Science.gov

Sample records for normal-mode-based x-ray crystallographic

  1. X-ray crystallographic studies of metalloproteins.

    PubMed

    Volbeda, Anne

    2014-01-01

    Many proteins require metals for their physiological function. In combination with spectroscopic characterizations, X-ray crystallography is a very powerful method to correlate the function of protein-bound metal sites with their structure. Due to their special X-ray scattering properties, specific metals may be located in metalloprotein structures and eventually used for phasing the diffracted X-rays by the method of Multi-wavelength Anomalous Dispersion (MAD). How this is done is the principle subject of this chapter. Attention is also given to the crystallographic characterization of different oxidation states of redox active metals and to the complication of structural changes that may be induced by X-ray irradiation of protein crystals.

  2. X-ray Crystallographic Computations Using a Programmable Calculator.

    ERIC Educational Resources Information Center

    Attard, Alfred E.; Lee, Henry C.

    1979-01-01

    Describes six crystallographic programs which have been developed to illustrate the range of usefulness of programmable calculators in providing computational assistance in chemical analysis. These programs are suitable for the analysis of x-ray diffraction data in the laboratory by students. (HM)

  3. Microfocus/Polycapillary-Optic Crystallographic X-Ray System

    NASA Technical Reports Server (NTRS)

    Joy, Marshall; Gubarev, Mikhail; Ciszak, Ewa

    2005-01-01

    A system that generates an intense, nearly collimated, nearly monochromatic, small-diameter x-ray beam has been developed for use in macromolecular crystallography. A conventional x-ray system for macromolecular crystallography includes a rotating-anode x-ray source, which is massive (.500 kg), large (approximately 2 by 2 by 1 m), and power-hungry (between 2 and 18 kW). In contrast, the present system generates a beam of the required brightness from a microfocus source, which is small and light enough to be mounted on a laboratory bench, and operates at a power level of only tens of watts. The figure schematically depicts the system as configured for observing x-ray diffraction from a macromolecular crystal. In addition to the microfocus x-ray source, the system includes a polycapillary optic . a monolithic block (typically a bundle of fused glass tubes) that contains thousands of straight or gently curved capillary channels, along which x-rays propagate with multiple reflections. This particular polycapillary optic is configured to act as a collimator; the x-ray beam that emerges from its output face consists of quasi-parallel subbeams with a small angular divergence and a diameter comparable to the size of a crystal to be studied. The gap between the microfocus x-ray source and the input face of the polycapillary optic is chosen consistently with the focal length of the polycapillary optic and the need to maximize the solid angle subtended by the optic in order to maximize the collimated x-ray flux. The spectrum from the source contains a significant component of Cu K (photon energy is 8.08 keV) radiation. The beam is monochromatized (for Cu K ) by a nickel filter 10 m thick. In a test, this system was operated at a power of 40 W (current of 897 A at an accelerating potential of 45 kV), with an anode x-ray spot size of 41+/-2 microns. Also tested, in order to provide a standard for comparison, was a commercial rotating-anode x-ray crystallographic system with a

  4. Discovery of novel inhibitors for DHODH via virtual screening and X-ray crystallographic structures

    SciTech Connect

    McLean, Larry R.; Zhang, Ying; Degnen, William; Peppard, Jane; Cabel, Dasha; Zou, Chao; Tsay, Joseph T.; Subramaniam, Arun; Vaz, Roy J.; Li, Yi

    2010-10-28

    Amino-benzoic acid derivatives 1-4 were found to be inhibitors for DHODH by virtual screening, biochemical, and X-ray crystallographic studies. X-ray structures showed that 1 and 2 bind to DHODH as predicted by virtual screening, but 3 and 4 were found to be structurally different from the corresponding compounds initially identified by virtual screening.

  5. Production, purification and preliminary X-ray crystallographic studies of adeno-associated virus serotype 7

    SciTech Connect

    Quesada, Odayme; Gurda, Brittney; Govindasamy, Lakshmanan; McKenna, Robert; Kohlbrenner, Erik; Aslanidi, George; Zolotukhin, Sergei; Muzyczka, Nicholas; Agbandje-McKenna, Mavis

    2007-12-01

    Crystals of baculovirus-expressed adeno-associated virus serotype 7 capsids have been produced which diffract X-rays to ∼3.0 Å resolution. Crystals of baculovirus-expressed adeno-associated virus serotype 7 capsids diffract X-rays to ∼3.0 Å resolution. The crystals belong to the rhombohedral space group R3, with unit-cell parameters a = 252.4, c = 591.2 Å in the hexagonal setting. The diffraction data were processed and reduced to an overall completeness of 79.0% and an R{sub merge} of 12.0%. There are three viral capsids in the unit cell. The icosahedral threefold axis is coincident with the crystallographic threefold axis, resulting in one third of a capsid (20 monomers) per crystallographic asymmetric unit. The orientation of the viral capsid has been determined by rotation-function searches and is positioned at (0, 0, 0) by packing considerations.

  6. Model-building strategies for low-resolution X-ray crystallographic data

    SciTech Connect

    Karmali, Anjum M.; Blundell, Tom L.; Furnham, Nicholas

    2009-02-01

    Interpretation of low-resolution X-ray crystallographic data can prove to be a difficult task. The challenges faced in electron-density interpretation, the strategies that have been employed to overcome them and developments to automate the process are reviewed. The interpretation of low-resolution X-ray crystallographic data proves to be challenging even for the most experienced crystallographer. Ambiguity in the electron-density map makes main-chain tracing and side-chain assignment difficult. However, the number of structures solved at resolutions poorer than 3.5 Å is growing rapidly and the structures are often of high biological interest and importance. Here, the challenges faced in electron-density interpretation, the strategies that have been employed to overcome them and developments to automate the process are reviewed. The methods employed in model generation from electron microscopy, which share many of the same challenges in providing high-confidence models of macromolecular structures and assemblies, are also considered.

  7. Crystallization and preliminary X-ray crystallographic analysis of rabbit l-gulonate 3-dehydrogenase

    SciTech Connect

    Asada, Yukuhiko; Kuroishi, Chizu; Ukita, Yoko; Sumii, Rie; Endo, Satoshi; Matsunaga, Toshiyuki; Hara, Akira; Kunishima, Naoki

    2008-03-01

    The preliminary X-ray crystallographic study of rabbit l-gulonate 3-dehydrogenase is described. Rabbit l-gulonate 3-dehydrogenase was crystallized using the oil-microbatch method at 295 K. X-ray diffraction data were collected to 1.70 Å resolution from a crystal at 100 K using synchrotron radiation. The crystal belongs to the C-centred monoclinic space group C2, with unit-cell parameters a = 71.81, b = 69.08, c = 65.64 Å, β = 102.7°. Assuming the presence of a monomeric protomer in the asymmetric unit gives a V{sub M} value of 2.21 Å{sup 3} Da{sup −1} and a solvent content of 44.4%. A cocrystal with NADH, which was isomorphous to the apo form, was also prepared and diffraction data were collected to 1.85 Å resolution using Cu Kα radiation at 100 K.

  8. Model-building strategies for low-resolution X-ray crystallographic data

    PubMed Central

    Karmali, Anjum M.; Blundell, Tom L.; Furnham, Nicholas

    2009-01-01

    The interpretation of low-resolution X-ray crystallographic data proves to be challenging even for the most experienced crystallographer. Ambiguity in the electron-density map makes main-chain tracing and side-chain assignment difficult. However, the number of structures solved at resolutions poorer than 3.5 Å is growing rapidly and the structures are often of high biological interest and importance. Here, the challenges faced in electron-density interpretation, the strategies that have been employed to overcome them and developments to automate the process are reviewed. The methods employed in model generation from electron microscopy, which share many of the same challenges in providing high-confidence models of macromolecular structures and assemblies, are also considered. PMID:19171966

  9. The X-ray system of crystallographic programs for any computer having a PIDGIN FORTRAN compiler

    NASA Technical Reports Server (NTRS)

    Stewart, J. M.; Kruger, G. J.; Ammon, H. L.; Dickinson, C.; Hall, S. R.

    1972-01-01

    A manual is presented for the use of a library of crystallographic programs. This library, called the X-ray system, is designed to carry out the calculations required to solve the structure of crystals by diffraction techniques. It has been implemented at the University of Maryland on the Univac 1108. It has, however, been developed and run on a variety of machines under various operating systems. It is considered to be an essentially machine independent library of applications programs. The report includes definition of crystallographic computing terms, program descriptions, with some text to show their application to specific crystal problems, detailed card input descriptions, mass storage file structure and some example run streams.

  10. Crystallization and preliminary X-ray crystallographic studies of Mycobacterium tuberculosis chorismate mutase

    SciTech Connect

    Qamra, Rohini; Prakash, Prachee; Aruna, Bandi; Hasnain, Seyed E.; Mande, Shekhar C.

    2005-05-01

    Chorismate mutase from M. tuberculosis has been crystallized. Preliminary X-ray crystallographic studies reveal the occurrence of a dimeric molecule in the crystal asymmetric unit. Chorismate mutase catalyzes the first committed step in the biosynthesis of the aromatic amino acids phenylalanine and tyrosine in bacteria, fungi and higher plants. The recent re-annotation of the Mycobacterium tuberculosis genome has revealed the presence of a duplicate set of genes coding for chorismate mutase. The mycobacterial gene Rv1885c bears <20% sequence homology to other bacterial chorismate mutases, thus serving as a potential target for the development of inhibitors specific to the pathogen. The M. tuberculosis chorismate mutase was crystallized in space group C2 and the crystals diffracted to a resolution of 2.2 Å. Matthews coefficient and self-rotation function calculations revealed the presence of two monomers in the asymmetric unit.

  11. Maximum a posteriori estimation of crystallographic phases in X-ray diffraction tomography

    PubMed Central

    Gürsoy, Doĝa; Biçer, Tekin; Almer, Jonathan D.; Kettimuthu, Raj; Stock, Stuart R.; De Carlo, Francesco

    2015-01-01

    A maximum a posteriori approach is proposed for X-ray diffraction tomography for reconstructing three-dimensional spatial distribution of crystallographic phases and orientations of polycrystalline materials. The approach maximizes the a posteriori density which includes a Poisson log-likelihood and an a priori term that reinforces expected solution properties such as smoothness or local continuity. The reconstruction method is validated with experimental data acquired from a section of the spinous process of a porcine vertebra collected at the 1-ID-C beamline of the Advanced Photon Source, at Argonne National Laboratory. The reconstruction results show significant improvement in the reduction of aliasing and streaking artefacts, and improved robustness to noise and undersampling compared to conventional analytical inversion approaches. The approach has the potential to reduce data acquisition times, and significantly improve beamtime efficiency. PMID:25939627

  12. Purification, crystallization and preliminary X-ray crystallographic analysis of TssL from Vibrio cholerae

    PubMed Central

    Jeong, Jae-Hee; Chang, Jeong Ho; Kim, Yeon-Gil

    2014-01-01

    The type VI secretion system (T6SS) is a macromolecular complex that is conserved in Gram-negative bacteria. The T6SS secretes effector proteins into recipient cells in a contact-dependent manner in order to accomplish cooperative and competitive interactions with the cells. Although the composition and mechanism of the T6SS have been intensively investigated across many Gram-negative bacteria, to date structural information on T6SS components from the important pathogen Vibrio cholerae has been rare. Here, the cloning, purification, crystallization and preliminary X-ray crystallographic analysis of the cytoplasmic domain of TssL, an inner membrane protein of the T6SS, from V. cholerae are reported. Diffraction data were collected to 1.5 Å resolution using synchrotron radiation. The crystal belonged to the hexagonal space group P61, with unit-cell parameters a = 78.4, b = 78.4, c = 49.5 Å. The successful structural characterization of TssL from V. cholerae will contribute to understanding the role of the membrane-associated subunits of the T6SS in more detail. PMID:25195905

  13. X-ray Crystallographic Analysis of the 6-Aminohexanoate Cyclic Dimer Hydrolase

    PubMed Central

    Yasuhira, Kengo; Shibata, Naoki; Mongami, Go; Uedo, Yuki; Atsumi, Yu; Kawashima, Yasuyuki; Hibino, Atsushi; Tanaka, Yusuke; Lee, Young-Ho; Kato, Dai-ichiro; Takeo, Masahiro; Higuchi, Yoshiki; Negoro, Seiji

    2010-01-01

    We performed x-ray crystallographic analyses of the 6-aminohexanoate cyclic dimer (Acd) hydrolase (NylA) from Arthrobacter sp., an enzyme responsible for the degradation of the nylon-6 industry byproduct. The fold adopted by the 472-amino acid polypeptide generated a compact mixed α/β fold, typically found in the amidase signature superfamily; this fold was especially similar to the fold of glutamyl-tRNAGln amidotransferase subunit A (z score, 49.4) and malonamidase E2 (z score, 44.8). Irrespective of the high degree of structural similarity to the typical amidase signature superfamily enzymes, the specific activity of NylA for glutamine, malonamide, and indoleacetamide was found to be lower than 0.5% of that for Acd. However, NylA possessed carboxylesterase activity nearly equivalent to the Acd hydrolytic activity. Structural analysis of the inactive complex between the activity-deficient S174A mutant of NylA and Acd, performed at 1.8 Å resolution, suggested the following enzyme/substrate interactions: a Ser174-cis-Ser150-Lys72 triad constitutes the catalytic center; the backbone N in Ala171 and Ala172 are involved in oxyanion stabilization; Cys316-Sγ forms a hydrogen bond with nitrogen (Acd-N7) at the uncleaved amide bond in two equivalent amide bonds of Acd. A single S174A, S150A, or K72A substitution in NylA by site-directed mutagenesis decreased the Acd hydrolytic and esterolytic activities to undetectable levels, indicating that Ser174-cis-Ser150-Lys72 is essential for catalysis. In contrast, substitutions at position 316 specifically affected Acd hydrolytic activity, suggesting that Cys316 is responsible for Acd binding. On the basis of the structure and functional analysis, we discussed the catalytic mechanisms and evolution of NylA in comparison with other Ser-reactive hydrolases. PMID:19889645

  14. Polychromatic X-ray Microdiffraction Characterization of Local Crystallographic Structure and Defect Distributions

    SciTech Connect

    Ice, G.E.; Barabash, R.I.; Pang, J.W. L.

    2007-12-19

    Three-dimensional (3D), nondestructive, spatially resolved characterization of local crystal structure is conveniently made with polychromatic x-ray microdiffraction. In general, polychromatic microdiffraction provides information about the local (subgrain) orientation, unpaired-dislocation density, and elastic strain. This information can be used for direct comparison to theoretical models. Practical microbeams use intense synchrotron x-ray sources and advanced x-ray focusing optics. By employing polychromatic x-ray beams and a virtual pinhole camera method, called differential aperture microscopy, 3D distributions of the local crystalline phase, orientation (texture), and elastic and plastic strain tensors can be measured with submicron 3D resolution. The local elastic strain tensor elements can typically be determined with uncertainties less than 100 ppm. Orientations can be quantified to {approx} 0.01{sup o} and the local unpaired dislocation-density tensor can be simultaneously characterized. The spatial resolution limit for hard x-ray polychromatic microdiffraction is < 40nm and existing instruments operate with {approx} 500 to 1000nm resolution. Because the 3D x-ray crystal microscope is a penetrating nondestructive tool, it is ideal for studies of mesoscale evolution in materials.

  15. An EXAFS, and preliminary X-ray crystallographic, investigation of an iron-containing product from the lichen Cladonia deformis.

    PubMed

    Alagna, L; Prosperi, T; Tomlinson, A A; Kjøsen, H; Mo, F

    1990-10-12

    An iron-containing product in the acetone extract from the lichen Cladonia deformis has been investigated using chemical, spectroscopic and X-ray crystallographic methods. Visible-near UV, EPR and IR spectra indicate that the iron is present as high-spin Fe(III) and coordinates in an oxygen-containing environment arising from graciliformin (or graciliformin-like) ligands. This has been confirmed by an XAS (X-ray absorption) study using synchrotron radiation. Comparison of the EXAFS and XANES results with those obtained from a model, tris(pent-2,4-dionato)Fe(III), and detailed fitting using the single-scattering, curved-wave formalism for the EXAFS strongly supports the presence of a Fe(III) coordinated to five oxygen atoms from the graciliformin. PMID:2223828

  16. Preliminary X-ray crystallographic analysis of glutathione transferase zeta 1 (GSTZ1a-1a)

    SciTech Connect

    Boone, Christopher D.; Zhong, Guo; Smeltz, Marci; James, Margaret O. McKenna, Robert

    2014-01-21

    Crystals of glutathione transferase zeta 1 were grown and shown to diffract X-rays to 3.1 Å resolution. They belonged to space group P1, with unit-cell parameters a = 42.0, b = 49.6, c = 54.6 Å, α = 82.9, β = 69.9, γ = 73.4°.

  17. A Practical Synthesis and X-ray Crystallographic Analysis of Dithymoquinone, a Photodimer of Thymoquinone

    PubMed Central

    Myers, Alan L.; Zhang, Yan-Ping; Kramer, Mark A.; Bornmann, William G.; Kaseb, Ahmed; Yang, Peiying; Tran, Hai T.

    2014-01-01

    An updated and practical approach to the synthesis of dithymoquinone via one-step photoirradiation of thymoquinone (2-methyl-5-isopropyl-1,4-benzoquinone) is described. Synthesis resulted in a 55% yield of one structural isomer (trans-anti derivative), as confirmed by HPLC, NMR spectroscopy and first ever single-crystal X-ray diffraction analyses. PMID:24883052

  18. Crystallographic Characterization of Extraterrestrial Materials by Energy-Scanning X-ray Diffraction

    NASA Technical Reports Server (NTRS)

    Hagiya, Kenji; Mikouchi, Takashi; Ohsumi, Kazumasa; Terada, Yasuko; Yagi, Naoto; Komatsu, Mutsumi; Yamaguchi, Shoki; Hirata, Arashi; Kurokawa, Ayaka; Zolensky, Michael E. (Principal Investigator)

    2016-01-01

    We have continued our long-term project using X-ray diffraction to characterize a wide range of extraterrestrial samples. The stationary sample method with polychromatic X-rays is advantageous because the irradiated area of the sample is always same and fixed, meaning that all diffraction spots occur from the same area of the sample, however, unit cell parameters cannot be directly obtained by this method though they are very important for identification of mineral and for determination of crystal structures. In order to obtain the cell parameters even in the case of the sample stationary method, we apply energy scanning of a micro-beam of monochromatic SR at SPring-8.

  19. Crystallization and preliminary X-ray crystallographic study of disproportionating enzyme from potato

    SciTech Connect

    Imamura, Kayo; Matsuura, Takanori; Ye, Zhengmao; Takaha, Takeshi; Fujii, Kazutoshi; Kusunoki, Masami; Nitta, Yasunori

    2005-01-01

    Disproportionating enzyme from potato was crystallized and preliminarily analyzed using X-ray diffraction. Disproportionating enzyme (D-enzyme; EC 2.4.1.25) is a 59 kDa protein that belongs to the α-amylase family. D-enzyme catalyses intramolecular and intermolecular transglycosylation reactions of α-1,4 glucan. A crystal of the D-enzyme from potato was obtained by the hanging-drop vapour-diffusion method. Preliminary X-ray data showed that the crystal diffracts to 2.0 Å resolution and belongs to space group C222{sub 1}, with unit-cell parameters a = 69.7, b = 120.3, c = 174.2 Å.

  20. Recombinant production, crystallization and X-ray crystallographic structure determination of the peptidyl-tRNA hydrolase of Pseudomonas aeruginosa

    SciTech Connect

    Hughes, Ronny C.; McFeeters, Hana; Coates, Leighton; McFeeters, Robert L.

    2014-10-15

    The peptidyl-tRNA hydrolase enzyme from the pathogenic bacterium Pseudomonas aeruginosa (Pth; EC 3.1.1.29) has been cloned, expressed in Escherichia coli and crystallized for X-ray structural analysis. Suitable crystals were grown using the sitting-drop vapour-diffusion method after one week of incubation against a reservoir solution consisting of 20% polyethylene glycol 4000, 100 mM Tris pH 7.5, 10%(v/v) isopropyl alcohol. The crystals were used to obtain the three-dimensional structure of the native protein at 1.77 Å resolution. The structure was determined by molecular replacement of the crystallographic data processed in space group P6122 with unit-cell parameters a = b = 63.62,c = 155.20 Å, α = β = 90, γ = 120°. The asymmetric unit of the crystallographic lattice was composed of a single copy of the enzyme molecule with a 43% solvent fraction, corresponding to a Matthews coefficient of 2.43 Å3 Da-1. The crystallographic structure reported here will serve as the foundation for future structure-guided efforts towards the development of novel small-molecule inhibitors specific to bacterial Pths.

  1. X-RAY AND CRYSTALLOGRAPHIC STUDIES OF PLANT VIRUS PREPARATIONS. III.

    PubMed

    Bernal, J D; Fankuchen, I

    1941-09-20

    These papers give an account of an optical and x-ray examination of preparations of plant virus substances isolated by Bawden and Pirie, in particular of those of tobacco mosaic disease. They open with a historical survey of the work, indicating the order in which new phenomena were discovered. The subsequent treatment is divided into three parts: I. Introduction and preparation of specimens. II. Modes of aggregation of virus particles. III. (1) The structure of the particles. (2) Biological implications. Part I, after an historical introduction, describes the method of preparation, from solutions of the virus, of optically oriented specimens of different concentrations. For their examination special x-ray apparatus was developed, in particular cameras working with very low angles and capable of indicating spacings up to 1000 A. In Part III, Section 1 deals with the x-ray evidence on the internal structure of the particles. Even in solution, they have an inner regularity like that of a crystal. Virus preparations are thus in a sense doubly crystalline. Closer analysis reveals that the x-ray patterns are not directly comparable to those of a crystal as many of the reflections do not obey Bragg's law, but can be understood on the theory of gratings of limited size. The structure seems to consist of sub-units of the dimensions of approximately 11 A cube, fitted together in a hexagonal or pseudohexagonal lattice of dimensions-a = 87 A, c = 68 A. Contrary to what earlier observations seemed to indicate, the particle seems to be virtually unchanged by drying and must therefore contain little water. There are marked resemblances with the structure of both crystalline and fibrous protein, but the virus structure does not belong to any of the classes hitherto studied. There are indications that the inner structure is of a simpler character than that of the molecules of crystalline proteins. Part III, Section 2 contains a comparative study of the optical and x-ray

  2. X-RAY AND CRYSTALLOGRAPHIC STUDIES OF PLANT VIRUS PREPARATIONS. III

    PubMed Central

    Bernal, J. D.; Fankuchen, I.

    1941-01-01

    These papers give an account of an optical and x-ray examination of preparations of plant virus substances isolated by Bawden and Pirie, in particular of those of tobacco mosaic disease. They open with a historical survey of the work, indicating the order in which new phenomena were discovered. The subsequent treatment is divided into three parts: I. Introduction and preparation of specimens. II. Modes of aggregation of virus particles. III. (1) The structure of the particles. (2) Biological implications. Part I, after an historical introduction, describes the method of preparation, from solutions of the virus, of optically oriented specimens of different concentrations. For their examination special x-ray apparatus was developed, in particular cameras working with very low angles and capable of indicating spacings up to 1000 Å. In Part III, Section 1 deals with the x-ray evidence on the internal structure of the particles. Even in solution, they have an inner regularity like that of a crystal. Virus preparations are thus in a sense doubly crystalline. Closer analysis reveals that the x-ray patterns are not directly comparable to those of a crystal as many of the reflections do not obey Bragg's law, but can be understood on the theory of gratings of limited size. The structure seems to consist of sub-units of the dimensions of approximately 11 Å cube, fitted together in a hexagonal or pseudohexagonal lattice of dimensions—a = 87 Å, c = 68 Å. Contrary to what earlier observations seemed to indicate, the particle seems to be virtually unchanged by drying and must therefore contain little water. There are marked resemblances with the structure of both crystalline and fibrous protein, but the virus structure does not belong to any of the classes hitherto studied. There are indications that the inner structure is of a simpler character than that of the molecules of crystalline proteins. Part III, Section 2 contains a comparative study of the optical and x-ray

  3. Production and X-ray crystallographic analysis of fully deuterated human carbonic anhydrase II

    SciTech Connect

    Budayova-Spano, Monika; Fisher, S. Zoë; Dauvergne, Marie-Thérèse; Agbandje-McKenna, Mavis; Silverman, David N.; Myles, Dean A. A.; McKenna, Robert

    2006-01-01

    This article reports the production, crystallization and X-ray structure determination of perdeuterated human carbonic anhydrase (HCA II). The refined structure is shown to be highly isomorphous with hydrogenated HCA II, especially with regard to the active site architecture and solvent network. Human carbonic anhydrase II (HCA II) is a zinc metalloenzyme that catalyzes the reversible hydration and dehydration of carbon dioxide and bicarbonate, respectively. The rate-limiting step in catalysis is the intramolecular transfer of a proton between the zinc-bound solvent (H{sub 2}O/OH{sup −}) and the proton-shuttling residue His64. This distance (∼7.5 Å) is spanned by a well defined active-site solvent network stabilized by amino-acid side chains (Tyr7, Asn62, Asn67, Thr199 and Thr200). Despite the availability of high-resolution (∼1.0 Å) X-ray crystal structures of HCA II, there is currently no definitive information available on the positions and orientations of the H atoms of the solvent network or active-site amino acids and their ionization states. In preparation for neutron diffraction studies to elucidate this hydrogen-bonding network, perdeuterated HCA II has been expressed, purified, crystallized and its X-ray structure determined to 1.5 Å resolution. The refined structure is highly isomorphous with hydrogenated HCA II, especially with regard to the active-site architecture and solvent network. This work demonstrates the suitability of these crystals for neutron macromolecular crystallography.

  4. Surface-layer protein from Caulobacter crescentus: expression, purification and X-ray crystallographic analysis.

    PubMed

    Jones, Michael D; Chan, Anson C K; Nomellini, John F; Murphy, Michael E P; Smit, John

    2016-09-01

    Protein surface layers are self-assembling, paracrystalline lattices on the surface of many prokaryotes. Surface-layer proteins have not benefited from widespread structural analysis owing to their resistance to crystallization. Here, the successful expression of a truncated version of RsaA, the surface-layer protein from Caulobacter crescentus, from a Caulobacter protein-expression system is reported. The purification, crystallization and initial X-ray diffraction analysis of the truncated RsaA, the largest surface-layer protein studied to date and the first from a Gram-negative bacterium, are also reported. PMID:27599857

  5. Purification, crystallization and preliminary X-ray crystallographic studies of Rv3705c from Mycobacterium tuberculosis

    SciTech Connect

    Lu, Feifei; Gao, Feng; Li, Honglin; Gong, Weimin; Zhou, Lin; Bi, Lijun

    2014-07-23

    The cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of Rv3705c from M. tuberculosis are described. The conserved protein Rv3705c from Mycobacterium tuberculosis has been cloned, expressed, purified and crystallized by the sitting-drop vapour-diffusion method using PEG 3350 as a precipitant. The Rv3705c crystals exhibited space group P6{sub 1}22 or P6{sub 5}22, with unit-cell parameters a = b = 198.0, c = 364.1 Å, α = β = 90, γ = 120°, and diffracted to a resolution of 3.3 Å.

  6. Expression, purification, crystallization and preliminary X-ray crystallographic analysis of pantothenate kinase from Mycobacterium tuberculosis

    SciTech Connect

    Das, Satyabrata; Kumar, Parimal; Bhor, Vikrant; Surolia, A. Vijayan, M.

    2005-01-01

    Pantothenate kinase, the first enzyme of the universal coenzyme A biosynthetic pathway, from M. tuberculosis H37Rv has been cloned, expressed, purified and X-ray analysed in two different crystal forms. Pantothenate kinase is an essential enzyme in the bacterial life cycle. It catalyzes the phosphorylation of pantothenate (vitamin B{sub 5}) to 4′-phosphopantothenate, the first step in the coenzyme A biosynthetic pathway. The enzyme from Mycobacterium tuberculosis, MW 35.7 kDa, has been cloned, expressed, purified and crystallized in two different trigonal crystal forms, both belonging to space group P3{sub 1}21. Two complete data sets of resolution 2.5 Å (form I) and 2.9 Å (form II) from crystals with unit-cell parameters a = b = 78.3, c = 115.45 Å and a = b = 107.63, c = 89.85 Å, respectively, were collected at room temperature on a home X-ray source. Structures of both crystal forms were solved for one subunit in the asymmetric unit by molecular replacement.

  7. Crystallization and preliminary X-ray crystallographic analysis of importin-α from Neurospora crassa

    PubMed Central

    Bernardes, Natalia E.; Takeda, Agnes A. S.; Freitas, Fernanda Z.; Bertolini, Maria Célia; Fontes, Marcos R. M.

    2014-01-01

    Importin-α recognizes cargo proteins that contain classical nuclear localization sequences (NLS) and, in complex with importin-β, is able to translocate nuclear proteins through the nuclear pore complex. The filamentous fungus Neurospora crassa is a well studied organism that has been widely used as a model organism for fundamental aspects of eukaryotic biology, and is important for understanding the specific mechanisms of protein transport to the cell nucleus. In this work, the crystallization and preliminary X-ray diffraction analysis of importin-α from N. crassa (IMPα-Nc) complexed with a classical NLS peptide (SV40 NLS) are reported. IMPα-Nc–SV40 NLS crystals diffracted X-rays to 2.0 Å resolution and the structure was solved by molecular-replacement techniques, leading to a monomeric structure. The observation of the electron-density map indicated the presence of SV40 NLSs interacting at both the minor and major NLS-binding sites of the protein. PMID:24699749

  8. Overexpression, crystallization and preliminary X-ray crystallographic analysis of phosphopantetheine adenylyltransferase from Enterococcus faecalis

    SciTech Connect

    Kang, Ji Yong; Lee, Hyung Ho; Yoon, Hye Jin; Kim, Hyoun Sook; Suh, Se Won

    2006-11-01

    Phosphopantetheine adenylyltransferase from En. faecalis was crystallized and X-ray diffraction data were collected to 2.70 Å resolution. Phosphopantetheine adenylyltransferase, an essential enzyme in the coenzyme A biosynthetic pathway, catalyzes the reversible transfer of an adenylyl group from ATP to 4′-phosphopantetheine, yielding 3′-dephospho-CoA and pyrophosphate. Enterococcus faecalis PPAT has been overexpressed in Escherichia coli as a fusion with a C-terminal purification tag and crystallized at 297 K using a reservoir solution consisting of 0.1 M sodium HEPES pH 7.5, 0.8 M sodium dihydrogen phosphate and 0.8 M potassium dihydrogen phosphate. X-ray diffraction data were collected to 2.70 Å at 100 K. The crystals belong to the primitive tetragonal space group P4{sub 1} (or P4{sub 3}), with unit-cell parameters a = b = 160.81, c = 225.68 Å. Four copies of the hexameric molecule are likely to be present in the asymmetric unit, giving a crystal volume per protein weight (V{sub M}) of 3.08 Å{sup 3} Da{sup −1} and a solvent content of 60.1%.

  9. Discovery of Pyrrolopyridine−Pyridone Based Inhibitors of Met Kinase: Synthesis, X-ray Crystallographic Analysis, and Biological Activities

    SciTech Connect

    Kim, Kyoung Soon; Zhang, Liping; Schmidt, Robert; Cai, Zhen-Wei; Wei, Donna; Williams, David K.; Lombardo, Louis J.; Trainor, George L.; Xie, Dianlin; Zhang, Yaquan; An, Yongmi; Sack, John S.; Tokarski, John S.; Darienzo, Celia; Kamath, Amrita; Marathe, Punit; Zhang, Yueping; Lippy, Jonathan; Jeyaseelan, Sr., Robert; Wautlet, Barri; Henley, Benjamin; Gullo-Brown, Johnni; Manne, Veeraswamy; Hunt, John T.; Fargnoli, Joseph; Borzilleri, Robert M.

    2008-10-02

    Conformationally constrained 2-pyridone analogue 2 is a potent Met kinase inhibitor with an IC50 value of 1.8 nM. Further SAR of the 2-pyridone based inhibitors of Met kinase led to potent 4-pyridone and pyridine N-oxide inhibitors such as 3 and 4. The X-ray crystallographic data of the inhibitor 2 bound to the ATP binding site of Met kinase protein provided insight into the binding modes of these inhibitors, and the SAR of this series of analogues was rationalized. Many of these analogues showed potent antiproliferative activities against the Met dependent GTL-16 gastric carcinoma cell line. Compound 2 also inhibited Flt-3 and VEGFR-2 kinases with IC{sub 50} values of 4 and 27 nM, respectively. It possesses a favorable pharmacokinetic profile in mice and demonstrates significant in vivo antitumor activity in the GTL-16 human gastric carcinoma xenograft model.

  10. X-ray crystallographic and kinetic investigations of 6-sulfamoyl-saccharin as a carbonic anhydrase inhibitor.

    PubMed

    Alterio, V; Tanc, M; Ivanova, J; Zalubovskis, R; Vozny, I; Monti, S M; Di Fiore, A; De Simone, G; Supuran, C T

    2015-04-01

    6-Sulfamoyl-saccharin was investigated as an inhibitor of 11 α-carbonic anhydrase (CA, EC 4.2.1.1) isoforms of human (h) origin, hCA I-XIV, and X-ray crystallographic data were obtained for its adduct with hCA II, the physiologically dominant isoform. This compound possesses two potential zinc-binding groups, the primary sulfamoyl one and the secondary, acylatedsulfonamide. Saccharin itself binds to the Zn(II) ion from the CA active site coordinating with this last group, in deprotonated (SO2N(-)CO) form. Here we explain why 6-sulfamoyl-saccharin, unlike saccharin, binds to the metal ion from the hCA II active site by its primary sulfonamide moiety and not the secondary one as saccharin itself. Our study is useful for shedding new light to the structure-based drug design of isoform-selective CA inhibitors of the sulfonamide type.

  11. Cloning, expression, purification, crystallization and preliminary X-ray crystallographic analysis of the mannose 6-phosphate isomerase from Salmonella typhimurium

    SciTech Connect

    Gowda, Giri; Sagurthi, Someswar Rao; Savithri, H. S.; Murthy, M. R. N.

    2008-02-01

    The cloning, expression, purification, crystallization and preliminary X-ray crystallographic studies of mannose 6-phosphate isomerase from S. typhimurium are reported. Mannose 6-phosphate isomerase (MPI; EC 5.3.1.8) catalyzes the reversible isomerization of d-mannose 6-phosphate (M6P) and d-fructose 6-phosphate (F6P). In the eukaryotes and prokaryotes investigated to date, the enzyme has been reported to play a crucial role in d-mannose metabolism and supply of the activated mannose donor guanosine diphosphate d-mannose (GDP-d-mannose). In the present study, MPI was cloned from Salmonella typhimurium, overexpressed in Escherichia coli and purified using Ni–NTA affinity column chromatography. Purified MPI crystallized in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 36.03, b = 92.2, c = 111.01 Å. A data set extending to 1.66 Å resolution was collected with 98.8% completeness using an image-plate detector system mounted on a rotating-anode X-ray generator. The asymmetric unit of the crystal cell was compatible with the presence of a monomer of MPI. A preliminary structure solution of the enzyme has been obtained by molecular replacement using Candida albicans MPI as the phasing model and the program Phaser. Further refinement and model building are in progress.

  12. Quantification of thin film crystallographic orientation using X-ray diffraction with an area detector

    SciTech Connect

    Baker, Jessica L; Jimison, Leslie H; Mannsfeld, Stefan; Volkman, Steven; Yin, Shong; Subramanian, Vivek; Salleo, Alberto; Alivisatos, A Paul; Toney, Michael F

    2010-02-19

    As thin films become increasingly popular (for solar cells, LEDs, microelectronics, batteries), quantitative morphological information is needed to predict and optimize the film's electronic, optical and mechanical properties. This quantification can be obtained quickly and easily with X-ray diffraction using an area detector and synchrotron radiation in two simple geometries. In this paper, we describe a methodology for constructing complete pole figures for thin films with fiber texture (isotropic in-plane orientation). We demonstrate this technique on semicrystalline polymer films, self-assembled nanoparticle semiconductor films, and randomly-packed metallic nanoparticle films. This method can be immediately implemented to help understand the relationship between film processing and microstructure, enabling the development of better and less expensive electronic and optoelectronic devices.

  13. Preliminary neutron and X-ray crystallographic studies of equine cyanomethemoglobin

    SciTech Connect

    Kovalevsky, A.Y.; Fisher, S.Z.; Seaver, S.; Mustyakimov, M.; Sukumar, N.; Langan, P.; Mueser, T.C.; Hanson, B.L.

    2010-08-18

    Room-temperature and 100 K X-ray and room-temperature neutron diffraction data have been measured from equine cyanomethemoglobin to 1.7 {angstrom} resolution using a home source, to 1.6 {angstrom} resolution on NE-CAT at the Advanced Photon Source and to 2.0 {angstrom} resolution on the PCS at Los Alamos Neutron Science Center, respectively. The cyanomethemoglobin is in the R state and preliminary room-temperature electron and neutron scattering density maps clearly show the protonation states of potential Bohr groups. Interestingly, a water molecule that is in the vicinity of the heme group and coordinated to the distal histidine appears to be expelled from this site in the low-temperature structure.

  14. Crystallization and Preliminary X-Ray Crystallographic Analysis of Human Plasma Platelet Activating Factor Acetylhydrolase

    SciTech Connect

    Samanta, U.; Wilder, C; Bahnson, B

    2009-01-01

    The plasma form of the human enzyme platelet activating factor acetylhydrolase (PAF-AH) has been crystallized, and X-ray diffraction data were collected at a synchrotron source to a resolution of 1.47 {angstrom}. The crystals belong to space group C2, with unit cell parameters of a = 116.18, b = 83.06, c = 96.71 {angstrom}, and {beta} = 115.09 and two molecules in the asymmetric unit. PAF-AH functions as a general anti-inflammatory scavenger by reducing the levels of the signaling molecule PAF. Additionally, the LDL bound enzyme has been linked to atherosclerosis due to its hydrolytic activities of pro-inflammatory agents, such as sn-2 oxidatively fragmented phospholipids.

  15. Synthesis, X-Ray Crystallographic Analysis and BSA Interaction of a New α-Aminophosphonate

    NASA Astrophysics Data System (ADS)

    Wang, Q.-M.; Gao, W.; Song, J.-L.; Liu, Y.; Qi, H.; Tang, X.-H.

    2016-09-01

    A new α-aminophosphonate ( 1) was synthesized and its composition and structure were established by EA, FT-IR, ESI-MS, NMR (1H, 13C, and 31P), and X-ray crystallography. Compound 1 crystallizes in a monoclinic system with space group C2/c. The interaction between α-aminophosphonate ( 1) and bovine serum albumin (BSA) at three different temperatures (298, 303, and 310 K) under simulated physiological condition were studied by fluorescence spectroscopy. The results showed that the fluorescence quenching mechanism between 1 and BSA was a static quenching procedure. The binding constant (Ka) and binding sites (n) were obtained. The corresponding thermodynamic parameters (ΔH, ΔS, and ΔG) of the interaction system were calculated at different temperatures. The results revealed that the binding process was spontaneous; hydrogen bonds and van der Waals forces were the main forces that stabilize the complex.

  16. Crystallization and preliminary X-ray crystallographic studies of pig heart carbonyl reductase

    SciTech Connect

    Aoki, Ken-ichi; Tanaka, Nobutada; Ishikura, Shuhei; Araki, Naoko; Imamura, Yorishige; Hara, Akira; Nakamura, Kazuo T.

    2006-10-01

    Pig heart carbonyl reductase has been crystallized in the presence of NADPH. Diffraction data have been collected using synchrotron radiation. Pig heart carbonyl reductase (PHCR), which belongs to the short-chain dehydrogenase/reductase (SDR) family, has been crystallized by the hanging-drop vapour-diffusion method. Two crystal forms (I and II) have been obtained in the presence of NADPH. Form I crystals belong to the tetragonal space group P4{sub 2}, with unit-cell parameters a = b = 109.61, c = 94.31 Å, and diffract to 1.5 Å resolution. Form II crystals belong to the tetragonal space group P4{sub 1}2{sub 1}2, with unit-cell parameters a = b = 120.10, c = 147.00 Å, and diffract to 2.2 Å resolution. Both crystal forms are suitable for X-ray structure analysis at high resolution.

  17. Synthesis, X-Ray Crystallographic Analysis and BSA Interaction of a New α-Aminophosphonate

    NASA Astrophysics Data System (ADS)

    Wang, Q.-M.; Gao, W.; Song, J.-L.; Liu, Y.; Qi, H.; Tang, X.-H.

    2016-09-01

    A new α-aminophosphonate (1) was synthesized and its composition and structure were established by EA, FT-IR, ESI-MS, NMR (1H, 13C, and 31P), and X-ray crystallography. Compound 1 crystallizes in a monoclinic system with space group C2/c. The interaction between α-aminophosphonate (1) and bovine serum albumin (BSA) at three different temperatures (298, 303, and 310 K) under simulated physiological condition were studied by fluorescence spectroscopy. The results showed that the fluorescence quenching mechanism between 1 and BSA was a static quenching procedure. The binding constant (Ka) and binding sites (n) were obtained. The corresponding thermodynamic parameters (ΔH, ΔS, and ΔG) of the interaction system were calculated at different temperatures. The results revealed that the binding process was spontaneous; hydrogen bonds and van der Waals forces were the main forces that stabilize the complex.

  18. Expression, purification, crystallization and preliminary X-ray crystallographic analysis of Zucchini from Drosophila melanogaster.

    PubMed

    Fukuhara, Satoshi; Nishimasu, Hiroshi; Bonnefond, Luc; Matsumoto, Naoki; Ishitani, Ryuichiro; Nureki, Osamu

    2012-11-01

    PIWI-interacting RNAs (piRNAs) bind PIWI proteins and silence transposons to maintain the genomic integrity of germ cells. Zucchini (Zuc), a phospholipase D superfamily member, is conserved among animals and is implicated in piRNA biogenesis. However, the underlying mechanism by which Zuc participates in piRNA biogenesis remains elusive. Drosophila melanogaster Zuc (DmZuc) was expressed in Escherichia coli, purified and crystallized. X-ray diffraction data were collected to 1.75 Å resolution. The crystal belonged to space group P2(1), with unit-cell parameters a=55.0, b=71.2, c=56.3 Å, β=107.9°.

  19. Crystallization and preliminary X-ray crystallographic studies of the axin DIX domain

    SciTech Connect

    Shibata, Naoki; Tomimoto, Yusuke; Hanamura, Toru; Yamamoto, Ryo; Ueda, Mai; Ueda, Yasufumi; Mizuno, Nobuhiro; Ogata, Hideaki; Komori, Hirofumi; Shomura, Yasuhito; Kataoka, Michihiko; Shimizu, Sakayu; Kondo, Jun; Yamamoto, Hideki; Kikuchi, Akira; Higuchi, Yoshiki

    2007-06-01

    The DIX domain of rat axin has been purified and crystallized. Crystals diffracted to 2.9 Å resolution using synchrotron radiation. Axin is a negative regulator of the canonical Wnt signalling pathway that mediates the phosphorylation of β-catenin by glycogen synthase kinase 3β. The DIX domain of rat axin, which is important for its homooligomerization and interactions with other regulators in the Wnt pathway, was purified and crystallized by the sitting-drop vapour-diffusion technique using polyethylene glycol 6000 and lithium sulfate as crystallization agents. Crystals belong to space group P6{sub 1} or P6{sub 5}, with unit-cell parameters a = b = 91.49, c = 84.92 Å. An X-ray diffraction data set has been collected to a nominal resolution of 2.9 Å.

  20. Crystallization and preliminary X-ray crystallographic analysis of Sclerotium rolfsii lectin.

    PubMed

    Leonidas, Demetres D; Swamy, Bale M; Bhat, Anuradha G; Inamdar, Shashikala R; Kosmopoulou, Magda N; Chrysina, Evangelia D; Oikonomakos, Nikos G

    2003-02-01

    Sclerotium rolfsii lectin (SRL), from the soil-borne phytopathogenic fungus S. rolfsii, has been crystallized. SRL crystals were grown by the hanging-drop vapour-diffusion method using an MPD-ammonium acetate mixture in Tris-HCl buffer pH 8.5. A complete data set from a single crystal at 100 K was collected to 1.1 A resolution using synchrotron radiation. Preliminary crystallographic analysis showed that the crystals belong to the tetragonal space group P4(2)2(1)2, with unit-cell parameters a = b = 99.81, c = 63.99 A and two molecules per asymmetric unit. PMID:12554954

  1. X-ray Crystallographic Structure of Thermophilic Rhodopsin: IMPLICATIONS FOR HIGH THERMAL STABILITY AND OPTOGENETIC FUNCTION.

    PubMed

    Tsukamoto, Takashi; Mizutani, Kenji; Hasegawa, Taisuke; Takahashi, Megumi; Honda, Naoya; Hashimoto, Naoki; Shimono, Kazumi; Yamashita, Keitaro; Yamamoto, Masaki; Miyauchi, Seiji; Takagi, Shin; Hayashi, Shigehiko; Murata, Takeshi; Sudo, Yuki

    2016-06-01

    Thermophilic rhodopsin (TR) is a photoreceptor protein with an extremely high thermal stability and the first characterized light-driven electrogenic proton pump derived from the extreme thermophile Thermus thermophilus JL-18. In this study, we confirmed its high thermal stability compared with other microbial rhodopsins and also report the potential availability of TR for optogenetics as a light-induced neural silencer. The x-ray crystal structure of TR revealed that its overall structure is quite similar to that of xanthorhodopsin, including the presence of a putative binding site for a carotenoid antenna; but several distinct structural characteristics of TR, including a decreased surface charge and a larger number of hydrophobic residues and aromatic-aromatic interactions, were also clarified. Based on the crystal structure, the structural changes of TR upon thermal stimulation were investigated by molecular dynamics simulations. The simulations revealed the presence of a thermally induced structural substate in which an increase of hydrophobic interactions in the extracellular domain, the movement of extracellular domains, the formation of a hydrogen bond, and the tilting of transmembrane helices were observed. From the computational and mutational analysis, we propose that an extracellular LPGG motif between helices F and G plays an important role in the thermal stability, acting as a "thermal sensor." These findings will be valuable for understanding retinal proteins with regard to high protein stability and high optogenetic performance. PMID:27129243

  2. Preliminary X-ray crystallographic studies of mouse UPR responsive protein P58(IPK) TPR fragment.

    PubMed

    Tao, Jiahui; Wu, Yunkun; Ron, David; Sha, Bingdong

    2008-02-01

    Endoplasmic reticulum (ER) stress induces the unfolded protein response (UPR), which can promote protein folding and misfolded protein degradation and attenuate protein translation and protein translocation into the ER. P58(IPK) has been proposed to function as a molecular chaperone to maintain protein-folding homeostasis in the ER under normal and stressed conditions. P58(IPK) contains nine TPR motifs and a C-terminal J-domain within its primary sequence. To investigate the mechanism by which P58(IPK) functions to promote protein folding within the ER, a P58(IPK) TPR fragment without the C-terminal J-domain was crystallized. The crystals diffract to 2.5 A resolution using a synchrotron X-ray source. The crystals belong to space group P2(1), with unit-cell parameters a = 83.53, b = 92.75, c = 84.32 A, alpha = 90.00, beta = 119.36, gamma = 90.00 degrees. There are two P58(IPK) molecules in the asymmetric unit, which corresponds to a solvent content of approximately 60%. Structure determination by MAD methods is under way.

  3. Preliminary X-ray crystallographic studies of yeast mitochondrial protein Tom70p

    SciTech Connect

    Wu, Yunkun; McCombs, Debbie; Nagy, Lisa; DeLucas, Lawrence; Sha, Bingdong

    2006-03-01

    Tom70p is an important translocase of the outer membrane complex member and a major surface receptor of the protein-translocation machinery in the outer mitochondrial membrane. To investigate the mechanism by which Tom70p functions to deliver the mitochondrial protein precursors, the cytosolic fragment of yeast Tom70p (cTom70p) has been crystallized. Protein translocations across mitochondrial membranes play critical roles in mitochondrion biogenesis. Protein transport from the cell cytosol to the mitochondrial matrix is carried out by the translocase of the outer membrane (TOM) complex and the translocase of the inner membrane (TIM) complexes. Tom70p is an important TOM-complex member and a major surface receptor of the protein-translocation machinery in the outer mitochondrial membrane. To investigate the mechanism by which Tom70p functions to deliver the mitochondrial protein precursors, the cytosolic fragment of yeast Tom70p (cTom70p) was crystallized. The crystals diffract to 3.2 Å using a synchrotron X-ray source and belong to space group P2{sub 1}, with unit-cell parameters a = 44.89, b = 168.78, c = 83.41 Å, α = 90.00, β = 102.74, γ = 90.00°. There are two Tom70p molecules in one asymmetric unit, which corresponds to a solvent content of approximately 51%. Structure determination by MAD methods is under way.

  4. Crystallization and Preliminary X-ray Crystallographic Studies of the Alkanesulfonate FMN Reductase from Escherichia coli

    SciTech Connect

    Gao,B.; Bertrand, A.; Boles, W.; Ellis, H.; Mallett, T.

    2005-01-01

    The alkanesulfonate FMN reductase (SsuE) from Escherichia coli catalyzes the reduction of FMN by NADPH to provide reduced flavin for the monooxygenase (SsuD) enzyme. The vapor-diffusion technique yielded single crystals that grow as hexagonal rods and diffract to 2.9 Angstrom resolution using synchrotron X-ray radiation. The protein crystallizes in the primitive hexagonal space group P622. The SsuE protein lacks any cysteine or methionine residues owing to the role of the SsuE enzyme in the acquisition of sulfur during sulfate starvation. Therefore, substitution of two leucine residues (Leu114 and Leu165) to methionine was performed to obtain selenomethionine-containing SsuE for MAD phasing. The selenomethionine derivative of SsuE has been expressed and purified and crystals of the protein have been obtained with and without bound FMN. These preliminary studies should lead to the structure solution of SsuE. It is anticipated that this new protein structure will provide detailed structural information on specific active-site regions of the protein and insight into the mechanism of flavin reduction and transfer of reduced flavin.

  5. Expression, purification, crystallization and preliminary X-ray crystallographic studies of Deinococcus radiodurans thioredoxin reductase

    SciTech Connect

    Obiero, Josiah; Bonderoff, Sara A.; Goertzen, Meghan M.; Sanders, David A. R.

    2006-08-01

    Recombinant D. radiodurans TrxR with a His tag at the N-terminus was expressed in Escherichia coli and purified by metal-affinity chromatography. The protein was crystallized using the sitting-drop vapour-diffusion method in the presence of 35% PEG 4000, 0.2 M ammonium acetate and citric acid buffer pH 5.1 at 293 K. Deinococcus radiodurans, a Gram-positive bacterium capable of withstanding extreme ionizing radiation, contains two thioredoxins (Trx and Trx1) and a single thioredoxin reductase (TrxR) as part of its response to oxidative stress. Thioredoxin reductase is a member of the family of pyridine nucleotide-disulfide oxidoreductase flavoenzymes. Recombinant D. radiodurans TrxR with a His tag at the N-terminus was expressed in Escherichia coli and purified by metal-affinity chromatography. The protein was crystallized using the sitting-drop vapour-diffusion method in the presence of 35% PEG 4000, 0.2 M ammonium acetate and citric acid buffer pH 5.1 at 293 K. X-ray diffraction data were collected on a cryocooled crystal to a resolution of 1.9 Å using a synchrotron-radiation source. The space group was determined to be P3{sub 2}21, with unit-cell parameters a = b = 84.33, c = 159.88 Å. The structure of the enzyme has been solved by molecular-replacement methods and structure refinement is in progress.

  6. Crystallization and preliminary X-ray crystallographic analysis of yeast NAD{sup +}-specific isocitrate dehydrogenase

    SciTech Connect

    Hu, Gang; Taylor, Alexander B.; McAlister-Henn, Lee; Hart, P. John

    2005-05-01

    Yeast NAD{sup +}-isocitrate dehydrogenase has been purified and crystallized using sodium citrate, a competitive inhibitor of the enzyme, as a precipitant. Preliminary X-ray analyses indicate the molecular boundaries of the molecule and large continuous solvent channels in the crystal. NAD{sup +}-specific isocitrate dehydrogenase (IDH; EC 1.1.1.41) is a complex allosterically regulated enzyme in the tricarboxylic acid cycle. Yeast IDH is believed to be an octamer containing four catalytic IDH2 and four regulatory IDH1 subunits. Crystals of yeast IDH have been obtained and optimized using sodium citrate, a competitive inhibitor of the enzyme, as the precipitating agent. The crystals belong to space group R3, with unit-cell parameters a = 302.0, c = 112.1 Å. Diffraction data were collected to 2.9 Å from a native crystal and to 4.0 Å using multiwavelength anomalous diffraction (MAD) methods from an osmium derivative. Initial electron-density maps reveal large solvent channels and the molecular boundaries of the allosteric IDH multimer.

  7. Conformational analysis of environmental agents: use of X-ray crystallographic data to determine molecular reactivity.

    PubMed Central

    Cody, V

    1985-01-01

    This paper explores the use of crystallographic techniques as an aid in understanding the molecular reactivities of a number of agents that are of concern to pharmacologists and toxicologists. The selected examples demonstrate the role of structural data in the determination of absolute configuration, configurational flexibility and active-site topology for a reactive species. For example, the role of absolute stereochemistry in understanding synthetic pyrethroid structure-activity relationships is shown from analysis of their crystal structures; conformational flexibility among DDT analogues, and the importance of conformational and electronic properties in phenylalkanoic acid herbicides are shown from systematic analysis of their crystal structures; and interpretation of active-site stereochemistry is made by study of computer modeling of enzyme inhibitors in the active sites of related protein crystal structures. Thus, the observed patterns in conformational flexibility and their resultant effects on substrate pharmacological profile can be interpreted in understanding the molecular level events that influence biological reactivity. PMID:3905372

  8. Crystallographic Study of Itokawa Particle, RA-QD02-0127 by Using Energy-Scanning X-Ray Diffraction Method with Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Hagiya, K.; Ohsumi, K.; Komatsu, M.; Mikouchi, T.; Zolensky, M. E.; Hirata, A.; Yamaguchi, S.; Kurokawa, A.

    2016-08-01

    Crystallographic study of Itokawa particle, RA-QD02-0127 by using new X-ray diffraction method was performed. The purpose of this study is to understand better the metamorphic and impact shock history of asteroid Itokawa, and other S-class asteroids.

  9. Crystallization and preliminary X-ray crystallographic analysis of polyphenol oxidase from Juglans regia (jrPPO1)

    SciTech Connect

    Zekiri, Florime; Bijelic, Aleksandar; Molitor, Christian; Rompel, Annette

    2014-05-28

    The crystallization and preliminary X-ray crystallographic analysis of a plant PPO exhibiting monophenolase activity from J. regia (jrPPO1) in its active form (Asp{sup 101}–Arg{sup 445}) are reported. Tyrosinase is a type 3 copper enzyme that catalyzes the ortho-hydroxylation of monophenols to diphenols as well as their subsequent oxidation to quinones, which are precursors for the biosynthesis of melanins. The first plant tyrosinase from walnut leaves (Juglans regia) was purified to homogeneity and crystallized. During the purification, two forms of the enzyme differing only in their C-termini [jrPPO1(Asp{sup 101}–Pro{sup 444}) and jrPPO1(Asp{sup 101}–Arg{sup 445})] were obtained. The most abundant form jrPPO1(Asp{sup 101}–Arg{sup 445}), as described in Zekiri et al. [Phytochemistry (2014 ▶), 101, 5–15], was crystallized, resulting in crystals that belonged to space group C121, with unit-cell parameters a = 115.56, b = 91.90, c = 86.87 Å, α = 90, β = 130.186, γ = 90°, and diffracted to 2.39 Å resolution. Crystals were only obtained from solutions containing at least 30% polyethylene glycol 5000 monomethyl ether in a close-to-neutral pH range.

  10. Characterization of the phosphoserine of pepsinogen using /sup 31/P nuclear magnetic resonance: corroboration of X-ray crystallographic results

    SciTech Connect

    Williams, S.P.; Bridger, W.A.; James, M.N.G.

    1986-10-21

    The endogenous phosphoserine residue in porcine pepsinogen has been titrated with use of phosphorus-31 nuclear magnetic resonance (/sup 31/P NMR). It has an observed pK/sub a/sub 2// of 6.7 and a narrow line width (approx. =10 Hz). The phosphate can be readily removed by an acid phosphatase from potato; however, it is resistant to hydrolysis by several alkaline phosphatases. The X-ray crystal structure of porcine pepsinogen at 1.8-A resolution shows a rather weak and diffuse region of electron density in the vicinity of the phosphorylated serine residue. This suggests considerable dynamic mobility or conformational disorder of the phosphate. In order to define more fully this behavior the NMR data have been used to corroborate these crystallographic results. All these physical data are consistent with a highly mobile phosphoserine residue on the surface of the zymogen and freely exposed to solvent. In addition, certain properties of this phosphoserine moiety on pepsinogen are similar to those of one of the phosphorylated residues of ovalbumin. The possible significance of this is discussed.

  11. Overexpression, crystallization and preliminary X-ray crystallographic analysis of the variable lymphocyte receptor 2913 ectodomain fused with internalin B

    PubMed Central

    Lee, Ji Yeon; Kim, Hyoun Sook; Baek, In Wha; Back, Jang Mi; Han, Mi Ra; Kong, Sun-Young; Kim, Ji Hyeon; Kirchdoerfer, Robert N.; Kim, Jae-Ouk; Cooper, Max D.; Wilson, Ian A.; Kim, Hyun-Jung; Han, Byung Woo

    2013-01-01

    In jawless vertebrates, variable lymphocyte receptors (VLRs) play a crucial role in the recognition of antigens as part of the adaptive immune system. Leucine-rich repeat (LRR) modules and the highly variable insert (HVI) of VLRs contribute to the specificity and diversity of antigen recognition. VLR2913, the antigen of which is not known, contains the same HVI amino-acid sequence as that of VLR RBC36, which recognizes the H-trisaccharide from human blood type O erythrocytes. Since the HVI sequence is rarely identical among all known VLRs, identification of the antigen for VLR2913 and the main contributing factors for antigen recognition based on a comparison of VLR2913 and VLR RBC36 has been attempted. To initiate and facilitate this structural approach, the ectodomain of VLR2913 was fused with the N-terminal domain of internalin B (InlB-VLR2913-ECD). Three amino-acid residues on the concave surface of the LRR modules of InlB-VLR2913-ECD were mutated, considering important residues for hydrogen bonds in the recognition of H-trisaccharide by VLR RBC36. InlB-VLR2913-ECD was overexpressed in Escherichia coli and was crystallized at 295 K using the sitting-drop vapour-diffusion method. X-ray diffraction data were collected to 2.04 Å resolution and could be indexed in the tetragonal space group P41212 (or P43212), with unit-cell parameters a = 91.12, b = 91.12, c = 62.87 Å. Assuming that one monomer molecule was present in the crystallographic asymmetric unit, the calculated Matthews coefficient (V M) was 2.75 Å3 Da−1 and the solvent content was 55.2%. Structural determination of InlB-VLR2913-ECD by molecular replacement is in progress. PMID:23295483

  12. Kinetic, Spectroscopic, and X-ray Crystallographic Characterization of the Functional E151H Aminopeptidase from Aeromonas proteolytica.

    SciTech Connect

    Bzymek,K.; Moulin, A.; Swierczek, S.; Ringe, D.; Petsko, G.; Holz, R.

    2005-01-01

    Glutamate151 (E151) has been shown to be catalytically essential for the aminopeptidase from Vibrio proteolyticus (AAP). E151 acts as the general acid/base during the catalytic mechanism of peptide hydrolysis. However, a glutamate residue is not the only residue capable of functioning as a general acid/base during catalysis for dinuclear metallohydrolases. Recent crystallographic characterization of the D-aminopeptidase from Bacillus subtilis (DppA) revealed a histidine residue that resides in an identical position to E151 in AAP. Because the active-site ligands for DppA and AAP are identical, AAP has been used as a model enzyme to understand the mechanistic role of H115 in DppA. Substitution of E151 with histidine resulted in an active AAP enzyme exhibiting a k{sub cat} value of 2.0 min{sup -1}, which is over 2000 times slower than r AAP (4380 min{sup -1}). ITC experiments revealed that Zn{sup II} binds 330 and 3 times more weakly to E151H-AAP compared to r-AAP. UV-vis and EPR spectra of Co{sup II}-loaded E151H-AAP indicated that the first metal ion resides in a hexacoordinate/pentacoordinate equilibrium environment, whereas the second metal ion is six-coordinate. pH dependence of the kinetic parameters k{sub cat} and K{sub m} for the hydrolysis of L-leucine p-nitroanilide (L-pNA) revealed a change in an ionization constant in the enzyme-substrate complex from 5.3 in r-AAP to 6.4 in E151H-AAP, consistent with E151 in AAP being the active-site general acid/base. Proton inventory studies at pH 8.50 indicate the transfer of one proton in the rate-limiting step of the reaction. Moreover, the X-ray crystal structure of [ZnZn(E151H-AAP)] has been solved to 1.9 {angstrom} resolution, and alteration of E151 to histidine does not introduce any major conformational changes to the overall protein structure or the dinuclear Zn{sup II} active site. Therefore, a histidine residue can function as the general acid/base in hydrolysis reactions of peptides and, through analogy of

  13. Kinetic, spectroscopic, and X-ray crystallographic characterization of the functional E151H aminopeptidase from Aeromonas proteolytica.

    PubMed

    Bzymek, Krzysztof P; Moulin, Aaron; Swierczek, Sabina I; Ringe, Dagmar; Petsko, Gregory A; Bennett, Brian; Holz, Richard C

    2005-09-13

    Glutamate151 (E151) has been shown to be catalytically essential for the aminopeptidase from Vibrio proteolyticus (AAP). E151 acts as the general acid/base during the catalytic mechanism of peptide hydrolysis. However, a glutamate residue is not the only residue capable of functioning as a general acid/base during catalysis for dinuclear metallohydrolases. Recent crystallographic characterization of the D-aminopeptidase from Bacillus subtilis (DppA) revealed a histidine residue that resides in an identical position to E151 in AAP. Because the active-site ligands for DppA and AAP are identical, AAP has been used as a model enzyme to understand the mechanistic role of H115 in DppA. Substitution of E151 with histidine resulted in an active AAP enzyme exhibiting a kcat value of 2.0 min(-1), which is over 2000 times slower than r AAP (4380 min(-1)). ITC experiments revealed that ZnII binds 330 and 3 times more weakly to E151H-AAP compared to r-AAP. UV-vis and EPR spectra of CoII-loaded E151H-AAP indicated that the first metal ion resides in a hexacoordinate/pentacoordinate equilibrium environment, whereas the second metal ion is six-coordinate. pH dependence of the kinetic parameters kcat and K(m) for the hydrolysis of L-leucine p-nitroanilide (L-pNA) revealed a change in an ionization constant in the enzyme-substrate complex from 5.3 in r-AAP to 6.4 in E151H-AAP, consistent with E151 in AAP being the active-site general acid/base. Proton inventory studies at pH 8.50 indicate the transfer of one proton in the rate-limiting step of the reaction. Moreover, the X-ray crystal structure of [ZnZn(E151H-AAP)] has been solved to 1.9 A resolution, and alteration of E151 to histidine does not introduce any major conformational changes to the overall protein structure or the dinuclear ZnII active site. Therefore, a histidine residue can function as the general acid/base in hydrolysis reactions of peptides and, through analogy of the role of E151 in AAP, H115 in DppA likely

  14. Refolding, crystallization and preliminary X-ray crystallographic studies of the β-barrel domain of BamA, a membrane protein essential for outer membrane protein biogenesis.

    PubMed

    Ni, Dongchun; Yang, Kun; Huang, Yihua

    2014-03-01

    In Gram-negative bacteria, the assembly of outer membrane proteins (OMPs) requires a five-protein β-barrel assembly machinery (BAM) complex, of which BamA is an essential and evolutionarily conserved integral outer membrane protein. Here, the refolding, crystallization and preliminary X-ray crystallographic characterization of the β-barrel domain of BamA from Escherichia coli (EcBamA) are reported. Native and selenomethionine-substituted EcBamA proteins were crystallized at 16°C and X-ray diffraction data were collected to 2.6 and 3.7 Å resolution, respectively. The native crystals belonged to space group P21212, with unit-cell parameters a = 118.492, b = 159.883, c = 56.000 Å and two molecules in one asymmetric unit; selenomethionine-substituted protein crystals belonged to space group P4322, with unit-cell parameters a = b = 163.162, c = 46.388 Å and one molecule in one asymmetric unit. Initial phases for EcBamA β-barrel domain were obtained from a SeMet SAD data set. These preliminary X-ray crystallographic studies paved the way for further structural determination of the β-barrel domain of EcBamA.

  15. Quaternary Ammonium Oxidative Demethylation: X-ray Crystallographic, Resonance Raman and UV-visible Spectroscopic Analysis of a Rieske-type Demethylase

    SciTech Connect

    Daughtry K. D.; Orville A.; Xiao, Y.; Stoner-Ma, D.; Cho, E.; Liu, P.; Allen, K. N.

    2012-02-01

    Herein, the structure resulting from in situ turnover in a chemically challenging quaternary ammonium oxidative demethylation reaction was captured via crystallographic analysis and analyzed via single-crystal spectroscopy. Crystal structures were determined for the Rieske-type monooxygenase, stachydrine demethylase, in the unliganded state (at 1.6 {angstrom} resolution) and in the product complex (at 2.2 {angstrom} resolution). The ligand complex was obtained from enzyme aerobically cocrystallized with the substrate stachydrine (N,N-dimethylproline). The ligand electron density in the complex was interpreted as proline, generated within the active site at 100 K by the absorption of X-ray photon energy and two consecutive demethylation cycles. The oxidation state of the Rieske iron-sulfur cluster was characterized by UV-visible spectroscopy throughout X-ray data collection in conjunction with resonance Raman spectra collected before and after diffraction data. Shifts in the absorption band wavelength and intensity as a function of absorbed X-ray dose demonstrated that the Rieske center was reduced by solvated electrons generated by X-ray photons; the kinetics of the reduction process differed dramatically for the liganded complex compared to unliganded demethylase, which may correspond to the observed turnover in the crystal.

  16. Local Strain, Defects and Crystallographic Tilt in GaN(0001) Layers Grown by Maskless Pendeo-epitaxy from X-ray Microdiffraction

    SciTech Connect

    Barabash, R.I.; Ice, G.E.; Liu, W.; Einfeldt, S.; Roskovski, A.M.; Davis, R.F.

    2010-07-13

    Polychromatic x-ray microdiffraction, high-resolution monochromatic x-ray diffraction, and finite element simulations have been used to determine the distribution of strain, defects, and crystallographic tilt in uncoalesced GaN layers grown by maskless pendeo-epitaxy. An important materials parameter was the width-to-height ratio of the etched columns of GaN from which occurred the lateral growth of the wings. Tilt boundaries formed at the column/wing interface for samples with a large ratio. Formation of the tilt boundary can be avoided by using smaller ratios. The strain and tilt across the stripe increased with the width-to-height ratio. The wings were tilted upward at room temperature.

  17. Discovery of potent cholecystokinin-2 receptor antagonists: elucidation of key pharmacophore elements by X-ray crystallographic and NMR conformational analysis.

    PubMed

    Rosen, Mark D; Hack, Michael D; Allison, Brett D; Phuong, Victor K; Woods, Craig R; Morton, Magda F; Prendergast, Clodagh E; Barrett, Terrance D; Schubert, Carsten; Li, Lina; Wu, Xiaodong; Wu, Jiejun; Freedman, Jamie M; Shankley, Nigel P; Rabinowitz, Michael H

    2008-04-01

    A novel series of cholecystokinin-2 receptor (CCK-2R) antagonists has been identified, as exemplified by anthranilic sulfonamide 1 (pK(i)=7.6). Pharmacokinetic and stability studies indicated that this series of compounds suffered from metabolic degradation, and that both the benzothiadiazole and piperidine rings were rapidly oxidized by liver enzymes. A combination of synthesis, computational methods, (1)H NMR conformational studies, and X-ray crystallographic analyses were applied to elucidate key pharmacophore elements, and to discover analogs with improved pharmacokinetic profiles, and high receptor binding affinity and selectivity.

  18. Kinetic and X-ray crystallographic investigations of substituted 2-thio-6-oxo-1,6-dihydropyrimidine-benzenesulfonamides acting as carbonic anhydrase inhibitors.

    PubMed

    Vullo, Daniela; Supuran, Claudiu T; Scozzafava, Andrea; De Simone, Giuseppina; Monti, Simona Maria; Alterio, Vincenzo; Carta, Fabrizio

    2016-08-15

    Herein we report an in vitro kinetic evaluation against the most relevant human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms (I, II, IX and XII) of a small series of lactate dehydrogenase (LDH, EC 1.1.1.27) inhibitors. All compounds contain a primary sulfonamide zinc-binding group (ZBG) substituted with the 2-thio-6-oxo-1,6-dihydropyrimidine scaffold. By means of X-ray crystallographic experiments we explored the ligand-enzyme binding modes, thus highlighting the contribution of the 2-thio-6-oxo-1,6-dihydropyrimidine moiety to the stabilization of the complex. PMID:27316543

  19. X-ray Crystallographic Structures of a Trimer, Dodecamer, and Annular Pore Formed by an Aβ17-36 β-Hairpin.

    PubMed

    Kreutzer, Adam G; Hamza, Imane L; Spencer, Ryan K; Nowick, James S

    2016-04-01

    High-resolution structures of oligomers formed by the β-amyloid peptide Aβ are needed to understand the molecular basis of Alzheimer's disease and develop therapies. This paper presents the X-ray crystallographic structures of oligomers formed by a 20-residue peptide segment derived from Aβ. The development of a peptide in which Aβ17-36 is stabilized as a β-hairpin is described, and the X-ray crystallographic structures of oligomers it forms are reported. Two covalent constraints act in tandem to stabilize the Aβ17-36 peptide in a hairpin conformation: a δ-linked ornithine turn connecting positions 17 and 36 to create a macrocycle and an intramolecular disulfide linkage between positions 24 and 29. An N-methyl group at position 33 blocks uncontrolled aggregation. The peptide readily crystallizes as a folded β-hairpin, which assembles hierarchically in the crystal lattice. Three β-hairpin monomers assemble to form a triangular trimer, four trimers assemble in a tetrahedral arrangement to form a dodecamer, and five dodecamers pack together to form an annular pore. This hierarchical assembly provides a model, in which full-length Aβ transitions from an unfolded monomer to a folded β-hairpin, which assembles to form oligomers that further pack to form an annular pore. This model may provide a better understanding of the molecular basis of Alzheimer's disease at atomic resolution.

  20. Preliminary joint X-ray and neutron protein crystallographic studies of ecDHFR complexed with folate and NADP+.

    PubMed

    Wan, Qun; Kovalevsky, Andrey Y; Wilson, Mark A; Bennett, Brad C; Langan, Paul; Dealwis, Chris

    2014-06-01

    A crystal of Escherichia coli dihydrofolate reductase (ecDHFR) complexed with folate and NADP+ of 4×1.3×0.7 mm (3.6 mm3) in size was obtained by sequential application of microseeding and macroseeding. A neutron diffraction data set was collected to 2.0 Å resolution using the IMAGINE diffractometer at the High Flux Isotope Reactor within Oak Ridge National Laboratory. A 1.6 Å resolution X-ray data set was also collected from a smaller crystal at room temperature. The neutron and X-ray data were used together for joint refinement of the ecDHFR-folate-NADP+ ternary-complex structure in order to examine the protonation state, protein dynamics and solvent structure of the complex, furthering understanding of the catalytic mechanism.

  1. Crystallization and preliminary X-ray crystallographic analysis of a galactose-specific lectin from Dolichos lablab

    PubMed Central

    Lavanya Latha, V.; Kulkarni, Kiran A.; Nagender Rao, R.; Siva Kumar, N.; Suguna, K.

    2006-01-01

    The galactose-specific lectin from the seeds of Dolichos lablab has been crystallized using the hanging-drop vapour-diffusion technique. The crystals belong to space group P1, with unit-cell parameters a = 73.99, b = 84.13, c = 93.15 Å, α = 89.92, β = 76.01, γ = 76.99°. X-ray diffraction data to a resolution of 3.0 Å have been collected under cryoconditions (100 K) using a MAR imaging-plate detector system mounted on a rotating-anode X-ray generator. Molecular-replacement calculations carried out using the available structures of legume lectins as search models revealed that the galactose-specific lectin from D. lablab forms a tetramer similar to soybean agglutinin; two such tetramers are present in the asymmetric unit. PMID:16511291

  2. Overproduction, crystallization and preliminary X-ray crystallographic analysis of Escherichia coli tRNA N 6-threonylcarbamoyladenosine dehydratase

    PubMed Central

    Kim, Sunmin; Kim, Keon Young; Park, Jeong Kuk; Lee, Byung Il; Kim, Yun-Gon; Park, SangYoun

    2014-01-01

    Escherichia coli tRNA N 6-threonylcarbamoyladenosine dehydratase (TcdA), previously called CsdL or YgdL, was overproduced and purified from E. coli and crystallized using polyethylene glycol 3350 as a crystallizing agent. X-ray diffraction data were collected to 2.70 Å resolution under cryoconditions using synchrotron X-rays. The crystals belonged to space group P21, with unit-cell parameters a = 65.4, b = 96.8, c = 83.3 Å, β = 111.7°. According to the Matthews coefficient, the asymmetric unit may contain up to four subunits of the monomeric protein, with a crystal volume per protein mass (V M) of 2.12 Å3 Da−1 and 42.1% solvent content. PMID:25372820

  3. Study of the crystallographic architecture of corals at the nanoscale by scanning transmission X-ray microscopy and transmission electron microscopy.

    PubMed

    Benzerara, Karim; Menguy, Nicolas; Obst, Martin; Stolarski, Jarosław; Mazur, Maciej; Tylisczak, Tolek; Brown, Gordon E; Meibom, Anders

    2011-07-01

    We have investigated the nanotexture and crystallographic orientation of aragonite in a coral skeleton using synchrotron-based scanning transmission X-ray microscopy (STXM) and transmission electron microscopy (TEM). Polarization-dependent STXM imaging at 40-nm spatial resolution was used to obtain an orientation map of the c-axis of aragonite on a focused ion beam milled ultrathin section of a Porites coral. This imaging showed that one of the basic units of coral skeletons, referred to as the center of calcification (COC), consists of a cluster of 100-nm aragonite globules crystallographically aligned over several micrometers with a fan-like distribution and with the properties of single crystals at the mesoscale. The remainder of the skeleton consists of aragonite single-crystal fibers in crystallographic continuity with the nanoglobules comprising the COC. Our observation provides information on the nm-scale processes that led to biomineral formation in this sample. Importantly, the present study illustrates how the methodology described here, which combines HRTEM and polarization-dependent synchrotron-based STXM imaging, offers an interesting new approach for investigating biomineralizing systems at the nm-scale.

  4. Study of the crystallographic architecture of corals at the nanoscale by scanning transmission X-ray microscopy and transmission electron microscopy.

    PubMed

    Benzerara, Karim; Menguy, Nicolas; Obst, Martin; Stolarski, Jarosław; Mazur, Maciej; Tylisczak, Tolek; Brown, Gordon E; Meibom, Anders

    2011-07-01

    We have investigated the nanotexture and crystallographic orientation of aragonite in a coral skeleton using synchrotron-based scanning transmission X-ray microscopy (STXM) and transmission electron microscopy (TEM). Polarization-dependent STXM imaging at 40-nm spatial resolution was used to obtain an orientation map of the c-axis of aragonite on a focused ion beam milled ultrathin section of a Porites coral. This imaging showed that one of the basic units of coral skeletons, referred to as the center of calcification (COC), consists of a cluster of 100-nm aragonite globules crystallographically aligned over several micrometers with a fan-like distribution and with the properties of single crystals at the mesoscale. The remainder of the skeleton consists of aragonite single-crystal fibers in crystallographic continuity with the nanoglobules comprising the COC. Our observation provides information on the nm-scale processes that led to biomineral formation in this sample. Importantly, the present study illustrates how the methodology described here, which combines HRTEM and polarization-dependent synchrotron-based STXM imaging, offers an interesting new approach for investigating biomineralizing systems at the nm-scale. PMID:21864767

  5. Assignment of Individual Metal Redox States in a Metalloprotein By Crystallographic Refinement at Multiple X-Ray Wavelengths

    SciTech Connect

    Einsle, O.; Andrade, S.L.A.; Dobbek, H.; Meyer, J.; Rees, D.C.; /Gottingen U. /Bayreuth U. /DRDC, Grenoble /Caltech

    2007-07-09

    A method is presented to derive anomalous scattering contributions for individual atoms within a protein crystal by collecting several sets of diffraction data at energies spread along an X-ray absorption edge of the element in question. The method has been applied to a [2Fe:2S] ferredoxin model system with localized charges in the reduced state of the iron-sulfur cluster. The analysis shows that upon reduction the electron resides at the iron atom closer to the protein surface. The technique should be sufficiently sensitive for more complex clusters with noninteger redox states and is generally applicable given that crystals are available.

  6. XModeScore: a novel method for accurate protonation/tautomer-state determination using quantum-mechanically driven macromolecular X-ray crystallographic refinement.

    PubMed

    Borbulevych, Oleg; Martin, Roger I; Tickle, Ian J; Westerhoff, Lance M

    2016-04-01

    Gaining an understanding of the protein-ligand complex structure along with the proper protonation and explicit solvent effects can be important in obtaining meaningful results in structure-guided drug discovery and structure-based drug discovery. Unfortunately, protonation and tautomerism are difficult to establish with conventional methods because of difficulties in the experimental detection of H atoms owing to the well known limitations of X-ray crystallography. In the present work, it is demonstrated that semiempirical, quantum-mechanics-based macromolecular crystallographic refinement is sensitive to the choice of a protonation-state/tautomer form of ligands and residues, and can therefore be used to explore potential states. A novel scoring method, called XModeScore, is described which enumerates the possible protomeric/tautomeric modes, refines each mode against X-ray diffraction data with the semiempirical quantum-mechanics (PM6) Hamiltonian and scores each mode using a combination of energetic strain (or ligand strain) and rigorous statistical analysis of the difference electron-density distribution. It is shown that using XModeScore it is possible to consistently distinguish the correct bound protomeric/tautomeric modes based on routine X-ray data, even at lower resolutions of around 3 Å. These X-ray results are compared with the results obtained from much more expensive and laborious neutron diffraction studies for three different examples: tautomerism in the acetazolamide ligand of human carbonic anhydrase II (PDB entries 3hs4 and 4k0s), tautomerism in the 8HX ligand of urate oxidase (PDB entries 4n9s and 4n9m) and the protonation states of the catalytic aspartic acid found within the active site of an aspartic protease (PDB entry 2jjj). In each case, XModeScore applied to the X-ray diffraction data is able to determine the correct protonation state as defined by the neutron diffraction data. The impact of QM-based refinement versus conventional

  7. XModeScore: a novel method for accurate protonation/tautomer-state determination using quantum-mechanically driven macromolecular X-ray crystallographic refinement

    PubMed Central

    Borbulevych, Oleg; Martin, Roger I.; Tickle, Ian J.; Westerhoff, Lance M.

    2016-01-01

    Gaining an understanding of the protein–ligand complex structure along with the proper protonation and explicit solvent effects can be important in obtaining meaningful results in structure-guided drug discovery and structure-based drug discovery. Unfortunately, protonation and tautomerism are difficult to establish with conventional methods because of difficulties in the experimental detection of H atoms owing to the well known limitations of X-ray crystallography. In the present work, it is demonstrated that semiempirical, quantum-mechanics-based macromolecular crystallographic refinement is sensitive to the choice of a protonation-state/tautomer form of ligands and residues, and can therefore be used to explore potential states. A novel scoring method, called XModeScore, is described which enumerates the possible protomeric/tautomeric modes, refines each mode against X-ray diffraction data with the semiempirical quantum-mechanics (PM6) Hamiltonian and scores each mode using a combination of energetic strain (or ligand strain) and rigorous statistical analysis of the difference electron-density distribution. It is shown that using XModeScore it is possible to consistently distinguish the correct bound protomeric/tautomeric modes based on routine X-ray data, even at lower resolutions of around 3 Å. These X-ray results are compared with the results obtained from much more expensive and laborious neutron diffraction studies for three different examples: tautomerism in the acetazolamide ligand of human carbonic anhydrase II (PDB entries 3hs4 and 4k0s), tautomerism in the 8HX ligand of urate oxidase (PDB entries 4n9s and 4n9m) and the protonation states of the catalytic aspartic acid found within the active site of an aspartic protease (PDB entry 2jjj). In each case, XModeScore applied to the X-ray diffraction data is able to determine the correct protonation state as defined by the neutron diffraction data. The impact of QM-based refinement versus conventional

  8. Cloning, expression, purification, crystallization and X-ray crystallographic analysis of ScpB (Rv1710) from Mycobacterium tuberculosis

    SciTech Connect

    Kwon, Soo-Young; Kang, Beom Sik; Kim, Myung Hee; Kim, Kyung Jin

    2007-12-01

    ScpB from M. tuberculosis was crystallized using the sitting-drop vapour-diffusion method in the presence of 2 M NaCl and 10% PEG 6000 at 295 K. X-ray diffraction data were collected to a maximum resolution of 2.3 Å at a synchrotron beamline. Structural maintenance of chromosome (SMC) proteins play diverse roles in cellular DNA reassembly by directly interacting with DNA. They require non-SMC proteins for their proper function; these include the conserved segregation and condensation proteins (Scps) in prokaryotes. ScpB from Mycobacterium tuberculosis was crystallized using the sitting-drop vapour-diffusion method in the presence of 2 M NaCl and 10% PEG 6000 at 295 K. X-ray diffraction data were collected to a maximum resolution of 2.3 Å at a synchrotron beamline. The crystal belongs to the hexagonal space group R32, with unit-cell parameters a = b = 136.69, c = 78.55 Å, γ = 120°. With one molecule per asymmetric unit, the crystal volume per unit protein weight (V{sub M}) is 2.95 Å{sup 3} Da{sup −1}. The structure was solved by the single anomalous dispersion method and structure refinement is in progress.

  9. Crystallization and preliminary X-ray crystallographic analysis of the sclerostin-neutralizing Fab AbD09097.

    PubMed

    Boschert, Verena; Muth, Eva Maria; Knappik, Achim; Frisch, Christian; Mueller, Thomas D

    2015-04-01

    The secreted cystine-knot protein sclerostin was first identified from genetic screening of patients suffering from the rare bone-overgrowth diseases sclerosteosis and van Buchem disease. Sclerostin acts a negative regulator of bone growth through inhibiting the canonical Wnt signalling cascade by binding to and blocking the Wnt co-receptor LRP5/6. Its function in blocking osteoblastogenesis makes it an important target for osteoanabolic therapy approaches to treat osteoporosis, which is characterized by a progressive decrease in bone mass and density. In this work, the production, crystallization and preliminary X-ray diffraction data analysis of a sclerostin-neutralizing human Fab antibody fragment, AbD09097, obtained from a naive antibody library are reported. Crystals of the Fab AbD09097 belonged to space group P21, with unit-cell parameters a = 45.19, b = 78.49, c = 59.20 Å, β = 95.71° and diffracted X-rays to a resolution of 1.8 Å.

  10. Crystallization and preliminary X-ray crystallographic analysis of YfcM: an important factor for EF-P hydroxylation

    SciTech Connect

    Kobayashi, Kan; Suzuki, Takehiro; Dohmae, Naoshi; Ishitani, Ryuichiro; Nureki, Osamu

    2014-08-27

    E. coli YfcM was expressed, purified and crystallized. Crystals of YfcM were obtained by the in situ proteolysis crystallization method. Using these crystals, an X-ray diffraction data set was collected at 1.45 Å resolution. Elongation factor P (EF-P) plays an essential role in the translation of polyproline-containing proteins in bacteria. It becomes functional by the post-translational modification of its highly conserved lysine residue. It is first β-lysylated by PoxA and then hydroxylated by YfcM. In this work, the YfcM protein from Escherichia coli was overexpressed, purified and crystallized. The crystal of YfcM was obtained by the in situ proteolysis crystallization method and diffracted X-rays to 1.45 Å resolution. It belonged to space group C2, with unit-cell parameters a = 124.4, b = 37.0, c = 37.6 Å, β = 101.2°. The calculated Matthews coefficient (V{sub M}) of the crystal was 1.91 Å{sup 3} Da{sup −1}, indicating that one YfcM molecule is present in the asymmetric unit with a solvent content of 35.7%.

  11. Crystallization and preliminary X-ray crystallographic studies of the N-terminal domain of FadD28, a fatty-acyl AMP ligase from Mycobacterium tuberculosis

    SciTech Connect

    Goyal, Aneesh; Yousuf, Malikmohamed; Rajakumara, Eerappa; Arora, Pooja; Gokhale, Rajesh S.; Sankaranarayanan, Rajan

    2006-04-01

    The crystallization and preliminary X-ray crystallographic studies of the N-terminal domain of FadD28, a fatty-acyl AMP ligase from M. tuberculosis, are reported. FadD28 from Mycobacterium tuberculosis belongs to the fatty-acyl AMP ligase (FAAL) family of proteins. It is essential for the biosynthesis of a virulent phthiocerol dimycocerosate (PDIM) lipid that is only found in the cell wall of pathogenic mycobacteria. The N-terminal domain, comprising of the first 460 residues, was crystallized by the hanging-drop vapour-diffusion method at 295 K. The crystals belong to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 50.97, b = 60.74, c = 136.54 Å. The crystal structure of the N-terminal domain of FadD28 at 2.35 Å resolution has been solved using the MAD method.

  12. Crystallization and preliminary X-ray crystallographic studies of the outer membrane cytochrome OmcA from Shewanella oneidensis MR-1

    SciTech Connect

    Tomanicek, S.J.; Johs, A.; Sawhney, M.S.; Shi, L.; Liang, L.

    2012-05-24

    The outer membrane cytochrome OmcA functions as a terminal metal reductase in the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1. The ten-heme centers shuttle electrons from the transmembrane donor complex to extracellular electron acceptors. Here, the crystallization and preliminary crystallographic analysis of OmcA are reported. Crystals of OmcA were grown by the sitting-drop vapor-diffusion method using PEG 20 000 as a precipitant. The OmcA crystals belonged to space group P2{sub 1}, with unit-cell parameters a = 93.0, b = 246.0, c = 136.6 {angstrom}, = 90, {beta} = 97.8, {gamma} = 90{sup o}. X-ray diffraction data were collected to a maximum resolution of 3.25 {angstrom}.

  13. Crystallization and preliminary X-ray crystallographic studies of the outer membrane cytochrome OmcA from Shewanella oneidensis MR-1

    SciTech Connect

    Tomanicek, S. J.; Johs, Alexander; Sawhney, M. S.; Shi, Liang; Liang, L.

    2012-01-01

    The outer membrane cytochrome OmcA functions as a terminal metal reductase in the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1. The ten-heme centers shuttle electrons from the transmembrane donor complex to extracellular electron acceptors. Here, the crystallization and preliminary crystallographic analysis of OmcA are reported. Crystals of OmcA were grown by the sitting-drop vapor-diffusion method using PEG 20 000 as a precipitant. The OmcA crystals belonged to space group P21, with unit-cell parameters a = 93.0, b = 246.0, c = 136.6 A ° , * = 90, * = 97.8, * = 90*. X-ray diffraction data were collected to a maximum resolution of 3.25 A ° .

  14. X-ray crystallographic characterization of rhesus macaque MHC Mamu-A*02 complexed with an immunodominant SIV-Gag nonapeptide

    SciTech Connect

    Feng, Youjun; Qi, Jianxun; Zhang, Huimin; Wang, Jinzi; Liu, Jinhua; Jiang, Fan; Gao, Feng

    2006-01-01

    X-ray crystallographic characterization of rhesus macaque MHC Mamu-A*02 complexed with an immunodominant SIV-Gag nonapeptide. Simian immunodeficiency virus (SIV) in the rhesus macaque is regarded as a classic animal model, playing a crucial role in HIV vaccine strategies and therapeutics by characterizing various cytotoxic T-lymphocyte (CTL) responses in macaque monkeys. However, the availability of well documented structural reports focusing on rhesus macaque major histocompatibility complex class I (MHC I) molecules remains extremely limited. Here, a complex of the rhesus macaque MHC I molecule (Mamu-A*02) with human β{sub 2}m and an immunodominant SIV-Gag nonapeptide, GESNLKSLY (GY9), has been crystallized. The crystal diffracts X-rays to 2.7 Å resolution and belongs to space group C2, with unit-cell parameters a = 124.11, b = 110.45, c = 100.06 Å, and contains two molecules in the asymmetric unit. The availability of the structure, which is being solved by molecular replacement, will provide new insights into rhesus macaque MHC I (Mamu-A*02) presenting pathogenic SIV peptides.

  15. Crystallization and preliminary X-ray crystallographic studies of the [NiFe] hydrogenase maturation proteins HypC and HypD

    SciTech Connect

    Watanabe, Satoshi; Matsumi, Rie; Atomi, Haruyuki; Imanaka, Tadayuki; Miki, Kunio

    2007-06-01

    The [NiFe] hydrogenase maturation proteins HypC and HypD were purified and crystallized. Crystals of HypC and HypD suitable for data collection diffracted to 1.80 and 2.07 Å resolution, respectively. HypC and HypD proteins are required for the insertion of the Fe atom with diatomic ligands into the large subunit of [NiFe] hydrogenases, an important step in the maturation process of this type of hydrogenase. The crystallization and preliminary crystallographic analysis of HypC and HypD from Thermococcus kodakaraensis KOD1 are reported. Crystals of HypC grew in two different forms. Monoclinic crystals of HypC in space group C2 with unit-cell parameters a = 78.2, b = 59.1, c = 54.0 Å, β = 109.0° were obtained using PEG 4000 and ammonium sulfate or sodium bromide as precipitants. They diffracted X-rays to 1.8 Å resolution and were suitable for structure determination. Crystals of HypD were also obtained in two different forms. The monoclinic crystals obtained using PEG 4000 and magnesium chloride diffracted X-rays to beyond 2.1 Å resolution, despite growing as clusters. They belong to space group P2{sub 1}, with unit-cell parameters a = 42.3, b = 118.4, c = 81.2 Å, β = 100.9°, and are suitable for data collection.

  16. Crystallization and preliminary X-ray crystallographic analysis of the CARD domain of apoptosis repressor with CARD (ARC).

    PubMed

    Kim, Seong Hyun; Park, Hyun Ho

    2015-01-01

    Apoptosis repressor with caspase-recruiting domain (ARC) is an apoptosis repressor that inhibits both intrinsic and extrinsic apoptosis signalling. Human ARC contains an N-terminal caspase-recruiting domain (CARD domain) and a C-terminal proline- and glutamic acid-rich (P/E-rich) domain. The CARD domain in ARC is the domain that is directly involved in inhibition of the extrinsic pathway. In this study, the N-terminal CARD domain of ARC was overexpressed, purified and crystallized. X-ray diffraction data were collected to a resolution of 2.1 Å and the crystals were found to belong to space group P6(1) or P65, with unit-cell parameters a=98.28, b=98.28, c=51.86 Å, α=90, β=90, γ=120°.

  17. Purification, crystallization and preliminary X-ray crystallographic analysis of rice bifunctional α-amylase/subtilisin inhibitor from Oryza sativa

    SciTech Connect

    Lin, Yi-Hung; Peng, Wen-Yan; Huang, Yen-Chieh; Guan, Hong-Hsiang; Hsieh, Ying-Cheng; Liu, Ming-Yih; Chang, Tschining; Chen, Chun-Jung

    2006-08-01

    The crystallization of rice α-amylase/subtilisin bifunctional inhibitor is reported. Rice bifunctional α-amylase/subtilisin inhibitor (RASI) can inhibit both α-amylase from larvae of the red flour beetle (Tribolium castaneum) and subtilisin from Bacillus subtilis. The synthesis of RASI is up-regulated during the late milky stage in developing seeds. The 8.9 kDa molecular-weight RASI from rice has been crystallized using the hanging-drop vapour-diffusion method. According to 1.81 Å resolution X-ray diffraction data from rice RASI crystals, the crystal belongs to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 79.99, b = 62.95, c = 66.70 Å. Preliminary analysis indicates two RASI molecules in an asymmetric unit with a solvent content of 44%.

  18. Protein preparation, crystallization and preliminary X-ray crystallographic analysis of SMU.961 protein from the caries pathogen Streptococcus mutans.

    PubMed

    Gao, Xiong-Zhuo; Li, Lan-Fen; Su, Xiao-Dong; Zhao, XiaoJun; Liang, Yu-He

    2007-10-01

    The smu.961 gene encodes a putative protein of 183 residues in Streptococcus mutans, a major pathogen in human dental caries. The gene was cloned into expression vector pET28a and expressed in a substantial quantity in Escherichia coli strain BL21 (DE3) with a His tag at its N-terminus. The recombinant protein SMU.961 was purified to homogeneity in a two-step procedure consisting of Ni2+-chelating and size-exclusion chromatography. Crystals suitable for X-ray diffraction were obtained by the hanging-drop vapour-diffusion method and diffracted to 2.9 A resolution at beamline I911-3, MAX-II-lab, Sweden. The crystal belonged to space group C2, with unit-cell parameters a = 98.62, b = 73.73, c = 184.73 A, beta = 98.82 degrees.

  19. Purification, crystallization and preliminary X-ray crystallographic analysis of branched-chain aminotransferase from Deinococcus radiodurans

    SciTech Connect

    Chen, Chung-Der; Huang, Tien-Feng; Lin, Chih-Hao; Guan, Hong-Hsiang; Hsieh, Yin-Cheng; Lin, Yi-Hung; Huang, Yen-Chieh; Liu, Ming-Yih; Chang, Wen-Chang; Chen, Chun-Jung

    2007-06-01

    The crystallization of branched-chain aminotransferase from D. radiodurans is described. The branched-chain amino-acid aminotransferase (BCAT), which requires pyridoxal 5′-phosphate (PLP) as a cofactor, is a key enzyme in the biosynthetic pathway of the hydrophobic amino acids leucine, isoleucine and valine. DrBCAT from Deinococcus radiodurans, which has a molecular weight of 40.9 kDa, was crystallized using the hanging-drop vapour-diffusion method. According to X-ray diffraction data to 2.50 Å resolution from a DrBCAT crystal, the crystal belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 56.37, b = 90.70, c = 155.47 Å. Preliminary analysis indicates the presence of two DrBCAT molecules in the asymmetric unit, with a solvent content of 47.52%.

  20. Preliminary joint X-ray and neutron protein crystallographic studies of endoxylanase II from the fungus Trichoderma longibrachiatum.

    PubMed

    Kovalevsky, Andrey Y; Hanson, B Leif; Seaver, Sean; Fisher, S Zoë; Mustyakimov, Marat; Langan, Paul

    2011-02-01

    Room-temperature X-ray and neutron diffraction data were measured from a family 11 endoxylanase holoenzyme (XynII) originating from the filamentous fungus Trichoderma longibrachiatum to 1.55 Å resolution using a home source and to 1.80 Å resolution using the Protein Crystallography Station at LANSCE. Crystals of XynII, which is an important enzyme for biofuel production, were grown at pH 8.5 in order to examine the effect of basic conditions on the protonation-state distribution in the active site and throughout the protein molecule and to provide insights for rational engineering of catalytically improved XynII for industrial applications.

  1. Cloning, expression, purification, crystallization and X-ray crystallographic analysis of β-ketothiolase B from Ralstonia eutropha H16

    PubMed Central

    Kim, Eun-Jung; Son, Hyeoncheol Francis; Chang, Jeong Ho; Kim, Kyung-Jin

    2014-01-01

    Polyhydroxyalkanoates are linear polyesters that are produced by bacterial fermentation and are used as biodegradable bioplastics. β-Ketothiolase B (BktB) from Ralstonia eutropha (ReBktB) is a key enzyme for the production of various types of copolymers by catalyzing the condensation reactions of acetyl-CoA with propionyl-CoA and butyryl-CoA. The ReBktB protein was crystallized using the hanging-drop vapour-diffusion method in the presence of 25% polyethylene glycol 3350, 0.1 M bis-tris pH 6.5, 0.2 M lithium sulfate at 295 K. X-ray diffraction data were collected to a maximum resolution of 2.3 Å on a synchrotron beamline. The crystal belonged to space group C2221, with unit-cell parameters a = 106.95, b = 107.24, c = 144.14 Å. With two molecules per asymmetric unit, the crystal volume per unit protein weight (V M) is 2.54 Å3 Da−1, which corresponds to a solvent content of approximately 51.5%. The structure was solved by the molecular-replacement method and refinement of the structure is in progress. PMID:24598917

  2. Preparation, crystallization and preliminary X-ray crystallographic studies of diadenosine tetraphosphate hydrolase from Shigella flexneri 2a

    SciTech Connect

    Hu, Wenxin; Wang, Qihai; Bi, Ruchang

    2005-12-01

    The 31.3 kDa Ap{sub 4}A hydrolase from Shigella flexneri 2a has been cloned, expressed and purified using an Escherichia coli expression system. Crystals of Ap{sub 4}A hydrolase have been obtained by the hanging-drop technique at 291 K using PEG 550 MME as precipitant. Diadenosine tetraphosphate (Ap{sub 4}A) hydrolase (EC 3.6.1.41) hydrolyzes Ap{sub 4}A symmetrically in prokaryotes. It plays a potential role in organisms by regulating the concentration of Ap{sub 4}A in vivo. To date, no three-dimensional structures of proteins with significant sequence homology to this protein have been determined. The 31.3 kDa Ap{sub 4}A hydrolase from Shigella flexneri 2a has been cloned, expressed and purified using an Escherichia coli expression system. Crystals of Ap{sub 4}A hydrolase have been obtained by the hanging-drop technique at 291 K using PEG 550 MME as precipitant. Ap{sub 4}A hydrolase crystals diffract X-rays to 3.26 Å and belong to space group P2{sub 1}, with unit-cell parameters a = 118.9, b = 54.6, c = 128.5 Å, β = 95.7°.

  3. Crystallization and preliminary X-ray crystallographic studies of dehydroascorbate reductase (DHAR) from Oryza sativa L. japonica

    PubMed Central

    Do, Hackwon; Kim, Il-Sup; Kim, Young-Saeng; Shin, Sun-Young; Kim, Jin-Ju; Mok, Ji-Eun; Park, Seong-Im; Wi, Ah Ram; Park, Hyun; Kim, Han-Woo; Yoon, Ho-Sung; Lee, Jun Hyuck

    2014-01-01

    Dehydroascorbate reductase from Oryza sativa L. japonica (OsDHAR), a key enzyme in the regeneration of vitamin C, maintains reduced pools of ascorbic acid to detoxify reactive oxygen species. In previous studies, the overexpression of OsDHAR in transgenic rice increased grain yield and biomass as well as the amount of ascorbate, suggesting that ascorbate levels are directly associated with crop production in rice. Hence, it has been speculated that the increased level of antioxidants generated by OsDHAR protects rice from oxidative damage and increases the yield of rice grains. However, the crystal structure and detailed mechanisms of this important enzyme need to be further elucidated. In this study, recombinant OsDHAR protein was purified and crystallized using the sitting-drop vapour-diffusion method at pH 8.0 and 298 K. Plate-shaped crystals were obtained using 0.15 M potassium bromide, 30%(w/v) PEG MME 2000 as a precipitant, and the crystals diffracted to a resolution of 1.9 Å on beamline 5C at the Pohang Accelerator Laboratory. The X-ray diffraction data indicated that the crystal contained one OsDHAR molecule in the asymmetric unit and belonged to space group P21 with unit-cell parameters a = 47.03, b = 48.38, c = 51.83 Å, β = 107.41°. PMID:24915093

  4. Protein preparation, crystallization and preliminary X-ray crystallographic analysis of SMU.961 protein from the caries pathogen Streptococcus mutans

    SciTech Connect

    Gao, Xiong-Zhuo; Li, Lan-Fen; Su, Xiao-Dong; Zhao, XiaoJun; Liang, Yu-He

    2007-10-01

    The SMU.961 protein from S. mutans was crystallized and preliminary characterization of the crystals, which diffracted to 2.9 Å resolution, shows them to belong to space group C2. The smu.961 gene encodes a putative protein of 183 residues in Streptococcus mutans, a major pathogen in human dental caries. The gene was cloned into expression vector pET28a and expressed in a substantial quantity in Escherichia coli strain BL21 (DE3) with a His tag at its N-terminus. The recombinant protein SMU.961 was purified to homogeneity in a two-step procedure consisting of Ni{sup 2+}-chelating and size-exclusion chromatography. Crystals suitable for X-ray diffraction were obtained by the hanging-drop vapour-diffusion method and diffracted to 2.9 Å resolution at beamline I911-3, MAX-II-lab, Sweden. The crystal belonged to space group C2, with unit-cell parameters a = 98.62, b = 73.73, c = 184.73 Å, β = 98.82°.

  5. Crystallization and preliminary X-ray crystallographic analysis of the tRNA-specific adenosine deaminase from Streptococcus pyogenes

    SciTech Connect

    Ku, Min-Je; Lee, Won-Ho; Nam, Ki-hyun; Rhee, Kyeong-hee; Lee, Ki-Seog; Kim, Eunice EunKyung; Yu, Myung-Hee; Hwang, Kwang Yeon

    2005-04-01

    The tRNA-specific adenosine deaminase from the pathogenic bacteria S. pyogenes has been overexpressed and crystallized. The tRNA-specific adenosine deaminase from the pathogenic bacteria Streptococcus pyogenes (spTAD) has been overexpressed in Escherichia coli and crystallized in the presence of Zn{sup 2+} ion at 295 K using ammonium sulfate as a precipitant. Flash-cooled crystals of spTAD diffracted to 2.0 Å using 30%(v/v) glycerol as a cryoprotectant. X-ray diffraction data have been collected to 2.0 Å using synchrotron radiation. The crystal belongs to the tetragonal space group P4{sub 2}2{sub 1}2, with unit-cell parameters a = b = 81.042, c = 81.270 Å. The asymmetric unit contains one subunit of spTAD, with a corresponding crystal volume per protein weight (V{sub M}) of 3.3 Å{sup 3} Da{sup −1} and a solvent content of 62.7%.

  6. Crystallization and preliminary X-ray crystallographic analysis of Z-ring-associated protein (ZapD) from Escherichia coli.

    PubMed

    Son, Sang Hyeon; Lee, Hyung Ho

    2015-02-01

    Bacterial cytokinesis is accomplished by the Z-ring, which is a polymeric structure that includes the tubulin homologue FtsZ at the division site. ZapD, a Z-ring-associated protein, directly binds to FtsZ and stabilizes the polymerization of FtsZ to form a stable Z-ring during cytokinesis. Structural analysis of ZapD from Escherichia coli was performed to investigate the mechanism of ZapD-mediated FtsZ stabilization and polymerization. ZapD was crystallized using a reservoir solution consisting of 1.5 M lithium sulfate, 0.1 M HEPES pH 7.8, 2%(v/v) polyethylene glycol 400. X-ray diffraction data were collected to 2.95 Å resolution. The crystals belonged to the hexagonal space group P64, with unit-cell parameters a = b = 109.5, c = 106.7 Å, γ = 120.0°. Two monomers were present in the asymmetric unit, resulting in a crystal volume per protein mass (VM) of 3.25 Å(3) Da(-1) and a solvent content of 62.17%.

  7. Purification, crystallization and preliminary X-ray crystallographic analysis of 3-ketosteroid Δ1-dehydrogenase from Rhodococcus erythropolis SQ1

    PubMed Central

    Rohman, Ali; van Oosterwijk, Niels; Dijkstra, Bauke W.

    2012-01-01

    3-Ketosteroid Δ1-dehydrogenase plays a crucial role in the early steps of steroid degradation by introducing a double bond between the C1 and C2 atoms of the A-ring of its 3-ketosteroid substrates. The 3-ketosteroid Δ1-dehydrogenase from Rhodococcus erythropolis SQ1, a 56 kDa flavoprotein, was crystallized using the sitting-drop vapour-diffusion method at room temperature. The crystals grew in various buffers over a wide pH range (from pH 5.5 to 10.5), but the best crystallization condition consisted of 2%(v/v) PEG 400, 0.1 M HEPES pH 7.5, 2.0 M ammonium sulfate. A native crystal diffracted X-rays to 2.0 Å resolution. It belonged to the primitive orthorhombic space group P212121, with unit-cell parameters a = 107.4, b = 131.6, c = 363.2 Å, and contained eight molecules in the asymmetric unit. The initial structure of the enzyme was solved using multi-wavelength anomalous dispersion (MAD) data collected from a Pt-derivatized crystal. PMID:22691786

  8. Crystallization and preliminary X-ray crystallographic studies of Drep-3, a DFF-related protein from Drosophila melanogaster

    SciTech Connect

    Park, Hyun Ho; Tookes, Hansel Emory; Wu, Hao

    2006-06-01

    The D. melanogaster Drep-3 protein has been crystallized. Crystals were obtained at 293 K that diffracted to 2.8 Å resolution and belonged to space group P2{sub 1}2{sub 1}2{sub 1}. During apoptosis, DNA fragmentation is mainly mediated by the caspase-activated DFF40 nuclease. DFF40 exists as a heterodimeric complex with its inhibitor DFF45. Upon apoptosis induction, DFF45 is cleaved by caspases to allow DFF40 activation. Drep-3 is a recently identified regulator of the DFF40 system in Drosophila melanogaster. Here, Drep-3 was expressed with a C-terminal His tag in Escherichia coli and the protein was purified to homogeneity. Multi-angle light-scattering analysis showed that Drep-3 is a homotetramer in solution. Native and selenomethionine-substituted Drep-3 proteins were crystallized at 293 K and X-ray diffraction data were collected to 2.8 and 3.0 Å resolution, respectively. The crystals belong to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 56.9, b = 125.4, c = 168.7 Å. The asymmetric unit is estimated to contain one homotetramer.

  9. Cloning, expression, purification, crystallization and X-ray crystallographic analysis of D-lactate dehydrogenase from Lactobacillus jensenii.

    PubMed

    Kim, Sangwoo; Kim, Yong Hwan; Kim, Kyung-Jin

    2014-08-01

    The thermostable D-lactate dehydrogenase from Lactobacillus jensenii (LjD-LDH) is a key enzyme for the production of the D-form of lactic acid from pyruvate concomitant with the oxidation of NADH to NAD(+). The polymers of lactic acid are used as biodegradable bioplastics. The LjD-LDH protein was crystallized using the hanging-drop vapour-diffusion method in the presence of 28%(w/v) polyethylene glycol 400, 100 mM Tris-HCl pH 9, 200 mM magnesium sulfate at 295 K. X-ray diffraction data were collected to a maximum resolution of 2.1 Å. The crystal belonged to space group P3121, with unit-cell parameters a = b = 90.5, c = 157.8 Å. With two molecules per asymmetric unit, the crystal volume per unit protein weight (VM) is 2.58 Å(3) Da(-1), which corresponds to a solvent content of approximately 52.3%. The structure was solved by single-wavelength anomalous dispersion using a selenomethionine derivative. PMID:25084378

  10. Cloning, expression, purification, crystallization and X-ray crystallographic analysis of β-ketothiolase B from Ralstonia eutropha H16.

    PubMed

    Kim, Eun-Jung; Son, Hyeoncheol Francis; Chang, Jeong Ho; Kim, Kyung-Jin

    2014-03-01

    Polyhydroxyalkanoates are linear polyesters that are produced by bacterial fermentation and are used as biodegradable bioplastics. β-Ketothiolase B (BktB) from Ralstonia eutropha (ReBktB) is a key enzyme for the production of various types of copolymers by catalyzing the condensation reactions of acetyl-CoA with propionyl-CoA and butyryl-CoA. The ReBktB protein was crystallized using the hanging-drop vapour-diffusion method in the presence of 25% polyethylene glycol 3350, 0.1 M bis-tris pH 6.5, 0.2 M lithium sulfate at 295 K. X-ray diffraction data were collected to a maximum resolution of 2.3 Å on a synchrotron beamline. The crystal belonged to space group C2221, with unit-cell parameters a = 106.95, b = 107.24, c = 144.14 Å. With two molecules per asymmetric unit, the crystal volume per unit protein weight (VM) is 2.54 Å(3) Da(-1), which corresponds to a solvent content of approximately 51.5%. The structure was solved by the molecular-replacement method and refinement of the structure is in progress. PMID:24598917

  11. Cloning, expression, purification, crystallization and X-ray crystallographic analysis of PhaA from Ralstonia eutropha.

    PubMed

    Kim, Eun-Jung; Kim, Kyung-Jin

    2014-11-01

    Polyhydroxybutyrate (PHB) is a biopolymer that is in the spotlight because of its broad applications in bioplastics, fine chemicals, implant biomaterials and biofuels. PhaA from Ralstonia eutropha (RePhaA) is the first enzyme in the PHB biosynthetic pathway and catalyzes the condensation reaction of two acetyl-CoA molecules to give acetoacetyl-CoA. RePhaA was crystallized using the hanging-drop vapour-diffusion method in the presence of 20% polyethylene glycol monomethyl ether 2K, 0.1 M Tris-HCl pH 8.5 and 0.2 M trimethylamine N-oxide dihydrate at 295 K. X-ray diffraction data were collected to a maximum resolution of 1.96 Å on a synchrotron beamline. The crystal belonged to space group P2₁, with unit-cell parameters a=68.38, b=105.47, c=106.91 Å, α=γ=90, β=106.18°. With four subunits per asymmetric unit, the crystal volume per unit protein weight (VM) is 2.3 Å3 Da(-1), which corresponds to a solvent content of approximately 46.2%. The structure was solved by the molecular-replacement method and refinement of the structure is in progress. PMID:25372833

  12. Cloning, expression, purification, crystallization and X-ray crystallographic analysis of PhaA from Ralstonia eutropha

    PubMed Central

    Kim, Eun-Jung; Kim, Kyung-Jin

    2014-01-01

    Polyhydroxybutyrate (PHB) is a biopolymer that is in the spotlight because of its broad applications in bioplastics, fine chemicals, implant biomaterials and biofuels. PhaA from Ralstonia eutropha (RePhaA) is the first enzyme in the PHB biosynthetic pathway and catalyzes the condensation reaction of two acetyl-CoA molecules to give acetoacetyl-CoA. RePhaA was crystallized using the hanging-drop vapour-diffusion method in the presence of 20% polyethylene glycol monomethyl ether 2K, 0.1 M Tris–HCl pH 8.5 and 0.2 M trimethylamine N-oxide dihydrate at 295 K. X-ray diffraction data were collected to a maximum resolution of 1.96 Å on a synchrotron beamline. The crystal belonged to space group P21, with unit-cell parameters a = 68.38, b = 105.47, c = 106.91 Å, α = γ = 90, β = 106.18°. With four subunits per asymmetric unit, the crystal volume per unit protein weight (V M) is 2.3 Å3 Da−1, which corresponds to a solvent content of approximately 46.2%. The structure was solved by the molecular-replacement method and refinement of the structure is in progress. PMID:25372833

  13. Crystallization and preliminary X-ray crystallographic analysis of L-arabinose isomerase from thermophilic Geobacillus kaustophilus.

    PubMed

    Cao, Thinh-Phat; Choi, Jin Myung; Lee, Sang-Jae; Lee, Yong-Jik; Lee, Sung-Keun; Jun, Youngsoo; Lee, Dong-Woo; Lee, Sung Haeng

    2014-01-01

    L-arabinose isomerase (AI), which catalyzes the isomerization of L-arabinose to L-ribulose, can also convert D-galactose to D-tagatose, a natural sugar replacer, which is of commercial interest in the food and healthcare industries. Intriguingly, mesophilic and thermophilic AIs showed different substrate preferences and metal requirements in catalysis and different thermostabilities. However, the catalytic mechanism of thermophilic AIs still remains unclear. Therefore, thermophilic Geobacillus kaustophilus AI (GKAI) was overexpressed, purified and crystallized, and a preliminary X-ray diffraction data set was obtained. Diffraction data were collected from a GKAI crystal to 2.70 Å resolution. The crystal belonged to the monoclinic space group C2, with unit-cell parameters a = 224.12, b = 152.95, c = 91.28 Å, β = 103.61°. The asymmetric unit contained six molecules, with a calculated Matthews coefficient of 2.25 Å(3) Da(-1) and a solvent content of 45.39%. The three-dimensional structure determination of GKAI is currently in progress by molecular replacement and model building.

  14. Lattice compression of Si crystals and crystallographic position of As impurities measured with x-ray standing wave spectroscopy

    SciTech Connect

    Herrera-Gomez, A. |; Rousseau, P.M.; Woicik, J.C.; Kendelewicz, T.; Plummer, J.; Spicer, W.E.

    1999-02-01

    In an earlier letter [Appl. Phys. Lett. {bold 68}, 3090 (1996)] we reported results about heavily arsenic doped silicon crystals, where we unambiguously showed, based on x-ray standing wave spectroscopy (XSW) and other techniques, that electrically deactivated As remains essentially substitutional. In this article we present the analysis methodology that led us to said conclusion, and show how from further analysis it is possible to extract the compression or expansion of thin epitaxial layers. We report the evolution of the compression of highly As doped Si epitaxial layers as deactivation takes place. The XSW measurements required a very small thickness of the doped layer and a perfect registry between the substrate and the surface layer. We found larger values for compression than previously reported, which may be explained by the absence of structural defects on our samples that relax the interface stress. Our results show a saturation on the compression as the electron concentration increases. We also report an estimation of the small displacement from perfect substitutional positions suffered by deactivated As. {copyright} {ital 1999 American Institute of Physics.}

  15. Cloning, expression, purification, crystallization and preliminary X-ray crystallographic analysis of bacterioferritin A from Mycobacterium tuberculosis

    SciTech Connect

    Gupta, Vibha; Gupta, Rakesh K.; Khare, Garima; Salunke, Dinakar M.; Tyagi, Anil K.

    2008-05-01

    The cloning, purification and crystallization of a bacterioferritin from M. tuberculosis together with preliminary X-ray characterization of its crystals are reported. Bacterioferritins (Bfrs) comprise a subfamily of the ferritin superfamily of proteins that play an important role in bacterial iron storage and homeostasis. Bacterioferritins differ from ferritins in that they have additional noncovalently bound haem groups. To assess the physiological role of this subfamily of ferritins, a greater understanding of the structural details of bacterioferritins from various sources is required. The gene encoding bacterioferritin A (BfrA) from Mycobacterium tuberculosis was cloned and expressed in Escherichia coli. The recombinant protein product was purified by affinity chromatography on a Strep-Tactin column and crystallized with sodium chloride as a precipitant at pH 8.0 using the vapour-diffusion technique. The crystals diffracted to 2.1 Å resolution and belonged to space group P4{sub 2}, with unit-cell parameters a = 123.0, b = 123.0, c = 174.6 Å.

  16. Crystallization and preliminary X-ray crystallographic analysis of BxlE, a xylobiose transporter from Streptomyces thermoviolaceus OPC-520

    SciTech Connect

    Seike, Kiho; Sato, Junji; Tomoo, Koji Ishida, Toshimasa; Yamano, Akihito; Ikenishi, Sadao; Miyamoto, Katsushiro; Tsujibo, Hiroshi

    2007-07-01

    To clarify the structural basis of sugar binding by BxlE at the atomic level, recombinant BxlE was crystallized using the hanging-drop vapour-diffusion method at 290 K. Together with the integral membrane proteins BxlF and BxlG, BxlE isolated from Streptomyces thermoviolaceus OPC-520 forms an ATP-binding cassette (ABC) transport system that mediates the uptake of xylan. To clarify the structural basis of sugar binding by BxlE at the atomic level, recombinant BxlE was crystallized using the hanging-drop vapour-diffusion method at 290 K. The crystals belonged to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 44.63, b = 63.27, c = 66.40 Å, β = 103.05°, and contained one 48 kDa molecule per asymmetric unit (V{sub M} = 1.96 Å{sup 3} Da{sup −1}). Diffraction data collected to a resolution of 1.65 Å using a rotating-anode X-ray source gave a data set with an overall R{sub merge} of 2.6% and a completeness of 91.3%. A data set from a platinum derivative is being used for phasing by the SAD method.

  17. Complex assembly, crystallization and preliminary X-ray crystallographic analysis of the human Rod–Zwilch–ZW10 (RZZ) complex

    SciTech Connect

    Altenfeld, Anika; Wohlgemuth, Sabine; Wehenkel, Annemarie; Musacchio, Andrea

    2015-03-20

    The 800 kDa complex of the human Rod, Zwilch and ZW10 proteins (the RZZ complex) was reconstituted in insect cells, purified, crystallized and subjected to preliminary X-ray diffraction analysis. The spindle-assembly checkpoint (SAC) monitors kinetochore–microtubule attachment during mitosis. In metazoans, the three-subunit Rod–Zwilch–ZW10 (RZZ) complex is a crucial SAC component that interacts with additional SAC-activating and SAC-silencing components, including the Mad1–Mad2 complex and cytoplasmic dynein. The RZZ complex contains two copies of each subunit and has a predicted molecular mass of ∼800 kDa. Given the low abundance of the RZZ complex in natural sources, its recombinant reconstitution was attempted by co-expression of its subunits in insect cells. The RZZ complex was purified to homogeneity and subjected to systematic crystallization attempts. Initial crystals containing the entire RZZ complex were obtained using the sitting-drop method and were subjected to optimization to improve the diffraction resolution limit. The crystals belonged to space group P3{sub 1} (No. 144) or P3{sub 2} (No. 145), with unit-cell parameters a = b = 215.45, c = 458.7 Å, α = β = 90.0, γ = 120.0°.

  18. Crystallization and preliminary X-ray crystallographic analysis of l-arabinose isomerase from thermophilic Geobacillus kaustophilus

    PubMed Central

    Cao, Thinh-Phat; Choi, Jin Myung; Lee, Sang-Jae; Lee, Yong-Jik; Lee, Sung-Keun; Jun, Youngsoo; Lee, Dong-Woo; Lee, Sung Haeng

    2014-01-01

    l-Arabinose isomerase (AI), which catalyzes the isomerization of l-arabinose to l-ribulose, can also convert d-galactose to d-tagatose, a natural sugar replacer, which is of commercial interest in the food and healthcare industries. Intriguingly, mesophilic and thermophilic AIs showed different substrate preferences and metal requirements in catalysis and different thermostabilities. However, the catalytic mechanism of thermophilic AIs still remains unclear. Therefore, thermophilic Geobacillus kaustophilus AI (GKAI) was overexpressed, purified and crystallized, and a preliminary X-ray diffraction data set was obtained. Diffraction data were collected from a GKAI crystal to 2.70 Å resolution. The crystal belonged to the monoclinic space group C2, with unit-cell parameters a = 224.12, b = 152.95, c = 91.28 Å, β = 103.61°. The asymmetric unit contained six molecules, with a calculated Matthews coefficient of 2.25 Å3 Da−1 and a solvent content of 45.39%. The three-dimensional structure determination of GKAI is currently in progress by molecular replacement and model building. PMID:24419630

  19. Expression, purification, crystallization and preliminary X-ray crystallographic studies of a novel acetylcitrulline deacetylase from Xanthomonas campestris

    SciTech Connect

    Shi, Dashuang Yu, Xiaolin; Roth, Lauren; Morizono, Hiroki; Hathout, Yetrib; Allewell, Norma M.; Tuchman, Mendel

    2005-07-01

    The expression, purification and preliminary X-ray diffraction studies of a novel N-acetyl-l-citrulline deacetylase from X. campestris are reported. A novel N-acetyl-l-citrulline deacetylase that is able to catalyze the hydrolysis of N-acetyl-l-citrulline to acetate and citrulline was identified from Xanthomonas campestris. The protein was overexpressed, purified and crystallized. The crystals belong to the monoclinic space group C2 and diffract to 1.75 Å resolution, with unit-cell parameters a = 94.13, b = 95.23, c = 43.61 Å, β = 93.76°. Since attempts to use homologous structural models to solve the structure via molecular replacement were unsuccessful, the selenomethionine-substituted protein was prepared using an overnight auto-induction overexpression system. Selenomethionine incorporation into the protein was verified by MALDI–TOF/TOF mass-spectroscopic analysis after trypsin digestion. The crystals of the selenomethionine-substituted protein were prepared using crystallization conditions similar to those for the native protein. Multiple anomalous dispersion (MAD) data were collected at Brookhaven National Laboratory. Structure determination is under way using the MAD phasing method.

  20. Crystallization and preliminary X-ray crystallographic analysis of biodegradative threonine deaminase (TdcB) from Salmonella typhimurium

    SciTech Connect

    Simanshu, Dhirendra K.; Chittori, Sagar; Savithri, H. S.; Murthy, M. R. N.

    2006-03-01

    S. typhimurium biodegradative threonine deaminase (TdcB), a member of the β-family of PLP-dependent enzymes, has been overexpressed, purified and crystallized in three different crystal forms using the hanging-drop vapour-diffusion method. Biodegradative threonine deaminase (TdcB) catalyzes the deamination of l-threonine to α-ketobutyrate, the first reaction in the anaerobic breakdown of l-threonine to propionate. Unlike the biosynthetic threonine deaminase, TdcB is insensitive to l-isoleucine and is activated by AMP. Here, the cloning of TdcB (molecular weight 36 kDa) from Salmonella typhimurium with an N-terminal hexahistidine affinity tag and its overexpression in Escherichia coli is reported. TdcB was purified to homogeneity using Ni–NTA affinity column chromatography and crystallized using the hanging-drop vapour-diffusion technique in three different crystal forms. Crystal forms I (unit-cell parameters a = 46.32, b = 55.30, c = 67.24 Å, α = 103.09, β = 94.70, γ = 112.94°) and II (a = 56.68, b = 76.83, c = 78.50 Å, α = 66.12, β = 89.16, γ = 77.08°) belong to space group P1 and contain two and four molecules of TdcB, respectively, in the asymmetric unit. Poorly diffracting form III crystals were obtained in space group C2 and based on the unit-cell volume are most likely to contain one molecule per asymmetric unit. Two complete data sets of resolutions 2.2 Å (crystal form I) and 1.7 Å (crystal form II) were collected at 100 K using an in-house X-ray source.

  1. Kinetic and X-ray crystallographic investigations on carbonic anhydrase isoforms I, II, IX and XII of a thioureido analog of SLC-0111.

    PubMed

    Lomelino, Carrie L; Mahon, Brian P; McKenna, Robert; Carta, Fabrizio; Supuran, Claudiu T

    2016-03-01

    SLC-0111 (4-(4-fluorophenylureido)-benzenesulfonamide) is the first carbonic anhydrase (CA, EC 4.2.1.1) IX inhibitor to reach phase I clinical trials as an antitumor/antimetastatic agent. Here we report a kinetic and X-ray crystallographic study of a congener of SLC-0111 which incorporates a thioureido instead of ureido linker between the two aromatic rings as inhibitor of four physiologically relevant CA isoforms. Similar to SLC-0111, the thioureido derivative was a weak hCA I and II inhibitor and a potent one against hCA IX and XII. X-ray crystallography of its adduct with hCA II and comparison of the structure with that of other five hCA II-sulfonamide adducts belonging to the SLC-0111 series, afforded us to understand the particular inhibition profile of the new sulfonamide. Similar to SLC-0111, the thioureido sulfonamide primarily interacted with the hydrophobic side of the hCA II active site, with the tail participating in van der Waals interactions with Phe131 and Pro202, in addition to the coordination of the deprotonated sulfonamide to the active site metal ion. On the contrary, the tail of other sulfonamides belonging to the SLC-0111 series (2-isopropyl-phenyl; 3-nitrophenyl) were orientated towards the hydrophilic half of the active site, which was correlated with orders of magnitude better inhibitory activity against hCA II, and a loss of selectivity for the inhibition of the tumor-associated CAs.

  2. Characterization of Stress Relaxation, Dislocations and Crystallographic Tilt Via X-ray Microdiffraction in GaN (0001) Layers Grown by Maskless Pendeo-Epitaxy

    SciTech Connect

    Barabash, Rozaliya; Ice, Gene E; Liu, Wenjun; Einfeldt, S.; Hommel, D.; Roskowski, A. M.; Davis, R. F.

    2005-01-01

    Intrinsic stresses due to lattice mismatch and high densities of threading dislocations and extrinsic stresses resulting from the mismatch in the coefficients of thermal expansion are present in almost all III-Nitride heterostructures. Stress relaxation in the GaN layers occurs in conventional and in pendeo-epitaxial films via the formation of additional misfit dislocations, domain boundaries, elastic strain and wing tilt. Polychromatic X-ray microdiffraction, high resolution monochromatic X-ray diffraction and finite element simulations have been used to determine the distribution of strain, dislocations, sub-boundaries and crystallographic wing tilt in uncoalesced and coalesced GaN layers grown by maskless pendeo-epitaxy. An important parameter was the width-to-height ratio of the etched columns of GaN from which the lateral growth of the wings occurred. The strain and tilt across the stripes increased with the width-to-height ratio. Tilt boundaries formed in the uncoalesced GaN layers at the column/wing interfaces for samples with a large ratio. Sharper tilt boundaries were observed at the interfaces formed by the coalescence of two laterally growing wings. The wings tilted upward during cooling to room temperature for both the uncoalesced and the coalesced GaN layers. It was determined that finite element simulations that account for extrinsic stress relaxation can explain the experimental results for uncoalesced GaN layers. Relaxation of both extrinsic and intrinsic stress components in the coalesced GaN layers contribute to the observed wing tilt and the formation of sub-boundaries.

  3. Characterization of Stress Relaxation, Dislocations and Crystallographic Tilt Via X-ray Microdiffraction in GaN (0001) Layers Grown by Maskless Pendeo-Epitaxy

    SciTech Connect

    Barabash, R.I.; Ice, G.E.; Liu, W.; Einfeldt, S.; Hommel, D.; Roskowski, A.M.; Davis, R.F.

    2010-06-25

    Intrinsic stresses due to lattice mismatch and high densities of threading dislocations and extrinsic stresses resulting from the mismatch in the coefficients of thermal expansion are present in almost all III-Nitride heterostructures. Stress relaxation in the GaN layers occurs in conventional and in pendeo-epitaxial films via the formation of additional misfit dislocations, domain boundaries, elastic strain and wing tilt. Polychromatic X-ray microdiffraction, high resolution monochromatic X-ray diffraction and finite element simulations have been used to determine the distribution of strain, dislocations, sub-boundaries and crystallographic wing tilt in uncoalesced and coalesced GaN layers grown by maskless pendeo-epitaxy. An important parameter was the width-to-height ratio of the etched columns of GaN from which the lateral growth of the wings occurred. The strain and tilt across the stripes increased with the width-to-height ratio. Tilt boundaries formed in the uncoalesced GaN layers at the column/wing interfaces for samples with a large ratio. Sharper tilt boundaries were observed at the interfaces formed by the coalescence of two laterally growing wings. The wings tilted upward during cooling to room temperature for both the uncoalesced and the coalesced GaN layers. It was determined that finite element simulations that account for extrinsic stress relaxation can explain the experimental results for uncoalesced GaN layers. Relaxation of both extrinsic and intrinsic stress components in the coalesced GaN layers contribute to the observed wing tilt and the formation of sub-boundaries.

  4. Manganese Binding Properties of Human Calprotectin Under Conditions of High and Low Calcium: X-ray Crystallographic and Advanced EPR Spectroscopic Analysis

    PubMed Central

    Gagnon, Derek M.; Brophy, Megan Brunjes; Bowman, Sarah E. J.; Stich, Troy A.; Drennan, Catherine L.; Britt, R. David; Nolan, Elizabeth M.

    2015-01-01

    The antimicrobial protein calprotectin (CP), a hetero-oligomer of the S100 family members S100A8 and S100A9, is the only identified mammalian Mn(II)-sequestering protein. Human CP uses Ca(II) ions to tune its Mn(II) affinity at a biologically unprecedented hexahistidine site that forms at the S100A8/S100A9 interface, and the molecular basis for this phenomenon requires elucidation. Herein, we investigate the remarkable Mn(II) coordination chemistry of human CP using X-ray crystallography as well as continuous wave (CW) and pulse electron paramagnetic resonance (EPR) spectroscopies. An X-ray crystallographic structure of Mn(II)-CP containing one Mn(II), two Ca(II), and two Na(I) ions per CP heterodimer is reported. The CW EPR spectrum of Ca(II)- and Mn(II)-bound CP prepared with a 10:0.9:1 Ca(II):Mn(II):CP ratio is characterized by an unusually low zero-field splitting of 485 MHz (E/D = 0.30) for the S = 5/2 Mn(II) ion, consistent with the high symmetry of the His6 binding site observed crystallographically. Results from electron spin-echo envelope modulation and electron nuclear double resonance experiments reveal that the six Mn(II)-coordinating histidine residues of Ca(II)- and Mn(II)-bound CP are spectroscopically equivalent. The observed 15N (I = 1/2) hyperfine couplings (A) arise from two distinct classes of nitrogen atoms: the coordinating ε-nitrogen of the imidazole ring of each histidine ligand (A = [3.45, 3.71, 5.91] MHz) and the distal δ-nitrogen (A = [0.11, 0.18, 0.42] MHz). In the absence of Ca(II), the binding affinity of CP for Mn(II) drops by ca. two orders of magnitude and coincides with Mn(II) binding at the His6 site as well as other sites. This study demonstrates the role of Ca(II) in enabling high-affinity and specific binding of Mn(II) to the His6 site of human calprotectin. PMID:25597447

  5. Manganese binding properties of human calprotectin under conditions of high and low calcium: X-ray crystallographic and advanced electron paramagnetic resonance spectroscopic analysis.

    PubMed

    Gagnon, Derek M; Brophy, Megan Brunjes; Bowman, Sarah E J; Stich, Troy A; Drennan, Catherine L; Britt, R David; Nolan, Elizabeth M

    2015-03-01

    The antimicrobial protein calprotectin (CP), a hetero-oligomer of the S100 family members S100A8 and S100A9, is the only identified mammalian Mn(II)-sequestering protein. Human CP uses Ca(II) ions to tune its Mn(II) affinity at a biologically unprecedented hexahistidine site that forms at the S100A8/S100A9 interface, and the molecular basis for this phenomenon requires elucidation. Herein, we investigate the remarkable Mn(II) coordination chemistry of human CP using X-ray crystallography as well as continuous-wave (CW) and pulse electron paramagnetic resonance (EPR) spectroscopies. An X-ray crystallographic structure of Mn(II)-CP containing one Mn(II), two Ca(II), and two Na(I) ions per CP heterodimer is reported. The CW EPR spectrum of Ca(II)- and Mn(II)-bound CP prepared with a 10:0.9:1 Ca(II):Mn(II):CP ratio is characterized by an unusually low zero-field splitting of 485 MHz (E/D = 0.30) for the S = 5/2 Mn(II) ion, consistent with the high symmetry of the His6 binding site observed crystallographically. Results from electron spin-echo envelope modulation and electron-nuclear double resonance experiments reveal that the six Mn(II)-coordinating histidine residues of Ca(II)- and Mn(II)-bound CP are spectroscopically equivalent. The observed (15)N (I = 1/2) hyperfine couplings (A) arise from two distinct classes of nitrogen atoms: the coordinating ε-nitrogen of the imidazole ring of each histidine ligand (A = [3.45, 3.71, 5.91] MHz) and the distal δ-nitrogen (A = [0.11, 0.18, 0.42] MHz). In the absence of Ca(II), the binding affinity of CP for Mn(II) drops by two to three orders of magnitude and coincides with Mn(II) binding at the His6 site as well as other sites. This study demonstrates the role of Ca(II) in enabling high-affinity and specific binding of Mn(II) to the His6 site of human calprotectin. PMID:25597447

  6. Crystallization and preliminary X-ray crystallographic study of [NiFe]-hydrogenase maturation factor HypE from Thermococcus kodakaraensis KOD1

    SciTech Connect

    Arai, Takayuki; Watanabe, Satoshi; Matsumi, Rie; Atomi, Haruyuki; Imanaka, Tadayuki; Miki, Kunio

    2007-09-01

    The [NiFe]-hydrogenase maturation protein HypE was purified and crystallized. Crystals of HypE suitable for data collection diffracted to 1.55 Å resolution. The hydrogenase maturation protein HypE is involved in the biosynthesis of the CN ligands of the active-site iron of [NiFe] hydrogenases using carbamoylphosphate as a substrate. Here, the crystallization and preliminary crystallographic analysis of HypE from Thermococcus kodakaraensis KOD1 are reported. Crystals of HypE (338 amino acids, 35.9 kDa) have been obtained by the sitting-drop vapour-diffusion method using 2-methyl-2,4-pentanediol (MPD) as a precipitant. The crystals belong to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 88.3, b = 45.8, c = 75.1 Å. There is one HypE molecule in the asymmetric unit. A complete native X-ray diffraction data set was collected to a maximum resolution of 1.55 Å at 100 K.

  7. L-Arabinose binding, isomerization, and epimerization by D-xylose isomerase: X-ray/neutron crystallographic and molecular simulation study.

    PubMed

    Langan, Paul; Sangha, Amandeep K; Wymore, Troy; Parks, Jerry M; Yang, Zamin Koo; Hanson, B Leif; Fisher, Zoe; Mason, Sax A; Blakeley, Matthew P; Forsyth, V Trevor; Glusker, Jenny P; Carrell, Horace L; Smith, Jeremy C; Keen, David A; Graham, David E; Kovalevsky, Andrey

    2014-09-01

    D-xylose isomerase (XI) is capable of sugar isomerization and slow conversion of some monosaccharides into their C2-epimers. We present X-ray and neutron crystallographic studies to locate H and D atoms during the respective isomerization and epimerization of L-arabinose to L-ribulose and L-ribose, respectively. Neutron structures in complex with cyclic and linear L-arabinose have demonstrated that the mechanism of ring-opening is the same as for the reaction with D-xylose. Structural evidence and QM/MM calculations show that in the reactive Michaelis complex L-arabinose is distorted to the high-energy (5)S1 conformation; this may explain the apparent high KM for this sugar. MD-FEP simulations indicate that amino acid substitutions in a hydrophobic pocket near C5 of L-arabinose can enhance sugar binding. L-ribulose and L-ribose were found in furanose forms when bound to XI. We propose that these complexes containing Ni(2+) cofactors are Michaelis-like and the isomerization between these two sugars proceeds via a cis-ene-diol mechanism.

  8. Comparison of the Kerr effect and X-ray pole figure methods for determining crystallographic texture in PrFeB magnets

    NASA Astrophysics Data System (ADS)

    Castro, A. R. M.; Serna, M. M.; Faria, R. N.; Lima, N. B.

    2004-09-01

    In this study, magnetic domains in Pr16Fe76B8 sintered magnets have been observed by Kerr effect and a histogram of the angular distribution of domain orientations has been used to determine the magnetic texture (). The degree of easy-axis alignment of Pr2Fe14B matrix grains in these magnets has been also determined by X-ray pole figure analysis using the (0 0 4) reflection. The (0 0 4) pole figure measurements were carried out by the Schultz's reflection method. The (0 0 4) normalized intensity data has been fitted for a Gaussian distribution and the degree of crystal alignment, , has been calculated using the Stoner-Wohlfarth model. Comparison of these methods has been carried out. It has been shown that in magnets with medium and high degrees of crystallographic alignment, the pole figure values are higher than that obtained by the Kerr effect method. Conversely, in magnets with low degrees of alignment, is lower than .

  9. X-ray crystallography

    NASA Technical Reports Server (NTRS)

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  10. Continuous mutual improvement of macromolecular structure models in the PDB and of X-ray crystallographic software: the dual role of deposited experimental data

    SciTech Connect

    Terwilliger, Thomas C.; Bricogne, Gerard

    2014-10-01

    Macromolecular structures deposited in the PDB can and should be continually reinterpreted and improved on the basis of their accompanying experimental X-ray data, exploiting the steady progress in methods and software that the deposition of such data into the PDB on a massive scale has made possible. Accurate crystal structures of macromolecules are of high importance in the biological and biomedical fields. Models of crystal structures in the Protein Data Bank (PDB) are in general of very high quality as deposited. However, methods for obtaining the best model of a macromolecular structure from a given set of experimental X-ray data continue to progress at a rapid pace, making it possible to improve most PDB entries after their deposition by re-analyzing the original deposited data with more recent software. This possibility represents a very significant departure from the situation that prevailed when the PDB was created, when it was envisioned as a cumulative repository of static contents. A radical paradigm shift for the PDB is therefore proposed, away from the static archive model towards a much more dynamic body of continuously improving results in symbiosis with continuously improving methods and software. These simultaneous improvements in methods and final results are made possible by the current deposition of processed crystallographic data (structure-factor amplitudes) and will be supported further by the deposition of raw data (diffraction images). It is argued that it is both desirable and feasible to carry out small-scale and large-scale efforts to make this paradigm shift a reality. Small-scale efforts would focus on optimizing structures that are of interest to specific investigators. Large-scale efforts would undertake a systematic re-optimization of all of the structures in the PDB, or alternatively the redetermination of groups of structures that are either related to or focused on specific questions. All of the resulting structures should be

  11. X-ray crystallographic analysis of the 6-aminohexanoate cyclic dimer hydrolase: catalytic mechanism and evolution of an enzyme responsible for nylon-6 byproduct degradation.

    PubMed

    Yasuhira, Kengo; Shibata, Naoki; Mongami, Go; Uedo, Yuki; Atsumi, Yu; Kawashima, Yasuyuki; Hibino, Atsushi; Tanaka, Yusuke; Lee, Young-Ho; Kato, Dai-ichiro; Takeo, Masahiro; Higuchi, Yoshiki; Negoro, Seiji

    2010-01-01

    We performed x-ray crystallographic analyses of the 6-aminohexanoate cyclic dimer (Acd) hydrolase (NylA) from Arthrobacter sp., an enzyme responsible for the degradation of the nylon-6 industry byproduct. The fold adopted by the 472-amino acid polypeptide generated a compact mixed alpha/beta fold, typically found in the amidase signature superfamily; this fold was especially similar to the fold of glutamyl-tRNA(Gln) amidotransferase subunit A (z score, 49.4) and malonamidase E2 (z score, 44.8). Irrespective of the high degree of structural similarity to the typical amidase signature superfamily enzymes, the specific activity of NylA for glutamine, malonamide, and indoleacetamide was found to be lower than 0.5% of that for Acd. However, NylA possessed carboxylesterase activity nearly equivalent to the Acd hydrolytic activity. Structural analysis of the inactive complex between the activity-deficient S174A mutant of NylA and Acd, performed at 1.8 A resolution, suggested the following enzyme/substrate interactions: a Ser(174)-cis-Ser(150)-Lys(72) triad constitutes the catalytic center; the backbone N in Ala(171) and Ala(172) are involved in oxyanion stabilization; Cys(316)-S(gamma) forms a hydrogen bond with nitrogen (Acd-N(7)) at the uncleaved amide bond in two equivalent amide bonds of Acd. A single S174A, S150A, or K72A substitution in NylA by site-directed mutagenesis decreased the Acd hydrolytic and esterolytic activities to undetectable levels, indicating that Ser(174)-cis-Ser(150)-Lys(72) is essential for catalysis. In contrast, substitutions at position 316 specifically affected Acd hydrolytic activity, suggesting that Cys(316) is responsible for Acd binding. On the basis of the structure and functional analysis, we discussed the catalytic mechanisms and evolution of NylA in comparison with other Ser-reactive hydrolases.

  12. Continuous mutual improvement of macromolecular structure models in the PDB and of X-ray crystallographic software: the dual role of deposited experimental data.

    PubMed

    Terwilliger, Thomas C; Bricogne, Gerard

    2014-10-01

    Accurate crystal structures of macromolecules are of high importance in the biological and biomedical fields. Models of crystal structures in the Protein Data Bank (PDB) are in general of very high quality as deposited. However, methods for obtaining the best model of a macromolecular structure from a given set of experimental X-ray data continue to progress at a rapid pace, making it possible to improve most PDB entries after their deposition by re-analyzing the original deposited data with more recent software. This possibility represents a very significant departure from the situation that prevailed when the PDB was created, when it was envisioned as a cumulative repository of static contents. A radical paradigm shift for the PDB is therefore proposed, away from the static archive model towards a much more dynamic body of continuously improving results in symbiosis with continuously improving methods and software. These simultaneous improvements in methods and final results are made possible by the current deposition of processed crystallographic data (structure-factor amplitudes) and will be supported further by the deposition of raw data (diffraction images). It is argued that it is both desirable and feasible to carry out small-scale and large-scale efforts to make this paradigm shift a reality. Small-scale efforts would focus on optimizing structures that are of interest to specific investigators. Large-scale efforts would undertake a systematic re-optimization of all of the structures in the PDB, or alternatively the redetermination of groups of structures that are either related to or focused on specific questions. All of the resulting structures should be made generally available, along with the precursor entries, with various views of the structures being made available depending on the types of questions that users are interested in answering.

  13. Expression, crystallization and preliminary X-ray crystallographic analysis of XometC, a cystathionine γ-lyase-like protein from Xanthomonas oryzae pv. oryzae

    SciTech Connect

    Ngo, Phuong-Thuy Ho; Kim, Jin-Kwang; Kim, Hyesoon; Jung, Junho; Ahn, Yeh-Jin; Kim, Jeong-Gu; Lee, Byoung-Moo; Kang, Hee-Wan; Kang, Lin-Woo

    2008-08-01

    XometC, a cystathionine γ-lyase-like protein from X. oryzae pv. oryzae and an antibacterial drug-target protein against bacterial blight, was cloned, purified and crystallized. Preliminary X-ray crystallographic analysis of XometC crystals was carried out. Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial blight of rice (Oryza sativa L.), one of the most devastating diseases of rice in most rice-growing countries. XometC, a cystathionine γ-lyase (CGL) like protein that is an antibacterial drug-target protein against Xoo, was cloned, expressed, purified and crystallized. CGL catalyzes the second step in the reverse-transsulfuration pathway, which is essential for the metabolic interconversion of the sulfur-containing amino acids cysteine and methionine. Crystals of two different shapes, plate-shaped and pyramid-shaped, diffracted to 2.9 and 3.2 Å resolution and belonged to the primitive orthogonal space group P2{sub 1}2{sub 1}2{sub 1} and the tetragonal space group P4{sub 1} (or P4{sub 3}), with unit-cell parameters a = 73.0, b = 144.9, c = 152.3 Å and a = b = 78.2, c = 300.7 Å, respectively. For the P2{sub 1}2{sub 1}2{sub 1} crystals, three or four monomers exist in the asymmetric unit with a corresponding V{sub M} of 3.02 or 2.26 Å{sup 3} Da{sup −1} and a solvent content of 59.3 or 45.7%. For the P4{sub 1} (or P4{sub 3}) crystals, four or five monomers exist in the asymmetric unit with a corresponding V{sub M} of 2.59 or 2.09 Å{sup 3} Da{sup −1} and a solvent content of 52.5 or 40.6%.

  14. Structure of the bifunctional aminoglycoside-resistance enzyme AAC(6')-Ie-APH(2'')-Ia revealed by crystallographic and small-angle X-ray scattering analysis.

    PubMed

    Smith, Clyde A; Toth, Marta; Weiss, Thomas M; Frase, Hilary; Vakulenko, Sergei B

    2014-10-01

    Broad-spectrum resistance to aminoglycoside antibiotics in clinically important Gram-positive staphylococcal and enterococcal pathogens is primarily conferred by the bifunctional enzyme AAC(6')-Ie-APH(2'')-Ia. This enzyme possesses an N-terminal coenzyme A-dependent acetyltransferase domain [AAC(6')-Ie] and a C-terminal GTP-dependent phosphotransferase domain [APH(2'')-Ia], and together they produce resistance to almost all known aminoglycosides in clinical use. Despite considerable effort over the last two or more decades, structural details of AAC(6')-Ie-APH(2'')-Ia have remained elusive. In a recent breakthrough, the structure of the isolated C-terminal APH(2'')-Ia enzyme was determined as the binary Mg2GDP complex. Here, the high-resolution structure of the N-terminal AAC(6')-Ie enzyme is reported as a ternary kanamycin/coenzyme A abortive complex. The structure of the full-length bifunctional enzyme has subsequently been elucidated based upon small-angle X-ray scattering data using the two crystallographic models. The AAC(6')-Ie enzyme is joined to APH(2'')-Ia by a short, predominantly rigid linker at the N-terminal end of a long α-helix. This α-helix is in turn intrinsically associated with the N-terminus of APH(2'')-Ia. This structural arrangement supports earlier observations that the presence of the intact α-helix is essential to the activity of both functionalities of the full-length AAC(6')-Ie-APH(2'')-Ia enzyme.

  15. Expression, purification, crystallization and preliminary X-ray crystallographic studies of the trehalulose synthase MutB from Pseudomonas mesoacidophila MX-45

    SciTech Connect

    Ravaud, Stéphanie; Watzlawick, Hildegard; Haser, Richard; Mattes, Ralf; Aghajari, Nushin

    2005-01-01

    The trehalulose synthase MutB from P. mesoacidophila MX-45 has been crystallized in two different crystal forms and diffraction data have been collected to 1.6 and 1.8 Å, respectively. The trehalulose synthase (MutB) from Pseudomonas mesoacidophila MX-45, belonging to glycoside hydrolase family 13, catalyses the isomerization of sucrose to trehalulose (α-d-glucosylpyranosyl-1,1-d-fructofuranose) and isomaltulose (α-d-glucosylpyranosyl-1,6-d-fructofuranose) as main products and glucose and fructose in residual amounts from the hydrolytic reaction. To date, a three-dimensional structure of a sucrose isomerase that produces mainly trehalulose, as is the case for MutB, has been lacking. Crystallographic studies of this 64 kDa enzyme have therefore been initiated in order to contribute to the understanding of the molecular basis of sucrose decomposition, isomerization and of the selectivity of this enzyme that leads to the formation of different products. The MutB protein has been overexpressed, purified and crystallized using the hanging-drop vapour-diffusion method. Two different crystal forms have been obtained: one diffracts X-rays to 1.6 Å resolution using synchrotron radiation and belongs to space group P1, with unit-cell parameters a = 63.8, b = 72.0, c = 82.2 Å, α = 67.5, β = 73.1, γ = 70.8°, while the other form diffracts to 1.8 Å resolution using synchrotron radiation and belongs to space group P2{sub 1}, with unit-cell parameters a = 63.7, b = 85.9, c = 119.7 Å, β = 97.7°. A molecular-replacement solution has been found using the structure of the isomaltulose synthase (PalI) from Klebsiella sp. LX3 as a search model.

  16. Continuous mutual improvement of macromolecular structure models in the PDB and of X-ray crystallographic software: the dual role of deposited experimental data

    PubMed Central

    Terwilliger, Thomas C.; Bricogne, Gerard

    2014-01-01

    Accurate crystal structures of macromolecules are of high importance in the biological and biomedical fields. Models of crystal structures in the Protein Data Bank (PDB) are in general of very high quality as deposited. However, methods for obtaining the best model of a macromolecular structure from a given set of experimental X-ray data continue to progress at a rapid pace, making it possible to improve most PDB entries after their deposition by re-analyzing the original deposited data with more recent software. This possibility represents a very significant departure from the situation that prevailed when the PDB was created, when it was envisioned as a cumulative repository of static contents. A radical paradigm shift for the PDB is therefore proposed, away from the static archive model towards a much more dynamic body of continuously improving results in symbiosis with continuously improving methods and software. These simultaneous improvements in methods and final results are made possible by the current deposition of processed crystallographic data (structure-factor amplitudes) and will be supported further by the deposition of raw data (diffraction images). It is argued that it is both desirable and feasible to carry out small-scale and large-scale efforts to make this paradigm shift a reality. Small-scale efforts would focus on optimizing structures that are of interest to specific investigators. Large-scale efforts would undertake a systematic re-optimization of all of the structures in the PDB, or alternatively the redetermination of groups of structures that are either related to or focused on specific questions. All of the resulting structures should be made generally available, along with the precursor entries, with various views of the structures being made available depending on the types of questions that users are interested in answering. PMID:25286839

  17. Continuous mutual improvement of macromolecular structure models in the PDB and of X-ray crystallographic software: The dual role of deposited experimental data

    DOE PAGES

    Terwilliger, Thomas C.; Bricogne, Gerard

    2014-09-30

    Accurate crystal structures of macromolecules are of high importance in the biological and biomedical fields. Models of crystal structures in the Protein Data Bank (PDB) are in general of very high quality as deposited. However, methods for obtaining the best model of a macromolecular structure from a given set of experimental X-ray data continue to progress at a rapid pace, making it possible to improve most PDB entries after their deposition by re-analyzing the original deposited data with more recent software. This possibility represents a very significant departure from the situation that prevailed when the PDB was created, when itmore » was envisioned as a cumulative repository of static contents. A radical paradigm shift for the PDB is therefore proposed, away from the static archive model towards a much more dynamic body of continuously improving results in symbiosis with continuously improving methods and software. These simultaneous improvements in methods and final results are made possible by the current deposition of processed crystallographic data (structure-factor amplitudes) and will be supported further by the deposition of raw data (diffraction images). It is argued that it is both desirable and feasible to carry out small-scale and large-scale efforts to make this paradigm shift a reality. Small-scale efforts would focus on optimizing structures that are of interest to specific investigators. Large-scale efforts would undertake a systematic re-optimization of all of the structures in the PDB, or alternatively the redetermination of groups of structures that are either related to or focused on specific questions. All of the resulting structures should be made generally available, along with the precursor entries, with various views of the structures being made available depending on the types of questions that users are interested in answering.« less

  18. Continuous mutual improvement of macromolecular structure models in the PDB and of X-ray crystallographic software: The dual role of deposited experimental data

    SciTech Connect

    Terwilliger, Thomas C.; Bricogne, Gerard

    2014-09-30

    Accurate crystal structures of macromolecules are of high importance in the biological and biomedical fields. Models of crystal structures in the Protein Data Bank (PDB) are in general of very high quality as deposited. However, methods for obtaining the best model of a macromolecular structure from a given set of experimental X-ray data continue to progress at a rapid pace, making it possible to improve most PDB entries after their deposition by re-analyzing the original deposited data with more recent software. This possibility represents a very significant departure from the situation that prevailed when the PDB was created, when it was envisioned as a cumulative repository of static contents. A radical paradigm shift for the PDB is therefore proposed, away from the static archive model towards a much more dynamic body of continuously improving results in symbiosis with continuously improving methods and software. These simultaneous improvements in methods and final results are made possible by the current deposition of processed crystallographic data (structure-factor amplitudes) and will be supported further by the deposition of raw data (diffraction images). It is argued that it is both desirable and feasible to carry out small-scale and large-scale efforts to make this paradigm shift a reality. Small-scale efforts would focus on optimizing structures that are of interest to specific investigators. Large-scale efforts would undertake a systematic re-optimization of all of the structures in the PDB, or alternatively the redetermination of groups of structures that are either related to or focused on specific questions. All of the resulting structures should be made generally available, along with the precursor entries, with various views of the structures being made available depending on the types of questions that users are interested in answering.

  19. Preliminary joint X-ray and neutron protein crystallographic studies of ecDHFR complexed with folate and NADP{sup +}

    SciTech Connect

    Wan, Qun Kovalevsky, Andrey Y.; Wilson, Mark A.; Bennett, Brad C.; Langan, Paul; Dealwis, Chris

    2014-05-25

    A 2.0 Å resolution neutron data set and a 1.6 Å resolution X-ray data set were collected for joint X-ray/neutron refinement of the ecDHFR–folate–NADP{sup +} complex in order to study the reaction mechanism of dihydrofolate reductase.

  20. Structure-Guided Design and Optimization of Dipeptidyl Inhibitors of Norovirus 3CL Protease. Structure-Activity Relationships and Biochemical, X-ray Crystallographic, Cell-Based, and In Vivo Studies

    PubMed Central

    Kankanamalage, Anushka C. Galasiti; Kim, Yunjeong; Weerawarna, Pathum M.; Uy, Roxanne Adeline Z.; Damalanka, Vishnu C.; Mandadapu, Sivakoteswara Rao; Alliston, Kevin R.; Mehzabeen, Nurjahan; Battaile, Kevin P.; Lovell, Scott; Chang, Kyeong-Ok; Groutas, William C.

    2015-01-01

    Norovirus infection constitutes the primary cause of acute viral gastroenteritis. There are currently no vaccines or norovirus-specific antiviral therapeutics available for the management of norovirus infection. Norovirus 3C-like protease is essential for viral replication, consequently, inhibition of this enzyme is a fruitful avenue of investigation that may lead to the emergence of anti-norovirus therapeutics. We describe herein the optimization of dipeptidyl inhibitors of norovirus 3C-like protease using iterative SAR, X-ray crystallographic, and enzyme and cell-based studies. We also demonstrate herein in vivo efficacy of an inhibitor using the murine model of norovirus infection. PMID:25761614

  1. Structure-Guided Design and Optimization of Dipeptidyl Inhibitors of Norovirus 3CL Protease. Structure–Activity Relationships and Biochemical, X-ray Crystallographic, Cell-Based, and In Vivo Studies

    DOE PAGES

    Galasiti Kankanamalage, Anushka C.; Kim, Yunjeong; Weerawarna, Pathum M.; Uy, Roxanne Adeline Z.; Damalanka, Vishnu C.; Mandadapu, Sivakoteswara Rao; Alliston, Kevin R.; Mehzabeen, Nurjahan; Battaile, Kevin P.; Lovell, Scott; et al

    2015-04-09

    Norovirus infection constitutes the primary cause of acute viral gastroenteritis. There are currently no vaccines or norovirus-specific antiviral therapeutics available for the management of norovirus infection. Norovirus 3C-like protease is essential for viral replication, consequently, inhibition of this enzyme is a fruitful avenue of investigation that may lead to the emergence of antinorovirus therapeutics. We describe herein the optimization of dipeptidyl inhibitors of norovirus 3C-like protease using iterative SAR, X-ray crystallographic, and enzyme and cell-based studies. We also demonstrate herein in vivo efficacy of an inhibitor using the murine model of norovirus infection.

  2. A crystallographic and spectroscopic study on the effect of X-ray radiation on the crystal structure of Melanocarpus albomyces laccase

    SciTech Connect

    Hakulinen, Nina . E-mail: nina.hakulinen@joensuu.fi; Kruus, Kristiina; Koivula, Anu; Rouvinen, Juha . E-mail: juha.rouvinen@joensuu.fi

    2006-12-01

    Laccases (p-diphenol dioxygen oxidoreductases) belong to the family of blue multicopper oxidases, which catalyse the four-electron reduction of dioxygen to water concomitantly through the oxidation of substrate molecules. Blue multicopper oxidases have four coppers, a copper (T1) forming a mononuclear site and a cluster of three coppers (T2, T3, and T3') forming a trinuclear site. Because X-rays are known to liberate electrons during data collection and may thus affect the oxidation state of metals, we have investigated the effect of X-ray radiation upon the crystal structure of a recombinant laccase from Melanocarpus albomyces through the use of crystallography and crystal absorption spectroscopy. Two data sets with different strategies, a low and a high-dose data set, were collected at synchrotron. We have observed earlier that the trinuclear site had an elongated electron density amidst coppers, suggesting dioxygen binding. The low-dose synchrotron structure showed similar elongated electron density, but the high-dose X-ray radiation removed the bulk of this density. Therefore, X-ray radiation could alter the active site of laccase from M. albomyces. Absorption spectra of the crystals (320, 420, and 590 nm) during X-ray radiation were measured at a home laboratory. Spectra clearly showed how that the band at 590 nm had vanished, resulting from the T1 copper being reduced, during the long X-ray measurements. The crystal colour changed from blue to colourless. Absorptions at 320 and 420 nm seemed to be rather permanent. The absorption at 320 nm is due to the T3 coppers and it is proposed that absorption at 420 nm is due to the T2 copper when dioxygen or a reaction intermediate is close to this copper.

  3. Anthranilimide based glycogen phosphorylase inhibitors for the treatment of type 2 diabetes. Part 3: X-ray crystallographic characterization, core and urea optimization and in vivo efficacy

    SciTech Connect

    Thomson, Stephen A.; Banker, Pierette; Bickett, D. Mark; Boucheron, Joyce A.; Carter, H. Luke; Clancy, Daphne C.; Cooper, Joel P.; Dickerson, Scott H.; Garrido, Dulce M.; Nolte, Robert T.; Peat, Andrew J.; Sheckler, Lauren R.; Sparks, Steven M.; Tavares, Francis X.; Wang, Liping; Wang, Tony Y.; Weiel, James E.

    2009-05-15

    Key binding interactions of the anthranilimide based glycogen phosphorylase a (GPa) inhibitor 2 from X-ray crystallography studies are described. This series of compounds bind to the AMP site of GP. Using the binding information the core and the phenyl urea moieties were optimized. This work culminated in the identification of compounds with single nanomolar potency as well as in vivo efficacy in a diabetic model.

  4. Preliminary X-ray crystallographic studies of BthTX-II, a myotoxic Asp49-phospholipase A{sub 2} with low catalytic activity from Bothrops jararacussu venom

    SciTech Connect

    Corrêa, L. C.; Marchi-Salvador, D. P.; Cintra, A. C. O.; Soares, A. M.

    2006-08-01

    A myotoxic Asp49-PLA{sub 2} with low catalytic activity from B. jararacussu (BthTX-II) was crystallized in the monoclinic crystal system; a complete X-ray diffraction data set was collected and a molecular-replacement solution was obtained. The oligomeric structure of BthTX-II resembles those of the Asp49-PLA{sub 2} PrTX-III and all bothropic Lys49-PLA{sub 2}s. For the first time, a complete X-ray diffraction data set has been collected from a myotoxic Asp49-phospholipase A{sub 2} (Asp49-PLA{sub 2}) with low catalytic activity (BthTX-II from Bothrops jararacussu venom) and a molecular-replacement solution has been obtained with a dimer in the asymmetric unit. The quaternary structure of BthTX-II resembles the myotoxin Asp49-PLA{sub 2} PrTX-III (piratoxin III from B. pirajai venom) and all non-catalytic and myotoxic dimeric Lys49-PLA{sub 2}s. In contrast, the oligomeric structure of BthTX-II is different from the highly catalytic and non-myotoxic BthA-I (acidic PLA{sub 2} from B. jararacussu). Thus, comparison between these structures should add insight into the catalytic and myotoxic activities of bothropic PLA{sub 2}s.

  5. X-ray crystallographic studies of the extracellular domain of the first plant ATP receptor, DORN1, and the orthologous protein from Camelina sativa

    PubMed Central

    Li, Zhijie; Chakraborty, Sayan; Xu, Guozhou

    2016-01-01

    Does not respond to nucleotides 1 (DORN1) has recently been identified as the first membrane-integral plant ATP receptor, which is required for ATP-induced calcium response, mitogen-activated protein kinase activation and defense responses in Arabidopsis thaliana. In order to understand DORN1-mediated ATP sensing and signal transduction, crystallization and preliminary X-ray studies were conducted on the extracellular domain of DORN1 (atDORN1-ECD) and that of an orthologous protein, Camelina sativa lectin receptor kinase I.9 (csLecRK-I.9-ECD or csI.9-ECD). A variety of deglycosylation strategies were employed to optimize the glycosylated recombinant atDORN1-ECD for crystallization. In addition, the glycosylated csI.9-ECD protein was crystallized at 291 K. X-ray diffraction data were collected at 4.6 Å resolution from a single crystal. The crystal belonged to space group C222 or C2221, with unit-cell parameters a = 94.7, b = 191.5, c = 302.8 Å. These preliminary studies have laid the foundation for structural determination of the DORN1 and I.9 receptor proteins, which will lead to a better understanding of the perception and function of extracellular ATP in plants. PMID:27710944

  6. Cloning, expression, purification, characterization, crystallization and X-ray crystallographic analysis of recombinant Der f 21 (rDer f 21) from Dermatophagoides farinae.

    PubMed

    Pang, Sze Lei; Ho, Kok Lian; Waterman, Jitka; Teh, Aik Hong; Chew, Fook Tim; Ng, Chyan Leong

    2015-11-01

    Dermatophagoides farinae is one of the major house dust mite (HDM) species that cause allergic diseases. N-terminally His-tagged recombinant Der f 21 (rDer f 21), a group 21 allergen, with the signal peptide truncated was successfully overexpressed in an Escherichia coli expression system. The purified rDer f 21 protein was initially crystallized using the sitting-drop vapour-diffusion method. Well diffracting protein crystals were obtained after optimization of the crystallization conditions using the hanging-drop vapour-diffusion method with a reservoir solution consisting of 0.19 M Tris-HCl pH 8.0, 32% PEG 400 at 293 K. X-ray diffraction data were collected to 1.49 Å resolution using an in-house X-ray source. The crystal belonged to the C-centered monoclinic space group C2, with unit-cell parameters a = 123.46, b = 27.71, c = 90.25 Å, β = 125.84°. The calculated Matthews coefficient (VM) of 2.06 Å(3) Da(-1) suggests that there are two molecules per asymmetric unit, with a solvent content of 40.3%. Despite sharing high sequence identity with Blo t 5 (45%) and Blo t 21 (41%), both of which were determined to be monomeric in solution, size-exclusion chromatography, static light scattering and self-rotation function analysis indicate that rDer f 21 is likely to be a dimeric protein.

  7. Polyamines stabilize left-handed Z-DNA: using X-ray crystallographic analysis, we have found a new type of polyamine (PA) that stabilizes left-handed Z-DNA.

    PubMed

    Ohishi, Hirofumi; Odoko, Mamiko; Grzeskowiak, Kazimierz; Hiyama, Yoichi; Tsukamoto, Koji; Maezaki, Naoyoshi; Ishida, Toshimasa; Tanaka, Tetsuaki; Okabe, Nobuo; Fukuyama, Keiichi; Zhou, Da-Yang; Nakatani, Kazuhiko

    2008-02-01

    There are many great reports of polyamine stabilization of the Z-DNA by bridge conformation between neighboring, symmetry-related Z-DNA in the packing of crystals. However, polyamine binding to the minor groove of Z-DNA and stabilizing the Z-DNA structure has been rarely reported. We proved that the synthesized polyamines bind to the minor groove of Z-DNA and stabilize the conformation under various conditions, by X-ray crystallographic study. These polyamines consist of a polyamine nano wire structure. The modes of the polyamine interaction were changed under different conditions. It is the first example that the crystals consisted of metal free structure. This finding provides a basis for clarifying B-Z transition mechanics.

  8. Spectroscopic and X-ray crystallographic evidence for electrostatic effects in 4-substituted cyclohexanone-derived hydrazones, imines, and corresponding salts.

    PubMed

    Dibble, David J; Ziller, Joseph W; Woerpel, K A

    2011-10-01

    The axial conformer of several 4-substituted cyclohexanone hydrazone salts was found to predominate in solution. Changes in the charge of the molecule and the polarity of the solvent led to changes in the conformational preference of each molecule that were consistent with electrostatic stabilization of the axial conformer. (1)H NMR spectroscopic analysis was utilized to determine the structure of cyclohexanone-derived substrates by comparison to conformationally restricted trans-decalone derivatives and computational models. X-ray crystallography demonstrated that the axial configuration of a pendant benzyloxy group is the preferred conformation of an iminium ion in the solid state. The structure of a neutral hydrazone was also determined to favor the axial configuration for a pendant benzyloxy group in the solid state.

  9. Crystallization and preliminary X-ray crystallographic analysis of UDP-glucuronic acid:flavonol-3-O-glucuronosyltransferase (VvGT5) from the grapevine Vitis vinifera

    PubMed Central

    Mizohata, Eiichi; Okuda, Takuma; Hatanaka, Seika; Nakayama, Taisuke; Horikawa, Manabu; Nakayama, Toru; Ono, Eiichiro; Inoue, Tsuyoshi

    2013-01-01

    Grapevine (Vitis vinifera) glycosyltransferase 5 (VvGT5) is a UDP-glucuronic acid:flavonol-3-O-glucuronosyltransferase that catalyses the 3-O-specific glucuronosylation of flavonols using UDP-glucuronic acid as a sugar donor to produce flavonol 3-O-glucosides, which are important bioactive phytochemicals. Recombinant VvGT5 expressed in Escherichia coli cells was purified and crystallized by the sitting-drop vapour-diffusion method. A full set of X-ray diffraction data was collected to 2.2 Å Bragg spacing from a single crystal using a synchrotron-radiation source. The crystal was hexagonal, belonging to space group P6122, with unit-cell parameters a = b = 102.70, c = 535.92 Å. The initial phases were determined by the molecular-replacement method. PMID:23295490

  10. Expression, purification, crystallization, and preliminary X-ray crystallographic analysis of OXA-17, an extended-spectrum {beta}-lactamase conferring severe antibiotic resistance

    SciTech Connect

    Lee, J. H. Sohn, S. G. Jung, H. I. An, Y. J. Lee, S. H.

    2013-07-15

    OXA-17, an extended-spectrum {beta}-lactamase (ESBL) conferring severe antibiotic resistance, hydrolytically inactivates {beta}-lactam antibiotics, inducing a lack of eradication of pathogenic bacteria by oxyimino {beta}-lactams and not helping hospital infection control. Thus, the enzyme is a potential target for developing antimicrobial agents against pathogens producing ESBLs. OXA-17 was purified and crystallized at 298 K. X-ray diffraction data from OXA-17 crystal have been collected to 1.85 A resolution using synchrotron radiation. The crystal of OXA-17 belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 48.37, b = 101.12, and c = 126.07 A. Analysis of the packing density shows that the asymmetric unit probably contains two molecules with a solvent content of 54.6%.

  11. Expression, purification, crystallization, and preliminary X-ray crystallographic analysis of OXA-17, an extended-spectrum β-lactamase conferring severe antibiotic resistance

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Sohn, S. G.; Jung, H. I.; An, Y. J.; Lee, S. H.

    2013-07-01

    OXA-17, an extended-spectrum β-lactamase (ESBL) conferring severe antibiotic resistance, hydrolytically inactivates β-lactam antibiotics, inducing a lack of eradication of pathogenic bacteria by oxyimino β-lactams and not helping hospital infection control. Thus, the enzyme is a potential target for developing antimicrobial agents against pathogens producing ESBLs. OXA-17 was purified and crystallized at 298 K. X-ray diffraction data from OXA-17 crystal have been collected to 1.85 Å resolution using synchrotron radiation. The crystal of OXA-17 belongs to space group P212121, with unit-cell parameters a = 48.37, b = 101.12, and c = 126.07 Å. Analysis of the packing density shows that the asymmetric unit probably contains two molecules with a solvent content of 54.6%.

  12. Crystallization and preliminary X-ray crystallographic study on a xyloglucan-specific exo-beta-glycosidase, oligoxyloglucan reducing-end specific cellobiohydrolase.

    PubMed

    Yaoi, Katsuro; Kondo, Hidemasa; Suzuki, Mamoru; Noro, Natsuko; Tsuda, Sakae; Mitsuishi, Yasushi

    2003-10-01

    A novel xyloglucan-specific exo-beta-glycosidase, oligoxyloglucan reducing-end specific cellobiohydrolase (OXG-RCBH), recognizes the reducing end of oligoxyloglucan and releases two glucosyl residue segments from the main chain. OXG-RCBH was crystallized by the hanging-drop vapour-diffusion method with polyethylene glycol 3000 and polyethylene glycol 400 as precipitants. The crystals belong to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 61.0, b = 146.9, c = 211.9 A. The crystals diffract to a resolution of 2.2 A and are suitable for X-ray structure analysis. PMID:14501131

  13. X-ray crystallographic and mass spectrometric structure determination and functional characterization of succinylated porin from Rhodobacter capsulatus: implications for ion selectivity and single-channel conductance.

    PubMed Central

    Przybylski, M.; Glocker, M. O.; Nestel, U.; Schnaible, V.; Blüggel, M.; Diederichs, K.; Weckesser, J.; Schad, M.; Schmid, A.; Welte, W.; Benz, R.

    1996-01-01

    The role of charges near the pore mouth has been discussed in theoretical work about ion channels. To introduce new negative charges in a channel protein, amino groups of porin from Rhodobacter capsulatus 37b4 were succinylated with succinic anhydride, and the precise extent and sites of succinylations and structures of the succinylporins determined by mass spectrometry and X-ray crystallography. Molecular weight and peptide mapping analyses using matrix-assisted laser desorption-ionization mass spectrometry identified selective succinylation of three lysine-epsilon-amino groups (Lys-46, Lys-298, Lys-300) and the N-terminal alpha-amino group. The structure of a tetra-succinylated porin (TS-porin) was determined to 2.4 A and was generally found unchanged in comparison to native porin to form a trimeric complex. All succinylated amino groups found in a mono/di-succinylated porin (MS-porin) and a TS-porin are localized at the inner channel surface and are solvent-accessible: Lys-46 is located at the channel constriction site, whereas Lys-298, Lys-300, and the N-terminus are all near the periplasmic entrance of the channel. The Lys-46 residue at the central constriction loop was modeled as succinyl-lysine from the electron density data and shown to bend toward the periplasmic pore mouth. The electrical properties of the MS-and TS-porins were determined by reconstitution into black lipid membranes, and showed a negative charge effect on ion transport and an increased cation selectivity through the porin channel. The properties of a typical general diffusion porin changed to those of a channel that contains point charges near the pore mouth. The single-channel conductance was no longer a linear function of the bulk aqueous salt concentration. The substantially higher cation selectivity of the succinylated porins compared with the native protein is consistent with the increase of negatively charged groups introduced. These results show tertiary structure

  14. Oxidative addition of allylic halides to ruthenium(II) compounds. Preparation, reactions, and X-ray crystallographic structure of ruthenium(IV)-allyl complexes

    SciTech Connect

    Nagashima, Hideo; Mukai, Katsunori; Shiota, Yusuke; Yamaguchi, Keitaro; Ara, Kenichi; Fukahori, Takahiko; Itoh, Kenji ); Suzuki, Hiroharu; Akita, Munetaka; Moro-oka, Yoshihiko )

    1990-03-01

    The oxidative addition of allylic halides to (C{sub 5}R{sub 5})RuL{sub 2}X (R = H, Me; L = CO, PPh{sub 3}) gave new Ru(IV)-{eta}{sup 3}-allyl complexes, (C{sub 5}R{sub 5})RuX{sub 2}({eta}{sup 3}-allyl). An X-ray structure determination was carried out on (C{sub 5}Me{sub 5})RuBr{sub 2}({eta}{sup 3}-C{sub 3}H{sub 5}), indicating a pseudo-piano-stool structure having two Br atoms and two terminal carbons of the endo-{eta}{sup 3}-allyl ligand located at the basal positions. There is a crystal mirror plane bisecting the pentamethylcyclopentadienyl and the {pi}-allyl ligands. Crystal data: orthorhombic, space group P2{sub 1}2{sub 1}2{sub 1}, a = 22.738 (1) {angstrom}, b = 13.367 (7) {angstrom}, c = 9.383 (1) {angstrom}, Z = 4., data refined to R = 0.0695. Its {sup 1}H and {sup 13}C NMR spectra showed symmetric allyl signals, supporting that the above-described piano-stool structure is maintained even in solution.

  15. Chemical understanding of carbide cluster metallofullerenes: a case study on Sc2C2@C2v(5)-C80 with complete X-ray crystallographic characterizations.

    PubMed

    Kurihara, Hiroki; Lu, Xing; Iiduka, Yuko; Nikawa, Hidefumi; Mizorogi, Naomi; Slanina, Zdenek; Tsuchiya, Takahiro; Nagase, Shigeru; Akasaka, Takeshi

    2012-02-15

    Little is known about the chemical properties of carbide cluster metallofullerenes (CCMFs). Here we report the photochemical reaction of a newly assigned CCMF Sc(2)C(2)@C(2v)(5)-C(80) with 2-adamantane-2,3-[3H]-diazirine (AdN(2), 1), which provides a carbene reagent under irradiation. Five monoadduct isomers (2a-2e), with respective abundances of 20%, 40%, 25%, 5%, and 10%, were isolated and characterized with a combination of experimental techniques including unambiguous single-crystal X-ray crystallography. Results show that the two Sc atoms of the bent Sc(2)C(2) cluster tend to move in most cases, whereas the C(2)-unit is almost fixed. Accordingly, it is difficult to explain the addition patterns by considering the strain and charge density on the cage with a fixed cluster, and thus a moving cluster may account for the addition patterns. These results show that the situation of CCMFs is more complicated than those in other metallofullerenes. Furthermore, a thermal isomerization process from 2b to 2c was observed, confirming that the most abundant isomer 2b is a kinetically favored adduct. Finally, it is revealed that the electronic and electrochemical properties of pristine Sc(2)C(2)@C(2v)(5)-C(80) have been markedly altered by exohedral modification.

  16. Overexpression, crystallization and preliminary X-ray crystallographic analysis of Pseudomonas aeruginosa MnmE, a GTPase involved in tRNA modification.

    PubMed

    Lee, Hyung Ho; Suh, Se Won

    2010-08-01

    MnmE, an evolutionarily conserved GTPase, is involved in modification of the uridine base (U34) at the wobble position of certain tRNAs. Previous crystal structures of MnmE suggest that it is a dimer with considerable conformational flexibility. To facilitate structural comparisons among MnmE proteins, structural analysis of MnmE from Pseudomonas aeruginosa encoded by the PA5567 gene was initiated. It was overexpressed in Escherichia coli and crystallized at 297 K using a reservoir solution consisting of 100 mM sodium ADA pH 6.5, 12%(w/v) polyethylene glycol 4000, 100 mM lithium sulfate, 2%(v/v) 2-propanol and 2.5 mM dithiothreitol. X-ray diffraction data were collected to 2.69 A resolution. The crystals belonged to the orthorhombic space group C222(1), with unit-cell parameters a=96.74, b=204.66, c=120.90 A. Two monomers were present in the asymmetric unit, resulting in a crystal volume per protein mass (VM) of 2.99 A3 Da(-1) and a solvent content of 58.8%.

  17. Crystallization and preliminary X-ray crystallographic analysis of the hexameric human p97/VCP ND1 fragment in complex with the UBX domain of human FAF1

    PubMed Central

    Kang, Wonchull; Yang, Jin Kuk

    2011-01-01

    The UBX domain of Fas-associated factor 1 (FAF1) binds to the N domain of p97/VCP, a multi-functional hexameric ATPase, and FAF1 thus inhibits the proteasome-mediated protein-degradation process assisted by p97/VCP. Here, crystallization of the hexameric p97/VCP ND1 fragment in complex with the FAF1 UBX domain is reported. Wild-type p97/VCP ND1 in complex with FAF1 UBX crystallized into very thin sheet-shaped crystals which turned out to be of poor diffraction quality. Therefore, in order to acquire a better diffraction-quality crystal, three mutants of p97/VCP ND1 were generated based on the surface-entropy reduction method. Of these, a triple mutant was the most successful in producing diffraction-quality crystals suitable for subsequent structural analysis. X-ray data were collected to 3.60 Å resolution and the crystals belonged to space group I222, with unit-cell parameters a = 166.28, b = 170.04, c = 255.99 Å. The Matthews coefficient and solvent content were estimated to be 5.78 Å3 Da−1 and 78.72%, respectively. PMID:22102026

  18. Complex assembly, crystallization and preliminary X-ray crystallographic studies of the swine major histocompatibility complex molecule SLA-1*1502.

    PubMed

    Pan, Xiaocheng; Qi, Jianxun; Zhang, Nianzhi; Li, Qirun; Yin, Chunsheng; Chen, Rong; Gao, Feng; Xia, Chun

    2011-05-01

    In order to illustrate the structure of the swine MHC class I (SLA-I) molecule and to evaluate the cytotoxic T lymphocyte (CTL) response against porcine reproductive and respiratory syndrome virus (PRRSV), the ternary complex of the SLA-I molecule termed SLA-1*1502 with β(2)-microglobulin and the CTL epitope TMPPGFELY (PRRSV-NSP9(TY9)) derived from PRRSV nonstructural protein 9 (residues 198-206) was assembled and crystallized. The crystal diffracted X-rays to 2.2 Å resolution and belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 66.1, b = 74.1, c = 98.6 Å; it contained one molecule in the asymmetric unit. The Matthews coefficient and the solvent content were calculated to be 2.74 Å(3) Da(-1) and 55.17%, respectively. The results will be helpful in obtaining insight into the structural basis of the presentation of viral epitopes by SLA-I.

  19. Crystallization and preliminary X-ray crystallographic analysis of an artificial molten-globular-like triosephosphate isomerase protein of mixed phylogenetic origin

    PubMed Central

    Goyal, Venuka Durani; Yadav, Pooja; Kumar, Ashwani; Ghosh, Biplab; Makde, Ravindra D.

    2014-01-01

    A bioinformatics-based protein-engineering approach called consensus design led to the construction of a chimeric triosephosphate isomerase (TIM) protein called ccTIM (curated consensus TIM) which is as active as Saccharomyces cerevisiae TIM despite sharing only 58% sequence identity with it. The amino-acid sequence of this novel protein is as identical to native sequences from eukaryotes as to those from prokaryotes and shares some biophysical traits with a molten globular protein. Solving its crystal structure would help in understanding the physical implications of its bioinformatics-based sequence. In this report, the ccTIM protein was successfully crystallized using the microbatch-under-oil method and a full X-ray diffraction data set was collected to 2.2 Å resolution using a synchrotron-radiation source. The crystals belonged to space group C2221, with unit-cell parameters a = 107.97, b = 187.21, c = 288.22 Å. Matthews coefficient calculations indicated the presence of six dimers in the asymmetric unit, with an approximate solvent content of 46.2%. PMID:25372821

  20. Crystallization and preliminary X-ray crystallographic study of the extracellular domain of the 4-1BB ligand, a member of the TNF family

    SciTech Connect

    Byun, Jung-Sue; Kim, Dong-Uk; Ahn, Byungchan; Kwon, Byoung Se; Cho, Hyun-Soo

    2006-01-01

    The extracellular domain of the 4-1BB ligand fused with glutathione-S-transferase was expressed in Escherichia coli (Origami) and purified by using affinity and ion-exchange column chromatographic methods. Crystals of the 4-1BB ligand were obtained at 290 K by the hanging-drop vapour-diffusion method. The 4-1BB ligand, a member of the tumour necrosis factor (TNF) family, is an important co-stimulatory molecule that plays a key role in the clonal expansion and survival of CD8+ T cells. Signalling through binding of the 4-1BB ligand and 4-1BB has been reported to enhance CD8+ T-cell expansion and protect activated CD8+ T cells from death. The 4-1BB ligand is an integral protein expressed on activated antigen-presenting cells. The extracellular domain of the 4-1BB ligand fused with glutathione-S-transferase was expressed in Escherichia coli (Origami) and purified by using affinity and ion-exchange column chromatographic methods. Crystals of the 4-1BB ligand were obtained at 290 K by the hanging-drop vapour-diffusion method. X-ray diffraction data were collected from these crystals to 2.8 Å resolution and the crystals belong to space group C2, with unit-cell parameters a = 114.6, b = 73.8, c = 118.50 Å, β = 115.5°.

  1. Complex assembly, crystallization and preliminary X-ray crystallographic studies of rhesus macaque MHC Mamu-A*01 complexed with an immunodominant SIV-Gag nonapeptide

    SciTech Connect

    Chu, Fuliang; Lou, Zhiyong; Gao, Bin; Bell, John I.; Rao, Zihe; Gao, George F.

    2005-06-01

    Crystallization of the first rhesus macaque MHC class I complex. Simian immunodeficiency virus (SIV) infection in rhesus macaques has been used as the best model for the study of human immunodeficiency virus (HIV) infection in humans, especially in the cytotoxic T-lymphocyte (CTL) response. However, the structure of rhesus macaque (or any other monkey model) major histocompatibility complex class I (MHC I) presenting a specific peptide (the ligand for CTL) has not yet been elucidated. Here, using in vitro refolding, the preparation of the complex of the rhesus macaque MHC I allele (Mamu-A*01) with human β{sub 2}m and an immunodominant peptide, CTPYDINQM (Gag-CM9), derived from SIV Gag protein is reported. The complex (45 kDa) was crystallized; the crystal belongs to space group I422, with unit-cell parameters a = b = 183.8, c = 155.2 Å. The crystal contains two molecules in the asymmetric unit and diffracts X-rays to 2.8 Å resolution. The structure is being solved by molecular replacement and this is the first attempt to determined the crystal structure of a peptide–nonhuman primate MHC complex.

  2. Crystallization and preliminary X-ray crystallographic analysis of the GluR0 ligand-binding core from Nostoc punctiforme

    SciTech Connect

    Lee, Jun Hyuck; Park, Soo Jeong; Rho, Seong-Hwan; Im, Young Jun; Kim, Mun-Kyoung; Kang, Gil Bu; Eom, Soo Hyun

    2005-11-01

    The GluR0 ligand-binding core from N. punctiforme was expressed, purified and crystallized in the presence of l-glutamate. A diffraction data set was collected to a resolution of 2.1 Å. GluR0 from Nostoc punctiforme (NpGluR0) is a bacterial homologue of the ionotropic glutamate receptor. The ligand-binding core of NpGluR0 was crystallized at 294 K using the hanging-drop vapour-diffusion method. The l-glutamate-complexed crystal belongs to space group C222{sub 1}, with unit-cell parameters a = 78.0, b = 145.1, c = 132.1 Å. The crystals contain three subunits in the asymmetric unit, with a V{sub M} value of 2.49 Å{sup 3} Da{sup −1}. The diffraction limit of the l-glutamate complex data set was 2.1 Å using synchrotron X-ray radiation at beamline BL-4A of the Pohang Accelerator Laboratory (Pohang, Korea)

  3. Cloning, purification, crystallization and preliminary X-ray crystallographic analysis of the biosynthetic N-acetylornithine aminotransferases from Salmonella typhimurium and Escherichia coli

    SciTech Connect

    Rajaram, V.; Prasad, K.; Ratna Prasuna, P.; Ramachandra, N.; Bharath, S. R.; Savithri, H. S.; Murthy, M. R. N.

    2006-10-01

    Acetylornithine aminotransferases, members of the type I subgroup II family of PLP-dependent enzymes, from S. typhimurium and E. coli have been cloned, overexpressed, purified and crystallized. Acetylornithine aminotransferase (AcOAT) is a type I pyridoxal 5′-phosphate-dependent enzyme catalyzing the conversion of N-acetylglutamic semialdehyde to N-acetylornithine in the presence of α-ketoglutarate, a step involved in arginine metabolism. In Escherichia coli, the biosynthetic AcOAT also catalyzes the conversion of N-succinyl-l-2-amino-6-oxopimelate to N-succinyl-l,l-diaminopimelate, one of the steps in lysine biosynthesis. It is closely related to ornithine aminotransferase. AcOAT was cloned from Salmonella typhimurium and E. coli, overexpressed in E. coli and purified using Ni–NTA affinity column chromatography. The enzymes crystallized in the presence of gabaculine. Crystals of E. coli AcOAT (eAcOAT) only diffracted X-rays to 3.5 Å and were twinned. The crystals of S. typhimurium AcOAT (sAcOAT) diffracted to 1.9 Å and had a dimer in the asymmetric unit. The structure of sAcOAT was solved by the molecular-replacement method.

  4. X-ray crystallographic, FT-IR and NMR studies as well as anticancer and antibacterial activity of the salt formed between ionophore antibiotic Lasalocid acid and amines

    NASA Astrophysics Data System (ADS)

    Huczyński, Adam; Rutkowski, Jacek; Wietrzyk, Joanna; Stefańska, Joanna; Maj, Ewa; Ratajczak-Sitarz, Małgorzata; Katrusiak, Andrzej; Brzezinski, Bogumil; Bartl, Franz

    2013-01-01

    Two new complexes of the ionophore antibiotic Lasalocid acid (LAS) with phenylamine (PhA) and butylamine (BuA) were synthesized and their molecular structures were studied using single crystal X-ray diffraction and spectroscopic methods. In the solid state both amines are protonated and all NH3+ protons are hydrogen bonded to etheric, hydroxyl and carboxylic oxygen atoms of the LAS anion. In chloroform solutions the structure observed in the crystal of LAS-BuA complex is preserved and an equilibrium between the LAS-PhA complex and dissociated Lasalocid acid and phenylamine is observed. In vitro antimicrobial tests of the complexes showed a significant activity towards some strains of Gram-positive bacteria. For the first time Lasalocid acid and its complexes with amines were tested in vitro for cytotoxic activity against human cancer cell lines: A-549 (lung), MCF-7 (breast), HT-29 (colon) and mouse cancer cell line P-388 (leukemia). We found that LAS and its complexes are strong cytotoxic agents towards all tested cell lines. The cytostatic activity of the compounds studied is greater than that of cisplatin, indicating that Lasalocid and its complexes are promising candidates for new anticancer drugs.

  5. High-level Expression Purification Crystallization and Preliminary X-ray Crystallographic Studies of the Receptor Binding Domain of botulinum neurotoxin Serotype D

    SciTech Connect

    Y Zhang; X Gao; G Buchko; H Robinson; S Varnum

    2011-12-31

    Botulinum neurotoxins (BoNTs) are highly toxic proteins for humans and animals that are responsible for the deadly neuroparalytic disease botulism. Here, details of the expression and purification of the receptor-binding domain (HCR) of BoNT/D in Escherichia coli are presented. Using a codon-optimized cDNA, BoNT/D{_}HCR was expressed at a high level (150-200 mg per litre of culture) in the soluble fraction. Following a three-step purification protocol, very pure (>98%) BoNT/D{_}HCR was obtained. The recombinant BoNT/D{_}HCR was crystallized and the crystals diffracted to 1.65 {angstrom} resolution. The crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 60.8, b = 89.7, c = 93.9 {angstrom}. Preliminary crystallographic data analysis revealed the presence of one molecule in the asymmetric unit.

  6. High-level expression, purification, crystallization and preliminary X-ray crystallographic studies of the receptor-binding domain of botulinum neurotoxin serotype D

    SciTech Connect

    Zhang, Y.; Robinson, H.; Gao, X.; Qin, L.; Buchko, G. W.; Varnum, S. M.

    2010-12-01

    Botulinum neurotoxins (BoNTs) are highly toxic proteins for humans and animals that are responsible for the deadly neuroparalytic disease botulism. Here, details of the expression and purification of the receptor-binding domain (HCR) of BoNT/D in Escherichia coli are presented. Using a codon-optimized cDNA, BoNT/D{_}HCR was expressed at a high level (150-200 mg per litre of culture) in the soluble fraction. Following a three-step purification protocol, very pure (>98%) BoNT/D{_}HCR was obtained. The recombinant BoNT/D{_}HCR was crystallized and the crystals diffracted to 1.65 {angstrom} resolution. The crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 60.8, b = 89.7, c = 93.9 {angstrom}. Preliminary crystallographic data analysis revealed the presence of one molecule in the asymmetric unit.

  7. Expression, purification, crystallization and X-ray crystallographic studies of different redox states of the active site of thioredoxin 1 from the whiteleg shrimp Litopenaeus vannamei

    PubMed Central

    Campos-Acevedo, Adam A.; Garcia-Orozco, Karina D.; Sotelo-Mundo, Rogerio R.; Rudiño-Piñera, Enrique

    2013-01-01

    Thioredoxin (Trx) is a 12 kDa cellular redox protein that belongs to a family of small redox proteins which undergo reversible oxidation to produce a cystine disulfide bond through the transfer of reducing equivalents from the catalytic site cysteine residues (Cys32 and Cys35) to a disulfide substrate. In this study, crystals of thioredoxin 1 from the Pacific whiteleg shrimp Litopenaeus vannamei (LvTrx) were successfully obtained. One data set was collected from each of four crystals at 100 K and the three-dimensional structures of the catalytic cysteines in different redox states were determined: reduced and oxidized forms at 2.00 Å resolution using data collected at a synchrotron-radiation source and two partially reduced structures at 1.54 and 1.88 Å resolution using data collected using an in-house source. All of the crystals belonged to space group P3212, with unit-cell parameters a = 57.5 (4), b = 57.5 (4), c = 118.1 (8) Å. The asymmetric unit contains two subunits of LvTrx, with a Matthews coefficient (V M) of 2.31 Å3 Da−1 and a solvent content of 46%. Initial phases were determined by molecular replacement using the crystallographic model of Trx from Drosophila melanogaster as a template. In the present work, LvTrx was overexpressed in Escherichia coli, purified and crystallized. Structural analysis of the different redox states at the Trx active site highlights its reactivity and corroborates the existence of a dimer in the crystal. In the crystallographic structures the dimer is stabilized by several interactions, including a disulfide bridge between Cys73 of each LvTrx monomer, a hydrogen bond between the side chain of Asp60 of each monomer and several hydrophobic interactions, with a noncrystallographic twofold axis. PMID:23695560

  8. A search for blues brothers: X-ray crystallographic/spectroscopic characterization of the tetraarylbenzidine cation radical as a product of aging of solid magic blue.

    PubMed

    Talipov, Marat R; Hossain, Mohammad M; Boddeda, Anitha; Thakur, Khushabu; Rathore, Rajendra

    2016-03-14

    Magic blue (MB+˙ SbCl6− salt), i.e. tris-4-bromophenylamminium cation radical, is a routinely employed one-electron oxidant that slowly decomposes in the solid state upon storage to form so called ‘blues brothers’, which often complicate the quantitative analyses of the oxidation processes. Herein, we disclose the identity of the main ‘blues brother’ as the cation radical and dication of tetrakis-(4-bromophenyl)benzidine (TAB) by a combined DFT and experimental approach, including isolation of TAB+˙ SbCl6− and its X-ray crystallography characterization. The formation of TAB in aged magic blue samples occurs by a Scholl-type coupling of a pair of MB followed by a loss of molecular bromine. The recognition of this fact led us to the rational design and synthesis of tris(2-bromo-4-tert-butylphenyl)amine, referred to as ‘blues cousin’ (BC: Eox1 = 0.78 V vs. Fc/Fc+, λmax(BC+˙) = 805 nm, εmax = 9930 cm−1 M−1), whose oxidative dimerization is significantly hampered by positioning the sterically demanding tert-butyl groups at the para-positions of the aryl rings. A ready two-step synthesis of BC from triphenylamine and the high stability of its cation radical (BC+˙) promise that BC will serve as a ready replacement for MB and an oxidant of choice for mechanistic investigations of one-electron transfer processes in organic, inorganic, and organometallic transformations.

  9. Joint x-ray

    MedlinePlus

    X-ray - joint; Arthrography; Arthrogram ... x-ray technologist will help you position the joint to be x-rayed on the table. Once in place, pictures are taken. The joint may be moved into other positions for more ...

  10. Chest X-Ray

    MedlinePlus

    ... by: Image/Video Gallery Your radiologist explains chest x-ray. Transcript Welcome to Radiology Info dot org! Hello, ... you about chest radiography also known as chest x-rays. Chest x-rays are the most commonly performed ...

  11. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1991-01-01

    The annual progress report on Cosmic X Ray Physics for the period 1 Jan. to 31 Dec. 1990 is presented. Topics studied include: soft x ray background, new sounding rocket payload: x ray calorimeter, and theoretical studies.

  12. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1990-01-01

    The annual progress report on Cosmic X Ray Physics is presented. Topics studied include: the soft x ray background, proportional counter and filter calibrations, the new sounding rocket payload: X Ray Calorimeter, and theoretical studies.

  13. High-level expression, purification, crystallization and preliminary X-ray crystallographic studies of the receptor binding domain of botulinum neurotoxin serotype D

    SciTech Connect

    Zhang, Yanfeng; Gao, Xiaoli; Qin, Lin; Buchko, Garry W.; Robinson, Howard; Varnum, Susan M.

    2010-12-01

    Botulinum neurotoxins (BoNTs) are highly toxic proteins for humans and can cause neuroparalytic disease botulism. Due to the limitations of production and manipulation of holoenzymes, expressing non-toxic heavy chain receptor binding domains (HCR) has become a common strategy for vaccine and antibody development. Meanwhile, large quantities and highly purified soluble proteins are required for research areas such as antibody maturation and structural biology. We present high level expression and purification of the BoNT serotype D HCR in E. coli using a codon-optimized cDNA. By varying expression conditions, especially at low temperature, the protein was expressed at a high level with high solubility. About 150-200 mg protein was purified to >90% purity from 1 L cell culture. The recombinant D_HCR was crystallized and the crystals diffracted to 1.65 Å resolution. The crystals belong to space group P212121 with unit cell dimensions a = 60.8 Å, b = 89.7 Å, c = 93.9 Å. Preliminary crystallographic data analysis revealed one molecule in asymmetric unit.

  14. Crystallization and preliminary X-ray crystallographic characterization of a public CMV-specific TCR in complex with its cognate antigen.

    PubMed

    Reiser, Jean Baptiste; Legoux, François; Machillot, Paul; Debeaupuis, Emilie; Le Moullac-Vaydie, Béatrice; Chouquet, Anne; Saulquin, Xavier; Bonneville, Marc; Housset, Dominique

    2009-11-01

    The T-cell response to human cytomegalovirus is characterized by a dramatic reduction of clonal diversity in patients undergoing chronic inflammation or immunodepression. In order to check whether all the selected high-avidity T-cell clones recognize the immunodominant pp65 peptide antigen pp65(495-503) (NLVPMVATV) presented by the major histocompatibility complex (MHC) molecule HLA-A2 in a similar manner, several public high-affinity T-cell receptors (TCRs) specific for the pp65(495-503)-HLA-A2 complex have been investigated. Expression, purification and crystallization were performed and preliminary crystallographic data were collected to 4.7 angstrom resolution for the RA15 TCR in complex with the pp65(495-503)-HLA-A2 complex. Comparison of the RA15-pp65(495-503)-HLA-A2 complex molecular-replacement solution with the structure of another high-affinity pp65(495-503)-HLA-A2-specific TCR, RA14, shows a shared docking mode, indicating that the clonal focusing could be accompanied by the selection of a most favoured peptide-readout mode. However, the position of the RA15 V beta domain is significantly shifted, suggesting a different interatomic interaction network. PMID:19923740

  15. X-ray crystallographic and solution state nuclear magnetic resonance spectroscopic investigations of NADP+ binding to ferredoxin NADP reductase from Pseudomonas aeruginosa.

    PubMed

    Wang, An; Rodríguez, Juan Carlos; Han, Huijong; Schönbrunn, Ernst; Rivera, Mario

    2008-08-01

    The ferredoxin nicotinamide adenine dinucleotide phosphate reductase from Pseudomonas aeruginosa ( pa-FPR) in complex with NADP (+) has been characterized by X-ray crystallography and in solution by NMR spectroscopy. The structure of the complex revealed that pa-FPR harbors a preformed NADP (+) binding pocket where the cofactor binds with minimal structural perturbation of the enzyme. These findings were complemented by obtaining sequential backbone resonance assignments of this 29518 kDa enzyme, which enabled the study of the pa-FPR-NADP complex by monitoring chemical shift perturbations induced by addition of NADP (+) or the inhibitor adenine dinucleotide phosphate (ADP) to pa-FPR. The results are consistent with a preformed NADP (+) binding site and also demonstrate that the pa-FPR-NADP complex is largely stabilized by interactions between the protein and the 2'-P AMP portion of the cofactor. Analysis of the crystal structure also shows a vast network of interactions between the two cofactors, FAD and NADP (+), and the characteristic AFVEK (258) C'-terminal extension that is typical of bacterial FPRs but is absent in their plastidic ferredoxin NADP (+) reductase (FNR) counterparts. The conformations of NADP (+) and FAD in pa-FPR place their respective nicotinamide and isoalloxazine rings 15 A apart and separated by residues in the C'-terminal extension. The network of interactions among NADP (+), FAD, and residues in the C'-terminal extension indicate that the gross conformational rearrangement that would be necessary to place the nicotinamide and isoalloxazine rings parallel and adjacent to one another for direct hydride transfer between NADPH and FAD in pa-FPR is highly unlikely. This conclusion is supported by observations made in the NMR spectra of pa-FPR and the pa-FPR-NADP complex, which strongly suggest that residues in the C'-terminal sequence do not undergo conformational exchange in the presence or absence of NADP (+). These findings are discussed in

  16. Binding Energy and Catalysis by D-Xylose Isomerase: Kinetic, Product and X-Ray Crystallographic Analysis of Enzyme-Catalyzed Isomerization of (R)-Glyceraldehyde‡, ¶

    PubMed Central

    Toteva, Maria M.; Silvaggi, Nicholas R.; Allen, Karen N.; Richard, John P.

    2011-01-01

    for proton transfer. An ultra-high resolution (0.97 Å) X-ray crystal structure was determined for the complex obtained by soaking crystals of XI with 50 mM DGA. The triose binds to XI as the unreactive hydrate, but ligand binding induces metal cofactor movement and conformational changes in active site residues similar to those observed for XI•sugar complexes. PMID:21995300

  17. Chest x-ray

    MedlinePlus

    Chest radiography; Serial chest x-ray; X-ray - chest ... You stand in front of the x-ray machine. You will be told to hold your breath when the x-ray is taken. Two images are usually taken. You will ...

  18. X-ray Crystallographic, Multifrequency Electron Paramagnetic Resonance, and Density Functional Theory Characterization of the Ni(P(Cy)2N(tBu)2)2(n+) Hydrogen Oxidation Catalyst in the Ni(I) Oxidation State.

    PubMed

    Niklas, Jens; Westwood, Mark; Mardis, Kristy L; Brown, Tiara L; Pitts-McCoy, Anthony M; Hopkins, Michael D; Poluektov, Oleg G

    2015-07-01

    The Ni(I) hydrogen oxidation catalyst [Ni(P(Cy)2N(tBu)2)2](+) (1(+); P(Cy)2N(tBu)2 = 1,5-di(tert-butyl)-3,7-dicyclohexyl-1,5-diaza-3,7-diphosphacyclooctane) has been studied using a combination of electron paramagnetic resonance (EPR) techniques (X-, Q-, and D-band, electron-nuclear double resonance, hyperfine sublevel correlation spectroscopy), X-ray crystallography, and density functional theory (DFT) calculations. Crystallographic and DFT studies indicate that the molecular structure of 1(+) is highly symmetrical. EPR spectroscopy has allowed determination of the electronic g tensor and the spin density distribution on the ligands, and revealed that the Ni(I) center does not interact strongly with the potentially coordinating solvents acetonitrile and butyronitrile. The EPR spectra and magnetic parameters of 1(+) are found to be distinctly different from those for the related compound [Ni(P(Ph)2N(Ph)2)2](+) (4(+)). One significant contributor to these differences is that the molecular structure of 4(+) is unsymmetrical, unlike that of 1(+). DFT calculations on derivatives in which the R and R' groups are systematically varied have allowed elucidation of structure/substituent relationships and their corresponding influence on the magnetic resonance parameters.

  19. X-Ray Crystallographic, Multifrequency EPR, and DFT Characterization of the Ni(PCy2NtBu2)2n+ Hydrogen Oxidation Catalyst in the Ni(I) Oxidation State

    PubMed Central

    Niklas, Jens; Westwood, Mark; Mardis, Kristy L.; Brown, Tiara L.; Pitts-McCoy, Anthony M.; Hopkins, Michael D.; Poluektov, Oleg G.

    2016-01-01

    The Ni(I) hydrogen oxidation catalyst [Ni(PCy2NtBu2)2]+ (1+; PCy2NtBu2= 1,5bis(tert-butyl)-3,7-dicyclo-hexyl-1,5-diaza-3,7-diphosphacychlooctane) has been studied using a combination of EPR techniques (X-, Q-, and D-band; electron-nuclear double resonance, hyperfine sublevel correlation spectroscopy), X-ray crystallography, and density functional theory (DFT) calculations. Crystallographic and DFT studies indicate that the molecular structure of 1+ is highly symmetrical. EPR spectroscopy has allowed determination of the electronic g-tensor and the spin density distribution on the ligands, and revealed that the Ni(I) center does not interact strongly with the potentially coordinating solvents acetonitrile and butyronitrile. The EPR spectra and magnetic parameters of 1+ are found to be distinctly different from those for the related compound [Ni(PPh2NPh2)2]+ (4+). One significant contributor to these differences is that the molecular structure of 4+ is unsymmetrical, unlike that of 1+. DFT calculations on derivatives in which the R and R′ groups are systematically varied have allowed elucidation of structure/substituent relationships and their corresponding influence on the magnetic resonance parameters. PMID:26098955

  20. Thoracic spine x-ray

    MedlinePlus

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... care provider's office. You will lie on the x-ray table in different positions. If the x-ray ...

  1. Dental x-rays

    MedlinePlus

    X-ray - teeth; Radiograph - dental; Bitewings; Periapical film; Panoramic film; Digital image ... dentist's office. There are many types of dental x-rays. Some of them are: Bitewing. Shows the crown ...

  2. X-ray (image)

    MedlinePlus

    X-rays are a form of ionizing radiation that can penetrate the body to form an image on ... will be shades of gray depending on density. X-rays can provide information about obstructions, tumors, and other ...

  3. X-Ray Lasers

    ERIC Educational Resources Information Center

    Chapline, George; Wood, Lowell

    1975-01-01

    Outlines the prospects of generating coherent x rays using high-power lasers and indentifies problem areas in their development. Indicates possible applications for coherent x rays in the fields of chemistry, biology, and crystallography. (GS)

  4. X Ray Topography

    ERIC Educational Resources Information Center

    Balchin, A. A.

    1974-01-01

    Discusses some aspects in X-ray topography, including formation of dislocations, characteristics of stacking faults, x-ray contrast in defect inspection, Berg-Barrett technique, and Lang traversing crystal and Borrmann's methods. (CC)

  5. Structure of the bifunctional aminoglycoside-resistance enzyme AAC(6′)-Ie-APH(2′′)-Ia revealed by crystallographic and small-angle X-ray scattering analysis

    PubMed Central

    Smith, Clyde A.; Toth, Marta; Weiss, Thomas M.; Frase, Hilary; Vakulenko, Sergei B.

    2014-01-01

    Broad-spectrum resistance to aminoglycoside antibiotics in clinically important Gram-positive staphylococcal and entero­coccal pathogens is primarily conferred by the bifunctional enzyme AAC(6′)-Ie-APH(2′′)-Ia. This enzyme possesses an N-terminal coenzyme A-dependent acetyltransferase domain [AAC(6′)-Ie] and a C-terminal GTP-dependent phosphotransferase domain [APH(2′′)-Ia], and together they produce resistance to almost all known aminoglycosides in clinical use. Despite considerable effort over the last two or more decades, structural details of AAC(6′)-Ie-APH(2′′)-Ia have remained elusive. In a recent breakthrough, the structure of the isolated C-terminal APH(2′′)-Ia enzyme was determined as the binary Mg2GDP complex. Here, the high-resolution structure of the N-terminal AAC(6′)-Ie enzyme is reported as a ternary kanamycin/coenzyme A abortive complex. The structure of the full-length bifunctional enzyme has subsequently been elucidated based upon small-angle X-ray scattering data using the two crystallographic models. The AAC(6′)-Ie enzyme is joined to APH(2′′)-Ia by a short, predominantly rigid linker at the N-terminal end of a long α-helix. This α-helix is in turn intrinsically associated with the N-terminus of APH(2′′)-Ia. This structural arrangement supports earlier observations that the presence of the intact α-helix is essential to the activity of both functionalities of the full-length AAC(6′)-Ie-APH(2′′)-Ia enzyme. PMID:25286858

  6. X-Ray Imaging

    MedlinePlus

    ... Brain Surgery Imaging Clinical Trials Basics Patient Information X-Ray Imaging Print This Page X-ray imaging is perhaps the most familiar type of imaging. Images produced by X-rays are due to the different absorption rates of ...

  7. X-Rays

    MedlinePlus

    X-rays are a type of radiation called electromagnetic waves. X-ray imaging creates pictures of the inside of your ... different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. Fat and ...

  8. Hand x-ray

    MedlinePlus

    X-ray - hand ... A hand x-ray is taken in a hospital radiology department or your health care provider's office by an ... technician. You will be asked to place your hand on the x-ray table, and keep it ...

  9. Panoramic Dental X-Ray

    MedlinePlus

    ... X-ray? What is Panoramic X-ray? Panoramic radiography , also called panoramic x-ray , is a two- ... Exams Dental Cone Beam CT X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety About this Site ...

  10. X-ray binaries

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Satellite X-ray experiments and ground-based programs aimed at observation of X-ray binaries are discussed. Experiments aboard OAO-3, OSO-8, Ariel 5, Uhuru, and Skylab are included along with rocket and ground-based observations. Major topics covered are: Her X-1, Cyg X-3, Cen X-3, Cyg X-1, the transient source A0620-00, other possible X-ray binaries, and plans and prospects for future observational programs.

  11. X-ray beamsplitter

    DOEpatents

    Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.

    1987-08-07

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.

  12. X-ray beamsplitter

    DOEpatents

    Ceglio, Natale M.; Stearns, Daniel S.; Hawryluk, Andrew M.; Barbee, Jr., Troy W.

    1989-01-01

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

  13. X-ray Spectrometry.

    ERIC Educational Resources Information Center

    Markowicz, Andrzej A.; Van Grieken, Rene E.

    1984-01-01

    Provided is a selective literature survey of X-ray spectrometry from late 1981 to late 1983. Literature examined focuses on: excitation (photon and electron excitation and particle-induced X-ray emission; detection (wavelength-dispersive and energy-dispersive spectrometry); instrumentation and techniques; and on such quantitative analytical…

  14. X-ray

    MedlinePlus

    ... is very low. Most experts feel that the benefits of appropriate x-ray imaging greatly outweigh any risks. Young children and babies in the womb are more sensitive to the risks of x-rays. Tell your health care provider if you think you might be pregnant.

  15. X-ray generator

    DOEpatents

    Dawson, John M.

    1976-01-01

    Apparatus and method for producing coherent secondary x-rays that are controlled as to direction by illuminating a mixture of high z and low z gases with an intense burst of primary x-rays. The primary x-rays are produced with a laser activated plasma, and these x-rays strip off the electrons of the high z atoms in the lasing medium, while the low z atoms retain their electrons. The neutral atoms transfer electrons to highly excited states of the highly striped high z ions giving an inverted population which produces the desired coherent x-rays. In one embodiment, a laser, light beam provides a laser spark that produces the intense burst of coherent x-rays that illuminates the mixture of high z and low z gases, whereby the high z atoms are stripped while the low z ones are not, giving the desired mixture of highly ionized and neutral atoms. To this end, the laser spark is produced by injecting a laser light beam, or a plurality of beams, into a first gas in a cylindrical container having an adjacent second gas layer co-axial therewith, the laser producing a plasma and the intense primary x-rays in the first gas, and the second gas containing the high and low atomic number elements for receiving the primary x-rays, whereupon the secondary x-rays are produced therein by stripping desired ions in a neutral gas and transfer of electrons to highly excited states of the stripped ions from the unionized atoms. Means for magnetically confining and stabilizing the plasma are disclosed for controlling the direction of the x-rays.

  16. Laboratory x ray lasers

    NASA Astrophysics Data System (ADS)

    Matthews, D. L.

    1989-08-01

    One of the most innovative spinoffs of ICF technology and physics was the development of the x ray wavelength laser. The first incontrovertible demonstration of this type of laser came from LLNL in 1984 using the Novette laser to pump a selenium foil target. The power and energy of Novette were then needed to produce a column of plasma of sufficient length to achieve a sufficient gainlength product (approximately 5.5, this corresponds to an amplification of approximately 250X) that could unquestionably illustrate the lasing effect. LLNL ICF expertise was also required to develop time-resolved spectrometers used to view the lasing transitions at approximately 20 nm, a region of the XUV spectrum normally dominated by high backgrounds. The design of the x ray laser amplifier, which required maintaining nonequilibrium level populations in a tailored plasma having the proper conditions for gain and x ray laser beam propagation, was accomplished with modified versions of ICF kinetics and hydrodynamics codes. Since the first demonstration, progress in the development of the x ray laser was rapid. New achievements include production of megawatt power levels at 20 nm, amplified spontaneous emission levels approaching saturation intensity GL of approximately 17 at 20 nm, efficiency (x ray laser energy/pump energy) approximately 10(exp 6), the demonstration of double and triple pass amplification (hinting at the possibility of producing x ray wavelength resonators), the focusing of x ray lasers to pump other types of lasers and the first demonstration of an x ray hologram produced by an x ray laser. The generation of amplification at ever shorter wavelength is possible using various types of inversion schemes. We depict below this progress benchmarked against production of gain in the water window (2.2 to 4.4 nm,), where applications to biological imaging may be facilitated.

  17. Lumbosacral spine x-ray

    MedlinePlus

    X-ray - lumbosacral spine; X-ray - lower spine ... The test is done in a hospital x-ray department or your health care provider's office by an x-ray technician. You will be asked to lie on the x-ray table ...

  18. X-ray laser

    DOEpatents

    Nilsen, Joseph

    1991-01-01

    An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.

  19. Hard X-Ray Emission from X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    The scientific goal of this project is to study the hard x-ray emission from x-ray bursters. One target of opportunity observation was made for this investigation during 1997. We obtained 38ks of data on the source 4UI705-44. The project is closely related to "Monitoring x-ray emission from x-ray bursters", and "Long-Term Hard X-Ray Monitoring of X-Ray Bursters."

  20. X-ray (image)

    MedlinePlus

    ... a form of electromagnetic radiation, just like visible light. Structures that are dense (such as bone) will block most of the x-ray particles, and will appear white. Metal and contrast media (special dye used to highlight ...

  1. Pelvis x-ray

    MedlinePlus

    X-ray - pelvis ... Tumors Degenerative conditions of bones in the hips, pelvis, and upper legs ... hip joint Tumors of the bones of the pelvis Sacroiliitis (inflammation of the area where the sacrum ...

  2. Medical X-Rays

    MedlinePlus

    ... Diagnostic X-Ray Equipment Compliance Program Guidance Manual CP 7386.003 Field Compliance Testing of Diagnostic (Medical) ... and Exporting Electronic Products Compliance Program Guidance Manual CP 7386.003 Field Compliance Testing of Diagnostic (Medical) ...

  3. X-Ray Diffraction.

    ERIC Educational Resources Information Center

    Smith, D. K.; Smith, K. L.

    1980-01-01

    Reviews applications in research and analytical characterization of compounds and materials in the field of X-ray diffraction, emphasizing new developments in applications and instrumentation in both single crystal and powder diffraction. Cites 414 references. (CS)

  4. X-ray - skeleton

    MedlinePlus

    ... is used to look for: Fractures or broken bone Cancer that has spread to other areas of the ... 2014:chap 8. Read More Bone tumor Broken bone Cancer Metastasis Osteomyelitis X-ray Update Date 5/9/ ...

  5. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1992-01-01

    This final report covers the period 1 January 1985 - 31 March 1992. It is divided into the following sections: the soft x-ray background; proportional counter and filter calibrations; sounding rocket flight preparations; new sounding rocket payload: x-ray calorimeter; and theoretical studies. Staff, publications, conference proceedings, invited talks, contributed talks, colloquia and seminars, public service lectures, and Ph. D. theses are listed.

  6. X-ray beam finder

    DOEpatents

    Gilbert, H.W.

    1983-06-16

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  7. Resonant soft X-ray scattering on protein solutions

    NASA Astrophysics Data System (ADS)

    Ye, Dan; Le, Thinh; Wang, Cheng; Zwart, Peter; Gomez, Esther; Gomez, Enrique

    Protein structure is crucial for biological function, such that characterizing protein folding and packing is important for the design of therapeutics and enzymes. We propose resonant soft X-ray scattering (RSOXS) as an approach to study proteins and other biological assemblies in solution. Calculations of the scattering contrast suggest that soft X-ray scattering is more sensitive than hard X-ray scattering, because of contrast generated at the absorption edges of constituent elements such as carbon, nitrogen and oxygen. We have examined the structure of bovine serum albumin (BSA) in solution by RSOXS. We find that by varying incident X-ray energies, we are able to achieve higher scattering contrast near the absorption edge. From our RSOXS scattering result we are able to reconstruct the structure of BSA in 3D. These RSOXS results also agree with hard X-ray experiments, including crystallographic data. Our study demonstrates the potential of RSOXS for studying protein structure in solution.

  8. Time-Resolved X-Ray Crystallography of Heme Proteins

    SciTech Connect

    Srajer, Vukica; Royer, Jr., William E.

    2008-04-29

    Heme proteins, with their natural photosensitivity, are excellent systems for the application of time-resolved crystallographic methods. Ligand dissociation can be readily initiated by a short laser pulse with global structural changes probed at the atomic level by X-rays in real time. Third-generation synchrotrons provide 100-ps X-ray pulses of sufficient intensity for monitoring very fast processes. Successful application of such time-resolved crystallographic experiments requires that the structural changes being monitored are compatible with the crystal lattice. These techniques have recently permitted observing for the first time allosteric transitions in real time for a cooperative dimeric hemoglobin.

  9. Time-resolved x-ray crystallography of heme proteins

    PubMed Central

    Royer, William E.

    2012-01-01

    Heme proteins, with their natural photosensitivity, are excellent systems for the application of time-resolved crystallographic methods. Ligand dissociation can be readily initiated by a short laser pulse with global structural changes probed at the atomic level by X-rays in real time. Third generation synchrotrons provide 100ps X-ray pulses of sufficient intensity for monitoring very fast processes. Successful application of such time-resolved crystallographic experiments requires that the structural changes being monitored are compatible with the crystal lattice. These techniques have permitted observing allosteric transitions in real time for a cooperative dimeric hemoglobin. PMID:18433638

  10. Structural changes that occur upon photolysis of the Fe(II)a3 - CO complex in the cytochrome ba3-oxidase of Thermus thermophilus: A combined X-ray crystallographic and infrared spectral study demonstrates CO binding to CuB

    PubMed Central

    Liu, Bin; Zhang, Yang; Sage, J. Timothy; Soltis, S. Michael; Doukov, Tzanko; Chen, Ying; Stout, C. David; Fee, James A.

    2012-01-01

    The purpose of the work was to provide a crystallographic demonstration of the venerable idea that CO photolyzed from ferrous heme-a3 moves to the nearby cuprous ion in the cytochrome c oxidases. Crystal structures of CO-bound cytochrome ba3-oxidase from Thermus thermophilus, determined at ~ 2.8 – 3.2 Å resolution, reveal a Fe-C distance of ~2.0 Å, a Cu-O distance of 2.4 Å and a Fe-C-O angle of ~126°. Upon photodissociation at 100 K, X-ray structures indicate loss of Fea3-CO and appearance of CuB-CO having a Cu-C distance of ~1.9 Å and an O-Fe distance of ~2.3 Å. Absolute FTIR spectra recorded from single crystals of reduced ba3–CO that had not been exposed to X-ray radiation, showed several peaks around 1975 cm−1; after photolysis at 100 K, the absolute FTIR spectra also showed a significant peak at 2050 cm−1. Analysis of the “light’ minus ‘dark’ difference spectra showed four very sharp CO stretching bands at 1970 cm−1, 1977 cm−1, 1981 cm−1, and 1985 cm−1, previously assigned to the Fea3-CO complex, and a significantly broader CO stretching band centered at ~2050 cm−1, previously assigned to the CO stretching frequency of CuB bound CO. As expected for light propagating along the tetragonal axis of the P43212 space group, the single crystal spectra exhibit negligible dichroism. Absolute FTIR spectrometry of a CO-laden ba3 crystal, exposed to an amount of X-ray radiation required to obtain structural data sets before FTIR characterization, showed a significant signal due to photogenerated CO2 at 2337 cm−1 and one from traces of CO at 2133 cm−1; while bands associated with CO bound to either Fea3 or to CuB in “light” minus “dark” FTIR difference spectra shifted and broadened in response to X-ray exposure. In spite of considerable radiation damage to the crystals, both X-ray analysis at 2.8 and 3.2 Å and FTIR spectra support the long-held position that photolysis of Fea3-CO in cytochrome c oxidases leads to significant

  11. X-ray lithography masking

    NASA Technical Reports Server (NTRS)

    Smith, Henry I. (Inventor); Lim, Michael (Inventor); Carter, James (Inventor); Schattenburg, Mark (Inventor)

    1998-01-01

    X-ray masking apparatus includes a frame having a supporting rim surrounding an x-ray transparent region, a thin membrane of hard inorganic x-ray transparent material attached at its periphery to the supporting rim covering the x-ray transparent region and a layer of x-ray opaque material on the thin membrane inside the x-ray transparent region arranged in a pattern to selectively transmit x-ray energy entering the x-ray transparent region through the membrane to a predetermined image plane separated from the layer by the thin membrane. A method of making the masking apparatus includes depositing back and front layers of hard inorganic x-ray transparent material on front and back surfaces of a substrate, depositing back and front layers of reinforcing material on the back and front layers, respectively, of the hard inorganic x-ray transparent material, removing the material including at least a portion of the substrate and the back layers of an inside region adjacent to the front layer of hard inorganic x-ray transparent material, removing a portion of the front layer of reinforcing material opposite the inside region to expose the surface of the front layer of hard inorganic x-ray transparent material separated from the inside region by the latter front layer, and depositing a layer of x-ray opaque material on the surface of the latter front layer adjacent to the inside region.

  12. X-ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Porter, F. Scott

    2004-01-01

    The X-ray Spectrometer (XRS) instrument is a revolutionary non-dispersive spectrometer that will form the basis for the Astro-E2 observatory to be launched in 2005. We have recently installed a flight spare X R S microcalorimeter spectrometer at the EBIT-I facility at LLNL replacing the XRS from the earlier Astro-E mission and providing twice the resolution. The X R S microcalorimeter is an x-ray detector that senses the heat deposited by the incident photon. It achieves a high energy resolution by operating at 0.06K and by carefully controlling the heat capacity and thermal conductance. The XRS/EBIT instrument has 32 pixels in a square geometry and achieves an energy resolution of 6 eV at 6 keV, with a bandpass from 0.1 to 12 keV (or more at higher operating temperature). The instrument allows detailed studies of the x-ray line emission of laboratory plasmas. The XRS/EBIT also provides an extensive calibration "library" for the Astro-E2 observatory.

  13. X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    Dr. S. N. Zhang has lead a seven member group (Dr. Yuxin Feng, Mr. XuejunSun, Mr. Yongzhong Chen, Mr. Jun Lin, Mr. Yangsen Yao, and Ms. Xiaoling Zhang). This group has carried out the following activities: continued data analysis from space astrophysical missions CGRO, RXTE, ASCA and Chandra. Significant scientific results have been produced as results of their work. They discovered the three-layered accretion disk structure around black holes in X-ray binaries; their paper on this discovery is to appear in the prestigious Science magazine. They have also developed a new method for energy spectral analysis of black hole X-ray binaries; four papers on this topics were presented at the most recent Atlanta AAS meeting. They have also carried Monte-Carlo simulations of X-ray detectors, in support to the hardware development efforts at Marshall Space Flight Center (MSFC). These computation-intensive simulations have been carried out entirely on the computers at UAH. They have also carried out extensive simulations for astrophysical applications, taking advantage of the Monte-Carlo simulation codes developed previously at MSFC and further improved at UAH for detector simulations. One refereed paper and one contribution to conference proceedings have been resulted from this effort.

  14. Monitoring X-Ray Emission from X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Kaaret, Philip

    1998-01-01

    The goal of this investigation was to use the All-Sky Monitor on the Rossi X-Ray Timing Explorer (RXTE) in combination with the Burst and Transient Source Experiment on the Compton Gamma-Ray Observatory to simultaneously measure the x-ray (2-12 keV) and hard x-ray (20-100 keV) emission from x-ray bursters. The investigation was successful. We made the first simultaneous measurement of hard and soft x-ray emission and found a strong anticorrelation of hard and soft x-ray emission from the X-Ray Burster 4U 0614+091. The monitoring performed under this investigation was also important in triggering target of opportunity observations of x-ray bursters made under the investigation hard x-ray emission of x-ray bursters approved for RXTE cycles 1 and 2. These observations lead to a number of papers on high-frequency quasi-periodic oscillations and on hard x-ray emission from the x-ray bursters 4U 0614+091 and 4U 1705-44.

  15. Insights into the phosphoryl transfer catalyzed by cAMP-dependent protein kinase: an X-ray crystallographic study of complexes with various metals and peptide substrate SP20.

    PubMed

    Gerlits, Oksana; Waltman, Mary Jo; Taylor, Susan; Langan, Paul; Kovalevsky, Andrey

    2013-05-28

    X-ray structures of several ternary substrate and product complexes of the catalytic subunit of cAMP-dependent protein kinase (PKAc) have been determined with different bound metal ions. In the PKAc complexes, Mg(2+), Ca(2+), Sr(2+), and Ba(2+) metal ions could bind to the active site and facilitate the phosphoryl transfer reaction. ATP and a substrate peptide (SP20) were modified, and the reaction products ADP and the phosphorylated peptide were found trapped in the enzyme active site. Finally, we determined the structure of a pseudo-Michaelis complex containing Mg(2+), nonhydrolyzable AMP-PCP (β,γ-methyleneadenosine 5'-triphosphate) and SP20. The product structures together with the pseudo-Michaelis complex provide snapshots of different stages of the phosphorylation reaction. Comparison of these structures reveals conformational, coordination, and hydrogen bonding changes that might occur during the reaction and shed new light on its mechanism, roles of metals, and active site residues.

  16. Fluoride-Mediated Capture of a Noncovalent Bound State of a Reversible Covalent Enzyme Inhibitor: X-ray Crystallographic Analysis of an Exceptionally Potent [alpha]-Ketoheterocycle Inhibitor of Fatty Acid Amide Hydrolase

    SciTech Connect

    Mileni, Mauro; Garfunkle, Joie; Ezzili, Cyrine; Cravatt, Benjamin F.; Stevens, Raymond C.; Boger, Dale L.

    2011-11-02

    Two cocrystal X-ray structures of the exceptionally potent {alpha}-ketoheterocycle inhibitor 1 (K{sub i} = 290 pM) bound to a humanized variant of rat fatty acid amide hydrolase (FAAH) are disclosed, representing noncovalently and covalently bound states of the same inhibitor with the enzyme. Key to securing the structure of the noncovalently bound state of the inhibitor was the inclusion of fluoride ion in the crystallization conditions that is proposed to bind the oxyanion hole precluding inhibitor covalent adduct formation with stabilization of the tetrahedral hemiketal. This permitted the opportunity to detect important noncovalent interactions stabilizing the binding of the inhibitor within the FAAH active site independent of the covalent reaction. Remarkably, noncovalently bound 1 in the presence of fluoride appears to capture the active site in the same 'in action' state with the three catalytic residues Ser241-Ser217-Lys142 occupying essentially identical positions observed in the covalently bound structure of 1, suggesting that this technique of introducing fluoride may have important applications in structural studies beyond inhibiting substrate or inhibitor oxyanion hole binding. Key insights to emerge from the studies include the observations that noncovalently bound 1 binds in its ketone (not gem diol) form, that the terminal phenyl group in the acyl side chain of the inhibitor serves as the key anchoring interaction overriding the intricate polar interactions in the cytosolic port, and that the role of the central activating heterocycle is dominated by its intrinsic electron-withdrawing properties. These two structures are also briefly compared with five X-ray structures of {alpha}-ketoheterocycle-based inhibitors bound to FAAH recently disclosed.

  17. Fluctuation X-Ray Scattering

    SciTech Connect

    Saldin, PI: D. K.; Co-I's: J. C. H. Spence and P. Fromme

    2013-01-25

    The work supported by the grant was aimed at developing novel methods of finding the structures of biomolecules using x-rays from novel sources such as the x-ray free electron laser and modern synchrotrons

  18. Dual X-ray absorptiometry

    NASA Astrophysics Data System (ADS)

    Altman, Albert; Aaron, Ronald

    2012-07-01

    Dual X-ray absorptiometry is widely used in analyzing body composition and imaging. Both the method and its limitations are related to the Compton and photoelectric contributions to the X-ray attenuation coefficients of materials.

  19. Tunable X-ray source

    DOEpatents

    Boyce, James R.

    2011-02-08

    A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

  20. X-ray Crystallography Facility

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Edward Snell, a National Research Council research fellow at NASA's Marshall Space Flight Center (MSFC), prepares a protein crystal for analysis by x-ray crystallography as part of NASA's structural biology program. The small, individual crystals are bombarded with x-rays to produce diffraction patterns, a map of the intensity of the x-rays as they reflect through the crystal.

  1. Holographic Methods in X-ray Crystallography

    1995-07-28

    The holographic method makes use of partially modeled electron density and experimentally-measured structure factor amplitudes to recover electron density corresponding to the unmodeled part of a crystal structure. This paper describes a fast algorithm that makes it possible to apply the holographic method to sizable crystallographic problems. The algorithm uses positivity constraints on the electron density, and can incorporate a target electron density, making it similar to solvent flattening. Using both synthetic and experimental data,more » we assess the potential for applying the holographic method to macromolecular x-ray crystallography.« less

  2. X-ray satellite

    NASA Technical Reports Server (NTRS)

    1985-01-01

    An overview of the second quarter 1985 development of the X-ray satellite project is presented. It is shown that the project is proceeding according to plan and that the projected launch date of September 9, 1987 is on schedule. An overview of the work completed and underway on the systems, subsystems, payload, assembly, ground equipment and interfaces is presented. Problem areas shown include cost increases in the area of focal instrumentation, the star sensor light scattering requirements, and postponements in the data transmission subsystems.

  3. SMM x ray polychromator

    NASA Technical Reports Server (NTRS)

    Saba, J. L. R.

    1993-01-01

    The objective of the X-ray Polychromator (XRP) experiment was to study the physical properties of solar flare plasma and its relation to the parent active region to understand better the flare mechanism and related solar activity. Observations were made to determine the temperature, density, and dynamic structure of the pre-flare and flare plasma as a function of wavelength, space and time, the extent to which the flare plasma departs from thermal equilibrium, and the variation of this departure with time. The experiment also determines the temperature and density structure of active regions and flare-induced changes in the regions.

  4. Soft x-ray lasers

    SciTech Connect

    Matthews, D.L.; Rosen, M.D.

    1988-12-01

    One of the elusive dreams of laser physicists has been the development of an x-ray laser. After 25 years of waiting, the x-ray laser has at last entered the scientific scene, although those now in operation are still laboratory prototypes. They produce soft x rays down to about five nanometers. X-ray lasers retain the usual characteristics of their optical counterparts: a very tight beam, spatial and temporal coherence, and extreme brightness. Present x-ray lasers are nearly 100 times brighter that the next most powerful x-ray source in the world: the electron synchrotron. Although Lawrence Livermore National Laboratory (LLNL) is widely known for its hard-x-ray laser program which has potential applications in the Strategic Defense Initiative, the soft x-ray lasers have no direct military applications. These lasers, and the scientific tools that result from their development, may one day have a place in the design and diagnosis of both laser fusion and hard x-ray lasers. The soft x-ray lasers now in operation at the LLNL have shown great promise but are still in the primitive state. Once x-ray lasers become reliable, efficient, and economical, they will have several important applications. Chief among them might be the creation of holograms of microscopic biological structures too small to be investigated with visible light. 5 figs.

  5. X-ray lithography source

    DOEpatents

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.

    1991-12-31

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

  6. X-ray lithography source

    DOEpatents

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary

    1991-01-01

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  7. Catalytic mechanism of α-phosphate attack in dUTPase is revealed by X-ray crystallographic snapshots of distinct intermediates, 31P-NMR spectroscopy and reaction path modelling.

    PubMed

    Barabás, Orsolya; Németh, Veronika; Bodor, Andrea; Perczel, András; Rosta, Edina; Kele, Zoltán; Zagyva, Imre; Szabadka, Zoltán; Grolmusz, Vince I; Wilmanns, Matthias; Vértessy, Beáta G

    2013-12-01

    Enzymatic synthesis and hydrolysis of nucleoside phosphate compounds play a key role in various biological pathways, like signal transduction, DNA synthesis and metabolism. Although these processes have been studied extensively, numerous key issues regarding the chemical pathway and atomic movements remain open for many enzymatic reactions. Here, using the Mason-Pfizer monkey retrovirus dUTPase, we study the dUTPase-catalyzed hydrolysis of dUTP, an incorrect DNA building block, to elaborate the mechanistic details at high resolution. Combining mass spectrometry analysis of the dUTPase-catalyzed reaction carried out in and quantum mechanics/molecular mechanics (QM/MM) simulation, we show that the nucleophilic attack occurs at the α-phosphate site. Phosphorus-31 NMR spectroscopy ((31)P-NMR) analysis confirms the site of attack and shows the capability of dUTPase to cleave the dUTP analogue α,β-imido-dUTP, containing the imido linkage usually regarded to be non-hydrolyzable. We present numerous X-ray crystal structures of distinct dUTPase and nucleoside phosphate complexes, which report on the progress of the chemical reaction along the reaction coordinate. The presently used combination of diverse structural methods reveals details of the nucleophilic attack and identifies a novel enzyme-product complex structure. PMID:23982515

  8. Catalytic mechanism of α-phosphate attack in dUTPase is revealed by X-ray crystallographic snapshots of distinct intermediates, 31P-NMR spectroscopy and reaction path modelling

    PubMed Central

    Barabás, Orsolya; Németh, Veronika; Bodor, Andrea; Perczel, András; Rosta, Edina; Kele, Zoltán; Zagyva, Imre; Szabadka, Zoltán; Grolmusz, Vince I.; Wilmanns, Matthias; Vértessy, Beáta G.

    2013-01-01

    Enzymatic synthesis and hydrolysis of nucleoside phosphate compounds play a key role in various biological pathways, like signal transduction, DNA synthesis and metabolism. Although these processes have been studied extensively, numerous key issues regarding the chemical pathway and atomic movements remain open for many enzymatic reactions. Here, using the Mason–Pfizer monkey retrovirus dUTPase, we study the dUTPase-catalyzed hydrolysis of dUTP, an incorrect DNA building block, to elaborate the mechanistic details at high resolution. Combining mass spectrometry analysis of the dUTPase-catalyzed reaction carried out in and quantum mechanics/molecular mechanics (QM/MM) simulation, we show that the nucleophilic attack occurs at the α-phosphate site. Phosphorus-31 NMR spectroscopy (31P-NMR) analysis confirms the site of attack and shows the capability of dUTPase to cleave the dUTP analogue α,β-imido-dUTP, containing the imido linkage usually regarded to be non-hydrolyzable. We present numerous X-ray crystal structures of distinct dUTPase and nucleoside phosphate complexes, which report on the progress of the chemical reaction along the reaction coordinate. The presently used combination of diverse structural methods reveals details of the nucleophilic attack and identifies a novel enzyme–product complex structure. PMID:23982515

  9. Crystallographic X-ray analyses of Yb@C(2v)(3)-C80 reveal a feasible rule that governs the location of a rare earth metal inside a medium-sized fullerene.

    PubMed

    Lu, Xing; Lian, Yongfu; Beavers, Christine M; Mizorogi, Naomi; Slanina, Zdenek; Nagase, Shigeru; Akasaka, Takeshi

    2011-07-20

    Single crystal X-ray diffraction studies of Yb@C(2v)(3)-C(80)·Ni(II)(OEP)·CS(2)·1.5C(6)H(6) (OEP = octaethylporphinate) reveal that a relatively flat region of the fullerene interacts with the Ni(II)(OEP) molecule, featuring shape-matching interactions. Surprisingly, it is found that the internal metal is located under a hexagonal carbon ring apart from the 2-fold axis of the C(2v)(3)-C(80) cage, presenting the first example of metallofullerenes with an asymmetrically positioned metal. Such an anomalous location of Yb(2+) is associated with its strong ability to pursue a large coordination number and the lack of hexagon along the C(2) axis of C(2v)(3)-C(80). It is accordingly assumed that a suitable cage hexagon is most likely to be preferred by the single rare earth metal to stay behind inside a medium-sized fullerene, such as C(80) and C(82).

  10. Monitoring X-Ray Emission from X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    The scientific goal of this project was to monitor a selected sample of x-ray bursters using data from the All-Sky Monitor (ASM) on the Rossi X-Ray Timing Explorer together with data from the Burst and Transient Source Experiment (BATSE) on the Compton Gamma-Ray Observatory to study the long-term temporal evolution of these sources in the x-ray and hard x-ray bands. The project was closely related to "Long-Term Hard X-Ray Monitoring of X-Ray Bursters", NASA project NAG5-3891, and and "Hard x-ray emission of x-ray bursters", NASA project NAG5-4633, and shares publications in common with both of these. The project involved preparation of software for use in monitoring and then the actual monitoring itself. These efforts have lead to results directly from the ASM data and also from Target of Opportunity Observations (TOO) made with the Rossi X-Ray Timing Explorer based on detection of transient hard x-ray outbursts with the ASM and BATSE.

  11. X-ray crystallographic and tungsten-183 nuclear magnetic resonance structural studies of the [M4(H2O)2(XW9O34) 2]10- heteropolyanions (M = COII or Zn, X = P or As)

    USGS Publications Warehouse

    Evans, H.T.; Tourne, C.M.; Tourne, G.F.; Weakley, T.J.R.

    1986-01-01

    The crystal structures of K10[Co4(H2O)2(PW9O 34)2]??22H2O (1) and isomorphous K10[Zn4(H2O)2(AsW9O 34)2]??23H2O (2) have been determined {Mo-K?? radiation, space group P21/n, Z = 2; (1) a = 15.794(2), b = 21.360(2), c = 12.312(1) A??, ?? = 91.96??, R = 0.084 for 3 242 observed reflections [I ??? 3??(I)]; (2) a = 15.842(4), b = 21.327(5), c = 12.308(4) A??, ?? = 92.42(4)??, R = 0.066 for 4 675 observed reflections [F ??? 3??(F)]}. The anions have crystallographic symmetry 1 and non-crystallographic symmetry very close to 2/m (C2h). Each consists of two [XW9O34]9- moieties [??-B isomers; X = P (1) or As (2)] linked via four CoIIO6 or ZnO6 groups. Two Co or Zn atoms each carry a water ligand. The 183W n.m.r. spectra of the anions [Zn4(H2O)2(XW9O34) 2]10- (X = P or As) confirm that the anions retain 2/m symmetry in aqueous solution. Homonuclear coupling constants between 183W atoms are 5.8-9.0 Hz for adjacent WO6 octahedra sharing edges, and 19.6-25.0 Hz for octahedra sharing corners.

  12. Crystallographic and X-ray absorption spectroscopic characterization of Helicobacter pylori UreE bound to Ni²⁺ and Zn²⁺ reveals a role for the disordered C-terminal arm in metal trafficking.

    PubMed

    Banaszak, Katarzyna; Martin-Diaconescu, Vlad; Bellucci, Matteo; Zambelli, Barbara; Rypniewski, Wojciech; Maroney, Michael J; Ciurli, Stefano

    2012-02-01

    The survival and growth of the pathogen Helicobacter pylori in the gastric acidic environment is ensured by the activity of urease, an enzyme containing two essential Ni²⁺ ions in the active site. The metallo-chaperone UreE facilitates in vivo Ni²⁺ insertion into the apoenzyme. Crystals of apo-HpUreE (H. pylori UreE) and its Ni⁺- and Zn⁺-bound forms were obtained from protein solutions in the absence and presence of the metal ions. The crystal structures of the homodimeric protein, determined at 2.00 Å (apo), 1.59 Å (Ni²⁺) and 2.52 Å (Zn²⁺) resolution, show the conserved proximal and solvent-exposed His¹⁰² residues from two adjacent monomers invariably involved in metal binding. The C-terminal regions of the apoprotein are disordered in the crystal, but acquire significant ordering in the presence of the metal ions due to the binding of His¹⁵². The analysis of X-ray absorption spectral data obtained using solutions of Ni²⁺- and Zn²⁺-bound HpUreE provided accurate information of the metal-ion environment in the absence of solid-state effects. These results reveal the role of the histidine residues at the protein C-terminus in metal-ion binding, and the mutual influence of protein framework and metal-ion stereo-electronic properties in establishing co-ordination number and geometry leading to metal selectivity.

  13. Hard X-Ray Emission of X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Kaaret, P.

    1999-01-01

    The primary goal of this proposal was to perform an accurate measurement of the broadband x-ray spectrum of a neutron-star low-mass x-ray binary found in a hard x-ray state. This goal was accomplished using data obtained under another proposal, which has provided exciting new information on the hard x-ray emission of neutron-star low-mass x-ray binaries. In "BeppoSAX Observations of the Atoll X-Ray Binary 4U0614+091", we present our analysis of the spectrum of 4U0614+091 over the energy band from 0.3-150 keV. Our data confirm the presence of a hard x-ray tail that can be modeled as thermal Comptonization of low-energy photons on electrons having a very high temperature, greater than 220 keV, or as a non-thermal powerlaw. Such a very hard x-ray spectrum has not been previously seen from neutron-star low-mass x-ray binaries. We also detected a spectral feature that can be interpreted as reprocessing, via Compton reflection, of the direct emission by an optically-thick disk and found a correlation between the photon index of the power-law tail and the fraction of radiation reflected which is similar to the correlation found for black hole candidate x-ray binaries and Seyfert galaxies. A secondary goal was to measure the timing properties of the x-ray emission from neutronstar low-mass x-ray binaries in their low/hard states.

  14. Soft-x-ray spectroscopy study of nanoscale materials

    SciTech Connect

    Guo, J.-H.

    2005-07-30

    The ability to control the particle size and morphology of nanoparticles is of crucial importance nowadays both from a fundamental and industrial point of view considering the tremendous amount of high-tech applications. Controlling the crystallographic structure and the arrangement of atoms along the surface of nanostructured material will determine most of its physical properties. In general, electronic structure ultimately determines the properties of matter. Soft X-ray spectroscopy has some basic features that are important to consider. X-ray is originating from an electronic transition between a localized core state and a valence state. As a core state is involved, elemental selectivity is obtained because the core levels of different elements are well separated in energy, meaning that the involvement of the inner level makes this probe localized to one specific atomic site around which the electronic structure is reflected as a partial density-of-states contribution. The participation of valence electrons gives the method chemical state sensitivity and further, the dipole nature of the transitions gives particular symmetry information. The new generation synchrotron radiation sources producing intensive tunable monochromatized soft X-ray beams have opened up new possibilities for soft X-ray spectroscopy. The introduction of selectively excited soft X-ray emission has opened a new field of study by disclosing many new possibilities of soft X-ray resonant inelastic scattering. In this paper, some recent findings regarding soft X-ray absorption and emission studies of various nanostructured systems are presented.

  15. Solar X-ray physics

    SciTech Connect

    Bornmann, P.L. )

    1991-01-01

    Research on solar X-ray phenomena performed by American scientists during 1987-1990 is reviewed. Major topics discussed include solar images observed during quiescent times, the processes observed during solar flares, and the coronal, interplanetary, and terrestrial phenomena associated with solar X-ray flares. Particular attention is given to the hard X-ray emission observed at the start of the flare, the energy transfer to the soft X-ray emitting plasma, the late resolution of the flare as observed in soft X-ray, and the rate of occurrence of solar flares as a function of time and latitude. Pertinent aspects of nonflaring, coronal X-ray emission and stellar flares are also discussed. 175 refs.

  16. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Stone, Gary F.; Bell, Perry M.; Robinson, Ronald B.; Chornenky, Victor I.

    2002-01-01

    A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

  17. Topological X-Rays Revisited

    ERIC Educational Resources Information Center

    Lynch, Mark

    2012-01-01

    We continue our study of topological X-rays begun in Lynch ["Topological X-rays and MRI's," iJMEST 33(3) (2002), pp. 389-392]. We modify our definition of a topological magnetic resonance imaging and give an affirmative answer to the question posed there: Can we identify a closed set in a box by defining X-rays to probe the interior and without…

  18. X-ray Absorption Spectroscopy

    SciTech Connect

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  19. X-ray beam pointer

    NASA Technical Reports Server (NTRS)

    Nelson, C. W.

    1980-01-01

    Inexpensive, readily assembled pointer aims X-ray machine for welded assembly radiographs. Plumb bob used for vertical alinement and yardstick used to visualize X-ray paths were inconvenient and inaccurate. Pointer cuts alinement time by one-half and eliminates necessity of retakes. For 3,000 weld radiographs, pointer will save 300 worker-hours and significant materials costs.

  20. X-ray based extensometry

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.; Pease, D. M.

    1988-01-01

    A totally new method of extensometry using an X-ray beam was proposed. The intent of the method is to provide a non-contacting technique that is immune to problems associated with density variations in gaseous environments that plague optical methods. X-rays are virtually unrefractable even by solids. The new method utilizes X-ray induced X-ray fluorescence or X-ray induced optical fluorescence of targets that have melting temperatures of over 3000 F. Many different variations of the basic approaches are possible. In the year completed, preliminary experiments were completed which strongly suggest that the method is feasible. The X-ray induced optical fluorescence method appears to be limited to temperatures below roughly 1600 F because of the overwhelming thermal optical radiation. The X-ray induced X-ray fluorescence scheme appears feasible up to very high temperatures. In this system there will be an unknown tradeoff between frequency response, cost, and accuracy. The exact tradeoff can only be estimated. It appears that for thermomechanical tests with cycle times on the order of minutes a very reasonable system may be feasible. The intended applications involve very high temperatures in both materials testing and monitoring component testing. Gas turbine engines, rocket engines, and hypersonic vehicles (NASP) all involve measurement needs that could partially be met by the proposed technology.

  1. X-Ray Tomographic Reconstruction

    SciTech Connect

    Bonnie Schmittberger

    2010-08-25

    Tomographic scans have revolutionized imaging techniques used in medical and biological research by resolving individual sample slices instead of several superimposed images that are obtained from regular x-ray scans. X-Ray fluorescence computed tomography, a more specific tomography technique, bombards the sample with synchrotron x-rays and detects the fluorescent photons emitted from the sample. However, since x-rays are attenuated as they pass through the sample, tomographic scans often produce images with erroneous low densities in areas where the x-rays have already passed through most of the sample. To correct for this and correctly reconstruct the data in order to obtain the most accurate images, a program employing iterative methods based on the inverse Radon transform was written. Applying this reconstruction method to a tomographic image recovered some of the lost densities, providing a more accurate image from which element concentrations and internal structure can be determined.

  2. Focusing X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen; Brissenden, Roger; Davis, William; Elsner, Ronald; Elvis, Martin; Freeman, Mark; Gaetz, Terrance; Gorenstein, Paul; Gubarev, Mikhall; Jerlus, Diab; Juda, Michael; Kolodziejczak, Jeffrey; Murray, Stephen; Petre, Robert; Podgorski, William; Ramsey, Brian; Reid, Paul; Saha, Timo; Wolk, Scott; Troller-McKinstry, Susan; Weisskopf, Martin; Wilke, Rudeger; Zhang, William

    2010-01-01

    During the half-century history of x-ray astronomy, focusing x-ray telescopes, through increased effective area and finer angular resolution, have improved sensitivity by 8 orders of magnitude. Here, we review previous and current x-ray-telescope missions. Next, we describe the planned next-generation x-ray-astronomy facility, the International X-ray Observatory (IXO). We conclude with an overview of a concept for the next next-generation facility, Generation X. Its scientific objectives will require very large areas (about 10,000 sq m) of highly-nested, lightweight grazing-incidence mirrors, with exceptional (about 0.1-arcsec) resolution. Achieving this angular resolution with lightweight mirrors will likely require on-orbit adjustment of alignment and figure.

  3. X-ray shearing interferometer

    DOEpatents

    Koch, Jeffrey A.

    2003-07-08

    An x-ray interferometer for analyzing high density plasmas and optically opaque materials includes a point-like x-ray source for providing a broadband x-ray source. The x-rays are directed through a target material and then are reflected by a high-quality ellipsoidally-bent imaging crystal to a diffraction grating disposed at 1.times. magnification. A spherically-bent imaging crystal is employed when the x-rays that are incident on the crystal surface are normal to that surface. The diffraction grating produces multiple beams which interfere with one another to produce an interference pattern which contains information about the target. A detector is disposed at the position of the image of the target produced by the interfering beams.

  4. Raman spectroscopy and X-ray diffraction studies on celestite

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Hua; Yu, Shu-Cheng; Huang, Eugene; Lee, Pei-Lun

    2010-10-01

    High-pressure Raman spectroscopy and X-ray diffraction studies of celestite (SrSO 4) were carried out in a diamond anvil cell at room temperature. Variation in the Raman vibrational frequency and change of lattice parameters with pressure indicate that a transformation occurs in celestite. This transformation caused an adjustment in the Sr-O polyhedra that affected the stretching-force constant of SO 4. Moreover, compressibilities along the crystallographic axes decreased in the order a to c to b. From the compression data, the bulk modulus of the celestite was 87 GPa. Both X-ray and Raman data show that the transition in celestite is reversible.

  5. High energy transmission annular beam X-ray diffraction.

    PubMed

    Dicken, Anthony; Shevchuk, Alex; Rogers, Keith; Godber, Simon; Evans, Paul

    2015-03-01

    We demonstrate material phase retrieval by linearly translating extended polycrystalline samples along the symmetry axis of an annular beam of high-energy X-rays. A series of pseudo-monochromatic diffraction images are recorded from the dark region encompassed by the beam. We measure Bragg maxima from different annular gauge volumes in the form of bright spots in the X-ray diffraction intensity. We present the experiment data from three materials with different crystallographic structural properties i.e. near ideal, large grain size and preferred orientation. This technique shows great promise for analytical inspection tasks requiring highly penetrating radiation such as security screening, medicine and non-destructive testing.

  6. Hard X-Ray Emission of X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Kaaret, Phillip

    1997-01-01

    The main results from this investigation were serendipitous. The long observation approved for the study of the hard X-ray emission of X-ray bursters lead, instead, to one of the largest early samples of the behavior of fast quasi-periodic oscillations (QPOS) in an atoll sources. Our analysis of this data set lead to the several important discoveries including the existence of a robust correlation between QPO frequency and the flux of a soft blackbody component of the X-ray spectrum in the atoll source 4U 0614+091.

  7. X-Ray photonics: X-rays inspire electron movies

    NASA Astrophysics Data System (ADS)

    Vrakking, Marc J. J.; Elsaesser, Thomas

    2012-10-01

    The advent of high-energy, short-pulse X-ray sources based on free-electron lasers, laser plasmas and high-harmonic generation is now making it possible to probe the dynamics of electrons within molecules.

  8. Be/X-ray binaries

    NASA Astrophysics Data System (ADS)

    Reig, Pablo

    2011-03-01

    The interest in X/ γ-ray Astronomy has grown enormously in the last decades thanks to the ability to send X-ray space missions above the Earth’s atmosphere. There are more than half a million X-ray sources detected and over a hundred missions (past and currently operational) devoted to the study of cosmic X/ γ rays. With the improved sensibilities of the currently active missions new detections occur almost on a daily basis. Among these, neutron-star X-ray binaries form an important group because they are among the brightest extra-solar objects in the sky and are characterized by dramatic variability in brightness on timescales ranging from milliseconds to months and years. Their main source of power is the gravitational energy released by matter accreted from a companion star and falling onto the neutron star in a relatively close binary system. Neutron-star X-ray binaries divide into high-mass and low-mass systems according to whether the mass of the donor star is above ˜8 or below ˜2 M⊙, respectively. Massive X-ray binaries divide further into supergiant X-ray binaries and Be/X-ray binaries depending on the evolutionary status of the optical companion. Virtually all Be/X-ray binaries show X-ray pulsations. Therefore, these systems can be used as unique natural laboratories to investigate the properties of matter under extreme conditions of gravity and magnetic field. The purpose of this work is to review the observational properties of Be/X-ray binaries. The open questions in Be/X-ray binaries include those related to the Be star companion, that is, the so-called “Be phenomenon”, such as, timescales associated to the formation and dissipation of the equatorial disc, mass-ejection mechanisms, V/ R variability, and rotation rates; those related to the neutron star, such as, mass determination, accretion physics, and spin period evolution; but also, those that result from the interaction of the two constituents, such as, disc truncation and mass

  9. X-ray burst sources

    NASA Technical Reports Server (NTRS)

    Lewin, W. H. G.

    1986-01-01

    There are about 100 bright X-ray sources in the Galaxy that are accretion-driven systems composed of a neutron star and a low mass companion that fills its critical Roche lobe. Many of these systems generate recurring X-ray bursts that are the result of thermonuclear flashes in the neutron star's surface layers, and are accompanied by a somewhat delayed optical burst due to X-ray heating of accretion disk. The Rapid Burster discovered in 1976 exhibits an interval between bursts that is strongly correlated with the energy in the preceding burst. There is no optical identification for this object.

  10. X-Ray Imaging System

    NASA Astrophysics Data System (ADS)

    1986-01-01

    The FluoroScan Imaging System is a high resolution, low radiation device for viewing stationary or moving objects. It resulted from NASA technology developed for x-ray astronomy and Goddard application to a low intensity x-ray imaging scope. FlouroScan Imaging Systems, Inc, (formerly HealthMate, Inc.), a NASA licensee, further refined the FluoroScan System. It is used for examining fractures, placement of catheters, and in veterinary medicine. Its major components include an x-ray generator, scintillator, visible light image intensifier and video display. It is small, light and maneuverable.

  11. X-ray microtomographic scanners

    SciTech Connect

    Syryamkin, V. I. Klestov, S. A.

    2015-11-17

    The article studies the operating procedures of an X-ray microtomographic scanner and the module of reconstruction and analysis 3D-image of a test sample in particular. An algorithm for 3D-image reconstruction based on image shadow projections and mathematical methods of the processing are described. Chapter 1 describes the basic principles of X-ray tomography and general procedures of the device developed. Chapters 2 and 3 are devoted to the problem of resources saving by the system during the X-ray tomography procedure, which is achieved by preprocessing of the initial shadow projections. Preprocessing includes background noise removing from the images, which reduces the amount of shadow projections in general and increases the efficiency of the group shadow projections compression. In conclusion, the main applications of X-ray tomography are presented.

  12. Imaging X-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Grant, P. A.; Jackson, J. W., Jr.; Alcorn, G. E.; Marshall, F. E. (Inventor)

    1984-01-01

    An X-ray spectrometer for providing imaging and energy resolution of an X-ray source is described. This spectrometer is comprised of a thick silicon wafer having an embedded matrix or grid of aluminum completely through the wafer fabricated, for example, by thermal migration. The aluminum matrix defines the walls of a rectangular array of silicon X-ray detector cells or pixels. A thermally diffused aluminum electrode is also formed centrally through each of the silicon cells with biasing means being connected to the aluminum cell walls and causes lateral charge carrier depletion between the cell walls so that incident X-ray energy causes a photoelectric reaction within the silicon producing collectible charge carriers in the form of electrons which are collected and used for imaging.

  13. X-ray fiducial foils

    SciTech Connect

    Alford, C.; Serduke, F.; Makowiecki, D.; Jankowski, A.; Wall, M.

    1991-03-13

    An x-ray spectrum from a laser fusion experiment was passed through an Al, Si, Y multilayer foil. The position of the absorption edges of the Al, Si, and Y was used to calibrate the x-ray energy spectrum recorded on photographic film. The foil consisted of 4000 {angstrom} of Al, 6000 {angstrom} of Si and 4000 {angstrom} of Y sputter deposited on a 1.5 {mu}m thick Mylar{reg sign} film. It was necessary to layer the structure in order to achieve the required mechanical strength and dimensional stability. The results include analysis of the x-ray energy spectrum and microstructural characterization of the foil using x-ray diffraction and transmission electron microscopy.

  14. Bone X-Ray (Radiography)

    MedlinePlus

    ... bone x-ray is used to: diagnose fractured bones or joint dislocation. demonstrate proper alignment and stabilization of bony fragments following treatment of a fracture. guide orthopedic surgery, ...

  15. X-Ray Imaging System

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Model 60007A InnerView Real-time X-ray Imaging System, produced by National Imaging Systems, a division of FlouroScan Imaging Systems, Inc. (formerly HealthMate, Inc.), Northbrook, IL, is a third generation spinoff from x-ray astronomy technology. Goddard Space Flight Center developed the original technology into the Lixiscope, a small, portable, minimal radiation x-ray instrument that could be used at the scene of an accident. FlouroScan Imaging Systems, Inc., adapted this technology to develop the FlouroScan, a low-intensity, x-ray system that could be used without the lead aprons, film badges and lead-lined walls that conventional systems require. The InnerView is a spinoff of non-destructive testing and product inspection.

  16. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Bell, Perry M.; Robinson, Ronald B.

    2000-01-01

    A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

  17. Abdomen X-Ray (Radiography)

    MedlinePlus

    ... have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures that those parts of a patient's body not being imaged receive minimal radiation exposure. top ...

  18. X-Ray Exam: Finger

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... Results A radiologist, a doctor specially trained in reading and interpreting X-ray images, will look at ...

  19. X-Ray Exam: Hip

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... For older kids, be sure to explain the importance of keeping still while the X-ray is ...

  20. X-Ray Exam: Foot

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... For older kids, be sure to explain the importance of staying still while the X-ray is ...

  1. X-Ray Exam: Ankle

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... For older kids, be sure to explain the importance of staying still while the X-ray is ...

  2. X-Ray Exam: Pelvis

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... For older kids, be sure to explain the importance of keeping still while the X-ray is ...

  3. X-Ray Exam: Forearm

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... For older kids, be sure to explain the importance of staying still while the X-ray is ...

  4. X-Ray Exam: Wrist

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... For older kids, be sure to explain the importance of staying still while the X-ray is ...

  5. Diffuse X-ray scattering from tiny sample volumes

    SciTech Connect

    Ice, Gene E.; Barabash, Rozaliya I.; Liu, Wenjun

    2010-07-19

    The emergence of intense synchrotron X-ray sources, efficient focusing optics and high-performance X-ray sensitive area detectors allows for measurements of diffuse scattering from cubic micron-scale sample volumes. Here we present an experiment that illustrates methods for studying the local structure and defect content of tiny sample volumes. In the experiment, an X-ray microbeam illuminating about {approx}5 {micro}m{sup 3} of a Ni-based superalloy single crystal, is used to collect Laue patterns and reciprocal space volume maps around fundamental and a superstructure reflections. This measurement illustrates how diffuse reciprocal-space distributions can be collected with good spatial and momentum-transfer resolution from a tiny real-space sample volume. This example demonstrates that emerging diffuse scattering techniques can provide fundamentally new information about crystallographic organization and defect content over many length scales.

  6. Electromechanical x-ray generator

    DOEpatents

    Watson, Scott A; Platts, David; Sorensen, Eric B

    2016-05-03

    An electro-mechanical x-ray generator configured to obtain high-energy operation with favorable energy-weight scaling. The electro-mechanical x-ray generator may include a pair of capacitor plates. The capacitor plates may be charged to a predefined voltage and may be separated to generate higher voltages on the order of hundreds of kV in the AK gap. The high voltage may be generated in a vacuum tube.

  7. X-Rays, Pregnancy and You

    MedlinePlus

    ... and Procedures Medical Imaging Medical X-ray Imaging X-Rays, Pregnancy and You Share Tweet Linkedin Pin it ... the decision with your doctor. What Kind of X-Rays Can Affect the Unborn Child? During most x- ...

  8. Why Do I Need X-Rays?

    MedlinePlus

    ... to your desktop! more... Why Do I Need X-Rays? Article Chapters Why Do I Need X-Rays? ... of tooth decay. Updated: January 2012 Related Articles: X-Rays The Academy of General Dentistry (AGD) Sets the ...

  9. Nanometer x-ray lithography

    NASA Astrophysics Data System (ADS)

    Hartley, Frank T.; Khan Malek, Chantal G.

    1999-10-01

    New developments for x-ray nanomachining include pattern transfer onto non-planar surfaces coated with electrodeposited resists using synchrotron radiation x-rays through extremely high-resolution mask made by chemically assisted focused ion beam lithography. Standard UV photolithographic processes cannot maintain sub-micron definitions over large variation in feature topography. The ability of x-ray printing to pattern thin or thick layers of photoresist with high resolution on non-planar surfaces of large and complex topographies with limited diffraction and scattering effects and no substrate reflection is known and can be exploited for patterning microsystems with non-planar 3D geometries as well as multisided and multilayered substrates. Thin conformal coatings of electro-deposited positive and negative tone photoresist have been shown to be x-ray sensitive and accommodate sub-micro pattern transfer over surface of extreme topographical variations. Chemically assisted focused ion beam selective anisotropic erosion was used to fabricate x-ray masks directly. Masks with feature sizes less than 20 nm through 7 microns of gold were made on bulk silicon substrates and x-ray mask membranes. The technique is also applicable to other high density materials. Such masks enable the primary and secondary patterning and/or 3D machining of Nano-Electro-Mechanical Systems over large depths or complex relief and the patterning of large surface areas with sub-optically dimensioned features.

  10. Tokamak x ray diagnostic instrumentation

    SciTech Connect

    Hill, K.W.; Beiersdorfer, P.; Bitter, M.; Fredrickson, E.; Von Goeler, S.; Hsuan, H.; Johnson, L.C.; Liew, S.L.; McGuire, K.; Pare, V.

    1987-01-01

    Three classes of x-ray diagnostic instruments enable measurement of a variety of tokamak physics parameters from different features of the x-ray emission spectrum. (1) The soft x-ray (1 to 50 keV) pulse-height-analysis (PHA) diagnostic measures impurity concentrations from characteristic line intensities and the continuum enhancement, and measures the electron temperature from the continuum slope. (2) The Bragg x-ray crystal spectrometer (XCS) measures the ion temperature and neutral-beam-induced toroidal rotation velocity from the Doppler broadening and wavelength shift, respectively, of spectral lines of medium-Z impurity ions. Impurity charge state distributions, precise wavelengths, and inner-shell excitation and recombination rates can also be studied. X rays are diffracted and focused by a bent crystal onto a position-sensitive detector. The spectral resolving power E/..delta..E is greater than 10/sup 4/ and time resolution is 10 ms. (3) The x-ray imaging system (XIS) measures the spatial structure of rapid fluctuations (0.1 to 100 kHZ) providing information on MHD phenomena, impurity transport rates, toroidal rotation velocity, plasma position, and the electron temperature profile. It uses an array of silicon surface-barrier diodes which view different chords of the plasma through a common slot aperture and operate in current (as opposed to counting) mode. The effectiveness of shields to protect detectors from fusion-neutron radiation effects has been studied both theoretically and experimentally.

  11. Center for X-Ray Optics, 1992

    SciTech Connect

    Not Available

    1993-08-01

    This report discusses the following topics: Center for X-Ray Optics; Soft X-Ray Imaging wit Zone Plate Lenses; Biological X-Ray microscopy; Extreme Ultraviolet Lithography for Nanoelectronic Pattern Transfer; Multilayer Reflective Optics; EUV/Soft X-ray Reflectometer; Photoemission Microscopy with Reflective Optics; Spectroscopy with Soft X-Rays; Hard X-Ray Microprobe; Coronary Angiography; and Atomic Scattering Factors.

  12. X-ray spectra of galactic X-ray sources

    NASA Technical Reports Server (NTRS)

    Holt, S. S.

    1980-01-01

    The spectroscopic properties of the various classes of Galactic X-ray sources are discussed, with particular emphasis on binary sources containing an accreting compact object, where post-emission scattering in an accretion disk often prevents the initially produced X-radiation from being observed directly. Theoretical interpretations and X-ray observations are considered for the cataclysmic variables, binary systems with a white dwarf as the compact object and which suffer relatively less from Thomson scattering, and the similar phenomenological spectral characteristics of the bulge sources, including soft transients, bursters and steady X-ray sources with thermal spectra, thought to represent an accreting neutron star, are pointed out. The spectral characteristics of X-ray pulsars in accreting binary systems (rather than the Crab pulsar, which is losing rotational kinetic energy with time) are then presented and interpreted in terms of accretion in the polar regions, and mechanisms for the newly discovered X-ray emission from late-type RS CVn stars are considered.

  13. Ultrafast X-ray Sources

    SciTech Connect

    George Neil

    2010-04-19

    Since before the scattering of X-rays off of DNA led to the first understanding of the double helix structure, sources of X-rays have been an essential tool for scientists examining the structure and interactions of matter. The resolution of a microscope is proportional to the wavelength of light so x-rays can see much finer structures than visible light, down to single atoms. In addition, the energy of X-rays is resonant with the core atomic levels of atoms so with appropriate wavelengths the placement of specific atoms in a large molecule can be determined. Over 10,000 scientists use synchrotron sources, storage rings of high energy electrons, each year worldwide. As an example of such use, virtually every picture of a protein or drug molecule that one sees in the scientific press is a reconstruction based on X-ray scattering of synchrotron light from the crystallized form of that molecule. Unfortunately those pictures are static and proteins work through configuration (shape) changes in response to energy transfer. To understand how biological systems work requires following the energy flow to these molecules and tracking how shape changes drive their interaction with other molecules. We'd like to be able to freeze the action of these molecules at various steps along the way with an X-ray strobe light. How fast does it have to be? To actually get a picture of a molecule in a fixed configuration requires X-ray pulses as short as 30 femtoseconds (1/30 of a millionth of a millionth of a second). To capture the energy flow through changes in electronic levels requires a faster strobe, less than 1 femtosecond! And to acquire such information in smaller samples with higher accuracy demands brighter and brighter X-rays. Unfortunately modern synchrotrons (dubbed 3rd Generation Light Sources) cannot deliver such short bright pulses of X-rays. An entirely new approach is required, linear-accelerator (linac-)-based light sources termed 4th or Next Generation Light Sources

  14. X-ray Echo Spectroscopy.

    PubMed

    Shvyd'ko, Yuri

    2016-02-26

    X-ray echo spectroscopy, a counterpart of neutron spin echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a pointlike x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-0.02 meV ultrahigh-resolution IXS applications (resolving power >10^{8}) with broadband ≃5-13  meV dispersing systems are introduced featuring more than 10^{3} signal enhancement. The technique is general, applicable in different photon frequency domains. PMID:26967404

  15. X-rays surgical revolution.

    PubMed

    Toledo-Pereyra, Luis H

    2009-01-01

    Wilhelm Roentgen (1845-1923) created a surgical revolution with the discovery of the X-rays in late 1895 and the subsequent introduction of this technique for the management of surgical patients. No other physician or scientist had ever imagined such a powerful and worthwhile discovery. Other scientists paved the way for Roentgen to approach the use of these new X-rays for medical purposes. In this way, initially, and prior to Roentgen, Thompson, Hertz, and Lenard applied themselves to the early developments of this technology. They made good advances but never reached the clearly defined understanding brought about by Roentgen. The use of a Crookes tube, a barium platinocyanide screen, with fluorescent light and the generation of energy to propagate the cathode rays were the necessary elements for the conception of an X-ray picture. On November 8, 1895, Roentgen began his experiments on X-ray technology when he found that some kind of rays were being produced by the glass of the tube opposite to the cathode. The development of a photograph successfully completed this early imaging process. After six intense weeks of research, on December 22, he obtained a photograph of the hand of his wife, the first X-ray ever made. This would be a major contribution to the world of medicine and surgery.

  16. X-ray Echo Spectroscopy.

    PubMed

    Shvyd'ko, Yuri

    2016-02-26

    X-ray echo spectroscopy, a counterpart of neutron spin echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a pointlike x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-0.02 meV ultrahigh-resolution IXS applications (resolving power >10^{8}) with broadband ≃5-13  meV dispersing systems are introduced featuring more than 10^{3} signal enhancement. The technique is general, applicable in different photon frequency domains.

  17. Clocking Femtosecond X-Rays

    SciTech Connect

    Cavalieri, A L; Fritz, D M; Lee, S H; Bucksbaum, P H; Reis, D A; Mills, D M; Pahl, R; Rudati, J; Fuoss, P H; Stephenson, G B; Lowney, D P; MacPhee, A G; Weinstein, D; Falcone, R W; Als-Nielsen, J; Blome, C; Ischebeck, R; Schlarb, H; Tschentscher, T; Schneider, J; Sokolowski-Tinten, K; Chapman, H N; Lee, R W; Hansen, T N; Synnergren, O; Larsson, J; Techert, S; Sheppard, J; Wark, J S; Bergh, M; Calleman, C; Huldt, G; der Spoel, D v; Timneanu, N; Hajdu, J; Bong, E; Emma, P; Krejcik, P; Arthur, J; Brennan, S; Gaffney, K J; Lindenberg, A M; Hastings, J B

    2004-10-08

    The Sub-Picosecond Pulse Source (SPPS) at the Stanford Linear Accelerator Center (SLAC) produces the brightest ultrafast x-ray pulses in the world, and is the first to employ compressed femtosecond electron bunches for the x-ray source. Both SPPS and future X-ray Free Electron Lasers (XFEL's) will use precise measurements of individual electron bunches to time the arrival of x-ray pulses for time-resolved experiments. At SPPS we use electro-optic sampling (EOS) to perform these measurements. Here we present the first results using this method. An ultrafast laser pulse (135 fs) passes through an electro-optic crystal adjacent to the electron beam. The refractive index of the crystal is distorted by the strong electromagnetic fields of the ultra-relativistic electrons, and this transient birefringence is imprinted on the laser polarization. A polarizer decodes this signal, producing a time-dependent image of the compressed electron bunch. Our measurements yield the relative timing between an ultrafast optical laser and an ultrafast x-ray pulse to within 60 fs, making it possible to use the SPPS to observe atomic-scale ultrafast dynamics initiated by laser-matter interaction.

  18. SPINE-compatible `carboloops': a new microshaped vitreous carbon sample mount for X-ray and neutron crystallography.

    PubMed

    Romoli, Filippo; Mossou, Estelle; Cuypers, Maxime; van der Linden, Peter; Carpentier, Philippe; Mason, Sax A; Forsyth, V Trevor; McSweeney, Sean

    2014-05-01

    A novel vitreous carbon mount for macromolecular crystallography, suitable for neutron and X-ray crystallographic studies, has been developed. The technology described here is compatible both with X-ray and neutron cryo-crystallography. The mounts have low density and low background scattering for both neutrons and X-rays. They are prepared by laser cutting, allowing high standards of production quality, the ability to custom-design the mount to specific crystal sizes and large-scale production.

  19. X-ray tensor tomography

    NASA Astrophysics Data System (ADS)

    Malecki, A.; Potdevin, G.; Biernath, T.; Eggl, E.; Willer, K.; Lasser, T.; Maisenbacher, J.; Gibmeier, J.; Wanner, A.; Pfeiffer, F.

    2014-02-01

    Here we introduce a new concept for x-ray computed tomography that yields information about the local micro-morphology and its orientation in each voxel of the reconstructed 3D tomogram. Contrary to conventional x-ray CT, which only reconstructs a single scalar value for each point in the 3D image, our approach provides a full scattering tensor with multiple independent structural parameters in each volume element. In the application example shown in this study, we highlight that our method can visualize sub-pixel fiber orientations in a carbon composite sample, hence demonstrating its value for non-destructive testing applications. Moreover, as the method is based on the use of a conventional x-ray tube, we believe that it will also have a great impact in the wider range of material science investigations and in future medical diagnostics. The authors declare no competing financial interests.

  20. X-ray Crystallography Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    University of Alabama engineer Stacey Giles briefs NASA astronaut Dr. Bornie Dunbar about the design and capabilities of the X-ray Crystallography Facility under development at the Center for Macromolecular Crystallography of the University of Alabama at Birmingham, AL, April 21, 1999. The X-ray Crystallography Facility is designed to speed the collection of protein structure information from crystals grown aboard the International Space Station. By measuring and mapping the protein crystal structure in space, researchers will avoid exposing the delicate crystals to the rigors of space travel and make important research data available to scientists much faster. The X-ray Crystallography facility is being designed and developed by the Center for Macromolecular Crystallography of the University of Alabama at Birmingham, a NASA Commercial Space Center.

  1. X-ray Crystallography Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    University of Alabama engineer Lance Weiss briefs NASA astronaut Dr. Bornie Dunbar about the design and capabilities of the X-ray Crystallography Facility under development at the Center for Macromolecular Crystallography of the University of Alabama at Birmingham, AL, April 21, 1999. The X-ray Crystallography Facility is designed to speed the collection of protein structure information from crystals grown aboard the International Space Station. By measuring and mapping the protein crystal structure in space, researchers will avoid exposing the delicate crystals to the rigors of space travel and make important research data available to scientists much faster. The X-ray Crystallography facility is being designed and developed by the Center for Macromolecular Crystallography of the University of Alabama at Birmingham, a NASA Commercial Space Center.

  2. X-ray imaging: Perovskites target X-ray detection

    NASA Astrophysics Data System (ADS)

    Heiss, Wolfgang; Brabec, Christoph

    2016-05-01

    Single crystals of perovskites are currently of interest to help fathom fundamental physical parameters limiting the performance of perovskite-based polycrystalline solar cells. Now, such perovskites offer a technology platform for optoelectronic devices, such as cheap and sensitive X-ray detectors.

  3. Portable X-Ray Device

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Portable x-ray instrument developed by NASA now being produced commercially as an industrial tool may soon find further utility as a medical system. The instrument is Lixiscope - Low Intensity X-Ray Imaging Scope -- a self-contained, battery-powered fluoroscope that produces an instant image through use of a small amount of radioactive isotope. Originally developed by Goddard Space Flight Center, Lixiscope is now being produced by Lixi, Inc. which has an exclusive NASA license for one version of the device.

  4. Cosmic X-ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1986-01-01

    The analysis of the beryllium-filtered data from Flight 17.020 was completed. The data base provided by the Wisconsin diffuse X-ray sky survey is being analyzed by correlating the B and C band emission with individual velocity components of neutral hydrogen. Work on a solid state detector to be used in high resolution spectroscopy of diffuse or extend X-ray sources is continuing. A series of 21 cm observations was completed. A paper on the effects of process parameter variation on the reflectivity of sputter-deposited tungsten-carvon multilayers was published.

  5. Thermal expansion in UO2 determined by high-energy X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Guthrie, M.; Benmore, C. J.; Skinner, L. B.; Alderman, O. L. G.; Weber, J. K. R.; Parise, J. B.; Williamson, M.

    2016-10-01

    Here we present crystallographic analyses of high-energy X-ray diffraction data on polycrystalline UO2 up to the melting temperature. The Rietveld refinements of our X-ray data are in agreement with previous measurements, but are systematically located around the upper bound of their uncertainty, indicating a slightly steeper trend of thermal expansion compared to established values. This observation is consistent with recent first principles calculations.

  6. Compact x-ray source and panel

    DOEpatents

    Sampayon, Stephen E.

    2008-02-12

    A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

  7. X-Ray Diffractive Optics

    NASA Technical Reports Server (NTRS)

    Dennis, Brian; Li, Mary; Skinner, Gerald

    2013-01-01

    X-ray optics were fabricated with the capability of imaging solar x-ray sources with better than 0.1 arcsecond angular resolution, over an order of magnitude finer than is currently possible. Such images would provide a new window into the little-understood energy release and particle acceleration regions in solar flares. They constitute one of the most promising ways to probe these regions in the solar atmosphere with the sensitivity and angular resolution needed to better understand the physical processes involved. A circular slit structure with widths as fine as 0.85 micron etched in a silicon wafer 8 microns thick forms a phase zone plate version of a Fresnel lens capable of focusing approx. =.6 keV x-rays. The focal length of the 3-cm diameter lenses is 100 microns, and the angular resolution capability is better than 0.1 arcsecond. Such phase zone plates were fabricated in Goddard fs Detector Development Lab. (DDL) and tested at the Goddard 600-microns x-ray test facility. The test data verified that the desired angular resolution and throughput efficiency were achieved.

  8. Focused X-ray source

    DOEpatents

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.I.; Maccagno, P.

    1990-08-21

    Disclosed is an intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator. 8 figs.

  9. Focused X-ray source

    DOEpatents

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary I.; Maccagno, Pierre

    1990-01-01

    An intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator.

  10. X-rays and magnetism.

    PubMed

    Fischer, Peter; Ohldag, Hendrik

    2015-09-01

    Magnetism is among the most active and attractive areas in modern solid state physics because of intriguing phenomena interesting to fundamental research and a manifold of technological applications. State-of-the-art synthesis of advanced magnetic materials, e.g. in hybrid structures paves the way to new functionalities. To characterize modern magnetic materials and the associated magnetic phenomena, polarized x-rays have emerged as unique probes due to their specific interaction with magnetic materials. A large variety of spectroscopic and microscopic techniques have been developed to quantify in an element, valence and site-sensitive way properties of ferro-, ferri-, and antiferromagnetic systems, such as spin and orbital moments, and to image nanoscale spin textures and their dynamics with sub-ns time and almost 10 nm spatial resolution. The enormous intensity of x-rays and their degree of coherence at next generation x-ray facilities will open the fsec time window to magnetic studies addressing fundamental time scales in magnetism with nanometer spatial resolution. This review will give an introduction into contemporary topics of nanoscale magnetic materials and provide an overview of analytical spectroscopy and microscopy tools based on x-ray dichroism effects. Selected examples of current research will demonstrate the potential and future directions of these techniques.

  11. Alpha proton x ray spectrometer

    NASA Technical Reports Server (NTRS)

    Rieder, Rudi; Waeke, H.; Economou, T.

    1994-01-01

    Mars Pathfinder will carry an alpha-proton x ray spectrometer (APX) for the determination of the elemental chemical composition of Martian rocks and soils. The instrument will measure the concentration of all major and some minor elements, including C, N, and O at levels above typically 1 percent.

  12. X-ray reprocessing in binaries

    NASA Astrophysics Data System (ADS)

    Paul, Biswajit

    2016-07-01

    We will discuss several aspects of X-ray reprocessing into X-rays or longer wavelength radiation in different kinds of binary systems. In high mass X-ray binaries, reprocessing of hard X-rays into emission lines or lower temperature black body emission is a useful tool to investigate the reprocessing media like the stellar wind, clumpy structures in the wind, accretion disk or accretion stream. In low mass X-ray binaries, reprocessing from the surface of the companion star, the accretion disk, warps and other structures in the accretion disk produce signatures in longer wavelength radiation. X-ray sources with temporal structures like the X-ray pulsars and thermonuclear burst sources are key in such studies. We will discuss results from several new investigations of X-ray reprocessing phenomena in X-ray binaries.

  13. Comparison of the computed structures for the phosphate-binding loop of the p21 protein containing the oncogenic site Gly 12 with the X-ray crystallographic structures for this region in the p21 protein and EFtu. A model for the structure of the p21 protein in its oncogenic form.

    PubMed

    Chen, J M; Lee, G; Murphy, R B; Carty, R P; Brandt-Rauf, P W; Friedman, E; Pincus, M R

    1989-04-01

    The GTP-binding p21 protein encoded by the ras-oncogene can be activated to cause malignant transformation of cells by substitution of a single amino acid at critical positions along the polypeptide chain. Substitution of any non-cyclic L-amino acid for Gly 12 in the normal protein results in a transforming protein. This substitution occurs in a hydrophobic sequence (residues 6-15) which is known to be involved in binding the phosphate moities of GTP (and GDP). We find, using conformational energy calculations, that the 6-15 segment of the normal protein (with Gly 12) adopts structures that contain a bend at residues 11 and 12 with the Gly in the D* conformation, not allowed energetically for L-amino acids. Substitution of non-cyclic L-amino acids for Gly 12 results in shifting this bend to residues 12 and 13. We show that many computed structures for the Gly 12-containing phosphate binding loop, segment 9-15, are superimposable on the corresponding segment of the recently determined X-ray crystallographic structure for residues 1-171 of the p21 protein. All such structures contain bends at residues 11 and 12 and most of these contain Gly 12 in the C* or D* conformational state. Other computed conformations for the 9-15 segment were superimposable on the structure of the corresponding 18-23 segment of EFtu, the bacterial chain elongation factor having structural similarities to the p21 protein in the phosphate-binding regions. This segment contains a Val residue where a Gly occurs in the p21 protein. As previously predicted, all of these superimposable conformations contain a bend at positions 12 and 13, not 11 and 12. If these structures that are superimposable on EFtu are introduced into the p21 protein structure, bad contacts occur between the sidechain of the residue (here Val) at position 12 and another phosphate binding loop region around position 61. These bad contacts between the two segments can be removed by changing the conformation of the 61 region in

  14. Identifications studies of Lauha Bhasma by X-ray diffraction and X-ray fluorescence

    PubMed Central

    Bhargava, S. C.; Reddy, K. R. C; Sastry, G. V. S

    2012-01-01

    Procedures for preparation of Lauha Bhasma are described in ancient texts of Ayurveda. These procedures also begin with different source material for iron such as Teekshna Lauha and Kanta Lauha etc. In the present study, we have selected different source materials viz. magnetite iron ore for Kanta Lauha and pure (Armco grade) iron turnings for Teekshna Lauha. The standard procedures of preparation of Lauha Bhasma are carried out in identical conditions for these two raw materials. The final product from the Puta are characterized by using X-ray diffraction and X-ray fluorescence spectroscopy to understanding the crystallographic form or forms of iron oxides and their composition at the end of each Puta. The iron content at the end of repeated Putas (18 for Kanta Lauha and 20 for Teekshna Lauha) have shown a decrease in case of Teekshna Lauha since the starting material is pure iron while it showed only marginal decreases in the case of Kanta Lauha because the Fe3O4 of magnetite is undergoing oxidation to Fe2O3. The trace elements remain within the Bhasma in the form of various oxides of Si, Al, Ca, etc. PMID:23049200

  15. Identifications studies of Lauha Bhasma by X-ray diffraction and X-ray fluorescence.

    PubMed

    Bhargava, S C; Reddy, K R C; Sastry, G V S

    2012-01-01

    Procedures for preparation of Lauha Bhasma are described in ancient texts of Ayurveda. These procedures also begin with different source material for iron such as Teekshna Lauha and Kanta Lauha etc. In the present study, we have selected different source materials viz. magnetite iron ore for Kanta Lauha and pure (Armco grade) iron turnings for Teekshna Lauha. The standard procedures of preparation of Lauha Bhasma are carried out in identical conditions for these two raw materials. The final product from the Puta are characterized by using X-ray diffraction and X-ray fluorescence spectroscopy to understanding the crystallographic form or forms of iron oxides and their composition at the end of each Puta. The iron content at the end of repeated Putas (18 for Kanta Lauha and 20 for Teekshna Lauha) have shown a decrease in case of Teekshna Lauha since the starting material is pure iron while it showed only marginal decreases in the case of Kanta Lauha because the Fe(3)O(4) of magnetite is undergoing oxidation to Fe(2)O(3). The trace elements remain within the Bhasma in the form of various oxides of Si, Al, Ca, etc. PMID:23049200

  16. Center for X-Ray Optics, 1986

    SciTech Connect

    Not Available

    1987-07-01

    The Center for X-Ray Optics has made substantial progress during the past year on the development of very high resolution x-ray technologies, the generation of coherent radiation at x-ray wavelengths, and, based on these new developments, had embarked on several scientific investigations that would not otherwise have been possible. The investigations covered in this report are topics on x-ray sources, x-ray imaging and applications, soft x-ray spectroscopy, synchrotron radiation, advanced light source and magnet structures for undulators and wigglers. (LSP)

  17. Microgap x-ray detector

    DOEpatents

    Wuest, Craig R.; Bionta, Richard M.; Ables, Elden

    1994-01-01

    An x-ray detector which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope.

  18. Microgap x-ray detector

    DOEpatents

    Wuest, C.R.; Bionta, R.M.; Ables, E.

    1994-05-03

    An x-ray detector is disclosed which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope. 3 figures.

  19. Hard X-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Rothschild, R. E.

    1981-01-01

    Past hard X-ray and lower energy satellite instruments are reviewed and it is shown that observation above 20 keV and up to hundreds of keV can provide much valuable information on the astrophysics of cosmic sources. To calculate possible sensitivities of future arrays, the efficiencies of a one-atmosphere inch gas counter (the HEAO-1 A-2 xenon filled HED3) and a 3 mm phoswich scintillator (the HEAO-1 A-4 Na1 LED1) were compared. Above 15 keV, the scintillator was more efficient. In a similar comparison, the sensitivity of germanium detectors did not differ much from that of the scintillators, except at high energies where the sensitivity would remain flat and not rise with loss of efficiency. Questions to be addressed concerning the physics of active galaxies and the diffuse radiation background, black holes, radio pulsars, X-ray pulsars, and galactic clusters are examined.

  20. X-Ray-powered Macronovae

    NASA Astrophysics Data System (ADS)

    Kisaka, Shota; Ioka, Kunihito; Nakar, Ehud

    2016-02-01

    A macronova (or kilonova) was observed as an infrared excess several days after the short gamma-ray burst GRB 130603B. Although the r-process radioactivity is widely discussed as an energy source, it requires a huge mass of ejecta from a neutron star (NS) binary merger. We propose a new model in which the X-ray excess gives rise to the simultaneously observed infrared excess via thermal re-emission, and explore what constraints this would place on the mass and velocity of the ejecta. This X-ray-powered model explains both the X-ray and infrared excesses with a single energy source such as the central engine like a black hole, and allows for a broader parameter region than the previous models, in particular a smaller ejecta mass ˜ {10}-3{--}{10}-2{M}⊙ and higher iron abundance mixed as suggested by general relativistic simulations for typical NS-NS mergers. We also discuss the other macronova candidates in GRB 060614 and GRB 080503, and the implications for the search of electromagnetic counterparts to gravitational waves.

  1. X-Ray Crystallography Reagent

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)

    2003-01-01

    Microcapsules prepared by encapsulating an aqueous solution of a protein, drug or other bioactive substance inside a semi-permeable membrane by are disclosed. The microcapsules are formed by interfacial coacervation under conditions where the shear forces are limited to 0-100 dynes per square centimeter at the interface. By placing the microcapsules in a high osmotic dewatering solution. the protein solution is gradually made saturated and then supersaturated. and the controlled nucleation and crystallization of the protein is achieved. The crystal-filled microcapsules prepared by this method can be conveniently harvested and stored while keeping the encapsulated crystals in essentially pristine condition due to the rugged. protective membrane. Because the membrane components themselves are x-ray transparent, large crystal-containing microcapsules can be individually selected, mounted in x-ray capillary tubes and subjected to high energy x-ray diffraction studies to determine the 3-D smucture of the protein molecules. Certain embodiments of the microcapsules of the invention have composite polymeric outer membranes which are somewhat elastic, water insoluble, permeable only to water, salts, and low molecular weight molecules and are structurally stable in fluid shear forces typically encountered in the human vascular system.

  2. X-ray absorption spectroscopy of chicken sulfite oxidase crystals

    SciTech Connect

    George, G.N.; Pickering, I.J.; Kisker, C.

    1999-05-17

    Sulfite oxidase catalyzes the physiologically vital oxidation of sulfite to sulfate. Recently, the crystal structure of chicken sulfite oxidase has been reported at 1.9 {angstrom} resolution. In contrast to the information available from previous X-ray absorption spectroscopic studies, the active site indicated by crystallography was a mono-oxo species. Because of this the possibility that the crystals did in fact contain a reduced molybdenum species was considered in the crystallographic work. The authors report herein an X-ray absorption spectroscopic study of polycrystalline sulfite oxidase prepared in the same manner as the previous single-crystal samples, and compare this with data for frozen solutions of oxidized and reduced enzyme.

  3. Aspergillosis - chest x-ray (image)

    MedlinePlus

    ... usually occurs in immunocompromised individuals. Here, a chest x-ray shows that the fungus has invaded the lung ... are usually seen as black areas on an x-ray. The cloudiness on the left side of this ...

  4. Tuberculosis, advanced - chest x-rays (image)

    MedlinePlus

    ... tissue, and can cause tissue death. These chest x-rays show advanced pulmonary tuberculosis. There are multiple light ... location of cavities within these light areas. The x-ray on the left clearly shows that the opacities ...

  5. Producing X-rays at the APS

    ScienceCinema

    None

    2016-07-12

    An introduction and overview of the Advanced Photon Source at Argonne National Laboratory, the technology that produces the brightest X-ray beams in the Western Hemisphere, and the research carried out by scientists using those X-rays.

  6. Producing X-rays at the APS

    SciTech Connect

    2011-01-01

    An introduction and overview of the Advanced Photon Source at Argonne National Laboratory, the technology that produces the brightest X-ray beams in the Western Hemisphere, and the research carried out by scientists using those X-rays.

  7. Motorized Beam Alignment of a Commercial X-ray Diffractometer

    NASA Technical Reports Server (NTRS)

    Van Zandt, Noah R.; Myers, James F.; Rogers, Richard B

    2013-01-01

    X-ray diffraction (XRD) is a powerful analysis method that allows researchers to noninvasively probe the crystalline structure of a material. This includes the ability to determine the crystalline phases present, quantify surface residual stresses, and measure the distribution of crystallographic orientations. The Structures and Materials Division at the NASA Glenn Research Center (GRC) heavily uses the on-site XRD lab to characterize advanced metal alloys, ceramics, and polymers. One of the x-ray diffractometers in the XRD lab (Bruker D8 Discover) uses three different x-ray tubes (Cu, Cr, and Mn) for optimal performance over numerous material types and various experimental techniques. This requires that the tubes be switched out and aligned between experiments. This alignment maximizes the x-ray tube s output through an iterative process involving four set screws. However, the output of the x-ray tube cannot be monitored during the adjustment process due to standard radiation safety engineering controls that prevent exposure to the x-ray beam when the diffractometer doors are open. Therefore, the adjustment process is a very tedious series of blind adjustments, each followed by measurement of the output beam using a PIN diode after the enclosure doors are shut. This process can take up to 4 hr to perform. This technical memorandum documents an in-house project to motorize this alignment process. Unlike a human, motors are not harmed by x-ray radiation of the energy range used in this instrument. Therefore, using motors to adjust the set screws will allow the researcher to monitor the x-ray tube s output while making interactive adjustments from outside the diffractometer. The motorized alignment system consists of four motors, a motor controller, and a hand-held user interface module. Our goal was to reduce the alignment time to less than 30 min. The time available was the 10-week span of the Lewis' Educational and Research Collaborative Internship Project (LERCIP

  8. Phase-sensitive X-ray imager

    DOEpatents

    Baker, Kevin Louis

    2013-01-08

    X-ray phase sensitive wave-front sensor techniques are detailed that are capable of measuring the entire two-dimensional x-ray electric field, both the amplitude and phase, with a single measurement. These Hartmann sensing and 2-D Shear interferometry wave-front sensors do not require a temporally coherent source and are therefore compatible with x-ray tubes and also with laser-produced or x-pinch x-ray sources.

  9. Center for X-ray Optics, 1988

    SciTech Connect

    Not Available

    1989-04-01

    This report briefly reviews the following topics: soft-x-ray imaging; reflective optics for hard x-rays; coherent XUV sources; spectroscopy with x-rays; detectors for coronary artery imaging; synchrotron-radiation optics; and support for the advanced light source.

  10. Student X-Ray Fluorescence Experiments

    ERIC Educational Resources Information Center

    Fetzer, Homer D.; And Others

    1975-01-01

    Describes the experimental arrangement for x-ray analysis of samples which involves the following: the radioisotopic x-ray disk source; a student-built fluorescence chamber; the energy dispersive x-ray detector, linear amplifier and bias supply; and a multichannel pulse height analyzer. (GS)

  11. Cryotomography x-ray microscopy state

    DOEpatents

    Le Gros, Mark; Larabell, Carolyn A.

    2010-10-26

    An x-ray microscope stage enables alignment of a sample about a rotation axis to enable three dimensional tomographic imaging of the sample using an x-ray microscope. A heat exchanger assembly provides cooled gas to a sample during x-ray microscopic imaging.

  12. A Compact X-Ray System for Support of High Throughput Crystallography

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa; Gubarev, Mikhail; Gibson, Walter M.; Joy, Marshall K.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Standard x-ray systems for crystallography rely on massive generators coupled with optics that guide X-ray beams onto the crystal sample. Optics for single-crystal diffractometry include total reflection mirrors, polycapillary optics or graded multilayer monochromators. The benefit of using polycapillary optic is that it can collect x-rays over tile greatest solid angle, and thus most efficiently, utilize the greatest portion of X-rays emitted from the Source, The x-ray generator has to have a small anode spot, and thus its size and power requirements can be substantially reduced We present the design and results from the first high flux x-ray system for crystallography that combine's a microfocus X-ray generator (40microns FWHM Spot size at a power of 45 W) and a collimating, polycapillary optic. Diffraction data collected from small test crystals with cell dimensions up to 160A (lysozyme and thaumatin) are of high quality. For example, diffraction data collected from a lysozyme crystal at RT yielded R=5.0% for data extending to 1.70A. We compare these results with measurements taken from standard crystallographic systems. Our current microfocus X-ray diffraction system is attractive for supporting crystal growth research in the standard crystallography laboratory as well as in remote, automated crystal growth laboratory. Its small volume, light-weight, and low power requirements are sufficient to have it installed in unique environments, i.e.. on-board International Space Station.

  13. X-ray transparent Microfluidics for Protein Crystallization and Biomineralization

    NASA Astrophysics Data System (ADS)

    Opathalage, Achini

    Protein crystallization demands the fundamental understanding of nucleation and applying techniques to find the optimal conditions to achieve the kinetic pathway for a large and defect free crystal. Classical nucleation theory predicts that the nucleation occurs at high supersaturation conditions. In this dissertation we sought out to develop techniques to attain optimal supersaturation profile to a large defect free crystal and subject it to in-situ X-ray diffraction using microfluidics. We have developed an emulsion-based serial crystallographic technology in nanolitre-sized droplets of protein solution encapsulated in to nucleate one crystal per drop. Diffraction data are measured, one crystal at a time, from a series of room temperature crystals stored on an X-ray semi-transparent microfluidic chip, and a 93% complete data set is obtained by merging single diffraction frames taken from different un-oriented crystals. As proof of concept, the structure of Glucose Isomerase was solved to 2.1 A. We have developed a suite of X-ray semi-transparent micrfluidic devices which enables; controlled evaporation as a method of increasing supersaturation and manipulating the phase space of proteins and small molecules. We exploited the inherently high water permeability of the thin X-ray semi-transparent devices as a mean of increasing the supersaturation by controlling the evaporation. We fabricated the X-ray semi-transparent version of the PhaseChip with a thin PDMS membrane by which the storage and the reservoir layers are separated, and studies the phase transition of amorphous CaCO3.

  14. Cosmic X-ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1987-01-01

    The soft X-ray sky survey data are combined with the results from the UXT sounding rocket payload. Very strong constraints can then be placed on models of the origin of the soft diffuse background. Additional observational constraints force more complicated and realistic models. Significant progress was made in the extraction of more detailed spectral information from the UXT data set. Work was begun on a second generation proportional counter response model. The first flight of the sounding rocket will have a collimator to study the diffuse background.

  15. X-ray Spectroscopy of Cooling Cluster

    SciTech Connect

    Peterson, J.R.; Fabian, A.C.; /Cambridge U., Inst. of Astron.

    2006-01-17

    We review the X-ray spectra of the cores of clusters of galaxies. Recent high resolution X-ray spectroscopic observations have demonstrated a severe deficit of emission at the lowest X-ray temperatures as compared to that expected from simple radiative cooling models. The same observations have provided compelling evidence that the gas in the cores is cooling below half the maximum temperature. We review these results, discuss physical models of cooling clusters, and describe the X-ray instrumentation and analysis techniques used to make these observations. We discuss several viable mechanisms designed to cancel or distort the expected process of X-ray cluster cooling.

  16. Comets: mechanisms of x-ray activity

    NASA Astrophysics Data System (ADS)

    Ibadov, Subhon

    2016-07-01

    Basic mechanisms of X-ray activity of comets are considered, including D-D mechanism corresponding to generation of X-rays due to production of hot short-living plasma clumps at high-velocity collisions between cometary and interplanetary dust particles as well as M-M one corresponding to production of X-rays due to recombination of multicharge ions of solar wind plasma via charge exchange process at their collisions with molecules/atoms of the cometary atmospheres. Peculiarities of the variation of the comet X-ray spectrum and X-ray luminosity with variation of its heliocentric distance are revealed.

  17. X-ray transmissive debris shield

    DOEpatents

    Spielman, R.B.

    1996-05-21

    An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

  18. X-ray transmissive debris shield

    DOEpatents

    Spielman, Rick B.

    1996-01-01

    An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

  19. X-ray imaging for palaeontology.

    PubMed

    Hohenstein, P

    2004-05-01

    Few may be aware that X-ray imaging is used in palaeontology and has been used since as early as 1896. The X-raying, preparation and exposure of Hunsrück slate fossils are described. Hospital X-ray machines are used by the author in his work. An X-ray is vital to provide evidence that preparation of a slate is worthwhile as well as to facilitate preparation even if there is little external sign of what lies within. The beauty of the X-ray exposure is an added bonus.

  20. Ionospheric effects of solar x-rays

    NASA Astrophysics Data System (ADS)

    Danskin, Donald

    2016-07-01

    The ionospheric absorption of radio waves caused by solar x-ray bursts is measured directly by Riometers from the Canada Riometer Array. The absorption is found to be proportional to the square root of the flux intensity of the X-ray burst with time delays of 18-20 seconds between the peak X-ray emission and absorption in the ionosphere. A detailed analysis showed that some X-ray flares during 2011-2014 are more effective at producing absorption than others. Solar longitude of X-ray burst for several X-class flares shows no consistent pattern of enhancement in the absorption.

  1. Atmospheric electron x-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Feldman, Jason E. (Inventor); George, Thomas (Inventor); Wilcox, Jaroslava Z. (Inventor)

    2002-01-01

    The present invention comprises an apparatus for performing in-situ elemental analyses of surfaces. The invention comprises an atmospheric electron x-ray spectrometer with an electron column which generates, accelerates, and focuses electrons in a column which is isolated from ambient pressure by a:thin, electron transparent membrane. After passing through the membrane, the electrons impinge on the sample in atmosphere to generate characteristic x-rays. An x-ray detector, shaping amplifier, and multi-channel analyzer are used for x-ray detection and signal analysis. By comparing the resultant data to known x-ray spectral signatures, the elemental composition of the surface can be determined.

  2. X-ray structure determination using low-resolution electron microscopy maps for molecular replacement

    PubMed Central

    Jackson, Ryan N.; McCoy, Airlie J.; Terwilliger, Thomas C.; Read, Randy J.; Wiedenheft, Blake

    2015-01-01

    Structures of multi-subunit macromolecular machines are primarily determined by either electron microscopy (EM) or X-ray crystallography. In many cases, a structure for a complex can be obtained at low resolution (at a coarse level of detail) with EM and at higher resolution (with finer detail) by X-ray crystallography. The integration of these two structural techniques is becoming increasingly important for generating atomic models of macromolecular complexes. A low-resolution EM image can be a powerful tool for obtaining the "phase" information that is missing from an X-ray crystallography experiment, however integration of EM and X-ray diffraction data has been technically challenging. Here we present a step-by-step protocol that explains how low-resolution EM maps can be placed in the crystallographic unit cell by molecular replacement, and how initial phases computed from the placed EM density are extended to high resolution by averaging maps over non-crystallographic symmetry. As the resolution gap between EM and X-ray crystallography continues to narrow, the use of EM maps to help with X-ray crystal structure determination, as described in this protocol, will become increasingly effective. PMID:26226459

  3. X-ray lithography using holographic images

    DOEpatents

    Howells, Malcolm R.; Jacobsen, Chris

    1995-01-01

    A non-contact X-ray projection lithography method for producing a desired X-ray image on a selected surface of an X-ray-sensitive material, such as photoresist material on a wafer, the desired X-ray image having image minimum linewidths as small as 0.063 .mu.m, or even smaller. A hologram and its position are determined that will produce the desired image on the selected surface when the hologram is irradiated with X-rays from a suitably monochromatic X-ray source of a selected wavelength .lambda.. On-axis X-ray transmission through, or off-axis X-ray reflection from, a hologram may be used here, with very different requirements for monochromaticity, flux and brightness of the X-ray source. For reasonable penetration of photoresist materials by X-rays produced by the X-ray source, the wavelength X, is preferably chosen to be no more than 13.5 nm in one embodiment and more preferably is chosen in the range 1-5 nm in the other embodiment. A lower limit on linewidth is set by the linewidth of available microstructure writing devices, such as an electron beam.

  4. Extended range X-ray telescope

    NASA Technical Reports Server (NTRS)

    Hoover, R. B. (Inventor)

    1981-01-01

    An X-ray telescope system is described which is comprised of a tubular mount having a collecting region remote from the one axial end. A soft X-ray/XUV subsystem associated with the collecting region directs only relatively soft, near on-axis X-rays/XUV radiation incident on a first portion of the collecting region into a first detector sensitive to relatively soft X-rays/XUV radiation. A hard X-ray subsystem associated with the collecting region directs only relatively hard near on-axis X-rays incident on a second portion of the collecting region into a second detector sensitive to relatively hard X-rays.

  5. Evolution of X-ray astronomy

    NASA Technical Reports Server (NTRS)

    Rossj, B.

    1981-01-01

    The evolution of X-ray astronomy up to the launching of the Einstein observatory is presented. The evaluation proceeded through the following major steps: (1) discovery of an extrasolar X-ray source, Sco X-1, orders of magnitude stronger than astronomers believed might exist; (2) identification of a strong X-ray source with the Crab Nebula; (3) identification of Sco X-1 with a faint, peculiar optical object; (4) demonstration that X-ray stars are binary systems, each consisting of a collapsed object accreting matter from an ordinary star; (5) discovery of X-ray bursts; (6) discovery of exceedingly strong X-ray emission from active galaxies, quasars and clusters of galaxies; (7) demonstration that the principal X-ray source is a hot gas filling the space between galaxies.

  6. On stellar X-ray emission

    NASA Technical Reports Server (NTRS)

    Rosner, R.; Golub, L.; Vaiana, G. S.

    1985-01-01

    Stellar X-ray astronomy represents an entirely new astronomical discipline which has emerged during the past five years. It lies at the crossroads of solar physics, stellar physics, and general astrophysics. The present review is concerned with the main physical problems which arise in connection with a study of the stellar X-ray data. A central issue is the extent to which the extrapolation from solar physics is justified and the definition (if possible) of the limits to such extrapolation. The observational properties of X-ray emission from stars are considered along with the solar analogy and the modeling of X-ray emission from late-type stars, the modeling of X-ray emission from early-type stars, the physics of stellar X-ray emission, stellar X-ray emission in the more general astrophysical context, and future prospects.

  7. X ray imaging microscope for cancer research

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Shealy, David L.; Brinkley, B. R.; Baker, Phillip C.; Barbee, Troy W., Jr.; Walker, Arthur B. C., Jr.

    1991-01-01

    The NASA technology employed during the Stanford MSFC LLNL Rocket X Ray Spectroheliograph flight established that doubly reflecting, normal incidence multilayer optics can be designed, fabricated, and used for high resolution x ray imaging of the Sun. Technology developed as part of the MSFC X Ray Microscope program, showed that high quality, high resolution multilayer x ray imaging microscopes are feasible. Using technology developed at Stanford University and at the DOE Lawrence Livermore National Laboratory (LLNL), Troy W. Barbee, Jr. has fabricated multilayer coatings with near theoretical reflectivities and perfect bandpass matching for a new rocket borne solar observatory, the Multi-Spectral Solar Telescope Array (MSSTA). Advanced Flow Polishing has provided multilayer mirror substrates with sub-angstrom (rms) smoothnesss for the astronomical x ray telescopes and x ray microscopes. The combination of these important technological advancements has paved the way for the development of a Water Window Imaging X Ray Microscope for cancer research.

  8. X-ray deconvolution microscopy

    PubMed Central

    Ehn, Sebastian; Epple, Franz Michael; Fehringer, Andreas; Pennicard, David; Graafsma, Heinz; Noël, Peter; Pfeiffer, Franz

    2016-01-01

    Recent advances in single-photon-counting detectors are enabling the development of novel approaches to reach micrometer-scale resolution in x-ray imaging. One example of such a technology are the MEDIPIX3RX-based detectors, such as the LAMBDA which can be operated with a small pixel size in combination with real-time on-chip charge-sharing correction. This characteristic results in a close to ideal, box-like point spread function which we made use of in this study. The proposed method is based on raster-scanning the sample with sub-pixel sized steps in front of the detector. Subsequently, a deconvolution algorithm is employed to compensate for blurring introduced by the overlap of pixels with a well defined point spread function during the raster-scanning. The presented approach utilizes standard laboratory x-ray equipment while we report resolutions close to 10 μm. The achieved resolution is shown to follow the relationship pn with the pixel-size p of the detector and the number of raster-scanning steps n. PMID:27446649

  9. X-ray omni microscopy.

    PubMed

    Paganin, D; Gureyev, T E; Mayo, S C; Stevenson, A W; Nesterets, Ya I; Wilkins, S W

    2004-06-01

    The science of wave-field phase retrieval and phase measurement is sufficiently mature to permit the routine reconstruction, over a given plane, of the complex wave-function associated with certain coherent forward-propagating scalar wave-fields. This reconstruction gives total knowledge of the information that has been encoded in the complex wave-field by passage through a sample of interest. Such total knowledge is powerful, because it permits the emulation in software of the subsequent action of an infinite variety of coherent imaging systems. Such 'virtual optics', in which software forms a natural extension of the 'hardware optics' in an imaging system, may be useful in contexts such as quantitative atom and X-ray imaging, in which optical elements such as beam-splitters and lenses can be realized in software rather than optical hardware. Here, we develop the requisite theory to describe such hybrid virtual-physical imaging systems, which we term 'omni optics' because of their infinite flexibility. We then give an experimental demonstration of these ideas by showing that a lensless X-ray point projection microscope can, when equipped with the appropriate software, emulate an infinite variety of optical imaging systems including those which yield interferograms, Zernike phase contrast, Schlieren imaging and diffraction-enhanced imaging.

  10. X-ray deconvolution microscopy.

    PubMed

    Ehn, Sebastian; Epple, Franz Michael; Fehringer, Andreas; Pennicard, David; Graafsma, Heinz; Noël, Peter; Pfeiffer, Franz

    2016-04-01

    Recent advances in single-photon-counting detectors are enabling the development of novel approaches to reach micrometer-scale resolution in x-ray imaging. One example of such a technology are the MEDIPIX3RX-based detectors, such as the LAMBDA which can be operated with a small pixel size in combination with real-time on-chip charge-sharing correction. This characteristic results in a close to ideal, box-like point spread function which we made use of in this study. The proposed method is based on raster-scanning the sample with sub-pixel sized steps in front of the detector. Subsequently, a deconvolution algorithm is employed to compensate for blurring introduced by the overlap of pixels with a well defined point spread function during the raster-scanning. The presented approach utilizes standard laboratory x-ray equipment while we report resolutions close to 10 μm. The achieved resolution is shown to follow the relationship [Formula: see text] with the pixel-size p of the detector and the number of raster-scanning steps n. PMID:27446649

  11. High Mass X-ray Binary Pulsars

    NASA Astrophysics Data System (ADS)

    Naik, Sachindra

    2016-07-01

    High Mass X-ray Binaries (HMXBs) are interesting objects that provide a wide range of observational probes to the nature of the two stellar components, accretion process, stellar wind and orbital parameters of the systems. Most of the transient HMXBs are found to Be/X-ray binaries (~67%), consisting of a compact object (neutron star) in orbit around the companion Be star. The orbit of the compact object around the Be star is wide and highly eccentric. Be/X-ray binaries are generally quiescent in X-ray emission. The transient X-ray outbursts seen in these objects are known to be due to interaction between the compact object and the circumstellar disk surrounding the Be star. In the recent years, another class of transient HMXBs have been found which have supergiant companions and show shorter X-ray outbursts. X-ray, infrared and optical observations of these HMXBs provide vital information regarding these systems. The timing and broad-band X-ray spectral properties of a few HMXB pulsars, mainly Be/X-ray binary pulsars during regular X-ray outbursts will be discussed.

  12. Controlling X-rays With Light

    SciTech Connect

    Glover, Ernie; Hertlein, Marcus; Southworth, Steve; Allison, Tom; van Tilborg, Jeroen; Kanter, Elliot; Krassig, B.; Varma, H.; Rude, Bruce; Santra, Robin; Belkacem, Ali; Young, Linda

    2010-08-02

    Ultrafast x-ray science is an exciting frontier that promises the visualization of electronic, atomic and molecular dynamics on atomic time and length scales. A largelyunexplored area of ultrafast x-ray science is the use of light to control how x-rays interact with matter. In order to extend control concepts established for long wavelengthprobes to the x-ray regime, the optical control field must drive a coherent electronic response on a timescale comparable to femtosecond core-hole lifetimes. An intense field is required to achieve this rapid response. Here an intense optical control pulse isobserved to efficiently modulate photoelectric absorption for x-rays and to create an ultrafast transparency window. We demonstrate an application of x-ray transparencyrelevant to ultrafast x-ray sources: an all-photonic temporal cross-correlation measurement of a femtosecond x-ray pulse. The ability to control x-ray/matterinteractions with light will create new opportunities at current and next-generation x-ray light sources.

  13. Diffractive X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    Skinner, Gerald K.

    2010-01-01

    Diffractive X-ray telescopes, using zone plates, phase Fresnel lenses, or related optical elements have the potential to provide astronomers with true imaging capability with resolution many orders of magnitude better than available in any other waveband. Lenses that would be relatively easy to fabricate could have an angular resolution of the order of micro-arc-seconds or even better, that would allow, for example, imaging of the distorted spacetime in the immediate vicinity of the super-massive black holes in the center of active galaxies. What then is precluding their immediate adoption? Extremely long focal lengths, very limited bandwidth, and difficulty stabilizing the image are the main problems. The history, and status of the development of such lenses is reviewed here and the prospects for managing the challenges that they present are discussed.

  14. Ultraluminous X-ray Sources

    NASA Astrophysics Data System (ADS)

    Gladstone, Jeanette

    2012-07-01

    The first black hole was observed almost 50 years ago, ˜ 1 year after Sco X-1 (although its nature was not confirmed for ˜ 11 years). Observations of black holes have been ongoing since then, falling in to two distinct categories; stellar-mass (sMBHs; 3 - 80 M_{⊙}) and super-massive black holes (10^6 - 10^9 M_⊙). The missing link between these two types, intermediate mass black holes, has been the target of many searches due to their cosmological implications. Ultraluminous X-ray sources (ULXs) have been proposed to harbor such objects, but recent observational evidence has strongly suggested that the majority contain sMBHs. However, a handful of the brightest ULXs are so luminous that they defy this explanation. Here we will discuss the nature of both standard ULXs and this new bright subgroup of this population.

  15. Industrial X-Ray Imaging

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In 1990, Lewis Research Center jointly sponsored a conference with the U.S. Air Force Wright Laboratory focused on high speed imaging. This conference, and early funding by Lewis Research Center, helped to spur work by Silicon Mountain Design, Inc. to break the performance barriers of imaging speed, resolution, and sensitivity through innovative technology. Later, under a Small Business Innovation Research contract with the Jet Propulsion Laboratory, the company designed a real-time image enhancing camera that yields superb, high quality images in 1/30th of a second while limiting distortion. The result is a rapidly available, enhanced image showing significantly greater detail compared to image processing executed on digital computers. Current applications include radiographic and pathology-based medicine, industrial imaging, x-ray inspection devices, and automated semiconductor inspection equipment.

  16. Soft x-ray interferometry

    SciTech Connect

    Not Available

    1993-09-01

    The purpose of the soft x-ray interferometry workshop held at Lawrence Berkeley Laboratory was to discuss with the scientific community the proposed technical design of the soft x-ray Fourier-transform spectrometer being developed at the ALS. Different design strategies for the instrument`s components were discussed, as well as detection methods, signal processing issues, and how to meet the manufacturing tolerances that are necessary for the instrument to achieve the desired levels of performance. Workshop participants were encouraged to report on their experiences in the field of Fourier transform spectroscopy. The ALS is developing a Fourier transform spectrometer that is intended to operate up to 100 eV. The motivation is solely improved resolution and not the throughput (Jaquinot) or multiplex (Fellgett) advantage, neither of which apply for the sources and detectors used in this spectral range. The proposed implementation of this is via a Mach-Zehnder geometry that has been (1) distorted from a square to a rhombus to get grazing incidence of a suitable angle for 100 eV and (2) provided with a mirror-motion system to make the path difference between the interfering beams tunable. The experiment consists of measuring the emergent light intensity (I(x)) as a function of the path difference (x). The resolving power of the system is limited by the amount of path difference obtainable that is 1 cm (one million half-waves at 200{angstrom} wavelength) in the design thus allowing a resolving power of one million. The free spectral range of the system is limited by the closeness with which the function I(x) is sampled. It is proposed to illuminate a helium absorption cell with roughly 1%-band-width light from a monochromator thus allowing one hundred aliases without spectral overlap even for sampling of I(x) at one hundredth of the Nyquist frequency.

  17. X-rays for medical use

    NASA Astrophysics Data System (ADS)

    Hessenbruch, A.

    1995-11-01

    1995 is the centenary of the discovery of X-rays by the German physicist Wilhelm C Rontgen. In the past hundred years, the new rays have developed from being unknown to finding application in many walks of life, not least in medicine. This is so much so that in common speech the word `x-ray` refers not to a form of radiation but to an X-ray photograph taken for the purposes of diagnosis (as in: `I had an X-ray done to see if my leg was broken`). X-rays are now used routinely, and they are used both for diagnosis and for therapy. This paper will give an outline of the use of X-rays in medicine throughout our present century.

  18. Exploring ribozyme conformational changes with X-ray crystallography

    PubMed Central

    Spitale, Robert C.; Wedekind, Joseph E.

    2009-01-01

    Relating three-dimensional fold to function is a central challenge in RNA structural biology. Toward this goal, X-ray crystallography has long been considered the “gold standard” for structure determinations at atomic resolution, although NMR spectroscopy has become a powerhouse in this arena as well. In the area of dynamics, NMR remains the dominant technique to probe the magnitude and timescales of molecular motion. Although the latter area remains largely unassailable by conventional crystallographic methods, inroads have been made on proteins using Laue radiation on timescales of ms to ns. Proposed ‘fourth generation’ radiation sources, such as free-electron X-ray lasers, promise ps- to fs-timescale resolution, and credible evidence is emerging that supports the feasibility of single molecule imaging. At present however, the preponderance of RNA structural information has been derived from timescale and motion insensitive crystallographic techniques. Importantly, developments in computing, automation and high-flux synchrotron sources have propelled the rapidity of ‘conventional’ RNA crystal structure determinations to timeframes of hours once a suitable set of phases is obtained. With a sufficient number of crystal structures, it is possible to create a structural ensemble that can provide insight into global and local molecular motion characteristics that are relevant to biological function. Here we describe techniques to explore conformational changes in the hairpin ribozyme, a representative non-protein-coding RNA catalyst. The approaches discussed include: (i) construct choice and design using prior knowledge to improve X-ray diffraction; (ii) recognition of long-range conformational changes; and (iii) use of single-base or single-atom changes to create ensembles. The methods are broadly applicable to other RNA systems. PMID:19559088

  19. X-ray transmissive debris shield

    DOEpatents

    Spielman, Rick B.

    1994-01-01

    A composite window structure is described for transmitting x-ray radiation and for shielding radiation generated debris. In particular, separate layers of different x-ray transmissive materials are laminated together to form a high strength, x-ray transmissive debris shield which is particularly suited for use in high energy fluences. In one embodiment, the composite window comprises alternating layers of beryllium and a thermoset polymer.

  20. Handbook of X-ray Astronomy

    NASA Astrophysics Data System (ADS)

    Arnaud, Keith; Smith, Randall; Siemiginowska, Aneta; Ellis, Richard; Huchra, John; Kahn, Steve; Rieke, George; Stetson, Peter B.

    2011-11-01

    Practical guide to X-ray astronomy for graduate students, professional astronomers and researchers. Presenting X-ray optics, basic detector physics and data analysis. It introduces the reduction and calibration of X-ray data, scientific analysis, archives, statistical issues and the particular problems of highly extended sources. The appendices provide reference material often required during data analysis. The handbook web page contains figures and tables: http://xrayastronomyhandbook.com/

  1. Topological X-Rays and MRIs

    ERIC Educational Resources Information Center

    Lynch, Mark

    2002-01-01

    Let K be a compact subset of the interior of the unit disk D in the plane and suppose one can't see through the boundary of D and identify K. However, assume that one can take "topological X-rays" of D which measure the "density" of K along the lines of the X-rays. By taking these X-rays from all directions, a "topological MRI" is generated for…

  2. Lobster-Eye X-Ray Astronomy

    SciTech Connect

    Hudec, R.; Pina, L.; Marsikova, V.; Inneman, A.

    2010-07-15

    We report on technical and astrophysical aspects of Lobster-Eye wide-field X-ray telescopes expected to monitor the sky with high sensitivity and angular resolution of order of 1 arcmin. They will contribute essentially to study of various astrophysical objects such as AGN, SNe, Gamma-ray bursts (GRBs), X-ray flashes (XRFs), galactic binary sources, stars, CVs, X-ray novae, various transient sources, etc.

  3. Applications of soft x-ray lasers

    SciTech Connect

    Skinner, C.H.

    1993-08-01

    The high brightness and short pulse duration of soft x-ray lasers provide unique advantages for novel applications. Imaging of biological specimens using x-ray lasers has been demonstrated by several groups. Other applications to fields such as chemistry, material science, plasma diagnostics, and lithography are beginning to emerge. We review the current status of soft x-ray lasers from the perspective of applications, and present an overview of the applications currently being developed.

  4. X-ray data booklet. Revision

    SciTech Connect

    Vaughan, D.

    1986-04-01

    A compilation of data is presented. Included are properties of the elements, electron binding energies, characteristic x-ray energies, fluorescence yields for K and L shells, Auger energies, energy levels for hydrogen-, helium-, and neonlike ions, scattering factors and mass absorption coefficients, and transmission bands of selected filters. Also included are selected reprints on scattering processes, x-ray sources, optics, x-ray detectors, and synchrotron radiation facilities. (WRF)

  5. High speed x-ray beam chopper

    DOEpatents

    McPherson, Armon; Mills, Dennis M.

    2002-01-01

    A fast, economical, and compact x-ray beam chopper with a small mass and a small moment of inertia whose rotation can be synchronized and phase locked to an electronic signal from an x-ray source and be monitored by a light beam is disclosed. X-ray bursts shorter than 2.5 microseconds have been produced with a jitter time of less than 3 ns.

  6. Observation of femtosecond X-ray interactions with matter using an X-ray-X-ray pump-probe scheme.

    PubMed

    Inoue, Ichiro; Inubushi, Yuichi; Sato, Takahiro; Tono, Kensuke; Katayama, Tetsuo; Kameshima, Takashi; Ogawa, Kanade; Togashi, Tadashi; Owada, Shigeki; Amemiya, Yoshiyuki; Tanaka, Takashi; Hara, Toru; Yabashi, Makina

    2016-02-01

    Resolution in the X-ray structure determination of noncrystalline samples has been limited to several tens of nanometers, because deep X-ray irradiation required for enhanced resolution causes radiation damage to samples. However, theoretical studies predict that the femtosecond (fs) durations of X-ray free-electron laser (XFEL) pulses make it possible to record scattering signals before the initiation of X-ray damage processes; thus, an ultraintense X-ray beam can be used beyond the conventional limit of radiation dose. Here, we verify this scenario by directly observing femtosecond X-ray damage processes in diamond irradiated with extraordinarily intense (∼10(19) W/cm(2)) XFEL pulses. An X-ray pump-probe diffraction scheme was developed in this study; tightly focused double-5-fs XFEL pulses with time separations ranging from sub-fs to 80 fs were used to excite (i.e., pump) the diamond and characterize (i.e., probe) the temporal changes of the crystalline structures through Bragg reflection. It was found that the pump and probe diffraction intensities remain almost constant for shorter time separations of the double pulse, whereas the probe diffraction intensities decreased after 20 fs following pump pulse irradiation due to the X-ray-induced atomic displacement. This result indicates that sub-10-fs XFEL pulses enable conductions of damageless structural determinations and supports the validity of the theoretical predictions of ultraintense X-ray-matter interactions. The X-ray pump-probe scheme demonstrated here would be effective for understanding ultraintense X-ray-matter interactions, which will greatly stimulate advanced XFEL applications, such as atomic structure determination of a single molecule and generation of exotic matters with high energy densities. PMID:26811449

  7. Observation of femtosecond X-ray interactions with matter using an X-ray-X-ray pump-probe scheme.

    PubMed

    Inoue, Ichiro; Inubushi, Yuichi; Sato, Takahiro; Tono, Kensuke; Katayama, Tetsuo; Kameshima, Takashi; Ogawa, Kanade; Togashi, Tadashi; Owada, Shigeki; Amemiya, Yoshiyuki; Tanaka, Takashi; Hara, Toru; Yabashi, Makina

    2016-02-01

    Resolution in the X-ray structure determination of noncrystalline samples has been limited to several tens of nanometers, because deep X-ray irradiation required for enhanced resolution causes radiation damage to samples. However, theoretical studies predict that the femtosecond (fs) durations of X-ray free-electron laser (XFEL) pulses make it possible to record scattering signals before the initiation of X-ray damage processes; thus, an ultraintense X-ray beam can be used beyond the conventional limit of radiation dose. Here, we verify this scenario by directly observing femtosecond X-ray damage processes in diamond irradiated with extraordinarily intense (∼10(19) W/cm(2)) XFEL pulses. An X-ray pump-probe diffraction scheme was developed in this study; tightly focused double-5-fs XFEL pulses with time separations ranging from sub-fs to 80 fs were used to excite (i.e., pump) the diamond and characterize (i.e., probe) the temporal changes of the crystalline structures through Bragg reflection. It was found that the pump and probe diffraction intensities remain almost constant for shorter time separations of the double pulse, whereas the probe diffraction intensities decreased after 20 fs following pump pulse irradiation due to the X-ray-induced atomic displacement. This result indicates that sub-10-fs XFEL pulses enable conductions of damageless structural determinations and supports the validity of the theoretical predictions of ultraintense X-ray-matter interactions. The X-ray pump-probe scheme demonstrated here would be effective for understanding ultraintense X-ray-matter interactions, which will greatly stimulate advanced XFEL applications, such as atomic structure determination of a single molecule and generation of exotic matters with high energy densities.

  8. Symbiotic Stars in X-rays

    NASA Technical Reports Server (NTRS)

    Luna, G. J. M.; Sokoloski, J. L.; Mukai, K.; Nelson, T.

    2014-01-01

    Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of 9 white dwarf symbiotics that were not previously known to be X-ray sources and one that was previously detected as a supersoft X-ray source. The 9 new X-ray detections were the result of a survey of 41 symbiotic stars, and they increase the number of symbiotic stars known to be X-ray sources by approximately 30%. Swift/XRT detected all of the new X-ray sources at energies greater than 2 keV. Their X-ray spectra are consistent with thermal emission and fall naturally into three distinct groups. The first group contains those sources with a single, highly absorbed hard component, which we identify as probably coming from an accretion-disk boundary layer. The second group is composed of those sources with a single, soft X-ray spectral component, which likely arises in a region where low-velocity shocks produce X-ray emission, i.e. a colliding-wind region. The third group consists of those sources with both hard and soft X-ray spectral components. We also find that unlike in the optical, where rapid, stochastic brightness variations from the accretion disk typically are not seen, detectable UV flickering is a common property of symbiotic stars. Supporting our physical interpretation of the two X-ray spectral components, simultaneous Swift UV photometry shows that symbiotic stars with harder X-ray emission tend to have stronger UV flickering, which is usually associated with accretion through a disk. To place these new observations in the context of previous work on X-ray emission from symbiotic stars, we modified and extended the alpha/beta/gamma classification scheme for symbiotic-star X-ray spectra that was introduced by Muerset et al. based upon observations with the ROSAT satellite, to include a new sigma classification for sources with

  9. X-ray laser microscope apparatus

    DOEpatents

    Suckewer, Szymon; DiCicco, Darrell S.; Hirschberg, Joseph G.; Meixler, Lewis D.; Sathre, Robert; Skinner, Charles H.

    1990-01-01

    A microscope consisting of an x-ray contact microscope and an optical microscope. The optical, phase contrast, microscope is used to align a target with respect to a source of soft x-rays. The source of soft x-rays preferably comprises an x-ray laser but could comprise a synchrotron or other pulse source of x-rays. Transparent resist material is used to support the target. The optical microscope is located on the opposite side of the transparent resist material from the target and is employed to align the target with respect to the anticipated soft x-ray laser beam. After alignment with the use of the optical microscope, the target is exposed to the soft x-ray laser beam. The x-ray sensitive transparent resist material whose chemical bonds are altered by the x-ray beam passing through the target mater GOVERNMENT LICENSE RIGHTS This invention was made with government support under Contract No. De-FG02-86ER13609 awarded by the Department of Energy. The Government has certain rights in this invention.

  10. Separating Peaks in X-Ray Spectra

    NASA Technical Reports Server (NTRS)

    Nicolas, David; Taylor, Clayborne; Wade, Thomas

    1987-01-01

    Deconvolution algorithm assists in analysis of x-ray spectra from scanning electron microscopes, electron microprobe analyzers, x-ray fluorescence spectrometers, and like. New algorithm automatically deconvolves x-ray spectrum, identifies locations of spectral peaks, and selects chemical elements most likely producing peaks. Technique based on similarities between zero- and second-order terms of Taylor-series expansions of Gaussian distribution and of damped sinusoid. Principal advantage of algorithm: no requirement to adjust weighting factors or other parameters when analyzing general x-ray spectra.

  11. An Imaging X-Ray Polarimetry Mission

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Bellazini, Ronaldo; Costa, Enrico; Ramsey, Brian; O'Dell, Steve; Elsner, Ronald; Pavlov, George; Matt, Giorgio; Kaspi, Victoria; Tennant, Allyn; Coppi, Paolo; Wu, Kinwah; Siegmund, Oswald

    2008-01-01

    Technical progress both in x-ray optics and in polarization-sensitive x-ray detectors, which our groups have pioneered, enables a scientifically powerful---yet inexpensive---dedicated mission for imaging x-ray polarimetry. Such a mission is sufficiently sensitive to measure x-ray (linear) polarization for a broad range of cosmic sources --particularly those involving neutron stars, stellar black holes, and supermassive black holes (active galactic nuclei). We describe the technical elements, discuss a mission concept, and synopsize the important physical and astrophysical questions such a mission would address.

  12. An Imaging X-Ray Polarimetry Mission

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Bellazini, Ronaldo; Costa, Enrico; Ramsey, Brian; O'Dell, Steve; Tennant, Allyn; Elsner, Ronald; Pavlov, George; Matt, Girogio; Kaspi, Vicky; Coppi, Paolo; Wu, Kinwah; Siegmund, Oswald

    2008-01-01

    Technical progress both in x-ray optics and in polarization-sensitive x-ray detectors, which our groups have pioneered, enables a scientifically powerful - yet inexpensive - dedicated mission for imaging x-ray polarimetry. Such a mission is sufficiently sensitive to measure x-ray (linear) polarization for a broad range of cosmic sources --- particularly those involving neutron stars, stellar black holes, and supermassive black holes (active galactic nuclei). We describe the technical elements, discuss a mission concept, and synopsiz:e the important physical and astrophysical questions such as mission would address.

  13. The Lunar X-ray Observatory (LXO)

    NASA Technical Reports Server (NTRS)

    Porter, F. Scott

    2008-01-01

    X-ray emission from charge exchange recombination between the highly ionized solar wind and neutral material i n Earth's magnetosheath has complicated x-ray observations of celestial objects with x-ray observatories including ROSAT, Chandra, XMM-Newton, and Suzaku. However, the charge-exchange emission can also be used as an important diagnostic of the solar-wind interacting with the magnetosheath. Soft x-ray observations from low-earth orbit or even the highly eccentric orbits of Chandra and XMM-Newton are likely superpositions of the celestial object of interest, the true extra-solar soft x-ray background, geospheric charge exchange, and heliospheric charge exchange. We show that with a small x-ray telescope placed either on the moon, in a similar vein as the Apollo ALSOP instruments, or at a stable orbit near L1, we can begin t o disentangle the complicated emission structure in the soft x-ray band. Here we present initial results of a feasibility study recently funded by NASA t o place a small x-ray telescope on the lunar surface. The telescope operates during lunar night to observe charge exchange interactions between the solar wind and magnetospheric neutrals, between the solar wind and the lunar atmosphere, and an unobstructed view of the soft x-ray background without the geospheric component.

  14. Colloid Coalescence with Focused X Rays

    SciTech Connect

    Weon, B. M.; Kim, J. T.; Je, J. H.; Yi, J. M.; Wang, S.; Lee, W.-K.

    2011-07-01

    We show direct evidence that focused x rays enable us to merge polymer colloidal particles at room temperature. This phenomenon is ascribed to the photochemical scission of colloids with x rays, reducing the molecular weight, glass transition temperature, surface tension, and viscosity of colloids. The observation of the neck bridge growth with time shows that the x-ray-induced colloid coalescence is analogous to viscoelastic coalescence. This finding suggests a feasible protocol of photonic nanofabrication by sintering or welding of polymers, without thermal damage, using x-ray photonics.

  15. X-rays from the youngest stars

    NASA Technical Reports Server (NTRS)

    Feigelson, Eric D.

    1994-01-01

    The X-ray properties of classical and weak-lined T Tauri stars are briefly reviewed, emphasizing recent results from the ROSAT satellite and prospects for ASCA. The interpretation of the high level of T Tauri X-rays as enhanced solar-type magnetic activity is discussed and criticized. The census of X-ray emitters is significantly increasing estimates of galactic star formation efficiency, and X-ray emission may be important for self-regulation of star formation. ASCA images will detect star formation regions out to several kiloparsecs and will study the magnetically heated plasma around T Tauri stars. However, images will often suffer from crowding effects.

  16. [X-ray diagnosis of histiocytosis X].

    PubMed

    Khomenko, A G; Dmitrieva, L I; Khikkel', Kh G; Stepanian, I E

    1988-01-01

    The results of a dynamic x-ray study of 27 patients suffering from histiocytosis X with lung involvement were analyzed; the study was supplemented by CT in 4 cases. X-ray semiotics of the disease was investigated with relation to its stage. X-ray symptom complexes were defined: interstitial, interstitial-granulomatous, and focal (tumorous). The authors have emphasized the fact that the small focal-cystic and pneumothoracic x-ray variants of the disease, described in literature, are not nosological entities but reflect only its stage and complications.

  17. Compound refractive X-ray lens

    DOEpatents

    Nygren, David R.; Cahn, Robert; Cederstrom, Bjorn; Danielsson, Mats; Vestlund, Jonas

    2000-01-01

    An apparatus and method for focusing X-rays. In one embodiment, his invention is a commercial-grade compound refractive X-ray lens. The commercial-grade compound refractive X-ray lens includes a volume of low-Z material. The volume of low-Z material has a first surface which is adapted to receive X-rays of commercially-applicable power emitted from a commercial-grade X-ray source. The volume of low-Z material also has a second surface from which emerge the X-rays of commercially-applicable power which were received at the first surface. Additionally, the commercial-grade compound refractive X-ray lens includes a plurality of openings which are disposed between the first surface and the second surface. The plurality of openings are oriented such that the X-rays of commercially-applicable power which are received at the first surface, pass through the volume of low-Z material and through the plurality openings. In so doing, the X-rays which emerge from the second surface are refracted to a focal point.

  18. X-Ray Imaging Study

    NASA Technical Reports Server (NTRS)

    OBrien, Susan K.; Workman, Gary L.

    1996-01-01

    The space environment in which the Space Station Freedom and other space platforms will orbit is truly a hostile environment. For example, the currently estimated integral fluence for electrons above 1 Mev at 2000 nautical miles is above 2 x 1O(exp 10) electrons/sq cm/day and the proton integral fluence is above 1 x 10(exp 9) protons/sq cm/day. At the 200 - 400 nautical miles, which is more representative of the altitude which will provide the environment for the Space Station, each of these fluences will be proportionally less; however, the data indicates that the radiation environment will obviously have an effect on structural materials exposed to the environment for long durations. The effects of this combined environment is the issue which needs to be understood for the long term exposure of structures in space. At the same time, there will be substantial potential for collisions between the space platforms and space debris. The current NASA catalogue contains over 4500 objects floating in space which are not considered payloads. This debris can have significant effects on collision with orbiting spacecraft. In order to better understand the effect of these hostile phenomena on spacecraft, several types of studies are being performed to simulate at some level the effect of the environment. In particular the study of debris clouds produced by hypervelocity impact on the various surfaces anticipated on the Space Station is very important at this point in time. The need to assess the threat of such debris clouds on space structures is an on-going activity. The Space Debris Impact facility in Building 4612 provides a test facility to monitor the types of damage produced with hypervelocity impact. These facilities are used to simulate space environmental effects from energetic particles. Flash radiography or x-ray imaging has traditionally provided such information and as such has been an important tool for recording damage in situ with the event. The proper

  19. Long-Term Hard X-Ray Monitoring of X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    The scientific goal of this project was to monitor a selected sample of x-ray bursters using data from the Burst and Transient Source Experiment (BATSE) on the Compton Gamma-Ray Observatory to characterize the hard x-ray emission of these objects over long time intervals. The project was closely related to "Monitoring x-ray emission from x-ray bursters", NASA project, and "Hard x-ray emission of x-ray bursters", NASA project, and shares publications in common with both of these. These efforts have lead to results directly from the BATSE data and also from Target of Opportunity Observations (TOO) made with the Rossi X-Ray Timing Explorer based on detection of transient hard x-ray outbursts with BATSE. The following papers have used BATSE data or data obtained with BATSE TOO triggers.

  20. Wide field x-ray telescopes: Detecting x-ray transients/afterglows related to GRBs

    SciTech Connect

    Hudec, Rene; Pina, Ladislav; Inneman, Adolf; Gorenstein, Paul

    1998-05-16

    The recent discovery of X-ray afterglows of GRBs opens the possibility of analyses of GRBs by their X-ray detections. However, imaging X-ray telescopes in current use mostly have limited fields of view. Alternative X-ray optics geometries achieving very large fields of view have been theoretically suggested in the 70's but not constructed and used so far. We review the geometries and basic properties of the wide-field X-ray optical systems based on one- and two-dimensional lobster-eye geometry and suggest technologies for their development and construction. First results of the development of double replicated X-ray reflecting flats for use in one-dimensional X-ray optics of lobster-eye type are presented and discussed. The optimum strategy for locating GRBs upon their X-ray counterparts is also presented and discussed.

  1. X-ray structure determination using low-resolution electron microscopy maps for molecular replacement

    DOE PAGES

    Jackson, Ryan N.; McCoy, Airlie J.; Terwilliger, Thomas C.; Read, Randy J.; Wiedenheft, Blake

    2015-07-30

    Structures of multi-subunit macromolecular machines are primarily determined by either electron microscopy (EM) or X-ray crystallography. In many cases, a structure for a complex can be obtained at low resolution (at a coarse level of detail) with EM and at higher resolution (with finer detail) by X-ray crystallography. The integration of these two structural techniques is becoming increasingly important for generating atomic models of macromolecular complexes. A low-resolution EM image can be a powerful tool for obtaining the "phase" information that is missing from an X-ray crystallography experiment, however integration of EM and X-ray diffraction data has been technically challenging.more » Here we show a step-by-step protocol that explains how low-resolution EM maps can be placed in the crystallographic unit cell by molecular replacement, and how initial phases computed from the placed EM density are extended to high resolution by averaging maps over non-crystallographic symmetry. As the resolution gap between EM and Xray crystallography continues to narrow, the use of EM maps to help with X-ray crystal structure determination, as described in this protocol, will become increasingly effective.« less

  2. X-ray structure determination using low-resolution electron microscopy maps for molecular replacement

    SciTech Connect

    Jackson, Ryan N.; McCoy, Airlie J.; Terwilliger, Thomas C.; Read, Randy J.; Wiedenheft, Blake

    2015-07-30

    Structures of multi-subunit macromolecular machines are primarily determined by either electron microscopy (EM) or X-ray crystallography. In many cases, a structure for a complex can be obtained at low resolution (at a coarse level of detail) with EM and at higher resolution (with finer detail) by X-ray crystallography. The integration of these two structural techniques is becoming increasingly important for generating atomic models of macromolecular complexes. A low-resolution EM image can be a powerful tool for obtaining the "phase" information that is missing from an X-ray crystallography experiment, however integration of EM and X-ray diffraction data has been technically challenging. Here we show a step-by-step protocol that explains how low-resolution EM maps can be placed in the crystallographic unit cell by molecular replacement, and how initial phases computed from the placed EM density are extended to high resolution by averaging maps over non-crystallographic symmetry. As the resolution gap between EM and Xray crystallography continues to narrow, the use of EM maps to help with X-ray crystal structure determination, as described in this protocol, will become increasingly effective.

  3. SN X-ray Progenitor?

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Identifying stars that explode, right before they explode, is a tricky proposition since the end of starlife comes swiftly: in thermonuclear deflagrations, in nuclear exhaustion, or maybe in a rapid swirling merger of two dead stellar cores. On the right in the image above is an image of the galaxy NGC 1404 taken by the UV/optical Telescope (UVOT) on the Swift observatory. The circle surrounds SN 2007on, a supernova of Type Ia produced by the explosion of a white dwarf star in a binary system. These types of supernovae are important since they are believed to be 'standard candles', events which have the same intrinsic brightness which can serve as an important yardstick to measure cosmic distances. On the left is an image of the same galaxy taken by the Chandra X-ray observatory four years before the supernova. Conspicuous in the SN source circle is a bright source in the Chandra image, believed to be emission from a compact object+normal star companion: a similar system to the supposed precursor of SN 2007on. If true this would be the first time a Type Ia supernova precursor has ever been seen. But astronomers are still debating whether the Chandra source really is the precursor or not; it seems there's a slight but significant difference in the location of the Chandra source and the supernova. Stay tuned for more developments.

  4. SMM X-ray polychromator

    NASA Technical Reports Server (NTRS)

    Strong, Keith T.; Haisch, Bernhard M. (Compiler); Lemen, James R. (Compiler); Acton, L. W.; Bawa, H. S.; Claflin, E. S.; Freeland, S. L.; Slater, G. L.; Kemp, D. L.; Linford, G. A.

    1988-01-01

    The range of observing and analysis programs accomplished with the X-Ray Polychromator (XRP) instruments during the decline of solar cycle 21 and the rise of the solar cycle 22 is summarized. Section 2 describes XRP operations and current status. This is meant as a guide on how the instrument is used to obtain data and what its capabilities are for potential users. The science section contains a series of representative abstracts from recently published papers on major XRP science topics. It is not meant to be a complete list but illustrates the type of science that can come from the analysis of the XRP data. There then follows a series of appendixes that summarize the major data bases that are available. Appendix A is a complete bibliography of papers and presentations produced using XRP data. Appendix B lists all the spectroscopic data accumulated by the Flat Crystal Spectrometer (FCS). Appendix C is a compilation of the XRP flare catalogue for events equivalent to a GOES C-level flare or greater. It lists the start, peak and end times as well as the peak Ca XIX flux.

  5. Diffraction leveraged modulation of X-ray pulses using MEMS-based X-ray optics

    DOEpatents

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2016-08-09

    A method and apparatus are provided for implementing Bragg-diffraction leveraged modulation of X-ray pulses using MicroElectroMechanical systems (MEMS) based diffractive optics. An oscillating crystalline MEMS device generates a controllable time-window for diffraction of the incident X-ray radiation. The Bragg-diffraction leveraged modulation of X-ray pulses includes isolating a particular pulse, spatially separating individual pulses, and spreading a single pulse from an X-ray pulse-train.

  6. Tracing the X-Ray Trail

    MedlinePlus

    What you need to know about… Tracing the X-ray Trail If you’ve just completed an x-ray, computed tomography (CT), magnetic resonance (MR) Start here! or other diagnostic imaging procedure, you probably want to know when you will ... los rayos X Si acaba de hacerse una radiografía, tomografía ¡Empezar ...

  7. X-ray determination of parts alignment

    NASA Technical Reports Server (NTRS)

    Nelson, C. W.

    1985-01-01

    A method for determining the alignment of adjoining metal objects is provided. The method comprises producing an X-ray image of adjoining surfaces of the two metal objects. The X-ray beam is tangential to the point the surfaces are joined. The method is particularly applicable where the alignment of the two metal objects is not readily susceptible to visual inspection.

  8. X-Ray Determination of Weld Misalinement

    NASA Technical Reports Server (NTRS)

    Nelson, C. W.

    1985-01-01

    Simple technique uses ordinary X-ray equipment. Weld line between hemispheres of hidden spherical pressure vessel examined for misalinement between hemispheres. Central X-ray tangent to pressure vessel at weld line. Technique not limited to spheres. Also used to check alinement between insulated sections of pipelines or chemical-reaction vessels without removing insulation or interrupting flow or process.

  9. X-ray Attenuation and Absorption Calculations.

    1988-02-25

    This point-source, polychromatic, discrete energy X-ray transport and energy deposition code system calculates first-order spectral estimates of X-ray energy transmission through slab materials and the associated spectrum of energy absorbed by the material.

  10. X-rays Flares and Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Feigelson, Eric D.

    2011-04-01

    X-ray observations of star forming regions show that magnetic reconnection flares are powerful and frequent in pre-main sequence solar-type stars. Well-defined samples in the Orion Nebula Cluster and Taurus clouds exhibit flares with peak X- ray luminosities Lx˜10^29 - 10^32 erg/s, orders of magnitude stronger and more frequent than contemporary solar flares. X-rays are emitted in magnetic loops extending 0.1-10 R * above the stellar surface and thus have a favorable geometry to irradiate the protoplanetary disk. Several lines of evidence - fluorescent iron X-ray emission line, forbidden [NeII] infrared line, and excited molecular bands - support X-ray irradiation of cold material in some young systems. Several astrophysical consequences of X-ray irradiation are outlined. As ionization fractions need only reach 10-12 to induce the magnetorotational instability and associated turbulence, X-rays may be the principal determinant of the extent of the viscous "active zone" and laminar "dead zone" in the layered accretion disk. X-ray irradiation may thus play a major role in planet formation processes: particle settling; meter-size inspiral; protoplanetary migration; and dissipation of the gaseous disk.

  11. X-ray dynamical diffraction Fraunhofer holography.

    PubMed

    Balyan, Minas

    2013-09-01

    An X-ray dynamical diffraction Fraunhofer holographic scheme is proposed. Theoretically it is shown that the reconstruction of the object image by visible light is possible. The spatial and temporal coherence requirements of the incident X-ray beam are considered. As an example, the hologram recording as well as the reconstruction by visible light of an absolutely absorbing wire are discussed.

  12. Phased Contrast X-Ray Imaging

    ScienceCinema

    Erin Miller

    2016-07-12

    The Pacific Northwest National Laboratory is developing a range of technologies to broaden the field of explosives detection. Phased contrast X-ray imaging, which uses silicon gratings to detect distortions in the X-ray wave front, may be applicable to mail or luggage scanning for explosives; it can also be used in detecting other contraband, small-parts inspection, or materials characterization.

  13. X-Ray Emissions from Jupiter

    NASA Technical Reports Server (NTRS)

    Gladstone, G. R.; Waite, J. H., Jr.; Grodent, D.; Crary, F. J.; Elsner, R. F.; Weisskopf, M. C.; Lewis, W. S.; Jahn, J.-M.; Bhardwaj, A.; Clarke, J. T.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    X-ray emissions from Jupiter have been observed for over 20 years. Jovian x-ray emissions are associated with high-latitude aurora and with solar fluorescence and/or an energetic particle source at low-latitudes as identified by past Einstein and ROSAT observations. Enhanced auroral x-rays were also observed to be associated with the impact of Comet Shoemaker-Levy 9. The high-latitude x-ray emissions are best explained by energetic sulfur and oxygen ion precipitation from the Jovian magnetosphere, a suggestion that has been confirmed by recent Chandra ACIS observations. Exciting new information about Jovian x-ray emissions has been made possible with Chandra's High Resolution Camera. We report here for the first time the detection of a forty minute oscillation associated with the Jovian x-ray aurora. With the help of ultraviolet auroral observations from Hubble Space Telescope, we pinpoint the auroral mapping of the x-rays and provide new information on the x-ray source mechanism.

  14. Course Manual for X-Ray Applications.

    ERIC Educational Resources Information Center

    Food and Drug Administration (DHEW), Rockville, MD. Bureau of Radiological Health.

    This publication is the third of three sequential course manuals for instructors in x-ray science and engineering. This course manual has been tested by introducing it into the Oregon State University curriculum. The publication is prepared for the purpose of improving the qualifications of x-ray users and to reduce the ionizing radiation exposure…

  15. VETA-1 x ray detection system

    NASA Technical Reports Server (NTRS)

    Podgorski, W. A.; Flanagan, Kathy A.; Freeman, Mark D.; Goddard, R. G.; Kellogg, Edwin M.; Norton, T. J.; Ouellette, J. P.; Roy, A. G.; Schwartz, Daniel A.

    1992-01-01

    The alignment and X-ray imaging performance of the Advanced X-ray Astrophysics Facility (AXAF) Verification Engineering Test Article-I (VETA-I) was measured by the VETA-I X-Ray Detection System (VXDS). The VXDS was based on the X-ray detection system utilized in the AXAF Technology Mirror Assembly (TMA) program, upgraded to meet the more stringent requirements of the VETA-I test program. The VXDS includes two types of X-ray detectors: (1) a High Resolution Imager (HRI) which provides X-ray imaging capabilities, and (2) sealed and flow proportional counters which, in conjunction with apertures of various types and precision translation stages, provide the most accurate measurement of VETA-I performance. Herein we give an overview of the VXDS hardware including X-ray detectors, translation stages, apertures, proportional counters and flow counter gas supply system and associated electronics. We also describe the installation of the VXDS into the Marshall Space Flight Center (MSFC) X-Ray Calibration Facility (XRCF). We discuss in detail the design and performance of those elements of the VXDS which have not been discussed elsewhere; translation systems, flow counter gas supply system, apertures and thermal monitoring system.

  16. Subpicosecond Coherent Manipulation of X-Rays

    SciTech Connect

    Adams, Bernhard W.

    2004-05-12

    The Takagi-Taupin theory is synthesized with the eikonal theory in a unified space-time approach, based upon microscopic electromagnetism. It is designed specifically to address x-ray diffraction in crystal structures being modified within down to a few femtosconds. Possible applications in the subpicosecond coherent manipulation of x-rays are given.

  17. Adenocarcinoma - chest x-ray (image)

    MedlinePlus

    This chest x-ray shows adenocarcinoma of the lung. There is a rounded light spot in the right upper lung (left side ... density. Diseases that may cause this type of x-ray result would be tuberculous or fungal granuloma, and ...

  18. Accelerator-driven X-ray Sources

    SciTech Connect

    Nguyen, Dinh Cong

    2015-11-09

    After an introduction which mentions x-ray tubes and storage rings and gives a brief review of special relativity, the subject is treated under the following topics and subtopics: synchrotron radiation (bending magnet radiation, wiggler radiation, undulator radiation, brightness and brilliance definition, synchrotron radiation facilities), x-ray free-electron lasers (linac-driven X-ray FEL, FEL interactions, self-amplified spontaneous emission (SASE), SASE self-seeding, fourth-generation light source facilities), and other X-ray sources (energy recovery linacs, Inverse Compton scattering, laser wakefield accelerator driven X-ray sources. In summary, accelerator-based light sources cover the entire electromagnetic spectrum. Synchrotron radiation (bending magnet, wiggler and undulator radiation) has unique properties that can be tailored to the users’ needs: bending magnet and wiggler radiation is broadband, undulator radiation has narrow spectral lines. X-ray FELs are the brightest coherent X-ray sources with high photon flux, femtosecond pulses, full transverse coherence, partial temporal coherence (SASE), and narrow spectral lines with seeding techniques. New developments in electron accelerators and radiation production can potentially lead to more compact sources of coherent X-rays.

  19. X-Ray Detection Visits the Classroom

    ERIC Educational Resources Information Center

    Peralta, Luis; Farinha, Ana; Pinto, Ana

    2008-01-01

    Film has been used to detect x-rays since the early days of their discovery by Rontgen. Although nowadays superseded by other techniques, film still provides a cheap means of x-ray detection, making it attractive in high-school or undergraduate university courses. If some sort of quantitative result is required, the film's optical absorbance or…

  20. Coccidioidomycosis - chest x-ray (image)

    MedlinePlus

    This chest x-ray shows the affects of a fungal infection, coccidioidomycosis. In the middle of the left lung (seen on the ... defined borders. Other diseases that may explain these x-ray findings include lung abscesses, chronic pulmonary tuberculosis, chronic ...

  1. The future in X-ray surveys

    NASA Astrophysics Data System (ADS)

    Hasinger, Günther

    2015-08-01

    I will chair this "Way Forward" discusson about the future in X-ray Surveys at the Focus Meeting #6Cosmological X-ray Surveys: probing the Hot and Energetic Cosmos. Participants will be R. Gilli,G. Pratt, G. Fabbiano, X. Barcons, T. Ohashi, F. Harrison.

  2. X-rays from intermediate mass stars

    NASA Astrophysics Data System (ADS)

    Robrade, Jan

    I will review the X-ray properties of intermediate mass stars and discuss possible X-ray generating mechanisms. Main-sequence stars of spectral type mid B to mid A neither drive sufficiently strong winds to produce shock generated X-rays, nor possess an outer convection zone to generate dynamo driven magnetic activity and coronae. Consequently they should be virtually X-ray dark and occasionally detected X-ray emission was usually attributed to undetected low-mass companions. However, in magnetic intermediate mass stars, the Ap/Bp stars, a different X-ray production mechanism may operate. It is termed the magnetically channeled wind-shock model, where the stellar wind from both hemispheres is channelled towards the equatorial plane, collides and forms a rigidly rotating disk around the star. The strong shocks of the nearly head-on wind collision as well as the existence of magnetically confined plasma in a dynamic circumstellar disk can lead to diverse X-ray phenomena. In this sense Ap/Bp stars bridge the 'classical' X-ray regimes of cool and hot stars.

  3. The Advanced X-Ray Astrophysics Facility. Observing the Universe in X-Rays

    NASA Technical Reports Server (NTRS)

    Neal, V.

    1984-01-01

    An overview of the Advanced X ray Astronophysics Facility (AXAF) program is presented. Beginning with a brief introduction to X ray astrophysics, the AXAF observatory is described including the onboard instrumentation and system capabilities. Possible X ray sources suitable for AXAF observation are identified and defined.

  4. White beam x-ray waveguide optics

    SciTech Connect

    Jarre, A.; Salditt, T.; Panzner, T.; Pietsch, U.; Pfeiffer, F.

    2004-07-12

    We report a white beam x-ray waveguide (WG) experiment. A resonant beam coupler x-ray waveguide (RBC) is used simultaneously as a broad bandpass (or multibandpass) monochromator and as a beam compressor. We show that, depending on the geometrical properties of the WG, the exiting beam consists of a defined number of wavelengths which can be shifted by changing the angle of incidence of the white x-ray synchrotron beam. The characteristic far-field pattern is recorded as a function of exit angle and energy. This x-ray optical setup may be used to enhance the intensity of coherent x-ray WG beams since the full energetic acceptance of the WG mode is transmitted.

  5. Solar x ray astronomy rocket program

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The dynamics were studied of the solar corona through the imaging of large scale coronal structures with AS&E High Resolution Soft X ray Imaging Solar Sounding Rocket Payload. The proposal for this program outlined a plan of research based on the construction of a high sensitivity X ray telescope from the optical and electronic components of the previous flight of this payload (36.038CS). Specifically, the X ray sensitive CCD camera was to be placed in the prime focus of the grazing incidence X ray mirror. The improved quantum efficiency of the CCD detector (over the film which had previously been used) allows quantitative measurements of temperature and emission measure in regions of low x ray emission such as helmet streamers beyond 1.2 solar radii or coronal holes. Furthermore, the improved sensitivity of the CCD allows short exposures of bright objects to study unexplored temporal regimes of active region loop evolution.

  6. Handbook Of X-ray Astronomy

    NASA Astrophysics Data System (ADS)

    Arnaud, Keith A.; Smith, R. K.; Siemiginowska, A.; Edgar, R. J.; Grant, C. E.; Kuntz, K. D.; Schwartz, D. A.

    2011-09-01

    This poster advertises a book to be published in September 2011 by Cambridge University Press. Written for graduate students, professional astronomers and researchers who want to start working in this field, this book is a practical guide to x-ray astronomy. The handbook begins with x-ray optics, basic detector physics and CCDs, before focussing on data analysis. It introduces the reduction and calibration of x-ray data, scientific analysis, archives, statistical issues and the particular problems of highly extended sources. The book describes the main hardware used in x-ray astronomy, emphasizing the implications for data analysis. The concepts behind common x-ray astronomy data analysis software are explained. The appendices present reference material often required during data analysis.

  7. X-ray diffraction: instrumentation and applications.

    PubMed

    Bunaciu, Andrei A; Udriştioiu, Elena Gabriela; Aboul-Enein, Hassan Y

    2015-01-01

    X-ray diffraction (XRD) is a powerful nondestructive technique for characterizing crystalline materials. It provides information on structures, phases, preferred crystal orientations (texture), and other structural parameters, such as average grain size, crystallinity, strain, and crystal defects. X-ray diffraction peaks are produced by constructive interference of a monochromatic beam of X-rays scattered at specific angles from each set of lattice planes in a sample. The peak intensities are determined by the distribution of atoms within the lattice. Consequently, the X-ray diffraction pattern is the fingerprint of periodic atomic arrangements in a given material. This review summarizes the scientific trends associated with the rapid development of the technique of X-ray diffraction over the past five years pertaining to the fields of pharmaceuticals, forensic science, geological applications, microelectronics, and glass manufacturing, as well as in corrosion analysis.

  8. Apollo 15 X-ray fluorescence experiment

    NASA Technical Reports Server (NTRS)

    Adler, I.; Trombka, J.; Gerard, J.; Schmadebeck, R.; Lowman, P.; Blodgett, H.; Yin, L.; Eller, E.; Lamothe, R.; Gorenstein, P.

    1971-01-01

    The X-ray fluorescence spectrometer, carried in the SIM bay of the command service module was employed principally for compositional mapping of the lunar surface while in lunar orbit, and secondarily, for X-ray astronomical observations during the trans-earth coast. The lunar surface measurements involved observations of the intensity and characteristics energy distribution of the secondary or fluorescent X-rays produced by the interaction of solar X-rays with the lunar surface. The astronomical observations consisted of relatively long periods of measurements of X-rays from pre-selected galactic sources such as Cyg-X-1 and Sco X-1 as well as from the galactic poles.

  9. X-rays from hot subdwarfs

    NASA Astrophysics Data System (ADS)

    Mereghetti, Sandro; La Palombara, Nicola

    2016-09-01

    Thanks to the high sensitivity of the instruments on board the XMM-Newton and Chandra satellites, it has become possible to explore the properties of the X-ray emission from hot subdwarfs. The small but growing sample of hot subdwarfs detected in X-rays includes binary systems, in which the X-rays result from wind accretion onto a compact companion (white dwarf or neutron star), as well as isolated sdO stars in which X-rays are probably due to shock instabilities in the wind. X-ray observations of these low mass stars provide information which can be useful also for our understanding of the winds of more luminous and massive early-type stars and can lead to the discovery of particularly interesting binary systems.

  10. X-Rays from Green Pea Analogs

    NASA Astrophysics Data System (ADS)

    Brorby, Matthew

    2014-09-01

    X-rays may have contributed to the heating and reionization of the IGM in the early universe. High mass X-ray binaries (HMXB) within small, low-metallicity galaxies are expected to be the main source of X-rays at this time. Since studying these high-redshift galaxies is currently impossible, we turn to local analogs that have the same properties the galaxies in the early are expected to have. A number of recent studies have shown an enhanced number of HMXBs in nearby low metallicity galaxies. We propose to observe a sample of metal-deficient luminous compact galaxies (LCG) in order to determine if the X-ray luminosity is enhanced relative to SFR, thereby providing further evidence to the importance of X-rays in the early universe.

  11. Quantitative Measurements of X-ray Intensity

    SciTech Connect

    Haugh, M. J., Schneider, M.

    2011-09-01

    This chapter describes the characterization of several X-ray sources and their use in calibrating different types of X-ray cameras at National Security Technologies, LLC (NSTec). The cameras are employed in experimental plasma studies at Lawrence Livermore National Laboratory (LLNL), including the National Ignition Facility (NIF). The sources provide X-rays in the energy range from several hundred eV to 110 keV. The key to this effort is measuring the X-ray beam intensity accurately and traceable to international standards. This is accomplished using photodiodes of several types that are calibrated using radioactive sources and a synchrotron source using methods and materials that are traceable to the U.S. National Institute of Standards and Technology (NIST). The accreditation procedures are described. The chapter begins with an introduction to the fundamental concepts of X-ray physics. The types of X-ray sources that are used for device calibration are described. The next section describes the photodiode types that are used for measuring X-ray intensity: power measuring photodiodes, energy dispersive photodiodes, and cameras comprising photodiodes as pixel elements. Following their description, the methods used to calibrate the primary detectors, the power measuring photodiodes and the energy dispersive photodiodes, as well as the method used to get traceability to international standards are described. The X-ray source beams can then be measured using the primary detectors. The final section then describes the use of the calibrated X-ray beams to calibrate X-ray cameras. Many of the references are web sites that provide databases, explanations of the data and how it was generated, and data calculations for specific cases. Several general reference books related to the major topics are included. Papers expanding some subjects are cited.

  12. Detection of x ray sources in PROS

    NASA Technical Reports Server (NTRS)

    Deponte, J.; Primini, F. A.

    1992-01-01

    The problem of detecting discrete sources in x-ray images has much in common with the problem of automatic source detection at other wavelengths. In all cases, one searches for positive brightness enhancements exceeding a certain threshold, which appear consistent with what one expects for a point source, in the presence of a (possibly) spatially variable background. Multidimensional point spread functions (e.g., dependent on detector position and photon energy) are also common. At the same time, the problem in x-ray astronomy has some unique aspects. For example, for typical x-ray exposures in current or recent observatories, the number of available pixels far exceeds the number of actual x-ray events, so Poisson, rather than Gaussian statistics apply. Further, extended cosmic x-ray sources are common, and one often desires to detect point sources in the vicinity or even within bright, diffuse x-ray emission. Finally, support structures in x-ray detectors often cast sharp shadows in x-ray images making it necessary to detect sources in a region of rapidly varying exposure. We have developed a source detection package within the IRAF/PROS environment which attempts to deal with some of the problems of x-ray source detection. We have patterned our package after the successful Einstein Observatory x-ray source detection programs. However, we have attempted to improve the flexibility and accessibility of the functions and to provide a graphical front-end for the user. Our philosophy has been to use standard IRAF tasks whenever possible for image manipulation and to separate general functions from mission-specific ones. We will report on the current status of the package and discuss future developments, including simulation tasks, to allow the user to assess detection efficiency and source significance, tasks to determine source intensity, and alternative detection algorithms.

  13. X-ray structure analysis of a metalloprotein with enhanced active-site resolution using in situ x-ray absorption near edge structure spectroscopy.

    PubMed

    Arcovito, Alessandro; Benfatto, Maurizio; Cianci, Michele; Hasnain, S Samar; Nienhaus, Karin; Nienhaus, G Ulrich; Savino, Carmelinda; Strange, Richard W; Vallone, Beatrice; Della Longa, Stefano

    2007-04-10

    X-ray absorption spectroscopy is exquisitely sensitive to the coordination geometry of an absorbing atom and therefore allows bond distances and angles of the surrounding atomic cluster to be measured with atomic resolution. By contrast, the accuracy and resolution of metalloprotein active sites obtainable from x-ray crystallography are often insufficient to analyze the electronic properties of the metals that are essential for their biological functions. Here, we demonstrate that the combination of both methods on the same metalloprotein single crystal yields a structural model of the protein with exceptional active-site resolution. To this end, we have collected an x-ray diffraction data set to 1.4-A resolution and Fe K-edge polarized x-ray absorption near edge structure (XANES) spectra on the same cyanomet sperm whale myoglobin crystal. The XANES spectra were quantitatively analyzed by using a method based on the multiple scattering approach, which yielded Fe-heme structural parameters with +/-(0.02-0.07)-A accuracy on the atomic distances and +/-7 degrees on the Fe-CN angle. These XANES-derived parameters were subsequently used as restraints in the crystal structure refinement. By combining XANES and x-ray diffraction, we have obtained an cyanomet sperm whale myoglobin structural model with a higher precision of the bond lengths and angles at the active site than would have been possible with crystallographic analysis alone.

  14. X-ray structure determination using low-resolution electron microscopy maps for molecular replacement.

    PubMed

    Jackson, Ryan N; McCoy, Airlie J; Terwilliger, Thomas C; Read, Randy J; Wiedenheft, Blake

    2015-09-01

    Structures of multisubunit macromolecular machines are primarily determined either by electron microscopy (EM) or by X-ray crystallography. In many cases, a structure for a complex can be obtained at low resolution (at a coarse level of detail) with EM and at a higher resolution (with finer detail) by X-ray crystallography. The integration of these two structural techniques is becoming increasingly important for the generation of atomic models of macromolecular complexes. A low-resolution EM image can be a powerful tool for obtaining the 'phase' information that is missing from an X-ray crystallography experiment; however, integration of EM and X-ray diffraction data has been technically challenging. Here we present a step-by-step protocol that explains how low-resolution EM maps can be placed in the crystallographic unit cell by molecular replacement, and how initial phases computed from the placed EM density are extended to high resolution by averaging maps over noncrystallographic symmetry. As the resolution gap between EM and X-ray crystallography continues to narrow, the use of EM maps to help with X-ray crystal structure determination, as described in this protocol, will become increasingly effective.

  15. First Results from a Microfocus X-Ray System for Macromolecular Crystallography

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Ciszak, Ewa; Ponomarev, Igor; Gibson, Walter; Joy, Marshall

    1999-01-01

    The design and performance of a 40 Watt laboratory crystallography system optimized for the structure determination of small protein crystals are described. This system combines a microfocus x-ray generator (40 microns FWHM spot size at a power level of 40 Watts) and a short focal length (F = 2.6 mm) polycapillary collimating optic, and produces a small diameter quasi-parallel x-ray beam. Measurements of x-ray flux, divergence and spectral purity of the resulting x-ray beam are presented. The x-ray flux in a 250 microns diameter aperture produced by the microfocus system is 14.7 times higher .than that from a 3.15 kW rotating anode generator equipped with graphite monochromator. Crystallography data taken with the microfocus system are presented, and indicate that the divergence and spectral purity of the x-ray are sufficient to refine the diffraction data using a standard crystallographic software. Significant additional improvements in flux and beam divergence are possible, and plans for achieving these coals are discussed.

  16. Recent X-ray Variability of Eta Car Approaching The X-ray Eclipse

    NASA Technical Reports Server (NTRS)

    Corcoran, M.; Swank, J. H.; Ishibashi, K.; Gull, T.; Humphreys, R.; Damineli, A.; Walborn, N.; Hillier, D. J.; Davidson, K.; White, S. M.

    2002-01-01

    We discuss recent X-ray spectral variability of the supermassive star Eta Car in the interval since the last X-ray eclipse in 1998. We concentrate on the interval just prior to the next X-ray eclipse which is expected to occur in June 2003. We compare the X-ray behavior during the 2001-2003 cycle with the previous cycle (1996-1998) and note similarities and differences in the temporal X-ray behavior. We also compare a recent X-ray observation of Eta Car obtained with the Chandra high energy transmission grating in October 2002 with an earlier observation from Nov 2002, and interpret these results in terms of the proposed colliding wind binary model for the star. In addition we discuss planned observations for the upcoming X-ray eclipse.

  17. Selection of patients for x-ray examinations: Chest x-ray screening examinations

    SciTech Connect

    Not Available

    1983-08-01

    Five chest x-ray referral criteria statements have been developed and unanimously endorsed by a panel of physicians convened as part of a major voluntary cooperative effort between FDA's National Center for Devices and Radiological Health (NCDRH) and the medical professional community. The referral criteria statements include recommendations concerning the following applications of chest x-ray screening: mandated routine chest x-ray screening examinations, routine prenatal chest x-ray examinations, routine hospital admission chest x-ray examinations, chest x-ray examinations for tuberculosis detection and control, and routine chest x-ray examinations for occupational medicine. The complete text of the five referral criterial statements plus a brief discussion of the rationale for the development of each statement is presented.

  18. Observation of living cells by x-ray microscopy with a laser-plasma x-ray source

    NASA Astrophysics Data System (ADS)

    Tomie, Toshihisa; Shimizu, Hazime; Majima, Toshikazu; Yamada, Mitsuo; Kanayama, Toshihiko; Yano, M.; Kondo, H.

    1991-12-01

    We studied laser-produced plasma as an x-ray source for x-ray microscopy. Using water- window x rays, contact x-ray images of living sea urchin sperm were taken by a 500 picosecond x-ray pulse. The resist relief was examined by atomic force microscope and informations characteristic of x-ray microscopy were obtained. The finest feature noticed in the x-ray image was 0.1 micrometers .

  19. Toward active x-ray telescopes

    NASA Astrophysics Data System (ADS)

    O'Dell, Stephen L.; Atkins, Carolyn; Button, Timothy W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peter; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Kolodziejczak, Jeffery J.; Michette, Alan G.; Ramsey, Brian D.; Reid, Paul B.; Rodriguez Sanmartin, Daniel; Saha, Timo T.; Schwartz, Daniel A.; Trolier-McKinstry, Susan; Wilke, Rudeger H. T.; Willingale, Richard; Zhang, William W.

    2011-09-01

    Future x-ray observatories will require high-resolution (< 1") optics with very-large-aperture (> 25 m2) areas. Even with the next generation of heavy-lift launch vehicles, launch-mass constraints and aperture-area requirements will limit the areal density of the grazing-incidence mirrors to about 1 kg/m2 or less. Achieving sub-arcsecond x-ray imaging with such lightweight mirrors will require excellent mirror surfaces, precise and stable alignment, and exceptional stiffness or deformation compensation. Attaining and maintaining alignment and figure control will likely involve active (in-space adjustable) x-ray optics. In contrast with infrared and visible astronomy, active optics for x-ray astronomy is in its infancy. In the middle of the past decade, two efforts began to advance technologies for adaptive x-ray telescopes: The Smart X-ray Optics (SXO) Basic Technology project in the United Kingdom (UK) and the Generation-X (Gen-X) concept studies in the United States (US). This paper discusses relevant technological issues and summarizes progress toward active x-ray telescopes.

  20. Toward Active X-ray Telescopes II

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Aldroft, Thomas L.; Atkins, Carolyn; Button, Timothy W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peter; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Johnson-Wilke, Raegan L.; Kolodziejczak, Jeffery J.; Lillie, Charles F.; Michette, Alan G.; Ramsey, Brian D.; Reid, Paul B.; Sanmartin, Daniel Rodriguez; Saha, Timo T.; Schwartz, Daniel A.; Trolier-McKinstry, Susan E.; Ulmer, Melville P.; Wilke, Rudeger H. T.; Willingale, Richard; Zhang, William W.

    2012-01-01

    In the half century since the initial discovery of an astronomical (non-solar) x-ray source, the sensitivity for detection of cosmic x-ray sources has improved by ten orders of magnitude. Largely responsible for this dramatic progress has been the refinement of the (grazing-incidence) focusing x-ray telescope. The future of x-ray astronomy relies upon the development of x-ray telescopes with larger aperture areas (greater than 1 m2) and finer angular resolution (less than 1.). Combined with the special requirements of grazing-incidence optics, the mass and envelope constraints of space-borne telescopes render such advances technologically challenging.requiring precision fabrication, alignment, and assembly of large areas (greater than 100 m2) of lightweight (approximately 1 kg m2 areal density) mirrors. Achieving precise and stable alignment and figure control may entail active (in-space adjustable) x-ray optics. This paper discusses relevant programmatic and technological issues and summarizes progress toward active x-ray telescopes.

  1. Toward Adaptive X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Atkins, Carolyn; Button, Tim W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peer; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Kolodziejczak, Jeffrey J.; Michette, Alan G.; Ramsey, Brian D.; Reid, Paul B.; Rodriguez Sanmartin, Daniel; Saha, Timo T.; Schwartz, Daniel A.; Trolier-McKinstry, Susan; Wilke, Rudeger H. T.; Willingale, Richard; Zhang, William W.

    2011-01-01

    Future x-ray observatories will require high-resolution (less than 1 inch) optics with very-large-aperture (greater than 25 square meter) areas. Even with the next generation of heavy-lift launch vehicles, launch-mass constraints and aperture-area requirements will limit the surface areal density of the grazing-incidence mirrors to about 1 kilogram per square meter or less. Achieving sub-arcsecond x-ray imaging with such lightweight mirrors will require excellent mirror surfaces, precise and stable alignment, and exceptional stiffness or deformation compensation. Attaining and maintaining alignment and figure control will likely involve adaptive (in-space adjustable) x-ray optics. In contrast with infrared and visible astronomy, adaptive optics for x-ray astronomy is in its infancy. In the middle of the past decade, two efforts began to advance technologies for adaptive x-ray telescopes: The Generation-X (Gen-X) concept studies in the United States, and the Smart X-ray Optics (SXO) Basic Technology project in the United Kingdom. This paper discusses relevant technological issues and summarizes progress toward adaptive x-ray telescopes.

  2. X-ray monitoring for astrophysical applications

    NASA Astrophysics Data System (ADS)

    Pina, L.; Burrows, D.; Cash, W.; Cerna, D.; Gorenstein, P.; Hudec, R.; Inneman, A.; Jakubek, J.; Marsikova, V.; Sieger, L.; Tichy, V.

    2014-09-01

    This work addresses the issue of X-ray monitoring for astrophysical applications. The proposed wide-field optical system has not been used in space yet. The proposed novel approach is based on the use of 1D "Lobster eye" optics in combination with Timepix X-ray detector in the energy range 3 - 40 keV. The proposed project includes theoretical study and a functional sample of the Timepix X-ray detector with multifoil wide-field X-ray "Lobster eye" optics. Using optics to focus X-rays on a detector is the only solution in cases the intensity of impinging X-ray radiation is below the sensitivity of the detector, e.g. while monitoring astrophysical objects in space, or phenomena in the Earth's atmosphere. The optical system could be used in a student rocket experiment at University of Colorado. Ideal opportunity is to extend the CubeSat of Pennsylvania State University with the hard X-ray telescope demonstrator consisting of an optical module and Timepix detector.

  3. GEMS X-ray Polarimeter Performance Simulations

    NASA Technical Reports Server (NTRS)

    Baumgartner, Wayne H.; Strohmayer, Tod; Kallman, Tim; Black, J. Kevin; Hill, Joanne; Swank, Jean

    2012-01-01

    The Gravity and Extreme Magnetism Small explorer (GEMS) is an X-ray polarization telescope selected as a NASA small explorer satellite mission. The X-ray Polarimeter on GEMS uses a Time Projection Chamber gas proportional counter to measure the polarization of astrophysical X-rays in the 2-10 keV band by sensing the direction of the track of the primary photoelectron excited by the incident X-ray. We have simulated the expected sensitivity of the polarimeter to polarized X-rays. We use the simulation package Penelope to model the physics of the interaction of the initial photoelectron with the detector gas and to determine the distribution of charge deposited in the detector volume. We then model the charge diffusion in the detector,and produce simulated track images. Within the track reconstruction algorithm we apply cuts on the track shape and focus on the initial photoelectron direction in order to maximize the overall sensitivity of the instrument, using this technique we have predicted instrument modulation factors nu(sub 100) for 100% polarized X-rays ranging from 10% to over 60% across the 2-10 keV X-ray band. We also discuss the simulation program used to develop and model some of the algorithms used for triggering, and energy measurement of events in the polarimeter.

  4. Globular cluster x-ray sources.

    PubMed

    Pooley, David

    2010-04-20

    Globular clusters and x-ray astronomy have a long and fruitful history. Uhuru and OSO-7 revealed highly luminous (> 10(36) ergs(-1)) x-ray sources in globular clusters, and Einstein and ROSAT revealed a larger population of low-luminosity (< 10(33) ergs(-1)) x-ray sources. It was realized early on that the high-luminosity sources were low-mass x-ray binaries in outburst and that they were orders of magnitude more abundant per unit mass in globular clusters than in the rest of the galaxy. However, the low-luminosity sources proved difficult to classify. Many ideas were put forth--low-mass x-ray binaries in quiescence (qLMXBs), cataclysmic variables (CVs), active main-sequence binaries (ABs), and millisecond pulsars (MSPs)--but secure identifications were scarce. In ROSAT observations of 55 clusters, about 25 low-luminosity sources were found. Chandra has now observed over 80 Galactic globular clusters, and these observations have revealed over 1,500 x-ray sources. The superb angular resolution has allowed for many counterpart identifications, providing clues to the nature of this population. It is a heterogeneous mix of qLMXBs, CVs, ABs, and MSPs, and it has been shown that the qLMXBs and CVs are both, in part, overabundant like the luminous LMXBs. The number of x-ray sources in a cluster correlates very well with its encounter frequency. This points to dynamical formation scenarios for the x-ray sources and shows them to be excellent tracers of the complicated internal dynamics. The relation between the encounter frequency and the number of x-ray sources has been used to suggest that we have misunderstood the dynamical states of globular clusters.

  5. Quasar x-ray spectra revisited

    NASA Technical Reports Server (NTRS)

    Shastri, P.; Wilkes, B. J.; Elvis, M.; Mcdowell, J.

    1992-01-01

    A sample of 45 quasars observed by the Imaging Proportional Counter (IPC) on the Einstein satellite is used to re-examine the relationship between the soft (0.2-3.5 keV) X-ray energy index and radio-loudness. We found the following: (1) the tendency for radio-loud quasars to have systematically flatter X-ray slopes than radio-quiet quasars (RQQ's) is confirmed with the soft X-ray excess having negligible effect; (2) there is a tendency for the flatness of the X-ray slope to correlate with radio core-dominance for radio-loud quasars, suggesting that a component of the X-ray emission is relativistically beamed; (3) for the RQQ's the soft X-ray slopes, with a mean of approximately 1.0, are consistent with the slopes found at higher energies (2-10 keV) although steeper than those observed for Seyfert 1 galaxies (also 2-10 keV) where the reflection model gives a good fit to the data; (4) the correlation of FeII emission line strength with X-ray energy index is confirmed for radio-quiet quasars using a subset of 18 quasars. The radio-loud quasars show no evidence for a correlation. This relation suggests a connection between the ionizing continuum and the line emission from the broad emission line region (BELR) of radio-quiet quasars, but in the opposite sense to that predicted by current photoionization models; and (5) the correlations of X-ray slope with radio core dominance and FeII equivalent width within the radio-loud and radio-quiet sub-classes respectively imply that the observed wide range of X-ray spectral slopes is real rather than due to the large measuring uncertainties for individual objects.

  6. Globular cluster x-ray sources

    PubMed Central

    Pooley, David

    2010-01-01

    Globular clusters and x-ray astronomy have a long and fruitful history. Uhuru and OSO-7 revealed highly luminous (> 1036 ergs-1) x-ray sources in globular clusters, and Einstein and ROSAT revealed a larger population of low-luminosity (< 1033 ergs-1) x-ray sources. It was realized early on that the high-luminosity sources were low-mass x-ray binaries in outburst and that they were orders of magnitude more abundant per unit mass in globular clusters than in the rest of the galaxy. However, the low-luminosity sources proved difficult to classify. Many ideas were put forth—low-mass x-ray binaries in quiescence (qLMXBs), cataclysmic variables (CVs), active main-sequence binaries (ABs), and millisecond pulsars (MSPs)—but secure identifications were scarce. In ROSAT observations of 55 clusters, about 25 low-luminosity sources were found. Chandra has now observed over 80 Galactic globular clusters, and these observations have revealed over 1,500 x-ray sources. The superb angular resolution has allowed for many counterpart identifications, providing clues to the nature of this population. It is a heterogeneous mix of qLMXBs, CVs, ABs, and MSPs, and it has been shown that the qLMXBs and CVs are both, in part, overabundant like the luminous LMXBs. The number of x-ray sources in a cluster correlates very well with its encounter frequency. This points to dynamical formation scenarios for the x-ray sources and shows them to be excellent tracers of the complicated internal dynamics. The relation between the encounter frequency and the number of x-ray sources has been used to suggest that we have misunderstood the dynamical states of globular clusters. PMID:20404204

  7. X-ray in Zeta-Ori

    NASA Astrophysics Data System (ADS)

    López-García, M. A.; López-Santiago, J. L.; Albacete-Colombo, J. F.; De Castro, E.

    2013-05-01

    Nearby star-forming regions are ideal laboratories to study high-energy emission processes but they usually present high absorption what makes difficult to detect the stellar population inside the molecular complex. As young late-type stars show high X-ray emission and X-ray photons are little absorbed by interstellar material, X-ray dedicated surveys are an excellent tool to detect the low-mass stellar population in optically absorbed regions. In this work, we present a study of the star-forming region Zeta-Ori and its surroundings. We combine optical, infrared and X-ray data. Properties of the X-ray emiting plasma and infrared features of the young stellar objects detected in the XMM-Newton observation are determined. The southern part of the Orion B giant molecular cloud complex harbor other star forming regions, as NGC 2023 and NGC 2024, we use this regions to compare. We study the spectral energy distribution of X-ray sources. Combining these results with infrared, the X-ray sources are classified as class I, class II and class III objects. The X-ray spectrum and ligth curve of detected X-ray sources is analyzed to found flares. We use a extincion-independent index to select the stars with circumstellar disk, and study the relationship between the present of disk and the flare energy. The results are similar to others studies and we conclude that the coronal properties of class II and class III objects in this region do not differ significantly from each other and from stars of similar infrared class in the ONC.

  8. Crystallographic image reconstruction problem

    NASA Astrophysics Data System (ADS)

    ten Eyck, Lynn F.

    1993-11-01

    The crystallographic X-ray diffraction experiment gives the amplitudes of the Fourier series expansion of the electron density distribution within the crystal. The 'phase problem' in crystallography is the determination of the phase angles of the Fourier coefficients required to calculate the Fourier synthesis and reveal the molecular structure. The magnitude of this task varies enormously as the size of the structures ranges from a few atoms to thousands of atoms, and the number of Fourier coefficients ranges from hundreds to hundreds of thousands. The issue is further complicated for large structures by limited resolution. This problem is solved for 'small' molecules (up to 200 atoms and a few thousand Fourier coefficients) by methods based on probabilistic models which depend on atomic resolution. These methods generally fail for larger structures such as proteins. The phase problem for protein molecules is generally solved either by laborious experimental methods or by exploiting known similarities to solved structures. Various direct methods have been attempted for very large structures over the past 15 years, with gradually improving results -- but so far no complete success. This paper reviews the features of the crystallographic image reconstruction problem which render it recalcitrant, and describes recent encouraging progress in the application of maximum entropy methods to this problem.

  9. Imaging Cellular Architecture with X-rays

    PubMed Central

    Larabell, Carolyn A.; Nugent, Keith A.

    2012-01-01

    X-ray imaging of biological samples is progressing rapidly. In this paper we review the progress to date in high resolution imaging of cellular architecture. In particular we survey the progress in soft X-ray tomography and argue that the field is coming of age and that important biological insights are starting to emerge. We then review the new ideas based on coherent diffraction. These methods are at a much earlier stage of development but, as they eliminate the need for X-ray optics, have the capacity to provide substantially better spatial resolution than zone plate based methods. PMID:20869868

  10. The Future of X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.

    2013-01-01

    The most important next step is the development of X-ray optics comparable to (or better than) Chandra in angular resolution that far exceed Chandra s effective area. Use the long delay to establish an adequately funded, competitive technology program along the lines I have recommended. Don't be diverted from this objective, except for Explorer-class missions. Progress in X-ray optics, with emphasis on the angular resolution, is central to the paradigm-shifting discoveries and the contributions of X-ray astronomy to multiwavelength astrophysics over the past 51 years.

  11. X-ray microscopy using synchrotron radiation

    SciTech Connect

    Jones, K.W.; Gordon, B.M.; Hanson, A.L.; Pounds, J.G.; Rivers, M.L.; Schidlovsky, G.; Smith, J.V.; Spanne, P.; Sutton, S.R.

    1989-01-01

    The system for x-ray microscopy now being developed at the X-26 beam line of the Brookhaven National Synchrotron Light Source (NSLS) is described here. Examples of the use of x-ray microscopy for trace element geochemistry, biology and medicine, and materials investigations are given to emphasize the scientific applications of the technique. Future directions for the improvement and further development of the X-26 microscope and of the x-ray microscopy field in general are discussed. 11 refs., 7 figs.

  12. X-ray streak crystal spectography

    SciTech Connect

    Kauffman, R.L.; Brown, T.; Medecki, H.

    1983-07-01

    We have built an x-ray streaked crystal spectrograph for making time-resolved x-ray spectral measurements. This instrument can access Bragg angles from 11/sup 0/ to 38/sup 0/ and x-ray spectra from 200 eV to greater than 10 keV. We have demonstrated resolving powers, E/..delta..E > 200 at 1 keV and time resolution less than 20 psec. A description of the instrument and an example of the data is given.

  13. X-ray phase-contrast methods

    SciTech Connect

    Lider, V. V. Kovalchuk, M. V.

    2013-11-15

    This review is devoted to a comparative description of the methods for forming X-ray phase-contrast images of weakly absorbing (phase) objects. These include the crystal interferometer method, the Talbot interferometer method, diffraction-enhanced X-ray imaging, and the in-line method. The potential of their practical application in various fields of science and technology is discussed. The publications on the development and optimization of X-ray phase-contrast methods and the experimental study of phase objects are analyzed.

  14. Diffractive Imaging Using Partially Coherent X Rays

    NASA Astrophysics Data System (ADS)

    Whitehead, L. W.; Williams, G. J.; Quiney, H. M.; Vine, D. J.; Dilanian, R. A.; Flewett, S.; Nugent, K. A.; Peele, A. G.; Balaur, E.; McNulty, I.

    2009-12-01

    The measured spatial coherence characteristics of the illumination used in a diffractive imaging experiment are incorporated in an algorithm that reconstructs the complex transmission function of an object from experimental x-ray diffraction data using 1.4 keV x rays. Conventional coherent diffractive imaging, which assumes full spatial coherence, is a limiting case of our approach. Even in cases in which the deviation from full spatial coherence is small, we demonstrate a significant improvement in the quality of wave field reconstructions. Our formulation is applicable to x-ray and electron diffraction imaging techniques provided that the spatial coherence properties of the illumination are known or can be measured.

  15. New opportunities in X-ray tomography

    NASA Astrophysics Data System (ADS)

    Peele, A. G.; Quiney, H. M.; Dhal, B. B.; Mancuso, A. P.; Arhatari, B.; Nugent, K. A.

    2006-11-01

    We discuss standard X-ray-imaging techniques. Phase-imaging methods and a new class of nano-focus and nano-resolution laboratory systems offer new opportunities in true laboratory-based X-ray microtomography with a host of possible applications that have mainly been demonstrated only at synchrotron sources. Notwithstanding these advances, the diffraction limit for X-ray-imaging methods is a long way off. We preview the link between high-resolution 'standard' imaging schemes and the new field of coherent diffractive imaging.

  16. Large Area X-Ray Spectroscopy Mission

    NASA Technical Reports Server (NTRS)

    Tananbaum, H.

    1997-01-01

    The Large Area X-ray Spectroscopy (LAXS) mission concept study continues to evolve strongly following the merging of the LAXS mission with the Next Generation X-ray Observatory (NGXO, PI: Nick White) into the re-named High Throughput X-ray Spectroscopy (HTXS) Mission. HTXS retains key elements of the LAXS proposal, including the use of multiple satellites for risk-reduction and cost savings. A key achievement of the program has been the recommendation by the Structure and Evolution of the Universe (SEUS) (April 1997) for a new start for the HTXS mission in the 2000-2004 timeframe.

  17. X-ray Interferometer Using Prism Optics

    SciTech Connect

    Suzuki, Yoshio

    2004-05-12

    Two-beam X-ray interferometer using refractive optics has been developed. A prism made of acrylic resin is used as the beam deflector for hard X-ray wavefront dividing interferometer. This configuration is the same as that of the Fresnel's bi-prism interferometer or the Leith-Upatnieks type two-beam holography in visible light region. Therefore, quantitative analysis of the degree of transversal coherence can be performed by measuring the visibility of interference fringes. It is also possible to realize two-beam holographic imaging in hard X-ray regions.

  18. X-ray transmission microscope development

    NASA Technical Reports Server (NTRS)

    Kaukler, William F.; Rosenberger, Franz E.

    1995-01-01

    We are developing a hard x-ray microscope for direct observation of solidification dynamics in metal alloys and metal matrix composites. The Fein-Focus Inc. x-ray source was delivered in September and found to perform better than expected. Confirmed resolution of better than 2 micrometers was obtained and magnifications up to 800X were measured. Nickel beads of 30 micrometer diameter were easily detected through 6mm of aluminum. X-ray metallography was performed on several specimens showing high resolution and clear definition of 3-dimensional structures. Prototype furnace installed and tested.

  19. "X-Ray Transients in Star-Forming Regions" and "Hard X-Ray Emission from X-Ray Bursters"

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    This grant funded work on the analysis of data obtained with the Burst and Transient Experiment (BATSE) on the Compton Gamma-Ray Observatory. The goal of the work was to search for hard x-ray transients in star forming regions using the all-sky hard x-ray monitoring capability of BATSE. Our initial work lead to the discovery of a hard x-ray transient, GRO J1849-03. Follow-up observations of this source made with the Wide Field Camera on BeppoSAX showed that the source should be identified with the previously known x-ray pulsar GS 1843-02 which itself is identified with the x-ray source X1845-024 originally discovered with the SAS-3 satellite. Our identification of the source and measurement of the outburst recurrence time, lead to the identification of the source as a Be/X-ray binary with a spin period of 94.8 s and an orbital period of 241 days. The funding was used primarily for partial salary and travel support for John Tomsick, then a graduate student at Columbia University. John Tomsick, now Dr. Tomsick, received his Ph.D. from Columbia University in July 1999, based partially on results obtained under this investigation. He is now a postdoctoral research scientist at the University of California, San Diego.

  20. Dark-field hyperspectral X-ray imaging.

    PubMed

    Egan, Christopher K; Jacques, Simon D M; Connolley, Thomas; Wilson, Matthew D; Veale, Matthew C; Seller, Paul; Cernik, Robert J

    2014-05-01

    In recent times, there has been a drive to develop non-destructive X-ray imaging techniques that provide chemical or physical insight. To date, these methods have generally been limited; either requiring raster scanning of pencil beams, using narrow bandwidth radiation and/or limited to small samples. We have developed a novel full-field radiographic imaging technique that enables the entire physio-chemical state of an object to be imaged in a single snapshot. The method is sensitive to emitted and scattered radiation, using a spectral imaging detector and polychromatic hard X-radiation, making it particularly useful for studying large dense samples for materials science and engineering applications. The method and its extension to three-dimensional imaging is validated with a series of test objects and demonstrated to directly image the crystallographic preferred orientation and formed precipitates across an aluminium alloy friction stir weld section.

  1. Dark-field hyperspectral X-ray imaging

    PubMed Central

    Egan, Christopher K.; Jacques, Simon D. M.; Connolley, Thomas; Wilson, Matthew D.; Veale, Matthew C.; Seller, Paul; Cernik, Robert J.

    2014-01-01

    In recent times, there has been a drive to develop non-destructive X-ray imaging techniques that provide chemical or physical insight. To date, these methods have generally been limited; either requiring raster scanning of pencil beams, using narrow bandwidth radiation and/or limited to small samples. We have developed a novel full-field radiographic imaging technique that enables the entire physio-chemical state of an object to be imaged in a single snapshot. The method is sensitive to emitted and scattered radiation, using a spectral imaging detector and polychromatic hard X-radiation, making it particularly useful for studying large dense samples for materials science and engineering applications. The method and its extension to three-dimensional imaging is validated with a series of test objects and demonstrated to directly image the crystallographic preferred orientation and formed precipitates across an aluminium alloy friction stir weld section. PMID:24808753

  2. Powder X-ray diffraction laboratory, Reston, Virginia

    USGS Publications Warehouse

    Piatak, Nadine M.; Dulong, Frank T.; Jackson, John C.; Folger, Helen W.

    2014-01-01

    The powder x-ray diffraction (XRD) laboratory is managed jointly by the Eastern Mineral and Environmental Resources and Eastern Energy Resources Science Centers. Laboratory scientists collaborate on a wide variety of research problems involving other U.S. Geological Survey (USGS) science centers and government agencies, universities, and industry. Capabilities include identification and quantification of crystalline and amorphous phases, and crystallographic and atomic structure analysis for a wide variety of sample media. Customized laboratory procedures and analyses commonly are used to characterize non-routine samples including, but not limited to, organic and inorganic components in petroleum source rocks, ore and mine waste, clay minerals, and glassy phases. Procedures can be adapted to meet a variety of research objectives.

  3. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy.

    PubMed

    Miaja-Avila, L; O'Neil, G C; Uhlig, J; Cromer, C L; Dowell, M L; Jimenez, R; Hoover, A S; Silverman, K L; Ullom, J N

    2015-03-01

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼10(6) photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >10(7) laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments. PMID:26798792

  4. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    DOE PAGES

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also presentmore » data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.« less

  5. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy.

    PubMed

    Miaja-Avila, L; O'Neil, G C; Uhlig, J; Cromer, C L; Dowell, M L; Jimenez, R; Hoover, A S; Silverman, K L; Ullom, J N

    2015-03-01

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼10(6) photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >10(7) laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  6. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    SciTech Connect

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  7. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    PubMed Central

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; Cromer, C. L.; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-01-01

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments. PMID:26798792

  8. Interlaced X-ray diffraction computed tomography

    PubMed Central

    Vamvakeros, Antonios; Jacques, Simon D. M.; Di Michiel, Marco; Senecal, Pierre; Middelkoop, Vesna; Cernik, Robert J.; Beale, Andrew M.

    2016-01-01

    An X-ray diffraction computed tomography data-collection strategy that allows, post experiment, a choice between temporal and spatial resolution is reported. This strategy enables time-resolved studies on comparatively short timescales, or alternatively allows for improved spatial resolution if the system under study, or components within it, appear to be unchanging. The application of the method for studying an Mn–Na–W/SiO2 fixed-bed reactor in situ is demonstrated. Additionally, the opportunities to improve the data-collection strategy further, enabling post-collection tuning between statistical, temporal and spatial resolutions, are discussed. In principle, the interlaced scanning approach can also be applied to other pencil-beam tomographic techniques, like X-ray fluorescence computed tomography, X-ray absorption fine structure computed tomography, pair distribution function computed tomography and tomographic scanning transmission X-ray microscopy. PMID:27047305

  9. X-ray transmission microscope development

    NASA Astrophysics Data System (ADS)

    Kaukler, William F.; Rosenberger, Franz E.

    1995-08-01

    This report covers the third 6 month period, from February 28, 1995 to August 31, 1995, under this contract. The main efforts during this period were the construction of the X-ray furnace, evaluation and selection of the CCD technology for the X-ray camera, solidification experiments with Al alloys and Al-zirconia composites in the prototype furnace, evaluation of specimens for the particle pushing flight experiment - PEPSI, measurements of emitted spectra from X-ray source, testing of the high resolution X-ray test targets, and the establishment of criteria for and selection of peripheral equipment. In addition to these tasks, two presentations were prepared in this period; one for the AIAA Microgravity Symposium and another for the Gordon Conference on Gravitational Effects in Pyisico-Chemical Systems.

  10. Tsinghua Thomson scattering X-ray source

    NASA Astrophysics Data System (ADS)

    Tang, Chuanxiang; Huang, Wenhui; Li, Renkai; Du, Yingchao; Yan, Lixin; Shi, Jiaru; Du, Qiang; Yu, Peicheng; Chen, Huaibi; Du, Taibin; Cheng, Cheng; Lin, Yuzheng

    2009-09-01

    We proposed the Tsinghua Thomson scattering X-ray (TTX) source as an ultra-fast, high flux source for advanced X-ray imaging studies and applications. A linac system, which consists of an S-band photocathode RF gun, a SLAC type 3 m traveling wave tube and two X-band structures, generates ultra-short, high brightness electron pulses to scatter with tera-watt femto-second laser pulses. A compact low energy electron storage ring is also designed to dramatically enhance the average X-ray flux. In this paper, we present the simulation studies and optimized parameters of the electron and X-ray pulses. The construction and commissioning status of TTX is also reported.

  11. Spectra of cosmic x-ray sources

    SciTech Connect

    Holt, S.S.; Mccray, R.

    1982-02-01

    X-ray measurements provide the most direct probes of astrophysical environments with temperatures exceeding one million K. Progress in experimental research utilizing dispersive techniques (e.g., Bragg and grating spectroscopy) is considerably slower than that in areas utilizing photometric techniques, because of the relative inefficiency of the former for the weak X-ray signals from celestial sources. As a result, the term spectroscopy as applied to X-ray astronomy has traditionally satisfied a much less restrictive definition (in terms of resolving power) than it has in other wavebands. Until quite recently, resolving powers of order unity were perfectly respectable, and still provide (in most cases) the most useful spectroscopic data. In the broadest sense, X-ray photometric measurements are spectroscopic, insofar as they represent samples of the overall electromagnetic continua of celestial objects.

  12. Rosat and the X-ray universe

    SciTech Connect

    Beatty, J.K.

    1990-08-01

    A major new satellite (Rosat) promises to provide astronomers with a map of perhaps 100,000 beacons in the X-ray sky, fresh images of high-energy objects approaching the resolution of visible-light photographs, and a first-ever survey of the sky at extreme-ultraviolet wavelengths. The German and British governments along with NASA are participating in this program. The grazing incidence technique previously used by Einstein and other missions is used to bring the X-rays to a focus and thus to create images. The X-ray telescope is equipped with three instruments, though only one can occupy the focus at any given time. Two are redundant detectors called position-sensitive proportional counters. The whole-sky survey will yield a complete X-ray image of the celestial sphere with 1/2-arc-minute detail of sources large and small, not just crude scans by wide-angle sensors.

  13. X-ray microbeam for speech research

    NASA Astrophysics Data System (ADS)

    Thompson, Murray A.; Robl, Phillip E.

    A steerable X-ray beam system is being built for use in speech research. A beam of 150 keV to 600 keV electrons will be steered by a computer and the resulting X-rays will be selected by a pinhole to give a beam with a width of 0.6 mm. The X-ray beam will be used to follow about 8 gold pellets on tongue and throat surfaces at sampling frequencies of about 125 frames/s. The pattern recognition system and X-ray energies have been chosen to allow the tracking of pellets behind some teeth fillings of mercury amalgam and gold caps.

  14. X-ray holography in-flight

    NASA Astrophysics Data System (ADS)

    Gorkhover, Tais; Ulmer, Anatoli; Ferguson, Ken; Bucher, Max; Ekeberg, Tomas; Hantke, Max; Daurer, Benedikt; Nettelblad, Carl; Bielecki, Johan; Faigel, Guila; Hasse, Dirk; Morgan, Andrew; Mühlig, Kerstin; Seibert, Marvin; Chapman, Henry; Hajdu, Janos; Maia, Filipe; Moeller, Thomas; Bostedt, Christoph

    2016-05-01

    The advent of X-ray free-electron lasers, delivering ultra intense femtosecond X-ray flashes, opens the door for structure determination of single nanoparticles and biosamples with single shots. The first X-ray diffraction imaging experiments at LCLS delivered promising results on samples in the gas phase. However, the reconstruction of non-periodic structures is still challenging due to the loss of phase information. Meanwhile, X-ray holographic approaches allow for recording the phase directly into the diffraction image. In my talk, I will present the first successful proof-of-principle experiment for ``in-flight''-holography with free viruses. Our experiments pave the way for unique studies on levitating nanospecimen that are of central interest in several scientific communities including atmosphere research, chemistry, material sciences, and studies on matter under extreme conditions.

  15. Low-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    McClintock, J. E.; Rappaport, S. A.

    A review is given of current understanding of low-mass X-ray binaries (LMXBs), which are luminous X-ray sources composed of a late-type optical companion (mass less than about 1 solar mass) and a neutron star (or possibly a black hole). Thirty-two LMXBs have been identified with optical counterparts in the Galaxy and one in the Large Magellanic Cloud (Brad and McClintock, 1983). It is unlikely that there are more than about 100 active LMXBs in the Galaxy, compared with about 200,000 cataclysmic variables. Topics covered in the review are: typical X-ray and optical properties; orbital periods; the nature of the compact source; accretion disks; formation; mass transfer mechanisms; and globular clusters and bright bulge X-ray sources.

  16. X-ray grid-detector apparatus

    DOEpatents

    Boone, John M.; Lane, Stephen M.

    1998-01-27

    A hybrid grid-detector apparatus for x-ray systems wherein a microchannel plate structure has an air-interspaced grid portion and a phosphor/optical fluid-filled grid portion. The grids are defined by multiple adjacent channels separated by lead-glass septa. X-rays entering the air-interspaced grid portion at an angle of impingement upon the septa are attenuated, while non-impinging x-rays pass through to the phosphor/fluid filled portion. X-ray energy is converted to luminescent energy in the phosphor/fluid filled portion and the resultant beams of light are directed out of the phosphor/optical fluid filled portion to an imaging device.

  17. Resonant X-Ray Scattering and Absorption

    NASA Astrophysics Data System (ADS)

    Collins, S. P.; Bombardi, A.

    This chapter outlines some of the basic ideas behind nonresonant and resonant X-ray scattering, using classical or semiclassical pictures wherever possible; specifically, we highlight symmetry arguments governing the observation of X-ray optical effects, such as X-ray magnetic circular dichroism and resonant "forbidden" diffraction. Without dwelling on the microscopic physics that underlies resonant scattering, we outline some key steps required for calculating its rotation and polarization dependence, based on Cartesian and spherical tensor frameworks. Several examples of resonant scattering, involving electronic anisotropy and magnetism, are given as illustrations. Our goal is not to develop or defend theoretical concepts in X-ray scattering, but to bring together existing ideas in a pragmatic and utilitarian manner.

  18. Experimental X-Ray Ghost Imaging.

    PubMed

    Pelliccia, Daniele; Rack, Alexander; Scheel, Mario; Cantelli, Valentina; Paganin, David M

    2016-09-01

    We report an experimental proof of principle for ghost imaging in the hard-x-ray energy range. We use a synchrotron x-ray beam that is split using a thin crystal in Laue diffraction geometry. With an ultrafast imaging camera, we are able to image x rays generated by isolated electron bunches. At this time scale, the shot noise of the synchrotron emission process is measurable as speckles, leading to speckle correlation between the two beams. The integrated transmitted intensity from a sample located in the first beam is correlated with the spatially resolved intensity measured in the second, empty, beam to retrieve the shadow of the sample. The demonstration of ghost imaging with hard x rays may open the way to protocols to reduce radiation damage in medical imaging and in nondestructive structural characterization using free electron lasers. PMID:27661687

  19. Chest X-Ray (Chest Radiography)

    MedlinePlus

    ... have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures that those parts of a patient's body not being imaged receive minimal radiation exposure. top ...

  20. Impulsive solar X-ray bursts

    NASA Technical Reports Server (NTRS)

    Crannell, C. J.; Frost, K. J.; Maetzler, C.; Ohki, K.; Saba, J. L.

    1977-01-01

    A set of 22 simple, impulsive solar flares, identified in the OSO-5 hard X-ray data, were analyzed together with coincident microwave and meterwave radio observations. The rise times and fall times of the X-ray bursts are found to be highly correlated and effectively equal, strongly suggesting a flare energizing mechanism that is reversible. The good time resolution available for these observations reveals that the microwave emission is influenced by an additional process, evident in the tendency of the microwave emission to peak later and decay more slowly than the symmetric X-ray bursts. Meterwave emission is observed in coincidence with the 5 events which show the strongest time correlation between the X-ray and microwave burst structure. This meterwave emission is characterized by U-burst radiation, indicating confinement of the flare source.

  1. Astrophysics: Unexpected X-ray flares

    NASA Astrophysics Data System (ADS)

    Campana, Sergio

    2016-10-01

    Two sources of highly energetic flares have been discovered in archival X-ray data of 70 nearby galaxies. These flares have an undetermined origin and might represent previously unknown astrophysical phenomena. See Letter p.356

  2. X-ray transmission microscope development

    NASA Technical Reports Server (NTRS)

    Kaukler, William F.; Rosenberger, Franz E.

    1995-01-01

    This report covers the third 6 month period, from February 28, 1995 to August 31, 1995, under this contract. The main efforts during this period were the construction of the X-ray furnace, evaluation and selection of the CCD technology for the X-ray camera, solidification experiments with Al alloys and Al-zirconia composites in the prototype furnace, evaluation of specimens for the particle pushing flight experiment - PEPSI, measurements of emitted spectra from X-ray source, testing of the high resolution X-ray test targets, and the establishment of criteria for and selection of peripheral equipment. In addition to these tasks, two presentations were prepared in this period; one for the AIAA Microgravity Symposium and another for the Gordon Conference on Gravitational Effects in Pyisico-Chemical Systems.

  3. Capillary Optics generate stronger X-rays

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA scientist, in the Space Sciences lab at Marshall, works with capillary optics that generate more intense X-rays than conventional sources. This capability is useful in studying the structure of important proteins.

  4. VETA-I x ray test analysis

    NASA Technical Reports Server (NTRS)

    Brissenden, R. J. V.; Chartas, G.; Freeman, M. D.; Hughes, J. P.; Kellogg, E. M.; Podgorski, W. A.; Schwartz, D. A.; Zhao, P.

    1992-01-01

    This interim report presents some definitive results from our analysis of the VETA-I x-ray testing data. It also provides a description of the hardware and software used in the conduct of the VETA-I x-ray test program performed at the MSFC x-ray Calibration Facility (XRCF). These test results also serve to supply data and information to include in the TRW final report required by DPD 692, DR XC04. To provide an authoritative compendium of results, we have taken nine papers as published in the SPIE Symposium, 'Grazing Incidence X-ray/EUV Optics for Astronomy and Projection Lithography' and have reproduced them as the content of this report.

  5. Laboratory Data for X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Beiersdorfer, P.; Brown, G. V.; Chen, H.; Gu, M.-F.; Kahn, S. M.; Lepson, J. K.; Savin, D. W.; Utter, S. B.

    2000-01-01

    Laboratory facilities have made great strides in producing large sets of reliable data for X-ray astronomy, which include ionization and recombination cross sections needed for charge balance calculations as well as the atomic data needed for interpreting X-ray line formation. We discuss data from the new generation sources and pay special attention to the LLNL electron beam ion trap experiment, which is unique in its ability to provide direct laboratory access to spectral data under precisely controlled conditions that simulate those found in many astrophysical plasmas. Examples of spectral data obtained in the 1-160 A wavelength range are given illustrating the type of laboratory X-ray data produced in support of such missions as Chandra, X-Ray Multi-Mirror telescope (XMM), Advanced Satellite for Cosmology and Astrophysics (ASCA) and Extreme Ultraviolet Explorer Satellite (EUVE).

  6. X-ray imaging: Status and trends

    SciTech Connect

    Ryon, R.W.; Martz, H.E.; Hernandez, J.M.; Haskins, J.J.; Day, R.A.; Brase, J.M.; Cross, B.; Wherry, D.

    1987-08-01

    There is a veritable renaissance occurring in x-ray imaging. X-ray imaging by radiography has been a highly developed technology in medicine and industry for many years. However, high resolution imaging has not generally been practical because sources have been relatively dim and diffuse, optical elements have been nonexistent for most applications, and detectors have been slow and of low resolution. Materials analysis needs have therefore gone unmet. Rapid progress is now taking place because we are able to exploit developments in microelectronics and related material fabrication techniques, and because of the availability of intense x-ray sources. This report describes the methods and uses of x-ray imaging along with a discussion of technology advances in these areas.

  7. X-ray source for mammography

    DOEpatents

    Logan, C.M.

    1994-12-20

    An x-ray source is described utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms. 6 figures.

  8. X-Ray Exam: Neck (For Parents)

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... a radiologist (a doctor who's specially trained in reading and interpreting X-ray images). The radiologist will ...

  9. X-Ray Exam: Scoliosis (For Parents)

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... by a radiologist (a doctor specially trained in reading and interpreting X-ray images). The radiologist will ...

  10. X-Ray Exam: Cervical Spine

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... For older kids, be sure to explain the importance of keeping still while the X-ray is ...

  11. X-Ray Exam: Femur (Upper Leg)

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... For older kids, be sure to explain the importance of keeping still while the X-ray is ...

  12. Experimental X-Ray Ghost Imaging

    NASA Astrophysics Data System (ADS)

    Pelliccia, Daniele; Rack, Alexander; Scheel, Mario; Cantelli, Valentina; Paganin, David M.

    2016-09-01

    We report an experimental proof of principle for ghost imaging in the hard-x-ray energy range. We use a synchrotron x-ray beam that is split using a thin crystal in Laue diffraction geometry. With an ultrafast imaging camera, we are able to image x rays generated by isolated electron bunches. At this time scale, the shot noise of the synchrotron emission process is measurable as speckles, leading to speckle correlation between the two beams. The integrated transmitted intensity from a sample located in the first beam is correlated with the spatially resolved intensity measured in the second, empty, beam to retrieve the shadow of the sample. The demonstration of ghost imaging with hard x rays may open the way to protocols to reduce radiation damage in medical imaging and in nondestructive structural characterization using free electron lasers.

  13. X-Ray Background Survey Spectrometer (XBSS)

    NASA Technical Reports Server (NTRS)

    Sanders, W. T. (Principal Investigator); Paulos, R. J.

    1996-01-01

    The objective of this investigation was to perform a spectral survey of the low energy diffuse X-ray background using the X-ray Background Survey Spectrometer (XBSS) on board the Space Station Freedom (SSF). XBSS obtains spectra of the X-ray diffuse background in the 11-24 A and 44-84 A wavelength intervals over the entire sky with 15 deg spatial resolution. These X-rays are almost certainly from a very hot (10(exp 6) K) component of the interstellar medium that is contained in regions occupying a large fraction of the interstellar volume near the Sun. Astrophysical plasmas near 10(exp 6) K are rich in emission lines, and the relative strengths of these lines, besides providing information about the physical conditions of the emitting gas, also provide information about its history and heating mechanisms.

  14. X-ray source for mammography

    DOEpatents

    Logan, Clinton M.

    1994-01-01

    An x-ray source utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms.

  15. High resolution solar X-ray studies

    NASA Technical Reports Server (NTRS)

    Blake, R. L.

    1974-01-01

    Two high resolution solar X-ray payloads and their launches on Aerobee rockets with pointing system are described. The payloads included 5 to 25A X-ray spectrometers, multiaperture X-ray cameras, and command box attitude control inflight by means of a television image radioed to ground. Spatial resolution ranged from five arc minutes to ten arc seconds and spectral resolution ranged from 500 to 3000. Several laboratory tasks were completed in order to achieve the desired resolution. These included (1) development of techniques to align grid collimators, (2) studies of the spectrometric properties of crystals, (3) measurements of the absorption coefficients of various materials used in X-ray spectrometers, (4) evaluation of the performance of multiaperture cameras, and (5) development of facilities.

  16. Spectra of cosmic X-ray sources

    NASA Technical Reports Server (NTRS)

    Holt, S. S.; Mccray, R.

    1982-01-01

    X-ray measurements provide the most direct probes of astrophysical environments with temperatures exceeding one million K. Progress in experimental research utilizing dispersive techniques (e.g., Bragg and grating spectroscopy) is considerably slower than that in areas utilizing photometric techniques, because of the relative inefficiency of the former for the weak X-ray signals from celestial sources. As a result, the term "spectroscopy" as applied to X-ray astronomy has traditionally satisfied a much less restrictive definition (in terms of resolving power) than it has in other wavebands. Until quite recently, resolving powers of order unity were perfectly respectable, and still provide (in most cases) the most useful spectroscopic data. In the broadest sense, X-ray photometric measurements are spectroscopic, insofar as they represent samples of the overall electromagnetic continua of celestial objects.

  17. 5.8 X-ray Calorimeters

    NASA Technical Reports Server (NTRS)

    Porter, F. Scott

    2008-01-01

    X-ray calorimeter instruments for astrophysics have seen rapid development since they were invented in 1984. The prime instrument on all currently planned X-ray spectroscopic observatories is based on calorimeter technology. This relatively simple detection concept that senses the energy of an incident photon by measuring the temperature rise of an absorber material at very low temperatures, can form the basis of a very high performance, non-dispersive spectrometer. State-of-the-art calorimeter instruments have resolving powers of over 3000, large simultaneous band-passes, and near unit efficiency. This coupled with the intrinsic imaging capability of a pixilated x-ray calorimeter array, allows true spectral-spatial instruments to be constructed. In this chapter I briefly review the detection scheme, the state-of-the-art in X-ray calorimeter instruments and the future outlook for this technology.

  18. Principles of X-ray Navigation

    SciTech Connect

    Hanson, John Eric; /SLAC

    2006-03-17

    X-ray navigation is a new concept in satellite navigation in which orientation, position and time are measured by observing stellar emissions in x-ray wavelengths. X-ray navigation offers the opportunity for a single instrument to be used to measure these parameters autonomously. Furthermore, this concept is not limited to missions in close proximity to the earth. X-ray navigation can be used on a variety of missions from satellites in low earth orbit to spacecraft on interplanetary missions. In 1997 the Unconventional Stellar Aspect Experiment (USA) will be launched as part of the Advanced Research and Global Observation Satellite (ARGOS). USA will provide the first platform for real-time experimentation in the field of x-ray navigation and also serves as an excellent case study for the design and manufacturing of space qualified systems in small, autonomous groups. Current techniques for determining the orientation of a satellite rely on observations of the earth, sun and stars in infrared, visible or ultraviolet wavelengths. It is possible to use x-ray imaging devices to provide arcsecond level measurement of attitude based on star patterns in the x-ray sky. This technique is explored with a simple simulation. Collimated x-ray detectors can be used on spinning satellites to provide a cheap and reliable measure of orientation. This is demonstrated using observations of the Crab Pulsar taken by the high Energy Astronomy Observatory (HEAO-1) in 1977. A single instrument concept is shown to be effective, but dependent on an a priori estimate of the guide star intensity and thus susceptible to errors in that estimate. A star scanner based on a differential measurement from two x-ray detectors eliminates the need for an a priori estimate of the guide star intensity. A first order model and a second order model of the two star scanner concepts are considered. Many of the stars that emit in the x-ray regime are also x-ray pulsars with frequency stability approaching a

  19. The high energy X-ray universe

    PubMed Central

    Giacconi, Riccardo

    2010-01-01

    Since its beginning in the early 1960s, the field of X-ray astronomy has exploded, experiencing a ten-billion-fold increase in sensitivity, which brought it on par with the most advanced facilities at all wavelengths. I will briefly describe the revolutionary first discoveries prior to the launch of the Chandra and XMM-Newton X-ray observatories, present some of the current achievements, and offer some thoughts about the future of this field. PMID:20404148

  20. STS-54 Diffuse X-Ray Spectrometer

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Louis Kaluzienski, Program Scientist, Wilton T. Sanders, Principal Investigator, and Chris Dunker, Diffuse X-Ray Spectrometer (DXS) Mission Manager, each give an overview of the DXS, including the purpose of the DXS, a brief description of x-ray astronomy, the scientific objectives of the DXS, and information on the STS-54 Endeavour mission, in which the DXS is part of the payload. The men then answer questions from the press.

  1. Next-Generation X-Ray Astronomy

    NASA Astrophysics Data System (ADS)

    White, Nicholas E.

    2012-04-01

    This review of future timing capabilities in X-ray astronomy includes missions in implementation (astro-h, gems, srg and astrosat), those under study (currently nicer, athena and loft), and new technologies that may be the seeds for future missions, such as lobster-eye optics. Those missions and technologies will offer exciting new capabilities that will take X-ray Astronomy into a new generation of achievements.

  2. Real-Time X-Ray Inspection

    NASA Technical Reports Server (NTRS)

    Bulthuis, Ronald V.

    1988-01-01

    X-ray imaging instrument adapted to continuous scanning. Modern version of fluoroscope enables rapid x-ray inspection of parts. Developed for detection of buckling in insulated ducts. Uses radiation from radioactive gadolinium or thallium source. Instrument weighs only 6 1/2 lb. Quickly scanned by hand along duct surface, providing real-time image. Based on Lixiscope, developed at Goddard Space Flight Center.

  3. Handbook of X-ray Astronomy

    NASA Astrophysics Data System (ADS)

    Arnaud, Keith; Smith, Randall; Siemiginowska, Aneta

    2011-09-01

    1. X-ray astronomy optics Daniel A. Schwartz; 2. Proportional counters and other detector techniques Richard J. Edgar; 3. CCDs for x-ray astronomy Catherine E. Grant; 4. Data reduction and calibration Keith A. Arnaud and Randall K. Smith; 5. Data analysis Randall K. Smith, Keith A. Arnaud and Aneta Siemiginowska; 6. Archives, surveys, catalogues and software Keith Arnaud; 7. Statistics Aneta Siemiginowska; 8. Analysis of extended emission K. D. Kuntz; Appendices; Index.

  4. Einstein observations of extended galactic X-ray sources

    NASA Technical Reports Server (NTRS)

    Seward, F. D.

    1979-01-01

    Features of the X-ray pictures taken aboard the space observatory are presented. Imaging proportional counter pictures in three broad X-ray energy ranges were obtained. The X-ray spectrum of supernova remnants is described.

  5. An introduction to X-ray astronomy data analysis.

    NASA Astrophysics Data System (ADS)

    Morini, M.

    The following sections are included: * INTRODUCTION * X-RAY COSMIC SOURCES * X-RAY ASTRONOMY DETECTORS * CHARACTERISTIC FEATURES OF X-RAY ASTRONOMY DATA * ENERGY SPECTRA ANALYSIS * TIME VARIABILITY ANALYSIS * IMAGE ANALYSIS * References

  6. The SAS-3 X-ray observatory

    NASA Technical Reports Server (NTRS)

    Mayer, W. F.

    1975-01-01

    The experiment section of the Small Astronomy Satellite-3 (SAS-3) launched in May 1975 is an X-ray observatory intended to determine the location of bright X-ray sources to an accuracy of 15 arc-seconds; to study a selected set of sources over a wide energy range, from 0.1 to 55 keV, while performing very specific measurements of the spectra and time variability of known X-ray sources; and to monitor the sky continuously for X-ray novae, flares, and unexpected phenomena. The improvements in SAS-3 spacecraft include a clock accurate to 1 part in 10 billion, rotatable solar panels, a programmable data format, and improved nutation damper, a delayed command system, improved magnetic trim and azimuth control systems. These improvements enable SAS-3 to perform three-axis stabilized observations of any point on the celestial sphere at any time of the year. The description of the experiment section and the SAS-3 operation is followed by a synopsis of scientific results obtained from the observations of X-ray sources, such as Vela X-1 (supposed to be an accreting neutron star), a transient source of hard X-ray (less than 36 min in duration) detected by SAS-3, the Crab Nebula pulsar, the Perseus cluster of galaxies, and the Vela supernova remnant.

  7. Optics Developments for X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian

    2014-01-01

    X-ray optics has revolutionized x-ray astronomy. The degree of background suppression that these afford, have led to a tremendous increase in sensitivity. The current Chandra observatory has the same collecting area (approx. 10(exp 3)sq cm) as the non-imaging UHURU observatory, the first x-ray observatory which launched in 1970, but has 5 orders of magnitude more sensitivity due to its focusing optics. In addition, its 0.5 arcsec angular resolution has revealed a wealth of structure in many cosmic x-ray sources. The Chandra observatory achieved its resolution by using relatively thick pieces of Zerodur glass, which were meticulously figured and polished to form the four-shell nested array. The resulting optical assembly weighed around 1600 kg, and cost approximately $0.5B. The challenge for future x-ray astronomy missions is to greatly increase the collecting area (by one or more orders of magnitude) while maintaining high angular resolution, and all within realistic mass and budget constraints. A review of the current status of US optics for x-ray astronomy will be provided along with the challenges for future developments.

  8. Coherence in X-ray physics.

    PubMed

    Lengeler, B

    2001-06-01

    Highly brilliant synchrotron radiation sources have opened up the possibility of using coherent X-rays in spectroscopy and imaging. Coherent X-rays are characterized by a large lateral coherence length. Speckle spectroscopy is extended to hard X-rays, improving the resolution to the nm range. It has become possible to image opaque objects in phase contrast with a sensitivity far superior to imaging in absorption contrast. All the currently available X-ray sources are chaotic sources. Their characterization in terms of coherence functions of the first and second order is introduced. The concept of coherence volume, defined in quantum optics terms, is generalized for scattering experiments. When the illuminated sample volume is smaller than the coherence volume, the individuality of the defect arrangement in a sample shows up as speckle in the scattered intensity. Otherwise, a configurational average washes out the speckle and only diffuse scattering and possibly Bragg reflections will survive. The loss of interference due to the finite detection time, to the finite detector pixel size and to uncontrolled degrees of freedom in the sample is discussed at length. A comparison between X-ray scattering, neutron scattering and mesoscopic electron transport is given. A few examples illustrate the possibilities of coherent X-rays for imaging and intensity correlation spectroscopy.

  9. X-ray curing of composite materials

    NASA Astrophysics Data System (ADS)

    Berejka, Anthony J.; Cleland, M. R.; Galloway, R. A.; Gregoire, O.

    2005-12-01

    The development of high current electron beam (EB) accelerators makes it possible to consider X-ray processing for industrial applications. The well-known inefficiency in converting electron beams to X-rays still affords better overall process efficiency when compared with historic thermal processes. X-ray processing permits depth of penetration of ionizing radiation into a material and, when derived from high current accelerators, can yield process through-puts comparable to low powered EB devices. X-rays are generated at lower dose-rates which are controlled by equipment and process parameters. Two feasibility studies were conducted which illustrate the potential for X-ray processing: (1) the curing of a reactive monomeric impregnant in a thick cross-section block of wood and (2) the curing of the matrix binder in fiber reinforced composites while the composite material was still constrained within a metal mold used to form an article. The ability to control dose-rate and to penetrate thick materials, such as the walls of a metal mold, indicate that X-ray processing can be of significant industrial interest.

  10. A million X-ray detections

    NASA Astrophysics Data System (ADS)

    Webb, N.; XMM-Newton Survey Science Centre (SSC)

    2016-06-01

    Part of the XMM-Newton Survey Science Centre responsibilities include producing an X-ray catalogue of all X-ray sources detected with XMM-Newton. The latest version, 3XMM, takes advantage of improvements made to the source characterisation, reducing the number of spurious detections, but providing better astrometric precision, greater net sensitivity, as well as spectra and timeseries for a quarter of all catalogue detections. The data release 5 (3XMM-DR5, April 2015) is derived from the first 13 years of observations with XMM-Newton. 3XMM-DR5 includes 565962 X-ray detections and 396910 unique sources, detected as many as 48 times. 3XMM-DR5 is therefore the largest X-ray source catalogue. 3XMM-DR6 will be made available during 2016 and will augment the catalogue with 70000 X-ray detections. Over the next decade the catalogue will reach 1 million X-ray detections, including galaxy clusters, galaxies, tidal disruption events, gamma-ray bursts, stars, stellar mass compact objects, supernovae, planets, comets and many other systems. Thanks to the wide range of data products for each catalogue detection, the catalogue is an excellent resource for finding populations of sources as well as new and extreme objects. Here we present results achieved from searching the catalogue and discuss improvements that will be provided in future versions.

  11. X-ray laser driven gold targets

    SciTech Connect

    Petrova, Tz. B. Whitney, K. G.; Davis, J.

    2014-03-15

    The femtosecond population dynamics of gold irradiated by a coherent high-intensity (>10{sup 17} W/cm{sup 2}) x-ray laser pulse is investigated theoretically. There are two aspects to the assembled model. One is the construction of a detailed model of platinum-like gold inclusive of all inner-shell states that are created by photoionization of atomic gold and decay either by radiative or Auger processes. Second is the computation of the population dynamics that ensues when an x-ray pulse is absorbed in gold. The hole state generation depends on the intensity and wavelength of the driving x-ray pulse. The excited state populations reached during a few femtosecond timescales are high enough to generate population inversions, whose gain coefficients are calculated. These amplified lines in the emitted x-ray spectrum provide important diagnostics of the radiation dynamics and also suggest a nonlinear way to increase the frequency of the coherent output x-ray pulses relative to the frequency of the driver input x-ray pulse.

  12. Assembled Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This photograph shows TRW technicians preparing the assembled Chandra X-Ray Observatory (CXO) for an official unveiling at TRW Space and Electronics Group of Redondo Beach, California. The CXO is formerly known as the Advanced X-Ray Astrophysics Facility (AXAF), which was renamed in honor of the late Indian-American Astronomer, Subrahmanyan Chandrasekhar in 1999. The CXO will help astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes, and other exotic celestial objects. X-ray astronomy can only be done from space because Earth's atmosphere blocks x-rays from reaching the surface. The Observatory provides images that are 50 times more detailed than previous x-ray missions. At more than 45 feet in length and weighing more than 5 tons, it will be one of the largest objects ever placed in Earth orbit by the Space Shuttle. TRW, Inc. was the prime contractor and assembled and tested the observatory for NASA. The CXO program is managed by the Marshall Space Flight Center. The Observatory was launched on July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW)

  13. Assembled Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This photograph shows a TRW technician inspecting the completely assembled Chandra X-ray Observatory (CXO) in the Thermal Vacuum Chamber at TRW Space and Electronics Group of Redondo Beach, California. The CXO is formerly known as the Advanced X-Ray Astrophysics Facility (AXAF), which was renamed in honor of the late Indian-American Astronomer, Subrahmanyan Chandrasekhar in 1999. The CXO will help astronomers worldwide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes and other exotic celestial objects. X-ray astronomy can only be done from space because Earth's atmosphere blocks x-rays from reaching the surface. The Observatory provides images that are 50 times more detailed than previous x-ray missions. At more than 45 feet in length and weighing more than 5 tons, it will be one of the largest objects ever placed in Earth orbit by the Space Shuttle. TRW, Inc. was the prime contractor and assembled and tested the observatory for NASA. The CXO program is managed by the Marshall Space Flight Center. The Observatory was launched on July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW)

  14. X-ray Eyes on Tempel

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1: X-ray Eyes on Tempel

    This false-color image shows comet Tempel 1 as seen by Chandra X-ray Observatory on June 30, 2005, Universal Time. The comet was bright and condensed. The X-rays observed from comets are caused by an interaction between highly charged oxygen in the solar wind and neutral gases from the comet.

    The observatory detected X-rays with an energy of 0.3 to 1.0 kilo electron Volts. The bulk of the X-rays were between 0.5 and 0.7 kilo electron Volts.

    Chandra will observe the comet for 18 hours during and after the time when NASA's Deep Impact impactor probe collides with Tempel 1 at 10:52 p.m. Pacific time, July 3 (1:52 a.m. Eastern time, July 4). The material ejected from the crater could cause the interaction region, and thus the X-ray emission, to move toward the Sun.

  15. Compton backscattered collmated X-ray source

    DOEpatents

    Ruth, Ronald D.; Huang, Zhirong

    2000-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  16. Compton backscattered collimated x-ray source

    DOEpatents

    Ruth, R.D.; Huang, Z.

    1998-10-20

    A high-intensity, inexpensive and collimated x-ray source is disclosed for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications. 4 figs.

  17. Compton backscattered collimated x-ray source

    DOEpatents

    Ruth, Ronald D.; Huang, Zhirong

    1998-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  18. X-ray emission from normal stars

    NASA Technical Reports Server (NTRS)

    Rosner, Robert

    1990-01-01

    The paper addresses the potential for future X-ray missions to determine the fundamental cause of stellar X-ray emissions based on available results and existing analyses. The determinants of stellar X-ray emission are listed, and the relation of stellar X-ray emissions to the 'universal' activity-rotation connection is discussed. The specific rotation-activity connection for evolved stars is mentioned, and the 'decay' of stellar activity at the low-mass end of the main sequence is related to observational data. The data from Einstein and EXOSAT missions that correspond to these issues are found to be sparse, and more observational work is found to be necessary. Also, it is concluded that some issues need to be addressed, such as the X-ray dividing line in evolved stars and the absence of X-ray emission from dA stars. The related observational requirements and instrumental capabilities are given for each significant research focus.

  19. Crystallographic properties of fertilizer compounds

    SciTech Connect

    Frazier, A.W.; Dillard, E.F.; Thrasher, R.D.; Waerstad, K.R.; Hunter, S.R.; Kohler, J.J.; Scheib, R.M.

    1991-02-01

    This bulletin is a compilation of crystallographic data collected at NFERC on 450 fertilizer-related compounds. In TVA`s fertilizer R and D program, petrographic examination, XRD, and infrared spectroscopy are combined with conventional chemical analysis methods in identifying the individual compounds that occur in fertilizer materials. This handbook brings together the results of these characterization studies and supplemental crystallographic data from the literature. It is in one-compound-per-page, loose-leaf format, ordered alphabetically by IUPAC name. Indexes provided include IUPAC name, formula, group, alternate formula, synonyms, x-ray data, optical data. Tables are given for solids, compounds in commercial MAP and DAP, and matrix materials in phosphate rock.

  20. Crystallographic properties of fertilizer compounds

    SciTech Connect

    Frazier, A.W.; Dillard, E.F.; Thrasher, R.D.; Waerstad, K.R.; Hunter, S.R.; Kohler, J.J.; Scheib, R.M.

    1991-02-01

    This bulletin is a compilation of crystallographic data collected at NFERC on 450 fertilizer-related compounds. In TVA's fertilizer R and D program, petrographic examination, XRD, and infrared spectroscopy are combined with conventional chemical analysis methods in identifying the individual compounds that occur in fertilizer materials. This handbook brings together the results of these characterization studies and supplemental crystallographic data from the literature. It is in one-compound-per-page, loose-leaf format, ordered alphabetically by IUPAC name. Indexes provided include IUPAC name, formula, group, alternate formula, synonyms, x-ray data, optical data. Tables are given for solids, compounds in commercial MAP and DAP, and matrix materials in phosphate rock.

  1. Triboluminescence dominated by crystallographic orientation

    PubMed Central

    Wang, Kuifang; Ma, Liran; Xu, Xuefeng; Wen, Shizhu; Luo, Jianbin

    2016-01-01

    Triboluminescence (TL) is an optical phenomenon that has a long and varied history with broad applications, such as damage detection, X-ray source, and mass health monitoring sensor. So far, the properties and mechanisms of TL remain not completely understood. The TL properties emitted during the sliding contact between Al2O3 and SiO2 surfaces were studied along different crystallographic orientations. In this study, the TL intensity of Al2O3 was significantly enhanced as Al2O3 surface was along a particular crystallographic orientation, which is an unconventional phenomenon. TL enhancement of Al2O3 was not affected by air atmosphere and atomic stocking mode of Al2O3. The enhancement mechanism of Al2O3 may be influenced by the surface state of Al2O3. This work provides a new method to control the intensity of TL and novel ideas to elucidate the TL mechanism. PMID:27193511

  2. Triboluminescence dominated by crystallographic orientation.

    PubMed

    Wang, Kuifang; Ma, Liran; Xu, Xuefeng; Wen, Shizhu; Luo, Jianbin

    2016-01-01

    Triboluminescence (TL) is an optical phenomenon that has a long and varied history with broad applications, such as damage detection, X-ray source, and mass health monitoring sensor. So far, the properties and mechanisms of TL remain not completely understood. The TL properties emitted during the sliding contact between Al2O3 and SiO2 surfaces were studied along different crystallographic orientations. In this study, the TL intensity of Al2O3 was significantly enhanced as Al2O3 surface was along a particular crystallographic orientation, which is an unconventional phenomenon. TL enhancement of Al2O3 was not affected by air atmosphere and atomic stocking mode of Al2O3. The enhancement mechanism of Al2O3 may be influenced by the surface state of Al2O3. This work provides a new method to control the intensity of TL and novel ideas to elucidate the TL mechanism. PMID:27193511

  3. Triboluminescence dominated by crystallographic orientation

    NASA Astrophysics Data System (ADS)

    Wang, Kuifang; Ma, Liran; Xu, Xuefeng; Wen, Shizhu; Luo, Jianbin

    2016-05-01

    Triboluminescence (TL) is an optical phenomenon that has a long and varied history with broad applications, such as damage detection, X-ray source, and mass health monitoring sensor. So far, the properties and mechanisms of TL remain not completely understood. The TL properties emitted during the sliding contact between Al2O3 and SiO2 surfaces were studied along different crystallographic orientations. In this study, the TL intensity of Al2O3 was significantly enhanced as Al2O3 surface was along a particular crystallographic orientation, which is an unconventional phenomenon. TL enhancement of Al2O3 was not affected by air atmosphere and atomic stocking mode of Al2O3. The enhancement mechanism of Al2O3 may be influenced by the surface state of Al2O3. This work provides a new method to control the intensity of TL and novel ideas to elucidate the TL mechanism.

  4. Rietveld refinement on x-ray diffraction patterns of bioapatite in human fetal bones.

    PubMed

    Meneghini, Carlo; Dalconi, Maria Chiara; Nuzzo, Stefania; Mobilio, Settimio; Wenk, Rudy H

    2003-03-01

    Bioapatite, the main constituent of mineralized tissue in mammalian bones, is a calcium-phosphate-based mineral that is similar in structure and composition to hydroxyapatite. In this work, the crystallographic structure of bioapatite in human fetuses was investigated by synchrotron radiation x-ray diffraction (XRD) and microdiffraction ( micro -XRD) techniques. Rietveld refinement analyses of XRD and micro -XRD data allow for quantitative probing of the structural modifications of bioapatite as functions of the mineralization process and gestational age.

  5. Reduction of andrographolide and its stereostructure by NMR and X-ray study.

    PubMed

    Singh, Deepika; Chaudhuri, Prabir K

    2013-04-01

    Andrographolide (1) on asymmetric reduction with nickel boride in situ led to the identification of a product as 12,13 R-dihydroandrographolide (3) in de (>96%). The structure and stereochemistry of compound 3 were established by NMR study and confirmed by X-ray crystallographic analysis. β-Substituent of γ-butyrolactone in andrographolide exerted diastereomeric selectivity in reduction. Neoandrographolide (2) under similar condition yielded 5. PMID:22559743

  6. Be/X-ray Binary Science for Future X-ray Timing Missions

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2011-01-01

    For future missions, the Be/X-ray binary community needs to clearly define our science priorities for the future to advocate for their inclusion in future missions. In this talk, I will describe current designs for two potential future missions and Be X-ray binary science enabled by these designs. The Large Observatory For X-ray Timing (LOFT) is an X-ray timing mission selected in February 2011 for the assessment phase from the 2010 ESA M3 call for proposals. The Advanced X-ray Timing ARray (AXTAR) is a NASA explorer concept X-ray timing mission. This talk is intended to initiate discussions of our science priorities for the future.

  7. Indus-2 X-ray lithography beamline for X-ray optics and material science applications

    SciTech Connect

    Dhamgaye, V. P. Lodha, G. S.

    2014-04-24

    X-ray lithography is an ideal technique by which high aspect ratio and high spatial resolution micro/nano structures are fabricated using X-rays from synchrotron radiation source. The technique has been used for fabricating optics (X-ray, visible and infrared), sensors and actuators, fluidics and photonics. A beamline for X-ray lithography is operational on Indus-2. The beamline offers wide lithographic window from 1-40keV photon energy and wide beam for producing microstructures in polymers upto size ∼100mm × 100mm. X-ray exposures are possible in air, vacuum and He gas environment. The air based exposures enables the X-ray irradiation of resist for lithography and also irradiation of biological and liquid samples.

  8. Development of x-ray laminography under an x-ray microscopic condition

    SciTech Connect

    Hoshino, Masato; Uesugi, Kentaro; Takeuchi, Akihisa; Suzuki, Yoshio; Yagi, Naoto

    2011-07-15

    An x-ray laminography system under an x-ray microscopic condition was developed to obtain a three-dimensional structure of laterally-extended planar objects which were difficult to observe by x-ray tomography. An x-ray laminography technique was introduced to an x-ray transmission microscope with zone plate optics. Three prototype sample holders were evaluated for x-ray imaging laminography. Layered copper grid sheets were imaged as a laminated sample. Diatomite powder on a silicon nitride membrane was measured to confirm the applicability of this method to non-planar micro-specimens placed on the membrane. The three-dimensional information of diatom shells on the membrane was obtained at a spatial resolution of sub-micron. Images of biological cells on the membrane were also obtained by using a Zernike phase contrast technique.

  9. Bone cartilage imaging with x-ray interferometry using a practical x-ray tube

    NASA Astrophysics Data System (ADS)

    Kido, Kazuhiro; Makifuchi, Chiho; Kiyohara, Junko; Itou, Tsukasa; Honda, Chika; Momose, Atsushi

    2010-04-01

    The purpose of this study was to design an X-ray Talbot-Lau interferometer for the imaging of bone cartilage using a practical X-ray tube and to develop that imaging system for clinical use. Wave-optics simulation was performed to design the interferometer with a practical X-ray tube, a source grating, two X-ray gratings, and an X-ray detector. An imaging system was created based on the results of the simulation. The specifications were as follows: the focal spot size was 0.3 mm of an X-ray tube with a tungsten anode (Toshiba, Tokyo, Japan). The tube voltage was set at 40 kVp with an additive aluminum filter, and the mean energy was 31 keV. The pixel size of the X-ray detector, a Condor 486 (Fairchild Imaging, California, USA), was 15 μm. The second grating was a Ronchi-type grating whose pitch was 5.3 μm. Imaging performance of the system was examined with X-ray doses of 0.5, 3 and 9 mGy so that the bone cartilage of a chicken wing was clearly depicted with X-ray doses of 3 and 9 mGy. This was consistent with the simulation's predictions. The results suggest that X-ray Talbot-Lau interferometry would be a promising tool in detecting soft tissues in the human body such as bone cartilage for the X-ray image diagnosis of rheumatoid arthritis. Further optimization of the system will follow to reduce the X-ray dose for clinical use.

  10. Transient x-ray diffraction and its application to materials science and x-ray optics

    SciTech Connect

    Hauer, A.A.; Kopp, R.; Cobble, J.; Kyrala, G.; Springer, R.

    1997-12-01

    Time resolved x-ray diffraction and scattering have been applied to the measurement of a wide variety of physical phenomena from chemical reactions to shock wave physics. Interest in this method has heightened in recent years with the advent of versatile, high power, pulsed x-ray sources utilizing laser plasmas, electron beams and other methods. In this article, we will describe some of the fundamentals involved in time resolved x-ray diffraction, review some of the history of its development, and describe some recent progress in the field. In this article we will emphasize the use of laser-plasmas as the x-ray source for transient diffraction.

  11. Fabrication of large area X-ray diffraction grating for X-ray phase imaging

    SciTech Connect

    Noda, Daiji; Tokuoka, Atsushi; Katori, Megumi; Minamiyama, Yasuto; Yamashita, Kenji; Nishida, Satoshi; Hattori, Tadashi

    2012-07-31

    X-ray lithography, which uses highly directional synchrotron radiation, is one of the technologies that can be used for fabricating micrometer-sized structures. In X-ray lithography, the accuracy of the fabricated structure depends largely on the accuracy of the X-ray mask. Since X-ray radiation is highly directional, a micro-fabrication technology that produces un-tapered and high aspect ratio highly absorbent structures on a low absorbent membrane is required. Conventionally, a resin material is used as the support membrane for large area X-ray masks. However, resin membranes have the disadvantage that they can sag after several cycles of X-ray exposure due to the heat generated by the X-rays. Therefore, we proposed and used thin carbon wafers for the membrane material because carbon has an extremely small thermal expansion coefficient. We fabricated new carbon membrane X-ray masks, and these results of X-ray lithography demonstrate the superior performance.

  12. Laser-based X-ray and electron source for X-ray fluorescence studies

    NASA Astrophysics Data System (ADS)

    Valle Brozas, F.; Crego, A.; Roso, L.; Peralta Conde, A.

    2016-08-01

    In this work, we present a modification to conventional X-rays fluorescence using electrons as excitation source and compare it with the traditional X-ray excitation for the study of pigments. For this purpose, we have constructed a laser-based source capable to produce X-rays as well as electrons. Because of the large penetration depth of X-rays, the collected fluorescence signal is a combination of several material layers of the artwork under study. However, electrons are stopped in the first layers, allowing a more superficial analysis. We show that the combination of both excitation sources can provide extremely valuable information about the structure of the artwork.

  13. Atomic Data in X-Ray Astrophysics

    NASA Technical Reports Server (NTRS)

    Brickhouse, N. S.

    2000-01-01

    With the launches of the Chandra X-ray Observatory (CXO) and the X-ray Multimirror Mission (XMM) and the upcoming launch of the Japanese mission ASTRO-E, high resolution X-ray spectroscopy of cosmic sources has begun. Early, deep observations of three stellar coronal sources will provide not only invaluable calibration data, but will also give us benchmarks for the atomic data under collisional equilibrium conditions. Analysis of the Chandra X-ray Observatory data, and data from other telescopes taken simultaneously, for these stars is ongoing as part of the Emission Line Project. Goals of the Emission Line Project are: (1) to determine and verify accurate and robust diagnostics and (2) to identify and prioritize issues in fundamental spectroscopy which will require further theoretical and/or laboratory work. The Astrophysical Plasma Emission Database will be described in some detail, as it is introducing standardization and flexibility into X-ray spectral modeling. Spectral models of X-ray astrophysical plasmas can be generally classified as dominated by either collisional ionization or by X-ray photoionization. While the atomic data needs for spectral models under these two types of ionization are significantly different, there axe overlapping data needs, as I will describe. Early results from the Emission Line Project benchmarks are providing an invaluable starting place, but continuing work to improve the accuracy and completeness of atomic data is needed. Additionally, we consider the possibility that some sources will require that both collisional ionization and photoionization be taken into account, or that time-dependent ionization be considered. Thus plasma spectral models of general use need to be computed over a wide range of physical conditions.

  14. Handbook of X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Arnaud, Keith A. (Editor); Smith, Randall K.; Siemiginowska, Aneta

    2011-01-01

    X-ray astronomy was born in the aftermath of World War II as military rockets were repurposed to lift radiation detectors above the atmosphere for a few minutes at a time. These early flights detected and studied X-ray emission from the Solar corona. The first sources beyond the Solar System were detected during a rocket flight in 1962 by a team headed by Riccardo Giaccom at American Science and Engineering, a company founded by physicists from MIT. The rocket used Geiger counters with a system designed to reduce non-X-ray backgrounds and collimators limiting the region of sky seen by the counters. As the rocket spun, the field of view (FOV) happened to pass over what was later found to be the brightest non-Solar X-ray source; later designated See X-1. It also detected a uniform background glow which could not be resolved into individual sources. A follow-up campaign using X-ray detectors with better spatial resolution and optical telescopes identified See X-1 as an interacting binary with a compact (neutron star) primary. This success led to further suborbital rocket flights by a number of groups. More X-ray binaries were discovered, as well as X-ray emission from supernova remnants, the radio galaxies M87 and Cygnus-A, and the Coma cluster. Detectors were improved and Geiger counters were replaced by proportional counters, which provided information about energy spectra of the sources. A constant challenge was determining precise positions of sources as only collimators were available.

  15. Membrane protein structural biology using X-ray free electron lasers.

    PubMed

    Neutze, Richard; Brändén, Gisela; Schertler, Gebhard F X

    2015-08-01

    Membrane protein structural biology has benefitted tremendously from access to micro-focus crystallography at synchrotron radiation sources. X-ray free electron lasers (XFELs) are linear accelerator driven X-ray sources that deliver a jump in peak X-ray brilliance of nine orders of magnitude and represent a disruptive technology with potential to dramatically change the field. Membrane proteins were amongst the first macromolecules to be studied with XFEL radiation and include proof-of-principle demonstrations of serial femtosecond crystallography (SFX), the observation that XFEL data can deliver damage free crystallographic structures, initial experiments towards recording structural information from 2D arrays of membrane proteins, and time-resolved SFX, time-resolved wide angle X-ray scattering and time-resolved X-ray emission spectroscopy studies. Conversely, serial crystallography methods are now being applied using synchrotron radiation. We believe that a context dependent choice of synchrotron or XFEL radiation will accelerate progress towards novel insights in understanding membrane protein structure and dynamics.

  16. Development of an X-ray fluorescence holographic measurement system for protein crystals

    NASA Astrophysics Data System (ADS)

    Sato-Tomita, Ayana; Shibayama, Naoya; Happo, Naohisa; Kimura, Koji; Okabe, Takahiro; Matsushita, Tomohiro; Park, Sam-Yong; Sasaki, Yuji C.; Hayashi, Kouichi

    2016-06-01

    Experimental procedure and setup for obtaining X-ray fluorescence hologram of crystalline metalloprotein samples are described. Human hemoglobin, an α2β2 tetrameric metalloprotein containing the Fe(II) heme active-site in each chain, was chosen for this study because of its wealth of crystallographic data. A cold gas flow system was introduced to reduce X-ray radiation damage of protein crystals that are usually fragile and susceptible to damage. A χ-stage was installed to rotate the sample while avoiding intersection between the X-ray beam and the sample loop or holder, which is needed for supporting fragile protein crystals. Huge hemoglobin crystals (with a maximum size of 8 × 6 × 3 mm3) were prepared and used to keep the footprint of the incident X-ray beam smaller than the sample size during the entire course of the measurement with the incident angle of 0°-70°. Under these experimental and data acquisition conditions, we achieved the first observation of the X-ray fluorescence hologram pattern from the protein crystals with minimal radiation damage, opening up a new and potential method for investigating the stereochemistry of the metal active-sites in biomacromolecules.

  17. X-ray Scattering Techniques for Characterization of Nanosystems in Lifescience

    SciTech Connect

    Saw, C K

    2005-04-11

    The intent of this chapter is to provide the basics of using x-ray diffraction techniques in order to obtain information on the structure and morphology of the nanosystems, and also to point out some of its strengths and weaknesses when compare to other characterization techniques. X-ray scattering examines over a wide range of density domains from a tenth to a thousandth angstrom. Essentially, this covers a whole range of condensed matter, including the structure and morphology of nanosystems, particularly useful for examining nanostructures in lifescience. This range of domain size requires both the wide-angle x-ray scattering (WAXS) and small-angle (SAXS) x-ray scattering techniques. Roughly WAXS covers from 2 nm down, and SAXS covers from .5 nm to 100 nm and possibly 1,000 nm for a finely tuned instrument. Brief theoretical description of both WAXS and SAXS will be given in this chapter. WAXS, by itself is a powerful technique in providing information on the crystallographic structure or lack of structure, atomic positions and sizes in a unit cell, to some extend, chemical compositions and as well as chemical stoichiometry. Examples of such experiments will also be given. In order to be able to describe the technique of x-ray scattering, some historical and theoretical background will be given in the hope of making this subject interesting and simple.

  18. X-Ray Calorimeter Arrays for Astrophysics

    NASA Technical Reports Server (NTRS)

    Kilbourne, Caroline A.

    2009-01-01

    High-resolution x-ray spectroscopy is a powerful tool for studying the evolving universe. The grating spectrometers on the XMM and Chandra satellites started a new era in x-ray astronomy, but there remains a need for instrumentation that can provide higher spectral resolution with high throughput in the Fe-K band (around 6 keV) and can enable imaging spectroscopy of extended sources, such as supernova remnants and galaxy clusters. The instrumentation needed is a broad-band imaging spectrometer - basically an x-ray camera that can distinguish tens of thousands of x-ray colors. The potential benefits to astrophysics of using a low-temperature calorimeter to determine the energy of an incident x-ray photon via measurement of a small change in temperature was first articulated by S. H. Moseley over two decades ago. In the time since, technological progress has been steady, though full realization in an orbiting x-ray telescope is still awaited. A low-temperature calorimeter can be characterized by the type of thermometer it uses, and three types presently dominate the field. The first two types are temperature-sensitive resistors - semiconductors in the metal-insulator transition and superconductors operated in the superconducting-normal transition. The third type uses a paramagnetic thermometer. These types can be considered the three generations of x-ray calorimeters; by now each has demonstrated a resolving power of 2000 at 6 keV, but only a semiconductor calorimeter system has been developed to spaceflight readiness. The Soft X-ray Spectrometer on Astro-H, expected to launch in 2013, will use an array of silicon thermistors with I-IgTe x-ray absorbers that will operate at 50 mK. Both the semiconductor and superconductor calorimeters have been implemented in small arrays, kilo-pixel arrays of the superconducting calorimeters are just now being produced, and it is anticipated that much larger arrays will require the non-dissipative advantage of magnetic thermometers.

  19. X-ray emission from Trifid Nebula

    NASA Astrophysics Data System (ADS)

    Rho, J.

    1998-09-01

    The Trifid Nebula is one of the best-studied astrophysical objects, a classical nebula of ionized gas from an O6V star glowing red light, and it is trisected by obscuring dust lanes. Our ROSAT/PSPC image for the first time reveals that the Trifid Nebula emits X-rays and its emitting region is ~ 7' diameter--as large as the HII region itself. %The only previously reported X-ray emission Three main X-ray peaks appear within ~ 4 pc diameter of diffuse emission, roughly spherical. The strongest peak has 2' size near the O star, but the centroid of the X-ray peak appears 25'' away from HD 164492. % which is larger than the PSPC point spread function. Thus the emission may be a shell surrounding the O star as observed in eta Carina, originating from the interaction of a stellar wind with a circumstellar shell. There are a few other X-ray peaks: along the northeastern dust lane and in the east, none of which coincide with any identified optical stars. The PSPC spectrum extracted from the entire Trifid nebula does not clearly distinguish between thermal, bremsstrahlung, and power-law models, due to lack of counts. However, all of these models imply the X-ray luminosity (0.3 - 2.4 keV) is greater than 0.2 - 3*E(34) ergs s(-1) . The diffuse emission is possibly thermal with a temperature of 0.3-1 keV, as in the other HII regions eta Carina and RCW 49. The strong stellar wind from an O star alone can inject an energy of ~ 10(36) ergs s(-1) into ISM; this energy can be converted to heat the ionized gas to X-ray temperature. While the global diffuse X-ray emitting region is similar to the optical HII region, the bright X-ray peaks coincide with the structures in the infrared, suggesting possible embedded stars and their interaction with the circumstellar medium.

  20. X-ray absorption spectroscopy of metalloproteins.

    PubMed

    Ward, Jesse; Ollmann, Emily; Maxey, Evan; Finney, Lydia A

    2014-01-01

    Metalloproteins are enormously important in biology. While a variety of techniques exist for studying metals in biology, X-ray absorption spectroscopy is particularly useful in that it can determine the local electronic and physical structure around the metal center, and is one of the few avenues for studying "spectroscopically silent" metal ions like Zn(II) and Cu(I) that have completely filled valence bands. While X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) are useful for studying metalloprotein structure, they suffer the limitation that the detected signal is an average of all the various metal centers in the sample, which limits its usefulness for studying metal centers in situ or in cell lysates. It would be desirable to be able to separate the various proteins in a mixture prior to performing X-ray absorption studies, so that the derived signal is from one species only. Here we describe a method for performing X-ray absorption spectroscopy on protein bands following electrophoretic separation and western blotting.

  1. X-ray irradiation of yeast cells

    NASA Astrophysics Data System (ADS)

    Masini, Alessandra; Batani, Dimitri; Previdi, Fabio; Conti, Aldo; Pisani, Francesca; Botto, Cesare; Bortolotto, Fulvia; Torsiello, Flavia; Turcu, I. C. Edmond; Allott, Ric M.; Lisi, Nicola; Milani, Marziale; Costato, Michele; Pozzi, Achille; Koenig, Michel

    1997-10-01

    Saccharomyces Cerevisiae yeast cells were irradiated using the soft X-ray laser-plasma source at Rutherford Laboratory. The aim was to produce a selective damage of enzyme metabolic activity at the wall and membrane level (responsible for fermentation) without interfering with respiration (taking place in mitochondria) and with nuclear and DNA activity. The source was calibrated by PIN diodes and X-ray spectrometers. Teflon stripes were chosen as targets for the UV laser, emitting X-rays at about 0.9 keV, characterized by a very large decay exponent in biological matter. X-ray doses to the different cell compartments were calculated following a Lambert-Bouguet-Beer law. After irradiation, the selective damage to metabolic activity at the membrane level was measured by monitoring CO2 production with pressure silicon detectors. Preliminary results gave evidence of pressure reduction for irradiated samples and non-linear response to doses. Also metabolic oscillations were evidenced in cell suspensions and it was shown that X-ray irradiation changed the oscillation frequency.

  2. Outbursts in ultracompact X-ray binaries

    NASA Astrophysics Data System (ADS)

    Hameury, J.-M.; Lasota, J.-P.

    2016-10-01

    Context. Very faint X-ray binaries appear to be transient in many cases with peak luminosities much fainter than that of usual soft X-ray transients, but their nature still remains elusive. Aims: We investigate the possibility that this transient behaviour is due to the same thermal/viscous instability which is responsible for outbursts of bright soft X-ray transients, occurring in ultracompact binaries for adequately low mass-transfer rates. More generally, we investigate the observational consequences of this instability when it occurs in ultracompact binaries. Methods: We use our code for modelling the thermal-viscous instability of the accretion disc, assumed here to be hydrogen poor. We also take into account the effects of disc X-ray irradiation, and consider the impact of the mass-transfer rate on the outburst brightness. Results: We find that one can reproduce the observed properties of both the very faint and the brighter short transients (peak luminosity, duration, recurrence times), provided that the viscosity parameter in quiescence is slightly smaller (typically a factor of between two and four) than in bright soft X-ray transients and normal dwarf nova outbursts, the viscosity in outburst being unchanged. This possibly reflects the impact of chemical composition on non-ideal magnetohydrodynamic effects affecting magnetically driven turbulence in poorly ionized discs.

  3. X-ray microprobe using multilayer mirrors

    NASA Astrophysics Data System (ADS)

    Underwood, J. H.; Thompson, A. C.; Wu, Y.; Giauque, R. D.

    1988-04-01

    Multilayer reflectors for the X-ray region have now progressed beyond the experimental stage to the point where they can be relied upon as optics for experimental systems, in synchrotron radiation research as well as in other fields. This paper reviews the design considerations for an X-ray microprobe, and summarizes experience with prototypes tested at both SSRL and NSLS. The optical systems described employ multilayer-coated spherical mirrors arranged in the Kirkpatrick-Baez configuration to demagnify the X-ray source by a factor of several hundred. By this means a spot of X-rays less than 10 μm square can be produced. The optical aberrations and other factors that limit the performance are detailed, and possible ways to improve the performance are discussed. In the prototypes the spot is directed on the specimen which is carried on a stage that can be translated horizontally and vertically. The characteristic fluorescent X-rays excited by the focused 10 keV photons are analysed by an energy-dispersive Si(Li) detector, so that by scanning the stage an elemental concentration map of the specimen is built up. In a companion paper [A.C. Thompson, J.H. Underwood, Y. Wu, R.D. Giauque, K.W. Jones and M.L. Rivers, these Proceedings, p. 318] some experimental programs are described, and estimates of the elemental sensitivity are provided.

  4. Bomb detection using backscattered x rays

    NASA Astrophysics Data System (ADS)

    Lockwood, Grant J.; Shope, Steve L.; Wehlburg, Joseph C.; Selph, Michael M.; Jacobs, Jennifer

    1999-01-01

    Currently the most common method to determine the contents of a package suspected of containing an explosive device is to use transmission radiography. This technique requires that an x-ray source and film be placed on opposite sites of the package. This poses a problem if the package is placed so that only one side is accessible, such as against a wall. There is also a threat to personnel and property since explosive devices may be 'booby trapped.' We have developed a method to x-ray a package using backscattered x-rays. This procedure eliminates the use of film behind the target. All of the detection is done from the same side as the source. When an object is subjected to x-rays, some of them are scattered back toward the source. The backscattering of x-rays is proportional to the atomic number (Z) of the material raised to the 4.1 power. This Z4.1 dependence allows us to easily distinguish between explosives, wires, timer, batteries, and other bomb components. Backscatter experiments at Sandia National Laboratories have been conducted on mock bombs in packages. We are able to readily identify the bomb components. The images that are obtained in this procedure are done in real time and the image is displayed on a computer screen.

  5. X-ray lithography using holographic images

    DOEpatents

    Howells, Malcolm S.; Jacobsen, Chris

    1997-01-01

    Methods for forming X-ray images having 0.25 .mu.m minimum line widths on X-ray sensitive material are presented. A holgraphic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required.

  6. X-ray lithography using holographic images

    DOEpatents

    Howells, M.S.; Jacobsen, C.

    1997-03-18

    Methods for forming X-ray images having 0.25 {micro}m minimum line widths on X-ray sensitive material are presented. A holographic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required. 15 figs.

  7. X-Ray Surveyor Mission Concept

    NASA Astrophysics Data System (ADS)

    Gaskin, Jessica

    2015-10-01

    An initial concept study for the X-ray Surveyor mission was carried-out by the Advanced Concept Office at Marshall Space Flight Center (MSFC), with a strawman payload and related requirements that were provided by an Informal Mission Concept Team, comprised of MSFC and Smithsonian Astrophysics Observatory (SAO) scientists plus a diverse cross-section of the X-ray community. The study included a detailed assessment of the requirements, a preliminary design, a mission analysis, and a preliminary cost estimate. The X-ray Surveyor strawman payload is comprised of a high-resolution mirror assembly and an instrument set, which may include an X-ray microcalorimeter, a high-definition imager, and a dispersive grating spectrometer and its readout. The mirror assembly will consist of highly nested, thin, grazing-incidence mirrors, for which a number of technical approaches are currently under development—including adjustable X-ray optics, differential deposition, and new polishing techniques applied to a variety of substrates. This study benefits from previous studies of large missions carried out over the past two decades, such as Con-X, AXSIO and IXO, and in most areas, points to mission requirements no more stringent than those of Chandra.

  8. Calibration of X-Ray Observatories

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; L'Dell, Stephen L.

    2011-01-01

    Accurate calibration of x-ray observatories has proved an elusive goal. Inaccuracies and inconsistencies amongst on-ground measurements, differences between on-ground and in-space performance, in-space performance changes, and the absence of cosmic calibration standards whose physics we truly understand have precluded absolute calibration better than several percent and relative spectral calibration better than a few percent. The philosophy "the model is the calibration" relies upon a complete high-fidelity model of performance and an accurate verification and calibration of this model. As high-resolution x-ray spectroscopy begins to play a more important role in astrophysics, additional issues in accurately calibrating at high spectral resolution become more evident. Here we review the challenges of accurately calibrating the absolute and relative response of x-ray observatories. On-ground x-ray testing by itself is unlikely to achieve a high-accuracy calibration of in-space performance, especially when the performance changes with time. Nonetheless, it remains an essential tool in verifying functionality and in characterizing and verifying the performance model. In the absence of verified cosmic calibration sources, we also discuss the notion of an artificial, in-space x-ray calibration standard. 6th

  9. Polarisation modulation in X-ray binaries

    NASA Astrophysics Data System (ADS)

    Ingram, Adam; Maccarone, Thomas

    2016-07-01

    X-ray polarimetry promises to provide a powerful new lever arm for studying accretion onto black holes with the next generation of X-ray telescopes. I will discuss how polarisation can be used to help constrain the physical origin of quasi-periodic oscillations (QPOs) observed in the X-ray light curves of accreting black holes. QPOs may be signatures of the frame dragging effect: in General Relativity, a spinning black hole twists up the surrounding space-time, causing vertical precession of nearby orbits. In the truncated disc / precessing inner flow model, the entire inner accretion flow precesses as a solid body causing a modulation in the X-ray flux through solid angle and Doppler effects. This model also predicts the observed polarisation of the X-ray signal to vary quasi-periodically. I will summarise our work to model the polarisation signal from a precessing accretion flow, starting with simple assumptions about the emission mechanism but taking General Relativity fully into account. We find that it should be possible to measure the predicted modulation in polarisation degree for a reasonable region of parameter space with a polarimeter capable of detecting ~60 counts per second from a bright black hole binary. I will also show that sensitivity can be greatly improved by correlating the signal with a high count rate reference band signal.

  10. X-ray Pinhole Camera Measurements

    SciTech Connect

    Nelson, D. S.; Berninger, M. J.; Flores, P. A.; Good, D. E.; Henderson, D. J.; Hogge, K. W.; Huber, S. R.; Lutz, S. S.; Mitchell, S. E.; Howe, R. A.; Mitton, C. V.; Molina, I.; Bozman, D. R.; Cordova, S. R.; Mitchell, D. R.; Oliver, B. V.; Ormond, E. C.

    2013-07-01

    The development of the rod pinch diode [1] has led to high-resolution radiography for dynamic events such as explosive tests. Rod pinch diodes use a small diameter anode rod, which extends through the aperture of a cathode plate. Electrons borne off the aperture surface can self-insulate and pinch onto the tip of the rod, creating an intense, small x-ray source (Primary Pinch). This source has been utilized as the main diagnostic on numerous experiments that include high-value, single-shot events. In such applications there is an emphasis on machine reliability, x-ray reproducibility, and x-ray quality [2]. In tests with the baseline rod pinch diode, we have observed that an additional pinch (Secondary Pinch) occurs at the interface near the anode rod and the rod holder. This suggests that stray electrons exist that are not associated with the Primary Pinch. In this paper we present measurements on both pinches using an x-ray pinhole camera. The camera is placed downstream of the Primary Pinch at an angle of 60° with respect to the diode centerline. This diagnostic will be employed to diagnose x-ray reproducibility and quality. In addition, we will investigate the performance of hybrid diodes relating to the formation of the Primary and Secondary Pinches.

  11. X-ray optics of gold nanoparticles.

    PubMed

    Letfullin, Renat R; Rice, Colin E W; George, Thomas F

    2014-11-01

    Gold nanoparticles have been investigated as contrast agents for traditional x-ray medical procedures, utilizing the strong absorption characteristics of the nanoparticles to enhance the contrast of the detected x-ray image. Here we use the Kramers-Kronig relation for complex atomic scattering factors to find the real and imaginary parts of the index of refraction for the medium composed of single-element materials or compounds in the x-ray range of the spectrum. These complex index of refraction values are then plugged into a Lorenz-Mie theory to calculate the absorption efficiency of various size gold nanoparticles for photon energies in the 1-100 keV range. Since the output from most medical diagnostic x-ray devices follows a wide and filtered spectrum of photon energies, we introduce and compute the effective intensity-absorption-efficiency values for gold nanoparticles of radii varying from 5 to 50 nm, where we use the TASMIP model to integrate over all spectral energies generated by typical tungsten anode x-ray tubes with kilovolt potentials ranging from 50 to 150 kVp.

  12. The Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.

    2013-01-01

    The Chandra X-ray Observatory, the third of NASA's four Great Observatories and its flagship mission for X-ray astronomy, was launched by NASA's Space Shuttle Columbia on July 23, 1999. The first X-ray sources were observed on August 12, 1999. The brightest of these sources named Leon X-1 in honor of Chandra's Telescope Scientist who played the leading role in establishing the key to Chandra's great advance in angular resolution. Over the past years, the Observatory's ability to provide sub-arc second X-ray images and high resolution spectra has established it as one of the most versatile and powerful tools for astrophysical research in the 21st century. Chandra explores the high-energy regions of the universe, observing X-ray sources with fluxes ranging over more than 10 orders of magnitude. The longevity of Chandra also provides a long observing baseline enabling temporal studies over time-scales of years. I will discuss how the Observatory works, the current operational status, and scientific highlights covering a variety of objects from stars with nearby planets that impact the stellar activity to the deepest Chandra surveys.

  13. Thin Shell, Segmented X-Ray Mirrors

    NASA Technical Reports Server (NTRS)

    Petre, Robert

    2010-01-01

    Thin foil mirrors were introduced as a means of achieving high throughput in an X-ray astronomical imaging system in applications for which high angular resolution were not necessary. Since their introduction, their high filling factor, modest mass, relative ease of construction, and modest cost have led to their use in numerous X-ray observatories, including the Broad Band X-ray Telescope, ASCA, and Suzaku. The introduction of key innovations, including epoxy replicated surfaces, multilayer coatings, and glass mirror substrates, has led to performance improvements, and in their becoming widely used for X-ray astronomical imaging at energies above 10 keV. The use of glass substrates has also led to substantial improvement in angular resolution, and thus their incorporation into the NASA concept for the International X-ray Observatory with a planned 3 in diameter aperture. This paper traces the development of foil mirrors from their inception in the 1970's through their current and anticipated future applications.

  14. Ultrafast X-Ray Coherent Control

    SciTech Connect

    Reis, David

    2009-05-01

    This main purpose of this grant was to develop the nascent eld of ultrafast x-ray science using accelerator-based sources, and originally developed from an idea that a laser could modulate the di racting properties of a x-ray di racting crystal on a fast enough time scale to switch out in time a shorter slice from the already short x-ray pulses from a synchrotron. The research was carried out primarily at the Advanced Photon Source (APS) sector 7 at Argonne National Laboratory and the Sub-Picosecond Pulse Source (SPPS) at SLAC; in anticipation of the Linac Coherent Light Source (LCLS) x-ray free electron laser that became operational in 2009 at SLAC (all National User Facilities operated by BES). The research centered on the generation, control and measurement of atomic-scale dynamics in atomic, molecular optical and condensed matter systems with temporal and spatial resolution . It helped develop the ultrafast physics, techniques and scienti c case for using the unprecedented characteristics of the LCLS. The project has been very successful with results have been disseminated widely and in top journals, have been well cited in the eld, and have laid the foundation for many experiments being performed on the LCLS, the world's rst hard x-ray free electron laser.

  15. Optics for coherent X-ray applications

    PubMed Central

    Yabashi, Makina; Tono, Kensuke; Mimura, Hidekazu; Matsuyama, Satoshi; Yamauchi, Kazuto; Tanaka, Takashi; Tanaka, Hitoshi; Tamasaku, Kenji; Ohashi, Haruhiko; Goto, Shunji; Ishikawa, Tetsuya

    2014-01-01

    Developments of X-ray optics for full utilization of diffraction-limited storage rings (DLSRs) are presented. The expected performance of DLSRs is introduced using the design parameters of SPring-8 II. To develop optical elements applicable to manipulation of coherent X-rays, advanced technologies on precise processing and metrology were invented. With propagation-based coherent X-rays at the 1 km beamline of SPring-8, a beryllium window fabricated with the physical-vapour-deposition method was found to have ideal speckle-free properties. The elastic emission machining method was utilized for developing reflective mirrors without distortion of the wavefronts. The method was further applied to production of diffraction-limited focusing mirrors generating the smallest spot size in the sub-10 nm regime. To enable production of ultra-intense nanobeams at DLSRs, a low-vibration cooling system for a high-heat-load monochromator and advanced diagnostic systems to characterize X-ray beam properties precisely were developed. Finally, new experimental schemes for combinative nano-analysis and spectroscopy realised with novel X-ray optics are discussed. PMID:25177986

  16. Radiographic X-Ray Pulse Jitter

    SciTech Connect

    Mitton, C. V., Good, D. E., Henderson, D. J., Hogge, K. W.

    2011-01-15

    The Dual Beam Radiographic Facility consists of two identical radiographic sources. Major components of the machines are: Marx generator, water-filled pulse-forming line (PFL), water-filled coaxial transmission line, three-cell inductive voltage adder, and rod-pinch diode. The diode pulse has the following electrical specifications: 2.25-MV, 60-kA, 60-ns. Each source has the following x-ray parameters: 1-mm-diameter spot size, 4-rad at 1 m, 50-ns full width half max. The x-ray pulse is measured with PIN diode detectors. The sources were developed to produce high resolution images on single-shot, high-value experiments. For this application it is desirable to maintain a high level of reproducibility in source output. X-ray pulse jitter is a key metric for analysis of reproducibility. We will give measurements of x-ray jitter for each machine. It is expected that x-ray pulse jitter is predominantly due to PFL switch jitter, and therefore a correlation of the two will be discussed.

  17. Visualization of x-ray backscatter data

    SciTech Connect

    Greenawald, E.C.; Ham, Y.S.; Poranski, C.F. Jr.

    1993-12-31

    Of the several processes which occur when x-rays interact with matter, Compton scattering is dominant in the range of energies commonly used in industrial radiography. The Compton interaction between an x-ray photon and a free or outer shell electron causes the electron to recoil and the photon to be propagated in a new direction with a reduced energy. Regardless of the incident beam energy, some photons are always scattered in the backwards direction. The potential for determining material properties by the detection of x-ray backscatter has been recognized for years. Although work in this area has been eclipsed by the rapid development of computerized tomography (CT), a variety of industrial backscatter imaging techniques and applications have been demonstrated. Backscatter inspection is unique among x-ray methods in its applicability with access to only one side of the object. The authors are currently developing the application of x-ray backscatter tomography (XBT) to the inspection of steel-reinforced rubber sonar domes on US Navy vessels. In this paper, the authors discuss the visualization methods they use to interpret the XBT data. They present images which illustrate the capability of XBT as applied to sonar domes and a variety of other materials and objects. They also demonstrate and discuss the use of several data visualization software products.

  18. Soft X-Ray Absorption Spectroscopy at an X-ray Free Electron Laser

    NASA Astrophysics Data System (ADS)

    Higley, Daniel; Schlotter, William; Turner, Joshua; Moeller, Stefan; Mitra, Ankush; Tsukamoto, Arata; Marvel, Robert; Haglund, Richard; Durr, Hermann; Stohr, Joachim; Dakovski, Georgi

    2015-03-01

    X-ray free electron lasers, providing coherent, ultrafast, high intensity x-ray pulses, have enabled groundbreaking scattering experiments to probe the atomic structure of materials on femtosecond timescales. Nonetheless, x-ray absorption spectroscopy (XAS), one of the most fundamental and common x-ray techniques practiced at synchrotron light sources, has proven challenging to conduct with satisfactory signal-to-noise levels at soft x-ray energies using free electron laser sources. The ability to routinely collect high quality XAS spectra, especially in a time-resolved manner, will open many new scientific possibilities in the areas of ultrafast demagnetization, phase transitions and chemical dynamics to highlight a few. Here, we report how XAS using total fluorescence yield detection yields high signal-to-noise x-ray absorption spectra at an x-ray free electron laser source. Data were collected over multiple absorption edges on technologically relevant materials. These measurements were recorded on the Soft X-Ray Materials Science instrument at the Linac Coherent Light Source. The results are easily extendable to time-resolved measurements.

  19. X-Ray Data from the X-Ray Data Booklet Online

    DOE Data Explorer

    Thompson, Albert C.; Attwood, David T.; Gullikson, Eric M.; Howells, Malcolm R.; Kortright, Jeffrey B.; Robinson, Arthur L.; Underwood, James H.; Kim, Kwang-Je; Kirz, Janos; Lindau, Ingolf; Pianetta, Piero; Winick, Herman; Williams, Gwyn P.; Scofield, James H.

    The original X-Ray Data Booklet, published in 1985, became a classic reference source. The online version has been significantly revised and updated to reflect today's science. Hundreds of pages of authoritative data provide the x-ray properties of elements, information on synchrotron radiation, scattering processes, optics and detectors, and other related calculations, formulas, and data tables.

  20. Active x-ray optics for the next generation of x-ray telescopes

    NASA Astrophysics Data System (ADS)

    Atkins, Carolyn; Wang, Hongchang; Doel, Peter; Brooks, David; Thompson, Samantha; Feldman, Charlotte; Willingale, Richard; Button, Tim; Rodriguez Sanmartin, Daniel; Zhang, Dou; James, Ady; Theobald, Craig; Willis, Graham; Smith, Andrew D.

    2009-05-01

    The immediate future for X-ray astronomy is the need for high sensitivity, requiring large apertures and collecting areas, the newly combined NASA, ESA and JAXA mission IXO (International X-ray Observatory) is specifically designed to meet this need. However, looking beyond the next decade, there have been calls for an X-ray space telescope that can not only achieve this high sensitivity, but could also boast an angular resolution of 0.1 arc-seconds, a factor of five improvement on the Chandra X-ray Observatory. NASA's proposed Generation-X mission is designed to meet this demand; it has been suggested that the X-ray optics must be active in nature in order to achieve this desired resolution. The Smart X-ray Optics (SXO) project is a UK based consortium looking at the application of active/adaptive optics to both large and small scale devices, intended for astronomical and medical purposes respectively. With Generation-X in mind, an active elliptical prototype has been designed by the SXO consortium to perform point-to-point X-ray focussing, while simultaneously manipulating its optical surface to improve its initial resolution. Following the completion of the large scale SXO prototype, presented is an overview of the production and operation of the prototype, with emphasis on the X-ray environment and preliminary results.