Sample records for normal-coordinate structural decomposition

  1. Structural characterization of synthetic and protein-bound porphyrins in terms of the lowest-frequency normal coordinates of the macrocycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jentzen, W.; Song, X.Z.; Shelnutt, J.A.

    1997-02-27

    The X-ray crystal structures of synthetic and protein-bound metalloporphyrins are analyzed using a new normal structural decomposition method for classifying and quantifying their out-of-plane and in-plane distortions. These distortions are characterized in terms of equivalent displacements along the normal coordinates of the D{sub 4h}-symmetric porphyrin macrocycle (normal deformations). It is shown that the macrocyclic structure is, even in highly distorted porphyrins, accurately represented by displacements along only the lowest-frequency normal coordinates. Accordingly, the macrocyclic structure obtained from just the out-of-plane normal deformations of the saddling (sad, B{sub 2u})-, ruffling (ruf, B{sub 1u})-, doming (dom, A{sub 2u})-, waving [wav(x), wav(y); E{submore » g}]-, and propellering (pro, A{sub 1u})-type essentially simulates the out-of-plane distortion of the X-ray crystal structure. Similarly, the observed in-plane distortions are decomposed into in-plane normal deformations corresponding to the lowest-frequency vibrational modes including macrocycle stretching in the direction of the meso-carbon atoms (meso-str, B{sub 2g}), stretching in the direction of the nitrogen atoms (N-str, B{sub 1g}), x and y pyrrole translations [trn(x), trn(y); E{sub u}], macrocycle breathing (bre, A{sub 1g}), and pyrrole rotation (rot, A{sub 2g}). 71 refs., 9 figs., 4 tabs.« less

  2. Synthesis, crystal structure and catalytic effect on thermal decomposition of RDX and AP: An energetic coordination polymer [Pb{sub 2}(C{sub 5}H{sub 3}N{sub 5}O{sub 5}){sub 2}(NMP)·NMP]{sub n}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jin-jian; Yancheng Teachers College, Yancheng 224002; Liu, Zu-Liang, E-mail: liuzl@mail.njust.edu.cn

    2013-04-15

    An energetic lead(II) coordination polymer based on the ligand ANPyO has been synthesized and its crystal structure has been got. The polymer was characterized by FT-IR spectroscopy, elemental analysis, DSC and TG-DTG technologies. Thermal analysis shows that there are one endothermic process and two exothermic decomposition stages in the temperature range of 50–600 °C with final residues 57.09%. The non-isothermal kinetic has also been studied on the main exothermic decomposition using the Kissinger's and Ozawa–Doyle's methods, the apparent activation energy is calculated as 195.2 KJ/mol. Furthermore, DSC measurements show that the polymer has significant catalytic effect on the thermal decompositionmore » of ammonium perchlorate. - Graphical abstract: An energetic lead(II) coordination polymer of ANPyO has been synthesized, structurally characterized and properties tested. Highlights: ► We have synthesized and characterized an energetic lead(II) coordination polymer. ► We have measured its molecular structure and thermal decomposition. ► It has significant catalytic effect on thermal decomposition of AP.« less

  3. The Endogenous Calcium Ions of Horseradish Peroxidase C Are Required to Maintain the Functional Nonplanarity of the Heme

    PubMed Central

    Laberge, Monique; Huang, Qing; Schweitzer-Stenner, Reinhard; Fidy, Judit

    2003-01-01

    Horseradish peroxidase C (HRPC) binds 2 mol calcium per mol of enzyme with binding sites located distal and proximal to the heme group. The effect of calcium depletion on the conformation of the heme was investigated by combining polarized resonance Raman dispersion spectroscopy with normal coordinate structural decomposition analysis of the hemes extracted from models of Ca2+-bound and Ca2+-depleted HRPC generated and equilibrated using molecular dynamics simulations. Results show that calcium removal causes reorientation of heme pocket residues. We propose that these rearrangements significantly affect both the in-plane and out-of-plane deformations of the heme. Analysis of the experimental depolarization ratios are clearly consistent with increased B1g- and B2g-type distortions in the Ca2+-depleted species while the normal coordinate structural decomposition results are indicative of increased planarity for the heme of Ca2+-depleted HRPC and of significant changes in the relative contributions of three of the six lowest frequency deformations. Most noteworthy is the decrease of the strong saddling deformation that is typical of all peroxidases, and an increase in ruffling. Our results confirm previous work proposing that calcium is required to maintain the structural integrity of the heme in that we show that the preferred geometry for catalysis is lost upon calcium depletion. PMID:12668462

  4. All substituted nickel porphyrins are highly nonplanar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shelnutt, J.A.; Song, X.Z.; Jentzen, W.

    1996-12-31

    X-ray crystallographic and resonance Raman studies show that only un-substituted Ni porphine is planar in solution; all substituted Ni porphyrin derivatives either are nonplanar or exist as a mixture of planar and nonplanar conformers in solution. Recent modifications in a molecular mechanics force field improve the ability the MM calculations to predict the X-ray structures of porphyrins and also the planar-nonplanar conformational equilibria in many cases. Calculations using the new force field suggests that all geoporphyrins will be highly nonplanar, especially those having meso substituents. The nonplanarity is expected to influence properties such as solubility and metallation/dematallation reactions. Further, amore » method of quantifying these nonplanar structures has been devised; any porphyrin structure can be decomposed into displacements along the out-of-plane normal coordinates. However, usually distortions along only the lowest-frequency normal modes of each symmetry type are required to adequately describe the structure. The lowest-frequency normal coordinates of b{sub lu}, a{sub 2u}, b{sub 2u}, and e{sub g} symmetries correspond to commonly observed symmetric distortions called ruffling (ruf), doming(dom), saddling (sad), and waving (wav(x), wav(y)). The application of this structural decomposition method to several problems including the influences of steric crowding and protein folding on porphyrin conformation will be described.« less

  5. Application of singular value decomposition to structural dynamics systems with constraints

    NASA Technical Reports Server (NTRS)

    Juang, J.-N.; Pinson, L. D.

    1985-01-01

    Singular value decomposition is used to construct a coordinate transformation for a linear dynamic system subject to linear, homogeneous constraint equations. The method is compared with two commonly used methods, namely classical Gaussian elimination and Walton-Steeves approach. Although the classical method requires fewer numerical operations, the singular value decomposition method is more accurate and convenient in eliminating the dependent coordinates. Numerical examples are presented to demonstrate the application of the method.

  6. Synthesis and characterization of an energetic compound Cu(Mtta)2(NO3)2 and effect on thermal decomposition of ammonium perchlorate.

    PubMed

    Yang, Qi; Chen, Sanping; Xie, Gang; Gao, Shengli

    2011-12-15

    An energetic coordination compound Cu(Mtta)(2)(NO(3))(2) has been synthesized by using 1-methyltetrazole (Mtta) as ligand and its structure has been characterized by X-ray single crystal diffraction. The central copper (II) cation was coordinated by four O atoms from two Mtta ligands and two N atoms from two NO(3)(-) anions to form a six-coordinated and distorted octahedral structure. 2D superamolecular layer structure was formed by the extensive intermolecular hydrogen bonds between Mtta ligands and NO(3)(-) anions. Thermal decomposition process of the compound was predicted based on DSC and TG-DTG analyses results. The kinetic parameters of the first exothermic process of the compound were studied by the Kissinger's and Ozawa-Doyle's methods. Sensitivity tests revealed that the compound was insensitive to mechanical stimuli. In addition, compound was explored as additive to promote the thermal decomposition of ammonium perchlorate (AP) by differential scanning calorimetry. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Structural optimization by multilevel decomposition

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.; James, B.; Dovi, A.

    1983-01-01

    A method is described for decomposing an optimization problem into a set of subproblems and a coordination problem which preserves coupling between the subproblems. The method is introduced as a special case of multilevel, multidisciplinary system optimization and its algorithm is fully described for two level optimization for structures assembled of finite elements of arbitrary type. Numerical results are given for an example of a framework to show that the decomposition method converges and yields results comparable to those obtained without decomposition. It is pointed out that optimization by decomposition should reduce the design time by allowing groups of engineers, using different computers to work concurrently on the same large problem.

  8. A structural design decomposition method utilizing substructuring

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J.

    1994-01-01

    A new method of design decomposition for structural analysis and optimization is described. For this method, the structure is divided into substructures where each substructure has its structural response described by a structural-response subproblem, and its structural sizing determined from a structural-sizing subproblem. The structural responses of substructures that have rigid body modes when separated from the remainder of the structure are further decomposed into displacements that have no rigid body components, and a set of rigid body modes. The structural-response subproblems are linked together through forces determined within a structural-sizing coordination subproblem which also determines the magnitude of any rigid body displacements. Structural-sizing subproblems having constraints local to the substructures are linked together through penalty terms that are determined by a structural-sizing coordination subproblem. All the substructure structural-response subproblems are totally decoupled from each other, as are all the substructure structural-sizing subproblems, thus there is significant potential for use of parallel solution methods for these subproblems.

  9. Axial coordination and conformational heterogeneity of nickel(II) tetraphenylprophyrin complexes with nitrogenous bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, S.L.; Song, X.Z.; Ma, J.G.

    1998-08-24

    Axial ligation of nickel(II) 5,10,15,20-tetraphenylporphyrin (NiTPP) with pyrrolidine or piperidine has been investigated using X-ray crystallography, UV-visible spectroscopy, resonance Raman spectroscopy, and molecular mechanics (MM) calculations. Distinct v{sub 4} Raman lines are found for the 4-, 5-, and 6-coordinate species of NiTPP. The equilibrium constants for addition of the first and second pyrrolidine axial ligands are 1.1 and 3.8 M{sup {minus}1}, respectively. The differences in the calculated energies of the conformers having different ligand rotational angles are small so they may coexist in solution. Because of the similarity in macrocyclic structural parameters of these conformers and the free rotation ofmore » the axial ligands, narrow and symmetric v{sub 2} and v{sub 8} Raman lines are observed. Nonetheless, the normal-coordinate structural-decomposition analysis of the nonplanar distortions of the calculated structures and the crystal structure of the bis(piperidine) complex reveals a relationship between the orientations of axial ligand(s) and the macrocyclic distortions. For the 5-coordinate complex with the plane of the axial ligand bisecting the Ni-N{sub pyrrole} bonds, a primarily ruffled deformation results. With the ligand plane eclipsing the Ni-N{sub pyrrole} bonds, a mainly saddled deformation occurs. With the addition of the second axial ligand, the small doming of the 5-coordinate complexes disappears, and ruffling or saddling deformations change depending on the relative orientation of the two axial ligands. The crystal structure of the NiTPP bis(piperidine) complex shows a macrocycle distortion composed of wav(x) and wav(y) symmetric deformations, but no ruffling, saddling, or doming. The difference in the calculated and observed distortions results partly from the phenyl group orientation imposed by crystal packing forces. MM calculations predict three stable conformers (ruf, sad, and planar) for 4-coordinate NiTPP, and resonance Raman evidence for these conformers was given previously.« less

  10. On the Structure Sensitivity of Formic Acid Decomposition on Cu Catalysts

    DOE PAGES

    Li, Sha; Scaranto, Jessica; Mavrikakis, Manos

    2016-08-03

    Catalytic decomposition of formic acid (HCOOH) has attracted substantial attention since HCOOH is a major by-product in biomass reforming, a promising hydrogen carrier, and also a potential low temperature fuel cell feed. Despite the abundance of experimental studies for vapor-phase HCOOH decomposition on Cu catalysts, the reaction mechanism and its structure sensitivity is still under debate. In this work, self-consistent, periodic density functional theory calculations were performed on three model surfaces of copper—Cu(111), Cu(100) and Cu(211), and both the HCOO (formate)-mediated and COOH (carboxyl)-mediated pathways were investigated for HCOOH decomposition. The energetics of both pathways suggest that the HCOO-mediated routemore » is more favorable than the COOH-mediated route on all three surfaces, and that HCOOH decomposition proceeds through two consecutive dehydrogenation steps via the HCOO intermediate followed by the recombinative desorption of H 2. On all three surfaces, HCOO dehydrogenation is the likely rate determining step since it has the highest transition state energy and also the highest activation energy among the three catalytic steps in the HCOO pathway. The reaction is structure sensitive on Cu catalysts since the examined three Cu facets have dramatically different binding strengths for the key intermediate HCOO and varied barriers for the likely rate determining step—HCOO dehydrogenation. Cu(100) and Cu(211) bind HCOO much more strongly than Cu(111), and they are also characterized by potential energy surfaces that are lower in energy than that for the Cu(111) facet. Coadsorbed HCOO and H represents the most stable state along the reaction coordinate, indicating that, under reaction conditions, there might be a substantial surface coverage of the HCOO intermediate, especially at under-coordinated step, corner or defect sites. Therefore, under reaction conditions, HCOOH decomposition is predicted to occur most readily on the terrace sites of Cu nanoparticles. Finally, as a result, we hereby present an example of a fundamentally structure-sensitive reaction, which may present itself as structure-insensitive in typical varied particle-size experiments.« less

  11. A three dimensional point cloud registration method based on rotation matrix eigenvalue

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Zhou, Xiang; Fei, Zixuan; Gao, Xiaofei; Jin, Rui

    2017-09-01

    We usually need to measure an object at multiple angles in the traditional optical three-dimensional measurement method, due to the reasons for the block, and then use point cloud registration methods to obtain a complete threedimensional shape of the object. The point cloud registration based on a turntable is essential to calculate the coordinate transformation matrix between the camera coordinate system and the turntable coordinate system. We usually calculate the transformation matrix by fitting the rotation center and the rotation axis normal of the turntable in the traditional method, which is limited by measuring the field of view. The range of exact feature points used for fitting the rotation center and the rotation axis normal is approximately distributed within an arc less than 120 degrees, resulting in a low fit accuracy. In this paper, we proposes a better method, based on the invariant eigenvalue principle of rotation matrix in the turntable coordinate system and the coordinate transformation matrix of the corresponding coordinate points. First of all, we control the rotation angle of the calibration plate with the turntable to calibrate the coordinate transformation matrix of the corresponding coordinate points by using the least squares method. And then we use the feature decomposition to calculate the coordinate transformation matrix of the camera coordinate system and the turntable coordinate system. Compared with the traditional previous method, it has a higher accuracy, better robustness and it is not affected by the camera field of view. In this method, the coincidence error of the corresponding points on the calibration plate after registration is less than 0.1mm.

  12. Hierarchical coordinate systems for understanding complexity and its evolution, with applications to genetic regulatory networks.

    PubMed

    Egri-Nagy, Attila; Nehaniv, Chrystopher L

    2008-01-01

    Beyond complexity measures, sometimes it is worthwhile in addition to investigate how complexity changes structurally, especially in artificial systems where we have complete knowledge about the evolutionary process. Hierarchical decomposition is a useful way of assessing structural complexity changes of organisms modeled as automata, and we show how recently developed computational tools can be used for this purpose, by computing holonomy decompositions and holonomy complexity. To gain insight into the evolution of complexity, we investigate the smoothness of the landscape structure of complexity under minimal transitions. As a proof of concept, we illustrate how the hierarchical complexity analysis reveals symmetries and irreversible structure in biological networks by applying the methods to the lac operon mechanism in the genetic regulatory network of Escherichia coli.

  13. Brain extraction from normal and pathological images: A joint PCA/Image-Reconstruction approach.

    PubMed

    Han, Xu; Kwitt, Roland; Aylward, Stephen; Bakas, Spyridon; Menze, Bjoern; Asturias, Alexander; Vespa, Paul; Van Horn, John; Niethammer, Marc

    2018-08-01

    Brain extraction from 3D medical images is a common pre-processing step. A variety of approaches exist, but they are frequently only designed to perform brain extraction from images without strong pathologies. Extracting the brain from images exhibiting strong pathologies, for example, the presence of a brain tumor or of a traumatic brain injury (TBI), is challenging. In such cases, tissue appearance may substantially deviate from normal tissue appearance and hence violates algorithmic assumptions for standard approaches to brain extraction; consequently, the brain may not be correctly extracted. This paper proposes a brain extraction approach which can explicitly account for pathologies by jointly modeling normal tissue appearance and pathologies. Specifically, our model uses a three-part image decomposition: (1) normal tissue appearance is captured by principal component analysis (PCA), (2) pathologies are captured via a total variation term, and (3) the skull and surrounding tissue is captured by a sparsity term. Due to its convexity, the resulting decomposition model allows for efficient optimization. Decomposition and image registration steps are alternated to allow statistical modeling of normal tissue appearance in a fixed atlas coordinate system. As a beneficial side effect, the decomposition model allows for the identification of potentially pathological areas and the reconstruction of a quasi-normal image in atlas space. We demonstrate the effectiveness of our approach on four datasets: the publicly available IBSR and LPBA40 datasets which show normal image appearance, the BRATS dataset containing images with brain tumors, and a dataset containing clinical TBI images. We compare the performance with other popular brain extraction models: ROBEX, BEaST, MASS, BET, BSE and a recently proposed deep learning approach. Our model performs better than these competing approaches on all four datasets. Specifically, our model achieves the best median (97.11) and mean (96.88) Dice scores over all datasets. The two best performing competitors, ROBEX and MASS, achieve scores of 96.23/95.62 and 96.67/94.25 respectively. Hence, our approach is an effective method for high quality brain extraction for a wide variety of images. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Structural investigation of oxovanadium(IV) Schiff base complexes: X-ray crystallography, electrochemistry and kinetic of thermal decomposition.

    PubMed

    Asadi, Mozaffar; Asadi, Zahra; Savaripoor, Nooshin; Dusek, Michal; Eigner, Vaclav; Shorkaei, Mohammad Ranjkesh; Sedaghat, Moslem

    2015-02-05

    A series of new VO(IV) complexes of tetradentate N2O2 Schiff base ligands (L(1)-L(4)), were synthesized and characterized by FT-IR, UV-vis and elemental analysis. The structure of the complex VOL(1)⋅DMF was also investigated by X-ray crystallography which revealed a vanadyl center with distorted octahedral coordination where the 2-aza and 2-oxo coordinating sites of the ligand were perpendicular to the "-yl" oxygen. The electrochemical properties of the vanadyl complexes were investigated by cyclic voltammetry. A good correlation was observed between the oxidation potentials and the electron withdrawing character of the substituents on the Schiff base ligands, showing the following trend: MeO5-H>5-Br>5-Cl. Furthermore, the kinetic parameters of thermal decomposition were calculated by using the Coats-Redfern equation. According to the Coats-Redfern plots the kinetics of thermal decomposition of studied complexes is of the first-order in all stages, the free energy of activation for each following stage is larger than the previous one and the complexes have good thermal stability. The preparation of VOL(1)⋅DMF yielded also another compound, one kind of vanadium oxide [VO]X, with different habitus of crystals, (platelet instead of prisma) and without L(1) ligand, consisting of a V10O28 cage, diaminium moiety and dimethylamonium as a counter ions. Because its crystal structure was also new, we reported it along with the targeted complex. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Sponge-like silver obtained by decomposition of silver nitrate hexamethylenetetramine complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afanasiev, Pavel, E-mail: pavel.afanasiev@ircelyon.univ-lyon.fr

    2016-07-15

    Silver nitrate hexamethylenetetramine [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] coordination compound has been prepared via aqueous route and characterized by chemical analysis, XRD and electron microscopy. Decomposition of [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] under hydrogen and under inert has been studied by thermal analysis and mass spectrometry. Thermal decomposition of [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] proceeds in the range 200–250 °C as a self-propagating rapid redox process accompanied with the release of multiple gases. The decomposition leads to formation of sponge-like silver having hierarchical open pore system with pore size spanning from 10 µm to 10 nm. The as-obtained silver spongesmore » exhibited favorable activity toward H{sub 2}O{sub 2} electrochemical reduction, making them potentially interesting as non-enzyme hydrogen peroxide sensors. - Graphical abstract: Thermal decomposition of silver nitrate hexamethylenetetramine coordination compound [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] leads to sponge like silver that possesses open porous structure and demonstrates interesting properties as an electrochemical hydrogen peroxide sensor. Display Omitted - Highlights: • [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] orthorhombic phase prepared and characterized. • Decomposition of [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] leads to metallic silver sponge with opened porosity. • Ag sponge showed promising properties as a material for hydrogen peroxide sensors.« less

  16. Determination of the oxidative stability of perfluoropolyalkyl ethers and correlation with chemical structure

    NASA Technical Reports Server (NTRS)

    Helmick, Larry S.; Jones, William R., Jr.

    1992-01-01

    The oxidative stabilities of several perfluoropolyalkyl ethers (PFPAE) with related chemical structures were determined by thermal gravimetric analysis and correlated with their chemical structures. These results show that oxidative stability increases as the number of difluoroformal groups decreases and as trifluoromethyl substituents are added. They are also consistent with a recently proposed intramolecular disproportionation reaction mechanism involving coordination of successive ether oxygens to a Lewis acid. Since polytetrafluoroethylene contains no oxygen, it provides an indication of the upper limit to oxidative stability of PFPAE fluids. These results also show that oxidative decomposition of PFPAE fluids requires the presence of an active metal as well as air. Consequently, it may be possible to minimize decomposition and thus improve oxidative stability by passivating reactive metal surfaces.

  17. Grouping individual independent BOLD effects: a new way to ICA group analysis

    NASA Astrophysics Data System (ADS)

    Duann, Jeng-Ren; Jung, Tzyy-Ping; Sejnowski, Terrence J.; Makeig, Scott

    2009-04-01

    A new group analysis method to summarize the task-related BOLD responses based on independent component analysis (ICA) was presented. As opposite to the previously proposed group ICA (gICA) method, which first combined multi-subject fMRI data in either temporal or spatial domain and applied ICA decomposition only once to the combined fMRI data to extract the task-related BOLD effects, the method presented here applied ICA decomposition to the individual subjects' fMRI data to first find the independent BOLD effects specifically for each individual subject. Then, the task-related independent BOLD component was selected among the resulting independent components from the single-subject ICA decomposition and hence grouped across subjects to derive the group inference. In this new ICA group analysis (ICAga) method, one does not need to assume that the task-related BOLD time courses are identical across brain areas and subjects as used in the grand ICA decomposition on the spatially concatenated fMRI data. Neither does one need to assume that after spatial normalization, the voxels at the same coordinates represent exactly the same functional or structural brain anatomies across different subjects. These two assumptions have been problematic given the recent BOLD activation evidences. Further, since the independent BOLD effects were obtained from each individual subject, the ICAga method can better account for the individual differences in the task-related BOLD effects. Unlike the gICA approach whereby the task-related BOLD effects could only be accounted for by a single unified BOLD model across multiple subjects. As a result, the newly proposed method, ICAga, was able to better fit the task-related BOLD effects at individual level and thus allow grouping more appropriate multisubject BOLD effects in the group analysis.

  18. Synthesis and crystal structure of the coordination compound of pyridoxine with manganese sulfate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furmanova, N. G., E-mail: furm@ns.crys.ras.ru; Verin, I. A.; Shyityeva, N.

    2011-11-15

    The reaction of pyridoxine with manganese sulfate in an aqueous solution gave the coordination compound MnSO{sub 4} {center_dot} 2C{sub 8}H{sub 11}O{sub 3}N {center_dot} 2H{sub 2}O (I). The structure of I was determined from single-crystal X-ray diffraction data. In the centrosymmetric complex (sp. gr. P1-bar, Z = 1), the Mn atom is coordinated by two pyridoxine molecules and two water molecules, thus adopting an octahedral coordination. The sulfate anion is also at a center of symmetry and, consequently, is disordered. The pyridoxine molecules are coordinated to the metal atom through the oxygen atoms of the deprotonated hydroxyl group and the CH{submore » 2}OH group that retains the hydrogen atom. The nitrogen atom is protonated in such a way that the heterocycle assumes a pyridinium character. The crystal structure also contains six water molecules of crystallization. A thermogravimetric study showed that the decomposition of I occurs in several successive steps, such as dehydration, the combustion of organic ligands, and the formation of an inorganic residue.« less

  19. Growth, structural, optical, thermal and dielectric properties of lanthanum chloride—thiourea—L tartaric acid coordinated complex

    NASA Astrophysics Data System (ADS)

    Slathia, Goldy; Bamzai, K. K.

    2017-11-01

    Lanthanum chloride—thiourea—l tartaric acid coordinated complex was grown in the form of single crystal by slow evaporation of supersaturated solutions at room temperature. This coordinated complex crystallizes in orthorhombic crystal system having space group P nma. The crystallinity and purity was tested by powder x-ray diffraction. Fourier transform infra red and Raman spectroscopy analysis provide the evidences on structure and mode of coordination. The scanning electron microscopy (SEM) analysis shows the morphology evolution as brought by the increase in composition of lanthanum chloride. The band transitions due to C=O and C=S chromophores remain active in grown complexes and are recorded in the UV-vis optical spectrum. The thermal effects such as dehydration, melting and decomposition were observed by the thermogravimetric and differential thermo analytical (TGA/DTA) analysis. Electrical properties were studied by dielectric analysis in frequency range 100-30 MHz at various temperatures. Increase in values of dielectric constant was observed with change in lanthanum concentration in the coordinated complex.

  20. Laser augmented decomposition. II. D/sub 3/BPF/sub 3/. [Deuterium effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, K.R.; Bauer, S.H.

    1976-06-17

    The study of the accelerated decomposition of H/sub 3/BPF/sub 3/ induced by laser radiation (930-950 cm/sup -1/ was extended to the fully deuterated species. While in all essential respects the kinetics of the ir photolysis for the two compounds are identical, the few differences which were uncovered proved crucial in pointing to interesting features of the mechanism. These verified predictions were based on a normal mode analysis for the distribution of potential energy among the internal coordinates. For the laser augmented decomposition, E/sub a//sup L/ = 3.5 +- 1 kcal/mol, compared with E/sub a//sup th/ = 29.3 kcal/mol for themore » thermal process. The quantum efficiency is low, approximately 4 x 10/sup 4/ photons/molecule decomposed. The rates of decomposition depend on the isotopic content and are sensitively dependent on the frequency of the irradiating line. For example, with P(24) large fractionation ratios were found for D/sub 3/BPF/sub 3/ vs. H/sub 3/BPF/sub 3/, and small differences for D/sub 3//sup 11/BPF/sub 3/ vs. D/sub 3//sup 10/BPF/sub 3/. The levels of decomposition induced by the sequential three-photon absorption have been semiquantitatively accounted for.« less

  1. Reactivity of fluoroalkanes in reactions of coordinated molecular decomposition

    NASA Astrophysics Data System (ADS)

    Pokidova, T. S.; Denisov, E. T.

    2017-08-01

    Experimental results on the coordinated molecular decomposition of RF fluoroalkanes to olefin and HF are analyzed using the model of intersecting parabolas (IPM). The kinetic parameters are calculated to allow estimates of the activation energy ( E) and rate constant ( k) of these reactions, based on enthalpy and IPM algorithms. Parameters E and k are found for the first time for eight RF decomposition reactions. The factors that affect activation energy E of RF decomposition (the enthalpy of the reaction, the electronegativity of the atoms of reaction centers, and the dipole-dipole interaction of polar groups) are determined. The values of E and k for reverse reactions of addition are estimated.

  2. High-energy coordination polymers (CPs) exhibiting good catalytic effect on the thermal decomposition of ammonium dinitramide

    NASA Astrophysics Data System (ADS)

    Li, Xin; Han, Jing; Zhang, Sheng; Zhai, Lianjie; Wang, Bozhou; Yang, Qi; Wei, Qing; Xie, Gang; Chen, Sanping; Gao, Shengli

    2017-09-01

    High-energy coordination polymers (CPs) not only exhibit good energetic performances but also have a good catalytic effect on the thermal decomposition of energetic materials. In this contribution, two high-energy CPs Cu2(DNBT)2(CH3OH)(H2O)3·3H2O (1) and [Cu3(DDT)2(H2O)2]n (2) (H2DNBT = 3,3‧-dinitro-5,5‧-bis(1H-1,2,4-triazole and H3DDT = 4,5-bis(1H-tetrazol-5-yl)-2H-1,2,3-triazole) were synthesized and structurally characterized. Furthermore, 1 was thermos-dehydrated to produce Cu2(DNBT)2(CH3OH)(H2O)3 (1a). The thermal decomposition kinetics of 1, 1a and 2 were studied by Kissinger's method and Ozawa's method. Thermal analyses and sensitivity tests show that all compounds exhibit high thermal stability and low sensitivity for external stimuli. Meanwhile, all compounds have large positive enthalpy of formation, which are calculated as being (1067.67 ± 2.62) kJ mol-1 (1), (1464.12 ± 3.12) kJ mol-1 (1a) and (3877.82 ± 2.75) kJ mol-1 (2), respectively. The catalytic effects of 1a and 2 on the thermal decomposition of ammonium dinitramide (ADN) were also investigated.

  3. Wind Farm Flow Modeling using an Input-Output Reduced-Order Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annoni, Jennifer; Gebraad, Pieter; Seiler, Peter

    Wind turbines in a wind farm operate individually to maximize their own power regardless of the impact of aerodynamic interactions on neighboring turbines. There is the potential to increase power and reduce overall structural loads by properly coordinating turbines. To perform control design and analysis, a model needs to be of low computational cost, but retains the necessary dynamics seen in high-fidelity models. The objective of this work is to obtain a reduced-order model that represents the full-order flow computed using a high-fidelity model. A variety of methods, including proper orthogonal decomposition and dynamic mode decomposition, can be used tomore » extract the dominant flow structures and obtain a reduced-order model. In this paper, we combine proper orthogonal decomposition with a system identification technique to produce an input-output reduced-order model. This technique is used to construct a reduced-order model of the flow within a two-turbine array computed using a large-eddy simulation.« less

  4. Pressure-induced Structural Transformations in LanthanideTitanates: La2TiO5 and Nd2TiO5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    F Zhang; J Wang; M Lang

    The structure of orthorhombic rare earth titanates of La{sub 2}TiO{sub 5} and Nd{sub 2}TiO{sub 5}, where Ti cations are in five-fold coordination with oxygen, has been studied at high pressures by X-ray diffraction (XRD), Raman scattering measurements, and quantum mechanical calculations. Both XRD and Raman results indicated two pressure-induced phase transitions during the process. An orthorhombic super cell (a x b x 2c) formed at a pressure between 6 and 10 GPa, and then transformed to a hexagonal high-pressure phase accompanied by partial decomposition. The hexagonal high-pressure phase is quenchable. Detailed structural analysis indicated that the five-coordinated TiO{sub 5} polyhedramore » remain during the formation of super cell, but the orthorhombic-to-hexagonal phase transition at high pressures is a reconstructive process, and the five-fold Ti-O coordination increased to more than 6. This phase transition sequence was verified by quantum mechanical calculations.« less

  5. Topological reaction coordinates to explore the structure of atomic clusters and organic molecule isomers from first principles

    NASA Astrophysics Data System (ADS)

    Pietrucci, Fabio; Andreoni, Wanda

    2011-03-01

    We introduce a simple reaction coordinate based on spectral graph theory which describes the topology of the network of chemical bonds around a given atom. We employ the reaction coordinate in combination with DFT-based first-principles metadynamics to systematically explore the possible structures of silicon and carbon clusters (including fullerene-like cages) for sizes of tens of atoms. From our extensive exploration we are able to estimate the fractal dimension of the configuration space, which both for silicon and carbon clusters turns out to be quite low. Using the same approach we simulate the interconversion among a large number of chemically relevant organic molecules which are isomers of the C4 H5 N formula unit, and we demonstrate the possibility of automatically exploring isomerisation, association, and decomposition reactions without prior knowledge of the products involved.

  6. Power System Decomposition for Practical Implementation of Bulk-Grid Voltage Control Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallem, Mallikarjuna R.; Vyakaranam, Bharat GNVSR; Holzer, Jesse T.

    Power system algorithms such as AC optimal power flow and coordinated volt/var control of the bulk power system are computationally intensive and become difficult to solve in operational time frames. The computational time required to run these algorithms increases exponentially as the size of the power system increases. The solution time for multiple subsystems is less than that for solving the entire system simultaneously, and the local nature of the voltage problem lends itself to such decomposition. This paper describes an algorithm that can be used to perform power system decomposition from the point of view of the voltage controlmore » problem. Our approach takes advantage of the dominant localized effect of voltage control and is based on clustering buses according to the electrical distances between them. One of the contributions of the paper is to use multidimensional scaling to compute n-dimensional Euclidean coordinates for each bus based on electrical distance to perform algorithms like K-means clustering. A simple coordinated reactive power control of photovoltaic inverters for voltage regulation is used to demonstrate the effectiveness of the proposed decomposition algorithm and its components. The proposed decomposition method is demonstrated on the IEEE 118-bus system.« less

  7. Vibrational spectra and normal coordinate analysis of diazepam, phenytoin and phenobarbitone

    NASA Astrophysics Data System (ADS)

    Gunasekaran, S.; Thilak Kumar, R.; Ponnusamy, S.

    2006-12-01

    Vibrational spectroscopy is an important tool for the structural investigation of the organic molecules. In the present investigation, a normal coordinate analysis has been carried out on some anti-epileptic drugs, viz. diazepam, phenytoin and phenobarbitone. Diazepam is a derivative of benzodiazepine, phenytoin is a derivative of hydanation and pheonobarbitone is a barbiturate. The infrared spectra of the compounds are recorded in the region 4000-400 cm -1 and Raman spectra are recorded in the region 3500-50 cm -1. From the structural point of view, diazepam, phenytoin and phenobarbitone have been assumed to C s point group. A systematic set of symmetry coordinates has been constructed for these compounds and Wilson's FG matrix method has been applied for the normal coordinate analysis using general quadratic valance force field. The potential energy distribution is also calculated to check the vibrational band assignments.

  8. Structure disordering and thermal decomposition of manganese oxalate dihydrate, MnC2O4·2H2O

    NASA Astrophysics Data System (ADS)

    Puzan, Anna N.; Baumer, Vyacheslav N.; Lisovytskiy, Dmytro V.; Mateychenko, Pavel V.

    2018-04-01

    It is found that the known regular structures of MnC2O4·2H2O (I) do not allow to refine the powder X-ray pattern of (I) properly using the Rietveld method. Implementation of order-disorder scheme [28] via the including of appropriate displacement vector improves the refinement results. Also it is found that in the case of (I) the similar improvement may be achieved using the data on two phases of (I) obtained as result of decomposition MnC2O4·3H2O single crystal in the mother solution after growth. Thermal decomposition of (I) produce the anhydrous γ-MnC2O4 (II) the structure of which is differ from the known α- and β-modifications of VIIIb transition metal oxalates. The solved ab initio from the powder pattern structure (II) (space group Pmna, a = 7.1333 (1), b = 5.8787 (1), c = 9.0186 (2) Å, V = 378.19 (1) Å3, Z = 4 and Dx = 2.511 Mg m-3) contains seven-coordinated Mn atoms with Mn-O distances of 2.110-2.358 Å, and is not close-packed. Thermal decomposition of (II) in air flows via forming of amorphous MnO, the heating of which up to 723 K is accompanied by oxidation of MnO to Mn2O3 and further recrystallization of the latter.

  9. Normalized Index of Synergy for Evaluating the Coordination of Motor Commands

    PubMed Central

    Togo, Shunta; Imamizu, Hiroshi

    2015-01-01

    Humans perform various motor tasks by coordinating the redundant motor elements in their bodies. The coordination of motor outputs is produced by motor commands, as well properties of the musculoskeletal system. The aim of this study was to dissociate the coordination of motor commands from motor outputs. First, we conducted simulation experiments where the total elbow torque was generated by a model of a simple human right and left elbow with redundant muscles. The results demonstrated that muscle tension with signal-dependent noise formed a coordinated structure of trial-to-trial variability of muscle tension. Therefore, the removal of signal-dependent noise effects was required to evaluate the coordination of motor commands. We proposed a method to evaluate the coordination of motor commands, which removed signal-dependent noise from the measured variability of muscle tension. We used uncontrolled manifold analysis to calculate a normalized index of synergy. Simulation experiments confirmed that the proposed method could appropriately represent the coordinated structure of the variability of motor commands. We also conducted experiments in which subjects performed the same task as in the simulation experiments. The normalized index of synergy revealed that the subjects coordinated their motor commands to achieve the task. Finally, the normalized index of synergy was applied to a motor learning task to determine the utility of the proposed method. We hypothesized that a large part of the change in the coordination of motor outputs through learning was because of changes in motor commands. In a motor learning task, subjects tracked a target trajectory of the total torque. The change in the coordination of muscle tension through learning was dominated by that of motor commands, which supported the hypothesis. We conclude that the normalized index of synergy can be used to evaluate the coordination of motor commands independently from the properties of the musculoskeletal system. PMID:26474043

  10. Computer simulation of formation and decomposition of Au13 nanoparticles

    NASA Astrophysics Data System (ADS)

    Stishenko, P.; Svalova, A.

    2017-08-01

    To study the Ostwald ripening process of Au13 nanoparticles a two-scale model is constructed: analytical approximation of average nanoparticle energy as function of nanoparticle size and structural motive, and the Monte Carlo model of 1000 particles ensemble. Simulation results show different behavior of particles of different structural motives. The change of the distributions of atom coordination numbers during the Ostwald ripening process was observed. The nanoparticles of the equal size and shape with the face-centered cubic structure of the largest sizes appeared to be the most stable.

  11. Syntheses and characterizations of two new energetic copper–amine-DNANT complexes and their effects on thermal decomposition of RDX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Qianqian; Xu, Kangzhen, E-mail: xukz@nwu.edu.cn; Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon

    Two novel copper complexes of dinitroacetonitrile (DNANT), Cu(NH{sub 3}){sub 4}(DNANT){sub 2} (1) and Cu(en){sub 2}(DNATN){sub 2} (2), have been synthesized for the first time through an unique reaction, and structurally characterized. The single-crystal X-ray structural analysis shows that the Cu{sup 2+} cations in the two complexes share a similar four-coordinated structure, which however does not directly involve the main energetic DNANT{sup −} anion. The differential scanning calorimetry (DSC) study reveals that the two complexes have higher thermal stability and lower sensitivity than the analogous FOX-7 complexes, and exhibit good catalytic action to the decomposition of RDX. - Graphical abstract: Cu(NH{submore » 3}){sub 4}(DNANT){sub 2} (1) and Cu(en){sub 2}(DNATN){sub 2} (2) have been first synthesized through an unique reaction. Cu{sup 2+} ion shares a similar four-coordinated structure in the two complexes. Display Omitted - Highlights: • A new reaction is unexpectedly found, and reaction process was discussed in this work. • Cu(NH{sub 3}){sub 4} (DNANT){sub 2}and Cu(en){sub 2}(DNATN){sub 2} were first synthesized through an unique reaction. • The structures and properties of the two complexes were discussed in detail, and they all present good application performances. • The adjacent amino-hydrazino group in AHDNE exhibits high reactivity. The work is another typical example for the reactivity.« less

  12. Sub-domain decomposition methods and computational controls for multibody dynamical systems. [of spacecraft structures

    NASA Technical Reports Server (NTRS)

    Menon, R. G.; Kurdila, A. J.

    1992-01-01

    This paper presents a concurrent methodology to simulate the dynamics of flexible multibody systems with a large number of degrees of freedom. A general class of open-loop structures is treated and a redundant coordinate formulation is adopted. A range space method is used in which the constraint forces are calculated using a preconditioned conjugate gradient method. By using a preconditioner motivated by the regular ordering of the directed graph of the structures, it is shown that the method is order N in the total number of coordinates of the system. The overall formulation has the advantage that it permits fine parallelization and does not rely on system topology to induce concurrency. It can be efficiently implemented on the present generation of parallel computers with a large number of processors. Validation of the method is presented via numerical simulations of space structures incorporating large number of flexible degrees of freedom.

  13. Study on Influencing Factors of Carbon Emissions from Energy Consumption of Shandong Province of China from 1995 to 2012

    PubMed Central

    Song, Jiekun; Song, Qing; Zhang, Dong; Lu, Youyou; Luan, Long

    2014-01-01

    Carbon emissions from energy consumption of Shandong province from 1995 to 2012 are calculated. Three zero-residual decomposition models (LMDI, MRCI and Shapley value models) are introduced for decomposing carbon emissions. Based on the results, Kendall coordination coefficient method is employed for testing their compatibility, and an optimal weighted combination decomposition model is constructed for improving the objectivity of decomposition. STIRPAT model is applied to evaluate the impact of each factor on carbon emissions. The results show that, using 1995 as the base year, the cumulative effects of population, per capita GDP, energy consumption intensity, and energy consumption structure of Shandong province in 2012 are positive, while the cumulative effect of industrial structure is negative. Per capita GDP is the largest driver of the increasing carbon emissions and has a great impact on carbon emissions; energy consumption intensity is a weak driver and has certain impact on carbon emissions; population plays a weak driving role, but it has the most significant impact on carbon emissions; energy consumption structure is a weak driver of the increasing carbon emissions and has a weak impact on carbon emissions; industrial structure has played a weak inhibitory role, and its impact on carbon emissions is great. PMID:24977216

  14. Studies in turbulence

    NASA Technical Reports Server (NTRS)

    Gatski, Thomas B. (Editor); Sarkar, Sutanu (Editor); Speziale, Charles G. (Editor)

    1992-01-01

    Various papers on turbulence are presented. Individual topics addressed include: modeling the dissipation rate in rotating turbulent flows, mapping closures for turbulent mixing and reaction, understanding turbulence in vortex dynamics, models for the structure and dynamics of near-wall turbulence, complexity of turbulence near a wall, proper orthogonal decomposition, propagating structures in wall-bounded turbulence flows. Also discussed are: constitutive relation in compressible turbulence, compressible turbulence and shock waves, direct simulation of compressible turbulence in a shear flow, structural genesis in wall-bounded turbulence flows, vortex lattice structure of turbulent shear slows, etiology of shear layer vortices, trilinear coordinates in fluid mechanics.

  15. Assembly of three new POM-based Ag(I) coordination polymers with antibacterial and photocatalytic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xin-Xin; Luo, Yu-Hui; Lu, Chen

    Three new silver coordination polymers, namely, {Ag_3(bpy)_6[PW_1_2O_4_0]} (1), {Ag_5(H_2biim)_2(Hbiim-NO_2)_2[PW_1_2O_4_0]} (2), {Ag_7(pytz)_4[PW_1_2O_4_0]} (3) (bpy=2,2′-bipyridine, H{sub 2}biim=2,2′-biimidazole, pytz=4-(1H-tetrazol-5-yl)pyridine), have been synthesized under hydrothermal condition. Compound 1 shows a 3D supramolecular framework based on 0D moieties. Compound 2 exhibits an attractive 2D biologic screw axis. Compound 3 displays a 3D structure, which consists of Ag(I)···π interactions, π···π stacking and weak Ag···Ag interactions. It is noteworthy that nitration happens to compound 2 during the hydrothermal condition, which is quite rare. Through contrasting the antibacterial activities of gram negative and gram positive bacteria, we find compounds 1–3 have better antibacterial property in gram negative bacteriamore » than gram positive bacteria. In addition, compounds 1–3 also exhibit efficiency of photocatalytic decomposition of organic dyes. Those compounds may be used as potential multifunctional materials in wastewater treatment, because they not only can kill bacteria but also degrade organic pollutants. - Highlights: • Three new silver coordination polymers have been synthesized under hydrothermal condition. • Due to different coordination modes of rigid N-donor ligands, structures of the title compounds vary from 0D to 3D frameworks. • It is noteworthy that nitration happens to compound 2 during the hydrothermal condition, which is quite rare. • In addition, these compounds exhibit efficiency of photocatalytic decomposition of dyes and antibacterial activities.« less

  16. Multi-disciplinary optimization of aeroservoelastic systems

    NASA Technical Reports Server (NTRS)

    Karpel, Mordechay

    1991-01-01

    New methods were developed for efficient aeroservoelastic analysis and optimization. The main target was to develop a method for investigating large structural variations using a single set of modal coordinates. This task was accomplished by basing the structural modal coordinates on normal modes calculated with a set of fictitious masses loading the locations of anticipated structural changes. The following subject areas are covered: (1) modal coordinates for aeroelastic analysis with large local structural variations; and (2) time simulation of flutter with large stiffness changes.

  17. Young Children's Thinking About Decomposition: Early Modeling Entrees to Complex Ideas in Science

    NASA Astrophysics Data System (ADS)

    Ero-Tolliver, Isi; Lucas, Deborah; Schauble, Leona

    2013-10-01

    This study was part of a multi-year project on the development of elementary students' modeling approaches to understanding the life sciences. Twenty-three first grade students conducted a series of coordinated observations and investigations on decomposition, a topic that is rarely addressed in the early grades. The instruction included in-class observations of different types of soil and soil profiling, visits to the school's compost bin, structured observations of decaying organic matter of various kinds, study of organisms that live in the soil, and models of environmental conditions that affect rates of decomposition. Both before and after instruction, students completed a written performance assessment that asked them to reason about the process of decomposition. Additional information was gathered through one-on-one interviews with six focus students who represented variability of performance across the class. During instruction, researchers collected video of classroom activity, student science journal entries, and charts and illustrations produced by the teacher. After instruction, the first-grade students showed a more nuanced understanding of the composition and variability of soils, the role of visible organisms in decomposition, and environmental factors that influence rates of decomposition. Through a variety of representational devices, including drawings, narrative records, and physical models, students came to regard decomposition as a process, rather than simply as an end state that does not require explanation.

  18. Density functional theory based screening of ternary alkali-transition metal borohydrides: A computational material design project

    NASA Astrophysics Data System (ADS)

    Hummelshøj, J. S.; Landis, D. D.; Voss, J.; Jiang, T.; Tekin, A.; Bork, N.; Dułak, M.; Mortensen, J. J.; Adamska, L.; Andersin, J.; Baran, J. D.; Barmparis, G. D.; Bell, F.; Bezanilla, A. L.; Bjork, J.; Björketun, M. E.; Bleken, F.; Buchter, F.; Bürkle, M.; Burton, P. D.; Buus, B. B.; Calborean, A.; Calle-Vallejo, F.; Casolo, S.; Chandler, B. D.; Chi, D. H.; Czekaj, I.; Datta, S.; Datye, A.; DeLaRiva, A.; Despoja, V.; Dobrin, S.; Engelund, M.; Ferrighi, L.; Frondelius, P.; Fu, Q.; Fuentes, A.; Fürst, J.; García-Fuente, A.; Gavnholt, J.; Goeke, R.; Gudmundsdottir, S.; Hammond, K. D.; Hansen, H. A.; Hibbitts, D.; Hobi, E.; Howalt, J. G.; Hruby, S. L.; Huth, A.; Isaeva, L.; Jelic, J.; Jensen, I. J. T.; Kacprzak, K. A.; Kelkkanen, A.; Kelsey, D.; Kesanakurthi, D. S.; Kleis, J.; Klüpfel, P. J.; Konstantinov, I.; Korytar, R.; Koskinen, P.; Krishna, C.; Kunkes, E.; Larsen, A. H.; Lastra, J. M. G.; Lin, H.; Lopez-Acevedo, O.; Mantega, M.; Martínez, J. I.; Mesa, I. N.; Mowbray, D. J.; Mýrdal, J. S. G.; Natanzon, Y.; Nistor, A.; Olsen, T.; Park, H.; Pedroza, L. S.; Petzold, V.; Plaisance, C.; Rasmussen, J. A.; Ren, H.; Rizzi, M.; Ronco, A. S.; Rostgaard, C.; Saadi, S.; Salguero, L. A.; Santos, E. J. G.; Schoenhalz, A. L.; Shen, J.; Smedemand, M.; Stausholm-Møller, O. J.; Stibius, M.; Strange, M.; Su, H. B.; Temel, B.; Toftelund, A.; Tripkovic, V.; Vanin, M.; Viswanathan, V.; Vojvodic, A.; Wang, S.; Wellendorff, J.; Thygesen, K. S.; Rossmeisl, J.; Bligaard, T.; Jacobsen, K. W.; Nørskov, J. K.; Vegge, T.

    2009-07-01

    We present a computational screening study of ternary metal borohydrides for reversible hydrogen storage based on density functional theory. We investigate the stability and decomposition of alloys containing 1 alkali metal atom, Li, Na, or K (M1); and 1 alkali, alkaline earth or 3d/4d transition metal atom (M2) plus two to five (BH4)- groups, i.e., M1M2(BH4)2-5, using a number of model structures with trigonal, tetrahedral, octahedral, and free coordination of the metal borohydride complexes. Of the over 700 investigated structures, about 20 were predicted to form potentially stable alloys with promising decomposition energies. The M1(Al/Mn/Fe)(BH4)4, (Li/Na)Zn(BH4)3, and (Na/K)(Ni/Co)(BH4)3 alloys are found to be the most promising, followed by selected M1(Nb/Rh)(BH4)4 alloys.

  19. Bimetallic poly- and oligo-nuclear complexes based on a rhodium(III) metalloligand

    NASA Astrophysics Data System (ADS)

    Vasilchenko, Danila B.; Venediktov, Anatoliy B.; Korenev, Sergey V.; Filatov, Evgeniy Yu.; Baidina, Iraida A.; Nadolinnyi, Vladimir A.

    2012-10-01

    Interaction of trans-[Rh(i-Nic)4Cl2]3- anions (i-Nic- - isonicotinate anion) with Cuaq2+ and Coaq2+ cations in water has afforded complex salts Co3[Rh(i-Nic)4Cl2]2·17H2O (1) and Cu3[Rh(i-Nic)4Cl2]2·14H2O (2). Oligonuclear character of 1 and 2 has been established. A coordination polymer Cu5[Rh(i-Nic)4Cl2]2(i-Nic)2(OH)2·2H2O (3) has been crystallized by hydrothermal treatment of 2 at 160 °C, and its structure was determined by X-ray structural analysis. EPR data for the complexes has been collected and interpreted. Thermal decomposition of the salts was studied by c-DTA. Bimetallic alloys rhodium-copper and rhodium-cobalt have been obtained as final products of thermal decomposition.

  20. Plant traits and decomposition: are the relationships for roots comparable to those for leaves?

    PubMed Central

    Birouste, Marine; Kazakou, Elena; Blanchard, Alain; Roumet, Catherine

    2012-01-01

    Background and Aims Fine root decomposition is an important determinant of nutrient and carbon cycling in grasslands; however, little is known about the factors controlling root decomposition among species. Our aim was to investigate whether interspecific variation in the potential decomposition rate of fine roots could be accounted for by root chemical and morphological traits, life history and taxonomic affiliation. We also investigated the co-ordinated variation in root and leaf traits and potential decomposition rates. Methods We analysed potential decomposition rates and the chemical and morphological traits of fine roots on 18 Mediterranean herbaceous species grown in controlled conditions. The results were compared with those obtained for leaves in a previous study conducted on similar species. Key Results Differences in the potential decomposition rates of fine roots between species were accounted for by root chemical composition, but not by morphological traits. The root potential decomposition rate varied with taxonomy, but not with life history. Poaceae, with high cellulose concentration and low concentrations of soluble compounds and phosphorus, decomposed more slowly than Asteraceae and Fabaceae. Patterns of root traits, including decomposition rate, mirrored those of leaf traits, resulting in a similar species clustering. Conclusions The highly co-ordinated variation of roots and leaves in terms of traits and potential decomposition rate suggests that changes in the functional composition of communities in response to anthropogenic changes will strongly affect biogeochemical cycles at the ecosystem level. PMID:22143881

  1. Vibrational spectral investigation on xanthine and its derivatives—theophylline, caffeine and theobromine

    NASA Astrophysics Data System (ADS)

    Gunasekaran, S.; Sankari, G.; Ponnusamy, S.

    2005-01-01

    A normal coordinate analysis has been carried out on four compounds having a similar ring structure with different side chain substitutions, which are xanthine, caffeine, theophylline, and theobromine. Xanthine is chemically known as 2,6-dihydroxy purine. Caffeine, theophylline and theobromine are methylated xanthines. Considering the methyl groups as point mass, the number of normal modes of vibrations can be distributed as Γ vib=27 A'+12 A″ based on C s point group symmetry associated with the structures. In the present work 15 A' and 12 A″ normal modes are considered. A new set of orthonormal symmetry co-ordinates have been constructed. Wilson's F- G matrix method has been adopted for the normal coordinate analysis. A satisfactory vibrational band assignment has been made by employing the FTIR and FT Raman spectra of the compounds. The potential energy distribution is calculated with the arrived values of the force constants and hence the agreement of the frequency assignment has been checked.

  2. Insight into litter decomposition driven by nutrient demands of symbiosis system through the hypha bridge of arbuscular mycorrhizal fungi.

    PubMed

    Kong, Xiangshi; Jia, Yanyan; Song, Fuqiang; Tian, Kai; Lin, Hong; Bei, Zhanlin; Jia, Xiuqin; Yao, Bei; Guo, Peng; Tian, Xingjun

    2018-02-01

    Arbuscular mycorrhizal fungi (AMF) play an important role in litter decomposition. This study investigated how soil nutrient level affected the process. Results showed that AMF colonization had no significant effect on litter decomposition under normal soil nutrient conditions. However, litter decomposition was accelerated significantly under lower nutrient conditions. Soil microbial biomass in decomposition system was significantly increased. Especially, in moderate lower nutrient treatment (condition of half-normal soil nutrient), litters exhibited the highest decomposition rate, AMF hypha revealed the greatest density, and enzymes (especially nitrate reductase) showed the highest activities as well. Meanwhile, the immobilization of nitrogen (N) in the decomposing litter remarkably decreased. Our results suggested that the roles AMF played in ecosystem were largely affected by soil nutrient levels. At normal soil nutrient level, AMF exhibited limited effects in promoting decomposition. When soil nutrient level decreased, the promoting effect of AMF on litter decomposition began to appear, especially on N mobilization. However, under extremely low nutrient conditions, AMF showed less influence on decomposition and may even compete with decomposer microorganisms for nutrients.

  3. Task decomposition for a multilimbed robot to work in reachable but unorientable space

    NASA Technical Reports Server (NTRS)

    Su, Chau; Zheng, Yuan F.

    1991-01-01

    Robot manipulators installed on legged mobile platforms are suggested for enlarging robot workspace. To plan the motion of such a system, the arm-platform motion coordination problem is raised, and a task decomposition is proposed to solve the problem. A given task described by the destination position and orientation of the end effector is decomposed into subtasks for arm manipulation and for platform configuration, respectively. The former is defined as the end-effector position and orientation with respect to the platform, and the latter as the platform position and orientation in the base coordinates. Three approaches are proposed for the task decomposition. The approaches are also evaluated in terms of the displacements, from which an optimal approach can be selected.

  4. Crystal structure and chemical bonding of the high-temperature phase of AgN3.

    PubMed

    Schmidt, Carsten L; Dinnebier, Robert; Wedig, Ulrich; Jansen, Martin

    2007-02-05

    The crystal structure of silver azide (AgN3) in its high-temperature (HT) modification was determined from X-ray powder diffraction data, recorded at T = 170 degrees C and was further refined by the Rietveld method. The structure is monoclinic (P21/c (No. 14), a = 6.0756(2) A, b = 6.1663(2) A, c = 6.5729(2) A, beta = 114.19(0) degrees, V = 224.62(14) A3, Z = 4) and consists of two-dimensional Ag and N containing layers in which the silver atoms are coordinated by four nitrogen atoms exhibiting a distorted square coordination environment. These sheets are linked together by weaker perpendicular Ag-N contacts, thus forming a 4 + 2 coordination geometry around the silver atoms. The phase transition has been characterized by DTA, DSC, and measurement of the density, as well as of the ionic conductivity. Both, the room-temperature and the HT phase are electrically insulating. This fact is getting support by DFT band structure calculations within the generalized gradient approximation, using the PBE functional. On the basis of the DFT band structure, the bonding characteristics of both phases are essentially the same. Finally, the implication of the existence of a low-symmetry HT-phase in a crystalline explosive concerning decomposition mechanisms is discussed.

  5. A new 1D manganese(II) coordination polymer with end-to-end azide bridge and isonicotinoylhydrazone Schiff base ligand: Crystal structure, Hirshfeld surface, NBO and thermal analyses

    NASA Astrophysics Data System (ADS)

    Khani, S.; Montazerozohori, M.; Masoudiasl, A.; White, J. M.

    2018-02-01

    A new manganese (II) coordination polymer, [MnL2 (μ-1,3-N3)2]n, with co-ligands including azide anion and Schiff base based on isonicotinoylhydrazone has been synthesized and characterized. The crystal structure determination shows that the azide ligand acts as end-to-end (EE) bridging ligand and generates a one-dimensional coordination polymer. In this compound, each manganes (II) metal center is hexa-coordinated by four azide nitrogens and two pyridinic nitrogens for the formation of octahedral geometry. The analysis of crystal packing indicates that the 1D chain of [MnL2 (μ-1,3-N3)2]n, is stabilized as a 3D supramolecular network by intra- and inter-chain intermolecular interactions of X-H···Y (X = N and C, Y = O and N). Hirshfeld surface analysis and 2D fingerprint plots have been used for a more detailed investigation of intermolecular interactions. Also, natural bond orbital (NBO) analysis was performed to get information about atomic charge distributions, hybridizations and the strength of interactions. Finally, thermal analysis of compound showed its complete decomposition during three thermal steps.

  6. Decomposition-Based Multiobjective Evolutionary Algorithm for Community Detection in Dynamic Social Networks

    PubMed Central

    Ma, Jingjing; Liu, Jie; Ma, Wenping; Gong, Maoguo; Jiao, Licheng

    2014-01-01

    Community structure is one of the most important properties in social networks. In dynamic networks, there are two conflicting criteria that need to be considered. One is the snapshot quality, which evaluates the quality of the community partitions at the current time step. The other is the temporal cost, which evaluates the difference between communities at different time steps. In this paper, we propose a decomposition-based multiobjective community detection algorithm to simultaneously optimize these two objectives to reveal community structure and its evolution in dynamic networks. It employs the framework of multiobjective evolutionary algorithm based on decomposition to simultaneously optimize the modularity and normalized mutual information, which quantitatively measure the quality of the community partitions and temporal cost, respectively. A local search strategy dealing with the problem-specific knowledge is incorporated to improve the effectiveness of the new algorithm. Experiments on computer-generated and real-world networks demonstrate that the proposed algorithm can not only find community structure and capture community evolution more accurately, but also be steadier than the two compared algorithms. PMID:24723806

  7. Decomposition-based multiobjective evolutionary algorithm for community detection in dynamic social networks.

    PubMed

    Ma, Jingjing; Liu, Jie; Ma, Wenping; Gong, Maoguo; Jiao, Licheng

    2014-01-01

    Community structure is one of the most important properties in social networks. In dynamic networks, there are two conflicting criteria that need to be considered. One is the snapshot quality, which evaluates the quality of the community partitions at the current time step. The other is the temporal cost, which evaluates the difference between communities at different time steps. In this paper, we propose a decomposition-based multiobjective community detection algorithm to simultaneously optimize these two objectives to reveal community structure and its evolution in dynamic networks. It employs the framework of multiobjective evolutionary algorithm based on decomposition to simultaneously optimize the modularity and normalized mutual information, which quantitatively measure the quality of the community partitions and temporal cost, respectively. A local search strategy dealing with the problem-specific knowledge is incorporated to improve the effectiveness of the new algorithm. Experiments on computer-generated and real-world networks demonstrate that the proposed algorithm can not only find community structure and capture community evolution more accurately, but also be steadier than the two compared algorithms.

  8. Development of parallel algorithms for electrical power management in space applications

    NASA Technical Reports Server (NTRS)

    Berry, Frederick C.

    1989-01-01

    The application of parallel techniques for electrical power system analysis is discussed. The Newton-Raphson method of load flow analysis was used along with the decomposition-coordination technique to perform load flow analysis. The decomposition-coordination technique enables tasks to be performed in parallel by partitioning the electrical power system into independent local problems. Each independent local problem represents a portion of the total electrical power system on which a loan flow analysis can be performed. The load flow analysis is performed on these partitioned elements by using the Newton-Raphson load flow method. These independent local problems will produce results for voltage and power which can then be passed to the coordinator portion of the solution procedure. The coordinator problem uses the results of the local problems to determine if any correction is needed on the local problems. The coordinator problem is also solved by an iterative method much like the local problem. The iterative method for the coordination problem will also be the Newton-Raphson method. Therefore, each iteration at the coordination level will result in new values for the local problems. The local problems will have to be solved again along with the coordinator problem until some convergence conditions are met.

  9. The Propagation of Movement Variability in Time: A Methodological Approach for Discrete Movements with Multiple Degrees of Freedom.

    PubMed

    Krüger, Melanie; Straube, Andreas; Eggert, Thomas

    2017-01-01

    In recent years, theory-building in motor neuroscience and our understanding of the synergistic control of the redundant human motor system has significantly profited from the emergence of a range of different mathematical approaches to analyze the structure of movement variability. Approaches such as the Uncontrolled Manifold method or the Noise-Tolerance-Covariance decomposition method allow to detect and interpret changes in movement coordination due to e.g., learning, external task constraints or disease, by analyzing the structure of within-subject, inter-trial movement variability. Whereas, for cyclical movements (e.g., locomotion), mathematical approaches exist to investigate the propagation of movement variability in time (e.g., time series analysis), similar approaches are missing for discrete, goal-directed movements, such as reaching. Here, we propose canonical correlation analysis as a suitable method to analyze the propagation of within-subject variability across different time points during the execution of discrete movements. While similar analyses have already been applied for discrete movements with only one degree of freedom (DoF; e.g., Pearson's product-moment correlation), canonical correlation analysis allows to evaluate the coupling of inter-trial variability across different time points along the movement trajectory for multiple DoF-effector systems, such as the arm. The theoretical analysis is illustrated by empirical data from a study on reaching movements under normal and disturbed proprioception. The results show increased movement duration, decreased movement amplitude, as well as altered movement coordination under ischemia, which results in a reduced complexity of movement control. Movement endpoint variability is not increased under ischemia. This suggests that healthy adults are able to immediately and efficiently adjust the control of complex reaching movements to compensate for the loss of proprioceptive information. Further, it is shown that, by using canonical correlation analysis, alterations in movement coordination that indicate changes in the control strategy concerning the use of motor redundancy can be detected, which represents an important methodical advance in the context of neuromechanics.

  10. On the decentralized control of large-scale systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Chong, C.

    1973-01-01

    The decentralized control of stochastic large scale systems was considered. Particular emphasis was given to control strategies which utilize decentralized information and can be computed in a decentralized manner. The deterministic constrained optimization problem is generalized to the stochastic case when each decision variable depends on different information and the constraint is only required to be satisfied on the average. For problems with a particular structure, a hierarchical decomposition is obtained. For the stochastic control of dynamic systems with different information sets, a new kind of optimality is proposed which exploits the coupled nature of the dynamic system. The subsystems are assumed to be uncoupled and then certain constraints are required to be satisfied, either in a off-line or on-line fashion. For off-line coordination, a hierarchical approach of solving the problem is obtained. The lower level problems are all uncoupled. For on-line coordination, distinction is made between open loop feedback optimal coordination and closed loop optimal coordination.

  11. Pressure-induced structural transformations in lanthanide titanates: La{sub 2}TiO{sub 5} and Nd{sub 2}TiO{sub 5}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, F.X., E-mail: zhangfx@umich.ed; Wang, J.W.; Lang, M.

    The structure of orthorhombic rare earth titanates of La{sub 2}TiO{sub 5} and Nd{sub 2}TiO{sub 5}, where Ti cations are in five-fold coordination with oxygen, has been studied at high pressures by X-ray diffraction (XRD), Raman scattering measurements, and quantum mechanical calculations. Both XRD and Raman results indicated two pressure-induced phase transitions during the process. An orthorhombic super cell (axbx2c) formed at a pressure between 6 and 10 GPa, and then transformed to a hexagonal high-pressure phase accompanied by partial decomposition. The hexagonal high-pressure phase is quenchable. Detailed structural analysis indicated that the five-coordinated TiO{sub 5} polyhedra remain during the formationmore » of super cell, but the orthorhombic-to-hexagonal phase transition at high pressures is a reconstructive process, and the five-fold Ti-O coordination increased to more than 6. This phase transition sequence was verified by quantum mechanical calculations. - Graphical abstract: At high pressures, La{sub 2}TiO{sub 5} and Nd{sub 2}TiO{sub 5} transform from the orthorhombic phase to an axbx2c superlattice of the orthorhombic structure and then to a hexagonal high-pressure phase. Display Omitted« less

  12. Synthesis and characterization of nickel and zinc ferrite nanocatalysts for decomposition of CO2 greenhouse effect gas.

    PubMed

    Lin, Kuen-Song; Adhikari, Abhijit Krishna; Wang, Chi-Yu; Hsu, Pei-Ju; Chan, Ho-Yang

    2013-04-01

    The decomposition of CO2 over oxygen deficient nickel ferrite nanoparticles (NFNs) and zinc ferrite nanoparticles (ZFNs) at 573 K was studied. The oxidation states with fine structure of Fe/Ni or Fe/Zn species were also measured in NFNs and ZFNs catalysts, respectively. Oxygen deficiency of catalysts was obtained by reduction in hydrogen. Decomposition of CO2 into carbon and oxygen has been carried out within few minutes when it comes into contact with oxygen deficient catalysts through incorporation of oxygen into ferrite nanoparticles. Oxygen and carbon rather than CO were produced in the decomposition process. The complete decomposition of CO2 was possible because of higher degree of oxygen deficiency andsurface-to-volume ratio of the catalysts. The pre-edge XANES spectra of Fe species in both catalysts exhibit an absorbance feature at 7114 eV for the 1s to 3d transition which is forbidden by the selection rule in case of perfect octahedral symmetry. The EXAFS data showed that the NFNs had two central Fe atoms coordinated by primarily Fe-O and Fe-Fe with bond distances of 1.871 and 3.051 angstroms, respectively. In case of ZFNs these values are 1.889 and 3.062 A, respectively. Methane gas was produced during the reactivation of NFNs by flowing hydrogen gas. Decomposition of CO2, moreover, recovery of valuable methane using heat energy of offgas produced from power generation plant or steel industry is an appealing alternative for energy recovery.

  13. Importance of Force Decomposition for Local Stress Calculations in Biomembrane Molecular Simulations.

    PubMed

    Vanegas, Juan M; Torres-Sánchez, Alejandro; Arroyo, Marino

    2014-02-11

    Local stress fields are routinely computed from molecular dynamics trajectories to understand the structure and mechanical properties of lipid bilayers. These calculations can be systematically understood with the Irving-Kirkwood-Noll theory. In identifying the stress tensor, a crucial step is the decomposition of the forces on the particles into pairwise contributions. However, such a decomposition is not unique in general, leading to an ambiguity in the definition of the stress tensor, particularly for multibody potentials. Furthermore, a theoretical treatment of constraints in local stress calculations has been lacking. Here, we present a new implementation of local stress calculations that systematically treats constraints and considers a privileged decomposition, the central force decomposition, that leads to a symmetric stress tensor by construction. We focus on biomembranes, although the methodology presented here is widely applicable. Our results show that some unphysical behavior obtained with previous implementations (e.g. nonconstant normal stress profiles along an isotropic bilayer in equilibrium) is a consequence of an improper treatment of constraints. Furthermore, other valid force decompositions produce significantly different stress profiles, particularly in the presence of dihedral potentials. Our methodology reveals the striking effect of unsaturations on the bilayer mechanics, missed by previous stress calculation implementations.

  14. Exploring the Common Dynamics of Homologous Proteins. Application to the Globin Family

    PubMed Central

    Maguid, Sandra; Fernandez-Alberti, Sebastian; Ferrelli, Leticia; Echave, Julian

    2005-01-01

    We present a procedure to explore the global dynamics shared between members of the same protein family. The method allows the comparison of patterns of vibrational motion obtained by Gaussian network model analysis. After the identification of collective coordinates that were conserved during evolution, we quantify the common dynamics within a family. Representative vectors that describe these dynamics are defined using a singular value decomposition approach. As a test case, the globin heme-binding family is considered. The two lowest normal modes are shown to be conserved within this family. Our results encourage the development of models for protein evolution that take into account the conservation of dynamical features. PMID:15749782

  15. Mixed ligand coordination polymers with flexible bis-imidazole linker and angular sulfonyldibenzoate: Crystal structure, photoluminescence and photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Bisht, Kamal Kumar; Rachuri, Yadagiri; Parmar, Bhavesh; Suresh, Eringathodi

    2014-05-01

    Four ternary coordination polymers (CPs) namely, {[Ni(SDB)(BITMB)(H2O)]·H2O}n (CP1), {[Cd(SDB)(BITMB) (H2O)]·(THF)(H2O)}n (CP2), {[Zn2(SDB)2(BITMB)]·(THF)2}n (CP3) and {[Co2(SDB)2(BITMB)]·(Dioxane)3}n (CP4) composed of angular dicarboxylate SDB (4,4'-sulfonyldibenzoate) and N-donor BITMB (1,3-bis(imidazol-1-ylmethyl)-2,4,6-trimethyl benzene) have been synthesized by solvothermal reactions and characterized by single crystal X-ray diffraction and other physico-chemical techniques. CP1 possesses one-dimensional ribbon type metal-organic motifs glued together by H-bonds and π⋯π interactions, whereas CP2-CP4, exhibit non-interpenetrated sql networks supported by weak supramolecular interactions. Structural diversity of these CPs can be attributed to the coordination geometry adopted by the metal nodes, versatile coordination modes of SDB and conformational flexibility of BITMB. Solid state luminescence properties of CP1-CP4 were explored. Photocatalytic performance of all CPs for the decomposition of metanil yellow by dilute hydrogen peroxide in the presence of visible light was also investigated. 25-83% dye removal from aqueous solutions in the presence of CP1-CP4 was observed.

  16. Price schedules coordination for electricity pool markets

    NASA Astrophysics Data System (ADS)

    Legbedji, Alexis Motto

    2002-04-01

    We consider the optimal coordination of a class of mathematical programs with equilibrium constraints, which is formally interpreted as a resource-allocation problem. Many decomposition techniques were proposed to circumvent the difficulty of solving large systems with limited computer resources. The considerable improvement in computer architecture has allowed the solution of large-scale problems with increasing speed. Consequently, interest in decomposition techniques has waned. Nonetheless, there is an important class of applications for which decomposition techniques will still be relevant, among others, distributed systems---the Internet, perhaps, being the most conspicuous example---and competitive economic systems. Conceptually, a competitive economic system is a collection of agents that have similar or different objectives while sharing the same system resources. In theory, constructing a large-scale mathematical program and solving it centrally, using currently available computing power can optimize such systems of agents. In practice, however, because agents are self-interested and not willing to reveal some sensitive corporate data, one cannot solve these kinds of coordination problems by simply maximizing the sum of agent's objective functions with respect to their constraints. An iterative price decomposition or Lagrangian dual method is considered best suited because it can operate with limited information. A price-directed strategy, however, can only work successfully when coordinating or equilibrium prices exist, which is not generally the case when a weak duality is unavoidable. Showing when such prices exist and how to compute them is the main subject of this thesis. Among our results, we show that, if the Lagrangian function of a primal program is additively separable, price schedules coordination may be attained. The prices are Lagrange multipliers, and are also the decision variables of a dual program. In addition, we propose a new form of augmented or nonlinear pricing, which is an example of the use of penalty functions in mathematical programming. Applications are drawn from mathematical programming problems of the form arising in electric power system scheduling under competition.

  17. New class of single-source precursors for the synthesis of main group-transition metal oxides: heterobimetallic Pb-Mn beta-diketonates.

    PubMed

    Zhang, Haitao; Yang, Jen-Hsien; Shpanchenko, Roman V; Abakumov, Artem M; Hadermann, Joke; Clérac, Rodolphe; Dikarev, Evgeny V

    2009-09-07

    Heterometallic lead-manganese beta-diketonates have been isolated in pure form by several synthetic methods that include solid-state and solution techniques. Two compounds with different Pb/Mn ratios, PbMn(2)(hfac)(6) (1) and PbMn(hfac)(4) (2) (hfac = hexafluoroacetylacetonate), can be obtained in quantitative yield by using different starting materials. Single crystal X-ray investigation revealed that the solid-state structure of 1 contains trinuclear molecules in which lead metal center is sandwiched between two [Mn(hfac)(3)] units, while 2 consists of infinite chains of alternating [Pb(hfac)(2)] and [Mn(hfac)(2)] fragments. The heterometallic structures are held together by strong Lewis acid-base interactions between metal atoms and diketonate ligands acting in chelating-bridging fashion. Spectroscopic investigation confirmed the retention of heterometallic structures in solutions of non-coordinating solvents as well as upon sublimation-deposition procedure. Thermal decomposition of heterometallic diketonates has been systematically investigated in a wide range of temperatures and annealing times. For the first time, it has been shown that thermal decomposition of heterometallic diketonates results in mixed-metal oxides, while both the structure of precursors and the thermolysis conditions have a significant influence on the nature of the resulting oxides. Five different Pb-Mn oxides have been detected by X-ray powder diffraction when studying the decomposition of 1 and 2 in the temperature range 500-800 degrees C. The phase that has been previously reported as "Pb(0.43)MnO(2.18)" was synthesized in the pure form by decomposition of 1, and crystallographically characterized. The orthorhombic unit cell parameters of this oxide, obtained by electron diffraction technique, have been subsequently refined using X-ray powder diffraction data. Besides that, a previously unknown lead-manganese oxide has been obtained at low temperature decomposition and short annealing times. The parameters of its monoclinically distorted unit cell have been determined. The EDX analysis revealed that this compound has a Pb/Mn ratio close to 1:4 and contains no appreciable amount of fluorine.

  18. Two alternative ways for solving the coordination problem in multilevel optimization

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw

    1991-01-01

    Two techniques for formulating the coupling between levels in multilevel optimization by linear decomposition, proposed as improvements over the original formulation, now several years old, that relied on explicit equality constraints which were shown by application experience as occasionally causing numerical difficulties. The two new techniques represent the coupling without using explicit equality constraints, thus avoiding the above diffuculties and also reducing computational cost of the procedure. The old and new formulations are presented in detail and illustrated by an example of a structural optimization. A generic version of the improved algorithm is also developed for applications to multidisciplinary systems not limited to structures.

  19. An effective hierarchical model for the biomolecular covalent bond: an approach integrating artificial chemistry and an actual terrestrial life system.

    PubMed

    Oohashi, Tsutomu; Ueno, Osamu; Maekawa, Tadao; Kawai, Norie; Nishina, Emi; Honda, Manabu

    2009-01-01

    Under the AChem paradigm and the programmed self-decomposition (PSD) model, we propose a hierarchical model for the biomolecular covalent bond (HBCB model). This model assumes that terrestrial organisms arrange their biomolecules in a hierarchical structure according to the energy strength of their covalent bonds. It also assumes that they have evolutionarily selected the PSD mechanism of turning biological polymers (BPs) into biological monomers (BMs) as an efficient biomolecular recycling strategy We have examined the validity and effectiveness of the HBCB model by coordinating two complementary approaches: biological experiments using existent terrestrial life, and simulation experiments using an AChem system. Biological experiments have shown that terrestrial life possesses a PSD mechanism as an endergonic, genetically regulated process and that hydrolysis, which decomposes a BP into BMs, is one of the main processes of such a mechanism. In simulation experiments, we compared different virtual self-decomposition processes. The virtual species in which the self-decomposition process mainly involved covalent bond cleavage from a BP to BMs showed evolutionary superiority over other species in which the self-decomposition process involved cleavage from BP to classes lower than BM. These converging findings strongly support the existence of PSD and the validity and effectiveness of the HBCB model.

  20. Calibrating the coordination chemistry tool chest: metrics of bi- and tridentate ligands.

    PubMed

    Aguilà, David; Escribano, Esther; Speed, Saskia; Talancón, Daniel; Yermán, Luis; Alvarez, Santiago

    2009-09-07

    Bi- and multidentate ligands form part of the tools commonly used for designing coordination and supramolecular complexes with desired stereochemistries. Parameters and concepts usually employed include the normalized bite of bidentate ligands, their cis- or trans-coordinating ability, their rigidity or flexibility, or the duality of some ligands that can act in chelating or dinucleating modes. In this contribution we present a structural database study of over one hundred bi- and tridentate ligands that allows us to parametrize their coordinating properties and discuss the relevance of such parameters for the choice of coordination polyhedron or coordination sites.

  1. The domain interface method: a general-purpose non-intrusive technique for non-conforming domain decomposition problems

    NASA Astrophysics Data System (ADS)

    Cafiero, M.; Lloberas-Valls, O.; Cante, J.; Oliver, J.

    2016-04-01

    A domain decomposition technique is proposed which is capable of properly connecting arbitrary non-conforming interfaces. The strategy essentially consists in considering a fictitious zero-width interface between the non-matching meshes which is discretized using a Delaunay triangulation. Continuity is satisfied across domains through normal and tangential stresses provided by the discretized interface and inserted in the formulation in the form of Lagrange multipliers. The final structure of the global system of equations resembles the dual assembly of substructures where the Lagrange multipliers are employed to nullify the gap between domains. A new approach to handle floating subdomains is outlined which can be implemented without significantly altering the structure of standard industrial finite element codes. The effectiveness of the developed algorithm is demonstrated through a patch test example and a number of tests that highlight the accuracy of the methodology and independence of the results with respect to the framework parameters. Considering its high degree of flexibility and non-intrusive character, the proposed domain decomposition framework is regarded as an attractive alternative to other established techniques such as the mortar approach.

  2. Towards black-box calculations of tunneling splittings obtained from vibrational structure methods based on normal coordinates.

    PubMed

    Neff, Michael; Rauhut, Guntram

    2014-02-05

    Multidimensional potential energy surfaces obtained from explicitly correlated coupled-cluster calculations and further corrections for high-order correlation contributions, scalar relativistic effects and core-correlation energy contributions were generated in a fully automated fashion for the double-minimum benchmark systems OH3(+) and NH3. The black-box generation of the potentials is based on normal coordinates, which were used in the underlying multimode expansions of the potentials and the μ-tensor within the Watson operator. Normal coordinates are not the optimal choice for describing double-minimum potentials and the question remains if they can be used for accurate calculations at all. However, their unique definition is an appealing feature, which removes remaining errors in truncated potential expansions arising from different choices of curvilinear coordinate systems. Fully automated calculations are presented, which demonstrate, that the proposed scheme allows for the determination of energy levels and tunneling splittings as a routine application. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Reactivity Study of Unsymmetrical β-Diketiminato Copper(I) Complexes: Effect of the Chelating Ring.

    PubMed

    Chuang, Wan-Jung; Hsu, Sung-Po; Chand, Kuldeep; Yu, Fu-Lun; Tsai, Cheng-Long; Tseng, Yu-Hsuan; Lu, Yuh-Hsiu; Kuo, Jen-Yu; Carey, James R; Chen, Hsuan-Ying; Chen, Hsing-Yin; Chiang, Michael Y; Hsu, Sodio C N

    2017-03-06

    β-Diketiminato copper(I) complexes play important roles in bioinspired catalytic chemistry and in applications to the materials industry. However, it has been observed that these complexes are very susceptible to disproportionation. Coordinating solvents or Lewis bases are typically used to prevent disproportionation and to block the coordination sites of the copper(I) center from further decomposition. Here, we incorporate this coordination protection directly into the molecule in order to increase the stability and reactivity of these complexes and to discover new copper(I) binding motifs. Here we describe the synthesis, structural characterization, and reactivity of a series of unsymmetrical N-aryl-N'-alkylpyridyl β-diketiminato copper(I) complexes and discuss the structures and reactivity of these complexes with respect to the length of the pyridyl arm. All of the aforementioned unsymmetrical ß-diketiminato copper(I) complexes bind CO reversibly and are stable to disproportionation. The binding ability of CO and the rate of pyridyl ligand decoordination of these copper(I) complexes are directly related to the competition between the degree of puckering of the chelate system and the steric demands of the N-aryl substituent.

  4. Young Children's Thinking about Decomposition: Early Modeling Entrees to Complex Ideas in Science

    ERIC Educational Resources Information Center

    Ero-Tolliver, Isi; Lucas, Deborah; Schauble, Leona

    2013-01-01

    This study was part of a multi-year project on the development of elementary students' modeling approaches to understanding the life sciences. Twenty-three first grade students conducted a series of coordinated observations and investigations on decomposition, a topic that is rarely addressed in the early grades. The instruction included…

  5. Free energy decomposition of protein-protein interactions.

    PubMed

    Noskov, S Y; Lim, C

    2001-08-01

    A free energy decomposition scheme has been developed and tested on antibody-antigen and protease-inhibitor binding for which accurate experimental structures were available for both free and bound proteins. Using the x-ray coordinates of the free and bound proteins, the absolute binding free energy was computed assuming additivity of three well-defined, physical processes: desolvation of the x-ray structures, isomerization of the x-ray conformation to a nearby local minimum in the gas-phase, and subsequent noncovalent complex formation in the gas phase. This free energy scheme, together with the Generalized Born model for computing the electrostatic solvation free energy, yielded binding free energies in remarkable agreement with experimental data. Two assumptions commonly used in theoretical treatments; viz., the rigid-binding approximation (which assumes no conformational change upon complexation) and the neglect of vdW interactions, were found to yield large errors in the binding free energy. Protein-protein vdW and electrostatic interactions between complementary surfaces over a relatively large area (1400--1700 A(2)) were found to drive antibody-antigen and protease-inhibitor binding.

  6. Set-Based Discrete Particle Swarm Optimization Based on Decomposition for Permutation-Based Multiobjective Combinatorial Optimization Problems.

    PubMed

    Yu, Xue; Chen, Wei-Neng; Gu, Tianlong; Zhang, Huaxiang; Yuan, Huaqiang; Kwong, Sam; Zhang, Jun

    2018-07-01

    This paper studies a specific class of multiobjective combinatorial optimization problems (MOCOPs), namely the permutation-based MOCOPs. Many commonly seen MOCOPs, e.g., multiobjective traveling salesman problem (MOTSP), multiobjective project scheduling problem (MOPSP), belong to this problem class and they can be very different. However, as the permutation-based MOCOPs share the inherent similarity that the structure of their search space is usually in the shape of a permutation tree, this paper proposes a generic multiobjective set-based particle swarm optimization methodology based on decomposition, termed MS-PSO/D. In order to coordinate with the property of permutation-based MOCOPs, MS-PSO/D utilizes an element-based representation and a constructive approach. Through this, feasible solutions under constraints can be generated step by step following the permutation-tree-shaped structure. And problem-related heuristic information is introduced in the constructive approach for efficiency. In order to address the multiobjective optimization issues, the decomposition strategy is employed, in which the problem is converted into multiple single-objective subproblems according to a set of weight vectors. Besides, a flexible mechanism for diversity control is provided in MS-PSO/D. Extensive experiments have been conducted to study MS-PSO/D on two permutation-based MOCOPs, namely the MOTSP and the MOPSP. Experimental results validate that the proposed methodology is promising.

  7. Defect Detection in Textures through the Use of Entropy as a Means for Automatically Selecting the Wavelet Decomposition Level.

    PubMed

    Navarro, Pedro J; Fernández-Isla, Carlos; Alcover, Pedro María; Suardíaz, Juan

    2016-07-27

    This paper presents a robust method for defect detection in textures, entropy-based automatic selection of the wavelet decomposition level (EADL), based on a wavelet reconstruction scheme, for detecting defects in a wide variety of structural and statistical textures. Two main features are presented. One of the new features is an original use of the normalized absolute function value (NABS) calculated from the wavelet coefficients derived at various different decomposition levels in order to identify textures where the defect can be isolated by eliminating the texture pattern in the first decomposition level. The second is the use of Shannon's entropy, calculated over detail subimages, for automatic selection of the band for image reconstruction, which, unlike other techniques, such as those based on the co-occurrence matrix or on energy calculation, provides a lower decomposition level, thus avoiding excessive degradation of the image, allowing a more accurate defect segmentation. A metric analysis of the results of the proposed method with nine different thresholding algorithms determined that selecting the appropriate thresholding method is important to achieve optimum performance in defect detection. As a consequence, several different thresholding algorithms depending on the type of texture are proposed.

  8. Studies on the relation between the size and dispersion of metallic silver nanoparticles and morphologies of initial silver(I) coordination polymer precursor

    NASA Astrophysics Data System (ADS)

    Moradi, Zhaleh; Akhbari, Kamran; Phuruangrat, Anukorn; Costantino, Ferdinando

    2017-04-01

    Micro and nano-structures of [Ag2(μ2-dcpa)2]n (1), [Hdcpa = 2,4-dichlorophenoxyacetic acid] which is a one-dimensional coordination polymer with corrugated tape chains, were synthesized as the bulk sample (1B), by sonochemical process (1S) and from mechanochemical reaction (1M). These three samples have been used as new precursors for fabricating silver nanoparticles via direct calcination at 300 °C and also thermal decomposition in oleic acid (OA) as a surfactant at 180 °C. In the presence of OA less agglomerated nanostructures were formed. It seems that the size, dispersion, morphology and agglomeration of initial precursor have direct influence on size, dispersion, morphology and agglomeration of metallic silver. This coordination polymer with various micro and nano morphologies were characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). Thermal stability of these samples were studied and compared with each other, too.

  9. Average structure and M2 site configurations in C2/c clinopyroxenes along the Di-En join

    NASA Astrophysics Data System (ADS)

    Tribaudino, M.; Benna, P.; Bruno, E.

    1989-12-01

    In order to clarify the structural configurations observed in Diss in the Ca-rich region of the Di-En join (in which TEM observations show neither exsolution microstructures nor evidence of spinodal decomposition) single crystals large enough for X-ray diffraction analyses, with composition (Ca0.66Mg0.34)MgSi2O6, have been equilibrated close to the solvus at T=1350° C for 317 h, and quenched at room temperature. The refinement in C2/c space group shows that in the M2 site Ca and Mg are fully ‘ordered’ in two split positions (M2occ: 0.66 Ca; M2'occ: 0.34 Mg). Since the average structure shows a relevant elongation of anisotropic thermal ellipsoids of the O2 and O3 oxygen atoms, the refinement has been carried out according to a split model for O2 and O3 atoms: Ca appears 8-coordinated (as in diopside) and Mg shows a sixfold coordination similar to that of high-pigeonite. This coordination for Mg is significantly different from the fourfold coordination (Zn-like in Zn-cpx) proposed previously and it is a more probable coordination for Mg from a crystalchemical point of view. The same results were obtained refining a Di80En20 cpx, equilibrated at T=1230° C, according to the same O-split model. The data support the coexistence of a Di-like configuration for Ca and of a highPig-like configuration for Mg away from the solvus also. At T very near to T solidus the different configurations, observed at room temperature in the quenched samples, should converge and Ca and Mg should retain a single disordered configuration in the M2 site.

  10. Synthesis, vibrational spectrometry and thermal characterizations of coordination polymers derived from divalent metal ions and hydroxyl terminated polyurethane as ligand

    NASA Astrophysics Data System (ADS)

    Laxmi; Khan, Shabnam; Kareem, Abdul; Zafar, Fahmina; Nishat, Nahid

    2018-01-01

    A series of novel coordination polyurethanes [HTPU-M, where M = Mn(II) 'd5', Ni(II) 'd8', and Zn(II) 'd10'] have been synthesized to investigate the effect of divalent metal ions coordination on structure, thermal and adsorption properties of low molecular weight hydroxyl terminated polyurethane (HTPU). HTPU-M have been synthesized in situ where, sbnd OH group of HTPU (synthesized by the condensation polymerization reaction of ethylene glycol (EG) and toluene diisocyanate (TDI) in presence of catalyst) on condensation polymerization with metal acetate in presence of acid catalyst synthesized HTPU-M followed by coordination of metal ions with hetero atoms. The structure, composition and geometry of HTPU-M have been confirmed by vibrational spectrometry (FTIR), 1H NMR, elemental analysis and UV-Visible spectroscopy. Morphological structures of HTPU-M were analyzed by X-Ray Diffraction analysis (XRD), Field Emission Scanning Electron Microscope (FE-SEM) with Energy Dispersive X-ray spectroscopy (EDX) and High Resolution Transmission Electron Microscope (HR-TEM) techniques. The thermal degradation pattern and thermal stability of HTPU-M in comparison to HTPU was investigated by thermal-gravimetric (TG)/differential thermal (DT), analyses along with Integral procedure decomposition temperature (IPDT) by Doyle method. The molecular weight of HTPU was determined by gel permeation chromatography (GPC). The preliminary adsorption/desorption studies of HTPU-M for Congo red (CR) was studied by batch adsorption techniques. The results indicated that HTPU-M have amorphous, layered morphology with higher number of nano-sized grooves in comparison to HTPU. Coordination of metal to HTPU plays a key role in enhancing the thermal stability [HTPU-Ni(II) > HTPU-Mn(II) > HTPU-Zn(II) > HTPU]. The HTPU-M can be utilized for industrial waste water treatment by removing environmental pollutants.

  11. Sentence Combining: A Sequence for Instruction.

    ERIC Educational Resources Information Center

    Lawlor, Joseph

    1983-01-01

    Classifies various syntactic structures normally included in sentence-combining instruction into five categories: coordinates, adverbials, restrictive noun modifiers, noun substitutes, and free modifiers. Within each category, structures are further divided into three levels to provide teachers with guidelines for planning instruction. (RH)

  12. Hierarchical Diagnosis of Vocal Fold Disorders

    NASA Astrophysics Data System (ADS)

    Nikkhah-Bahrami, Mansour; Ahmadi-Noubari, Hossein; Seyed Aghazadeh, Babak; Khadivi Heris, Hossein

    This paper explores the use of hierarchical structure for diagnosis of vocal fold disorders. The hierarchical structure is initially used to train different second-level classifiers. At the first level normal and pathological signals have been distinguished. Next, pathological signals have been classified into neurogenic and organic vocal fold disorders. At the final level, vocal fold nodules have been distinguished from polyps in organic disorders category. For feature selection at each level of hierarchy, the reconstructed signal at each wavelet packet decomposition sub-band in 5 levels of decomposition with mother wavelet of (db10) is used to extract the nonlinear features of self-similarity and approximate entropy. Also, wavelet packet coefficients are used to measure energy and Shannon entropy features at different spectral sub-bands. Davies-Bouldin criterion has been employed to find the most discriminant features. Finally, support vector machines have been adopted as classifiers at each level of hierarchy resulting in the diagnosis accuracy of 92%.

  13. Geometrical eigen-subspace framework based molecular conformation representation for efficient structure recognition and comparison

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Tian; Yang, Xiao-Bao; Zhao, Yu-Jun

    2017-04-01

    We have developed an extended distance matrix approach to study the molecular geometric configuration through spectral decomposition. It is shown that the positions of all atoms in the eigen-space can be specified precisely by their eigen-coordinates, while the refined atomic eigen-subspace projection array adopted in our approach is demonstrated to be a competent invariant in structure comparison. Furthermore, a visual eigen-subspace projection function (EPF) is derived to characterize the surrounding configuration of an atom naturally. A complete set of atomic EPFs constitute an intrinsic representation of molecular conformation, based on which the interatomic EPF distance and intermolecular EPF distance can be reasonably defined. Exemplified with a few cases, the intermolecular EPF distance shows exceptional rationality and efficiency in structure recognition and comparison.

  14. Methanesulfonates of high-valent metals: syntheses and structural features of MoO2(CH3SO3)2, UO2(CH3SO3)2, ReO3(CH3SO3), VO(CH3SO3)2, and V2O3(CH3SO3)4 and their thermal decomposition under N2 and O2 atmosphere.

    PubMed

    Betke, Ulf; Neuschulz, Kai; Wickleder, Mathias S

    2011-11-04

    Oxide methanesulfonates of Mo, U, Re, and V have been prepared by reaction of MoO(3), UO(2)(CH(3)COO)(2)·2H(2)O, Re(2)O(7)(H(2)O)(2), and V(2)O(5) with CH(3)SO(3)H or mixtures thereof with its anhydride. These compounds are the first examples of solvent-free oxide methanesulfonates of these elements. MoO(2)(CH(3)SO(3))(2) (Pbca, a=1487.05(4), b=752.55(2), c=1549.61(5) pm, V=1.73414(9) nm(3), Z=8) contains [MoO(2)] moieties connected by [CH(3)SO(3)] ions to form layers parallel to (100). UO(2)(CH(3)SO(3))(2) (P2(1)/c, a=1320.4(1), b=1014.41(6), c=1533.7(1) pm, β=112.80(1)°, V=1.8937(3) nm(3), Z=8) consists of linear UO(2)(2+) ions coordinated by five [CH(3)SO(3)] ions, forming a layer structure. VO(CH(3)SO(3))(2) (P2(1)/c, a=1136.5(1), b=869.87(7), c=915.5(1) pm, β=113.66(1)°, V=0.8290(2) nm(3), Z=4) contains [VO] units connected by methanesulfonate anions to form corrugated layers parallel to (100). In ReO(3)(CH(3)SO(3)) (P1, a=574.0(1), b=1279.6(3), c=1641.9(3) pm, α=102.08(2), β=96.11(2), γ=99.04(2)°, V=1.1523(4) nm(3), Z=8) a chain structure exhibiting infinite O-[ReO(2)]-O-[ReO(2)]-O chains is formed. Each [ReO(2)]-O-[ReO(2)] unit is coordinated by two bidentate [CH(3)SO(3)] ions. V(2)O(3)(CH(3)SO(3))(4) (I2/a, a=1645.2(3), b=583.1(1), c=1670.2(3) pm, β=102.58(3), V=1.5637(5) pm(3), Z=4) adopts a chain structure, too, but contains discrete [VO]-O-[VO] moieties, each coordinated by two bidentate [CH(3)SO(3)] ligands. Additional methanesulfonate ions connect the [V(2)O(3)] groups along [001]. Thermal decomposition of the compounds was monitored under N(2) and O(2) atmosphere by thermogravimetric/differential thermal analysis and XRD measurements. Under N(2) the decomposition proceeds with reduction of the metal leading to the oxides MoO(2), U(3)O(7), V(4)O(7), and VO(2); for MoO(2)(CH(3)SO(3))(2), a small amount of MoS(2) is formed. If the thermal decomposition is carried out in a atmosphere of O(2) the oxides MoO(3) and V(2)O(5) are formed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Fourier method for modeling slanted lamellar gratings of arbitrary end-surface shapes in conical mounting.

    PubMed

    Li, Lifeng

    2015-10-01

    An efficient modal method for numerically modeling slanted lamellar gratings of isotropic dielectric or metallic media in conical mounting is presented. No restrictions are imposed on the slant angle and the length of the lamellae. The end surface of the lamellae can be arbitrary, subject to certain restrictions. An oblique coordinate system that is adapted to the slanted lamella sidewalls allows the most efficient way of representing and manipulating the electromagnetic fields. A translational coordinate system that is based on the oblique Cartesian coordinate system adapts to the end-surface profile of the lamellae, so that the latter can be handled simply and easily. Moreover, two matrix eigenvalue problems of size 2N × 2N, one for each fundamental polarization of the electromagnetic fields in the periodic lamellar structure, where N is the matrix truncation number, are derived to replace the 4N × 4N eigenvalue problem that has been used in the literature. The core idea leading to this success is the polarization decomposition of the electromagnetic fields inside the periodic lamellar region when the fields are expressed in the oblique translational coordinate system.

  16. Comparison of two interpolation methods for empirical mode decomposition based evaluation of radiographic femur bone images.

    PubMed

    Udhayakumar, Ganesan; Sujatha, Chinnaswamy Manoharan; Ramakrishnan, Swaminathan

    2013-01-01

    Analysis of bone strength in radiographic images is an important component of estimation of bone quality in diseases such as osteoporosis. Conventional radiographic femur bone images are used to analyze its architecture using bi-dimensional empirical mode decomposition method. Surface interpolation of local maxima and minima points of an image is a crucial part of bi-dimensional empirical mode decomposition method and the choice of appropriate interpolation depends on specific structure of the problem. In this work, two interpolation methods of bi-dimensional empirical mode decomposition are analyzed to characterize the trabecular femur bone architecture of radiographic images. The trabecular bone regions of normal and osteoporotic femur bone images (N = 40) recorded under standard condition are used for this study. The compressive and tensile strength regions of the images are delineated using pre-processing procedures. The delineated images are decomposed into their corresponding intrinsic mode functions using interpolation methods such as Radial basis function multiquadratic and hierarchical b-spline techniques. Results show that bi-dimensional empirical mode decomposition analyses using both interpolations are able to represent architectural variations of femur bone radiographic images. As the strength of the bone depends on architectural variation in addition to bone mass, this study seems to be clinically useful.

  17. Impact of litter quantity on the soil bacteria community during the decomposition of Quercus wutaishanica litter.

    PubMed

    Zeng, Quanchao; Liu, Yang; An, Shaoshan

    2017-01-01

    The forest ecosystem is the main component of terrestrial ecosystems. The global climate and the functions and processes of soil microbes in the ecosystem are all influenced by litter decomposition. The effects of litter decomposition on the abundance of soil microorganisms remain unknown. Here, we analyzed soil bacterial communities during the litter decomposition process in an incubation experiment under treatment with different litter quantities based on annual litterfall data (normal quantity, 200 g/(m 2 /yr); double quantity, 400 g/(m 2 /yr) and control, no litter). The results showed that litter quantity had significant effects on soil carbon fractions, nitrogen fractions, and bacterial community compositions, but significant differences were not found in the soil bacterial diversity. The normal litter quantity enhanced the relative abundance of Actinobacteria and Firmicutes and reduced the relative abundance of Bacteroidetes, Plantctomycets and Nitrospiare. The Beta-, Gamma-, and Deltaproteobacteria were significantly less abundant in the normal quantity litter addition treatment, and were subsequently more abundant in the double quantity litter addition treatment. The bacterial communities transitioned from Proteobacteria-dominant (Beta-, Gamma-, and Delta) to Actinobacteria-dominant during the decomposition of the normal quantity of litter. A cluster analysis showed that the double litter treatment and the control had similar bacterial community compositions. These results suggested that the double quantity litter limited the shift of the soil bacterial community. Our results indicate that litter decomposition alters bacterial dynamics under the accumulation of litter during the vegetation restoration process, which provides important significant guidelines for the management of forest ecosystems.

  18. DFT calculations of the structures and vibrational spectra of the [Fe(bpy) 3] 2+ and [Ru(bpy) 3] 2+ complexes

    NASA Astrophysics Data System (ADS)

    Alexander, Bruce D.; Dines, Trevor J.; Longhurst, Rayne W.

    2008-09-01

    Structures of the [M(bpy) 3] 2+ complexes (M = Fe and Ru) have been calculated at the B3-LYP/DZVP level. IR and Raman spectra were calculated using the optimised geometries, employing a scaled quantum chemical force field, and compared with an earlier normal coordinate analysis of [Ru(bpy) 3] 2+ which was based upon experimental data alone, and the use of a simplified model. The results of the calculations provide a highly satisfactory fit to the experimental data and the normal coordinate analyses, in terms of potential energy distributions, allow a detailed understanding of the vibrational spectra of both complexes. Evidence is presented for Jahn-Teller distortion in the 1E MLCT excited state.

  19. Crystal structure of simple metals at high pressures

    NASA Astrophysics Data System (ADS)

    Degtyareva, Olga

    2010-09-01

    The effects of pressure on the crystal structure of simple (or sp-) elements are analysed in terms of changes in coordination number, packing density, and interatomic distances, and general rules are established. In the polyvalent elements from groups 14-17, the covalently bonded structures tend to transform to metallic phases with a gradual increase in coordination number and packing density, a behaviour normally expected under pressure. Group 1 and 2 metallic elements, however, show a reverse trend towards structures with low packing density due to intricate changes in their electronic structure. Complex crystal structures such as host-guest and incommensurately modulated structures found in these elements are given special attention in this review in an attempt to determine their role in the observed phase-transition sequences.

  20. Heterometallic molecular precursors for a lithium-iron oxide material: synthesis, solid state structure, solution and gas-phase behaviour, and thermal decomposition.

    PubMed

    Han, Haixiang; Wei, Zheng; Barry, Matthew C; Filatov, Alexander S; Dikarev, Evgeny V

    2017-05-02

    Three heterometallic single-source precursors with a Li : Fe = 1 : 1 ratio for a LiFeO 2 oxide material are reported. Heterometallic compounds LiFeL 3 (L = tbaoac (1), ptac (2), and acac(3)) have been obtained on a large scale, in nearly quantitative yields by one-step reactions that employ readily available reagents. The heterometallic precursor LiFe(acac) 3 (3) with small, symmetric substituents on the ligand (acac = pentane-2,4-dionate), maintains a 1D polymeric structure in the solid state that limits its volatility and prevents solubility in non-coordinating solvents. The application of the unsymmetrical ligands, tbaoac (tert-butyl acetoacetate) and ptac (1,1,1-trifluoro-5,5-dimethyl-2,4-hexanedionate), that exhibit different bridging properties at the two ends of the ligand, allowed us to change the connectivity pattern within the heterometallic assembly. The latter was demonstrated by structural characterization of heterometallic complexes LiFe(tbaoac) 3 (1) and LiFe(ptac) 3 (2) that consist of discrete heterocyclic tetranuclear molecules Li 2 Fe 2 L 6 . The compounds are highly volatile and exhibit a congruent sublimation character. DART mass spectrometric investigation revealed the presence of heterometallic molecules in the gas phase. The positive mode spectra are dominated by the presence of [M - L] + peaks (M = Li 2 Fe 2 L 6 ). In accord with their discrete molecular structure, complexes 1 and 2 are highly soluble in nearly all common solvents. In order to test the retention of the heterometallic structure in solution, the diamagnetic analog of 1, LiMg(tbaoac) 3 (4), has been isolated. Its tetranuclear molecular structure was found to be isomorphous to that of the iron counterpart. 1 H and 7 Li NMR spectroscopy unambiguously confirmed the presence of heterometallic molecules in solutions of non-coordinating solvents. The heterometallic precursor 1 was shown to exhibit clean thermal decomposition in air that results in phase-pure α-modification of layered oxide LiFeO 2 , the prospective cathode material for lithium ion batteries.

  1. Stiffness of a wobbling mass models analysed by a smooth orthogonal decomposition of the skin movement relative to the underlying bone.

    PubMed

    Dumas, Raphaël; Jacquelin, Eric

    2017-09-06

    The so-called soft tissue artefacts and wobbling masses have both been widely studied in biomechanics, however most of the time separately, from either a kinematics or a dynamics point of view. As such, the estimation of the stiffness of the springs connecting the wobbling masses to the rigid-body model of the lower limb, based on the in vivo displacements of the skin relative to the underling bone, has not been performed yet. For this estimation, the displacements of the skin markers in the bone-embedded coordinate systems are viewed as a proxy for the wobbling mass movement. The present study applied a structural vibration analysis method called smooth orthogonal decomposition to estimate this stiffness from retrospective simultaneous measurements of skin and intra-cortical pin markers during running, walking, cutting and hopping. For the translations about the three axes of the bone-embedded coordinate systems, the estimated stiffness coefficients (i.e. between 2.3kN/m and 55.5kN/m) as well as the corresponding forces representing the connection between bone and skin (i.e. up to 400N) and corresponding frequencies (i.e. in the band 10-30Hz) were in agreement with the literature. Consistently with the STA descriptions, the estimated stiffness coefficients were found subject- and task-specific. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A series of novel lanthanide complexes with 2-bromine-5-methoxybenzoic acid and 2,2‧-bipyridine: Syntheses, crystal structures, and luminescent properties

    NASA Astrophysics Data System (ADS)

    Zhao, Qing-Qing; Zhu, Min-Min; Ren, Ning; Zhang, Jian-Jun

    2017-12-01

    Six new lanthanide complexes [Ln(2-Br-5-MOBA)3(2,2‧-DIPY)]2 (Ln = Nd(1), Eu(2), Gd(3), Tb(4), Ho(5), Er(6); 2-Br-5-MOBA = 2-bromine-5-methoxybenzoate; 2,2‧-DIPY = 2,2‧-bipyridine) have been successfully synthesized and characterized. The complexes 1-5 are isostructural and nine-coordinated by the single-crystal X-ray diffraction analyses, while the complex 6 is eight-coordinated. The difference of crystal structure may be the result of the lanthanide contraction effect. The binuclear units were further assembled into 1D, 2D, 3D supramolecular structures by the π-π stacking and Csbnd H⋯O hydrogen bonding interactions. The thermal decomposition mechanism of complexes 1-6 was studied by TG analysis and further authenticated by TG/DSC-FTIR techniques. The solid-state luminescence properties of complexes 2 and 4 were investigated at room temperature. The results indicate that complexes 2 and 4 show characteristic emission of Eu3+ ion and Tb3+ ion, respectively. What's more, the title complexes have good antibacterial activities against Candida albicans.

  3. The synergic control of multi-finger force production: Stability of explicit and implicit task components

    PubMed Central

    Reschechtko, Sasha; Zatsiorsky, Vladimir M.; Latash, Mark L.

    2016-01-01

    Manipulating objects with the hands requires the accurate production of resultant forces including shear forces; effective control of these shear forces also requires the production of internal forces normal to the surface of the object(s) being manipulated. In the present study, we investigated multi-finger synergies stabilizing shear and normal components of force, as well as drifts in both components of force, during isometric pressing tasks requiring a specific magnitude of shear force production. We hypothesized that shear and normal forces would evolve similarly in time, and also show similar stability properties as assessed by the decomposition of inter-trial variance within the uncontrolled manifold hypothesis. Healthy subjects were required to accurately produce total shear and total normal forces with four fingers of the hand during a steady-state force task (with and without visual feedback) and a self-paced force pulse task. The two force components showed similar time profiles during both shear force pulse production and unintentional drift induced by turning the visual feedback off. Only the explicitly instructed components of force, however, were stabilized with multi-finger synergies. No force-stabilizing synergies and no anticipatory synergy adjustments were seen for the normal force in shear force production trials. These unexpected qualitative differences in the control of the two force components – which are produced by some of the same muscles and show high degree of temporal coupling – are interpreted within the theory of control with referent coordinates for salient variables. These observations suggest the existence of two classes of neural variables: one that translates into shifts of referent coordinates and defines changes in magnitude of salient variables, and the other controlling gains in back-coupling loops that define stability of the salient variables. Only the former are shared between the explicit and implicit task components. PMID:27601252

  4. Water stability of microporous coordination polymers and the adsorption of pharmaceuticals from water.

    PubMed

    Cychosz, Katie A; Matzger, Adam J

    2010-11-16

    The stability of a variety of microporous coordination polymers (MCPs) to water-containing solutions was studied using powder X-ray diffraction. It was determined that the stability of the MCP is related to the metal cluster present in the structure with trinuclear chromium clusters more stable than copper paddlewheel clusters which are more stable than basic zinc acetate clusters. Zn(2-methylimidizolate)(2) was found to be more water stable than zinc MCPs with carboxylate linkers; however, extended exposure to water led to decomposition of all zinc-based MCPs. Matériaux de l'Institut Lavoisier (MIL)-100 was also found to be completely water stable and was used to adsorb the pharmaceuticals furosemide and sulfasalazine from water with large uptakes achievable at low concentrations, indicating that the adsorption of wastewater contaminants may be a feasible application for these materials.

  5. Hydrothermal syntheses, crystal structures, and photophysical properties of two coordination polymers with mixed ligands

    NASA Astrophysics Data System (ADS)

    Yan, Li; Liu, Chun-Ling

    2017-10-01

    Two novel metal-organic coordination polymers [Cd(ipdt)(m-BDC)·3H2O]n (1) and [Pb(mip)2(NTC) ·2H2O]n (2) [ipdt = 2,6-Dimethoxy-4-(1H-1,3,7,8-tetraaza-cyclopenta[l]phenanthren-2-yl)-phenol, mip = 2-(3-methoxyphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline, m-BDC = isophthalic acid, NTC = nicotinic acid] have been synthesized by hydrothermal reactions and characterized by elemental analysis, thermogravimetric (TG) analysis, infrared spectrum (IR) and single-crystal X-ray diffraction. Single-crystal X-ray diffraction reveals that 1 exhibits two-dimensional (2D) layer architecture, and 2 shows 1D chain architecture. TG analysis shows clear courses of weight loss, which corresponds to the decomposition of different ligands. The luminescent properties for the ligand ipdt, mip and complexes 1-2 are also discussed in detail, which should be acted as potential luminescent material.

  6. High-frequency Born synthetic seismograms based on coupled normal modes

    USGS Publications Warehouse

    Pollitz, Fred F.

    2011-01-01

    High-frequency and full waveform synthetic seismograms on a 3-D laterally heterogeneous earth model are simulated using the theory of coupled normal modes. The set of coupled integral equations that describe the 3-D response are simplified into a set of uncoupled integral equations by using the Born approximation to calculate scattered wavefields and the pure-path approximation to modulate the phase of incident and scattered wavefields. This depends upon a decomposition of the aspherical structure into smooth and rough components. The uncoupled integral equations are discretized and solved in the frequency domain, and time domain results are obtained by inverse Fourier transform. Examples show the utility of the normal mode approach to synthesize the seismic wavefields resulting from interaction with a combination of rough and smooth structural heterogeneities. This approach is applied to an ∼4 Hz shallow crustal wave propagation around the site of the San Andreas Fault Observatory at Depth (SAFOD).

  7. Synthesis and decomposition of a novel carboxylate precursor to indium oxide

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Andras, Maria T.; Duraj, Stan A.; Clark, Eric B.; Hehemann, David G.; Scheiman, Daniel A.; Fanwick, Phillip E.

    1994-01-01

    Reaction of metallic indium with benzoyl peroxide in 4-1 methylpyridine (4-Mepy) at 25 C produces an eight-coordinate mononuclear indium(III) benzoate, In(eta(sup 2)-O2CC6H5)3(4-Mepy)2 4H2O (I), in yields of up to 60 percent. The indium(III) benzoate was fully characterized by elemental analysis, spectroscopy, and X-ray crystallography; (I) exists in the crystalline state as discrete eight-coordinate molecules; the coordination sphere around the central indium atom is best described as pseudo-square pyramidal. Thermogravimetric analysis of (I) and X-ray diffraction powder studies on the resulting pyrolysate demonstrate that this new benzoate is an inorganic precursor to indium oxide. Decomposition of (I) occurs first by loss of 4-methylpyridine ligands (100 deg-200 deg C), then loss of benzoates with formation of In2O3 at 450 C. We discuss both use of carboxylates as precursors and our approach to their preparation.

  8. Vorticity and helicity decompositions and dynamics with real Schur form of the velocity gradient

    NASA Astrophysics Data System (ADS)

    Zhu, Jian-Zhou

    2018-03-01

    The real Schur form (RSF) of a generic velocity gradient field ∇u is exploited to expose the structures of flows, in particular, our field decomposition resulting in two vorticities with only mutual linkage as the topological content of the global helicity (accordingly decomposed into two equal parts). The local transformation to the RSF may indicate alternative (co)rotating frame(s) for specifying the objective argument(s) of the constitutive equation. When ∇u is uniformly of RSF in a fixed Cartesian coordinate frame, i.e., ux = ux(x, y) and uy = uy(x, y), but uz = uz(x, y, z), the model, with the decomposed vorticities both frozen-in to u, is for two-component-two-dimensional-coupled-with-one-component-three-dimensional flows in between two-dimensional-three-component (2D3C) and fully three-dimensional-three-component ones and may help curing the pathology in the helical 2D3C absolute equilibrium, making the latter effectively work in more realistic situations.

  9. A series of binuclear lanthanide(III) complexes: Crystallography, antimicrobial activity and thermochemistry properties studies

    NASA Astrophysics Data System (ADS)

    Zhang, Ying-Ying; Ren, Ning; Xu, Su-Ling; Zhang, Jian-Jun; Zhang, Da-Hai

    2015-02-01

    A series of novel lanthanide complexes with the general formula [Ln(3,4-DClBA)3phen]2 (Ln = Ho(1), Nd(2), Sm(3), Dy(4), Eu(5), Tb(6), Yb(7) and Er(8), 3,4-DClBA = 3,4-dichlorobenzoate, phen = 1,10-phenanthroline) were prepared at room temperature and characterized. The crystal structures of complexes 1-8 have been determined by single crystal X-ray diffraction. These complexes are isomorphous and lanthanide ions are all eight-coordinated to oxygen atoms and nitrogen atoms with distorted square-antiprism geometry. The thermal decomposition mechanism and TG-FTIR spectra of gaseous products of thermal decomposition processes for complexes 1-8 were acquired through TG/DSC-FTIR system. The heat capacities of complexes 1-8 were measured using DSC technology and fitted to a polynomial equation by the least-squares method. Complexes 3-6 display characteristic lanthanide emission bands in the visible region. Meanwhile, these complexes exhibit in good antimicrobial activity against Candida albicans, Escherichia coli, and Staphylococcus aureu.

  10. Synthesis, spectroscopic, thermal and structural properties of 4-(2-aminoethyl)pyridinium tetracyanometallate(II) complexes

    NASA Astrophysics Data System (ADS)

    Karaağaç, Dursun; Kürkçüoğlu, Güneş Süheyla; Şenyel, Mustafa; Şahin, Onur

    2017-05-01

    In this study, three new complexes (4aepyH)2[Ni(CN)4] (1), (4aepyH)2[Pd(CN)4] (2) and (4aepyH)2[Pt(CN)4] (3) [4aepy = 4-(2-aminoethyl)pyridine] have been synthesized and characterized by elemental, thermal, vibrational (FT-IR and Raman) and single-crystal X-ray diffraction techniques. The crystallographic analyses reveal that the complexes crystallize in the monoclinic system, space group C2/c. The asymmetric units of the complexes contain one M(II) ion, two cyanide ligands and one non-coordinated the 4aepy ligand. Each M(II) ion is four coordinated with four cyanide-carbon atoms in a square planar geometry and the [M(CN)4]2- anions act as a counter ion. The 4aepyH cations in the complexes compose of the protonation of the 4aepy. The vibrational spectral data also supported to the crystal structures of the complexes. Thermal stabilities and decomposition products of the complexes were investigated in the temperature range 40-700 °C in the static air atmosphere.

  11. Watermarking scheme based on singular value decomposition and homomorphic transform

    NASA Astrophysics Data System (ADS)

    Verma, Deval; Aggarwal, A. K.; Agarwal, Himanshu

    2017-10-01

    A semi-blind watermarking scheme based on singular-value-decomposition (SVD) and homomorphic transform is pro-posed. This scheme ensures the digital security of an eight bit gray scale image by inserting an invisible eight bit gray scale wa-termark into it. The key approach of the scheme is to apply the homomorphic transform on the host image to obtain its reflectance component. The watermark is embedded into the singular values that are obtained by applying the singular value decomposition on the reflectance component. Peak-signal-to-noise-ratio (PSNR), normalized-correlation-coefficient (NCC) and mean-structural-similarity-index-measure (MSSIM) are used to evaluate the performance of the scheme. Invisibility of watermark is ensured by visual inspection and high value of PSNR of watermarked images. Presence of watermark is ensured by visual inspection and high values of NCC and MSSIM of extracted watermarks. Robustness of the scheme is verified by high values of NCC and MSSIM for attacked watermarked images.

  12. Design of a linear projector for use with the normal modes of the GLAS 4th order GCM

    NASA Technical Reports Server (NTRS)

    Bloom, S. C.

    1984-01-01

    The design of a linear projector for use with the normal modes of a model of atmospheric circulation is discussed. A central element in any normal mode initialization scheme is the process by which a set of data fields - winds, temperatures or geopotentials, and surface pressures - are expressed ("projected') in terms of the coefficients of a model's normal modes. This process is completely analogous to the Fourier decomposition of a single field (indeed a FFT applied in the zonal direction is a part of the process). Complete separability in all three spatial dimensions is assumed. The basis functions for the modal expansion are given. An important feature of the normal modes is their coupling of the structures of different fields, thus a coefficient in a normal mode expansion would contain both mass and momentum information.

  13. Crystal structures and thermodynamics/kinetics of Zn(II) coordination polymers with helical chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Tian; Yue, Ke-Fen, E-mail: ykflyy@nwu.edu.cn; Zhao, Yi-xing

    Solvothermal reactions of Zn(II) acetates and four V-shaped carboxylates ligands in the presence of 1,4-Bis(2-methyl-imidazol-1-yl)butane afforded four interesting Zn(II) coordination polymers with helical chains, namely, {[Zn(bib)(atibdc)]·2H_2O}{sub n} (1), {[Zn(bib)(atbip)]·H_2O}{sub n} (2), {[Zn(bib)(2,2′-tda)]}{sub n} (3) and {[Zn(bib)(5-tbipa)]·EtOH}{sub n} (4), (H{sub 2}atibdc=5-amino-2,4,6-triiodoisophthalic acid, H{sub 2}atbip=5-amino-2,4,6-tribromoisophthalic acid, 2,2′-H{sub 2}tad=2,2′-thiodiacetic acid, 5-H{sub 2}tbipa=5-tert-butyl-isophthalic acid). 1 reveals a 3D chiral framework with three kinds of helical chains along a, b and c axis. 2 shows a 2D step-type chiral framework with right-handed helical chains. 3 displays a wavelike 2D layer network possessing alternate left- and right-handed helical chains. 4 presents a four-connected 3D framework withmore » zigzag and meso-helical chains. The different spacers and substituent group of carboxylic acid ligands may lead to the diverse network structures of 1–4. The fluorescent properties of complexes 1−4 were studied. In addition, the thermal decompositions properties of 1–4 were investigated by simultaneous TG/DTG–DSC technique. The apparent activation energy E and the pre-exponential factor (A) of skeleton collapse for the complexes 1–4 are calculated by the integral Kissinger's method and Ozawa–Doyle's method. The activation energy E (E{sub 1}=209.658 kJ·mol{sup −1}, E{sub 2}=250.037 kJ mol{sup −1}, E{sub 3}=225.300 kJ mol{sup −1}, E{sub 4}=186.529 kJ·mol{sup −1}) demonstrates that the reaction rate of the melting decomposition is slow. The thermodynamic parameters (ΔH{sup ‡}, ΔG{sup ‡} and ΔS{sup ‡}) at the peak temperatures of the DTG curves were also calculated. ΔG{sup ‡}>0 indicates that the skeleton collapse is not spontaneous. ΔH{sub d}>0 suggests that the skeleton collapse is endothermic, corresponding to the intense endothermic peak of the DSC curve. The structural stability could be illustrated from the point of thermodynamics and kinetics. - Graphical abstract: Four new zinc coordination architectures constructed from the primary ligand bib, transition metal ions Zn(II) and four V-shaped carboxylate coligands. The different structural evolutions of complexes 1–4 have systematically illustrated that the carboxylate coligands play a critical role in the assemblies of the CPs. Their thermal decompositions properties of 1–4 were investigated by simultaneous TG/DTG–DSC technique. The apparent activation energy E and the pre-exponential factor (A) of skeleton collapse for the complexes 1−4 are calculated by the integral Kissinger’s method and Ozawa–Doyle’s method. The structural stability could be illustrated from the point of thermodynamics and kinetics. Display Omitted.« less

  14. Polar decomposition for attitude determination from vector observations

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, Itzhack Y.

    1993-01-01

    This work treats the problem of weighted least squares fitting of a 3D Euclidean-coordinate transformation matrix to a set of unit vectors measured in the reference and transformed coordinates. A closed-form analytic solution to the problem is re-derived. The fact that the solution is the closest orthogonal matrix to some matrix defined on the measured vectors and their weights is clearly demonstrated. Several known algorithms for computing the analytic closed form solution are considered. An algorithm is discussed which is based on the polar decomposition of matrices into the closest unitary matrix to the decomposed matrix and a Hermitian matrix. A somewhat longer improved algorithm is suggested too. A comparison of several algorithms is carried out using simulated data as well as real data from the Upper Atmosphere Research Satellite. The comparison is based on accuracy and time consumption. It is concluded that the algorithms based on polar decomposition yield a simple although somewhat less accurate solution. The precision of the latter algorithms increase with the number of the measured vectors and with the accuracy of their measurement.

  15. Structural insights into the thermal decomposition sequence of barium tetrahydrogenorthotellurate(VI), Ba[H{sub 4}TeO{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weil, Matthias, E-mail: Matthias.Weil@tuwien.ac.at; Stöger, Berthold; Gierl-Mayer, Christian

    2016-09-15

    The compounds Ba[H{sub 4}TeO{sub 6}] (I), Ba[H{sub 2}TeO{sub 5}] (II), Ba[Te{sub 2}O{sub 6}(OH){sub 2}] (III) and Ba[TeO{sub 4}] (IV) were prepared by application of a diffusion method (I), under hydrothermal conditions (II and III) and from solid state reactions (IV), respectively. Structure analysis on the basis of single crystal X-ray diffraction data revealed novel structure types for (I), (II) and (III) and isotypism of (IV) with PrSbO{sub 4} and LaSbO{sub 4}. Common feature of the four oxotellurate(VI) structures are [TeO{sub 6}] octahedra. Whereas in the crystal structure of (I) the octahedral units are isolated, they are condensed into chains viamore » corner-sharing in (II) and via edge-sharing in (III) and (IV). The coordination numbers of the barium cations in the four structures range from seven to ten. Although hydrogen atom positions could not be located for the structures of (I) and (II), short interpolyhedral O···O contacts are evident for strong hydrogen bonding. The temperature behaviour of (I), (II) and (IV) was monitored by simultaneous thermal analysis (STA) measurements and in situ powder X-ray diffraction, revealing the decomposition sequence Ba[H{sub 4}TeO{sub 6}] → Ba[H{sub 2}TeO{sub 5}] → Ba[TeO{sub 4}]→ Ba[TeO{sub 3}] upon heating to temperatures up to 900 °C. - Graphical abstract: The crystal structures of the four oxotellurates(VI) were determined from single crystal data. The thermal decomposition of Ba[H{sub 4}TeO{sub 6}], monitored by temperature-dependent X-ray powder diffraction and simultaneous thermal analysis measurements, involves two condensation reactions according to Ba[H{sub 4}TeO{sub 6}]→Ba[H{sub 2}TeO{sub 5}]+H{sub 2}O(↑)→Ba[TeO{sub 4}]+ H{sub 2}O(↑). Display Omitted.« less

  16. Unraveling the Decomposition Process of Lead(II) Acetate: Anhydrous Polymorphs, Hydrates, and Byproducts and Room Temperature Phosphorescence.

    PubMed

    Martínez-Casado, Francisco J; Ramos-Riesco, Miguel; Rodríguez-Cheda, José A; Cucinotta, Fabio; Matesanz, Emilio; Miletto, Ivana; Gianotti, Enrica; Marchese, Leonardo; Matěj, Zdeněk

    2016-09-06

    Lead(II) acetate [Pb(Ac)2, where Ac = acetate group (CH3-COO(-))2] is a very common salt with many and varied uses throughout history. However, only lead(II) acetate trihydrate [Pb(Ac)2·3H2O] has been characterized to date. In this paper, two enantiotropic polymorphs of the anhydrous salt, a novel hydrate [lead(II) acetate hemihydrate: Pb(Ac)2·(1)/2H2O], and two decomposition products [corresponding to two different basic lead(II) acetates: Pb4O(Ac)6 and Pb2O(Ac)2] are reported, with their structures being solved for the first time. The compounds present a variety of molecular arrangements, being 2D or 1D coordination polymers. A thorough thermal analysis, by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), was also carried out to study the behavior and thermal data of the salt and its decomposition process, in inert and oxygenated atmospheres, identifying the phases and byproducts that appear. The complex thermal behavior of lead(II) acetate is now solved, finding the existence of another hydrate, two anhydrous enantiotropic polymorphs, and some byproducts. Moreover, some of them are phosphorescent at room temperature. The compounds were studied by TGA, DSC, X-ray diffraction, and UV-vis spectroscopy.

  17. Synthesis of CuO by Cu-CPPs with the determination of Cu(II) coordination modes from a novel complex of [Cu(terpyOH){sub 2}]·(HBTC)·2H{sub 2}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yu, E-mail: wangyu1012@hit.edu.cn; Chen, Gang, E-mail: gchen@hit.edu.cn; Han, Li

    2013-10-15

    In this study, we investigated the synthesis of CuO microrods by simple calcination of copper-based coordination polymer particles (Cu-CPPs) at high temperature in air. The photocatalytic activity of the CuO microrods was tested by the decomposition of aqueous solution of RhB, which was completely decomposed by irradiation with light. To analyze the relationship of metal ions and ligands in the Cu-CPPs, the single crystal of [Cu(terpyOH){sub 2}]∙(HBTC)∙2H{sub 2}O (1) (terpyOH=4′-hydroxy-2,2′:6′,2″-terpyridine, BTC=1,3,5-benzene tricarboxylate) was first prepared and characterized by X-ray single crystal structural analysis. A variety of hydrogen bonds constructing the 3D complex structure in [Cu(terpyOH){sub 2}]∙(HBTC)∙2H{sub 2}O (1) were observed.more » - Graphical abstract: Demonstrating a general method to synthesize CuO microrods via simple calcination of Cu-CPPs and Cu(II) coordination modes from a novel complex of [Cu(terpyOH){sub 2}]∙(HBTC)·2H{sub 2}O constructed by hydrogen bonding. Display Omitted - Highlights: • The formation of microrods CuO from thermal treatment of Cu-CPPs through an “escape-by-crafty-scheme” strategy has been studied. • Determination of Cu(II) coordination modes in Cu-CPPs from a novel complex of [Cu(terpyOH){sub 2}]∙(HBTC) 2H{sub 2}O. • Invested the behave of hydrogen bonding to construct the 3D complex structure. • Commendable photodegradation performance was observed.« less

  18. Cephalometric landmark detection in dental x-ray images using convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Lee, Hansang; Park, Minseok; Kim, Junmo

    2017-03-01

    In dental X-ray images, an accurate detection of cephalometric landmarks plays an important role in clinical diagnosis, treatment and surgical decisions for dental problems. In this work, we propose an end-to-end deep learning system for cephalometric landmark detection in dental X-ray images, using convolutional neural networks (CNN). For detecting 19 cephalometric landmarks in dental X-ray images, we develop a detection system using CNN-based coordinate-wise regression systems. By viewing x- and y-coordinates of all landmarks as 38 independent variables, multiple CNN-based regression systems are constructed to predict the coordinate variables from input X-ray images. First, each coordinate variable is normalized by the length of either height or width of an image. For each normalized coordinate variable, a CNN-based regression system is trained on training images and corresponding coordinate variable, which is a variable to be regressed. We train 38 regression systems with the same CNN structure on coordinate variables, respectively. Finally, we compute 38 coordinate variables with these trained systems from unseen images and extract 19 landmarks by pairing the regressed coordinates. In experiments, the public database from the Grand Challenges in Dental X-ray Image Analysis in ISBI 2015 was used and the proposed system showed promising performance by successfully locating the cephalometric landmarks within considerable margins from the ground truths.

  19. Crystal structure of simple metals at high pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Degtyareva, Olga

    2010-10-22

    The effects of pressure on the crystal structure of simple (or sp-) elements are analysed in terms of changes in coordination number, packing density, and interatomic distances, and general rules are established. In the polyvalent elements from groups 14-17, the covalently bonded structures tend to transform to metallic phases with a gradual increase in coordination number and packing density, a behaviour normally expected under pressure. Group 1 and 2 metallic elements, however, show a reverse trend towards structures with low packing density due to intricate changes in their electronic structure. Complex crystal structures such as host-guest and incommensurately modulated structuresmore » found in these elements are given special attention in this review in an attempt to determine their role in the observed phase-transition sequences.« less

  20. Metal coordination polymer derived mesoporous Co3O4 nanorods with uniform TiO2 coating as advanced anodes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Geng, Hongbo; Ang, Huixiang; Ding, Xianguang; Tan, Huiteng; Guo, Guile; Qu, Genlong; Yang, Yonggang; Zheng, Junwei; Yan, Qingyu; Gu, Hongwei

    2016-01-01

    In this work, a one-dimensional Co3O4@TiO2 core-shell electrode material with superior electrochemical performance is fabricated by a convenient and controllable route. The approach involves two main steps: the homogeneous deposition of polydopamine and TiO2 layers in sequence on the cobalt coordination polymer and the thermal decomposition of the polymer matrix. The as-prepared electrode material can achieve excellent electrochemical properties and stability as an anode material for lithium ion batteries, such as a high specific capacity of 1279 mA h g-1, good cycling stability (around 803 mA h g-1 at a current density of 200 mA g-1 after 100 cycles), and stable rate performance (around 520 mA h g-1 at a current density of 1000 mA g-1). This dramatic electrochemical performance is mainly attributed to the excellent structural characteristics, which could improve the electrical conductivity and lithium ion mobility, as well as electrolyte permeability and architectural stability during cycling.In this work, a one-dimensional Co3O4@TiO2 core-shell electrode material with superior electrochemical performance is fabricated by a convenient and controllable route. The approach involves two main steps: the homogeneous deposition of polydopamine and TiO2 layers in sequence on the cobalt coordination polymer and the thermal decomposition of the polymer matrix. The as-prepared electrode material can achieve excellent electrochemical properties and stability as an anode material for lithium ion batteries, such as a high specific capacity of 1279 mA h g-1, good cycling stability (around 803 mA h g-1 at a current density of 200 mA g-1 after 100 cycles), and stable rate performance (around 520 mA h g-1 at a current density of 1000 mA g-1). This dramatic electrochemical performance is mainly attributed to the excellent structural characteristics, which could improve the electrical conductivity and lithium ion mobility, as well as electrolyte permeability and architectural stability during cycling. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08570e

  1. Exploration of the Detailed Conditions for Reductive Stability of Mg(TFSI) 2 in Diglyme: Implications for Multivalent Electrolytes

    DOE PAGES

    Baskin, Artem; Prendergast, David

    2016-02-05

    In this paper, we reveal the general mechanisms of partial reduction of multivalent complex cations in conditions specific for the bulk solvent and in the vicinity of the electrified metal electrode surface and disclose the factors affecting the reductive stability of electrolytes for multivalent electrochemistry. Using a combination of ab initio techniques, we clarify the relation between the reductive stability of contact-ion pairs comprising a multivalent cation and a complex anion, their solvation structures, solvent dynamics, and the electrode overpotential. We found that for ion pairs with multiple configurations of the complex anion and the Mg cation whose available orbitalsmore » are partially delocalized over the molecular complex and have antibonding character, the primary factor of the reductive stability is the shape factor of the solvation sphere of the metal cation center and the degree of the convexity of a polyhedron formed by the metal cation and its coordinating atoms. We focused specifically on the details of Mg (II) bis(trifluoromethanesulfonyl)imide in diethylene glycol dimethyl ether (Mg(TFSI) 2)/diglyme) and its singly charged ion pair, MgTFSI +. In particular, we found that both stable (MgTFSI) + and (MgTFSI) 0 ion pairs have the same TFSI configuration but drastically different solvation structures in the bulk solution. This implies that the MgTFSI/dyglyme reductive stability is ultimately determined by the relative time scale of the solvent dynamics and electron transfer at the Mg–anode interface. In the vicinity of the anode surface, steric factors and hindered solvent dynamics may increase the reductive stability of (MgTFSI) + ion pairs at lower overpotential by reducing the metal cation coordination, in stark contrast to the reduction at high overpotential accompanied by TFSI decomposition. By examining other solute/solvent combinations, we conclude that the electrolytes with highly coordinated Mg cation centers are more prone to reductive instability due to the chemical decomposition of the anion or solvent molecules. Finally, the obtained findings disclose critical factors for stable electrolyte design and show the role of interfacial phenomena in reduction of multivalent ions.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baskin, Artem; Prendergast, David

    In this paper, we reveal the general mechanisms of partial reduction of multivalent complex cations in conditions specific for the bulk solvent and in the vicinity of the electrified metal electrode surface and disclose the factors affecting the reductive stability of electrolytes for multivalent electrochemistry. Using a combination of ab initio techniques, we clarify the relation between the reductive stability of contact-ion pairs comprising a multivalent cation and a complex anion, their solvation structures, solvent dynamics, and the electrode overpotential. We found that for ion pairs with multiple configurations of the complex anion and the Mg cation whose available orbitalsmore » are partially delocalized over the molecular complex and have antibonding character, the primary factor of the reductive stability is the shape factor of the solvation sphere of the metal cation center and the degree of the convexity of a polyhedron formed by the metal cation and its coordinating atoms. We focused specifically on the details of Mg (II) bis(trifluoromethanesulfonyl)imide in diethylene glycol dimethyl ether (Mg(TFSI) 2)/diglyme) and its singly charged ion pair, MgTFSI +. In particular, we found that both stable (MgTFSI) + and (MgTFSI) 0 ion pairs have the same TFSI configuration but drastically different solvation structures in the bulk solution. This implies that the MgTFSI/dyglyme reductive stability is ultimately determined by the relative time scale of the solvent dynamics and electron transfer at the Mg–anode interface. In the vicinity of the anode surface, steric factors and hindered solvent dynamics may increase the reductive stability of (MgTFSI) + ion pairs at lower overpotential by reducing the metal cation coordination, in stark contrast to the reduction at high overpotential accompanied by TFSI decomposition. By examining other solute/solvent combinations, we conclude that the electrolytes with highly coordinated Mg cation centers are more prone to reductive instability due to the chemical decomposition of the anion or solvent molecules. Finally, the obtained findings disclose critical factors for stable electrolyte design and show the role of interfacial phenomena in reduction of multivalent ions.« less

  3. Structure and Bonding in Uranyl(VI) Peroxide and Crown Ether Complexes; Comparison of Quantum Chemical and Experimental Data.

    PubMed

    Vallet, Valérie; Grenthe, Ingmar

    2017-12-18

    The structure, chemical bonding, and thermodynamics of alkali ions in M[12-crown-4] + , M[15-crown-5] + , and M[18-crown-6] + , M[UO 2 (O 2 )(OH 2 ) 2 ] + 4,5 , and M[UO 2 (O 2 )(OH)(OH 2 )] n 1-n (n = 4, 5) complexes have been explored by using quantum chemical (QC) calculations at the ab initio level. The chemical bonding has been studied in the gas phase in order to eliminate solvent effects. QTAIM analysis demonstrates features that are very similar in all complexes and typical for electrostatic M-O bonds, but with the M-O bonds in the uranyl peroxide systems about 20 kJ mol -1 stronger than in the corresponding crown ether complexes. The regular decrease in bond strength with increasing M-O bond distance is consistent with predominantly electrostatic contributions. Energy decomposition of the reaction energies in the gas phase and solvent demonstrates that the predominant component of the total attractive (ΔE elec + ΔE orb ) energy contribution is the electrostatic component. There are no steric constraints for coordination of large cations to small rings, because the M + ions are located outside the ring plane, [O n ], formed by the oxygen donors in the ligands; coordination of ions smaller than the ligand cavity results in longer than normal M-O distances or in a change in the number of bonds, both resulting in weaker complexes. The Gibbs energies, enthalpies, and entropies of reaction calculated using the conductor-like screening model, COSMO, to account for solvent effects deviate significantly from experimental values in water, while those in acetonitrile are in much better agreement. Factors that might affect the selectivity are discussed, but our conclusion is that present QC methods are not accurate enough to describe the rather small differences in selectivity, which only amount to 5-10 kJ mol -1 . We can, however, conclude on the basis of QC and experimental data that M[crown ether] + complexes in the strongly coordinating water solvent are of outer-sphere type, [M(OH 2 ) n + ][crown ether], while those in weakly coordinating acetonitrile are of inner-sphere type, [M-crown ether] + . The observation that the M[UO 2 (O 2 )(OH)(OH 2 )] n 1-n complexes are more stable in solution than those of M[crown ether] + is an effect of the different charges of the rings.

  4. Controlled synthesis, formation mechanism, and carbon oxidation properties of Ho2Cu2O5 nanoplates prepared with a coordination-complex method

    NASA Astrophysics Data System (ADS)

    Guo, Rui; You, Junhua; Han, Fei; Li, Chaoyang; Zheng, Guiyuan; Xiao, Weicheng; Liu, Xuanwen

    2017-02-01

    Ho2Cu2O5 nanoplates with perovskite structures were synthesized via a simple solution method (SSM) and a coordination-complex method (CCM) using [HoCu(3,4-pdc)2(OAc)(H2O)3]·8H2O (L = 3,4-pyridinedicarboxylic acid) as a precursor. The CCM was also performed in an N2 environment (CCMN) under various calcination conditions. The crystallization processes were characterized using X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. Ho2Cu2O5 formed through the diffusion of CuO into Ho2O3 particles. Cu2+ diffused faster than Ho3+ during this process. The initial products of CCMN (along with the thermal decomposition products) were initially laminarized in the N2 atmosphere, which prevented the growth of CuO particles and decreased the size of the Ho2Cu2O5 particles. The final Ho2Cu2O5 particles from CCMN had a nanoplate morphology with an average thickness of 75 nm. The decomposition of organic molecules and protection from N2 played important roles in determining the morphology of the resulting Ho2Cu2O5. The catalytic oxidation activity of Ho2Cu2O5 samples for carbon was characterized using a specific surface area measurement and thermogravimetric analysis, which revealed that the samples produced by CCMN had the highest catalytic activity.

  5. Beyond Principal Component Analysis: A Trilinear Decomposition Model and Least Squares Estimation.

    ERIC Educational Resources Information Center

    Pham, Tuan Dinh; Mocks, Joachim

    1992-01-01

    Sufficient conditions are derived for the consistency and asymptotic normality of the least squares estimator of a trilinear decomposition model for multiway data analysis. The limiting covariance matrix is computed. (Author/SLD)

  6. The inner topological structure and defect control of magnetic skyrmions

    NASA Astrophysics Data System (ADS)

    Ren, Ji-Rong; Yu, Zhong-Xi

    2017-10-01

    We prove that the integrand of magnetic skyrmions can be expressed as curvature tensor of Wu-Yang potential. Taking the projection of the normalized magnetization vector on the 2-dim material surface, and according to Duan's decomposition theory of gauge potential, we reveal that every single skyrmion is just characterized by Hopf index and Brouwer degree at the zero point of this vector field. Our theory meet the results that experimental physicists have achieved by many technologies. The inner topological structure expression of skyrmion with Hopf index and Brouwer degree will be indispensable mathematical basis of skyrmion logic gates.

  7. Global universe anisotropy probed by the alignment of structures in the cosmic microwave background.

    PubMed

    Wiaux, Y; Vielva, P; Martínez-González, E; Vandergheynst, P

    2006-04-21

    We question the global universe isotropy by probing the alignment of local structures in the cosmic microwave background (CMB) radiation. The original method proposed relies on a steerable wavelet decomposition of the CMB signal on the sphere. The analysis of the first-year Wilkinson Microwave Anisotropy Probe data identifies a mean preferred plane with a normal direction close to the CMB dipole axis, and a mean preferred direction in this plane, very close to the ecliptic poles axis. Previous statistical anisotropy results are thereby synthesized, but further analyses are still required to establish their origin.

  8. Effects of High and Low Salt Concentration in Electrolytes at Lithium–Metal Anode Surfaces

    DOE PAGES

    Camacho-Forero, Luis E.; Smith, Taylor W.; Balbuena, Perla B.

    2016-12-16

    The use of high concentration salts in electrolyte solutions of lithium-sulfur (Li-S) batteries has been shown beneficial for mitigating some effects such as polysulfide shuttle and dendrite growth at the Li metal anode. Such complex solutions have structural, dynamical, and reactivity associated issues that need to be analyzed for a better understanding of the reasons behind such beneficial effects. A passivation interfacial layer known as solid-electrolyte interphase (SEI) is generated during battery cycling as a result of electron transfer from the metal anode causing electrolyte decomposition. Here in this work, we investigate using density functional theory and ab initio molecularmore » dynamics simulations the salt decomposition, solvation effects, interactions among intermediate products and other species, and potential components of the SEI layer as a function of chemical nature and concentration of the salt, for lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium bis(fluorosulfonyl)imide (LiFSI) at 1M and 4M concentrations in dimethoxyethane. It is found that LiTFSI undergoes a less complete reduction and facilitates charge transfer from the anode, whereas LiFSI shows a more complete decomposition forming LiF as one of the main SEI products. In addition, the specific decomposition mechanisms of each salt clearly point to the initial SEI components and the potential main products derived from them. Finally, very complex networks are found among the salt and solvent molecules in their attempt to maximize Li ion solvation that is quantified through the determination of coordination numbers.« less

  9. A Gaussian quadrature method for total energy analysis in electronic state calculations

    NASA Astrophysics Data System (ADS)

    Fukushima, Kimichika

    This article reports studies by Fukushima and coworkers since 1980 concerning their highly accurate numerical integral method using Gaussian quadratures to evaluate the total energy in electronic state calculations. Gauss-Legendre and Gauss-Laguerre quadratures were used for integrals in the finite and infinite regions, respectively. Our previous article showed that, for diatomic molecules such as CO and FeO, elliptic coordinates efficiently achieved high numerical integral accuracy even with a numerical basis set including transition metal atomic orbitals. This article will generalize straightforward details for multiatomic systems with direct integrals in each decomposed elliptic coordinate determined from the nuclear positions of picked-up atom pairs. Sample calculations were performed for the molecules O3 and H2O. This article will also try to present, in another coordinate, a numerical integral by partially using the Becke's decomposition published in 1988, but without the Becke's fuzzy cell generated by the polynomials of internuclear distance between the pair atoms. Instead, simple nuclear weights comprising exponential functions around nuclei are used. The one-center integral is performed with a Gaussian quadrature pack in a spherical coordinate, included in the author's original program in around 1980. As for this decomposition into one-center integrals, sample calculations are carried out for Li2.

  10. Search for memory effects in methane hydrate: structure of water before hydrate formation and after hydrate decomposition.

    PubMed

    Buchanan, Piers; Soper, Alan K; Thompson, Helen; Westacott, Robin E; Creek, Jefferson L; Hobson, Greg; Koh, Carolyn A

    2005-10-22

    Neutron diffraction with HD isotope substitution has been used to study the formation and decomposition of the methane clathrate hydrate. Using this atomistic technique coupled with simultaneous gas consumption measurements, we have successfully tracked the formation of the sI methane hydrate from a water/gas mixture and then the subsequent decomposition of the hydrate from initiation to completion. These studies demonstrate that the application of neutron diffraction with simultaneous gas consumption measurements provides a powerful method for studying the clathrate hydrate crystal growth and decomposition. We have also used neutron diffraction to examine the water structure before the hydrate growth and after the hydrate decomposition. From the neutron-scattering curves and the empirical potential structure refinement analysis of the data, we find that there is no significant difference between the structure of water before the hydrate formation and the structure of water after the hydrate decomposition. Nor is there any significant change to the methane hydration shell. These results are discussed in the context of widely held views on the existence of memory effects after the hydrate decomposition.

  11. Fe/N/C composite in Li-O2 battery: studies of catalytic structure and activity toward oxygen evolution reaction.

    PubMed

    Shui, Jiang-Lan; Karan, Naba K; Balasubramanian, Mahalingam; Li, Shu-You; Liu, Di-Jia

    2012-10-10

    Atomically dispersed Fe/N/C composite was synthesized and its role in controlling the oxygen evolution reaction during Li-O(2) battery charging was studied by use of a tetra(ethylene glycol) dimethyl ether-based electrolyte. Li-O(2) cells using Fe/N/C as the cathode catalyst showed lower overpotentials than α-MnO(2)/carbon catalyst and carbon-only material. Gases evolved during the charge step contained only oxygen for Fe/N/C cathode catalyst, whereas CO(2) was also detected in the case of α-MnO(2)/C or carbon-only material; this CO(2) was presumably generated from electrolyte decomposition. Our results reiterate the catalytic effect in reducing overpotentials, which not only enhances battery efficiency but also improves its lifespan by reducing or eliminating electrolyte decomposition. The structure of the Fe/N/C catalyst was characterized by transmission electron microscopy, scanning transmission electron microscopy, inductively coupled plasma optical emission spectroscopy, and X-ray absorption spectroscopy. Iron was found to be uniformly distributed within the carbon matrix, and on average, Fe was coordinated by 3.3 ± 0.6 and 2.2 ± 0.3 low Z elements (C/N/O) at bond distances of ~1.92 and ~2.09 Å, respectively.

  12. China's "Exported Carbon" Peak: Patterns, Drivers, and Implications

    NASA Astrophysics Data System (ADS)

    Mi, Zhifu; Meng, Jing; Green, Fergus; Coffman, D'Maris; Guan, Dabo

    2018-05-01

    Over the past decade, China has entered a "new normal" phase in economic development, with its role in global trade flows changing significantly. This study estimates the driving forces of Chinese export-embodied carbon emissions in the new normal phase, based on environmentally extended multiregional input-output modeling and structural decomposition analysis. We find that Chinese export-embodied CO2 emissions peaked in 2008 at a level of 1,657 million tones. The subsequent decline in CO2 emissions was mainly due to the changing structure of Chinese production. The peak in Chinese export-embodied emissions is encouraging from the perspective of global climate change mitigation, as it implies downward pressure on global CO2 emissions. However, more attention should focus on ensuring that countries that may partly replace China as major production bases increase their exports using low-carbon inputs.

  13. High-frequency Born synthetic seismograms based on coupled normal modes

    USGS Publications Warehouse

    Pollitz, F.

    2011-01-01

    High-frequency and full waveform synthetic seismograms on a 3-D laterally heterogeneous earth model are simulated using the theory of coupled normal modes. The set of coupled integral equations that describe the 3-D response are simplified into a set of uncoupled integral equations by using the Born approximation to calculate scattered wavefields and the pure-path approximation to modulate the phase of incident and scattered wavefields. This depends upon a decomposition of the aspherical structure into smooth and rough components. The uncoupled integral equations are discretized and solved in the frequency domain, and time domain results are obtained by inverse Fourier transform. Examples show the utility of the normal mode approach to synthesize the seismic wavefields resulting from interaction with a combination of rough and smooth structural heterogeneities. This approach is applied to an ~4 Hz shallow crustal wave propagation around the site of the San Andreas Fault Observatory at Depth (SAFOD). ?? The Author Geophysical Journal International ?? 2011 RAS.

  14. An Efficient Local Correlation Matrix Decomposition Approach for the Localization Implementation of Ensemble-Based Assimilation Methods

    NASA Astrophysics Data System (ADS)

    Zhang, Hongqin; Tian, Xiangjun

    2018-04-01

    Ensemble-based data assimilation methods often use the so-called localization scheme to improve the representation of the ensemble background error covariance (Be). Extensive research has been undertaken to reduce the computational cost of these methods by using the localized ensemble samples to localize Be by means of a direct decomposition of the local correlation matrix C. However, the computational costs of the direct decomposition of the local correlation matrix C are still extremely high due to its high dimension. In this paper, we propose an efficient local correlation matrix decomposition approach based on the concept of alternating directions. This approach is intended to avoid direct decomposition of the correlation matrix. Instead, we first decompose the correlation matrix into 1-D correlation matrices in the three coordinate directions, then construct their empirical orthogonal function decomposition at low resolution. This procedure is followed by the 1-D spline interpolation process to transform the above decompositions to the high-resolution grid. Finally, an efficient correlation matrix decomposition is achieved by computing the very similar Kronecker product. We conducted a series of comparison experiments to illustrate the validity and accuracy of the proposed local correlation matrix decomposition approach. The effectiveness of the proposed correlation matrix decomposition approach and its efficient localization implementation of the nonlinear least-squares four-dimensional variational assimilation are further demonstrated by several groups of numerical experiments based on the Advanced Research Weather Research and Forecasting model.

  15. Relationship between the Decomposition Process of Coarse Woody Debris and Fungal Community Structure as Detected by High-Throughput Sequencing in a Deciduous Broad-Leaved Forest in Japan

    PubMed Central

    Yamashita, Satoshi; Masuya, Hayato; Abe, Shin; Masaki, Takashi; Okabe, Kimiko

    2015-01-01

    We examined the relationship between the community structure of wood-decaying fungi, detected by high-throughput sequencing, and the decomposition rate using 13 years of data from a forest dynamics plot. For molecular analysis and wood density measurements, drill dust samples were collected from logs and stumps of Fagus and Quercus in the plot. Regression using a negative exponential model between wood density and time since death revealed that the decomposition rate of Fagus was greater than that of Quercus. The residual between the expected value obtained from the regression curve and the observed wood density was used as a decomposition rate index. Principal component analysis showed that the fungal community compositions of both Fagus and Quercus changed with time since death. Principal component analysis axis scores were used as an index of fungal community composition. A structural equation model for each wood genus was used to assess the effect of fungal community structure traits on the decomposition rate and how the fungal community structure was determined by the traits of coarse woody debris. Results of the structural equation model suggested that the decomposition rate of Fagus was affected by two fungal community composition components: one that was affected by time since death and another that was not affected by the traits of coarse woody debris. In contrast, the decomposition rate of Quercus was not affected by coarse woody debris traits or fungal community structure. These findings suggest that, in the case of Fagus coarse woody debris, the fungal community structure is related to the decomposition process of its host substrate. Because fungal community structure is affected partly by the decay stage and wood density of its substrate, these factors influence each other. Further research on interactive effects is needed to improve our understanding of the relationship between fungal community structure and the woody debris decomposition process. PMID:26110605

  16. Structural Modulation from 1D Chain to 3D Framework: Improved Thermostability, Insensitivity, and Energies of Two Nitrogen-Rich Energetic Coordination Polymers.

    PubMed

    Guo, Zhaoqi; Wu, Yunlong; Deng, Chongqing; Yang, Guoping; Zhang, Jiangong; Sun, Zhihua; Ma, Haixia; Gao, Chao; An, Zhongwei

    2016-11-07

    Two new energetic coordination polymers (CPs) [Pb(BT)(H 2 O) 3 ] n (1) and [Pb 3 (DOBT) 3 (H 2 O) 2 ] n ·(4H 2 O) n (2) with 1D and 3D structures were synthesized by employing two rational designed ligands, 1H,1'H-5,5'-bitetrazole (H 2 BT) and 1H,1'H-[5,5'-bitetrazole]-1,1'-diol ligands (DHBT), respectively. Thermal analyses and sensitivity tests show that the 3D architecture reinforces the network of 2 which has higher thermal stability and lower sensitivity than that of 1. Through oxygen-bomb combustion calorimetry the molar enthalpy of formation of 2 is derived to be much higher than that of 1 as well as the reported CPs. Herein, more importantly, the heats of detonation (ΔH det ) were calculated according to the decomposition products of TG-DSC-MS-FTIR simultaneous analyses for the first time. The calculated results show that ΔH det of 2 is 23% higher than that of 1. This research demonstrates that 3D energetic CP with outstanding energetic properties can be obtained through efficient and reasonable design.

  17. Flagellar coordination in Chlamydomonas cells held on micropipettes.

    PubMed

    Rüffer, U; Nultsch, W

    1998-01-01

    The two flagella of Chlamydomonas are known to beat synchronously: During breaststroke beating they are generally coordinated in a bilateral way while in shock responses during undulatory beating coordination is mostly parallel [Rüffer and Nultsch, 1995: Botanica Acta 108:169-276]. Analysis of a great number of shock responses revealed that in undulatory beats also periods of bilateral coordination are found and that the coordination type may change several times during a shock response, without concomitant changes of the beat envelope and the beat period. In normal wt cells no coordination changes are found during breaststroke beating, but only short temporary asynchronies: During 2 or 3 normal beats of the cis flagellum, the trans flagellum performs 3 or 4 flat beats with a reduced beat envelope and a smaller beat period, resulting in one additional trans beat. Long periods with flat beats of the same shape and beat period are found in both flagella of the non-phototactic mutant ptx1 and in defective wt 622E cells. During these periods, the coordination is parallel, the two flagella beat alternately. A correlation between normal asynchronous trans beats and the parallel-coordinated beats in the presumably cis defective cells and also the undulatory beats is discussed. In the cis defective cells, a perpetual spontaneous change between parallel beats with small beat periods (higher beat frequency) and bilateral beats with greater beat periods (lower beat frequency) are observed and render questionable the existence of two different intrinsic beat frequencies of the two flagella cis and trans. Asynchronies occur spontaneously but may also be induced by light changes, either step-up or step-down, but not by both stimuli in turn as breaststroke flagellar photoresponses (BFPRs). Asynchronies are not involved in phototaxis. They are independent of the BFPRs, which are supposed to be the basis of phototaxis. Both types of coordination must be assumed to be regulated internally, involving calcium-sensitive basal-body associated fibrous structures.

  18. Structural characterization of tellurite glasses doped with transition metal oxides using Raman spectra and ab initio calculations.

    PubMed

    Mohamed, Tarek A; Shaltout, I; Al Yahyaei, K M

    2006-05-01

    Systems of iron tellurite glasses were prepared by melt quenching with compositions of [85%TeO2+5%Fe2O3+10%TMO], where transition metal oxides (TMO) are TiO2, V2O5, MnO, CoO, NiO and CuO. Furthermore, the main structural units of these samples have been characterized by means of Raman spectra (150-1200 cm(-1)) as well as wavenumber predictions by means of Gaussian 98 ab initio calculations for the proposed site symmetries of TeO4(4-) triagonal bipyramid (C2v) and Te2O7(6-) bridged tetrahedra (Cs and C1). Aided by normal coordinate analysis, calculated vibrational frequencies, Raman scattering activities, force constants in internal coordinates and potential energy distributions (PEDs), revised vibrational assignments for the fundamental modes have been proposed. The main structural features are correlated to the dominant units of triagonal bipyramid (tbp) or bridged tetrahedral (TeO3+1 binds to TeO3 through TeOTe bridge; corner sharing). Moreover, the Raman spectra of the investigated tellurites reflect a structural change from tbp (coordination number is four) to triagonal pyramidal (coordination number is three).

  19. Identification of faulty sensor using relative partial decomposition via independent component analysis

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Quek, S. T.

    2015-07-01

    Performance of any structural health monitoring algorithm relies heavily on good measurement data. Hence, it is necessary to employ robust faulty sensor detection approaches to isolate sensors with abnormal behaviour and exclude the highly inaccurate data in the subsequent analysis. The independent component analysis (ICA) is implemented to detect the presence of sensors showing abnormal behaviour. A normalized form of the relative partial decomposition contribution (rPDC) is proposed to identify the faulty sensor. Both additive and multiplicative types of faults are addressed and the detectability illustrated using a numerical and an experimental example. An empirical method to establish control limits for detecting and identifying the type of fault is also proposed. The results show the effectiveness of the ICA and rPDC method in identifying faulty sensor assuming that baseline cases are available.

  20. Kinematics of reflections in subsurface offset and angle-domain image gathers

    NASA Astrophysics Data System (ADS)

    Dafni, Raanan; Symes, William W.

    2018-05-01

    Seismic migration in the angle-domain generates multiple images of the earth's interior in which reflection takes place at different scattering-angles. Mechanically, the angle-dependent reflection is restricted to happen instantaneously and at a fixed point in space: Incident wave hits a discontinuity in the subsurface media and instantly generates a scattered wave at the same common point of interaction. Alternatively, the angle-domain image may be associated with space-shift (regarded as subsurface offset) extended migration that artificially splits the reflection geometry. Meaning that, incident and scattered waves interact at some offset distance. The geometric differences between the two approaches amount to a contradictory angle-domain behaviour, and unlike kinematic description. We present a phase space depiction of migration methods extended by the peculiar subsurface offset split and stress its profound dissimilarity. In spite of being in radical contradiction with the general physics, the subsurface offset reveals a link to some valuable angle-domain quantities, via post-migration transformations. The angle quantities are indicated by the direction normal to the subsurface offset extended image. They specifically define the local dip and scattering angles if the velocity at the split reflection coordinates is the same for incident and scattered wave pairs. Otherwise, the reflector normal is not a bisector of the opening angle, but of the corresponding slowness vectors. This evidence, together with the distinguished geometry configuration, fundamentally differentiates the angle-domain decomposition based on the subsurface offset split from the conventional decomposition at a common reflection point. An asymptotic simulation of angle-domain moveout curves in layered media exposes the notion of split versus common reflection point geometry. Traveltime inversion methods that involve the subsurface offset extended migration must accommodate the split geometry in the inversion scheme for a robust and successful convergence at the optimal velocity model.

  1. Impact of the Choice of Normalization Method on Molecular Cancer Class Discovery Using Nonnegative Matrix Factorization.

    PubMed

    Yang, Haixuan; Seoighe, Cathal

    2016-01-01

    Nonnegative Matrix Factorization (NMF) has proved to be an effective method for unsupervised clustering analysis of gene expression data. By the nonnegativity constraint, NMF provides a decomposition of the data matrix into two matrices that have been used for clustering analysis. However, the decomposition is not unique. This allows different clustering results to be obtained, resulting in different interpretations of the decomposition. To alleviate this problem, some existing methods directly enforce uniqueness to some extent by adding regularization terms in the NMF objective function. Alternatively, various normalization methods have been applied to the factor matrices; however, the effects of the choice of normalization have not been carefully investigated. Here we investigate the performance of NMF for the task of cancer class discovery, under a wide range of normalization choices. After extensive evaluations, we observe that the maximum norm showed the best performance, although the maximum norm has not previously been used for NMF. Matlab codes are freely available from: http://maths.nuigalway.ie/~haixuanyang/pNMF/pNMF.htm.

  2. Preparation, crystal structure, thermal decomposition, quantum chemical calculations on [K(ZTO)ṡH2O]∞ and its ligand ZTO

    NASA Astrophysics Data System (ADS)

    Ma, Cong; Huang, Jie; Ma, Hai-Xia; Xu, Kang-Zhen; Lv, Xing-Qiang; Song, Ji-Rong; Zhao, Ning-Ning; He, Jian-Yun; Zhao, Yi-Sha

    2013-03-01

    A novel potassium complex has been synthesized and characterized under the non-isothermal conditions by DSC and TG-DTG method. The 4,4-azo-1,2,4-triazol-5-one (ZTO) has the molecular formula C4H4N8O2. The thermodynamic parameters, HOMO-LUMO energy gap, total energy and electrostatic potential (MEP) of ZTO are conducted by density functional theory DFT/B3LYP calculation method with 6-311G basis set. In the coordination polymer, with the ligand anion (ZTO-) as space linkers, two types of potassium atoms centers are joined together to form three-dimensional frameworks. The enthalpy, apparent activation energy and pre-exponential factor of the second exothermic decomposition reaction are 85.43 kJ mol-1, 414.4 kJ mol-1and 1037.92 s-1, respectively. The critical temperature of thermal explosion (Tb) for [K(ZTO)ṡH2O]∞ is 275.08 °C. [K(ZTO)ṡH2O]∞ CCDC: 902339.

  3. Decomposition Products of Phosphine Under Pressure: PH 2 Stable and Superconducting?

    DOE PAGES

    Shamp, Andrew; Terpstra, Tyson; Bi, Tiange; ...

    2016-02-17

    Evolutionary algorithms (EA) coupled with Density Functional Theory (DFT) calculations have been used to predict the most stable hydrides of phosphorous (PH n, n = 1 - 6) at 100, 150 and 200 GPa. At these pressures phosphine is unstable with respect to decomposition into the elemental phases, as well as PH 2 and H 2. Three metallic PH 2 phases were found to be dynamically stable and superconducting between 100-200 GPa. One of these contains five formula units in the primitive cell and has C2=m symmetry (5FU-C2=m). It is comprised of 1D periodic PH 3-PH-PH 2-PH-PH 3 oligomers. Twomore » structurally related phases consisting of phosphorous atoms that are octahedrally coordinated by four phosphorous atoms in the equatorial positions and two hydrogen atoms in the axial positions (I4=mmm and 2FU-C 2=m) were the most stable phases between 160-200 GPa. Their superconducting critical temperatures (Tc) were computed as being 70 and 76 K, respectively, via the Allen-Dynes modified McMillan formula and using a value of 0.1 for the Coulomb pseudopotential, . Our results suggest that the superconductivity recently observed by Drozdov, Eremets and Troyan when phosphine was subject to pressures of 207 GPa in a diamond anvil cell may result from these, and other, decomposition products of phosphine.« less

  4. Decomposition Products of Phosphine Under Pressure: PH 2 Stable and Superconducting?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shamp, Andrew; Terpstra, Tyson; Bi, Tiange

    Evolutionary algorithms (EA) coupled with Density Functional Theory (DFT) calculations have been used to predict the most stable hydrides of phosphorous (PH n, n = 1 - 6) at 100, 150 and 200 GPa. At these pressures phosphine is unstable with respect to decomposition into the elemental phases, as well as PH 2 and H 2. Three metallic PH 2 phases were found to be dynamically stable and superconducting between 100-200 GPa. One of these contains five formula units in the primitive cell and has C2=m symmetry (5FU-C2=m). It is comprised of 1D periodic PH 3-PH-PH 2-PH-PH 3 oligomers. Twomore » structurally related phases consisting of phosphorous atoms that are octahedrally coordinated by four phosphorous atoms in the equatorial positions and two hydrogen atoms in the axial positions (I4=mmm and 2FU-C 2=m) were the most stable phases between 160-200 GPa. Their superconducting critical temperatures (Tc) were computed as being 70 and 76 K, respectively, via the Allen-Dynes modified McMillan formula and using a value of 0.1 for the Coulomb pseudopotential, . Our results suggest that the superconductivity recently observed by Drozdov, Eremets and Troyan when phosphine was subject to pressures of 207 GPa in a diamond anvil cell may result from these, and other, decomposition products of phosphine.« less

  5. Methodology for identifying and representing knowledge in the scope of CMM inspection resource selection

    NASA Astrophysics Data System (ADS)

    Martínez, S.; Barreiro, J.; Cuesta, E.; Álvarez, B. J.; González, D.

    2012-04-01

    This paper is focused on the task of elicitation and structuring of knowledge related to selection of inspection resources. The final goal is to obtain an informal model of knowledge oriented to the inspection planning in coordinate measuring machines. In the first tasks, where knowledge is captured, it is necessary to use tools that make easier the analysis and structuring of knowledge, so that rules of selection can be easily stated to configure the inspection resources. In order to store the knowledge a so-called Onto-Process ontology has been developed. This ontology may be of application to diverse processes in manufacturing engineering. This paper describes the decomposition of the ontology in terms of general units of knowledge and others more specific for selection of sensor assemblies in inspection planning with touch sensors.

  6. Structure of thallium(III) chloride, bromide, and cyanide complexes in aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blixt, J.; Glaser, J.; Sandstroem, M.

    1995-05-10

    The structures of the hydrated thallium(III) halide and pseudohalide complexes, [TlX{sub n}(OH{sub 2}){sub m}]{sup (3-d)+}, X = Cl, Br, CN, in aqueous solution have been studied by a combination of X-ray absorption fine structure spectroscopy (XAFS), large-angle X-ray scattering (LAXS), and vibrational spectroscopic (Raman and IR) techniques including far-infrared studies of aqueous solutions and some solid phases with known structures. The vibrational Tl-X frequencies of all complexes are reported, force constants are calculated using normal coordinate analysis, and assignments are given. The structural results are consistent with octahedral six-coordination for the cationic complexes Tl(OH{sub 2}){sub 6}{sup 3$PLU}, TlX(OH{sub 2}){sub 5}{supmore » 2+}, and trans-TlX{sub 2}(OH{sub 2}){sub 4}{sup +}. The coordination geometry changes to trigonal bipyramidal for the neutral TlBr{sub 3}(OH{sub 2}){sub 2} complex and possibly also for TlCl{sub 3}(OH{sub 2}){sub 2}. The TlX{sub 4}{sup -} complexes are all tetrahedral. Higher chloride complexes, TlCl{sub 5}(OH{sub 2}){sup 2-} and TlCl{sub 6}{sup 3-}, are formed and have again octahedral coordination geometry. 65 refs., 7 figs., 5 tabs.« less

  7. Sensitivity method for integrated structure/active control law design

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.

    1987-01-01

    The development is described of an integrated structure/active control law design methodology for aeroelastic aircraft applications. A short motivating introduction to aeroservoelasticity is given along with the need for integrated structures/controls design algorithms. Three alternative approaches to development of an integrated design method are briefly discussed with regards to complexity, coordination and tradeoff strategies, and the nature of the resulting solutions. This leads to the formulation of the proposed approach which is based on the concepts of sensitivity of optimum solutions and multi-level decompositions. The concept of sensitivity of optimum is explained in more detail and compared with traditional sensitivity concepts of classical control theory. The analytical sensitivity expressions for the solution of the linear, quadratic cost, Gaussian (LQG) control problem are summarized in terms of the linear regulator solution and the Kalman Filter solution. Numerical results for a state space aeroelastic model of the DAST ARW-II vehicle are given, showing the changes in aircraft responses to variations of a structural parameter, in this case first wing bending natural frequency.

  8. Mixed-ligand approach to design of heterometallic single-source precursors with discrete molecular structure.

    PubMed

    Lieberman, Craig M; Navulla, Anantharamulu; Zhang, Haitao; Filatov, Alexander S; Dikarev, Evgeny V

    2014-05-05

    Heterometallic single-source precursors for the Pb/Fe = 1:1 oxide materials, PbFe(β-dik)4 (β-dik = hexafluoroacetylacetonate (hfac, 1), acetylacetonate (acac, 2), and trifluoroacetylacetonate (tfac, 4)), have been isolated by three different solid-state synthetic methods. The crystal structures of heterometallic diketonates 1, 2, and 4 were found to contain polymeric chains built on alternating [Fe(β-dik)2] and [Pb(β-dik)2] units that are held together by bridging M-O interactions. Heterometallic precursors are highly volatile, but soluble only in coordinating solvents, in which they dissociate into solvated homometallic fragments. In order to design the heterometallic precursor with a proper metal/metal ratio and with a discrete molecular structure, we used a combination of two different diketonate ligands. Heteroleptic complex Pb2Fe2(hfac)6(acac)2 (5) has been obtained by optimized stoichiometric reaction of an addition of homo-Fe(acac)2 to heterometallic Pb2Fe(hfac)6 (3) diketonate that can be run in solution on a high scale. The combination of two ligands with electron-withdrawing and electron-donating groups allows changing the connectivity pattern within the heterometallic assembly and yields the precursor with a discrete tetranuclear structure. In accord with its molecular structure, heteroleptic complex 5 is soluble even in noncoordinating solvents and was found to retain its heterometallic structure in solution. Thermal decomposition of heterometallic precursors in air at 750 °C resulted in the target Pb2Fe2O5 oxide, a prospective multiferroic material. Prolonging the annealing time or increasing the decomposition temperature leads to another phase-pure lead-iron oxide PbFe12O19 that is a representative of the important family of magnetic hexaferrites.

  9. A quasi-hexagonal prism-shaped carbon nitride for photoreduction of carbon dioxide under visible light.

    PubMed

    He, Zhiqiao; Wang, Danfen; Tang, Juntao; Song, Shuang; Chen, Jianmeng; Tao, Xinyong

    2017-03-01

    A quasi-hexagonal prism-shaped carbon nitride (H-C 3 N 4 ) was synthesized from urea-derived C 3 N 4 (U-C 3 N 4 ) using an alkaline hydrothermal process. U-C 3 N 4 decomposition followed by hydrogen bond rearrangement of hydrolyzed products leads to the formation of a quasi-hexagonal prism-shaped structure. The H-C 3 N 4 catalysts displayed superior activity in the photoreduction of CO 2 with H 2 O compared to U-C 3 N 4 . The enhanced photocatalytic activities can be attributed to the promotion of incompletely coordinated nitrogen atom formation in the C 3 N 4 molecules. Graphical abstract ᅟ.

  10. Neocortical malformation as consequence of nonadaptive regulation of neuronogenetic sequence

    NASA Technical Reports Server (NTRS)

    Caviness, V. S. Jr; Takahashi, T.; Nowakowski, R. S.

    2000-01-01

    Variations in the structure of the neocortex induced by single gene mutations may be extreme or subtle. They differ from variations in neocortical structure encountered across and within species in that these "normal" structural variations are adaptive (both structurally and behaviorally), whereas those associated with disorders of development are not. Here we propose that they also differ in principle in that they represent disruptions of molecular mechanisms that are not normally regulatory to variations in the histogenetic sequence. We propose an algorithm for the operation of the neuronogenetic sequence in relation to the overall neocortical histogenetic sequence and highlight the restriction point of the G1 phase of the cell cycle as the master regulatory control point for normal coordinate structural variation across species and importantly within species. From considerations based on the anatomic evidence from neocortical malformation in humans, we illustrate in principle how this overall sequence appears to be disrupted by molecular biological linkages operating principally outside the control mechanisms responsible for the normal structural variation of the neocortex. MRDD Research Reviews 6:22-33, 2000. Copyright 2000 Wiley-Liss, Inc.

  11. Finite-difference simulation and visualization of elastodynamics in time-evolving generalized curvilinear coordinates

    NASA Technical Reports Server (NTRS)

    Kaul, Upender K. (Inventor)

    2009-01-01

    Modeling and simulation of free and forced structural vibrations is essential to an overall structural health monitoring capability. In the various embodiments, a first principles finite-difference approach is adopted in modeling a structural subsystem such as a mechanical gear by solving elastodynamic equations in generalized curvilinear coordinates. Such a capability to generate a dynamic structural response is widely applicable in a variety of structural health monitoring systems. This capability (1) will lead to an understanding of the dynamic behavior of a structural system and hence its improved design, (2) will generate a sufficiently large space of normal and damage solutions that can be used by machine learning algorithms to detect anomalous system behavior and achieve a system design optimization and (3) will lead to an optimal sensor placement strategy, based on the identification of local stress maxima all over the domain.

  12. Understanding How the Distal Environment Directs Reactivity in Chlorite Dismutase: Spectroscopy and Reactivity of Arg183 Mutants

    PubMed Central

    Blanc, Béatrice; Mayfield, Jeffery A.; McDonald, Claudia A.; Lukat-Rodgers, Gudrun S.; Rodgers, Kenton R.; DuBois, Jennifer L.

    2012-01-01

    The chlorite dismutase from Dechloromonas aromatica (DaCld) catalyzes the highly efficient decomposition of chlorite to O2 and chloride. Spectroscopic, equilibrium thermodynamic, and kinetic measurements have indicated that Cld has two pH sensitive moieties; one is the heme, and Arg183 in the distal heme pocket has been hypothesized to be the second. This active site residue has been examined by site-directed mutagenesis to understand the roles of positive charge and hydrogen bonding in O–O bond formation. Three Cld mutants, Arg183 to Lys (R183K), Arg183 to Gln (R183Q), and Arg183 to Ala (R183A), were investigated to determine their respective contributions to the decomposition of chlorite ion, the spin state and coordination states of their ferric and ferrous forms, their cyanide and imidazole binding affinities, and their reduction potentials. UV–visible and resonance Raman spectroscopies showed that DaCld(R183A) contains five-coordinate high-spin (5cHS) heme, the DaCld(R183Q) heme is a mixture of five-coordinate and six-coordinate high spin (5c/6cHS) heme, and DaCld(R183K) contains six-coordinate low-spin (6cLS) heme. In contrast to wild-type (WT) Cld, which exhibits pKa values of 6.5 and 8.7, all three ferric mutants exhibited pH-independent spectroscopic signatures and kinetic behaviors. Steady state kinetic parameters of the chlorite decomposition reaction catalyzed by the mutants suggest that in WT DaCld the pKa of 6.5 corresponds to a change in the availability of positive charge from the guanidinium group of Arg183 to the heme site. This could be due to either direct acid–base chemistry at the Arg183 side chain or a flexible Arg183 side chain that can access various orientations. Current evidence is most consistent with a conformational adjustment of Arg183. A properly oriented Arg183 is critical for the stabilization of anions in the distal pocket and for efficient catalysis. PMID:22313119

  13. Blurred Palmprint Recognition Based on Stable-Feature Extraction Using a Vese–Osher Decomposition Model

    PubMed Central

    Hong, Danfeng; Su, Jian; Hong, Qinggen; Pan, Zhenkuan; Wang, Guodong

    2014-01-01

    As palmprints are captured using non-contact devices, image blur is inevitably generated because of the defocused status. This degrades the recognition performance of the system. To solve this problem, we propose a stable-feature extraction method based on a Vese–Osher (VO) decomposition model to recognize blurred palmprints effectively. A Gaussian defocus degradation model is first established to simulate image blur. With different degrees of blurring, stable features are found to exist in the image which can be investigated by analyzing the blur theoretically. Then, a VO decomposition model is used to obtain structure and texture layers of the blurred palmprint images. The structure layer is stable for different degrees of blurring (this is a theoretical conclusion that needs to be further proved via experiment). Next, an algorithm based on weighted robustness histogram of oriented gradients (WRHOG) is designed to extract the stable features from the structure layer of the blurred palmprint image. Finally, a normalized correlation coefficient is introduced to measure the similarity in the palmprint features. We also designed and performed a series of experiments to show the benefits of the proposed method. The experimental results are used to demonstrate the theoretical conclusion that the structure layer is stable for different blurring scales. The WRHOG method also proves to be an advanced and robust method of distinguishing blurred palmprints. The recognition results obtained using the proposed method and data from two palmprint databases (PolyU and Blurred–PolyU) are stable and superior in comparison to previous high-performance methods (the equal error rate is only 0.132%). In addition, the authentication time is less than 1.3 s, which is fast enough to meet real-time demands. Therefore, the proposed method is a feasible way of implementing blurred palmprint recognition. PMID:24992328

  14. Blurred palmprint recognition based on stable-feature extraction using a Vese-Osher decomposition model.

    PubMed

    Hong, Danfeng; Su, Jian; Hong, Qinggen; Pan, Zhenkuan; Wang, Guodong

    2014-01-01

    As palmprints are captured using non-contact devices, image blur is inevitably generated because of the defocused status. This degrades the recognition performance of the system. To solve this problem, we propose a stable-feature extraction method based on a Vese-Osher (VO) decomposition model to recognize blurred palmprints effectively. A Gaussian defocus degradation model is first established to simulate image blur. With different degrees of blurring, stable features are found to exist in the image which can be investigated by analyzing the blur theoretically. Then, a VO decomposition model is used to obtain structure and texture layers of the blurred palmprint images. The structure layer is stable for different degrees of blurring (this is a theoretical conclusion that needs to be further proved via experiment). Next, an algorithm based on weighted robustness histogram of oriented gradients (WRHOG) is designed to extract the stable features from the structure layer of the blurred palmprint image. Finally, a normalized correlation coefficient is introduced to measure the similarity in the palmprint features. We also designed and performed a series of experiments to show the benefits of the proposed method. The experimental results are used to demonstrate the theoretical conclusion that the structure layer is stable for different blurring scales. The WRHOG method also proves to be an advanced and robust method of distinguishing blurred palmprints. The recognition results obtained using the proposed method and data from two palmprint databases (PolyU and Blurred-PolyU) are stable and superior in comparison to previous high-performance methods (the equal error rate is only 0.132%). In addition, the authentication time is less than 1.3 s, which is fast enough to meet real-time demands. Therefore, the proposed method is a feasible way of implementing blurred palmprint recognition.

  15. [Probabilistic calculations of biomolecule charge states that generate mass spectra of multiply charged ions].

    PubMed

    Raznikova, M O; Raznikov, V V

    2015-01-01

    In this work, information relating to charge states of biomolecule ions in solution obtained using the electrospray ionization mass spectrometry of different biopolymers is analyzed. The data analyses have mainly been carried out by solving an inverse problem of calculating the probabilities of retention of protons and other charge carriers by ionogenic groups of biomolecules with known primary structures. The approach is a new one and has no known to us analogues. A program titled "Decomposition" was developed and used to analyze the charge distribution of ions of native and denatured cytochrome c mass spectra. The possibility of splitting of the charge-state distribution of albumin into normal components, which likely corresponds to various conformational states of the biomolecule, has been demonstrated. The applicability criterion for using previously described method of decomposition of multidimensional charge-state distributions with two charge carriers, e.g., a proton and a sodium ion, to characterize the spatial structure of biopolymers in solution has been formulated. In contrast to known mass-spectrometric approaches, this method does not require the use of enzymatic hydrolysis or collision-induced dissociation of the biopolymers.

  16. Transition metal coordination chemistry ofN,N-bis(2-{pyrid-2-ylethyl})hydroxylamine.

    PubMed

    Belock, Christopher W; Cetin, Anil; Barone, Natalie V; Ziegler, Christopher J

    2008-08-18

    Although directly relevant to metal mediated biological nitrification as well as the coordination chemistry of peroxide, the metal complexes of hydroxylamines and their functionalized variants remain largely unexplored. The chelating hydroxylamine ligand N,N-bis(2-{pyrid-2-ylethyl})hydroxylamine can be readily generated via a solvent free reaction in high purity; however, the ligand is prone to decomposition which can hamper metal reaction. N,N-bis(2-{pyrid-2-ylethyl})hydroxylamine forms stable complexes with chromium(III), manganese(II), nickel(II), and cadmium(II) ions, coordinating in a side-on mode in the case of chromium and via the nitrogen in the case of the latter three metal ions. The hydroxylamine ligand can also be reduced to form N,N-bis(2-{pyrid-2-ylethyl})amine upon exposure to a stoichiometric amount of the metal salts cobalt(II) nitrate, vanadium(III) chloride, and iron(II) chloride. In the reaction with cobalt nitrate, the reduced ligand then chelates to the metal to form [N,N-bis(2-{pyrid-2-ylethyl})amine]dinitrocobalt(II). Upon reaction with vanadium(III) chloride and iron(III) chloride, the reduced ligand is isolated as the protonated free base, resulting from a metal-mediated decomposition reaction.

  17. First and second energy derivative analyses for open-shell self-consistent field wavefunctions

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yukio; Schaefer, Henry F., III; Frenking, Gernot

    A study of first and second derivatives of the orbital, electronic, nuclear and total energies for the self-consistent field (SCF) wavefunction has been applied to general open-shell SCF systems. The diagonal elements of the Lagrangian matrix for the general open-shell SCF wavefunction are adapted as the 'oŕbital' energies. The first and second derivatives of the orbital energies in terms of the normal coordinates are determined via the finite difference method, while those of the electronic, nuclear and total energies are obtained by analytical techniques. Using three low lying states of the CH2 and H2CO molecules as examples, it is demonstrated that the derivatives of the SCF energetic quantities with respect to the normal coordinates provide useful chemical information concerning the respective molecular structures and reactivities. The conventional concept of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) has been extended to the molecular vibrational motion, and the terminology of vibrationally active MOs (va-MOs), va-HOMO and va-LUMO has been introduced for each normal coordinate. The energy derivative analysis method may be used as a powerful semi-quantitative modelin understanding and interpreting various chemical phenomena.

  18. Molecular mechanisms of decomposition of hydrated Na+Cl- ion pairs under planar nanopore conditions

    NASA Astrophysics Data System (ADS)

    Shevkunov, S. V.

    2017-02-01

    The decomposition of Na+Cl- ion pairs under the conditions of a nanoscopic planar pore with structureless walls in a material contact with water vapor at 298 K is simulated by Monte Carlo method. The transition from the state of a contact ion pair (CIP) to the state of solvent-separated ion pair (SSIP) is shown to occur as a result of an increase in the vapor pressure over a pore after exceeding the threshold number of molecules in a hydrate shell. It is found that the planar form of a molecular cluster under the conditions of a narrow pore does not level an abrupt structural transition and the formation of hydrogen bonds in the hydrate shell starts after three molecules are added. The hydrogen bond length under pore conditions is found to be resistant to variations in the hydrate shell size and coincides with that in water under normal conditions.

  19. A New Bioinspired Perchlorate Reduction Catalyst with Significantly Enhanced Stability via Rational Tuning of Rhenium Coordination Chemistry and Heterogeneous Reaction Pathway.

    PubMed

    Liu, Jinyong; Han, Mengwei; Wu, Dimao; Chen, Xi; Choe, Jong Kwon; Werth, Charles J; Strathmann, Timothy J

    2016-06-07

    Rapid reduction of aqueous ClO4(-) to Cl(-) by H2 has been realized by a heterogeneous Re(hoz)2-Pd/C catalyst integrating Re(O)(hoz)2Cl complex (hoz = oxazolinyl-phenolato bidentate ligand) and Pd nanoparticles on carbon support, but ClOx(-) intermediates formed during reactions with concentrated ClO4(-) promote irreversible Re complex decomposition and catalyst deactivation. The original catalyst design mimics the microbial ClO4(-) reductase, which integrates Mo(MGD)2 complex (MGD = molybdopterin guanine dinucleotide) for oxygen atom transfer (OAT). Perchlorate-reducing microorganisms employ a separate enzyme, chlorite dismutase, to prevent accumulation of the destructive ClO2(-) intermediate. The structural intricacy of MGD ligand and the two-enzyme mechanism for microbial ClO4(-) reduction inspired us to improve catalyst stability by rationally tuning Re ligand structure and adding a ClOx(-) scavenger. Two new Re complexes, Re(O)(htz)2Cl and Re(O)(hoz)(htz)Cl (htz = thiazolinyl-phenolato bidentate ligand), significantly mitigate Re complex decomposition by slightly lowering the OAT activity when immobilized in Pd/C. Further stability enhancement is then obtained by switching the nanoparticles from Pd to Rh, which exhibits high reactivity with ClOx(-) intermediates and thus prevents their deactivating reaction with the Re complex. Compared to Re(hoz)2-Pd/C, the new Re(hoz)(htz)-Rh/C catalyst exhibits similar ClO4(-) reduction activity but superior stability, evidenced by a decrease of Re leaching from 37% to 0.25% and stability of surface Re speciation following the treatment of a concentrated "challenge" solution containing 1000 ppm of ClO4(-). This work demonstrates the pivotal roles of coordination chemistry control and tuning of individual catalyst components for achieving both high activity and stability in environmental catalyst applications.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisht, Kamal Kumar; Rachuri, Yadagiri; Academy of Scientific and Innovative Research

    Four ternary coordination polymers (CPs) namely, ([Ni(SDB)(BITMB)(H{sub 2}O)]·H{sub 2}O){sub n} (CP1), ([Cd(SDB)(BITMB) (H{sub 2}O)]·(THF)(H{sub 2}O)){sub n} (CP2), ([Zn{sub 2}(SDB){sub 2}(BITMB)]·(THF){sub 2}){sub n} (CP3) and ([Co{sub 2}(SDB){sub 2}(BITMB)]·(Dioxane){sub 3}){sub n} (CP4) composed of angular dicarboxylate SDB (4,4'-sulfonyldibenzoate) and N-donor BITMB (1,3-bis(imidazol-1-ylmethyl)-2,4,6-trimethyl benzene) have been synthesized by solvothermal reactions and characterized by single crystal X-ray diffraction and other physico-chemical techniques. CP1 possesses one-dimensional ribbon type metal–organic motifs glued together by H-bonds and π⋯π interactions, whereas CP2–CP4, exhibit non-interpenetrated sql networks supported by weak supramolecular interactions. Structural diversity of these CPs can be attributed to the coordination geometry adopted by the metal nodes,more » versatile coordination modes of SDB and conformational flexibility of BITMB. Solid state luminescence properties of CP1–CP4 were explored. Photocatalytic performance of all CPs for the decomposition of metanil yellow by dilute hydrogen peroxide in the presence of visible light was also investigated. 25–83% dye removal from aqueous solutions in the presence of CP1–CP4 was observed. - Graphical abstract: Four new ternary transition metal CPs have been hydrothermally prepared and their structural aspects as well as photocatalytic activity for decolourization of metanil yellow (MY) dye have been investigated. - Highlights: • Four ternary coordination polymers containing Ni, Cd, Zn and Co center are prepared. • Crystal structure and thermal stability of all four CPs has been described. • PL and diffuse reflectance spectra of synthesized CPs have also been examined. • Band gap values suggest semiconducting behavior of prepared CPs. • Photocatalytic activity of CPs for oxidative degradation of metanil yellow is studied.« less

  1. Proceedings of International Pyrotechnics Seminar (4th), Held at Steamboat Village, Colorado, 22-26 July 1974

    DTIC Science & Technology

    1974-06-17

    10-1 I1. Burning Rate Modifiers, D.R. Dillehay ............................. 11-1 12. Spectroscopic Analysis of Azide Decomposition Products for use...solid, and Pit that they ignite a short distance from the surface. Further- more, decomposition of sodium nitrate, which produces the gas to blow the...decreasing U the thermal conductivity of the basic binary. Class 2 compounds, con- sisting of nanganese oxides, catalyze the normal decomposition of

  2. An Architecture for Controlling Multiple Robots

    NASA Technical Reports Server (NTRS)

    Aghazarian, Hrand; Pirjanian, Paolo; Schenker, Paul; Huntsberger, Terrance

    2004-01-01

    The Control Architecture for Multirobot Outpost (CAMPOUT) is a distributed-control architecture for coordinating the activities of multiple robots. In the CAMPOUT, multiple-agent activities and sensor-based controls are derived as group compositions and involve coordination of more basic controllers denoted, for present purposes, as behaviors. The CAMPOUT provides basic mechanistic concepts for representation and execution of distributed group activities. One considers a network of nodes that comprise behaviors (self-contained controllers) augmented with hyper-links, which are used to exchange information between the nodes to achieve coordinated activities. Group behavior is guided by a scripted plan, which encodes a conditional sequence of single-agent activities. Thus, higher-level functionality is composed by coordination of more basic behaviors under the downward task decomposition of a multi-agent planner

  3. Water/cortical bone decomposition: A new approach in dual energy CT imaging for bone marrow oedema detection. A feasibility study.

    PubMed

    Biondi, M; Vanzi, E; De Otto, G; Banci Buonamici, F; Belmonte, G M; Mazzoni, L N; Guasti, A; Carbone, S F; Mazzei, M A; La Penna, A; Foderà, E; Guerreri, D; Maiolino, A; Volterrani, L

    2016-12-01

    Many studies aimed at validating the application of Dual Energy Computed Tomography (DECT) in clinical practice where conventional CT is not exhaustive. An example is given by bone marrow oedema detection, in which DECT based on water/calcium (W/Ca) decomposition was applied. In this paper a new DECT approach, based on water/cortical bone (W/CB) decomposition, was investigated. Eight patients suffering from marrow oedema were scanned with MRI and DECT. Two-materials density decomposition was performed in ROIs corresponding to normal bone marrow and oedema. These regions were drawn on DECT images using MRI informations. Both W/Ca and W/CB were considered as material basis. Scatter plots of W/Ca and W/CB concentrations were made for each ROI in order to evaluate if oedema could be distinguished from normal bone marrow. Thresholds were defined on the scatter plots in order to produce DECT images where oedema regions were highlighted through color maps. The agreement between these images and MR was scored by two expert radiologists. For all the patients, the best scores were obtained using W/CB density decomposition. In all cases, DECT color map images based on W/CB decomposition showed better agreement with MR in bone marrow oedema identification with respect to W/Ca decomposition. This result encourages further studies in order to evaluate if DECT based on W/CB decomposition could be an alternative technique to MR, which would be important when short scanning duration is relevant, as in the case of aged or traumatic patients. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  4. An efficient and numerically stable procedure for generating sextic force fields in normal mode coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sibaev, M.; Crittenden, D. L., E-mail: deborah.crittenden@canterbury.ac.nz

    In this paper, we outline a general, scalable, and black-box approach for calculating high-order strongly coupled force fields in rectilinear normal mode coordinates, based upon constructing low order expansions in curvilinear coordinates with naturally limited mode-mode coupling, and then transforming between coordinate sets analytically. The optimal balance between accuracy and efficiency is achieved by transforming from 3 mode representation quartic force fields in curvilinear normal mode coordinates to 4 mode representation sextic force fields in rectilinear normal modes. Using this reduced mode-representation strategy introduces an error of only 1 cm{sup −1} in fundamental frequencies, on average, across a sizable testmore » set of molecules. We demonstrate that if it is feasible to generate an initial semi-quartic force field in curvilinear normal mode coordinates from ab initio data, then the subsequent coordinate transformation procedure will be relatively fast with modest memory demands. This procedure facilitates solving the nuclear vibrational problem, as all required integrals can be evaluated analytically. Our coordinate transformation code is implemented within the extensible PyPES library program package, at http://sourceforge.net/projects/pypes-lib-ext/.« less

  5. Definition of Systematic, Approximately Separable, and Modular Internal Coordinates (SASMIC) for macromolecular simulation.

    PubMed

    Echenique, Pablo; Alonso, J L

    2006-07-30

    A set of rules is defined to systematically number the groups and the atoms of polypeptides in a modular manner. Supported by this numeration, a set of internal coordinates is defined. These coordinates (termed Systematic, Approximately Separable, and Modular Internal Coordinates--SASMIC) are straightforwardly written in Z-matrix form and may be directly implemented in typical Quantum Chemistry packages. A number of Perl scripts that automatically generate the Z-matrix files are provided as supplementary material. The main difference with most Z-matrix-like coordinates normally used in the literature is that normal dihedral angles ("principal dihedrals" in this work) are only used to fix the orientation of whole groups and a different type of dihedrals, termed "phase dihedrals," are used to describe the covalent structure inside the groups. This physical approach allows to approximately separate soft and hard movements of the molecule using only topological information and to directly implement constraints. As an application, we use the coordinates defined and ab initio quantum mechanical calculations to assess the commonly assumed approximation of the free energy, obtained from "integrating out" the side chain degree of freedom chi, by the Potential Energy Surface (PES) in the protected dipeptide HCO-L-Ala-NH2. We also present a subbox of the Hessian matrix in two different sets of coordinates to illustrate the approximate separation of soft and hard movements when the coordinates defined in this work are used. (PACS: 87.14.Ee, 87.15.-v, 87.15.Aa, 87.15.Cc) 2006 Wiley Periodicals, Inc.

  6. Cd(II) complexes with different nuclearity and dimensionality based on 3-hydrazino-4-amino-1,2,4-triazole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Cai-Xia; Zhang, Jian-Guo, E-mail: zjgbit@bit.edu.cn; Yin, Xin

    2015-03-15

    A series of zero- to two-dimensional Cd(II) coordination compounds have been synthesized by the reaction of Cd(II) salts and 3-hydrazino-4-amino-1,2,4-triazole di-hydrochloride (HATr·2HCl). [CdCl{sub 2}(HATr){sub 2}] (1) and [Cd{sub 2}Cl{sub 4}(HATr){sub 2}(H{sub 2}O){sub 2}] (2) have discrete mononuclear and binuclear structures, respectively. [Cd(HATr){sub 2}(ClO{sub 4}){sub 2}]{sub n} (3) presents polymeric 1-D chain and [Cd{sub 2}(NO{sub 3}){sub 2}Cl{sub 2}(HATr){sub 2}]{sub n} (4) shows 2-D frameworks. All Cd(II) ions exhibit distorted octahedral configurations in 1–3, whilst both hexa and heptacoordinated Cd(II) are formed in 4. The HATr ligands adopt chelating coordinated mode in 1, while tri-dentate bridging–chelating mode in 2–4. The chloride ionmore » is a mono-coordinated ligand in 1 and 2, but it bridges two adjacent metal ions in 4. Furthermore, thermal behaviors have been investigated and the results reveal that all complexes have good thermal stability. The impact sensitivity test indicates that complex 3 is sensitive to impact stimuli. - Graphical abstract: Four Cd(II) complexes based on 3-hydrazino-4-amino-1,2,4-triazole ligands exhibit diverse structures from mononuclear to 2D networks. - Highlights: • Cd(II) complexes containing 3-hydrazino-4-amino-1,2,4-triazole ligands. • Mononuclear, binuclear, 1-D and 2-D structures. • Good thermal stability. • Thermal decomposition kinetics.« less

  7. Self-assembly of silver(i)-based high-energy metal-organic frameworks (HE-MOFs) at ambient temperature and pressure: synthesis, structure and superior explosive performance.

    PubMed

    Shen, Cheng; Liu, Yang; Zhu, Zhong-Qin; Xu, Yuan-Gang; Lu, Ming

    2017-07-04

    Two new high-energy metal-organic frameworks (HE-MOFs), {Ag 2 (DNMAF)(H 2 O) 2 } n (1) and {Ag 2 (DNMAF)} n (2) were prepared using potassium 4,4'-bis(dinitromethyl)-3,3'-azofurazanate (K 2 DNMAF) in a self-assembly strategy. Compound 1 exhibits a 3D HE-MOF structure with coordinated water molecules. Compound 2 exhibits compact solvent-free 3D HE-MOFs. Both compounds show good thermostability (decomposition temperature (T d ) of 211 and 218 °C) and superior detonation velocities (D) of 9673 m s -1 and 10 242 m s -1 , detonation pressures (P) of 50.01 GPa and 58.30 GPa, and heat of detonation (Q) of 1.95 kcal g -1 and 2.19 kcal g -1 , respectively, which are even higher than those of RDX and HMX.

  8. [Association between family environment and developmental coordination disorder in preschool children].

    PubMed

    Liu, Li-Fei; Lu, Lan; Yue, Hong-Ni; Huan, Bei; Gu, Gui-Xiong; Jin, Hua; Wang, Yu-Mei

    2017-09-01

    To investigate the influence of family environment on developmental coordination disorder (DCD) in preschool children. Stratified random cluster sampling was used to select 1 727 children (4-6 years old). The Movement Assessment Battery for Children was used to screen out the children with DCD. The Family Environment Scale on Motor Development for Preschool Urban Children and a self-designed questionnaire were used to assess family environment. A total of 117 children were confirmed with DCD. There were significant differences in mother's education level and family structure between the DCD and normal control groups. There were also significant differences in the scores of "Let children manage their daily items" and "Arrange all affairs" between the DCD and normal control groups. The multivariate logistic regression analysis indicated that when children's age and gender were controlled, mother's education level, family structure, "Let children manage their daily items", and "Arrange all affairs" were main factors influencing the development of DCD in children (P<0.05). Family environment may affect the development of DCD in preschool children. Therefore, parents should not arrange all affairs for children and should provide more opportunities for children to manage their daily life, in order to promote the development of early motor coordination and prevent the development of DCD.

  9. Production of metal particles and clusters

    NASA Technical Reports Server (NTRS)

    Mcmanus, S. P.

    1982-01-01

    The feasibility of producing novel metals or metal clusters in a low gravity environment was studied. The production of coordinately unsaturated metal carbonyls by thermolysis or photolysis of stable metal carbonyls has the potential to generate novel catalysts by this technique. Laser irradiation of available metal carbonyls was investigated. It is found that laser induced decomposition of metal carbonyls is feasible for producing a variety of coordinately unsaturated species. Formation of clustered species does occur but is hampered by weak metal-metal bonds.

  10. Self-similar pyramidal structures and signal reconstruction

    NASA Astrophysics Data System (ADS)

    Benedetto, John J.; Leon, Manuel; Saliani, Sandra

    1998-03-01

    Pyramidal structures are defined which are locally a combination of low and highpass filtering. The structures are analogous to but different from wavelet packet structures. In particular, new frequency decompositions are obtained; and these decompositions can be parameterized to establish a correspondence with a large class of Cantor sets. Further correspondences are then established to relate such frequency decompositions with more general self- similarities. The role of the filters in defining these pyramidal structures gives rise to signal reconstruction algorithms, and these, in turn, are used in the analysis of speech data.

  11. Infrared and infrared emission spectroscopic study of typical Chinese kaolinite and halloysite.

    PubMed

    Cheng, Hongfei; Frost, Ray L; Yang, Jing; Liu, Qinfu; He, Junkai

    2010-12-01

    The structure and thermal stability between typical Chinese kaolinite and halloysite were analysed by X-ray diffraction (XRD), infrared spectroscopy, infrared emission spectroscopy (IES) and Raman spectroscopy. Infrared emission spectroscopy over the temperature range of 300-700°C has been used to characterise the thermal decomposition of both kaolinite and halloysite. Halloysite is characterised by two bands in the water bending region at 1629 and 1648 cm(-1), attributed to structural water and coordinated water in the interlayer. Well defined hydroxyl stretching bands at around 3695, 3679, 3652 and 3625 cm(-1) are observed for both kaolinite and halloysite. The 550°C infrared emission spectrum of halloysite is similar to that of kaolinite in 650-1350 cm(-1) spectral region. The infrared emission spectra of halloysite were found to be considerably different to that of kaolinite at lower temperatures. These differences are attributed to the fundamental difference in the structure of the two minerals. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Decomposition of metabolic network into functional modules based on the global connectivity structure of reaction graph.

    PubMed

    Ma, Hong-Wu; Zhao, Xue-Ming; Yuan, Ying-Jin; Zeng, An-Ping

    2004-08-12

    Metabolic networks are organized in a modular, hierarchical manner. Methods for a rational decomposition of the metabolic network into relatively independent functional subsets are essential to better understand the modularity and organization principle of a large-scale, genome-wide network. Network decomposition is also necessary for functional analysis of metabolism by pathway analysis methods that are often hampered by the problem of combinatorial explosion due to the complexity of metabolic network. Decomposition methods proposed in literature are mainly based on the connection degree of metabolites. To obtain a more reasonable decomposition, the global connectivity structure of metabolic networks should be taken into account. In this work, we use a reaction graph representation of a metabolic network for the identification of its global connectivity structure and for decomposition. A bow-tie connectivity structure similar to that previously discovered for metabolite graph is found also to exist in the reaction graph. Based on this bow-tie structure, a new decomposition method is proposed, which uses a distance definition derived from the path length between two reactions. An hierarchical classification tree is first constructed from the distance matrix among the reactions in the giant strong component of the bow-tie structure. These reactions are then grouped into different subsets based on the hierarchical tree. Reactions in the IN and OUT subsets of the bow-tie structure are subsequently placed in the corresponding subsets according to a 'majority rule'. Compared with the decomposition methods proposed in literature, ours is based on combined properties of the global network structure and local reaction connectivity rather than, primarily, on the connection degree of metabolites. The method is applied to decompose the metabolic network of Escherichia coli. Eleven subsets are obtained. More detailed investigations of the subsets show that reactions in the same subset are really functionally related. The rational decomposition of metabolic networks, and subsequent studies of the subsets, make it more amenable to understand the inherent organization and functionality of metabolic networks at the modular level. http://genome.gbf.de/bioinformatics/

  13. Lagrangian theory of structure formation in relativistic cosmology. IV. Lagrangian approach to gravitational waves

    NASA Astrophysics Data System (ADS)

    Al Roumi, Fosca; Buchert, Thomas; Wiegand, Alexander

    2017-12-01

    The relativistic generalization of the Newtonian Lagrangian perturbation theory is investigated. In previous works, the perturbation and solution schemes that are generated by the spatially projected gravitoelectric part of the Weyl tensor were given to any order of the perturbations, together with extensions and applications for accessing the nonperturbative regime. We here discuss more in detail the general first-order scheme within the Cartan formalism including and concentrating on the gravitational wave propagation in matter. We provide master equations for all parts of Lagrangian-linearized perturbations propagating in the perturbed spacetime, and we outline the solution procedure that allows one to find general solutions. Particular emphasis is given to global properties of the Lagrangian perturbation fields by employing results of Hodge-de Rham theory. We here discuss how the Hodge decomposition relates to the standard scalar-vector-tensor decomposition. Finally, we demonstrate that we obtain the known linear perturbation solutions of the standard relativistic perturbation scheme by performing two steps: first, by restricting our solutions to perturbations that propagate on a flat unperturbed background spacetime and, second, by transforming to Eulerian background coordinates with truncation of nonlinear terms.

  14. Vibrational Softening of a Protein on Ligand Binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balog, Erica; Perahia, David; Smith, Jeremy C

    2011-01-01

    Neutron scattering experiments have demonstrated that binding of the cancer drug methotrexate softens the low-frequency vibrations of its target protein, dihydrofolate reductase (DHFR). Here, this softening is fully reproduced using atomic detail normal-mode analysis. Decomposition of the vibrational density of states demonstrates that the largest contributions arise from structural elements of DHFR critical to stability and function. Mode-projection analysis reveals an increase of the breathing-like character of the affected vibrational modes consistent with the experimentally observed increased adiabatic compressibility of the protein on complexation.

  15. Organization environmental footprint applying a multi-regional input-output analysis: A case study of a wood parquet company in Spain.

    PubMed

    Martinez, Sara; Marchamalo, Miguel; Alvarez, Sergio

    2018-03-15

    Wood has been presented as a carbon-neutral material capable of significantly contribute to climate change mitigation and has become an appealing option for the building sector. This paper presents the quantification of the organization environmental footprint of a wood parquet company. The multi-regional input-output (MRIO) database EXIOBASE was used with a further structural path analysis decomposition. The application of the proposed method quantifies 14 environmental impacts. Highly influential sectors and regions responsible for these impacts are assessed to propose efficient measures. For the parquet company studied, the highest impact category once normalized was ozone depletion and the dominant sector responsible for this impact was the chemical industry from Spain and China. The structural path decomposition related to ozone loss revealed that the indirect impacts embedded in the supply chain are higher than the direct impacts. It can be concluded that the assessment of the organizational environmental footprint can be carried out applying this well-structured and robust method. Its implementation will enable tracking of the environmental burdens through a company's supply chain at a global scale and provide information for the adoption of environmental strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Metal coordination polymer derived mesoporous Co3O4 nanorods with uniform TiO2 coating as advanced anodes for lithium ion batteries.

    PubMed

    Geng, Hongbo; Ang, Huixiang; Ding, Xianguang; Tan, Huiteng; Guo, Guile; Qu, Genlong; Yang, Yonggang; Zheng, Junwei; Yan, Qingyu; Gu, Hongwei

    2016-02-07

    In this work, a one-dimensional Co3O4@TiO2 core-shell electrode material with superior electrochemical performance is fabricated by a convenient and controllable route. The approach involves two main steps: the homogeneous deposition of polydopamine and TiO2 layers in sequence on the cobalt coordination polymer and the thermal decomposition of the polymer matrix. The as-prepared electrode material can achieve excellent electrochemical properties and stability as an anode material for lithium ion batteries, such as a high specific capacity of 1279 mA h g(-1), good cycling stability (around 803 mA h g(-1) at a current density of 200 mA g(-1) after 100 cycles), and stable rate performance (around 520 mA h g(-1) at a current density of 1000 mA g(-1)). This dramatic electrochemical performance is mainly attributed to the excellent structural characteristics, which could improve the electrical conductivity and lithium ion mobility, as well as electrolyte permeability and architectural stability during cycling.

  17. Supporting open collaboration in science through explicit and linked semantic description of processes

    USGS Publications Warehouse

    Gil, Yolanda; Michel, Felix; Ratnakar, Varun; Read, Jordan S.; Hauder, Matheus; Duffy, Christopher; Hanson, Paul C.; Dugan, Hilary

    2015-01-01

    The Web was originally developed to support collaboration in science. Although scientists benefit from many forms of collaboration on the Web (e.g., blogs, wikis, forums, code sharing, etc.), most collaborative projects are coordinated over email, phone calls, and in-person meetings. Our goal is to develop a collaborative infrastructure for scientists to work on complex science questions that require multi-disciplinary contributions to gather and analyze data, that cannot occur without significant coordination to synthesize findings, and that grow organically to accommodate new contributors as needed as the work evolves over time. Our approach is to develop an organic data science framework based on a task-centered organization of the collaboration, includes principles from social sciences for successful on-line communities, and exposes an open science process. Our approach is implemented as an extension of a semantic wiki platform, and captures formal representations of task decomposition structures, relations between tasks and users, and other properties of tasks, data, and other relevant science objects. All these entities are captured through the semantic wiki user interface, represented as semantic web objects, and exported as linked data.

  18. COBE DMR-normalized open inflation cold dark matter cosmogony

    NASA Technical Reports Server (NTRS)

    Gorski, Krzysztof M.; Ratra, Bharat; Sugiyama, Naoshi; Banday, Anthony J.

    1995-01-01

    A cut-sky orthogonal mode analysis of the 2 year COBE DMR 53 and 90 GHz sky maps (in Galactic coordinates) is used to determine the normalization of an open inflation model based on the cold dark matter (CDM) scenario. The normalized model is compared to measures of large-scale structure in the universe. Although the DMR data alone does not provide sufficient discriminative power to prefer a particular value of the mass density parameter, the open model appears to be reasonably consistent with observations when Omega(sub 0) is approximately 0.3-0.4 and merits further study.

  19. A two-dimensional layered Cd(II) coordination polymer with a three-dimensional supramolecular architecture incorporating mixed multidentate N- and O-donor ligands.

    PubMed

    Huang, Qiu-Ying; Su, Ming-Yang; Meng, Xiang-Ru

    2015-06-01

    The combination of N-heterocyclic and multicarboxylate ligands is a good choice for the construction of metal-organic frameworks. In the title coordination polymer, poly[bis{μ2-1-[(1H-benzimidazol-2-yl)methyl]-1H-tetrazole-κ(2)N(3):N(4)}(μ4-butanedioato-κ(4)O(1):O(1'):O(4):O(4'))(μ2-butanedioato-κ(2)O(1):O(4))dicadmium], [Cd(C4H4O4)(C9H8N6)]n, each Cd(II) ion exhibits an irregular octahedral CdO4N2 coordination geometry and is coordinated by four O atoms from three carboxylate groups of three succinate (butanedioate) ligands and two N atoms from two 1-[(1H-benzimidazol-2-yl)methyl]-1H-tetrazole (bimt) ligands. Cd(II) ions are connected by two kinds of crystallographically independent succinate ligands to generate a two-dimensional layered structure with bimt ligands located on each side of the layer. Adjacent layers are further connected by hydrogen bonding, leading to a three-dimensional supramolecular architecture in the solid state. Thermogravimetric analysis of the title polymer shows that it is stable up to 529 K and then loses weight from 529 to 918 K, corresponding to the decomposition of the bimt ligands and succinate groups. The polymer exhibits a strong fluorescence emission in the solid state at room temperature.

  20. First determination of volume changes and enthalpies of the high-pressure decomposition reaction of the structure H methane hydrate to the cubic structure I methane hydrate and fluid methane.

    PubMed

    Ogienko, Andrey G; Tkacz, Marek; Manakov, Andrey Yu; Lipkowski, Janusz

    2007-11-08

    Pressure-temperature (P-T) conditions of the decomposition reaction of the structure H high-pressure methane hydrate to the cubic structure I methane hydrate and fluid methane were studied with a piston-cylinder apparatus at room temperature. For the first time, volume changes accompanying this reaction were determined. With the use of the Clausius-Clapeyron equation the enthalpies of the decomposition reaction of the structure H high-pressure methane hydrate to the cubic structure I methane hydrate and fluid methane have been calculated.

  1. Integrated control/structure optimization by multilevel decomposition

    NASA Technical Reports Server (NTRS)

    Zeiler, Thomas A.; Gilbert, Michael G.

    1990-01-01

    A method for integrated control/structure optimization by multilevel decomposition is presented. It is shown that several previously reported methods were actually partial decompositions wherein only the control was decomposed into a subsystem design. One of these partially decomposed problems was selected as a benchmark example for comparison. The system is fully decomposed into structural and control subsystem designs and an improved design is produced. Theory, implementation, and results for the method are presented and compared with the benchmark example.

  2. Reactive Goal Decomposition Hierarchies for On-Board Autonomy

    NASA Astrophysics Data System (ADS)

    Hartmann, L.

    2002-01-01

    As our experience grows, space missions and systems are expected to address ever more complex and demanding requirements with fewer resources (e.g., mass, power, budget). One approach to accommodating these higher expectations is to increase the level of autonomy to improve the capabilities and robustness of on- board systems and to simplify operations. The goal decomposition hierarchies described here provide a simple but powerful form of goal-directed behavior that is relatively easy to implement for space systems. A goal corresponds to a state or condition that an operator of the space system would like to bring about. In the system described here goals are decomposed into simpler subgoals until the subgoals are simple enough to execute directly. For each goal there is an activation condition and a set of decompositions. The decompositions correspond to different ways of achieving the higher level goal. Each decomposition contains a gating condition and a set of subgoals to be "executed" sequentially or in parallel. The gating conditions are evaluated in order and for the first one that is true, the corresponding decomposition is executed in order to achieve the higher level goal. The activation condition specifies global conditions (i.e., for all decompositions of the goal) that need to hold in order for the goal to be achieved. In real-time, parameters and state information are passed between goals and subgoals in the decomposition; a termination indication (success, failure, degree) is passed up when a decomposition finishes executing. The lowest level decompositions include servo control loops and finite state machines for generating control signals and sequencing i/o. Semaphores and shared memory are used to synchronize and coordinate decompositions that execute in parallel. The goal decomposition hierarchy is reactive in that the generated behavior is sensitive to the real-time state of the system and the environment. That is, the system is able to react to state and environment and in general can terminate the execution of a decomposition and attempt a new decomposition at any level in the hierarchy. This goal decomposition system is suitable for workstation, microprocessor and fpga implementation and thus is able to support the full range of prototyping activities, from mission design in the laboratory to development of the fpga firmware for the flight system. This approach is based on previous artificial intelligence work including (1) Brooks' subsumption architecture for robot control, (2) Firby's Reactive Action Package System (RAPS) for mediating between high level automated planning and low level execution and (3) hierarchical task networks for automated planning. Reactive goal decomposition hierarchies can be used for a wide variety of on-board autonomy applications including automating low level operation sequences (such as scheduling prerequisite operations, e.g., heaters, warm-up periods, monitoring power constraints), coordinating multiple spacecraft as in formation flying and constellations, robot manipulator operations, rendez-vous, docking, servicing, assembly, on-orbit maintenance, planetary rover operations, solar system and interstellar probes, intelligent science data gathering and disaster early warning. Goal decomposition hierarchies can support high level fault tolerance. Given models of on-board resources and goals to accomplish, the decomposition hierarchy could allocate resources to goals taking into account existing faults and in real-time reallocating resources as new faults arise. Resources to be modeled include memory (e.g., ROM, FPGA configuration memory, processor memory, payload instrument memory), processors, on-board and interspacecraft network nodes and links, sensors, actuators (e.g., attitude determination and control, guidance and navigation) and payload instruments. A goal decomposition hierarchy could be defined to map mission goals and tasks to available on-board resources. As faults occur and are detected the resource allocation is modified to avoid using the faulty resource. Goal decomposition hierarchies can implement variable autonomy (in which the operator chooses to command the system at a high or low level, mixed initiative planning (in which the system is able to interact with the operator, e.g, to request operator intervention when a working envelope is exceeded) and distributed control (in which, for example, multiple spacecraft cooperate to accomplish a task without a fixed master). The full paper will describe in greater detail how goal decompositions work, how they can be implemented, techniques for implementing a candidate application and the current state of the fpga implementation.

  3. Implementation of secondary fracture prevention services after hip fracture: a qualitative study using extended Normalization Process Theory.

    PubMed

    Drew, Sarah; Judge, Andrew; May, Carl; Farmer, Andrew; Cooper, Cyrus; Javaid, M Kassim; Gooberman-Hill, Rachael

    2015-04-23

    National and international guidance emphasizes the need for hospitals to have effective secondary fracture prevention services, to reduce the risk of future fractures in hip fracture patients. Variation exists in how hospitals organize these services, and there remain significant gaps in care. No research has systematically explored reasons for this to understand how to successfully implement these services. The objective of this study was to use extended Normalization Process Theory to understand how secondary fracture prevention services can be successfully implemented. Forty-three semi-structured interviews were conducted with healthcare professionals involved in delivering secondary fracture prevention within 11 hospitals that receive patients with acute hip fracture in one region in England. These included orthogeriatricians, fracture prevention nurses and service managers. Extended Normalization Process Theory was used to inform study design and analysis. Extended Normalization Process Theory specifies four constructs relating to collective action in service implementation: capacity, potential, capability and contribution. The capacity of healthcare professionals to co-operate and co-ordinate their actions was achieved using dedicated fracture prevention co-ordinators to organize important processes of care. However, participants described effective communication with GPs as challenging. Individual potential and commitment to operationalize services was generally high. Shared commitments were promoted through multi-disciplinary team working, facilitated by fracture prevention co-ordinators. Healthcare professionals had capacity to deliver multiple components of services when co-ordinators 'freed up' time. As key agents in its intervention, fracture prevention coordinators were therefore indispensable to effective implementation. Aside from difficulty of co-ordination with primary care, the intervention was highly workable and easily integrated into practice. Nevertheless, implementation was threatened by under-staffed and under-resourced services, lack of capacity to administer scans and poor patient access. To ensure ongoing service delivery, the contributions of healthcare professionals were shaped by planning, in multi-disciplinary team meetings, the use of clinical databases to identify patients and define the composition of clinical work and monitoring to improve clinical practice. Findings identify and describe elements needed to implement secondary fracture prevention services successfully. The study highlights the value of Normalization Process Theory to achieve comprehensive understanding of healthcare professionals' experiences in enacting a complex intervention.

  4. Idiopathic interstitial pneumonias and emphysema: detection and classification using a texture-discriminative approach

    NASA Astrophysics Data System (ADS)

    Fetita, C.; Chang-Chien, K. C.; Brillet, P. Y.; Pr"teux, F.; Chang, R. F.

    2012-03-01

    Our study aims at developing a computer-aided diagnosis (CAD) system for fully automatic detection and classification of pathological lung parenchyma patterns in idiopathic interstitial pneumonias (IIP) and emphysema using multi-detector computed tomography (MDCT). The proposed CAD system is based on three-dimensional (3-D) mathematical morphology, texture and fuzzy logic analysis, and can be divided into four stages: (1) a multi-resolution decomposition scheme based on a 3-D morphological filter was exploited to discriminate the lung region patterns at different analysis scales. (2) An additional spatial lung partitioning based on the lung tissue texture was introduced to reinforce the spatial separation between patterns extracted at the same resolution level in the decomposition pyramid. Then, (3) a hierarchic tree structure was exploited to describe the relationship between patterns at different resolution levels, and for each pattern, six fuzzy membership functions were established for assigning a probability of association with a normal tissue or a pathological target. Finally, (4) a decision step exploiting the fuzzy-logic assignments selects the target class of each lung pattern among the following categories: normal (N), emphysema (EM), fibrosis/honeycombing (FHC), and ground glass (GDG). According to a preliminary evaluation on an extended database, the proposed method can overcome the drawbacks of a previously developed approach and achieve higher sensitivity and specificity.

  5. Isoconversional approach for non-isothermal decomposition of un-irradiated and photon-irradiated 5-fluorouracil.

    PubMed

    Mohamed, Hala Sh; Dahy, AbdelRahman A; Mahfouz, Refaat M

    2017-10-25

    Kinetic analysis for the non-isothermal decomposition of un-irradiated and photon-beam-irradiated 5-fluorouracil (5-FU) as anti-cancer drug, was carried out in static air. Thermal decomposition of 5-FU proceeds in two steps. One minor step in the temperature range of (270-283°C) followed by the major step in the temperature range of (285-360°C). The non-isothermal data for un-irradiated and photon-irradiated 5-FU were analyzed using linear (Tang) and non-linear (Vyazovkin) isoconversional methods. The results of the application of these free models on the present kinetic data showed quite a dependence of the activation energy on the extent of conversion. For un-irradiated 5-FU, the non-isothermal data analysis indicates that the decomposition is generally described by A3 and A4 modeles for the minor and major decomposition steps, respectively. For a photon-irradiated sample of 5-FU with total absorbed dose of 10Gy, the decomposition is controlled by A2 model throughout the coversion range. The activation energies calculated in case of photon-irradiated 5-FU were found to be lower compared to the values obtained from the thermal decomposition of the un-irradiated sample probably due to the formation of additional nucleation sites created by a photon-irradiation. The decomposition path was investigated by intrinsic reaction coordinate (IRC) at the B3LYP/6-311++G(d,p) level of DFT. Two transition states were involved in the process by homolytic rupture of NH bond and ring secession, respectively. Published by Elsevier B.V.

  6. Analysis of temporal-longitudinal-latitudinal characteristics in the global ionosphere based on tensor rank-1 decomposition

    NASA Astrophysics Data System (ADS)

    Lu, Shikun; Zhang, Hao; Li, Xihai; Li, Yihong; Niu, Chao; Yang, Xiaoyun; Liu, Daizhi

    2018-03-01

    Combining analyses of spatial and temporal characteristics of the ionosphere is of great significance for scientific research and engineering applications. Tensor decomposition is performed to explore the temporal-longitudinal-latitudinal characteristics in the ionosphere. Three-dimensional tensors are established based on the time series of ionospheric vertical total electron content maps obtained from the Centre for Orbit Determination in Europe. To obtain large-scale characteristics of the ionosphere, rank-1 decomposition is used to obtain U^{(1)}, U^{(2)}, and U^{(3)}, which are the resulting vectors for the time, longitude, and latitude modes, respectively. Our initial finding is that the correspondence between the frequency spectrum of U^{(1)} and solar variation indicates that rank-1 decomposition primarily describes large-scale temporal variations in the global ionosphere caused by the Sun. Furthermore, the time lags between the maxima of the ionospheric U^{(2)} and solar irradiation range from 1 to 3.7 h without seasonal dependence. The differences in time lags may indicate different interactions between processes in the magnetosphere-ionosphere-thermosphere system. Based on the dataset displayed in the geomagnetic coordinates, the position of the barycenter of U^{(3)} provides evidence for north-south asymmetry (NSA) in the large-scale ionospheric variations. The daily variation in such asymmetry indicates the influences of solar ionization. The diurnal geomagnetic coordinate variations in U^{(3)} show that the large-scale EIA (equatorial ionization anomaly) variations during the day and night have similar characteristics. Considering the influences of geomagnetic disturbance on ionospheric behavior, we select the geomagnetic quiet GIMs to construct the ionospheric tensor. The results indicate that the geomagnetic disturbances have little effect on large-scale ionospheric characteristics.

  7. Cluster self-organization of TR-containing germanate systems: Suprapolyhedral precursors and self-assembly of the crystal structures of the LiNdGeO{sub 4} and CeGeO{sub 4} compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilyushin, G. D., E-mail: ilyushin@nc.cryst.ras.ru; Dem'yanets, L. N.

    2007-07-15

    A combinatorial-topological analysis of the orthogermanates LiNdGeO{sub 4} (space group Pbcn) and CeGeO{sub 4} (space group I 4{sub 1}/a, the scheelite structure type), which have MT frameworks composed of polyhedral structural units in the form of M dodecahedra (NdO{sub 8} and CeO{sub 8}) and T tetrahedra (GeO{sub 4}), is performed using the method of coordination sequences with the TOPOS program package. It is established that the structures of both orthogermanates are characterized by equivalent crystal-forming nets 4444. The cluster precursors of the M{sub 2}T{sub 2} cyclic type are identified by the method of two-color decomposition. The local symmetry of four-polyhedralmore » clusters corresponds to the point group 2. In the precursor of the LiNdGeO{sub 4} orthogermanate, the Li atom is located above the M{sub 2}T{sub 2} ring. The number of Li-O bonds in this precursor is 4. The cluster precursors M{sub 2}T{sub 2} and LiM{sub 2}T{sub 2} are responsible for the formation of crystal-forming clusters of a higher level according to the mechanism of matrix self-assembly. The coordination numbers of the cluster precursors in two-dimensional nets for these structures are found to be equal to 4. The equivalent bilayer TR,Ge stacks that consist of eight cluster precursors are revealed in the structures under investigation. It is demonstrated that there exist three types of translational interlayer arrangements of cluster precursors upon the formation of macrostructures of the orthogermanates.« less

  8. Improving the Incoherence of a Learned Dictionary via Rank Shrinkage.

    PubMed

    Ubaru, Shashanka; Seghouane, Abd-Krim; Saad, Yousef

    2017-01-01

    This letter considers the problem of dictionary learning for sparse signal representation whose atoms have low mutual coherence. To learn such dictionaries, at each step, we first update the dictionary using the method of optimal directions (MOD) and then apply a dictionary rank shrinkage step to decrease its mutual coherence. In the rank shrinkage step, we first compute a rank 1 decomposition of the column-normalized least squares estimate of the dictionary obtained from the MOD step. We then shrink the rank of this learned dictionary by transforming the problem of reducing the rank to a nonnegative garrotte estimation problem and solving it using a path-wise coordinate descent approach. We establish theoretical results that show that the rank shrinkage step included will reduce the coherence of the dictionary, which is further validated by experimental results. Numerical experiments illustrating the performance of the proposed algorithm in comparison to various other well-known dictionary learning algorithms are also presented.

  9. Integrated control/structure optimization by multilevel decomposition

    NASA Technical Reports Server (NTRS)

    Zeiler, Thomas A.; Gilbert, Michael G.

    1990-01-01

    A method for integrated control/structure optimization by multilevel decomposition is presented. It is shown that several previously reported methods were actually partial decompositions wherein only the control was decomposed into a subsystem design. One of these partially decomposed problems was selected as a benchmark example for comparison. The present paper fully decomposes the system into structural and control subsystem designs and produces an improved design. Theory, implementation, and results for the method are presented and compared with the benchmark example.

  10. Normal forms of Hopf-zero singularity

    NASA Astrophysics Data System (ADS)

    Gazor, Majid; Mokhtari, Fahimeh

    2015-01-01

    The Lie algebra generated by Hopf-zero classical normal forms is decomposed into two versal Lie subalgebras. Some dynamical properties for each subalgebra are described; one is the set of all volume-preserving conservative systems while the other is the maximal Lie algebra of nonconservative systems. This introduces a unique conservative-nonconservative decomposition for the normal form systems. There exists a Lie-subalgebra that is Lie-isomorphic to a large family of vector fields with Bogdanov-Takens singularity. This gives rise to a conclusion that the local dynamics of formal Hopf-zero singularities is well-understood by the study of Bogdanov-Takens singularities. Despite this, the normal form computations of Bogdanov-Takens and Hopf-zero singularities are independent. Thus, by assuming a quadratic nonzero condition, complete results on the simplest Hopf-zero normal forms are obtained in terms of the conservative-nonconservative decomposition. Some practical formulas are derived and the results implemented using Maple. The method has been applied on the Rössler and Kuramoto-Sivashinsky equations to demonstrate the applicability of our results.

  11. Analysis of Decomposition for Structure I Methane Hydrate by Molecular Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Wei, Na; Sun, Wan-Tong; Meng, Ying-Feng; Liu, An-Qi; Zhou, Shou-Wei; Guo, Ping; Fu, Qiang; Lv, Xin

    2018-05-01

    Under multi-nodes of temperatures and pressures, microscopic decomposition mechanisms of structure I methane hydrate in contact with bulk water molecules have been studied through LAMMPS software by molecular dynamics simulation. Simulation system consists of 482 methane molecules in hydrate and 3027 randomly distributed bulk water molecules. Through analyses of simulation results, decomposition number of hydrate cages, density of methane molecules, radial distribution function for oxygen atoms, mean square displacement and coefficient of diffusion of methane molecules have been studied. A significant result shows that structure I methane hydrate decomposes from hydrate-bulk water interface to hydrate interior. As temperature rises and pressure drops, the stabilization of hydrate will weaken, decomposition extent will go deep, and mean square displacement and coefficient of diffusion of methane molecules will increase. The studies can provide important meanings for the microscopic decomposition mechanisms analyses of methane hydrate.

  12. iMODS: internal coordinates normal mode analysis server.

    PubMed

    López-Blanco, José Ramón; Aliaga, José I; Quintana-Ortí, Enrique S; Chacón, Pablo

    2014-07-01

    Normal mode analysis (NMA) in internal (dihedral) coordinates naturally reproduces the collective functional motions of biological macromolecules. iMODS facilitates the exploration of such modes and generates feasible transition pathways between two homologous structures, even with large macromolecules. The distinctive internal coordinate formulation improves the efficiency of NMA and extends its applicability while implicitly maintaining stereochemistry. Vibrational analysis, motion animations and morphing trajectories can be easily carried out at different resolution scales almost interactively. The server is versatile; non-specialists can rapidly characterize potential conformational changes, whereas advanced users can customize the model resolution with multiple coarse-grained atomic representations and elastic network potentials. iMODS supports advanced visualization capabilities for illustrating collective motions, including an improved affine-model-based arrow representation of domain dynamics. The generated all-heavy-atoms conformations can be used to introduce flexibility for more advanced modeling or sampling strategies. The server is free and open to all users with no login requirement at http://imods.chaconlab.org. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Three-Dimensional Passive-Source Reverse-Time Migration of Converted Waves: The Method

    NASA Astrophysics Data System (ADS)

    Li, Jiahang; Shen, Yang; Zhang, Wei

    2018-02-01

    At seismic discontinuities in the crust and mantle, part of the compressional wave energy converts to shear wave, and vice versa. These converted waves have been widely used in receiver function (RF) studies to image discontinuity structures in the Earth. While generally successful, the conventional RF method has its limitations and is suited mostly to flat or gently dipping structures. Among the efforts to overcome the limitations of the conventional RF method is the development of the wave-theory-based, passive-source reverse-time migration (PS-RTM) for imaging complex seismic discontinuities and scatters. To date, PS-RTM has been implemented only in 2D in the Cartesian coordinate for local problems and thus has limited applicability. In this paper, we introduce a 3D PS-RTM approach in the spherical coordinate, which is better suited for regional and global problems. New computational procedures are developed to reduce artifacts and enhance migrated images, including back-propagating the main arrival and the coda containing the converted waves separately, using a modified Helmholtz decomposition operator to separate the P and S modes in the back-propagated wavefields, and applying an imaging condition that maintains a consistent polarity for a given velocity contrast. Our new approach allows us to use migration velocity models with realistic velocity discontinuities, improving accuracy of the migrated images. We present several synthetic experiments to demonstrate the method, using regional and teleseismic sources. The results show that both regional and teleseismic sources can illuminate complex structures and this method is well suited for imaging dipping interfaces and sharp lateral changes in discontinuity structures.

  14. Syntheses, structural characterization and spectroscopic studies of cadmium(II)-metal(II) cyanide complexes with 4-(2-aminoethyl)pyridine

    NASA Astrophysics Data System (ADS)

    Karaağaç, Dursun; Kürkçüoğlu, Güneş Süheyla; Şenyel, Mustafa; Hökelek, Tuncer

    2017-02-01

    Three new cadmium(II)-metal(II) cyanide complexes, [Cd(4aepy)2(H2O)2][Ni(CN)4] (1), [Cd(4aepy)2(H2O)2][Pd(CN)4] (2) and [Cd(4aepy)2(H2O)2][Pt(CN)4] (3) [4aepy = 4-(2-aminoethyl)pyridine], have been synthesized and characterized by elemental, thermal, FT-IR and Raman spectral analyses. The crystal structures of 1 and 2 have been determined by single crystal X-ray diffraction technique, in which they crystallize in the monoclinic system and C2/c space group. The M(II) [M(II) = Ni(II), Pd(II) and Pt(II)] ions are coordinated with the carbon atoms of the four cyanide groups in the square planar geometries and the [M(CN)4]2- ions act as counter ions. The Cd(II) ions display an N4O2 coordination sphere with a distorted octahedral geometry, the nitrogen donors belonging to four molecules of the organic 4aepy that act as unidentate ligands and two oxygen atoms from aqua ligands. 3D supramolecular structures of 1 and 2 were occurred by M⋯π and hydrogen bonding (Nsbnd H⋯N and Osbnd H⋯N) interactions. Vibrational assignments of all the observed bands were given and the spectral properties were also supported the crystal structures of the complexes. A possible decompositions of the complexes were investigated in the temperature range 30-800 °C in the static atmosphere.

  15. Using Individualized Brain Network for Analyzing Structural Covariance of the Cerebral Cortex in Alzheimer's Patients.

    PubMed

    Kim, Hee-Jong; Shin, Jeong-Hyeon; Han, Cheol E; Kim, Hee Jin; Na, Duk L; Seo, Sang Won; Seong, Joon-Kyung

    2016-01-01

    Cortical thinning patterns in Alzheimer's disease (AD) have been widely reported through conventional regional analysis. In addition, the coordinated variance of cortical thickness in different brain regions has been investigated both at the individual and group network levels. In this study, we aim to investigate network architectural characteristics of a structural covariance network (SCN) in AD, and further to show that the structural covariance connectivity becomes disorganized across the brain regions in AD, while the normal control (NC) subjects maintain more clustered and consistent coordination in cortical atrophy variations. We generated SCNs directly from T1-weighted MR images of individual patients using surface-based cortical thickness data, with structural connectivity defined as similarity in cortical thickness within different brain regions. Individual SCNs were constructed using morphometric data from the Samsung Medical Center (SMC) dataset. The structural covariance connectivity showed higher clustering than randomly generated networks, as well as similar minimum path lengths, indicating that the SCNs are "small world." There were significant difference between NC and AD group in characteristic path lengths (z = -2.97, p < 0.01) and small-worldness values (z = 4.05, p < 0.01). Clustering coefficients in AD was smaller than that of NC but there was no significant difference (z = 1.81, not significant). We further observed that the AD patients had significantly disrupted structural connectivity. We also show that the coordinated variance of cortical thickness is distributed more randomly from one region to other regions in AD patients when compared to NC subjects. Our proposed SCN may provide surface-based measures for understanding interaction between two brain regions with co-atrophy of the cerebral cortex due to normal aging or AD. We applied our method to the AD Neuroimaging Initiative (ADNI) data to show consistency in results with the SMC dataset.

  16. Magnesium-binding architectures in RNA crystal structures: validation, binding preferences, classification and motif detection

    PubMed Central

    Zheng, Heping; Shabalin, Ivan G.; Handing, Katarzyna B.; Bujnicki, Janusz M.; Minor, Wladek

    2015-01-01

    The ubiquitous presence of magnesium ions in RNA has long been recognized as a key factor governing RNA folding, and is crucial for many diverse functions of RNA molecules. In this work, Mg2+-binding architectures in RNA were systematically studied using a database of RNA crystal structures from the Protein Data Bank (PDB). Due to the abundance of poorly modeled or incorrectly identified Mg2+ ions, the set of all sites was comprehensively validated and filtered to identify a benchmark dataset of 15 334 ‘reliable’ RNA-bound Mg2+ sites. The normalized frequencies by which specific RNA atoms coordinate Mg2+ were derived for both the inner and outer coordination spheres. A hierarchical classification system of Mg2+ sites in RNA structures was designed and applied to the benchmark dataset, yielding a set of 41 types of inner-sphere and 95 types of outer-sphere coordinating patterns. This classification system has also been applied to describe six previously reported Mg2+-binding motifs and detect them in new RNA structures. Investigation of the most populous site types resulted in the identification of seven novel Mg2+-binding motifs, and all RNA structures in the PDB were screened for the presence of these motifs. PMID:25800744

  17. P-T phase diagram and structural transformations of molten P2O5 under pressure

    NASA Astrophysics Data System (ADS)

    Brazhkin, V. V.; Katayama, Y.; Lyapin, A. G.; Saitoh, H.

    2014-03-01

    The P2O5 compound is an archetypical glass-forming oxide with a record high hygroscopicity, which makes its study extremely difficult. We present the in situ x-ray diffraction study of the pressure-temperature phase diagram of P2O5 and, particularly, of the liquid P2O5 structure under high pressure up to 10 GPa. Additionally, quenching from the melt has been used to extend the melting curve up to 15 GPa. We found that structural transformation in the liquid P2O5 under pressure is unique and includes three stages: first, the disappearance of the intermediate range order of the melt together with a slow increase in the average first-coordination number (P-O and O-P neighbors) up to 4 GPa; second, the "normal" compression almost without structural modification at higher pressures up to 8-9 GPa; and, finally, the abrupt change of the short-range order structure of the liquid with the jumplike increase at 9-10 GPa. The last stage correlates with the melting curve maximum (≈1250 °C) at ≈10 GPa and can be interpreted as a transformation to the liquid phase with entirely fivefold-coordinated phosphorus and twofold-coordinated oxygen atoms.

  18. Latent fingermark detection for NaYF4:Er3+/Yb3+ upconversion phosphor synthesized by thermal decomposition route

    NASA Astrophysics Data System (ADS)

    Maurya, S. K.; Tiwari, S. P.; Kumar, A.; Kumar, K.

    2018-04-01

    The synthesis and spectroscopy of the upconverting nanoparticles, cubic NaYF4:Er3+/Yb3+ phosphor is developed for latent fingermark detection. The cubic phase of NaYF4: Er3+/Yb3+ phosphor is synthesized by thermal decomposition method using trifluoroacetate precursor with coordinating ligand octadecene and oleic acid in a mixture of technical grade. The synthesized samples showed intense green emission using 976 nm diode laser as an excitation source. Because of excellent property of luminescence in green regime the sample is used to detect the latent fingermark on a porous glass surface.

  19. In Situ Probes of Capture and Decomposition of Chemical Warfare Agent Simulants by Zr-Based Metal Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plonka, Anna M.; Wang, Qi; Gordon, Wesley O.

    Recently, Zr-based metal organic frameworks (MOFs) were shown to be among the fastest catalysts of nerve-agent hydrolysis in solution. Here, we report a detailed study of the adsorption and decomposition of a nerve-agent simulant, dimethyl methylphosphonate (DMMP), on UiO-66, UiO-67, MOF-808, and NU-1000 using synchrotron-based X-ray powder diffraction, X-ray absorption, and infrared spectroscopy, which reveals key aspects of the reaction mechanism. The diffraction measurements indicate that all four MOFs adsorb DMMP (introduced at atmospheric pressures through a flow of helium or air) within the pore space. In addition, the combination of X-ray absorption and infrared spectra suggests direct coordination ofmore » DMMP to the Zr6 cores of all MOFs, which ultimately leads to decomposition to phosphonate products. Our experimental probes into the mechanism of adsorption and decomposition of chemical warfare agent simulants on Zr-based MOFs open new opportunities in rational design of new and superior decontamination materials.« less

  20. In Situ Probes of Capture and Decomposition of Chemical Warfare Agent Simulants by Zr-Based Metal Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plonka, Anna M.; Wang, Qi; Gordon, Wesley O.

    Zr-based metal organic frameworks (MOFs) have been recently shown to be among the fastest catalysts of nerve-agent hydrolysis in solution. We report a detailed study of the adsorption and decomposition of a nerve-agent simulant, dimethyl methylphosphonate (DMMP), on UiO-66, UiO-67, MOF-808, and NU-1000 using synchrotron-based X-ray powder diffraction, X-ray absorption, and infrared spectroscopy, which reveals key aspects of the reaction mechanism. The diffraction measurements indicate that all four MOFs adsorb DMMP (introduced at atmospheric pressures through a flow of helium or air) within the pore space. In addition, the combination of X-ray absorption and infrared spectra suggests direct coordination ofmore » DMMP to the Zr6 cores of all MOFs, which ultimately leads to decomposition to phosphonate products. These experimental probes into the mechanism of adsorption and decomposition of chemical warfare agent simulants on Zr-based MOFs open new opportunities in rational design of new and superior decontamination materials.« less

  1. In Situ Probes of Capture and Decomposition of Chemical Warfare Agent Simulants by Zr-Based Metal Organic Frameworks

    DOE PAGES

    Plonka, Anna M.; Wang, Qi; Gordon, Wesley O.; ...

    2016-12-30

    Recently, Zr-based metal organic frameworks (MOFs) were shown to be among the fastest catalysts of nerve-agent hydrolysis in solution. Here, we report a detailed study of the adsorption and decomposition of a nerve-agent simulant, dimethyl methylphosphonate (DMMP), on UiO-66, UiO-67, MOF-808, and NU-1000 using synchrotron-based X-ray powder diffraction, X-ray absorption, and infrared spectroscopy, which reveals key aspects of the reaction mechanism. The diffraction measurements indicate that all four MOFs adsorb DMMP (introduced at atmospheric pressures through a flow of helium or air) within the pore space. In addition, the combination of X-ray absorption and infrared spectra suggests direct coordination ofmore » DMMP to the Zr6 cores of all MOFs, which ultimately leads to decomposition to phosphonate products. Our experimental probes into the mechanism of adsorption and decomposition of chemical warfare agent simulants on Zr-based MOFs open new opportunities in rational design of new and superior decontamination materials.« less

  2. Canonical decomposition of magnetotelluric responses: Experiment on 1D anisotropic structures

    NASA Astrophysics Data System (ADS)

    Guo, Ze-qiu; Wei, Wen-bo; Ye, Gao-feng; Jin, Sheng; Jing, Jian-en

    2015-08-01

    Horizontal electrical heterogeneity of subsurface earth is mostly originated from structural complexity and electrical anisotropy, and local near-surface electrical heterogeneity will severely distort regional electromagnetic responses. Conventional distortion analyses for magnetotelluric soundings are primarily physical decomposition methods with respect to isotropic models, which mostly presume that the geoelectric distribution of geological structures is of local and regional patterns represented by 3D/2D models. Due to the widespread anisotropy of earth media, the confusion between 1D anisotropic responses and 2D isotropic responses, and the defects of physical decomposition methods, we propose to conduct modeling experiments with canonical decomposition in terms of 1D layered anisotropic models, and the method is one of the mathematical decomposition methods based on eigenstate analyses differentiated from distortion analyses, which can be used to recover electrical information such as strike directions, and maximum and minimum conductivity. We tested this method with numerical simulation experiments on several 1D synthetic models, which turned out that canonical decomposition is quite effective to reveal geological anisotropic information. Finally, for the background of anisotropy from previous study by geological and seismological methods, canonical decomposition is applied to real data acquired in North China Craton for 1D anisotropy analyses, and the result shows that, with effective modeling and cautious interpretation, canonical decomposition could be another good method to detect anisotropy of geological media.

  3. Comparative studies of mononuclear Ni(II) and UO2(II) complexes having bifunctional coordinated groups: Synthesis, thermal analysis, X-ray diffraction, surface morphology studies and biological evaluation

    NASA Astrophysics Data System (ADS)

    Fahem, Abeer A.

    2012-03-01

    Two Schiff base ligands derived from condensation of phthalaldehyde and o-phenylenediamine in 1:2 (L1) and 2:1 (L2) having bifunctional coordinated groups (NH2 and CHO groups, respectively) and their metal complexes with Ni(II) and UO2(II) have been synthesized and characterized by elemental analysis, molar conductance, magnetic susceptibilities and spectral data (IR, 1H NMR, mass and solid reflectance) as well as thermal, XRPD and SEM analysis. The formula [Ni(L1)Cl2]·2.5H2O, [UO2(L1)(NO3)2]·2H2O, [Ni(L2)Cl2]·1.5H2O and [UO2(L2)(NO3)2] have been suggested for the complexes. The vibrational spectral data show that the ligands behave as neutral ligands and coordinated to the metal ions in a tetradentate manner. The Ni(II) complexes are six coordinate with octahedral geometry and the ligand field parameters: Dq, B, β and LFSE were calculated while, UO2(II) complexes are eight coordinate with dodecahedral geometry and the force constant, FUsbnd O and bond length, RUsbnd O were calculated. The thermal decomposition of complexes ended with metal chloride/nitrate as a final product and the highest thermal stability is displayed by [UO2(L2)(NO3)2] complex. The X-ray powder diffraction data revealed the formation of nano sized crystalline complexes. The SEM analysis provides the morphology of the synthesized compounds and SEM image of [UO2(L2)(NO3)2] complex exhibits nano rod structure. The growth-inhibiting potential of the ligands and their complexes has been assessed against a variety of bacterial and fungal strains.

  4. Rapid estimation of frequency response functions by close-range photogrammetry

    NASA Technical Reports Server (NTRS)

    Tripp, J. S.

    1985-01-01

    The accuracy of a rapid method which estimates the frequency response function from stereoscopic dynamic data is computed. It is shown that reversal of the order of the operations of coordinate transformation and Fourier transformation, which provides a significant increase in computational speed, introduces error. A portion of the error, proportional to the perturbation components normal to the camera focal planes, cannot be eliminated. The remaining error may be eliminated by proper scaling of frequency data prior to coordinate transformation. Methods are developed for least squares estimation of the full 3x3 frequency response matrix for a three dimensional structure.

  5. Soil Properties, Nutrient Dynamics, and Soil Enzyme Activities Associated with Garlic Stalk Decomposition under Various Conditions

    PubMed Central

    Han, Xu; Cheng, Zhihui; Meng, Huanwen

    2012-01-01

    The garlic stalk is a byproduct of garlic production and normally abandoned or burned, both of which cause environmental pollution. It is therefore appropriate to determine the conditions of efficient decomposition, and equally appropriate to determine the impact of this decomposition on soil properties. In this study, the soil properties, enzyme activities and nutrient dynamics associated with the decomposition of garlic stalk at different temperatures, concentrations and durations were investigated. Stalk decomposition significantly increased the values of soil pH and electrical conductivity. In addition, total nitrogen and organic carbon concentration were significantly increased by decomposing stalks at 40°C, with a 5∶100 ratio and for 10 or 60 days. The highest activities of sucrase, urease and alkaline phosphatase in soil were detected when stalk decomposition was performed at the lowest temperature (10°C), highest concentration (5∶100), and shortest duration (10 or 20 days). The evidence presented here suggests that garlic stalk decomposition improves the quality of soil by altering the value of soil pH and electrical conductivity and by changing nutrient dynamics and soil enzyme activity, compared to the soil decomposition without garlic stalks. PMID:23226411

  6. Analysis of Coherent Phonon Signals by Sparsity-promoting Dynamic Mode Decomposition

    NASA Astrophysics Data System (ADS)

    Murata, Shin; Aihara, Shingo; Tokuda, Satoru; Iwamitsu, Kazunori; Mizoguchi, Kohji; Akai, Ichiro; Okada, Masato

    2018-05-01

    We propose a method to decompose normal modes in a coherent phonon (CP) signal by sparsity-promoting dynamic mode decomposition. While the CP signals can be modeled as the sum of finite number of damped oscillators, the conventional method such as Fourier transform adopts continuous bases in a frequency domain. Thus, the uncertainty of frequency appears and it is difficult to estimate the initial phase. Moreover, measurement artifacts are imposed on the CP signal and deforms the Fourier spectrum. In contrast, the proposed method can separate the signal from the artifact precisely and can successfully estimate physical properties of the normal modes.

  7. Thermochemical generation of hydrogen and carbon dioxide

    NASA Technical Reports Server (NTRS)

    Lawson, Daniel D. (Inventor); England, Christopher (Inventor)

    1984-01-01

    Mixing of carbon in the form of high sulfur coal with sulfuric acid reduces the temperature of sulfuric acid decomposition from 830.degree. C. to between 300.degree. C. and 400.degree. C. The low temperature sulfuric acid decomposition is particularly useful in thermal chemical cycles for splitting water to produce hydrogen. Carbon dioxide is produced as a commercially desirable byproduct. Lowering of the temperature for the sulfuric acid decomposition or oxygen release step simplifies equipment requirements, lowers thermal energy input and reduces corrosion problems presented by sulfuric acid at conventional cracking temperatures. Use of high sulfur coal as the source of carbon for the sulfuric acid decomposition provides an environmentally safe and energy efficient utilization of this normally polluting fuel.

  8. System analysis tools for an ELT at ESO

    NASA Astrophysics Data System (ADS)

    Mueller, Michael; Koch, Franz

    2006-06-01

    Engineering of complex, large scale systems like the ELT designs currently investigated and developed in Europe and Northern America require powerful and sophisticated tools within specific technical disciplines such as mechanics, optics and control engineering. However, even analyzing a certain component of the telescope like the telescope structure necessitates a system approach to evaluate the structural effects onto the optical performance. This paper shows several software tools developed by the European Southern Observatory (ESO) which focus onto the system approach in the analyses: Using modal results of a finite element analysis the SMI-toolbox allows an easy generation of structural models with different sizes and levels of accuracy for the control design and closed-loop simulations. The optical modeling code BeamWarrior was developed by ESO and Astrium GmbH, Germany) especially for integrated modeling and interfering with a structural model. Within BeamWarrior displacements and deformations can be applied in an arbitrary coordinate system, and hence also in the global coordinates of the FE model avoiding error prone transformations. In addition to this, a sparse state space model object was developed for Matlab to gain in computational efficiency and reduced memory requirements due to the sparsity pattern of both the structural models and the control architecture. As one result these tools allow building an integrated model in order to reliably simulate interactions, cross-coupling effects, system responses, and to evaluate global performance. In order to evaluate disturbance effects on the optical performance in openloop more efficiently, an optical evaluation toolbox was built in the FE software ANSYS which performs Zernike decomposition and best-fit computation of the deformations directly in the FE analysis.

  9. Characterization of cancer and normal tissue fluorescence through wavelet transform and singular value decomposition

    NASA Astrophysics Data System (ADS)

    Gharekhan, Anita H.; Biswal, Nrusingh C.; Gupta, Sharad; Pradhan, Asima; Sureshkumar, M. B.; Panigrahi, Prasanta K.

    2008-02-01

    The statistical and characteristic features of the polarized fluorescence spectra from cancer, normal and benign human breast tissues are studied through wavelet transform and singular value decomposition. The discrete wavelets enabled one to isolate high and low frequency spectral fluctuations, which revealed substantial randomization in the cancerous tissues, not present in the normal cases. In particular, the fluctuations fitted well with a Gaussian distribution for the cancerous tissues in the perpendicular component. One finds non-Gaussian behavior for normal and benign tissues' spectral variations. The study of the difference of intensities in parallel and perpendicular channels, which is free from the diffusive component, revealed weak fluorescence activity in the 630nm domain, for the cancerous tissues. This may be ascribable to porphyrin emission. The role of both scatterers and fluorophores in the observed minor intensity peak for the cancer case is experimentally confirmed through tissue-phantom experiments. Continuous Morlet wavelet also highlighted this domain for the cancerous tissue fluorescence spectra. Correlation in the spectral fluctuation is further studied in different tissue types through singular value decomposition. Apart from identifying different domains of spectral activity for diseased and non-diseased tissues, we found random matrix support for the spectral fluctuations. The small eigenvalues of the perpendicular polarized fluorescence spectra of cancerous tissues fitted remarkably well with random matrix prediction for Gaussian random variables, confirming our observations about spectral fluctuations in the wavelet domain.

  10. Numerical simulation of large-scale ocean-atmosphere coupling and the ocean's role in climate

    NASA Technical Reports Server (NTRS)

    Gates, W. L.

    1983-01-01

    The problem of reducing model generated sigma coordinate data to pressure levels is considered. A mass consistent scheme for performing budget analyses is proposed, wherein variables interpolated to a given pressure level are weighted according to the mass between a nominal pressure level above and either a nominal pressure level below or the Earth's surface, whichever is closer. The method is applied to the atmospheric energy cycle as simulated by the OSU two level atmospheric general circulation model. The results are more realistic than sigma coordinate analyses with respect to eddy decomposition, and are in agreement with the sigma coordinate evaluation of the numerical energy sink. Comparison with less sophisticated budget schemes indicates superiority locally, but not globally.

  11. Interfacial wave theory for dendritic structure of a growing needle crystal. I - Local instability mechanism. II - Wave-emission mechanism at the turning point

    NASA Technical Reports Server (NTRS)

    Xu, Jian-Jun

    1989-01-01

    The complicated dendritic structure of a growing needle crystal is studied on the basis of global interfacial wave theory. The local dispersion relation for normal modes is derived in a paraboloidal coordinate system using the multiple-variable-expansion method. It is shown that the global solution in a dendrite growth process incorporates the morphological instability factor and the traveling wave factor.

  12. KSC-04PD-2441

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. On Launch Pad 39A, a rescue force climbs into slidewire baskets on the Fixed Service Structure during an emergency egress scenario. The four-hour exercise simulated normal launch countdown operations, with the added challenge of a fictitious event causing an evacuation of the vehicle and launch pad. It tested the teams rescue approaches on the Fixed Service Structure, slidewire basket evacuation, triage care and transportation of injured personnel to hospitals, as well as communications and coordination.

  13. Maximum likelihood clustering with dependent feature trees

    NASA Technical Reports Server (NTRS)

    Chittineni, C. B. (Principal Investigator)

    1981-01-01

    The decomposition of mixture density of the data into its normal component densities is considered. The densities are approximated with first order dependent feature trees using criteria of mutual information and distance measures. Expressions are presented for the criteria when the densities are Gaussian. By defining different typs of nodes in a general dependent feature tree, maximum likelihood equations are developed for the estimation of parameters using fixed point iterations. The field structure of the data is also taken into account in developing maximum likelihood equations. Experimental results from the processing of remotely sensed multispectral scanner imagery data are included.

  14. Revisiting Vertical Models To Simulate the Line Shape of Electronic Spectra Adopting Cartesian and Internal Coordinates.

    PubMed

    Cerezo, Javier; Santoro, Fabrizio

    2016-10-11

    Vertical models for the simulation of spectroscopic line shapes expand the potential energy surface (PES) of the final state around the equilibrium geometry of the initial state. These models provide, in principle, a better approximation of the region of the band maximum. At variance, adiabatic models expand each PES around its own minimum. In the harmonic approximation, when the minimum energy structures of the two electronic states are connected by large structural displacements, adiabatic models can breakdown and are outperformed by vertical models. However, the practical application of vertical models faces the issues related to the necessity to perform a frequency analysis at a nonstationary point. In this contribution we revisit vertical models in harmonic approximation adopting both Cartesian (x) and valence internal curvilinear coordinates (s). We show that when x coordinates are used, the vibrational analysis at nonstationary points leads to a deficient description of low-frequency modes, for which spurious imaginary frequencies may even appear. This issue is solved when s coordinates are adopted. It is however necessary to account for the second derivative of s with respect to x, which here we compute analytically. We compare the performance of the vertical model in the s-frame with respect to adiabatic models and previously proposed vertical models in x- or Q 1 -frame, where Q 1 are the normal coordinates of the initial state computed as combination of Cartesian coordinates. We show that for rigid molecules the vertical approach in the s-frame provides a description of the final state very close to the adiabatic picture. For sizable displacements it is a solid alternative to adiabatic models, and it is not affected by the issues of vertical models in x- and Q 1 -frames, which mainly arise when temperature effects are included. In principle the G matrix depends on s, and this creates nonorthogonality problems of the Duschinsky matrix connecting the normal modes of initial and final states in adiabatic approaches. We highlight that such a dependence of G on s is also an issue in vertical models, due to the necessity to approximate the kinetic term in the Hamiltonian when setting up the so-called GF problem. When large structural differences exist between the initial and the final-state minima, the changes in the G matrix can become too large to be disregarded.

  15. THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S{sup 4}G): MULTI-COMPONENT DECOMPOSITION STRATEGIES AND DATA RELEASE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salo, Heikki; Laurikainen, Eija; Laine, Jarkko

    The Spitzer Survey of Stellar Structure in Galaxies (S{sup 4}G) is a deep 3.6 and 4.5 μm imaging survey of 2352 nearby (<40 Mpc) galaxies. We describe the S{sup 4}G data analysis pipeline 4, which is dedicated to two-dimensional structural surface brightness decompositions of 3.6 μm images, using GALFIT3.0. Besides automatic 1-component Sérsic fits, and 2-component Sérsic bulge + exponential disk fits, we present human-supervised multi-component decompositions, which include, when judged appropriate, a central point source, bulge, disk, and bar components. Comparison of the fitted parameters indicates that multi-component models are needed to obtain reliable estimates for the bulge Sérsicmore » index and bulge-to-total light ratio (B/T), confirming earlier results. Here, we describe the preparations of input data done for decompositions, give examples of our decomposition strategy, and describe the data products released via IRSA and via our web page (www.oulu.fi/astronomy/S4G-PIPELINE4/MAIN). These products include all the input data and decomposition files in electronic form, making it easy to extend the decompositions to suit specific science purposes. We also provide our IDL-based visualization tools (GALFIDL) developed for displaying/running GALFIT-decompositions, as well as our mask editing procedure (MASK-EDIT) used in data preparation. A detailed analysis of the bulge, disk, and bar parameters derived from multi-component decompositions will be published separately.« less

  16. Neutral Guest Capture via Lewis Acid/Base Molecular Square Receptors. X-ray Crystal Structure of {Cyclobis[(cis-(dppp)Pt(4-ethynylpyridyl)(2))(cis- (PEt(3))(2)Pt)]Ag(2)}(+6)(phenazine)- ((-)OSO(2)CF(3))(6).

    PubMed

    Whiteford, Jeffery A.; Stang, Peter J.; Huang, Songping D.

    1998-10-19

    Interaction of {cyclobis[(cis-(dppp)Pt(4-ethynylpyridyl)(2))(cis-(L)M)]Ag(2)}(+6)((-)OSO(2)CF(3))(6), where M = Pt(II) or Pd(II) and L = dppp or 2PEt(3), with pyridine, pyrazine, phenazine, or 4,4'-dipyridyl ketone results in coordination Lewis acid/base host-guest assemblies via the "pi-tweezer effect" and mono or bis neutral guest coordination. All host-guest complexes are air stable microcrystalline solids with decomposition points greater than 170 degrees C. The homometallic Pt(II) receptors are more stable than the heteroaromatic Pt(II)-Pd(II) receptors toward heteratom-containing aromatic guests. The X-ray crystal structure of the host-guest complex {cyclobis[(cis-(dppp)Pt(4-ethynylpyridyl)(2))(cis-(PEt(3))(2)Pt)]Ag(2)}(+6)(phenazine)((-)OSO(2)CF(3))(6) is reported. The crystals with the empirical formula C(62)H(68)AgF(9)N(3)O(9)P(4)Pt(2)S(3) are triclinic P&onemacr; with a = 12.3919(8) Å, b = 17.160(1) Å, c = 18.932(1) Å, alpha = 90.892(1) degrees, beta = 97.127(1) degrees, gamma = 89.969(1) degrees, and Z = 2.

  17. A new position measurement system using a motion-capture camera for wind tunnel tests.

    PubMed

    Park, Hyo Seon; Kim, Ji Young; Kim, Jin Gi; Choi, Se Woon; Kim, Yousok

    2013-09-13

    Considering the characteristics of wind tunnel tests, a position measurement system that can minimize the effects on the flow of simulated wind must be established. In this study, a motion-capture camera was used to measure the displacement responses of structures in a wind tunnel test, and the applicability of the system was tested. A motion-capture system (MCS) could output 3D coordinates using two-dimensional image coordinates obtained from the camera. Furthermore, this remote sensing system had some flexibility regarding lab installation because of its ability to measure at relatively long distances from the target structures. In this study, we performed wind tunnel tests on a pylon specimen and compared the measured responses of the MCS with the displacements measured with a laser displacement sensor (LDS). The results of the comparison revealed that the time-history displacement measurements from the MCS slightly exceeded those of the LDS. In addition, we confirmed the measuring reliability of the MCS by identifying the dynamic properties (natural frequency, damping ratio, and mode shape) of the test specimen using system identification methods (frequency domain decomposition, FDD). By comparing the mode shape obtained using the aforementioned methods with that obtained using the LDS, we also confirmed that the MCS could construct a more accurate mode shape (bending-deflection mode shape) with the 3D measurements.

  18. A New Position Measurement System Using a Motion-Capture Camera for Wind Tunnel Tests

    PubMed Central

    Park, Hyo Seon; Kim, Ji Young; Kim, Jin Gi; Choi, Se Woon; Kim, Yousok

    2013-01-01

    Considering the characteristics of wind tunnel tests, a position measurement system that can minimize the effects on the flow of simulated wind must be established. In this study, a motion-capture camera was used to measure the displacement responses of structures in a wind tunnel test, and the applicability of the system was tested. A motion-capture system (MCS) could output 3D coordinates using two-dimensional image coordinates obtained from the camera. Furthermore, this remote sensing system had some flexibility regarding lab installation because of its ability to measure at relatively long distances from the target structures. In this study, we performed wind tunnel tests on a pylon specimen and compared the measured responses of the MCS with the displacements measured with a laser displacement sensor (LDS). The results of the comparison revealed that the time-history displacement measurements from the MCS slightly exceeded those of the LDS. In addition, we confirmed the measuring reliability of the MCS by identifying the dynamic properties (natural frequency, damping ratio, and mode shape) of the test specimen using system identification methods (frequency domain decomposition, FDD). By comparing the mode shape obtained using the aforementioned methods with that obtained using the LDS, we also confirmed that the MCS could construct a more accurate mode shape (bending-deflection mode shape) with the 3D measurements. PMID:24064600

  19. Development and Feasibility Assessment of a Rotational Orthosis for Walking with Arm Swing.

    PubMed

    Fang, Juan; Xie, Qing; Yang, Guo-Yuan; Xie, Le

    2017-01-01

    Interlimb neural coupling might underlie human bipedal locomotion, which is reflected in the fact that people swing their arms synchronously with leg movement in normal gait. Therefore, arm swing should be included in gait training to provide coordinated interlimb performance. The present study aimed to develop a Rotational Orthosis for Walking with Arm Swing (ROWAS), and evaluate its feasibility from the perspectives of implementation, acceptability and responsiveness. We developed the mechanical structures of the ROWAS system in SolidWorks, and implemented the concept in a prototype. Normal gait data were used as the reference performance of the shoulder, hip, knee and ankle joints of the prototype. The ROWAS prototype was tested for function assessment and further evaluated using five able-bodied subjects for user feedback. The ROWAS prototype produced coordinated performance in the upper and lower limbs, with joint profiles similar to those occurring in normal gait. The subjects reported a stronger feeling of walking with arm swing than without. The ROWAS system was deemed feasible according to the formal assessment criteria.

  20. Development and Feasibility Assessment of a Rotational Orthosis for Walking with Arm Swing

    PubMed Central

    Fang, Juan; Xie, Qing; Yang, Guo-Yuan; Xie, Le

    2017-01-01

    Interlimb neural coupling might underlie human bipedal locomotion, which is reflected in the fact that people swing their arms synchronously with leg movement in normal gait. Therefore, arm swing should be included in gait training to provide coordinated interlimb performance. The present study aimed to develop a Rotational Orthosis for Walking with Arm Swing (ROWAS), and evaluate its feasibility from the perspectives of implementation, acceptability and responsiveness. We developed the mechanical structures of the ROWAS system in SolidWorks, and implemented the concept in a prototype. Normal gait data were used as the reference performance of the shoulder, hip, knee and ankle joints of the prototype. The ROWAS prototype was tested for function assessment and further evaluated using five able-bodied subjects for user feedback. The ROWAS prototype produced coordinated performance in the upper and lower limbs, with joint profiles similar to those occurring in normal gait. The subjects reported a stronger feeling of walking with arm swing than without. The ROWAS system was deemed feasible according to the formal assessment criteria. PMID:28203142

  1. Compensating for Language Deficits in Amnesia I: H.M.'s Spared Retrieval Categories.

    PubMed

    MacKay, Donald G; Johnson, Laura W; Fazel, Vedad; James, Lori E

    2013-03-14

    Three studies examined amnesic H.M.'s use of words, phrases, and propositions on the Test of Language Competence (TLC). In Study 1, H.M. used 19 lexical categories (e.g., common nouns, verbs) and one syntactic category (noun phrases) with the same relative frequency as memory-normal controls, he used no lexical or syntactic category with less-than-normal frequency, and he used proper names (e.g., Melanie) and coordinative conjunctions (e.g., and) with reliably greater-than-normal frequency. In Study 2, H.M. overused proper names relative to controls when answering episodic memory questions about childhood experiences in speech and writing, replicating and extending Study 1 results for proper names. Based on detailed analyses of the use (and misuse) of coordinating conjunctions on the TLC, Study 3 developed a syntax-level "compensation hypothesis" for explaining why H.M. overused coordinating conjunctions relative to controls in Study 1. Present results suggested that (a) frontal mechanisms for retrieving word-, phrase-, and propositional-categories are intact in H.M., unlike in category-specific aphasia, (b) using his intact retrieval mechanisms, H.M. has developed a never-previously-observed proposition-level free association strategy to compensate for the hippocampal region damage that has impaired his mechanisms for encoding novel linguistic structures, and (c) H.M.'s overuse of proper names warrants further research.

  2. Compensating for Language Deficits in Amnesia I: H.M.’s Spared Retrieval Categories

    PubMed Central

    MacKay, Donald G.; Johnson, Laura W.; Fazel, Vedad; James, Lori E.

    2013-01-01

    Three studies examined amnesic H.M.’s use of words, phrases, and propositions on the Test of Language Competence (TLC). In Study 1, H.M. used 19 lexical categories (e.g., common nouns, verbs) and one syntactic category (noun phrases) with the same relative frequency as memory-normal controls, he used no lexical or syntactic category with less-than-normal frequency, and he used proper names (e.g., Melanie) and coordinative conjunctions (e.g., and) with reliably greater-than-normal frequency. In Study 2, H.M. overused proper names relative to controls when answering episodic memory questions about childhood experiences in speech and writing, replicating and extending Study 1 results for proper names. Based on detailed analyses of the use (and misuse) of coordinating conjunctions on the TLC, Study 3 developed a syntax-level “compensation hypothesis” for explaining why H.M. overused coordinating conjunctions relative to controls in Study 1. Present results suggested that (a) frontal mechanisms for retrieving word-, phrase-, and propositional-categories are intact in H.M., unlike in category-specific aphasia, (b) using his intact retrieval mechanisms, H.M. has developed a never-previously-observed proposition-level free association strategy to compensate for the hippocampal region damage that has impaired his mechanisms for encoding novel linguistic structures, and (c) H.M.’s overuse of proper names warrants further research. PMID:24961315

  3. Computational and experimental studies of iron-bearing carbonates and silicate glasses at lower mantle pressures

    NASA Astrophysics Data System (ADS)

    Solomatova, N. V.; Jackson, J. M.; Asimow, P. D.; Sturhahn, W.; Rossman, G. R.; Roskosz, M.

    2017-12-01

    Decomposition of carbonates may be responsible for creating silicate melts within the lower mantle by lowering the melting temperature of surrounding rock. Identifying and characterizing the stability of carbonates is therefore a necessary step towards understanding the transport of carbon in Earth's interior. Dolomite is one of the major mineral forms in which carbon is subducted into the Earth's mantle. Although iron-free dolomite is expected to break down upon compression, high-pressure polymorphs of iron-bearing dolomite may resist decomposition. Using a genetic algorithm that predicts crystal structures, we found a monoclinic phase with space group C2/c that has a lower energy than all previously reported dolomite structures at pressures above 15 GPa, where the substitution of iron for magnesium stabilizes monoclinic dolomite at certain pressures of the lower mantle. Thus, an iron-bearing dolomite polymorph may be an important carbon carrier in regions of Earth's lower mantle. The depth at which carbonates will decompose is dependent on the age, temperature and density of subducting slabs. Decarbonation reactions may lower the melting temperature of surrounding rocks to produce silicate melts. In regions of the mantle where silicate melts may exist, it is important to understand the physical properties and dynamic behavior of the melts because they affect the chemical and thermal evolution of its interior. Composition, degree of polymerization, and iron's spin state affect such properties. The behavior of iron in silicate melts is poorly understood but, in some cases, may be approximated by iron-bearing glasses. We measured the hyperfine parameters of iron-bearing rhyolitic and basaltic glasses up to 120 GPa and 100 GPa, respectively, in a neon pressure medium using time-domain synchrotron Mössbauer spectroscopy. The spectra for rhyolitic and basaltic glasses are well explained by three high-spin Fe2+-like sites with distinct quadrupole splittings, reflecting the influence of evolving coordination environments with pressure. With the assumption that coordination environments in silicate glasses may serve as a good indicator for those in a melt, this study suggests that ferrous iron in chemically-complex silicate melts likely exists in a high-spin state throughout most of Earth's mantle.

  4. Direct dynamics simulation of dioxetane formation and decomposition via the singlet .O-O-CH2-CH2. biradical: Non-RRKM dynamics

    NASA Astrophysics Data System (ADS)

    Sun, Rui; Park, Kyoyeon; de Jong, Wibe A.; Lischka, Hans; Windus, Theresa L.; Hase, William L.

    2012-07-01

    Electronic structure calculations and direct chemical dynamics simulations are used to study the formation and decomposition of dioxetane on its ground state singlet potential energy surface. The stationary points for 1O2 + C2H4, the singlet .O-O-CH2-CH2. biradical, the transition state (TS) connecting this biradical with dioxetane, and the two transition states and gauche .O-CH2-CH2-O. biradical connecting dioxetane with the formaldehyde product molecules are investigated at different levels of electronic structure theory including UB3LYP, UMP2, MRMP2, and CASSCF and a range of basis sets. The UB3LYP/6-31G* method was found to give representative energies for the reactive system and was used as a model for the simulations. UB3LYP/6-31G* direct dynamics trajectories were initiated at the TS connecting the .O-O-CH2-CH2. biradical and dioxetane by sampling the TS's vibrational energy levels, and rotational and reaction coordinate energies, with Boltzmann distributions at 300, 1000, and 1500 K. This corresponds to the transition state theory model for trajectories that pass the TS. The trajectories were directed randomly towards both the biradical and dioxetane. A small fraction of the trajectories directed towards the biradical recrossed the TS and formed dioxetane. The remainder formed 1O2 + C2H4 and of these ˜ 40% went directly from the TS to 1O2 + C2H4 without getting trapped and forming an intermediate in the .O-O-CH2-CH2. biradical potential energy minimum, a non-statistical result. The dioxetane molecules which are formed dissociate to two formaldehyde molecules with a rate constant two orders of magnitude smaller than that predicted by Rice-Ramsperger-Kassel-Marcus theory. The reaction dynamics from dioxetane to the formaldehyde molecules do not follow the intrinsic reaction coordinate or involve trapping in the gauche .O-CH2-CH2-O. biradical potential energy minimum. Important non-statistical dynamics are exhibited for this reactive system.

  5. A New Approach of evaluating the damage in simply-supported reinforced concrete beam by Local mean decomposition (LMD)

    NASA Astrophysics Data System (ADS)

    Zhang, Xuebing; Liu, Ning; Xi, Jiaxin; Zhang, Yunqi; Zhang, Wenchun; Yang, Peipei

    2017-08-01

    How to analyze the nonstationary response signals and obtain vibration characters is extremely important in the vibration-based structural diagnosis methods. In this work, we introduce a more reasonable time-frequency decomposition method termed local mean decomposition (LMD) to instead the widely-used empirical mode decomposition (EMD). By employing the LMD method, one can derive a group of component signals, each of which is more stationary, and then analyze the vibration state and make the assessment of structural damage of a construction or building. We illustrated the effectiveness of LMD by a synthetic data and an experimental data recorded in a simply-supported reinforced concrete beam. Then based on the decomposition results, an elementary method of damage diagnosis was proposed.

  6. Reaction mechanism and reaction coordinates from the viewpoint of energy flow

    PubMed Central

    2016-01-01

    Reaction coordinates are of central importance for correct understanding of reaction dynamics in complex systems, but their counter-intuitive nature made it a daunting challenge to identify them. Starting from an energetic view of a reaction process as stochastic energy flows biased towards preferred channels, which we deemed the reaction coordinates, we developed a rigorous scheme for decomposing energy changes of a system, both potential and kinetic, into pairwise components. The pairwise energy flows between different coordinates provide a concrete statistical mechanical language for depicting reaction mechanisms. Application of this scheme to the C7eq → C7ax transition of the alanine dipeptide in vacuum revealed novel and intriguing mechanisms that eluded previous investigations of this well studied prototype system for biomolecular conformational dynamics. Using a cost function developed from the energy decomposition components by proper averaging over the transition path ensemble, we were able to identify signatures of the reaction coordinates of this system without requiring any input from human intuition. PMID:27004858

  7. Reaction mechanism and reaction coordinates from the viewpoint of energy flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wenjin; Ma, Ao, E-mail: aoma@uic.edu

    Reaction coordinates are of central importance for correct understanding of reaction dynamics in complex systems, but their counter-intuitive nature made it a daunting challenge to identify them. Starting from an energetic view of a reaction process as stochastic energy flows biased towards preferred channels, which we deemed the reaction coordinates, we developed a rigorous scheme for decomposing energy changes of a system, both potential and kinetic, into pairwise components. The pairwise energy flows between different coordinates provide a concrete statistical mechanical language for depicting reaction mechanisms. Application of this scheme to the C{sub 7eq} → C{sub 7ax} transition of themore » alanine dipeptide in vacuum revealed novel and intriguing mechanisms that eluded previous investigations of this well studied prototype system for biomolecular conformational dynamics. Using a cost function developed from the energy decomposition components by proper averaging over the transition path ensemble, we were able to identify signatures of the reaction coordinates of this system without requiring any input from human intuition.« less

  8. A benders decomposition approach to multiarea stochastic distributed utility planning

    NASA Astrophysics Data System (ADS)

    McCusker, Susan Ann

    Until recently, small, modular generation and storage options---distributed resources (DRs)---have been installed principally in areas too remote for economic power grid connection and sensitive applications requiring backup capacity. Recent regulatory changes and DR advances, however, have lead utilities to reconsider the role of DRs. To a utility facing distribution capacity bottlenecks or uncertain load growth, DRs can be particularly valuable since they can be dispersed throughout the system and constructed relatively quickly. DR value is determined by comparing its costs to avoided central generation expenses (i.e., marginal costs) and distribution investments. This requires a comprehensive central and local planning and production model, since central system marginal costs result from system interactions over space and time. This dissertation develops and applies an iterative generalized Benders decomposition approach to coordinate models for optimal DR evaluation. Three coordinated models exchange investment, net power demand, and avoided cost information to minimize overall expansion costs. Local investment and production decisions are made by a local mixed integer linear program. Central system investment decisions are made by a LP, and production costs are estimated by a stochastic multi-area production costing model with Kirchhoff's Voltage and Current Law constraints. The nested decomposition is a new and unique method for distributed utility planning that partitions the variables twice to separate local and central investment and production variables, and provides upper and lower bounds on expected expansion costs. Kirchhoff's Voltage Law imposes nonlinear, nonconvex constraints that preclude use of LP if transmission capacity is available in a looped transmission system. This dissertation develops KVL constraint approximations that permit the nested decomposition to consider new transmission resources, while maintaining linearity in the three individual models. These constraints are presented as a heuristic for the given examples; future research will investigate conditions for convergence. A ten-year multi-area example demonstrates the decomposition approach and suggests the ability of DRs and new transmission to modify capacity additions and production costs by changing demand and power flows. Results demonstrate that DR and new transmission options may lead to greater capacity additions, but resulting production cost savings more than offset extra capacity costs.

  9. Homo- and Heterometallic Bis(Pentafluorobenzoyl)Methanide Complexes of Copper(II) and Cobalt(II)

    NASA Astrophysics Data System (ADS)

    Crowder, Janell M.

    beta-Diketones are well known to form metal complexes with practically every known metal and metalloid. Metal complexes of fluorinated beta-diketones generally exhibit increased volatility and thermal stability compared to the non-fluorinated analogues, and thus are used extensively in various chemical vapor deposition (CVD) processes for the deposition of metal, simple or mixed metal oxides, and fluorine-doped metal oxide thin films. Furthermore, the electron-withdrawing nature of the fluorinated ligand enhances the Lewis acidity of a coordinatively unsaturated metal center which facilitates additional coordination reactions. The physical and structural properties of fluorinated beta-diketonate complexes are discussed in Chapter 1 and a few key application examples are given. The focus of this work is the synthesis and single crystal X-ray structural characterization of unsolvated and coordinatively unsaturated metal complexes of bis(pentafluorobenzoyl)- methanide (L, C6F5COCHCOC 6F5-). In Chapter 2, we present the preparation and isolation of the unsolvated complex [Cu(L)2] in pure crystalline form for the first time. We subsequently investigated the reaction of unsolvated [Cu(L)2] with sodium hexafluoroacetylacetonate [Na(hfac)] in a solvent-free environment. This reaction allowed the isolation of the first heterometallic Na-Cu diketonate [Na2Cu2(L) 4(hfac)2] structurally characterized by single crystal X-ray crystallography. Thermal decomposition of [Na2Cu2(L) 4(hfac)2] was investigated for its potential application in MOCVD processes. In the final chapter, we present the first exploration of the anhydrous synthesis of Co(II) complexed with bis(pentafluorobenzoyl)methanide in order to produce a complex without ligated water. Single crystal X-ray crystallographic investigations revealed the isolation of the ethanol adduct, [Co2(L)4(C2H5OH)2], and following the removal of ethanol, a 1,4-dioxane adduct, [{Co 2(L)4}2(C4H8O2)]. In this work, we have provided the first investigation of the synthesis, isolation and single crystal X-ray structural characterization of unsolvated and coordinatively unsaturated Cu(II) and Co(II) complexes of bis(pentafluorobenzoyl)methanide ligand. These studies demonstrate how the electrophilicity of a coordinatively unsaturated metal complexed to highly-fluorinated â-diketone ligands can be utilized for the formation of new adducts or new and interesting heterometallic complexes. This body of work provides a basis upon which future research into unsolvated and unligated bis(pentafluorobenzoyl)methanide metal complexes can expand.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cano, A.; Osiry, H.; Reguera, L.

    The titled compound was prepared by the precipitation method from diluted aqueous solution of sodium nitroprusside and mercury(II) nitrate. The orange solid formed, with formula unit Hg[Fe(CN){sub 5}NO], crystallizes with an orthorhombic unit cell in the Pmna space group with cell parameters: a=11.2788(3), b=6.1965(3), and c=12.3786(6) Å. The unit cell accommodates four formula of the compound (Z=4). Its crystal structure was solved from X-ray powder patterns and then refined by the Rietveld method. The material framework is formed by tetrahedral coordination of Hg atoms at the N end of the equatorial CN groups of the [Fe(CN){sub 5}NO] building block. Thatmore » framework results from the interpenetration of two identical sub-frameworks with a relative shift of (a/2, b/2, c/2). The sub-framework has two types of cavities, ellipsoidal and rhombohedral, with transversal section of ca. 4.5×9.2 Å and ca. 8.5 Å transversal section, respectively. That system of cavities results eclipsed by the relative shift of neighboring sub-frameworks. No transport of H{sub 2} and N{sub 2} molecules through the material framework was observed. The thermal decomposition also reveals limitation for the decomposition products diffusion through the practically compact structure. The structural study was complemented with TG, IR, UV–vis and N{sub 2} and H{sub 2} adsorption data. Neighboring Hg atoms are distant 4.54(3) Å, a relatively large distance to suppose the existence of metal–metal interaction. No previous study on the crystal structure and related properties of mercury(II) nitroprusside has been reported. - Graphical abstract: Mercury(II) nitroprusside framework formed by two identical interpenetrated porous subframeworks where neighboring cavities appear eclipsed. - Highlights: • Interpenetrated frameworks in metal nitroprusside. • Eclipsed porous framework in metal nitroprusside. • Structure and related properties for mercury(II) nitroprusside. • Spectral features for mercury(II) nitroprusside.« less

  11. N-((5-chloropyridin-2-yl)carbamothioyl)furan-2-carboxamide and its Co(II), Ni(II) and Cu(II) complexes: Synthesis, characterization, DFT computations, thermal decomposition, antioxidant and antitumor activity

    NASA Astrophysics Data System (ADS)

    Yeşilkaynak, Tuncay; Özpınar, Celal; Emen, Fatih Mehmet; Ateş, Burhan; Kaya, Kerem

    2017-02-01

    N-((5-chloropyridin-2-yl)carbamothioyl)furan-2-carboxamide (HL: C11H8ClN3O2S) and its Co(II), Ni(II) and Cu(II) complexes have been synthesized and characterized by elemental analysis, FT-IR,1H NMR and HR-MS methods. The HL was characterized by single crystal X-ray diffraction technique. It crystallizes in the monoclinic system. The HL has the space group P 1 21/c 1, Z = 4, and its unit cell parameters are a = 4.5437(5) Å, b = 22.4550(3) Å, c = 11.8947(14) Å. The ligand coordinates the metal ions as bidentate and thus essentially yields neutral complexes of the [ML2] type. ML2 complex structures were optimized using B97D/TZVP level. Molecular orbitals of both HL ligand were calculated at the same level. Thermal decomposition of the complexes has been investigated by thermogravimetry. The complexes were screened for their anticancer and antioxidant activities. Antioxidant activity of the complexes was determined by using the DPPH and ABTS assays. The anticancer activity of the complexes was studied by using MTT assay in MCF-7 breast cancer cells.

  12. Unraveling the physical meaning of the Jaffe-Manohar decomposition of the nucleon spin

    NASA Astrophysics Data System (ADS)

    Wakamatsu, M.

    2016-09-01

    A general consensus now is that there are two physically inequivalent complete decompositions of the nucleon spin, i.e. the decomposition of the canonical type and that of mechanical type. The well-known Jaffe-Manohar decomposition is of the former type. Unfortunately, there is a wide-spread misbelief that this decomposition matches the partonic picture, which states that motion of quarks in the nucleon is approximately free. In the present monograph, we reveal that this understanding is not necessarily correct and that the Jaffe-Manohar decomposition is not such a decomposition, which natively reflects the intrinsic (or static) orbital angular momentum structure of the nucleon.

  13. Methane hydrate formation and decomposition: structural studies via neutron diffraction and empirical potential structure refinement.

    PubMed

    Thompson, Helen; Soper, Alan K; Buchanan, Piers; Aldiwan, Nawaf; Creek, Jefferson L; Koh, Carolyn A

    2006-04-28

    Neutron diffraction studies with hydrogen/deuterium isotope substitution measurements are performed to investigate the water structure at the early, medium, and late periods of methane clathrate hydrate formation and decomposition. These measurements are coupled with simultaneous gas consumption measurements to track the formation of methane hydrate from a gas/water mixture, and then the complete decomposition of hydrate. Empirical potential structure refinement computer simulations are used to analyze the neutron diffraction data and extract from the data the water structure in the bulk methane hydrate solution. The results highlight the significant changes in the water structure of the remaining liquid at various stages of hydrate formation and decomposition, and give further insight into the way in which hydrates form. The results also have important implications on the memory effect, suggesting that the water structure in the presence of hydrate crystallites is significantly different at equivalent stages of forming compared to decomposing. These results are in sharp contrast to the previously reported cases when all remaining hydrate crystallites are absent from the solution. For these systems there is no detectable change in the water structure or the methane hydration shell before hydrate formation and after decomposition. Based on the new results presented in this paper, it is clear that the local water structure is affected by the presence of hydrate crystallites, which may in turn be responsible for the "history" or "memory" effect where the production of hydrate from a solution of formed and then subsequently melted hydrate is reportedly much quicker than producing hydrate from a fresh water/gas mixture.

  14. Vibrational spectroscopic study of dehydroacetic acid and its cinnamoyl pyrone derivatives

    NASA Astrophysics Data System (ADS)

    Billes, Ferenc; Elečková, Lenka; Mikosch, Hans; Andruch, Vasil

    2015-07-01

    The infrared and Raman spectra of dehydroacetic acid and some of its derivatives were measured. The assignments of the vibrational bands were based on quantum chemical calculations and normal coordinate analysis. The optimized structures, atomic net charges and dipole moments of the investigated molecules were also results of our quantum chemical calculations. The analysis of the last properties made possible a deeper insight into the structure and substituent effect on the investigated molecules. One of them is presented in the graphical abstract.

  15. Calibration methods influence quantitative material decomposition in photon-counting spectral CT

    NASA Astrophysics Data System (ADS)

    Curtis, Tyler E.; Roeder, Ryan K.

    2017-03-01

    Photon-counting detectors and nanoparticle contrast agents can potentially enable molecular imaging and material decomposition in computed tomography (CT). Material decomposition has been investigated using both simulated and acquired data sets. However, the effect of calibration methods on material decomposition has not been systematically investigated. Therefore, the objective of this study was to investigate the influence of the range and number of contrast agent concentrations within a modular calibration phantom on quantitative material decomposition. A commerciallyavailable photon-counting spectral micro-CT (MARS Bioimaging) was used to acquire images with five energy bins selected to normalize photon counts and leverage the contrast agent k-edge. Material basis matrix values were determined using multiple linear regression models and material decomposition was performed using a maximum a posteriori estimator. The accuracy of quantitative material decomposition was evaluated by the root mean squared error (RMSE), specificity, sensitivity, and area under the curve (AUC). An increased maximum concentration (range) in the calibration significantly improved RMSE, specificity and AUC. The effects of an increased number of concentrations in the calibration were not statistically significant for the conditions in this study. The overall results demonstrated that the accuracy of quantitative material decomposition in spectral CT is significantly influenced by calibration methods, which must therefore be carefully considered for the intended diagnostic imaging application.

  16. Quasi-aromatic Möbius Metal Chelates.

    PubMed

    Mahmoudi, Ghodrat; Afkhami, Farhad A; Castiñeiras, Alfonso; García-Santos, Isabel; Gurbanov, Atash; Zubkov, Fedor I; Mitoraj, Mariusz P; Kukułka, Mercedes; Sagan, Filip; Szczepanik, Dariusz W; Konyaeva, Irina A; Safin, Damir A

    2018-04-16

    We report the design as well as structural and spectroscopic characterizations of two new coordination compounds obtained from Cd(NO 3 ) 2 ·4H 2 O and polydentate ligands, benzilbis(pyridin-2-yl)methylidenehydrazone (L I ) and benzilbis(acetylpyridin-2-yl)methylidenehydrazone (L II ), in a mixture with two equivalents of NH 4 NCS in MeOH, namely [Cd(SCN)(NCS)(L I )(MeOH)] (1) and [Cd(NCS) 2 (L II )(MeOH)] (2). Both L I and L II are bound via two pyridyl-imine units yielding a tetradentate coordination mode giving rise to the 12 π electron chelate ring. It has been determined for the first time (qualitatively and quantitatively), using the EDDB electron population-based method, the HOMA index, and the ETS-NOCV charge and energy decomposition scheme, that the chelate ring containing Cd II can be classified as a quasi-aromatic Möbius motif. Notably, using the methyl-containing ligand L II controls the exclusive presence of the NCS - connected with the Cd II atom (structure 2), while applying L I allows us to simultaneously coordinate NCS - and SCN - ligands (structure 1). Both systems are stabilized mostly by hydrogen bonding, C-H···π interactions, aromatic π···π stacking, and dihydrogen C-H···H-C bonds. The optical properties have been investigated by diffused reflectance spectroscopy as well as molecular and periodic DFT/TD-DFT calculations. The DFT-based ETS-NOCV analysis as well as periodic calculations led us to conclude that the monomers which constitute the obtained chelates are extremely strongly bonded to each other, and the calculated interaction energies are found to be in the regime of strong covalent connections. Intramolecular van der Waals dispersion forces, due to the large size of L I and L II , appeared to significantly stabilize these systems as well as amplify the aromaticity phenomenon.

  17. Series of mixed uranyl-lanthanide (Ce, Nd) organic coordination polymers with aromatic polycarboxylates linkers.

    PubMed

    Mihalcea, Ionut; Volkringer, Christophe; Henry, Natacha; Loiseau, Thierry

    2012-09-17

    Three series of mixed uranyl-lanthanide (Ce or Nd) carboxylate coordination polymers have been successfully synthesized by means of a hydrothermal route using either conventional or microwave heating methods. These compounds have been prepared from mixtures of uranyl nitrate, lanthanide nitrate together with phthalic acid (1,2), pyromellitic acid (3,4), or mellitic acid (5,6) in aqueous solution. The X-ray diffraction (XRD) single-crystal revealed that the phthalate complex (UO(2))(4)O(2)Ln(H(2)O)(7)(1,2-bdc)(4)·NH(4)·xH(2)O (Ln = Ce(1), Nd(2); x = 1 for 1, x = 0 for 2), is based on the connection of tetranuclear uranyl-centered building blocks linked to discrete monomeric units LnO(2)(H(2)O)(7) via the organic species to generate infinite chains, intercalated by free ammonium cations. The pyromellitate phase (UO(2))(3)Ln(2)(H(2)O)(12)(btec)(3)·5H(2)O (Ce(3), Nd(4)) contains layers of monomeric uranyl-centered hexagonal and pentagonal bipyramids linked via the carboxylate arms of the organic molecules. The three-dimensionality of the structure is ensured by the connection of remaining free carboxylate groups with isolated monomeric units LnO(2)(H(2)O)(7). The network of the third series (UO(2))(2)(OH)Ln(H(2)O)(7)(mel)·5H(2)O (Ce(5), Nd(6)) is built up from dinuclear uranyl units forming layers through connection with the mellitate ligands, which are further linked to each other through discrete monomers LnO(3)(H(2)O)(6). The thermal decomposition of the various coordination complexes led to the formation of mixed uranium-lanthanide oxide, with the fluorite-type structure at 1500 °C (for 1, 2) or 1400 °C for 3-6. Expected U/Ln ratio from the crystal structures were observed for compounds 1-6.

  18. How Does Mg2+ Modulate the RNA Folding Mechanism: A Case Study of the G:C W:W Trans Basepair.

    PubMed

    Halder, Antarip; Roy, Rohit; Bhattacharyya, Dhananjay; Mitra, Abhijit

    2017-07-25

    Reverse Watson-Crick G:C basepairs (G:C W:W Trans) occur frequently in different functional RNAs. This is one of the few basepairs whose gas-phase-optimized isolated geometry is inconsistent with the corresponding experimental geometry. Several earlier studies indicate that through post-transcriptional modification, direct protonation, or coordination with Mg 2+ , accumulation of positive charge near N7 of guanine can stabilize the experimental geometry. Interestingly, recent studies reveal significant variation in the position of putatively bound Mg 2+ . This, in conjunction with recently raised doubts regarding some of the Mg 2+ assignments near the imino nitrogen of guanine, is suggestive of the existence of multiple Mg 2+ binding modes for this basepair. Our detailed investigation of Mg 2+ -bound G:C W:W Trans pairs occurring in high-resolution RNA crystal structures shows that they are found in 14 different contexts, eight of which display Mg 2+ binding at the Hoogsteen edge of guanine. Further examination of occurrences in these eight contexts led to the characterization of three different Mg 2+ binding modes: 1) direct binding via N7 coordination, 2) direct binding via O6 coordination, and 3) binding via hydrogen-bonding interaction with the first-shell water molecules. In the crystal structures, the latter two modes are associated with a buckled and propeller-twisted geometry of the basepair. Interestingly, respective optimized geometries of these different Mg 2+ binding modes (optimized using six different DFT functionals) are consistent with their corresponding experimental geometries. Subsequent interaction energy calculations at the MP2 level, and decomposition of its components, suggest that for G:C W:W Trans , Mg 2+ binding can fine tune the basepair geometries without compromising with their stability. Our results, therefore, underline the importance of the mode of binding of Mg 2+ ions in shaping RNA structure, folding and function. Copyright © 2017. Published by Elsevier Inc.

  19. Aging-driven decomposition in zolpidem hemitartrate hemihydrate and the single-crystal structure of its decomposition products.

    PubMed

    Vega, Daniel R; Baggio, Ricardo; Roca, Mariana; Tombari, Dora

    2011-04-01

    The "aging-driven" decomposition of zolpidem hemitartrate hemihydrate (form A) has been followed by X-ray powder diffraction (XRPD), and the crystal and molecular structures of the decomposition products studied by single-crystal methods. The process is very similar to the "thermally driven" one, recently described in the literature for form E (Halasz and Dinnebier. 2010. J Pharm Sci 99(2): 871-874), resulting in a two-phase system: the neutral free base (common to both decomposition processes) and, in the present case, a novel zolpidem tartrate monohydrate, unique to the "aging-driven" decomposition. Our room-temperature single-crystal analysis gives for the free base comparable results as the high-temperature XRPD ones already reported by Halasz and Dinnebier: orthorhombic, Pcba, a = 9.6360(10) Å, b = 18.2690(5) Å, c = 18.4980(11) Å, and V = 3256.4(4) Å(3) . The unreported zolpidem tartrate monohydrate instead crystallizes in monoclinic P21 , which, for comparison purposes, we treated in the nonstandard setting P1121 with a = 20.7582(9) Å, b = 15.2331(5) Å, c = 7.2420(2) Å, γ = 90.826(2)°, and V = 2289.73(14) Å(3) . The structure presents two complete moieties in the asymmetric unit (z = 4, z' = 2). The different phases obtained in both decompositions are readily explained, considering the diverse genesis of both processes. Copyright © 2010 Wiley-Liss, Inc.

  20. Two zinc(II) coordination complexes based on an asymmetric multidentate ligand: syntheses, structures, selective fluorescence sensing of iron(III) ions and thermal analyses.

    PubMed

    Liu, Yaru; Liu, Lan; Zhang, Xiao; Liang, Guorui; Gong, Xuebing

    2018-01-01

    The rational selection of ligands is vitally important in the construction of coordination complexes. Two novel Zn II complexes, namely bis(acetato-κO)bis[1-(1H-benzotriazol-1-ylmethyl)-2-propyl-1H-imidazole-κN 3 ]zinc(II) monohydrate, [Zn(C 13 H 15 N 5 ) 2 (C 2 H 3 O 2 ) 2 ]·H 2 O, (1), and bis(azido-κN 1 )bis[1-(1H-benzotriazol-1-ylmethyl)-2-propyl-1H-imidazole-κN 3 ]zinc(II), [Zn(C 13 H 15 N 5 ) 2 (N 3 ) 2 ], (2), constructed from the asymmetric multidentate imidazole ligand, have been synthesized under mild conditions and characterized by elemental analyses, IR spectroscopy and single-crystal X-ray diffraction analysis. Both complexes exhibit a three-dimensional supramolecular network directed by different intermolecular interactions between discrete mononuclear units. The complexes were also investigated by fluorescence and thermal analyses. The experimental results show that (1) is a promising fluorescence sensor for detecting Fe 3+ ions and (2) is effective as an accelerator of the thermal decomposition of ammonium perchlorate.

  1. A powder neutron diffraction study of the crystal structure of the fluoroperovskite NaMgF3 (neighborite) from 300 to 3.6 K

    NASA Astrophysics Data System (ADS)

    Mitchell, Roger H.; Alexander, Malcolm; Cranswick, Lachlan M. D.; Swainson, Ian P.

    2007-12-01

    The cell dimensions and crystal structures of the fluoroperovskite NaMgF3 (neighborite), synthesized by solid state methods, have been determined by powder neutron diffraction and Rietveld refinement over the temperature range 300 3.6 K using Pt metal as an internal standard for calibration of the neutron wavelength. These data show that Pbnm NaMgF3 does not undergo any phase transitions to structures of lower symmetry with decreasing temperature. The cell dimensions and atomic coordinates together with polyhedron volumes and distortion indices are given for Pbnm NaMgF3 at 25 K intervals from 300 to 3.6 K. Decreases in the a and c cell dimensions reach a saturation point at 50 K, whereas the b dimension becomes saturated at 150 K. The distortion of the structure of Pbnm NaMgF3 from the aristotype cubic Pmifmmodeexpandafterbarelseexpandafter\\=fi{3}m structure is described in terms of the tilting of the MgF6 octahedra according to the tilt scheme a - a - c + . With decreasing temperature the antiphase tilt ( a -) increases from 14.24° to 15.39°, whereas the in-phase tilt ( c + ) remains effectively constant at ˜10.7°. Changes in the tilt angles are insufficient to cause changes in the coordination sphere of Na that might induce a low temperature phase transition. The structure of Pbnm NaMgF3 is also described in terms of normal mode analysis and displacements of the condensed normal modes are compared with those of Pbnm KCaF3.

  2. Thermal decomposition of ammonium hexachloroosmate.

    PubMed

    Asanova, T I; Kantor, I; Asanov, I P; Korenev, S V; Yusenko, K V

    2016-12-07

    Structural changes of (NH 4 ) 2 [OsCl 6 ] occurring during thermal decomposition in a reduction atmosphere have been studied in situ using combined energy-dispersive X-ray absorption spectroscopy (ED-XAFS) and powder X-ray diffraction (PXRD). According to PXRD, (NH 4 ) 2 [OsCl 6 ] transforms directly to metallic Os without the formation of any crystalline intermediates but through a plateau where no reactions occur. XANES and EXAFS data by means of Multivariate Curve Resolution (MCR) analysis show that thermal decomposition occurs with the formation of an amorphous intermediate {OsCl 4 } x with a possible polymeric structure. Being revealed for the first time the intermediate was subjected to determine the local atomic structure around osmium. The thermal decomposition of hexachloroosmate is much more complex and occurs within a minimum two-step process, which has never been observed before.

  3. A Taxonomy of Latent Structure Assumptions for Probability Matrix Decomposition Models.

    ERIC Educational Resources Information Center

    Meulders, Michel; De Boeck, Paul; Van Mechelen, Iven

    2003-01-01

    Proposed a taxonomy of latent structure assumptions for probability matrix decomposition (PMD) that includes the original PMD model and a three-way extension of the multiple classification latent class model. Simulation study results show the usefulness of the taxonomy. (SLD)

  4. Molecular structure, Normal Coordinate Analysis, harmonic vibrational frequencies, Natural Bond Orbital, TD-DFT calculations and biological activity analysis of antioxidant drug 7-hydroxycoumarin

    NASA Astrophysics Data System (ADS)

    Sebastian, S.; Sylvestre, S.; Jayarajan, D.; Amalanathan, M.; Oudayakumar, K.; Gnanapoongothai, T.; Jayavarthanan, T.

    2013-01-01

    In this work, we report harmonic vibrational frequencies, molecular structure, NBO and HOMO, LUMO analysis of Umbelliferone also known as 7-hydroxycoumarin (7HC). The optimized geometric bond lengths and bond angles obtained by computation (monomer and dimmer) shows good agreement with experimental XRD data. Harmonic frequencies of 7HC were determined and analyzed by DFT utilizing 6-311+G(d,p) as basis set. The assignments of the vibrational spectra have been carried out with the help of Normal Coordinate Analysis (NCA) following the Scaled Quantum Mechanical Force Field Methodology (SQMFF). The change in electron density (ED) in the σ* and π* antibonding orbitals and stabilization energies E(2) have been calculated by Natural Bond Orbital (NBO) analysis to give clear evidence of stabilization originating in the hyperconjugation of hydrogen-bonded interaction. The energy and oscillator strength calculated by Time-Dependent Density Functional Theory (TD-DFT) complements with the experimental findings. The simulated spectra satisfactorily coincides with the experimental spectra. Microbial activity of studied compounds was tested against Staphylococcus aureus, Streptococcus pyogenes, Bacillus subtilis, Escherichia coli, Psuedomonas aeruginosa, Klebsiella pneumoniae, Proteus mirabilis, Shigella flexneri, Salmonella typhi and Enterococcus faecalis.

  5. DNA interactions of non-chelating tinidazole-based coordination compounds and their structural, redox and cytotoxic properties.

    PubMed

    Castro-Ramírez, Rodrigo; Ortiz-Pastrana, Naytzé; Caballero, Ana B; Zimmerman, Matthew T; Stadelman, Bradley S; Gaertner, Andrea A E; Brumaghim, Julia L; Korrodi-Gregório, Luís; Pérez-Tomás, Ricardo; Gamez, Patrick; Barba-Behrens, Norah

    2018-05-23

    Novel tinidazole (tnz) coordination compounds of different geometries were synthesised, whose respective solid-state packing appears to be driven by inter- and intramolecular lone pairπ interactions. The copper(ii) compounds exhibit interesting redox properties originating from both the tnz and the metal ions. These complexes interact with DNA through two distinct ways, namely via electrostatic interactions or/and groove binding, and they can mediate the generation of ROS that damage the biomolecule. Cytotoxic studies revealed an interesting activity of the dinuclear compound [Cu(tnz)2(μ-Cl)Cl]2 7, which is further more efficient towards cancer cells, compared with normal cells.

  6. Molecular conformational analysis, vibrational spectra and normal coordinate analysis of trans-1,2-bis(3,5-dimethoxy phenyl)-ethene based on density functional theory calculations.

    PubMed

    Joseph, Lynnette; Sajan, D; Chaitanya, K; Isac, Jayakumary

    2014-03-25

    The conformational behavior and structural stability of trans-1,2-bis(3,5-dimethoxy phenyl)-ethene (TDBE) were investigated by using density functional theory (DFT) method with the B3LYP/6-311++G(d,p) basis set combination. The vibrational wavenumbers of TDBE were computed at DFT level and complete vibrational assignments were made on the basis of normal coordinate analysis calculations (NCA). The DFT force field transformed to natural internal coordinates was corrected by a well-established set of scale factors that were found to be transferable to the title compound. The infrared and Raman spectra were also predicted from the calculated intensities. The observed Fourier transform infrared (FTIR) and Fourier transform (FT) Raman vibrational wavenumbers were analyzed and compared with the theoretically predicted vibrational spectra. Comparison of the simulated spectra with the experimental spectra provides important information about the ability of the computational method to describe the vibrational modes. Information about the size, shape, charge density distribution and site of chemical reactivity of the molecules has been obtained by mapping electron density isosurface with electrostatic potential surfaces (ESP). Copyright © 2013 Elsevier B.V. All rights reserved.

  7. The Nature of Bonding in Bulk Tellurium Composed of One-Dimensional Helical Chains.

    PubMed

    Yi, Seho; Zhu, Zhili; Cai, Xiaolin; Jia, Yu; Cho, Jun-Hyung

    2018-05-07

    Bulk tellurium (Te) is composed of one-dimensional (1D) helical chains which have been considered to be coupled by van der Waals (vdW) interactions. However, on the basis of first-principles density functional theory calculations, we here propose a different bonding nature between neighboring chains: i.e., helical chains made of normal covalent bonds are connected together by coordinate covalent bonds. It is revealed that the lone pairs of electrons of Te atoms participate in forming coordinate covalent bonds between neighboring chains, where each Te atom behaves as both an electron donor to neighboring chains and an electron acceptor from neighboring chains. This ligand-metal-like bonding nature in bulk Te results in the same order of bulk moduli along the directions parallel and perpendicular to the chains, contrasting with the large anisotropy of bulk moduli in vdW crystals. We further find that the electron effective masses parallel and perpendicular to the chains are almost the same as each other, consistent with the observed nearly isotropic electrical resistivity. It is thus demonstrated that the normal/coordinate covalent bonds parallel/perpendicular to the chains in bulk Te lead to a minor anisotropy in structural and transport properties.

  8. An active structure preservation method for developing functional graphitic carbon dots as an effective antibacterial agent and a sensitive pH and Al(iii) nanosensor.

    PubMed

    Hou, Peng; Yang, Tong; Liu, Hui; Li, Yuan Fang; Huang, Cheng Zhi

    2017-11-16

    Functional engineering is a crucial prerequisite for specific and wide applications of optical probes. In this study, we proposed a facile active structure preservation (ASP) method to directly develop new self-functional graphitic carbon dots (g-CDs) through a hydrothermal synthesis route by taking ciprofloxacin hydrochloride, an antibiotic belonging to a group of fluoroquinolone drugs, as an example. To retain the functional structures of the starting materials, the reaction temperature is intentionally controlled below the decomposition temperature of the reactants that hold the functional groups. As a proof of concept, we successfully prepared g-CDs with ciprofloxacin-like structures on its surface, as identified by mass spectrometric (MS) analysis. The as-prepared g-CDs not only exhibit effective antibacterial activity towards the bacteria Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative), but can also optically sense pH in the range from 5.02 to 9.91. Furthermore, the g-CDs can coordinate with aluminum ions to show a chelation-enhanced photoluminescence (CHEP) effect. These results indicate that the ASP method can be promising for engineering CDs with various properties.

  9. A restricted signature normal form for Hermitian matrices, quasi-spectral decompositions, and applications

    NASA Technical Reports Server (NTRS)

    Freund, Roland W.; Huckle, Thomas

    1989-01-01

    In recent years, a number of results on the relationships between the inertias of Hermitian matrices and the inertias of their principal submatrices appeared in the literature. We study restricted congruence transformation of Hermitian matrices M which, at the same time, induce a congruence transformation of a given principal submatrix A of M. Such transformations lead to concept of the restricted signature normal form of M. In particular, by means of this normal form, we obtain short proofs of most of the known inertia theorems and also derive some new results of this type. For some applications, a special class of almost unitary restricted congruence transformations turns out to be useful. We show that, with such transformations, M can be reduced to a quasi-diagonal form which, in particular, displays the eigenvalues of A. Finally, applications of this quasi-spectral decomposition to generalize inverses and Hermitian matrix pencils are discussed.

  10. Telephone-quality pathological speech classification using empirical mode decomposition.

    PubMed

    Kaleem, M F; Ghoraani, B; Guergachi, A; Krishnan, S

    2011-01-01

    This paper presents a computationally simple and effective methodology based on empirical mode decomposition (EMD) for classification of telephone quality normal and pathological speech signals. EMD is used to decompose continuous normal and pathological speech signals into intrinsic mode functions, which are analyzed to extract physically meaningful and unique temporal and spectral features. Using continuous speech samples from a database of 51 normal and 161 pathological speakers, which has been modified to simulate telephone quality speech under different levels of noise, a linear classifier is used with the feature vector thus obtained to obtain a high classification accuracy, thereby demonstrating the effectiveness of the methodology. The classification accuracy reported in this paper (89.7% for signal-to-noise ratio 30 dB) is a significant improvement over previously reported results for the same task, and demonstrates the utility of our methodology for cost-effective remote voice pathology assessment over telephone channels.

  11. An open-framework thorium sulfate hydrate with 11.5 A voids.

    PubMed

    Wilson, Richard E; Skanthakumar, S; Knope, Karah E; Cahill, Christopher L; Soderholm, L

    2008-10-20

    We report the synthesis of a thorium sulfate hydrate with 11.5 A open channels that propagate through the structure. The compound crystallizes in the tetragonal space group P4(2)/nmc, a = b = 25.890(4) A, c = 9.080(2) A, Z = 8, V = 6086.3(2) A(3). The thermal stability of the compound was investigated using thermogravimetric analysis and high-energy X-ray scattering (HEXS) revealing that the compound begins to undergo decomposition near 200 degrees C with an accompanied loss in crystallinity. The immediate coordination environment about the thorium atoms remains intact through heating to 500 degrees C as demonstrated by HEXS. Further heating reveals the formation of at least two crystalline phases, Th(SO4)2 and ThO2, which ultimately decompose to ThO2.

  12. Translation and integration of CCC nursing diagnoses into ICNP.

    PubMed

    Matney, Susan A; DaDamio, Rebecca; Couderc, Carmela; Dlugos, Mary; Evans, Jonathan; Gianonne, Gay; Haskell, Robert; Hardiker, Nicholas; Coenen, Amy; Saba, Virginia K

    2008-01-01

    The purpose of this study was to translate and integrate nursing diagnosis concepts from the Clinical Care Classification (CCC) System Version 2.0 to DiagnosticPhenomenon or nursing diagnostic statements in the International Classification for Nursing Practice (ICNP) Version 1.0. Source concepts for CCC were mapped by the project team, where possible, to pre-coordinated ICNP terms. The manual decomposition of source concepts according to the ICNP 7-Axis Model served to validate the mappings. A total of 62% of the CCC Nursing Diagnoses were a pre-coordinated match to an ICNP concept, 35% were a post-coordinated match and only 3% had no match. During the mapping process, missing CCC concepts were submitted to the ICNP Programme, with a recommendation for inclusion in future releases.

  13. Deformation twinning induced decomposition of lamellar LPSO structure and its re-precipitation in an Mg-Zn-Y alloy

    NASA Astrophysics Data System (ADS)

    Shao, X. H.; Zheng, S. J.; Chen, D.; Jin, Q. Q.; Peng, Z. Z.; Ma, X. L.

    2016-07-01

    The high hardness or yield strength of an alloy is known to benefit from the presence of small-scale precipitation, whose hardening effect is extensively applied in various engineering materials. Stability of the precipitates is of critical importance in maintaining the high performance of a material under mechanical loading. The long period stacking ordered (LPSO) structures play an important role in tuning the mechanical properties of an Mg-alloy. Here, we report deformation twinning induces decomposition of lamellar LPSO structures and their re-precipitation in an Mg-Zn-Y alloy. Using atomic resolution scanning transmission electron microscopy (STEM), we directly illustrate that the misfit dislocations at the interface between the lamellar LPSO structure and the deformation twin is corresponding to the decomposition and re-precipitation of LPSO structure, owing to dislocation effects on redistribution of Zn/Y atoms. This finding demonstrates that deformation twinning could destabilize complex precipitates. An occurrence of decomposition and re-precipitation, leading to a variant spatial distribution of the precipitates under plastic loading, may significantly affect the precipitation strengthening.

  14. Deformation twinning induced decomposition of lamellar LPSO structure and its re-precipitation in an Mg-Zn-Y alloy

    PubMed Central

    Shao, X. H.; Zheng, S. J.; Chen, D.; Jin, Q. Q.; Peng, Z. Z.; Ma, X. L.

    2016-01-01

    The high hardness or yield strength of an alloy is known to benefit from the presence of small-scale precipitation, whose hardening effect is extensively applied in various engineering materials. Stability of the precipitates is of critical importance in maintaining the high performance of a material under mechanical loading. The long period stacking ordered (LPSO) structures play an important role in tuning the mechanical properties of an Mg-alloy. Here, we report deformation twinning induces decomposition of lamellar LPSO structures and their re-precipitation in an Mg-Zn-Y alloy. Using atomic resolution scanning transmission electron microscopy (STEM), we directly illustrate that the misfit dislocations at the interface between the lamellar LPSO structure and the deformation twin is corresponding to the decomposition and re-precipitation of LPSO structure, owing to dislocation effects on redistribution of Zn/Y atoms. This finding demonstrates that deformation twinning could destabilize complex precipitates. An occurrence of decomposition and re-precipitation, leading to a variant spatial distribution of the precipitates under plastic loading, may significantly affect the precipitation strengthening. PMID:27435638

  15. Chinese Orthographic Decomposition and Logographic Structure

    ERIC Educational Resources Information Center

    Cheng, Chao-Ming; Lin, Shan-Yuan

    2013-01-01

    "Chinese orthographic decomposition" refers to a sense of uncertainty about the writing of a well-learned Chinese character following a prolonged inspection of the character. This study investigated the decomposition phenomenon in a test situation in which Chinese characters were repeatedly presented in a word context and assessed…

  16. Decomposition of group-velocity-locked-vector-dissipative solitons and formation of the high-order soliton structure by the product of their recombination.

    PubMed

    Wang, Xuan; Li, Lei; Geng, Ying; Wang, Hanxiao; Su, Lei; Zhao, Luming

    2018-02-01

    By using a polarization manipulation and projection system, we numerically decomposed the group-velocity-locked-vector-dissipative solitons (GVLVDSs) from a normal dispersion fiber laser and studied the combination of the projections of the phase-modulated components of the GVLVDS through a polarization beam splitter. Pulses with a structure similar to a high-order vector soliton could be obtained, which could be considered as a pseudo-high-order GVLVDS. It is found that, although GVLVDSs are intrinsically different from group-velocity-locked-vector solitons generated in fiber lasers operated in the anomalous dispersion regime, similar characteristics for the generation of pseudo-high-order GVLVDS are obtained. However, pulse chirp plays a significant role on the generation of pseudo-high-order GVLVDS.

  17. Stereopsis, vertical disparity and relief transformations.

    PubMed

    Gårding, J; Porrill, J; Mayhew, J E; Frisby, J P

    1995-03-01

    The pattern of retinal binocular disparities acquired by a fixating visual system depends on both the depth structure of the scene and the viewing geometry. This paper treats the problem of interpreting the disparity pattern in terms of scene structure without relying on estimates of fixation position from eye movement control and proprioception mechanisms. We propose a sequential decomposition of this interpretation process into disparity correction, which is used to compute three-dimensional structure up to a relief transformation, and disparity normalization, which is used to resolve the relief ambiguity to obtain metric structure. We point out that the disparity normalization stage can often be omitted, since relief transformations preserve important properties such as depth ordering and coplanarity. Based on this framework we analyse three previously proposed computational models of disparity processing; the Mayhew and Longuet-Higgins model, the deformation model and the polar angle disparity model. We show how these models are related, and argue that none of them can account satisfactorily for available psychophysical data. We therefore propose an alternative model, regional disparity correction. Using this model we derive predictions for a number of experiments based on vertical disparity manipulations, and compare them to available experimental data. The paper is concluded with a summary and a discussion of the possible architectures and mechanisms underling stereopsis in the human visual system.

  18. Turbulent Flow Over Large Roughness Elements: Effect of Frontal and Plan Solidity on Turbulence Statistics and Structure

    NASA Astrophysics Data System (ADS)

    Placidi, M.; Ganapathisubramani, B.

    2018-04-01

    Wind-tunnel experiments were carried out on fully-rough boundary layers with large roughness (δ /h ≈ 10, where h is the height of the roughness elements and δ is the boundary-layer thickness). Twelve different surface conditions were created by using LEGO™ bricks of uniform height. Six cases are tested for a fixed plan solidity (λ _P) with variations in frontal density (λ _F), while the other six cases have varying λ _P for fixed λ _F. Particle image velocimetry and floating-element drag-balance measurements were performed. The current results complement those contained in Placidi and Ganapathisubramani (J Fluid Mech 782:541-566, 2015), extending the previous analysis to the turbulence statistics and spatial structure. Results indicate that mean velocity profiles in defect form agree with Townsend's similarity hypothesis with varying λ _F, however, the agreement is worse for cases with varying λ _P. The streamwise and wall-normal turbulent stresses, as well as the Reynolds shear stresses, show a lack of similarity across most examined cases. This suggests that the critical height of the roughness for which outer-layer similarity holds depends not only on the height of the roughness, but also on the local wall morphology. A new criterion based on shelter solidity, defined as the sheltered plan area per unit wall-parallel area, which is similar to the `effective shelter area' in Raupach and Shaw (Boundary-Layer Meteorol 22:79-90, 1982), is found to capture the departure of the turbulence statistics from outer-layer similarity. Despite this lack of similarity reported in the turbulence statistics, proper orthogonal decomposition analysis, as well as two-point spatial correlations, show that some form of universal flow structure is present, as all cases exhibit virtually identical proper orthogonal decomposition mode shapes and correlation fields. Finally, reduced models based on proper orthogonal decomposition reveal that the small scales of the turbulence play a significant role in assessing outer-layer similarity.

  19. Spherical 3D isotropic wavelets

    NASA Astrophysics Data System (ADS)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2012-04-01

    Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at http://jstarck.free.fr/mrs3d.html

  20. Decomposition of silicon carbide at high pressures and temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daviau, Kierstin; Lee, Kanani K. M.

    We measure the onset of decomposition of silicon carbide, SiC, to silicon and carbon (e.g., diamond) at high pressures and high temperatures in a laser-heated diamond-anvil cell. We identify decomposition through x-ray diffraction and multiwavelength imaging radiometry coupled with electron microscopy analyses on quenched samples. We find that B3 SiC (also known as 3C or zinc blende SiC) decomposes at high pressures and high temperatures, following a phase boundary with a negative slope. The high-pressure decomposition temperatures measured are considerably lower than those at ambient, with our measurements indicating that SiC begins to decompose at ~ 2000 K at 60more » GPa as compared to ~ 2800 K at ambient pressure. Once B3 SiC transitions to the high-pressure B1 (rocksalt) structure, we no longer observe decomposition, despite heating to temperatures in excess of ~ 3200 K. The temperature of decomposition and the nature of the decomposition phase boundary appear to be strongly influenced by the pressure-induced phase transitions to higher-density structures in SiC, silicon, and carbon. The decomposition of SiC at high pressure and temperature has implications for the stability of naturally forming moissanite on Earth and in carbon-rich exoplanets.« less

  1. Relating normal vibrational modes to local vibrational modes with the help of an adiabatic connection scheme

    NASA Astrophysics Data System (ADS)

    Zou, Wenli; Kalescky, Robert; Kraka, Elfi; Cremer, Dieter

    2012-08-01

    Information on the electronic structure of a molecule and its chemical bonds is encoded in the molecular normal vibrational modes. However, normal vibrational modes result from a coupling of local vibrational modes, which means that only the latter can provide detailed insight into bonding and other structural features. In this work, it is proven that the adiabatic internal coordinate vibrational modes of Konkoli and Cremer [Int. J. Quantum Chem. 67, 29 (1998)], 10.1002/(SICI)1097-461X(1998)67:1<29::AID-QUA3>3.0.CO;2-0 represent a unique set of local modes that is directly related to the normal vibrational modes. The missing link between these two sets of modes are the compliance constants of Decius, which turn out to be the reciprocals of the local mode force constants of Konkoli and Cremer. Using the compliance constants matrix, the local mode frequencies of any molecule can be converted into its normal mode frequencies with the help of an adiabatic connection scheme that defines the coupling of the local modes in terms of coupling frequencies and reveals how avoided crossings between the local modes lead to changes in the character of the normal modes.

  2. Spectroscopic study of shock-induced decomposition in ammonium perchlorate single crystals.

    PubMed

    Gruzdkov, Y A; Winey, J M; Gupta, Y M

    2008-05-01

    Time-resolved Raman scattering measurements were performed on ammonium perchlorate (AP) single crystals under stepwise shock loading. For particular temperature and pressure conditions, the intensity of the Raman spectra in shocked AP decayed exponentially with time. This decay is attributed to shock-induced chemical decomposition in AP. A series of shock experiments, reaching peak stresses from 10-18 GPa, demonstrated that higher stresses inhibit decomposition while higher temperatures promote it. No orientation dependence was found when AP crystals were shocked normal to the (210) and (001) crystallographic planes. VISAR (velocity interferometer system for any reflector) particle velocity measurements and time-resolved optical extinction measurements carried out to verify these observations are consistent with the Raman data. The combined kinetic and spectroscopic results are consistent with a proton-transfer reaction as the first decomposition step in shocked AP.

  3. Nuclear driven water decomposition plant for hydrogen production

    NASA Technical Reports Server (NTRS)

    Parker, G. H.; Brecher, L. E.; Farbman, G. H.

    1976-01-01

    The conceptual design of a hydrogen production plant using a very-high-temperature nuclear reactor (VHTR) to energize a hybrid electrolytic-thermochemical system for water decomposition has been prepared. A graphite-moderated helium-cooled VHTR is used to produce 1850 F gas for electric power generation and 1600 F process heat for the water-decomposition process which uses sulfur compounds and promises performance superior to normal water electrolysis or other published thermochemical processes. The combined cycle operates at an overall thermal efficiency in excess of 45%, and the overall economics of hydrogen production by this plant have been evaluated predicated on a consistent set of economic ground rules. The conceptual design and evaluation efforts have indicated that development of this type of nuclear-driven water-decomposition plant will permit large-scale economic generation of hydrogen in the 1990s.

  4. Structural Evolution of Silicon Oxynitride Fiber Reinforced Boron Nitride Matrix Composite at High Temperatures

    NASA Astrophysics Data System (ADS)

    Zou, Chunrong; Li, Bin; Zhang, Changrui; Wang, Siqing; Xie, Zhengfang; Shao, Changwei

    2016-02-01

    The structural evolution of a silicon oxynitride fiber reinforced boron nitride matrix (Si-N-Of/BN) wave-transparent composite at high temperatures was investigated. When heat treated at 1600 °C, the composite retained a favorable bending strength of 55.3 MPa while partially crystallizing to Si2N2O and h-BN from the as-received amorphous structure. The Si-N-O fibers still performed as effective reinforcements despite the presence of small pores due to fiber decomposition. Upon heat treatment at 1800 °C, the Si-N-O fibers already lost their reinforcing function and rough hollow microstructure formed within the fibers because of the accelerated decomposition. Further heating to 2000 °C led to the complete decomposition of the reinforcing fibers and only h-BN particles survived. The crystallization and decomposition behaviors of the composite at high temperatures are discussed.

  5. Exploring Galaxy Formation and Evolution via Structural Decomposition

    NASA Astrophysics Data System (ADS)

    Kelvin, Lee; Driver, Simon; Robotham, Aaron; Hill, David; Cameron, Ewan

    2010-06-01

    The Galaxy And Mass Assembly (GAMA) structural decomposition pipeline (GAMA-SIGMA Structural Investigation of Galaxies via Model Analysis) will provide multi-component information for a sample of ~12,000 galaxies across 9 bands ranging from near-UV to near-IR. This will allow the relationship between structural properties and broadband, optical-to-near-IR, spectral energy distributions of bulge, bar, and disk components to be explored, revealing clues as to the history of baryonic mass assembly within a hierarchical clustering framework. Data is initially taken from the SDSS & UKIDSS-LAS surveys to test the robustness of our automated decomposition pipeline. This will eventually be replaced with the forthcoming higher-resolution VST & VISTA surveys data, expanding the sample to ~30,000 galaxies.

  6. A new method to real-normalize measured complex modes

    NASA Technical Reports Server (NTRS)

    Wei, Max L.; Allemang, Randall J.; Zhang, Qiang; Brown, David L.

    1987-01-01

    A time domain subspace iteration technique is presented to compute a set of normal modes from the measured complex modes. By using the proposed method, a large number of physical coordinates are reduced to a smaller number of model or principal coordinates. Subspace free decay time responses are computed using properly scaled complex modal vectors. Companion matrix for the general case of nonproportional damping is then derived in the selected vector subspace. Subspace normal modes are obtained through eigenvalue solution of the (M sub N) sup -1 (K sub N) matrix and transformed back to the physical coordinates to get a set of normal modes. A numerical example is presented to demonstrate the outlined theory.

  7. Multivalent Ion Transport in Polymers via Metal-Ligand Coordination

    NASA Astrophysics Data System (ADS)

    Sanoja, Gabriel; Schauser, Nicole; Evans, Christopher; Majumdar, Shubhaditya; Segalman, Rachel

    Elucidating design rules for multivalent ion conducting polymers is critical for developing novel high-performance materials for electrochemical devices. Herein, we molecularly engineer multivalent ion conducting polymers based on metal-ligand interactions and illustrate that both segmental dynamics and ion coordination kinetics are essential for ion transport through polymers. We present a novel statistical copolymer, poly(ethylene oxide-stat-imidazole glycidyl ether) (i.e., PEO-stat-PIGE), that synergistically combines the structural hierarchy of PEO with the Lewis basicity of tethered imidazole ligands (xIGE = 0.17) required to coordinate a series of transition metal salts containing bis(trifluoromethylsulfonyl)imide anions. Complexes of PEO-stat-PIGE with salts exhibit a nanostructure in which ion-enriched regions alternate with ion-deficient regions, and an ionic conductivity above 10-5 S/cm. Novel normalization schemes that account for ion solvation kinetics are presented to attain a universal scaling relationship for multivalent ion transport in polymers via metal-ligand coordination. AFOSR MURI program under FA9550-12-1.

  8. On the absence of reverse running waves in general displacement of lattice vibration in popular books on solid state theory

    NASA Astrophysics Data System (ADS)

    Xia, Shangda; Lou, Liren

    2018-05-01

    In this article we point out that there is a deficiency in the presentation of the general solution of harmonic lattice vibration, the omission of half of the allowed running waves, in many popular textbooks published since 1940, e.g. O Madelung’s 1978 Introduction to Solid-State Theory and J Solyom’s 2007 Fundamentals of the Physics of Solids, vol 1. So we provide a revised presentation, which gives a complete general solution and demonstrates clearly that the conventional complex normal coordinate should be a superposition of two coordinates (multiplied by a factor \\sqrt{1/2}) of running waves travelling oppositely along q and -q, not only a coordinate of a unidirectional running wave as many books considered. It is noticed that the book, Quantum Theory of the Solid State: An Introduction, by L Kantorovich, published in 2004, and the review article, ‘Phonons in perfect crystals’ by W Cochran and R A Cowly, published in 1967, for a one-dimensional single-atom chain gave correct (but not normalized) formulae for the general solution of lattice vibration and the normal coordinate. However, both of them stated still that each normal coordinate describes an independent mode of vibration, which in our opinion needs to be further discussed. Moreover, in books such as Fundamentals of the Physics of Solids, vol 1, by J Solyom, and The Physics and Chemistry of Solids, by S R Elliott, published in 2006 and 2007, respectively, the reverse waves were still lost. Hence, we also discuss a few related topics. In quantization of the lattice vibration, the introduction of the conventional two (not one) independent phonon operators in a normal coordinate is closely related to the ‘independence’ of the two constituent waves mentioned above, and we propose a simple propositional relation between the phonon operator and the corresponding running wave coordinate. Moreover, only the coordinate of the superposition wave (not the running wave), as the normal coordinate can give the correct quantization commutation relations. In addition, there is an interference between the direct and reverse running waves in kinetic and potential energies, which also questions the popular term ‘normal mode’ for a running wave mode. Therefore we have made a few suggestions and discuss the terms of relative quantities.

  9. Strike-parallel and strike-normal coordinate system around geometrically complicated rupture traces: use by NGA-West2 and further improvements

    USGS Publications Warehouse

    Spudich, Paul A.; Chiou, Brian

    2015-01-01

    We present a two-dimensional system of generalized coordinates for use with geometrically complex fault ruptures that are neither straight nor continuous. The coordinates are a generalization of the conventional strike-normal and strike-parallel coordinates of a single straight fault. The presented conventions and formulations are applicable to a single curved trace, as well as multiple traces representing the rupture of branching faults or noncontiguous faults. An early application of our generalized system is in the second round of the Next Generation of Ground-Motion Attenuation Model project for the Western United States (NGA-West2), where they were used in the characterization of the hanging-wall effects. We further improve the NGA-West2 strike-parallel formulation for multiple rupture traces with a more intuitive definition of the nominal strike direction. We also derive an analytical expression for the gradient of the generalized strike-normal coordinate. The direction of this gradient may be used as the strike-normal direction in the study of polarization effects on ground motions.

  10. Synthesis of inverse ringwoodite sheds light on the subduction history of Tibetan ophiolites.

    PubMed

    Bindi, Luca; Griffin, William L; Panero, Wendy R; Sirotkina, Ekaterina; Bobrov, Andrey; Irifune, Tetsuo

    2018-04-03

    Tibetan ophiolites are shallow mantle material and crustal slabs that were subducted as deep as the mantle transition zone, a conclusion supported by the discovery of high-pressure phases like inverse ringwoodite in these sequences. Ringwoodite, Mg 2 SiO 4 , exhibits the normal spinel structure, with Mg in the octahedral A site and Si in the tetrahedral B site. Through A and B site-disorder, the inverse spinel has four-coordinated A cations and the six-coordinated site hosts a mixture of A and B cations. This process affects the density and impedance contrasts across the boundaries in the transition zone and seismic-wave velocities in this portion of the Earth. We report the first synthesis at high pressure (20 GPa) and high temperature (1600 °C) of a Cr-bearing ringwoodite with a completely inverse-spinel structure. Chemical, structural, and computational analysis confirm the stability of inverse ringwoodite and add further constraints to the subduction history of the Luobusa peridotite of the Tibetan ophiolites.

  11. Full-Scale Wind Tunnel Test of the UH-60A Airloads Rotor

    DTIC Science & Technology

    2011-05-01

    moment M 2 cn section normal force Mtip hover tip Mach number r radial coordinate, ft R blade radius, ft !c corrected shaft angle, positive aft, deg...s geometric shaft angle, positive aft, deg µ advance ratio Presented at the American...nine radial stations. These data, in combination with other measured parameters (structural loads, control positions, and rotor shaft moments), have

  12. Spectral biclustering of microarray data: coclustering genes and conditions.

    PubMed

    Kluger, Yuval; Basri, Ronen; Chang, Joseph T; Gerstein, Mark

    2003-04-01

    Global analyses of RNA expression levels are useful for classifying genes and overall phenotypes. Often these classification problems are linked, and one wants to find "marker genes" that are differentially expressed in particular sets of "conditions." We have developed a method that simultaneously clusters genes and conditions, finding distinctive "checkerboard" patterns in matrices of gene expression data, if they exist. In a cancer context, these checkerboards correspond to genes that are markedly up- or downregulated in patients with particular types of tumors. Our method, spectral biclustering, is based on the observation that checkerboard structures in matrices of expression data can be found in eigenvectors corresponding to characteristic expression patterns across genes or conditions. In addition, these eigenvectors can be readily identified by commonly used linear algebra approaches, in particular the singular value decomposition (SVD), coupled with closely integrated normalization steps. We present a number of variants of the approach, depending on whether the normalization over genes and conditions is done independently or in a coupled fashion. We then apply spectral biclustering to a selection of publicly available cancer expression data sets, and examine the degree to which the approach is able to identify checkerboard structures. Furthermore, we compare the performance of our biclustering methods against a number of reasonable benchmarks (e.g., direct application of SVD or normalized cuts to raw data).

  13. Study on cross-reactivity to the para group.

    PubMed

    Picardo, M; Cannistraci, C; Cristaudo, A; De Luca, C; Santucci, B

    1990-01-01

    In 80 patients, positive to at least one hapten of the para group (para-phenylenediamine, diaminodiphenylmethane, benzocaine, PPD mix), patch tests were carried out with freshly prepared solutions of para-phenylenediamine (PPD) and of 3 selected aromatic compounds related structurally to PPD (para-aminophenol, ortho-aminophenol, hydroquinone). The number of positive reactions correlated with the rate of decomposition of the substances as evaluated by high-pressure liquid chromatography. PPD, which was almost decomposed after 24 h, gave the highest number of positive reactions, followed by ortho-aminophenol and by para-aminophenol, while hydroquinone, which was oxidized to the extent of 35%, did not give any reactions. To evaluate if a different rate of oxidation can modify the patch test response, in the same patients and in 10 normal volunteers, tests were carried out with PPD solutions containing the oxidizing agent silver oxide (0.1%). By this procedure a significant increase in the number of positive responses was observed. The results suggest that the rate of decomposition and therefore the amount of quinone(s) generated, might be the key to eliciting patch test responses to oxidizable aromatic haptens.

  14. Positron annihilation lifetime study of polyvinylpyrrolidone for nanoparticle-stabilizing pharmaceuticals.

    PubMed

    Shpotyuk, O; Bujňáková, Z; Baláž, P; Ingram, A; Shpotyuk, Y

    2016-01-05

    Positron annihilation lifetime spectroscopy was applied to characterize free-volume structure of polyvinylpyrrolidone used as nonionic stabilizer in the production of many nanocomposite pharmaceuticals. The polymer samples with an average molecular weight of 40,000 g mol(-1) were pelletized in a single-punch tableting machine under an applied pressure of 0.7 GPa. Strong mixing in channels of positron and positronium trapping were revealed in the polyvinylpyrrolidone pellets. The positron lifetime spectra accumulated under normal measuring statistics were analysed in terms of unconstrained three- and four-term decomposition, the latter being also realized under fixed 0.125 ns lifetime proper to para-positronium self-annihilation in a vacuum. It was shown that average positron lifetime extracted from each decomposition was primary defined by long-lived ortho-positronium component. The positron lifetime spectra treated within unconstrained three-term fitting were in obvious preference, giving third positron lifetime dominated by ortho-positronium pick-off annihilation in a polymer matrix. This fitting procedure was most meaningful, when analysing expected positron trapping sites in polyvinylpyrrolidone-stabilized nanocomposite pharmaceuticals. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Structure and decomposition of the silver formate Ag(HCO{sub 2})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puzan, Anna N., E-mail: anna_puzan@mail.ru; Baumer, Vyacheslav N.; Mateychenko, Pavel V.

    Crystal structure of the silver formate Ag(HCO{sub 2}) has been determined (orthorhombic, sp.gr. Pccn, a=7.1199(5), b=10.3737(4), c=6.4701(3)Å, V=477.88(4) Å{sup 3}, Z=8). The structure contains isolated formate ions and the pairs Ag{sub 2}{sup 2+} which form the layers in (001) planes (the shortest Ag–Ag distances is 2.919 in the pair and 3.421 and 3.716 Å between the nearest Ag atoms of adjacent pairs). Silver formate is unstable compound which decompose spontaneously vs time. Decomposition was studied using Rietveld analysis of the powder diffraction patterns. It was concluded that the diffusion of Ag atoms leads to the formation of plate-like metal particlesmore » as nuclei in the (100) planes which settle parallel to (001) planes of the silver formate matrix. - Highlights: • Silver formate Ag(HCO{sub 2}) was synthesized and characterized. • Layered packing of Ag-Ag pairs in the structure was found. • Decomposition of Ag(HCO{sub 2}) and formation of metal phase were studied. • Rietveld-refined micro-structural characteristics during decomposition reveal the space relationship between the matrix structure and forming Ag phase REPLACE with: Space relationship between the matrix structure and forming Ag phase.« less

  16. High-temperature heat capacity of Co3O4 spinel: thermally induced spin unpairing transition

    USGS Publications Warehouse

    Mocala, K.; Navrotsky, A.; Sherman, David M.

    1992-01-01

    A strong anomaly was found in the heat capacity of Co3O4 between 1000 K and the decomposition temperature. This anomaly is not related to the decomposition of Co3O4 to CoO. The measured entropy of transition, ??S=46??4 J mol-1 K-1 of Co3O4, supports the interpretation that this anomaly reflects a spin unpairing transition in octahedrally coordinated Co3+ cations. Experimental values of heat capacity, heat content and entropy of Co3O4 in the high temperature region are provided. The enthalpy of the spin unpairing transition is 53??4 kJ mol-1 of Co3O4. ?? 1992 Springer-Verlag.

  17. Utilization of a balanced steady state free precession signal model for improved fat/water decomposition.

    PubMed

    Henze Bancroft, Leah C; Strigel, Roberta M; Hernando, Diego; Johnson, Kevin M; Kelcz, Frederick; Kijowski, Richard; Block, Walter F

    2016-03-01

    Chemical shift based fat/water decomposition methods such as IDEAL are frequently used in challenging imaging environments with large B0 inhomogeneity. However, they do not account for the signal modulations introduced by a balanced steady state free precession (bSSFP) acquisition. Here we demonstrate improved performance when the bSSFP frequency response is properly incorporated into the multipeak spectral fat model used in the decomposition process. Balanced SSFP allows for rapid imaging but also introduces a characteristic frequency response featuring periodic nulls and pass bands. Fat spectral components in adjacent pass bands will experience bulk phase offsets and magnitude modulations that change the expected constructive and destructive interference between the fat spectral components. A bSSFP signal model was incorporated into the fat/water decomposition process and used to generate images of a fat phantom, and bilateral breast and knee images in four normal volunteers at 1.5 Tesla. Incorporation of the bSSFP signal model into the decomposition process improved the performance of the fat/water decomposition. Incorporation of this model allows rapid bSSFP imaging sequences to use robust fat/water decomposition methods such as IDEAL. While only one set of imaging parameters were presented, the method is compatible with any field strength or repetition time. © 2015 Wiley Periodicals, Inc.

  18. The Complexities of Teaching Prime Decomposition and Multiplicative Structure with Tools to Preservice Elementary Teachers

    ERIC Educational Resources Information Center

    Kurz, Terri L.; Garcia, Jorge

    2012-01-01

    Preservice elementary teachers often struggle with prime decomposition and other mathematical topics that correlate with number theory. This paper provides a framework for integrating prime factor tiles into their curriculum with a particular emphasis on prime decomposition. Using this framework, preservice teachers explored and evaluated numbers…

  19. Interphase centrosome organization by the PLP-Cnn scaffold is required for centrosome function

    PubMed Central

    Lerit, Dorothy A.; Jordan, Holly A.; Poulton, John S.; Fagerstrom, Carey J.; Galletta, Brian J.; Peifer, Mark

    2015-01-01

    Pericentriolar material (PCM) mediates the microtubule (MT) nucleation and anchoring activity of centrosomes. A scaffold organized by Centrosomin (Cnn) serves to ensure proper PCM architecture and functional changes in centrosome activity with each cell cycle. Here, we investigate the mechanisms that spatially restrict and temporally coordinate centrosome scaffold formation. Focusing on the mitotic-to-interphase transition in Drosophila melanogaster embryos, we show that the elaboration of the interphase Cnn scaffold defines a major structural rearrangement of the centrosome. We identify an unprecedented role for Pericentrin-like protein (PLP), which localizes to the tips of extended Cnn flares, to maintain robust interphase centrosome activity and promote the formation of interphase MT asters required for normal nuclear spacing, centrosome segregation, and compartmentalization of the syncytial embryo. Our data reveal that Cnn and PLP directly interact at two defined sites to coordinate the cell cycle–dependent rearrangement and scaffolding activity of the centrosome to permit normal centrosome organization, cell division, and embryonic viability. PMID:26150390

  20. Interphase centrosome organization by the PLP-Cnn scaffold is required for centrosome function.

    PubMed

    Lerit, Dorothy A; Jordan, Holly A; Poulton, John S; Fagerstrom, Carey J; Galletta, Brian J; Peifer, Mark; Rusan, Nasser M

    2015-07-06

    Pericentriolar material (PCM) mediates the microtubule (MT) nucleation and anchoring activity of centrosomes. A scaffold organized by Centrosomin (Cnn) serves to ensure proper PCM architecture and functional changes in centrosome activity with each cell cycle. Here, we investigate the mechanisms that spatially restrict and temporally coordinate centrosome scaffold formation. Focusing on the mitotic-to-interphase transition in Drosophila melanogaster embryos, we show that the elaboration of the interphase Cnn scaffold defines a major structural rearrangement of the centrosome. We identify an unprecedented role for Pericentrin-like protein (PLP), which localizes to the tips of extended Cnn flares, to maintain robust interphase centrosome activity and promote the formation of interphase MT asters required for normal nuclear spacing, centrosome segregation, and compartmentalization of the syncytial embryo. Our data reveal that Cnn and PLP directly interact at two defined sites to coordinate the cell cycle-dependent rearrangement and scaffolding activity of the centrosome to permit normal centrosome organization, cell division, and embryonic viability.

  1. Vibrational spectroscopic investigation and normal coordinate analysis of the fibrate hypolipidemic agent 5-(2,5-dimethylphenoxy)-2,2-dimethyl pentanoic acid (Gemfibrozil)

    NASA Astrophysics Data System (ADS)

    Priya, M. Siva; Benitta, T. Asenath; James, C.

    2011-03-01

    Colorless crystals of 5-(2,5-dimethylphenoxy)-2,2-dimethyl pentanoic acid were grown by slow evaporation method and the FT-IR and FT-Raman spectra of the sample were recorded in the region 4000-450 cm -1 and 4000-50 cm -1 respectively. Molecular structure is optimized with the help of B3LYP/6-31G (d) density functional theory method. Stability of the molecule arising from hyperconjugation and charge delocalization is confirmed by the natural bond orbital analysis (NBO). The results show that electron density (ED) in the σ ∗ antibonding orbitals and E (2) energies confirms the occurrence of intra-molecular charge transfer (ICT) within the molecule. The assignments of the vibrational spectra have been carried out with the help of Normal coordinate analysis following the scaled quantum mechanical force field (SQMFF) methodology. Mulliken population analysis on atomic charges is also calculated. The calculated HOMO and LUMO energy gap shows that charge transfer occurs within the molecule.

  2. Graded levels of FGF protein span the midbrain and can instruct graded induction and repression of neural mapping labels

    PubMed Central

    Chen, Yao; Mohammadi, Moosa; Flanagan, John G.

    2009-01-01

    Summary Graded guidance labels are widely used in neural map formation, but it is not well understood which potential strategy leads to their graded expression. In midbrain tectal map development, FGFs can induce an entire midbrain, but their protein distribution is unclear, nor is it known whether they may act instructively to produce graded gene expression. Using a receptor-alkaline phosphatase fusion probe, we find a long-range posterior>anterior FGF protein gradient spanning the midbrain. Heparan sulfate proteoglycan (HSPG) is required for this gradient. To test whether graded FGF concentrations can instruct graded gene expression, a quantitative tectal explant assay was developed. Engrailed-2 and ephrin-As, normally in posterior>anterior tectal gradients, showed graded upregulation. Moreover, EphAs, normally in anterior>posterior countergradients, showed coordinately graded downregulation. These results provide a mechanism to establish graded mapping labels, and more generally provide a developmental strategy to coordinately induce a structure and pattern its cell properties in gradients. PMID:19555646

  3. Covalent lanthanide(III) macrocyclic complexes: the bonding nature and optical properties of a promising single antenna molecule.

    PubMed

    Rabanal-León, Walter A; Páez-Hernández, Dayán; Arratia-Pérez, Ramiro

    2014-12-21

    The present work is focused on the elucidation of the electronic structure, bonding nature and optical properties of a series of low symmetry (C2) coordination compounds of type [Ln(III)HAM](3+), where "Ln(III)" are the trivalent lanthanide ions: La(3+), Ce(3+), Eu(3+) and Lu(3+), while "HAM" is the neutral six-nitrogen donor macrocyclic ligand [C22N6H26]. This systematic study has been performed in the framework of the Relativistic Density Functional Theory (R-DFT) and also using a multi-reference approach via the Complete Active Space (CAS) wavefunction treatment with the aim of analyzing their ground state and excited state electronic structures as well as electronic correlation. Furthermore, the use of the energy decomposition scheme proposed by Morokuma-Ziegler and the electron localization function (ELF) allows us to characterize the bonding between the lanthanide ions and the macrocyclic ligand, obtaining as a result a dative-covalent interaction. Due to a great deal of lanthanide optical properties and their technological applications, the absorption spectra of this set of coordination compounds were calculated using the time-dependent density functional theory (TD-DFT), where the presence of the intense Ligand to Metal Charge Transfer (LMCT) bands in the ultraviolet and visible region and the inherent f-f electronic transitions in the Near-Infra Red (NIR) region for some lanthanide ions allow us to propose these systems as "single antenna molecules" with potential applications in NIR technologies.

  4. Elimination of numerical Cherenkov instability in flowing-plasma particle-in-cell simulations by using Galilean coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehe, Remi; Kirchen, Manuel; Godfrey, Brendan B.

    Particle-in-cell (PIC) simulations of relativistic flowing plasmas are of key interest to several fields of physics (including, e.g., laser-wakefield acceleration, when viewed in a Lorentz-boosted frame) but remain sometimes infeasible due to the well-known numerical Cherenkov instability (NCI). In this article, we show that, for a plasma drifting at a uniform relativistic velocity, the NCI can be eliminated by simply integrating the PIC equations in Galilean coordinates that follow the plasma (also sometimes known as comoving coordinates) within a spectral analytical framework. The elimination of the NCI is verified empirically and confirmed by a theoretical analysis of the instability. Moreover,more » it is shown that this method is applicable both to Cartesian geometry and to cylindrical geometry with azimuthal Fourier decomposition.« less

  5. Elimination of numerical Cherenkov instability in flowing-plasma particle-in-cell simulations by using Galilean coordinates

    DOE PAGES

    Lehe, Remi; Kirchen, Manuel; Godfrey, Brendan B.; ...

    2016-11-14

    Particle-in-cell (PIC) simulations of relativistic flowing plasmas are of key interest to several fields of physics (including, e.g., laser-wakefield acceleration, when viewed in a Lorentz-boosted frame) but remain sometimes infeasible due to the well-known numerical Cherenkov instability (NCI). In this article, we show that, for a plasma drifting at a uniform relativistic velocity, the NCI can be eliminated by simply integrating the PIC equations in Galilean coordinates that follow the plasma (also sometimes known as comoving coordinates) within a spectral analytical framework. The elimination of the NCI is verified empirically and confirmed by a theoretical analysis of the instability. Moreover,more » it is shown that this method is applicable both to Cartesian geometry and to cylindrical geometry with azimuthal Fourier decomposition.« less

  6. Domain Decomposition with Local Mesh Refinement.

    DTIC Science & Technology

    1989-08-01

    smoothi coefficients, or non-smooth solui ioni,. We eiriplov fromn 1 to 1024 tiles on problems containing irp to 161K (degrees of freedom. Though io... methodology survives such compromises and is even sequentially advantageous in many problems. The domain decomposition algorithms we employ (sertiun 3...iog( I + !J2 it - g i Ol Qunit squiare 1 he (,mai oive i> Hie outward normal. lfie sevoh iih exam pie, from [1. 27] has a smoothi solution, but rapidlY

  7. Practical Methods for Including Torsional Anharmonicity in Thermochemical Calculations on Complex Molecules: The Internal-Coordinate Multi-Structural Approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, J.; Yu, T.; Papajak, E.

    2011-01-01

    Many methods for correcting harmonic partition functions for the presence of torsional motions employ some form of one-dimensional torsional treatment to replace the harmonic contribution of a specific normal mode. However, torsions are often strongly coupled to other degrees of freedom, especially other torsions and low-frequency bending motions, and this coupling can make assigning torsions to specific normal modes problematic. Here, we present a new class of methods, called multi-structural (MS) methods, that circumvents the need for such assignments by instead adjusting the harmonic results by torsional correction factors that are determined using internal coordinates. We present three versions ofmore » the MS method: (i) MS-AS based on including all structures (AS), i.e., all conformers generated by internal rotations; (ii) MS-ASCB based on all structures augmented with explicit conformational barrier (CB) information, i.e., including explicit calculations of all barrier heights for internal-rotation barriers between the conformers; and (iii) MS-RS based on including all conformers generated from a reference structure (RS) by independent torsions. In the MS-AS scheme, one has two options for obtaining the local periodicity parameters, one based on consideration of the nearly separable limit and one based on strongly coupled torsions. The latter involves assigning the local periodicities on the basis of Voronoi volumes. The methods are illustrated with calculations for ethanol, 1-butanol, and 1-pentyl radical as well as two one-dimensional torsional potentials. The MS-AS method is particularly interesting because it does not require any information about conformational barriers or about the paths that connect the various structures.« less

  8. Practical methods for including torsional anharmonicity in thermochemical calculations on complex molecules: the internal-coordinate multi-structural approximation.

    PubMed

    Zheng, Jingjing; Yu, Tao; Papajak, Ewa; Alecu, I M; Mielke, Steven L; Truhlar, Donald G

    2011-06-21

    Many methods for correcting harmonic partition functions for the presence of torsional motions employ some form of one-dimensional torsional treatment to replace the harmonic contribution of a specific normal mode. However, torsions are often strongly coupled to other degrees of freedom, especially other torsions and low-frequency bending motions, and this coupling can make assigning torsions to specific normal modes problematic. Here, we present a new class of methods, called multi-structural (MS) methods, that circumvents the need for such assignments by instead adjusting the harmonic results by torsional correction factors that are determined using internal coordinates. We present three versions of the MS method: (i) MS-AS based on including all structures (AS), i.e., all conformers generated by internal rotations; (ii) MS-ASCB based on all structures augmented with explicit conformational barrier (CB) information, i.e., including explicit calculations of all barrier heights for internal-rotation barriers between the conformers; and (iii) MS-RS based on including all conformers generated from a reference structure (RS) by independent torsions. In the MS-AS scheme, one has two options for obtaining the local periodicity parameters, one based on consideration of the nearly separable limit and one based on strongly coupled torsions. The latter involves assigning the local periodicities on the basis of Voronoi volumes. The methods are illustrated with calculations for ethanol, 1-butanol, and 1-pentyl radical as well as two one-dimensional torsional potentials. The MS-AS method is particularly interesting because it does not require any information about conformational barriers or about the paths that connect the various structures.

  9. Beyond Low Rank + Sparse: Multi-scale Low Rank Matrix Decomposition

    PubMed Central

    Ong, Frank; Lustig, Michael

    2016-01-01

    We present a natural generalization of the recent low rank + sparse matrix decomposition and consider the decomposition of matrices into components of multiple scales. Such decomposition is well motivated in practice as data matrices often exhibit local correlations in multiple scales. Concretely, we propose a multi-scale low rank modeling that represents a data matrix as a sum of block-wise low rank matrices with increasing scales of block sizes. We then consider the inverse problem of decomposing the data matrix into its multi-scale low rank components and approach the problem via a convex formulation. Theoretically, we show that under various incoherence conditions, the convex program recovers the multi-scale low rank components either exactly or approximately. Practically, we provide guidance on selecting the regularization parameters and incorporate cycle spinning to reduce blocking artifacts. Experimentally, we show that the multi-scale low rank decomposition provides a more intuitive decomposition than conventional low rank methods and demonstrate its effectiveness in four applications, including illumination normalization for face images, motion separation for surveillance videos, multi-scale modeling of the dynamic contrast enhanced magnetic resonance imaging and collaborative filtering exploiting age information. PMID:28450978

  10. Relative distribution of ketamine and norketamine in skeletal tissues following various periods of decomposition.

    PubMed

    Watterson, James H; Donohue, Joseph P

    2011-09-01

    Skeletal tissues (rat) were analyzed for ketamine (KET) and norketamine (NKET) following acute ketamine exposure (75 mg/kg i.p.) to examine the influence of bone type and decomposition period on drug levels. Following euthanasia, drug-free (n = 6) and drug-positive (n = 20) animals decomposed outdoors in rural Ontario for 0, 1, or 2 weeks. Skeletal remains were recovered and ground samples of various bones underwent passive methanolic extraction and analysis by GC-MS after solid-phase extraction. Drug levels, expressed as mass normalized response ratios, were compared across tissue types and decomposition periods. Bone type was a main effect (p < 0.05) for drug level and drug/metabolite level ratio (DMLR) for all decomposition times, except for DMLR after 2 weeks of decomposition. Mean drug level (KET and NKET) and DMLR varied by up to 23-fold, 18-fold, and 5-fold, respectively, between tissue types. Decomposition time was significantly related to DMLR, KET level, and NKET level in 3/7, 4/7, and 1/7 tissue types, respectively. Although substantial sitedependence may exist in measured bone drug levels, ratios of drug and metabolite levels should be investigated for utility in discrimination of drug administration patterns in forensic work.

  11. Van Der Waals Clusters of Aromatic Molecules Studied Using Supersonic Molecular Jet Spectroscopy.

    DTIC Science & Technology

    1987-01-01

    i n iie t ri 166 TABLE 7.5 Out-or-Plane Elgenvector Normal Modes Calculated for H2PC. Mode Elgenvector in Terms of Symmetry Coordinates a Bu1...clusters exhibit spectra and calculated geomet- ries which demonstrate that the solvent OH groups are large contributors to the spectral shifts and...10’ cluster structure. We calculate that 0.005 cm-’ resolution N-C 1.725 x 10’ I 575< 10’ would be required to resolve rotational structure for N-H

  12. Application of decomposition techniques to the preliminary design of a transport aircraft

    NASA Technical Reports Server (NTRS)

    Rogan, J. E.; Mcelveen, R. P.; Kolb, M. A.

    1986-01-01

    A multifaceted decomposition of a nonlinear constrained optimization problem describing the preliminary design process for a transport aircraft has been made. Flight dynamics, flexible aircraft loads and deformations, and preliminary structural design subproblems appear prominently in the decomposition. The use of design process decomposition for scheduling design projects, a new system integration approach to configuration control, and the application of object-centered programming to a new generation of design tools are discussed.

  13. Thermal Decomposition Mechanism of CL-20 at Different Temperatures by ReaxFF Reactive Molecular Dynamics Simulations.

    PubMed

    Wang, Fuping; Chen, Lang; Geng, Deshen; Wu, Junying; Lu, Jianying; Wang, Chen

    2018-04-26

    Hexanitrohexaazaisowurtzitane (CL-20) has a high detonation velocity and pressure, but its sensitivity is also high, which somewhat limits its applications. Therefore, it is important to understand the mechanism and characteristics of thermal decomposition of CL-20. In this study, a ε-CL-20 supercell was constructed and ReaxFF-lg reactive molecular dynamics simulations were performed to investigate thermal decomposition of ε-CL-20 at various temperatures (2000, 2500, 2750, 3000, 3250, and 3500 K). The mechanism of thermal decomposition of CL-20 was analyzed from the aspects of potential energy evolution, the primary reactions, and the intermediate and final product species. The effect of temperature on thermal decomposition of CL-20 is also discussed. The initial reaction path of thermal decomposition of CL-20 is N-NO 2 cleavage to form NO 2 , followed by C-N cleavage, leading to the destruction of the cage structure. A small number of clusters appear in the early reactions and disappear at the end of the reactions. The initial reaction path of CL-20 decomposition is the same at different temperatures. However, as the temperature increases, the decomposition rate of CL-20 increases and the cage structure is destroyed earlier. The temperature greatly affects the rate constants of H 2 O and N 2 , but it has little effect on the rate constants of CO 2 and H 2 .

  14. Structural system identification based on variational mode decomposition

    NASA Astrophysics Data System (ADS)

    Bagheri, Abdollah; Ozbulut, Osman E.; Harris, Devin K.

    2018-03-01

    In this paper, a new structural identification method is proposed to identify the modal properties of engineering structures based on dynamic response decomposition using the variational mode decomposition (VMD). The VMD approach is a decomposition algorithm that has been developed as a means to overcome some of the drawbacks and limitations of the empirical mode decomposition method. The VMD-based modal identification algorithm decomposes the acceleration signal into a series of distinct modal responses and their respective center frequencies, such that when combined their cumulative modal responses reproduce the original acceleration response. The decaying amplitude of the extracted modal responses is then used to identify the modal damping ratios using a linear fitting function on modal response data. Finally, after extracting modal responses from available sensors, the mode shape vector for each of the decomposed modes in the system is identified from all obtained modal response data. To demonstrate the efficiency of the algorithm, a series of numerical, laboratory, and field case studies were evaluated. The laboratory case study utilized the vibration response of a three-story shear frame, whereas the field study leveraged the ambient vibration response of a pedestrian bridge to characterize the modal properties of the structure. The modal properties of the shear frame were computed using analytical approach for a comparison with the experimental modal frequencies. Results from these case studies demonstrated that the proposed method is efficient and accurate in identifying modal data of the structures.

  15. Novel 3D Compression Methods for Geometry, Connectivity and Texture

    NASA Astrophysics Data System (ADS)

    Siddeq, M. M.; Rodrigues, M. A.

    2016-06-01

    A large number of applications in medical visualization, games, engineering design, entertainment, heritage, e-commerce and so on require the transmission of 3D models over the Internet or over local networks. 3D data compression is an important requirement for fast data storage, access and transmission within bandwidth limitations. The Wavefront OBJ (object) file format is commonly used to share models due to its clear simple design. Normally each OBJ file contains a large amount of data (e.g. vertices and triangulated faces, normals, texture coordinates and other parameters) describing the mesh surface. In this paper we introduce a new method to compress geometry, connectivity and texture coordinates by a novel Geometry Minimization Algorithm (GM-Algorithm) in connection with arithmetic coding. First, each vertex ( x, y, z) coordinates are encoded to a single value by the GM-Algorithm. Second, triangle faces are encoded by computing the differences between two adjacent vertex locations, which are compressed by arithmetic coding together with texture coordinates. We demonstrate the method on large data sets achieving compression ratios between 87 and 99 % without reduction in the number of reconstructed vertices and triangle faces. The decompression step is based on a Parallel Fast Matching Search Algorithm (Parallel-FMS) to recover the structure of the 3D mesh. A comparative analysis of compression ratios is provided with a number of commonly used 3D file formats such as VRML, OpenCTM and STL highlighting the performance and effectiveness of the proposed method.

  16. A theoretical study of the decomposition of gold (I) complexes

    NASA Astrophysics Data System (ADS)

    Tossell, J. A.

    1998-04-01

    Structures, energetics and excitation energies are calculated for the gold (I) complexes CH 3Au, (CH 3) 2Au -, CH 3AuOH 2, CH 3AuPH 3 and PH 3AuCl at the Hartree-Fock and MP2 levels of theory, and for CH 3AuP(CH 3) 3, CH 3AuP(OH) 3 and Au 3Cl 3 at the HF level. The lowest-energy neutral triplet state of each 2-coordinate compound dissociates into either two or three radical species (always including the CH 3 radical), with the exception of (CH 3) 2Au - which shows only slight Au-C bond elongation. In contrast, the doublet anion states dissociate neutral ligands, like PH 3, but do not dissociate CH 3. These results indicate that gold (I) chemical vapor deposition processes must involve excited states of the neutrals rather than their anions.

  17. Cu(II), Co(II) and Ni(II) complexes of new Schiff base ligand: Synthesis, thermal and spectroscopic characterizations

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; El-Sayed, Mohamed Y.; Adam, Abdel Majid A.

    2013-04-01

    Cu(II), Co(II), and Ni(II) complexes were synthesized from 2-[(5-o-chlorophenylazo-2-hydroxybenzylidin)amino]-phenol Schiff base (H2L). Metal ions coordinate in a tetradentate or hexadentate features with these O2N donor ligand, which are characterized by elemental analyses, magnetic moments, infrared, Raman laser, electronic, and 1H NMR spectral studies. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). Reactions with Cu(II), Co(II) and Ni(II), resulted [Cu(H2L)(H2O)2(Cl)]Cl, [Co(H2L)(H2O)3]Cl2ṡ3H2O and [Ni(H2L)(H2O)2]Cl2ṡ6H2O. The thermal decomposition behavior of H2L complexes has been investigated by thermogravimetric analysis (TG/DTG) at a heating rate of 10 °C min-1 under nitrogen atmosphere. The brightness side in this study is to take advantage for the preparation and characterizations of single phases of CuO, CoO and NiO nanoparticles using H2L complexes as precursors via a solid-state decomposition procedure. The crystalline structures of products using X-ray diffractometer (XRD), morphology of particles by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) were investigated.

  18. TENSOR DECOMPOSITIONS AND SPARSE LOG-LINEAR MODELS

    PubMed Central

    Johndrow, James E.; Bhattacharya, Anirban; Dunson, David B.

    2017-01-01

    Contingency table analysis routinely relies on log-linear models, with latent structure analysis providing a common alternative. Latent structure models lead to a reduced rank tensor factorization of the probability mass function for multivariate categorical data, while log-linear models achieve dimensionality reduction through sparsity. Little is known about the relationship between these notions of dimensionality reduction in the two paradigms. We derive several results relating the support of a log-linear model to nonnegative ranks of the associated probability tensor. Motivated by these findings, we propose a new collapsed Tucker class of tensor decompositions, which bridge existing PARAFAC and Tucker decompositions, providing a more flexible framework for parsimoniously characterizing multivariate categorical data. Taking a Bayesian approach to inference, we illustrate empirical advantages of the new decompositions. PMID:29332971

  19. Global sensitivity analysis for fuzzy inputs based on the decomposition of fuzzy output entropy

    NASA Astrophysics Data System (ADS)

    Shi, Yan; Lu, Zhenzhou; Zhou, Yicheng

    2018-06-01

    To analyse the component of fuzzy output entropy, a decomposition method of fuzzy output entropy is first presented. After the decomposition of fuzzy output entropy, the total fuzzy output entropy can be expressed as the sum of the component fuzzy entropy contributed by fuzzy inputs. Based on the decomposition of fuzzy output entropy, a new global sensitivity analysis model is established for measuring the effects of uncertainties of fuzzy inputs on the output. The global sensitivity analysis model can not only tell the importance of fuzzy inputs but also simultaneously reflect the structural composition of the response function to a certain degree. Several examples illustrate the validity of the proposed global sensitivity analysis, which is a significant reference in engineering design and optimization of structural systems.

  20. NMR study of methane + ethane structure I hydrate decomposition.

    PubMed

    Dec, Steven F; Bowler, Kristen E; Stadterman, Laura L; Koh, Carolyn A; Sloan, E Dendy

    2007-05-24

    The thermally activated decomposition of methane + ethane structure I hydrate was studied with use of 13C magic-angle spinning (MAS) NMR as a function of composition and temperature. The observed higher decomposition rate of large sI cages initially filled with ethane gas can be described in terms of a model where a distribution of sI unit cells exists such that a particular unit cell contains zero, one, or two methane molecules in the unit cell; this distribution of unit cells is combined to form the observed equilibrium composition. In this model, unit cells with zero methane molecules are the least stable and decompose more rapidly than those populated with one or two methane molecules leading to the observed overall faster decomposition rate of the large cages containing ethane molecules.

  1. Multilevel decomposition of complete vehicle configuration in a parallel computing environment

    NASA Technical Reports Server (NTRS)

    Bhatt, Vinay; Ragsdell, K. M.

    1989-01-01

    This research summarizes various approaches to multilevel decomposition to solve large structural problems. A linear decomposition scheme based on the Sobieski algorithm is selected as a vehicle for automated synthesis of a complete vehicle configuration in a parallel processing environment. The research is in a developmental state. Preliminary numerical results are presented for several example problems.

  2. Morphological decomposition of 2-D binary shapes into convex polygons: a heuristic algorithm.

    PubMed

    Xu, J

    2001-01-01

    In many morphological shape decomposition algorithms, either a shape can only be decomposed into shape components of extremely simple forms or a time consuming search process is employed to determine a decomposition. In this paper, we present a morphological shape decomposition algorithm that decomposes a two-dimensional (2-D) binary shape into a collection of convex polygonal components. A single convex polygonal approximation for a given image is first identified. This first component is determined incrementally by selecting a sequence of basic shape primitives. These shape primitives are chosen based on shape information extracted from the given shape at different scale levels. Additional shape components are identified recursively from the difference image between the given image and the first component. Simple operations are used to repair certain concavities caused by the set difference operation. The resulting hierarchical structure provides descriptions for the given shape at different detail levels. The experiments show that the decomposition results produced by the algorithm seem to be in good agreement with the natural structures of the given shapes. The computational cost of the algorithm is significantly lower than that of an earlier search-based convex decomposition algorithm. Compared to nonconvex decomposition algorithms, our algorithm allows accurate approximations for the given shapes at low coding costs.

  3. Investigation on an ammonia supply system for flue gas denitrification of low-speed marine diesel

    PubMed Central

    Yuan, Han; Zhao, Jian; Mei, Ning

    2017-01-01

    Low-speed marine diesel flue gas denitrification is in great demand in the ship transport industry. This research proposes an ammonia supply system which can be used for flue gas denitrification of low-speed marine diesel. In this proposed ammonia supply system, ammonium bicarbonate is selected as the ammonia carrier to produce ammonia and carbon dioxide by thermal decomposition. The diesel engine exhaust heat is used as the heating source for ammonium bicarbonate decomposition and ammonia gas desorption. As the ammonium bicarbonate decomposition is critical to the proper operation of this system, effects have been observed to reveal the performance of the thermal decomposition chamber in this paper. A visualization experiment for determination of the single-tube heat transfer coefficient and simulation of flow and heat transfer in two structures is conducted; the decomposition of ammonium bicarbonate is simulated by ASPEN PLUS. The results show that the single-tube heat transfer coefficient is 1052 W m2 °C−1; the thermal decomposition chamber fork-type structure gets a higher heat transfer compared with the row-type. With regard to the simulation of ammonium bicarbonate thermal decomposition, the ammonia production is significantly affected by the reaction temperature and the mass flow rate of the ammonium bicarbonate input. PMID:29308269

  4. Investigation on an ammonia supply system for flue gas denitrification of low-speed marine diesel

    NASA Astrophysics Data System (ADS)

    Huang, Xiankun; Yuan, Han; Zhao, Jian; Mei, Ning

    2017-12-01

    Low-speed marine diesel flue gas denitrification is in great demand in the ship transport industry. This research proposes an ammonia supply system which can be used for flue gas denitrification of low-speed marine diesel. In this proposed ammonia supply system, ammonium bicarbonate is selected as the ammonia carrier to produce ammonia and carbon dioxide by thermal decomposition. The diesel engine exhaust heat is used as the heating source for ammonium bicarbonate decomposition and ammonia gas desorption. As the ammonium bicarbonate decomposition is critical to the proper operation of this system, effects have been observed to reveal the performance of the thermal decomposition chamber in this paper. A visualization experiment for determination of the single-tube heat transfer coefficient and simulation of flow and heat transfer in two structures is conducted; the decomposition of ammonium bicarbonate is simulated by ASPEN PLUS. The results show that the single-tube heat transfer coefficient is 1052 W m2 °C-1; the thermal decomposition chamber fork-type structure gets a higher heat transfer compared with the row-type. With regard to the simulation of ammonium bicarbonate thermal decomposition, the ammonia production is significantly affected by the reaction temperature and the mass flow rate of the ammonium bicarbonate input.

  5. Theoretical study of hydrated copper(II) interactions with guanine: a computational density functional theory study.

    PubMed

    Pavelka, Matej; Shukla, Manoj K; Leszczynski, Jerzy; Burda, Jaroslav V

    2008-01-17

    Optimization of the hydrated Cu(II)(N7-guanine) structures revealed a number of minima on the potential energy surface. For selected structures, energy decompositions together with the determination of electronic properties (partial charges and electron spin densities) were performed. In the complexes of guanine with the bare copper cation and that with the monoaqua ligated cation, an electron transfer from guanine to Cu(II) was observed, resulting in a Cu(I)-guanine(+) type of complex. Conformers with two aqua ligands are borderline systems characterized by a Cu partial charge of +0.7e and a similar value of the spin density (0.6e) localized on guanine. When tetracoordination of copper was achieved, only then the prevailing electron spin density is unambiguously localized on copper. The energetic preference of diaqua-Cu-(N7,O6-guanine) over triaqua-Cu-(N7-guanine) was found for the four-coordinate structures. However, the energy difference between these two conformations decreases with the number of water molecules present in the systems, and in complexes with five water molecules this preference is preserved only at DeltaG level where thermal and entropy terms are included.

  6. CUILESS2016: a clinical corpus applying compositional normalization of text mentions.

    PubMed

    Osborne, John D; Neu, Matthew B; Danila, Maria I; Solorio, Thamar; Bethard, Steven J

    2018-01-10

    Traditionally text mention normalization corpora have normalized concepts to single ontology identifiers ("pre-coordinated concepts"). Less frequently, normalization corpora have used concepts with multiple identifiers ("post-coordinated concepts") but the additional identifiers have been restricted to a defined set of relationships to the core concept. This approach limits the ability of the normalization process to express semantic meaning. We generated a freely available corpus using post-coordinated concepts without a defined set of relationships that we term "compositional concepts" to evaluate their use in clinical text. We annotated 5397 disorder mentions from the ShARe corpus to SNOMED CT that were previously normalized as "CUI-less" in the "SemEval-2015 Task 14" shared task because they lacked a pre-coordinated mapping. Unlike the previous normalization method, we do not restrict concept mappings to a particular set of the Unified Medical Language System (UMLS) semantic types and allow normalization to occur to multiple UMLS Concept Unique Identifiers (CUIs). We computed annotator agreement and assessed semantic coverage with this method. We generated the largest clinical text normalization corpus to date with mappings to multiple identifiers and made it freely available. All but 8 of the 5397 disorder mentions were normalized using this methodology. Annotator agreement ranged from 52.4% using the strictest metric (exact matching) to 78.2% using a hierarchical agreement that measures the overlap of shared ancestral nodes. Our results provide evidence that compositional concepts can increase semantic coverage in clinical text. To our knowledge we provide the first freely available corpus of compositional concept annotation in clinical text.

  7. Data driven discrete-time parsimonious identification of a nonlinear state-space model for a weakly nonlinear system with short data record

    NASA Astrophysics Data System (ADS)

    Relan, Rishi; Tiels, Koen; Marconato, Anna; Dreesen, Philippe; Schoukens, Johan

    2018-05-01

    Many real world systems exhibit a quasi linear or weakly nonlinear behavior during normal operation, and a hard saturation effect for high peaks of the input signal. In this paper, a methodology to identify a parsimonious discrete-time nonlinear state space model (NLSS) for the nonlinear dynamical system with relatively short data record is proposed. The capability of the NLSS model structure is demonstrated by introducing two different initialisation schemes, one of them using multivariate polynomials. In addition, a method using first-order information of the multivariate polynomials and tensor decomposition is employed to obtain the parsimonious decoupled representation of the set of multivariate real polynomials estimated during the identification of NLSS model. Finally, the experimental verification of the model structure is done on the cascaded water-benchmark identification problem.

  8. Application of decomposition techniques to the preliminary design of a transport aircraft

    NASA Technical Reports Server (NTRS)

    Rogan, J. E.; Kolb, M. A.

    1987-01-01

    A nonlinear constrained optimization problem describing the preliminary design process for a transport aircraft has been formulated. A multifaceted decomposition of the optimization problem has been made. Flight dynamics, flexible aircraft loads and deformations, and preliminary structural design subproblems appear prominently in the decomposition. The use of design process decomposition for scheduling design projects, a new system integration approach to configuration control, and the application of object-centered programming to a new generation of design tools are discussed.

  9. High temperature normal phase liquid chromatography of aromatic hydrocarbons on bare zirconia.

    PubMed

    Paproski, Richard E; Liang, Chen; Lucy, Charles A

    2011-11-04

    The normal phase HPLC behavior of a bare zirconia column was studied at temperatures up to 200 °C using a hexane mobile phase. The use of elevated column temperatures significantly decreased the retention of twenty five aromatic model compounds according to the van't Hoff equation (>30-fold decrease for some compounds). Large improvements in peak shape, efficiency (>2.2-fold), aromatic group-type selectivity, and column re-equilibration times (>5-fold) were obtained at elevated temperatures. The thermal decomposition of two polar nitrogen compounds (indole and carbazole) was observed in a hexane/dichloromethane mobile phase at temperatures greater than 100 °C. The first order decomposition of carbazole was studied in further detail. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Evaluation of moving-coil loudspeaker and passive radiator parameters using normal-incidence sound transmission measurements: theoretical developments.

    PubMed

    Leishman, Timothy W; Anderson, Brian E

    2013-07-01

    The parameters of moving-coil loudspeaker drivers are typically determined using direct electrical excitation and measurement. However, as electro-mechano-acoustical devices, their parameters should also follow from suitable mechanical or acoustical evaluations. This paper presents the theory of an acoustical method of excitation and measurement using normal-incidence sound transmission through a baffled driver as a plane-wave tube partition. Analogous circuits enable key parameters to be extracted from measurement results in terms of open and closed-circuit driver conditions. Associated tools are presented that facilitate adjacent field decompositions and derivations of sound transmission coefficients (in terms of driver parameters) directly from the circuits. The paper also clarifies the impact of nonanechoic receiving tube terminations and the specific benefits of downstream field decompositions.

  11. Mode decomposition and Lagrangian structures of the flow dynamics in orbitally shaken bioreactors

    NASA Astrophysics Data System (ADS)

    Weheliye, Weheliye Hashi; Cagney, Neil; Rodriguez, Gregorio; Micheletti, Martina; Ducci, Andrea

    2018-03-01

    In this study, two mode decomposition techniques were applied and compared to assess the flow dynamics in an orbital shaken bioreactor (OSB) of cylindrical geometry and flat bottom: proper orthogonal decomposition and dynamic mode decomposition. Particle Image Velocimetry (PIV) experiments were carried out for different operating conditions including fluid height, h, and shaker rotational speed, N. A detailed flow analysis is provided for conditions when the fluid and vessel motions are in-phase (Fr = 0.23) and out-of-phase (Fr = 0.47). PIV measurements in vertical and horizontal planes were combined to reconstruct low order models of the full 3D flow and to determine its Finite-Time Lyapunov Exponent (FTLE) within OSBs. The combined results from the mode decomposition and the FTLE fields provide a useful insight into the flow dynamics and Lagrangian coherent structures in OSBs and offer a valuable tool to optimise bioprocess design in terms of mixing and cell suspension.

  12. X-Ray Thomson Scattering Without the Chihara Decomposition

    NASA Astrophysics Data System (ADS)

    Magyar, Rudolph; Baczewski, Andrew; Shulenburger, Luke; Hansen, Stephanie B.; Desjarlais, Michael P.; Sandia National Laboratories Collaboration

    X-Ray Thomson Scattering is an important experimental technique used in dynamic compression experiments to measure the properties of warm dense matter. The fundamental property probed in these experiments is the electronic dynamic structure factor that is typically modeled using an empirical three-term decomposition (Chihara, J. Phys. F, 1987). One of the crucial assumptions of this decomposition is that the system's electrons can be either classified as bound to ions or free. This decomposition may not be accurate for materials in the warm dense regime. We present unambiguous first principles calculations of the dynamic structure factor independent of the Chihara decomposition that can be used to benchmark these assumptions. Results are generated using a finite-temperature real-time time-dependent density functional theory applied for the first time in these conditions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Security Administration under contract DE-AC04-94AL85000.

  13. Effectiveness of Modal Decomposition for Tapping Atomic Force Microscopy Microcantilevers in Liquid Environment.

    PubMed

    Kim, Il Kwang; Lee, Soo Il

    2016-05-01

    The modal decomposition of tapping mode atomic force microscopy microcantilevers in liquid environments was studied experimentally. Microcantilevers with different lengths and stiffnesses and two sample surfaces with different elastic moduli were used in the experiment. The response modes of the microcantilevers were extracted as proper orthogonal modes through proper orthogonal decomposition. Smooth orthogonal decomposition was used to estimate the resonance frequency directly. The effects of the tapping setpoint and the elastic modulus of the sample under test were examined in terms of their multi-mode responses with proper orthogonal modes, proper orthogonal values, smooth orthogonal modes and smooth orthogonal values. Regardless of the stiffness of the microcantilever under test, the first mode was dominant in tapping mode atomic force microscopy under normal operating conditions. However, at lower tapping setpoints, the flexible microcantilever showed modal distortion and noise near the tip when tapping on a hard sample. The stiff microcantilever had a higher mode effect on a soft sample at lower tapping setpoints. Modal decomposition for tapping mode atomic force microscopy can thus be used to estimate the characteristics of samples in liquid environments.

  14. The patch mosaic and ecological decomposition across spatial scales in a managed landscape of northern Wisconsin, USA

    Treesearch

    Sari C. ​Saunders; Jiquan Chen; Thomas D. Drummer; Thomas R. Crow; Kimberley D. Brosofske; Eric J. Gustafson

    2002-01-01

    Understanding landscape organization across scales is vital for determining the impacts of management and retaining structurally and functionally diverse ecosystems. We studied the relationships of a functional variable, decomposition, to microclimatic, vegetative and structural features at multiple scales in two distinct landscapes of northern Wisconsin, USA. We hoped...

  15. Synthesis, characterization and molecular modeling of some transition metal complexes of Schiff base derived from 5-aminouracil and 2-benzoyl pyridine

    NASA Astrophysics Data System (ADS)

    Abdel-Monem, Yasser K.; Abouel-Enein, Saeyda A.; El-Seady, Safa M.

    2018-01-01

    Multidentate Schiff base (H2L) ligand results from condensation of 5-aminouracil and 2-benzoyl pyridine and its metal chloride (Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Pd(II), Fe(III), Cr(III), Ru(III), Zr(IV) and Hf(IV)) complexes were prepared. The structural features of the ligand and its metal complexes were confirmed by elemental analyses, spectroscopic methods (IR, UV-Vis, 1H NMR, mass), magnetic moment measurements and thermal studies. The data refer to the ligand coordinates with metal ions in a neutral form and shows different modes of chelation toward the metal atom. All complexes have octahedral skeleton structure, tetrahedrally Mn(II), Ni(II), trigonalbipyramidal Co(II) and square planner Pd(II). Thermal decomposition of complexes as well as the interaction of different types of solvent of crystallization are assigned by thermogravimetric analysis. Molecular modeling of prepared complexes were investigated to study the expected anticancer activities of the prepared complexes. All metal complexes have no interaction except the complexes of Pd(II), Fe(III) and Mn(II).

  16. Spectroscopic Study of the Thermal Degradation of PVP-capped Rh and Pt Nanoparticles in H2 and O2 Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borodko, Yuri; Lee, Hyun Sook; Joo, Sang Hoon

    2009-09-15

    Poly(N-vinylpyrrolidone) (PVP) capped platinum and rhodium nanoparticles (7-12 nm) have been studied with UV-VIS, FTIR and Raman spectroscopy. The absorption bands in the region 190-900 nm are shown to be sensitive to the electronic structure of surface Rh and Pt atoms as well as to the aggregation of the nanoparticles. In-situ FTIR-DRIFT spectroscopy of the thermal decay of PVP stabilized Rh and Pt nanoparticles in H{sub 2} and O{sub 2} atmospheres in temperatures ranging from 30 C-350 C reveal that decomposition of PVP above 200 C, PVP transforms into a 'polyamidpolyene' - like material that is in turn converted intomore » a thin layer of amorphous carbon above 300 C. Adsorbed carbon monoxide was used as a probing molecule to monitor changes of electronic structure of surface Rh and Pt atoms and accessible surface area. The behavior of surface Rh and Pt atoms with ligated CO and amide groups of pyrrolidones resemble that of surface coordination compounds.« less

  17. MO-FG-204-01: Improved Noise Suppression for Dual-Energy CT Through Entropy Minimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrongolo, M; Zhu, L

    2015-06-15

    Purpose: In dual energy CT (DECT), noise amplification during signal decomposition significantly limits the utility of basis material images. Since clinically relevant objects contain a limited number of materials, we propose to suppress noise for DECT based on image entropy minimization. An adaptive weighting scheme is employed during noise suppression to improve decomposition accuracy with limited effect on spatial resolution and image texture preservation. Methods: From decomposed images, we first generate a 2D plot of scattered data points, using basis material densities as coordinates. Data points representing the same material generate a highly asymmetric cluster. We orient an axis bymore » minimizing the entropy in a 1D histogram of these points projected onto the axis. To suppress noise, we replace pixel values of decomposed images with center-of-mass values in the direction perpendicular to the optimal axis. To limit errors due to cluster overlap, we weight each data point’s contribution based on its high and low energy CT values and location within the image. The proposed method’s performance is assessed on physical phantom studies. Electron density is used as the quality metric for decomposition accuracy. Our results are compared to those without noise suppression and with a recently developed iterative method. Results: The proposed method reduces noise standard deviations of the decomposed images by at least one order of magnitude. On the Catphan phantom, this method greatly preserves the spatial resolution and texture of the CT images and limits induced error in measured electron density to below 1.2%. In the head phantom study, the proposed method performs the best in retaining fine, intricate structures. Conclusion: The entropy minimization based algorithm with adaptive weighting substantially reduces DECT noise while preserving image spatial resolution and texture. Future investigations will include extensive investigations on material decomposition accuracy that go beyond the current electron density calculations. This work was supported in part by the National Institutes of Health (NIH) under Grant Number R21 EB012700.« less

  18. Synthesis and structural characterization of new oxovanadium(IV) complexes derived from azo-5-pyrazolone with prospective medical importance

    NASA Astrophysics Data System (ADS)

    Bagdatli, Emine; Altuntas, Eylem; Sayin, Ulku

    2017-01-01

    Four novel o-hydroxy substituted aryl-(msbnd H, sbnd Cl, sbnd Br, sbnd CH3) azo-5-pyrazolone compounds (2a-d, respectively) were synthesized as azo-group containing ligands by diazotization of aryl amines then coupled with 1-(4-chlorophenyl)-3-isopropyl-1H-pyrazol-5(4H)-one (1) and the structures were confirmed by FTIR, UV-Visible, GC-MS or ESI-LCMS and NMR spectroscopic techniques. As a result, the first synthesis of azo-5-pyrazolone based oxovanadium(IV) complexes (3a-d) was achieved by interaction of 2a-d with half equivalent of vanadyl sulphate pentahydrate in a methanolic medium with moderate to high yields (67, 74, 60, 71 for 3a-d, respectively). The resulting complexes were characterized using FTIR, UV-Visible, ESI-LCMS and EPR spectroscopic techniques as well as with thermogravimetric (TG/DTG) analysis. They have the composition [VO(L)2]·H2O; (3a-c) or [VO(L)2]·CH3OH; (3d) where LH is an azo-5-pyrazolone compound as the ligand (2a-d). The electronic spectra of the complexes are typical of oxovanadium(IV) complexes showing a low intensity band near 500 nm. Spectroscopic results have shown that azo-5-pyrazolone compounds have acted bidendate and the coordination sites are hydroxyl-substituent on the -azo phenyl-aromatic ring and the pyrazolone carbonyl-moiety. The thermal data confirm that the complexes have methanol (3a-c) or water (3d) molecule outside the coordination sphere and the complexes show similar thermogravimetric decomposition fragments which are consistent with the proposed structures. A distorted octahedral geometry has been proposed for these complexes mainly with EPR and the other spectral techniques.

  19. New structure of high-pressure body-centered orthorhombic Fe 2 SiO 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamanaka, Takamitsu; Kyono, Atsushi; Nakamoto, Yuki

    2015-08-01

    A structural change in Fe2SiO4 spinel (ringwoodite) has been found by synchrotron powder diffraction study and the structure of a new high-pressure phase was determined by Monte-Carlo simulation method and Rietveld profile fitting of X-ray diffraction data up to 64 GPa at ambient temperature. A transition from the cubic spinel structure to a body centered orthorhombic phase (I-Fe2SiO4) with space group Imma and Z = 4 was observed at approximately 34 GPa. The structure of I-Fe2SiO4 has two crystallographically independent FeO6 octahedra. Iron resides in two different sites of sixfold coordination: Fe1 and Fe2, which are arranged in layers parallelmore » to (101) and (011) and are very similar to the layers of FeO6 octahedra in the spinel structure. Silicon is located in the sixfold coordination in I-Fe2SiO4. The transformation to the new high-pressure phase is reversible under decompression at ambient temperature. A martensitic transformation of each slab of the spinel structure with translation vector Embedded Image generates the I-Fe2SiO4 structure. Laser heating of I-Fe2SiO4 at 1500 K results in a decomposition of the material to rhombohedral FeO and SiO2 stishovite. FeKβ X-ray emission measurements at high pressure up to 65 GPa show that the transition from a high spin (HS) to an intermediate spin (IS) state begins at 17 GPa in the spinel phase. The IS electron spin state is gradually enhanced with pressure. The Fe2+ ion at the octahedral site changes the ion radius under compression at the low spin, which results in the changes of the lattice parameter and the deformation of the octahedra of the spinel structure. The compression curve of the lattice parameter of the spinel is discontinuous at ~20 GPa. The spin transition induces an isostructural change.« less

  20. Electron induced surface reactions of (η5-C5H5)Fe(CO)2Mn(CO)5, a potential heterobimetallic precursor for focused electron beam induced deposition (FEBID).

    PubMed

    Unlu, Ilyas; Spencer, Julie A; Johnson, Kelsea R; Thorman, Rachel M; Ingólfsson, Oddur; McElwee-White, Lisa; Fairbrother, D Howard

    2018-03-14

    Electron-induced surface reactions of (η 5 -C 5 H 5 )Fe(CO) 2 Mn(CO) 5 were explored in situ under ultra-high vacuum conditions using X-ray photoelectron spectroscopy and mass spectrometry. The initial step involves electron-stimulated decomposition of adsorbed (η 5 -C 5 H 5 )Fe(CO) 2 Mn(CO) 5 molecules, accompanied by the desorption of an average of five CO ligands. A comparison with recent gas phase studies suggests that this precursor decomposition step occurs by a dissociative ionization (DI) process. Further electron irradiation decomposes the residual CO groups and (η 5 -C 5 H 5 , Cp) ligand, in the absence of any ligand desorption. The decomposition of CO ligands leads to Mn oxidation, while electron stimulated Cp decomposition causes all of the associated carbon atoms to be retained in the deposit. The lack of any Fe oxidation is ascribed to either the presence of a protective carbonaceous matrix around the Fe atoms created by the decomposition of the Cp ligand, or to desorption of both CO ligands bound to Fe in the initial decomposition step. The selective oxidation of Mn in the absence of any Fe oxidation suggests that the fate of metal atoms in mixed-metal precursors for focused electron beam induced deposition (FEBID) will be sensitive to the nature and number of ligands in the immediate coordination sphere. In related studies, the composition of deposits created from (η 5 -C 5 H 5 )Fe(CO) 2 Mn(CO) 5 under steady state deposition conditions, representative of those used to create nanostructures in electron microscopes, were measured and found to be qualitatively consistent with predictions from the UHV surface science studies.

  1. Dimensionality reduction of collective motion by principal manifolds

    NASA Astrophysics Data System (ADS)

    Gajamannage, Kelum; Butail, Sachit; Porfiri, Maurizio; Bollt, Erik M.

    2015-01-01

    While the existence of low-dimensional embedding manifolds has been shown in patterns of collective motion, the current battery of nonlinear dimensionality reduction methods is not amenable to the analysis of such manifolds. This is mainly due to the necessary spectral decomposition step, which limits control over the mapping from the original high-dimensional space to the embedding space. Here, we propose an alternative approach that demands a two-dimensional embedding which topologically summarizes the high-dimensional data. In this sense, our approach is closely related to the construction of one-dimensional principal curves that minimize orthogonal error to data points subject to smoothness constraints. Specifically, we construct a two-dimensional principal manifold directly in the high-dimensional space using cubic smoothing splines, and define the embedding coordinates in terms of geodesic distances. Thus, the mapping from the high-dimensional data to the manifold is defined in terms of local coordinates. Through representative examples, we show that compared to existing nonlinear dimensionality reduction methods, the principal manifold retains the original structure even in noisy and sparse datasets. The principal manifold finding algorithm is applied to configurations obtained from a dynamical system of multiple agents simulating a complex maneuver called predator mobbing, and the resulting two-dimensional embedding is compared with that of a well-established nonlinear dimensionality reduction method.

  2. Test program to demonstrate the stability of hydrazine in propellant tanks

    NASA Technical Reports Server (NTRS)

    Moran, C. M.; Bjorklund, R. A.

    1983-01-01

    A 24-month coupon test program to evaluate the decomposition of propellant tanks is reported. The propellant fuel evaluated was monopropellant-grade hydrazine (N2H4), which is normally a colorless, fuming, corrosive, strongly reducing liquid. The degree of hydrazine decomposition was determined by means of chemical analyses of the liquid and evolved gases at the end of the test program. The experimental rates of hydrazine decomposition were determined to be within acceptable limits. The propellant tank materials and material combinations were not degraded by a 2-year exposure to hydrazine propellant. This was verified using change-of-weight determinations and microscopic examination of the specimen surface before and after exposure, and by posttest chemical analyses of hydrazine liquid for residual metal content.

  3. Fourier decomposition of payoff matrix for symmetric three-strategy games.

    PubMed

    Szabó, György; Bodó, Kinga S; Allen, Benjamin; Nowak, Martin A

    2014-10-01

    In spatial evolutionary games the payoff matrices are used to describe pair interactions among neighboring players located on a lattice. Now we introduce a way how the payoff matrices can be built up as a sum of payoff components reflecting basic symmetries. For the two-strategy games this decomposition reproduces interactions characteristic to the Ising model. For the three-strategy symmetric games the Fourier components can be classified into four types representing games with self-dependent and cross-dependent payoffs, variants of three-strategy coordinations, and the rock-scissors-paper (RSP) game. In the absence of the RSP component the game is a potential game. The resultant potential matrix has been evaluated. The general features of these systems are analyzed when the game is expressed by the linear combinations of these components.

  4. Thermal Decomposition Synthesis of Graphene Nanosheets Anchored on Mn3O4 Nanoparticles as Anodes in Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Tang, Xihao; Ma, Xiao; Qiu, Danfeng; Bu, Gang; Xia, Yongjun; Zhao, Bin; Lin, Zixia; Shi, Yi

    2018-01-01

    Graphene nanosheets (GNS) anchored on Mn3O4 nanoparticles have been successfully synthesized through in situ thermal decomposition of Mn (NO3)2 without the use of any templates or surfactants. Mn3O4 particles were coordinately distributed on the GNS surface. This was achieved by forming 3D nanostructures to avoid detrimental graphene layer stacking, and was characterized using a scanning electron microscope. The Mn3O4/GNS nanocomposite delivers an initial capacity of 1450 mAh g-1 at a current density of 100 mA g-1. It also maintains a high reversible capacity of 930 mAh g-1 even after 60 charge-discharge cycles without showing any apparent decay.

  5. Introducing Network Analysis into Science Education: Methodological Research Examining Secondary School Students' Understanding of "Decomposition"

    ERIC Educational Resources Information Center

    Schizas, Dimitrios; Katrana, Evagelia; Stamou, George

    2013-01-01

    In the present study we used the technique of word association tests to assess students' cognitive structures during the learning period. In particular, we tried to investigate what students living near a protected area in Greece (Dadia forest) knew about the phenomenon of decomposition. Decomposition was chosen as a stimulus word because it…

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, He; Sun, Yannan; Carroll, Thomas E.

    We propose a coordination algorithm for cooperative power allocation among a collection of commercial buildings within a campus. We introduced thermal and power models of a typical commercial building Heating, Ventilation, and Air Conditioning (HVAC) system, and utilize model predictive control to characterize their power flexibility. The power allocation problem is formulated as a cooperative game using the Nash Bargaining Solution (NBS) concept, in which buildings collectively maximize the product of their utilities subject to their local flexibility constraints and a total power limit set by the campus coordinator. To solve the optimal allocation problem, a distributed protocol is designedmore » using dual decomposition of the Nash bargaining problem. Numerical simulations are performed to demonstrate the efficacy of our proposed allocation method« less

  7. Microbial decomposition is highly sensitive to leaf litter emersion in a permanent temperate stream.

    PubMed

    Mora-Gómez, Juanita; Duarte, Sofia; Cássio, Fernanda; Pascoal, Cláudia; Romaní, Anna M

    2018-04-15

    Drought frequency and intensity in some temperate regions are forecasted to increase under the ongoing global change, which might expose permanent streams to intermittence and have severe repercussions on stream communities and ecosystem processes. In this study, we investigated the effect of drought duration on microbial decomposition of Populus nigra leaf litter in a temperate permanent stream (Oliveira, NW Portugal). Specifically, we measured the response of the structural (assemblage composition, bacterial and fungal biomass) and functional (leaf litter decomposition, extracellular enzyme activities (EEA), and fungal sporulation) parameters of fungal and bacterial communities on leaf litter exposed to emersion during different time periods (7, 14 and 21d). Emersion time affected microbial assemblages and litter decomposition, but the response differed among variables. Leaf decomposition rates and the activity of β-glucosidase, cellobiohydrolase and phosphatase were gradually reduced with increasing emersion time, while β-xylosidase reduction was similar when emersion last for 7 or more days, and the phenol oxidase reduction was similar at 14 and 21days of leaf emersion. Microbial biomass and fungal sporulation were reduced after 21days of emersion. The structure of microbial assemblages was affected by the duration of the emersion period. The shifts in fungal assemblages were correlated with a decreased microbial capacity to degrade lignin and hemicellulose in leaf litter exposed to emersion. Additionally, some resilience was observed in leaf litter mass loss, bacterial biomass, some enzyme activities and structure of fungal assemblages. Our study shows that drought can strongly alter structural and functional aspects of microbial decomposers. Therefore, the exposure of leaf litter to increasing emersion periods in temperate streams is expected to affect decomposer communities and overall decomposition of plant material by decelerating carbon cycling in streams. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Vibrational spectra of water solutions of azoles from QM/MM calculations: effects of solvation.

    PubMed

    Tanzi, Luana; Ramondo, Fabio; Guidoni, Leonardo

    2012-10-18

    Using microsolvation models and mixed quantum/classical ab initio molecular dynamics simulations, we investigate the vibrational properties of two azoles in water solution: pyrazole and oxazole. The effects of the water-azole hydrogen bonding are rationalized by an extensive comparison between structural parameters and harmonic frequencies obtained by microsolvation models. Following the effective normal-mode analysis introduced by Martinez et al. [Martinez et al., J. Chem. Phys. 2006, 125, 144106], we identify the vibrational frequencies of the solutes using the decomposition of the vibrational density of states of the gas phase and solution dynamics. The calculated shifts from gas phase to solution are fairly in agreement with the available experimental data.

  9. Mueller matrix spectroscopic ellipsometry study of chiral nanocrystalline cellulose films

    NASA Astrophysics Data System (ADS)

    Mendoza-Galván, Arturo; Muñoz-Pineda, Eloy; Ribeiro, Sidney J. L.; Santos, Moliria V.; Järrendahl, Kenneth; Arwin, Hans

    2018-02-01

    Chiral nanocrystalline cellulose (NCC) free-standing films were prepared through slow evaporation of aqueous suspensions of cellulose nanocrystals in a nematic chiral liquid crystal phase. Mueller matrix (MM) spectroscopic ellipsometry is used to study the polarization and depolarization properties of the chiral films. In the reflection mode, the MM is similar to the matrices reported for the cuticle of some beetles reflecting near circular left-handed polarized light in the visible range. The polarization properties of light transmitted at normal incidence for different polarization states of incident light are discussed. By using a differential decomposition of the MM, the structural circular birefringence and dichroism of a NCC chiral film are evaluated.

  10. Synthesis and thermal decomposition behaviors of magnesium borohydride ammoniates with controllable composition as hydrogen storage materials.

    PubMed

    Yang, Yanjing; Liu, Yongfeng; Li, You; Gao, Mingxia; Pan, Hongge

    2013-02-01

    An ammonia-redistribution strategy for synthesizing metal borohydride ammoniates with controllable coordination number of NH(3) was proposed, and a series of magnesium borohydride ammoniates were easily synthesized by a mechanochemical reaction between Mg(BH(4))(2) and its hexaammoniate. A strong dependence of the dehydrogenation temperature and purity of the released hydrogen upon heating on the coordination number of NH(3) was elaborated for Mg(BH(4))(2)·xNH(3) owing to the change in the molar ratio of H(δ+) and H(δ-), the charge distribution on H(δ+) and H(δ-), and the strength of the coordinate bond N:→Mg(2+). The monoammoniate of magnesium borohydride (Mg(BH(4))(2)·NH(3)) was obtained for the first time. It can release 6.5% pure hydrogen within 50 minutes at 180 °C. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Dynamics and Control of Flexible Space Vehicles

    NASA Technical Reports Server (NTRS)

    Likins, P. W.

    1970-01-01

    The purpose of this report is twofold: (1) to survey the established analytic procedures for the simulation of controlled flexible space vehicles, and (2) to develop in detail methods that employ a combination of discrete and distributed ("modal") coordinates, i.e., the hybrid-coordinate methods. Analytic procedures are described in three categories: (1) discrete-coordinate methods, (2) hybrid-coordinate methods, and (3) vehicle normal-coordinate methods. Each of these approaches is described and analyzed for its advantages and disadvantages, and each is found to have an area of applicability. The hybrid-coordinate method combines the efficiency of the vehicle normal-coordinate method with the versatility of the discrete-coordinate method, and appears to have the widest range of practical application. The results in this report have practical utility in two areas: (1) complex digital computer simulation of flexible space vehicles of arbitrary configuration subject to realistic control laws, and (2) preliminary control system design based on transfer functions for linearized models of dynamics and control laws.

  12. Functionalization of Tactile Sensation for Robot Based on Haptograph and Modal Decomposition

    NASA Astrophysics Data System (ADS)

    Yokokura, Yuki; Katsura, Seiichiro; Ohishi, Kiyoshi

    In the real world, robots should be able to recognize the environment in order to be of help to humans. A video camera and a laser range finder are devices that can help robots recognize the environment. However, these devices cannot obtain tactile information from environments. Future human-assisting-robots should have the ability to recognize haptic signals, and a disturbance observer can possibly be used to provide the robot with this ability. In this study, a disturbance observer is employed in a mobile robot to functionalize the tactile sensation. This paper proposes a method that involves the use of haptograph and modal decomposition for the haptic recognition of road environments. The haptograph presents a graphic view of the tactile information. It is possible to classify road conditions intuitively. The robot controller is designed by considering the decoupled modal coordinate system, which consists of translational and rotational modes. Modal decomposition is performed by using a quarry matrix. Once the robot is provided with the ability to recognize tactile sensations, its usefulness to humans will increase.

  13. Analytical electron microscope study of eight ataxites

    NASA Technical Reports Server (NTRS)

    Novotny, P. M.; Goldstein, J. I.; Williams, D. B.

    1982-01-01

    Optical and electron optical (SEM, TEM, AEM) techniques were employed to investigate the fine structure of eight ataxite-iron meteorites. Structural studies indicated that the ataxites can be divided into two groups: a Widmanstaetten decomposition group and a martensite decomposition group. The Widmanstaetten decomposition group has a Type I plessite microstructure and the central taenite regions contain highly dislocated lath martensite. The steep M shaped Ni gradients in the taenite are consistent with the fast cooling rates, of not less than 500 C/my, observed for this group. The martensite decomposition group has a Type III plessite microstructure and contains all the chemical group IVB ataxites. The maximum taenite Ni contents vary from 47.5 to 52.7 wt % and are consistent with slow cooling to low temperatures of not greater than 350 C at cooling rates of not greater than 25 C/my.

  14. SFCHECK: a unified set of procedures for evaluating the quality of macromolecular structure-factor data and their agreement with the atomic model.

    PubMed

    Vaguine, A A; Richelle, J; Wodak, S J

    1999-01-01

    In this paper we present SFCHECK, a stand-alone software package that features a unified set of procedures for evaluating the structure-factor data obtained from X-ray diffraction experiments and for assessing the agreement of the atomic coordinates with these data. The evaluation is performed completely automatically, and produces a concise PostScript pictorial output similar to that of PROCHECK [Laskowski, MacArthur, Moss & Thornton (1993). J. Appl. Cryst. 26, 283-291], greatly facilitating visual inspection of the results. The required inputs are the structure-factor amplitudes and the atomic coordinates. Having those, the program summarizes relevant information on the deposited structure factors and evaluates their quality using criteria such as data completeness, structure-factor uncertainty and the optical resolution computed from the Patterson origin peak. The dependence of various parameters on the nominal resolution (d spacing) is also given. To evaluate the global agreement of the atomic model with the experimental data, the program recomputes the R factor, the correlation coefficient between observed and calculated structure-factor amplitudes and Rfree (when appropriate). In addition, it gives several estimates of the average error in the atomic coordinates. The local agreement between the model and the electron-density map is evaluated on a per-residue basis, considering separately the macromolecule backbone and side-chain atoms, as well as solvent atoms and heterogroups. Among the criteria are the normalized average atomic displacement, the local density correlation coefficient and the polymer chain connectivity. The possibility of computing these criteria using the omit-map procedure is also provided. The described software should be a valuable tool in monitoring the refinement procedure and in assessing structures deposited in databases.

  15. Performance of tensor decomposition-based modal identification under nonstationary vibration

    NASA Astrophysics Data System (ADS)

    Friesen, P.; Sadhu, A.

    2017-03-01

    Health monitoring of civil engineering structures is of paramount importance when they are subjected to natural hazards or extreme climatic events like earthquake, strong wind gusts or man-made excitations. Most of the traditional modal identification methods are reliant on stationarity assumption of the vibration response and posed difficulty while analyzing nonstationary vibration (e.g. earthquake or human-induced vibration). Recently tensor decomposition based methods are emerged as powerful and yet generic blind (i.e. without requiring a knowledge of input characteristics) signal decomposition tool for structural modal identification. In this paper, a tensor decomposition based system identification method is further explored to estimate modal parameters using nonstationary vibration generated due to either earthquake or pedestrian induced excitation in a structure. The effects of lag parameters and sensor densities on tensor decomposition are studied with respect to the extent of nonstationarity of the responses characterized by the stationary duration and peak ground acceleration of the earthquake. A suite of more than 1400 earthquakes is used to investigate the performance of the proposed method under a wide variety of ground motions utilizing both complete and partial measurements of a high-rise building model. Apart from the earthquake, human-induced nonstationary vibration of a real-life pedestrian bridge is also used to verify the accuracy of the proposed method.

  16. The architecture of metal coordination groups in proteins.

    PubMed

    Harding, Marjorie M

    2004-05-01

    A set of tables is presented and a survey given of the architecture of metal coordination groups in a representative set of protein structures from the Protein Data Bank [Bernstein et al. (1977), J. Mol. Biol. 112, 535-542; Berman et al. (2000), Nucleic Acids Res. 28, 235-242]. The structures have been determined to a resolution of 2.5 A or better; the metals considered are Ca, Mg, Mn, Fe, Cu, Zn, Na and K, with particular emphasis on Ca and Zn and the exclusion of haem groups and Fe/S clusters; the proteins are a representative set in which none has more than 30% sequence identity with any other. In them the metal is coordinated by several donor groups from different amino-acid residues in the protein chain and often also by water or other small molecules. The tables, for approximately 600 metal coordination groups, include information on the conformations of the protein chain in the region around the metal and reliability indicators. They illustrate the wide variety of coordination numbers, chelate-loop sizes and other properties and the different characteristics of different metals. They show that glycine has a particular significance in the position adjacent to a donor residue, especially in Ca coordination groups. They also show that metal coordination does not appear to lead to significant distortions of the torsion angles phi, psi from their normally allowed values. Very few metal coordination groups occur more than once in the representative set and when they do they are usually related in fold and function; they have similar but not necessarily identical conformations. However, individual chelate loops, for example Zn(-C-X-X'-C-), in which both cysteines are coordinated to Zn through S, and X and X' are any amino acids, are repeated frequently in many different and unrelated proteins. Not all chelate loops with the same composition have the same conformation, but for smaller loops there are usually one or two strongly preferred and well defined conformations. Quite frequently more than one metal coordination group is associated with one protein chain; these proteins are identified.

  17. Structure of oxides prepared by decomposition of layered double Mg–Al and Ni–Al hydroxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherepanova, Svetlana V.; Novosibirsk State University, Novosibirsk; Leont’eva, Natalya N., E-mail: n_n_leonteva@list.ru

    2015-05-15

    Abstracts: Thermal decomposition of Mg–Al and Ni–Al layered double hydroxides LDH at temperatures lower than 800 °C leads to the formation of oxides with different structures. Mg–Al oxide has a very defective structure and consists of octahedral layers as in periclase MgO and mixed octahedral–tetrahedral layers as in spinel MgAl{sub 2}O{sub 4}. Mixed Ni–Al oxide has a sandwich-like structure, consisting of a core with Al-doped NiO-like structure and some surface layers with spinel NiAl{sub 2}O{sub 4} structure epitaxial connected with the core. Suggested models were verified by simulation of X-ray diffraction patterns using DIFFaX code, as well as HRTEM, IR-,more » UV-spectroscopies, and XPS. - Graphical abstract: In the Mg–Al layered double hydroxide Al{sup 3+} ions migrate into interlayers during decomposition. The Mg–Al oxide represents sequence of octahedral and octahedral–tetrahedral spinel layers with vacancies. The Ni–Al oxide has a sandwich-like structure with NiO-like core and surface spinel layers as a result of migration of Al{sup 3+} ions on the surface. The models explain the presence and absence of “memory effect” for the Mg–Al and Ni–Al oxides, respectively. - Highlights: • We study products of Mg(Ni)–Al LDH decomposition by calcination at 500(400)–800 °C. • In Mg–Al/Ni–Al LDH Al ions migrate into interlayers/on the surface during decomposition. • Mg–Al oxide represents sequence of periclase- and spinel-like layers with vacancies. • Ni–Al oxide has a sandwich-like structure with NiO-like core and surface spinel layers. • The models explain the presence/absence of “memory effect” for Mg–Al/Ni–Al oxides.« less

  18. Dictyostelium RasG Is Required for Normal Motility and Cytokinesis, But Not Growth

    PubMed Central

    Tuxworth, Richard I.; Cheetham, Janet L.; Machesky, Laura M.; Spiegelmann, George B.; Weeks, Gerald; Insall, Robert H.

    1997-01-01

    RasG is the most abundant Ras protein in growing Dictyostelium cells and the closest relative of mammalian Ras proteins. We have generated null mutants in which expression of RasG is completely abolished. Unexpectedly, RasG − cells are able to grow at nearly wild-type rates. However, they exhibit defective cell movement and a wide range of defects in the control of the actin cytoskeleton, including a loss of cell polarity, absence of normal lamellipodia, formation of unusual small, punctate polymerized actin structures, and a large number of abnormally long filopodia. Despite their lack of polarity and abnormal cytoskeleton, mutant cells perform normal chemotaxis. However, rasG − cells are unable to perform normal cytokinesis, becoming multinucleate when grown in suspension culture. Taken together, these data suggest a principal role for RasG in coordination of cell movement and control of the cytoskeleton. PMID:9245789

  19. Understanding nuclear motions in molecules: Derivation of Eckart frame ro-vibrational Hamiltonian operators via a gateway Hamiltonian operator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szalay, Viktor, E-mail: szalay.viktor@wigner.mta.hu

    A new ro-vibrational Hamiltonian operator, named gateway Hamiltonian operator, with exact kinetic energy term, T-hat, is presented. It is in the Eckart frame and it is of the same form as Watson’s normal coordinate Hamiltonian. However, the vibrational coordinates employed are not normal coordinates. The new Hamiltonian is shown to provide easy access to Eckart frame ro-vibrational Hamiltonians with exact T-hat given in terms of any desired set of vibrational coordinates. A general expression of the Eckart frame ro-vibrational Hamiltonian operator is given and some of its properties are discussed.

  20. The physiology of rodent beta-cells in pancreas slices.

    PubMed

    Rupnik, M

    2009-01-01

    Beta-cells in pancreatic islets form complex syncytia. Sufficient cell-to-cell electrical coupling seems to ensure coordinated depolarization pattern and insulin release that can be further modulated by rich innervation. The complex structure and coordinated action develop after birth during fast proliferation of the endocrine tissue. These emergent properties can be lost due to various reasons later in life and can lead to glucose intolerance and diabetes mellitus. Pancreas slice is a novel method of choice to study the physiology of beta-cells still embedded in their normal cellulo-social context. I present major advantages, list drawbacks and provide an overview on recent advances in our understanding of the physiology of beta-cells using the pancreas slice approach.

  1. A compositional approach to building applications in a computational environment

    NASA Astrophysics Data System (ADS)

    Roslovtsev, V. V.; Shumsky, L. D.; Wolfengagen, V. E.

    2014-04-01

    The paper presents an approach to creating an applicative computational environment to feature computational processes and data decomposition, and a compositional approach to application building. The approach in question is based on the notion of combinator - both in systems with variable binding (such as λ-calculi) and those allowing programming without variables (combinatory logic style). We present a computation decomposition technique based on objects' structural decomposition, with the focus on computation decomposition. The computational environment's architecture is based on a network with nodes playing several roles simultaneously.

  2. Development of a ReaxFF reactive force field for ammonium nitrate and application to shock compression and thermal decomposition.

    PubMed

    Shan, Tzu-Ray; van Duin, Adri C T; Thompson, Aidan P

    2014-02-27

    We have developed a new ReaxFF reactive force field parametrization for ammonium nitrate. Starting with an existing nitramine/TATB ReaxFF parametrization, we optimized it to reproduce electronic structure calculations for dissociation barriers, heats of formation, and crystal structure properties of ammonium nitrate phases. We have used it to predict the isothermal pressure-volume curve and the unreacted principal Hugoniot states. The predicted isothermal pressure-volume curve for phase IV solid ammonium nitrate agreed with electronic structure calculations and experimental data within 10% error for the considered range of compression. The predicted unreacted principal Hugoniot states were approximately 17% stiffer than experimental measurements. We then simulated thermal decomposition during heating to 2500 K. Thermal decomposition pathways agreed with experimental findings.

  3. Plasma-catalyst hybrid reactor with CeO2/γ-Al2O3 for benzene decomposition with synergetic effect and nano particle by-product reduction.

    PubMed

    Mao, Lingai; Chen, Zhizong; Wu, Xinyue; Tang, Xiujuan; Yao, Shuiliang; Zhang, Xuming; Jiang, Boqiong; Han, Jingyi; Wu, Zuliang; Lu, Hao; Nozaki, Tomohiro

    2018-04-05

    A dielectric barrier discharge (DBD) catalyst hybrid reactor with CeO 2 /γ-Al 2 O 3 catalyst balls was investigated for benzene decomposition at atmospheric pressure and 30 °C. At an energy density of 37-40 J/L, benzene decomposition was as high as 92.5% when using the hybrid reactor with 5.0wt%CeO 2 /γ-Al 2 O 3 ; while it was 10%-20% when using a normal DBD reactor without a catalyst. Benzene decomposition using the hybrid reactor was almost the same as that using an O 3 catalyst reactor with the same CeO 2 /γ-Al 2 O 3 catalyst, indicating that O 3 plays a key role in the benzene decomposition. Fourier transform infrared spectroscopy analysis showed that O 3 adsorption on CeO 2 /γ-Al 2 O 3 promotes the production of adsorbed O 2 - and O 2 2‒ , which contribute benzene decomposition over heterogeneous catalysts. Nano particles as by-products (phenol and 1,4-benzoquinone) from benzene decomposition can be significantly reduced using the CeO 2 /γ-Al 2 O 3 catalyst. H 2 O inhibits benzene decomposition; however, it improves CO 2 selectivity. The deactivated CeO 2 /γ-Al 2 O 3 catalyst can be regenerated by performing discharges at 100 °C and 192-204 J/L. The decomposition mechanism of benzene over CeO 2 /γ-Al 2 O 3 catalyst was proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Hydrazinium lanthanide oxalates: synthesis, structure and thermal reactivity of N2H5[Ln2(C2O4)4(N2H5)]·4H2O, Ln = Ce, Nd.

    PubMed

    De Almeida, Lucie; Grandjean, Stéphane; Rivenet, Murielle; Patisson, Fabrice; Abraham, Francis

    2014-03-28

    New hydrazinium lanthanide oxalates N2H5[Ln2(C2O4)4(N2H5)]·4H2O, Ln = Ce (Ce-HyOx) and Nd (Nd-HyOx), were synthesized by hydrothermal reaction at 150 °C between lanthanide nitrate, oxalic acid and hydrazine solutions. The structure of the Nd compound was determined from single-crystal X-ray diffraction data, space group P2₁/c with a = 16.315(4), b = 12.127(3), c = 11.430(2) Å, β = 116.638(4)°, V = 2021.4(7) Å(3), Z = 4, and R1 = 0.0313 for 4231 independent reflections. Two distinct neodymium polyhedra are formed, NdO9 and NdO8N, an oxygen of one monodentate oxalate in the former being replaced by a nitrogen atom of a coordinated hydrazinium ion in the latter. The infrared absorption band at 1005 cm(-1) confirms the coordination of N2H5(+) to the metal. These polyhedra are connected through μ2 and μ3 oxalate ions to form an anionic three-dimensional neodymium-oxalate arrangement. A non-coordinated charge-compensating hydrazinium ion occupies, with water molecules, the resulting tunnels. The N-N stretching frequencies of the infrared spectra demonstrate the existence of the two types of hydrazine ions. Thermal reactivity of these hydrazinium oxalates and of the mixed isotypic Ce/Nd (CeNd-HyOx) oxalate were studied by using thermogravimetric and differential thermal analyses coupled with gas analyzers, and high temperature X-ray diffraction. Under air, fine particles of CeO2 and Ce(0.5)Nd(0.5)O(1.75) are formed at low temperature from Ce-HyOx and CeNd-HyOx, respectively, thanks to a decomposition/oxidation process. Under argon flow, dioxymonocyanamides Ln2O2CN2 are formed.

  5. Box-like gel capsules from heterostructures based on a core-shell MOF as a template of crystal crosslinking.

    PubMed

    Ishiwata, Takumi; Michibata, Ayano; Kokado, Kenta; Ferlay, Sylvie; Hosseini, Mir Wais; Sada, Kazuki

    2018-02-06

    New polymer capsules (PCs) were obtained using a crystal crosslinking (CC) method on core-shell MOF crystals. The latter are based on the epitaxial growth of two isostructural coordination polymers which are then selectively crosslinked. Decomposition of the non-reticulated phase leads to new PCs, possessing a well-defined hollow cubic shape reflecting the heterostructure of the template.

  6. Husimi coordinates of multipartite separable states

    NASA Astrophysics Data System (ADS)

    Parfionov, Georges; Zapatrin, Romàn R.

    2010-12-01

    A parametrization of multipartite separable states in a finite-dimensional Hilbert space is suggested. It is proved to be a diffeomorphism between the set of zero-trace operators and the interior of the set of separable density operators. The result is applicable to any tensor product decomposition of the state space. An analytical criterion for separability of density operators is established in terms of the boundedness of a sequence of operators.

  7. Qualitative Analysis of Microbial Dynamics during Anaerobic Digestion of Microalgal Biomass in a UASB Reactor

    PubMed Central

    Doloman, Anna; Soboh, Yousef; Walters, Andrew J.; Sims, Ronald C.

    2017-01-01

    Anaerobic digestion (AD) is a microbiologically coordinated process with dynamic relationships between bacterial players. Current understanding of dynamic changes in the bacterial composition during the AD process is incomplete. The objective of this research was to assess changes in bacterial community composition that coordinates with anaerobic codigestion of microalgal biomass cultivated on municipal wastewater. An upflow anaerobic sludge blanket reactor was used to achieve high rates of microalgae decomposition and biogas production. Samples of the sludge were collected throughout AD and extracted DNA was subjected to next-generation sequencing using methanogen mcrA gene specific and universal bacterial primers. Analysis of the data revealed that samples taken at different stages of AD had varying bacterial composition. A group consisting of Bacteroidales, Pseudomonadales, and Enterobacteriales was identified to be putatively responsible for the hydrolysis of microalgal biomass. The methanogenesis phase was dominated by Methanosarcina mazei. Results of observed changes in the composition of microbial communities during AD can be used as a road map to stimulate key bacterial species identified at each phase of AD to increase yield of biogas and rate of substrate decomposition. This research demonstrates a successful exploitation of methane production from microalgae without any biomass pretreatment. PMID:29259629

  8. Simultaneous and Continuous Estimation of Shoulder and Elbow Kinematics from Surface EMG Signals

    PubMed Central

    Zhang, Qin; Liu, Runfeng; Chen, Wenbin; Xiong, Caihua

    2017-01-01

    In this paper, we present a simultaneous and continuous kinematics estimation method for multiple DoFs across shoulder and elbow joint. Although simultaneous and continuous kinematics estimation from surface electromyography (EMG) is a feasible way to achieve natural and intuitive human-machine interaction, few works investigated multi-DoF estimation across the significant joints of upper limb, shoulder and elbow joints. This paper evaluates the feasibility to estimate 4-DoF kinematics at shoulder and elbow during coordinated arm movements. Considering the potential applications of this method in exoskeleton, prosthetics and other arm rehabilitation techniques, the estimation performance is presented with different muscle activity decomposition and learning strategies. Principle component analysis (PCA) and independent component analysis (ICA) are respectively employed for EMG mode decomposition with artificial neural network (ANN) for learning the electromechanical association. Four joint angles across shoulder and elbow are simultaneously and continuously estimated from EMG in four coordinated arm movements. By using ICA (PCA) and single ANN, the average estimation accuracy 91.12% (90.23%) is obtained in 70-s intra-cross validation and 87.00% (86.30%) is obtained in 2-min inter-cross validation. This result suggests it is feasible and effective to use ICA (PCA) with single ANN for multi-joint kinematics estimation in variant application conditions. PMID:28611573

  9. Low-rank network decomposition reveals structural characteristics of small-world networks

    NASA Astrophysics Data System (ADS)

    Barranca, Victor J.; Zhou, Douglas; Cai, David

    2015-12-01

    Small-world networks occur naturally throughout biological, technological, and social systems. With their prevalence, it is particularly important to prudently identify small-world networks and further characterize their unique connection structure with respect to network function. In this work we develop a formalism for classifying networks and identifying small-world structure using a decomposition of network connectivity matrices into low-rank and sparse components, corresponding to connections within clusters of highly connected nodes and sparse interconnections between clusters, respectively. We show that the network decomposition is independent of node indexing and define associated bounded measures of connectivity structure, which provide insight into the clustering and regularity of network connections. While many existing network characterizations rely on constructing benchmark networks for comparison or fail to describe the structural properties of relatively densely connected networks, our classification relies only on the intrinsic network structure and is quite robust with respect to changes in connection density, producing stable results across network realizations. Using this framework, we analyze several real-world networks and reveal new structural properties, which are often indiscernible by previously established characterizations of network connectivity.

  10. China’s marriage squeeze: A decomposition into age and sex structure

    PubMed Central

    LI, Xiaomin; LI, Shuzhuo; FELDMAN, Marcus W.

    2016-01-01

    Most recent studies of marriage patterns in China have emphasized the male-biased sex ratio but have largely neglected age structure as a factor in China’s male marriage squeeze. In this paper we develop an index we call “spousal sex ratio” (SSR) to measure the marriage squeeze, and a method of decomposing the proportion of male surplus into age and sex structure effects within a small spousal age difference interval. We project that China’s marriage market will be confronted with a relatively severe male squeeze. For the decomposition of the cohort aged 30, from 2010 to 2020 age structure will be dominant, while from 2020 through 2034 the contribution of age structure will gradually decrease and that of sex structure will increase. From then on, sex structure will be dominant. The index and decomposition, concentrated on a specific female birth cohort, can distinguish spousal competition for single cohorts which may be covered by a summary index for the whole marriage market; these can also be used for consecutive cohorts to reflect the situation of the whole marriage market. PMID:27242390

  11. China's marriage squeeze: A decomposition into age and sex structure.

    PubMed

    Jiang, Quanbao; Li, Xiaomin; Li, Shuzhuo; Feldman, Marcus W

    2016-06-01

    Most recent studies of marriage patterns in China have emphasized the male-biased sex ratio but have largely neglected age structure as a factor in China's male marriage squeeze. In this paper we develop an index we call "spousal sex ratio" (SSR) to measure the marriage squeeze, and a method of decomposing the proportion of male surplus into age and sex structure effects within a small spousal age difference interval. We project that China's marriage market will be confronted with a relatively severe male squeeze. For the decomposition of the cohort aged 30, from 2010 to 2020 age structure will be dominant, while from 2020 through 2034 the contribution of age structure will gradually decrease and that of sex structure will increase. From then on, sex structure will be dominant. The index and decomposition, concentrated on a specific female birth cohort, can distinguish spousal competition for single cohorts which may be covered by a summary index for the whole marriage market; these can also be used for consecutive cohorts to reflect the situation of the whole marriage market.

  12. Spectral Biclustering of Microarray Data: Coclustering Genes and Conditions

    PubMed Central

    Kluger, Yuval; Basri, Ronen; Chang, Joseph T.; Gerstein, Mark

    2003-01-01

    Global analyses of RNA expression levels are useful for classifying genes and overall phenotypes. Often these classification problems are linked, and one wants to find “marker genes” that are differentially expressed in particular sets of “conditions.” We have developed a method that simultaneously clusters genes and conditions, finding distinctive “checkerboard” patterns in matrices of gene expression data, if they exist. In a cancer context, these checkerboards correspond to genes that are markedly up- or downregulated in patients with particular types of tumors. Our method, spectral biclustering, is based on the observation that checkerboard structures in matrices of expression data can be found in eigenvectors corresponding to characteristic expression patterns across genes or conditions. In addition, these eigenvectors can be readily identified by commonly used linear algebra approaches, in particular the singular value decomposition (SVD), coupled with closely integrated normalization steps. We present a number of variants of the approach, depending on whether the normalization over genes and conditions is done independently or in a coupled fashion. We then apply spectral biclustering to a selection of publicly available cancer expression data sets, and examine the degree to which the approach is able to identify checkerboard structures. Furthermore, we compare the performance of our biclustering methods against a number of reasonable benchmarks (e.g., direct application of SVD or normalized cuts to raw data). PMID:12671006

  13. Synthesis, characterization and crystal structure of a 1D thiocyanato bridged [Cu(en)2Zn(NCS)4]ṡH2O. Comparison of the three structures with the same [Cu(en)2Zn(NCS)4] unit - different in structural terms

    NASA Astrophysics Data System (ADS)

    Wrzeszcz, Grzegorz; Muzioł, Tadeusz M.; Tereba, Natalia

    2015-03-01

    In this paper we report the synthesis method and the structure of a one-dimensional thiocyanato bridged heterometallic compound, [Cu(en)2Zn(NCS)4]ṡH2O (1). Moreover, we compare the structure of (1) with the previously described structures of [Cu(en)2Zn(NCS)4]ṡ0.5H2O (2) and [Cu(en)2Zn(NCS)4]ṡCH3CN (3) Pryma et al. (2003) [7]. The compound (1) has been characterized by thermal decomposition, IR, Vis and EPR spectra, and magnetic studies. Structure has been determined by X-ray analysis. Described coordination polymer crystallizes in the orthorhombic Cmcm space group with a = 12.414(2), b = 10.3276(14), c = 14.967(2) Å, α = β = γ = 90°, V = 1918.8(5) Å3 and Z = 4. Each distorted tetrahedral zinc(II) centre (with N-bonded NCS-) links two tetragonally distorted octahedral copper(II) centres by two end-to-end thiocyanato bridges and vice versa forming a zigzag type of CuZn chain. The structures of (1), (2) and (3) differ in crystallographic system, space group and/or CuZn chain type as well as in details. Variable temperature magnetic susceptibility measurements show very weak antiferromagnetic interactions between the paramagnetic copper(II) ions for compound (1).

  14. GC × GC-TOFMS and supervised multivariate approaches to study human cadaveric decomposition olfactive signatures.

    PubMed

    Stefanuto, Pierre-Hugues; Perrault, Katelynn A; Stadler, Sonja; Pesesse, Romain; LeBlanc, Helene N; Forbes, Shari L; Focant, Jean-François

    2015-06-01

    In forensic thanato-chemistry, the understanding of the process of soft tissue decomposition is still limited. A better understanding of the decomposition process and the characterization of the associated volatile organic compounds (VOC) can help to improve the training of victim recovery (VR) canines, which are used to search for trapped victims in natural disasters or to locate corpses during criminal investigations. The complexity of matrices and the dynamic nature of this process require the use of comprehensive analytical methods for investigation. Moreover, the variability of the environment and between individuals creates additional difficulties in terms of normalization. The resolution of the complex mixture of VOCs emitted by a decaying corpse can be improved using comprehensive two-dimensional gas chromatography (GC × GC), compared to classical single-dimensional gas chromatography (1DGC). This study combines the analytical advantages of GC × GC coupled to time-of-flight mass spectrometry (TOFMS) with the data handling robustness of supervised multivariate statistics to investigate the VOC profile of human remains during early stages of decomposition. Various supervised multivariate approaches are compared to interpret the large data set. Moreover, early decomposition stages of pig carcasses (typically used as human surrogates in field studies) are also monitored to obtain a direct comparison of the two VOC profiles and estimate the robustness of this human decomposition analog model. In this research, we demonstrate that pig and human decomposition processes can be described by the same trends for the major compounds produced during the early stages of soft tissue decomposition.

  15. Study of the chemical chelates and anti-microbial effect of some metal ions in nanostructural form on the efficiency of antibiotic therapy "norfloxacin drug"

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; El-Hawary, W. F.; Mohamed, Mahmoud A.

    2012-04-01

    This paper has reviewed the chemical and biological impact resulting from the interaction between norfloxacin (norH) antibiotic drug and two lanthanide (lanthanum(III) and cerium(III)) metal ions, which prepared in normal and nano-features. La(III) and Ce(III) complexes were synthesized with chemical formulas [La(nor)3]·3H2O and [Ce(nor)3]·2H2O. Lanthanum and cerium(III) ions coordinated toward norH with a hexadentate geometry. The norH acts as deprotonated bidentate ligand through the oxygen atom of carbonyl group and the oxygen atom of carboxylic group. Elemental analysis, FT-IR spectral, electrical conductivity, thermal analysis (TG/DTA), X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) measurements have been used to characterize the mentioned isolated complexes. The Coats-Redfern and Horowitz-Metzger integral methods are used to estimate the kinetic parameters for the major successive steps detectable in the TG curve. The brightness side in this study is to take advantage for the preparation and characterization of single phases of La2O3 and CeO2 nanoparticles using urea as precursors via a solid-state decomposition procedure. The norH ligand in comparison with both cases (normal and nano-particles) of lanthanide complexes were screened against for antibacterial (Escherichia Coli, Staphylococcus Aureus, Bacillus subtilis and Pseudomonas aeruginosa) and antifungal (Aspergillus Flavus and Candida Albicans) activities. The highest antibacterial and antifungal activities data of the nano-particles complexes were observed with more potent than the free norH and normal lanthanide complexes.

  16. Dominant modal decomposition method

    NASA Astrophysics Data System (ADS)

    Dombovari, Zoltan

    2017-03-01

    The paper deals with the automatic decomposition of experimental frequency response functions (FRF's) of mechanical structures. The decomposition of FRF's is based on the Green function representation of free vibratory systems. After the determination of the impulse dynamic subspace, the system matrix is formulated and the poles are calculated directly. By means of the corresponding eigenvectors, the contribution of each element of the impulse dynamic subspace is determined and the sufficient decomposition of the corresponding FRF is carried out. With the presented dominant modal decomposition (DMD) method, the mode shapes, the modal participation vectors and the modal scaling factors are identified using the decomposed FRF's. Analytical example is presented along with experimental case studies taken from machine tool industry.

  17. The crystal structure of paramagnetic copper(II) oxalate (CuC₂O₄): formation and thermal decomposition of randomly stacked anisotropic nano-sized crystallites.

    PubMed

    Christensen, Axel Nørlund; Lebech, Bente; Andersen, Niels Hessel; Grivel, Jean-Claude

    2014-11-28

    Synthetic copper(II) oxalate, CuC2O4, was obtained in a precipitation reaction between a copper(II) solution and an aqueous solution of oxalic acid. The product was identified from its conventional X-ray powder patterns which match that of the copper mineral Moolooite reported to have the composition CuC2O4·0.44H2O. Time resolved in situ investigations of the thermal decomposition of copper(II) oxalate using synchrotron X-ray powder diffraction showed that in air the compound converts to Cu2O at 215 °C and oxidizes to CuO at 345 °C. Thermo gravimetric analysis performed in an inert Ar-gas reveals that the material contains no crystal water and reduces to pure Cu at 295 °C. Magnetic susceptibility measurements in the temperature range from 2 K to 300 K show intriguing paramagnetic behaviour with no sign of magnetic order down to 2 K. A crystal structure investigation is made based on powder diffraction data using one neutron diffraction pattern obtained at 5 K (λ = 1.5949(1) Å) combined with one conventional and two synchrotron X-ray diffraction patterns obtained at ambient temperature using λ = 1.54056, 1.0981 and λ = 0.50483(1) Å, respectively. Based on the X-ray synchrotron data the resulting crystal structure is described in the monoclinic space group P2₁/c (#14) in the P12₁/n1 setting with unit cell parameters a = 5.9598(1) Å, b = 5.6089(1) Å, c = 5.1138 (1) Å, β = 115.320(1)°. The composition is CuC2O4 with atomic coordinates determined by FullProf refinement of the neutron diffraction data. The crystal structure consists of a random stacking of CuC2O4 micro-crystallites where half the Cu-atoms are placed at (2a) and the other half at (2b) positions with the corresponding oxalate molecules centred around the corresponding (2b) and (2a) site positions, respectively. The diffraction patterns obtained for both kinds of radiation show considerable broadening of several Bragg peaks caused by highly anisotropic microstructural size and strain effects. In contrast to the water reported to be present in Moolooite, neither thermogravimetric nor the in situ thermal decomposition investigations and crystal structure analysis of the neutron diffraction data revealed any trace of water. An appendix contains details about the profile parameters for the diffractometers used at the European Synchrotron Radiation Facility and the Institute Max von Laue-Paul Langevin.

  18. Quantification and visualization of coordination during non-cyclic upper extremity motion.

    PubMed

    Fineman, Richard A; Stirling, Leia A

    2017-10-03

    There are many design challenges in creating at-home tele-monitoring systems that enable quantification and visualization of complex biomechanical behavior. One such challenge is robustly quantifying joint coordination in a way that is intuitive and supports clinical decision-making. This work defines a new measure of coordination called the relative coordination metric (RCM) and its accompanying normalization schemes. RCM enables quantification of coordination during non-constrained discrete motions. Here RCM is applied to a grasping task. Fifteen healthy participants performed a reach, grasp, transport, and release task with a cup and a pen. The measured joint angles were then time-normalized and the RCM time-series were calculated between the shoulder-elbow, shoulder-wrist, and elbow-wrist. RCM was normalized using four differing criteria: the selected joint degree of freedom, angular velocity, angular magnitude, and range of motion. Percent time spent in specified RCM ranges was used asa composite metric and was evaluated for each trial. RCM was found to vary based on: (1) chosen normalization scheme, (2) the stage within the task, (3) the object grasped, and (4) the trajectory of the motion. The RCM addresses some of the limitations of current measures of coordination because it is applicable to discrete motions, does not rely on cyclic repetition, and uses velocity-based measures. Future work will explore clinically relevant differences in the RCM as it is expanded to evaluate different tasks and patient populations. Copyright © 2017. Published by Elsevier Ltd.

  19. A Domain Decomposition Parallelization of the Fast Marching Method

    NASA Technical Reports Server (NTRS)

    Herrmann, M.

    2003-01-01

    In this paper, the first domain decomposition parallelization of the Fast Marching Method for level sets has been presented. Parallel speedup has been demonstrated in both the optimal and non-optimal domain decomposition case. The parallel performance of the proposed method is strongly dependent on load balancing separately the number of nodes on each side of the interface. A load imbalance of nodes on either side of the domain leads to an increase in communication and rollback operations. Furthermore, the amount of inter-domain communication can be reduced by aligning the inter-domain boundaries with the interface normal vectors. In the case of optimal load balancing and aligned inter-domain boundaries, the proposed parallel FMM algorithm is highly efficient, reaching efficiency factors of up to 0.98. Future work will focus on the extension of the proposed parallel algorithm to higher order accuracy. Also, to further enhance parallel performance, the coupling of the domain decomposition parallelization to the G(sub 0)-based parallelization will be investigated.

  20. Initial insights into bacterial succession during human decomposition.

    PubMed

    Hyde, Embriette R; Haarmann, Daniel P; Petrosino, Joseph F; Lynne, Aaron M; Bucheli, Sibyl R

    2015-05-01

    Decomposition is a dynamic ecological process dependent upon many factors such as environment, climate, and bacterial, insect, and vertebrate activity in addition to intrinsic properties inherent to individual cadavers. Although largely attributed to microbial metabolism, very little is known about the bacterial basis of human decomposition. To assess the change in bacterial community structure through time, bacterial samples were collected from several sites across two cadavers placed outdoors to decompose and analyzed through 454 pyrosequencing and analysis of variable regions 3-5 of the bacterial 16S ribosomal RNA (16S rRNA) gene. Each cadaver was characterized by a change in bacterial community structure for all sites sampled as time, and decomposition, progressed. Bacteria community structure is variable at placement and before purge for all body sites. At bloat and purge and until tissues began to dehydrate or were removed, bacteria associated with flies, such as Ignatzschineria and Wohlfahrtimonas, were common. After dehydration and skeletonization, bacteria associated with soil, such as Acinetobacter, were common at most body sites sampled. However, more cadavers sampled through multiple seasons are necessary to assess major trends in bacterial succession.

  1. Cockpit and cabin crew coordination

    DOT National Transportation Integrated Search

    1988-02-01

    Cockpit and cabin crew coordination is crucial not only in emergencies, but : also during normal operations. The purposes of this study were to determine the : status of crew coordination in the industry and to identify the implications for : flight ...

  2. Cockpit and cabin crew coordination

    DOT National Transportation Integrated Search

    1988-02-28

    Cockpit and cabin crew coordination is crucial not only in emergencies, but also during normal operations. The purposes of this study were to determine the status of crew coordination in the industry and to identify the implications for flight safety...

  3. High-Pressure Phase Relations and Crystal Structures of Postspinel Phases in MgV2O4, FeV2O4, and MnCr2O4: Crystal Chemistry of AB2O4 Postspinel Compounds.

    PubMed

    Ishii, Takayuki; Sakai, Tsubasa; Kojitani, Hiroshi; Mori, Daisuke; Inaguma, Yoshiyuki; Matsushita, Yoshitaka; Yamaura, Kazunari; Akaogi, Masaki

    2018-06-04

    We have investigated high-pressure, high-temperature phase transitions of spinel (Sp)-type MgV 2 O 4 , FeV 2 O 4 , and MnCr 2 O 4 . At 1200-1800 °C, MgV 2 O 4 Sp decomposes at 4-7 GPa into a phase assemblage of MgO periclase + corundum (Cor)-type V 2 O 3 , and they react at 10-15 GPa to form a phase with a calcium titanite (CT)-type structure. FeV 2 O 4 Sp transforms to CT-type FeV 2 O 4 at 12 GPa via decomposition phases of FeO wüstite + Cor-type V 2 O 3 . MnCr 2 O 4 Sp directly transforms to the calcium ferrite (CF)-structured phase at 10 GPa and 1000-1400 °C. Rietveld refinements of CT-type MgV 2 O 4 and FeV 2 O 4 and CF-type MnCr 2 O 4 confirm that both the CT- and CF-type structures have frameworks formed by double chains of edge-shared B 3+ O 6 octahedra (B 3+ = V 3+ and Cr 3+ ) running parallel to one of orthorhombic cell axes. A relatively large A 2+ cation (A 2+ = Mg 2+ , Fe 2+ , and Mn 2+ ) occupies a tunnel-shaped space formed by corner-sharing of four double chains. Effective coordination numbers calculated from eight neighboring oxygen-A 2+ cation distances of CT-type MgV 2 O 4 and FeV 2 O 4 and CF-type MnCr 2 O 4 are 5.50, 5.16, and 7.52, respectively. This implies that the CT- and CF-type structures practically have trigonal prism (six-coordinated) and bicapped trigonal prism (eight-coordinated) sites for the A 2+ cations, respectively. A relationship between cation sizes of VIII A 2+ and VI B 3+ and crystal structures (CF- and CT-types) of A 2+ B 2 3+ O 4 is discussed using the above new data and available previous data of the postspinel phases. We found that CF-type A 2+ B 2 3+ O 4 crystallize in wide ionic radius ranges of 0.9-1.4 Å for VIII A 2+ and 0.55-1.1 Å for VI B 3+ , whereas CT-type phases crystallize in very narrow ionic radius ranges of ∼0.9 Å for VIII A 2+ and 0.6-0.65 Å for VI B 3+ . This would be attributed to the fact that the tunnel space of CT-type structure is geometrically less flexible due to the smaller coordination number for A 2+ cation than that of CF-type.

  4. Stereochemistry of complexes with double and triple metal-ligand bonds: a continuous shape measures analysis.

    PubMed

    Alvarez, Santiago; Menjón, Babil; Falceto, Andrés; Casanova, David; Alemany, Pere

    2014-11-17

    To each coordination polyhedron we can associate a normalized coordination polyhedron that retains the angular orientation of the central atom-ligand bonds but has all the vertices at the same distance from the center. The use of shape measures of these normalized coordination polyhedra provides a simple and efficient way of discriminating angular and bond distance distortions from an ideal polyhedron. In this paper we explore the applications of such an approach to analyses of several stereochemical problems. Among others, we discuss how to discern the off-center displacement of the metal from metal-ligand bond shortening distortions in families of square planar biscarbene and octahedral dioxo complexes. The normalized polyhedron approach is also shown to be very useful to understand stereochemical trends with the help of shape maps, minimal distortion pathways, and ligand association/dissociation pathways, illustrated by the Berry and anti Berry distortions of triple-bonded [X≡ML4] complexes, the square pyramidal geometries of Mo coordination polyhedra in oxido-reductases, the coordination geometries of actinyl complexes, and the tetrahedricity of heavy atom-substituted carbon centers.

  5. Vibrational, DFT, thermal and dielectric studies on 3-nitrophenol-1,3,5-triazine-2,4,6-triamine (2/1).

    PubMed

    Sangeetha, V; Govindarajan, M; Kanagathara, N; Marchewka, M K; Gunasekaran, S; Anbalagan, G

    2014-01-24

    A new organic-organic salt, 3-nitrophenol-1,3,5-triazine-2,4,6-triamine (2/1) (3-NPM) has been synthesized by slow evaporation technique at room temperature. Single crystal X-ray diffraction analysis reveals that 3-NPM crystallizes in orthorhombic system with centrosymmetric space group Pbca and the lattice parameters are a=15.5150(6) Å, b=12.9137(6) Å, c=17.8323(6) Å, α=β=γ=90° and V=3572.8(2)(Å)(3). The geometry, fundamental vibrational frequencies are interpreted with the aid of structure optimization and normal coordinate force field calculations based on density functional theory (DFT) B3LYP/6-311G(d,p) method. IR and Raman spectra of 3-NPM have been recorded and analyzed. The complete vibrational assignments are made on the basis of potential energy distribution (PED). The electric dipole moment, polarizability and the first order hyperpolarizability values of the 3-NPM have been calculated. (1)H and (13)C NMR chemical shifts are calculated by using the gauge independent atomic orbital (GIAO) method with B3LYP method with 6-311G (d,p) basis set. Moreover, molecular electrostatic potential (MEP) and thermodynamic properties are performed. Mulliken and Natural charges of the title molecule are also calculated and interpreted. Thermal decomposition behavior of 3-NPM has been studied by means of thermogravimetric analysis. The dielectric measurements on the powdered sample have been carried out and the variation of dielectric constant and dielectric loss at different frequencies of the applied field has been studied and the results are discussed in detail. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Vibrational, DFT, thermal and dielectric studies on 3-nitrophenol-1,3,5-triazine-2,4,6-triamine (2/1)

    NASA Astrophysics Data System (ADS)

    Sangeetha, V.; Govindarajan, M.; Kanagathara, N.; Marchewka, M. K.; Gunasekaran, S.; Anbalagan, G.

    2014-01-01

    A new organic-organic salt, 3-nitrophenol-1,3,5-triazine-2,4,6-triamine (2/1) (3-NPM) has been synthesized by slow evaporation technique at room temperature. Single crystal X-ray diffraction analysis reveals that 3-NPM crystallizes in orthorhombic system with centrosymmetric space group Pbca and the lattice parameters are a = 15.5150(6) Å, b = 12.9137(6) Å, c = 17.8323(6) Å, α = β = γ = 90° and V = 3572.8(2) (Å)3. The geometry, fundamental vibrational frequencies are interpreted with the aid of structure optimization and normal coordinate force field calculations based on density functional theory (DFT) B3LYP/6-311G(d,p) method. IR and Raman spectra of 3-NPM have been recorded and analyzed. The complete vibrational assignments are made on the basis of potential energy distribution (PED). The electric dipole moment, polarizability and the first order hyperpolarizability values of the 3-NPM have been calculated. 1H and 13C NMR chemical shifts are calculated by using the gauge independent atomic orbital (GIAO) method with B3LYP method with 6-311G (d,p) basis set. Moreover, molecular electrostatic potential (MEP) and thermodynamic properties are performed. Mulliken and Natural charges of the title molecule are also calculated and interpreted. Thermal decomposition behavior of 3-NPM has been studied by means of thermogravimetric analysis. The dielectric measurements on the powdered sample have been carried out and the variation of dielectric constant and dielectric loss at different frequencies of the applied field has been studied and the results are discussed in detail.

  7. Classification of tumor based on magnetic resonance (MR) brain images using wavelet energy feature and neuro-fuzzy model

    NASA Astrophysics Data System (ADS)

    Damayanti, A.; Werdiningsih, I.

    2018-03-01

    The brain is the organ that coordinates all the activities that occur in our bodies. Small abnormalities in the brain will affect body activity. Tumor of the brain is a mass formed a result of cell growth not normal and unbridled in the brain. MRI is a non-invasive medical test that is useful for doctors in diagnosing and treating medical conditions. The process of classification of brain tumor can provide the right decision and correct treatment and right on the process of treatment of brain tumor. In this study, the classification process performed to determine the type of brain tumor disease, namely Alzheimer’s, Glioma, Carcinoma and normal, using energy coefficient and ANFIS. Process stages in the classification of images of MR brain are the extraction of a feature, reduction of a feature, and process of classification. The result of feature extraction is a vector approximation of each wavelet decomposition level. The feature reduction is a process of reducing the feature by using the energy coefficients of the vector approximation. The feature reduction result for energy coefficient of 100 per feature is 1 x 52 pixels. This vector will be the input on the classification using ANFIS with Fuzzy C-Means and FLVQ clustering process and LM back-propagation. Percentage of success rate of MR brain images recognition using ANFIS-FLVQ, ANFIS, and LM back-propagation was obtained at 100%.

  8. Tree decomposition based fast search of RNA structures including pseudoknots in genomes.

    PubMed

    Song, Yinglei; Liu, Chunmei; Malmberg, Russell; Pan, Fangfang; Cai, Liming

    2005-01-01

    Searching genomes for RNA secondary structure with computational methods has become an important approach to the annotation of non-coding RNAs. However, due to the lack of efficient algorithms for accurate RNA structure-sequence alignment, computer programs capable of fast and effectively searching genomes for RNA secondary structures have not been available. In this paper, a novel RNA structure profiling model is introduced based on the notion of a conformational graph to specify the consensus structure of an RNA family. Tree decomposition yields a small tree width t for such conformation graphs (e.g., t = 2 for stem loops and only a slight increase for pseudo-knots). Within this modelling framework, the optimal alignment of a sequence to the structure model corresponds to finding a maximum valued isomorphic subgraph and consequently can be accomplished through dynamic programming on the tree decomposition of the conformational graph in time O(k(t)N(2)), where k is a small parameter; and N is the size of the projiled RNA structure. Experiments show that the application of the alignment algorithm to search in genomes yields the same search accuracy as methods based on a Covariance model with a significant reduction in computation time. In particular; very accurate searches of tmRNAs in bacteria genomes and of telomerase RNAs in yeast genomes can be accomplished in days, as opposed to months required by other methods. The tree decomposition based searching tool is free upon request and can be downloaded at our site h t t p ://w.uga.edu/RNA-informatics/software/index.php.

  9. Behaviors of glucose decomposition during acid-catalyzed hydrothermal hydrolysis of pretreated Gelidium amansii.

    PubMed

    Jeong, Tae Su; Choi, Chang Ho; Lee, Ji Ye; Oh, Kyeong Keun

    2012-07-01

    Acid-catalyzed hydrothermal hydrolysis is one path to cellulosic glucose and subsequently to its dehydration end products such as hydroxymethyl furfural (HMF), formic acid and levulinic acid. The effect of sugar decomposition not only lowers the yield of fermentable sugars but also forms decomposition products that inhibit subsequent fermentation. The present experiments were conducted with four different acid catalysts (H(2)SO(4), HNO(3), HCl, and H(3)PO(4)) at various acid normalities (0.5-2.1N) in batch reactors at 180-210 °C. From the results, H(2)SO(4) was the most suitable catalyst for glucose production, but glucose decomposition occurred during the hydrolysis. The glucose production was maximized at 160.7 °C, 2.0% (w/v) H(2)SO(4), and 40 min, but resulted in a low glucan yield of 33.05% due to the decomposition reactions, which generated formic acid and levulinic acid. The highest concentration of levulinic acid, 7.82 g/L, was obtained at 181.2 °C, 2.0% (w/v) H(2)SO(4), and 40 min. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Normal coordinate analysis of the vibrational spectrum of benzil molecule

    NASA Astrophysics Data System (ADS)

    Volovšek, V.; Colombo, L.

    1993-03-01

    Normal coordinate analysis is performed for the benzil molecule. Force constants of phenyl rings are transferred from earlier studies on binuclear aromatic molecules. The existance of some low-frequency internal modes have been proved, thus eliminating the earlier explanations of the excess of the bands observed in the low-frequency Raman and FIR spectra of benzil crystal.

  11. Method and apparatus for filtering visual documents

    NASA Technical Reports Server (NTRS)

    Rorvig, Mark E. (Inventor); Shelton, Robert O. (Inventor)

    1993-01-01

    A method and apparatus for producing an abstract or condensed version of a visual document is presented. The frames comprising the visual document are first sampled to reduce the number of frames required for processing. The frames are then subjected to a structural decomposition process that reduces all information in each frame to a set of values. These values are in turn normalized and further combined to produce only one information content value per frame. The information content values of these frames are then compared to a selected distribution cutoff point. This effectively selects those values at the tails of a normal distribution, thus filtering key frames from their surrounding frames. The value for each frame is then compared with the value from the previous frame, and the respective frame is finally stored only if the values are significantly different. The method filters or compresses a visual document with a reduction in digital storage on the ratio of up to 700 to 1 or more, depending on the content of the visual document being filtered.

  12. Tertiary alphabet for the observable protein structural universe.

    PubMed

    Mackenzie, Craig O; Zhou, Jianfu; Grigoryan, Gevorg

    2016-11-22

    Here, we systematically decompose the known protein structural universe into its basic elements, which we dub tertiary structural motifs (TERMs). A TERM is a compact backbone fragment that captures the secondary, tertiary, and quaternary environments around a given residue, comprising one or more disjoint segments (three on average). We seek the set of universal TERMs that capture all structure in the Protein Data Bank (PDB), finding remarkable degeneracy. Only ∼600 TERMs are sufficient to describe 50% of the PDB at sub-Angstrom resolution. However, more rare geometries also exist, and the overall structural coverage grows logarithmically with the number of TERMs. We go on to show that universal TERMs provide an effective mapping between sequence and structure. We demonstrate that TERM-based statistics alone are sufficient to recapitulate close-to-native sequences given either NMR or X-ray backbones. Furthermore, sequence variability predicted from TERM data agrees closely with evolutionary variation. Finally, locations of TERMs in protein chains can be predicted from sequence alone based on sequence signatures emergent from TERM instances in the PDB. For multisegment motifs, this method identifies spatially adjacent fragments that are not contiguous in sequence-a major bottleneck in structure prediction. Although all TERMs recur in diverse proteins, some appear specialized for certain functions, such as interface formation, metal coordination, or even water binding. Structural biology has benefited greatly from previously observed degeneracies in structure. The decomposition of the known structural universe into a finite set of compact TERMs offers exciting opportunities toward better understanding, design, and prediction of protein structure.

  13. Tertiary alphabet for the observable protein structural universe

    PubMed Central

    Mackenzie, Craig O.; Zhou, Jianfu; Grigoryan, Gevorg

    2016-01-01

    Here, we systematically decompose the known protein structural universe into its basic elements, which we dub tertiary structural motifs (TERMs). A TERM is a compact backbone fragment that captures the secondary, tertiary, and quaternary environments around a given residue, comprising one or more disjoint segments (three on average). We seek the set of universal TERMs that capture all structure in the Protein Data Bank (PDB), finding remarkable degeneracy. Only ∼600 TERMs are sufficient to describe 50% of the PDB at sub-Angstrom resolution. However, more rare geometries also exist, and the overall structural coverage grows logarithmically with the number of TERMs. We go on to show that universal TERMs provide an effective mapping between sequence and structure. We demonstrate that TERM-based statistics alone are sufficient to recapitulate close-to-native sequences given either NMR or X-ray backbones. Furthermore, sequence variability predicted from TERM data agrees closely with evolutionary variation. Finally, locations of TERMs in protein chains can be predicted from sequence alone based on sequence signatures emergent from TERM instances in the PDB. For multisegment motifs, this method identifies spatially adjacent fragments that are not contiguous in sequence—a major bottleneck in structure prediction. Although all TERMs recur in diverse proteins, some appear specialized for certain functions, such as interface formation, metal coordination, or even water binding. Structural biology has benefited greatly from previously observed degeneracies in structure. The decomposition of the known structural universe into a finite set of compact TERMs offers exciting opportunities toward better understanding, design, and prediction of protein structure. PMID:27810958

  14. Nanophase cobalt, nickel and zinc ferrites: synchrotron XAS study on the crystallite size dependence of metal distribution.

    PubMed

    Nordhei, Camilla; Ramstad, Astrid Lund; Nicholson, David G

    2008-02-21

    Nanophase cobalt, nickel and zinc ferrites, in which the crystallites are in the size range 4-25 nm, were synthesised by coprecipitation and subsequent annealing. X-Ray absorption spectroscopy using synchrotron radiation (supported by X-ray powder diffraction) was used to study the effects of particle size on the distributions of the metal atoms over the tetrahedral and octahedral sites of the spinel structure. Deviations from the bulk structure were found which are attributed to the significant influence of the surface on very small particles. Like the bulk material, nickel ferrite is an inverse spinel in the nanoregime, although the population of metals on the octahedral sites increases with decreasing particle size. Cobalt ferrite and zinc ferrite take the inverse and normal forms of the spinel structure respectively, but within the nanoregime both systems show similar trends in being partially inverted. Further, in zinc ferrite, unlike the normal bulk structure, the nanophase system involves mixed coordinations of zinc(ii) and iron(iii) consistent with increasing partial inversion with size.

  15. Decomposition of Proteins into Dynamic Units from Atomic Cross-Correlation Functions.

    PubMed

    Calligari, Paolo; Gerolin, Marco; Abergel, Daniel; Polimeno, Antonino

    2017-01-10

    In this article, we present a clustering method of atoms in proteins based on the analysis of the correlation times of interatomic distance correlation functions computed from MD simulations. The goal is to provide a coarse-grained description of the protein in terms of fewer elements that can be treated as dynamically independent subunits. Importantly, this domain decomposition method does not take into account structural properties of the protein. Instead, the clustering of protein residues in terms of networks of dynamically correlated domains is defined on the basis of the effective correlation times of the pair distance correlation functions. For these properties, our method stands as a complementary analysis to the customary protein decomposition in terms of quasi-rigid, structure-based domains. Results obtained for a prototypal protein structure illustrate the approach proposed.

  16. Ionothermal synthesis, characterization of a new layered gallium phosphate with an unusual heptamer SBU

    NASA Astrophysics Data System (ADS)

    Gao, Fan; Huang, Liangliang; Ma, Yike; Jiao, Shufei; Jiang, Yansong; Bi, Yanfeng

    2017-10-01

    A new layered gallium phosphate Ga3(PO4)4(C2N2H8)·(H2C2N2H8)2·Cl (compound 1), has been ionothermally synthesized in the presence of deep eutectic solvent (DES) comprising mixtures of choline chloride and 2-imidazolidone (IMI). Single-crystal X-ray diffraction analysis reveals that compound 1 shows 2D layered framework with 10-ring windows, which is constructed from unusual heptamer second building units (SBUs). The ethylenediamine (en) units deriving from the decomposition of IMI, play a dual role as bidentate ligands coordinated with 6-fold coordinate gallium atoms and the templates. Additionally, compound 1 shows photoluminescence property in solid state at room temperature.

  17. Dynamics in the Decompositions Approach to Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Harding, John

    2017-12-01

    In Harding (Trans. Amer. Math. Soc. 348(5), 1839-1862 1996) it was shown that the direct product decompositions of any non-empty set, group, vector space, and topological space X form an orthomodular poset Fact X. This is the basis for a line of study in foundational quantum mechanics replacing Hilbert spaces with other types of structures. Here we develop dynamics and an abstract version of a time independent Schrödinger's equation in the setting of decompositions by considering representations of the group of real numbers in the automorphism group of the orthomodular poset Fact X of decompositions.

  18. Cooperative Jahn-Teller phase transition of icosahedral molecular units

    NASA Astrophysics Data System (ADS)

    Nasrollahi, Seyed H.; Vvedensky, Dimitri D.

    2017-02-01

    Non-linear molecules undergo distortions when the orbital degeneracy of the highest occupied level is lifted by the Jahn-Teller effect. If such molecules or clusters of atoms are coupled to one another, the system may experience a cooperative Jahn-Teller effect (CJTE). In this paper, we describe a model of how the CJTE leads to the crystallization of the disordered phase. The model Hamiltonian is based on a normal mode decomposition of the clusters in order to maintain the symmetry labels. We take account of the electron-strain and the electron-phonon couplings and, by displacing the coordinates of the oscillators, obtain a term that explicitly couples the Jahn-Teller centers, enabling us to perform a mean-field analysis. The calculation of the free energy then becomes straightforward, and obtaining phase diagrams in various regimes follows from the minimization of this free energy. The results show that the character of the phase transition may change from strong to weak first order and even to second-order, depending on the coupling to the vibrational modes. Taken together, these results may serve as a paradigm for crystallization near the transition temperature, where the atoms tend to form clusters of icosahedral symmetry.

  19. Conformation-sensitive infrared bands of uridine-5'-monophosphate

    NASA Astrophysics Data System (ADS)

    Carmona, P.; Molina, M.; Escobar, R.

    1991-03-01

    Infrared spectra are presented for six compounds containing ribose residues with various conformations. The assignments are based chiefly on comparison of the vibrational data observed for these compounds with those for uracil and D-ribose-5-phosphate and on a previous normal coordinate calculation. A spectral feature in the 1300-1260 cm -1 region seems to be sensitive to the ribofuranose conformation, and the usefulness of these structure-spectrum correlations in the conformation studies of polynucleotides is also discussed.

  20. Vibrational spectra and normal coordinate analysis of 2-hydroxy-3-(2-methoxyphenoxy) propyl carbamate

    NASA Astrophysics Data System (ADS)

    Muthu, S.; Renuga, S.

    2014-11-01

    In this work, the vibrational spectral analysis was carried out by using FT-Raman and FTIR spectroscopy in the range 50-4000 cm-1 and 450-4000 cm-1 respectively, for 2-hydroxy-3-(2-methoxyphenoxy) propyl carbamate (2H3MPPLC) molecule. The molecular structure, fundamental vibrational frequencies and intensities of the vibrational bands were interpreted with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) and ab initio HF methods with 6-31G(d,p) basis set. The complete vibrational assignments of wave numbers were made on the basis of potential energy distribution (PED). The results of the calculations were applied to simulated spectra of the title compound, which show excellent agreement with observed spectra. The scaled B3LYP/6-31G(d,p) results show the best agreement with the experimental values over the other method. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The results confirm the occurrence of intramolecular charge-transfer (ICT) within the molecule. The dipole moment (μ), polarizability (α) and hyperpolarizability (β) of the investigated molecule has been computed using B3LYP/6-31G(d,p) method. Mulliken population analysis on atomic charges was also calculated. Besides, frontier molecular orbitals, molecular electrostatic potential (MEP) and thermodynamic properties were performed.

  1. Excited-state structure and isomerization dynamics of the retinal chromophore in rhodopsin from resonance Raman intensities.

    PubMed Central

    Loppnow, G R; Mathies, R A

    1988-01-01

    Resonance Raman excitation profiles have been measured for the bovine visual pigment rhodopsin using excitation wavelengths ranging from 457.9 to 647.1 nm. A complete Franck-Condon analysis of the absorption spectrum and resonance Raman excitation profiles has been performed using an excited-state, time-dependent wavepacket propagation technique. This has enabled us to determine the change in geometry upon electronic excitation of rhodopsin's 11-cis-retinal protonated Schiff base chromophore along 25 normal coordinates. Intense low-frequency Raman lines are observed at 98, 135, 249, 336, and 461 cm-1 whose intensities provide quantitative, mode-specific information about the excited-state torsional deformations that lead to isomerization. The dominant contribution to the width of the absorption band in rhodopsin results from Franck-Condon progressions in the 1,549 cm-1 ethylenic normal mode. The lack of vibronic structure in the absorption spectrum is shown to be caused by extensive progressions in low-frequency torsional modes and a large homogeneous linewidth (170 cm-1 half-width) together with thermal population of low-frequency modes and inhomogeneous site distribution effects. The resonance Raman cross-sections of rhodopsin are unusually weak because the excited-state wavepacket moves rapidly (approximately 35 fs) and permanently away from the Franck-Condon geometry along skeletal stretching and torsional coordinates. PMID:3416032

  2. On the Lagrangian description of unsteady boundary-layer separation. I - General theory

    NASA Technical Reports Server (NTRS)

    Van Dommelen, Leon L.; Cowley, Stephen J.

    1990-01-01

    Although unsteady, high-Reynolds number, laminar boundary layers have conventionally been studied in terms of Eulerian coordinates, a Lagrangian approach may have significant analytical and computational advantages. In Lagrangian coordinates the classical boundary layer equations decouple into a momentum equation for the motion parallel to the boundary, and a hyperbolic continuity equation (essentially a conserved Jacobian) for the motion normal to the boundary. The momentum equations, plus the energy equation if the flow is compressible, can be solved independently of the continuity equation. Unsteady separation occurs when the continuity equation becomes singular as a result of touching characteristics, the condition for which can be expressed in terms of the solution of the momentum equations. The solutions to the momentum and energy equations remain regular. Asymptotic structures for a number of unsteady 3-D separating flows follow and depend on the symmetry properties of the flow. In the absence of any symmetry, the singularity structure just prior to separation is found to be quasi 2-D with a displacement thickness in the form of a crescent shaped ridge. Physically the singularities can be understood in terms of the behavior of a fluid element inside the boundary layer which contracts in a direction parallel to the boundary and expands normal to it, thus forcing the fluid above it to be ejected from the boundary layer.

  3. On the Lagrangian description of unsteady boundary layer separation. Part 1: General theory

    NASA Technical Reports Server (NTRS)

    Vandommelen, Leon L.; Cowley, Stephen J.

    1989-01-01

    Although unsteady, high-Reynolds number, laminar boundary layers have conventionally been studied in terms of Eulerian coordinates, a Lagrangian approach may have significant analytical and computational advantages. In Lagrangian coordinates the classical boundary layer equations decouple into a momentum equation for the motion parallel to the boundary, and a hyperbolic continuity equation (essentially a conserved Jacobian) for the motion normal to the boundary. The momentum equations, plus the energy equation if the flow is compressible, can be solved independently of the continuity equation. Unsteady separation occurs when the continuity equation becomes singular as a result of touching characteristics, the condition for which can be expressed in terms of the solution of the momentum equations. The solutions to the momentum and energy equations remain regular. Asymptotic structures for a number of unsteady 3-D separating flows follow and depend on the symmetry properties of the flow. In the absence of any symmetry, the singularity structure just prior to separation is found to be quasi 2-D with a displacement thickness in the form of a crescent shaped ridge. Physically the singularities can be understood in terms of the behavior of a fluid element inside the boundary layer which contracts in a direction parallel to the boundary and expands normal to it, thus forcing the fluid above it to be ejected from the boundary layer.

  4. Mesostructure of Ordered Corneal Nano-nipple Arrays: The Role of 5-7 Coordination Defects

    NASA Astrophysics Data System (ADS)

    Lee, Ken C.; Yu, Qi; Erb, Uwe

    2016-06-01

    Corneal nano-nipple structures consisting of hexagonally arranged protrusions with diameters around 200 nm have long been known for their antireflection capability and have served as biological blueprint for solar cell, optical lens and other surface designs. However, little is known about the global arrangement of these nipples on the ommatidial surface and their growth during the eye development. This study provides new insights based on the analysis of nano-nipple arrangements on the mesoscale across entire ommatidia, which has never been done before. The most important feature in the nipple structures are topological 5- and 7-fold coordination defects, which align to form dislocations and interconnected networks of grain boundaries that divide the ommatidia into crystalline domains in different orientations. Furthermore, the domain size distribution might be log-normal, and the domains demonstrate no preference in crystal orientation. Both observations suggest that the nipple growth process may be similar to the nucleation and growth mechanisms during the formation of other crystal structures. Our results are also consistent with the most recently proposed Turing-type reaction-diffusion process. In fact, we were able to produce the key structural characteristics of the nipple arrangements using Turing analysis from the nucleation to the final structure development.

  5. Primary decomposition of zero-dimensional ideals over finite fields

    NASA Astrophysics Data System (ADS)

    Gao, Shuhong; Wan, Daqing; Wang, Mingsheng

    2009-03-01

    A new algorithm is presented for computing primary decomposition of zero-dimensional ideals over finite fields. Like Berlekamp's algorithm for univariate polynomials, the new method is based on the invariant subspace of the Frobenius map acting on the quotient algebra. The dimension of the invariant subspace equals the number of primary components, and a basis of the invariant subspace yields a complete decomposition. Unlike previous approaches for decomposing multivariate polynomial systems, the new method does not need primality testing nor any generic projection, instead it reduces the general decomposition problem directly to root finding of univariate polynomials over the ground field. Also, it is shown how Groebner basis structure can be used to get partial primary decomposition without any root finding.

  6. Location of alkali metal binding sites in endothelin A selective receptor antagonists, cyclo(D-Trp-D-Asp-Pro-D-Val-Leu) and cyclo(D-Trp-D-Asp-Pro-D-Ile-Leu), from multistep collisionally activated decompositions.

    PubMed

    Ngoka, L C; Gross, M L

    2000-02-01

    We previously showed by using mass spectrometry that endothelin A selective receptor antagonists BQ123 and JKC301 form novel coordination compounds with sodium ions. This property may underlie the ability of an ET(A) antagonist to induce net tubular sodium reabsorption in the proximal tubule cells and reverse acute renal failure induced by severe ischemia. We have now defined the metal binding sites on BQ123 and JKC301 by subjecting the metal-containing peptides to multiple stages of collisionally activated decomposition (CAD) in an ion trap mass spectrometer. When submitted to low-energy CAD, the ring opens at the Asp-Pro amide bond. The metal ion, which bonds, inter alia, to the carbonyl oxygen of the proline residue, acts as a fixed charge site, and directs a charge-remote, sequence-specific fragmentation of the ring-opened peptide. Amino acid residues are sequentially cleaved from the C-terminal end, and the terminal aziridinone structure moves one step toward the N-terminus with each C-terminal amino acid residue removed. These observations are the basis of a new method to sequence cyclic peptides. Amino acid residues are observed as sets of three ions, a*(n)PD, b*(n)PD and c*(n)PD where n is the number of amino acid residues in the peptide. Copyright 2000 John Wiley & Sons, Ltd.

  7. Exploring the conformational changes of the ATP binding site of gyrase B from Escherichia coli complexed with different established inhibitors by using molecular dynamics simulation: protein-ligand interactions in the light of the alanine scanning and free energy decomposition methods.

    PubMed

    Saíz-Urra, Liane; Cabrera, Miguel Angel; Froeyen, Matheus

    2011-02-01

    Currently, bacterial diseases cause a death toll around 2 million people a year encouraging the search for new antimicrobial agents. DNA gyrase is a well-established antibacterial target consisting of two subunits, GyrA and GyrB, in a heterodimer A(2)B(2). GyrA is involved in DNA breakage and reunion and GyrB catalyzes the hydrolysis of ATP. The GyrB subunit from Escherichia coli has been investigated, namely the ATP binding pocket both considering the protein without ligands and bound with the inhibitors clorobiocin, novobiocin and 5'-adenylyl-β-γ-imidodiphosphate. The stability of the systems was studied by molecular dynamics simulation with the further analysis of the time dependent root-mean-square coordinate deviation (RMSD) from the initial structure, and temperature factors. Moreover, exploration of the conformational space of the systems during the MD simulation was carried out by a clustering data mining technique using the average-linkage algorithm. Recognizing the key residues in the binding site of the enzyme that are involved in the binding mode with the aforementioned inhibitors was investigated by using two techniques: free energy decomposition and computational alanine scanning. The results from these simulations highlight the important residues in the ATP binding site and can be useful in the design process of potential new inhibitors. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Structures and Energetics of (MgCO 3 ) n Clusters ( n ≤ 16)

    DOE PAGES

    Chen, Mingyang; Jackson, Virgil E.; Felmy, Andrew R.; ...

    2015-03-13

    There is significant interest in the role of carbonate minerals for the storage of CO 2 and the role of prenucleation dusters in their formation. Global minima for (MgCO 3) n (n ≤ 16) structures were optimized using a tree growth-hybrid genetic algorithm in conjunction with MNDO/MNDO/d semiempirical molecular orbital calculations followed by density functional theory geometry optimizations with the B3LYP functional. The most stable isomers for (MgCO 3) n (n < 5) are approximately 2-dimensional. Mg can be bonded to one or two 0 atoms of a CO 3 2-, and the 1-O bonding scheme is more favored asmore » the cluster becomes larger. The average C-Mg coordination number increases as the cluster size increases, and at n = 16, the average C-Mg coordination number was calculated to be 5.2. The normalized dissociation energy to form monomers increases as n increases. At n = 16, the normalized dissociation energy is calculated to be 116.2 kcal/mol, as compared to the bulk value of 153.9 kcal/mol. The adiabatic reaction energies for the recombination reactions of (MgO) nclusters and CO 2 to form (MgCO 3) n were calculated. The exothermicity of the normalized recombination energy < RE >(CO 2) decreases as n increases and converged to the experimental bulk limit rapidly. The normalized recombination energy < RE >(CO 2) was calculated to be -52.2 kcal/mol for the monomer and -30.7 kcal/mol for n = 16, as compared to the experimental value of -27.9 kcal/mol for the solid phase reaction. Infrared spectra for the lowest energy isomers were calculated, and absorption bands in the previous experimental infrared studies were assigned with our density functional theory predictions. The 13C, 17O, and 25Mg NMR chemical shifts for the clusters were predicted. We found that the results provide insights into the structural and energetic transitions from nanoclusters of (MgCO 3) n to the bulk and the spectroscopic properties of clusters for their experimental identification.« less

  9. Microbial decomposition of keratin in nature-a new hypothesis of industrial relevance.

    PubMed

    Lange, Lene; Huang, Yuhong; Busk, Peter Kamp

    2016-03-01

    Discovery of keratin-degrading enzymes from fungi and bacteria has primarily focused on finding one protease with efficient keratinase activity. Recently, an investigation was conducted of all keratinases secreted from a fungus known to grow on keratinaceous materials, such as feather, horn, and hooves. The study demonstrated that a minimum of three keratinases is needed to break down keratin, an endo-acting, an exo-acting, and an oligopeptide-acting keratinase. Further, several studies have documented that disruption of sulfur bridges of the keratin structure acts synergistically with the keratinases to loosen the molecular structure, thus giving the enzymes access to their substrate, the protein structure. With such complexity, it is relevant to compare microbial keratin decomposition with the microbial decomposition of well-studied polymers such as cellulose and chitin. Interestingly, it was recently shown that the specialized enzymes, lytic polysaccharide monoxygenases (LPMOs), shown to be important for breaking the recalcitrance of cellulose and chitin, are also found in keratin-degrading fungi. A holistic view of the complex molecular self-assembling structure of keratin and knowledge about enzymatic and boosting factors needed for keratin breakdown have been used to formulate a hypothesis for mode of action of the LPMOs in keratin decomposition and for a model for degradation of keratin in nature. Testing such hypotheses and models still needs to be done. Even now, the hypothesis can serve as an inspiration for designing industrial processes for keratin decomposition for conversion of unexploited waste streams, chicken feather, and pig bristles into bioaccessible animal feed.

  10. Implementation of material decomposition using an EMCCD and CMOS-based micro-CT system.

    PubMed

    Podgorsak, Alexander R; Nagesh, Sv Setlur; Bednarek, Daniel R; Rudin, Stephen; Ionita, Ciprian N

    2017-02-11

    This project assessed the effectiveness of using two different detectors to obtain dual-energy (DE) micro-CT data for the carrying out of material decomposition. A micro-CT coupled to either a complementary metal-oxide semiconductor (CMOS) or an electron multiplying CCD (EMCCD) detector was used to acquire image data of a 3D-printed phantom with channels filled with different materials. At any instance, materials such as iohexol contrast agent, water, and platinum were selected to make up the scanned object. DE micro-CT data was acquired, and slices of the scanned object were differentiated by material makeup. The success of the decomposition was assessed quantitatively through the computation of percentage normalized root-mean-square error (%NRMSE). Our results indicate a successful decomposition of iohexol for both detectors (%NRMSE values of 1.8 for EMCCD, 2.4 for CMOS), as well as platinum (%NRMSE value of 4.7). The CMOS detector performed material decomposition on air and water on average with 7 times more %NRMSE, possibly due to the decreased sensitivity of the CMOS system. Material decomposition showed the potential to differentiate between materials such as the iohexol and platinum, perhaps opening the door for its use in the neurovascular anatomical region. Work supported by Toshiba America Medical Systems, and partially supported by NIH grant 2R01EB002873.

  11. Implementation of material decomposition using an EMCCD and CMOS-based micro-CT system

    NASA Astrophysics Data System (ADS)

    Podgorsak, Alexander R.; Nagesh, S. V. Setlur; Bednarek, Daniel R.; Rudin, Stephen; Ionita, Ciprian N.

    2017-03-01

    This project assessed the effectiveness of using two different detectors to obtain dual-energy (DE) micro-CT data for the carrying out of material decomposition. A micro-CT coupled to either a complementary metal-oxide semiconductor (CMOS) or an electron multiplying CCD (EMCCD) detector was used to acquire image data of a 3D-printed phantom with channels filled with different materials. At any instance, materials such as iohexol contrast agent, water, and platinum were selected to make up the scanned object. DE micro-CT data was acquired, and slices of the scanned object were differentiated by material makeup. The success of the decomposition was assessed quantitatively through the computation of percentage normalized root-mean-square error (%NRMSE). Our results indicate a successful decomposition of iohexol for both detectors (%NRMSE values of 1.8 for EMCCD, 2.4 for CMOS), as well as platinum (%NRMSE value of 4.7). The CMOS detector performed material decomposition on air and water on average with 7 times more %NRMSE, possibly due to the decreased sensitivity of the CMOS system. Material decomposition showed the potential to differentiate between materials such as the iohexol and platinum, perhaps opening the door for its use in the neurovascular anatomical region. Work supported by Toshiba America Medical Systems, and partially supported by NIH grant 2R01EB002873.

  12. Circular Mixture Modeling of Color Distribution for Blind Stain Separation in Pathology Images.

    PubMed

    Li, Xingyu; Plataniotis, Konstantinos N

    2017-01-01

    In digital pathology, to address color variation and histological component colocalization in pathology images, stain decomposition is usually performed preceding spectral normalization and tissue component segmentation. This paper examines the problem of stain decomposition, which is a naturally nonnegative matrix factorization (NMF) problem in algebra, and introduces a systematical and analytical solution consisting of a circular color analysis module and an NMF-based computation module. Unlike the paradigm of existing stain decomposition algorithms where stain proportions are computed from estimated stain spectra using a matrix inverse operation directly, the introduced solution estimates stain spectra and stain depths via probabilistic reasoning individually. Since the proposed method pays extra attentions to achromatic pixels in color analysis and stain co-occurrence in pixel clustering, it achieves consistent and reliable stain decomposition with minimum decomposition residue. Particularly, aware of the periodic and angular nature of hue, we propose the use of a circular von Mises mixture model to analyze the hue distribution, and provide a complete color-based pixel soft-clustering solution to address color mixing introduced by stain overlap. This innovation combined with saturation-weighted computation makes our study effective for weak stains and broad-spectrum stains. Extensive experimentation on multiple public pathology datasets suggests that our approach outperforms state-of-the-art blind stain separation methods in terms of decomposition effectiveness.

  13. Theoretical characterization of the F(2)O(3) molecule by coupled-cluster methods.

    PubMed

    Huang, Ming-Ju; Watts, John D

    2010-09-23

    Coupled-cluster calculations with extended basis sets that include noniterative connected triple excitations (CCSD(T)) have been used to study the FOOOF isomer of F(2)O(3). Second-order Moller-Plessett perturbation theory (MP2) and density-functional theory (B3LYP functional) calculations have also been performed for comparison. Two local minima of similar energy, namely, conformers of C(2) and C(s) symmetry have been located. Structures, harmonic vibrational frequencies, and standard enthalpies and free energies of formation have been calculated. The calculated bond lengths of F(2)O(3) are more characteristic of those in F(2)O and a "normal" peroxide than the unusual bond lengths in F(2)O(2). Both conformers have equal F-O and O-O bond lengths, contrary to a recent suggestion of an unsymmetrical structure. The harmonic vibrational frequencies can aid possible identification of gaseous F(2)O(3). The calculated Δ(f)H° and Δ(f)G° are 110 and 173 kJ mol(-1), respectively. These values are based on extrapolation of CCSD(T) results with augmented triple- and quadruple-ζ basis sets and are expected to be within chemical accuracy (i.e., 1 kcal mol(-1) or 4 kJ mol(-1)). F(2)O(3) is calculated to be stable to decomposition to either FO + FOO or F(2) + O(3), but unstable to decomposition to its elements, to F(2)O(2) + (1)/(2)O(2), and to F(2)O + O(2).

  14. Groupwise registration of MR brain images with tumors.

    PubMed

    Tang, Zhenyu; Wu, Yihong; Fan, Yong

    2017-08-04

    A novel groupwise image registration framework is developed for registering MR brain images with tumors. Our method iteratively estimates a normal-appearance counterpart for each tumor image to be registered and constructs a directed graph (digraph) of normal-appearance images to guide the groupwise image registration. Particularly, our method maps each tumor image to its normal appearance counterpart by identifying and inpainting brain tumor regions with intensity information estimated using a low-rank plus sparse matrix decomposition based image representation technique. The estimated normal-appearance images are groupwisely registered to a group center image guided by a digraph of images so that the total length of 'image registration paths' to be the minimum, and then the original tumor images are warped to the group center image using the resulting deformation fields. We have evaluated our method based on both simulated and real MR brain tumor images. The registration results were evaluated with overlap measures of corresponding brain regions and average entropy of image intensity information, and Wilcoxon signed rank tests were adopted to compare different methods with respect to their regional overlap measures. Compared with a groupwise image registration method that is applied to normal-appearance images estimated using the traditional low-rank plus sparse matrix decomposition based image inpainting, our method achieved higher image registration accuracy with statistical significance (p  =  7.02  ×  10 -9 ).

  15. A Generalized Framework for Reduced-Order Modeling of a Wind Turbine Wake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, Nicholas; Viggiano, Bianca; Calaf, Marc

    A reduced-order model for a wind turbine wake is sought from large eddy simulation data. Fluctuating velocity fields are combined in the correlation tensor to form the kernel of the proper orthogonal decomposition (POD). Proper orthogonal decomposition modes resulting from the decomposition represent the spatially coherent turbulence structures in the wind turbine wake; eigenvalues delineate the relative amount of turbulent kinetic energy associated with each mode. Back-projecting the POD modes onto the velocity snapshots produces dynamic coefficients that express the amplitude of each mode in time. A reduced-order model of the wind turbine wake (wakeROM) is defined through a seriesmore » of polynomial parameters that quantify mode interaction and the evolution of each POD mode coefficients. The resulting system of ordinary differential equations models the wind turbine wake composed only of the large-scale turbulent dynamics identified by the POD. Tikhonov regularization is used to recalibrate the dynamical system by adding additional constraints to the minimization seeking polynomial parameters, reducing error in the modeled mode coefficients. The wakeROM is periodically reinitialized with new initial conditions found by relating the incoming turbulent velocity to the POD mode coefficients through a series of open-loop transfer functions. The wakeROM reproduces mode coefficients to within 25.2%, quantified through the normalized root-mean-square error. A high-level view of the modeling approach is provided as a platform to discuss promising research directions, alternate processes that could benefit stability and efficiency, and desired extensions of the wakeROM.« less

  16. Normal co-ordinate analysis of 1, 8-dibromooctane

    NASA Astrophysics Data System (ADS)

    Singh, Devinder; Jaggi, Neena; Singh, Nafa

    2010-02-01

    The organic compound 1,8-dibromooctane (1,8-DBO) exists in liquid phase at ambient temperatures and has versatile synthetic applications. In its liquid phase 1,8-DBO has been expected to exist in four most probable conformations, with all its carbon atoms in the same plane, having symmetries C 2h , C i , C 2 and C 1 . In the present study a detailed vibrational analysis in terms of assignment of Fourier transform infrared (FT-IR) and Raman bands of this molecule using normal co-ordinate calculations has been done. A systematic set of symmetry co-ordinates has been constructed for this molecule and normal co-ordinate analysis is carried out using the computer program MOLVIB. The force-field transferred from already studied lower chain bromo-alkanes is subjected to refinement so as to fit the observed infrared and Raman frequencies with those of calculated ones. The potential energy distribution (PED) has also been calculated for each mode of vibration of the molecule for the assumed conformations.

  17. ChemEngine: harvesting 3D chemical structures of supplementary data from PDF files.

    PubMed

    Karthikeyan, Muthukumarasamy; Vyas, Renu

    2016-01-01

    Digital access to chemical journals resulted in a vast array of molecular information that is now available in the supplementary material files in PDF format. However, extracting this molecular information, generally from a PDF document format is a daunting task. Here we present an approach to harvest 3D molecular data from the supporting information of scientific research articles that are normally available from publisher's resources. In order to demonstrate the feasibility of extracting truly computable molecules from PDF file formats in a fast and efficient manner, we have developed a Java based application, namely ChemEngine. This program recognizes textual patterns from the supplementary data and generates standard molecular structure data (bond matrix, atomic coordinates) that can be subjected to a multitude of computational processes automatically. The methodology has been demonstrated via several case studies on different formats of coordinates data stored in supplementary information files, wherein ChemEngine selectively harvested the atomic coordinates and interpreted them as molecules with high accuracy. The reusability of extracted molecular coordinate data was demonstrated by computing Single Point Energies that were in close agreement with the original computed data provided with the articles. It is envisaged that the methodology will enable large scale conversion of molecular information from supplementary files available in the PDF format into a collection of ready- to- compute molecular data to create an automated workflow for advanced computational processes. Software along with source codes and instructions available at https://sourceforge.net/projects/chemengine/files/?source=navbar.Graphical abstract.

  18. Preparation, structure and analysis of the bonding in the molecular entity (OSO)2Li{[AlF(ORF)3]Li[Al(ORF)4]} (RF = C(CF3)3).

    PubMed

    Cameron, T Stanley; Nikiforov, Grigory B; Passmore, Jack; Rautiainen, J Mikko

    2010-03-14

    The (SO(2))(2)Li[AlF(OR(F))(3)]Li[Al(OR(F))(4)] (1) (R(F) = C(CF(3))(3)) molecular entity was obtained by thermal decomposition of Li[Al(OR(F))(4)] followed by crystallization from liquid SO(2). 1, containing two SO(2) molecules eta(1)-O coordinated to Li(+), was structurally characterized by single crystal X-ray diffraction and NMR spectroscopy in SO(2)(l). Bonding analyses of 1 (bond valency units, AIM analysis, atomic charges, bond orders) show that 1 can be either considered as a Li(OSO)(2)(+) complex stabilized by the large WCA [AlF(OR(F))(3)](-)Li(+)[Al(OR(F))(4)](-) or as consisting of 2 SO(2), 2 Li(+), [AlF(OR(F))(3)](-), and [Al(OR(F))(4)](-) joined by electrostatic interactions into the discrete molecular entity 1. The bonding between Li(+) and SO(2) molecules is shown to be almost completely attributable to monopole-induced dipole electrostatic interactions. Theoretical gas phase lithium ion affinity of SO(2) is determined to be stronger than its silver(I) ion affinity owing largely to the shorter lithium SO(2) contacts in the calculated structures that increase the electrostatic interaction.

  19. Ultra-small plutonium oxide nanocrystals: an innovative material in plutonium science.

    PubMed

    Hudry, Damien; Apostolidis, Christos; Walter, Olaf; Janssen, Arne; Manara, Dario; Griveau, Jean-Christophe; Colineau, Eric; Vitova, Tonya; Prüssmann, Tim; Wang, Di; Kübel, Christian; Meyer, Daniel

    2014-08-11

    Apart from its technological importance, plutonium (Pu) is also one of the most intriguing elements because of its non-conventional physical properties and fascinating chemistry. Those fundamental aspects are particularly interesting when dealing with the challenging study of plutonium-based nanomaterials. Here we show that ultra-small (3.2±0.9 nm) and highly crystalline plutonium oxide (PuO2 ) nanocrystals (NCs) can be synthesized by the thermal decomposition of plutonyl nitrate ([PuO2 (NO3 )2 ]⋅3 H2 O) in a highly coordinating organic medium. This is the first example reporting on the preparation of significant quantities (several tens of milligrams) of PuO2 NCs, in a controllable and reproducible manner. The structure and magnetic properties of PuO2 NCs have been characterized by a wide variety of techniques (powder X-ray diffraction (PXRD), X-ray absorption fine structure (XAFS), X-ray absorption near edge structure (XANES), TEM, IR, Raman, UV/Vis spectroscopies, and superconducting quantum interference device (SQUID) magnetometry). The current PuO2 NCs constitute an innovative material for the study of challenging problems as diverse as the transport behavior of plutonium in the environment or size and shape effects on the physics of transuranium elements. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A coordination theory for intelligent machines

    NASA Technical Reports Server (NTRS)

    Wang, Fei-Yue; Saridis, George N.

    1990-01-01

    A formal model for the coordination level of intelligent machines is established. The framework of the coordination level investigated consists of one dispatcher and a number of coordinators. The model called coordination structure has been used to describe analytically the information structure and information flow for the coordination activities in the coordination level. Specifically, the coordination structure offers a formalism to (1) describe the task translation of the dispatcher and coordinators; (2) represent the individual process within the dispatcher and coordinators; (3) specify the cooperation and connection among the dispatcher and coordinators; (4) perform the process analysis and evaluation; and (5) provide a control and communication mechanism for the real-time monitor or simulation of the coordination process. A simple procedure for the task scheduling in the coordination structure is presented. The task translation is achieved by a stochastic learning algorithm. The learning process is measured with entropy and its convergence is guaranteed. Finally, a case study of the coordination structure with three coordinators and one dispatcher for a simple intelligent manipulator system illustrates the proposed model and the simulation of the task processes performed on the model verifies the soundness of the theory.

  1. Temporal and Spatial Impact of Human Cadaver Decomposition on Soil Bacterial and Arthropod Community Structure and Function

    PubMed Central

    Singh, Baneshwar; Minick, Kevan J.; Strickland, Michael S.; Wickings, Kyle G.; Crippen, Tawni L.; Tarone, Aaron M.; Benbow, M. Eric; Sufrin, Ness; Tomberlin, Jeffery K.; Pechal, Jennifer L.

    2018-01-01

    As vertebrate carrion decomposes, there is a release of nutrient-rich fluids into the underlying soil, which can impact associated biological community structure and function. How these changes alter soil biogeochemical cycles is relatively unknown and may prove useful in the identification of carrion decomposition islands that have long lasting, focal ecological effects. This study investigated the spatial (0, 1, and 5 m) and temporal (3–732 days) dynamics of human cadaver decomposition on soil bacterial and arthropod community structure and microbial function. We observed strong evidence of a predictable response to cadaver decomposition that varies over space for soil bacterial and arthropod community structure, carbon (C) mineralization and microbial substrate utilization patterns. In the presence of a cadaver (i.e., 0 m samples), the relative abundance of Bacteroidetes and Firmicutes was greater, while the relative abundance of Acidobacteria, Chloroflexi, Gemmatimonadetes, and Verrucomicrobia was lower when compared to samples at 1 and 5 m. Micro-arthropods were more abundant (15 to 17-fold) in soils collected at 0 m compared to either 1 or 5 m, but overall, micro-arthropod community composition was unrelated to either bacterial community composition or function. Bacterial community structure and microbial function also exhibited temporal relationships, whereas arthropod community structure did not. Cumulative precipitation was more effective in predicting temporal variations in bacterial abundance and microbial activity than accumulated degree days. In the presence of the cadaver (i.e., 0 m samples), the relative abundance of Actinobacteria increased significantly with cumulative precipitation. Furthermore, soil bacterial communities and C mineralization were sensitive to the introduction of human cadavers as they diverged from baseline levels and did not recover completely in approximately 2 years. These data are valuable for understanding ecosystem function surrounding carrion decomposition islands and can be applicable to environmental bio-monitoring and forensic sciences. PMID:29354106

  2. Temporal and Spatial Impact of Human Cadaver Decomposition on Soil Bacterial and Arthropod Community Structure and Function.

    PubMed

    Singh, Baneshwar; Minick, Kevan J; Strickland, Michael S; Wickings, Kyle G; Crippen, Tawni L; Tarone, Aaron M; Benbow, M Eric; Sufrin, Ness; Tomberlin, Jeffery K; Pechal, Jennifer L

    2017-01-01

    As vertebrate carrion decomposes, there is a release of nutrient-rich fluids into the underlying soil, which can impact associated biological community structure and function. How these changes alter soil biogeochemical cycles is relatively unknown and may prove useful in the identification of carrion decomposition islands that have long lasting, focal ecological effects. This study investigated the spatial (0, 1, and 5 m) and temporal (3-732 days) dynamics of human cadaver decomposition on soil bacterial and arthropod community structure and microbial function. We observed strong evidence of a predictable response to cadaver decomposition that varies over space for soil bacterial and arthropod community structure, carbon (C) mineralization and microbial substrate utilization patterns. In the presence of a cadaver (i.e., 0 m samples), the relative abundance of Bacteroidetes and Firmicutes was greater, while the relative abundance of Acidobacteria, Chloroflexi, Gemmatimonadetes, and Verrucomicrobia was lower when compared to samples at 1 and 5 m. Micro-arthropods were more abundant (15 to 17-fold) in soils collected at 0 m compared to either 1 or 5 m, but overall, micro-arthropod community composition was unrelated to either bacterial community composition or function. Bacterial community structure and microbial function also exhibited temporal relationships, whereas arthropod community structure did not. Cumulative precipitation was more effective in predicting temporal variations in bacterial abundance and microbial activity than accumulated degree days. In the presence of the cadaver (i.e., 0 m samples), the relative abundance of Actinobacteria increased significantly with cumulative precipitation. Furthermore, soil bacterial communities and C mineralization were sensitive to the introduction of human cadavers as they diverged from baseline levels and did not recover completely in approximately 2 years. These data are valuable for understanding ecosystem function surrounding carrion decomposition islands and can be applicable to environmental bio-monitoring and forensic sciences.

  3. Evidence for Early Morphological Decomposition: Combining Masked Priming with Magnetoencephalography

    ERIC Educational Resources Information Center

    Lehtonen, Minna; Monahan, Philip J.; Poeppel, David

    2011-01-01

    Are words stored as morphologically structured representations? If so, when during word recognition are morphological pieces accessed? Recent masked priming studies support models that assume early decomposition of (potentially) morphologically complex words. The electrophysiological evidence, however, is inconsistent. We combined masked…

  4. Structure and thermal decomposition of sulfated β-cyclodextrin intercalated in a layered double hydroxide

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Wei, Min; Rao, Guoying; Evans, David G.; Duan, Xue

    2004-01-01

    The sodium salt of hexasulfated β-cyclodextrin has been synthesized and intercalated into a magnesium-aluminum layered double hydroxide by ion exchange. The structure, composition and thermal decomposition behavior of the intercalated material have been studied by variable temperature X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), inductively coupled plasma emission spectroscopy (ICP), and thermal analysis (TG-DTA) and a model for the structure has been proposed. The thermal stability of the intercalated sulfated β-cyclodextrin is significantly enhanced compared with the pure form before intercalation.

  5. Structural direction of hybrid organic-inorganic materials: Synthesis of vanadium oxyfluoride, copper vanadate, and copper molybdate solid state materials through solvuthermal and solution methods

    NASA Astrophysics Data System (ADS)

    Deburgomaster, Paul

    The vast structural complexity of inorganic oxides with structure directing organocations, nitrogen containing ligands and organophosphonate ligands was explored. The hydrothermal reaction conditions utilized herein include the variables of temperature, pH, fill volume and stoichiometry. The systems studied included: (1) the complex materials rendered from reactions of organoamine cations on the structure of vanadium oxides, oxyfluorides and fluorides. As with other systems, the influence of the mineralizer HF was not limited to pH as fluorine incorporation was not uncommon. In specific cases this coincided with reduction of vanadium sites. (2) The copper-organonitrogen ligand/vanadium oxide/aromatic phosphonate system has been studied. The rigid aromatic di- and tri-phosphonate tethers have provided a series of materials which are structurally distinct from the previously investigated aliphatic series. The inclusion of copper-coordinated nitrogen bi- and tri-dentate ligands also provided structural diversity. Product composition was highly influenced by the HF/V ratio. A similar study was conducted with the ligand 1,4-carboxy-phenylphosphonic acid. (3) The preparation of a series of bimetallic organic-inorganic hybrid materials of the M(II)/VxOy/organonitrogen ligand class was further evidence of the utility of thermodynamically driven hydrothermal synthesis. (4) While decomposition of the spherical Keplerate molybdenum clusters is encountered under hydrothermal conditions, this highly soluble form of molybdate was investigated for the development of hybrid organic-inorganic room temperature solution synthesis.

  6. Nonlinear normal vibration modes in the dynamics of nonlinear elastic systems

    NASA Astrophysics Data System (ADS)

    Mikhlin, Yu V.; Perepelkin, N. V.; Klimenko, A. A.; Harutyunyan, E.

    2012-08-01

    Nonlinear normal modes (NNMs) are a generalization of the linear normal vibrations. By the Kauderer-Rosenberg concept in the regime of the NNM all position coordinates are single-values functions of some selected position coordinate. By the Shaw-Pierre concept, the NNM is such a regime when all generalized coordinates and velocities are univalent functions of a couple of dominant (active) phase variables. The NNMs approach is used in some applied problems. In particular, the Kauderer-Rosenberg NNMs are analyzed in the dynamics of some pendulum systems. The NNMs of forced vibrations are investigated in a rotor system with an isotropic-elastic shaft. A combination of the Shaw-Pierre NNMs and the Rauscher method is used to construct the forced NNMs and the frequency responses in the rotor dynamics.

  7. [Colorimetric investigation of normal tongue and lip colors from 516 healthy adults by visible reflection spectrum].

    PubMed

    Zeng, Chang-chun; Yang, Li; Xu, Ying; Liu, Pei-pei; Guo, Shi-jun; Liu, Song-hao

    2011-09-01

    Using the data from normal tongue and lip colors of normal people which were collected by the visible reflection spectrum, we analyzed the colorimetric parameters of tongue and lip colors. In this study, 516 healthy students aging from 19 to 26 from the colleges and universities of Guangdong Province of China were taken as research subjects. After collecting the data of tongue and lip colors of the 516 subjects using visible reflectance spectroscopy, CIE XYZ tristimulus values as defined by the International Commission on Illumination in 1964 were calculated, and the colorimetric parameters of the normal tongue and lip colors were obtained, such as the CIE 1964 chromaticity coordinate, brightness, dominant wavelength and excitation purity. The results of CIE 1964 chromaticity diagram calculated on the visible reflection spectrum showed that the normal tongue color chromaticity coordinate x(10) was 0.341 3±0.008 5 and y(10) was 0.332 6±0.005 1, and the normal lip color chromaticity coordinate x(10) was 0.357 7±0.009 2 and y(10) was 0.338 3±0.005 7; the brightness Y values of the normal tongue color and lip colors were 17.96±3.78 and 19.78±3.72, the dominant wavelength values of the normal tongue color and lip color were (626.3±51.6) nm and (600.4±18.2) nm, and the excitation purity values of the normal tongue color and lip color were 0.083±0.031 and 0.144±0.036, respectively. Application of the visible reflection spectrum is a standard way to collect colorimetric data for inspection of the complexion. The investigation of chromaticity coordinates, brightness, dominant wavelength and excitation purity of the normal tongue and lip colors may offer the basic reference for diagnosing morbid complexion on the tongue and lip colors in traditional Chinese medicine.

  8. Detection of Protein Complexes Based on Penalized Matrix Decomposition in a Sparse Protein⁻Protein Interaction Network.

    PubMed

    Cao, Buwen; Deng, Shuguang; Qin, Hua; Ding, Pingjian; Chen, Shaopeng; Li, Guanghui

    2018-06-15

    High-throughput technology has generated large-scale protein interaction data, which is crucial in our understanding of biological organisms. Many complex identification algorithms have been developed to determine protein complexes. However, these methods are only suitable for dense protein interaction networks, because their capabilities decrease rapidly when applied to sparse protein⁻protein interaction (PPI) networks. In this study, based on penalized matrix decomposition ( PMD ), a novel method of penalized matrix decomposition for the identification of protein complexes (i.e., PMD pc ) was developed to detect protein complexes in the human protein interaction network. This method mainly consists of three steps. First, the adjacent matrix of the protein interaction network is normalized. Second, the normalized matrix is decomposed into three factor matrices. The PMD pc method can detect protein complexes in sparse PPI networks by imposing appropriate constraints on factor matrices. Finally, the results of our method are compared with those of other methods in human PPI network. Experimental results show that our method can not only outperform classical algorithms, such as CFinder, ClusterONE, RRW, HC-PIN, and PCE-FR, but can also achieve an ideal overall performance in terms of a composite score consisting of F-measure, accuracy (ACC), and the maximum matching ratio (MMR).

  9. Patterns of coordinated cortical remodeling during adolescence and their associations with functional specialization and evolutionary expansion.

    PubMed

    Sotiras, Aristeidis; Toledo, Jon B; Gur, Raquel E; Gur, Ruben C; Satterthwaite, Theodore D; Davatzikos, Christos

    2017-03-28

    During adolescence, the human cortex undergoes substantial remodeling to support a rapid expansion of behavioral repertoire. Accurately quantifying these changes is a prerequisite for understanding normal brain development, as well as the neuropsychiatric disorders that emerge in this vulnerable period. Past accounts have demonstrated substantial regional heterogeneity in patterns of brain development, but frequently have been limited by small samples and analytics that do not evaluate complex multivariate imaging patterns. Capitalizing on recent advances in multivariate analysis methods, we used nonnegative matrix factorization (NMF) to uncover coordinated patterns of cortical development in a sample of 934 youths ages 8-20, who completed structural neuroimaging as part of the Philadelphia Neurodevelopmental Cohort. Patterns of structural covariance (PSCs) derived by NMF were highly reproducible over a range of resolutions, and differed markedly from common gyral-based structural atlases. Moreover, PSCs were largely symmetric and showed correspondence to specific large-scale functional networks. The level of correspondence was ordered according to their functional role and position in the evolutionary hierarchy, being high in lower-order visual and somatomotor networks and diminishing in higher-order association cortex. Furthermore, PSCs showed divergent developmental associations, with PSCs in higher-order association cortex networks showing greater changes with age than primary somatomotor and visual networks. Critically, such developmental changes within PSCs were significantly associated with the degree of evolutionary cortical expansion. Together, our findings delineate a set of structural brain networks that undergo coordinated cortical thinning during adolescence, which is in part governed by evolutionary novelty and functional specialization.

  10. Patched bimetallic surfaces are active catalysts for ammonia decomposition.

    PubMed

    Guo, Wei; Vlachos, Dionisios G

    2015-10-07

    Ammonia decomposition is often used as an archetypical reaction for predicting new catalytic materials and understanding the very reason of why some reactions are sensitive on material's structure. Core-shell or surface-segregated bimetallic nanoparticles expose outstanding activity for many heterogeneously catalysed reactions but the reasons remain elusive owing to the difficulties in experimentally characterizing active sites. Here by performing multiscale simulations in ammonia decomposition on various nickel loadings on platinum (111), we show that the very high activity of core-shell structures requires patches of the guest metal to create and sustain dual active sites: nickel terraces catalyse N-H bond breaking and nickel edge sites drive atomic nitrogen association. The structure sensitivity on these active catalysts depends profoundly on reaction conditions due to kinetically competing relevant elementary reaction steps. We expose a remarkable difference in active sites between transient and steady-state studies and provide insights into optimal material design.

  11. ARMA Cholesky Factor Models for the Covariance Matrix of Linear Models.

    PubMed

    Lee, Keunbaik; Baek, Changryong; Daniels, Michael J

    2017-11-01

    In longitudinal studies, serial dependence of repeated outcomes must be taken into account to make correct inferences on covariate effects. As such, care must be taken in modeling the covariance matrix. However, estimation of the covariance matrix is challenging because there are many parameters in the matrix and the estimated covariance matrix should be positive definite. To overcomes these limitations, two Cholesky decomposition approaches have been proposed: modified Cholesky decomposition for autoregressive (AR) structure and moving average Cholesky decomposition for moving average (MA) structure, respectively. However, the correlations of repeated outcomes are often not captured parsimoniously using either approach separately. In this paper, we propose a class of flexible, nonstationary, heteroscedastic models that exploits the structure allowed by combining the AR and MA modeling of the covariance matrix that we denote as ARMACD. We analyze a recent lung cancer study to illustrate the power of our proposed methods.

  12. Synthesis and structure characterization of chromium oxide prepared by solid thermal decomposition reaction.

    PubMed

    Li, Li; Yan, Zi F; Lu, Gao Q; Zhu, Zhong H

    2006-01-12

    Mesoporous chromium oxide (Cr2O3) nanocrystals were first synthesized by the thermal decomposition reaction of Cr(NO3)3.9H2O using citric acid monohydrate (CA) as the mesoporous template agent. The texture and chemistry of chromium oxide nanocrystals were characterized by N2 adsorption-desorption isotherms, FTIR, X-ray diffraction (XRD), UV-vis, and thermoanalytical methods. It was shown that the hydrate water and CA are the crucial factors in influencing the formation of mesoporous Cr2O3 nanocrystals in the mixture system. The decomposition of CA results in the formation of a mesoporous structure with wormlike pores. The hydrate water of the mixture provides surface hydroxyls that act as binders, making the nanocrystals aggregate. The pore structures and phases of chromium oxide are affected by the ratio of precursor-to-CA, thermal temperature, and time.

  13. A Graph Based Backtracking Algorithm for Solving General CSPs

    NASA Technical Reports Server (NTRS)

    Pang, Wanlin; Goodwin, Scott D.

    2003-01-01

    Many AI tasks can be formalized as constraint satisfaction problems (CSPs), which involve finding values for variables subject to constraints. While solving a CSP is an NP-complete task in general, tractable classes of CSPs have been identified based on the structure of the underlying constraint graphs. Much effort has been spent on exploiting structural properties of the constraint graph to improve the efficiency of finding a solution. These efforts contributed to development of a class of CSP solving algorithms called decomposition algorithms. The strength of CSP decomposition is that its worst-case complexity depends on the structural properties of the constraint graph and is usually better than the worst-case complexity of search methods. Its practical application is limited, however, since it cannot be applied if the CSP is not decomposable. In this paper, we propose a graph based backtracking algorithm called omega-CDBT, which shares merits and overcomes the weaknesses of both decomposition and search approaches.

  14. Patched bimetallic surfaces are active catalysts for ammonia decomposition

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Vlachos, Dionisios G.

    2015-10-01

    Ammonia decomposition is often used as an archetypical reaction for predicting new catalytic materials and understanding the very reason of why some reactions are sensitive on material's structure. Core-shell or surface-segregated bimetallic nanoparticles expose outstanding activity for many heterogeneously catalysed reactions but the reasons remain elusive owing to the difficulties in experimentally characterizing active sites. Here by performing multiscale simulations in ammonia decomposition on various nickel loadings on platinum (111), we show that the very high activity of core-shell structures requires patches of the guest metal to create and sustain dual active sites: nickel terraces catalyse N-H bond breaking and nickel edge sites drive atomic nitrogen association. The structure sensitivity on these active catalysts depends profoundly on reaction conditions due to kinetically competing relevant elementary reaction steps. We expose a remarkable difference in active sites between transient and steady-state studies and provide insights into optimal material design.

  15. 3D tensor-based blind multispectral image decomposition for tumor demarcation

    NASA Astrophysics Data System (ADS)

    Kopriva, Ivica; Peršin, Antun

    2010-03-01

    Blind decomposition of multi-spectral fluorescent image for tumor demarcation is formulated exploiting tensorial structure of the image. First contribution of the paper is identification of the matrix of spectral responses and 3D tensor of spatial distributions of the materials present in the image from Tucker3 or PARAFAC models of 3D image tensor. Second contribution of the paper is clustering based estimation of the number of the materials present in the image as well as matrix of their spectral profiles. 3D tensor of the spatial distributions of the materials is recovered through 3-mode multiplication of the multi-spectral image tensor and inverse of the matrix of spectral profiles. Tensor representation of the multi-spectral image preserves its local spatial structure that is lost, due to vectorization process, when matrix factorization-based decomposition methods (such as non-negative matrix factorization and independent component analysis) are used. Superior performance of the tensor-based image decomposition over matrix factorization-based decompositions is demonstrated on experimental red-green-blue (RGB) image with known ground truth as well as on RGB fluorescent images of the skin tumor (basal cell carcinoma).

  16. Automated torso organ segmentation from 3D CT images using structured perceptron and dual decomposition

    NASA Astrophysics Data System (ADS)

    Nimura, Yukitaka; Hayashi, Yuichiro; Kitasaka, Takayuki; Mori, Kensaku

    2015-03-01

    This paper presents a method for torso organ segmentation from abdominal CT images using structured perceptron and dual decomposition. A lot of methods have been proposed to enable automated extraction of organ regions from volumetric medical images. However, it is necessary to adjust empirical parameters of them to obtain precise organ regions. This paper proposes an organ segmentation method using structured output learning. Our method utilizes a graphical model and binary features which represent the relationship between voxel intensities and organ labels. Also we optimize the weights of the graphical model by structured perceptron and estimate the best organ label for a given image by dynamic programming and dual decomposition. The experimental result revealed that the proposed method can extract organ regions automatically using structured output learning. The error of organ label estimation was 4.4%. The DICE coefficients of left lung, right lung, heart, liver, spleen, pancreas, left kidney, right kidney, and gallbladder were 0.91, 0.95, 0.77, 0.81, 0.74, 0.08, 0.83, 0.84, and 0.03, respectively.

  17. A Dual Super-Element Domain Decomposition Approach for Parallel Nonlinear Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Jokhio, G. A.; Izzuddin, B. A.

    2015-05-01

    This article presents a new domain decomposition method for nonlinear finite element analysis introducing the concept of dual partition super-elements. The method extends ideas from the displacement frame method and is ideally suited for parallel nonlinear static/dynamic analysis of structural systems. In the new method, domain decomposition is realized by replacing one or more subdomains in a "parent system," each with a placeholder super-element, where the subdomains are processed separately as "child partitions," each wrapped by a dual super-element along the partition boundary. The analysis of the overall system, including the satisfaction of equilibrium and compatibility at all partition boundaries, is realized through direct communication between all pairs of placeholder and dual super-elements. The proposed method has particular advantages for matrix solution methods based on the frontal scheme, and can be readily implemented for existing finite element analysis programs to achieve parallelization on distributed memory systems with minimal intervention, thus overcoming memory bottlenecks typically faced in the analysis of large-scale problems. Several examples are presented in this article which demonstrate the computational benefits of the proposed parallel domain decomposition approach and its applicability to the nonlinear structural analysis of realistic structural systems.

  18. The Living Dead: Bacterial Community Structure of a Cadaver at the Onset and End of the Bloat Stage of Decomposition

    PubMed Central

    Hyde, Embriette R.; Haarmann, Daniel P.; Lynne, Aaron M.; Bucheli, Sibyl R.; Petrosino, Joseph F.

    2013-01-01

    Human decomposition is a mosaic system with an intimate association between biotic and abiotic factors. Despite the integral role of bacteria in the decomposition process, few studies have catalogued bacterial biodiversity for terrestrial scenarios. To explore the microbiome of decomposition, two cadavers were placed at the Southeast Texas Applied Forensic Science facility and allowed to decompose under natural conditions. The bloat stage of decomposition, a stage easily identified in taphonomy and readily attributed to microbial physiology, was targeted. Each cadaver was sampled at two time points, at the onset and end of the bloat stage, from various body sites including internal locations. Bacterial samples were analyzed by pyrosequencing of the 16S rRNA gene. Our data show a shift from aerobic bacteria to anaerobic bacteria in all body sites sampled and demonstrate variation in community structure between bodies, between sample sites within a body, and between initial and end points of the bloat stage within a sample site. These data are best not viewed as points of comparison but rather additive data sets. While some species recovered are the same as those observed in culture-based studies, many are novel. Our results are preliminary and add to a larger emerging data set; a more comprehensive study is needed to further dissect the role of bacteria in human decomposition. PMID:24204941

  19. The living dead: bacterial community structure of a cadaver at the onset and end of the bloat stage of decomposition.

    PubMed

    Hyde, Embriette R; Haarmann, Daniel P; Lynne, Aaron M; Bucheli, Sibyl R; Petrosino, Joseph F

    2013-01-01

    Human decomposition is a mosaic system with an intimate association between biotic and abiotic factors. Despite the integral role of bacteria in the decomposition process, few studies have catalogued bacterial biodiversity for terrestrial scenarios. To explore the microbiome of decomposition, two cadavers were placed at the Southeast Texas Applied Forensic Science facility and allowed to decompose under natural conditions. The bloat stage of decomposition, a stage easily identified in taphonomy and readily attributed to microbial physiology, was targeted. Each cadaver was sampled at two time points, at the onset and end of the bloat stage, from various body sites including internal locations. Bacterial samples were analyzed by pyrosequencing of the 16S rRNA gene. Our data show a shift from aerobic bacteria to anaerobic bacteria in all body sites sampled and demonstrate variation in community structure between bodies, between sample sites within a body, and between initial and end points of the bloat stage within a sample site. These data are best not viewed as points of comparison but rather additive data sets. While some species recovered are the same as those observed in culture-based studies, many are novel. Our results are preliminary and add to a larger emerging data set; a more comprehensive study is needed to further dissect the role of bacteria in human decomposition.

  20. KSC-04PD-2448

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. During a simulated launch countdown/emergency simulation on Launch Pad 39A, M-113 armored personnel carriers transport workers away from the pad. In the background are the Fixed (tall) and Rotating Service Structures. To the left is the water tower that holds 300,000 gallons used during liftoffs.The four-hour exercise simulated normal launch countdown operations, with the added challenge of a fictitious event causing an evacuation of the vehicle and launch pad. It tested the teams rescue approaches on the Fixed Service Structure, slidewire basket evacuation, triage care and transportation of injured personnel to hospitals, as well as communications and coordination.

  1. The vibrationally adiabatic torsional potential energy surface of trans-stilbene

    NASA Astrophysics Data System (ADS)

    Chowdary, Praveen D.; Martinez, Todd J.; Gruebele, Martin

    2007-05-01

    The effect of vibrational Zero Point Energy (ZPE) on the torsional barriers of trans-stilbene is studied in the adiabatic approximation. The two torsional modes corresponding to phenyl rotation are explicitly separated, and the remaining modes are treated as normal coordinates. ZPE reduces the adiabatic barrier along the in-phase torsion from 198 to 13 cm -1. A one-dimensional adiabatic potential for the anti-phase torsion, including the ZPE of the in-phase torsion, reduces the adiabatic barrier from 260 to 58 cm -1. Comparison with recent electronic structure benchmark calculations suggests that vibrational corrections play a significant role in trans-stilbene's experimentally observed planar structure.

  2. Theoretical study on the vibrational spectra of methoxy- and formyl-dihydroxy- trans-stilbenes and their hydrolytic equilibria

    NASA Astrophysics Data System (ADS)

    Molnár, Viktor; Billes, Ferenc; Tyihák, Ernő; Mikosch, Hans

    2008-02-01

    Compounds formed by exchanging one of the resveratrol hydroxy groups to methoxy or formyl groups are biologically important. Quantum chemical DFT calculations were applied for the simulation of some of their properties. Their optimized structures and charge distributions were computed. Based on the calculated vibrational force constants and optimized molecular structure infrared and Raman spectra were calculated. The characteristics of the vibrational modes were determined by normal coordinate analysis. Applying the calculated thermodynamic functions also for resveratrol, methanol, formaldehyde and water, thermodynamic equilibria were calculated for the equilibria between resveratrol and its methyl and formyl substituted derivatives, respectively.

  3. 9-Triptycenecarboxylate-Bridged Diiron(II) Complexes

    PubMed Central

    Friedle, Simone; Kodanko, Jeremy J.; Fornace, Kyrstin L.; Lippard, Stephen J.

    2008-01-01

    The synthesis and characterization of diiron(II) complexes supported by 9-triptycenecarboxylate ligands (-O2CTrp) is described. The interlocking nature of the triptycenecarboxylates facilitates formation of quadruply bridged diiron(II) complexes of the type [Fe2(μ-O2CTrp)4(L)2] (L = THF, pyridine or imidazole derivative) with a paddlewheel geometry. A systematic lengthening of the Fe-Fe distance occurs with the increase in steric bulk of the neutral donor L, resulting in values of up to 3 Å without disassembly of the paddlewheel structure. Reactions with an excess of water do not lead to decomposition of the diiron(II) core, indicating that these quadruply bridged complexes are of exceptional stability. The red-colored complexes [Fe2(μ-O2CTrp)4(4-AcPy)2] (10) and [Fe2(μ-O2CTrp)4(4-CNPy)2] (11) exhibit solvent-dependent thermochromism in coordinating solvents that was studied by variable temperature UV-vis spectroscopy. Reaction of [Fe2(μ-O2CTrp)4(THF)2] with N,N,N’,N’-tetramethylethylenediamine (TMEDA), tetra-n-butyl ammonium thiocyanate, or excess 2-methylimidazole resulted in the formation of mononuclear complexes [Fe(O2CTrp)2(TMEDA)] (13), (n-Bu4N)2[Fe(O2CTrp)2(SCN)2] (14), and [Fe(O2CTrp)2(2-MeIm)2] (15) having an O4/N2 coordination sphere composition. PMID:19915653

  4. Syntheses, spectroscopic and thermal analyses of cyanide bridged heteronuclear polymeric complexes: [M(L)2Ni(CN)4]n (Ldbnd N-methylethylenediamine or N-ethylethylenediamine; Mdbnd Ni(II), Cu(II), Zn(II) or Cd(II))

    NASA Astrophysics Data System (ADS)

    Karaağaç, Dursun; Kürkçüoğlu, Güneş Süheyla

    2016-02-01

    Polymeric tetracyanonickelate(II) complexes of the type [M(L)2Ni(CN)4]n (Ldbnd N-methylethylenediamine (men) or N-ethylethylenediamine (neen); Mdbnd Ni(II), Cu(II), Zn(II) or Cd(II)) have been prepared and characterized by FT-IR, Raman spectroscopy, thermal and elemental analysis techniques. Additionally, FT-IR and Raman spectral analyses of men and neen have experimentally and theoretically investigated in the range of 4000-250 cm-1. The corresponding vibration assignments of men and neen are performed by using B3LYP density functional theory (DFT) method together with 6-31 G(d) basis set. The spectral features of the complexes suggest that the coordination environment of the M(II) ions are surrounded by the two symmetry related men and neen ligands and the two symmetry related N atom of cyanide groups, whereas the Ni(II) atoms are coordinated with a square-planar to four C atoms of the cyanide groups. Polymeric structures of the complexes consist of one dimensional alternative chains of [M(L)2]2+ and [Ni(CN)4]2- moieties. The thermal decompositions in the temperature range 30-700 °C of the complexes were investigated in the static air atmosphere.

  5. Functional and Structural Succession of Soil Microbial Communities below Decomposing Human Cadavers

    PubMed Central

    Cobaugh, Kelly L.; Schaeffer, Sean M.; DeBruyn, Jennifer M.

    2015-01-01

    The ecological succession of microbes during cadaver decomposition has garnered interest in both basic and applied research contexts (e.g. community assembly and dynamics; forensic indicator of time since death). Yet current understanding of microbial ecology during decomposition is almost entirely based on plant litter. We know very little about microbes recycling carcass-derived organic matter despite the unique decomposition processes. Our objective was to quantify the taxonomic and functional succession of microbial populations in soils below decomposing cadavers, testing the hypotheses that a) periods of increased activity during decomposition are associated with particular taxa; and b) human-associated taxa are introduced to soils, but do not persist outside their host. We collected soils from beneath four cadavers throughout decomposition, and analyzed soil chemistry, microbial activity and bacterial community structure. As expected, decomposition resulted in pulses of soil C and nutrients (particularly ammonia) and stimulated microbial activity. There was no change in total bacterial abundances, however we observed distinct changes in both function and community composition. During active decay (7 - 12 days postmortem), respiration and biomass production rates were high: the community was dominated by Proteobacteria (increased from 15.0 to 26.1% relative abundance) and Firmicutes (increased from 1.0 to 29.0%), with reduced Acidobacteria abundances (decreased from 30.4 to 9.8%). Once decay rates slowed (10 - 23 d postmortem), respiration was elevated, but biomass production rates dropped dramatically; this community with low growth efficiency was dominated by Firmicutes (increased to 50.9%) and other anaerobic taxa. Human-associated bacteria, including the obligately anaerobic Bacteroides, were detected at high concentrations in soil throughout decomposition, up to 198 d postmortem. Our results revealed the pattern of functional and compositional succession in soil microbial communities during decomposition of human-derived organic matter, provided insight into decomposition processes, and identified putative predictor populations for time since death estimation. PMID:26067226

  6. An inductance Fourier decomposition-based current-hysteresis control strategy for switched reluctance motors

    NASA Astrophysics Data System (ADS)

    Hua, Wei; Qi, Ji; Jia, Meng

    2017-05-01

    Switched reluctance machines (SRMs) have attracted extensive attentions due to the inherent advantages, including simple and robust structure, low cost, excellent fault-tolerance and wide speed range, etc. However, one of the bottlenecks limiting the SRMs for further applications is its unfavorable torque ripple, and consequently noise and vibration due to the unique doubly-salient structure and pulse-current-based power supply method. In this paper, an inductance Fourier decomposition-based current-hysteresis-control (IFD-CHC) strategy is proposed to reduce torque ripple of SRMs. After obtaining a nonlinear inductance-current-position model based Fourier decomposition, reference currents can be calculated by reference torque and the derived inductance model. Both the simulations and experimental results confirm the effectiveness of the proposed strategy.

  7. Multidisciplinary Optimization Methods for Aircraft Preliminary Design

    NASA Technical Reports Server (NTRS)

    Kroo, Ilan; Altus, Steve; Braun, Robert; Gage, Peter; Sobieski, Ian

    1994-01-01

    This paper describes a research program aimed at improved methods for multidisciplinary design and optimization of large-scale aeronautical systems. The research involves new approaches to system decomposition, interdisciplinary communication, and methods of exploiting coarse-grained parallelism for analysis and optimization. A new architecture, that involves a tight coupling between optimization and analysis, is intended to improve efficiency while simplifying the structure of multidisciplinary, computation-intensive design problems involving many analysis disciplines and perhaps hundreds of design variables. Work in two areas is described here: system decomposition using compatibility constraints to simplify the analysis structure and take advantage of coarse-grained parallelism; and collaborative optimization, a decomposition of the optimization process to permit parallel design and to simplify interdisciplinary communication requirements.

  8. Implementing Kernel Methods Incrementally by Incremental Nonlinear Projection Trick.

    PubMed

    Kwak, Nojun

    2016-05-20

    Recently, the nonlinear projection trick (NPT) was introduced enabling direct computation of coordinates of samples in a reproducing kernel Hilbert space. With NPT, any machine learning algorithm can be extended to a kernel version without relying on the so called kernel trick. However, NPT is inherently difficult to be implemented incrementally because an ever increasing kernel matrix should be treated as additional training samples are introduced. In this paper, an incremental version of the NPT (INPT) is proposed based on the observation that the centerization step in NPT is unnecessary. Because the proposed INPT does not change the coordinates of the old data, the coordinates obtained by INPT can directly be used in any incremental methods to implement a kernel version of the incremental methods. The effectiveness of the INPT is shown by applying it to implement incremental versions of kernel methods such as, kernel singular value decomposition, kernel principal component analysis, and kernel discriminant analysis which are utilized for problems of kernel matrix reconstruction, letter classification, and face image retrieval, respectively.

  9. Alkaloids May Not be Responsible for Endophyte Associated Reductions in Tall Fescue Decomposition Rates

    USDA-ARS?s Scientific Manuscript database

    1. Fungal endophyte - grass symbioses can have dramatic ecological effects, altering individual plant physiology, plant and animal community structure and function, and ecosystem processes such as litter decomposition and nutrient cycling. 2. Within the tall fescue (Schedonorus arundinaceus) - funga...

  10. A Digital Program for Calculating the Interaction Between Flexible Structures, Unsteady Aerodynamics and Active Controls

    NASA Technical Reports Server (NTRS)

    Peele, E. L.; Adams, W. M., Jr.

    1979-01-01

    A computer program, ISAC, is described which calculates the stability and response of a flexible airplane equipped with active controls. The equations of motion relative to a fixed inertial coordinate system are formulated in terms of the airplane's rigid body motion and its unrestrained normal vibration modes. Unsteady aerodynamic forces are derived from a doublet lattice lifting surface theory. The theoretical basis for the program is briefly explained together with a description of input data and output results.

  11. A comparative study of approaches to compute the field distribution of deep brain stimulation in the Hemiparkinson rat model.

    PubMed

    Bohme, Andrea; van Rienen, Ursula

    2016-08-01

    Computational modeling of the stimulating field distribution during Deep Brain Stimulation provides an opportunity to advance our knowledge of this neurosurgical therapy for Parkinson's disease. There exist several approaches to model the target region for Deep Brain Stimulation in Hemi-parkinson Rats with volume conductor models. We have described and compared the normalized mapping approach as well as the modeling with three-dimensional structures, which include curvilinear coordinates to assure an anatomically realistic conductivity tensor orientation.

  12. Characterization of alkyl carbon in forest soils by CPMAS 13C NMR spectroscopy and dipolar dephasing

    USGS Publications Warehouse

    Kogel-Knabner, I.; Hatcher, P.G.

    1989-01-01

    Samples obtained from forest soils at different stages of decomposition were treated sequentially with chloroform/methanol (extraction of lipids), sulfuric acid (hydrolysis), and sodium chlorite (delignification) to enrich them in refractory alkyl carbon. As revealed by NMR spectroscopy, this treatment yielded residues with high contents of alkyl carbon. In the NMR spectra of residues obtained from litter samples, resonances for carbohydrates are also present, indicating that these carbohydrates are tightly bound to the alkyl carbon structures. During decomposition in the soils this resistant carbohydrate fraction is lost almost completely. In the litter samples the alkyl carbon shows a dipolar dephasing behavior indicative of two structural components, a rigid and a more mobile component. As depth and decomposition increase, only the rigid component is observed. This fact could be due to selective degradation of the mobile component or to changes in molecular mobility during decomposition, e.g., because of an increase in cross linking or contact with the mineral matter of the soil.

  13. Meta-Generalis: A Novel Method for Structuring Information from Radiology Reports

    PubMed Central

    Barbosa, Flavio; Traina, Agma Jucci

    2016-01-01

    Summary Background A structured report for imaging exams aims at increasing the precision in information retrieval and communication between physicians. However, it is more concise than free text and may limit specialists’ descriptions of important findings not covered by pre-defined structures. A computational ontological structure derived from free texts designed by specialists may be a solution for this problem. Therefore, the goal of our study was to develop a methodology for structuring information in radiology reports covering specifications required for the Brazilian Portuguese language, including the terminology to be used. Methods We gathered 1,701 radiological reports of magnetic resonance imaging (MRI) studies of the lumbosacral spine from three different institutions. Techniques of text mining and ontological conceptualization of lexical units extracted were used to structure information. Ten radiologists, specialists in lumbosacral MRI, evaluated the textual superstructure and terminology extracted using an electronic questionnaire. Results The established methodology consists of six steps: 1) collection of radiology reports of a specific MRI examination; 2) textual decomposition; 3) normalization of lexical units; 4) identification of textual superstructures; 5) conceptualization of candidate-terms; and 6) evaluation of superstructures and extracted terminology by experts using an electronic questionnaire. Three different textual superstructures were identified, with terminological variations in the names of their textual categories. The number of candidate-terms conceptualized was 4,183, yielding 727 concepts. There were a total of 13,963 relationships between candidate-terms and concepts and 789 relationships among concepts. Conclusions The proposed methodology allowed structuring information in a more intuitive and practical way. Indications of three textual superstructures, extraction of lexicon units and the normalization and ontologically conceptualization were achieved while maintaining references to their respective categories and free text radiology reports. PMID:27580980

  14. Meta-generalis: A novel method for structuring information from radiology reports.

    PubMed

    Barbosa, Flavio; Traina, Agma Jucci; Muglia, Valdair Francisco

    2016-08-24

    A structured report for imaging exams aims at increasing the precision in information retrieval and communication between physicians. However, it is more concise than free text and may limit specialists' descriptions of important findings not covered by pre-defined structures. A computational ontological structure derived from free texts designed by specialists may be a solution for this problem. Therefore, the goal of our study was to develop a methodology for structuring information in radiology reports covering specifications required for the Brazilian Portuguese language, including the terminology to be used. We gathered 1,701 radiological reports of magnetic resonance imaging (MRI) studies of the lumbosacral spine from three different institutions. Techniques of text mining and ontological conceptualization of lexical units extracted were used to structure information. Ten radiologists, specialists in lumbosacral MRI, evaluated the textual superstructure and terminology extracted using an electronic questionnaire. The established methodology consists of six steps: 1) collection of radiology reports of a specific MRI examination; 2) textual decomposition; 3) normalization of lexical units; 4) identification of textual superstructures; 5) conceptualization of candidate-terms; and 6) evaluation of superstructures and extracted terminology by experts using an electronic questionnaire. Three different textual superstructures were identified, with terminological variations in the names of their textual categories. The number of candidate-terms conceptualized was 4,183, yielding 727 concepts. There were a total of 13,963 relationships between candidate-terms and concepts and 789 relationships among concepts. The proposed methodology allowed structuring information in a more intuitive and practical way. Indications of three textual superstructures, extraction of lexicon units and the normalization and ontologically conceptualization were achieved while maintaining references to their respective categories and free text radiology reports.

  15. Photo- and thermochromic and adsorption properties of porous coordination polymers based on bipyridinium carboxylate ligands.

    PubMed

    Toma, Oksana; Mercier, Nicolas; Allain, Magali; Kassiba, Abdel Adi; Bellat, Jean-Pierre; Weber, Guy; Bezverkhyy, Igor

    2015-09-21

    The zwitterionic bipyridinium carboxylate ligand 1-(4-carboxyphenyl)-4,4'-bipyridinium (hpc1) in the presence of 1,4-benzenedicarboxylate anions (BDC(2-)) and Zn(2+) ions affords three porous coordination polymers (PCPs): [Zn5(hpc1)2(BDC)4(HCO2)2]·2DMF·EtOH·H2O (1), [Zn3(hpc1)(BDC)2(HCO2)(OH)(H2O)]·DMF·EtOH·H2O (2), and [Zn10(hpc1)4(BDC)7(HCO2)2(OH)4(EtOH)2]·3DMF·3H2O (3), with the formate anions resulting from the in situ decomposition of dimethylformamide (DMF) solvent molecules. 1 and 3 are photo- and thermochromic, turning dark green as a result of the formation of bipyridinium radicals, as shown by electron paramagnetic resonance measurements. Particularly, crystals of 3 are very photosensitive, giving an eye-detectable color change upon exposure to the light of the microscope in air within 1-2 min. A very nice and interesting feature is the regular discoloration of crystals from the "edge" to the "core" upon exposition to O2 (reoxidation of organic radicals) due to the diffusion of O2 inside the pores, with this discoloration being slower in an oxygen-poor atmosphere. The formation of organic radicals is explained by an electron transfer from the oxygen atoms of the carboxylate groups to pyridinium cycles. In the structure of 3', [Zn10(hpc1)4(BDC)7(OH)6(H2O)2], resulting from the heating of sample 3 (desolvation and loss of CO molecules due to the decomposition of formate anions), no suitable donor-acceptor interaction is present, and as a consequence, this compound does not exhibit any chromic properties. The presence of permanent porosity in desolvated 1, 2, and 3' is confirmed by methanol adsorption at 25 °C with the adsorbed amount reaching 5 wt % for 1, 10 wt % for 3', and 13 wt % for 2. The incomplete desorption of methanol at 25 °C under vacuum points to strong host-guest interactions.

  16. Neutron Polarization Analysis for Biphasic Solvent Extraction Systems

    DOE PAGES

    Motokawa, Ryuhei; Endo, Hitoshi; Nagao, Michihiro; ...

    2016-06-16

    Here we performed neutron polarization analysis (NPA) of extracted organic phases containing complexes, comprised of Zr(NO 3) 4 and tri-n-butyl phosphate, which enabled decomposition of the intensity distribution of small-angle neutron scattering (SANS) into the coherent and incoherent scattering components. The coherent scattering intensity, containing structural information, and the incoherent scattering compete over a wide range of magnitude of scattering vector, q, specifically when q is larger than q* ≈ 1/R g, where R g is the radius of gyration of scatterer. Therefore, it is important to determine the incoherent scattering intensity exactly to perform an accurate structural analysis frommore » SANS data when R g is small, such as the aforementioned extracted coordination species. Although NPA is the best method for evaluating the incoherent scattering component for accurately determining the coherent scattering in SANS, this method is not used frequently in SANS data analysis because it is technically challenging. In this study, we successfully demonstrated that experimental determination of the incoherent scattering using NPA is suitable for sample systems containing a small scatterer with a weak coherent scattering intensity, such as extracted complexes in biphasic solvent extraction systems.« less

  17. Alkali and alkaline earth metal salts of tetrazolone: structurally interesting and excellently thermostable.

    PubMed

    He, Piao; Wu, Le; Wu, Jin-Ting; Yin, Xin; Gozin, Michael; Zhang, Jian-Guo

    2017-07-04

    Tetrazolone (5-oxotetrazole) was synthesized by a moderate strategy through three steps (addition, cyclization and catalytic hydrogenation) avoiding the unstable intermediate diazonium, as reported during the previous preparation. Alkali and alkaline earth metal salts with lithium (1), sodium (2), potassium (3), rubidium (4) caesium (5), magnesium (6), calcium (7), strontium (8) and barium (9) were prepared and fully characterized using elemental analysis, IR and NMR spectroscopy, DSC and TG analysis. All metal salts were characterized via single-crystal X-ray diffraction. They crystallize in common space groups with high densities ranging from 1.479 (1) to 3.060 g cm -3 (5). Furthermore, the crystal structures of 7, 8 and 9 reveal interesting porous energetic coordination polymers with strong hydrogen bond interactions. All new salts have good thermal stabilities with decomposition temperature between 215.0 °C (4) and 328.2 °C (7), significantly higher than that of the reported nitrogen-rich salt neutral tetrazolone. The sensitivities towards impact and friction were tested using standard methods, and all the tetrazolone-based compounds investigated can be classified into insensitive. The flame test of these metal salts supports their potential use as perchlorate-free pyrotechnics or eco-friendly insensitive energetic materials.

  18. Inundation, vegetation, and sediment effects on litter decomposition in Pacific Coast tidal marshes

    USGS Publications Warehouse

    Janousek, Christopher; Buffington, Kevin J.; Guntenspergen, Glenn R.; Thorne, Karen M.; Dugger, Bruce D.; Takekawa, John Y.

    2017-01-01

    The cycling and sequestration of carbon are important ecosystem functions of estuarine wetlands that may be affected by climate change. We conducted experiments across a latitudinal and climate gradient of tidal marshes in the northeast Pacific to evaluate the effects of climate- and vegetation-related factors on litter decomposition. We manipulated tidal exposure and litter type in experimental mesocosms at two sites and used variation across marsh landscapes at seven sites to test for relationships between decomposition and marsh elevation, soil temperature, vegetation composition, litter quality, and sediment organic content. A greater than tenfold increase in manipulated tidal inundation resulted in small increases in decomposition of roots and rhizomes of two species, but no significant change in decay rates of shoots of three other species. In contrast, across the latitudinal gradient, decomposition rates of Salicornia pacifica litter were greater in high marsh than in low marsh. Rates were not correlated with sediment temperature or organic content, but were associated with plant assemblage structure including above-ground cover, species composition, and species richness. Decomposition rates also varied by litter type; at two sites in the Pacific Northwest, the grasses Deschampsia cespitosa and Distichlis spicata decomposed more slowly than the forb S. pacifica. Our data suggest that elevation gradients and vegetation structure in tidal marshes both affect rates of litter decay, potentially leading to complex spatial patterns in sediment carbon dynamics. Climate change may thus have direct effects on rates of decomposition through increased inundation from sea-level rise and indirect effects through changing plant community composition.

  19. Linear stability analysis of detonations via numerical computation and dynamic mode decomposition

    NASA Astrophysics Data System (ADS)

    Kabanov, Dmitry I.; Kasimov, Aslan R.

    2018-03-01

    We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.

  20. Five novel lanthanide complexes with 2-chloroquinoline-4-carboxylic acid and 1,10-phenanthroline: Crystal structures, molecular spectra, thermal properties and bacteriostatic activities

    NASA Astrophysics Data System (ADS)

    Wang, Ye; Jin, Cheng-Wei; He, Shu-Mei; Ren, Ning; Zhang, Jian-Jun

    2016-12-01

    Five novel lanthanide complexes [Ln2(2-ClQL)6(phen)2(H2O)2]·2H2O (Ln = Pr(1), Sm(2), Eu(3), Ho(4), Er(5)); 2-ClQL: 2-chloroquinoline-4-carboxylate; phen: 1,10-phenanthroline; were synthesized by conventional solution method at room temperature and characterized via elemental analysis, powder x-ray diffraction, Infrared spectroscopy and Raman spectrometry. The results indicate that complexes 1-5 are isostructural, and each Ln3+ ion is eight-coordinated adopting a distorted square antiprismatic molecular geometry. Binuclear complex 1 are stitched together via hydrogen bonding interactions to form 1D chains, and further to form 2D sheets by the π-π interactions. Luminescence investigation reveals that complex 3 displays strong red emission. TG/DTG-FTIR, reveal the thermal decomposition processes and products of title complexes. The bacteriostatic activities of the complexes were evaluated against Candida albicans, Escherichia coli, and Staphylococcus aureus.

  1. Generations of orthogonal surface coordinates

    NASA Technical Reports Server (NTRS)

    Blottner, F. G.; Moreno, J. B.

    1980-01-01

    Two generation methods were developed for three dimensional flows where the computational domain normal to the surface is small. With this restriction the coordinate system requires orthogonality only at the body surface. The first method uses the orthogonal condition in finite-difference form to determine the surface coordinates with the metric coefficients and curvature of the coordinate lines calculated numerically. The second method obtains analytical expressions for the metric coefficients and for the curvature of the coordinate lines.

  2. Integrated aerodynamic/dynamic/structural optimization of helicopter rotor blades using multilevel decomposition

    NASA Technical Reports Server (NTRS)

    Walsh, Joanne L.; Young, Katherine C.; Pritchard, Jocelyn I.; Adelman, Howard M.; Mantay, Wayne R.

    1995-01-01

    This paper describes an integrated aerodynamic/dynamic/structural (IADS) optimization procedure for helicopter rotor blades. The procedure combines performance, dynamics, and structural analyses with a general-purpose optimizer using multilevel decomposition techniques. At the upper level, the structure is defined in terms of global quantities (stiffness, mass, and average strains). At the lower level, the structure is defined in terms of local quantities (detailed dimensions of the blade structure and stresses). The IADS procedure provides an optimization technique that is compatible with industrial design practices in which the aerodynamic and dynamic designs are performed at a global level and the structural design is carried out at a detailed level with considerable dialog and compromise among the aerodynamic, dynamic, and structural groups. The IADS procedure is demonstrated for several examples.

  3. Multilevel decomposition approach to integrated aerodynamic/dynamic/structural optimization of helicopter rotor blades

    NASA Technical Reports Server (NTRS)

    Walsh, Joanne L.; Young, Katherine C.; Pritchard, Jocelyn I.; Adelman, Howard M.; Mantay, Wayne R.

    1994-01-01

    This paper describes an integrated aerodynamic, dynamic, and structural (IADS) optimization procedure for helicopter rotor blades. The procedure combines performance, dynamics, and structural analyses with a general purpose optimizer using multilevel decomposition techniques. At the upper level, the structure is defined in terms of local quantities (stiffnesses, mass, and average strains). At the lower level, the structure is defined in terms of local quantities (detailed dimensions of the blade structure and stresses). The IADS procedure provides an optimization technique that is compatible with industrial design practices in which the aerodynamic and dynamic design is performed at a global level and the structural design is carried out at a detailed level with considerable dialogue and compromise among the aerodynamic, dynamic, and structural groups. The IADS procedure is demonstrated for several cases.

  4. Density functional theory study of HfCl4, ZrCl4, and Al(CH3)3 decomposition on hydroxylated SiO2: Initial stage of high-k atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Jeloaica, L.; Estève, A.; Djafari Rouhani, M.; Estève, D.

    2003-07-01

    The initial stage of atomic layer deposition of HfO2, ZrO2, and Al2O3 high-k films, i.e., the decomposition of HfCl4, ZrCl4, and Al(CH3)3 precursor molecules on an OH-terminated SiO2 surface, is investigated within density functional theory. The energy barriers are determined using artificial activation of vibrational normal modes. For all precursors, reaction proceeds through the formation of intermediate complexes that have equivalent formation energies (˜-0.45 eV), and results in HCl and CH4 formation with activation energies of 0.88, 0.91, and 1.04 eV for Hf, Zr, and Al based precursors, respectively. The reaction product of Al(CH3)3 decomposition is found to be more stable (by -1.45 eV) than the chemisorbed intermediate complex compared to the endothermic decomposition of HfCl4 and ZrCl4 chemisorbed precursors (0.26 and 0.29 eV, respectively).

  5. A Taphonomic Study Exploring the Differences in Decomposition Rate and Manner between Frozen and Never Frozen Domestic Pigs (Sus scrofa).

    PubMed

    Roberts, Lindsey G; Dabbs, Gretchen R

    2015-05-01

    This research examined differences in decomposition rate and manner of domestic pig subjects (Sus scrofa) in never frozen (control) and previously frozen (experimental) research conditions. Eight control and experimental subjects were placed in an identical outdoor research environment. Daily quantitative and qualitative measurements were collected: abdominal circumference, total body score (TBS), temperature, photographs, descriptive decomposition stages, and visual observations. Field necropsies were performed at accumulated degree days (ADD) between 50 and 300 (Celsius). Paired samples t-tests of ADD to TBS >3.0, TBS >9.5, and TBS >16.0 indicate the rate of decomposition of experimental subjects was significantly slower than controls at both TBS >3 and >9.5 (p = 0.003 and p = 0.002, respectively). A suite of qualitative indicators of predecomposition freezing is also reported. The differences between experimental and control subjects suggest previously frozen subjects should not be used in taphonomic research, as results do not accurately reflect the "normal" taphonomic condition. © 2015 American Academy of Forensic Sciences.

  6. Coordination polymer-derived nano-sized zinc ferrite with excellent performance in nitro-explosive detection.

    PubMed

    Singha, Debal Kanti; Mahata, Partha

    2017-08-29

    Herein, a mixed metal coordination polymer, {(H 2 pip)[Zn 1/3 Fe 2/3 (pydc-2,5) 2 (H 2 O)]·2H 2 O} 1 {where H 2 pip = piperazinediium and pydc-2,5 = pyridine-2,5-dicarboxylate}, was successfully synthesized using a hydrothermal technique. To confirm the structure and phase purity of 1, single crystals of an isomorphous pure Fe compound, {(H 2 pip)[Fe(pydc-2,5) 2 (H 2 O)]·2H 2 O} 1a, were synthesized based on similar synthetic conditions. Single crystal X-ray data of 1a confirmed the one-dimensional anionic metal-organic coordination polymer hydrogen bonded with protonated piprazine (piperazinediium) and lattice water molecules. The phase purity of 1 and 1a were confirmed via powder X-ray diffraction. Compound 1 was systematically characterized using IR, TGA, SEM, and EDX elemental mapping analysis. Compound 1 was used as a single source precursor for the preparation of nano-sized ZnFe 2 O 4 via thermal decomposition. The as-obtained ZnFe 2 O 4 was fully characterized using PXRD, SEM, TEM, and EDX elemental mapping analysis. It was found that ZnFe 2 O 4 was formed in its pure form with particle size in the nano-dimension. The aqueous dispersion of nano-sized ZnFe 2 O 4 exhibits a strong emission at 402 nm upon excitation at 310 nm. This emissive property was employed for luminescence-based detection of nitroaromatic explosives in an aqueous medium through luminescence quenching for the first time. Importantly, selective detections have been observed for phenolic nitroaromatics based on differential luminescence quenching behaviour along with a detection limit of 57 ppb for 2,4,6-trinitrophenol (TNP) in water.

  7. Reaction mechanism of the ε subunit of E. coli DNA polymerase III: Insights into active site metal coordination and catalytically significant residues

    PubMed Central

    Cisneros, G. Andrés; Perera, Lalith; Schaaper, Roel M.; Pedersen, Lars C.; London, Robert E.; Pedersen, Lee G.; Darden, Thomas A.

    2009-01-01

    The 28kDa ε subunit of Escherichia coli DNA polymerase III is the exonucleotidic proofreader responsible for editing polymerase insertion errors. Here, we study the mechanism by which ε carries out the exonuclease activity. We performed quantum mechanics/molecular mechanics calculations on the N–terminal domain containing the exonuclease activity. Both the free–ε and a complex, ε bound to a θ homolog (HOT), were studied. For the ε–HOT complex, Mg2+ or Mn2+ were investigated as the essential divalent metal cofactors, while only Mg2+ was used for free–ε. In all calculations, a water molecule bound to the catalytic metal acts as the nucleophile for the hydrolysis of the phosphate bond. Initially, a direct proton transfer to H162 is observed. Subsequently, the nucleophilic attack takes place, followed by a second proton transfer to E14. Our results show that the reaction catalyzed with Mn2+ is faster than with Mg2+, in agreement with experiment. In addition, the ε–HOT complex shows a slightly lower energy barrier compared to free–ε. In all cases the catalytic metal is observed to be penta–coordinated. Charge and frontier orbital analyses suggest that charge transfer may stabilize the penta–coordination. Energy decomposition analysis to study the contribution of each residue to catalysis suggests that there are several important residues. Among these, H98, D103, D129 and D146 have been implicated in catalysis by mutagenesis studies. Some of these residues were found to be structurally conserved on human TREX1, the exonuclease domains from E. coli DNA–Pol I, and the DNA polymerase of bacteriophage RB69. PMID:19119875

  8. Distributed Prognostics based on Structural Model Decomposition

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew J.; Bregon, Anibal; Roychoudhury, I.

    2014-01-01

    Within systems health management, prognostics focuses on predicting the remaining useful life of a system. In the model-based prognostics paradigm, physics-based models are constructed that describe the operation of a system and how it fails. Such approaches consist of an estimation phase, in which the health state of the system is first identified, and a prediction phase, in which the health state is projected forward in time to determine the end of life. Centralized solutions to these problems are often computationally expensive, do not scale well as the size of the system grows, and introduce a single point of failure. In this paper, we propose a novel distributed model-based prognostics scheme that formally describes how to decompose both the estimation and prediction problems into independent local subproblems whose solutions may be easily composed into a global solution. The decomposition of the prognostics problem is achieved through structural decomposition of the underlying models. The decomposition algorithm creates from the global system model a set of local submodels suitable for prognostics. Independent local estimation and prediction problems are formed based on these local submodels, resulting in a scalable distributed prognostics approach that allows the local subproblems to be solved in parallel, thus offering increases in computational efficiency. Using a centrifugal pump as a case study, we perform a number of simulation-based experiments to demonstrate the distributed approach, compare the performance with a centralized approach, and establish its scalability. Index Terms-model-based prognostics, distributed prognostics, structural model decomposition ABBREVIATIONS

  9. The molecular basis of induction and formation of tunneling nanotubes.

    PubMed

    Kimura, Shunsuke; Hase, Koji; Ohno, Hiroshi

    2013-04-01

    Tunneling nanotubes (TNTs) and associated structures are recently recognized structures for intercellular communication. They are F-actin-containing thin protrusions of the plasma membrane of a cell and allow a direct physical connection to the plasma membranes of remote cells. TNTs and associated structures serve as mediators for intercellular transfer of organelles as well as membrane components and cytoplasmic molecules. Moreover, several pathogens have been shown to exploit these structures to spread among cells. Because of their contribution to normal cellular functions and importance in pathological conditions, studies on TNTs and related structures have accelerated over the past few years. These studies have revealed key molecules for their induction and/or formation; HIV Nef and M-Sec can induce the formation of TNTs in coordination with the remodeling of the actin cytoskeleton and vesicle trafficking.

  10. Velocity boundary conditions for vorticity formulations of the incompressible Navier-Stokes equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kempka, S.N.; Strickland, J.H.; Glass, M.W.

    1995-04-01

    formulation to satisfy velocity boundary conditions for the vorticity form of the incompressible, viscous fluid momentum equations is presented. The tangential and normal components of the velocity boundary condition are satisfied simultaneously by creating vorticity adjacent to boundaries. The newly created vorticity is determined using a kinematical formulation which is a generalization of Helmholtz` decomposition of a vector field. Though it has not been generally recognized, these formulations resolve the over-specification issue associated with creating voracity to satisfy velocity boundary conditions. The generalized decomposition has not been widely used, apparently due to a lack of a useful physical interpretation. Anmore » analysis is presented which shows that the generalized decomposition has a relatively simple physical interpretation which facilitates its numerical implementation. The implementation of the generalized decomposition is discussed in detail. As an example the flow in a two-dimensional lid-driven cavity is simulated. The solution technique is based on a Lagrangian transport algorithm in the hydrocode ALEGRA. ALEGRA`s Lagrangian transport algorithm has been modified to solve the vorticity transport equation and the generalized decomposition, thus providing a new, accurate method to simulate incompressible flows. This numerical implementation and the new boundary condition formulation allow vorticity-based formulations to be used in a wider range of engineering problems.« less

  11. The decomposition of mixed oxide Ag2Cu2O3: Structural features and the catalytic properties in CO and C2H4 oxidation

    NASA Astrophysics Data System (ADS)

    Svintsitskiy, Dmitry A.; Kardash, Tatyana Yu.; Slavinskaya, Elena M.; Stonkus, Olga A.; Koscheev, Sergei V.; Boronin, Andrei I.

    2018-01-01

    The mixed silver-copper oxide Ag2Cu2O3 with a paramelaconite crystal structure is a promising material for catalytic applications. The as-prepared sample of Ag2Cu2O3 consisted of brick-like particles extended along the [001] direction. A combination of physicochemical techniques such as TEM, XPS and XRD was applied to investigate the structural features of this mixed silver-copper oxide. The thermal stability of Ag2Cu2O3 was investigated using in situ XRD under different reaction conditions, including a catalytic CO + O2 mixture. The first step of Ag2Cu2O3 decomposition was accompanied by the appearance of ensembles consisting of silver nanoparticles with sizes of 5-15 nm. Silver nanoparticles were strongly oriented to each other and to the surface of the initial Ag2Cu2O3 bricks. Based on the XRD data, it was shown that the release of silver occurred along the a and b axes of the paramelaconite structure. Partial decomposition of Ag2Cu2O3 accompanied by the formation of silver nanoparticles was observed during prolonged air storage under ambient conditions. The high reactivity is discussed as a reason for spontaneous decomposition during Ag2Cu2O3 storage. The full decomposition of the mixed oxide into metallic silver and copper (II) oxide took place at temperatures higher than 300 °C regardless of the nature of the reaction medium (helium, air, CO + O2). Catalytic properties of partially and fully decomposed samples of mixed silver-copper oxide were measured in low-temperature CO oxidation and C2H4 epoxidation reactions.

  12. Development of a high-speed nanoprofiler using normal vector tracing

    NASA Astrophysics Data System (ADS)

    Kitayama, T.; Matsumura, H.; Usuki, K.; Kojima, T.; Uchikoshi, J.; Higashi, Y.; Endo, K.

    2012-09-01

    A new high-speed nanoprofiler was developed in this study. This profiler measures normal vectors and their coordinates on the surface of a specimen. Each normal vector and coordinate is determined by making the incident light path and the reflected light path coincident using 5-axis controlled stages. This is ensured by output signal of quadrant photo diode (QPD). From the acquired normal vectors and their coordinates, the three-dimensional shape is calculated by a reconstruction algorithm based on least-squares. In this study, a concave spherical mirror with a 400 mm radius of curvature was measured. As a result, a peak of 30 nm PV was observed at the center of the mirror. Measurement repeatability was 1 nm. In addition, cross-comparison with a Fizeau interferometer was implemented and the results were consistent within 10 nm. In particular, the high spatial frequency profile was highly consistent, and any differences were considered to be caused by systematic errors.

  13. More of the same? In situ leaf and root decomposition rates do not vary between 80 native and nonnative deciduous forest species.

    PubMed

    Jo, Insu; Fridley, Jason D; Frank, Douglas A

    2016-01-01

    Invaders often have greater rates of production and produce more labile litter than natives. The increased litter quantity and quality of invaders should increase nutrient cycling through faster litter decomposition. However, the limited number of invasive species that have been included in decomposition studies has hindered the ability to generalize their impacts on decomposition rates. Further, previous decomposition studies have neglected roots. We measured litter traits and decomposition rates of leaves for 42 native and 36 nonnative woody species, and those of fine roots for 23 native and 25 nonnative species that occur in temperate deciduous forests throughout the Eastern USA. Among the leaf and root traits that differed between native and invasive species, only leaf nitrogen was significantly associated with decomposition rate. However, native and nonnative species did not differ systematically in leaf and root decomposition rates. We found that among the parameters measured, litter decomposer activity was driven by litter chemical quality rather than tissue density and structure. Our results indicate that litter decomposition rate per se is not a pathway by which forest woody invasive species affect North American temperate forest soil carbon and nutrient processes. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  14. Obesity and motor coordination ability in Taiwanese children with and without developmental coordination disorder.

    PubMed

    Zhu, Yi-Ching; Wu, Sheng K; Cairney, John

    2011-01-01

    The purpose of this study was to investigate the associations between obesity and motor coordination ability in Taiwanese children with and without developmental coordination disorder (DCD). 2029 children (1078 boys, 951 girls) aged nine to ten years were chosen randomly from 14 elementary schools across Taiwan. We used bioelectrical impedance analysis to measure percentage of body fat (PBF) and the Movement Assessment Battery for Children test (MABC test) to evaluate the motor coordination ability. Using cut-off points based on PBF from past studies, boys and girls were divided into obese, overweight and normal-weight groups, respectively. In boys, total impairment scores and scores on balance subtest in the MABC were significantly higher in the obese and overweight groups when compared against the normal-weight group. Girls in the obese and the overweight groups had higher balance impairment scores than those of the normal-weight group. Among boys, the prevalence of obesity was highest in the DCD group, when compared to the borderline DCD and TD boys. A higher percentage of DCD girls were overweight and obese than TD girls. Obesity may be associated with poor motor coordination ability among boys and girls, and particularly in relation to balance ability. Children with DCD may have a higher risk to be overweight or obese in Taiwan. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Are litter decomposition and fire linked through plant species traits?

    PubMed

    Cornelissen, Johannes H C; Grootemaat, Saskia; Verheijen, Lieneke M; Cornwell, William K; van Bodegom, Peter M; van der Wal, René; Aerts, Rien

    2017-11-01

    Contents 653 I. 654 II. 657 III. 659 IV. 661 V. 662 VI. 663 VII. 665 665 References 665 SUMMARY: Biological decomposition and wildfire are connected carbon release pathways for dead plant material: slower litter decomposition leads to fuel accumulation. Are decomposition and surface fires also connected through plant community composition, via the species' traits? Our central concept involves two axes of trait variation related to decomposition and fire. The 'plant economics spectrum' (PES) links biochemistry traits to the litter decomposability of different fine organs. The 'size and shape spectrum' (SSS) includes litter particle size and shape and their consequent effect on fuel bed structure, ventilation and flammability. Our literature synthesis revealed that PES-driven decomposability is largely decoupled from predominantly SSS-driven surface litter flammability across species; this finding needs empirical testing in various environmental settings. Under certain conditions, carbon release will be dominated by decomposition, while under other conditions litter fuel will accumulate and fire may dominate carbon release. Ecosystem-level feedbacks between decomposition and fire, for example via litter amounts, litter decomposition stage, community-level biotic interactions and altered environment, will influence the trait-driven effects on decomposition and fire. Yet, our conceptual framework, explicitly comparing the effects of two plant trait spectra on litter decomposition vs fire, provides a promising new research direction for better understanding and predicting Earth surface carbon dynamics. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  16. Direct observation of nanowire growth and decomposition.

    PubMed

    Rackauskas, Simas; Shandakov, Sergey D; Jiang, Hua; Wagner, Jakob B; Nasibulin, Albert G

    2017-09-26

    Fundamental concepts of the crystal formation suggest that the growth and decomposition are determined by simultaneous embedding and removal of the atoms. Apparently, by changing the crystal formation conditions one can switch the regimes from the growth to decomposition. To the best of our knowledge, so far this has been only postulated, but never observed at the atomic level. By means of in situ environmental transmission electron microscopy we monitored and examined the atomic layer transformation at the conditions of the crystal growth and its decomposition using CuO nanowires selected as a model object. The atomic layer growth/decomposition was studied by varying an O 2 partial pressure. Three distinct regimes of the atomic layer evolution were experimentally observed: growth, transition and decomposition. The transition regime, at which atomic layer growth/decomposition switch takes place, is characterised by random nucleation of the atomic layers on the growing {111} surface. The decomposition starts on the side of the nanowire by removing the atomic layers without altering the overall crystal structure, which besides the fundamental importance offers new possibilities for the nanowire manipulation. Understanding of the crystal growth kinetics and nucleation at the atomic level is essential for the precise control of 1D crystal formation.

  17. Morphological Decomposition in Reading Hebrew Homographs

    ERIC Educational Resources Information Center

    Miller, Paul; Liran-Hazan, Batel; Vaknin, Vered

    2016-01-01

    The present work investigates whether and how morphological decomposition processes bias the reading of Hebrew heterophonic homographs, i.e., unique orthographic patterns that are associated with two separate phonological, semantic entities depicted by means of two morphological structures (linear and nonlinear). In order to reveal the nature of…

  18. Data-driven spectral filters for decomposing the streamwise turbulent kinetic energy in turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Baars, Woutijn J.; Hutchins, Nicholas; Marusic, Ivan

    2017-11-01

    An organization in wall-bounded turbulence is evidenced by the classification of distinctly different flow structures, including large-scale motions such as hairpin packets and very large-scale motions or superstructures. In conjunction with less organized turbulence, these flow structures all contribute to the streamwise turbulent kinetic energy . Since different class structures comprise dissimilar scalings of their overlapping imprints in the streamwise velocity spectra, their coexistence complicates the interpretation of the wall-normal trend in and its Reynolds number dependence. Via coherence analyses of two-point data in boundary layers we derive spectral filters for stochastically decomposing the streamwise spectra into sub-components, representing different types of statistical flow structures. It is also explored how the decomposition reflects the spectral break-down following the modeling attempts of Perry et al. 1986 and Marusic & Perry 1995. In the process we reveal a universal wall-scaling for a portion of the outer-region turbulence that is coherent with the near-wall region for Reτ O(103) to O(106) , which is described as a wall-attached self-similar structure embedded within the logarithmic region.

  19. Effect of Copper Oxide, Titanium Dioxide, and Lithium Fluoride on the Thermal Behavior and Decomposition Kinetics of Ammonium Nitrate

    NASA Astrophysics Data System (ADS)

    Vargeese, Anuj A.; Mija, S. J.; Muralidharan, Krishnamurthi

    2014-07-01

    Ammonium nitrate (AN) is crystallized along with copper oxide, titanium dioxide, and lithium fluoride. Thermal kinetic constants for the decomposition reaction of the samples were calculated by model-free (Friedman's differential and Vyzovkins nonlinear integral) and model-fitting (Coats-Redfern) methods. To determine the decomposition mechanisms, 12 solid-state mechanisms were tested using the Coats-Redfern method. The results of the Coats-Redfern method show that the decomposition mechanism for all samples is the contracting cylinder mechanism. The phase behavior of the obtained samples was evaluated by differential scanning calorimetry (DSC), and structural properties were determined by X-ray powder diffraction (XRPD). The results indicate that copper oxide modifies the phase transition behavior and can catalyze AN decomposition, whereas LiF inhibits AN decomposition, and TiO2 shows no influence on the rate of decomposition. Possible explanations for these results are discussed. Supplementary materials are available for this article. Go to the publisher's online edition of the Journal of Energetic Materials to view the free supplemental file.

  20. A flexible model for multivariate interval-censored survival times with complex correlation structure.

    PubMed

    Falcaro, Milena; Pickles, Andrew

    2007-02-10

    We focus on the analysis of multivariate survival times with highly structured interdependency and subject to interval censoring. Such data are common in developmental genetics and genetic epidemiology. We propose a flexible mixed probit model that deals naturally with complex but uninformative censoring. The recorded ages of onset are treated as possibly censored ordinal outcomes with the interval censoring mechanism seen as arising from a coarsened measurement of a continuous variable observed as falling between subject-specific thresholds. This bypasses the requirement for the failure times to be observed as falling into non-overlapping intervals. The assumption of a normal age-of-onset distribution of the standard probit model is relaxed by embedding within it a multivariate Box-Cox transformation whose parameters are jointly estimated with the other parameters of the model. Complex decompositions of the underlying multivariate normal covariance matrix of the transformed ages of onset become possible. The new methodology is here applied to a multivariate study of the ages of first use of tobacco and first consumption of alcohol without parental permission in twins. The proposed model allows estimation of the genetic and environmental effects that are shared by both of these risk behaviours as well as those that are specific. 2006 John Wiley & Sons, Ltd.

  1. Obtaining aluminas from the thermal decomposition of their different precursors: An {sup 27}Al MAS NMR and X-ray powder diffraction studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chagas, L.H.; De Carvalho, G.S.G.; San Gil, R.A.S.

    2014-01-01

    Graphical abstract: - Highlights: • We synthesized three precursors of alumina from different methods. • The calcination of the precursors generated several alumina polymorphs. • XRD and NMR were used for structural investigation of the polymorphs. • The synthesis route determines the structural and textural properties of the solids. - Abstract: A commercial sample of Boehmite was used as precursor of alumina polymorphs. For comparison, three other precursors were synthesized from different methods. Particularly, the use of excess of urea promoted a very crystalline form of basic aluminum carbonate. The characteristics of the four precursors were investigated by thermal, vibrationalmore » and X-ray powder diffraction (XRD) analysis. Additionally, the nuclear magnetic resonance, with magic angle spinning ({sup 27}Al MAS NMR), was used to verify the coordination of aluminum cations. Each precursor was calcined at various temperatures generating alumina polymorphs, which were structurally analyzed by XRD and {sup 27}Al MAS NMR. Due to interest in catalysis supports, special attention was given to the γ-Al{sub 2}O{sub 3} phase, which in addition to structural investigation was subjected to textural analysis. The results showed that, from different synthesis procedures and common route of calcination, one can obtain materials with the same composition but with different structural and textural properties, which in turn can significantly influence the performance of a supported catalyst.« less

  2. Image characterization by fractal descriptors in variational mode decomposition domain: Application to brain magnetic resonance

    NASA Astrophysics Data System (ADS)

    Lahmiri, Salim

    2016-08-01

    The main purpose of this work is to explore the usefulness of fractal descriptors estimated in multi-resolution domains to characterize biomedical digital image texture. In this regard, three multi-resolution techniques are considered: the well-known discrete wavelet transform (DWT) and the empirical mode decomposition (EMD), and; the newly introduced; variational mode decomposition mode (VMD). The original image is decomposed by the DWT, EMD, and VMD into different scales. Then, Fourier spectrum based fractal descriptors is estimated at specific scales and directions to characterize the image. The support vector machine (SVM) was used to perform supervised classification. The empirical study was applied to the problem of distinguishing between normal and abnormal brain magnetic resonance images (MRI) affected with Alzheimer disease (AD). Our results demonstrate that fractal descriptors estimated in VMD domain outperform those estimated in DWT and EMD domains; and also those directly estimated from the original image.

  3. Helmholtz decomposition revisited: Vorticity generation and trailing edge condition. I - Incompressible flows

    NASA Technical Reports Server (NTRS)

    Morino, L.

    1986-01-01

    Using the decomposition for the infinite-space, the issue of the nonuniqueness of the Helmholtz decomposition for the problem of the three-dimensional unsteady incompressible flow around a body is considered. A representation for the velocity that is valid for both the fluid region and the region inside the boundary surface is employed, and the motion of the boundary is described as the limiting case of a sequence of impulsive accelerations. At each instant of velocity discontinuity, vorticity is shown to be generated by the boundary condition on the normal component of the velocity, for both inviscid and viscous flows. In viscous flows, the vorticity is shown to diffuse into the surroundings, and the no-slip conditions are automatically satisfied. A trailing edge condition must be satisfied for the solution to the Euler equations to be the limit of the solution of the Navier-Stokes equations.

  4. Twofold processing for denoising ultrasound medical images.

    PubMed

    Kishore, P V V; Kumar, K V V; Kumar, D Anil; Prasad, M V D; Goutham, E N D; Rahul, R; Krishna, C B S Vamsi; Sandeep, Y

    2015-01-01

    Ultrasound medical (US) imaging non-invasively pictures inside of a human body for disease diagnostics. Speckle noise attacks ultrasound images degrading their visual quality. A twofold processing algorithm is proposed in this work to reduce this multiplicative speckle noise. First fold used block based thresholding, both hard (BHT) and soft (BST), on pixels in wavelet domain with 8, 16, 32 and 64 non-overlapping block sizes. This first fold process is a better denoising method for reducing speckle and also inducing object of interest blurring. The second fold process initiates to restore object boundaries and texture with adaptive wavelet fusion. The degraded object restoration in block thresholded US image is carried through wavelet coefficient fusion of object in original US mage and block thresholded US image. Fusion rules and wavelet decomposition levels are made adaptive for each block using gradient histograms with normalized differential mean (NDF) to introduce highest level of contrast between the denoised pixels and the object pixels in the resultant image. Thus the proposed twofold methods are named as adaptive NDF block fusion with hard and soft thresholding (ANBF-HT and ANBF-ST). The results indicate visual quality improvement to an interesting level with the proposed twofold processing, where the first fold removes noise and second fold restores object properties. Peak signal to noise ratio (PSNR), normalized cross correlation coefficient (NCC), edge strength (ES), image quality Index (IQI) and structural similarity index (SSIM), measure the quantitative quality of the twofold processing technique. Validation of the proposed method is done by comparing with anisotropic diffusion (AD), total variational filtering (TVF) and empirical mode decomposition (EMD) for enhancement of US images. The US images are provided by AMMA hospital radiology labs at Vijayawada, India.

  5. Decomposition of terrestrial resource subsidies in headwater streams: Does consumer diversity matter?

    Treesearch

    David Stoker; Amber J. Falkner; Kelly M. Murray; Ashley K. Lang; Thomas R. Barnum; Jeffrey Hepinstall-Cymerman; Michael J. Conroy; Robert J. Cooper; Catherine M. Pringle

    2017-01-01

    Resource subsidies and biodiversity are essential for maintaining community structure and ecosystem functioning, but the relative importance of consumer diversity and resource characteristics to decomposition remains unclear. Forested headwater streams are detritus-based systems, dependent on leaf litter inputs from adjacent riparian ecosystems, and...

  6. Lasting effect of soil warming on organic matter decomposition depends on tillage practices

    USDA-ARS?s Scientific Manuscript database

    Global warming affects various parts of carbon (C) cycle including acceleration of soil organic matter (SOM) decomposition with strong feedback to atmospheric CO2 concentration. Despite many soil warming studies showed changes of microbial community structure, very few were focused on the effect of ...

  7. Analyzing Number Composition and Decomposition Activities in Kindergarten from a Numeracy Perspective

    ERIC Educational Resources Information Center

    Tsamir, Pessia; Tirosh, Dina; Levenson, Esther; Tabach, Michal; Barkai, Ruthi

    2015-01-01

    This study explores two number composition and decomposition activities from a numeracy perspective. Both activities have the same mathematical structure but each employs different tools and contexts. Twenty kindergarten children engaged individually with these activities. Verbal utterances as well as actions of the child and interviewer were…

  8. Estrogen and progesterone signalling in the normal breast and its implications for cancer development.

    PubMed

    Hilton, Heidi N; Clarke, Christine L; Graham, J Dinny

    2018-05-05

    The ovarian hormones estrogen and progesterone are master regulators of the development and function of a broad spectrum of human tissues, including the breast, reproductive and cardiovascular systems, brain and bone. Acting through the nuclear estrogen (ER) and progesterone receptors (PR), both play complex and essential coordinated roles in the extensive development of the lobular alveolar epithelial structures of the normal breast during puberty, the normal menstrual cycle and pregnancy. The past decade has seen major advances in understanding the mechanisms of action of estrogen and progesterone in the normal breast and in the delineation of the complex hierarchy of cell types regulated by ovarian hormones in this tissue. There is evidence for a role for both ER and PR in driving breast cancer, and both are favourable prognostic markers with respect to outcome. In this review, we summarize current knowledge of the mechanisms of action of ER and PR in the normal breast, and implications for the development and management of breast cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Quantum secret sharing for a general quantum access structure

    NASA Astrophysics Data System (ADS)

    Bai, Chen-Ming; Li, Zhi-Hui; Si, Meng-Meng; Li, Yong-Ming

    2017-10-01

    Quantum secret sharing is a procedure for sharing a secret among a number of participants such that only certain subsets of participants can collaboratively reconstruct it, which are called authorized sets. The quantum access structure of a secret sharing is a family of all authorized sets. Firstly, in this paper, we propose the concept of decomposition of quantum access structure to design a quantum secret sharing scheme. Secondly, based on a maximal quantum access structure (MQAS) [D. Gottesman, Phys. Rev. A 61, 042311 (2000)], we propose an algorithm to improve a MQAS and obtain an improved maximal quantum access structure (IMQAS). Then, we present a sufficient and necessary condition about IMQAS, which shows the relationship between the minimal authorized sets and the players. In accordance with properties, we construct an efficient quantum secret sharing scheme with a decomposition and IMQAS. A major advantage of these techniques is that it allows us to construct a method to realize a general quantum access structure. Finally, we present two kinds of quantum secret sharing schemes via the thought of concatenation or a decomposition of quantum access structure. As a consequence, we find that the application of these techniques allows us to save more quantum shares and reduces more cost than the existing scheme.

  10. Structural determination of Bi-doped magnetite multifunctional nanoparticles for contrast imaging.

    PubMed

    Laguna-Marco, M A; Piquer, C; Roca, A G; Boada, R; Andrés-Vergés, M; Veintemillas-Verdaguer, S; Serna, C J; Iadecola, A; Chaboy, J

    2014-09-14

    To determine with precision how Bi atoms are distributed in Bi-doped iron oxide nanoparticles their structural characterization has been carried out by X-ray absorption spectroscopy (XAS) recorded at the K edge of Fe and at the L3 edge of Bi. The inorganic nanoparticles are nominally hybrid structures integrating an iron oxide core and a bismuth oxide shell. Fe K-edge XAS indicates the formation of a structurally ordered, non-stoichiometric magnetite (Fe3-δO4) phase for all the nanoparticles. The XAS spectra show that, in the samples synthesized by precipitation in aqueous media and laser pyrolysis, the Bi atoms neither enter into the iron oxide spinel lattice nor form any other mixed Bi-Fe oxides. No modification of the local structure around the Fe atoms induced by the Bi atoms is observed at the Fe K edge. In addition, contrary to expectations, our results indicate that the Bi atoms do not form a well-defined Bi oxide structure. The XAS study at the Bi L3 edge indicates that the environment around Bi atoms is highly disordered and only a first oxygen coordination shell is observed. Indefinite [BiO6-x(OH)x] units (isolated or aggregated forming tiny amorphous clusters) bonded through hydroxyl bridges to the nanoparticle, rather than a well defined Bi2O3 shell, surround the nanoparticle. On the other hand, the XAS study indicates that, in the samples synthesized by thermal decomposition, the Bi atoms are embedded in a longer range ordered structure showing the first and second neighbors.

  11. AgPO2F2 and Ag9(PO2F2)14: the first Ag(i) and Ag(i)/Ag(ii) difluorophosphates with complex crystal structures.

    PubMed

    Malinowski, Przemysław J; Kurzydłowski, Dominik; Grochala, Wojciech

    2015-12-07

    The reaction of AgF2 with P2O3F4 yields a mixed valence Ag(I)/Ag(II) difluorophosphate salt with AgAg(PO2F2)14 stoichiometry - the first Ag(ii)-PO2F2 system known. This highly moisture sensitive brown solid is thermally stable up to 120 °C, which points at further feasible extension of the chemistry of Ag(ii)-PO2F2 systems. The crystal structure shows a very complex bonding pattern, comprising of polymeric Ag(PO2F2)14(4-) anions and two types of Ag(I) cations. One particular Ag(II) site present in the crystal structure of Ag9(PO2F2)14 is the first known example of square pyramidal penta-coordinated Ag(ii) in an oxo-ligand environment. Ag(i)PO2F2 - the product of the thermal decomposition of Ag9(PO2F2)14 - has also been characterized by thermal analysis, IR spectroscopy and X-ray powder diffraction. It has a complicated crystal structure as well, which consists of infinite 1D [Ag(I)O4/2] chains which are linked to more complex 3D structures via OPO bridges. The PO2F2(-) anions bind to cations in both compounds as bidentate oxo-ligands. The terminal F atoms tend to point inside the van der Waals cavities in the crystal structure of both compounds. All important structural details of both title compounds were corroborated by DFT calculations.

  12. Density-cluster NMA: A new protein decomposition technique for coarse-grained normal mode analysis.

    PubMed

    Demerdash, Omar N A; Mitchell, Julie C

    2012-07-01

    Normal mode analysis has emerged as a useful technique for investigating protein motions on long time scales. This is largely due to the advent of coarse-graining techniques, particularly Hooke's Law-based potentials and the rotational-translational blocking (RTB) method for reducing the size of the force-constant matrix, the Hessian. Here we present a new method for domain decomposition for use in RTB that is based on hierarchical clustering of atomic density gradients, which we call Density-Cluster RTB (DCRTB). The method reduces the number of degrees of freedom by 85-90% compared with the standard blocking approaches. We compared the normal modes from DCRTB against standard RTB using 1-4 residues in sequence in a single block, with good agreement between the two methods. We also show that Density-Cluster RTB and standard RTB perform well in capturing the experimentally determined direction of conformational change. Significantly, we report superior correlation of DCRTB with B-factors compared with 1-4 residue per block RTB. Finally, we show significant reduction in computational cost for Density-Cluster RTB that is nearly 100-fold for many examples. Copyright © 2012 Wiley Periodicals, Inc.

  13. Pathological speech signal analysis and classification using empirical mode decomposition.

    PubMed

    Kaleem, Muhammad; Ghoraani, Behnaz; Guergachi, Aziz; Krishnan, Sridhar

    2013-07-01

    Automated classification of normal and pathological speech signals can provide an objective and accurate mechanism for pathological speech diagnosis, and is an active area of research. A large part of this research is based on analysis of acoustic measures extracted from sustained vowels. However, sustained vowels do not reflect real-world attributes of voice as effectively as continuous speech, which can take into account important attributes of speech such as rapid voice onset and termination, changes in voice frequency and amplitude, and sudden discontinuities in speech. This paper presents a methodology based on empirical mode decomposition (EMD) for classification of continuous normal and pathological speech signals obtained from a well-known database. EMD is used to decompose randomly chosen portions of speech signals into intrinsic mode functions, which are then analyzed to extract meaningful temporal and spectral features, including true instantaneous features which can capture discriminative information in signals hidden at local time-scales. A total of six features are extracted, and a linear classifier is used with the feature vector to classify continuous speech portions obtained from a database consisting of 51 normal and 161 pathological speakers. A classification accuracy of 95.7 % is obtained, thus demonstrating the effectiveness of the methodology.

  14. In silico local structure approach: a case study on outer membrane proteins.

    PubMed

    Martin, Juliette; de Brevern, Alexandre G; Camproux, Anne-Claude

    2008-04-01

    The detection of Outer Membrane Proteins (OMP) in whole genomes is an actual question, their sequence characteristics have thus been intensively studied. This class of protein displays a common beta-barrel architecture, formed by adjacent antiparallel strands. However, due to the lack of available structures, few structural studies have been made on this class of proteins. Here we propose a novel OMP local structure investigation, based on a structural alphabet approach, i.e., the decomposition of 3D structures using a library of four-residue protein fragments. The optimal decomposition of structures using hidden Markov model results in a specific structural alphabet of 20 fragments, six of them dedicated to the decomposition of beta-strands. This optimal alphabet, called SA20-OMP, is analyzed in details, in terms of local structures and transitions between fragments. It highlights a particular and strong organization of beta-strands as series of regular canonical structural fragments. The comparison with alphabets learned on globular structures indicates that the internal organization of OMP structures is more constrained than in globular structures. The analysis of OMP structures using SA20-OMP reveals some recurrent structural patterns. The preferred location of fragments in the distinct regions of the membrane is investigated. The study of pairwise specificity of fragments reveals that some contacts between structural fragments in beta-sheets are clearly favored whereas others are avoided. This contact specificity is stronger in OMP than in globular structures. Moreover, SA20-OMP also captured sequential information. This can be integrated in a scoring function for structural model ranking with very promising results. (c) 2007 Wiley-Liss, Inc.

  15. Membrane covered duct lining for high-frequency noise attenuation: prediction using a Chebyshev collocation method.

    PubMed

    Huang, Lixi

    2008-11-01

    A spectral method of Chebyshev collocation with domain decomposition is introduced for linear interaction between sound and structure in a duct lined with flexible walls backed by cavities with or without a porous material. The spectral convergence is validated by a one-dimensional problem with a closed-form analytical solution, and is then extended to the two-dimensional configuration and compared favorably against a previous method based on the Fourier-Galerkin procedure and a finite element modeling. The nonlocal, exact Dirichlet-to-Neumann boundary condition is embedded in the domain decomposition scheme without imposing extra computational burden. The scheme is applied to the problem of high-frequency sound absorption by duct lining, which is normally ineffective when the wavelength is comparable with or shorter than the duct height. When a tensioned membrane covers the lining, however, it scatters the incident plane wave into higher-order modes, which then penetrate the duct lining more easily and get dissipated. For the frequency range of f=0.3-3 studied here, f=0.5 being the first cut-on frequency of the central duct, the membrane cover is found to offer an additional 0.9 dB attenuation per unit axial distance equal to half of the duct height.

  16. Silicon Nitride Equation of State

    NASA Astrophysics Data System (ADS)

    Swaminathan, Pazhayannur; Brown, Robert

    2015-06-01

    This report presents the development a global, multi-phase equation of state (EOS) for the ceramic silicon nitride (Si3N4) . Structural forms include amorphous silicon nitride normally used as a thin film and three crystalline polymorphs. Crystalline phases include hexagonal α-Si3N4, hexagonalβ-Si3N4, and the cubic spinel c-Si3N4. Decomposition at about 1900 °C results in a liquid silicon phase and gas phase products such as molecular nitrogen, atomic nitrogen, and atomic silicon. The silicon nitride EOS was developed using EOSPro which is a new and extended version of the PANDA II code. Both codes are valuable tools and have been used successfully for a variety of material classes. Both PANDA II and EOSPro can generate a tabular EOS that can be used in conjunction with hydrocodes. The paper describes the development efforts for the component solid phases and presents results obtained using the EOSPro phase transition model to investigate the solid-solid phase transitions in relation to the available shock data. Furthermore, the EOSPro mixture model is used to develop a model for the decomposition products and then combined with the single component solid models to study the global phase diagram. Sponsored by the NASA Goddard Space Flight Center Living With a Star program office.

  17. Nature of catalytic activities of CoO nanocrystals in thermal decomposition of ammonium perchlorate.

    PubMed

    Li, Liping; Sun, Xuefei; Qiu, Xiaoqing; Xu, Jiaoxing; Li, Guangshe

    2008-10-06

    This work addresses the chemical nature of the catalytic activity of X-ray "pure" CoO nanocrystals. All samples were prepared by a solvothermal reaction route. X-ray diffraction indicates the formation of CoO in a cubic rock-salt structure, while infrared spectra and magnetic measurements demonstrate the coexistence of CoO and Co 3O 4. Therefore, X-ray "pure" CoO nanocrystals are a unique composite structure with a CoO core surrounded by an extremely thin Co 3O 4 surface layer, which is likely a consequence of the surface passivation of CoO nanocrystals from the air oxidation at room temperature. The CoO core shows a particle size of 22 or 280 nm, depending on the types of the precursors used. This composite nanostructure was initiated as a catalytic additive to promote the thermal decomposition of ammonium perchlorate (AP). Our preliminary investigations indicate that the maximum decomposition temperature of AP is significantly reduced in the presence of CoO/Co 3O 4 composite nanocrystals and that the maximum decomposition peak shifts toward lower temperatures as the loading amount of the composite nanocrystals increases. These findings are different from the literature reports when using many nanoscale oxide additives. Finally, the decomposition heat for the low-temperature decomposition stages of AP was calculated and correlated to the chemical nature of the CoO/Co 3O 4 composite nanostructures.

  18. Mass loss and chemical structures of wheat and maize straws in response to ultraviolet-B radiation and soil contact.

    PubMed

    Zhou, Guixiang; Zhang, Jiabao; Mao, Jingdong; Zhang, Congzhi; Chen, Lin; Xin, Xiuli; Zhao, Bingzi

    2015-10-01

    The role of photodegradation, an abiotic process, has been largely overlooked during straw decomposition in mesic ecosystems. We investigated the mass loss and chemical structures of straw decomposition in response to elevated UV-B radiation with or without soil contact over a 12-month litterbag experiment. Wheat and maize straw samples with and without soil contact were exposed to three radiation levels: a no-sunlight control, ambient solar UV-B, and artificially elevated UV-B radiation. A block control with soil contact was not included. Compared with the no-sunlight control, UV-B radiation increased the mass loss by 14-19% and the ambient radiation by 9-16% for wheat and maize straws without soil contact after 12 months. Elevated UV-B exposure decreased the decomposition rates of both wheat and maize straws when in contact with soil. Light exposure resulted in decreased O-alkyl carbons and increased alkyl carbons for both the wheat and maize straws compared with no-sunlight control. The difference in soil contact may influence the contribution of photodegradation to the overall straw decomposition process. These results indicate that we must take into account the effects of photodegradation when explaining the mechanisms of straw decomposition in mesic ecosystems.

  19. Mass loss and chemical structures of wheat and maize straws in response to ultraviolet-B radiation and soil contact

    PubMed Central

    Zhou, Guixiang; Zhang, Jiabao; Mao, Jingdong; Zhang, Congzhi; Chen, Lin; Xin, Xiuli; Zhao, Bingzi

    2015-01-01

    The role of photodegradation, an abiotic process, has been largely overlooked during straw decomposition in mesic ecosystems. We investigated the mass loss and chemical structures of straw decomposition in response to elevated UV-B radiation with or without soil contact over a 12-month litterbag experiment. Wheat and maize straw samples with and without soil contact were exposed to three radiation levels: a no-sunlight control, ambient solar UV-B, and artificially elevated UV-B radiation. A block control with soil contact was not included. Compared with the no-sunlight control, UV-B radiation increased the mass loss by 14–19% and the ambient radiation by 9–16% for wheat and maize straws without soil contact after 12 months. Elevated UV-B exposure decreased the decomposition rates of both wheat and maize straws when in contact with soil. Light exposure resulted in decreased O-alkyl carbons and increased alkyl carbons for both the wheat and maize straws compared with no-sunlight control. The difference in soil contact may influence the contribution of photodegradation to the overall straw decomposition process. These results indicate that we must take into account the effects of photodegradation when explaining the mechanisms of straw decomposition in mesic ecosystems. PMID:26423726

  20. Dynamic Mobility via Cellular Decompositions of Coordination Spaces

    DTIC Science & Technology

    2012-01-01

    half-bound, canter, and gallop gaits that actively recruit motion by the animal’s spine. It is posited that the increased performance of a cheetah ...machines [3] [1] P.E. Hudson, S.A. Corr, R.C. Payne-Davis, S.N. Clancy, E. Lane, and A.M. Wilson. Functional anatomy of the cheetah (acinonyx jubatus...vertical position of COM, y •angle of body , Front Leg Stance (3 DOF): Upon impact, we assume the toe acts as a unconstrained pin joint with the

  1. The formation and study of titanium, zirconium, and hafnium complexes

    NASA Technical Reports Server (NTRS)

    Wilson, Bobby; Sarin, Sam; Smith, Laverne; Wilson, Melanie

    1989-01-01

    Research involves the preparation and characterization of a series of Ti, Zr, Hf, TiO, and HfO complexes using the poly(pyrazole) borates as ligands. The study will provide increased understanding of the decomposition of these coordination compounds which may lead to the production of molecular oxygen on the Moon from lunar materials such as ilmenite and rutile. The model compounds are investigated under reducing conditions of molecular hydrogen by use of a high temperature/pressure stainless steel autoclave reactor and by thermogravimetric analysis.

  2. Vector and axial-vector decomposition of Einstein's gravitational action

    NASA Astrophysics Data System (ADS)

    Soh, Kwang S.

    1991-08-01

    Vector and axial-vector gravitational fields are introduced to express the Einstein action in the manner of electromagnetism. Their conformal scaling properties are examined, and the resemblance between the general coordinate and electromagnetic gauge transformation is elucidated. The chiral formulation of the gravitational action is constructed. I am deeply grateful to Professor S. Hawking, and Professor G. Lloyd for warm hospitality at DAMTP, and Darwin College, University of Cambridge, respectively. I also appreciate much help received from Dr. Q.-H. Park.

  3. Distributed Multi-Cell Resource Allocation with Price Based ICI Coordination in Downlink OFDMA Networks

    NASA Astrophysics Data System (ADS)

    Lv, Gangming; Zhu, Shihua; Hui, Hui

    Multi-cell resource allocation under minimum rate request for each user in OFDMA networks is addressed in this paper. Based on Lagrange dual decomposition theory, the joint multi-cell resource allocation problem is decomposed and modeled as a limited-cooperative game, and a distributed multi-cell resource allocation algorithm is thus proposed. Analysis and simulation results show that, compared with non-cooperative iterative water-filling algorithm, the proposed algorithm can remarkably reduce the ICI level and improve overall system performances.

  4. Characteristic-based algorithms for flows in thermo-chemical nonequilibrium

    NASA Technical Reports Server (NTRS)

    Walters, Robert W.; Cinnella, Pasquale; Slack, David C.; Halt, David

    1990-01-01

    A generalized finite-rate chemistry algorithm with Steger-Warming, Van Leer, and Roe characteristic-based flux splittings is presented in three-dimensional generalized coordinates for the Navier-Stokes equations. Attention is placed on convergence to steady-state solutions with fully coupled chemistry. Time integration schemes including explicit m-stage Runge-Kutta, implicit approximate-factorization, relaxation and LU decomposition are investigated and compared in terms of residual reduction per unit of CPU time. Practical issues such as code vectorization and memory usage on modern supercomputers are discussed.

  5. Investigations on the hierarchy of reference frames in geodesy and geodynamics

    NASA Technical Reports Server (NTRS)

    Grafarend, E. W.; Mueller, I. I.; Papo, H. B.; Richter, B.

    1979-01-01

    Problems related to reference directions were investigated. Space and time variant angular parameters are illustrated in hierarchic structures or towers. Using least squares techniques, model towers of triads are presented which allow the formation of linear observation equations. Translational and rotational degrees of freedom (origin and orientation) are discussed along with and the notion of length and scale degrees of freedom. According to the notion of scale parallelism, scale factors with respect to a unit length are given. Three-dimensional geodesy was constructed from the set of three base vectors (gravity, earth-rotation and the ecliptic normal vector). Space and time variations are given with respect to a polar and singular value decomposition or in terms of changes in translation, rotation, deformation (shear, dilatation or angular and scale distortions).

  6. Multi-scale structure and topological anomaly detection via a new network statistic: The onion decomposition.

    PubMed

    Hébert-Dufresne, Laurent; Grochow, Joshua A; Allard, Antoine

    2016-08-18

    We introduce a network statistic that measures structural properties at the micro-, meso-, and macroscopic scales, while still being easy to compute and interpretable at a glance. Our statistic, the onion spectrum, is based on the onion decomposition, which refines the k-core decomposition, a standard network fingerprinting method. The onion spectrum is exactly as easy to compute as the k-cores: It is based on the stages at which each vertex gets removed from a graph in the standard algorithm for computing the k-cores. Yet, the onion spectrum reveals much more information about a network, and at multiple scales; for example, it can be used to quantify node heterogeneity, degree correlations, centrality, and tree- or lattice-likeness. Furthermore, unlike the k-core decomposition, the combined degree-onion spectrum immediately gives a clear local picture of the network around each node which allows the detection of interesting subgraphs whose topological structure differs from the global network organization. This local description can also be leveraged to easily generate samples from the ensemble of networks with a given joint degree-onion distribution. We demonstrate the utility of the onion spectrum for understanding both static and dynamic properties on several standard graph models and on many real-world networks.

  7. Correlation between ionic radii of metals and thermal decomposition of supramolecular structure of azodye complexes

    NASA Astrophysics Data System (ADS)

    El-Sonbati, A. Z.; Diab, M. A.; El-Bindary, A. A.; Eldesoky, A. M.; Morgan, Sh. M.

    2015-01-01

    An interesting azodye heterocyclic ligand of copper(II), cobalt(II), nickel(II) and uranyl(II) complexes have been synthesized by the reaction of metal salts with 5-(2,3-dimethyl-1-phenylpyrazol-5-one azo)-2-thioxo-4-thiazolidinone (HL) yields 1:1 and 1:2 (M:L) complexes depending on the reaction conditions. The elemental analysis, magnetic moments, spectral (UV-Vis, IR, 1H and 13C NMR and ESR) and thermal studies were used to characterize the isolated complexes. The molecular structures of the ligand tautomers are optimized theoretically and the quantum chemical parameters are calculated. The IR spectra showed that the ligand (HL) act as monobasic tridentate/neutral bidentate through the (sbnd Ndbnd N), enolic (Csbnd O)- and/or oxygen keto moiety groups forming a five/six-membered structures. According to intramolecular hydrogen bond leads to increasing of the complexes stability. The molar conductivities show that all the complexes are non-electrolytes. The ESR spectra indicate that the free electron is in dxy orbital. The calculated bonding parameter indicates that in-plane σ-bonding is more covalent than in-plane π-bonding. The coordination geometry is five/six-coordinated trigonal bipyramidal for complex (1) and octahedral for complexes (2-6). The value of covalency factor β12 and orbital reduction factor K accounts for the covalent nature of the complexes. The activation thermodynamic parameters are calculated using Coats-Redfern and Horowitz-Metzger methods. The synthesized ligand (HL) and its Cu(II) complexes (1, 2 and 4) are screened for their biological activity against bacterial and fungal species. The ligand (HL) showed antimicrobial activities against Escherichia coli. The ligand (HL) and its Cu(II) complexes (2 and 4) have very high antifungal activity against Penicillium italicum. The inhibitive action of ligand (HL), against the corrosion of C-steel in 2 M HCl solution has been investigated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS).

  8. Kinematic properties of the helicopter in coordinated turns

    NASA Technical Reports Server (NTRS)

    Chen, R. T. N.; Jeske, J. A.

    1981-01-01

    A study on the kinematic relationship of the variables of helicopter motion in steady, coordinated turns involving inherent sideslip is described. A set of exact kinematic equations which govern a steady coordinated helical turn about an Earth referenced vertical axis is developed. A precise definition for the load factor parameter that best characterizes a coordinated turn is proposed. Formulas are developed which relate the aircraft angular rates and pitch and roll attitudes to the turn parameters, angle of attack, and inherent sideslip. A steep, coordinated helical turn at extreme angles of attack with inherent sideslip is of primary interest. The bank angle of the aircraft can differ markedly from the tilt angle of the normal load factor. The normal load factor can also differ substantially from the accelerometer reading along the vertical body axis of the aircraft. Sideslip has a strong influence on the pitch attitude and roll rate of the helicopter. Pitch rate is independent of angle of attack in a coordinated turn and in the absence of sideslip, angular rates about the stability axes are independent of the aerodynamic characteristics of the aircraft.

  9. Approximate analytical solutions in the analysis of elastic structures of complex geometry

    NASA Astrophysics Data System (ADS)

    Goloskokov, Dmitriy P.; Matrosov, Alexander V.

    2018-05-01

    A method of analytical decomposition for analysis plane structures of a complex configuration is presented. For each part of the structure in the form of a rectangle all the components of the stress-strain state are constructed by the superposition method. The method is based on two solutions derived in the form of trigonometric series with unknown coefficients using the method of initial functions. The coefficients are determined from the system of linear algebraic equations obtained while satisfying the boundary conditions and the conditions for joining the structure parts. The components of the stress-strain state of a bent plate with holes are calculated using the analytical decomposition method.

  10. Using FT-IR Spectroscopy to Elucidate the Structures of Ablative Polymers

    NASA Technical Reports Server (NTRS)

    Fan, Wendy

    2011-01-01

    The composition and structure of an ablative polymer has a multifaceted influence on its thermal, mechanical and ablative properties. Understanding the molecular level information is critical to the optimization of material performance because it helps to establish correlations with the macroscopic properties of the material, the so-called structure-property relationship. Moreover, accurate information of molecular structures is also essential to predict the thermal decomposition pathways as well as to identify decomposition species that are fundamentally important to modeling work. In this presentation, I will describe the use of infrared transmission spectroscopy (FT-IR) as a convenient tool to aid the discovery and development of thermal protection system materials.

  11. Ultrasonic Attenuation in Normal and Superconducting Indium.

    DTIC Science & Technology

    1980-05-22

    dimension x space coordinate, dislocation displacement dislocation displacement y space coordinate.1z space coordinate x ACKNOWLEDGMENTS The author...The driving force on the dislocation is given by: F=bO (2.7) In general, the dislocation displacement will be a function of three space coordinates...mm diameter, 50 Q impedance coaxial conductors 47 * made of stainless steel and teflon . The cavity button is soldered * directly to the rigid

  12. A quantum chemical study of the decomposition of Keggin-structured heteropolyacids.

    PubMed

    Janik, Michael J; Bardin, Billy B; Davis, Robert J; Neurock, Matthew

    2006-03-09

    Heterpolyacids (HPAs) demonstrate catalytic activity for oxidative and acid-catalyzed hydrocarbon conversion processes. Deactivation and thermal instability, however, have prevented their widespread use. Herein, ab initio density functional theory is used to study the thermal decomposition of the Keggin molecular HPA structure through the desorption of constitutional water molecules. The overall reaction energy and activation barrier are computed for the overall reaction HnXM12O40-->Hn-2XM12O39+H2O. and subsequently used to predict the effect of HPA composition on thermal stability. For example, the desorption of a constitutional water molecule is found to be increasingly endothermic in the order silicomolybdic acid (H4SiMo12O40)

  13. Decomposition of Near-Infrared Spectroscopy Signals Using Oblique Subspace Projections: Applications in Brain Hemodynamic Monitoring.

    PubMed

    Caicedo, Alexander; Varon, Carolina; Hunyadi, Borbala; Papademetriou, Maria; Tachtsidis, Ilias; Van Huffel, Sabine

    2016-01-01

    Clinical data is comprised by a large number of synchronously collected biomedical signals that are measured at different locations. Deciphering the interrelationships of these signals can yield important information about their dependence providing some useful clinical diagnostic data. For instance, by computing the coupling between Near-Infrared Spectroscopy signals (NIRS) and systemic variables the status of the hemodynamic regulation mechanisms can be assessed. In this paper we introduce an algorithm for the decomposition of NIRS signals into additive components. The algorithm, SIgnal DEcomposition base on Obliques Subspace Projections (SIDE-ObSP), assumes that the measured NIRS signal is a linear combination of the systemic measurements, following the linear regression model y = Ax + ϵ . SIDE-ObSP decomposes the output such that, each component in the decomposition represents the sole linear influence of one corresponding regressor variable. This decomposition scheme aims at providing a better understanding of the relation between NIRS and systemic variables, and to provide a framework for the clinical interpretation of regression algorithms, thereby, facilitating their introduction into clinical practice. SIDE-ObSP combines oblique subspace projections (ObSP) with the structure of a mean average system in order to define adequate signal subspaces. To guarantee smoothness in the estimated regression parameters, as observed in normal physiological processes, we impose a Tikhonov regularization using a matrix differential operator. We evaluate the performance of SIDE-ObSP by using a synthetic dataset, and present two case studies in the field of cerebral hemodynamics monitoring using NIRS. In addition, we compare the performance of this method with other system identification techniques. In the first case study data from 20 neonates during the first 3 days of life was used, here SIDE-ObSP decoupled the influence of changes in arterial oxygen saturation from the NIRS measurements, facilitating the use of NIRS as a surrogate measure for cerebral blood flow (CBF). The second case study used data from a 3-years old infant under Extra Corporeal Membrane Oxygenation (ECMO), here SIDE-ObSP decomposed cerebral/peripheral tissue oxygenation, as a sum of the partial contributions from different systemic variables, facilitating the comparison between the effects of each systemic variable on the cerebral/peripheral hemodynamics.

  14. Species associations overwhelm abiotic conditions to dictate the structure and function of wood-decay fungal communities.

    PubMed

    Maynard, Daniel S; Covey, Kristofer R; Crowther, Thomas W; Sokol, Noah W; Morrison, Eric W; Frey, Serita D; van Diepen, Linda T A; Bradford, Mark A

    2018-04-01

    Environmental conditions exert strong controls on the activity of saprotrophic microbes, yet abiotic factors often fail to adequately predict wood decomposition rates across broad spatial scales. Given that species interactions can have significant positive and negative effects on wood-decay fungal activity, one possibility is that biotic processes serve as the primary controls on community function, with abiotic controls emerging only after species associations are accounted for. Here we explore this hypothesis in a factorial field warming- and nitrogen-addition experiment by examining relationships among wood decomposition rates, fungal activity, and fungal community structure. We show that functional outcomes and community structure are largely unrelated to abiotic conditions, with microsite and plot-level abiotic variables explaining at most 19% of the total variability in decomposition and fungal activity, and 2% of the variability in richness and evenness. In contrast, taxonomic richness, evenness, and species associations (i.e., co-occurrence patterns) exhibited strong relationships with community function, accounting for 52% of the variation in decomposition rates and 73% in fungal activity. A greater proportion of positive vs. negative species associations in a community was linked to strong declines in decomposition rates and richness. Evenness emerged as a key mediator between richness and function, with highly even communities exhibiting a positive richness-function relationship and uneven communities exhibiting a negative or null response. These results suggest that community-assembly processes and species interactions are important controls on the function of wood-decay fungal communities, ultimately overwhelming substantial differences in abiotic conditions. © 2018 by the Ecological Society of America.

  15. DFT simulation, quantum chemical electronic structure, spectroscopic and structure-activity investigations of 4-acetylpyridine

    NASA Astrophysics Data System (ADS)

    Atilgan, A.; Yurdakul, Ş.; Erdogdu, Y.; Güllüoğlu, M. T.

    2018-06-01

    The spectroscopic (UV-Vis and infrared), structural and some electronic property observations of the 4-acetylpyridine (4-AP) were reported, which are investigated by using some spectral methods and DFT calculations. FT-IR spectra were obtained for 4-AP at room temperature in the region 4000 cm-1- 400 cm-1. In the DFT calculations, the B3LYP functional with 6-311G++G(d,p) basis set was applied to carry out the quantum mechanical calculations. The Fourier Transform Infrared (FT-IR) and FT-Raman spectra were interpreted by using of normal coordinate analysis based on scaled quantum mechanical force field. The present work expands our understanding of the both the vibrational and structural properties as well as some electronic properties of the 4-AP by means of the theoretical and experimental methods.

  16. Structural applications of metal foams considering material and geometrical uncertainty

    NASA Astrophysics Data System (ADS)

    Moradi, Mohammadreza

    Metal foam is a relatively new and potentially revolutionary material that allows for components to be replaced with elements capable of large energy dissipation, or components to be stiffened with elements which will generate significant supplementary energy dissipation when buckling occurs. Metal foams provide a means to explore reconfiguring steel structures to mitigate cross-section buckling in many cases and dramatically increase energy dissipation in all cases. The microstructure of metal foams consists of solid and void phases. These voids have random shape and size. Therefore, randomness ,which is introduced into metal foams during the manufacturing processes, creating more uncertainty in the behavior of metal foams compared to solid steel. Therefore, studying uncertainty in the performance metrics of structures which have metal foams is more crucial than for conventional structures. Therefore, in this study, structural application of metal foams considering material and geometrical uncertainty is presented. This study applies the Sobol' decomposition of a function of many random variables to different problem in structural mechanics. First, the Sobol' decomposition itself is reviewed and extended to cover the case in which the input random variables have Gaussian distribution. Then two examples are given for a polynomial function of 3 random variables and the collapse load of a two story frame. In the structural example, the Sobol' decomposition is used to decompose the variance of the response, the collapse load, into contributions from the individual input variables. This decomposition reveals the relative importance of the individual member yield stresses in determining the collapse load of the frame. In applying the Sobol' decomposition to this structural problem the following issues are addressed: calculation of the components of the Sobol' decomposition by Monte Carlo simulation; the effect of input distribution on the Sobol' decomposition; convergence of estimates of the Sobol' decomposition with sample size using various sampling schemes; the possibility of model reduction guided by the results of the Sobol' decomposition. For the rest of the study the different structural applications of metal foam is investigated. In the first application, it is shown that metal foams have the potential to serve as hysteric dampers in the braces of braced building frames. Using metal foams in the structural braces decreases different dynamic responses such as roof drift, base shear and maximum moment in the columns. Optimum metal foam strengths are different for different earthquakes. In order to use metal foam in the structural braces, metal foams need to have stable cyclic response which might be achievable for metal foams with high relative density. The second application is to improve strength and ductility of a steel tube by filling it with steel foam. Steel tube beams and columns are able to provide significant strength for structures. They have an efficient shape with large second moment of inertia which leads to light elements with high bending strength. Steel foams with high strength to weight ratio are used to fill the steel tube to improves its mechanical behavior. The linear eigenvalue and plastic collapse finite element (FE) analysis are performed on steel foam filled tube under pure compression and three point bending simulation. It is shown that foam improves the maximum strength and the ability of energy absorption of the steel tubes significantly. Different configurations with different volume of steel foam and composite behavior are investigated. It is demonstrated that there are some optimum configurations with more efficient behavior. If composite action between steel foam and steel increases, the strength of the element will improve due to the change of the failure mode from local buckling to yielding. Moreover, the Sobol' decomposition is used to investigate uncertainty in the strength and ductility of the composite tube, including the sensitivity of the strength to input parameters such as the foam density, tube wall thickness, steel properties etc. Monte Carlo simulation is performed on aluminum foam filled tubes under three point bending conditions. The simulation method is nonlinear finite element analysis. Results show that the steel foam properties have a greater effect on ductility of the steel foam filled tube than its strength. Moreover, flexural strength is more sensitive to steel properties than to aluminum foam properties. Finally, the properties of hypothetical structural steel foam C-channels foamed are investigated via simulations. In thin-walled structural members, stability of the walls is the primary driver of structural limit states. Moreover, having a light weight is one of the main advantages of the thin-walled structural members. Therefore, thin-walled structural members made of steel foam exhibit improved strength while maintaining their low weight. Linear eigenvalue, finite strip method (FSM) and plastic collapse FE analysis is used to evaluate the strength and ductility of steel foam C-channels under uniform compression and bending. It is found that replacing steel walls of the C-channel with steel foam walls increases the local buckling resistance and decreases the global buckling resistance of the C-channel. By using the Sobol' decomposition, an optimum configuration for the variable density steel foam C-channel can be found. For high relative density, replacing solid steel of the lips and flange elements with steel foam increases the buckling strength. On the other hand, for low relative density replacing solid steel of the lips and flange elements with steel foam deceases the buckling strength. Moreover, it is shown that buckling strength of the steel foam C-channel is sensitive to the second order Sobol' indices. In summary, it is shown in this research that the metal foams have a great potential to improve different types of structural responses, and there are many promising application for metal foam in civil structures.

  17. Influence of high-pressure torsion on formation/destruction of nano-sized spinodal structures

    NASA Astrophysics Data System (ADS)

    Alhamidi, Ali; Edalati, Kaveh; Horita, Zenji

    2018-04-01

    The microstructures and hardness of Al - 30 mol.% Zn are investigated after processing by high-pressure torsion (HPT) for different numbers of revolutions, N = 1, 3, 10 or 25, as well as after post-HPT annealing at different temperatures, T = 373 K, 473 K, 573 K and 673 K. It was found that a work softening occurs by decreasing the grain size to the submicrometer level and increasing the fraction of high-angle boundaries. As a result of HPT processing, a complete decomposition of supersaturated solid solution of Zn in Al occurs and the spinodal structure is destroyed. This suggests that softening of the Al-Zn alloys after HPT is due to the decomposition of the supersaturated solid solution and destruction of spinodal decomposition. After post-HPT annealing, ultrafine-grained Al-Zn alloys show an unusual mechanical properties and its hardness increased to 187 HV. Microstructural analysis showed that the high hardness after post-HPT annealing is due to the formation of spinodal structures.

  18. Patched bimetallic surfaces are active catalysts for ammonia decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Wei; Vlachos, Dionisios G.

    In this study, ammonia decomposition is often used as an archetypical reaction for predicting new catalytic materials and understanding the very reason of why some reactions are sensitive on material’s structure. Core–shell or surface-segregated bimetallic nanoparticles expose outstanding activity for many heterogeneously catalysed reactions but the reasons remain elusive owing to the difficulties in experimentally characterizing active sites. Here by performing multiscale simulations in ammonia decomposition on various nickel loadings on platinum (111), we show that the very high activity of core–shell structures requires patches of the guest metal to create and sustain dual active sites: nickel terraces catalyse N-Hmore » bond breaking and nickel edge sites drive atomic nitrogen association. The structure sensitivity on these active catalysts depends profoundly on reaction conditions due to kinetically competing relevant elementary reaction steps. We expose a remarkable difference in active sites between transient and steady-state studies and provide insights into optimal material design.« less

  19. Patched bimetallic surfaces are active catalysts for ammonia decomposition

    DOE PAGES

    Guo, Wei; Vlachos, Dionisios G.

    2015-10-07

    In this study, ammonia decomposition is often used as an archetypical reaction for predicting new catalytic materials and understanding the very reason of why some reactions are sensitive on material’s structure. Core–shell or surface-segregated bimetallic nanoparticles expose outstanding activity for many heterogeneously catalysed reactions but the reasons remain elusive owing to the difficulties in experimentally characterizing active sites. Here by performing multiscale simulations in ammonia decomposition on various nickel loadings on platinum (111), we show that the very high activity of core–shell structures requires patches of the guest metal to create and sustain dual active sites: nickel terraces catalyse N-Hmore » bond breaking and nickel edge sites drive atomic nitrogen association. The structure sensitivity on these active catalysts depends profoundly on reaction conditions due to kinetically competing relevant elementary reaction steps. We expose a remarkable difference in active sites between transient and steady-state studies and provide insights into optimal material design.« less

  20. Ligational behaviour of lomefloxacin drug towards Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Th(IV) and UO(2)(VI) ions: synthesis, structural characterization and biological activity studies.

    PubMed

    Abd el-Halim, Hanan F; Mohamed, Gehad G; el-Dessouky, Maher M I; Mahmoud, Walaa H

    2011-11-01

    Nine new mononuclear Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Th(IV) and UO(2)(VI) complexes of lomefloxacin drug were synthesized. The structures of these complexes were elucidated by elemental analyses, IR, XRD, UV-vis, (1)H NMR as well as conductivity and magnetic susceptibility measurements and thermal analyses. The dissociation constants of lomefloxacin and stability constants of its binary complexes have been determined spectrophotometrically in aqueous solution at 25±1°C and at 0.1 M KNO(3) ionic strength. The discussion of the outcome data of the prepared complexes indicate that the lomefloxacin ligand behaves as a neutral bidentate ligand through OO coordination sites and coordinated to the metal ions via the carbonyl oxygen and protonated carboxylic oxygen with 1:1 (metal:ligand) stoichiometry for all complexes. The molar conductance measurements proved that the complexes are electrolytes. The powder XRD study reflects the crystalline nature for the investigated ligand and its complexes except Mn(II), Zn(II) and UO(2)(II). The geometrical structures of these complexes are found to be octahedral. The thermal behaviour of these chelates is studied where the hydrated complexes lose water molecules of hydration in the first steps followed by decomposition of the anions, coordinated water and ligand molecules in the subsequent steps. The activation thermodynamic parameters are calculated using Coats-Redfern and Horowitz-Metzger methods. A comparative study of the inhibition zones of the ligand and its metal complexes indicates that metal complexes exhibit higher antibacterial effect against one or more bacterial species than the free LFX ligand. The antifungal and anticancer activities were also tested. The antifungal effect of almost metal complexes is higher than the free ligand. LFX, [Co(LFX)(H(2)O)(4)]·Cl(2) and [Zn(LFX)(H(2)O)(4)]·Cl(2) were found to be very active with IC50 values 14, 11.2 and 43.1, respectively. While, other complexes had been found to be inactive at lower concentration than 100 μg/ml. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Use of zerotree coding in a high-speed pyramid image multiresolution decomposition

    NASA Astrophysics Data System (ADS)

    Vega-Pineda, Javier; Cabrera, Sergio D.; Lucero, Aldo

    1995-03-01

    A Zerotree (ZT) coding scheme is applied as a post-processing stage to avoid transmitting zero data in the High-Speed Pyramid (HSP) image compression algorithm. This algorithm has features that increase the capability of the ZT coding to give very high compression rates. In this paper the impact of the ZT coding scheme is analyzed and quantified. The HSP algorithm creates a discrete-time multiresolution analysis based on a hierarchical decomposition technique that is a subsampling pyramid. The filters used to create the image residues and expansions can be related to wavelet representations. According to the pixel coordinates and the level in the pyramid, N2 different wavelet basis functions of various sizes and rotations are linearly combined. The HSP algorithm is computationally efficient because of the simplicity of the required operations, and as a consequence, it can be very easily implemented with VLSI hardware. This is the HSP's principal advantage over other compression schemes. The ZT coding technique transforms the different quantized image residual levels created by the HSP algorithm into a bit stream. The use of ZT's compresses even further the already compressed image taking advantage of parent-child relationships (trees) between the pixels of the residue images at different levels of the pyramid. Zerotree coding uses the links between zeros along the hierarchical structure of the pyramid, to avoid transmission of those that form branches of all zeros. Compression performance and algorithm complexity of the combined HSP-ZT method are compared with those of the JPEG standard technique.

  2. Prokaryotic regulatory systems biology: Common principles governing the functional architectures of Bacillus subtilis and Escherichia coli unveiled by the natural decomposition approach.

    PubMed

    Freyre-González, Julio A; Treviño-Quintanilla, Luis G; Valtierra-Gutiérrez, Ilse A; Gutiérrez-Ríos, Rosa María; Alonso-Pavón, José A

    2012-10-31

    Escherichia coli and Bacillus subtilis are two of the best-studied prokaryotic model organisms. Previous analyses of their transcriptional regulatory networks have shown that they exhibit high plasticity during evolution and suggested that both converge to scale-free-like structures. Nevertheless, beyond this suggestion, no analyses have been carried out to identify the common systems-level components and principles governing these organisms. Here we show that these two phylogenetically distant organisms follow a set of common novel biologically consistent systems principles revealed by the mathematically and biologically founded natural decomposition approach. The discovered common functional architecture is a diamond-shaped, matryoshka-like, three-layer (coordination, processing, and integration) hierarchy exhibiting feedback, which is shaped by four systems-level components: global transcription factors (global TFs), locally autonomous modules, basal machinery and intermodular genes. The first mathematical criterion to identify global TFs, the κ-value, was reassessed on B. subtilis and confirmed its high predictive power by identifying all the previously reported, plus three potential, master regulators and eight sigma factors. The functionally conserved cores of modules, basal cell machinery, and a set of non-orthologous common physiological global responses were identified via both orthologous genes and non-orthologous conserved functions. This study reveals novel common systems principles maintained between two phylogenetically distant organisms and provides a comparison of their lifestyle adaptations. Our results shed new light on the systems-level principles and the fundamental functions required by bacteria to sustain life. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. From iron coordination compounds to metal oxide nanoparticles.

    PubMed

    Iacob, Mihail; Racles, Carmen; Tugui, Codrin; Stiubianu, George; Bele, Adrian; Sacarescu, Liviu; Timpu, Daniel; Cazacu, Maria

    2016-01-01

    Various types, shapes and sizes of iron oxide nanoparticles were obtained depending on the nature of the precursor, preparation method and reaction conditions. The mixed valence trinuclear iron acetate, [Fe 2 III Fe II O(CH 3 COO) 6 (H 2 O) 3 ]·2H 2 O (FeAc1), μ 3 -oxo trinuclear iron(III) acetate, [Fe 3 O(CH 3 COO) 6 (H 2 O) 3 ]NO 3 ∙4H 2 O (FeAc2), iron furoate, [Fe 3 O(C 4 H 3 OCOO) 6 (CH 3 OH) 3 ]NO 3 ∙2CH 3 OH (FeF), iron chromium furoate, FeCr 2 O(C 4 H 3 OCOO) 6 (CH 3 OH) 3 ]NO 3 ∙2CH 3 OH (FeCrF), and an iron complex with an original macromolecular ligand (FePAZ) were used as precursors for the corresponding oxide nanoparticles. Five series of nanoparticle samples were prepared employing either a classical thermal pathway (i.e., thermal decomposition in solution, solvothermal method, dry thermal decomposition/calcination) or using a nonconventional energy source (i.e., microwave or ultrasonic treatment) to convert precursors into iron oxides. The resulting materials were structurally characterized by wide-angle X-ray diffraction and Fourier transform infrared, Raman, energy-dispersive X-ray, and X-ray fluorescence spectroscopies, as well as thermogravimetric analysis. The morphology was characterized by transmission electron microscopy, atomic force microscopy and dynamic light scattering. The parameters were varied within each route to fine tune the size and shape of the formed nanoparticles.

  4. From iron coordination compounds to metal oxide nanoparticles

    PubMed Central

    Iacob, Mihail; Racles, Carmen; Tugui, Codrin; Stiubianu, George; Bele, Adrian; Sacarescu, Liviu; Timpu, Daniel

    2016-01-01

    Various types, shapes and sizes of iron oxide nanoparticles were obtained depending on the nature of the precursor, preparation method and reaction conditions. The mixed valence trinuclear iron acetate, [Fe2 IIIFeIIO(CH3COO)6(H2O)3]·2H2O (FeAc1), μ3-oxo trinuclear iron(III) acetate, [Fe3O(CH3COO)6(H2O)3]NO3∙4H2O (FeAc2), iron furoate, [Fe3O(C4H3OCOO)6(CH3OH)3]NO3∙2CH3OH (FeF), iron chromium furoate, FeCr2O(C4H3OCOO)6(CH3OH)3]NO3∙2CH3OH (FeCrF), and an iron complex with an original macromolecular ligand (FePAZ) were used as precursors for the corresponding oxide nanoparticles. Five series of nanoparticle samples were prepared employing either a classical thermal pathway (i.e., thermal decomposition in solution, solvothermal method, dry thermal decomposition/calcination) or using a nonconventional energy source (i.e., microwave or ultrasonic treatment) to convert precursors into iron oxides. The resulting materials were structurally characterized by wide-angle X-ray diffraction and Fourier transform infrared, Raman, energy-dispersive X-ray, and X-ray fluorescence spectroscopies, as well as thermogravimetric analysis. The morphology was characterized by transmission electron microscopy, atomic force microscopy and dynamic light scattering. The parameters were varied within each route to fine tune the size and shape of the formed nanoparticles. PMID:28144555

  5. IR, UV-Vis, magnetic and thermal characterization of chelates of some catecholamines and 4-aminoantipyrine with Fe(III) and Cu(II)

    NASA Astrophysics Data System (ADS)

    Mohamed, Gehad G.; Zayed, M. A.; El-Dien, F. A. Nour; El-Nahas, Reham G.

    2004-07-01

    The dopamine derivatives participate in the regulation of wide variety of physiological functions in the human body and in medication life. Increase and/or decrease in the concentration of dopamine in human body reflect an indication for diseases such as Schizophrenia and/or Parkinson diseases. α-Methyldopa (α-MD) in tablets is used in medication of hypertension. The Fe(III) and Cu(II) chelates with coupled products of adrenaline hydrogen tartarate (AHT), levodopa (LD), α-MD and carbidopa (CD) with 4-aminoantipyrine (4-AAP) are prepared and characterized. Different physico-chemical methods like IR, magnetic and UV-Vis spectra are used to investigate the structure of these chelates. Fe(III) form 1:2 (M:catecholamines) chelates while Cu(II) form 1:1 chelates. Catecholamines behave as a bidentate mono- or dibasic ligands in binding to the metal ions. IR spectra show that the catecholamines are coordinated to the metal ions in a bidentate manner with O,O donor sites of the phenolic - OH. Magnetic moment measurements reveal the presence of Fe(III) chelates in octahedral geometry while the Cu(II) chelates are square planar. The thermal decomposition of Fe(III) and Cu(II) complexes is studied using thermogravimetric (TGA) and differential thermal analysis (DTA) techniques. The water molecules are removed in the first step followed immediately by decomposition of the ligand molecules. The activation thermodynamic parameters, such as, energy of activation, enthalpy, entropy and free energy change of the complexes are evaluated and the relative thermal stability of the complexes are discussed.

  6. The Utility of Decomposition and Associated Microbial Parameters to Assess Changes in Stream Ecosystems due to Eutrophication

    NASA Astrophysics Data System (ADS)

    Gulis, V.; Ferreira, V. J.; Graca, M. A.

    2005-05-01

    Traditional approaches to assess stream ecosystem health rely on structural parameters, e.g. a variety of biotic indices. The goal of the Europe-wide RivFunction project is to develop methodology that uses functional parameters (e.g. plant litter decomposition) to this end. Here we report on decomposition experiments carried out in Portugal in five pairs of streams that differed in dissolved inorganic nutrients. On average, decomposition rates of alder and oak leaves were 2.8 and 1.4 times higher in high nutrient streams in coarse and fine mesh bags, respectively, than in corresponding reference streams. Breakdown rate correlated better with stream water SRP concentration rather than TIN. Fungal biomass and sporulation rates of aquatic hyphomycetes associated with decomposing leaves were stimulated by higher nutrient levels. Both fungal parameters measured at very early stages of decomposition (e.g. days 7-13) correlated well with overall decomposition rates. Eutrophication had no significant effect on shredder abundances in leaf bags but species richness was higher in disturbed streams. Decomposition is a key functional parameter in streams integrating many other variables and can be useful in assessing stream ecosystem health. We also argue that because decomposition is often controlled by fungal activity, microbial parameters can also be useful in bioassessment.

  7. Kinetics of the cellular decomposition of supersaturated solid solutions

    NASA Astrophysics Data System (ADS)

    Ivanov, M. A.; Naumuk, A. Yu.

    2014-09-01

    A consistent description of the kinetics of the cellular decomposition of supersaturated solid solutions with the development of a spatially periodic structure of lamellar (platelike) type, which consists of alternating phases of precipitates on the basis of the impurity component and depleted initial solid solution, is given. One of the equations, which determines the relationship between the parameters that describe the process of decomposition, has been obtained from a comparison of two approaches in order to determine the rate of change in the free energy of the system. The other kinetic parameters can be described with the use of a variational method, namely, by the maximum velocity of motion of the decomposition boundary at a given temperature. It is shown that the mutual directions of growth of the lamellae of different phases are determined by the minimum value of the interphase surface energy. To determine the parameters of the decomposition, a simple thermodynamic model of states with a parabolic dependence of the free energy on the concentrations has been used. As a result, expressions that describe the decomposition rate, interlamellar distance, and the concentration of impurities in the phase that remain after the decomposition have been derived. This concentration proves to be equal to the half-sum of the initial concentration and the equilibrium concentration corresponding to the decomposition temperature.

  8. First-principles studies of phase stability and crystal structures in Li-Zn mixed-metal borohydrides

    NASA Astrophysics Data System (ADS)

    Wang, Yongli; Zhang, Yongsheng; Wolverton, C.

    2013-07-01

    We address the problem of finding mixed-metal borohydrides with favorable thermodynamics and illustrate the approach using the example of LiZn2(BH4)5. Using density functional theory (DFT), along with the grand-canonical linear programming method (GCLP), we examine the experimentally and computationally proposed crystal structures and the finite-temperature thermodynamics of dehydrogenation for the quaternary hydride LiZn2(BH4)5. We find the following: (i) For LiZn2(BH4)5, DFT calculations of the experimental crystal structures reveal that the structure from the neutron diffraction experiments of Ravnsbæk is more stable [by 24 kJ/(mol f.u.)] than that based on a previous x-ray study. (ii) Our DFT calculations show that when using the neutron-diffraction structure of LiZn2(BH4)5, the recently theoretically predicted LiZn(BH4)3 compound is unstable with respect to the decomposition into LiZn2(BH4)5+LiBH4. (iii) GCLP calculations show that even though LiZn2(BH4)5 is a combination of weakly [Zn(BH4)2] and strongly (LiBH4) bound borohydrides, its decomposition is not intermediate between the two individual borohydrides. Rather, we find that the decomposition of LiZn2(BH4)5 is divided into a weakly exothermic step [LiZn2(BH4)5→2Zn+(1)/(5)LiBH4+(2)/(5)Li2B12H12+(36)/(5)H2] and three strong endothermic steps (12LiBH4→10LiH+Li2B12H12+13H2; Zn+LiH→LiZn+(1)/(2)H2; 2Zn+Li2B12H12→2LiZn+12B+6H2). DFT-calculated ΔHZPET=0K values for the first three LiZn2(BH4)5 decomposition steps are -19, +37, +74 kJ/(mol H2), respectively. The behavior of LiZn2(BH4)5 shows that mixed-metal borohydrides formed by mixing borohydrides of high and low thermodynamics stabilities do not necessarily have an intermediate decomposition tendency. Our results suggest the correct strategy to find intermediate decomposition in mixed-metal borohydrides is to search for stable mixed-metal products such as ternary metal borides.

  9. REDUCTION OF ACIDITY OF NITRIC ACID SOLUTIONS BY USE OF FORMALDEHYDE

    DOEpatents

    Healy, T.V.

    1958-05-20

    A continuous method is described of concentrating by evaporation and reducing the nitrate ion content of an aqueous solution of metallic salts containing nitric acid not in excess of 8N. It consists of heating the solution and then passing formaldehyde into the heated solution to bring about decomposition of the nitric acid. The evolved gases containing NO are contacted countercurrently with an aqueous metal salt solution containing nitric acid in excess of 8N so as to bring about decomposition of the nitric acid and lower the normality to at least 8N, whereupon it is passed into the body of heated solution.

  10. Nitrated graphene oxide and its catalytic activity in thermal decomposition of ammonium perchlorate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wenwen; Luo, Qingping; Duan, Xiaohui

    2014-02-01

    Highlights: • The NGO was synthesized by nitrifying homemade GO. • The N content of resulted NGO is up to 1.45 wt.%. • The NGO can facilitate the decomposition of AP and release much heat. - Abstract: Nitrated graphene oxide (NGO) was synthesized by nitrifying homemade GO with nitro-sulfuric acid. Fourier transform infrared spectroscopy (FTIR), laser Raman spectroscopy, CP/MAS {sup 13}C NMR spectra and X-ray photoelectron spectroscopy (XPS) were used to characterize the structure of NGO. The thickness and the compositions of GO and NGO were analyzed by atomic force microscopy (AFM) and elemental analysis (EA), respectively. The catalytic effectmore » of the NGO for the thermal decomposition of ammonium perchlorate (AP) was investigated by differential scanning calorimetry (DSC). Adding 10% of NGO to AP decreases the decomposition temperature by 106 °C and increases the apparent decomposition heat from 875 to 3236 J/g.« less

  11. Proof of a new colour decomposition for QCD amplitudes

    DOE PAGES

    Melia, Tom

    2015-12-16

    Recently, Johansson and Ochirov conjectured the form of a new colour decom-position for QCD tree-level amplitudes. This note provides a proof of that conjecture. The proof is based on ‘Mario World’ Feynman diagrams, which exhibit the hierarchical Dyck structure previously found to be very useful when dealing with multi-quark amplitudes.

  12. Ethanol-Glycerin Fixation with Thymol Conservation: A Potential Alternative to Formaldehyde and Phenol Embalming

    ERIC Educational Resources Information Center

    Hammer, Niels; Loffler, Sabine; Feja, Christine; Sandrock, Mara; Schmidt, Wolfgang; Bechmann, Ingo; Steinke, Hanno

    2012-01-01

    Anatomical fixation and conservation are required to prevent specimens from undergoing autolysis and decomposition. While fixation is the primary arrest of the structures responsible for autolysis and decomposition, conservation preserves the state of fixation. Although commonly used, formaldehyde has been classified as carcinogenic to humans. For…

  13. Litter chemistry, community shift, and non-additive effects drive litter decomposition changes following invasion by a generalist pathogen

    Treesearch

    Richard C. Cobb; David M. Rizzo

    2016-01-01

    Forest pathogens have strong potential to shape ecosystem function by altering litterfall, microclimate, and changing community structure. We quantified changes in litter decomposition from a set of distinct diseases caused by Phytophthora ramorum, an exotic generalist pathogen. Phytophthora ramorum causes leaf blight and...

  14. Proof of a new colour decomposition for QCD amplitudes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melia, Tom

    Recently, Johansson and Ochirov conjectured the form of a new colour decom-position for QCD tree-level amplitudes. This note provides a proof of that conjecture. The proof is based on ‘Mario World’ Feynman diagrams, which exhibit the hierarchical Dyck structure previously found to be very useful when dealing with multi-quark amplitudes.

  15. Suppressing NOM access to controlled porous TiO2 particles enhances the decomposition of target water contaminants

    EPA Science Inventory

    Suppressing access of natural organic matter (NOM) to TiO2 is a key to the successful photocatalytic decomposition of a target contaminant in water. This study first demonstrates simply controlling the porous structure of TiO2 can significantly improve the selective oxidation.

  16. Does cattle grazing of dual-purpose wheat accelerate the rate of stubble decomposition and nutrients released

    USDA-ARS?s Scientific Manuscript database

    Decomposition and nutrient release of winter annual forages in integrated crop-livestock systems could be affected by the resultant alterations in structure and quality of residues caused by grazing, but little information is available to test this hypothesis. Information on residue dynamics is need...

  17. Influence of macrophyte decomposition on growth rate and community structure of okefenokee swamp bacterioplankton.

    PubMed

    Murray, R E; Hodson, R E

    1986-02-01

    Dissolved substances released during decomposition of the white water lily (Nymphaea odorata) can alter the growth rate of Okefenokee Swamp bacterioplankton. In microcosm experiments dissolved compounds released from senescent Nymphaea leaves caused a transient reduction in the abundance and activity of water column bacterioplankton, followed by a period of intense bacterial growth. Rates of [H]thymidine incorporation and turnover of dissolved d-glucose were depressed by over 85%, 3 h after the addition of Nymphaea leachates to microcosms containing Okefenokee Swamp water. Bacterial activity subsequently recovered; after 20 h [H]thymidine incorporation in leachate-treated microcosms was 10-fold greater than that in control microcosms. The recovery of activity was due to a shift in the composition of the bacterial population toward resistance to the inhibitory compounds present in Nymphaea leachates. Inhibitory compounds released during the decomposition of aquatic macrophytes thus act as selective agents which alter the community structure of the bacterial population with respect to leachate resistance. Soluble compounds derived from macrophyte decomposition influence the rate of bacterial secondary production and the availability of microbial biomass to microconsumers.

  18. Influence of macrophyte decomposition on growth rate and community structure of Okefenokee Swamp bacterioplankton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, R.E.; Hodson, R.E.

    1986-02-01

    Dissolved substances released during decomposition of the white water lily (Nymphaea odorata) can alter the growth rate of Okefenokee Swamp bacterioplankton. In microcosm experiments dissolved compounds released bacterioplankton, followed by a period of intense bacterial growth. Rates of (/sup 3/H)thymidine incorporation and turnover of dissolved D-glucose were depressed by over 85%, 3 h after the addition of Nymphaea leachates to microcosms containing Okefenokee Swamp water. Bacterial activity subsequently recovered; after 20 h (/sup 3/H)thymidine incorporation in leachate-treated microcosms was 10-fold greater than that in control microcosms. The recovery of activity was due to a shift in the composition of themore » bacterial population toward resistance to the inhibitory compounds present in Nymphaea leachates. Inhibitory compounds released during the decomposition of aquatic macrophytes thus act as selective agents which alter the community structure of the bacterial population with respect to leachate resistance. Soluble compounds derived from macrophyte decomposition influence the rate of bacterial secondary production and the availability of microbial biomass to microconsumers.« less

  19. Total variation regularization of the 3-D gravity inverse problem using a randomized generalized singular value decomposition

    NASA Astrophysics Data System (ADS)

    Vatankhah, Saeed; Renaut, Rosemary A.; Ardestani, Vahid E.

    2018-04-01

    We present a fast algorithm for the total variation regularization of the 3-D gravity inverse problem. Through imposition of the total variation regularization, subsurface structures presenting with sharp discontinuities are preserved better than when using a conventional minimum-structure inversion. The associated problem formulation for the regularization is nonlinear but can be solved using an iteratively reweighted least-squares algorithm. For small-scale problems the regularized least-squares problem at each iteration can be solved using the generalized singular value decomposition. This is not feasible for large-scale, or even moderate-scale, problems. Instead we introduce the use of a randomized generalized singular value decomposition in order to reduce the dimensions of the problem and provide an effective and efficient solution technique. For further efficiency an alternating direction algorithm is used to implement the total variation weighting operator within the iteratively reweighted least-squares algorithm. Presented results for synthetic examples demonstrate that the novel randomized decomposition provides good accuracy for reduced computational and memory demands as compared to use of classical approaches.

  20. A structural model decomposition framework for systems health management

    NASA Astrophysics Data System (ADS)

    Roychoudhury, I.; Daigle, M.; Bregon, A.; Pulido, B.

    Systems health management (SHM) is an important set of technologies aimed at increasing system safety and reliability by detecting, isolating, and identifying faults; and predicting when the system reaches end of life (EOL), so that appropriate fault mitigation and recovery actions can be taken. Model-based SHM approaches typically make use of global, monolithic system models for online analysis, which results in a loss of scalability and efficiency for large-scale systems. Improvement in scalability and efficiency can be achieved by decomposing the system model into smaller local submodels and operating on these submodels instead. In this paper, the global system model is analyzed offline and structurally decomposed into local submodels. We define a common model decomposition framework for extracting submodels from the global model. This framework is then used to develop algorithms for solving model decomposition problems for the design of three separate SHM technologies, namely, estimation (which is useful for fault detection and identification), fault isolation, and EOL prediction. We solve these model decomposition problems using a three-tank system as a case study.

Top