forms of physiotherapy do, but their effects on walking distance are not clear.
Stevens, Sandra L.; Caputo, Jennifer L.; Fuller, Dana K.; Morgan, Don W.
2015-01-01
Objective To document the effects of underwater treadmill training (UTT) on leg strength, balance, and walking performance in adults with incomplete spinal cord injury (iSCI). Design Pre-test and post-test design. Setting Exercise physiology laboratory. Participants Adult volunteers with iSCI (n = 11). Intervention Participants completed 8 weeks (3 × /week) of UTT. Each training session consisted of three walks performed at a personalized speed, with adequate rest between walks. Body weight support remained constant for each participant and ranged from 29 to 47% of land body weight. Increases in walking speed and duration were staggered and imposed in a gradual and systematic fashion. Outcome measures Lower-extremity strength (LS), balance (BL), preferred and rapid walking speeds (PWS and RWS), 6-minute walk distance (6MWD), and daily step activity (DSA). Results Significant (P < 0.05) increases were observed in LS (13.1 ± 3.1 to 20.6 ± 5.1 N·kg−1), BL (23 ± 11 to 32 ± 13), PWS (0.41 ± 0.27 to 0.55 ± 0.28 m·s−1), RWS (0.44 ± 0.31 to 0.71 ± 0.40 m·s−1), 6MWD (97 ± 80 to 177 ± 122 m), and DSA (593 ± 782 to 1310 ± 1258 steps) following UTT. Conclusion Physical function and walking ability were improved in adults with iSCI following a structured program of UTT featuring individualized levels of body weight support and carefully staged increases in speed and duration. From a clinical perspective, these findings highlight the potential of UTT in persons with physical disabilities and diseases that would benefit from weight-supported exercise. PMID:24969269
Estimation of Quasi-Stiffness of the Human Knee in the Stance Phase of Walking
Shamaei, Kamran; Sawicki, Gregory S.; Dollar, Aaron M.
2013-01-01
Biomechanical data characterizing the quasi-stiffness of lower-limb joints during human locomotion is limited. Understanding joint stiffness is critical for evaluating gait function and designing devices such as prostheses and orthoses intended to emulate biological properties of human legs. The knee joint moment-angle relationship is approximately linear in the flexion and extension stages of stance, exhibiting nearly constant stiffnesses, known as the quasi-stiffnesses of each stage. Using a generalized inverse dynamics analysis approach, we identify the key independent variables needed to predict knee quasi-stiffness during walking, including gait speed, knee excursion, and subject height and weight. Then, based on the identified key variables, we used experimental walking data for 136 conditions (speeds of 0.75–2.63 m/s) across 14 subjects to obtain best fit linear regressions for a set of general models, which were further simplified for the optimal gait speed. We found R2 > 86% for the most general models of knee quasi-stiffnesses for the flexion and extension stages of stance. With only subject height and weight, we could predict knee quasi-stiffness for preferred walking speed with average error of 9% with only one outlier. These results provide a useful framework and foundation for selecting subject-specific stiffness for prosthetic and exoskeletal devices designed to emulate biological knee function during walking. PMID:23533662
Butowicz, Courtney M; Acasio, Julian C; Dearth, Christopher L; Hendershot, Brad D
2018-03-26
Persons with lower limb amputation (LLA) walk with altered trunk-pelvic motions. The underlying trunk muscle activation patterns associated with these motions may provide insight into neuromuscular control strategies post LLA and the increased incidence of low back pain (LBP). Eight males with unilateral LLA and ten able-bodied controls (CTR) walked over ground at 1.0 m/s, 1.3 m/s, 1.6 m/s, and self-selected speeds. Trunk muscle onsets/offsets were determined from electromyographic activity of bilateral thoracic (TES) and lumbar (LES) erector spinae. Trunk-pelvic kinematics were simultaneously recorded. There were no differences in TES onset times between groups; however, LLA demonstrated a second TES onset during mid-to-terminal swing (not seen in CTR), and activation for a larger percentage of the gait cycle. LLA (vs. CTR) demonstrated an earlier onset of LES and activation for a larger percentage of the gait cycle at most speeds. LLA walked with increased frontal plane trunk ROM, and a more in-phase inter-segmental coordination at all speeds. These data collectively suggest that trunk neuromuscular control strategies secondary to LLA are driven by functional needs to generate torque proximally to advance the affected limb during gait, though this strategy may have unintended deleterious consequences such as increasing LBP risk over time. Published by Elsevier Ltd.
Gill, Simone V.; Hicks, Gregory E.; Zhang, Yuqing; Niu, Jingbo; Apovian, Caroline M.; White, Daniel K.
2016-01-01
Objective Excess weight is a known risk factor for functional limitation and common in adults with knee osteoarthritis (OA). We asked to what extent high waist circumference was linked with developing difficulty with walking speed and distance over 4 years in adults with or at risk of knee OA. Method Using data from the Osteoarthritis Initiative, we employed WHO categories for Body Mass Index (BMI) and waist circumference (small/medium and large). Difficulty with speed was defined by slow gait: < 1.2 m/s during a 20-meter walk, and difficulty with distance was defined by an inability to walk 400 meters. We calculated risk ratios (RR) to examine the likelihood of developing difficulty with distance and speed using obesity and waist circumference as predictors with RRs adjusted for potential confounders (i.e., age, sex, race, education, physical activity, and OA status). Results Participants with obesity and large waists were 2.2 times more likely to have difficulty with speed at 4 years compared to healthy weight and small/medium waisted participants (Adjusted RR 2.2 [95% Confidence interval (CI) 1.6, 3.1], P < .0001). Participants with obesity and a large waist circumference had 2.4 times the risk of developing the inability to walk 400 meters compared with those with a healthy BMI and small/medium waist circumference (Adjusted RR 0.9 [95% CI 1.6, 3.7], P < .0001). Conclusions Waist circumference may be a main risk factor for developing difficulty with speed in adults with or at risk of knee OA. PMID:27492464
Altered spatiotemporal characteristics of gait in older adults with chronic low back pain.
Hicks, Gregory E; Sions, J Megan; Coyle, Peter C; Pohlig, Ryan T
2017-06-01
Previous studies in older adults have identified that chronic low back pain (CLBP) is associated with slower gait speed. Given that slower gait speed is a predictor of greater morbidity and mortality among older adults, it is important to understand the underlying spatiotemporal characteristics of gait among older adults with CLBP. The purposes of this study were to determine (1) if there are differences in spatiotemporal parameters of gait between older adults with and without CLBP during self-selected and fast walking and (2) whether any of these gait characteristics are correlated with performance of a challenging walking task, e.g. stair negotiation. Spatiotemporal characteristics of gait were evaluated using a computerized walkway in 54 community-dwelling older adults with CLBP and 54 age- and sex-matched healthy controls. Older adults with CLBP walked slower than their pain-free peers during self-selected and fast walking. After controlling for body mass index and gait speed, step width was significantly greater in the CLBP group during the fast walking condition. Within the CLBP group, step width and double limb support time are significantly correlated with stair ascent/descent times. From a clinical perspective, these gait characteristics, which may be indicative of balance performance, may need to be addressed to improve overall gait speed, as well as stair-climbing performance. Future longitudinal studies confirming our findings are needed, as well as investigations focused on developing interventions to improve gait speed and decrease subsequent risk of mobility decline. Copyright © 2017 Elsevier B.V. All rights reserved.
Automatic identification of inertial sensor placement on human body segments during walking
2013-01-01
Background Current inertial motion capture systems are rarely used in biomedical applications. The attachment and connection of the sensors with cables is often a complex and time consuming task. Moreover, it is prone to errors, because each sensor has to be attached to a predefined body segment. By using wireless inertial sensors and automatic identification of their positions on the human body, the complexity of the set-up can be reduced and incorrect attachments are avoided. We present a novel method for the automatic identification of inertial sensors on human body segments during walking. This method allows the user to place (wireless) inertial sensors on arbitrary body segments. Next, the user walks for just a few seconds and the segment to which each sensor is attached is identified automatically. Methods Walking data was recorded from ten healthy subjects using an Xsens MVN Biomech system with full-body configuration (17 inertial sensors). Subjects were asked to walk for about 6 seconds at normal walking speed (about 5 km/h). After rotating the sensor data to a global coordinate frame with x-axis in walking direction, y-axis pointing left and z-axis vertical, RMS, mean, and correlation coefficient features were extracted from x-, y- and z-components and magnitudes of the accelerations, angular velocities and angular accelerations. As a classifier, a decision tree based on the C4.5 algorithm was developed using Weka (Waikato Environment for Knowledge Analysis). Results and conclusions After testing the algorithm with 10-fold cross-validation using 31 walking trials (involving 527 sensors), 514 sensors were correctly classified (97.5%). When a decision tree for a lower body plus trunk configuration (8 inertial sensors) was trained and tested using 10-fold cross-validation, 100% of the sensors were correctly identified. This decision tree was also tested on walking trials of 7 patients (17 walking trials) after anterior cruciate ligament reconstruction, which also resulted in 100% correct identification, thus illustrating the robustness of the method. PMID:23517757
Automatic identification of inertial sensor placement on human body segments during walking.
Weenk, Dirk; van Beijnum, Bert-Jan F; Baten, Chris T M; Hermens, Hermie J; Veltink, Peter H
2013-03-21
Current inertial motion capture systems are rarely used in biomedical applications. The attachment and connection of the sensors with cables is often a complex and time consuming task. Moreover, it is prone to errors, because each sensor has to be attached to a predefined body segment. By using wireless inertial sensors and automatic identification of their positions on the human body, the complexity of the set-up can be reduced and incorrect attachments are avoided.We present a novel method for the automatic identification of inertial sensors on human body segments during walking. This method allows the user to place (wireless) inertial sensors on arbitrary body segments. Next, the user walks for just a few seconds and the segment to which each sensor is attached is identified automatically. Walking data was recorded from ten healthy subjects using an Xsens MVN Biomech system with full-body configuration (17 inertial sensors). Subjects were asked to walk for about 6 seconds at normal walking speed (about 5 km/h). After rotating the sensor data to a global coordinate frame with x-axis in walking direction, y-axis pointing left and z-axis vertical, RMS, mean, and correlation coefficient features were extracted from x-, y- and z-components and magnitudes of the accelerations, angular velocities and angular accelerations. As a classifier, a decision tree based on the C4.5 algorithm was developed using Weka (Waikato Environment for Knowledge Analysis). After testing the algorithm with 10-fold cross-validation using 31 walking trials (involving 527 sensors), 514 sensors were correctly classified (97.5%). When a decision tree for a lower body plus trunk configuration (8 inertial sensors) was trained and tested using 10-fold cross-validation, 100% of the sensors were correctly identified. This decision tree was also tested on walking trials of 7 patients (17 walking trials) after anterior cruciate ligament reconstruction, which also resulted in 100% correct identification, thus illustrating the robustness of the method.
Louie, Dennis R; Eng, Janice J
2018-01-10
This retrospective cohort study identified inpatient rehabilitation admission variables that predict walking ability at discharge and established Berg Balance Scale cut-off scores to predict the extent of improvement in walking. Participants (n=123) were assessed for various cognitive and physical outcomes at admission to inpatient stroke rehabilitation. Multivariate logistic regression identified admission predictors of regaining community ambulation (gait speed ≥0.8 m/s) or unassisted ambulation (no physical assistance) after 4 weeks. Receiver operating characteristic curve analysis identified cut-off admission Berg Balance Scale scores. Mini-Mental State Examination (odds ratio (OR) 1.60, 95% confidence interval (95% CI) 1.19-2.14) was a significant predictor when coupled with admission walking speed for regaining community ambulation speed; stroke type (haemorrhagic/ischaemic) was a significant predictor (OR=0.19, 95% CI 0.05-0.77) when coupled with Berg Balance Scale (OR 1.14, 95% CI 1.09-1.20). Only Berg Balance Scale was a significant predictor of regaining unassisted ambulation (OR 1.11, 95% CI 1.05-1.17). A cut-off Berg Balance Scale score of 29 on admission predicts that an individual will go on to achieve community walking speed (n=123, area under the curve (AUC)=0.88, 95% CI 0.81-0.95); a cut-off score of 12 predicts a non-ambulator to regain unassisted ambulation (n=84, AUC 0.73, 95% CI 0.62-0.84). The Berg Balance Scale can be used at rehabilitation admission to predict the degree of improvement in walking for patients with stroke.
Barbour, Kamil E; Lui, Li-Yung; McCulloch, Charles E; Ensrud, Kristine E; Cawthon, Peggy M; Yaffe, Kristine; Barnes, Deborah E; Fredman, Lisa; Newman, Anne B; Cummings, Steven R; Cauley, Jane A
2016-12-01
Prior studies have only considered one measurement of physical performance in its relationship to fractures and mortality. A single measurement is susceptible to large within-person changes over time, and thus, may not capture the true association between physical performance and the outcomes of interest. Using data from the Study of Osteoporotic Fractures, we followed 7,015 women enrolled prior to age 80 years who had outcome information beyond this age. Trajectories of walking speed (m/s) and chair stand speed (stands/s) were estimated up to the last visit prior to age 80 years using mixed-effects linear regression. Physical performance at age 80 (PF_age80) was assessed at the last visit prior to age 80 years. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox proportional hazards regression and multivariate models adjusted for all other covariates. Greatest walking speed decline and chair stand speed decline were both associated with higher risk of hip fracture (HR: 1.28; 95% CI: 1.03, 1.58 and HR: 1.26; 95% CI: 1.03, 1.54, respectively), but not nonspine fractures. Greatest walking speed decline and chair stand speed decline were both associated with a significant 29% (95% CI: 17-42%) and 27% (95% CI: 15-39%) increased risk of mortality, respectively. Greatest declines in walking speed and chair stand speed were both associated with an increased risk of hip fracture and mortality independent of PF_age80 and other important confounders. Both physical performance change and the single physical performance measurement should be considered in the etiology of hip fracture and mortality. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Deep white matter hyperintensities, microstructural integrity and dual task walking in older people.
Ghanavati, Tabassom; Smitt, Myriam Sillevis; Lord, Stephen R; Sachdev, Perminder; Wen, Wei; Kochan, Nicole A; Brodaty, Henry; Delbaere, Kim
2018-01-03
To examine neural, physiological and cognitive influences on gait speed under single and dual-task conditions. Sixty-two community-dwelling older people (aged 80.0 ± 4.2 years) participated in our study. Gait speed was assessed with a timed 20-meter walk under single and dual-task (reciting alternate letters of the alphabet) conditions. Participants also underwent tests to estimate physiological fall risk based on five measures of sensorimotor function, cognitive function across five domains, brain white matter (WM) hyperintensities and WM microstructural integrity by measuring fractional anisotropy (FA). Univariate linear regression analyses showed that global physiological and cognitive measures were associated with single (β = 0.594 and β=-0.297, respectively) and dual-task gait speed (β = 0.306 and β=-0.362, respectively). Deep WMHs were associated with dual-task gait speed only (β = 0.257). Multivariate mediational analyses showed that global and executive cognition reduced the strength of the association between deep WMHs and dual-task gait speed by 27% (β = 0.188) and 44% (β = 0.145) respectively. There was a significant linear association between single-task gait speed and mean FA values of the genu (β=-0.295) and splenium (β=-0.326) of the corpus callosum, and between dual-task gait speed and mean FA values of Superior Cerebellar Peduncle (β=-0.284), splenium of the Corpus Callosum (β=-0.286) and Cingulum (β=-0.351). Greater deep WMH volumes are associated with slower walking speed under dual-task conditions, and this relationship is mediated in part by global cognition and executive abilities specifically. Furthermore, both cerebellum and cingulum are related to dual-task walking due to their role in motor skill performance and attention, respectively.
Influence of water depth on energy expenditure during aquatic walking in people post stroke.
Lim, Hyosok; Azurdia, Daniel; Jeng, Brenda; Jung, Taeyou
2018-05-11
This study aimed to investigate the metabolic cost during aquatic walking at various depths in people post stroke. The secondary purpose was to examine the differences in metabolic cost between aquatic walking and land walking among individuals post stroke. A cross-sectional research design is used. Twelve participants post stroke (aged 55.5 ± 13.3 years) completed 6 min of walking in 4 different conditions: chest-depth, waist-depth, and thigh-depth water, and land. Data were collected on 4 separate visits with at least 48 hr in between. On the first visit, all participants were asked to walk in chest-depth water at their fastest speed. The walking speed was used as a reference speed, which was applied to the remaining 3 walking conditions. The order of remaining walking conditions was randomized. Energy expenditure (EE), oxygen consumption (VO 2 ), and minute ventilation (V E ) were measured with a telemetric metabolic system. Our findings showed statistically significant differences in EE, VO 2 , and V E among the 4 different walking conditions: chest-depth, waist-depth, and thigh-depth water, and land (all p < .05). The participants demonstrated reduction in all variables as the water depth increased from thigh depth to chest depth. Significantly higher values in EE and VO 2 were found when the water depth increased from waist depth to chest depth. However, no significant difference was found in all variables between thigh-depth and waist-depth walking. Only thigh-depth walking revealed significant differences when compared with land walking in all variables. People post stroke consume less energy in chest-depth water, which may allow them to perform prolonged duration of training. Thigh-depth water demonstrated greater EE compared with other water depths; thus, it can be recommended for time-efficient cardiovascular exercise. Waist-depth water showed similar EE to land walking, which may have been contributed by the countervailing effects of buoyancy and water resistance. Copyright © 2018 John Wiley & Sons, Ltd.
The contributions of balance to gait capacity and motor function in chronic stroke.
Lee, Kyoung Bo; Lim, Seong Hoon; Kim, Young Dong; Yang, Byung Il; Kim, Kyung Hoon; Lee, Kang Sung; Kim, Eun Ja; Hwang, Byong Yong
2016-06-01
[Purpose] The aim of this study was to identify the contributions of balance to gait and motor function in chronic stroke. [Subjects and Methods] Twenty-three outpatients participated in a cross-sectional assessment. Gait ability was assessed using the functional ambulation category, self-paced 10-m walking speed, and fastest 10-m walking speed. Standing balance and trunk control measures included the Berg Balance Scale and the Trunk Impairment Scale. Univariate and multivariate regression analyses were performed. [Results] Balance was the best predictor of the FAC, self-paced walking speed, and fastest walking speed, accounting for 57% to 61% of the variances. Additionally, the total score of TIS was the only predictor of the motor function of the lower limbs and the dynamic balance of TIS was a predictor of the motor function of the upper limbs, accounting for 41% and 29% of the variance, respectively. [Conclusion] This study demonstrated the relative contribution of standing balance and trunk balance to gait ability and motor function. They show that balance has a high power of explanation of gait ability and that trunk balance is a determinant of motor function rather than gait ability.
The contributions of balance to gait capacity and motor function in chronic stroke
Lee, Kyoung Bo; Lim, Seong Hoon; Kim, Young Dong; Yang, Byung Il; Kim, Kyung Hoon; Lee, Kang Sung; Kim, Eun Ja; Hwang, Byong Yong
2016-01-01
[Purpose] The aim of this study was to identify the contributions of balance to gait and motor function in chronic stroke. [Subjects and Methods] Twenty-three outpatients participated in a cross-sectional assessment. Gait ability was assessed using the functional ambulation category, self-paced 10-m walking speed, and fastest 10-m walking speed. Standing balance and trunk control measures included the Berg Balance Scale and the Trunk Impairment Scale. Univariate and multivariate regression analyses were performed. [Results] Balance was the best predictor of the FAC, self-paced walking speed, and fastest walking speed, accounting for 57% to 61% of the variances. Additionally, the total score of TIS was the only predictor of the motor function of the lower limbs and the dynamic balance of TIS was a predictor of the motor function of the upper limbs, accounting for 41% and 29% of the variance, respectively. [Conclusion] This study demonstrated the relative contribution of standing balance and trunk balance to gait ability and motor function. They show that balance has a high power of explanation of gait ability and that trunk balance is a determinant of motor function rather than gait ability. PMID:27390395
Zooplankton intermittency and turbulence
NASA Astrophysics Data System (ADS)
Schmitt, François G.
2010-05-01
Planktonic organisms usually live in a turbulent world. Since marine turbulence is characterized by very high Reynolds numbers, it possesses very intermittent fluctuations which in turn affect marine life. We consider here such influence on zooplankton on 2 aspects. First we consider zooplankton motion in the lab. Many copepods display swimming abilities. More and more species have been recently recorded using normal or high speed cameras, and many trajectories have been extracted from these movies and are now available for analysis. These trajectories can be complex, stochastic, with random switching from low velocity to high velocity events and even jumps. These complex trajectories show that an adequate modeling is necessary to understand and characterize them. Here we review the results published in the literature on copepod trajectories. We discuss the random walk, Levy walk modeling and introduce also multifractal random walks. We discuss the way to discriminate between these different walks using experimental data. Stochastic simulations will be performed to illustrate the different families. Second, we consider zooplankton contact rates in the framework of intermittent turbulence. Intermittency may have influence on plankton contact rates. We consider the Particle Stokes number of copepods, in a intermediate dissipation range affected by intermittent fluctuations. We show that they may display preferential concentration effects, and we consider the influence on contact rates of this effect in the intermediate dissipation range.
Race walking gait and its influence on race walking economy in world-class race walkers.
Gomez-Ezeiza, Josu; Torres-Unda, Jon; Tam, Nicholas; Irazusta, Jon; Granados, Cristina; Santos-Concejero, Jordan
2018-03-06
The aim of this study was to determine the relationships between biomechanical parameters of the gait cycle and race walking economy in world-class Olympic race walkers. Twenty-One world-class race walkers possessing the Olympic qualifying standard participated in this study. Participants completed an incremental race walking test starting at 10 km·h -1 , where race walking economy (ml·kg -1 ·km -1 ) and spatiotemporal gait variables were analysed at different speeds. 20-km race walking performance was related to race walking economy, being the fastest race walkers those displaying reduced oxygen cost at a given speed (R = 0.760, p < 0.001). Longer ground contact times, shorter flight times, longer midstance sub-phase and shorter propulsive sub-phase during stance were related to a better race walking economy (moderate effect, p < 0.05). According to the results of this study, the fastest race walkers were more economi cal than the lesser performers. Similarly, shorter flight times are associated with a more efficient race walking economy. Coaches and race walkers should avoid modifying their race walking style by increasing flight times, as it may not only impair economy, but also lead to disqualification.
The effect of uphill and downhill walking on gait parameters: A self-paced treadmill study.
Kimel-Naor, Shani; Gottlieb, Amihai; Plotnik, Meir
2017-07-26
It has been shown that gait parameters vary systematically with the slope of the surface when walking uphill (UH) or downhill (DH) (Andriacchi et al., 1977; Crowe et al., 1996; Kawamura et al., 1991; Kirtley et al., 1985; McIntosh et al., 2006; Sun et al., 1996). However, gait trials performed on inclined surfaces have been subject to certain technical limitations including using fixed speed treadmills (TMs) or, alternatively, sampling only a few gait cycles on inclined ramps. Further, prior work has not analyzed upper body kinematics. This study aims to investigate effects of slope on gait parameters using a self-paced TM (SPTM) which facilitates more natural walking, including measuring upper body kinematics and gait coordination parameters. Gait of 11 young healthy participants was sampled during walking in steady state speed. Measurements were made at slopes of +10°, 0° and -10°. Force plates and a motion capture system were used to reconstruct twenty spatiotemporal gait parameters. For validation, previously described parameters were compared with the literature, and novel parameters measuring upper body kinematics and bilateral gait coordination were also analyzed. Results showed that most lower and upper body gait parameters were affected by walking slope angle. Specifically, UH walking had a higher impact on gait kinematics than DH walking. However, gait coordination parameters were not affected by walking slope, suggesting that gait asymmetry, left-right coordination and gait variability are robust characteristics of walking. The findings of the study are discussed in reference to a potential combined effect of slope and gait speed. Follow-up studies are needed to explore the relative effects of each of these factors. Copyright © 2017. Published by Elsevier Ltd.
Adaptation of the walking pattern to uphill walking in normal and spinal-cord injured subjects.
Leroux, A; Fung, J; Barbeau, H
1999-06-01
Lower-limb movements and muscle-activity patterns were assessed from seven normal and seven ambulatory subjects with incomplete spinal-cord injury (SCI) during level and uphill treadmill walking (5, 10 and 15 degrees). Increasing the treadmill grade from 0 degrees to 15 degrees induced an increasingly flexed posture of the hip, knee and ankle during initial contact in all normal subjects, resulting in a larger excursion throughout stance. This adaptation process actually began in mid-swing with a graded increase in hip flexion and ankle dorsiflexion as well as a gradual decrease in knee extension. In SCI subjects, a similar trend was found at the hip joint for both swing and stance phases, whereas the knee angle showed very limited changes and the ankle angle showed large variations with grade throughout the walking cycle. A distinct coordination pattern between the hip and knee was observed in normal subjects, but not in SCI subjects during level walking. The same coordination pattern was preserved in all normal subjects and in five of seven SCI subjects during uphill walking. The duration of electromyographic (EMG) activity of thigh muscles was progressively increased during uphill walking, whereas no significant changes occurred in leg muscles. In SCI subjects, EMG durations of both thigh and leg muscles, which were already active throughout stance during level walking, were not significantly affected by uphill walking. The peak amplitude of EMG activity of the vastus lateralis, medial hamstrings, soleus, medial gastrocnemius and tibialis anterior was progressively increased during uphill walking in normal subjects. In SCI subjects, the peak amplitude of EMG activity of the medial hamstrings was adapted in a similar fashion, whereas the vastus lateralis, soleus and medial gastrocnemius showed very limited adaptation during uphill walking. We conclude that SCI subjects can adapt to uphill treadmill walking within certain limits, but they use different strategies to adapt to the changing locomotor demands.
Effects of adding a virtual reality environment to different modes of treadmill walking.
Sloot, L H; van der Krogt, M M; Harlaar, J
2014-03-01
Differences in gait between overground and treadmill walking are suggested to result from imposed treadmill speed and lack of visual flow. To counteract this effect, feedback-controlled treadmills that allow the subject to control the belt speed along with an immersive virtual reality (VR) have recently been developed. We studied the effect of adding a VR during both fixed speed (FS) and self-paced (SP) treadmill walking. Nineteen subjects walked on a dual-belt instrumented treadmill with a simple endless road projected on a 180° circular screen. A main effect of VR was found for hip flexion offset, peak hip extension, peak knee extension moment, knee flexion moment gain and ankle power during push off. A consistent interaction effect between VR and treadmill mode was found for 12 out of 30 parameters, although the differences were small and did not exceed 50% of the within subject stride variance. At FS, the VR seemed to slightly improve the walking pattern towards overground walking, with for example a 6.5mm increase in stride length. At SP, gait became slightly more cautious by adding a VR, with a 9.1mm decrease in stride length. Irrespective of treadmill mode, subjects rated walking with the VR as more similar to overground walking. In the context of clinical gait analysis, the effects of VR are too small to be relevant and are outweighed by the gains of adding a VR, such as a more stimulating experience and possibility of augmenting it by real-time feedback. Copyright © 2013 Elsevier B.V. All rights reserved.
2011-01-01
Background It is not yet established if the use of body weight support (BWS) systems for gait training is effective per se or if it is the combination of BWS and treadmill that improves the locomotion of individuals with gait impairment. This study investigated the effects of gait training on ground level with partial BWS in individuals with stroke during overground walking with no BWS. Methods Twelve individuals with chronic stroke (53.17 ± 7.52 years old) participated of a gait training program with BWS during overground walking, and were evaluated before and after the gait training period. In both evaluations, individuals were videotaped walking at a self-selected comfortable speed with no BWS. Measurements were obtained for mean walking speed, step length, stride length and speed, toe-clearance, durations of total double stance and single-limb support, and minimum and maximum foot, shank, thigh, and trunk segmental angles. Results After gait training, individuals walked faster, with symmetrical steps, longer and faster strides, and increased toe-clearance. Also, they displayed increased rotation of foot, shank, thigh, and trunk segmental angles on both sides of the body. However, the duration of single-limb support remained asymmetrical between each side of the body after gait training. Conclusions Gait training individuals with chronic stroke with BWS during overground walking improved walking in terms of temporal-spatial parameters and segmental angles. This training strategy might be adopted as a safe, specific and promising strategy for gait rehabilitation after stroke. PMID:21864373
Calculation of the external work done during walking in very young children.
Schepens, Benedicte; Detrembleur, Christine
2009-10-01
During walking, muscles must perform positive work to replace the energy lost from the body at each step, even if the average speed is constant and the terrain level. Young children have immature and irregular walk, but little is known about the effect of this walking pattern on the muscular external work done. Our objective was to measure using force platforms and the method of Cavagna (J Appl Physiol 39:174-179, 1975) the amount of muscular external work done by 1-year-old-, 4-year-old children and adults during walking. We were interested to quantify the approximation made by measuring only the positive external work done and assuming it reflects the external work done. After having confirmed that young children were not able to walk at a constant average speed over a complete number of steps, we showed the effect of the selection of trials by measuring the external work done assuming the amount of positive work done is equal to the negative work done (supposing there is no acceleration or deceleration over a complete number of steps). We observed that even if young subjects were not able to walk at a constant lateral speed over a complete number of steps, the amount of work done to maintain the center of mass movements in the transversal plane is not more than 10% of the external positive work done. This observational study points out that the measurement of external work, a good summary indicator for the gait mechanics, may be interpreted precociously when the population studied walked irregularly.
Wu, Wen-Lan; Wei, Ta-Sen; Chen, Shen-Kai; Chang, Jyh-Jong; Guo, Lan-Yuen; Lin, Hwai-Ting
2010-01-01
Walking performance changes with age. This has implications for the problem of falls in older adults. The aim of this study was to investigate the effects of Yuanji-Dance practice on walking balance and the associated attention demand in healthy elderly. Fifteen community-dwelling elderly (comparison group, no regular exercise habit) and fifteen Yuanji- Dance elderly (exercise group, dancing experience: 5.40 ± 1.95 years), aged 60-70 years, were included in this study. The subjects in exercise group participated in a 90-minute Yuanji-Dance practice at least three times per week and the comparison group continued their normal daily physical activity. Walking balance measures (including walking velocity, step length, step width, and percentage of time spent in double limb support, COM velocity and COM-COP inclination angles) and attentional demand tests (button reaction time and accuracy) were conducted under different conditions. Our results showed that stride lengths, walking velocities, peak A/P velocities (AP V) of the COM, medial COM-COP inclination (M angle) angles, reaction time, and accuracy decrease significantly as the dual-task (walking plus hand button pressing tasks) applied for either the comparison or exercise groups. These results demonstrated that walking performance is attenuated in our elderly participants as the cognitive tasks applied. Analysis also identified a significantly faster RT for our exercise group both in standing and walking conditions. This may indicate that physical exercise (Yuanji-Dance) may have facilitating effects on general cognitive and perceptual- motor functions. This implies that Chinese Yuanji-Dance practice for elderly adults may improve their personal safety when walking especially under the condition of multiple task demand. Key points The purpose of this study was to investigate the training effects of a Chinese traditional exercise, Yuanji-Dance, on walking balance and the associated attention demand in the healthy elderly. Walking performance is attenuated in elderly participants as the cognitive tasks applied. A significantly faster reaction time for our exercise group both in standing and walking conditions. Yuanji-Dance exercise training can improve the information processing speed of elderly people and has no influence of the dynamic walking balance. PMID:24149395
Deffeyes, Joan E; Karst, Gregory M; Stuberg, Wayne A; Kurz, Max J
2012-08-01
The kinematics of children's walking are nearly adult-like by about age 3-4 years, but metabolic efficiency of walking does not reach adult values until late in adolescence or early adulthood, perhaps due to higher coactivation of agonist/antagonist muscle pairs in adolescents. Additionally, it is unknown how use of a body weight-supported treadmill device affects coactivation, but because unloading will alter the activity of anti-gravity muscles, it was hypothesized that muscle coactivation will be altered as well. Muscle coactivation during treadmill walking was evaluated for adolescents (ages 10 to 17 years, M = 13.2, SD = 2.2) and adults (ages 22 to 35 years, M = 25.2, SD = 4.3), for thigh muscles (vastus lateralis/biceps femoris) and lower leg muscles (tibialis anterior/gastrocnemius). Conditions included body weight unloadings from nearly 0% to 80% of body weight, while walking at a preferred speed (self-selected, overground speed) or a reduced speed. Unloading was accomplished using a lower body positive pressure support system. Coactivation was found to be higher in adolescents than in adults, but only for the lower leg muscles.
Hotrabhavananda, Benjamin; Mishra, Anup K; Skubic, Marjorie; Hotrabhavananda, Nijaporn; Abbott, Carmen
2016-08-01
We compared the performance of the Kinect skeletal data with the Kinect depth data in capturing different gait parameters during the Timed-up and Go Test (TUG) and Figure of 8 Walk Test (F8W). The gait parameters considered were stride length, stride time, and walking speed for the TUG, and number of steps and completion time for the F8W. A marker-based Vicon motion capture system was used for the ground-truth measurements. Five healthy participants were recruited for the experiment and were asked to perform three trials of each task. Results show that depth data analysis yields stride length and stride time measures with significantly low percentile errors as compared to the skeletal data analysis. However, the skeletal and depth data performed similar with less than 3% of absolute mean percentile error in determining the walking speed for the TUG and both parameters of F8W. The results show potential capabilities of Kinect depth data analysis in computing many gait parameters, whereas, the Kinect skeletal data can also be used for walking speed in TUG and F8W gait parameters.
Kunzler, Marcos R; da Rocha, Emmanuel S; Bobbert, Maarten F; Duysens, Jacques; Carpes, Felipe P
2017-07-01
In negotiating stairs, low foot clearance increases the risk of tripping and a fall. Foot clearance may be related to physical fitness, which differs between active and sedentary participants, and be acutely affected by exercise. Impaired stair negotiation could be an acute response to exercise. Here we determined acute changes in foot clearances during stair walking in sedentary (n = 15) and physically active older adults (n = 15) after prolonged exercise. Kinematic data were acquired during negotiation with a 3-steps staircase while participants walked at preferred speed, before and after 30 min walking at preferred speed and using a treadmill. Foot clearances were compared before and after exercise and between the groups. Sedentary older adults presented larger (0.5 cm for lead and 2 cm for trail leg) toe clearances in ascent, smaller (0.7 cm) heel clearance in the leading foot in descent, and larger (1 cm) heel clearance in the trailing foot in descent than physically active. Sedentary older adults negotiate stairs in a slightly different way than active older adults, and 30 min walking at preferred speed does not affect clearance in stair negotiation.
Research on Walking Wheel Slippage Control of Live Inspection Robot
NASA Astrophysics Data System (ADS)
Yan, Yu; Liu, Xiaqing; Guo, Hao; Li, Jinliang; Liu, Lanlan
2017-07-01
To solve the problem of walking wheel slippage of a live inspection robot during walking or climbing, this paper analyzes the climbing capacity of the robot with a statics method, designs a pressing wheel mechanism, and presents a method of indirectly identifying walking wheel slippage by reading speed of the pressing wheel due to the fact that the linear speed of the pressing wheel and the walking wheel at the contract point is the same; and finds that the slippage state can not be controlled through accurate mathematical models after identifying the slippage state, whereas slippage can be controlled with fuzzy control. The experiment results indicate that due to design of the pressing wheel mechanism, friction force of the walking wheel is increased, and the climbing capability of the robot is improved. Within the range of climbing capability of the robot, gradient is the key factor that has influence on slippage of robot, and slippage can be effectively eliminated through the fuzzy control method proposed in this paper.
Robot-assisted gait training in patients with Parkinson disease: a randomized controlled trial.
Picelli, Alessandro; Melotti, Camilla; Origano, Francesca; Waldner, Andreas; Fiaschi, Antonio; Santilli, Valter; Smania, Nicola
2012-05-01
. Gait impairment is a common cause of disability in Parkinson disease (PD). Electromechanical devices to assist stepping have been suggested as a potential intervention. . To evaluate whether a rehabilitation program of robot-assisted gait training (RAGT) is more effective than conventional physiotherapy to improve walking. . A total of 41 patients with PD were randomly assigned to 45-minute treatment sessions (12 in all), 3 days a week, for 4 consecutive weeks of either robotic stepper training (RST; n = 21) using the Gait Trainer or physiotherapy (PT; n = 20) with active joint mobilization and a modest amount of conventional gait training. Participants were evaluated before, immediately after, and 1 month after treatment. Primary outcomes were 10-m walking speed and distance walked in 6 minutes. . Baseline measures revealed no statistical differences between groups, but the PT group walked 0.12 m/s slower; 5 patients withdrew. A statistically significant improvement was found in favor of the RST group (walking speed 1.22 ± 0.19 m/s [P = .035]; distance 366.06 ± 78.54 m [P < .001]) compared with the PT group (0.98 ± 0.32 m/s; 280.11 ± 106.61 m). The RAGT mean speed increased by 0.13 m/s, which is probably not clinically important. Improvements were maintained 1 month later. . RAGT may improve aspects of walking ability in patients with PD. Future trials should compare robotic assistive training with treadmill or equal amounts of overground walking practice.
Foster, Hannah; DeMark, Lou; Spigel, Pamela M; Rose, Dorian K; Fox, Emily J
2016-10-01
Individuals with incomplete spinal cord injuries (ISCIs) commonly face persistent gait impairments. Backward walking training may be a useful rehabilitation approach, providing novel gait and balance challenges. However, little is known about the effects of this approach for individuals with ISCIs. The purpose of this case report was to describe the effects of backward walking training on strength, balance, and upright mobility in an individual with chronic ISCI. A 28-year-old female, 11-years post ISCI (C4, AIS D) completed 18-sessions of backward walking training on a treadmill with partial body-weight support and overground. Training emphasized stepping practice, speed, and kinematics. Outcome measures included: Lower Extremity Motor Score, Berg Balance Scale (BBS), Sensory Organization Test (SOT), 10-Meter Walk Test (10MWT), 3-meter backward walking test, Timed Up and Go (TUG), and Activities-Specific Balance Confidence (ABC) Scale. Strength did not change. Improved balance was evident based on BBS (20 to 37/56) and SOT scores (27 to 40/100). Upright mobility improved based on TUG times (57 to 32.7 s), increased 10MWT speed (0.23 to 0.31 m/s), and backward gait speed (0.07 to 0.12 m/s). Additionally, self-reported balance confidence (ABC Scale) increased from 36.9% to 49.6%. The results suggest that backward walking may be a beneficial rehabilitation approach; examination of the clinical efficacy is warranted.
Foster, Hannah; DeMark, Lou; Spigel, Pamela M.; Rose, Dorian K.; Fox, Emily J.
2016-01-01
Background/Purpose Individuals with incomplete spinal cord injuries (ISCIs) commonly face persistent gait impairments. Backward walking training may be a useful rehabilitation approach, providing novel gait and balance challenges. However, little is known about the effects of this approach for individuals with ISCIs. The purpose of this case report was to describe the effects of backward walking training on strength, balance and upright mobility in an individual with chronic ISCI. Methods A 28-year-old female, 11-years post ISCI (C4, AIS D) completed 18-sessions of backward walking training on a treadmill with partial body-weight support and overground. Training emphasized stepping practice, speed, and kinematics. Outcome measures included: Lower Extremity Motor Score, Berg Balance Scale (BBS), Sensory Organization Test (SOT); 10-Meter Walk Test (10MWT), 3-meter backward walking test, Timed Up and Go (TUG), and Activities-Specific Balance Confidence (ABC) Scale. Results Strength did not change. Improved balance was evident based on BBS (20 to 37/56) and SOT scores (27 to 40/100). Upright mobility improved based on TUG times (57 to 32.7 s), increased 10MWT speed (0.23 to 0.31 m/s), and backward gait speed (0.07 to 0.12 m/s). Additionally, self-reported balance confidence (ABC Scale) increased from 36.9% to 49.6%. Conclusions The results suggest that backward walking may be a beneficial rehabilitation approach; examination of the clinical efficacy is warranted. PMID:27482619
Propulsion strategy in the gait of primary school children; the effect of age and speed.
Lye, Jillian; Parkinson, Stephanie; Diamond, Nicola; Downs, Jenny; Morris, Susan
2016-12-01
The strategy used to generate power for forward propulsion in walking and running has recently been highlighted as a marker of gait maturation and elastic energy recycling. This study investigated ankle and hip power generation as a propulsion strategy (PS) during the late stance/early swing phases of walking and running in typically developing (TD) children (15: six to nine years; 17: nine to 13years) using three-dimensional gait analysis. Peak ankle power generation at push-off (peakA2), peak hip power generation in early swing (peakH3) and propulsion strategy (PS) [peakA2/(peakA2+peakH3)] were calculated to provide the relative contribution of ankle power to total propulsion. Mean PS values decreased as speed increased for comfortable walking (p<0.001), fast walking (p<0.001) and fast running (p<0.001), and less consistently during jogging (p=0.054). PS varied with age (p<0.001) only during fast walking. At any speed of fast walking, older children generated more peakA2 (p=0.001) and less peakH3 (p=0.001) than younger children. While the kinetics of running propulsion appear to be developed by age six years, the skills of fast walking appeared to require additional neuromuscular maturity. These findings support the concept that running is a skill that matures early for TD children. Copyright © 2016 Elsevier B.V. All rights reserved.
Park, Hyung-Soon; Yoon, Jung Won; Kim, Jonghyun; Iseki, Kazumi; Hallett, Mark
2013-01-01
Freezing of gait (FOG) is a commonly observed phenomenon in Parkinson’s disease, but its causes and mechanisms are not fully understood. This paper presents the development of a virtual reality (VR)-based body-weight supported treadmill interface (BWSTI) designed and applied to investigate FOG. The BWSTI provides a safe and controlled walking platform which allows investigators to assess gait impairments under various conditions that simulate real life. In order to be able to evoke FOG, our BWSTI employed a novel speed adaptation controller, which allows patients to drive the treadmill speed. Our interface responsively follows the subject’s intention of changing walking speed by the combined use of feedback and feedforward controllers. To provide realistic visual stimuli, a three dimensional VR system is interfaced with the speed adaptation controller and synchronously displays realistic visual cues. The VR-based BWSTI was tested with three patients with PD who are known to have FOG. Visual stimuli that might cause FOG were shown to them while the speed adaptation controller adjusted treadmill speed to follow the subjects’ intention. Two of the three subjects showed FOG during the treadmill walking. PMID:22275661
Villarreal, Dario J.; Gregg, Robert D.
2016-01-01
This paper presents the experimental validation of a novel control strategy that unifies the entire gait cycle of a powered knee-ankle prosthetic leg without the need to switch between controllers for different periods of gait. Current control methods divide the gait cycle into several sequential periods each with independent controllers, resulting in many patient-specific control parameters and switching rules that must be tuned for a specific walking speed. The single controller presented is speed-invariant with a minimal number of control parameters to be tuned. A single, periodic virtual constraint is derived that exactly characterizes the desired actuated joint motion as a function of a mechanical phase variable across walking cycles. A single sensor was used to compute a phase variable related to the residual thigh angle’s phase plane, which was recently shown to robustly represent the phase of non-steady human gait. This phase variable allows the prosthesis to synchronize naturally with the human user for intuitive, biomimetic behavior. A custom powered knee-ankle prosthesis was designed and built to implement the control strategy and validate its performance. A human subject experiment was conducted across multiple walking speeds (1 to 3 miles/hour) in a continuous sequence with the single phase-based controller, demonstrating its adaptability to the user’s intended speed. PMID:28392969
Eich, H-J; Mach, H; Werner, C; Hesse, S
2004-09-01
To evaluate the immediate and long-term effects of aerobic treadmill plus Bobath walking training in subacute stroke survivors compared with Bobath walking training alone. Randomized controlled trial. Rehabilitation unit. Fifty patients, first-time supratentorial stroke, stroke interval less than six weeks, Barthel Index (0-100) from 50 to 80, able to walk a minimum distance of 12 m with either intermittent help or stand-by while walking, cardiovascular stable, minimum 50 W in the bicycle ergometry, randomly allocated to two groups, A and B. Group A 30 min of treadmill training, harness secured and minimally supported according to patients' needs, and 30 min of physiotherapy, every workday for six weeks, speed and inclination of the treadmill were adjusted to achieve a heart rate of HR: (Hrmax-HRrest)*0.6+HRrest; in group B 60 min of daily physiotherapy for six weeks. Primary outcome variables were the absolute improvement of walking velocity (m/s) and capacity (m), secondary were gross motor function including walking ability (score out of 13) and walking quality (score out of 41), blindly assessed before and after the intervention, and at follow-up three months later. Patients tolerated the aerobic training well with no side-effects, significantly greater improvement of walking velocity and capacity both at study end (p =0.001 versus p =0.002) and at follow-up (p <0.001 versus p <0.001) in the experimental group. Between weeks 0 and 6, the experimental group improved walking speed and capacity by a mean of.31 m/s and 91 m, the control group by a mean of 0.16 m/s and 56 m. Between weeks 0 and 18, the experimental group improved walking speed and capacity by a mean of 0.36 m/s and 111 m, the control group by a mean of 0.15 m/s and 57 m. Gross motor function and walking quality did not differ at any time. Aerobic treadmill plus Bobath walking training in moderately affected stroke patients was better than Bobath walking training alone with respect to the improvement of walking velocity and capacity. The treatment approach is recommended in patients meeting the inclusion criteria. A multicentre trial should follow to strengthen the evidence.
Fractal analysis of lateral movement in biomembranes.
Gmachowski, Lech
2018-04-01
Lateral movement of a molecule in a biomembrane containing small compartments (0.23-μm diameter) and large ones (0.75 μm) is analyzed using a fractal description of its walk. The early time dependence of the mean square displacement varies from linear due to the contribution of ballistic motion. In small compartments, walking molecules do not have sufficient time or space to develop an asymptotic relation and the diffusion coefficient deduced from the experimental records is lower than that measured without restrictions. The model makes it possible to deduce the molecule step parameters, namely the step length and time, from data concerning confined and unrestricted diffusion coefficients. This is also possible using experimental results for sub-diffusive transport. The transition from normal to anomalous diffusion does not affect the molecule step parameters. The experimental literature data on molecular trajectories recorded at a high time resolution appear to confirm the modeled value of the mean free path length of DOPE for Brownian and anomalous diffusion. Although the step length and time give the proper values of diffusion coefficient, the DOPE speed calculated as their quotient is several orders of magnitude lower than the thermal speed. This is interpreted as a result of intermolecular interactions, as confirmed by lateral diffusion of other molecules in different membranes. The molecule step parameters are then utilized to analyze the problem of multiple visits in small compartments. The modeling of the diffusion exponent results in a smooth transition to normal diffusion on entering a large compartment, as observed in experiments.
Head bobbing and the body movement of little egrets ( Egretta garzetta) during walking.
Fujita, Masaki
2003-01-01
Although previous studies have indicated that head bobbing of birds is an optokinetic movement, head bobbing can also be controlled by some biomechanical constraints when it occurs during walking. In the present study, the head bobbing, center of gravity, and body movements of little egrets (Egretta garzetta) during walking were examined by determination of the position of the center of gravity using carcasses and by motion analysis of video films of wild egrets during walking. The results showed that the hold phase occurs while the center of gravity is over the supporting foot during the single support phase. In addition, the peak speed of neck extension was coincident with the peak speed of the center of gravity. These movements are similar to those of pigeons, and suggest the presence of biomechanical constraints on the pattern of head bobbing and body movements during walking.
Aalund, Peter K; Larsen, Kristian; Hansen, Torben B; Bandholm, Thomas
2013-02-01
To investigate which of the 2 muscle-impairment measures for the operated leg, normalized knee extension strength or leg press power, was most closely associated with performance-based and self-reported measures of function shortly after total knee arthroplasty (TKA). Cross-sectional, exploratory study. Laboratory at a regional hospital. Individuals (N=39) with an average age ± SD of 65.5±10.3 years, who all had unilateral TKA 28 days prior. None. The patients performed maximal isometric knee extensions and dynamic leg presses to determine their body-mass normalized knee extension strength and leg press power, respectively. The 10-meter fast speed walking- and 30-second chair stand tests were used to determine performance-based function, while the Western Ontario and McMaster Universities Osteoarthritis Index and Oxford Knee Scores were used to determine self-reported function. Normalized leg press power was more closely associated with both performance-based (r=.82, P<.001) and self-reported (r=.48, P=.002) measures of function compared with normalized knee extension strength (r=.51, P=.001 and r=.39, P=.015, respectively). Normalized leg press power was more closely associated with both performance-based and self-reported function early after TKA than normalized knee extension strength. It may be explained by the fact that performance-based measures of function are typically closed kinetic chain tasks, such as walking or rising from a chair, and self-reported measures of function typically include questions that address perceived difficulty with performing these same tasks. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Foot trajectory approximation using the pendulum model of walking.
Fang, Juan; Vuckovic, Aleksandra; Galen, Sujay; Conway, Bernard A; Hunt, Kenneth J
2014-01-01
Generating a natural foot trajectory is an important objective in robotic systems for rehabilitation of walking. Human walking has pendular properties, so the pendulum model of walking has been used in bipedal robots which produce rhythmic gait patterns. Whether natural foot trajectories can be produced by the pendulum model needs to be addressed as a first step towards applying the pendulum concept in gait orthosis design. This study investigated circle approximation of the foot trajectories, with focus on the geometry of the pendulum model of walking. Three able-bodied subjects walked overground at various speeds, and foot trajectories relative to the hip were analysed. Four circle approximation approaches were developed, and best-fit circle algorithms were derived to fit the trajectories of the ankle, heel and toe. The study confirmed that the ankle and heel trajectories during stance and the toe trajectory in both the stance and the swing phases during walking at various speeds could be well modelled by a rigid pendulum. All the pendulum models were centred around the hip with pendular lengths approximately equal to the segment distances from the hip. This observation provides a new approach for using the pendulum model of walking in gait orthosis design.
Use of mobility aids reduces attentional demand in challenging walking conditions.
Miyasike-daSilva, Veronica; Tung, James Y; Zabukovec, Jeanie R; McIlroy, William E
2013-02-01
While mobility aids (e.g., four-wheeled walkers) are designed to facilitate walking and prevent falls in individuals with gait and balance impairments, there is evidence indicating that walkers may increase attentional demands during walking. We propose that walkers may reduce attentional demands under conditions that challenge balance control. This study investigated the effect of walker use on walking performance and attentional demand under a challenged walking condition. Young healthy subjects walked along a straight pathway, or a narrow beam. Attentional demand was assessed with a concurrent voice reaction time (RT) task. Slower RTs, reduced gait speed, and increased number of missteps (>92% of all missteps) were observed during beam-walking. However, walker use reduced attentional demand (faster RTs) and was linked to improved walking performance (increased gait speed, reduced missteps). Data from two healthy older adult cases reveal similar trends. In conclusion, mobility aids can be beneficial by reducing attentional demands and increasing gait stability when balance is challenged. This finding has implications on the potential benefit of mobility aids for persons who rely on walkers to address balance impairments. Copyright © 2012 Elsevier B.V. All rights reserved.
Rábago, Christopher A.; Rylander, Jonathan H.; Dingwell, Jonathan B.; Wilken, Jason M.
2016-01-01
Background and Purpose Roughly 50% of individuals with lower limb amputation report a fear of falling and fall at least once a year. Perturbation-based gait training and the use of virtual environments have been shown independently to be effective at improving walking stability in patient populations. An intervention was developed combining the strengths of the 2 paradigms utilizing continuous, walking surface angle oscillations within a virtual environment. This case report describes walking function and mediolateral stability outcomes of an individual with a unilateral transfemoral amputation following a novel perturbation-based gait training intervention in a virtual environment. Case Description The patient was a 43-year-old male veteran who underwent a right transfemoral amputation 7+ years previously as a result of a traumatic blast injury. He used a microprocessor-controlled knee and an energy storage and return foot. Outcomes Following the intervention, multiple measures indicated improved function and stability, including faster self-selected walking speed and reduced functional stepping time, mean step width, and step width variability. These changes were seen during normal level walking and mediolateral visual field or platform perturbations. In addition, benefits were retained at least 5 weeks after the final training session. Discussion The perturbation-based gait training program in the virtual environment resulted in the patient's improved walking function and mediolateral stability. Although the patient had completed intensive rehabilitation following injury and was fully independent, the intervention still induced notable improvements to mediolateral stability. Thus, perturbation-based gait training in challenging simulated environments shows promise for improving walking stability and may be beneficial when integrated into a rehabilitation program. PMID:27277497
Theoretical analysis of evaporative cooling of classic heat stroke patients.
Alzeer, Abdulaziz H; Wissler, E H
2018-05-18
Heat stroke is a serious health concern globally, which is associated with high mortality. Newer treatments must be designed to improve outcomes. The aim of this study is to evaluate the effect of variations in ambient temperature and wind speed on the rate of cooling in a simulated heat stroke subject using the dynamic model of Wissler. We assume that a 60-year-old 70-kg female suffers classic heat stroke after walking fully exposed to the sun for 4 h while the ambient temperature is 40 °C, relative humidity is 20%, and wind speed is 2.5 m/s -1 . Her esophageal and skin temperatures are 41.9 and 40.7 °C at the time of collapse. Cooling is accomplished by misting with lukewarm water while exposed to forced airflow at a temperature of 20 to 40 °C and a velocity of 0.5 or 1 m/s -1 . Skin blood flow is assumed to be either normal, one-half of normal, or twice normal. At wind speed of 0.5 m/s -1 and normal skin blood flow, the air temperature decreased from 40 to 20 °C, increased cooling, and reduced time required to reach to a desired temperature of 38 °C. This relationship was also maintained in reduced blood flow states. Increasing wind speed to 1 m/s -1 increased cooling and reduced the time to reach optimal temperature both in normal and reduced skin blood flow states. In conclusion, evaporative cooling methods provide an effective method for cooling classic heat stroke patients. The maximum heat dissipation from the simulated model of Wissler was recorded when the entire body was misted with lukewarm water and applied forced air at 1 m/s at temperature of 20 °C.
Fukuoka, Yoshiyuki; Horiuchi, Masahiro
2017-01-01
Energy cost of transport per unit distance (CoT; J·kg-1·km-1) displays a U-shaped fashion in walking and a linear fashion in running as a function of gait speed (v; km·h-1). There exists an intersection between U-shaped and linear CoT-v relationships, being termed energetically optimal transition speed (EOTS; km·h-1). Combined effects of gradient and moderate normobaric hypoxia (15.0% O2) were investigated when walking and running at the EOTS in fifteen young males. The CoT values were determined at eight walking speeds (2.4–7.3 km·h-1) and four running speeds (7.3–9.4 km·h-1) on level and gradient slopes (±5%) at normoxia and hypoxia. Since an alteration of tibialis anterior (TA) activity has been known as a trigger for gait transition, electromyogram was recorded from TA and its antagonists (gastrocnemius medialis (GM) and gastrocnemius lateralis (GL)) for about 30 steps during walking and running corresponding to the individual EOTS in each experimental condition. Mean power frequency (MPF; Hz) of each muscle was quantified to evaluate alterations of muscle fiber recruitment pattern. The EOTS was not significantly different between normoxia and hypoxia on any slopes (ranging from 7.412 to 7.679 km·h-1 at normoxia and 7.516 to 7.678 km·h-1 at hypoxia) due to upward shifts (enhanced metabolic rate) of both U-shaped and linear CoT-v relationships at hypoxia. GM, but not GL, activated more when switching from walking to running on level and gentle downhill slopes. Significant decreases in the muscular activity and/or MPF were observed only in the TA when switching the gait pattern. Taken together, the EOTS was not slowed by moderate hypoxia in the population of this study. Muscular activities of lower leg extremities and those muscle fiber recruitment patterns are dependent on the gradient when walking and running at the EOTS. PMID:28301525
Ustun, N; Erol, O; Ozcakar, L; Ceceli, E; Ciner, O Akar; Yorgancioglu, Z R
2013-01-01
Sensitive muscle strength tests are needed to measure muscle strength in the diagnosis and management of sciatica patients. The aim of this study was to assess the isokinetic muscle strength in sciatica patients' and control subjects' ankles that exhibited normal ankle muscle strength when measured clinically. Forty-six patients with L5 and/or S1 nerve compression, and whose age, sex, weight, and height matched 36 healthy volunteers, were recruited to the study. Heel-walking, toe-walking, and manual muscle testing were used to perform ankle dorsiflexion and plantar flexion strengths in clinical examination. Patients with normal ankle dorsiflexion and plantar flexion strengths assessed by manual muscle testing and heel-and toe-walking tests were included in the study. Bilateral isokinetic (concentric/concentric) ankle plantar-flexion-dorsiflexion measurements of the patients and controls were performed within the protocol of 30°/sec (5 repetitions). Peak torque and peak torque/body weight were obtained for each ankle motion of the involved limb at 30°/s speed. L5 and/or S1 nerve compression was evident in 46 patients (76 injured limbs). Mean disease duration was two years. The plantar flexion muscle strength of the patients was found to be lower than that of the controls (p=0.036). The dorsiflexion muscle strength of the patients was found to be the same as that of the controls (p=0.211). Isokinetic testing is superior to clinical muscle testing when evaluating ankle plantar flexion torque in sciatica patients. Therefore, isokinetic muscle testing may be helpful when deciding whether to place a patient into a focused rehabilitation program.
Gait Implications of Visual Field Damage from Glaucoma.
Mihailovic, Aleksandra; Swenor, Bonnielin K; Friedman, David S; West, Sheila K; Gitlin, Laura N; Ramulu, Pradeep Y
2017-06-01
To evaluate fall-relevant gait features in older glaucoma patients. The GAITRite Electronic Walkway was used to define fall-related gait parameters in 239 patients with suspected or manifest glaucoma under normal usual-pace walking conditions and while carrying a cup or tray. Multiple linear regression models assessed the association between gait parameters and integrated visual field (IVF) sensitivity after controlling for age, race, sex, medications, and comorbid illness. Under normal walking conditions, worse IVF sensitivity was associated with a wider base of support (β = 0.60 cm/5 dB IVF sensitivity decrement, 95% confidence interval [CI] = 0.12-1.09, P = 0.016). Worse IVF sensitivity was not associated with slower gait speed, shorter step or stride length, or greater left-right drift under normal walking conditions ( P > 0.05 for all), but was during cup and/or tray carrying conditions ( P < 0.05 for all). Worse IVF sensitivity was positively associated with greater stride-to-stride variability in step length, stride length, and stride velocity ( P < 0.005 for all). Inferior and superior IVF sensitivity demonstrated associations with each of the above gait parameters as well, though these associations were consistently similar to, or weaker than, the associations noted for overall IVF sensitivity. Glaucoma severity was associated with several gait parameters predictive of higher fall risk in prior studies, particularly measures of stride-to-stride variability. Gait may be useful in identifying glaucoma patients at higher risk of falls, and in designing and testing interventions to prevent falls in this high-risk group. These findings could serve to inform the development of the interventions for falls prevention in glaucoma patients.