Sample records for north american atlantic

  1. Structure of the North American Atlantic Continental Margin.

    ERIC Educational Resources Information Center

    Klitgord, K. K.; Schlee, J. S.

    1986-01-01

    Offers explanations on the origin of the North American Atlantic continental margin. Provides an analysis and illustrations of structural and strategraphic elements of cross sections of the Atlantic continental margin. Also explains the operations and applications of seismic-relection profiles in studying ocean areas. (ML)

  2. South American monsoon response to iceberg discharge in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Stríkis, Nicolás M.; Cruz, Francisco W.; Barreto, Eline A. S.; Naughton, Filipa; Vuille, Mathias; Cheng, Hai; Voelker, Antje H. L.; Zhang, Haiwei; Karmann, Ivo; Edwards, R. Lawrence; Auler, Augusto S.; Ventura Santos, Roberto; Reis Sales, Hamilton

    2018-04-01

    Heinrich Stadials significantly affected tropical precipitation through changes in the interhemispheric temperature gradient as a result of abrupt cooling in the North Atlantic. Here, we focus on changes in South American monsoon precipitation during Heinrich Stadials using a suite of speleothem records covering the last 85 ky B.P. from eastern South America. We document the response of South American monsoon precipitation to episodes of extensive iceberg discharge, which is distinct from the response to the cooling episodes that precede the main phase of ice-rafted detritus deposition. Our results demonstrate that iceberg discharge in the western subtropical North Atlantic led to an abrupt increase in monsoon precipitation over eastern South America. Our findings of an enhanced Southern Hemisphere monsoon, coeval with the iceberg discharge into the North Atlantic, are consistent with the observed abrupt increase in atmospheric methane concentrations during Heinrich Stadials.

  3. Climate and ecosystem linkages explain widespread declines in North American Atlantic salmon populations.

    PubMed

    Mills, Katherine E; Pershing, Andrew J; Sheehan, Timothy F; Mountain, David

    2013-10-01

    North American Atlantic salmon (Salmo salar) populations experienced substantial declines in the early 1990s, and many populations have persisted at low abundances in recent years. Abundance and productivity declined in a coherent manner across major regions of North America, and this coherence points toward a potential shift in marine survivorship, rather than local, river-specific factors. The major declines in Atlantic salmon populations occurred against a backdrop of physical and biological shifts in Northwest Atlantic ecosystems. Analyses of changes in climate, physical, and lower trophic level biological factors provide substantial evidence that climate conditions directly and indirectly influence the abundance and productivity of North American Atlantic salmon populations. A major decline in salmon abundance after 1990 was preceded by a series of changes across multiple levels of the ecosystem, and a subsequent population change in 1997, primarily related to salmon productivity, followed an unusually low NAO event. Pairwise correlations further demonstrate that climate and physical conditions are associated with changes in plankton communities and prey availability, which are ultimately linked to Atlantic salmon populations. Results suggest that poor trophic conditions, likely due to climate-driven environmental factors, and warmer ocean temperatures throughout their marine habitat area are constraining the productivity and recovery of North American Atlantic salmon populations. © 2013 John Wiley & Sons Ltd.

  4. Linking North Atlantic Teleconnections to Latitudinal Variability of Wave Climate Along the North American Atlantic Coast

    NASA Astrophysics Data System (ADS)

    Provancha, C.; Adams, P. N.; Hegermiller, C.; Storlazzi, C. D.

    2015-12-01

    Shoreline change via coastal erosion and accretion is largely influenced by variations in ocean wave climate. Identifying the sources of these variations is challenging because the timing of wave energy delivery varies over multiple timescales within ocean basins. We present the results of an investigation of USACE Wave Information Studies hindcast hourly wave heights, periods, and directions along the North American Atlantic coast from 1980-2012, designed to explore links between wave climate and teleconnection patterns. Trends in median and extreme significant wave heights (SWHs) demonstrate that mean monthly SWHs increased from 1 to 5 cm/yr along the roughly 3000 km reach of study area, with changes in hurricane season waves appearing to be most influential in producing the overall trends. Distributions of SWHs categorized by North Atlantic Oscillation (NAO) phase, show that positive-period NAO SWHs are greater than negative-period NAO SWHs along the entire eastern seaboard (25°N to 45°N). The most prominent wave direction off Cape Cod, MA during positive-period NAO is approximately 105°, as compared to approximately 75° during negative-period NAO. Prominent wave directions between Cape Canaveral, FL, and Savannah, GA exhibit a similar shift but during opposite phases of the NAO. The results of this analysis suggest that the atmosphere-ocean interactions associated with contrasting NAO phases can significantly change the wave climate observed offshore along the North American Atlantic coast, altering alongshore wave energy fluxes and sediment transport patterns along the coast.

  5. Synoptic Scale North American Weather Tracks and the Formation of North Atlantic Windstorms

    NASA Astrophysics Data System (ADS)

    Baum, A. J.; Godek, M. L.

    2014-12-01

    Each winter, dozens of fatalities occur when intense North Atlantic windstorms impact Western Europe. Forecasting the tracks of these storms in the short term is often problematic, but long term forecasts provide an even greater challenge. Improved prediction necessitates the ability to identify these low pressure areas at formation and understand commonalities that distinguish these storms from other systems crossing the Atlantic, such as where they develop. There is some evidence that indicates the majority of intense windstorms that reach Europe have origins far west, as low pressure systems that develop over the North American continent. This project aims to identify the specific cyclogenesis regions in North America that produce a significantly greater number of dangerous storms. NOAA Ocean Prediction Center surface pressure reanalysis maps are used to examine the tracks of storms. Strong windstorms are characterized by those with a central pressure of less than 965 hPa at any point in their life cycle. Tracks are recorded using a coding system based on source region, storm track and dissipation region. The codes are analyzed to determine which region contains the most statistical significance with respect to strong Atlantic windstorm generation. The resultant set of codes also serves as a climatology of North Atlantic extratropical cyclones. Results indicate that a number of windstorms favor cyclogenesis regions off the east coast of the United States. A large number of strong storms that encounter east coast cyclogenesis zones originate in the central mountain region, around Colorado. These storms follow a path that exits North America around New England and subsequently travel along the Canadian coast. Some of these are then primed to become "bombs" over the open Atlantic Ocean.

  6. Advancing decadal-scale climate prediction in the North Atlantic sector.

    PubMed

    Keenlyside, N S; Latif, M; Jungclaus, J; Kornblueh, L; Roeckner, E

    2008-05-01

    The climate of the North Atlantic region exhibits fluctuations on decadal timescales that have large societal consequences. Prominent examples include hurricane activity in the Atlantic, and surface-temperature and rainfall variations over North America, Europe and northern Africa. Although these multidecadal variations are potentially predictable if the current state of the ocean is known, the lack of subsurface ocean observations that constrain this state has been a limiting factor for realizing the full skill potential of such predictions. Here we apply a simple approach-that uses only sea surface temperature (SST) observations-to partly overcome this difficulty and perform retrospective decadal predictions with a climate model. Skill is improved significantly relative to predictions made with incomplete knowledge of the ocean state, particularly in the North Atlantic and tropical Pacific oceans. Thus these results point towards the possibility of routine decadal climate predictions. Using this method, and by considering both internal natural climate variations and projected future anthropogenic forcing, we make the following forecast: over the next decade, the current Atlantic meridional overturning circulation will weaken to its long-term mean; moreover, North Atlantic SST and European and North American surface temperatures will cool slightly, whereas tropical Pacific SST will remain almost unchanged. Our results suggest that global surface temperature may not increase over the next decade, as natural climate variations in the North Atlantic and tropical Pacific temporarily offset the projected anthropogenic warming.

  7. Atmospheric teleconnection influence on North American land surface phenology

    NASA Astrophysics Data System (ADS)

    Dannenberg, Matthew P.; Wise, Erika K.; Janko, Mark; Hwang, Taehee; Kolby Smith, W.

    2018-03-01

    Short-term forecasts of vegetation activity are currently not well constrained due largely to our lack of understanding of coupled climate-vegetation dynamics mediated by complex interactions between atmospheric teleconnection patterns. Using ecoregion-scale estimates of North American vegetation activity inferred from remote sensing (1982-2015), we examined seasonal and spatial relationships between land surface phenology and the atmospheric components of five teleconnection patterns over the tropical Pacific, north Pacific, and north Atlantic. Using a set of regression experiments, we also tested for interactions among these teleconnection patterns and assessed predictability of vegetation activity solely based on knowledge of atmospheric teleconnection indices. Autumn-to-winter composites of the Southern Oscillation Index (SOI) were strongly correlated with start of growing season timing, especially in the Pacific Northwest. The two leading modes of north Pacific variability (the Pacific-North American, PNA, and West Pacific patterns) were significantly correlated with start of growing season timing across much of southern Canada and the upper Great Lakes. Regression models based on these Pacific teleconnections were skillful predictors of spring phenology across an east-west swath of temperate and boreal North America, between 40°N-60°N. While the North Atlantic Oscillation (NAO) was not strongly correlated with start of growing season timing on its own, we found compelling evidence of widespread NAO-SOI and NAO-PNA interaction effects. These results suggest that knowledge of atmospheric conditions over the Pacific and Atlantic Oceans increases the predictability of North American spring phenology. A more robust consideration of the complexity of the atmospheric circulation system, including interactions across multiple ocean basins, is an important step towards accurate forecasts of vegetation activity.

  8. Impact of North America on the aerosol composition in the North Atlantic free troposphere

    NASA Astrophysics Data System (ADS)

    García, M. Isabel; Rodríguez, Sergio; Alastuey, Andrés

    2017-06-01

    In the AEROATLAN project we study the composition of aerosols collected over ˜ 5 years at Izaña Observatory (located at ˜ 2400 m a.s.l. in Tenerife, the Canary Islands) under the prevailing westerly airflows typical of the North Atlantic free troposphere at subtropical latitudes and midlatitudes. Mass concentrations of sub-10 µm aerosols (PM10) carried by westerly winds to Izaña, after transatlantic transport, are typically within the range 1.2 and 4.2 µg m-3 (20th and 80th percentiles). The main contributors to background levels of aerosols (PM10 within the 1st-50th percentiles = 0.15-2.54 µg m-3) are North American dust (53 %), non-sea-salt sulfate (14 %) and organic matter (18 %). High PM10 events (75th-95th percentiles ≈ 4.0-9.0 µg m-3) are prompted by dust (56 %), organic matter (24 %) and non-sea-salt sulfate (9 %). These aerosol components experience a seasonal evolution explained by (i) their spatial distribution in North America and (ii) the seasonal shift of the North American outflow, which migrates from low latitudes in winter (˜ 32° N, January-March) to high latitudes in summer (˜ 52° N, August-September). The westerlies carry maximum loads of non-sea-salt sulfate, ammonium and organic matter in spring (March-May), of North American dust from midwinter to mid-spring (February-May) and of elemental carbon in summer (August-September). Our results suggest that a significant fraction of organic aerosols may be linked to sources other than combustion (e.g. biogenic); further studies are necessary for this topic. The present study suggests that long-term evolution of the aerosol composition in the North Atlantic free troposphere will be influenced by air quality policies and the use of soils (potential dust emitter) in North America.

  9. North Atlantic climate model bias influence on multiyear predictability

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Park, T.; Park, W.; Latif, M.

    2018-01-01

    The influences of North Atlantic biases on multiyear predictability of unforced surface air temperature (SAT) variability are examined in the Kiel Climate Model (KCM). By employing a freshwater flux correction over the North Atlantic to the model, which strongly alleviates both North Atlantic sea surface salinity (SSS) and sea surface temperature (SST) biases, the freshwater flux-corrected integration depicts significantly enhanced multiyear SAT predictability in the North Atlantic sector in comparison to the uncorrected one. The enhanced SAT predictability in the corrected integration is due to a stronger and more variable Atlantic Meridional Overturning Circulation (AMOC) and its enhanced influence on North Atlantic SST. Results obtained from preindustrial control integrations of models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) support the findings obtained from the KCM: models with large North Atlantic biases tend to have a weak AMOC influence on SAT and exhibit a smaller SAT predictability over the North Atlantic sector.

  10. 22 CFR 120.31 - North Atlantic Treaty Organization.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false North Atlantic Treaty Organization. 120.31 Section 120.31 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS PURPOSE AND DEFINITIONS § 120.31 North Atlantic Treaty Organization. North Atlantic Treaty Organization (NATO) is...

  11. 22 CFR 120.31 - North Atlantic Treaty Organization.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false North Atlantic Treaty Organization. 120.31 Section 120.31 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS PURPOSE AND DEFINITIONS § 120.31 North Atlantic Treaty Organization. North Atlantic Treaty Organization (NATO) is...

  12. 22 CFR 120.31 - North Atlantic Treaty Organization.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false North Atlantic Treaty Organization. 120.31 Section 120.31 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS PURPOSE AND DEFINITIONS § 120.31 North Atlantic Treaty Organization. North Atlantic Treaty Organization (NATO) is...

  13. 22 CFR 120.31 - North Atlantic Treaty Organization.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false North Atlantic Treaty Organization. 120.31 Section 120.31 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS PURPOSE AND DEFINITIONS § 120.31 North Atlantic Treaty Organization. North Atlantic Treaty Organization (NATO) is...

  14. 22 CFR 120.31 - North Atlantic Treaty Organization.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false North Atlantic Treaty Organization. 120.31 Section 120.31 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS PURPOSE AND DEFINITIONS § 120.31 North Atlantic Treaty Organization. North Atlantic Treaty Organization (NATO) is...

  15. Cretaceous paleoceanography of the western North Atlantic Ocean

    USGS Publications Warehouse

    Arthur, Michael A.; Dean, Walter E.

    1986-01-01

    In this paper we summarize available information on the Cretaceous lithostratigraphy and paleoceanography of the western North Atlantic. The data and some of our interpretations draw in large part on papers published in the Deep Sea Drilling Project (DSDP) volumes. We have attempted to cite relevant references when possible, but space limitations make it difficult to give proper credit to all sources; we apologize for any omissions.Organic carbon (Corg) and carbonate (CaCO3) analyses were tabulated for each site from papers in the DSDP Initial Report volumes and other published works (e.g., Summerhayes,1981). Corg, CaCO3, and non-CaCO3 mass accumulation rates (MARS) were calculated using core by core averages of component percentages for the more continuously cored sites; core averages for wet bulk density and porosity (from DSDP data files); biostratigraphies of de Graciansky and others (1982), Roth and Bowdler (1981), and Cool (1982); and the time scales of the Decade of North American Geology (Palmer, 1983; Kent and Gradstein, this volume) or Harland and others (1982; see Plate 1).Backtracked paleodepths for western North Atlantic DSDP Sites from Tucholke and Vogt (1979) with the revised stratigraphy of de Graciansky and others (1982) were used in plotting Corg and CaCO3 in Figures 2, 3, 4 and 5 (see also Thierstein, 1979).Backtracking curves of seafloor paleodepth versus age (Sclater and others, 1977; Tucholke and Vogt, 1979) for selected western North Atlantic DSDP sites. Average CaCO3 concentrations per core are shown by code number

  16. Paleoceanography. Onset of Mediterranean outflow into the North Atlantic.

    PubMed

    Hernández-Molina, F Javier; Stow, Dorrik A V; Alvarez-Zarikian, Carlos A; Acton, Gary; Bahr, André; Balestra, Barbara; Ducassou, Emmanuelle; Flood, Roger; Flores, José-Abel; Furota, Satoshi; Grunert, Patrick; Hodell, David; Jimenez-Espejo, Francisco; Kim, Jin Kyoung; Krissek, Lawrence; Kuroda, Junichiro; Li, Baohua; Llave, Estefania; Lofi, Johanna; Lourens, Lucas; Miller, Madeline; Nanayama, Futoshi; Nishida, Naohisa; Richter, Carl; Roque, Cristina; Pereira, Hélder; Sanchez Goñi, Maria Fernanda; Sierro, Francisco J; Singh, Arun Deo; Sloss, Craig; Takashimizu, Yasuhiro; Tzanova, Alexandrina; Voelker, Antje; Williams, Trevor; Xuan, Chuang

    2014-06-13

    Sediments cored along the southwestern Iberian margin during Integrated Ocean Drilling Program Expedition 339 provide constraints on Mediterranean Outflow Water (MOW) circulation patterns from the Pliocene epoch to the present day. After the Strait of Gibraltar opened (5.33 million years ago), a limited volume of MOW entered the Atlantic. Depositional hiatuses indicate erosion by bottom currents related to higher volumes of MOW circulating into the North Atlantic, beginning in the late Pliocene. The hiatuses coincide with regional tectonic events and changes in global thermohaline circulation (THC). This suggests that MOW influenced Atlantic Meridional Overturning Circulation (AMOC), THC, and climatic shifts by contributing a component of warm, saline water to northern latitudes while in turn being influenced by plate tectonics. Copyright © 2014, American Association for the Advancement of Science.

  17. Rapid subtropical North Atlantic salinity oscillations across Dansgaard-Oeschger cycles.

    PubMed

    Schmidt, Matthew W; Vautravers, Maryline J; Spero, Howard J

    2006-10-05

    Geochemical and sedimentological evidence suggest that the rapid climate warming oscillations of the last ice age, the Dansgaard-Oeschger cycles, were coupled to fluctuations in North Atlantic meridional overturning circulation through its regulation of poleward heat flux. The balance between cold meltwater from the north and warm, salty subtropical gyre waters from the south influenced the strength and location of North Atlantic overturning circulation during this period of highly variable climate. Here we investigate how rapid reorganizations of the ocean-atmosphere system across these cycles are linked to salinity changes in the subtropical North Atlantic gyre. We combine Mg/Ca palaeothermometry and oxygen isotope ratio measurements on planktonic foraminifera across four Dansgaard-Oeschger cycles (spanning 45.9-59.2 kyr ago) to generate a seawater salinity proxy record from a subtropical gyre deep-sea sediment core. We show that North Atlantic gyre surface salinities oscillated rapidly between saltier stadial conditions and fresher interstadials, covarying with inferred shifts in the Tropical Atlantic hydrologic cycle and North Atlantic overturning circulation. These salinity oscillations suggest a reduction in precipitation into the North Atlantic and/or reduced export of deep salty thermohaline waters during stadials. We hypothesize that increased stadial salinities preconditioned the North Atlantic Ocean for a rapid return to deep overturning circulation and high-latitude warming by contributing to increased North Atlantic surface-water density on interstadial transitions.

  18. Impact of the North Atlantic circulation on the climate change patterns of North Sea.

    NASA Astrophysics Data System (ADS)

    Narayan, Nikesh; Mathis, Mortiz; Klein, Birgit; Klein, Holger; Mikolajewicz, Uwe

    2017-04-01

    The physical properties of the North Sea are characterized by the exchange of water masses with the North Atlantic at the northern boundary and Baltic Sea to the east. The combined effects of localized forcing, tidal mixing and advection of water masses make the North Sea a challenging study area. Previous investigations indicated a possibility that the variability of the North Atlantic circulation and the strength of the sub-polar gyre (SPG) might influence the physical properties of the North Sea. The assessment of the complex interaction between the North Atlantic and the North Sea in a climate change scenario requires regionally coupled global RCP simulations with enhanced resolution of the North Sea and the North Atlantic. In this study we analyzed result from the regionally coupled ocean-atmosphere-biogeochemistry model system (MPIOM-REMO-HAMOCC) with a hydrodynamic (HD) model. The ocean model has a zoomed grid which provides the highest resolution over the West European Shelf by shifting its poles over Chicago and Central Europe. An index for the intensity of SPG was estimated by averaging the barotropic stream function (ψ) over the North Atlantic. Various threshold values for ψ were tested to define the strength of the SPG. These SPG indices have been correlated with North Sea hydrographic parameters at various levels to identify areas affected by SPG variability. The influence of the Atlantic's eastern boundary current, contributing more saline waters to the North West European shelf area is also investigated.

  19. North Atlantic Deep Water formation inhibits high Arctic contamination by continental perfluorooctane sulfonate discharges

    NASA Astrophysics Data System (ADS)

    Zhang, Xianming; Zhang, Yanxu; Dassuncao, Clifton; Lohmann, Rainer; Sunderland, Elsie M.

    2017-08-01

    Perfluorooctane sulfonate (PFOS) is an aliphatic fluorinated compound with eight carbon atoms that is extremely persistent in the environment and can adversely affect human and ecological health. The stability, low reactivity, and high water solubility of PFOS combined with the North American phaseout in production around the year 2000 make it a potentially useful new tracer for ocean circulation. Here we characterize processes affecting the lifetime and accumulation of PFOS in the North Atlantic Ocean and transport to sensitive Arctic regions by developing a 3-D simulation within the MITgcm. The model captures variability in measurements across biogeographical provinces (R2 = 0.90, p = 0.01). In 2015, the North Atlantic PFOS reservoir was equivalent to 60% of cumulative inputs from the North American and European continents (1400 Mg). Cumulative inputs to the Arctic accounted for 30% of continental discharges, while the remaining 10% was transported to the tropical Atlantic and other regions. PFOS concentrations declined rapidly after 2002 in the surface mixed layer (half-life: 1-2 years) but are still increasing below 1000 m depth. During peak production years (1980-2000), plumes of PFOS-enriched seawater were transported to the sub-Arctic in energetic surface ocean currents. However, Atlantic Meridional Overturning Circulation (AMOC) and deep ocean transport returned a substantial fraction of this northward transport (20%, 530 Mg) to southern latitudes and reduced cumulative inputs to the Arctic (730 Mg) by 70%. Weakened AMOC due to climate change is thus likely to increase the magnitude of persistent bioaccumulative pollutants entering the Arctic Ocean.

  20. Potential Impact of North Atlantic Climate Variability on Ocean Biogeochemical Processes

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Muhling, B.; Lee, S. K.; Muller-Karger, F. E.; Enfield, D. B.; Lamkin, J. T.; Roffer, M. A.

    2016-02-01

    Previous studies have shown that upper ocean circulations largely determine primary production in the euphotic layers, here the global ocean model with biogeochemistry (GFDL's Modular Ocean Model with TOPAZ biogeochemistry) forced with the ERA-Interim is used to simulate the natural variability of biogeochemical processes in global ocean during 1979-present. Preliminary results show that the surface chlorophyll is overall underestimated in MOM-TOPAZ, but its spatial pattern is fairly realistic. Relatively high chlorophyll variability is shown in the subpolar North Atlantic, northeastern tropical Atlantic, and equatorial Atlantic. Further analysis suggests that the chlorophyll variability in the North Atlantic Ocean is affected by long-term climate variability. For the subpolar North Atlantic region, the chlorophyll variability is light-limited and is significantly correlated with North Atlantic Oscillation. A dipole pattern of chlorophyll variability is found between the northeastern tropical Atlantic and equatorial Atlantic. For the northeastern North Atlantic, the chlorophyll variability is significantly correlated with Atlantic Meridional Mode (AMM) and Atlantic Multidecadal Oscillation (AMO). During the negative phase of AMM and AMO, the increased trade wind in the northeast North Atlantic can lead to increased upwelling of nutrients. In the equatorial Atlantic region, the chlorophyll variability is largely link to Atlantic-Niño and associated equatorial upwelling of nutrients. The potential impact of climate variability on the distribution of pelagic fishes (i.e. yellowfin tuna) are discussed.

  1. North Atlantic sub-decadal variability in climate models

    NASA Astrophysics Data System (ADS)

    Reintges, Annika; Martin, Thomas; Latif, Mojib; Park, Wonsun

    2017-04-01

    The North Atlantic Oscillation (NAO) is the dominant variability mode for the winter climate of the North Atlantic sector. During a positive (negative) NAO phase, the sea level pressure (SLP) difference between the subtropical Azores high and the subpolar Icelandic low is anomalously strong (weak). This affects, for example, temperature, precipitation, wind, and surface heat flux over the North Atlantic, and over large parts of Europe. In observations we find enhanced sub-decadal variability of the NAO index that goes along with a dipolar sea surface temperature (SST) pattern. The corresponding SLP and SST patterns are reproduced in a control experiment of the Kiel Climate Model (KCM). Large-scale air-sea interaction is suggested to be essential for the North Atlantic sub-decadal variability in the KCM. The Atlantic Meridional Overturning Circulation (AMOC) plays a key role, setting the timescale of the variability by providing a delayed negative feedback to the NAO. The interplay of the NAO and the AMOC on the sub-decadal timescale is further investigated in the CMIP5 model ensemble. For example, the average CMIP5 model AMOC pattern associated with sub-decadal variability is characterized by a deep-reaching dipolar structure, similar to the KCM's sub-decadal AMOC variability pattern. The results suggest that dynamical air-sea interactions are crucial to generate enhanced sub-decadal variability in the North Atlantic climate.

  2. North Tropical Atlantic Climate Variability and Model Biases

    NASA Astrophysics Data System (ADS)

    Yang, Y.

    2017-12-01

    Remote forcing from El Niño-Southern Oscillation (ENSO) and local ocean-atmosphere feedback are important for climate variability over the North Tropical Atlantic. These two factors are extracted by the ensemble mean and inter-member difference of a 10-member Pacific Ocean-Global Atmosphere (POGA) experiment, in which sea surface temperatures (SSTs) are restored to the observed anomalies over the tropical Pacific but fully coupled to the atmosphere elsewhere. POGA reasonably captures main features of observed North Tropical Atlantic variability. ENSO forced and local North Tropical Atlantic modes (NTAMs) develop with wind-evaporation-SST feedback, explaining one third and two thirds of total variance respectively. Notable biases, however, exist. The seasonality of the simulated NTAM is delayed by one month, due to the late development of the North Atlantic Oscillation (NAO) in the model. A spurious band of enhanced sea surface temperature (SST) variance (SBEV) is identified over the northern equatorial Atlantic in POGA and 14 out of 23 CMIP5 models. The SBEV is especially pronounced in boreal spring and due to the combined effect of both anomalous atmospheric thermal forcing and oceanic vertical upwelling. While the tropical North Atlantic variability is only weakly correlated with the Atlantic Zonal Mode (AZM) in observations, the SBEV in CMIP5 produces conditions that drive and intensify the AZM variability via triggering the Bjerknes feedback. This partially explains why AZM is strong in some CMIP5 models even though the equatorial cold tongue and easterly trades are biased low.

  3. The subpolar North Atlantic - Response to North Atlantic oscillation like forcing and Influence on the Atlantic meridional overturning circulation

    NASA Astrophysics Data System (ADS)

    Lohmann, Katja; Drange, Helge; Jungclaus, Johann

    2010-05-01

    The extent and strength of the North Atlantic subpolar gyre (SPG) changed rapidly in the mid-1990s, going from large and strong in 1995 to substantially weakened in the following years. The abrupt change in the intensity of the SPG is commonly linked to the reversal of the North Atlantic Oscillation (NAO) index, changing from strong positive to negative values, in the winter 1995/96. In this study we investigate the impact of the initial SPG state on its subsequent behavior by means of an ocean general circulation model driven by NCEP-NCAR reanalysis fields. Our sensitivity integrations suggest that the weakening of the SPG cannot be explained by the change in the atmospheric forcing alone. Rather, for the time period around 1995, the SPG was about to weaken, irrespective of the actual atmospheric forcing, due to the ocean state governed by the persistently strong positive NAO during the preceding seven years (1989 to 1995). Our analysis indicates that it was this preconditioning of the ocean, in combination with the sudden drop in the NAO in 1995/96, that lead to the strong and rapid weakening of the SPG in the second half of the 1990s. In the second part, the sensitivity of the low-frequency variability of the Atlantic meridional overturning circulation to changes in the subpolar North Atlantic is investigated using a 2000 year long control integration as well as sensitivity experiments with the MPI-M Earth System Model. Two 1000 year long sensitivity experiments will be performed, in which the low-frequency variability in the overflow transports from the Nordic Seas and in the subpolar deep water formation rates is suppressed respectively. This is achieved by nudging temperature and salinity in the GIN Sea or in the subpolar North Atlantic (up to about 1500m depth) towards a monthly climatology obtained from the last 1000 years of the control integration.

  4. Predictability of North Atlantic Multidecadal Climate Variability

    PubMed

    Griffies; Bryan

    1997-01-10

    Atmospheric weather systems become unpredictable beyond a few weeks, but climate variations can be predictable over much longer periods because of the coupling of the ocean and atmosphere. With the use of a global coupled ocean-atmosphere model, it is shown that the North Atlantic may have climatic predictability on the order of a decade or longer. These results suggest that variations of the dominant multidecadal sea surface temperature patterns in the North Atlantic, which have been associated with changes in climate over Eurasia, can be predicted if an adequate and sustainable system for monitoring the Atlantic Ocean exists.

  5. Natural and anthropogenic forcing of North Atlantic tropical cyclone track position since 1550 A.D.

    NASA Astrophysics Data System (ADS)

    Baldini, Lisa; Baldini, James; McElwaine, Jim; Frappier, Amy; Asmerom, Yemane; Liu, Kam-biu; Prufer, Keith; Ridley, Harriet; Polyak, Victor; Kennett, Douglas; Macpherson, Colin; Aquino, Valorie; Awe, Jamie; Breitenbach, Sebastian

    2016-04-01

    Over the last 30 years, North Atlantic tropical cyclones (TC) have increased in frequency, intensity, and duration in response to rising North Atlantic sea surface temperatures (SST). Here we present a 450-year record of western Caribbean TC activity reconstructed using subannually-resolved carbon and oxygen isotope ratios in a stalagmite from Yok Balum Cave, southern Belize. Western Caribbean TC activity peaked at 1650 A.D. coincident with maximum Little Ice Age cooling and decreased gradually to 1983 A.D. (the end of the record). Comparison with existing basin-wide reconstructions reveals that the dominant TC tracks corridor migrated from the western Caribbean toward the North American east coast through time. A close link with Atlantic Multidecadal Oscillation (AMO) exists throughout the record but with a clear polarity shift in the TC-AMO relationship at 1870 A.D., coincident with industrialisation. We suggest that the cause of this reversal is Greenhouse gas and aerosol emission induced changes in the relationship between the Intertropical Convergence Zone and the Bermuda High between the modern warm period and the Pre-Industrial Era. The likely impact of continued anthropogenic forcing of TC track on population centres of the western North Atlantic and Caribbean will be addressed.

  6. Simulations of Western North American Hydroclimate during the Little Ice Age and Medieval Climate Anomaly

    NASA Astrophysics Data System (ADS)

    Simon, S. M.; Mann, M. E.; Steinman, B. A.; Feng, S.; Zhang, Y.; Miller, S. K.

    2013-12-01

    Despite the immense impact that large, modern North American droughts, such as those of the 1930s and 1950s, have had on economic, social, aquacultural, and agricultural systems, they are smaller in duration and magnitude than the multidecadal megadroughts that affected North America, in particular the western United States, during the Medieval Climate Anomaly (MCA, ~ 900-1300 AD) and the Little Age (LIA, ~1450-1850 AD). Although various proxy records have been used to reconstruct the timing of these MCA and LIA megadroughts in the western United States, there still exists great uncertainty in the magnitude and spatial coherence of such droughts in the Pacific Northwest region, especially on decadal to centennial timescales. This uncertainty motivates the following study to establish a causal link between the climate forcing that induced these megadroughts and the spatiotemporal response of regional North American hydroclimates to this forcing. This study seeks to establish a better understanding of the influence of tropical Pacific and North Atlantic SSTs on North American drought during the MCA and LIA. We force NCAR's Community Atmospheric Model version 5.1.1 (CAM 5) with prescribed proxy-reconstructed tropical Pacific and North Atlantic SST anomalies from the MCA and LIA, in order to investigate the influence that these SST anomalies had on the spatiotemporal patterns of drought in North America. To isolate the effects of individual ocean basin SSTs on the North American climate system, the model experiments use a variety of SST permutations in the tropical Pacific and North Atlantic basin as external forcing. In order to quantify the spatiotemporal response of the North American climate system to these SST forcing permutations, temperature and precipitation data derived from the MCA and LIA model experiments are compared to lake sediment isotope and tree ring-based hydroclimate reconstructions from the Pacific Northwest. The spatiotemporal temperature and

  7. Sea level anomaly in the North Atlantic and seas around Europe: Long-term variability and response to North Atlantic teleconnection patterns.

    PubMed

    Iglesias, Isabel; Lorenzo, M Nieves; Lázaro, Clara; Fernandes, M Joana; Bastos, Luísa

    2017-12-31

    Sea level anomaly (SLA), provided globally by satellite altimetry, is considered a valuable proxy for detecting long-term changes of the global ocean, as well as short-term and annual variations. In this manuscript, monthly sea level anomaly grids for the period 1993-2013 are used to characterise the North Atlantic Ocean variability at inter-annual timescales and its response to the North Atlantic main patterns of atmospheric circulation variability (North Atlantic Oscillation, Eastern Atlantic, Eastern Atlantic/Western Russia, Scandinavian and Polar/Eurasia) and main driven factors as sea level pressure, sea surface temperature and wind fields. SLA variability and long-term trends are analysed for the North Atlantic Ocean and several sub-regions (North, Baltic and Mediterranean and Black seas, Bay of Biscay extended to the west coast of the Iberian Peninsula, and the northern North Atlantic Ocean), depicting the SLA fluctuations at basin and sub-basin scales, aiming at representing the regions of maximum sea level variability. A significant correlation between SLA and the different phases of the teleconnection patterns due to the generated winds, sea level pressure and sea surface temperature anomalies, with a strong variability on temporal and spatial scales, has been identified. Long-term analysis reveals the existence of non-stationary inter-annual SLA fluctuations in terms of the temporal scale. Spectral density analysis has shown the existence of long-period signals in the SLA inter-annual component, with periods of ~10, 5, 4 and 2years, depending on the analysed sub-region. Also, a non-uniform increase in sea level since 1993 is identified for all sub-regions, with trend values between 2.05mm/year, for the Bay of Biscay region, and 3.98mm/year for the Baltic Sea (no GIA correction considered). The obtained results demonstrated a strong link between the atmospheric patterns and SLA, as well as strong long-period fluctuations of this variable in spatial and

  8. Reconstruction of the North Atlantic tropical cyclones in Azores for the last 800 years.

    NASA Astrophysics Data System (ADS)

    Rubio-Ingles, Maria Jesus; Sánchez, Guiomar; Trigo, Ricardo; Francus, Pierre; Gonçalves, Vitor; Raposeiro, Pedro; Freitas, Conceiçao; Borges, Paolo; Hernández, Armand; Bao, Roberto; Vázquez-Loureiro, David; Andrade, Cesar; Sáez, Alberto; Giralt, Santiago

    2014-05-01

    The variability of North Atlantic tropical storms has been the focus of several studies. Duration and seasonality has been attributed to a number of climate patterns and processes such as El Niño-Southern Oscillation, Atlantic Meridional Mode, African easterly waves, and atmospheric Rossby waves, but their tracks have been widely related to the North Atlantic Oscillation. Several authors have pointed out an increase and track shifting of North Atlantic tropical cyclones since 1995 with increased probability of these turning north far away from the North American continent. However, this cannot be regarded as an infrequent phenomenon as most proxy records from the Atlantic North have shown the existence of similar patterns in the past. Sao Miguel Island (Azores archipelago, Portugal) is settled in the middle of the Atlantic Ocean. This location makes this island an excellent natural laboratory to record shifts on North Atlantic tropical storms tracks that can reach the archipelago as low intensity hurricanes (e.g. Nadine in 2012) or downgraded to tropical storm (e.g. Grace in 2009). In the present work, lake sediment records have been used as a proxy sensor of tropical storms. Lagoa Azul is located inside Sete Cidades volcanic caldera and its catchment is characterized by stepped and forested caldera walls. Tropical storms and heavy rainfalls produce a flashy and substantial enhancement in the erosion of the catchment, increasing the sediments reaching the lake by rockfalls deposits (in littoral zones) and flood events deposits (in offshore zones). These flood events can be recognized in the sedimentary record as lobe deposits dominated by terrestrial components. It can be found in the sedimentary record and the bathymetry. Instrumental meteorological data and historical records have been compiled to reconstruct the most recent history of the North Atlantic tropical storms that have landed or affected the Sao Miguel Island (Andrade et al., 2008). In addition, a 1

  9. Atlantic Meridional Overturning Circulation Influence on North Atlantic Sector Surface Air Temperature and its Predictability in the Kiel Climate Model

    NASA Astrophysics Data System (ADS)

    Latif, M.

    2017-12-01

    We investigate the influence of the Atlantic Meridional Overturning Circulation (AMOC) on the North Atlantic sector surface air temperature (SAT) in two multi-millennial control integrations of the Kiel Climate Model (KCM). One model version employs a freshwater flux correction over the North Atlantic, while the other does not. A clear influence of the AMOC on North Atlantic sector SAT only is simulated in the corrected model that depicts much reduced upper ocean salinity and temperature biases in comparison to the uncorrected model. Further, the model with much reduced biases depicts significantly enhanced multiyear SAT predictability in the North Atlantic sector relative to the uncorrected model. The enhanced SAT predictability in the corrected model is due to a stronger and more variable AMOC and its enhanced influence on North Atlantic sea surface temperature (SST). Results obtained from preindustrial control integrations of models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) support the findings obtained from the KCM: models with large North Atlantic biases tend to have a weak AMOC influence on SST and exhibit a smaller SAT predictability over the North Atlantic sector.

  10. North Atlantic climate variability: The role of the North Atlantic Oscillation

    NASA Astrophysics Data System (ADS)

    Hurrell, James W.; Deser, Clara

    2009-08-01

    Marine ecosystems are undergoing rapid change at local and global scales. To understand these changes, including the relative roles of natural variability and anthropogenic effects, and to predict the future state of marine ecosystems requires quantitative understanding of the physics, biogeochemistry and ecology of oceanic systems at mechanistic levels. Central to this understanding is the role played by dominant patterns or "modes" of atmospheric and oceanic variability, which orchestrate coherent variations in climate over large regions with profound impacts on ecosystems. We review the spatial structure of extratropical climate variability over the Northern Hemisphere and, specifically, focus on modes of climate variability over the extratropical North Atlantic. A leading pattern of weather and climate variability over the Northern Hemisphere is the North Atlantic Oscillation (NAO). The NAO refers to a redistribution of atmospheric mass between the Arctic and the subtropical Atlantic, and swings from one phase to another producing large changes in surface air temperature, winds, storminess and precipitation over the Atlantic as well as the adjacent continents. The NAO also affects the ocean through changes in heat content, gyre circulations, mixed layer depth, salinity, high latitude deep water formation and sea ice cover. Thus, indices of the NAO have become widely used to document and understand how this mode of variability alters the structure and functioning of marine ecosystems. There is no unique way, however, to define the NAO. Several approaches are discussed including both linear (e.g., principal component analysis) and nonlinear (e.g., cluster analysis) techniques. The former, which have been most widely used, assume preferred atmospheric circulation states come in pairs, in which anomalies of opposite polarity have the same spatial structure. In contrast, nonlinear techniques search for recurrent patterns of a specific amplitude and sign. They reveal

  11. North Atlantic climate variability: The role of the North Atlantic Oscillation

    NASA Astrophysics Data System (ADS)

    Hurrell, James W.; Deser, Clara

    2010-02-01

    Marine ecosystems are undergoing rapid change at local and global scales. To understand these changes, including the relative roles of natural variability and anthropogenic effects, and to predict the future state of marine ecosystems requires quantitative understanding of the physics, biogeochemistry and ecology of oceanic systems at mechanistic levels. Central to this understanding is the role played by dominant patterns or "modes" of atmospheric and oceanic variability, which orchestrate coherent variations in climate over large regions with profound impacts on ecosystems. We review the spatial structure of extratropical climate variability over the Northern Hemisphere and, specifically, focus on modes of climate variability over the extratropical North Atlantic. A leading pattern of weather and climate variability over the Northern Hemisphere is the North Atlantic Oscillation (NAO). The NAO refers to a redistribution of atmospheric mass between the Arctic and the subtropical Atlantic, and swings from one phase to another producing large changes in surface air temperature, winds, storminess and precipitation over the Atlantic as well as the adjacent continents. The NAO also affects the ocean through changes in heat content, gyre circulations, mixed layer depth, salinity, high latitude deep water formation and sea ice cover. Thus, indices of the NAO have become widely used to document and understand how this mode of variability alters the structure and functioning of marine ecosystems. There is no unique way, however, to define the NAO. Several approaches are discussed including both linear (e.g., principal component analysis) and nonlinear (e.g., cluster analysis) techniques. The former, which have been most widely used, assume preferred atmospheric circulation states come in pairs, in which anomalies of opposite polarity have the same spatial structure. In contrast, nonlinear techniques search for recurrent patterns of a specific amplitude and sign. They reveal

  12. Subpolar Atlantic cooling and North American east coast warming linked to AMOC slowdown

    NASA Astrophysics Data System (ADS)

    Rahmstorf, Stefan; Caesar, Levke; Feulner, Georg; Saba, Vincent

    2017-04-01

    Reconstructing the history of the Atlantic Meridional Overturning Circulation (AMOC) is difficult due to the limited availability of data. One approach has been to use instrumental and proxy data for sea surface temperature (SST), taking multi-decadal and longer SST variations in the subpolar gyre region as indicator for AMOC changes [Rahmstorf et al., 2015]. Recent high-resolution global climate model results [Saba et al., 2016] as well as dynamical theory and conceptual modelling [Zhang and Vallis, 2007] suggest that an AMOC weakening will not only cool the subpolar Atlantic but simultaneously warm the Northwest Atlantic between Cape Hatteras and Nova Scotia, thus providing a characteristic SST pattern associated with AMOC variations. We analyse sea surface temperature (SST) observations from this region together with high-resolution climate model simulations to better understand the linkages of SST variations to AMOC variability and to provide further evidence for an ongoing AMOC slowdown. References Rahmstorf, S., J. E. Box, G. Feulner, M. E. Mann, A. Robinson, S. Rutherford, and E. J. Schaffernicht (2015), Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation, Nature Climate Change, 5(5), 475-480, doi: 10.1038/nclimate2554. Saba, V. S., et al. (2016), Enhanced warming of the Northwest Atlantic Ocean under climate change, Journal of Geophysical Research-Oceans, 121(1), 118-132, doi: 10.1002/2015JC011346. Zhang, R., and G. K. Vallis (2007), The Role of Bottom Vortex Stretching on the Path of the North Atlantic Western Boundary Current and on the Northern Recirculation Gyre, Journal of Physical Oceanography, 37(8), 2053-2080, doi: 10.1175/jpo3102.1.

  13. North Atlantic SST Patterns and NAO Flavors

    NASA Astrophysics Data System (ADS)

    Rousi, E.; Rahmstorf, S.; Coumou, D.

    2017-12-01

    North Atlantic SST variability results from the interaction of atmospheric and oceanic processes. The North Atlantic Oscillation (NAO) drives changes in SST patterns but is also driven by them on certain time-scales. These interactions are not very well understood and might be affected by anthropogenic climate change. Paleo reconstructions indicate a slowdown of the Atlantic Meridional Overturning Circulation (AMOC) in recent decades leading to a pronounced cold anomaly ("cold blob") in the North Atlantic (Rahmstorf et al., 2015). The latter may favor NAO to be in its negative mode. In this work, sea surface temperature (SST) patterns are studied in relation to NAO variations, with the aim of discovering preferred states and understanding their interactions. SST patterns are analyzed with Self-Organizing Maps (SOM), a clustering technique that helps identify different spatial patterns and their temporal evolution. NAO flavors refer to different longitudinal positions and tilts of the NAO action centers, also defined with SOMs. This way the limitations of the basic, index-based, NAO-definition are overcome, and the method handles different spatially shapes associated with NAO. Preliminary results show the existence of preferred combinations of SSTs and NAO flavors, which in turn affect weather and climate of Europe and North America. The possible influence of the cold blob on European weather is discussed.

  14. Climate variability and marine ecosystem impacts: a North Atlantic perspective

    NASA Astrophysics Data System (ADS)

    Parsons, L. S.; Lear, W. H.

    In recent decades it has been recognized that in the North Atlantic climatic variability has been largely driven by atmospheric forcing related to the North Atlantic Oscillation (NAO). The NAO index began a pronounced decline around 1950 to a low in the 1960s. From 1970 onward the NAO index increased to its most extreme and persistent positive phase during the late 1980s and early 1990s. Changes in the pattern of the NAO have differential impacts on the opposite sides of the North Atlantic and differential impacts in the north and south. The changes in climate resulting from changes in the NAO appear to have had substantial impacts on marine ecosystems, in particular, on fish productivity, with the effects varying from region to region. An examination of several species and stocks, e.g. gadoids, herring and plankton in the Northeast Atlantic and cod and shellfish in the Northwest Atlantic, indicates that there is a link between long-term trends in the NAO and the productivity of various components of the marine ecosystem. While broad trends are evident, the mechanisms are poorly understood. Further research is needed to improve our understanding of how this climate variability affects the productivity of various components of the North Atlantic marine ecosystem.

  15. North Atlantic Deep Water Formation

    NASA Technical Reports Server (NTRS)

    Bennett, T. (Editor); Broecker, W. S. (Editor); Hansen, J. (Editor)

    1984-01-01

    Various studies concerning differing aspects of the North Atlantic are presented. The three major topics under which the works are classified include: (1) oceanography; (2) paleoclimate; and (3) ocean, ice and climate modeling.

  16. North Atlantic sea-level variability during the last millennium

    NASA Astrophysics Data System (ADS)

    Gehrels, Roland; Long, Antony; Saher, Margot; Barlow, Natasha; Blaauw, Maarten; Haigh, Ivan; Woodworth, Philip

    2014-05-01

    Climate modelling studies have demonstrated that spatial and temporal sea-level variability observed in North Atlantic tide-gauge records is controlled by a complex array of processes, including ice-ocean mass exchange, freshwater forcing, steric changes, changes in wind fields, and variations in the speed of the Gulf Stream. Longer records of sea-level change, also covering the pre-industrial period, are important as a 'natural' and long-term baseline against which to test model performance and to place recent and future sea-level changes and ice-sheet change into a long-term context. Such records can only be reliably and continuously reconstructed from proxy methods. Salt marshes are capable of recording decimetre-scale sea-level variations with high precision and accuracy. In this paper we present four new high-resolution proxy records of (sub-) decadal sea-level variability reconstructed from salt-marsh sediments in Iceland, Nova Scotia, Maine and Connecticut that span the past 400 to 900 years. Our records, based on more than 100 new radiocarbon analyses, Pb-210 and Cs-137 measurements as well as other biological and geochemical age markers, together with hundreds of new microfossil observations from contemporary and fossil salt marshes, capture not only the rapid 20th century sea-level rise, but also small-scale (decimetre, multi-decadal) sea-level fluctuations during preceding centuries. We show that in Iceland three periods of rapid sea-level rise are synchronous with the three largest positive shifts of the reconstructed North Atlantic Oscillation (NAO) index. Along the North American east coast we compare our data with salt-marsh records from New Jersey, North Carolina and Florida and observe a trend of increased pre-industrial sea-level variability from south to north (Florida to Nova Scotia). Mass changes and freshwater forcing cannot explain this pattern. Based on comparisons with instrumental sea-level data and modelling studies we hypothesise that

  17. North Atlantic Coastal Tidal Wetlands

    EPA Science Inventory

    The book chapter provides college instructors, researchers, graduate and advanced undergraduate students, and environmental consultants interested in wetlands with foundation information on the ecology and conservation concerns of North Atlantic coastal wetlands. The book c...

  18. North Atlantic coast of Canada from Skylab

    NASA Image and Video Library

    1974-02-01

    SL4-139-4072 (February 1974) --- A high oblique view of the North Atlantic coast of Canada as seen from the Skylab space station in Earth orbit. A Skylab 4 crewman used a hand-held 70mm Hasselblad camera to take this picture. The Strait of Belle Isle, near the center of the picture, separates the Island of Newfoundland from the Canadian mainland. The Strait also connects the Gulf of St. Lawrence with North Atlantic Ocean. The elongated land mass (lower center) is the northern-most peninsula of the Island of Newfoundland. The large land mass at left center is mainland Newfoundland and Quebec. Note the sea ice in the Atlantic. Snow and some ice intermittently cover the land masses, and ice plumes of brash ice or pancake ice can be seen in various shapes and formations. General terrain and ice conditions can be distinguished and evaluated up to at least 55 degrees north latitude in this north looking view. Dr. William Campbell, sea and ice expert with the U.S. Geological Survey, will use this photograph in the study of ice dynamics. Photo credit: NASA

  19. North American Biome

    USDA-ARS?s Scientific Manuscript database

    The North America biome includes the major ecoregions that make up the land area of Canada, the United States, Mexico, and countries in Central America. The biome is bordered to the north by the Arctic Ocean, to the east by the Atlantic Ocean, to the west and south by the Pacific Ocean, and to the s...

  20. Pb isotope signatures in the North Atlantic: initial results from the U.S. GEOTRACES North Atlantic Transect

    NASA Astrophysics Data System (ADS)

    Noble, A.; Echegoyen-Sanz, Y.; Boyle, E. A.

    2012-12-01

    This study presents Pb isotope data from the US GEOTRACES North Atlantic Transect (US-GT-NAT) sampled during two cruises that took place during Fall 2010 and 2011. Almost all of the Pb in the modern ocean is derived from anthropogenic sources, and the North Atlantic has received major Pb inputs from the United States and Europe due to emissions from leaded gasoline and high temperature industrial processes. During the past three decades, Pb fluxes to the North Atlantic have decreased following the phasing out of leaded gasoline in the United States and Europe. Following the concentrations and isotope ratios of Pb in this basin over time reveals the temporal evolution of Pb in this highly-affected basin. The Pb isotope signatures reflect the relative importance of changing inputs from the United States and Europe as leaded gasoline was phased out faster in the United States relative to Europe. In the western North Atlantic, a shallow (~100-200m) low Pb-206/Pb-207 ratio feature was observed near the Subtropical Underwater salinity peak at many stations across the transect, coincident with shallow subsurface maxima in Pb concentration. This water mass originates from high-salinity surface water near 25°N (Defant), which is in the belt of European-Pb-gas-contaminated African aerosols, which we confirmed by Pb-206/Pb-207 ~ 1.17 from upper ocean samples from US-GT-NAT station 18 (23.24degN,38.04degW). At the Mid-Atlantic Ridge station, Pb scavenging onto iron oxides and sulfide was observed by a decrease in Pb concentrations within the TAG hydrothermal plume, although the isotopic signature within the plume was slightly (~3 permil) lower than the surrounding waters possibly indicating a small contribution of hydrothermal Pb or preferential uptake of the lighter isotope. In the Mediteranean Outflow plume near Lisbon, Pb-206/Pb-207 (~1.178) is also strongly influenced by European Pb. Further results from the section will be presented as more data will be available by the

  1. Conservation genomics of anadromous Atlantic salmon across its North American range: outlier loci identify the same patterns of population structure as neutral loci.

    PubMed

    Moore, Jean-Sébastien; Bourret, Vincent; Dionne, Mélanie; Bradbury, Ian; O'Reilly, Patrick; Kent, Matthew; Chaput, Gérald; Bernatchez, Louis

    2014-12-01

    Anadromous Atlantic salmon (Salmo salar) is a species of major conservation and management concern in North America, where population abundance has been declining over the past 30 years. Effective conservation actions require the delineation of conservation units to appropriately reflect the spatial scale of intraspecific variation and local adaptation. Towards this goal, we used the most comprehensive genetic and genomic database for Atlantic salmon to date, covering the entire North American range of the species. The database included microsatellite data from 9142 individuals from 149 sampling locations and data from a medium-density SNP array providing genotypes for >3000 SNPs for 50 sampling locations. We used neutral and putatively selected loci to integrate adaptive information in the definition of conservation units. Bayesian clustering with the microsatellite data set and with neutral SNPs identified regional groupings largely consistent with previously published regional assessments. The use of outlier SNPs did not result in major differences in the regional groupings, suggesting that neutral markers can reflect the geographic scale of local adaptation despite not being under selection. We also performed assignment tests to compare power obtained from microsatellites, neutral SNPs and outlier SNPs. Using SNP data substantially improved power compared to microsatellites, and an assignment success of 97% to the population of origin and of 100% to the region of origin was achieved when all SNP loci were used. Using outlier SNPs only resulted in minor improvements to assignment success to the population of origin but improved regional assignment. We discuss the implications of these new genetic resources for the conservation and management of Atlantic salmon in North America. © 2014 John Wiley & Sons Ltd.

  2. Holocene history of drift ice in the northern North Atlantic: Evidence for different spatial and temporal modes

    USGS Publications Warehouse

    Moros, M.; Andrews, John T.; Eberl, D.D.; Jansen, E.

    2006-01-01

    We present new high-resolution proxy data for the Holocene history of drift ice off Iceland based on the mineralogy of the <2-mm sediment fraction using quantitative X-ray diffraction. These new data, bolstered by a comparison with published proxy records, point to a long-term increasing trend in drift ice input into the North Atlantic from 6 to 5 ka toward the present day at sites influenced by the cold east Greenland Current. This feature reflects the late Holocene Neoglacial or cooling period recorded in ice cores and further terrestrial archives on Greenland. In contrast, a decrease in drift ice during the same period is recorded at sites underlying the North Atlantic Drift, which may reflect a warming of this region. The results document that Holocene changes in iceberg rafting and sea ice advection did not occur uniformly across the North Atlantic. Centennial-scale climate variability in the North Atlantic region over the last ???4 kyr is linked to the observed changes in drift ice input. Increased drift ice may have played a role in the increase of cold intervals during the late Holocene, e.g., the Little Ice Age cooling. Copyright 2006 by the American Geophysical Union.

  3. Decadal predictions of the North Atlantic CO2 uptake.

    PubMed

    Li, Hongmei; Ilyina, Tatiana; Müller, Wolfgang A; Sienz, Frank

    2016-03-30

    As a major CO2 sink, the North Atlantic, especially its subpolar gyre region, is essential for the global carbon cycle. Decadal fluctuations of CO2 uptake in the North Atlantic subpolar gyre region are associated with the evolution of the North Atlantic Oscillation, the Atlantic meridional overturning circulation, ocean mixing and sea surface temperature anomalies. While variations in the physical state of the ocean can be predicted several years in advance by initialization of Earth system models, predictability of CO2 uptake has remained unexplored. Here we investigate the predictability of CO2 uptake variations by initialization of the MPI-ESM decadal prediction system. We find large multi-year variability in oceanic CO2 uptake and demonstrate that its potential predictive skill in the western subpolar gyre region is up to 4-7 years. The predictive skill is mainly maintained in winter and is attributed to the improved physical state of the ocean.

  4. Influence of Surface Processes over Africa on the Atlantic Marine ITCZ and South American Precipitation.

    NASA Astrophysics Data System (ADS)

    Hagos, Samson M.; Cook, Kerry H.

    2005-12-01

    Previous studies show that the climatological precipitation over South America, particularly the Nordeste region, is influenced by the presence of the African continent. Here the influence of African topography and surface wetness on the Atlantic marine ITCZ (AMI) and South American precipitation are investigated.Cross-equatorial flow over the Atlantic Ocean introduced by north south asymmetry in surface conditions over Africa shifts the AMI in the direction of the flow. African topography, for example, introduces an anomalous high over the southern Atlantic Ocean and a low to the north. This results in a northward migration of the AMI and dry conditions over the Nordeste region.The implications of this process on variability are then studied by analyzing the response of the AMI to soil moisture anomalies over tropical Africa. Northerly flow induced by equatorially asymmetric perturbations in soil moisture over northern tropical Africa shifts the AMI southward, increasing the climatological precipitation over northeastern South America. Flow associated with an equatorially symmetric perturbation in soil moisture, however, has a very weak cross-equatorial component and very weak influence on the AMI and South American precipitation. The sensitivity of the AMI to soil moisture perturbations over certain regions of Africa can possibly improve the skill of prediction.

  5. Contributions of Tropical Cyclones to the North Atlantic Climatological Rainfall as Observed from Satellites

    NASA Technical Reports Server (NTRS)

    Rodgers, Edward B.; Adler, Robert F.; Pierce, Harold F.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The tropical cyclone rainfall climatology study that was performed for the North Pacific was extended to the North Atlantic. Similar to the North Pacific tropical cyclone study, mean monthly rainfall within 444 km of the center of the North Atlantic tropical cyclones (i.e., that reached storm stage and greater) was estimated from passive microwave satellite observations during, an eleven year period. These satellite-observed rainfall estimates were used to assess the impact of tropical cyclone rainfall in altering the geographical, seasonal, and inter-annual distribution of the North Atlantic total rainfall during, June-November when tropical cyclones were most abundant. The main results from this study indicate: 1) that tropical cyclones contribute, respectively, 4%, 3%, and 4% to the western, eastern, and entire North Atlantic; 2) similar to that observed in the North Pacific, the maximum in North Atlantic tropical cyclone rainfall is approximately 5 - 10 deg poleward (depending on longitude) of the maximum non-tropical cyclone rainfall; 3) tropical cyclones contribute regionally a maximum of 30% of the total rainfall 'northeast of Puerto Rico, within a region near 15 deg N 55 deg W, and off the west coast of Africa; 4) there is no lag between the months with maximum tropical cyclone rainfall and non-tropical cyclone rainfall in the western North Atlantic, while in the eastern North Atlantic, maximum tropical cyclone rainfall precedes maximum non-tropical cyclone rainfall; 5) like the North Pacific, North Atlantic tropical cyclones Of hurricane intensity generate the greatest amount of rainfall in the higher latitudes; and 6) warm ENSO events inhibit tropical cyclone rainfall.

  6. The North Atlantic-Eurasian teleconnection in summer and its effects on Eurasian climates

    NASA Astrophysics Data System (ADS)

    Li, Jianping; Ruan, Chengqing

    2018-02-01

    A teleconnection between the North Atlantic Ocean and the Eurasian continent is suggested by statistical and dynamical analysis of the northern summer 500 hPa geopotential height field. This teleconnection, termed the Atlantic-Eurasian (AEA) teleconnection, has five centers of action, in the subtropical North Atlantic Ocean, northeastern North Atlantic Ocean, Eastern Europe, the Kara Sea, and north China. The AEA index (AEAI) shows that the AEA undergoes a high degree of variability from year to year, and the AEAI has an increasing trend over the last 30 years. Our results suggest that this phenomenon is a large-scale Rossby wave train that originates in the subtropical North Atlantic Ocean. We support this conclusion by the methods of stationary wave ray tracing in non-uniform horizontal basic flow, wave activity flux calculations, and numerical models. The AEA and midlatitude circumglobal teleconnection pattern manifest distinct features at the hemispheric scale, despite the anomalies associated with them bear some similarities in the northeastern North Atlantic and Eastern Europe. Regional climate variations are strongly linked to this AEA along its path through northern Eurasia.

  7. North Atlantic Bloom

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Reminiscent of the distinctive swirls in a Van Gogh painting, millions of microscopic plants color the waters of the North Atlantic with strokes of blue, turquoise, green, and brown. Fed by nutrients that have built up during the winter and the long, sunlit days of late spring and early summer, the cool waters of the North Atlantic come alive every year with a vivid display of color. The microscopic plants, called phytoplankton, that give the water this color are the base of the marine food chain. Some species of phytoplankton are coated with scales of calcium (chalk), which turn the water electric blue. Chlorophyll and other light-capturing pigments in others give the water a deep green hue. The proliferation of many different species in various stages of growth and decay provides many nuances of color in this concentrated bloom. The bloom stretches across hundreds of kilometers, well beyond the edges of this photo-like image, captured on June 23, 2007, by the Moderate Resolution Imaging Spectroradiometer (MODIS) flying aboard NASA's Aqua satellite. The upper left edge of the image is bounded by Greenland. Iceland is in the upper right. Plumes of dust are blowing off the island, probably adding nutrients to the surface waters to its south. NASA image courtesy Norman Kuring, Ocean Color Group at NASA Goddard Space Flight Center

  8. Mid-Pliocene planktic foraminifer assemblage of the North Atlantic Ocean

    USGS Publications Warehouse

    Dowsett, H.J.; Robinson, M.M.

    2007-01-01

    The US Geological Survey Pliocene Research, Interpretation and Synoptic Mapping (PRISM) North Atlantic faunal data set provides a unique, temporally constrained perspective to document and evaluate the quantitative geographic distribution of key mid-Pliocene taxa. Planktic foraminifer census data from within the PRISM time slab (3.29 to 2.97 Ma) at thirteen sites in the North Atlantic Ocean have been analyzed. We have compiled Scanning Electron Micrographs for an atlas of mid-Pliocene assemblages from the North Atlantic with descriptions of each taxon to document the taxonomic concepts that accompany the PRISM data. In mid-Pliocene assemblages, the geographic distributions of extant taxa are similar to their present day distributions, although some are extended to the north. We use the distribution of extinct taxa to assess previous assumptions regarding environmental preferences.

  9. Sensitivity of the North Atlantic Basin to cyclic climatic forcing during the early Cretaceous

    USGS Publications Warehouse

    Dean, W.E.; Arthur, M.A.

    1999-01-01

    Striking cyclic interbeds of laminated dark-olive to black marlstone and bioturbated white to light-gray limestone of Neocomian (Early Cretaceous) age have been recovered at Deep Sea Drilling Project (DSDP) and Ocean Drilling Project (ODP) sites in the North Atlantic. These Neocomian sequences are equivalent to the Maiolica Formation that outcrops in the Tethyan regions of the Mediterranean and to thick limestone sequences of the Vocontian Trough of France. This lithologic unit marks the widespread deposition of biogenic carbonate over much of the North Atlantic and Tethyan seafloor during a time of overall low sealevel and a deep carbonate compensation depth. The dark clay-rich interbeds typically are rich in organic carbon (OC) with up to 5.5% OC in sequences in the eastern North Atlantic. These eastern North Atlantic sequences off northwest Africa, contain more abundant and better preserved hydrogen-rich, algal organic matter (type II kerogen) relative to the western North Atlantic, probably in response to coastal upwelling induced by an eastern boundary current in the young North Atlantic Ocean. The more abundant algal organic matter in sequences in the eastern North Atlantic is also expressed in the isotopic composition of the carbon in that organic matter. In contrast, organic matter in Neocomian sequences in the western North Atlantic along the continental margin of North America has geochemical and optical characteristics of herbaceous, woody, hydrogen-poor, humic, type III kerogen. The inorganic geochemical characteristics of the dark clay-rich (80% CaCO3) interbeds in both the eastern and western basins of the North Atlantic suggest that they contain minor amounts of relatively unweathered eolian dust derived from northwest Africa during dry intervals.

  10. North American Tropical Cyclone Landfall and SST: A Statistical Model Study

    NASA Technical Reports Server (NTRS)

    Hall, Timothy; Yonekura, Emmi

    2013-01-01

    A statistical-stochastic model of the complete life cycle of North Atlantic (NA) tropical cyclones (TCs) is used to examine the relationship between climate and landfall rates along the North American Atlantic and Gulf Coasts. The model draws on archived data of TCs throughout the North Atlantic to estimate landfall rates at high geographic resolution as a function of the ENSO state and one of two different measures of sea surface temperature (SST): 1) SST averaged over the NA subtropics and the hurricane season and 2) this SST relative to the seasonal global subtropical mean SST (termed relSST). Here, the authors focus on SST by holding ENSO to a neutral state. Jackknife uncertainty tests are employed to test the significance of SST and relSST landfall relationships. There are more TC and major hurricane landfalls overall in warm years than cold, using either SST or relSST, primarily due to a basinwide increase in the number of storms. The signal along the coast, however, is complex. Some regions have large and significant sensitivity (e.g., an approximate doubling of annual major hurricane landfall probability on Texas from -2 to +2 standard deviations in relSST), while other regions have no significant sensitivity (e.g., the U.S. mid-Atlantic and Northeast coasts). This geographic structure is due to both shifts in the regions of primary TC genesis and shifts in TC propagation.

  11. Characterization of natural variation in North American Atlantic Salmon populations (Salmonidae: Salmo salar) at a locus with a major effect on sea age.

    PubMed

    Kusche, Henrik; Côté, Guillaume; Hernandez, Cécilia; Normandeau, Eric; Boivin-Delisle, Damien; Bernatchez, Louis

    2017-08-01

    Age at maturity is a key life-history trait of most organisms. In anadromous salmonid fishes such as Atlantic Salmon ( Salmo salar ), age at sexual maturity is associated with sea age, the number of years spent at sea before the spawning migration. For the first time, we investigated the presence of two nonsynonymous vgll3 polymorphisms in North American Atlantic Salmon populations that relate to sea age in European salmon and quantified the natural variation at these and two additional candidate SNPs from two other genes. A targeted resequencing assay was developed and 1,505 returning adult individuals of size-inferred sea age and sex from four populations were genotyped. Across three of four populations sampled in Québec, Canada, the late-maturing component (MSW) of the population of a given sex exhibited higher proportions of SNP genotypes 54Thr vgll3 and 323Lys vgll3 compared to early-maturing fish (1SW), for example, 85% versus 53% of females from Trinité River carried 323Lys vgll3 ( n MSW  = 205 vs. n 1SW  = 30; p <  .001). However, the association between vgll3 polymorphism and sea age was more pronounced in females than in males in the rivers we studied. Logistic regression analysis of vgll3 SNP genotypes revealed increased probabilities of exhibiting higher sea age for 54Thr vgll3 and 323Lys vgll3 genotypes compared to alternative genotypes, depending on population and sex. Moreover, individuals carrying the heterozygous vgll3 SNP genotypes were more likely (>66%) to be female. In summary, two nonsynonymous vgll3 polymorphisms were confirmed in North American populations of Atlantic Salmon and our results suggest that variation at those loci correlates with sea age and sex. Our results also suggest that this correlation varies among populations. Future work would benefit from a more balanced sampling and from adding data on juvenile riverine life stages to contrast our data.

  12. North Atlantic migratory bird flyways provide routes for intercontinental movement of avian influenza viruses

    USGS Publications Warehouse

    Dusek, Robert J.; Hallgrimsson, Gunnar T.; Ip, Hon S.; Jónsson, Jón E.; Sreevatsan, Srinand; Nashold, Sean W.; TeSlaa, Joshua L.; Enomoto, Shinichiro; Halpin, Rebecca A.; Lin, Xudong; Federova, Nadia; Stockwell, Timothy B.; Dugan, Vivien G.; Wentworth, David E.; Hall, Jeffrey S.

    2014-01-01

    Avian influenza virus (AIV) in wild birds has been of increasing interest over the last decade due to the emergence of AIVs that cause significant disease and mortality in both poultry and humans. While research clearly demonstrates that AIVs can move across the Pacific or Atlantic Ocean, there has been no data to support the mechanism of how this occurs. In spring and autumn of 2010 and autumn of 2011 we obtained cloacal swab samples from 1078 waterfowl, gulls, and shorebirds of various species in southwest and west Iceland and tested them for AIV. From these, we isolated and fully sequenced the genomes of 29 AIVs from wild caught gulls (Charadriiformes) and waterfowl (Anseriformes) in Iceland. We detected viruses that were entirely (8 of 8 genomic segments) of American lineage, viruses that were entirely of Eurasian lineage, and viruses with mixed American-Eurasian lineage. Prior to this work only 2 AIVs had been reported from wild birds in Iceland and only the sequence from one segment was available in GenBank. This is the first report of finding AIVs of entirely American lineage and Eurasian lineage, as well as reassortant viruses, together in the same geographic location. Our study demonstrates the importance of the North Atlantic as a corridor for the movement of AIVs between Europe and North America.

  13. North Atlantic migratory bird flyways provide routes for intercontinental movement of avian influenza viruses.

    PubMed

    Dusek, Robert J; Hallgrimsson, Gunnar T; Ip, Hon S; Jónsson, Jón E; Sreevatsan, Srinand; Nashold, Sean W; TeSlaa, Joshua L; Enomoto, Shinichiro; Halpin, Rebecca A; Lin, Xudong; Fedorova, Nadia; Stockwell, Timothy B; Dugan, Vivien G; Wentworth, David E; Hall, Jeffrey S

    2014-01-01

    Avian influenza virus (AIV) in wild birds has been of increasing interest over the last decade due to the emergence of AIVs that cause significant disease and mortality in both poultry and humans. While research clearly demonstrates that AIVs can move across the Pacific or Atlantic Ocean, there has been no data to support the mechanism of how this occurs. In spring and autumn of 2010 and autumn of 2011 we obtained cloacal swab samples from 1078 waterfowl, gulls, and shorebirds of various species in southwest and west Iceland and tested them for AIV. From these, we isolated and fully sequenced the genomes of 29 AIVs from wild caught gulls (Charadriiformes) and waterfowl (Anseriformes) in Iceland. We detected viruses that were entirely (8 of 8 genomic segments) of American lineage, viruses that were entirely of Eurasian lineage, and viruses with mixed American-Eurasian lineage. Prior to this work only 2 AIVs had been reported from wild birds in Iceland and only the sequence from one segment was available in GenBank. This is the first report of finding AIVs of entirely American lineage and Eurasian lineage, as well as reassortant viruses, together in the same geographic location. Our study demonstrates the importance of the North Atlantic as a corridor for the movement of AIVs between Europe and North America.

  14. North Atlantic Migratory Bird Flyways Provide Routes for Intercontinental Movement of Avian Influenza Viruses

    PubMed Central

    Dusek, Robert J.; Hallgrimsson, Gunnar T.; Ip, Hon S.; Jónsson, Jón E.; Sreevatsan, Srinand; Nashold, Sean W.; TeSlaa, Joshua L.; Enomoto, Shinichiro; Halpin, Rebecca A.; Lin, Xudong; Fedorova, Nadia; Stockwell, Timothy B.; Dugan, Vivien G.; Wentworth, David E.; Hall, Jeffrey S.

    2014-01-01

    Avian influenza virus (AIV) in wild birds has been of increasing interest over the last decade due to the emergence of AIVs that cause significant disease and mortality in both poultry and humans. While research clearly demonstrates that AIVs can move across the Pacific or Atlantic Ocean, there has been no data to support the mechanism of how this occurs. In spring and autumn of 2010 and autumn of 2011 we obtained cloacal swab samples from 1078 waterfowl, gulls, and shorebirds of various species in southwest and west Iceland and tested them for AIV. From these, we isolated and fully sequenced the genomes of 29 AIVs from wild caught gulls (Charadriiformes) and waterfowl (Anseriformes) in Iceland. We detected viruses that were entirely (8 of 8 genomic segments) of American lineage, viruses that were entirely of Eurasian lineage, and viruses with mixed American-Eurasian lineage. Prior to this work only 2 AIVs had been reported from wild birds in Iceland and only the sequence from one segment was available in GenBank. This is the first report of finding AIVs of entirely American lineage and Eurasian lineage, as well as reassortant viruses, together in the same geographic location. Our study demonstrates the importance of the North Atlantic as a corridor for the movement of AIVs between Europe and North America. PMID:24647410

  15. North Atlantic Jet Variability in PMIP3 LGM Simulations

    NASA Astrophysics Data System (ADS)

    Hezel, P.; Li, C.

    2017-12-01

    North Atlantic jet variability in glacial climates has been shown inmodelling studies to be strongly influenced by upstream ice sheettopography. We analyze the results of 8 models from the PMIP3simulations, forced with a hybrid Laurentide Ice Sheet topography, andcompare them to the PMIP2 simulations which were forced with theICE-5G topography, to develop a general understanding of the NorthAtlantic jet and jet variability. The strengthening of the jet andreduced spatial variability is a robust feature of the last glacialmaximum (LGM) simulations compared to the pre-industrial state.However, the canonical picture of the LGM North Atlantic jet as beingmore zonal and elongated compared to pre-industrial climate states isnot a robust result across models, and may have arisen in theliterature as a function of multiple studies performed with the samemodel.

  16. North Atlantic forcing of tropical Indian Ocean climate.

    PubMed

    Mohtadi, Mahyar; Prange, Matthias; Oppo, Delia W; De Pol-Holz, Ricardo; Merkel, Ute; Zhang, Xiao; Steinke, Stephan; Lückge, Andreas

    2014-05-01

    The response of the tropical climate in the Indian Ocean realm to abrupt climate change events in the North Atlantic Ocean is contentious. Repositioning of the intertropical convergence zone is thought to have been responsible for changes in tropical hydroclimate during North Atlantic cold spells, but the dearth of high-resolution records outside the monsoon realm in the Indian Ocean precludes a full understanding of this remote relationship and its underlying mechanisms. Here we show that slowdowns of the Atlantic meridional overturning circulation during Heinrich stadials and the Younger Dryas stadial affected the tropical Indian Ocean hydroclimate through changes to the Hadley circulation including a southward shift in the rising branch (the intertropical convergence zone) and an overall weakening over the southern Indian Ocean. Our results are based on new, high-resolution sea surface temperature and seawater oxygen isotope records of well-dated sedimentary archives from the tropical eastern Indian Ocean for the past 45,000 years, combined with climate model simulations of Atlantic circulation slowdown under Marine Isotope Stages 2 and 3 boundary conditions. Similar conditions in the east and west of the basin rule out a zonal dipole structure as the dominant forcing of the tropical Indian Ocean hydroclimate of millennial-scale events. Results from our simulations and proxy data suggest dry conditions in the northern Indian Ocean realm and wet and warm conditions in the southern realm during North Atlantic cold spells.

  17. Forced and Unforced Variability of Twentieth Century North American Droughts and Pluvials

    NASA Technical Reports Server (NTRS)

    Cook, Benjamin I.; Cook, Edward R.; Anchukaitis, Kevin J.; Seager, Richard; Miller, Ron L.

    2010-01-01

    Research on the forcing of drought and pluvial events over North America is dominated by general circulation model experiments that often have operational limitations (e.g., computational expense, ability to simulate relevant processes, etc). We use a statistically based modeling approach to investigate sea surface temperature (SST) forcing of the twentieth century pluvial (1905-1917) and drought (1932-1939, 1948-1957, 1998-2002) events. A principal component (PC) analysis of Palmer Drought Severity Index (PDSI) from the North American Drought Atlas separates the drought variability into five leading modes accounting for 62% of the underlying variance. Over the full period spanning these events (1900-2005), the first three PCs significantly correlate with SSTs in the equatorial Pacific (PC 1), North Pacific (PC 2), and North Atlantic (PC 3), with spatial patterns (as defined by the empirical orthogonal functions) consistent with our understanding of North American drought responses to SST forcing. We use a large ensemble statistical modeling approach to determine how successfully we can reproduce these drought/pluvial events using these three modes of variability. Using Pacific forcing only (PCs 1-2), we are able to reproduce the 1948-1957 drought and 1905-1917 pluvial above a 95% random noise threshold in over 90% of the ensemble members; the addition of Atlantic forcing (PCs 1-2-3) provides only marginal improvement. For the 1998-2002 drought, Pacific forcing reproduces the drought above noise in over 65% of the ensemble members, with the addition of Atlantic forcing increasing the number passing to over 80%. The severity of the drought, however, is underestimated in the ensemble median, suggesting this drought intensity can only be achieved through internal variability or other processes. Pacific only forcing does a poor job of reproducing the 1932-1939 drought pattern in the ensemble median, and less than one third of ensemble members exceed the noise threshold

  18. Turbidity distribution in the Atlantic Ocean

    USGS Publications Warehouse

    Eittreim, S.; Thorndike, E.M.; Sullivan, L.

    1976-01-01

    The regional coverage of Lamont nephelometer data in the North and South Atlantic can be used to map seawater turbidity at all depths. At the level of the clearest water, in the mid-depth regions, the turbidity distribution primarily reflects the pattern of productivity in the surface waters. This suggests that the 'background' turbidity level in the oceans is largely a function of biogenic fallout. The bottom waters of the western Atlantic generally exhibit large increases in turbidity. The most intense benthic nepheloid layers are in the southwestern Argentine basin and northern North American basin; the lowest bottom water turbidity in the western Atlantic is in the equatorial regions. Both the Argentine and North American basin bottom waters appear to derive their high turbidity largely from local resuspension of terrigenous input in these basins. In contrast to the west, the eastern Atlantic basins show very low turbidities with the exception of three regions: the Mediterranean outflow area, the Cape basin, and the West European basin. ?? 1976.

  19. North Atlantic near-surface salinity contrasts and intra-basin water vapor transfer

    NASA Astrophysics Data System (ADS)

    Reagan, J. R.; Seidov, D.; Boyer, T.

    2017-12-01

    The geographic distribution of near-surface salinity (NSS) in the North Atlantic is characterized by a very salty (>37) subtropical region contrasting with a much fresher (<35) subpolar area. Multiple studies have shown that preserving this salinity contrast is important for maintaining the Atlantic Meridional Overturning Circulation (AMOC), and that changes to this salinity balance may reduce the strength of the AMOC. High subtropical salinity is primarily due to evaporation (E) dominating precipitation (P), whereas low subpolar salinity is at least partly due to precipitation dominating evaporation. Present-day understanding of the fate of water vapor in the atmosphere over the extratropical North Atlantic is that the precipitation which falls in the subpolar region primarily originates from the water vapor produced through evaporation in the subtropical North Atlantic. With this knowledge and in conjunction with a basic understanding of North Atlantic storm tracks—the main meridional transport conduits in mid and high latitudes— a preliminary time and spatial correlation analysis was completed to relate the North Atlantic decadal climatological salinity between 1985 and 2012 to the evaporation and precipitation climatologies for the same period. Preliminary results indicate that there is a clear connection between subtropical E-P and subpolar NSS. Additional results and potential implications will be presented and discussed.

  20. The North Atlantic Ocean Is in a State of Reduced Overturning

    NASA Astrophysics Data System (ADS)

    Smeed, D. A.; Josey, S. A.; Beaulieu, C.; Johns, W. E.; Moat, B. I.; Frajka-Williams, E.; Rayner, D.; Meinen, C. S.; Baringer, M. O.; Bryden, H. L.; McCarthy, G. D.

    2018-02-01

    The Atlantic Meridional Overturning Circulation (AMOC) is responsible for a variable and climatically important northward transport of heat. Using data from an array of instruments that span the Atlantic at 26°N, we show that the AMOC has been in a state of reduced overturning since 2008 as compared to 2004-2008. This change of AMOC state is concurrent with other changes in the North Atlantic such as a northward shift and broadening of the Gulf Stream and altered patterns of heat content and sea surface temperature. These changes resemble the response to a declining AMOC predicted by coupled climate models. Concurrent changes in air-sea fluxes close to the western boundary reveal that the changes in ocean heat transport and sea surface temperature have altered the pattern of ocean-atmosphere heat exchange over the North Atlantic. These results provide strong observational evidence that the AMOC is a major factor in decadal-scale variability of North Atlantic climate.

  1. Bomb Cyclones Of The Western North Atlantic

    NASA Astrophysics Data System (ADS)

    Adams, Ryan E.

    "Bomb" cyclones represent a small subset of mid-latitude cyclones characterized by rapid intensification and frequently are associated with extreme weather conditions along the eastern coast of North America. Like other extreme phenomena, bomb cyclone predictions are prone to error leading to inadequate or untimely hazard warnings. The rare nature of bomb cyclones and the uniqueness of their evolutions has made it difficult for researchers to make meaningful generalizations on bomb cyclone events. This paper describes bomb cyclone climatology for the western North Atlantic, using data from the NCEP-NCAR Reanalysis for 1948-2016, and uses a synoptic climatological analysis to relate these bombs to their associated atmospheric environments. A self-organizing map (SOM) of 300-hPa geopotential height tendency is created to partition the regional atmospheric environment. Thermodynamic fields are contrasted by each 300-hPa geopotential height tendency pattern for both bomb and non-bomb events in composite difference maps. The SOM patterns most significantly associated with western North Atlantic bomb cyclogenesis are characterized by both strongly and weakly negative height tendencies along the eastern United States. In both cases, these patterns exhibit strong meridional flow, a distinction marked by the weakening and breaking down of the polar vortex in the boreal Winter. The composite maps for each pattern show the mean differences in low-mid level ascent and near surface thermodynamics for bomb environments contrasted with non-bomb environments, resulting in diverse spatiotemporal distributions of bombs in the western North Atlantic.

  2. A note on Bjerkne's hypothesis for North Atlantic variability

    NASA Astrophysics Data System (ADS)

    Bryan, Kirk; Stouffer, Ron

    1991-01-01

    On decadal time-scales the historical surface temperature record over land in the Northern Hemisphere is dominated by polar amplified variations. These variations are coherent with SST anomalies concentrated in the Northwest Atlantic, but extending with lesser amplitude into the North Pacific as well. Bierknes suggested that multi-year SST anomalies in the subpolar North Atlantic were due to irregular changes in the intensity of the thermohaline circulation. In support of the Bjerknes hypothesis there is evidence that winter overturning in the Labrador Sea was suppressed for a brief period from 1967-1969 by a cap of relative fresh water at the surface. Cause and effect are unclear, but this event was associated with a marked cooling of the entire Northern Hemisphere. The difference in SST averaged over the Northern Hemisphere oceans and SST averaged over the Southern Hemisphere oceans from the equator to 40°S is coherent with Sahel summer rainfall on decadal time scales. Empirical evidence is supported by numerical experiments with the British Meteorological Office atmospheric climate model which simulate augmented monsoonal rainfall in the Sahel region of Africa in response to realistic warm SST anomalies in the Northwest Atlantic. A coupled ocean-atmosphere global model exhibits two equilibrium climate states. One has an active thermohaline circulation in the North Atlantic and the other does not. The two climate states provide an extreme example which illustrates the type of large scale air sea interaction Bjerknes visualized as a mechanism for North Atlantic climate variability on decadal time-scales.

  3. North Atlantic (NAT) aided inertial navigation system simulation volume I. : technical results

    DOT National Transportation Integrated Search

    1973-07-01

    Current air traffic operations over the North ATlantic (NAT) and the application of hybrid navigation systems to obtain more accurate performance on these NAT routes are reviewed. A digital computer simulation program (NATNAV - North ATlantic NAVigat...

  4. The North Atlantic Oscillation and the ITCZ in a climate simulation

    NASA Astrophysics Data System (ADS)

    Cavalcanti, I. F. A.; Souza, P.

    2009-04-01

    The North Atlantic Oscillation (NAO) and the Atlantic Intertropical Convergence Zone (ITCZ) features are analyzed in a climate simulation with the CPTEC/COLA AGCM. The CPTEC/COLA AGCM reproduces the ITCZ seasonal north-south displacement as well as the seasonal east-west intensity, but the model overestimates the convection. The two phases of NAO are well simulated in the four seasons and also the largest intensity in DJF. The main mode of atmospheric variability considering the North and South Atlantic region, which displays a shifting of the NAO centers and a center of action over South Atlantic to the south of Africa is also reproduced. This mode, in DJF, is associated with the north-south ITCZ displacement in April, in the observed data. The displacement of the NAO centers southwestward allows the increase of pressure over the tropical North Atlantic Ocean and the increase of trade winds and displacement of the confluence and convergence zone southwards. The opposite occurs when the centers are displaced northeastward. The model Atlantic ITCZ position in April is associated with the anomalous (observed) Atlantic SST and the southward displacement of the confluence zone, but the simulated atmospheric features in DJF does not display the main mode of variability, as in the observations. This occurs due to the lack of interaction between the atmosphere and ocean in the atmospheric model. While in the observations the physical mechanism that links the NAO centers of action to the ITCZ position is the ocean-atmosphere interaction, from DJF to April, the atmospheric model responds to the prescribed SST at the same month, in April.

  5. Post-1980 shifts in the sensitivity of boreal tree growth to North Atlantic Ocean dynamics and seasonal climate. Tree growth responses to North Atlantic Ocean dynamics

    NASA Astrophysics Data System (ADS)

    Ols, Clémentine; Trouet, Valerie; Girardin, Martin P.; Hofgaard, Annika; Bergeron, Yves; Drobyshev, Igor

    2018-06-01

    The mid-20th century changes in North Atlantic Ocean dynamics, e.g. slow-down of the Atlantic meridional overturning thermohaline circulation (AMOC), have been considered as early signs of tipping points in the Earth climate system. We hypothesized that these changes have significantly altered boreal forest growth dynamics in northeastern North America (NA) and northern Europe (NE), two areas geographically adjacent to the North Atlantic Ocean. To test our hypothesis, we investigated tree growth responses to seasonal large-scale oceanic and atmospheric indices (the AMOC, North Atlantic Oscillation (NAO), and Arctic Oscillation (AO)) and climate (temperature and precipitation) from 1950 onwards, both at the regional and local levels. We developed a network of 6876 black spruce (NA) and 14437 Norway spruce (NE) tree-ring width series, extracted from forest inventory databases. Analyses revealed post-1980 shifts from insignificant to significant tree growth responses to summer oceanic and atmospheric dynamics both in NA (negative responses to NAO and AO indices) and NE (positive response to NAO and AMOC indices). The strength and sign of these responses varied, however, through space with stronger responses in western and central boreal Quebec and in central and northern boreal Sweden, and across scales with stronger responses at the regional level than at the local level. Emerging post-1980 associations with North Atlantic Ocean dynamics synchronized with stronger tree growth responses to local seasonal climate, particularly to winter temperatures. Our results suggest that ongoing and future anomalies in oceanic and atmospheric dynamics may impact forest growth and carbon sequestration to a greater extent than previously thought. Cross-scale differences in responses to North Atlantic Ocean dynamics highlight complex interplays in the effects of local climate and ocean-atmosphere dynamics on tree growth processes and advocate for the use of different spatial scales in

  6. The Southern Cone: A critical element in North American geology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalziel, I.W.D.

    1993-02-01

    The Pacific and Atlantic-Gulf of Mexico continental margins converge towards southern Mexico, delimiting the Southern Cone of North American. The margins are controlled by late Precambrian to early Paleozoic rift systems. The Neoproterozoic rifts along the Pacific margin truncate the 1.3--1.0 Ga Grenville-Llano front and still older structural boundaries within the craton, such as the Snowbird line. The Atlantic margin originated by separation from another continent within the Grenville orogen near the time of the Precambrian-Cambrian boundary. The Gulf of Mexico margin was initiated with rifting at that time, but appears to truncate the Ordovician Taconian orogen in Georgia. Themore » continental margins of the Southern Cone may prove critical in understanding the origin of North America as a discrete continent. A possible continuation of the Grenville-Llano front has now been identified along the Pacific margin of the East Antarctic craton; the opposite side of the Grenville orogen may be present in South America and East Antarctic; a southern continuation of the Taconic Appalachians may have been identified in southern South American and Antarctica (L. Dalla Salda et al., Geology, 1992 a;b: I. Dalziel, Geology, 1991, and GSA Today, 1992; P. Hoffman, Science, 1991; E. Moores, Geology, 1991). Thus the geology of the Southern Cone of North America provides opportunities for critical testing of these globally important hypotheses, notably through geochronometry, isotope geochemistry, stratigraphy, and paleobiogeography. Conversely, East Antarctica, southern Africa, and the proto-Andean margin of South America may offer exciting opportunities to further understanding of pre-Pangea geology across southern North America.« less

  7. North Atlantic observations sharpen meridional overturning projections

    NASA Astrophysics Data System (ADS)

    Olson, R.; An, S.-I.; Fan, Y.; Evans, J. P.; Caesar, L.

    2018-06-01

    Atlantic Meridional Overturning Circulation (AMOC) projections are uncertain due to both model errors, as well as internal climate variability. An AMOC slowdown projected by many climate models is likely to have considerable effects on many aspects of global and North Atlantic climate. Previous studies to make probabilistic AMOC projections have broken new ground. However, they do not drift-correct or cross-validate the projections, and do not fully account for internal variability. Furthermore, they consider a limited subset of models, and ignore the skill of models at representing the temporal North Atlantic dynamics. We improve on previous work by applying Bayesian Model Averaging to weight 13 Coupled Model Intercomparison Project phase 5 models by their skill at modeling the AMOC strength, and its temporal dynamics, as approximated by the northern North-Atlantic temperature-based AMOC Index. We make drift-corrected projections accounting for structural model errors, and for the internal variability. Cross-validation experiments give approximately correct empirical coverage probabilities, which validates our method. Our results present more evidence that AMOC likely already started slowing down. While weighting considerably moderates and sharpens our projections, our results are at low end of previously published estimates. We project mean AMOC changes between periods 1960-1999 and 2060-2099 of -4.0 Sv and -6.8 Sv for RCP4.5 and RCP8.5 emissions scenarios respectively. The corresponding average 90% credible intervals for our weighted experiments are [-7.2, -1.2] and [-10.5, -3.7] Sv respectively for the two scenarios.

  8. Two Distinct Roles of Atlantic SSTs in ENSO Variability: North Tropical Atlantic SST and Atlantic Nino

    NASA Technical Reports Server (NTRS)

    Ham, Yoo-Geun; Kug, Jong-Seong; Park, Jong-Yeon

    2013-01-01

    Two distinct roles of the Atlantic sea surface temperatures (SSTs), namely, the North Tropical Atlantic (NTA) SST and the Atlantic Nino, on the El Nino-Southern Oscillation (ENSO) variability are investigated using the observational data from 1980 to 2010 and coupled model experiments. It appears that the NTA SST and the Atlantic Nino can be used as two independent predictors for predicting the development of ENSO events in the following season. Furthermore, they are likely to be linked to different types of El Nino events. Specifically, the NTA SST cooling during February, March, and April contributes to the central Pacific warming at the subsequent winter season, while the negative Atlantic Nino event during June, July, and August contributes to enhancing the eastern Pacific warming. The coupled model experiments support these results. With the aid of a lagged inverse relationship, the statistical forecast using two Atlantic indices can successfully predict various ENSO indices.

  9. A detailed gravimetric geoid of North America, the North Atlantic, Eurasia, and Australia

    NASA Technical Reports Server (NTRS)

    Marsh, J. G.

    1973-01-01

    A computer program was developed for the calculation of a goid based upon a combination of satellite and surface gravity data. A detailed gravimetric geoid of North America, the North Atlantic, Eurasia, and Australia was derived by using this program.

  10. Holocene evolution of the North Atlantic subsurface transport

    NASA Astrophysics Data System (ADS)

    Repschläger, Janne; Garbe-Schönberg, Dieter; Weinelt, Mara; Schneider, Ralph

    2017-04-01

    Previous studies suggested that short-term freshening events in the subpolar gyre can be counterbalanced by advection of saline waters from the subtropical gyre and thus stabilize the Atlantic Meridional Overturning Circulation (AMOC). However, little is known about the inter-gyre transport pathways. Here, we infer changes in surface and subsurface transport between the subtropical and polar North Atlantic during the last 11 000 years, by combining new temperature and salinity reconstructions obtained from combined δ18O and Mg / Ca measurements on surface and subsurface dwelling foraminifera with published foraminiferal abundance data from the subtropical North Atlantic, and with salinity and temperature data from the tropical and subpolar North Atlantic. This compilation implies an overall stable subtropical warm surface water transport since 10 ka BP. In contrast, subsurface warm water transport started at about 8 ka but still with subsurface heat storage in the subtropical gyre. The full strength of intergyre exchange was probably reached only after the onset of northward transport of warm saline subsurface waters at about 7 ka BP, associated with the onset of the modern AMOC mode. A critical evaluation of different potential forcing mechanisms leads to the assumption that freshwater supply from the Laurentide Ice Sheet was the main control on subtropical to subpolar ocean transport at surface and subsurface levels.

  11. Influence of the North Atlantic dipole on climate changes over Eurasia

    NASA Astrophysics Data System (ADS)

    Serykh, I. V.

    2016-11-01

    In this paper, some hydrophysical and meteorological characteristics of negative (1948-1976 and 1999-2015) and positive (1977-1998) phases of the Pacific Decadal Oscillation (PDO) and Interdecadal Pacific Oscillation (IPO) in the North Atlantic and Eurasia are constructed and investigated. Specifically, the near-surface temperature, sea-level atmospheric pressure, wind speed, heat content of the upper 700 m ocean layer, water temperature and salinity at various depths, the latent and sensible heat fluxes from the ocean to the atmosphere are analyzed. The fields obtained are in good agreement and complement each other. This gives important information about the hydrometeorological conditions in the region under study. Analysis of these data has shown that in the upper 1000 m North Atlantic layer there is a thermal dipole which can be interpreted as an oceanic analog of the atmospheric North Atlantic Oscillation (NAO). An index of the North Atlantic Dipole (NAD) as the difference between the mean heat contents in the upper 700 m oceanic layer between the regions (50°-70° N; 60°-10° W) and (20°-40° N; 80°-30° W) is proposed. A possible physical mechanism of the internal oscillations with a quasi-60-year period in the North Atlantics- Eurasia system of ocean-atmosphere interactions is discussed.

  12. North Atlantic explosive cyclones and large scale atmospheric variability modes

    NASA Astrophysics Data System (ADS)

    Liberato, Margarida L. R.

    2015-04-01

    Extreme windstorms are one of the major natural catastrophes in the extratropics, one of the most costly natural hazards in Europe and are responsible for substantial economic damages and even fatalities. During the last decades Europe witnessed major damage from winter storms such as Lothar (December 1999), Kyrill (January 2007), Klaus (January 2009), Xynthia (February 2010), Gong (January 2013) and Stephanie (February 2014) which exhibited uncommon characteristics. In fact, most of these storms crossed the Atlantic in direction of Europe experiencing an explosive development at unusual lower latitudes along the edge of the dominant North Atlantic storm track and reaching Iberia with an uncommon intensity (Liberato et al., 2011; 2013; Liberato 2014). Results show that the explosive cyclogenesis process of most of these storms at such low latitudes is driven by: (i) the southerly displacement of a very strong polar jet stream; and (ii) the presence of an atmospheric river (AR), that is, by a (sub)tropical moisture export over the western and central (sub)tropical Atlantic which converges into the cyclogenesis region and then moves along with the storm towards Iberia. Previous studies have pointed to a link between the North Atlantic Oscillation (NAO) and intense European windstorms. On the other hand, the NAO exerts a decisive control on the average latitudinal location of the jet stream over the North Atlantic basin (Woollings et al. 2010). In this work the link between North Atlantic explosive cyclogenesis, atmospheric rivers and large scale atmospheric variability modes is reviewed and discussed. Liberato MLR (2014) The 19 January 2013 windstorm over the north Atlantic: Large-scale dynamics and impacts on Iberia. Weather and Climate Extremes, 5-6, 16-28. doi: 10.1016/j.wace.2014.06.002 Liberato MRL, Pinto JG, Trigo IF, Trigo RM. (2011) Klaus - an exceptional winter storm over Northern Iberia and Southern France. Weather 66:330-334. doi:10.1002/wea.755 Liberato

  13. Annually resolved North Atlantic marine climate over the last millennium

    NASA Astrophysics Data System (ADS)

    Reynolds, D. J.; Scourse, J. D.; Halloran, P. R.; Nederbragt, A. J.; Wanamaker, A. D.; Butler, P. G.; Richardson, C. A.; Heinemeier, J.; Eiríksson, J.; Knudsen, K. L.; Hall, I. R.

    2016-12-01

    Owing to the lack of absolutely dated oceanographic information before the modern instrumental period, there is currently significant debate as to the role played by North Atlantic Ocean dynamics in previous climate transitions (for example, Medieval Climate Anomaly-Little Ice Age, MCA-LIA). Here we present analyses of a millennial-length, annually resolved and absolutely dated marine δ18O archive. We interpret our record of oxygen isotope ratios from the shells of the long-lived marine bivalve Arctica islandica (δ18O-shell), from the North Icelandic shelf, in relation to seawater density variability and demonstrate that solar and volcanic forcing coupled with ocean circulation dynamics are key drivers of climate variability over the last millennium. During the pre-industrial period (AD 1000-1800) variability in the sub-polar North Atlantic leads changes in Northern Hemisphere surface air temperatures at multi-decadal timescales, indicating that North Atlantic Ocean dynamics played an active role in modulating the response of the atmosphere to solar and volcanic forcing.

  14. Differential response of continental stock complexes of Atlantic salmon (Salmo salar) to the Atlantic Multidecadal Oscillation

    NASA Astrophysics Data System (ADS)

    Friedland, Kevin D.; Shank, Burton V.; Todd, Christopher D.; McGinnity, Philip; Nye, Janet A.

    2014-05-01

    Atlantic salmon, Salmo salar, in the North Atlantic are managed as a set of population complexes distributed in North America and Europe. In recent years, these complexes have experienced reduced marine survival and many populations within the complexes are at risk, especially those at the southern ends of the species amphi-Atlantic range. Atlantic salmon is an anadromous fish dividing its life history between residence in freshwater and the marine environment. The freshwater portion of the life history includes spawning and the rearing of juveniles where in-river production has tended to be relatively stable, whereas the first year at sea, termed the post-smolt year, is characterized by more variable rates of mortality. Although their habitats are widely separated geographically along the North Atlantic seaboards, strong recruitment coherence exists between North American and European stock complexes. This recruitment coherence is correlated with ocean temperature variation associated with the Atlantic Multidecadal Oscillation (AMO). The North Atlantic Oscillation (NAO) appears to be relatively unimportant as a driver of salmon abundance. The mechanism determining the link between AMO-related thermal variation and abundance appears to differ fundamentally for the two continental stock groupings. Whereas ocean climate variability during the first springtime months of juvenile salmon migration to sea appears to be important to the survival of North American stocks, summer climate variation appears to be central to adult recruitment variation for European stocks. This contrast in seasonal effects appears to be related to the varying roles of predation pressure and size-related mortality on the continental stock complexes. The anticipated warming due to global climate change will impose thermal conditions on salmon populations outside historical context and challenge the ability of many populations to persist.

  15. High migration rates shape the postglacial history of amphi-Atlantic bryophytes.

    PubMed

    Désamoré, Aurélie; Patiño, Jairo; Mardulyn, Patrick; Mcdaniel, Stuart F; Zanatta, Florian; Laenen, Benjamin; Vanderpoorten, Alain

    2016-11-01

    Paleontological evidence and current patterns of angiosperm species richness suggest that European biota experienced more severe bottlenecks than North American ones during the last glacial maximum. How well this pattern fits other plant species is less clear. Bryophytes offer a unique opportunity to contrast the impact of the last glacial maximum in North America and Europe because about 60% of the European bryoflora is shared with North America. Here, we use population genetic analyses based on approximate Bayesian computation on eight amphi-Atlantic species to test the hypothesis that North American populations were less impacted by the last glacial maximum, exhibiting higher levels of genetic diversity than European ones and ultimately serving as a refugium for the postglacial recolonization of Europe. In contrast with this hypothesis, the best-fit demographic model involved similar patterns of population size contractions, comparable levels of genetic diversity and balanced migration rates between European and North American populations. Our results thus suggest that bryophytes have experienced comparable demographic glacial histories on both sides of the Atlantic. Although a weak, but significant genetic structure was systematically recovered between European and North American populations, evidence for migration from and towards both continents suggests that amphi-Atlantic bryophyte population may function as a metapopulation network. Reconstructing the biogeographic history of either North American or European bryophyte populations therefore requires a large, trans-Atlantic geographic framework. © 2016 John Wiley & Sons Ltd.

  16. Influence of North Atlantic modes on European climate extremes

    NASA Astrophysics Data System (ADS)

    Proemmel, K.; Cubasch, U.

    2017-12-01

    It is well known that the North Atlantic strongly influences European climate. Only few studies exist that focus on its impact on climate extremes. We are interested in these extremes and the processes and mechanisms behind it. For the analysis of the North Atlantic Oscillation (NAO) we use simulations performed with the Max Planck Institute for Meteorology Earth System Model (MPI-ESM). The NAO has a strong impact especially on European winter and the changes in minimum temperature are even larger than in maximum temperature. The impact of the Atlantic Multi-decadal Variability (AMV) on climate extremes is analyzed in ECHAM6 simulations forced with AMV warm and AMV cold sea surface temperature patterns. We analyze different extreme indices and try to understand the processes.

  17. Role of the North Atlantic Ocean in Low Frequency Climate Variability

    NASA Astrophysics Data System (ADS)

    Danabasoglu, G.; Yeager, S. G.; Kim, W. M.; Castruccio, F. S.

    2017-12-01

    The Atlantic Ocean is a unique basin with its extensive, North - South overturning circulation, referred to as the Atlantic meridional overturning circulation (AMOC). AMOC is thought to represent the dynamical memory of the climate system, playing an important role in decadal and longer time scale climate variability as well as prediction of the earth's future climate on these time scales via its large heat and salt transports. This oceanic memory is communicated to the atmosphere primarily through the influence of persistent sea surface temperature (SST) variations. Indeed, many modeling studies suggest that ocean circulation, i.e., AMOC, is largely responsible for the creation of coherent SST variability in the North Atlantic, referred to as Atlantic Multidecadal Variability (AMV). AMV has been linked to many (multi)decadal climate variations in, e.g., Sahel and Brazilian rainfall, Atlantic hurricane activity, and Arctic sea-ice extent. In the absence of long, continuous observations, much of the evidence for the ocean's role in (multi)decadal variability comes from model simulations. Although models tend to agree on the role of the North Atlantic Oscillation in creating the density anomalies that proceed the changes in ocean circulation, model fidelity in representing variability characteristics, mechanisms, and air-sea interactions remains a serious concern. In particular, there is increasing evidence that models significantly underestimate low frequency variability in the North Atlantic compared to available observations. Such model deficiencies can amplify the relative influence of external or stochastic atmospheric forcing in generating (multi)decadal variability, i.e., AMV, at the expense of ocean dynamics. Here, a succinct overview of the current understanding of the (North) Atlantic Ocean's role on the regional and global climate, including some outstanding questions, will be presented. In addition, a few examples of the climate impacts of the AMV via

  18. Dissolved Organic Carbon in the North Atlantic Meridional Overturning Circulation.

    PubMed

    Fontela, Marcos; García-Ibáñez, Maribel I; Hansell, Dennis A; Mercier, Herlé; Pérez, Fiz F

    2016-05-31

    The quantitative role of the Atlantic Meridional Overturning Circulation (AMOC) in dissolved organic carbon (DOC) export is evaluated by combining DOC measurements with observed water mass transports. In the eastern subpolar North Atlantic, both upper and lower limbs of the AMOC transport high-DOC waters. Deep water formation that connects the two limbs of the AMOC results in a high downward export of non-refractory DOC (197 Tg-C·yr(-1)). Subsequent remineralization in the lower limb of the AMOC, between subpolar and subtropical latitudes, consumes 72% of the DOC exported by the whole Atlantic Ocean. The contribution of DOC to the carbon sequestration in the North Atlantic Ocean (62 Tg-C·yr(-1)) is considerable and represents almost a third of the atmospheric CO2 uptake in the region.

  19. Dissolved Organic Carbon in the North Atlantic Meridional Overturning Circulation

    PubMed Central

    Fontela, Marcos; García-Ibáñez, Maribel I.; Hansell, Dennis A.; Mercier, Herlé; Pérez, Fiz F.

    2016-01-01

    The quantitative role of the Atlantic Meridional Overturning Circulation (AMOC) in dissolved organic carbon (DOC) export is evaluated by combining DOC measurements with observed water mass transports. In the eastern subpolar North Atlantic, both upper and lower limbs of the AMOC transport high-DOC waters. Deep water formation that connects the two limbs of the AMOC results in a high downward export of non-refractory DOC (197 Tg-C·yr−1). Subsequent remineralization in the lower limb of the AMOC, between subpolar and subtropical latitudes, consumes 72% of the DOC exported by the whole Atlantic Ocean. The contribution of DOC to the carbon sequestration in the North Atlantic Ocean (62 Tg-C·yr−1) is considerable and represents almost a third of the atmospheric CO2 uptake in the region. PMID:27240625

  20. 76 FR 36892 - Atlantic Highly Migratory Species; 2011 North and South Atlantic Swordfish Quotas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-23

    ... Atlantic Tunas (ICCAT) recommendations 10-02 and 09-03 into the quota adjustments for the 2011 fishing year... adopted for North Atlantic Swordfish for one year. Recommendation 10-02 included a total TAC of 13,700 mt... year. Recommendation 10-02 maintains the U.S. previous years' quota allocation of 2,937.6 mt dw as well...

  1. Salinity Trends within the Upper Layers of the Subpolar North Atlantic

    NASA Astrophysics Data System (ADS)

    Tesdal, J. E.; Abernathey, R.; Goes, J. I.; Gordon, A. L.; Haine, T. W. N.

    2017-12-01

    Examination of a range of salinity products collectively suggest widespread freshening of the North Atlantic from the mid-2000 to the present. Monthly salinity fields reveal negative trends that differ in magnitude and significance between western and eastern regions of the North Atlantic. These differences can be attributed to the large negative interannual excursions in salinity in the western subpolar gyre and the Labrador Sea, which are not apparent in the central or eastern subpolar gyre. This study demonstrates that temporal trends in salinity in the northwest (including the Labrador Sea) are subject to mechanisms that are distinct from those responsible for the salinity trends in central and eastern North Atlantic. In the western subpolar gyre a negative correlation between near surface salinity and the circulation strength of the subpolar gyre suggests that negative salinity anomalies are connected to an intensification of the subpolar gyre, which is causing increased flux of freshwater from the East Greenland Current and subsequent transport into the Labrador Sea during the melting season. Analyses of sea surface wind fields suggest that the strength of the subpolar gyre is linked to the North Atlantic Oscillation and Arctic Oscillation-driven changes in wind stress curl in the eastern subpolar gyre. If this trend of decreasing salinity continues, it has the potential to enhance water column stratification, reduce vertical fluxes of nutrients and cause a decline in biological production and carbon export in the North Atlantic Ocean.

  2. Amplified North Atlantic warming in the late Pliocene by changes in Arctic gateways

    DOE PAGES

    Otto-Bliesner, Bette L.; Jahn, Alexandra; Feng, Ran; ...

    2016-12-26

    Under previous reconstructions of late Pliocene boundary conditions, climate models have failed to reproduce the warm sea surface temperatures reconstructed in the North Atlantic. Using a reconstruction of mid-Piacenzian paleogeography that has the Bering Strait and Canadian Arctic Archipelago Straits closed, however, improves the simulation of the proxy-indicated warm sea surface temperatures in the North Atlantic in the Community Climate System Model. We find that the closure of these small Arctic gateways strengthens the Atlantic Meridional Overturning Circulation, by inhibiting freshwater transport from the Pacific to the Arctic Ocean and from the Arctic Ocean to the Labrador Sea, leading tomore » warmer sea surface temperatures in the North Atlantic. In conclusion, this indicates that the state of the Arctic gateways may influence the sensitivity of the North Atlantic climate in complex ways, and better understanding of the state of these Arctic gateways for past time periods is needed.« less

  3. North Atlantic ocean circulation and abrupt climate change during the last glaciation.

    PubMed

    Henry, L G; McManus, J F; Curry, W B; Roberts, N L; Piotrowski, A M; Keigwin, L D

    2016-07-29

    The most recent ice age was characterized by rapid and hemispherically asynchronous climate oscillations, whose origin remains unresolved. Variations in oceanic meridional heat transport may contribute to these repeated climate changes, which were most pronounced during marine isotope stage 3, the glacial interval 25 thousand to 60 thousand years ago. We examined climate and ocean circulation proxies throughout this interval at high resolution in a deep North Atlantic sediment core, combining the kinematic tracer protactinium/thorium (Pa/Th) with the deep water-mass tracer, epibenthic δ(13)C. These indicators suggest reduced Atlantic overturning circulation during every cool northern stadial, with the greatest reductions during episodic Hudson Strait iceberg discharges, while sharp northern warming followed reinvigorated overturning. These results provide direct evidence for the ocean's persistent, central role in abrupt glacial climate change. Copyright © 2016, American Association for the Advancement of Science.

  4. Tropical Dominance of N2 Fixation in the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Marconi, Dario; Sigman, Daniel M.; Casciotti, Karen L.; Campbell, Ethan C.; Alexandra Weigand, M.; Fawcett, Sarah E.; Knapp, Angela N.; Rafter, Patrick A.; Ward, Bess B.; Haug, Gerald H.

    2017-10-01

    To investigate the controls on N2 fixation and the role of the Atlantic in the global ocean's fixed nitrogen (N) budget, Atlantic N2 fixation is calculated by combining meridional nitrate fluxes across World Ocean Circulation Experiment sections with observed nitrate 15N/14N differences between northward and southward transported nitrate. N2 fixation inputs of 27.1 ± 4.3 Tg N/yr and 3.0 ± 0.5 Tg N/yr are estimated north of 11°S and 24°N, respectively. That is, 90% of the N2 fixation in the Atlantic north of 11°S occurs south of 24°N in a region with upwelling that imports phosphorus (P) in excess of N relative to phytoplankton requirements. This suggests that, under the modern iron-rich conditions of the equatorial and North Atlantic, N2 fixation occurs predominantly in response to P-bearing, N-poor conditions. We estimate a N2 fixation rate of 30.5 ± 4.9 Tg N/yr north of 30°S, implying only 3 Tg N/yr between 30° and 11°S, despite evidence of P-bearing, N-poor surface waters in this region as well; this is consistent with iron limitation of N2 fixation in the South Atlantic. Since the ocean flows through the Atlantic surface in <2,500 years, similar to the residence time of oceanic fixed N, Atlantic N2 fixation can stabilize the N-to-P ratio of the global ocean. However, the calculated rate of Atlantic N2 fixation is a small fraction of global ocean estimates for either N2 fixation or fixed N loss. This suggests that, in the modern ocean, an approximate balance between N loss and N2 fixation is achieved within the combined Indian and Pacific basins.

  5. Sea-Level Acceleration Hotspot along the Atlantic Coast of North America

    NASA Astrophysics Data System (ADS)

    Sallenger, A. H.; Doran, K. J.; Howd, P.

    2012-12-01

    Spatial variations of sea level rise (SLR) can be forced by dynamic processes arising from circulation and variations in temperature and/or salinity, and by static equilibrium processes arising from mass re-distributions changing gravity and the earth's rotation and shape. The sea-level variations can form unique spatial patterns, yet there are very few field observations verifying predicted patterns, or fingerprints. We present evidence of SLR acceleration in a 1,000-km-long hotspot on the North American Atlantic coast north of Cape Hatteras, North Carolina to above Boston, Massachusetts. By using accelerations, or rate differences, sea level signals that are linear over sub-century records, like the relative sea level changes arising from vertical land movements of glacial isostatic adjustment, do not affect our results. For a 60-yr regression window (between 1950-1979 and 1980-2009), mean increase in the rate of SLR in the hotspot was 1.97 ± 0.64 mm/yr. (For a 40-yr window, the mean rate increase was 3.80 ± 1.06 mm/yr.) South of Cape Hatteras to Key West, Florida, rate differences for either 60 yr or 40 yr windows were not statistically different from zero (e.g. for 60 yr window: mean= 0.11 ± 0.92 mm/yr). This pattern is similar to a fingerprint of dynamic SLR established by sea-level projections in several climate model studies. Correlations were consistent with accelerated SLR associated with a slowdown of Atlantic Meridional Overturning Current.

  6. Earthquakes at North Atlantic passive margins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregersen, S.; Basham, P.W.

    1989-01-01

    The main focus of this volume is the earthquakes that occur at and near the continental margins on both sides of the North Atlantic. The book, which contains the proceedings of the NATO workshop on Causes and Effects of Earthquakes at Passive Margins and in Areas of Postglacial Rebound on Both Sides of the North Atlantic, draws together the fields of geophysics, geology and geodesy to address the stress and strain in the Earth's crust. The resulting earthquakes produced on ancient geological fault zones and the associated seismic hazards these pose to man are also addressed. Postglacial rebound in Northmore » America and Fennoscandia is a minor source of earthquakes today, during the interglacial period, but evidence is presented to suggest that the ice sheets suppressed earthquake strain while they were in place, and released this strain as a pulse of significant earthquakes after the ice melted about 9000 years ago.« less

  7. Genetic Structure of Avian Influenza Viruses from Ducks of the Atlantic Flyway of North America

    PubMed Central

    Huang, Yanyan; Wille, Michelle; Dobbin, Ashley; Walzthöni, Natasha M.; Robertson, Gregory J.; Ojkic, Davor; Whitney, Hugh; Lang, Andrew S.

    2014-01-01

    Wild birds, including waterfowl such as ducks, are reservoir hosts of influenza A viruses. Despite the increased number of avian influenza virus (AIV) genome sequences available, our understanding of AIV genetic structure and transmission through space and time in waterfowl in North America is still limited. In particular, AIVs in ducks of the Atlantic flyway of North America have not been thoroughly investigated. To begin to address this gap, we analyzed 109 AIV genome sequences from ducks in the Atlantic flyway to determine their genetic structure and to document the extent of gene flow in the context of sequences from other locations and other avian and mammalian host groups. The analyses included 25 AIVs from ducks from Newfoundland, Canada, from 2008–2011 and 84 available reference duck AIVs from the Atlantic flyway from 2006–2011. A vast diversity of viral genes and genomes was identified in the 109 viruses. The genetic structure differed amongst the 8 viral segments with predominant single lineages found for the PB2, PB1 and M segments, increased diversity found for the PA, NP and NS segments (2, 3 and 3 lineages, respectively), and the highest diversity found for the HA and NA segments (12 and 9 lineages, respectively). Identification of inter-hemispheric transmissions was rare with only 2% of the genes of Eurasian origin. Virus transmission between ducks and other bird groups was investigated, with 57.3% of the genes having highly similar (≥99% nucleotide identity) genes detected in birds other than ducks. Transmission between North American flyways has been frequent and 75.8% of the genes were highly similar to genes found in other North American flyways. However, the duck AIV genes did display spatial distribution bias, which was demonstrated by the different population sizes of specific viral genes in one or two neighbouring flyways compared to more distant flyways. PMID:24498009

  8. North American transportation corridor network

    DOT National Transportation Integrated Search

    2007-07-01

    Trade flows across the three North American countries have increased substantially since the : implementation of the North American Trade Agreement (NAFTA), but there is no movement toward : developing a true North American Transportation Corridor Ne...

  9. The summer North Atlantic Oscillation (SNAO) variability on decadal to paleoclimate time scales

    NASA Astrophysics Data System (ADS)

    Linderholm, H. W.; Folland, C. K.; Zhang, P.; Gunnarson, B. E.; Jeong, J. H.; Ren, H.

    2017-12-01

    The summer North Atlantic Oscillation (SNAO), strongly related to the latitude of the North Atlantic and European summer storm tracks, exerts a considerable influence on European summer climate variability and extremes. Here we extend the period covered by the SNAO from July and August to June, July and August (JJA). As well as marked interannual variability, the JJA SNAO has shown a large inter-decadal change since the 1970s. Decadally averaged, there has been a change from a very positive to a rather negative SNAO phase. This change in SNAO phase is opposite in sign from that expected by a number of climate models under enhanced greenhouse forcing by the late twenty first century. It has led to noticeably wetter summers in North West Europe in the last decade. On interannual to multidecadal timescales, SNAO variability is linked to variations in North Atlantic sea surface temperature (SST): observations and models indicate an association between the Atlantic Multi-decadal Oscillation (AMO) where the cold (warm) phase of the AMO corresponds a positive (negative) phase of the SNAO. Observations also indicate a link with SST in the Gulf Stream region of the North Atlantic where, particularly on decadal time scales, SST warming may favour a more positive phase of the SNAO. Influences of Arctic climate change on North Atlantic and European atmospheric circulation may also exist, particularly reduced sea ice coverage, perhaps favouring the negative phase of the SNAO. A new tree-ring data based JJA SNAO reconstruction extending over the last millennium, as well as climate model output for the same period, enables us to examine the influence of North Atlantic SST and Arctic sea-ice coverage, as well as SNAO impacts on European summer climate, in a long-term, pre-industrial context.

  10. Atlantic Deep-water Response to the Early Pliocene Shoaling of the Central American Seaway.

    PubMed

    Bell, David B; Jung, Simon J A; Kroon, Dick; Hodell, David A; Lourens, Lucas J; Raymo, Maureen E

    2015-07-20

    The early Pliocene shoaling of the Central American Seaway (CAS), ~4.7-4.2 million years ago (mega annum-Ma), is thought to have strengthened Atlantic Meridional Overturning Circulation (AMOC). The associated increase in northward flux of heat and moisture may have significantly influenced the evolution of Pliocene climate. While some evidence for the predicted increase in North Atlantic Deep Water (NADW) formation exists in the Caribbean and Western Atlantic, similar evidence is missing in the wider Atlantic. Here, we present stable carbon (δ(13)C) and oxygen (δ(18)O) isotope records from the Southeast Atlantic-a key region for monitoring the southern extent of NADW. Using these data, together with other δ(13)C and δ(18)O records from the Atlantic, we assess the impact of the early Pliocene CAS shoaling phase on deep-water circulation. We find that NADW formation was vigorous prior to 4.7 Ma and showed limited subsequent change. Hence, the overall structure of the deep Atlantic was largely unaffected by the early Pliocene CAS shoaling, corroborating other evidence that indicates larger changes in NADW resulted from earlier and deeper shoaling phases. This finding implies that the early Pliocene shoaling of the CAS had no profound impact on the evolution of climate.

  11. Atlantic Deep-water Response to the Early Pliocene Shoaling of the Central American Seaway

    PubMed Central

    Bell, David B.; Jung, Simon J. A.; Kroon, Dick; Hodell, David A.; Lourens, Lucas J.; Raymo, Maureen E.

    2015-01-01

    The early Pliocene shoaling of the Central American Seaway (CAS), ~4.7–4.2 million years ago (mega annum-Ma), is thought to have strengthened Atlantic Meridional Overturning Circulation (AMOC). The associated increase in northward flux of heat and moisture may have significantly influenced the evolution of Pliocene climate. While some evidence for the predicted increase in North Atlantic Deep Water (NADW) formation exists in the Caribbean and Western Atlantic, similar evidence is missing in the wider Atlantic. Here, we present stable carbon (δ13C) and oxygen (δ18O) isotope records from the Southeast Atlantic-a key region for monitoring the southern extent of NADW. Using these data, together with other δ13C and δ18O records from the Atlantic, we assess the impact of the early Pliocene CAS shoaling phase on deep-water circulation. We find that NADW formation was vigorous prior to 4.7 Ma and showed limited subsequent change. Hence, the overall structure of the deep Atlantic was largely unaffected by the early Pliocene CAS shoaling, corroborating other evidence that indicates larger changes in NADW resulted from earlier and deeper shoaling phases. This finding implies that the early Pliocene shoaling of the CAS had no profound impact on the evolution of climate. PMID:26193070

  12. Shifting Surface Currents in the Northern North Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa; Rhines, Peter B.

    2007-01-01

    Analysis of surface drifter tracks in the North Atlantic Ocean from the time period 1990 to 2006 provides the first evidence that the Gulf Stream waters can have direct pathways to the Nordic Seas. Prior to 2000, the drifters entering the channels leading to the Nordic Seas originated in the western and central subpolar region. Since 2001 several paths from the western subtropics have been present in the drifter tracks leading to the Rockall Trough through which the most saline North Atlantic Waters pass to the Nordic Seas. Eddy kinetic energy from altimetry shows also the increased energy along the same paths as the drifters, These near surface changes have taken effect while the altimetry shows a continual weakening of the subpolar gyre. These findings highlight the changes in the vertical structure of the northern North Atlantic Ocean, its dynamics and exchanges with the higher latitudes, and show how pathways of the thermohaline circulation can open up and maintain or increase its intensity even as the basin-wide circulation spins down.

  13. The Response of the North Atlantic Bloom to NAO Forcing

    NASA Technical Reports Server (NTRS)

    Mizoguchi, Ken-Ichi; Worthen, Denise L.; Hakkinen, Sirpa; Gregg, Watson W.

    2004-01-01

    Results from the climatologically forced coupled ice/ocean/biogeochemical model that covers the Arctic and North Atlantic Oceans are presented and compared to the chlorophyll fields of satellite-derived ocean color measurements. Biogeochemical processes in the model are determined from the interactions among four phytoplankton functional groups (diatoms, chlorophytes, cyanobacteria and coccolithophores) and four nutrients (nitrate, ammonium, silicate and dissolved iron). The model simulates the general large-scale pattern in April, May and June, when compared to both satellite-derived and in situ observations. The subpolar North Atlantic was cool in the 1980s and warm in the latter 1990s, corresponding to the CZCS and SeaWiFS satellite observing periods, respectively. The oceanographic conditions during these periods resemble the typical subpolar upper ocean response to the NAO+ and NAO-phases, respectively. Thus, we use the atmospheric forcing composites from the two NAO phases to simulate the variability of the mid-ocean bloom during the satellite observing periods. The model results show that when the subpolar North Atlantic is cool, the NAO+ case, more nutrients are available in early spring than when the North Atlantic is warm, the NAO-case. However, the NAO+ simulation produces a later bloom than the NAO-simulation. This difference in the bloom times is also identified in SeaWiFS and CZCS satellite measurements. In the model results, we can trace the difference to the early diatom bloom due to a warmer upper ocean. The higher nutrient abundance in the NAO+ case did not provide larger total production than in the NAO- case, instead the two cases had a comparable area averaged amplitude. This leads us to conclude that in the subpolar North Atlantic, the timing of the spring phytoplankton bloom depends on surface temperature and the magnitude of the bloom is not significantly impacted by the nutrient abundance.

  14. ASSOCIATIONS BETWEEN NAO VARIBILITY AND U.S. MID-ATLANTIC REGION HYDROCLIMATOLOGY

    EPA Science Inventory

    Variability in the climate of the US Mid-Atlantic Region is associated with larger scale variability in the El Nino-Southern Oscillation (ENSO), the Pacific North American (PNA) teleconnection pattern, and the North Atlantic Oscillation (NAO). Collectively, these three large-scal...

  15. Oceanic link between abrupt changes in the North Atlantic Ocean and the African monsoon

    NASA Astrophysics Data System (ADS)

    Chang, Ping; Zhang, Rong; Hazeleger, Wilco; Wen, Caihong; Wan, Xiuquan; Ji, Link; Haarsma, Reindert J.; Breugem, Wim-Paul; Seidel, Howard

    2008-07-01

    Abrupt changes in the African monsoon can have pronounced socioeconomic impacts on many West African countries. Evidence for both prolonged humid periods and monsoon failures have been identified throughout the late Pleistocene and early Holocene epochs. In particular, drought conditions in West Africa have occurred during periods of reduced North Atlantic thermohaline circulation, such as the Younger Dryas cold event. Here, we use an ocean-atmosphere general circulation model to examine the link between oceanographic changes in the North Atlantic Ocean and changes in the strength of the African monsoon. Our simulations show that when North Atlantic thermohaline circulation is substantially weakened, the flow of the subsurface North Brazil Current reverses. This leads to decreased upper tropical ocean stratification and warmer sea surface temperatures in the equatorial South Atlantic Ocean, and consequently reduces African summer monsoonal winds and rainfall over West Africa. This mechanism is in agreement with reconstructions of past climate. We therefore suggest that the interaction between thermohaline circulation in the North Atlantic Ocean and wind-driven currents in the tropical Atlantic Ocean contributes to the rapidity of African monsoon transitions during abrupt climate change events.

  16. Tropical-Subpolar Linkages in the North Atlantic during the last Glacial Period

    NASA Astrophysics Data System (ADS)

    Vautravers, M. J.; Hodell, D. A.

    2010-12-01

    We studied millennial-scale changes in planktonic foraminifera assemblages from the last glacial period in a high-resolution core (KN166-14-JPC13) recovered from the southern part of the Gardar Drift in the subpolar North Atlantic. Similar to recent findings reported by Jonkers et al. (2010), we also found that the sub-polar North Atlantic Ocean experienced some seasonal warming during each of the Heinrich Events (HEs). In addition, increasing abundances of tropical species are found just prior to the IRD event marking the end of each Bond cycle, suggesting that summer warming may have been involved in triggering Heinrich events. We suggest that tropical-subtropical water transported via the Gulf Stream and North Atlantic Drift may have triggered the collapse of large NH ice-shelves. Sharp decreases in polar species are tied to abrupt warming following Heinrich Events as documented in Greenland Ice cores and other marine records in the North Atlantic. The record bears a strong resemblance to the tropical record of Cariaco basin (Peterson et al., 2000), suggesting strong tropical-subpolar linkages in the glacial North Atlantic. Enhanced spring productivity, possibly related to eddy activity along the Subpolar Front, is recorded by increased shell size, high δ13C in G. bulloides and other biological indices early during the transition from HE stadials to the following interstadial.

  17. Did accelerated North American ice sheet melt contribute to the 8.2 ka cooling event ?

    NASA Astrophysics Data System (ADS)

    Matero, Ilkka S. O.; Gregoire, Lauren J.; Ivanović, Ruža F.; Tindall, Julia C.; Haywood, Alan M.

    2016-04-01

    The 8.2 ka event was an abrupt cooling of the Northern Hemisphere 8,200 years ago. It is an almost ideal case study to benchmark the sensitivity of climate models to freshening of the North Atlantic by ice sheet melt (Schmidt and LeGrande, 2005). The event is attributed to the outburst of North American proglacial lakes into the Labrador Sea, causing a slow-down in Atlantic overturning circulation and cooling of 1-2.5 °C around the N. Atlantic (Alley and Ágústsdóttir,2005). Climate models fail to simulate the ~150 year duration of the event when forced with a sudden (0.5 to 5 years) drainage of the lakes (Morrill et al., 2013a). This could be because of missing forcings. For example, the separation of ice sheet domes around the Hudson Bay is thought to have produced a pronounced acceleration in ice sheet melt through a saddle collapse mechanism around the time of the event (Gregoire et al., 2012). Here we investigate whether this century scale acceleration of melt contributed to the observed climatic perturbation, using the coupled Ocean-Atmosphere climate model HadCM3. We designed and ran a set of simulations with temporally variable ice melt scenarios based on a model of the North American ice sheet. The simulated magnitude and duration of the cold period is controlled by the duration and amount of freshwater introduced to the ocean. With a 100-200 year-long acceleration of ice melt up to a maximum of 0.61 Sv, we simulate 1-3 °C cooling in the North Atlantic and ~0.5-1 °C cooling in Continental Europe; which are similar in magnitude to the ~1-2 °C cooling estimated from records for these areas (Morrill et al., 2013b). Some of the observed features are however not reproduced in our experiments, such as the most pronounced cooling of ~6 °C observed in central Greenland (Alley and Ágústsdóttir, 2005). The results suggest that the ~150 year North Atlantic and European cooling could be caused by ~200 years of accelerated North American ice sheet melt. This

  18. Near-Inertial and Thermal Upper Ocean Response to Atmospheric Forcing in the North Atlantic Ocean

    DTIC Science & Technology

    2010-06-01

    meridional transport of heat (Hoskins and Valdes, 1990). Formation of North Atlantic Subtropical Mode Water is thought to take place during the...North Atlantic Ocean MIT/WHOI Joint Program in Oceanography/ Applied Ocean Science and Engineering Massachusetts Institute of Technology Woods Hole...Oceanographic Institution MITIWHOI 2010-16 Near-inertial and Thermal Upper Ocean Response to Atmospheric Forcing in the North Atlantic Ocean by

  19. Temporal patterns of phytoplankton abundance in the North Atlantic

    NASA Technical Reports Server (NTRS)

    Campbell, Janet W.

    1989-01-01

    A time series of CZCS images is being developed to study phytoplankton distribution patterns in the North Atlantic. The goal of this study is to observe temporal variability in phytoplankton pigments and other organic particulates, and to infer from these patterns the potential flux of biogenic materials from the euphotic layer to the deep ocean. Early results of this project are presented in this paper. Specifically, the satellite data used were 13 monthly composited images of CZCS data for the North Atlantic from January 1979 to January 1980. Results are presented for seasonal patterns along the 20 deg W meridian.

  20. Chemistry of Western Atlantic Precipitation at the Mid-Atlantic Coast and on Bermuda

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Church, T.M.; Galloway, J.N.; Jickells, T.D.

    1982-12-20

    The major ion composition of western Atlantic precipitation falling at the coast of eastern United States (Lewes, Delaware) and at the Sargasso Sea (Bermuda Island) has been measured by event year round (May 1980 to April 1981) to assess the influence of the ocean on precipitation from storms that leave the North American continent and transit over the western Atlantic. Particular attention is paid to the oceanic influence on the sulfur and nitrogen precursors of 'acid rains.' While sea salt contributes over half (by weight) of the salt in precipitation at the coast and over three quarters at Bermuda, mostmore » of the sulfate (90% at the coast and 50% at Bermuda) is in excess to sea salt sodium. Since Bermuda precipitation is still acidified some factor of 8 relative to pure equilibrium with atmospheric carbon dioxide, this strong acidity has been attributed to the long-range transport sulfur and nitrogen precursors in the marine troposphere during which the sulfuric acid component dominates. A sulfur budget for the western Atlantic troposphere shows that of the total amount of sulfur exported from the North American continuent (>3.9 TgS/yr) less than 3% (0.1 TgS/yr) is from natural sources, the rest being from anthropogenic emissions. If Bermuda precipitation is taken as typical of wet fallout of sulfur over the western Atlantic, then no more than half (<2 TgS/yr) of north American excess (nonsea salt) sulfur export falls out to the western Atlantic and at least half undergoes potential transoceanic tranport as acid rain precursors to the east of Bermuda.« less

  1. Chemistry of western Atlantic precipitation at the mid-Atlantic coast and on Bermuda

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Church, T.M.; Galloway, J.N.; Jickells, T.D.

    1982-12-20

    The major ion composition of western Atlantic precipitation falling at the coast of eastern United States (Lewes, Delaware) and at the Sargasso Sea (Bermuda Island) has been measured by event year round (May 1980 to April 1981) to assess the influence of the ocean on precipitation from storms that leave the North American continent and transit over the western Atlantic. Particular attention is paid to the oceanic influence on the sulfur and nitrogen precursors of acid rains. While sea salt contributes over half (by weight) of the salt in precipitation at the coast and over three quarters at Bermuda, mostmore » of the sulfate (90% at the coast and 50% at Bermuda) is in excess to sea salt sodium. Since Bermuda precipitation is still acidified some factor of 8 relative to pure equilibrium with atmospheric carbon dioxide, this strong acidity has been attributed to the long-range transport sulfur and nitrogen precursors in the marine troposphere during which the sulfuric acid component dominates. A sulfur budget for the western Atlantic troposphere shows that of the total amount of sulfur exported from the North American continent (>3.9 TgS/yr) less than 3% (0.1 TgS/yr) is from natural sources, the rest being from anthropogenic emissions. If Bermuda precipitation is taken as typical of wet fallout of sulfur over the western Atlantic, then no more than half (<2 TgS/yr) of North American excess (nonsea salt) sulfur export falls out to the western Atlantic and at least half undergoes potential transoceanic transport as acid rain precursors to the east of Bermuda.« less

  2. Species Profiles. Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates, North Atlantic, Mid-Atlantic, South Atlantic, South Florida, Gulf of Mexico, Pacific Southwest and Pacific Northwest.

    DTIC Science & Technology

    1986-01-01

    COASTAL FISHES AND INVERTEBRATES FWS/OBS-82111 Ln jJL*-TR EL-82-4 NORTH ATLANTC MID-ATLANTIC SOUTH ATLANTIC SOUTrH FwRIDA GULF OF MEXICO PACIFIC...REQUIREMENTS OF COASTAL FISHES AND INVERTEBRATES (NORTH ATLANTIC) Managed by National Coastal Ecosystems Team Division of Biological Services Fish and...environmental requirements of selected coastal fishes and invertebrates of commercial, rec- reational, or ecological significance. They were prepared

  3. Correspondence between North Pacific Ocean ventilation, Cordilleran Ice Sheet variations, and North Atlantic Heinrich Events

    NASA Astrophysics Data System (ADS)

    Walczak, M. H.; Mix, A.; Fallon, S.; Praetorius, S. K.; Cowan, E. A.; Du, J.; Hobern, T.; Padman, J.; Fifield, L. K.; Stoner, J. S.; Haley, B. A.

    2017-12-01

    Much remains unresolved concerning the origin and global implications of the episodes of rapid glacial failure in the North Atlantic known as Heinrich Events. Thought to occur during or at the termination of the coldest of the abrupt stadial climate events known as Dansgaard-Oschger cycles, various trigger mechanisms have been theorized, including external forcing in the form of oceanic or atmospheric warming, internal dynamics of the large Laurentide ice sheet, or the episodic failure of another (presumably European) ice sheet. Heinrich events may also be associated with a decrease in North Atlantic deep-water formation. New results from Gulf of Alaska IODP Expedition 341 reveal events of Cordilleran Ice Sheet retreat (based on ice-rafted detritus and sedimentation rates) synchronous with reorganization of ocean circulation (based on benthic-planktic 14C pairs) spanning the past 45,000 years on an independent high-resolution radiocarbon-based chronology. We document the relationship between these Pacific records and the North Atlantic Heinrich events, and find the data show an early Pacific expression of ice sheet instability in the form of pulses of Cordilleran glacial discharge. The benthic radiocarbon anomalies in the Northeast Pacific contemporaneous with Cordilleran discharge events indicate a close coupling of ice-ocean dynamics throughout Marine Isotope Stage 2. These data are hard to reconcile with triggering in the North Atlantic or internal to the Laurentide ice sheet, requiring us to re-think both the mechanisms that generate Heinrich events and their far-field impacts.

  4. Pliocene shallow water paleoceanography of the North Atlantic ocean based on marine ostracodes

    USGS Publications Warehouse

    Cronin, T. M.

    1991-01-01

    Middle Pliocene marine ostracodes from coastal and shelf deposits of North and Central America and Iceland were studied to reconstruct paleotemperatures of shelf waters bordering portions of the Western Boundary Current System (including the Gulf Loop Current, Florida Current, Gulf Stream and North Atlantic Drift). Factor analytic transfer functions provided Pliocene August and February bottom-water temperatures of eight regions from the tropics to the subfrigid. The results indicate: (1) meridional temperature gradients in the western North Atlantic were less steep during the Pliocene than either today or during Late Pleistocene Isotope Stage 5e; (2) tropical and subtropical shelf waters during the Middle Pliocene were as warm as, or slightly cooler than today; (3) slightly cooler water was on the outer shelf off the southeastern and mid-Atlantic coast of the U.S., possibly due to summer upwelling of Gulf Stream water; (4) the shelf north of Cape Hatteras, North Carolina may have been influenced by warm water incursions from the western edge of the Gulf Stream, especially in summer; (5) the northeast branch of the North Atlantic Drift brought warm water to northern Iceland between 4 and 3 Ma; evidence from the Iceland record indicates that cold East Greenland Current water did not affect coastal Iceland between 4 and 3 Ma; (6) Middle Pliocene North Atlantic circulation may have been intensified, transporting more heat from the tropics to the Arctic than it does today. ?? 1991.

  5. Atmospheric transmission of North Atlantic Heinrich events

    USGS Publications Warehouse

    Hostetler, S.W.; Clark, P.U.; Bartlein, P.J.; Mix, A.C.; Pisias, N.J.

    1999-01-01

    We model the response of the climate system during Heinrich event 2 (H2) by employing an atmospheric general circulation model, using boundary conditions based on the concept of a "canonical" Heinrich event. The canonical event is initialized with a full-height Laurentide ice sheet (LIS) and CLIMAP sea surface temperatures (SSTs), followed by lowering of the LIS, then warming of North Atlantic SSTs. Our modeled temperature and wind fields exhibit spatially variable responses over the Northern Hemisphere at each stage of the H2 event. In some regions the climatic responses are additive, whereas in other regions they cancel or are of opposite sign, suggesting that Heinrich event climatic variations may have left complex signatures in geologic records. We find variations in the tropical water balance and the mass balance of ice sheets, and implications for variations in terrestrial methane production from the contraction of northern permafrost regions and the expansion of tropical wetlands. Copyright 1999 by the American Geophysical Union.

  6. North Atlantic early 20th century warming and impact on European summer: Mechanisms and Predictability

    NASA Astrophysics Data System (ADS)

    Müller, Wolfgang

    2017-04-01

    During the last century, substantial climate variations in the North Atlantic have occurred, such as the warmings in the 1920s and 1990s. Such variations are considered to be part of the variability known as the Atlantic Multidecadal Variations (AMV) and have a strong impact on local climates such as European summers. Here a synthesis of previous works is presented which describe the occurrence of the warming in the 1920s in the North Atlantic and its impact on the European summer climate (Müller et al. 2014, 2015). For this the 20th century reanalysis (20CR) and 20CR forced ocean experiments are evaluated. It can be shown that the North Atlantic Current and Sub-Polar Gyre are strengthened as a result of an increased pressure gradient over the North Atlantic. Concurrently, Labrador Sea convection and Atlantic meridional overturning circulation (AMOC) increase. The intensified NAC, SPG, and AMOC redistribute sub-tropical water into the North Atlantic and Nordic Seas, thereby increasing observed and modelled temperature and salinity during the 1920s. Further a mechanism is proposed by which North Atlantic heat fluxes associated with the AMV modulate European decadal summer climate (Ghosh et al. 2016). By using 20CR, it can be shown that multi-decadal variations in the European summer temperature are associated to a linear baroclinic atmospheric response to the AMV-related surface heat flux. This response induce a sea level pressure structure modulating meridional temperature advection over north-western Europe and Blocking statistics over central Europe. This structure is shown to be the leading mode of variability and is independent of the summer North Atlantic Oscillation. Ghosh, R., W.A. Müller, J. Bader, and J. Baehr, 2016: Impact of observed North Atlantic multidecadal variations to European summer climate: A linear baroclinic response to surface heating. Clim. Dyn. doi:10.10007/s00382-016-3283-4 Müller W. A., D. Matei, M. Bersch, J. H. Jungclaus, H. Haak, K

  7. The role of clouds in driving North Atlantic multi-decadal climate variability in observations and models

    NASA Astrophysics Data System (ADS)

    Clement, A. C.; Bellomo, K.; Murphy, L.

    2013-12-01

    Large scale warming and cooling periods of the North Atlantic is known as the Atlantic Multidecadal Oscillation (AMO). The pattern of warming and cooling in the North Atlantic Ocean over the 20th century that has a characteristic spatial structure with maximum warming in the mid-latitudes and subtropics. This has been most often attributed to changes in the strength of the Atlantic Meridional Overturning Circulation (AMOC), which in turn affects poleward heat transport. A recent modeling study by Booth et al. (2012), however, suggested that aerosols can explain both the spatial pattern and temporal history of Atlantic SST through indirect effects of aerosols on cloud cover; although this idea is controversial (Zhang et al., 2013). We have found observational evidence that changes in cloud amount can drive SST changes on multi-decadal timescale. We hypothesize that a positive local feedback between SST and cloud radiative effect amplifies SST and gives rise to the observed pattern of SST change. During cool North Atlantic periods, a southward shift of the ITCZ strengthens the trade winds in the tropical North Atlantic and increases low-level cloud cover, which acts to amplify the SST cooling in the North Atlantic. During warm periods in the North Atlantic, the opposite response occurs. We are testing whether the amplitude of this feedback is realistically simulated in the CMIP5 models, and whether inter-model differences in the amplitude of the feedback can explain differences in model simulations of Atlantic multi-decadal variability.

  8. On the evolution of Atlantic Meridional Overturning Circulation Fingerprint and implications for decadal predictability in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Zhang, Jinting; Zhang, Rong

    2015-07-01

    It has been suggested previously that the Atlantic Meridional Overturning Circulation (AMOC) anomaly associated with changes in the North Atlantic Deep Water formation propagates southward with an advection speed north of 34°N. In this study, using Geophysical Fluid Dynamics Laboratory Coupled Model version 2.1 (GFDL CM2.1), we show that this slow southward propagation of the AMOC anomaly is crucial for the evolution and the enhanced decadal predictability of the AMOC fingerprint—the leading mode of upper ocean heat content (UOHC) in the extratropical North Atlantic. A positive AMOC anomaly in northern high latitudes leads to a convergence/divergence of the Atlantic meridional heat transport (MHT) anomaly in the subpolar/Gulf Stream region, thus warming in the subpolar gyre (SPG) and cooling in the Gulf Stream region after several years. Recent decadal prediction studies successfully predicted the observed warm shift in the SPG in the mid-1990s. Our results here provide the physical mechanism for the enhanced decadal prediction skills in the SPG UOHC.

  9. Reconstructing the leading mode of multi-decadal North Atlantic variability over the last two millenia using functional paleoclimate networks

    NASA Astrophysics Data System (ADS)

    Franke, Jasper G.; Werner, Johannes; Donner, Reik V.

    2017-04-01

    . [1] K. Rehfeld, N. Marwan, S.F.M. Breitenbach, J. Kurths: Late Holocene Asian summer monsoon dynamics from small but complex networks of paleoclimate data. Climate Dynamics 41, 3-19, 2013 [2] J.L. Oster, N.P. Kelley: Tracking regional and global teleconnections recorded by western North American speleothem records. Quaternary Science Reviews 149, 18-33, 2016 [3] P. Ortega, F. Lehner, D. Swingedouw, V. Masson-Delmotte, C.C. Raible, M. Casado, P. Yiou: A model-tested North Atlantic Oscillation reconstruction for the past millenium. Nature 523, 71-74, 2015

  10. Response of North Atlantic Ocean Chlorophyll a to the Change of Atlantic Meridional Overturning Circulation

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Zhang, Yuanling; Shu, Qi; Zhao, Chang; Wang, Gang; Wu, Zhaohua; Qiao, Fangli

    2017-04-01

    Changes in marine phytoplankton are a vital component in global carbon cycling. Despite this far-reaching importance, the variable trend in phytoplankton and its response to climate variability remain unclear. This work presents the spatiotemporal evolution of the chlorophyll a trend in the North Atlantic Ocean by using merged ocean color products for the period 1997-2016. We find a dipole pattern between the subpolar gyre and the Gulf Stream path,and chlorophyll a trend signal propagatedalong the opposite direction of the North Atlantic Current. Such a dipole pattern and opposite propagation of chlorophyll a signal are consistent with the recent distinctive signature of the slowdown of the Atlantic MeridionalOverturning Circulation (AMOC). It is suggested that the spatiotemporal evolution of chlorophyll a during the two most recent decades is a part of the multidecadal variation and regulated byAMOC, which could be used as an indicator of AMOC variations.

  11. Multidecadal increase in North Atlantic coccolithophores and the potential role of rising CO₂.

    PubMed

    Rivero-Calle, Sara; Gnanadesikan, Anand; Del Castillo, Carlos E; Balch, William M; Guikema, Seth D

    2015-12-18

    As anthropogenic carbon dioxide (CO2) emissions acidify the oceans, calcifiers generally are expected to be negatively affected. However, using data from the Continuous Plankton Recorder, we show that coccolithophore occurrence in the North Atlantic increased from ~2 to more than 20% from 1965 through 2010. We used random forest models to examine more than 20 possible environmental drivers of this change, finding that CO2 and the Atlantic Multidecadal Oscillation were the best predictors, leading us to hypothesize that higher CO2 levels might be encouraging growth. A compilation of 41 independent laboratory studies supports our hypothesis. Our study shows a long-term basin-scale increase in coccolithophores and suggests that increasing CO2 and temperature have accelerated the growth of a phytoplankton group that is important for carbon cycling. Copyright © 2015, American Association for the Advancement of Science.

  12. Solar wind: A possible factor driving the interannual sea surface temperature tripolar mode over North Atlantic

    NASA Astrophysics Data System (ADS)

    Xiao, Ziniu; Li, Delin

    2016-06-01

    The effect of solar wind (SW) on the North Atlantic sea surface temperature (SST) in boreal winter is examined through an analysis of observational data during 1964-2013. The North Atlantic SSTs show a pronounced meridional tripolar pattern in response to solar wind speed (SWS) variations. This pattern is broadly similar to the leading empirical orthogonal function (EOF) mode of interannual variations in the wintertime SSTs over North Atlantic. The time series of this leading EOF mode of SST shows a significant interannual period, which is the same as that of wintertime SWS. This response also appears as a compact north-south seesaw of sea level pressure and a vertical tripolar structure of zonal wind, which simultaneously resembles the North Atlantic Oscillation (NAO) in the overlying atmosphere. As compared with the typical low SWS winters, during the typical high SWS winters, the stratospheric polar night jet (PNJ) is evidently enhanced and extends from the stratosphere to the troposphere, even down to the North Atlantic Ocean surface. Notably, the North Atlantic Ocean is an exclusive region in which the SW signal spreads downward from the stratosphere to the troposphere. Thus, it seems that the SW is a possible factor for this North Atlantic SST tripolar mode. The dynamical process of stratosphere-troposphere coupling, together with the global atmospheric electric circuit-cloud microphysical process, probably accounts for the particular downward propagation of the SW signal.

  13. Variability of cyclones over the North Atlantic and Europe since 1871

    NASA Astrophysics Data System (ADS)

    Welker, C.; Martius, O.

    2012-04-01

    The scarce availability of long-term atmospheric data series has so far limited the analysis of low-frequency activity and intensity changes of cyclones over the North Atlantic and Europe. A novel reanalysis product, the Twentieth Century Reanalysis (20CR; Compo et al., 2011), spanning 1871 to present, offers potentially a very valuable resource for the analysis of the decadal-scale variability of cyclones over the North Atlantic sector and Europe. In the 20CR, only observations of synoptic surface pressure were assimilated. Monthly sea surface temperature and sea ice distributions served as boundary conditions. An Ensemble Kalman Filter assimilation technique was applied. "First guess" fields were obtained from an ensemble (with 56 members) of short-range numerical weather prediction forecasts. We apply the cyclone identification algorithm of Wernli and Schwierz (2006) to this data set, i.e. to each individual ensemble member. This enables us to give an uncertainty estimation of our findings. We find that 20CR shows a temporally relatively homogeneous representation of cyclone activity over Europe and great parts of the North Atlantic. Pronounced decadal-scale variability is found both in the frequency and intensity of cyclones over the North Atlantic and Europe. The low-frequency variability is consistently represented in all ensemble members. Our analyses indicate that in the past approximately 140 years the variability of cyclone activity and intensity over the North Atlantic and Europe can principally be associated with the North Atlantic Oscillation and secondary with a pattern similar to the East Atlantic pattern. Regionally however, the correlation between cyclone activity and these dominant modes of variability changes over time. Compo, G. P., J. S. Whitaker, P. D. Sardeshmukh, N. Matsui, R. J. Allan, X. Yin, B. E. Gleason, R. S. Vose, G. Rutledge, P. Bessemoulin, S. Brönnimann, M. Brunet, R. I. Crouthamel, A. N. Grant, P. Y. Groisman, P. D. Jones, M. C

  14. Interior pathways of the North Atlantic meridional overturning circulation.

    PubMed

    Bower, Amy S; Lozier, M Susan; Gary, Stefan F; Böning, Claus W

    2009-05-14

    To understand how our global climate will change in response to natural and anthropogenic forcing, it is essential to determine how quickly and by what pathways climate change signals are transported throughout the global ocean, a vast reservoir for heat and carbon dioxide. Labrador Sea Water (LSW), formed by open ocean convection in the subpolar North Atlantic, is a particularly sensitive indicator of climate change on interannual to decadal timescales. Hydrographic observations made anywhere along the western boundary of the North Atlantic reveal a core of LSW at intermediate depths advected southward within the Deep Western Boundary Current (DWBC). These observations have led to the widely held view that the DWBC is the dominant pathway for the export of LSW from its formation site in the northern North Atlantic towards the Equator. Here we show that most of the recently ventilated LSW entering the subtropics follows interior, not DWBC, pathways. The interior pathways are revealed by trajectories of subsurface RAFOS floats released during the period 2003-2005 that recorded once-daily temperature, pressure and acoustically determined position for two years, and by model-simulated 'e-floats' released in the subpolar DWBC. The evidence points to a few specific locations around the Grand Banks where LSW is most often injected into the interior. These results have implications for deep ocean ventilation and suggest that the interior subtropical gyre should not be ignored when considering the Atlantic meridional overturning circulation.

  15. Impact of the North Atlantic dipole on climate changes over Eurasia

    NASA Astrophysics Data System (ADS)

    Serykh, Ilya

    2017-04-01

    Hydrophysical and meteorological characteristics of negative (1948-1976, 1999-2015) and positive (1977-1998) phases of the Pacific Decadal Oscillation (PDO) / Interdecadal Pacific Oscillation (IPO) in the North Atlantic and Eurasia are constructed and investigated. Specifically, the near-surface temperature, sea-level atmospheric pressure, wind speed, heat content of the upper 700 m ocean layer, water temperature and salinity at various depths, the latent and sensible heat fluxes from the ocean to the atmosphere are analyzed. The fields obtained from different sources (20thC_ReanV2c, ERA-20C, JRA-55, NCEP/NCAR, HadCRUT4, HadSLP2, NODC, Ishii, SODA, OAFlux, HadSST3, COBE2, ERSSTv4) are in good agreement and complement each other. This gives important information about the hydrometeorological conditions in the region under study. Analysis of these data has shown that in the upper 1000 m North Atlantic layer there is a thermal dipole which can be interpreted as an oceanic analog of the atmospheric North Atlantic Oscillation (NAO). An index of the North Atlantic Dipole (NAD) as the difference between the mean heat contents in the upper 700 m oceanic layer between the regions (50°-70° N; 60°-10° W) and (20°-40° N; 80°-30° W) is proposed. A possible physical mechanism of the internal oscillations with a quasi-60-year period in the North Atlantics-Eurasia system of ocean-atmosphere interactions is discussed. Dipole spatial structure from observations datasets and re-analyses were compared with the results of the Historical Experiment from the climate models of the CMIP5 project. It is found that several climate models reproduce dipole spatial structure of the near-surface temperature and sea level pressure anomalies similarly to these fields in the re-analyses considered. However, the phase diagrams of the gradient of near-surface temperature and sea level pressure between the Azores High and Island Low from climate models do not separate on subsets as the

  16. Reconstruction of the North Atlantic end-member of the Atlantic Meridional Overturning Circulation over glacial-interglacial cycles

    NASA Astrophysics Data System (ADS)

    Kim, J.; Seguí, M. J.; Knudson, K. P.; Yehudai, M.; Goldstein, S. L.; Pena, L. D.; Basak, C.; Ferretti, P.

    2017-12-01

    North Atlantic Deep Water (NADW) represents the major water mass that drives the Atlantic Meridional Ocean Circulation (AMOC), which undergoes substantial reorganization with changing climate. In order to understand its impact on ocean circulation and climate through time, it is necessary to constrain its composition. We report Nd isotope ratios of Fe-Mn oxide encrusted foraminifera and fish debris from DSDP Site 607 (41.00N 32.96W, 3427m), in the present-day core of NADW, and ODP 1063 (33.68N 57.62W, 4585m), on the deep abyssal plain at the interface between NADW and Antarctic Bottom Water. We provide a new North Atlantic paleocirculation record covering 2 Ma. At Site 607 interglacial ɛNd-values are consistently similar to present-day NADW (ɛNd -13.5), with median ɛNd-values of -14.3 in the Early Pleistocene and -13.8 in the Late Pleistocene. Glacial ɛNd-values are higher by 1 ɛNd-unit in the Early Pleistocene, and 1.5-2 ɛNd-units in the Late Pleistocene. Site 1063 shows much greater variability, with ɛNd ranging from -10 to -26. We interpret the North Atlantic AMOC source as represented by the Site 607 interglacial ɛNd-values, which has remained nearly stable throughout the entire period. The higher glacial ɛNd-values reflect incursions of some southern-sourced waters to Site 607, which is supported by coeval shifts to lower benthic foraminiferal d13C. In contrast, the Site 1063 ɛNd-values do not appear to reflect the AMOC end-member, and likely reflects local effects from a bottom source. A period of greatly disrupted ocean circulation marks 950-850 Ma, which may have been triggered by enhanced ice growth in the Northern Hemisphere that began around 1.2 Ma, as suggested by possible input events of Nd from the surrounding cratons into the North Atlantic observed in Site 607. Interglacial AMOC only recovers to the previously observed vigor over 200 ka following the disruption, whereas further intensified SSW incursion into the deep North Atlantic come to

  17. THE RESPONSE OF MARINE ECOSYSTEMS TO CLIMATE VARIABILITY ASSOCIATED WITH THE NORTH ATLANTIC OSCILLATION

    EPA Science Inventory

    A strong association is documented between variability of the North Atlantic Oscillation (NAO) and changes in various trophic levels of the marine ecosystems of the North Atlantic. Examples are presented for phytoplankton, zooplankton, benthos, fish, marine diseases, whales and s...

  18. North Atlantic Oscillation modulates total ozone winter trends

    NASA Astrophysics Data System (ADS)

    Appenzeller, Christof; Weiss, Andrea K.; Staehelin, Johannes

    2000-04-01

    The North Atlantic Oscillation (NAO) is modulating the Earth's ozone shield such that the calculated anthropogenic total ozone decrease is enhanced over Europe whereas over the North Atlantic region it is reduced (for the last 30 years). Including the NAO in a statistical model suggests a more uniform chemical winter trend compared to the strong longitudinal variation reported earlier. At Arosa (Switzerland) the trend is reduced to -2.4% per decade compared to -3.2% and at Reykjavik (Iceland) it is enhanced to -3.8% compared to 0%. The revised trend is slightly below the predictions by 2D chemical models. Decadal ozone variability is linked to variations in the dynamical structure of the atmosphere, as reflected in the tropopause pressure. The latter varies in concert with the NAO index with a distinct geographical pattern.

  19. Mesoscale eddies control meridional heat flux variability in the subpolar North Atlantic

    NASA Astrophysics Data System (ADS)

    Zhao, Jian; Bower, Amy; Yang, Jiayan; Lin, Xiaopei; Zhou, Chun

    2017-04-01

    The meridional heat flux in the subpolar North Atlantic is vital to the climate of the high-latitude North Atlantic. For the basinwide heat flux across a section between Greenland and Scotland, much of the variability occurs in the Iceland basin, where the North Atlantic Current (NAC) carries relatively warm and salty water northward. As a component of the Overturning in the Subpolar North Atlantic Program (OSNAP), WHOI and OUC are jointly operating gliders in the Iceland Basin to continuously monitor the circulation and corresponding heat flux in this eddy-rich region. Based on one year of observations, two circulation regimes in the Iceland basin have been identified: a mesoscale eddy like circulation pattern and northward NAC circulation pattern. When a mesoscale eddy is generated, the rotational currents associated with the eddy lead to both northward and southward flow in the Iceland basin. This is quite different from the broad northward flow associated with the NAC when there is no eddy. The transition between the two regimes coupled with the strong temperature front in the Iceland basin can modify the meridional heat flux on the order of 0.3PW, which is the dominant source for the heat flux change the Iceland Basin. According to high-resolution numerical model results, the Iceland Basin has the largest contribution to the meridional heat flux variability along the section between Greenland and Scotland. Therefore, mesoscale eddies in the Iceland Basin provide important dynamics to control the meridional heat flux variability in the subpolar North Atlantic.

  20. Arctic Contribution to Upper-Ocean Variability in the North Atlantic.

    NASA Astrophysics Data System (ADS)

    Walsh, John E.; Chapman, William L.

    1990-12-01

    Because much of the deep water of the world's oceans forms in the high-latitude North Atlantic, the potential climatic leverage of salinity and temperature anomalies in this region is large. Substantial variations of sea ice have accompanied North Atlantic salinity and temperature anomalies, especially the extreme and long-lived `Great Salinity Anomaly' of the late 1960s and early 1970s. Atmospheric pressure data are used hem to show that the local forcing of high-latitude North Atlantic Ocean fluctuations is augmented by antecedent atmospheric circulation anomalies over the central Arctic. These circulation anomalies are consistent with enhanced wind-forcing of thicker, older ice into the Transpolar Drift Stream and an enhanced export of sea ice (fresh water) from the Arctic into the Greenland Sea prior to major episodes of ice severity in the Greenland and Iceland seas. An index of the pressure difference between southern Greenland and the Arctic-Asian coast reached its highest value of the twentieth century during the middle-to-late 1960s, the approximate time of the earliest observation documentation of the Great Salinity Anomaly.

  1. Acoustic Behavior of North Atlantic Right Whale (Eubalaena glacialis) Mother-Calf Pairs

    DTIC Science & Technology

    2013-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Acoustic Behavior of North Atlantic Right Whale ...LONG-TERM GOALS The long-term goal of this project is to quantify the behavior of mother-calf pairs from the North Atlantic right whale ...The primary objectives of this project are to: 1) determine the visual detectability of right whale mother-calf pairs from surface observations

  2. Acoustic Behavior of North Atlantic Right Whale (Eubalaena glacialis) Mother-Calf Pairs

    DTIC Science & Technology

    2014-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Acoustic Behavior of North Atlantic Right Whale ...LONG-TERM GOALS The long-term goal of this project is to quantify the behavior of mother-calf pairs from the North Atlantic right whale ...The primary objectives of this project are to: 1) determine the visual detectability of right whale mother-calf pairs from surface observations

  3. Distribution patterns of wintering sea ducks in relation to the North Atlantic Oscillation and local environmental characteristics.

    PubMed

    Zipkin, Elise F; Gardner, Beth; Gilbert, Andrew T; O'Connell, Allan F; Royle, J Andrew; Silverman, Emily D

    2010-08-01

    Twelve species of North American sea ducks (Tribe Mergini) winter off the eastern coast of the United States and Canada. Yet, despite their seasonal proximity to urbanized areas in this region, there is limited information on patterns of wintering sea duck habitat use. It is difficult to gather information on sea ducks because of the relative inaccessibility of their offshore locations, their high degree of mobility, and their aggregated distributions. To characterize environmental conditions that affect wintering distributions, as well as their geographic ranges, we analyzed count data on five species of sea ducks (black scoters Melanitta nigra americana, surf scoters M. perspicillata, white-winged scoters M. fusca, common eiders Somateria mollissima, and long-tailed ducks Clangula hyemalis) that were collected during the Atlantic Flyway Sea Duck Survey for ten years starting in the early 1990s. We modeled count data for each species within ten-nautical-mile linear survey segments using a zero-inflated negative binomial model that included four local-scale habitat covariates (sea surface temperature, mean bottom depth, maximum bottom slope, and a variable to indicate if the segment was in a bay or not), one broad-scale covariate (the North Atlantic Oscillation), and a temporal correlation component. Our results indicate that species distributions have strong latitudinal gradients and consistency in local habitat use. The North Atlantic Oscillation was the only environmental covariate that had a significant (but variable) effect on the expected count for all five species, suggesting that broad-scale climatic conditions may be directly or indirectly important to the distributions of wintering sea ducks. Our results provide critical information on species-habitat associations, elucidate the complicated relationship between the North Atlantic Oscillation, sea surface temperature, and local sea duck abundances, and should be useful in assessing the impacts of climate

  4. Distribution patterns of wintering sea ducks in relation to the North Atlantic Oscillation and local environmental characteristics

    USGS Publications Warehouse

    Zipkin, Elise F.; Gardner, Beth; Gilbert, Andrew T.; O'Connell, Allan F.; Royle, J. Andrew; Silverman, Emily D.

    2010-01-01

    Twelve species of North American sea ducks (Tribe Mergini) winter off the eastern coast of the United States and Canada. Yet, despite their seasonal proximity to urbanized areas in this region, there is limited information on patterns of wintering sea duck habitat use. It is difficult to gather information on sea ducks because of the relative inaccessibility of their offshore locations, their high degree of mobility, and their aggregated distributions. To characterize environmental conditions that affect wintering distributions, as well as their geographic ranges, we analyzed count data on five species of sea ducks (black scoters Melanitta nigra americana, surf scoters M. perspicillata, white-winged scoters M. fusca, common eiders Somateria mollissima, and long-tailed ducks Clangula hyemalis) that were collected during the Atlantic Flyway Sea Duck Survey for ten years starting in the early 1990s. We modeled count data for each species within ten-nautical-mile linear survey segments using a zero-inflated negative binomial model that included four local-scale habitat covariates (sea surface temperature, mean bottom depth, maximum bottom slope, and a variable to indicate if the segment was in a bay or not), one broad-scale covariate (the North Atlantic Oscillation), and a temporal correlation component. Our results indicate that species distributions have strong latitudinal gradients and consistency in local habitat use. The North Atlantic Oscillation was the only environmental covariate that had a significant (but variable) effect on the expected count for all five species, suggesting that broad-scale climatic conditions may be directly or indirectly important to the distributions of wintering sea ducks. Our results provide critical information on species-habitat associations, elucidate the complicated relationship between the North Atlantic Oscillation, sea surface temperature, and local sea duck abundances, and should be useful in assessing the impacts of climate

  5. Why different gas flux velocity parameterizations result in so similar flux results in the North Atlantic?

    NASA Astrophysics Data System (ADS)

    Piskozub, Jacek; Wróbel, Iwona

    2016-04-01

    The North Atlantic is a crucial region for both ocean circulation and the carbon cycle. Most of ocean deep waters are produced in the basin making it a large CO2 sink. The region, close to the major oceanographic centres has been well covered with cruises. This is why we have performed a study of net CO2 flux dependence upon the choice of gas transfer velocity k parameterization for this very region: the North Atlantic including European Arctic Seas. The study has been a part of a ESA funded OceanFlux GHG Evolution project and, at the same time, a PhD thesis (of I.W) funded by Centre of Polar Studies "POLAR-KNOW" (a project of the Polish Ministry of Science). Early results have been presented last year at EGU 2015 as a PICO presentation EGU2015-11206-1. We have used FluxEngine, a tool created within an earlier ESA funded project (OceanFlux Greenhouse Gases) to calculate the North Atlantic and global fluxes with different gas transfer velocity formulas. During the processing of the data, we have noticed that the North Atlantic results for different k formulas are more similar (in the sense of relative error) that global ones. This was true both for parameterizations using the same power of wind speed and when comparing wind squared and wind cubed parameterizations. This result was interesting because North Atlantic winds are stronger than the global average ones. Was the flux result similarity caused by the fact that the parameterizations were tuned to the North Atlantic area where many of the early cruises measuring CO2 fugacities were performed? A closer look at the parameterizations and their history showed that not all of them were based on North Atlantic data. Some of them were tuned to the South Ocean with even stronger winds while some were based on global budgets of 14C. However we have found two reasons, not reported before in the literature, for North Atlantic fluxes being more similar than global ones for different gas transfer velocity parametrizations

  6. Building International Research Partnerships in the North Atlantic-Arctic Region

    NASA Astrophysics Data System (ADS)

    Benway, Heather M.; Hofmann, Eileen; St. John, Michael

    2014-09-01

    The North Atlantic-Arctic region, which is critical to the health and socioeconomic well being of North America and Europe, is susceptible to climate-driven changes in circulation, biogeochemistry, and marine ecosystems. The need for strong investment in the study of biogeochemical and ecosystem processes and interactions with physical processes over a range of time and space scales in this region was clearly stated in the 2013 Galway Declaration, an intergovernmental statement on Atlantic Ocean cooperation (http://europa.eu/rapid/press-release_IP-13-459_en.htm). Subsequently, a workshop was held to bring together researchers from the United States, Canada, and Europe with expertise across multiple disciplines to discuss an international research initiative focused on key features, processes, and ecosystem services (e.g., Atlantic Meridional Overturning Circulation, spring bloom dynamics, fisheries, etc.) and associated sensitivities to climate changes.

  7. Meridional fluxes of dissolved organic matter in the North Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Walsh, John J.; Carder, Kendall L.; Mueller-Karger, Frank E.

    1992-01-01

    Biooptical estimates of gelbstoff and a few platinum measurements of dissolved organic carbon (DOCpt) are used to construct a budget of the meridional flux of DOC and dissolved organic nitrogen (DON) across 36 deg 25 min N in the North Atlantic from previous inverse models of water and element transport. Distinct southward subsurface fluxes of dissolved organic matter within subducted shelf water, cabelled slope water, and overturned basin water are inferred. Within two cases of a positive gradient of DOCpt between terrestrial/shelf and offshore stocks, the net equatorward exports of O2 and DOCpt from the northern North Atlantic yield molar ratios of 2.1 to 9.1, compared to the expected Redfield O2/C ratio of 1.3. It is concluded that some shelf export of DOC, with a positive gradient between coastal and oceanic stocks, as well as falling particles, are required to balance carbon, nitrogen, and oxygen budgets of the North Atlantic.

  8. Further evidence for a link between Late Pleistocene North Atlantic surface temperatures and North Atlantic deep-water production

    NASA Astrophysics Data System (ADS)

    Boyle, Edward A.; Rosener, Paula

    1990-10-01

    Reduced surface temperatures, salinity and North Atlantic Deep-Water (NADW) formation rate may be mechanistically linked. Previous studies have demonstrated the co-occurrence of lowered high-latitude T and NADW during glacial maxima and the brief ( t 1000 yr) Younger Dryas cooling event 10,500 years ago. This behavior also appears as a feature of a recent coupled ocean/atmosphere general circulation model. Here, it is shown that rapid fluctuations in North Atlantic surface temperatures (as indicated by variations from 7 to 22% left-cooling N. pachyderma) during oxygen isotope stage 3 also may be linked to fluctuations in deep-water chemistry (as indicated by benthic Cd/Ca variations from 0.080 to 0.120 μmol. mol. -1). Two complete cycles in both properties are observed in 30 cm of sediment; bioturbation modeling suggests that the true extrema are muted and that the reproducibility of replicate analyses is primarily limited by the sampling statistics of bioturbated mixrure. The current evidence raises the question of whether NADW is regulated by a "switch" or by a "valve".

  9. Volcanic forcing of the North Atlantic Oscillation over the last 2,000 years

    NASA Astrophysics Data System (ADS)

    Breitenbach, Sebastian F. M.; Ridley, Harriet E.; Lechleitner, Franziska A.; Asmerom, Yemane; Rehfeld, Kira; Prufer, Keith M.; Kennett, Douglas J.; Aquino, Valorie V.; Polyak, Victor; Goswami, Bedartha; Marwan, Norbert; Haug, Gerald H.; Baldini, James U. L.

    2015-04-01

    The North Atlantic Oscillation (NAO) is a principal mode of atmospheric circulation in the North Atlantic realm (Hurrell et al. 2003) and influences rainfall distribution over Europe, North Africa and North America. Although observational data inform us on multi-annual variability of the NAO, long and detailed paleoclimate datasets are required to understand the mechanisms and full range of its variability and the spatial extent of its influence. Chronologies of available proxy-based NAO reconstructions are often interdependent and cover only the last ~1,100 years, while longer records are characterized by low sampling resolution and chronological constraints. This complicates the reconstruction of regional responses to NAO changes. We present data from a 2,000 year long sub-annual carbon isotope record from speleothem YOK-I from Yok Balum Cave, Belize, Central America. YOK-I has been extensively dated using U-series (Kennett et al. 2012). Monitoring shows that stalagmite δ13C in Yok Balum cave is governed by infiltration changes associated with tropical wet season rainfall. Higher (lower) δ13C values reflect drier (wetter) conditions related to Intertropical Convergence Zone position and trade winds intensity. Comparison with NAO reconstructions (Proctor et al. 2000, Trouet et al. 2009, Wassenburg et al. 2013) reveals that YOK-I δ13C sensitively records NAO-related rainfall dynamics over Belize. The Median Absolute Deviation (MAD) of δ13C extends NAO reconstructions to the last 2,000 years and indicates that high latitude volcanic aerosols force negative NAO phases. We infer that volcanic aerosols modify inter-hemispheric temperature contrasts at multi-annual scale, resulting in meridional relocation of the ITCZ and the Bermuda-Azores High, altering NAO and tropical rainfall patterns. Decade-long dry periods in the 11th and the late 18th century relate to major high northern latitude eruptions and exemplify the climatic response to volcanic forcing by

  10. Arctic climatechange and its impacts on the ecology of the North Atlantic.

    PubMed

    Greene, Charles H; Pershing, Andrew J; Cronin, Thomas M; Ceci, Nicole

    2008-11-01

    Arctic climate change from the Paleocene epoch to the present is reconstructed with the objective of assessing its recent and future impacts on the ecology of the North Atlantic. A recurring theme in Earth's paleoclimate record is the importance of the Arctic atmosphere, ocean, and cryosphere in regulating global climate on a variety of spatial and temporal scales. A second recurring theme in this record is the importance of freshwater export from the Arctic in regulating global- to basin-scale ocean circulation patterns and climate. Since the 1970s, historically unprecedented changes have been observed in the Arctic as climate warming has increased precipitation, river discharge, and glacial as well as sea-ice melting. In addition, modal shifts in the atmosphere have altered Arctic Ocean circulation patterns and the export of freshwater into the North Atlantic. The combination of these processes has resulted in variable patterns of freshwater export from the Arctic Ocean and the emergence of salinity anomalies that have periodically freshened waters in the North Atlantic. Since the early 1990s, changes in Arctic Ocean circulation patterns and freshwater export have been associated with two types of ecological responses in the North Atlantic. The first of these responses has been an ongoing series of biogeographic range expansions by boreal plankton, including renewal of the trans-Arctic exchanges of Pacific species with the Atlantic. The second response was a dramatic regime shift in the shelf ecosystems of the Northwest Atlantic that occurred during the early 1990s. This regime shift resulted from freshening and stratification of the shelf waters, which in turn could be linked to changes in the abundances and seasonal cycles of phytoplankton, zooplankton, and higher trophic-level consumer populations. It is predicted that the recently observed ecological responses to Arctic climate change in the North Atlantic will continue into the near future if current trends

  11. Surface temperatures of the Mid-Pliocene North Atlantic Ocean: Implications for future climate

    USGS Publications Warehouse

    Dowsett, Harry J.; Chandler, Mark A.; Robinson, Marci M.

    2009-01-01

    The Mid-Pliocene is the most recent interval in the Earth's history to have experienced warming of the magnitude predicted for the second half of the twenty-first century and is, therefore, a possible analogue for future climate conditions. With continents basically in their current positions and atmospheric CO2 similar to early twenty-first century values, the cause of Mid-Pliocene warmth remains elusive. Understanding the behaviour of the North Atlantic Ocean during the Mid-Pliocene is integral to evaluating future climate scenarios owing to its role in deep water formation and its sensitivity to climate change. Under the framework of the Pliocene Research, Interpretation and Synoptic Mapping (PRISM) sea surface reconstruction, we synthesize Mid-Pliocene North Atlantic studies by PRISM members and others, describing each region of the North Atlantic in terms of palaeoceanography. We then relate Mid-Pliocene sea surface conditions to expectations of future warming. The results of the data and climate model comparisons suggest that the North Atlantic is more sensitive to climate change than is suggested by climate model simulations, raising the concern that estimates of future climate change are conservative.

  12. Carbon fluxes in North American coastal and shelf seas: Current status and trends

    NASA Astrophysics Data System (ADS)

    Fennel, K.; Alin, S. R.; Barbero, L.; Evans, W.; Martin Hernandez-Ayon, J. M.; Hu, X.; Lohrenz, S. E.; Muller-Karger, F. E.; Najjar, R.; Robbins, L. L.; Shadwick, E. H.; Siedlecki, S. A.; Steiner, N.; Turk, D.; Vlahos, P.; Wang, A. Z.

    2016-12-01

    Coastal and shelf seas represent an interface between all major components of the global carbon cycle: land, atmosphere, marine sediments and the ocean. Fluxes and transformations of carbon in coastal systems are complex and highly variable in space and time. The First State of the Carbon Cycle Report (http://cdiac.ornl.gov/SOCCR/final.html, Chapter 15, Chavez et al. 2007) concluded that carbon budgets of North American ocean margins were not well quantified because of insufficient observations and the complexity and highly localized spatial variability of coastal carbon dynamics. Since then significant progress has been made through the expansion of carbon observing networks, the implementation of modeling capabilities, and national and international coordination and synthesis activities. We will review the current understanding of coastal carbon fluxes around the North American continent including along the Atlantic and Pacific coasts, the northern Gulf of Mexico, and the North American Arctic region and provide a compilation of regional estimates of air-sea fluxes of CO2. We will discuss generalizable patterns in coastal air-sea CO2 exchange and other carbon fluxes as well as reasons underlying spatial heterogeneity. After providing an overview of the principal modes of carbon export from coastal systems, we will apply these mechanisms to the North American continent, and discuss observed and projected trends of key properties and fluxes. The presentation will illustrate that despite significant advances in capabilities and understanding, large uncertainties remain.

  13. Elemental ratios and enrichment factors in aerosols from the US-GEOTRACES North Atlantic transects

    NASA Astrophysics Data System (ADS)

    Shelley, Rachel U.; Morton, Peter L.; Landing, William M.

    2015-06-01

    The North Atlantic receives the highest aerosol (dust) input of all the oceanic basins. Dust deposition provides essential bioactive elements, as well as pollution-derived elements, to the surface ocean. The arid regions of North Africa are the predominant source of dust to the North Atlantic Ocean. In this study, we describe the elemental composition (Li, Na, Mg, Al, P, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Cd, Sn, Sb, Cs, Ba, La, Ce, Nd, Pb, Th, U) of the bulk aerosol from samples collected during the US-GEOTRACES North Atlantic Zonal Transect (2010/11) in order to highlight the differences between a Saharan dust end-member and the reported elemental composition of the upper continental crust (UCC), and the implications this has for identifying trace element enrichment in aerosols across the North Atlantic basin. As aerosol titanium (Ti) is less soluble than aerosol aluminum (Al), it is a more conservative tracer for lithogenic aerosols and trace element-to-Ti ratios. However, the presence of Ti-rich fine aerosols can confound the interpretation of elemental enrichments, making Al a more robust tracer of aerosol lithogenic material in this region.

  14. Forecast calls for continued period of active hurricane seasons in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    “I have been designated as a representative of Chicken Little to tell you the sky is falling with regard to hurricanes.” So said William Gray professor of atmospheric science at Colorado State University at a July 26 briefing on Capitol Hill. The briefing, sponsored by the Congressional Natural Hazards Caucus, the (U.S.) University Corporation for Atmospheric Research, and the American Meteorological Society highlighted a new report about the current active hurricane period in the North Atlantic, as well as funding needs for hurricane research. “It is amazing the threat we appear to be in for in the next two to three decades, and how little realization of this [there] is with the government and with the general public,” said Gray a long-time forecaster of seasonal hurricane activity and co-author of a July 19 article in Science, “The Recent Increase in Atlantic Hurricane Activity: Causes and Implications.”

  15. The North Atlantic Treaty Organization at 40.

    ERIC Educational Resources Information Center

    Baker, John A.

    1989-01-01

    Surveys the history of the North Atlantic Treaty Organization's (NATO) on the 40th anniversary of the signing of the Treaty. Highlights milestones in the Organization's history of dealing with the Soviet Union, from containment to the Intermediate-Range Nuclear Forces Treaty. Discusses needs, tasks, and challenges that NATO faces in the 1990s.…

  16. Spin-Down of the North Atlantic Subpolar Circulation

    NASA Technical Reports Server (NTRS)

    Hakkinen, S.; Rhines, P. B.

    2004-01-01

    Dramatic changes have occurred in the mid-to-high-latitude North Atlantic Ocean as evidenced by TOPEX/Poseidon observations of sea surface height (SSH) in the subpolar gyre and the Gulf Stream. Analysis of altimeter data shows that subpolar SSH has increased during the 1990s and the geostrophic velocity derived from altimeter data shows a decline in the gyre circulation. Direct current-meter observations in the boundary current of the Labrador Sea support the trend in the 199Os, and, together with hydrographic data show that in the mid-late 1990s the trend extends deep in the water column. We find that buoyancy forcing over the northern North Atlantic has a dynamic effect consistent with the altimeter data and hydrographic observations: a weak thermohaline forcing and the subsequent decay of the domed structure of the subpolar isopycnals would give rise to the observed anticyclonic circulation trend.

  17. Rates of Dinitrogen Fixation and the Abundance of Diazotrophs in North American Coastal Waters Between Cape Hatteras and Georges Bank

    NASA Technical Reports Server (NTRS)

    Mulholland, M.R.; Bernhardt, P. W.; Blanco-Garcia, J. L.; Mannino, A.; Hyde, K.; Mondragon, E.; Turk, K.; Moisander, P. H.; Zehr, J. P.

    2012-01-01

    We coupled dinitrogen (N2) fixation rate estimates with molecular biological methods to determine the activity and abundance of diazotrophs in coastal waters along the temperate North American Mid-Atlantic continental shelf during multiple seasons and cruises. Volumetric rates of N2 fixation were as high as 49.8 nmol N L(sup -1) d(sup -1) and areal rates as high as 837.9 micromol N m(sup -2) d(sup -1) in our study area. Our results suggest that N2 fixation occurs at high rates in coastal shelf waters that were previously thought to be unimportant sites of N2 fixation and so were excluded from calculations of pelagic marine N2 fixation. Unicellular N2-fixing group A cyanobacteria were the most abundant diazotrophs in the Atlantic coastal waters and their abundance was comparable to, or higher than, that measured in oceanic regimes where they were discovered. High rates of N2 fixation and the high abundance of diazotrophs along the North American Mid-Atlantic continental shelf highlight the need to revise marine N budgets to include coastal N2 fixation. Integrating areal rates of N2 fixation over the continental shelf area between Cape Hatteras and Nova Scotia, the estimated N2 fixation in this temperate shelf system is about 0.02 Tmol N yr(sup -1), the amount previously calculated for the entire North Atlantic continental shelf. Additional studies should provide spatially, temporally, and seasonally resolved rate estimates from coastal systems to better constrain N inputs via N2 fixation from the neritic zone.

  18. Large fluctuations of dissolved oxygen in the Indian and Pacific oceans during Dansgaard-Oeschger oscillations caused by variations of North Atlantic Deep Water subduction

    USGS Publications Warehouse

    Schmittner, A.; Galbraith, E.D.; Hostetler, S.W.; Pedersen, Thomas F.; Zhang, R.

    2007-01-01

    Paleoclimate records from glacial Indian and Pacific oceans sediments document millennial-scale fluctuations of subsurface dissolved oxygen levels and denitrification coherent with North Atlantic temperature oscillations. Yet the mechanism of this teleconnection between the remote ocean basins remains elusive. Here we present model simulations of the oxygen and nitrogen cycles that explain how changes in deepwater subduction in the North Atlantic can cause large and synchronous variations of oxygen minimum zones, throughout the Northern Hemisphere of the Indian and Pacific oceans, consistent with the paleoclimate records. Cold periods in the North Atlantic are associated with reduced nutrient delivery to the upper Indo-Pacific oceans, thereby decreasing productivity. Reduced export production diminishes subsurface respiration of organic matter leading to higher oxygen concentrations and less denitrification. This effect of reduced oxygen consumption dominates at low latitudes. At high latitudes in the Southern Ocean and North Pacific, increased mixed layer depths and steepening of isopycnals improve ocean ventilation and oxygen supply to the subsurface. Atmospheric teleconnections through changes in wind-driven ocean circulation modify this basin-scale pattern regionally. These results suggest that changes in the Atlantic Ocean circulation, similar to those projected by climate models to possibly occur in the centuries to come because of anthropogenic climate warming, can have large effects on marine ecosystems and biogeochemical cycles even in remote areas. Copyright 2007 by the American Geophysical Union.

  19. Replicating annual North Atlantic hurricane activity 1878-2012 from environmental variables

    NASA Astrophysics Data System (ADS)

    Saunders, Mark A.; Klotzbach, Philip J.; Lea, Adam S. R.

    2017-06-01

    Statistical models can replicate annual North Atlantic hurricane activity from large-scale environmental field data for August and September, the months of peak hurricane activity. We assess how well the six environmental fields used most often in contemporary statistical modeling of seasonal hurricane activity replicate North Atlantic hurricane numbers and Accumulated Cyclone Energy (ACE) over the 135 year period from 1878 to 2012. We find that these fields replicate historical hurricane activity surprisingly well, showing that contemporary statistical models and their seasonal physical links have long-term robustness. We find that August-September zonal trade wind speed over the Caribbean Sea and the tropical North Atlantic is the environmental field which individually replicates long-term hurricane activity the best and that trade wind speed combined with the difference in sea surface temperature between the tropical Atlantic and the tropical mean is the best multi-predictor model. Comparing the performance of the best single-predictor and best multi-predictor models shows that they exhibit little difference in hindcast skill for predicting long-term ACE but that the best multipredictor model offers improved skill for predicting long-term hurricane numbers. We examine whether replicated real-time prediction skill 1983-2012 increases as the model training period lengthens and find evidence that this happens slowly. We identify a dropout in hurricane replication centered on the 1940s and show that this is likely due to a decrease in data quality which affects all data sets but Atlantic sea surface temperatures in particular. Finally, we offer insights on the implications of our findings for seasonal hurricane prediction.

  20. Solar forcing synchronizes decadal North Atlantic climate variability.

    PubMed

    Thiéblemont, Rémi; Matthes, Katja; Omrani, Nour-Eddine; Kodera, Kunihiko; Hansen, Felicitas

    2015-09-15

    Quasi-decadal variability in solar irradiance has been suggested to exert a substantial effect on Earth's regional climate. In the North Atlantic sector, the 11-year solar signal has been proposed to project onto a pattern resembling the North Atlantic Oscillation (NAO), with a lag of a few years due to ocean-atmosphere interactions. The solar/NAO relationship is, however, highly misrepresented in climate model simulations with realistic observed forcings. In addition, its detection is particularly complicated since NAO quasi-decadal fluctuations can be intrinsically generated by the coupled ocean-atmosphere system. Here we compare two multi-decadal ocean-atmosphere chemistry-climate simulations with and without solar forcing variability. While the experiment including solar variability simulates a 1-2-year lagged solar/NAO relationship, comparison of both experiments suggests that the 11-year solar cycle synchronizes quasi-decadal NAO variability intrinsic to the model. The synchronization is consistent with the downward propagation of the solar signal from the stratosphere to the surface.

  1. Developing an acoustic method for reducing North Atlantic right whale (Eubalaena glacialis) ship strike mortality along the United States eastern seaboard

    NASA Astrophysics Data System (ADS)

    Mullen, Kaitlyn Allen

    North Atlantic right whales (Eubalaena glacialis ) are among the world's most endangered cetaceans. Although protected from commercial whaling since 1949, North Atlantic right whales exhibit little to no population growth. Ship strike mortality is the leading known cause of North Atlantic right whale mortality. North Atlantic right whales exhibit developed auditory systems, and vocalize in the frequency range that dominates ship acoustic signatures. With no behavioral audiogram published, current literature assumes these whales should be able to acoustically detect signals in the same frequencies they vocalize. Recorded ship acoustic signatures occur at intensities that are similar or higher to those recorded by vocalizing North Atlantic right whales. If North Atlantic right whales are capable of acoustically detecting oncoming ship, why are they susceptible to ship strike mortality? This thesis models potential acoustic impediments to North Atlantic right whale detection of oncoming ships, and concludes the presence of modeled and observed bow null effect acoustic shadow zones, located directly ahead of oncoming ships, are likely to impair the ability of North Atlantic right whales to detect and/or localize oncoming shipping traffic. This lack of detection and/or localization likely leads to a lack of ship strike avoidance, and thus contributes to the observed high rates of North Atlantic right whale ship strike mortality. I propose that North Atlantic right whale ship strike mortality reduction is possible via reducing and/or eliminating the presence of bow null effect acoustic shadow zones. This thesis develops and tests one method for bow null effect acoustic shadow zone reduction on five ships. Finally, I review current United States policy towards North Atlantic right whale ship strike mortality in an effort to determine if the bow null effect acoustic shadow zone reduction method developed is a viable method for reducing North Atlantic right whale ship

  2. The North Atlantic Ocean as habitat for Calanus finmarchicus: Environmental factors and life history traits

    NASA Astrophysics Data System (ADS)

    Melle, Webjørn; Runge, Jeffrey; Head, Erica; Plourde, Stéphane; Castellani, Claudia; Licandro, Priscilla; Pierson, James; Jonasdottir, Sigrun; Johnson, Catherine; Broms, Cecilie; Debes, Høgni; Falkenhaug, Tone; Gaard, Eilif; Gislason, Astthor; Heath, Michael; Niehoff, Barbara; Nielsen, Torkel Gissel; Pepin, Pierre; Stenevik, Erling Kaare; Chust, Guillem

    2014-12-01

    Here we present a new, pan-Atlantic compilation and analysis of data on Calanus finmarchicus abundance, demography, dormancy, egg production and mortality in relation to basin-scale patterns of temperature, phytoplankton biomass, circulation and other environmental characteristics in the context of understanding factors determining the distribution and abundance of C. finmarchicus across its North Atlantic habitat. A number of themes emerge: (1) the south-to-north transport of plankton in the northeast Atlantic contrasts with north-to-south transport in the western North Atlantic, which has implications for understanding population responses of C. finmarchicus to climate forcing, (2) recruitment to the youngest copepodite stages occurs during or just after the phytoplankton bloom in the east whereas it occurs after the bloom at many western sites, with up to 3.5 months difference in recruitment timing, (3) the deep basin and gyre of the southern Norwegian Sea is the centre of production and overwintering of C. finmarchicus, upon which the surrounding waters depend, whereas, in the Labrador/Irminger Seas production mainly occurs along the margins, such that the deep basins serve as collection areas and refugia for the overwintering populations, rather than as centres of production, (4) the western North Atlantic marginal seas have an important role in sustaining high C. finmarchicus abundance on the nearby coastal shelves, (5) differences in mean temperature and chlorophyll concentration between the western and eastern North Atlantic are reflected in regional differences in female body size and egg production, (6) regional differences in functional responses of egg production rate may reflect genetic differences between western and eastern populations, (7) dormancy duration is generally shorter in the deep waters adjacent to the lower latitude western North Atlantic shelves than in the east, (8) there are differences in stage-specific daily mortality rates between

  3. Surface changes in the North Atlantic meridional overturning circulation during the last millennium

    PubMed Central

    Wanamaker, Alan D.; Butler, Paul G.; Scourse, James D.; Heinemeier, Jan; Eiríksson, Jón; Knudsen, Karen Luise; Richardson, Christopher A.

    2012-01-01

    Despite numerous investigations, the dynamical origins of the Medieval Climate Anomaly and the Little Ice Age remain uncertain. A major unresolved issue relating to internal climate dynamics is the mode and tempo of Atlantic meridional overturning circulation variability, and the significance of decadal-to-centennial scale changes in Atlantic meridional overturning circulation strength in regulating the climate of the last millennium. Here we use the time-constrained high-resolution local radiocarbon reservoir age offset derived from an absolutely dated annually resolved shell chronology spanning the past 1,350 years, to reconstruct changes in surface ocean circulation and climate. The water mass tracer data presented here from the North Icelandic shelf, combined with previously published data from the Arctic and subtropical Atlantic, show that surface Atlantic meridional overturning circulation dynamics likely amplified the relatively warm conditions during the Medieval Climate Anomaly and the relatively cool conditions during the Little Ice Age within the North Atlantic sector. PMID:22692542

  4. Surface changes in the North Atlantic meridional overturning circulation during the last millennium.

    PubMed

    Wanamaker, Alan D; Butler, Paul G; Scourse, James D; Heinemeier, Jan; Eiríksson, Jón; Knudsen, Karen Luise; Richardson, Christopher A

    2012-06-12

    Despite numerous investigations, the dynamical origins of the Medieval Climate Anomaly and the Little Ice Age remain uncertain. A major unresolved issue relating to internal climate dynamics is the mode and tempo of Atlantic meridional overturning circulation variability, and the significance of decadal-to-centennial scale changes in Atlantic meridional overturning circulation strength in regulating the climate of the last millennium. Here we use the time-constrained high-resolution local radiocarbon reservoir age offset derived from an absolutely dated annually resolved shell chronology spanning the past 1,350 years, to reconstruct changes in surface ocean circulation and climate. The water mass tracer data presented here from the North Icelandic shelf, combined with previously published data from the Arctic and subtropical Atlantic, show that surface Atlantic meridional overturning circulation dynamics likely amplified the relatively warm conditions during the Medieval Climate Anomaly and the relatively cool conditions during the Little Ice Age within the North Atlantic sector.

  5. The JGOFS North Atlantic Bloom Experiment: An overview

    NASA Technical Reports Server (NTRS)

    Ducklow, Hugh W.

    1992-01-01

    The North Atlantic Bloom Experiment (NABE) of JGOFS presents a unique opportunity and challenge to the data management community because of the diversity and large size of biogeochemical data sets collected. NABE was a pilot study for JGOFS and has also served as a pilot study within the U.S. NODC for management and archiving of the data sets. Here I present an overview to some of the scientific results of NABE, which will be published as an Introduction to a special volume of NABE results in Deep-Sea Research later this year. An overview of NABE data management is given elsewhere in the present report. This is the first collection of papers from the Joint Global Ocean Flux Study (JGOFS). Formed as an international program in 1987, JGOFS has four principal elements: modelling and data management, multidisciplinary regional process studies, a global survey of biogeochemical properties and long-term time series observatories. In 1989-1990 JGOFS conducted a pilot process study of the spring phytoplankton bloom, the North Atlantic Bloom Experiment (NABE). JGOFS decided to conduct a large scale, internationally-coordinated pilot study in the North Atlantic because of its proximity to the founding nations of the project, the size and predictability of the bloom and its fundamental impact on ocean bio-geochemistry (Billett et al., 1983; Watson and Whitfield, 1985; Pfannkuche, 1992). In 1989, six research vessels from Canada, Germany, The Netherlands, the United Kingdom and the USA and over 200 scientists and students from more than a dozen nations participated in NABE. Some of their initial results are reported in this volume.

  6. 78 FR 61844 - North Atlantic Coast Comprehensive Study

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-04

    ... Comprehensive Study AGENCY: Department of the Army, U.S. Army Corps of Engineers, DoD. ACTION: Notice. SUMMARY... in the preparation of the North Atlantic Coast Comprehensive Study (Hurricane Sandy). The USACE is... Comprehensive Study authorized under the Disaster Relief Appropriations Act, Public Law 113-2 are to (1) provide...

  7. C:n:p Stoichiometry of New Production In The North Atlantic

    NASA Astrophysics Data System (ADS)

    Koeve, W.

    Recently and independently published estimates of global net community production which were based on seasonal changes of either nutrients (NO3 and PO4) or dissolved inorganic carbon (DIC) in the surface ocean indicate that the stoichiometry of new pro- duction strongly differs from the well established remineralisation ratios in the deep ocean (the Redfield ratio). This difference appears to be most pronounce in the North Atlantic ocean. Data quality issues as well as methodological differences in the data analysis applied in the published studies, however, make this comparison of nutri- ent and carbon based estimated ambigious. In this presentation historical data (World Ocean Atlas and Data 1998), data from the World Ocean Circulation Experiment and empirical approaches are combined in a consistent way to provide a reassessment of the C:N:P elemental ratio of new (export) production in the North Atlantic. It is found that published nutrient budgets are severe underestimates and hence apparent C:N:P ratios were overestimated. At least in the North Atlantic the uncertainty of the winter time distribution of nutrients (and DIC) is a major source of the uncertainty of the C:N:P ratio of net community production.

  8. Groundwater availability in the Atlantic Coastal Plain of North and South Carolina

    USGS Publications Warehouse

    Campbell, Bruce G.; Coes, Alissa L.

    2010-01-01

    The Atlantic Coastal Plain aquifers and confining units of North and South Carolina are composed of crystalline carbonate rocks, sand, clay, silt, and gravel and contain large volumes of high-quality groundwater. The aquifers have a long history of use dating back to the earliest days of European settlement in the late 1600s. Although extensive areas of some of the aquifers have or currently (2009) are areas of groundwater level declines from large-scale, concentrated pumping centers, large areas of the Atlantic Coastal Plain contain substantial quantities of high-quality groundwater that currently (2009) are unused. Groundwater use from the Atlantic Coastal Plain aquifers in North Carolina and South Carolina has increased during the past 60 years as the population has increased along with demands for municipal, industrial, and agricultural water needs. While North Carolina and South Carolina work to increase development of water supplies in response to the rapid growth in these coastal populations, both States recognize that they are facing a number of unanswered questions regarding availability of groundwater supplies and the best methods to manage these important supplies. An in-depth assessment of groundwater availability of the Atlantic Coastal Plain aquifers of North and South Carolina has been completed by the U.S. Geological Survey Groundwater Resources Program. This assessment includes (1) a determination of the present status of the Atlantic Coastal Plain groundwater resources; (2) an explanation for how these resources have changed over time; and (3) development of tools to assess the system's response to stresses from potential future climate variability. Results from numerous previous investigations of the Atlantic Coastal Plain by Federal and State agencies have been incorporated into this effort. The primary products of this effort are (1) comprehensive hydrologic datasets such as groundwater levels, groundwater use, and aquifer properties; (2) a

  9. The role of the subtropical North Atlantic water cycle in recent US extreme precipitation events

    NASA Astrophysics Data System (ADS)

    Li, Laifang; Schmitt, Raymond W.; Ummenhofer, Caroline C.

    2018-02-01

    The role of the oceanic water cycle in the record-breaking 2015 warm-season precipitation in the US is analyzed. The extreme precipitation started in the Southern US in the spring and propagated northward to the Midwest and the Great Lakes in the summer of 2015. This seasonal evolution of precipitation anomalies represents a typical mode of variability of US warm-season precipitation. Analysis of the atmospheric moisture flux suggests that such a rainfall mode is associated with moisture export from the subtropical North Atlantic. In the spring, excessive precipitation in the Southern US is attributable to increased moisture flux from the northwestern portion of the subtropical North Atlantic. The North Atlantic moisture flux interacts with local soil moisture which enables the US Midwest to draw more moisture from the Gulf of Mexico in the summer. Further analysis shows that the relationship between the rainfall mode and the North Atlantic water cycle has become more significant in recent decades, indicating an increased likelihood of extremes like the 2015 case. Indeed, two record-high warm-season precipitation events, the 1993 and 2008 cases, both occurred in the more recent decades of the 66 year analysis period. The export of water from the North Atlantic leaves a marked surface salinity signature. The salinity signature appeared in the spring preceding all three extreme precipitation events analyzed in this study, i.e. a saltier-than-normal subtropical North Atlantic in spring followed by extreme Midwest precipitation in summer. Compared to the various sea surface temperature anomaly patterns among the 1993, 2008, and 2015 cases, the spatial distribution of salinity anomalies was much more consistent during these extreme flood years. Thus, our study suggests that preseason salinity patterns can be used for improved seasonal prediction of extreme precipitation in the Midwest.

  10. A Skilful Marine Sclerochronological Network Based Reconstruction of North Atlantic Subpolar Gyre Dynamics

    NASA Astrophysics Data System (ADS)

    Reynolds, D.; Hall, I. R.; Slater, S. M.; Scourse, J. D.; Wanamaker, A. D.; Halloran, P. R.; Garry, F. K.

    2017-12-01

    Spatial network analyses of precisely dated, and annually resolved, tree-ring proxy records have facilitated robust reconstructions of past atmospheric climate variability and the associated mechanisms and forcings that drive it. In contrast, a lack of similarly dated marine archives has constrained the use of such techniques in the marine realm, despite the potential for developing a more robust understanding of the role basin scale ocean dynamics play in the global climate system. Here we show that a spatial network of marine molluscan sclerochronological oxygen isotope (δ18Oshell) series spanning the North Atlantic region provides a skilful reconstruction of basin scale North Atlantic sea surface temperatures (SSTs). Our analyses demonstrate that the composite marine series (referred to as δ18Oproxy_PC1) is significantly sensitive to inter-annual variability in North Atlantic SSTs (R=-0.61 P<0.01) and surface air temperatures (SATs; R=-0.67, P<0.01) over the 20th century. Subpolar gyre (SPG) SSTs dominates variability in the δ18Oproxy_PC1 series at sub-centennial frequencies (R=-0.51, P<0.01). Comparison of the δ18Oproxy_PC1 series against variability in the strength of the European Slope Current and maximum North Atlantic meridional overturning circulation derived from numeric climate models (CMIP5), indicates that variability in the SPG region, associated with the strength of the surface currents of the North Atlantic, are playing a significant role in shaping the multi-decadal scale SST variability over the industrial era. These analyses demonstrate that spatial networks developed from sclerochronological archives can provide powerful baseline archives of past ocean variability that can facilitate the development of a quantitative understanding for the role the oceans play in the global climate systems and constraining uncertainties in numeric climate models.

  11. Forced and Internal Multi-Decadal Variability in the North Atlantic and their Climate Impacts

    NASA Astrophysics Data System (ADS)

    Ting, M.

    2017-12-01

    Atlantic Multidecadal Variability (AMV), a basin-wide North Atlantic sea surface temperature warming or cooling pattern varying on decadal and longer time scales, is one of the most important climate variations in the Atlantic basin. The AMV has shown to be associated with significant climate impacts regionally and globally, from Atlantic hurricane activities, frequency and severity of droughts across North America, as well as rainfall anomalies across the African Sahel and northeast Brazil. Despite the important impacts of the AMV, its mechanisms are not completely understood. In particular, it is not clear how much of the historical Atlantic SST fluctuations were forced by anthropogenic sources such as greenhouse warming and aerosol cooling, versus driven internally by changes in the coupled ocean-atmosphere processes in the Atlantic. Using climate models such as the NCAR large ensemble simulations, we were able to successfully separate the forced and internally generated North Atlantic sea surface temperature anomalies through a signal-to-noise maximizing Empirical Orthogonal Function (S/N EOF) analysis method. Two forced modes were identified with one representing a hemispherical symmetric mode and one asymmetric mode. The symmetric mode largely represents the greenhouse forced component while the asymmetric mode resembles the anthropogenic aerosol forcing. When statistically removing both of the forced modes, the residual multidecadal Atlantic SST variability shows a very similar structure as the AMV in the preindustrial simulation. The distinct climate impacts of each of these modes are also identified and the implications and challenges for decadal climate prediction will be discussed.

  12. Long-Term Simulation of Dust Distribution with the GOCART Model: Correlation with the North Atlantic Oscillation

    NASA Technical Reports Server (NTRS)

    Ginoux, P.; Prospero, J.; Torres, O.; Chin, M.

    2002-01-01

    Global distribution of aeolian dust is simulated from 1981 to 1996 with the Goddard Ozone Chemistry Aerosol Radiation and Transport (GOCART) model. The results are assessed with in-situ measurements and the Total Ozone Mapping Spectrometer (TOMS) aerosol products. The annual budget over the different continents and oceans are analyzed. It is found that there is a maximum of 25% difference of global annual emission from the minimum in 1996 to the maximum in 1988. There is a downward trend of dust emission over Africa and East Asia, of 6 and 2 Tg/yr, respectively. The inter-annual variability of dust distribution is analyzed over the North Atlantic and Africa. It is found that in winter most of the North Atlantic and Africa dust loading is correlated with the North Atlantic Oscillation. The GOCART model indicates that a controlling factor of such correlation can be attributed to dust emission from the Sahel. The Bodele depression is the major dust source in winter and its inter-annual variability is highly correlated with the NAO. However, it is not possible to conclude without further analysis that the North Atlantic Oscillation is forcing the inter-annual variability of dust emission and in-turn dust concentration over the North Atlantic.

  13. North American Renewable Integration Study | Energy Analysis | NREL

    Science.gov Websites

    North American Renewable Integration Study North American Renewable Integration Study NREL's North American Renewable Integration Study (NARIS) will analyze pathways to modernize the North American power planning and operations will help guide and review the study. NARIS will examine the interconnection of U.S

  14. Novel Proxies Approach to Characterise Ice Rafting Events in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Kornilova, O.; Russell, M.; Rosell-Melé, A.; Evans, I. S.

    2002-12-01

    During the last glacial period, there have been several episodes of quasi-periodic iceberg discharge from the ice sheets into the North Atlantic (Heinrich Events) (Heinrich, 1988). These episodes are recorded in Quaternary sediments as layers of ice rafted debris (IRD). Properties of sediments in these Heinrich Layers (HLs) differ from those of adjacent ambient sediments. Heinrich Events (HEs) are associated with changes in global climate. To determine the cause of HEs, work on provenance of IRD was undertaken. Previous studies included analysis of bulk properties of lithic and organic matter in IRD and an attempt to correlate them with those of possible continental sources (e.g. Grousset et al., 2001). We used biomarker approach to characterise the provenance of IRD in the North Atlantic, similar to oil-source rock correlation used in petroleum industry. In this work, biomarker composition of Heinrich Layers from several North Atlantic cores was compared with that of possible source areas. As a proxy for source of IRD, we analysed glaciogenic debris flows from trough mouth fans (TMF) that formed as a result of iceberg discharge (Vorren and Laberg, 1997). Those included samples from the Nordic Seas, Labrador Sea and Baffin Bay. Different classes of organic compounds (e.g. photosynthetic pigments and hydrocarbons) were characterised. Variability within each class, relative abundances of different components and isotopic signatures were considered. Biomarker fingerprints were compared within each core, within each TMF and between TMFs. Cluster analysis was performed to correlate sources of IRD (TMFs) and its sinks (HLs from several North Atlantic cores). Grousset et al. 2001. Zooming in on Heinrich layers. Paleoceanography, 16, 240-259. Heinrich, H. 1988. Origin and Consequence of Ice Rafting In Northeast Atlantic Ocean During the Past 130,000 Years. Quaternary Research, 29, 143-152. Vorren and Laberg. 1997. Trough Mouth Fans - Palaeoclimate and Ice-Sheet Monitors

  15. Deglacial Ocean Circulation Scheme at Intermediate Depths in the Tropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Xie, R. C.; Marcantonio, F.; Schmidt, M. W.

    2014-12-01

    In the modern Atlantic Ocean, intermediate water circulation is largely governed by the southward flowing upper North Atlantic Deep Water (NADW) and the northward return flow Antarctic Intermediate Water (AAIW). During the last deglaciation, it is commonly accepted that the southward flow Glacial North Atlantic Intermediate Water, the glacial analogue of NADW, contributed significantly to past variations in intermediate water circulation. However, to date, there is no common consensus of the role AAIW played during the last deglaciation, especially across abrupt climate events such as the Heinrich 1 and the Younger Dryas. This study aims to reconstruct intermediate northern- and southern-sourced water circulation in the tropical North Atlantic during the past 22 kyr and attempts to confine the boundary between AAIW and northern-sourced intermediate waters in the past. High-resolution Nd isotopic compositions (ɛNd thereafter) of fish debris and bulk sediment acid-reductive leachate from the Southern Caribbean (VM12-107; 1079 m) are inconsistent, again casting concerns, as already raised by recent studies, on the reliability of the leachate method in extracting seawater ɛNd signature. This urges the need to carefully verify the seawater ɛNd integrity in sediment acid-reductive leachate in various oceanic settings. Fish debris Nd isotope record in our study displays a two-step decreasing trend from the early deglaciation to early Holocene. We interpret this as recording a two-step deglacial recovery of the upper NADW, given the assumption on a more radiogenic glacial northern-sourced water is valid. Comparing with authigenic ɛNd records in the Florida Straits [1] and the Demarara Rise [2], our new fish debris ɛNd results suggest that, in the tropical western North Atlantic, glacial and deglacial AAIW never penetrated beyond the lower depth limit of modern AAIW. [1] Xie et al., GCA (140) 2014; [2] Huang et al., EPSL (389) 2014

  16. The Variation of Tropical Cyclone Rainfall within the North Atlantic and Pacific as Observed from Satellites

    NASA Technical Reports Server (NTRS)

    Rodgers, Edward; Pierce, Harold; Adler, Robert

    1999-01-01

    Tropical cyclone monthly rainfall amounts are estimated from passive microwave satellite observations in the North Atlantic and in three equal geographical regions of the North Pacific (i.e., Western, Central, and Eastern North Pacific). These satellite-derived rainfall amounts are used to assess the impact of tropical cyclone rainfall in altering the geographical, seasonal, and inter-annual distribution of the 1987-1989, 1991-1998 North Atlantic and Pacific rainfall during June-November when tropical cyclones are most abundant. To estimate these tropical cyclone rainfall amounts, mean monthly rain rates are derived from the Defence Meteorological Satellite Program (DMSP) Special Sensor Microwave/ Radiometer (SSM/I) observations within 444 km radius of the center of those North Atlantic and Pacific tropical cyclones that reached storm stage and greater. These rain rate observations are then multiplied by the number of hours in a given month. Mean monthly rainfall amounts are also constructed for all the other North Atlantic and Pacific raining systems during this eleven year period for the purpose of estimating the geographical distribution and intensity of rainfall contributed by non-tropical cyclone systems. Further, the combination of the non-tropical cyclone and tropical cyclone (i.e., total) rainfall is constructed to delineate the fractional amount that tropical cyclones contributed to the total North Pacific rainfall.

  17. Aerosol, cloud, and precipitation interactions in Eastern North Atlantic

    NASA Astrophysics Data System (ADS)

    Wang, J.; Wood, R.; Dong, X.

    2017-12-01

    With their extensive coverage, marine low clouds greatly impact global climate. Presently, marine low clouds are poorly represented in global climate models, and the response of marine low clouds to changes in atmospheric greenhouse gases and aerosols remains the major source of uncertainty in climate simulations. The Eastern North Atlantic (ENA) is a region of persistent but diverse subtropical marine boundary layer clouds, whose albedo and precipitation are highly susceptible to perturbations in aerosol properties. In addition, ENA is periodically impacted by anthropogenic aerosol both from North American and from continental Europe, making it an excellent location to study the CCN budget in a remote marine region periodically perturbed by anthropogenic emissions, and to investigate the impacts of long-range transport of aerosols on remote marine clouds. Aerosol and Cloud Experiments in Eastern North Atlantic (ACE-ENA), funded by DOE Atmospheric Radiation Measurement (ARM) program, is designed to improve the understanding of marine boundary CCN budget, cloud and drizzle microphysics, and the impact of aerosol on marine low cloud and precipitation in the ENA by combining airborne observations and long term surface based measurements. The study has two airborne deployments. The first deployment took place from June 15 to July 25, 2017, and the second one will take place from January 10 to February 20, 2018. Flights during the first deployment were carried out in the Azores, near the ARM ENA site on Graciosa Island. The long term measurements at the ENA site provide important Climatological context for the airborne observations during the two deployments, and the cloud structures provided by the scanning radars at the ENA site put the detailed in-situ measurements into mesoscale and cloud lifecycle contexts. Another important aspect of this study is to provide high quality in-situ measurements for validating and improving ground-based retrieval algorithms at the ENA

  18. North Atlantic deep water formation and AMOC in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Heuzé, Céline; Wåhlin, Anna

    2017-04-01

    North Atlantic deep water formation processes and properties in climate models are indicative of their ability to simulate future ocean circulation, ventilation, carbon and heat uptake, and sea level rise. Historical time series of temperature, salinity, sea ice concentration and ocean transport in the North Atlantic subpolar gyre and Nordic Seas from 23 CMIP5 (Climate Model Intercomparison Project, phase 5) models are compared with observations to reveal the causes and consequences of North Atlantic deep water formation in models. Deep convection occurs at the sea ice edge and is most realistic in models with accurate sea ice extent, mostly those using the CICE model. The trigger of deep convection varies among models; for one third it is intense surface cooling only, while the remaining two thirds also need upward mixing of subsurface warm salty water. The models with the most intense deep convection have the most accurate deep water properties, which are warmer and fresher than in the other models. They also have the strongest Atlantic Meridional Overturning Circulation (AMOC). For over half of the models, 40% of the variability of the AMOC is explained by the volumes of deep water produced in the subpolar gyre and Nordic Seas, with 3 and 4 years lag respectively. Understanding the dynamical drivers of the AMOC in models is key to realistically forecast a possible slow down and its consequences on the global circulation and marine life.

  19. Genetic discontinuity among regional populations of Lophelia pertusa in the North Atlantic Ocean

    USGS Publications Warehouse

    Morrison, C.L.; Ross, Steve W.; Nizinski, M.S.; Brooke, S.; Jarnegren, J.; Waller, R.G.; Johnson, Robin L.; King, T.L.

    2011-01-01

    Knowledge of the degree to which populations are connected through larval dispersal is imperative to effective management, yet little is known about larval dispersal ability or population connectivity in Lophelia pertusa, the dominant framework-forming coral on the continental slope in the North Atlantic Ocean. Using nine microsatellite DNA markers, we assessed the spatial scale and pattern of genetic connectivity across a large portion of the range of L. pertusa in the North Atlantic Ocean. A Bayesian modeling approach found four distinct genetic groupings corresponding to ocean regions: Gulf of Mexico, coastal southeastern U.S., New England Seamounts, and eastern North Atlantic Ocean. An isolation-by-distance pattern was supported across the study area. Estimates of pairwise population differentiation were greatest with the deepest populations, the New England Seamounts (average F ST = 0.156). Differentiation was intermediate with the eastern North Atlantic populations (F ST = 0.085), and smallest between southeastern U.S. and Gulf of Mexico populations (F ST = 0.019), with evidence of admixture off the southeastern Florida peninsula. Connectivity across larger geographic distances within regions suggests that some larvae are broadly dispersed. Heterozygote deficiencies were detected within the majority of localities suggesting deviation from random mating. Gene flow between ocean regions appears restricted, thus, the most effective management scheme for L. pertusa involves regional reserve networks.

  20. Evolution of a reassortant North American gull influenza virus lineage: drift, shift and stability

    USGS Publications Warehouse

    Hall, Jeffrey S.; TeSlaa, Joshua L.; Nashold, Sean W.; Halpin, Rebecca A.; Stockwell, Timothy; Wentworth, David E.; Dugan, Vivien; Ip, Hon S.

    2013-01-01

    Background: The role of gulls in the ecology of avian influenza (AI) is different than that of waterfowl. Different constellations of subtypes circulate within the two groups of birds and AI viruses isolated from North American gulls frequently possess reassortant genomes with genetic elements from both North America and Eurasian lineages. A 2008 isolate from a Newfoundland Great Black-backed Gull contained a mix of North American waterfowl, North American gull and Eurasian lineage genes. Methods: We isolated, sequenced and phylogenetically compared avian influenza viruses from 2009 Canadian wild birds. Results: We analyzed six 2009 virus isolates from Canada and found the same phylogenetic lineage had persisted over a larger geographic area, with an expanded host range that included dabbling and diving ducks as well as gulls. All of the 2009 virus isolates contained an internal protein coding set of genes of the same Eurasian lineage genes except PB1 that was from a North American lineage, and these genes continued to evolve by genetic drift. We show evidence that the 2008 Great Black-backed Gull virus was derived from this lineage with a reassortment of a North American PA gene into the more stable core set of internal protein coding genes that has circulated in avian populations for at least 2 years. From this core, the surface glycoprotein genes have switched several times creating H13N6, H13N2, and H16N3 subtypes. These gene segments were from North American lineages except for the H16 and N3 vRNAs. Conclusions: This process appears similar to genetic shifts seen with swine influenza where a stable "triple reassortant internal gene" core has circulated in swine populations with genetic shifts occurring with hemaggluttinin and neuraminidase proteins getting periodically switched. Thus gulls may serve as genetic mixing vessels for different lineages of avian influenza, similar to the role of swine with regards to human influenza. These findings illustrate the

  1. The roles of static stability and tropical-extratropical interactions in the summer interannual variability of the North Atlantic sector

    NASA Astrophysics Data System (ADS)

    Mbengue, Cheikh Oumar; Woollings, Tim; Dacre, Helen F.; Hodges, Kevin I.

    2018-04-01

    Summer seasonal forecast skill in the North Atlantic sector is lower than winter skill. To identify potential controls on predictability, the sensitivity of North Atlantic baroclinicity to atmospheric drivers is quantified. Using ERA-INTERIM reanalysis data, North Atlantic storm-track baroclinicity is shown to be less sensitive to meridional temperature-gradient variability in summer. Static stability shapes the sector's interannual variability by modulating the sensitivity of baroclinicity to variations in meridional temperature gradients and tropopause height and by modifying the baroclinicity itself. High static stability anomalies at upper levels result in more zonal extratropical cyclone tracks and higher eddy kinetic energy over the British Isles in the summertime. These static stability anomalies are not strongly related to the summer NAO; but they are correlated with the suppression of convection over the tropical Atlantic and with a poleward-shifted subtropical jet. These results suggest a non-local driver of North Atlantic variability. Furthermore, they imply that improved representations of convection over the south-eastern part of North America and the tropical Atlantic might improve summer seasonal forecast skill.

  2. Arctic Sovereignty Disputes: International Relations Theory in the High North

    DTIC Science & Technology

    2011-12-01

    ARCTIC REGION.............................20 D. INSTITUTIONS FOR ARCTIC SECURITY COOPERATION .............22 1. The United Nations and The Law of...39 1. The Law of the Sea .............................................................................39 2. The Arctic Council as an...Change IR International Relations NAFTA North American Free Trade Agreement NATO North Atlantic Treaty Organization NORAD North American

  3. Limits on determining the skill of North Atlantic Ocean decadal predictions.

    PubMed

    Menary, Matthew B; Hermanson, Leon

    2018-04-27

    The northern North Atlantic is important globally both through its impact on the Atlantic Meridional Overturning Circulation (AMOC) and through widespread atmospheric teleconnections. The region has been shown to be potentially predictable a decade ahead with the skill of decadal predictions assessed against reanalyses of the ocean state. Here, we show that the prediction skill in this region is strongly dependent on the choice of reanalysis used for validation, and describe the causes. Multiannual skill in key metrics such as Labrador Sea density and the AMOC depends on more than simply the choice of the prediction model. Instead, this skill is related to the similarity between the nature of interannual density variability in the underlying climate model and the chosen reanalysis. The climate models used in these decadal predictions are also used in climate projections, which raises questions about the sensitivity of these projections to the models' innate North Atlantic density variability.

  4. Statistical Aspects of Tropical Cyclone Activity in the North Atlantic Basin, 1945-2010

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2012-01-01

    Examined are statistical aspects of the 715 tropical cyclones that formed in the North Atlantic basin during the interval 1945-2010. These 715 tropical cyclones include 306 storms that attained only tropical storm strength, 409 hurricanes, 179 major or intense hurricanes, and 108 storms that struck the US coastline as hurricanes. Comparisons made using 10-year moving average (10-yma) values between tropical cyclone parametric values and surface air and ENSO-related parametric values indicate strong correlations to exist, in particular, against the Armagh Observatory (Northern Ireland) surface air temperature, the Atlantic Multi-decadal Oscillation (AMO) index, the Atlantic Meridional Mode (AMM) index, and the North Atlantic Oscillation (NAO) index, in addition to the Oceanic Ni o index (ONI) and Quasi-Biennial Oscillation (QBO) indices. Also examined are the decadal variations of the tropical cyclone parametric values and a look ahead towards the 2012 hurricane season and beyond.

  5. 78 FR 23847 - Drawbridge Operation Regulations; North Carolina Cut, Atlantic Intracoastal Waterway (AIWW...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-23

    ...-AA09 Drawbridge Operation Regulations; North Carolina Cut, Atlantic Intracoastal Waterway (AIWW....1, over the North Carolina Cut, at Wrightsville Beach, NC. This rule restricts the operation of the... mile 283.1, over the North Carolina Cut, at Wrightsville Beach, NC has unlimited vertical clearances in...

  6. On which timescales do gas transfer velocities control North Atlantic CO2 flux variability?

    NASA Astrophysics Data System (ADS)

    Couldrey, Matthew; Oliver, Kevin; Yool, Andrew; Halloran, Paul; Achterberg, Eric

    2016-04-01

    The North Atlantic is an important basin for the global ocean's uptake of anthropogenic and natural carbon dioxide (CO2), but the mechanisms controlling this carbon flux are not fully understood. The air-sea flux of CO2, F, is the product of a gas transfer velocity, k, the air-sea CO2concentration gradient, ΔpCO2, and the temperature and salinity-dependent solubility coefficient, α. k is difficult to constrain, representing the dominant uncertainty in F on short (instantaneous to interannual) timescales. Previous work shows that in the North Atlantic, ΔpCO2and k both contribute significantly to interannual F variability, but that k is unimportant for multidecadal variability. On some timescale between interannual and multidecadal, gas transfer velocity variability and its associated uncertainty become negligible. Here, we quantify this critical timescale for the first time. Using an ocean model, we determine the importance of k, ΔpCO2and α on a range of timescales. On interannual and shorter timescales, both ΔpCO2and k are important controls on F. In contrast, pentadal to multidecadal North Atlantic flux variability is driven almost entirely by ΔpCO2; k contributes less than 25%. Finally, we explore how accurately one can estimate North Atlantic F without a knowledge of non-seasonal k variability, finding it possible for interannual and longer timescales. These findings suggest that continued efforts to better constrain gas transfer velocities are necessary to quantify interannual variability in the North Atlantic carbon sink. However, uncertainty in k variability is unlikely to limit the accuracy of estimates of longer term flux variability.

  7. On which timescales do gas transfer velocities control North Atlantic CO2 flux variability?

    NASA Astrophysics Data System (ADS)

    Couldrey, Matthew P.; Oliver, Kevin I. C.; Yool, Andrew; Halloran, Paul R.; Achterberg, Eric P.

    2016-05-01

    The North Atlantic is an important basin for the global ocean's uptake of anthropogenic and natural carbon dioxide (CO2), but the mechanisms controlling this carbon flux are not fully understood. The air-sea flux of CO2, F, is the product of a gas transfer velocity, k, the air-sea CO2 concentration gradient, ΔpCO2, and the temperature- and salinity-dependent solubility coefficient, α. k is difficult to constrain, representing the dominant uncertainty in F on short (instantaneous to interannual) timescales. Previous work shows that in the North Atlantic, ΔpCO2 and k both contribute significantly to interannual F variability but that k is unimportant for multidecadal variability. On some timescale between interannual and multidecadal, gas transfer velocity variability and its associated uncertainty become negligible. Here we quantify this critical timescale for the first time. Using an ocean model, we determine the importance of k, ΔpCO2, and α on a range of timescales. On interannual and shorter timescales, both ΔpCO2 and k are important controls on F. In contrast, pentadal to multidecadal North Atlantic flux variability is driven almost entirely by ΔpCO2; k contributes less than 25%. Finally, we explore how accurately one can estimate North Atlantic F without a knowledge of nonseasonal k variability, finding it possible for interannual and longer timescales. These findings suggest that continued efforts to better constrain gas transfer velocities are necessary to quantify interannual variability in the North Atlantic carbon sink. However, uncertainty in k variability is unlikely to limit the accuracy of estimates of longer-term flux variability.

  8. On which timescales do gas transfer velocities control North Atlantic CO2 flux variability?

    NASA Astrophysics Data System (ADS)

    Couldrey, M.; Oliver, K. I. C.; Yool, A.; Halloran, P. R.; Achterberg, E. P.

    2016-02-01

    The North Atlantic is an important basin for the global ocean's uptake of anthropogenic and natural carbon dioxide (CO2), but the mechanisms controlling this carbon flux are not fully understood. The air-sea flux of CO2, F, is the product of a gas transfer velocity, k, the air-sea CO2 concentration gradient, ΔpCO2, and the temperature and salinity-dependent solubility coefficient, α. k is difficult to constrain, representing the dominant uncertainty in F on short (instantaneous to interannual) timescales. Previous work shows that in the North Atlantic, ΔpCO2 and k both contribute significantly to interannual F variability, but that k is unimportant for multidecadal variability. On some timescale between interannual and multidecadal, gas transfer velocity variability and its associated uncertainty become negligible. Here, we quantify this critical timescale for the first time. Using an ocean model, we determine the importance of k, ΔpCO2 and α on a range of timescales. On interannual and shorter timescales, both ΔpCO2 and k are important controls on F. In contrast, pentadal to multidecadal North Atlantic flux variability is driven almost entirely by ΔpCO2; k contributes less than 25%. Finally, we explore how accurately one can estimate North Atlantic F without a knowledge of non-seasonal k variability, finding it possible for interannual and longer timescales. These findings suggest that continued efforts to better constrain gas transfer velocities are necessary to quantify interannual variability in the North Atlantic carbon sink. However, uncertainty in k variability is unlikely to limit the accuracy of estimates of longer term flux variability.

  9. An Anatomy of the 1960s Atlantic Cooling.

    NASA Astrophysics Data System (ADS)

    Hodson, Dan; Robson, Jon; Sutton, Rowan

    2014-05-01

    North Atlantic Sea Surface Temperatures (SSTs) exhibited pronounced multidecadal variability during the 20th Century. In particular, the North Atlantic SSTs exhibited a rapid warming between 1920 and 1940 followed by a rapid cooling between 1960 and 1980. SSTs outside the North Atlantic display a much smaller level of decadal variability over the 20th Century. This pattern of North Atlantic warming and cooling has been linked to subsequent changes in rainfall over the Sahel and Nordeste Brazil, Summertime North American Climate and Atlantic Hurricane Genesis. Several hypotheses for the rapid 1960s Atlantic cooling have been proposed, including a reduction in northward ocean heat transport due to a reduced Atlantic Meridional Overturning Circulation (AMOC) and the significant rise in anthropogenic sulphur dioxide emissions during the latter half of the 20th century. Here we examine the observed 1960s Atlantic cooling in more detail. We describe the evolution of the rapid cooling by constructing a detailed multivariate anatomy of the cooling period in order to illuminate the possible explanations and mechanisms involved. We show that the observed 1960s cooling began around 1964-68 in the Greenland-Iceland-Norway (GIN) seas, later spreading to the Atlantic Sub Polar Gyre and much of the subtropical Atlantic. This initial cooling of the Sub Polar Gyre is associated with a marked reduction in salinity (the Great Salinity Anomaly). The cooling peaked between 1972-76, extending into the Tropical North Atlantic. This period also saw the development of a significant Winter North-South Dipole Mean Sea Level Pressure dipole pattern reminiscent of a positive NAO (High over the Azores, Low over Iceland). The cooling then retreated back to higher latitudes during 1976:80. Our analysis demonstrates that the cooling of the North Atlantic during the 1960s cannot be understood as a simple thermodynamic response to aerosol induced reductions in shortwave radiation. Dynamical changes

  10. North Atlantic Deep Water Production during the Last Glacial Maximum

    PubMed Central

    Howe, Jacob N. W.; Piotrowski, Alexander M.; Noble, Taryn L.; Mulitza, Stefan; Chiessi, Cristiano M.; Bayon, Germain

    2016-01-01

    Changes in deep ocean ventilation are commonly invoked as the primary cause of lower glacial atmospheric CO2. The water mass structure of the glacial deep Atlantic Ocean and the mechanism by which it may have sequestered carbon remain elusive. Here we present neodymium isotope measurements from cores throughout the Atlantic that reveal glacial–interglacial changes in water mass distributions. These results demonstrate the sustained production of North Atlantic Deep Water under glacial conditions, indicating that southern-sourced waters were not as spatially extensive during the Last Glacial Maximum as previously believed. We demonstrate that the depleted glacial δ13C values in the deep Atlantic Ocean cannot be explained solely by water mass source changes. A greater amount of respired carbon, therefore, must have been stored in the abyssal Atlantic during the Last Glacial Maximum. We infer that this was achieved by a sluggish deep overturning cell, comprised of well-mixed northern- and southern-sourced waters. PMID:27256826

  11. North Atlantic warming and the retreat of Greenland's outlet glaciers.

    PubMed

    Straneo, Fiammetta; Heimbach, Patrick

    2013-12-05

    Mass loss from the Greenland ice sheet quadrupled over the past two decades, contributing a quarter of the observed global sea-level rise. Increased submarine melting is thought to have triggered the retreat of Greenland's outlet glaciers, which is partly responsible for the ice loss. However, the chain of events and physical processes remain elusive. Recent evidence suggests that an anomalous inflow of subtropical waters driven by atmospheric changes, multidecadal natural ocean variability and a long-term increase in the North Atlantic's upper ocean heat content since the 1950s all contributed to a warming of the subpolar North Atlantic. This led, in conjunction with increased runoff, to enhanced submarine glacier melting. Future climate projections raise the potential for continued increases in warming and ice-mass loss, with implications for sea level and climate.

  12. Aerosol optical depths over the Atlantic derived from shipboard sunphotometer observations during the 1988 Global Change Expedition

    NASA Astrophysics Data System (ADS)

    Reddy, Patrick J.; Kreiner, Fred W.; Deluisi, John J.; Kim, Young

    1990-09-01

    Aerosol optical depths and values for the Angstrom exponent, alpha, were retrieved from carefully calibrated sunphotometer measurements which were made during the Global Change Expedition (GCE) of the NOAA ship Mt. Mitchell in July, August, and September 1988. Sunphotometer observations were acquired at wavelengths of 380, 500, 675, and 778 nm. Optical depths and alphas have been segregated into five categories associated with probable air mass source regions determined through back trajectories at the 1000-, 850-, 700-, and 500-mbar levels. The results for the three most distinct air mass types are summarized here. The mean 500- nm aerosol optical depth for North American air is 0.56 (±0.32), the mean for Atlantic air is 0.16 (±0.02), and the mean for Saharan air is 0.39 (±0.12). Alpha for mean GCE aerosol optical depth data for predominantly North American air masses is 1.15 (± 0.11), alpha for Atlantic air is 1.00 (±0.40), and for Saharan air, alpha is 0.37 (±0.18). There is a significant difference between alpha for Saharan air and alpha for North American or Atlantic air. There is also a significant difference between the mean 500-nm optical depth for North American aerosols and Atlantic aerosols.

  13. Survey trends of North American shorebirds: Population declines or shifting distributions?

    USGS Publications Warehouse

    Bart, Jonathan; Brown, Stephen; Harrington, Brian A.; Morrison, R.I. Guy

    2007-01-01

    We analyzed data from two surveys of fall migrating shorebirds in central and eastern North America to estimate annual trends in means per survey and to determine whether trends indicate a change in population size or might have been caused by other factors. The analysis showed a broad decline in means per survey in Atlantic Canada and the northeastern United States (North Atlantic region). For example, 9 of 9 significant trends in this region were <1 (P=0.004), and the mean, annual rate of change among 30 species was 0.9783, a decline of −2.17% per year (P<0.001). Trends in the midwestern United States (Midwest region) showed no clear pattern. The mean among 29 species was 1.0090 (P=0.35). Only 4 of the trends were significant. Several hypotheses were evaluated to identify causes of the declining means per survey in the North Atlantic region. The most likely hypothesis appears to be a decline in the breeding populations that supply migrants to the North Atlantic region, but a change in movements, for example passing through the region more quickly in recent years, cannot be excluded as an explanation. Further surveys of arctic breeding areas coupled with analysis of long‐term survey data from western North America would be helpful in determining whether the declines found in this analysis are also occurring in other areas.

  14. Nonmethane Hydrocarbon Measurements on the North Atlantic Flight Corridor During SONEX

    NASA Technical Reports Server (NTRS)

    Simpson, I. J.; Sive, B. C.; Blake, D. R.; Blake, N. J.; Chen, T.-Y.; Lopez, J. P.; Sachse, G. W.; Vay, S. A.; Fuelberg, H. E.; Kondo, Y.

    1999-01-01

    Mixing ratios of nonmethane hydrocarbons (NMHCS) were not enhanced in whole air samples collected within the North Atlantic Flight Corridor (NAFC) during the fall of 1997. The investigation was conducted aboard NASA's DC-8 research aircraft, as part of the Subsonic Assessment-Ozone and Nitrogen Experiment (SONEX). NMHC enhancements were not detected within the general Organized Tracking System (OTS) of the NAFC, nor during two tail-chases of the DC-8's own exhaust. Because positive evidence of aircraft emissions was demonstrated by enhancements in both nitrogen oxides and condensation nuclei during SONEX, the NMHC results suggest that the commercial air traffic fleet operating in the North Atlantic region does not contribute significantly to NMHCs in the NAFC.

  15. Reevaluation of mid-Pliocene North Atlantic sea surface temperatures

    USGS Publications Warehouse

    Robinson, Marci M.; Dowsett, Harry J.; Dwyer, Gary S.; Lawrence, Kira T.

    2008-01-01

    Multiproxy temperature estimation requires careful attention to biological, chemical, physical, temporal, and calibration differences of each proxy and paleothermometry method. We evaluated mid-Pliocene sea surface temperature (SST) estimates from multiple proxies at Deep Sea Drilling Project Holes 552A, 609B, 607, and 606, transecting the North Atlantic Drift. SST estimates derived from faunal assemblages, foraminifer Mg/Ca, and alkenone unsaturation indices showed strong agreement at Holes 552A, 607, and 606 once differences in calibration, depth, and seasonality were addressed. Abundant extinct species and/or an unrecognized productivity signal in the faunal assemblage at Hole 609B resulted in exaggerated faunal-based SST estimates but did not affect alkenone-derived or Mg/Ca–derived estimates. Multiproxy mid-Pliocene North Atlantic SST estimates corroborate previous studies documenting high-latitude mid-Pliocene warmth and refine previous faunal-based estimates affected by environmental factors other than temperature. Multiproxy investigations will aid SST estimation in high-latitude areas sensitive to climate change and currently underrepresented in SST reconstructions.

  16. Climate change impact on seaweed meadow distribution in the North Atlantic rocky intertidal

    PubMed Central

    Jueterbock, Alexander; Tyberghein, Lennert; Verbruggen, Heroen; Coyer, James A; Olsen, Jeanine L; Hoarau, Galice

    2013-01-01

    The North-Atlantic has warmed faster than all other ocean basins and climate change scenarios predict sea surface temperature isotherms to shift up to 600 km northwards by the end of the 21st century. The pole-ward shift has already begun for many temperate seaweed species that are important intertidal foundation species. We asked the question: Where will climate change have the greatest impact on three foundational, macroalgal species that occur along North-Atlantic shores: Fucus serratus, Fucus vesiculosus, and Ascophyllum nodosum? To predict distributional changes of these key species under three IPCC (Intergovernmental Panel on Climate Change) climate change scenarios (A2, A1B, and B1) over the coming two centuries, we generated Ecological Niche Models with the program MAXENT. Model predictions suggest that these three species will shift northwards as an assemblage or “unit” and that phytogeographic changes will be most pronounced in the southern Arctic and the southern temperate provinces. Our models predict that Arctic shores in Canada, Greenland, and Spitsbergen will become suitable for all three species by 2100. Shores south of 45° North will become unsuitable for at least two of the three focal species on both the Northwest- and Northeast-Atlantic coasts by 2200. If these foundational species are unable to adapt to the rising temperatures, they will lose their centers of genetic diversity and their loss will trigger an unpredictable shift in the North-Atlantic intertidal ecosystem. PMID:23762521

  17. Mechanisms and detectability of oxygen depletion in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Tjiputra, J. F.; Goris, N.; Lauvset, S. K.; Schwinger, J.

    2016-12-01

    Dissolved oxygen is a key tracer in models used to represent the tight interaction between ocean biogeochemical cycle and circulation. Future ocean warming and stratification are projected, leading to a reduced oxygen concentration. Reduction in export production, in contrast, is projected to increase subsurface concentration by lowering the oxygen consumption during organic matter remineralization. In this exercise, we use a suite of CMIP5 models to study the oxygen evolution under the RCP8.5 scenario focusing on the North Atlantic, a region of rapid and steady circulation change. Most models agree with a large reduction in the deep North Atlantic (north of 40N), whereas an increase is projected in the upper subtropical ocean region. We attribute the former to weakening of the net primary production due to stronger stratification and the latter to less air-sea oxygen flux owing to less ventilation. The models also show that interior oxygen could provide earlier indicator of climate change than surface tracers. Sustained observation of oxygen is therefore crucial to reaffirm the ongoing circulation change due to global warming.

  18. Atlantic salmon, Salmo salar L. are broadly susceptible to isolates representing the North American genogroups of infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Kurath, Gael; Winton, James R.; Dale, Ole B.; Purcell, Maureen K.; Falk, Knut; Busch, Robert D.

    2016-01-01

    Beginning in 1992, three epidemic waves of infectious hematopoietic necrosis, often with high mortality, occurred in farmed Atlantic salmon Salmo salar L. on the west coast of North America. We compared the virulence of eleven strains of infectious hematopoietic necrosis virus (IHNV), representing the U, M and L genogroups, in experimental challenges of juvenile Atlantic salmon in freshwater. All strains caused mortality and there was wide variation within genogroups: cumulative mortality for five U-group strains ranged from 20 to 100%, four M-group strains ranged 30-63% and two L-group strains varied from 41 to 81%. Thus, unlike Pacific salmonids, there was no apparent correlation of virulence in a particular host species with virus genogroup. The mortality patterns indicated two different phenotypes in terms of kinetics of disease progression and final per cent mortality, with nine strains having moderate virulence and two strains (from the U and L genogroups) having high virulence. These phenotypes were investigated by histopathology and immunohistochemistry to describe the variation in the course of IHNV disease in Atlantic salmon. The results from this study demonstrate that IHNV may become a major threat to farmed Atlantic salmon in other regions of the world where the virus has been, or may be, introduced.

  19. Water mass analysis for the U.S. GEOTRACES (GA03) North Atlantic sections

    NASA Astrophysics Data System (ADS)

    Jenkins, W. J.; Smethie, W. M.; Boyle, E. A.; Cutter, G. A.

    2015-06-01

    We present the distributions of hydrographic properties (potential temperature, salinity, dissolved oxygen, and micromolar level inorganic macronutrients) along two sections occupied in the subtropical North Atlantic as part of the first U.S. GEOTRACES (GA03) survey during 2010 and 2011. The purpose of this work is to place subsequent papers in this special issue in a general context and to provide a framework in which the observed distributions of Trace Elements and Isotopes can be interpreted. Using these hydrographic properties we use a modified Optimum Multiparameter water mass analysis method to diagnose the relative contributions of various water types along the sections and rationalize their distributions. The water mass compositions appear largely consistent with what is understood from previous studies about the large scale circulation and ventilation of the North Atlantic, with perhaps one exception. We found that the North Atlantic Deep water both east and west of the Mid Atlantic Ridge is more strongly influenced by Iceland Scotland Overflow Water relative to Denmark Straits Overflow Water (about 3:1) than inferred from other tracer studies (typically 2:1). It remains unclear whether this is an artifact of our calculation or a real change in deep water composition in the decades between the determinations.

  20. North Atlantic Surface Winds Examined as the Source of Warm Advection into Europe in Winter

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Angell, J. K.; Ardizzone, J.; Atlas, Robert; Schubert, S.; Starr, D.; Wu, M.-L.

    2002-01-01

    When from the southwest, North Atlantic ocean surface winds are known to bring warm and moist airmasses into central Europe in winter. By tracing backward trajectories from western Europe, we establish that these airmasses originate in the southwestern North Atlantic, in the very warm regions of the Gulf Stream. Over the eastern North Atlantic, Lt the gateway to Europe, the ocean-surface winds changed directions in the second half of the XXth century, those from the northwest and from the southeast becoming so infrequent, that the direction from the southwest became even more dominant. For the January-to-March period, the strength of south-westerlies in this region, as well as in the source region, shows in the years 1948-1995 a significant increase, above 0.2 m/sec/ decade. Based on the sensitivity of the surface temperature in Europe, slightly more than 1 C for a 1m/sec increase in the southwesterly wind, found in the previous studies, the trend in the warm advection accounts for a large part of the warming in Europe established for this period in several reports. However, for the most recent years, 1996-2001, the positive trend in the southwesterly advection appears to be is broken, which is consistent with unseasonally cold events reported in Europe in those winters. This study had, some bearing on evaluating the respective roles of the North Atlantic Oscillation and the Greenhouse Gas Global warming, GGG, in the strong winter warming observed for about half a century over the northern-latitude continents. Changes in the ocean-surface temperatures induced by GGG may have produced the dominant southwesterly direction of the North Atlantic winds. However, this implies a monotonically (apart from inherent interannual variability) increasing advection, and if the break in the trend which we observe after 1995 persists, this mechanism is counter-indicated. The 1948-1995 trend in the south-westerlies could then be considered to a large degree attributable to the

  1. Causes and Consequences of Exceptional North Atlantic Heat Loss in Recent Winters

    NASA Astrophysics Data System (ADS)

    Josey, Simon; Grist, Jeremy; Duchez, Aurelie; Frajka-Williams, Eleanor; Hirschi, Joel; Marsh, Robert; Sinha, Bablu

    2016-04-01

    The mid-high latitude North Atlantic loses large amounts of heat to the atmosphere in winter leading to dense water formation. An examination of reanalysis datasets (ERA-Interim, NCEP/NCAR) reveals that heat loss in the recent winters 2013-14 and 2014-15 was exceptionally strong. The causes and consequences of this extraordinary ocean heat loss will be discussed. In 2013-2014, the net air-sea heat flux anomaly averaged over the whole winter exceeded 100 Wm-2 in the eastern subpolar gyre (the most extreme in the period since 1979 spanned by ERA-Interim). The causes of this extreme heat loss will be shown to be severe latent and sensible heat fluxes driven primarily by anomalously strong westerly airflows from North America and northerly airflows originating in the Nordic Seas. The associated sea level pressure anomaly field reflects the dominance of the second mode of atmospheric variability, the East Atlantic Pattern (EAP) over the North Atlantic Oscillation (NAO) in this winter. The extreme winter heat loss had a significant impact on the ocean extending from the sea surface into the deeper layers and a re-emergent cold Sea Surface Temperature (SST) anomaly is evident in November 2014. The following winter 2014-15 experienced further extreme heat loss that served to amplify the strength of the re-emergent SST anomaly. By summer 2015, an unprecedented cold mid-latitude North Atlantic Ocean surface temperature anomaly is evident in observations and has been widely referred to as the 'big blue blob'. The role played by the extreme surface heat loss in the preceding winters in generating this feature and it subsequent evolution through winter 2015-16 will be explored.

  2. Deglacial variability of Antarctic Intermediate Water penetration into the North Atlantic from authigenic neodymium isotope ratios

    NASA Astrophysics Data System (ADS)

    Xie, Ruifang C.; Marcantonio, Franco; Schmidt, Matthew W.

    2012-09-01

    Understanding intermediate water circulation across the last deglacial is critical in assessing the role of oceanic heat transport associated with Atlantic Meridional Overturning Circulation variability across abrupt climate events. However, the links between intermediate water circulation and abrupt climate events such as the Younger Dryas (YD) and Heinrich Event 1 (H1) are still poorly constrained. Here, we reconstruct changes in Antarctic Intermediate Water (AAIW) circulation in the subtropical North Atlantic over the past 25 kyr by measuring authigenic neodymium isotope ratios in sediments from two sites in the Florida Straits. Our authigenic Nd isotope records suggest that there was little to no penetration of AAIW into the subtropical North Atlantic during the YD and H1. Variations in the northward penetration of AAIW into the Florida Straits documented in our authigenic Nd isotope record are synchronous with multiple climatic archives, including the Greenland ice core δ18O record, the Cariaco Basin atmosphere Δ14C reconstruction, the Bermuda Rise sedimentary Pa/Th record, and nutrient and stable isotope data from the tropical North Atlantic. The synchroneity of our Nd records with multiple climatic archives suggests a tight connection between AAIW variability and high-latitude North Atlantic climate change.

  3. Climate, fishery and society interactions: Observations from the North Atlantic

    NASA Astrophysics Data System (ADS)

    Hamilton, Lawrence C.

    2007-11-01

    Interdisciplinary studies comparing fisheries-dependent regions across the North Atlantic find a number of broad patterns. Large ecological shifts, disastrous to historical fisheries, have resulted when unfavorable climatic events occur atop overfishing. The "teleconnections" linking fisheries crises across long distances include human technology and markets, as well as climate or migratory fish species. Overfishing and climate-driven changes have led to a shift downwards in trophic levels of fisheries takes in some ecosystems, from dominance by bony fish to crustaceans. Fishing societies adapt to new ecological conditions through social reorganization that have benefited some people and places, while leaving others behind. Characteristic patterns of demographic change are among the symptoms of such reorganization. These general observations emerge from a review of recent case studies of individual fishing communities, such as those conducted for the North Atlantic Arc research project.

  4. Provenance of ice rafted debris in the North Atlantic: biomarker approach

    NASA Astrophysics Data System (ADS)

    Kornilova, O.; Russell, M.; Rosell-Melé, A.

    2003-04-01

    During the last glacial period, there have been several episodes of quasi-periodic iceberg discharge from the ice sheets into the North Atlantic (Heinrich Events) (Heinrich, 1988). These episodes are recorded in Quaternary sediments as layers of ice rafted debris (IRD), whose properties differ from those of adjacent ambient sediments. Heinrich Events (HEs) are associated with changes in global climate. To determine the cause of HEs, work on provenance of IRD was undertaken. Previous studies included analysis of bulk properties of lithic &organic matter of IRD in Heinrich Layers (HLs) and an attempt to correlate them with possible continental sources (e.g. Grousset et al., 2001). We used biomarker approach to characterise the provenance of IRD in the North Atlantic, similar to oil-source rock correlation well established in petroleum industry. In this work, biomarker composition of Heinrich Layers from several North Atlantic cores was compared with that of possible source areas. As a proxy for source of IRD, we analysed glaciogenic debris flows from trough mouth fans (TMF) that formed as a result of iceberg discharge (Vorren &Laberg, 1997). Those include samples from the Nordic Seas, Labrador Sea, Baffin Bay and combined Arctic sources. Different classes of organic compounds (e.g. photosynthetic pigments and hydrocarbons) were characterised using UV-Vis, LC-MS and GC, GC-MS respectively. Variability within each class, relative abundances of different components and isotopic signatures were considered. Biomarker signatures of debris flows were compared with those of IRD in Heinrich Layers (HLs) from four North Atlantic cores containing HLs 1-6 (MD95-2024, ODP-609, BOSF-5K and SU90-09). Variability between different cores and between different HLs was considered as well as variability within each HL (1-5) for SU90-09. Cluster analysis was performed to correlate sources of IRD (TMFs) and sinks (HLs). Grousset et al. 2001. Zooming in on Heinrich layers. Paleoceanography

  5. Tropical North Atlantic ocean-atmosphere interactions synchronize forest carbon losses from hurricanes and Amazon fires

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Randerson, James T.; Morton, Douglas C.

    2015-08-01

    We describe a climate mode synchronizing forest carbon losses from North and South America by analyzing time series of tropical North Atlantic sea surface temperatures (SSTs), landfall hurricanes and tropical storms, and Amazon fires during 1995-2013. Years with anomalously high tropical North Atlantic SSTs during March-June were often followed by a more active hurricane season and a larger number of satellite-detected fires in the southern Amazon during June-November. The relationship between North Atlantic tropical cyclones and southern Amazon fires (r = 0.61, p < 0.003) was stronger than links between SSTs and either cyclones or fires alone, suggesting that fires and tropical cyclones were directly coupled to the same underlying atmospheric dynamics governing tropical moisture redistribution. These relationships help explain why seasonal outlook forecasts for hurricanes and Amazon fires both failed in 2013 and may enable the design of improved early warning systems for drought and fire in Amazon forests.

  6. Key areas for wintering North American herons

    USGS Publications Warehouse

    Mikuska, T.; Kushlan, J.A.; Hartley, S.

    1998-01-01

    Nearly all North American heron populations are migratory, but details of where they winter are little known. Locations where North American herons winter were identified using banding recovery data. North American herons winter from Canada through northern South America but especially in eastern North America south of New York, Florida, California, Louisiana, Texas, Mexico and Cuba, these areas accounting for 63% of winter recoveries. We identified regions where recoveries for various species clustered as "key areas." These forty-three areas constitute a network of areas that hold sites that likely are important to wintering North American herons. Within each area, we identify specific sites that are potentially important to wintering herons. The relative importance of each area and site within the network must be evaluated by further on the ground inventory. Because of biases inherent in the available data, these hypothesized key areas are indicative rather than exhaustive. As a first cut, this network of areas can serve to inform further inventory activities and can provide an initial basis to begin planning for the year-round conservation of North American heron populations.

  7. Mariner's guide for hurricane awareness in the North Atlantic basin.

    DOT National Transportation Integrated Search

    2000-08-01

    This guide will hopefully aid the Mariner in understanding the complex structure and behavior of : tropical cyclones in the North Atlantic Ocean. Once armed with this knowledge, and the information : on where to acquire forecasts and guidance for cur...

  8. Rare earth element transport in the western North Atlantic inferred from Nd isotopic observations

    NASA Technical Reports Server (NTRS)

    Piepgras, D. J.; Wasserburg, G. J.

    1987-01-01

    The relationship between the Nd isotopic composition in the Atlantic waters and the origin and circulation of the water masses was investigated. Samples were collected in the western North Atlantic between 7 and 54 deg N. The isotopic composition (Nd-143/Nd-144 ratios) showed extensive vertical structure at all locations. In regions where a thermocline was well-developed, large isotopic shifts were observed across the base of the thermocline, while regions without a thermocline were characterized by much more gradual shifts in isotopic composition with depth. The data reveal an excellent correlation between the Nd isotopic distribution in the western North Atlantic water column and the distribution of water masses identified from temperature and salinity measurements.

  9. A spatially explicit estimate of the prewhaling abundance of the endangered North Atlantic right whale.

    PubMed

    Monsarrat, Sophie; Pennino, M Grazia; Smith, Tim D; Reeves, Randall R; Meynard, Christine N; Kaplan, David M; Rodrigues, Ana S L

    2016-08-01

    The North Atlantic right whale (NARW) (Eubalaena glacialis) is one of the world's most threatened whales. It came close to extinction after nearly a millennium of exploitation and currently persists as a population of only approximately 500 individuals. Setting appropriate conservation targets for this species requires an understanding of its historical population size, as a baseline for measuring levels of depletion and progress toward recovery. This is made difficult by the scarcity of records over this species' long whaling history. We sought to estimate the preexploitation population size of the North Atlantic right whale and understand how this species was distributed across its range. We used a spatially explicit data set on historical catches of North Pacific right whales (NPRWs) (Eubalaena japonica) to model the relationship between right whale relative density and the environment during the summer feeding season. Assuming the 2 right whale species select similar environments, we projected this model to the North Atlantic to predict how the relative abundance of NARWs varied across their range. We calibrated these relative abundances with estimates of the NPRW total prewhaling population size to obtain high and low estimates for the overall NARW population size prior to exploitation. The model predicted 9,075-21,328 right whales in the North Atlantic. The current NARW population is thus <6% of the historical North Atlantic carrying capacity and has enormous potential for recovery. According to the model, in June-September NARWs concentrated in 2 main feeding areas: east of the Grand Banks of Newfoundland and in the Norwegian Sea. These 2 areas may become important in the future as feeding grounds and may already be used more regularly by this endangered species than is thought. © 2015 Society for Conservation Biology.

  10. Detrital sources and water mass circulation in the tropical North Atlantic during the Late Cretaceous to Paleogene

    NASA Astrophysics Data System (ADS)

    Martin, E. E.; Pugh, E.; Kamenov, G. D.; MacLeod, K. G.

    2014-12-01

    Seawater Nd isotopes from fossil fish teeth in Campanian to Paleogene calcareous claystone on Demerara Rise in the tropical North Atlantic record a change from epsilon Nd values of -17 to -11 during the late Maastrichtian. This shift has been identified in three different Ocean Drilling Program (ODP) sites that span from 600 to 1500 m paleodepths (ODP sites 1259, 1260 and 1261) and has been interpreted as a transition from a warm saline intermediate water mass formed on the South American margin, referred to as Demerara Bottom Water, to a source from the North Atlantic. A study of corresponding detrital Sr, Nd and Pb isotopes was undertaken to confirm the isotopic values derived from fish teeth record water mass compositions rather than diagenesis or boundary exchange. Several leaching procedures designed to remove Fe-Mn oxide coatings and the seawater signature they carry from the detrital fractions were tested. Sr isotopic data indicate a 0.02 M hydroxylamine hydrochloride (HH) leach was ineffective at removing the Fe-Mn oxides whereas a 1.0 M HH leach produced detrital Sr isotopic values that were consistent for all three sites and plotted farther from the seawater value. Detrital isotopic results can be divided into three intervals: 1) 73 - 66 Ma, when DBW is present, 2) 66 - 61 Ma, during the transition to North Atlantic sources, and 3) <61 Ma, when North Atlantic sources appear to dominate. During interval 1, detrital Nd isotopes increase gradually, while Sr and Pb isotopic ratios are relatively constant. Leading into interval 2, detrital Nd isotopes are fairly constant while there is a stepwise increase in Sr and Pb isotopes. Leading into interval 3, there is a large increase in Nd and decrease in Sr isotopes and a slight decrease in Pb isotopes. The subtle differences in the timing of changes in fish teeth and detrital Nd isotopes suggest the seawater signal is responding to changes in water mass rather than changes in sediment composition (boundary

  11. The East Atlantic - West Russia Teleconnection in the North Atlantic: Climate Impact and Relation to Rossby Wave Propagation

    NASA Technical Reports Server (NTRS)

    Lim, Young-Kwon

    2014-01-01

    Large-scale winter teleconnection of the East Atlantic - West Russia (EA-WR) over the Atlantic and surrounding regions is examined in order to quantify its impacts on temperature and precipitation and identify the physical mechanisms responsible for its existence. A rotated empirical orthogonal function (REOF) analysis of the upper-tropospheric monthly height field captures successfully the EA-WR pattern and its interannual variation, with the North Atlantic Oscillation as the first mode. EA-WRs climate impact extends from eastern North America to Eurasia. The positive (negative) EA-WR produces positive (negative) temperature anomalies over the eastern US, western Europe and Russia east of Caspian Sea, with negative (positive) anomalies over eastern Canada, eastern Europe including Ural Mountains and the Middle East. These anomalies are largely explained by lower-tropospheric temperature advections. Positive (negative) precipitation anomalies are found over the mid-latitude Atlantic and central Russia around 60E, where lower-level cyclonic (anticyclonic) circulation anomaly is dominant. The eastern Canada and the western Europe are characterized by negative (positive) precipitation anomalies.The EA-WR is found to be closely associated with Rossby wave propagation. Wave activity fluxes show that it is strongly tied to large-scale stationary waves. Furthermore, a stationary wave model (SWM) forced with vorticity transients in the mid-latitude Atlantic (approximately 40N) or diabatic heat source over the subtropical Atlantic near the Caribbean Sea produces well-organized EA-WR-like wave patterns, respectively. Sensitivity tests with the SWM indicate improvement in the simulation of the EA-WR when the mean state is modified to have a positive NAO component that enhances upper-level westerlies between 40-60N.

  12. The intertropical convergence zone modulates intense hurricane strikes on the western North Atlantic margin

    NASA Astrophysics Data System (ADS)

    van Hengstum, Peter J.; Donnelly, Jeffrey P.; Fall, Patricia L.; Toomey, Michael R.; Albury, Nancy A.; Kakuk, Brian

    2016-02-01

    Most Atlantic hurricanes form in the Main Development Region between 9°N to 20°N along the northern edge of the Intertropical Convergence Zone (ITCZ). Previous research has suggested that meridional shifts in the ITCZ position on geologic timescales can modulate hurricane activity, but continuous and long-term storm records are needed from multiple sites to assess this hypothesis. Here we present a 3000 year record of intense hurricane strikes in the northern Bahamas (Abaco Island) based on overwash deposits in a coastal sinkhole, which indicates that the ITCZ has likely helped modulate intense hurricane strikes on the western North Atlantic margin on millennial to centennial-scales. The new reconstruction closely matches a previous reconstruction from Puerto Rico, and documents a period of elevated intense hurricane activity on the western North Atlantic margin from 2500 to 1000 years ago when paleo precipitation proxies suggest that the ITCZ occupied a more northern position. Considering that anthropogenic warming is predicted to be focused in the northern hemisphere in the coming century, these results provide a prehistoric analog that an attendant northern ITCZ shift in the future may again return the western North Atlantic margin to an active hurricane interval.

  13. The intertropical convergence zone modulates intense hurricane strikes on the western North Atlantic margin.

    PubMed

    van Hengstum, Peter J; Donnelly, Jeffrey P; Fall, Patricia L; Toomey, Michael R; Albury, Nancy A; Kakuk, Brian

    2016-02-24

    Most Atlantic hurricanes form in the Main Development Region between 9°N to 20°N along the northern edge of the Intertropical Convergence Zone (ITCZ). Previous research has suggested that meridional shifts in the ITCZ position on geologic timescales can modulate hurricane activity, but continuous and long-term storm records are needed from multiple sites to assess this hypothesis. Here we present a 3000 year record of intense hurricane strikes in the northern Bahamas (Abaco Island) based on overwash deposits in a coastal sinkhole, which indicates that the ITCZ has likely helped modulate intense hurricane strikes on the western North Atlantic margin on millennial to centennial-scales. The new reconstruction closely matches a previous reconstruction from Puerto Rico, and documents a period of elevated intense hurricane activity on the western North Atlantic margin from 2500 to 1000 years ago when paleo precipitation proxies suggest that the ITCZ occupied a more northern position. Considering that anthropogenic warming is predicted to be focused in the northern hemisphere in the coming century, these results provide a prehistoric analog that an attendant northern ITCZ shift in the future may again return the western North Atlantic margin to an active hurricane interval.

  14. The intertropical convergence zone modulates intense hurricane strikes on the western North Atlantic margin

    USGS Publications Warehouse

    van Hengstrum, Peter J.; Donnelly, Jeffrey P.; Fall, Patricia L.; Toomey, Michael; Albury, Nancy A.; Kakuk, Brian

    2016-01-01

    Most Atlantic hurricanes form in the Main Development Region between 9°N to 20°N along the northern edge of the Intertropical Convergence Zone (ITCZ). Previous research has suggested that meridional shifts in the ITCZ position on geologic timescales can modulate hurricane activity, but continuous and long-term storm records are needed from multiple sites to assess this hypothesis. Here we present a 3000 year record of intense hurricane strikes in the northern Bahamas (Abaco Island) based on overwash deposits in a coastal sinkhole, which indicates that the ITCZ has likely helped modulate intense hurricane strikes on the western North Atlantic margin on millennial to centennial-scales. The new reconstruction closely matches a previous reconstruction from Puerto Rico, and documents a period of elevated intense hurricane activity on the western North Atlantic margin from 2500 to 1000 years ago when paleo precipitation proxies suggest that the ITCZ occupied a more northern position. Considering that anthropogenic warming is predicted to be focused in the northern hemisphere in the coming century, these results provide a prehistoric analog that an attendant northern ITCZ shift in the future may again return the western North Atlantic margin to an active hurricane interval.

  15. Insights into crustal structure of the Eastern North American Margin from community multichannel seismic and potential field data

    NASA Astrophysics Data System (ADS)

    Davis, J. K.; Becel, A.; Shillington, D. J.; Buck, W. R.

    2017-12-01

    In the fall of 2014, the R/V Marcus Langseth collected gravity, magnetic, and reflection seismic data as part of the Eastern North American Margin Community Seismic Experiment. The dataset covers a 500 km wide section of the Mid-Atlantic passive margin offshore North Carolina, which formed after the Mesozoic breakup of the supercontinent Pangaea. Using these seismic and potential field data, we present observations and interpretations along two cross margin and one along-margin profiles. Analyses and interpretations are conducted using pre-stack depth migrated reflection seismic profiles in conjunction with forward modeling of shipboard gravity and magnetic anomalies. Preliminary interpretations of the data reveal variations in basement character and structure across the entire transition between continental and oceanic domains. These interpretations help provide insight into the origin and nature of the prominent East Coast and Blake Spur magnetic anomalies, as well as the Inner Magnetic Quiet Zone which occupies the domain between the anomalies. Collectively, these observations can aid in deciphering the rift-to-drift transition during the breakup of North America and West Africa and formation of the Central Atlantic.

  16. Model Sensitivity to North Atlantic Freshwater Forcing at 8.2 Ka

    NASA Technical Reports Server (NTRS)

    Morrill, Carrie; Legrande, Allegra Nicole; Renssen, H.; Bakker, P.; Otto-Bliesner, B. L.

    2013-01-01

    We compared four simulations of the 8.2 ka event to assess climate model sensitivity and skill in responding to North Atlantic freshwater perturbations. All of the simulations used the same freshwater forcing, 2.5 Sv for one year, applied to either the Hudson Bay (northeastern Canada) or Labrador Sea (between Canada's Labrador coast and Greenland). This freshwater pulse induced a decadal-mean slowdown of 10-25%in the Atlantic Meridional Overturning Circulation (AMOC) of the models and caused a large-scale pattern of climate anomalies that matched proxy evidence for cooling in the Northern Hemisphere and a southward shift of the Intertropical Convergence Zone. The multi-model ensemble generated temperature anomalies that were just half as large as those from quantitative proxy reconstructions, however. Also, the duration of AMOC and climate anomalies in three of the simulations was only several decades, significantly shorter than the duration of approx.150 yr in the paleoclimate record. Possible reasons for these discrepancies include incorrect representation of the early Holocene climate and ocean state in the North Atlantic and uncertainties in the freshwater forcing estimates.

  17. Introgressive hybridization and latitudinal admixture clines in North Atlantic eels

    PubMed Central

    2014-01-01

    Background Hybridization, the interbreeding of diagnosably divergent species, is a major focus in evolutionary studies. Eels, both from North America and Europe migrate through the Atlantic to mate in a vast, overlapping area in the Sargasso Sea. Due to the lack of direct observation, it is unknown how these species remain reproductively isolated. The detection of inter-species hybrids in Iceland suggests on-going gene flow, but few studies to date have addressed the influence of introgression on genetic differentiation in North Atlantic eels. Results Here, we show that while mitochondrial lineages remain completely distinct on both sides of the Atlantic, limited hybridization is detectable with nuclear DNA markers. The nuclear hybridization signal peaks in the northern areas and decreases towards the southern range limits on both continents according to Bayesian assignment analyses. By simulating increasing proportions of both F1 hybrids and admixed individuals from the southern to the northern-most locations, we were able to generate highly significant isolation-by-distance patterns in both cases, reminiscent of previously published data for the European eel. Finally, fitting an isolation-with-migration model to our data supports the hypothesis of recent asymmetric introgression and refutes the alternative hypothesis of ancient polymorphism. Conclusions Fluctuating degrees of introgressive hybridization between Atlantic eel species are sufficient to explain temporally varying correlations of geographic and genetic distances reported for populations of the European eel. PMID:24674242

  18. Interdecadal Trichodesmium variability in cold North Atlantic waters

    NASA Astrophysics Data System (ADS)

    Rivero-Calle, Sara; Del Castillo, Carlos E.; Gnanadesikan, Anand; Dezfuli, Amin; Zaitchik, Benjamin; Johns, David G.

    2016-11-01

    Studies of the nitrogen cycle in the ocean generally assume that the distribution of the marine diazotroph, Trichodesmium, is restricted to warm, tropical, and subtropical oligotrophic waters. Here we show evidence that Trichodesmium are widely distributed in the North Atlantic. We report an approximately fivefold increase during the 1980s and 1990s in Trichodesmium presence near the British Isles with respect to the average over the last 50 years. A potential explanation is an increase in the Saharan dust source starting in the 1980s, coupled with changes in North Atlantic winds that opened a pathway for dust transport. Results from a coarse-resolution model in which winds vary but iron deposition is climatologically fixed suggest frequent nitrogen limitation in the region and reversals of the Portugal current, but it does not simulate the observed changes in Trichodesmium. Our results suggest that Trichodesmium may be capable of growth at temperatures below 20°C and challenge assumptions about their latitudinal distribution. Therefore, we need to reevaluate assumptions about the temperature limitations of Trichodesmium and the dinitrogen (N2) fixation capabilities of extratropical strains, which may have important implications for the global nitrogen budget.

  19. Interdecadal Trichodesmium Variability in Cold North Atlantic Waters

    NASA Technical Reports Server (NTRS)

    Rivero-Calle, Sara; Del Castillo, Carlos E.; Dezfuli, Amin; Gnanadesikan, Anand; Zaitchik, Benjamin; Johns, David G.

    2016-01-01

    Studies of the nitrogen cycle in the ocean generally assume that the distribution of the marine diazotroph, Trichodesmium, is restricted to warm, tropical, and subtropical oligotrophic waters. Here we show evidence that Trichodesmium are widely distributed in the North Atlantic. We report an approximately vefold increase during the 1980s and 1990s in Trichodesmium presence near the British Isles with respect to the average over the last 50 years. A potential explanation is an increase in the Saharan dust source starting in the 1980s, coupled with changes in North Atlantic winds that opened a pathway for dust transport. Results from a coarse-resolution model in which winds vary but iron deposition is climatologically fixed suggest frequent nitrogen limitation in the region and reversals of the Portugal current, but it does not simulate the observed changes in Trichodesmium. Our results suggest that Trichodesmium may be capable of growth at temperatures below 20C and challenge assumptions about their latitudinal distribution. Therefore, we need to reevaluate assumptions about the temperature limitations of Trichodesmium and the dinitrogen (N2) xation capabilities of extratropical strains, which may have important implications for the global nitrogen budget.

  20. North Atlantic Storm Activity During the Younger Dryas

    NASA Astrophysics Data System (ADS)

    Toomey, M.

    2015-12-01

    The risks posed to cities along the Eastern Seaboard by a potential intensification of tropical cyclone activity over the coming decades remain poorly constrained, in part, due to a lack of available storm proxy records that extend beyond the relatively stable climates of the late Holocene. Previous work in the Bahamas shows that coarse-grained, high-energy event layers in carbonate bank margin sediments: (1) closely track recent historic hurricane events and (2) that the sensitivity of this proxy may be less affected by the deglacial changes in sea level that have limited our ability to reconstruct past hurricane activity using overwash records from back-barrier beach settings. Here we present a record of storm triggered turbidite deposition from a suite of well dated (e.g. Lynch-Stieglitz et al., 2011, Paleoceanography) jumbo piston cores taken offbank (300-500 mbsl) the Dry Tortugas, Florida, that spans abrupt transitions in North Atlantic sea surface temperature and thermohaline circulation during the Younger Dryas (12.9 - 11.5 kyr BP). This record, along with General Circulation Model output (TraCE: NCAR-CGD), indicates strong hurricane activity may have occurred along Southeastern US coasts through this interval despite considerably colder North Atlantic SSTs.

  1. Piscine Orthoreovirus from Western North America Is Transmissible to Atlantic Salmon and Sockeye Salmon but Fails to Cause Heart and Skeletal Muscle Inflammation.

    PubMed

    Garver, Kyle A; Johnson, Stewart C; Polinski, Mark P; Bradshaw, Julia C; Marty, Gary D; Snyman, Heindrich N; Morrison, Diane B; Richard, Jon

    2016-01-01

    Heart and skeletal muscle inflammation (HSMI) is a significant and often fatal disease of cultured Atlantic salmon in Norway. The consistent presence of Piscine orthoreovirus (PRV) in HSMI diseased fish along with the correlation of viral load and antigen with development of lesions has supported the supposition that PRV is the etiologic agent of this condition; yet the absence of an in vitro culture system to demonstrate disease causation and the widespread prevalence of this virus in the absence of disease continues to obfuscate the etiological role of PRV with regard to HSMI. In this study, we explore the infectivity and disease causing potential of PRV from western North America-a region now considered endemic for PRV but without manifestation of HSMI-in challenge experiments modeled upon previous reports associating PRV with HSMI. We identified that western North American PRV is highly infective by intraperitoneal injection in Atlantic salmon as well as through cohabitation of both Atlantic and Sockeye salmon. High prevalence of viral RNA in peripheral blood of infected fish persisted for as long as 59 weeks post-challenge. Nevertheless, no microscopic lesions, disease, or mortality could be attributed to the presence of PRV, and only a minor transcriptional induction of the antiviral Mx gene occurred in blood and kidney samples during log-linear replication of viral RNA. Comparative analysis of the S1 segment of PRV identified high similarity between this North American sequence and previous sequences associated with HSMI, suggesting that factors such as viral co-infection, alternate PRV strains, host condition, or specific environmental circumstances may be required to cause this disease.

  2. Piscine Orthoreovirus from Western North America Is Transmissible to Atlantic Salmon and Sockeye Salmon but Fails to Cause Heart and Skeletal Muscle Inflammation

    PubMed Central

    Polinski, Mark P.; Bradshaw, Julia C.; Marty, Gary D.; Snyman, Heindrich N.; Morrison, Diane B.; Richard, Jon

    2016-01-01

    Heart and skeletal muscle inflammation (HSMI) is a significant and often fatal disease of cultured Atlantic salmon in Norway. The consistent presence of Piscine orthoreovirus (PRV) in HSMI diseased fish along with the correlation of viral load and antigen with development of lesions has supported the supposition that PRV is the etiologic agent of this condition; yet the absence of an in vitro culture system to demonstrate disease causation and the widespread prevalence of this virus in the absence of disease continues to obfuscate the etiological role of PRV with regard to HSMI. In this study, we explore the infectivity and disease causing potential of PRV from western North America—a region now considered endemic for PRV but without manifestation of HSMI—in challenge experiments modeled upon previous reports associating PRV with HSMI. We identified that western North American PRV is highly infective by intraperitoneal injection in Atlantic salmon as well as through cohabitation of both Atlantic and Sockeye salmon. High prevalence of viral RNA in peripheral blood of infected fish persisted for as long as 59 weeks post-challenge. Nevertheless, no microscopic lesions, disease, or mortality could be attributed to the presence of PRV, and only a minor transcriptional induction of the antiviral Mx gene occurred in blood and kidney samples during log-linear replication of viral RNA. Comparative analysis of the S1 segment of PRV identified high similarity between this North American sequence and previous sequences associated with HSMI, suggesting that factors such as viral co-infection, alternate PRV strains, host condition, or specific environmental circumstances may be required to cause this disease. PMID:26730591

  3. Evaluation of the heat balance constituents of the upper mixed layer in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Polonsky, A. B.; Sukhonos, P. A.

    2016-11-01

    Different physical mechanisms which cause interannual and interdecadal temperature anomalies in the upper mixed layer (UML) of the North Atlantic are investigated using the data of ORA-S3 reanalysis for the period of 1959-2011. It is shown that the annual mean heat budget in UML is mainly caused by the balance between advective heat transfer and horizontal turbulent mixing (estimated as a residual term in the equation of thermal balance). The local UML temperature change and contribution from the heat fluxes on the lower boundary of the UML to the heat budget of the upper layer are insignificant for the time scale under consideration. The contribution of the heat fluxes on the upper UML boundary to the low-frequency variability of the upper layer temperature in the whole North Atlantic area is substantially less than 30%. Areas like the northwestern part of the Northern Subtropical Anticyclonic Gyre (NSAG), where their contribution exceeds 30-60%, are exceptions. The typical time scales of advective heat transfer variability are revealed. In the NSAG area, an interannual variability associated with the North Atlantic Oscillation dominates, while in the North Atlantic subpolar gyre, an interdecadal variability of advective transfers with periods of more than 30 years prevails.

  4. Recent Increase in North Atlantic Jet Variability Emerges from Three-Century Long Context

    NASA Astrophysics Data System (ADS)

    Trouet, V.; Babst, F.; Meko, M. D.

    2017-12-01

    The position and strength of the Northern Hemisphere polar jet stream are important modulators of mid-latitude weather extremes and their societal, ecosystem, and economic impacts. A recent increase in mid-latitude extreme events highlights the need for long-term records of jet stream variability to put recent trends in a historical perspective and to investigate non-linear relationships between jet stream variability, mid-latitude extreme weather events, and anthropogenic climate change. In Europe, anomalies of the North Atlantic Jet (NAJ) create a summer temperature seesaw between the British Isles (BRIT) and the northeastern Mediterranean (NEMED). We combined summer temperature-sensitive tree-ring records from BRIT and NEMED to reconstruct inter-annual variability in the latitudinal position of the August NAJ back to 1725 CE. The two temperature proxies BRIT and NEMED counter-correlate significantly over their period of overlap, thus illustrate the temperature dipole generated by anomalous NAJ positions, and combined explain close to 40% of the variance in the August NAJ target (Fig. 1). The NAJ reconstruction is dominated by sub-decadal variability and no significant long-term poleward or equatorward trends were detected. However, the NAJ time series shows a steep and unprecedented increase in variance starting in the late 1960s. Enhanced late 20th century variance has also been detected in climate and ecosystem dynamics in the Central and Northeast Pacific, which are associated with the latitudinal position of the North Pacific Jet. Our combined results suggest a late 20th century increase in jet stream latitudinal variance in the North Atlantic and the North Pacific Basin that can be indicative of enhanced jet stream waviness and that coincides with a recent increase in quasi-resonant amplification (QRA). Our results show a late 20th century amplification of meridional flow in both the North Pacific and the North Atlantic Basin and support more sinuous jet

  5. A statistical overview of mass movement characteristics on the North American Atlantic outer continental margin

    USGS Publications Warehouse

    Booth, James S.; O'Leary, Dennis W.

    1992-01-01

    An analysis of 179 mass movements on the North American Atlantic continental slope and upper rise shows that slope failures have occurred throughout the geographic extent of the outer margin. Although the slope failures show no striking affinity for a particular depth as an origination level, there is a broad, primary mode centered at about 900 m. The resulting slides terminate at almost all depths and have a primary mode at 1100 m, but the slope/rise boundary (at 2200 m) also is an important mode. Slope failures have occurred at declivities ranging from 1° to 30° (typically, 4°); the resultant mass movement deposits vary in width from 0.2 to 50 km (typically, 1-2 km) and in length from 0.3 to 380 km (typically, 2–4 km), and they have been reported to be as thick as 650 m. On a numeric basis, mass movements are slightly more prevalent on open slopes than in other physiographic settings, and both translational and rotational failure surfaces are common. The typical mass movement is disintegrative in nature. Open slope slides tend to occur at lower slope angles and are larger than canyon slides. Further, large‐scale slides rather than small‐scale slides tend to originate on gentle slopes (≍ 3-4°). Rotational slope failures appear to have a slightly greater chance of occurring in canyons, but there is no analogous bias associated with translational failures. Similarly, disintegrative slides seem more likely to be associated with rotational slope failures than translational ones and are longer than their nondisintegrative counterparts. The occurrence of such a variety of mass movements at low declivities implies that a regional failure mechanism has prevailed. We suggest that earthquakes or, perhaps in some areas, gas hydrates are the most likely cause of the slope failures.

  6. Hydrographic changes in the subpolar North Atlantic at the MCA to LIA transition

    NASA Astrophysics Data System (ADS)

    Divine, Dmitry; Miettinen, Arto; Husum, Katrine; Koc, Nalan

    2016-04-01

    A network of four marine sediment cores from the northern North Atlantic is used to study hydrographic changes in surface water masses during the last 2000 years with a special focus on the Medieval Climate Anomaly (MCA) to the Little Ice Age (LIA) transition. Three of the cores are recovered from the sites located on main pathways of warm Atlantic water to the Arctic: M95-2011 (Vøring plateau, Norwegian Sea), Rapid-21 COM and LO-14 (Reykjanes Ridge, south of Iceland). The fourth core MD99-2322 is from the SE Greenland shelf (Denmark Strait), and it is influenced by the cold water outflow from the Arctic. The cores were analyzed continuously for planktonic diatoms with a high decadal to subdecadal temporal resolution. Past changes in the spatial distribution of surface water masses have been studied identifying factors, or typical species compositions, in downcore diatom assemblages. To derive the factors a Q-mode factor analysis has been applied to the extended modern calibration data set of 184 surface sediment samples from the North Atlantic, the Labrador Sea, the Nordic Seas, and Baffin Bay. SSTs have also been reconstructed using transfer functions. Variations of the reconstructed SSTs and loadings of major contributing factors reveal a complex regional pattern of changes in the structure of circulation during the MCA/LIA transition (1200-1400 AD). In the Norwegian Sea, the factors associated with assemblages typical for warmer and saline North Atlantic waters are partly displaced by colder and fresher water dwelling diatoms suggesting an eastward migration of mixed Arctic/Atlantic water masses into the Norwegian Sea. The two cores south of Iceland show a westward propagation of a warm water pulse as evidenced by the dominance of assemblages, which today are typical for the waters ca 5° further south than the current study sites. At the SE Greenland shelf an abrupt shift (ca. 50 years) in factors associated with different sea ice zone dwelling diatoms

  7. North Atlantic storm track variability and its association to the North Atlantic oscillation and climate variability of northern Europe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, J.C.

    The primary mode of North Atlantic track variability is identified using rotated principal component analysis (RPCA) on monthly fields of root-mean-squares of daily high-pass filtered (2-8-day periods) sea level pressures (SLP) for winters (December-February) 1900-92. It is examined in terms of its association with (1) monthly mean SLP fields, (2) regional low-frequency teleconnections, and (3) the seesaw in winter temperatures between Greenland and northern Europe. 32 refs., 9 figs.

  8. Hydrological change in Southern Europe responding to increasing North Atlantic overturning during Greenland Stadial 1

    PubMed Central

    Bartolomé, Miguel; Moreno, Ana; Sancho, Carlos; Stoll, Heather M.; Cacho, Isabel; Spötl, Christoph; Belmonte, Ánchel; Edwards, R. Lawrence; Cheng, Hai; Hellstrom, John C.

    2015-01-01

    Greenland Stadial 1 (GS-1) was the last of a long series of severe cooling episodes in the Northern Hemisphere during the last glacial period. Numerous North Atlantic and European records reveal the intense environmental impact of that stadial, whose origin is attributed to an intense weakening of the Atlantic Meridional Overturning Circulation in response to freshening of the North Atlantic. Recent high-resolution studies of European lakes revealed a mid–GS-1 transition in the climatic regimes. The geographical extension of such atmospheric changes and their potential coupling with ocean dynamics still remains unclear. Here we use a subdecadally resolved stalagmite record from the Northern Iberian Peninsula to further investigate the timing and forcing of this transition. A solid interpretation of the environmental changes detected in this new, accurately dated, stalagmite record is based on a parallel cave monitoring exercise. This record reveals a gradual transition from dry to wet conditions starting at 12,500 y before 2000 A.D. in parallel to a progressive warming of the subtropical Atlantic Ocean. The observed atmospheric changes are proposed to be led by a progressive resumption of the North Atlantic convection and highlight the complex regional signature of GS-1, very distinctive from previous stadial events. PMID:25964366

  9. Hydrological change in Southern Europe responding to increasing North Atlantic overturning during Greenland Stadial 1.

    PubMed

    Bartolomé, Miguel; Moreno, Ana; Sancho, Carlos; Stoll, Heather M; Cacho, Isabel; Spötl, Christoph; Belmonte, Ánchel; Edwards, R Lawrence; Cheng, Hai; Hellstrom, John C

    2015-05-26

    Greenland Stadial 1 (GS-1) was the last of a long series of severe cooling episodes in the Northern Hemisphere during the last glacial period. Numerous North Atlantic and European records reveal the intense environmental impact of that stadial, whose origin is attributed to an intense weakening of the Atlantic Meridional Overturning Circulation in response to freshening of the North Atlantic. Recent high-resolution studies of European lakes revealed a mid-GS-1 transition in the climatic regimes. The geographical extension of such atmospheric changes and their potential coupling with ocean dynamics still remains unclear. Here we use a subdecadally resolved stalagmite record from the Northern Iberian Peninsula to further investigate the timing and forcing of this transition. A solid interpretation of the environmental changes detected in this new, accurately dated, stalagmite record is based on a parallel cave monitoring exercise. This record reveals a gradual transition from dry to wet conditions starting at 12,500 y before 2000 A.D. in parallel to a progressive warming of the subtropical Atlantic Ocean. The observed atmospheric changes are proposed to be led by a progressive resumption of the North Atlantic convection and highlight the complex regional signature of GS-1, very distinctive from previous stadial events.

  10. 50 CFR 224.105 - Speed restrictions to protect North Atlantic Right Whales.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Speed restrictions to protect North... AND ANADROMOUS SPECIES § 224.105 Speed restrictions to protect North Atlantic Right Whales. (a) The..., GA): Vessels shall travel at a speed of 10 knots or less over ground during the period of November 15...

  11. 50 CFR 224.105 - Speed restrictions to protect North Atlantic Right Whales.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Speed restrictions to protect North... AND ANADROMOUS SPECIES § 224.105 Speed restrictions to protect North Atlantic Right Whales. (a) The..., GA): Vessels shall travel at a speed of 10 knots or less over ground during the period of November 15...

  12. Transport and deposition of the fire biomarker levoglucosan across the tropical North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Schreuder, Laura T.; Hopmans, Ellen C.; Stuut, Jan-Berend W.; Sinninghe Damsté, Jaap S.; Schouten, Stefan

    2018-04-01

    burning in northwestern Africa. However, close to South America levoglucosan concentrations appear to be affected by riverine transport from the Amazon River. In surface sediments close to South America, levoglucosan concentration is higher than in the middle of the Atlantic Ocean, implying that here the influence from the South American continent is important and perennial. Our study provides evidence that degradation of levoglucosan during settling in the marine water column is not substantial, but is substantial at the sediment-water interface. Nevertheless, levoglucosan was detected in all surface sediments throughout the tropical North Atlantic, indicating its presence in the marine sedimentary record, which reveals the potential for levoglucosan as a biomass burning proxy in marine sediments.

  13. The North Atlantic Oscillation as a driver of multidecadal variability of the AMOC, the AMO, and Northern Hemisphere climate

    NASA Astrophysics Data System (ADS)

    Delworth, T. L.; Zeng, F. J.; Yang, X.; Zhang, L.

    2017-12-01

    We use suites of simulations with coupled ocean-atmosphere models to show that multidecadal changes in the North Atlantic Oscillation (NAO) can drive multidecadal changes in the Atlantic Meridional Overturning Circulation (AMOC) and the Atlantic Multidecadal Oscillation (AMO), with associated hemispheric climatic impacts. These impacts include rapid changes in Arctic sea ice, hemispheric temperature, and modulation of Atlantic hurricane activity. We use models that incorporate either a fully dynamic ocean or a simple slab ocean to explore the role of ocean dynamics and ocean-atmosphere interactions. A positive phase of the NAO is associated with strengthened westerly winds over the North Atlantic. These winds extract more heat than normal from the subpolar ocean, thereby increasing upper ocean density, deepwater formation, and the strength of the AMOC and associated poleward ocean heat transport. This warming leads to a positive phase of the AMO. The enhanced oceanic heat transport extends to the Arctic where it causes a reduction of Arctic sea ice. Large-scale atmospheric warming reduces vertical wind shear in the tropical North Atlantic, creating an environment more favorable for tropical storms. We use models to further show that observed multidecadal variations of the NAO over the 20th and early 21st centuries may have led to multidecadal variations of simulated AMOC and the AMO. Specifically, negative NAO values from the late 1960s through the early 1980s led to a weakened AMOC/cold North Atlantic, whereas increasing NAO values from the late 1980s through the late 1990s increased the model AMOC and led to a positive (warm) phase of the AMO. The warm phase contributed to increases in tropical storm activity and decreases in Arctic sea ice after the mid 1990s. Ocean dynamics are essential for translating the observed NAO variations into ocean heat content variations for the extratropical North Atlantic, but appear less important in the tropical North Atlantic

  14. Climate drift of AMOC, North Atlantic salinity and arctic sea ice in CFSv2 decadal predictions

    NASA Astrophysics Data System (ADS)

    Huang, Bohua; Zhu, Jieshun; Marx, Lawrence; Wu, Xingren; Kumar, Arun; Hu, Zeng-Zhen; Balmaseda, Magdalena A.; Zhang, Shaoqing; Lu, Jian; Schneider, Edwin K.; Kinter, James L., III

    2015-01-01

    There are potential advantages to extending operational seasonal forecast models to predict decadal variability but major efforts are required to assess the model fidelity for this task. In this study, we examine the North Atlantic climate simulated by the NCEP Climate Forecast System, version 2 (CFSv2), using a set of ensemble decadal hindcasts and several 30-year simulations initialized from realistic ocean-atmosphere states. It is found that a substantial climate drift occurs in the first few years of the CFSv2 hindcasts, which represents a major systematic bias and may seriously affect the model's fidelity for decadal prediction. In particular, it is noted that a major reduction of the upper ocean salinity in the northern North Atlantic weakens the Atlantic meridional overturning circulation (AMOC) significantly. This freshening is likely caused by the excessive freshwater transport from the Arctic Ocean and weakened subtropical water transport by the North Atlantic Current. A potential source of the excessive freshwater is the quick melting of sea ice, which also causes unrealistically thin ice cover in the Arctic Ocean. Our sensitivity experiments with adjusted sea ice albedo parameters produce a sustainable ice cover with realistic thickness distribution. It also leads to a moderate increase of the AMOC strength. This study suggests that a realistic freshwater balance, including a proper sea ice feedback, is crucial for simulating the North Atlantic climate and its variability.

  15. Astronomically paced middle Eocene deepwater circulation in the western North Atlantic

    NASA Astrophysics Data System (ADS)

    Vahlenkamp, Maximilian; Niezgodzki, Igor; De Vleeschouwer, David; Bickert, Torsten; Harper, Dustin; Lohmann, Gerrit; Pälike, Heiko; Zachos, James C.

    2017-04-01

    The role of the Atlantic Meridional Overturning Circulation (AMOC) as a key player for abrupt climatic changes (e.g. Heinrich Stadials) during the Pleistocene is relatively well constrained. However, the timing of the onset of a „modern" North Atlantic Deepwater (NADW) formation are still debated: Recent estimates range from the middle Miocene to the Early Eocene [Davies et al., 2001, Stoker et al., 2005, Hohbein et al., 2012] and are mainly based on the seismic interpretation contourite drifts. Another understudied aspect of the AMOC is its behavior during climatic variations on orbital time scales and under different climatic boundary conditions (icehouse vs hothouse). IODP Expedition 342 drilled carbonate-rich sequences from sediment drifts offshore Newfoundland that cover the middle Eocene with high sedimentation rates ( 3 cm/ kyr). We present a 2 Myr long stable carbon and oxygen isotope record of benthic foraminifera nuttalides truempyi spanning magnetochron C20r in unprecedented resolution (< 2 kyr/sample), sufficient to resolve dominant Milankovic frequencies. Data from Site U1410 (3400m water depth) indicate an active overturning in the North Atlantic during the middle Eocene, sensitively responding to variations in Earth's axial tilt (obliquity). Experiments in a GCM (ECHAM5 - MPIOM, OASIS 3 coupled) indicate that temperatures in the Norwegian and Labrador Sea could have allowed for sea ice during winter in a minimal obliquity setting (22.1°), whereas temperatures are too high to allow sea ice formation under maximum obliquity (24.5°) winter conditions depending on Eocene boundary conditions (atmospheric CO2 concentration). We hypothesize that the combined effect of low temperatures in the sinking areas, an increased latitudinal SST gradient seasonal, and the potential formation of sea ice during obliquity minima results in an initial shallow NADW formation during the middle Eocene. This hypothesis is in accordance with the astronomical imprint

  16. Latest Quaternary palaeoceanographic change in the eastern North Atlantic based upon a dinoflagellate cyst event ecostratigraphy.

    PubMed

    Harland, Rex; Polovodova Asteman, Irina; Morley, Audrey; Morris, Angela; Harris, Anthony; Howe, John A

    2016-05-01

    The analyses of dinoflagellate cyst records, from the latest Quaternary sediments recovered from DSDP Core 610A taken on the Feni Ridge in the southern Rockall Trough, and part of core MD01-2461 on the continental margin of the Porcupine Seabight in the eastern North Atlantic Ocean, has provided evidence for significant oceanographic change encompassing the Last Glacial Maximum (LGM) and part of the Holocene. This together with other published records has led to a regional evaluation of oceanographic change in the eastern North Atlantic over the past 68 ka, based upon a distinctive dinoflagellate event ecostratigraphy. These changes reflect changes in the surface waters of the North Atlantic Current (NAC), and perhaps the deeper thermohaline Atlantic Meridional Overturning Circulation (AMOC), driving fundamental regime changes within the phytoplanktonic communities. Three distinctive dinoflagellate cyst associations based upon both factor and cluster analyses have been recognised. Associations characterised by Bitectatodinium tepikiense (between 61.1 ± 6.2 to 13.4 ± 1.1 ka BP), Nematosphaeropsis labyrinthus (between 10.5 ± 0.3 and 11.45 ± 0.8 ka. BP), and the cyst of Protoceratium reticulatum (between 8.5 ± 0.9 and 5.2 ± 1.3 ka. BP) indicate major change within the eastern North Atlantic oceanography. The transitions between these changes occur over a relatively short time span (c.1.5 ka), given our sampling resolution, and have the potential to be incorporated into an event stratigraphy through the latest Quaternary as recommended by the INTIMATE (INTegrating Ice core, MArine and TErrestrial records) group. The inclusion of a dinoflagellate cyst event stratigraphy would highlight changes within the phytoplankton of the North Atlantic Ocean as a fully glacial world changed to our present interglacial.

  17. Cloud formation over Western Atlantic Ocean north of South America

    NASA Image and Video Library

    1962-10-03

    S62-06606 (3 Oct. 1962) --- Cloud formation over Western Atlantic Ocean north of South America taken during the fourth orbit pass of the Mercury-Atlas 8 (MA-8) mission by astronaut Walter M. Schirra Jr. with a hand-held camera. Photo credit: NASA

  18. Effect of gravity waves on the North Atlantic circulation

    NASA Astrophysics Data System (ADS)

    Eden, Carsten

    2017-04-01

    The recently proposed IDEMIX (Internal wave Dissipation, Energy and MIXing) parameterisation for the effect of gravity waves offers the possibility to construct consistent ocean models with a closed energy cycle. This means that the energy available for interior mixing in the ocean is only controlled by external energy input from the atmosphere and the tidal system and by internal exchanges. A central difficulty is the unknown fate of meso-scale eddy energy. In different scenarios for that eddy dissipation, the parameterized internal wave field provides between 2 and 3 TW for interior mixing from the total external energy input of about 4 TW, such that a transfer between 0.3 and 0.4 TW into mean potential energy contributes to drive the large-scale circulation in the model. The impact of the different mixing on the meridional overturning in the North Atlantic is discussed and compared to hydrographic observations. Furthermore, the direct energy exchange of the wave field with the geostrophic flow is parameterized in extended IDEMIX versions and the sensitivity of the North Atlantic circulation by this gravity wave drag is discussed.

  19. The Atmospheric Response to a Future Warming Deficit in North Atlantic SSTs

    NASA Astrophysics Data System (ADS)

    Gervais, M.; Shaman, J. L.; Kushnir, Y.

    2017-12-01

    As SSTs increase globally over the 21st century, global climate models project a significant deficit in warming within the subpolar gyre of the North Atlantic Ocean. This study investigates the impact of this warming deficit on atmosphere circulation. A series of large ensemble experiments are conducted using the Community Atmosphere Model 5 forced with specified sea ice and SSTs for the early (2010-2019), mid (2050-2059), and late (2090-2099) 21stcentury. SST and sea ice fields from the Community Earth System Model Large Ensemble experiment are used as boundary conditions for the control simulations. Experiments with either a filled or deepened warming hole are conducted by adding a SST perturbation field to these time-varying SST boundary conditions. Results from these experiments demonstrate that the warming hole has significant local and remote impacts on the atmosphere. Filling (deepening) the warming hole results in a local increase (decrease) in turbulent heat fluxes relative to the control run and consequentially an increase (decrease) in temperature in the overlying lower troposphere that spreads over Europe. There are significant impacts on the location and strength of both the North Atlantic and North Pacific jets as well as on the North Atlantic Oscillation. These impacts of the warming hole on both the mean state and variability of the atmosphere have important implications for sensible weather in the Northern Hemisphere and in particular over Europe.

  20. Model Analysis of Tropospheric Aerosol Variability and Sources over the North Atlantic During NAAMES 2015-2016

    NASA Technical Reports Server (NTRS)

    Liu, Hongyu; Moore, Richard; Hostetler, Christopher; Ferrare, Richard; Fairlie, T. Duncan; Hu, Youngxiang; Chen, Gao; Hair, Johnathan W.; Johnson, Matthew; Gantt, Brett; hide

    2016-01-01

    The North Atlantic Aerosols and Marine Ecosystems Study (NAAMES; http://naames.larc.nasa.gov) is a five year NASA Earth-Venture Suborbital-2 Mission to characterize the plankton ecosystems and their influences on remote marine aerosols, boundary layer clouds, and their implications for climate in the North Atlantic, with the 1st field deployment in November 2015 and the 2nd in May 2016.

  1. 77 FR 64904 - Safety Zone, Atlantic Intracoastal Waterway; Carolina Beach, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-24

    ... Bridge crossing the Atlantic Intracoastal Waterway, mile 295.6, at Carolina Beach, North Carolina. The... FR Federal Register NPRM Notice of Proposed Rulemaking A. Regulatory History and Information On... Purpose North Carolina Department of Transportation has awarded a contract to American Bridge Company of...

  2. Seabirds at risk around offshore oil platforms in the north-west Atlantic.

    PubMed

    Wiese, F K; Montevecchi, W A; Davoren, G K; Huettmann, F; Diamond, A W; Linke, J

    2001-12-01

    Seabirds aggregate around oil drilling platforms and rigs in above average numbers due to night lighting, flaring, food and other visual cues. Bird mortality has been documented due to impact on the structure, oiling and incineration by the flare. The environmental circumstances for offshore hydrocarbon development in North-west Atlantic are unique because of the harsh climate, cold waters and because enormous seabird concentrations inhabit and move through the Grand Banks in autumn (storm-petrels, Oceanodroma spp), winter (dovekies, Alle alle, murres, Uria spp), spring and summer (shearwaters, Puffinus spp). Many species are planktivorous and attracted to artificial light sources. Most of the seabirds in the region are long-distance migrants, and hydrocarbon development in the North-west Atlantic could affect both regional and global breeding populations. Regulators need to take responsibility for these circumstances. It is essential to implement comprehensive, independent arm's length monitoring of potential avian impacts of offshore hydrocarbon platforms in the North-west Atlantic. This should include quantifying and determining the nature, timing and extent of bird mortality caused by these structures. Based on existing evidence of potential impacts of offshore hydrocarbon platforms on seabirds, it is difficult to understand why this has not been, and is not being, systematically implemented.

  3. Initializing decadal climate predictions over the North Atlantic region

    NASA Astrophysics Data System (ADS)

    Matei, Daniela Mihaela; Pohlmann, Holger; Jungclaus, Johann; Müller, Wolfgang; Haak, Helmuth; Marotzke, Jochem

    2010-05-01

    Decadal climate prediction aims to predict the internally-generated decadal climate variability in addition to externally-forced climate change signal. In order to achieve this it is necessary to start the predictions from the current climate state. In this study we investigate the forecast skill of the North Atlantic decadal climate predictions using two different ocean initialization strategies. First we apply an assimilation of ocean synthesis data provided by the GECCO project (Köhl and Stammer, 2008) as initial conditions for the coupled model ECHAM5/MPI-OM. Hindcast experiments are then performed over the period 1952-2001. An alternative approach is one in which the subsurface ocean temperature and salinity are diagnosed from an ensemble of ocean model runs forced by the NCEP-NCAR atmospheric reanalyzes for the period 1948-2007, then nudge into the coupled model to produce initial conditions for the hindcast experiments. An anomaly coupling scheme is used in both approaches to avoid the hindcast drift and the associated initial shock. Differences between the two assimilation approaches are discussed by comparing them with the observational data in key regions and processes. We asses the skill of the initialized decadal hindcast experiments against the prediction skill of the non-initialized hindcasts simulation. We obtain an overview of the regions with the highest predictability from the regional distribution of the anomaly correlation coefficients and RMSE for the SAT. For the first year the hindcast skill is increased over almost all ocean regions in the NCEP-forced approach. This increase in the hindcast skill for the 1 year lead time is somewhat reduced in the GECCO approach. At lead time 5yr and 10yr, the skill enhancement is still found over the North Atlantic and North Pacific regions. We also consider the potential predictability of the Atlantic Meridional Overturning Circulation (AMOC) and Nordic Seas Overflow by comparing the predicted values to

  4. Combined influences of seasonal East Atlantic Pattern and North Atlantic Oscillation to excite Atlantic multidecadal variability in a climate model

    NASA Astrophysics Data System (ADS)

    Ruprich-Robert, Yohan; Cassou, Christophe

    2015-01-01

    The physical processes underlying the internal component of the Atlantic Multidecadal Variability (AMV) are investigated from a 1,000-yr pre-industrial control simulation of the CNRM-CM5 model. The low-frequency fluctuations of the Atlantic Meridional Overturning Circulation (AMOC) are shown to be the main precursor for the model AMV. The full life cycle of AMOC/AMV events relies on a complex time-evolving relationship with both North Atlantic Oscillation (NAO) and East Atlantic Pattern (EAP) that must be considered from a seasonal perspective in order to isolate their action; the ocean is responsible for setting the multidecadal timescale of the fluctuations. AMOC rise leading to a warm phase of AMV is statistically preceded by wintertime NAO+ and EAP+ from ~Lag -40/-20 yrs. Associated wind stress anomalies induce an acceleration of the subpolar gyre (SPG) and enhanced northward transport of warm and saline subtropical water. Concurrent positive salinity anomalies occur in the Greenland-Iceland-Norwegian Seas in link to local sea-ice decline; those are advected by the Eastern Greenland Current to the Labrador Sea participating to the progressive densification of the SPG and the intensification of ocean deep convection leading to AMOC strengthening. From ~Lag -10 yrs prior an AMOC maximum, opposite relationship is found with the NAO for both summer and winter seasons. Despite negative lags, NAO- at that time is consistent with the atmospheric response through teleconnection to the northward shift/intensification of the Inter Tropical Convergence Zone in link to the ongoing warming of tropical north Atlantic basin due to AMOC rise/AMV build-up. NAO- acts as a positive feedback for the full development of the model AMV through surface fluxes but, at the same time, prepares its termination through negative retroaction on AMOC. Relationship between EAP+ and AMOC is also present in summer from ~Lags -30/+10 yrs while winter EAP- is favored around the AMV peak. Based on

  5. The role of local sea surface temperature pattern changes in shaping climate change in the North Atlantic sector

    NASA Astrophysics Data System (ADS)

    Hand, Ralf; Keenlyside, Noel S.; Omrani, Nour-Eddine; Bader, Jürgen; Greatbatch, Richard J.

    2018-03-01

    Beside its global effects, climate change is manifested in many regionally pronounced features mainly resulting from changes in the oceanic and atmospheric circulation. Here we investigate the influence of the North Atlantic SST on shaping the winter-time response to global warming. Our results are based on a long-term climate projection with the Max Planck Institute Earth System Model (MPI-ESM) to investigate the influence of North Atlantic sea surface temperature pattern changes on shaping the atmospheric climate change signal. In sensitivity experiments with the model's atmospheric component we decompose the response into components controlled by the local SST structure and components controlled by global/remote changes. MPI-ESM simulates a global warming response in SST similar to other climate models: there is a warming minimum—or "warming hole"—in the subpolar North Atlantic, and the sharp SST gradients associated with the Gulf Stream and the North Atlantic Current shift northward by a few a degrees. Over the warming hole, global warming causes a relatively weak increase in rainfall. Beyond this, our experiments show more localized effects, likely resulting from future SST gradient changes in the North Atlantic. This includes a significant precipitation decrease to the south of the Gulf Stream despite increased underlying SSTs. Since this region is characterised by a strong band of precipitation in the current climate, this is contrary to the usual case that wet regions become wetter and dry regions become drier in a warmer climate. A moisture budget analysis identifies a complex interplay of various processes in the region of modified SST gradients: reduced surface winds cause a decrease in evaporation; and thermodynamic, modified atmospheric eddy transports, and coastal processes cause a change in the moisture convergence. The changes in the the North Atlantic storm track are mainly controlled by the non-regional changes in the forcing. The impact of

  6. Statistical Aspects of the North Atlantic Basin Tropical Cyclones: Trends, Natural Variability, and Global Warming

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2007-01-01

    Statistical aspects of the North Atlantic basin tropical cyclones for the interval 1945- 2005 are examined, including the variation of the yearly frequency of occurrence for various subgroups of storms (all tropical cyclones, hurricanes, major hurricanes, U.S. landfalling hurricanes, and category 4/5 hurricanes); the yearly variation of the mean latitude and longitude (genesis location) of all tropical cyclones and hurricanes; and the yearly variation of the mean peak wind speeds, lowest pressures, and durations for all tropical cyclones, hurricanes, and major hurricanes. Also examined is the relationship between inferred trends found in the North Atlantic basin tropical cyclonic activity and natural variability and global warming, the latter described using surface air temperatures from the Armagh Observatory Armagh, Northern Ireland. Lastly, a simple statistical technique is employed to ascertain the expected level of North Atlantic basin tropical cyclonic activity for the upcoming 2007 season.

  7. Geologic and operational summary, COST No. 1 well, Georges Bank area, North Atlantic OCS

    USGS Publications Warehouse

    Amato, Roger V.; Bebout, John W.

    1980-01-01

    The first Continental Offshore Stratigraphic Test (COST) well on the U.S. North Atlantic Outer Continental Shelf (OCS) was drilled by Ocean Production Company between April 6 and July 26, 1976, and designated the COST No. G-l. Geological and engineering data obtained from this deep well in the Georges Bank Basin were used by the 31 participating companies and the U.S. Geological Survey (USGS) for evaluating the petroleum potential and possible drilling problems in the U.S. North Atlantic OCS area in preparation for Lease Sale 42 held on December 18, 1979.

  8. The intertropical convergence zone modulates intense hurricane strikes on the western North Atlantic margin

    PubMed Central

    van Hengstum, Peter J.; Donnelly, Jeffrey P.; Fall, Patricia L.; Toomey, Michael R.; Albury, Nancy A.; Kakuk, Brian

    2016-01-01

    Most Atlantic hurricanes form in the Main Development Region between 9°N to 20°N along the northern edge of the Intertropical Convergence Zone (ITCZ). Previous research has suggested that meridional shifts in the ITCZ position on geologic timescales can modulate hurricane activity, but continuous and long-term storm records are needed from multiple sites to assess this hypothesis. Here we present a 3000 year record of intense hurricane strikes in the northern Bahamas (Abaco Island) based on overwash deposits in a coastal sinkhole, which indicates that the ITCZ has likely helped modulate intense hurricane strikes on the western North Atlantic margin on millennial to centennial-scales. The new reconstruction closely matches a previous reconstruction from Puerto Rico, and documents a period of elevated intense hurricane activity on the western North Atlantic margin from 2500 to 1000 years ago when paleo precipitation proxies suggest that the ITCZ occupied a more northern position. Considering that anthropogenic warming is predicted to be focused in the northern hemisphere in the coming century, these results provide a prehistoric analog that an attendant northern ITCZ shift in the future may again return the western North Atlantic margin to an active hurricane interval. PMID:26906670

  9. A Decadal Climate Cycle in the North Atlantic Ocean as Simulated by the ECHO Coupled GCM.

    NASA Astrophysics Data System (ADS)

    Grötzner, A.; Latif, M.; Barnett, T. P.

    1998-05-01

    In this paper a decadal climate cycle in the North Atlantic that was derived from an extended-range integration with a coupled ocean-atmosphere general circulation model is described. The decadal mode shares many features with the observed decadal variability in the North Atlantic. The period of the simulated oscillation, however, is somewhat longer than that estimated from observations. While the observations indicate a period of about 12 yr, the coupled model simulation yields a period of about 17 yr. The cyclic nature of the decadal variability implies some inherent predictability at these timescales.The decadal mode is based on unstable air-sea interactions and must be therefore regarded as an inherently coupled mode. It involves the subtropical gyre and the North Atlantic oscillation. The memory of the coupled system, however, resides in the ocean and is related to horizontal advection and to the oceanic adjustment to low-frequency wind stress curl variations. In particular, it is found that variations in the intensity of the Gulf Stream and its extension are crucial to the oscillation. Although differing in details, the North Atlantic decadal mode and the North Pacific mode described by M. Latif and T. P. Barnett are based on the same fundamental mechanism: a feedback loop between the wind driven subtropical gyre and the extratropical atmospheric circulation.

  10. Forest productivity in southwestern Europe is controlled by coupled North Atlantic and Atlantic Multidecadal Oscillations.

    PubMed

    Madrigal-González, Jaime; Ballesteros-Cánovas, Juan A; Herrero, Asier; Ruiz-Benito, Paloma; Stoffel, Markus; Lucas-Borja, Manuel E; Andivia, Enrique; Sancho-García, Cesar; Zavala, Miguel A

    2017-12-20

    The North Atlantic Oscillation (NAO) depicts annual and decadal oscillatory modes of variability responsible for dry spells over the European continent. The NAO therefore holds a great potential to evaluate the role, as carbon sinks, of water-limited forests under climate change. However, uncertainties related to inconsistent responses of long-term forest productivity to NAO have so far hampered firm conclusions on its impacts. We hypothesize that, in part, such inconsistencies might have their origin in periodical sea surface temperature anomalies in the Atlantic Ocean (i.e., Atlantic Multidecadal Oscillation, AMO). Here we show strong empirical evidence in support of this hypothesis using 120 years of periodical inventory data from Iberian pine forests. Our results point to AMO + NAO + and AMO - NAO - phases as being critical for forest productivity, likely due to decreased winter water balance and abnormally low winter temperatures, respectively. Our findings could be essential for the evaluation of ecosystem functioning vulnerabilities associated with increased climatic anomalies under unprecedented warming conditions in the Mediterranean.

  11. Key areas for wintering North American herons

    USGS Publications Warehouse

    Mikuska, T.; Kushlan, J.A.; Hartley, S.

    1998-01-01

    Nearly all North American heron populations are migratory, but details of where they winter are little known. Locations where North American herons winter were identified using banding recovery data. North American herons winter from Canada through northern South America but especially in eastern North America south of New York, Florida, California, Louisiana, Texas, Mexico and Cuba, these areas accounting for 63% of winter recoveries. We identified regions where recoveries for various species clustered as 'key areas.' These forty-three areas constitute a network of areas that hold sites that likely are important to wintering herons. The relative importance of each area and site within the network must be evaluated by further on the ground inventory. Because of biases inherent in the available data, these hypothesized key areas are indicative rather than exhaustive. As a first cut, this network of areas can serve to inform further inventory activities and can provide an initial basis to begin planning for the year-round conservation of North American heron populations.

  12. The Influence of the North Atlantic Oscillation on Tropospheric Distributions of Ozone and Carbon Monoxide.

    NASA Astrophysics Data System (ADS)

    Knowland, K. E.; Doherty, R. M.; Hodges, K.

    2015-12-01

    The influence of the North Atlantic Oscillation (NAO) on the tropospheric distributions of ozone (O3) and carbon monoxide (CO) has been quantified. The Monitoring Atmospheric Composition and Climate (MACC) Reanalysis, a combined meteorology and composition dataset for the period 2003-2012 (Innes et al., 2013), is used to investigate the composition of the troposphere and lower stratosphere in relation to the location of the storm track as well as other meteorological parameters over the North Atlantic associated with the different NAO phases. Cyclone tracks in the MACC Reanalysis compare well to the cyclone tracks in the widely-used ERA-Interim Reanalysis for the same 10-year period (cyclone tracking performed using the tracking algorithm of Hodges (1995, 1999)), as both are based on the European Centre for Medium-Range Weather Forecasts' (ECMWF) Integrated Forecast System (IFS). A seasonal analysis is performed whereby the MACC reanalysis meteorological fields, O3 and CO mixing ratios are weighted by the monthly NAO index values. The location of the main storm track, which tilts towards high latitudes (toward the Arctic) during positive NAO phases to a more zonal location in the mid-latitudes (toward Europe) during negative NAO phases, impacts the location of both horizontal and vertical transport across the North Atlantic and into the Arctic. During positive NAO seasons, the persistence of cyclones over the North Atlantic coupled with a stronger Azores High promotes strong horizontal transport across the North Atlantic throughout the troposphere. In all seasons, significantly more intense cyclones occur at higher latitudes (north of ~50°C) during the positive phase of the NAO and in the southern mid-latitudes during the negative NAO phase. This impacts the location of stratospheric intrusions within the descending dry airstream behind the associated cold front of the extratropical cyclone and the venting of low-level pollution up into the free troposphere within

  13. Complexity in Matuyama-Brunhes polarity transitions from North Atlantic IODP/ODP deep-sea sites

    NASA Astrophysics Data System (ADS)

    Channell, J. E. T.

    2017-06-01

    Integrated Ocean Drilling Program (IODP) Expedition 303 to the North Atlantic provided 16 records of the Matuyama-Brunhes polarity transition (MBT), based on u-channel and discrete samples, from holes drilled at three sites (Sites U1304, U1305 and U1306) that have mean Brunhes sedimentation rates of 16-18 cm/kyr. The MBT occurs during the transition from marine isotope stage (MIS) 19c to MIS 18e, with mid-point at ∼773 ka, and a transition duration of ∼8 kyr. Combining the new MBT records, including one new record for the top Jaramillo, with previously published North Atlantic MBT records (ODP Sites 983, 984 and 1063) yields a total of more than 20 high-sedimentation-rate polarity transition records. The MBT yields a repetitive pattern of transitional field states as virtual geomagnetic poles (VGPs) move from high southern latitudes to loop over the Pacific, group in NE Asia, and transit into the mid-latitude South Atlantic before reaching high latitudes in the Northern Hemisphere. The VGPs for the top Jaramillo transition feature a loop over the Pacific, then a NE Asia group before transit over the Indian Ocean to high southerly latitudes. The North Atlantic MBT records described here contrast with longitudinally-constrained VGP paths for the MBT, indicating that relatively low sedimentation rate (∼4 cm/kyr) records of the MBT are heavily smoothed by the remanence acquisition process and do not adequately represent the MBT field. The VGPs at the MBT and top Jaramillo, as measured in the North Atlantic, have similarities with excursion (Iceland Basin) VGP paths, and were apparently guided by maxima in downward vertical flux similar to those seen in the modern non-dipole (ND) field, implying longevity in ND features through time.

  14. The Subpolar North Atlantic Ocean Heat Content Variability and its Decomposition.

    PubMed

    Zhang, Weiwei; Yan, Xiao-Hai

    2017-10-23

    The Subpolar North Atlantic (SPNA) is one of the most important areas to global climate because its ocean heat content (OHC) is highly correlated with the Atlantic Meridional Overturning Circulation (AMOC), and its circulation strength affects the salt transport by the AMOC, which in turn feeds and sustains the strength of the AMOC. Moreover, the recent global surface warming "hiatus" may be attributed to the SPNA as one of the major planetary heat sinks. Although almost synchronized before 1996, the OHC has greater spatial disparities afterwards, which cannot be explained as driven by the North Atlantic Oscillation (NAO). Temperature decomposition reveals that the western SPNA OHC is mainly determined by the along isopycnal changes, while in the eastern SPNA along isopycnal changes and isopycnal undulation are both important. Further analysis indicates that heat flux dominates the western SPNA OHC, but in the eastern SPNA wind forcing affects the OHC significantly. It is worth noting that the along isopycnal OHC changes can also induce heaving, thus the observed heaving domination in global oceans cannot mask the extra heat in the ocean during the recent "hiatus".

  15. The transition of North Atlantic dust deposition and Saharan landscape during the Holocene

    NASA Astrophysics Data System (ADS)

    Egerer, S.; Claussen, M.; Stanelle, T.; Reick, C. H.

    2017-12-01

    The sudden increase in North Atlantic dust deposition about 5 ka BP indicated by sediment records along the West African margin has been associated with an abrupt end of the African Humid Period (AHP). We perform several time slice simulations from 8 ka BP until the pre-industrial era to explore changes in the Holocene dust cycle. To do so, we use the coupled aerosol-climate model ECHAM6-HAM2 including interactive vegetation and dust, whereas ocean conditions and lakes are prescribed. The interactive coupling of vegetation, dust and atmosphere allows to set the dynamics of North Atlantic dust deposition in context to Holocene climate and landscape change in North Africa.In agreement with marine sediment records, we find an abrupt increase in simulated dust deposition at the location of the core sites roughly between 6 and 4 ka BP. Accordingly, dust emission in the North-west Sahara increases rapidly indicating that dust was transported by the same wind systems throughout the Holocene. The sudden increase in dust emission in the North-west Sahara is partly a consequence of a fast decline of vegetation cover from 22°N to 18°N due to vegetation-climate feedbacks and the rapid replacement of shrubs by grasses. Additionally, the prescribed strong but gradual reduction of lake surface area enforces accelerated dust release as former areas covered by lakes turn into highly productive dust sources. Changes in the Saharan landscape and dust emission south of 18°N and in the eastern Sahara as well as changes in atmospheric circulation play a minor role in driving the dynamics of North Atlantic dust deposition at the specific core sites. Our study emphasizes spatial and temporal differences in the transition of North African landscape implying that implications from local data records to large scales have to be treated with caution.

  16. Observed and Modeled Pathways of the Iceland Scotland Overflow Water in the eastern North Atlantic

    NASA Astrophysics Data System (ADS)

    Zou, Sijia; Lozier, Susan; Zenk, Walter; Bower, Amy; Johns, William

    2017-04-01

    The Iceland Scotland Overflow Water (ISOW), one of the major components of the lower limb of the Atlantic Meridional Overturning Circulation (AMOC), is formed in the Nordic Seas and enters the eastern North Atlantic subpolar gyre via the Iceland-Scotland sill. After entraining the ambient waters, the relatively homogeneous ISOW spreads southward into the North Atlantic. An understanding of the distribution and variability of the spreading pathways of the ISOW is fundamental to our understanding of AMOC structure and variability. Three major ISOW pathways have been identified in the eastern North Atlantic by previous studies: 1) across the Reykjanes Ridge via deep gaps, 2) through the Charlie Gibbs Fracture Zone, and 3) southward along the eastern flank of the Mid Atlantic Ridge (MAR). However, most of these studies were conducted using an Eulerian frame with limited observations, especially for the third pathway along the eastern flank of the MAR. In this work, we give a comprehensive description of ISOW pathways in the Eulerian and Lagrangian frames, quantify the relative importance of each pathway and examine the temporal variability of these pathways. Our study distinguishes itself from past studies by using both Eulerian (current meter data) and Lagrangian (eddy-resolving RAFOS float data) observations in combination with modeling output (1/12° FLAME) to describe ISOW spreading pathways and their variability.

  17. Biogeography and divergent patterns of body size disparification in North American minnows.

    PubMed

    Martin, Samuel D; Bonett, Ronald M

    2015-12-01

    Body size is one of the most important traits influencing an organism's ecology and a major axis of evolutionary change. We examined body size disparification in the highly speciose North American minnows (Cyprinidae), which exhibit diverse body sizes and ecologies, including the giant piscivorous pikeminnows. We estimated a novel phylogeny for 285 species based on a supermatrix alignment of seven mitochondrial and ten nuclear genes, and used this to reconstruct ancestral body sizes (log-total length) and ancestral area. Additionally, given that fishes inhabiting Pacific drainages have historically been subjected to frequent local extinctions due to periodic flooding, droughts, and low drainage connectivity, we also compared body size disparification between the highly speciose Atlantic drainages and comparatively depauperate Pacific drainages. We found that dispersal between Atlantic and Pacific drainages has been infrequent and generally occurred in minnows with southerly distributions, where drainage systems are younger and less stable. The long isolation between Atlantic and Pacific drainages has allowed for divergent patterns of morphological disparification; we found higher rates of body size disparification in minnows from the environmentally harsher Pacific drainages. We propose several possible explanations for the observed patterns of size disparification in the context of habitat stability, niche space, and species diversification. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. CHARACTERIZATION OF WESTERN NORTH ATLANTIC RIGHT WHALE SPRING FEEDING HABITAT

    EPA Science Inventory

    The Great South Channel region of the southwestern Gulf of Maine, between George's Bank and Cape Cod, is the primary spring feeding ground for the western North Atlantic population of the I northern right whale, E. glacialis .Since this whale is so endangered, it is critical to i...

  19. Paleoenvironmental Reconstruction of the North Atlantic Current Variations from MIS 3 to Holocene Based on Multiproxy Record from the North-East Scotland Continental Margin.

    NASA Astrophysics Data System (ADS)

    Ovsepyan, Y.; Tikhonova, A.; Novichkova, E.; Gupta, R. M.; Korsun, S.; Matul, A.

    2017-12-01

    In order to reconstruct the history of water mass interaction between the North Atlantic and the Nordic Seas since MIS 3 to the present, the sediment core from the North-East Scotland continental slope was investigated. The site of core AI-3521 (59°30.009 N, 7°20.062 E) from the 1051 m water depth is located beneath the pathway of the North Atlantic current which transports warm and saline Atlantic surface water to the Norwegian Sea. The age model of the sequence is based on stable isotope record of benthic Cassidulina neoteretis and planktic Neogloboquadrina pachyderma sin. and Globigerina bulloides. The Holocene interval of the upper 1.5 m is characterized by high sedimentation rates and the high biodiversity of microfauna. The distribution of ice rafted debris and CaCO3 content; benthic and planktic foraminiferal assemblages; oxygen, carbon and boron isotopes, Mg/Ca ratio were used to reconstruct the regional paleoceanographic conditions (bioproductivity, temperature, salinity) and to compare with the paleoclimatic events in the subpolar North Atlantic in the frame of the global environmental changes during the Late Pleistocene and Holocene. The research was supported by Russian Science Foundation projects 16-47-02009 and 14-50-00095.

  20. Influence of prolonged Anomalies in North Atlantic Sea Surface Temperature on Winter Windstorms

    NASA Astrophysics Data System (ADS)

    Höschel, Ines; Schuster, Mareike; Grieger, Jens; Ulbrich, Uwe

    2016-04-01

    The focus of this presentation is on decadal scale variations in the frequency and in the intensity of mid-latitude winter windstorms. Projections for the end of the next century are often beyond the time horizon of business, thus there is an increasing interest on decadal prediction, especially for infrastructural planning and in the insurance industry. One source of decadal predictability is the Atlantic multidecadal variability (AMV), a change in the sea surface temperature of the North Atlantic, strongly linked to the meridional overturning circulation. Correlation patterns between annual AMV-indices and annual mean of geopotential height at 500 hPa in reanalysis data show an anti-correlation in the North Atlantic. That is, during AMV warm phases the North Atlantic Oscillation (NAO) is more negative. Consequently, AMV should influence the characteristics of winter windstorms at multi-year scales. For the presented investigations a 10-member ensemble of 38-year-long idealized simulations with the atmosphere model ECHAM6 with lower boundary conditions, representing warm and cool phases of the AMV, is used. In the idealized simulations, the anti-correlation between AMV and NAO is well represented. For the identification of winter windstorms an objective wind tracking algorithm based on the exceedance of the local 98th percentile of 10m wind speed is applied. Storms under AMV-warm and AMV-cool conditions will be compared in terms of storm track density and probability distribution of storm characteristics.

  1. Surface Salinity Variability in the North Atlantic During Recent Decades

    NASA Technical Reports Server (NTRS)

    Haekkinen, Sirpa

    2001-01-01

    The sea surface salinity (SSS) variability in the North Atlantic is investigated using numerical model simulations for the last 50 years based on atmospheric forcing variability from Comprehensive Atmosphere Ocean Data Set (COADS) and National Center for Environmental Prediction / National Center for Atmospheric Research (NCEP/NCAR) Reanalysis. The largest interannual and longer term variability occurs in two regions: the Labrador Sea and the North Equatorial Countercurrent (NECC) region. In both regions the seasonality of the surface salinity variability is prominent with the maximum standard deviation occurring in the summer/fall period. In the Labrador Sea the summer SSS anomalies far exceed those of wintertime in amplitude. The interannual SSS variability in the subpolar gyre can be attributed to two factors: excess ice melt and heat flux (i.e. deep mixing) variations. On the other hand, heat flux variability can also lead to meridional overturning changes on decadal time scales such that weak overturning is manifested in fresh surface conditions in the subpolar gyre. The overturning changes also influence the NECC region SSS variability. Moreover, the subpolar freshening events are expected to occur during the negative phase of North Atlantic Oscillation which is associated with a weak wintertime surface heat loss in the subpolar gyre. No excess sea ice melt or precipitation is necessary for the formation of the fresh anomalies, because with the lack of wide-spread deep mixing, the fresh water that would be expected based on climatology, would accumulate at the surface. Thus, the fresh water 'conveyor' in the Atlantic operates via the overturning circulation such that deep mixing inserts fresh water while removing heat from the water column.

  2. Coastal sources, sinks and strong organic complexation of dissolved cobalt within the US North Atlantic GEOTRACES transect GA03

    NASA Astrophysics Data System (ADS)

    Noble, Abigail E.; Ohnemus, Daniel C.; Hawco, Nicholas J.; Lam, Phoebe J.; Saito, Mak A.

    2017-06-01

    Cobalt is the scarcest of metallic micronutrients and displays a complex biogeochemical cycle. This study examines the distribution, chemical speciation, and biogeochemistry of dissolved cobalt during the US North Atlantic GEOTRACES transect expeditions (GA03/3_e), which took place in the fall of 2010 and 2011. Two major subsurface sources of cobalt to the North Atlantic were identified. The more prominent of the two was a large plume of cobalt emanating from the African coast off the eastern tropical North Atlantic coincident with the oxygen minimum zone (OMZ) likely due to reductive dissolution, biouptake and remineralization, and aeolian dust deposition. The occurrence of this plume in an OMZ with oxygen above suboxic levels implies a high threshold for persistence of dissolved cobalt plumes. The other major subsurface source came from Upper Labrador Seawater, which may carry high cobalt concentrations due to the interaction of this water mass with resuspended sediment at the western margin or from transport further upstream. Minor sources of cobalt came from dust, coastal surface waters and hydrothermal systems along the Mid-Atlantic Ridge. The full depth section of cobalt chemical speciation revealed near-complete complexation in surface waters, even within regions of high dust deposition. However, labile cobalt observed below the euphotic zone demonstrated that strong cobalt-binding ligands were not present in excess of the total cobalt concentration there, implying that mesopelagic labile cobalt was sourced from the remineralization of sinking organic matter. In the upper water column, correlations were observed between total cobalt and phosphate, and between labile cobalt and phosphate, demonstrating a strong biological influence on cobalt cycling. Along the western margin off the North American coast, this correlation with phosphate was no longer observed and instead a relationship between cobalt and salinity was observed, reflecting the importance of

  3. Bathymetric controls on Pliocene North Atlantic and Arctic sea surface temperature and deepwater production

    USGS Publications Warehouse

    Robinson, M.M.; Valdes, P.J.; Haywood, A.M.; Dowsett, H.J.; Hill, D.J.; Jones, S.M.

    2011-01-01

    The mid-Pliocene warm period (MPWP; ~. 3.3 to 3.0. Ma) is the most recent interval in Earth's history in which global temperatures reached and remained at levels similar to those projected for the near future. The distribution of global warmth, however, was different than today in that the high latitudes warmed more than the tropics. Multiple temperature proxies indicate significant sea surface warming in the North Atlantic and Arctic Oceans during the MPWP, but predictions from a fully coupled ocean-atmosphere model (HadCM3) have so far been unable to fully predict the large scale of sea surface warming in the high latitudes. If climate proxies accurately represent Pliocene conditions, and if no weakness exists in the physics of the model, then model boundary conditions may be in error. Here we alter a single boundary condition (bathymetry) to examine if Pliocene high latitude warming was aided by an increase in poleward heat transport due to changes in the subsidence of North Atlantic Ocean ridges. We find an increase in both Arctic sea surface temperature and deepwater production in model experiments that incorporate a deepened Greenland-Scotland Ridge. These results offer both a mechanism for the warming in the North Atlantic and Arctic Oceans indicated by numerous proxies and an explanation for the apparent disparity between proxy data and model simulations of Pliocene northern North Atlantic and Arctic Ocean conditions. Determining the causes of Pliocene warmth remains critical to fully understanding comparisons of the Pliocene warm period to possible future climate change scenarios. ?? 2011.

  4. Projected pH reductions by 2100 might put deep North Atlantic biodiversity at risk

    NASA Astrophysics Data System (ADS)

    Gehlen, M.; Séférian, R.; Jones, D. O. B.; Roy, T.; Roth, R.; Barry, J.; Bopp, L.; Doney, S. C.; Dunne, J. P.; Heinze, C.; Joos, F.; Orr, J. C.; Resplandy, L.; Segschneider, J.; Tjiputra, J.

    2014-12-01

    This study aims to evaluate the potential for impacts of ocean acidification on North Atlantic deep-sea ecosystems in response to IPCC AR5 Representative Concentration Pathways (RCPs). Deep-sea biota is likely highly vulnerable to changes in seawater chemistry and sensitive to moderate excursions in pH. Here we show, from seven fully coupled Earth system models, that for three out of four RCPs over 17% of the seafloor area below 500 m depth in the North Atlantic sector will experience pH reductions exceeding -0.2 units by 2100. Increased stratification in response to climate change partially alleviates the impact of ocean acidification on deep benthic environments. We report on major pH reductions over the deep North Atlantic seafloor (depth >500 m) and at important deep-sea features, such as seamounts and canyons. By 2100, and under the high CO2 scenario RCP8.5, pH reductions exceeding -0.2 (-0.3) units are projected in close to 23% (~15%) of North Atlantic deep-sea canyons and ~8% (3%) of seamounts - including seamounts proposed as sites of marine protected areas. The spatial pattern of impacts reflects the depth of the pH perturbation and does not scale linearly with atmospheric CO2 concentration. Impacts may cause negative changes of the same magnitude or exceeding the current target of 10% of preservation of marine biomes set by the convention on biological diversity, implying that ocean acidification may offset benefits from conservation/management strategies relying on the regulation of resource exploitation.

  5. Overview of the 1988 GCE/CASE/WATOX Studies of biogeochemical cycles in the North Atlantic region

    NASA Astrophysics Data System (ADS)

    Pszenny, Alexander A. P.; Galloway, James N.; Artz, Richard S.; Boatman, Joseph F.

    1990-06-01

    The 1988 Global Change Expedition/Coordinated Air-Sea Experiment/Western Atlantic Ocean Experiment (GCE/CASE/WATOX) was a multifaceted research program designed to study atmospheric and oceanic processes affecting the biogeochemical cycles of carbon, nitrogen, sulfur, and trace metals in the North Atlantic Ocean region. Field work included (1) a 49-day research cruise aboard NOAA ship Mt. Mitchell (Global Change Expedition) from Norfolk, Virginia, to Bermuda, Iceland, the Azores, and Barbados, (2) eight flights of the NOAA King Air research aircraft, four off the Virginia Capes and four near Bermuda (CASE/WATOX), and (3) a research cruise aboard the yacht Fleurtie near Bermuda (WATOX). Objectives of GCE/CASE/WATOX were (1) to examine processes controlling the mesoscale distributions of productivity, chlorophyll, and phytoplankton growth rates in Atlantic surface waters, (2) to identify factors controlling the distribution of ozone in the North Atlantic marine boundary layer, and (3) to estimate the contributions of sources on surrounding continents to the biogeochemical cycles of sulfur, nitrogen, and trace metals over the North Atlantic region during the boreal summer season. The individual papers in this and the next two issues of Global Biogeochemical Cycles provide details on the results and analyses of the individual measurement efforts. This paper provides a brief overview of GCE/CASE/WATOX.

  6. Role of the Atlantic Multidecadal Variability on extreme climate conditions over North America

    NASA Astrophysics Data System (ADS)

    Ruprich-Robert, Yohan; Delworth, Thomas; Msadek, Rym; Castruccio, Frederic; Yeager, Stephen; Danabasoglu, Gokhan

    2017-04-01

    The Atlantic Multidecadal Variability (AMV) is associated with marked modulations of climate anomalies observed over many areas of the globe like droughts, decline in sea ice or changes in the atmospheric circulation. However, the shortness of the historical observations compared to the AMV period ( 60-80yr) makes it difficult to show that the AMV is a direct driver of these variations. To isolate the AMV climate response, we use a suite of global coupled models from GFDL and NCAR, in which the North Atlantic sea surface temperatures are restored to the observed AMV pattern, while the other ocean basins are left fully coupled. In order to explore and robustly isolate the AMV impacts on extreme events, we use large ensemble simulations (between 30 and 100 members depending on the model) that are integrated for 10 years. We investigate the importance of model resolution by analyzing GFDL models that vary in their atmospheric resolution and we assess the robustness of the results by comparing them to similar experiments performed with the NCAR coupled model. Further, we investigate the influence of model surface temperature biases on the simulated AMV teleconnections using a flux-adjusted experiment based on a model configuration that corrects for momentum, enthalpy and freshwater fluxes. We focus in this presentation on the impact of the AMV on the occurrence of the North American heat waves. We find that the AMV modulates by about 30% the occurrence of heat waves over North Mexico and the South-West of USA, with more heat waves during a warm phase of the AMV. The main reason for such an increase is that, during a warm AMV phase, the anomalously warm sea surface temperature leads to an increase of the atmospheric convection over the tropical Atlantic, as well as to a an anomalous downward motion over North America. This atmospheric response to AMV inhibits the precipitation over there and drives a deficit of soil moisture. In the summer, the latent heat of

  7. Temperature responses of some North Atlantic Cladophora species (Chlorophyceae) in relation to their geographic distribution

    NASA Astrophysics Data System (ADS)

    Cambridge, M.; Breeman, A. M.; van Oosterwijk, R.; van den Hoek, C.

    1984-09-01

    The temperature responses for growth and survival have been experimentally tested for 6 species of the green algal genus Cladophora (Chlorophyceae; Cladophorales) (all isolated from Roscoff, Brittany, France, one also from Connecticut, USA), selected from 4 distribution groups, in order to determine which phase in the annual temperature regime might prevent the spread of a species beyond its present latitudinal range on the N. Atlantic coasts. For five species geographic limits could be specifically defined as due to a growth limit in the growing season or to a lethal limit in the adverse season. These species were: (1) C. coelothrix (Amphiatlantic tropical to warm temperate), with a northern boundary on the European coasts formed by a summer growth limit near the 12°C August isotherm. On the American coasts sea temperatures should allow its occurrence further north. (2) C. vagabunda (Amphiatlantic tropical to temperate), with a northern boundary formed by a summer growth limit near the 15°C August isotherm on both sides of the Atlantic. (3) C. dalmatica, as for C. vagabunda. (4) C. hutchinsiae (Mediterranean-Atlantic warm temperate), with a northern boundary formed by a summer growth limit near the 12°C August isotherm, and possibly also a winter lethal limit near the 6°C February isotherm; and a southern boundary formed by a southern lethal limit near the 26°C August isotherm. It is absent from the warm temperate American coast because its lethal limits, 5° and 30°C, are regularly reached there. (5) Preliminary data for C. rupestris (Amphiatlantic temperate), suggest the southeastern boundary on the African coast to be a summer lethal limit near the 26°C August isotherm; the southwestern boundary on the American coast lies on the 20°C August isotherm. For one species, C. albida, the experimental growth and survival range was wider than expected from its geographic distribution, and reasons to account for this are suggested.

  8. The biology and fisheries of European hake, Merluccius merluccius, in the north-east Atlantic.

    PubMed

    Murua, Hilario

    2010-01-01

    The aim of this chapter is to review the biology and fishery, including the management, of European hake in the north-east Atlantic. The European hake is widely distributed throughout the north-east Atlantic, from Norway in the north to the Guinea Gulf in the south, and throughout the Mediterranean and Black Sea, being more abundant from the British Isles to the south of Spain. In this area, ICES (International Council for the Exploration of the Sea) recognises the existence of two stocks: the northern stock and the southern stock. Both stocks have been extensively and intensively harvested and since the beginning of the 90s have been considered to be outside safe biological limits. The northern stock, however, is currently considered to lie within safe biological limits. In any case, recovery plans were implemented for the northern stock in 2004 and for the southern stock in 2006. Despite its commercial importance, knowledge of the biology and ecology of the European hake in the North Atlantic is still quite scarce. For example, recent investigations suggest that European hake grows much faster, by a factor of two, than was considered previously. This faster growth also affects the maturity-at-age pattern of hake and the agreed maturity-at-age ogive used in the assessments. European hake is a top predator in the demersal community in the north-east Atlantic area; mainly preying on blue whiting, horse mackerel and other cupleids. In relation to the reproductive biology, European hake is considered to be a batch spawner species with indeterminate fecundity and spawning activity all year round. All these characteristics could, in turn, be interpreted as European hake adopting a more opportunistic life strategy, which is unusual for a gadoid and demersal species, and raises several questions about hake biology and ecology that require further investigation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Sources of iron and phosphate affect the distribution of diazotrophs in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Ratten, Jenni-Marie; LaRoche, Julie; Desai, Dhwani K.; Shelley, Rachel U.; Landing, William M.; Boyle, Ed; Cutter, Gregory A.; Langlois, Rebecca J.

    2015-06-01

    Biological nitrogen fixation (BNF) supplies nutrient-depleted oceanic surface waters with new biologically available fixed nitrogen. Diazotrophs are the only organisms that can fix dinitrogen, but the factors controlling their distribution patterns in the ocean are not well understood. In this study, the relative abundances of eight diazotrophic phylotypes in the subtropical North Atlantic Ocean were determined by quantitative PCR (qPCR) of the nifH gene using TaqMan probes. A total of 152 samples were collected at 27 stations during two GEOTRACES cruises; Lisbon, Portugal to Mindelo, Cape Verde Islands (USGT10) and Woods Hole, MA, USA via the Bermuda Time Series (BATS) to Praia, Cape Verde Islands (USGT11). Seven of the eight diazotrophic phylotypes tested were detected. These included free-living and symbiotic cyanobacteria (unicellular groups (UCYN) A, B and C, Trichodesmium, the diatom-associated cyanobacteria Rhizoselinia-Richelia and Hemiaulus-Richelia) and a γ-proteobacterium (Gamma A, AY896371). The nifH gene abundances were analyzed in the context of a large set of hydrographic parameters, macronutrient and trace metal concentrations measured in parallel with DNA samples using the PRIMER-E software. The environmental variables that most influenced the abundances and distribution of the diazotrophic phylotypes were determined. We observed a geographic segregation of diazotrophic phylotypes between east and west, with UCYN A, UCYN B and UCYN C and the Rhizosolenia-Richelia symbiont associated with the eastern North Atlantic (east of 40°W), and Trichodesmium and Gamma A detected across the basin. Hemiaulus-Richelia symbionts were primarily found in temperate waters near the North American coast. The highest diazotrophic phylotype abundance and diversity were associated with temperatures greater than 22 °C in the surface mixed layer, a high supply of iron from North African aeolian mineral dust deposition and from remineralized nutrients upwelled at the

  10. Tracing the first steps of American sturgeon pioneers in Europe

    USGS Publications Warehouse

    Ludwig, A.; Arndt, U.; Lippold, S.; Benecke, N.; Debus, L.; King, T.L.; Matsumura, S.

    2008-01-01

    Background. A Baltic population of Atlantic sturgeon was founded ???1,200 years ago by migrants from North America, but after centuries of persistence, the population was extirpated in the 1960s, mainly as a result of over-harvest and habitat alterations. As there are four genetically distinct groups of Atlantic sturgeon inhabiting North American rivers today, we investigated the genetic provenance of the historic Baltic population by ancient DNA analyses using mitochondrial and nuclear markers. Results. The phylogeographic signal obtained from multilocus microsatellite DNA genotypes and mitochondrial DNA control region haplotypes, when compared to existing baseline datasets from extant populations, allowed for the identification of the region-of-origin of the North American Atlantic sturgeon founders. Moreover, statistical and simulation analyses of the multilocus genotypes allowed for the calculation of the effective number of individuals that originally founded the European population of Atlantic sturgeon. Our findings suggest that the Baltic population of A. oxyrinchus descended from a relatively small number of founders originating from the northern extent of the species' range in North America. Conclusion. These results demonstrate that the most northerly distributed North American A. oxyrinchus colonized the Baltic Sea ???1,200 years ago, suggesting that Canadian specimens should be the primary source of broodstock used for restoration in Baltic rivers. This study illustrates the great potential of patterns obtained from ancient DNA to identify population-of-origin to investigate historic genotype structure of extinct populations. ?? 2008 Ludwig et al; licensee BioMed Central Ltd.

  11. 47 CFR 52.13 - North American Numbering Plan Administrator.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false North American Numbering Plan Administrator. 52.13 Section 52.13 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) NUMBERING Administration § 52.13 North American Numbering Plan Administrator. (a) The North American Numbering Plan Administrator ...

  12. Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean

    PubMed Central

    Mojica, Kristina D A; Huisman, Jef; Wilhelm, Steven W; Brussaard, Corina P D

    2016-01-01

    Viral lysis of phytoplankton constrains marine primary production, food web dynamics and biogeochemical cycles in the ocean. Yet, little is known about the biogeographical distribution of viral lysis rates across the global ocean. To address this, we investigated phytoplankton group-specific viral lysis rates along a latitudinal gradient within the North Atlantic Ocean. The data show large-scale distribution patterns of different virus groups across the North Atlantic that are associated with the biogeographical distributions of their potential microbial hosts. Average virus-mediated lysis rates of the picocyanobacteria Prochlorococcus and Synechococcus were lower than those of the picoeukaryotic and nanoeukaryotic phytoplankton (that is, 0.14 per day compared with 0.19 and 0.23 per day, respectively). Total phytoplankton mortality (virus plus grazer-mediated) was comparable to the gross growth rate, demonstrating high turnover rates of phytoplankton populations. Virus-induced mortality was an important loss process at low and mid latitudes, whereas phytoplankton mortality was dominated by microzooplankton grazing at higher latitudes (>56°N). This shift from a viral-lysis-dominated to a grazing-dominated phytoplankton community was associated with a decrease in temperature and salinity, and the decrease in viral lysis rates was also associated with increased vertical mixing at higher latitudes. Ocean-climate models predict that surface warming will lead to an expansion of the stratified and oligotrophic regions of the world's oceans. Our findings suggest that these future shifts in the regional climate of the ocean surface layer are likely to increase the contribution of viral lysis to phytoplankton mortality in the higher-latitude waters of the North Atlantic, which may potentially reduce transfer of matter and energy up the food chain and thus affect the capacity of the northern North Atlantic to act as a long-term sink for CO2. PMID:26262815

  13. Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean.

    PubMed

    Mojica, Kristina D A; Huisman, Jef; Wilhelm, Steven W; Brussaard, Corina P D

    2016-02-01

    Viral lysis of phytoplankton constrains marine primary production, food web dynamics and biogeochemical cycles in the ocean. Yet, little is known about the biogeographical distribution of viral lysis rates across the global ocean. To address this, we investigated phytoplankton group-specific viral lysis rates along a latitudinal gradient within the North Atlantic Ocean. The data show large-scale distribution patterns of different virus groups across the North Atlantic that are associated with the biogeographical distributions of their potential microbial hosts. Average virus-mediated lysis rates of the picocyanobacteria Prochlorococcus and Synechococcus were lower than those of the picoeukaryotic and nanoeukaryotic phytoplankton (that is, 0.14 per day compared with 0.19 and 0.23 per day, respectively). Total phytoplankton mortality (virus plus grazer-mediated) was comparable to the gross growth rate, demonstrating high turnover rates of phytoplankton populations. Virus-induced mortality was an important loss process at low and mid latitudes, whereas phytoplankton mortality was dominated by microzooplankton grazing at higher latitudes (>56°N). This shift from a viral-lysis-dominated to a grazing-dominated phytoplankton community was associated with a decrease in temperature and salinity, and the decrease in viral lysis rates was also associated with increased vertical mixing at higher latitudes. Ocean-climate models predict that surface warming will lead to an expansion of the stratified and oligotrophic regions of the world's oceans. Our findings suggest that these future shifts in the regional climate of the ocean surface layer are likely to increase the contribution of viral lysis to phytoplankton mortality in the higher-latitude waters of the North Atlantic, which may potentially reduce transfer of matter and energy up the food chain and thus affect the capacity of the northern North Atlantic to act as a long-term sink for CO2.

  14. Links between North Atlantic atmospheric blocking and recent trends in European winter precipitation

    NASA Astrophysics Data System (ADS)

    Ummenhofer, Caroline; Seo, Hyodae; Kwon, Young-Oh; Joyce, Terrence

    2015-04-01

    European precipitation has sustained robust trends during wintertime (January - March) over recent decades. Central, western, and northern Europe have become wetter by an average 0.1-0.3% per annum for the period 1901-2010, while southern Europe, including the Iberian Peninsula, much of Italy and the Balkan States, has sustained drying of -0.2% per annum or more over the same period. The overall pattern is consistent across different observational precipitation products, while the magnitude of the precipitation trends varies amongst data sets. Using cluster analysis, which identifies recurrent states (or regimes) of European winter precipitation by grouping them according to an objective similarity criterion, changes in the frequency of dominant winter precipitation patterns over the past century are evaluated. Considerable multi-decadal variability exists in the frequency of dominant winter precipitation patterns: more recent decades are characterised by significantly fewer winters with anomalous wet conditions over southern, western, and central Europe. In contrast, winters with dry conditions in western and southern Europe, but above-average rainfall in western Scandinavia and the northern British Isles, have been more common recently. We evaluate the associated multi-decadal large-scale circulation changes across the broader extratropical North Atlantic region, which accompany the observed wintertime precipitation variability using the 20th Century reanalysis product. Some influence of the North Atlantic Oscillation (NAO) is apparent in modulating the frequency of dominant precipitation patterns. However, recent trends in the characteristics of atmospheric blocking across the North Atlantic sector indicate a change in the dominant blocking centres (near Greenland, the British Isles, and west of the Iberian Peninsula). Associated changes in sea level pressure, storm track position and strength, and oceanic heat fluxes across the North Atlantic region are also

  15. Composition and structure of the parasite faunas of cod, Gadus morhua L. (Teleostei: Gadidae), in the North East Atlantic.

    PubMed

    Perdiguero-Alonso, Diana; Montero, Francisco E; Raga, Juan Antonio; Kostadinova, Aneta

    2008-07-18

    Although numerous studies on parasites of the Atlantic cod, Gadus morhua L. have been conducted in the North Atlantic, comparative analyses on local cod parasite faunas are virtually lacking. The present study is based on examination of large samples of cod from six geographical areas of the North East Atlantic which yielded abundant baseline data on parasite distribution and abundance. A total of 826 fish was sampled in the Baltic, Celtic, Irish and North seas, Icelandic waters and Trondheimsfjord (Norway) in 2002 (spring and autumn) and 2003 (spring). The gills and internal organs (oesophagus, stomach, intestine, pyloric caeca, liver, heart, spleen, gall bladder and gonads) were examined for macroparasites following a standardised protocol. The taxonomic consistency of the identification was ensured thorough the entire study. We discuss some problems in parasite identification, outline the composition of the parasite faunas in cod in the six North East Atlantic regions, provide novel data on parasite prevalence and abundance and a comparative assessment of the structure of the regional parasite faunas with respect to the higher-level taxonomic groupings, host specificity and zoogeographical distribution of the parasites. Altogether 57 different parasite forms were found including seven new host records (Diclidophora merlangi, Rhipidocotyle sp., Fellodistomum sp., Steringotrema sp., Cucullanus sp., Spinitectus sp., and Chondracanthus ornatus). The predominant groups of cod parasites were trematodes (19 species) and nematodes (13 species) including larval anisakids which comprised 58.2% of the total number of individuals. Our study reveals relatively rich regional parasite faunas in cod from the North East Atlantic which are dominated by generalist parasites with Arcto-Boreal distribution. Further, it provides more detailed data on the distribution in the North East Atlantic of the majority of cod parasites which may serve as baselines for future studies on the

  16. Why were Past North Atlantic Warming Conditions Associated with Drier Climate in the Western United States?

    NASA Astrophysics Data System (ADS)

    Wong, C. I.; Potter, G. L.; Montanez, I. P.; Otto-Bliesner, B. L.; Behling, P.; Oster, J. L.

    2014-12-01

    Investigating climate dynamics governing rainfall over the western US during past warmings and coolings of the last glacial and deglaciation is pertinent to understanding how precipitation patterns might change with future global warming, especially as the processes driving the global hydrological reorganization affecting this drought-prone region during these rapid temperature changes remain unresolved. We present model climates of the Bølling warm event (14,500 years ago) and Younger Dryas cool event (12,200 years ago) that i) uniquely enable the assessment of dueling hypothesis about the atmospheric teleconnections responsible for abrupt temperature shifts in the North Atlantic region to variations in moisture conditions across the western US, and ii) show that existing hypotheses about these teleconnections are unsupported. Modeling results show no evidence for a north-south shift of the Pacific winter storm track, and we argue that a tropical moisture source with evolving trajectory cannot explain alternation between wet/dry conditions, which have been reconstructed from the proxy record. Alternatively, model results support a new hypothesis that variations in the intensity of the winter storm track, corresponding to its expansion/contraction, can account for regional moisture differences between warm and cool intervals of the last deglaciation. Furthermore, we demonstrate that the mechanism forcing the teleconnection between the North Atlantic and western US is the same across different boundary conditions. In our simulation, during the last deglaciation, and in simulations of future warming, perturbation of the Rossby wave structure reconfigures the atmospheric state. This reconfiguration affects the Aleutian Low and high-pressure ridge over and off of the northern North American coastline driving variability in the storm track. Similarity between the processes governing the climate response during these distinct time intervals illustrates the robust nature

  17. Ocean array alters view of Atlantic conveyor

    NASA Astrophysics Data System (ADS)

    Kornei, Katherine

    2018-02-01

    Oceanographers have put a stethoscope on the coursing circulatory system of the Atlantic Ocean, and they have found a skittish pulse that's surprisingly strong in the waters east of Greenland—discoveries that should improve climate models. The powerful currents known as the Atlantic meridional overturning circulation (AMOC) are an engine in Earth's climate. The AMOC's shallower limbs—which include the Gulf Stream—move warm water from the tropics northward, warming Western Europe. In the north, the waters cool and sink, forming deeper limbs that transport the cold water back south—and sequester anthropogenic carbon in the process. Last week, at the American Geophysical Union's Ocean Sciences meeting, scientists presented the first data from an array of instruments moored in the subpolar North Atlantic, a $35 million, seven-nation project known as the Overturning in the Subpolar North Atlantic Program (OSNAP). Since 2004, researchers have gathered data from another array, at 26°N, stretching from Florida to Africa. But OSNAP is the first to monitor the circulation farther north, where a critical aspect of the overturning occurs. The observations reveal unexpected eddies and strong variability in the AMOC currents. They also show that the currents east of Greenland contribute the most to the total AMOC flow. Climate models, on the other hand, have emphasized the currents west of Greenland in the Labrador Sea.

  18. WATERFOWL-HABITAT ASSOCIATIONS DURING WINTER IN A URBAN NORTH ATLANTIC ESTUARY

    EPA Science Inventory

    Coastal habitats near urban centres in North Atlantic estuaries often support substantial numbers of wintering waterfowl, but little is known of the effects of landscape setting and urbanisation on habitat use. We conducted surveys of waterfowl at 32 wintering sites in Narraganse...

  19. NORTH AMERICAN REGIONAL ACTION PLAN ON MERCURY

    EPA Science Inventory

    The North American Regional Action Plan (NARAP) on Mercury is one of a number of action plans that stem from the North American Agreement on Environmental Cooperation between the governments of Canada, Mexico and the United States. That Agreement established the Commission for En...

  20. A teleconnection study of interannual sea surface temperature fluctuations in the northern North Atlantic and precipitation and runoff over Western Siberia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, S.; Mysak, L.A.

    The spatial distributions of northern North Atlantic sea surface temperature and the high-latitude Northern Hemisphere sea level pressure anomalies averaged over six consecutive warm SST winters (1951-1956) and six consecutive cold SST winters (1971-1976) are examined. Three SLP anomaly difference (i.e., warm - cold winters) centers, significant at the 5% level, are observed over the northern North Atlantic, Europe, and western Siberia. This anomaly pattern is consistent in principle with what was identified in a related analyses by Palmer and Sun, who used composite data from selected winter months. The SLP difference centers over the northern North Atlantic and westernmore » Siberia are in phase. The impact of the latter center upon the runoff from the underlying Ob and Yenisey rivers and especially the teleconnection between SST anomalies in the northern North Atlantic and runoff of those two rivers via the atmosphere are investigated. The temporal cross-correlation analyses of 50 years (1930-1979) of records of SST, precipitation, and runoff anomalies indicate that the winter SST anomalies in the northern North Atlantic are significantly correlated with the winter and following summer runoff fluctuations of the Ob and Yenisey rivers. Positive (negative) northern North Atlantic SST anomalies are related to less (more) precipitation, and hence, less (more) runoff, over western Siberia. Discussions of possible physical mechanisms and processes that lead to the above relationships are attempted. The analyses of spatial distributions of precipitation in the warm and cold SST winters suggest that precipitation fluctuations over Europe and western Siberia may be affected by shifts of cyclone tracks associated with the SST variations in the northern North Atlantic. 27 refs., 9 figs.« less

  1. Ash from Eyjafjallajökull Volcano, Iceland Stretches over the North Atlantic

    NASA Image and Video Library

    2010-04-18

    This image from NASA Terra spacecraft shows ash plumes from Eyjafjallajökull Volcano, Iceland stretching over the North Atlantic; the volcano erupted on April 14, 2010 bringing closure to major airports in Europe.

  2. Dilution of the northern North Atlantic Ocean in recent decades.

    PubMed

    Curry, Ruth; Mauritzen, Cecilie

    2005-06-17

    Declining salinities signify that large amounts of fresh water have been added to the northern North Atlantic Ocean since the mid-1960s. We estimate that the Nordic Seas and Subpolar Basins were diluted by an extra 19,000 +/- 5000 cubic kilometers of freshwater input between 1965 and 1995. Fully half of that additional fresh water-about 10,000 cubic kilometers-infiltrated the system in the late 1960s at an approximate rate of 2000 cubic kilometers per year. Patterns of freshwater accumulation observed in the Nordic Seas suggest a century time scale to reach freshening thresholds critical to that portion of the Atlantic meridional overturning circulation.

  3. Biogeography of jellyfish in the North Atlantic, by traditional and genomic methods

    NASA Astrophysics Data System (ADS)

    Licandro, P.; Blackett, M.; Fischer, A.; Hosia, A.; Kennedy, J.; Kirby, R. R.; Raab, K.; Stern, R.; Tranter, P.

    2014-11-01

    Scientific debate on whether the recent increase in reports of jellyfish outbreaks is related to a true rise in their abundance, have outlined the lack of reliable records of Cnidaria and Ctenophora. Here we describe different data sets produced within the EU program EUROBASIN, which have been assembled with the aim of presenting an up to date overview of the diversity and standing stocks of jellyfish in the North Atlantic region. Using a net adapted to sample gelatinous zooplankton quantitatively, Cnidaria and Ctenophora were collected in the epipelagic layer during spring-summer 2010-2013, in inshore and offshore waters between 59-68° N Lat and 62° W-5° E Long. Jellyfish were also identified and counted in samples opportunistically collected by other sampling equipment in the same region and at two coastal stations in the Bay of Biscay and in the Gulf of Cadiz. Continuous Plankton Recorder (CPR) samples collected in 2009-2012 were re-analysed with the aim of identifying the time and location of Cnidarian blooms across the North Atlantic basin. Overall the data show high variability in jellyfish abundance and diversity, mainly in relation with different water masses and with the bathymetry. Higher densities were generally recorded on the shelves, where populations tend to be more diversified due to the presence of meropelagic medusae. Comparisons of net records from the G.O. Sars transatlantic cruise show that information on jellyfish diversity differs significantly depending on the sampling gear utilised. Indeed, the big trawls mostly collect relatively large scyphozoan and hydrozoan species, while small hydrozoans and early stages of ctenophora are only caught by smaller nets. Based on CPR data from 2009-2012, blooms of Cnidarians occurred in all seasons across the whole North Atlantic basin. Molecular analysis revealed that, in contrast with what was previously hypothesized, the CPR is able to detect blooms of meroplanktonic and holoplanktonic hydrozoans and

  4. Biogeography of jellyfish in the North Atlantic, by traditional and genomic methods

    NASA Astrophysics Data System (ADS)

    Licandro, P.; Blackett, M.; Fischer, A.; Hosia, A.; Kennedy, J.; Kirby, R. R.; Raab, K.; Stern, R.; Tranter, P.

    2015-07-01

    Scientific debate on whether or not the recent increase in reports of jellyfish outbreaks represents a true rise in their abundance has outlined a lack of reliable records of Cnidaria and Ctenophora. Here we describe different jellyfish data sets produced within the EU programme EURO-BASIN. These data were assembled with the aim of creating an improved baseline and providing new data that can be used to evaluate the current diversity and standing stocks of jellyfish in the North Atlantic region. Using a net adapted to sample gelatinous zooplankton quantitatively, cnidarians and ctenophores were collected from the epipelagic layer during spring-summer 2010-2013, in inshore and offshore waters between lat 59 and 68° N and long 62° W and 5° E. Jellyfish were also identified and counted in samples opportunistically collected by other sampling equipment in the same region and at two coastal stations in the Bay of Biscay and in the Gulf of Cadiz. Continuous Plankton Recorder (CPR) samples collected in 2009-2012 were re-analysed with the aim of identifying the time and location of cnidarian blooms across the North Atlantic Basin. Overall the data show high variability in jellyfish abundance and diversity, mainly in relation to different water masses and bathymetry. Higher densities were generally recorded on the shelves, where the communities tend to be more diverse due to the presence of meropelagic medusae. Comparison of net records from the G.O. Sars transatlantic cruise shows that information on jellyfish diversity differs significantly depending on the sampling gear utilised. Indeed, the big trawls mostly collect relatively large scyphozoan and hydrozoan species, while small hydrozoans and early stages of Ctenophora are only caught by smaller nets. Based on CPR data from 2009 to 2012, blooms of cnidarians occurred in all seasons across the whole North Atlantic Basin. Molecular analysis revealed that, contrary to previous hypotheses, the CPR is able to detect

  5. Intensified impact of tropical Atlantic SST on the western North Pacific summer climate under a weakened Atlantic thermohaline circulation

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Lee, June-Yi; Lu, Riyu; Dong, Buwen; Ha, Kyung-Ja

    2015-10-01

    The tropical North Atlantic (TNA) sea surface temperature (SST) has been identified as one of regulators on the boreal summer climate over the western North Pacific (WNP), in addition to SSTs in the tropical Pacific and Indian Oceans. The major physical process proposed is that the TNA warming induces a pair of cyclonic circulation anomaly over the eastern Pacific and negative precipitation anomalies over the eastern to central tropical Pacific, which in turn lead to an anticyclonic circulation anomaly over the western to central North Pacific. This study further demonstrates that the modulation of the TNA warming to the WNP summer climate anomaly tends to be intensified under background of the weakened Atlantic thermohaline circulation (THC) by using a water-hosing experiment. The results suggest that the weakened THC induces a decrease in thermocline depth over the TNA region, resulting in the enhanced sensitivity of SST variability to wind anomalies and thus intensification of the interannual variation of TNA SST. Under the weakened THC, the atmospheric responses to the TNA warming are westward shifted, enhancing the anticyclonic circulation and negative precipitation anomaly over the WNP. This study supports the recent finding that the negative phase of the Atlantic multidecadal oscillation after the late 1960s has been favourable for the strengthening of the connection between TNA SST variability and WNP summer climate and has important implications for seasonal prediction and future projection of the WNP summer climate.

  6. The link between eddy-driven jet variability and weather regimes in the North Atlantic-European sector

    NASA Astrophysics Data System (ADS)

    Madonna, E.; Li, C.; Grams, C. M.; Woollings, T.

    2017-12-01

    Understanding the variability of the North Atlantic eddy-driven jet is key to unravelling the dynamics, predictability and climate change response of extratropical weather in the region. This study aims to 1) reconcile two perspectives on wintertime variability in the North Atlantic-European sector and 2) clarify their link to atmospheric blocking. Two common views of wintertime variability in the North Atlantic are the zonal-mean framework comprising three preferred locations of the eddy-driven jet (southern, central, northern), and the weather regime framework comprising four classical North Atlantic-European regimes (Atlantic ridge AR, zonal ZO, European/Scandinavian blocking BL, Greenland anticyclone GA). We use a k-means clustering algorithm to characterize the two-dimensional variability of the eddy-driven jet stream, defined by the lower tropospheric zonal wind in the ERA-Interim reanalysis. The first three clusters capture the central jet and northern jet, along with a new mixed jet configuration; a fourth cluster is needed to recover the southern jet. The mixed cluster represents a split or strongly tilted jet, neither of which is well described in the zonal-mean framework, and has a persistence of about one week, similar to the other clusters. Connections between the preferred jet locations and weather regimes are corroborated - southern to GA, central to ZO, and northern to AR. In addition, the new mixed cluster is found to be linked to European/Scandinavian blocking, whose relation to the eddy-driven jet was previously unclear. The results highlight the necessity of bridging from weather to climate scales for a deeper understanding of atmospheric circulation variability.

  7. Aerosol and ozone distributions over the western North Atlantic during WATOX-86

    NASA Astrophysics Data System (ADS)

    Bridgman, H. A.; Schnell, Russell C.; Bodhaine, B. A.; Oltmans, S. J.

    1988-03-01

    On January 4, 6, 8, and 9, 1986, a series of National Oceanic and Atmospheric Administration WP-3D research flights was conducted over the western Atlantic Ocean 200-300 km off the coast of North America from Nova Scotia to Georgia as part of the Western Atlantic Ocean Experiment (WATOX). Rights were made perpendicular to NW airflow to establish the flux of gas and aerosol emissions off the North American continent to the ocean. Representative condensation nucleus (CN) concentrations averaged 150-250 cm-3 in the free troposphere in clean conditions, but in atmospheric layers containing anthropogenic air pollution transported from long distances, CN concentrations reached 6500 cm-3. In the marine boundary layer, CN concentrations averaged 500 to 750 cm-3 under relatively clean conditions, and 1500 to 3000 cm-3 in polluted air. Aerosol scattering extinction (bsp) ranged from 70 × 10-6 m-1 in the marine boundary layer to 20 × 10-6 m-1 in the free troposphere. Aerosol bsp was not as responsive to changes in atmospheric structure as CN although factor-of-2 changes across the marine boundary layer were observed. Aerosol size spectra in the marine boundary layer were an order of magnitude greater than those in the free troposphere. Consistent peaks in the volume spectra between 8 and 10 μm diameter established the importance of sea salt as a major aerosol component. Ozone profiles in the free troposphere, normally in the 30-40 ppb range, exhibited laminae of enhanced concentrations (up to 70 ppb) at moisture boundaries, suggesting that active ozone production was occurring at these levels. Ozone concentrations within the marine boundary layer were generally lower than in the free troposphere.

  8. Suborbital timescale variability of North Atlantic Deep Water during the past 200,000 years

    NASA Astrophysics Data System (ADS)

    Oppo, Delia W.; Lehman, Scott J.

    1995-10-01

    also seen in tropical surface water records and at some deep Atlantic sites and may reflect the common derivation of these water masses. Variations of ≥ 0.5 ‰ superimposed on this rising δ13C trend within substage 5e in V29-202 are so far not evident in tropical feed waters and may therefore indicate that NADW production was weaker during the late than mid-Eemian. An electronic supplement of this material may be obtained on a diskette or Anonymous FTP from KOSMOS.AGU.ORG. (LOGIN to AGU's FTP account using ANONYMOUS as the username and GUEST as the password. Go to the right directory by typing CD APEND. Type LS to see what files are available. Type GET and the name of the file to get it. Finally, type QUIT to leave the system.) (Paper 95PA02089, Suborbital timescale variability of North Atlantic Deep Water during the past 200,000 years, by D. W. Oppo and S. J. Lehman) Diskette may be ordered from American Geophysical Union, 2000 Florida Avenue, N.W., Washington, DC 20009; $15.00. Payment must accompany order.

  9. A new collective view of oceanography of the Arctic and North Atlantic basins

    NASA Astrophysics Data System (ADS)

    Yashayaev, Igor; Seidov, Dan; Demirov, Entcho

    2015-03-01

    We review some historical aspects of the major observational programs in the North Atlantic and adjacent regions that contributed to establishing and maintaining the global ocean climate monitoring network. The paper also presents the oceanic perspectives of climate change and touches the important issues of ocean climate variability on time scales from years to decades. Some elements of the improved understanding of the causes and mechanisms of variability in the subpolar North Atlantic and adjacent seas are discussed in detail. The sophistication of current oceanographic analysis, especially in connection with the most recent technological breakthroughs - notably the launch of the global array of profiling Argo floats - allows us to approach new challenges in ocean research. We demonstrate how the ocean-climate changes in the subpolar basins and polar seas correlate with variations in the major climate indices such as the North Atlantic Oscillation and Atlantic Multidecadal Oscillation, and discuss possible connections between the unprecedented changes in the Arctic and Greenland ice-melt rates observed over the past decade and variability of hydrographic conditions in the Labrador Sea. Furthermore, a synthesis of shipboard and Argo measurements in the Labrador Sea reveals the effects of the regional climate trends such as freshening of the upper layer - possible causes of which are also discussed - on the winter convection in the Labrador Sea including its strength, duration and spatial extent. These changes could have a profound impact on the regional and planetary climates. A section with the highlights of all papers comprising the Special Issue concludes the Preface.

  10. Stratigraphic potential of Bolboforma significantly increased by new finds in the North Atlantic and South Pacific

    USGS Publications Warehouse

    Poag, C. Wylie; Karowe, A. I.

    1986-01-01

    Until now, the genus Bolboforma, a problematic group of calcareous microfossils, has been recorded only in Oligocene to Pliocene marine sedimentary rocks, chiefly in the eastern North Atlantic region. We add to this eastern North Atlantic record six new sites and eleven undescribed species from the continental slopes of Ireland and Morocco. More significantly, we record, for the first time, abundant assemblages of Bolboforma on the western side of the North Atlantic and in the western South Pacific. Seven boreholes on the continental shelf and slope of New Jersey and Virginia contain ten species, three of which are new. Two species are present in two outcrops in eastern Mississippi and four are present in a borehole in the coastal plain of Virginia. On the Lord Howe Rise, west of New Zealand, a DSDP corehole has yielded a rich assemblage including four undescribed species. In addition to expanding the geographic distribution of Bolboforma, our work extends the known stratigraphic range downward into the upper Eocene on both sides of the North Atlantic and in the western South Pacific. Our findings firmly support the inference of a planktonic life style for Bolboforma, which implies a significant potential for biostratigraphic, paleobiogeographic, and paleoenvironmental studies, on both a local and global scale. We recommend a concerted effort to further document the nature and distribution of Bolboforma.

  11. The carbon balance of North American wetlands

    USGS Publications Warehouse

    Bridgham, S.D.; Megonigal, J.P.; Keller, J.K.; Bliss, N.B.; Trettin, C.

    2006-01-01

    We examine the carbon balance of North American wetlands by reviewing and synthesizing the published literature and soil databases. North American wetlands contain about 220 Pg C, most of which is in peat. They are a small to moderate carbon sink of about 49 Tg C yr-1, although the uncertainty around this estimate is greater than 100%, with the largest unknown being the role of carbon sequestration by sedimentation in freshwater mineral-soil wetlands. We estimate that North American wetlands emit 9 Tg methane (CH 4) yr-1; however, the uncertainty of this estimate is also greater than 100%. With the exception of estuarine wetlands, CH4 emissions from wetlands may largely offset any positive benefits of carbon sequestration in soils and plants in terms of climate forcing. Historically, the destruction of wetlands through land-use changes has had the largest effects on the carbon fluxes and consequent radiative forcing of North American wetlands. The primary effects have been a reduction in their ability to sequester carbon (a small to moderate increase in radiative forcing), oxidation of their soil carbon reserves upon drainage (a small increase in radiative forcing), and reduction in CH4 emissions (a small to large decrease in radiative forcing). It is uncertain how global changes will affect the carbon pools and fluxes of North American wetlands. We will not be able to predict accurately the role of wetlands as potential positive or negative feedbacks to anthropogenic global change without knowing the integrative effects of changes in temperature, precipitation, atmospheric carbon dioxide concentrations, and atmospheric deposition of nitrogen and sulfur on the carbon balance of North American wetlands. 

  12. Is There Really A North American Plate?

    NASA Astrophysics Data System (ADS)

    Krill, A.

    2011-12-01

    Lithospheric plates are typically identified from earthquake epicenters and evidence such as GPS movements. But no evidence indicates a plate boundary between the North American and South American Plates. Some plate maps show them separated by a transform boundary, but it is only a fracture zone. Other maps show an "undefined plate boundary" or put no boundary between these two plates (check Google images). Early plate maps showed a single large American Plate, quite narrow east of the Caribbean Plate (Le Pichon 1968, Morgan 1968). The North and South American Plates became established by the leading textbook Earth (Press & Siever 1974). On their map, from a Scientific American article by John Dewey (1972), these new plates were separated by an "uncertain plate boundary." The reasons for postulating a North American Plate were probably more psychological than geological. Each of the other continents of the world had its own plate, and North American geologists naturally wanted theirs. Similarly, European geographers used to view Europe as its own continent. A single large plate should again be hypothesized. But the term American Plate would now be ambiguous ("Which plate, North or South?") Perhaps future textbook authors could call it the "Two-American Plate." Textbook authors ultimately decide such global-tectonic matters. I became aware of textbook authors' opinions and influence from my research into the history of Alfred Wegener's continental drift (see Fixists vs. Mobilists by Krill 2011). Leading textbook author Charles Schuchert realized that continental drift would abolish his cherished paleogeographic models of large east-west continents (Eria, Gondwana) and small oceans (Poseiden, Nereis). He and his junior coauthors conspired to keep drift evidence out of their textbooks, from the 1934-editions until the 1969-editions (Physical Geology by Longwell et al. 1969, Historical Geology by Dunbar & Waage 1969). Their textbooks ruled in America. Textbooks

  13. Amplified North Atlantic Warming in the Late Pliocene by Changes in Arctic Gateways

    NASA Astrophysics Data System (ADS)

    Otto-Bliesner, B. L.; Jahn, A.; Feng, R.; Brady, E. C.; Hu, A.; Lofverstrom, M.

    2017-12-01

    Reconstructions of the late Pliocene (mid-Piacenzian, 3.3 - 3.0 million years ago) sea surface temperature (SST) find much warmer conditions in the North Atlantic than modern. The much warmer SSTs, up to 8.8°C from sites with good dating and replicates from several different types of proxies, have been difficult for climate models to reproduce. Even with the slow feedbacks of a reduced Greenland ice sheet and expansion of boreal forests to the Arctic Ocean over Canada and Eurasia, models cannot warm the North Atlantic sufficiently to match the reconstructed SSTs. An enhancement of the Atlantic Meridional Overturning Circulation (AMOC) during the late Pliocene, proposed as a possible mechanism based on ocean core records of δ13C, also is not present in the model simulations. Here, we present CESM simulations using a new reconstruction of late Pliocene paleogeography that has the Bering Strait (BS) and Canadian Arctic Archipelago (CAA) Straits closed. We find that the closure of these small Arctic gateways strengthens the AMOC, by inhibiting freshwater (FW) transport from the Pacific to the Arctic Ocean and from the Arctic Ocean to the Labrador Sea, leading to warmer sea surface temperatures in the North Atlantic. The cutoff of the short export route through the CAA results in a more saline Labrador and south Greenland Sea with increased deep convection. At the same time, as all FW now leaves the Arctic east of Greenland, there is a freshening of and decreased deepwater formation in the Norwegian Sea. Overall, the AMOC strengthens. This past time period has implications for a future Earth under more responsible scenarios of emissions. Late Pliocene atmospheric carbon dioxide concentrations are estimated to have ranged between 350 and 450 ppmv and the paleogeography is relatively similar to modern. Our study indicates that the state of the Arctic gateways may influence the sensitivity of the North Atlantic climate in complex ways, and better understanding of the

  14. Surface-Wind Anomalies in North-Atlantic and North Pacific from SSM/I Observations: Influence on Temperature of Adjoining Land Regions

    NASA Technical Reports Server (NTRS)

    Otterman, Joseph; Atlas, R.; Ingraham, J.; Ardizzone, J.; Starr, D.; Terry, J.

    1998-01-01

    Surface winds over the oceans are derived from Special Sensor Microwave Imager (SSM/I) measurements, assigning direction by Variational Analysis Method (VAM). Validations by comparison with other measurements indicate highly-satisfactory data quality. Providing global coverage from 1988, the dataset is a convenient source for surface-wind climatology. In this study, the interannual variability of zonal winds is analyzed concentrating on the westerlies in North Atlantic and North Pacific, above 30 N. Interannual differences in the westerlies exceeding 10 m sec (exp -1) are observed over large regions, often accompanied by changes of the same magnitude in the easterlies below 30 N. We concentrate on February/March, since elevated temperatures, by advancing snow-melt, can produce early spring. The extremely strong westerlies in 1997 observed in these months over North Atlantic (and also North Pacific) apparently contributed to large surface-temperature anomalies in western Europe, on the order of +3 C above the climatic monthly average for England and France. At these latitudes strong positive anomalies extended in a ring around the globe. We formulated an Index of South westerlies for the North Atlantic, which can serve as an indicator for day-by-day advection effects into Europe. In comparing 1997 and 1998 with the previous years, we establish significant correlations with the temperature anomalies (one to five days later, depending on the region, and on the season). This variability of the ocean-surface winds and of the temperature anomalies on land may be related to the El Nino/La Nina oscillations. Such large temperature fluctuations over large areas, whatever the cause, can be regarded as noise in attempts to assess long-term trends in global temperature.

  15. North Atlantic Regional Water Resources Study. Main Report

    DTIC Science & Technology

    1972-06-01

    Areas of the Rgion are found in Annex 1 to this Report. These Area Programs have The NAR is presently growing at a slower rate been reformu!ld into...Physical Characteristics of The Region double to 86.2 million by the year 2020. The rate of growth is about 80 percent of that The North Atlantic Region...Use of 141 and Delaware River Basin (Area 15). wells and of waste water intakes, while small, is growing at an increased rate . Publicly supplied and

  16. Spatiotemporal evolution of the chlorophyll a trend in the North Atlantic Ocean.

    PubMed

    Zhang, Min; Zhang, Yuanling; Shu, Qi; Zhao, Chang; Wang, Gang; Wu, Zhaohua; Qiao, Fangli

    2018-01-15

    Analyses of the chlorophyll a concentration (chla) from satellite ocean color products have suggested the decadal-scale variability of chla linked to the climate change. The decadal-scale variability in chla is both spatially and temporally non-uniform. We need to understand the spatiotemporal evolution of chla in decadal or multi-decadal timescales to better evaluate its linkage to climate variability. Here, the spatiotemporal evolution of the chla trend in the North Atlantic Ocean for the period 1997-2016 is analyzed using the multidimensional ensemble empirical mode decomposition method. We find that this variable trend signal of chla shows a dipole pattern between the subpolar gyre and along the Gulf Stream path, and propagation along the opposite direction of the North Atlantic Current. This propagation signal has an overlapping variability of approximately twenty years. Our findings suggest that the spatiotemporal evolution of chla during the two most recent decades is part of the multidecadal variations and possibly regulated by the changes of Atlantic Meridional Overturning Circulation, whereas the mechanisms of such evolution patterns still need to be explored. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. On the nonlinear forced response of the North Atlantic atmosphere to meridional shifts of the Gulf Stream path

    NASA Astrophysics Data System (ADS)

    Seo, H.; Kwon, Y. O.; Joyce, T. M.; Ummenhofer, C.

    2016-12-01

    This study examines the North Atlantic atmospheric circulation response to the meridional shift of Gulf Stream path using a large-ensemble, high-resolution, and hemispheric-scale WRF simulations. The model is forced with wintertime SST anomalies derived from a wide range of Gulf Stream shift scenarios. The key result of the model experiments, supported in part by an independent analysis of a reanalysis data set, is that the large-scale, quasi-steady North Atlantic circulation response is unambiguously nonlinear about the sign and amplitude of chosen SST anomalies. This nonlinear response prevails over the weak linear response and resembles the negative North Atlantic Oscillation, the leading intrinsic mode of variability in the model and the observations. Further analysis of the associated dynamics reveals that the nonlinear responses are accompanied by the anomalous southward shift of the North Atlantic eddy-driven jet stream, which is reinforced nearly equally by the high-frequency transient eddy feedback and the low-frequency high-latitude wave breaking events. The result highlights the importance of the intrinsically nonlinear transient eddy dynamics and eddy-mean flow interactions in generating the nonlinear forced response to the meridional shift in the Gulf Stream.

  18. The western North Atlantic bloom experiment

    NASA Astrophysics Data System (ADS)

    Harrison, W. G.; Head, E. J. H.; Horne, E. P. W.; Irwin, B.; Li, W. K. W.; Longhurst, A. R.; Paranjape, M. A.; Platt, T.

    An investigation of the spring bloom was carried out in the western North Atlantic (40-50°W) as one component of the multi-nation Joint Global Ocean Flux Study (JGOFS) North Atlantic Bloom Experiment (NABE). The cruise track included an extended hydrographic section from 32 to 47°N and process studies at two week-long time-series stations at 40 and 45°N. Biological and chemical data collected along the transect indicated that the time-series stations were located in regions where the spring bloom was well developed; algal biomass was high and surface nutrient concentrations were reduced from maximum wintertime levels. Despite similarities in the vertical structure and magnitude of phytoplankton biomass and productivity, the two stations clearly differed in physical, chemical and other biological characteristics. Detailed depth profiles of the major autotrophic and heterotrophic microplankton groups (bacteria, phytoplankton, microzooplankton) revealed a strong vertical coherence in distribution at both sites, with maximum concentrations in the upper 50 m being typical of the spring bloom. Ultraplankton (< 10 μm) were an important component of the primary producers at 40°N, whereas larger netplankton (diatoms, dinoflagellates) were more important at 45°N. Silicate depletion was clearly evident in surface waters at 45°N, where diatoms were most abundant. Despite the relative importance of diatoms at 45°N, dinoflagellates dominated the biomass of the netplankton at both sites; however, much of this community may have been heterotrophic. Bacterial biomass and production were high at both stations relative to phytoplankton levels, particularly at 45°N, and may have contributed to the unexpectedly high residual ammonium concentrations observed below the chlorophyll maximum layer at both stations. Microzooplankton grazing dominated phytoplankton losses at both stations, with consumption as high as 88% of the daily primary production. Grazing losses to the

  19. Identification of Holocene millennial-scale forcing in the North Atlantic area: Ocean/atmosphere contribution

    NASA Astrophysics Data System (ADS)

    Debret, M.; Masson-Delmotte, V.; Christophe, C.; de Vernal, A.; Massei, N.; Eynaud, F.; Nicolle, M.; Frank, N.; Mary, Y.; Magny, M.

    2017-12-01

    Millennial (1500-year) cycles were evidenced decades ago from the advance and retreat of glaciers but many subsequent studies failed to demonstrate the unequivocal character of such oscillation from paleoclimate time series. Hence, the identification of a persistent 1500 year periodicity remains controversial both for the last glacial episode and the Holocene. Applying wavelet analysis to Holocene climate records, we have identified synchronous millennial-scale oscillations which permit to establish a North Atlantic millennial variability index (NAV-Index), maximum at 5330 ± 245, 3560 ± 190, 1810 ± 160 cal years BP and minimum at 4430 ± 250, 2640 ± 225 and 970 ± 200 years before present. This NAV-index was compared with the millennial variability of cosmogenic 10Be isotope, a proxy of solar activity. Differences between the two sets of records suggest that an internal mechanism (Ocean/atmosphere) must be at the origin of the North Atlantic millennial scale variability. Our data document an increased coherence and magnitude of the North Atlantic millennial variability since 6000 cal. years BP, with a frequency of 1780 ± 240 years. During the early Holocene, deglacial meltwater fluxes had strong regional impact and the coupling between subpolar gyre migration and Atlantic meridional oceanic circulation observed since afterward seems to be related to the end of the Laurentide and Inuitian ice sheet meltwater discharge. Hence, we may conclude that the evolution of this millennial oscillation in the future will depend upon the Greenland stability or melting.

  20. Water Mass Variability at the Mid-Atlantic Ridge and in the Eastern North Atlantic

    NASA Astrophysics Data System (ADS)

    Köllner, Manuela; Klein, Birgit; Kieke, Dagmar; Klein, Holger; Roessler, Achim; Rhein, Monika

    2017-04-01

    The strong warming and salinification of the Eastern North Atlantic starting in the mid 1990s has been attributed to a westward contraction of the sub-polar gyre and stronger inflow of waters from the sub-tropical gyre. Temporal changes in the shape and strength of the two gyres have been related to the major mode of atmospheric variability in the Atlantic sector, the NAO. Hydrographic conditions along the Northwest European shelf are thus the result of different processes such as variations in transports, varying relative contributions of water masses from the two gyres and property trends in the source water masses. The North Atlantic Current (NAC) can be regarded as the southern border of the sub-polar gyre transporting water from the tropical regions northward. On its way towards the Mid Atlantic Ridge (MAR) the NAC has partly mixed with waters from the sub-polar gyre and crosses the MAR split into several branches. For the study we analyzed data of water mass variability and transport fluctuations from the RACE (Regional circulation and Global change) project (2012-2015) which provided time series of transports and hydrographic anomalies from moored instruments at the western flank of the MAR. The time depending positions of the NAC branches over the MAR were obtained from mooring time series and compared to sea surface velocities from altimeter data. The results show a high variability of NAC pathways over the MAR. Transition regimes with strong meandering and eddies could be observed as well as periods of strong NAC branches over the Fracture Zones affecting water mass exchange at all depth levels. A positive temperature trend at depths between 1000-2000 m was found at the Faraday Fracture Zone (FFZ). This warming trend was also detected by Argo floats crossing the MAR close to the FFZ region. During the second phase of RACE (RACE-II, 2016-2018) a mooring array across the eastern shelf break at Goban Spur was deployed to monitor the poleward Eastern Boundary

  1. Conservation of North American rallids

    USGS Publications Warehouse

    Eddleman, William R.; Knopf, Fritz L.; Manley, Brooke; Reid, Frederic A.; Zembal, Richard

    1988-01-01

    The Rallidae are a diverse group in their habitat selection, yet most North American species occur in or near wetlands As a consequence, most species are subject to habitat enhancement or perturbation from waterfowl management programs. The overall effects of these management programs relative to rallid conservation have been assessed for few species, and there is a need for synthesis of such information. In the cases of some species or raves, population status is not known, and suggested directions for conservation and management are needed. Rare, endangered, or status undetermined species or races often occur in areas where related species are classified as game birds, and the effects of such hunting on rarer forms are not known. Their generally secretive nature, the endangered status of several races and populations, and continued loss of habitat and threats to present habitat, warrant an examination of the conservation status of the North American taxa in this group. In 1977, a committee of the International Association of Fish and Wildlife Agencies summarized available information on management and biology of American Coots (Fulica americana), rails, and gallinules in North America (Holliman 1977). That summary was intended to provide relatively complete information on conservation of these species, and also to provide guidance for research within the U.S. Fish and Wildlife Service's (FWS) Accelerated Research Program for Webless Migratory Shore and Upland Game Birds (ARP). Subsequently, a number of rallid studies were funded under this program. The program was eliminated in 1982, following substantial research activities on North American rallids. Since the demise of the ARP, additional research on rallids in North America has focused on an area the International Association of Fish and Wildlife Agencies report failed to cover in detail--that of endangered rallids in the U.S. and their possessions. Most of these studies have been of threatened and endangered

  2. Mesoscale eddies and T richodesmium spp. distributions in the southwestern North Atlantic

    PubMed Central

    McGillicuddy, Dennis J.; Flierl, Glenn R.; Davis, Cabell S.; Dyhrman, Sonya T.; Waterbury, John B.

    2015-01-01

    Abstract Correlations of Trichodesmium colony abundance with the eddy field emerged in two segments of Video Plankton Recorder observations made in the southwestern North Atlantic during fall 2010 and spring 2011. In fall 2010, local maxima in abundance were observed in cyclones. We hypothesized surface Ekman transport convergence as a mechanism for trapping buoyant colonies in cyclones. Idealized models supported the potential of this process to influence the distribution of buoyant colonies over time scales of several months. In spring 2011, the highest vertically integrated colony abundances were observed in anticyclones. These peaks in abundance correlated with anomalously fresh water, suggesting riverine input as a driver of the relationship. These contrasting results in cyclones and anticyclones highlight distinct mechanisms by which mesoscale eddies can influence the abundance and distribution of Trichodesmium populations of the southwestern North Atlantic. PMID:26937328

  3. North American amphibians: Distribution and diversity

    USGS Publications Warehouse

    Green, David M.; Weir, Linda A.; Casper, Gary S.; Lannoo, Michael

    2014-01-01

    Some 300 species of amphibians inhabit North America. The past two decades have seen an enormous growth in interest about amphibians and an increased intensity of scientific research into their fascinating biology and continent-wide distribution.This atlas presents the spectacular diversity of North American amphibians in a geographic context. It covers all formally recognized amphibian species found in the United States and Canada, many of which are endangered or threatened with extinction. Illustrated with maps and photos, the species accounts provide current information about distribution, habitat, and conservation.Researchers, professional herpetologists, and anyone intrigued by amphibians will value North American Amphibians as a guide and reference.

  4. Airborne CH 2O measurements over the North Atlantic during the 1997 NARE campaign: Instrument comparisons and distributions

    DOE PAGES

    Fried, Alan; Lee, Yin -Nan; Frost, Greg; ...

    2002-02-27

    Here, formaldehyde measurements from two independent instruments are compared with photochemical box model calculations. The measurements were made on the NOAA P-3 aircraft as part of the 1997 North Atlantic Regional Experiment (NARE 1997). After examining the possible reasons for the model-measurement discrepancy, we conclude that there are probably one or more additional unknown sources of CH 2O in the North Atlantic troposphere.

  5. North Atlantic Basin Tropical Cyclone Activity in Relation to Temperature and Decadal- Length Oscillation Patterns

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2009-01-01

    Yearly frequencies of North Atlantic basin tropical cyclones, their locations of origin, peak wind speeds, average peak wind speeds, lowest pressures, and average lowest pressures for the interval 1950-2008 are examined. The effects of El Nino and La Nina on the tropical cyclone parametric values are investigated. Yearly and 10-year moving average (10-yma) values of tropical cyclone parameters are compared against those of temperature and decadal-length oscillation, employing both linear and bi-variate analysis, and first differences in the 10-yma are determined. Discussion of the 2009 North Atlantic basin hurricane season, updating earlier results, is given.

  6. A51F-0123: Model Analysis of Tropospheric Aerosol Variability and Sources over the North Atlantic During NAAMES 2015-2016

    NASA Technical Reports Server (NTRS)

    Liu, Hongyu; Moore, Richard; Hostetler, Chris A.; Ferrare, Richard Anthony; Fairlie, Thomas Duncan; Hu, Youngxiang; Chen, Gao; Hair, Johnathan W.; Johnson, Matthew S.

    2016-01-01

    The North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) is a five-year Earth-Venture Suborbital-2 Mission to characterize the plankton ecosystems and their influences on remote marine aerosols, boundary layer clouds, and their implications for climate in the North Atlantic. While marine-sourced aerosols have been shown to make important contributions to surface aerosol loading, cloud condensation nuclei and ice nuclei concentrations over remote marine and coastal regions, it is still a challenge to differentiate the marine biogenic aerosol signal from the strong influence of continental pollution outflow. We examine here the spatiotemporal variability and quantify the sources of tropospheric aerosols over the North Atlantic during the first two phases (November 2015 and May-June 2016) of NAAMES using a state-of-the-art chemical transport model (GEOS-Chem). The model is driven by the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) from the NASA Global Modeling and Assimilation Office (GMAO). It includes sulfate-nitrate-ammonium aerosol thermodynamics coupled to ozone-NOx-hydrocarbon-aerosol chemistry, mineral dust, sea salt, elemental and organic carbon aerosols, and especially a recently implemented parameterization for the marine primary organic aerosol emission. The simulated aerosols over the North Atlantic are evaluated with available satellite (e.g., MODIS) observations of aerosol optical depths (AOD), and aircraft and ship aerosol measurements. We diagnose transport pathways for continental pollution outflow over the North Atlantic using carbon monoxide, an excellent tracer for anthropogenic pollution transport. We also conduct model perturbation experiments to quantify the relative contributions of terrestrial and oceanic sources to the aerosol loading, AOD, and their variability over the North Atlantic.

  7. Diachronous high-latitude North Atlantic temperature evolution across the last interglaciation

    NASA Astrophysics Data System (ADS)

    Carlson, A. E.; He, F.; Clark, P. U.

    2017-12-01

    A direct response of Northern Hemisphere temperatures to last interglacial boreal summer insolation forcing and atmospheric carbon dioxide concentration would predict early interglacial warmth followed by a gradual cooling trend across the last interglaciation (128-116 ka). In contrast, some Labrador and Greenland-Iceland-Norwegian (GIN) sea surface temperature (SST) records show relatively cool early last-interglacial SSTs followed by warming in the latter part of the interglaciation. This phenomenon has sometimes been attributed to meltwater forcing from continued retreat of the Greenland ice sheet through the last interglaciation that suppressed North Atlantic overturning circulation, in agreement with proxy records. Here we investigate this observation with the first fully-coupled transient general circulation model simulation of the last interglacial period using CCSM3. Termination II deglacial meltwater forcing is stopped at 129 ka and the subsequent simulation is forced by changing orbital parameters and atmospheric greenhouse gases. We find that Labrador and GIN SSTs remain relatively cool followed by warming to peak interglacial temperatures after 124 ka. We show that this delayed warming is due to reduced convection in the GIN sea, despite a cessation of meltwater forcing at 129 ka, with convection onset at 124 ka and attendant sea-ice retreat in response to orbital- and greenhouse gas-forcing alone. Our results demonstrate that delayed high-latitude North Atlantic SST warming during the last interglaciation does not necessitate meltwater forcing from the Greenland ice sheet, rectifying the apparent disconnect between a small meltwater forcing (<2.5 m of sea-level rise over 8 ka, or <0.004 Sverdrups into the Labrador and GIN seas) and a relatively large North Atlantic overturning response.

  8. North Atlantic Origin of Interdecadal variability of Siberian High

    NASA Astrophysics Data System (ADS)

    Kim, Seon-Hwa; Sung, Mi-Kyung; Kim, Baek-Min

    2017-04-01

    We suggest that the changes in the mean atmospheric circulation structure in the North Atlantic Ocean upstream region of Eurasian continent play an important role in the interdecadal variability of Siberian High (SH) through the modulation of Ural blocking frequency. Previous studies suggested that the interdecadal variability of SH is partly explained by the Arctic Oscillation. However, in this study, we emphasize the role of 'Warm Arctic and Cold Eurasia (WACE)', which is the second mode of winter surface air temperature variability over Eurasia. We show that the correlation between SH and WACE is high in general compared to that between SH and AO. However, the correlation between SH and WACE does not always exhibit high constant value. It shows a distinctive interdecadal fluctuation in the correlation. We found that this fluctuation in the correlation is due to the interdecadal fluctuation of the continental trough over the North Atlantic and the resultant strengthening of in-situ atmospheric baroclinicity. This accompanies changes in the transient vorticity flux divergence which leads to the downstream wave development and anomalous anticyclonic flow near Ural region. Obviously, the existence of anticyclonic flow over Ural region helps more frequent occurrence of Ural blocking and it is shown that this condition favors positive WACE event, which links to an intensified SH.

  9. Decadal Air-Sea Interaction in the North Atlantic Based on Observations and Modeling Results

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa

    1998-01-01

    The decadal, 12-14 year, cycle observed in the North Atlantic SST and tide gauge data was examined using the NCEP/NCAR reanalyses, COADS data and an ocean model simulation. Besides this decadal mode, a shorter, subdecadal period of about 8 years exists in tide gauge data north of 40N, in the subpolar SST and in the winter North Atlantic Oscillation (NAO) index and in subpolar winter heat flux values. The decadal cycle is a well separated mode in a singular spectrum analysis (SSA) for a time series of SST EOF mode 1 with a center over the Gulf Stream extension. Tide gauge and SST data are consistent in that both show a significant subdecadal periodicity exclusively in the subpolar gyre, but in subtropics the 12-14 year period is the prominent, but nonstationary, decadal signal. The main finding of this study is that this 12-14 year cycle can be constructed based on the leading mode of the surface heat flux. This connection to the surface heat flux implicates the participation of the thermohaline circulation in the decadal cycle. During the cycle starting from the positive index phase of NAO, SST and oceanic heat content anomalies are created in subtropics due to local heat flux and intensification of the thermohaline circulation. The anomalies advect to the subpolar gyre where they are amplified by local heat flux and are part of the negative feedback of thermohaline circulation on itself. Consequently the oceanic thermohaline circulation slows down and the opposite cycle starts. The oscillatory nature would not be possible without the active atmospheric participation in the cycle, because it provides the unstable interaction through heat flux, without it, the oceanic mode would be damped. This analysis suggests that the two principal modes of heat flux variability, corresponding to patterns similar to North Atlantic Oscillation (NAO) and Western Atlantic (WA), are part of the same decadal cycle and an indirect measure of the north-south movement of the storm tracks.

  10. Anthropogenic impacts on carbon uptake variability in the subtropical North Atlantic: 1992-2010

    NASA Astrophysics Data System (ADS)

    Tudino, Tobia; Messias, Marie-Jose; Mills, Benjamin J. W.; Watson, Andrew J.; Halloran, Paul R.; Bernardello, Raffaele; Torres-Valdés, Sinhue; Schuster, Ute; Williams, Richard G.; Wanninkhof, Rik

    2017-04-01

    Since 1860, anthropogenic emissions have increased atmospheric CO2 by more than 120ppm. The global ocean has lessened the accompanying climate impacts, taking up 33% of the emitted CO2, with the highest storage per unit area occurring in the North Atlantic. To investigate carbon uptake and storage in the subtropical North Atlantic, we compare three estimates of anthropogenic CO2 (Cant) with dissolved inorganic carbon (DIC) observations. We use data from a repeat (1992-2010) subtropical transect, where we find an average DIC increase of 1.06 μmol/(kg yr). We separate the observed DIC into five components: preindustrial, dissolved hard-tissue, regenerated soft-tissue, Cant, and surface air-sea disequilibrium. Among them, Cant increases approximately linearly over time (0.39-0.62 μmol/(kg yr), depending on the method adopted), contributing to the total DIC rise. Simultaneously, we observe a biologically driven increase (0.38 μmol/(kg yr)) in carbon from regenerated soft-tissue. We link this variation to the possible ongoing Atlantic meridional overturning circulation slow-down (2009-2010) and the associated strengthening of the biological pump. We expand our analysis by assessing outputs from an Earth system model between 1860 and 2100. In the preindustrial control (i.e. with no influence of anthropogenic CO2), we found a predominance of the biological pump in overall carbon uptake, while the industrial simulation leads to a comparable influence of the biological and physical pumps. We conclude that anthropogenic perturbation of the natural long-term variability in oceanic ventilation could affect the remineralized pool of carbon in the subtropical North Atlantic, potentially making it a higher sink for carbon than previously thought.

  11. Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability.

    PubMed

    Booth, Ben B B; Dunstone, Nick J; Halloran, Paul R; Andrews, Timothy; Bellouin, Nicolas

    2012-04-04

    Systematic climate shifts have been linked to multidecadal variability in observed sea surface temperatures in the North Atlantic Ocean. These links are extensive, influencing a range of climate processes such as hurricane activity and African Sahel and Amazonian droughts. The variability is distinct from historical global-mean temperature changes and is commonly attributed to natural ocean oscillations. A number of studies have provided evidence that aerosols can influence long-term changes in sea surface temperatures, but climate models have so far failed to reproduce these interactions and the role of aerosols in decadal variability remains unclear. Here we use a state-of-the-art Earth system climate model to show that aerosol emissions and periods of volcanic activity explain 76 per cent of the simulated multidecadal variance in detrended 1860-2005 North Atlantic sea surface temperatures. After 1950, simulated variability is within observational estimates; our estimates for 1910-1940 capture twice the warming of previous generation models but do not explain the entire observed trend. Other processes, such as ocean circulation, may also have contributed to variability in the early twentieth century. Mechanistically, we find that inclusion of aerosol-cloud microphysical effects, which were included in few previous multimodel ensembles, dominates the magnitude (80 per cent) and the spatial pattern of the total surface aerosol forcing in the North Atlantic. Our findings suggest that anthropogenic aerosol emissions influenced a range of societally important historical climate events such as peaks in hurricane activity and Sahel drought. Decadal-scale model predictions of regional Atlantic climate will probably be improved by incorporating aerosol-cloud microphysical interactions and estimates of future concentrations of aerosols, emissions of which are directly addressable by policy actions.

  12. The potential of air-sea interactions for improving summertime North Atlantic seasonal forecasts

    NASA Astrophysics Data System (ADS)

    Ossó, Albert; Shaffrey, Len; Dong, Buwen; Sutton, Rowan

    2017-04-01

    Delivering skillful summertime seasonal forecasts of the Northern Hemisphere (NH) mid-latitude climate is a key unresolved issue for the climate science community. Current climate models have some skill in forecasting the wintertime NH mid-latitude circulation but very limited skill during summertime. To explore the potential predictability of the summertime climate we analyze lagged correlation patterns between the SSTs and summer atmospheric circulation in the North Atlantic both in observations and climate model outputs. We find observational evidence in the ERA-Interim (1979-2015) reanalysis and the HadSLP2 and HadISST data of an SST pattern forced by late winter atmospheric circulation persisting from winter to early summer that excites an anticyclonic summer SLP anomaly west of the British Isles. We show that the atmospheric response is driven through the action of turbulent heat fluxes and changes on the background baroclinicity. The lagged atmospheric response to the SSTs could be exploited for summertime predictability over Western Europe. We find a statistical significant correlation of over 0.6 between April-May North Atlantic SSTs and the June-August North Atlantic SLP anomaly. The previous findings are further explored using 120 years of coupled ocean-atmosphere HadGEM3-GC2 model simulation. The climate model qualitatively reproduces the observed spatial relationship between the late winter and spring SSTs and summertime circulation, although the correlations are substantially weaker than observed.

  13. North Dakota Native American Essential Understandings

    ERIC Educational Resources Information Center

    North Dakota Department of Public Instruction, 2015

    2015-01-01

    In the spring of 2015, the North Dakota Department of Public Instruction brought together tribal Elders from across North Dakota to share stories, memories, songs, and wisdom in order to develop the North Dakota Native American Essential Understandings (NDNAEU) to guide the learning of both Native and non-Native students across the state. They…

  14. Tracing Marine Cryptotephras in the North Atlantic during the Last Glacial Period

    NASA Astrophysics Data System (ADS)

    Abbott, Peter; Davies, Siwan; Griggs, Adam; Bourne, Anna

    2017-04-01

    Tephrochronology is a powerful technique that can be utilised for the independent correlation and synchronisation of disparate palaeoclimatic records from different depositional environments. There is a high potential to utilise this technique to integrate ice, marine and terrestrial records to study climatic phasing within the North Atlantic region due to the high eruptive frequency of Icelandic volcanic systems. However, until now North Atlantic marine records have been relatively understudied. Here we report on investigations to define a tephra framework integrating new studies of cryptotephra horizons within a wide network of North Atlantic marine cores with horizons identified in prior work. This framework has the potential to underpin the correlation of the marine records to the Greenland ice-core records and European terrestrial sequences. Tephrochronological investigations were conducted on 13 marine sequences from a range of locations and depositional settings using cryptotephra extraction techniques, including density and magnetic separation, to gain high resolution glass shard concentration profiles and rigorous single-shard major element geochemical analysis to characterise identified deposits. Cryptotephras with an Icelandic source were identified in many records and displayed diversity in shard concentration profiles and the geochemical homo/heterogeneity of shards within the deposits. These differences reflect spatial and temporal variability in the operation of a range of transport processes, e.g. airfall, sea-ice and iceberg rafting, and post-depositional processes, e.g. bioturbation and secondary redeposition. The operation of these processes within the marine environment can potentially impart a temporal delay on tephra deposition and hamper the placement of the isochron, therefore, it is crucial to assess their influence. To aid this assessment a range of deposit types with common transport and depositional histories have been defined. Spatial

  15. Characteristics of tropical cyclones in the North Atlantic and East Pacific

    NASA Astrophysics Data System (ADS)

    Barrett, Bradford Scott

    In this dissertation, I present a series of investigations to expand our understanding of TCs in the East Pacific and North Atlantic basins. First, I developed and applied a climatological tool that quickly and succinctly displays the spread of historical TC tracks for any point in the North Atlantic basin. This tool is useful in all parts of a basin because it is derived from prior storm motion trajectories and summarily captures the historical synoptic and mesoscale steering patterns. It displays the strength of the climatological signal and allow for rapid qualitative comparison between historical TC tracks and NWP models. Second, I have used a robust statistical technique to quantify the relationships between fifteen different metrics of TC activity in nine ocean basins and twelve climate indices of the leading modes of atmospheric and oceanic variability. In a thorough, encyclopedic manner, over 12,000 Spearman rank correlation coefficients were calculated and examined to identify relationships between TCs and their environment. This investigation was not limited to the East Pacific or North Atlantic, and new climatic associations were found between seasonal levels of TC activity and the major climate indices across the nine basins. This information is critical to forecasters, economists, actuaries, energy traders, and societal planners who apply knowledge of levels of TC activity on intraseasonal to interdecadal timescales. The statistics are also valuable to climatologists seeking to understand how regional TC frequency will change as the global climate warms. Third, I have examined the leading intraseasonal mode of atmospheric and oceanic variability, the Madden-Julian Oscillation (MJO), and discovered statistically significant relationships with the frequency of TC genesis, intensification, and landfall over the nine basins. Like the significance of the longer-period oscillations to the frequency of TC activity on intraseasonal and longer timescales, these

  16. The impacts of oceanic deep temperature perturbations in the North Atlantic on decadal climate variability and predictability

    NASA Astrophysics Data System (ADS)

    Germe, Agathe; Sévellec, Florian; Mignot, Juliette; Fedorov, Alexey; Nguyen, Sébastien; Swingedouw, Didier

    2017-12-01

    Decadal climate predictability in the North Atlantic is largely related to ocean low frequency variability, whose sensitivity to initial conditions is not very well understood. Recently, three-dimensional oceanic temperature anomalies optimally perturbing the North Atlantic Mean Temperature (NAMT) have been computed via an optimization procedure using a linear adjoint to a realistic ocean general circulation model. The spatial pattern of the identified perturbations, localized in the North Atlantic, has the largest magnitude between 1000 and 4000 m depth. In the present study, the impacts of these perturbations on NAMT, on the Atlantic meridional overturning circulation (AMOC), and on climate in general are investigated in a global coupled model that uses the same ocean model as was used to compute the three-dimensional optimal perturbations. In the coupled model, these perturbations induce AMOC and NAMT anomalies peaking after 5 and 10 years, respectively, generally consistent with the ocean-only linear predictions. To further understand their impact, their magnitude was varied in a broad range. For initial perturbations with a magnitude comparable to the internal variability of the coupled model, the model response exhibits a strong signature in sea surface temperature and precipitation over North America and the Sahel region. The existence and impacts of these ocean perturbations have important implications for decadal prediction: they can be seen either as a source of predictability or uncertainty, depending on whether the current observing system can detect them or not. In fact, comparing the magnitude of the imposed perturbations with the uncertainty of available ocean observations such as Argo data or ocean state estimates suggests that only the largest perturbations used in this study could be detectable. This highlights the importance for decadal climate prediction of accurate ocean density initialisation in the North Atlantic at intermediate and greater

  17. Cenozoic Circulation History of the North Atlantic Ocean From Seismic Stratigraphy of the Newfoundland Ridge Drift Complex

    NASA Astrophysics Data System (ADS)

    Boyle, P. R.; Romans, B.; Norris, R. D.; Tucholke, B. E.; Swift, S. A.; Sexton, P. F.

    2014-12-01

    In the North Atlantic Ocean, contour-following bottom currents have eroded regional unconformities and deposited contourite drifts that exceed two km in thickness and extend for 100s of km. The character of deep-water masses that are conveyed through ocean basins by such currents influence global heat transfer and ocean-atmosphere partitioning of CO2. The Newfoundland Ridge Drift Complex lies directly under the modern Deep Western Boundary Current southeast of Newfoundland, close to the site of overturning in the northwest Atlantic Ocean and at the intersection of the warm Gulf Stream and cool Labrador surface currents. To the south are regions of the western North Atlantic basin that are influenced by southern- as well as northern-sourced bottom waters. Here, we document the evolution of North Atlantic deep-water circulation by seismic-stratigraphic analysis of the long-lived and areally extensive Newfoundland Ridge Drift Complex. IODP Expedition 342 boreholes provide age control on seismic units, allowing sedimentation patterns to be placed in a temporal framework. We find three major phases of sedimentation: pre-contourite drift (~115-50 Ma), active contourite drift (~50-2.6 Ma), and late-contourite drift (~2.6-0 Ma). Bottom-current-controlled deposition of terrigenous-rich sediment began at ~50 Ma, which correlates to the onset of a long-term global cooling trend. A further change in deep circulation near the Eocene-Oligocene transition (~30 Ma) is indicated by more focused drift sedimentation with greatly increased accumulation rates and stratal architecture dominated by mud waves. At ~2.6 Ma to present the axis of drift accumulation shifted markedly towards shallower water depths, corresponding with the onset of Northern Hemisphere ice sheets. We discuss how these reorganizations of deep circulation correlate with results of other North Atlantic seismic stratigraphic studies to the north and south.

  18. What caused the Extreme Storm Season over the North Atlantic and the UK in Winter 2013-14?

    NASA Astrophysics Data System (ADS)

    Leckebusch, G. C.; Wild, S.; Befort, D. J.

    2015-12-01

    In winter 2013-2014, the UK experienced exceptional stormy and rainy weather conditions. Concurrently, surface temperatures over large parts of central North America fell to near record minimum values. One potential driver for these cold conditions is discussed to be the increasingly warm surface waters of the tropical west Pacific. It has been suggested these increasing sea surface temperatures could also be the cause for extreme weather over the British Isles. Testing this hypothesis, we investigate mechanisms linking the tropical west Pacific and European wind storm activity. We focus on two research questions. Firstly: Was a chain of anomaly patterns with origin in the west Pacific present in the winter 2013-14? And secondly: Can centres of action along such a chain be identified with a strong interannual relationship in the recent past? Our results, using primarily ERA-Interim Reanalysis from 1979 to 2014, show an absolute maximum of wind storm frequency over the northeast Atlantic and the British Isles in winter 2013-14. We also find absolute minimum surface temperatures in central North America and increased convective activity over the tropical west Pacific in the same season. The winter 2013-14 was additionally characterized by anomalous warm sea surface temperatures over the subtropical northwest Atlantic. Although the interannual variability of wind storms in the northeast Atlantic and surface temperatures in North America are significantly anti-correlated, we cannot directly relate wind storm frequency with tropical west Pacific anomalies. We thus conclude that the conditions over the Pacific in winter 2013-14 were favourable but not sufficient to explain the record number of wind storms in this season. Instead, we suggest that warm north Atlantic sea surface temperature anomalies in combination with cold surface temperatures over North America played a more important role for generating higher wind storm counts over the northeast Atlantic and the UK.

  19. Linking the North Atlantic Oscillation to Rainfall Over Northern Lake Malawi

    NASA Astrophysics Data System (ADS)

    Johnson, T. C.; Powers, L. A.; Werne, J. P.; Brown, E. T.; Castaneda, I.; Schouten, S.; Sinninghe-Damste, J.

    2005-12-01

    Piston and multi-cores recovered from the north basin of Lake Malawi in 1998 by the International Decade for the East African Lakes (IDEAL) have provided a rich history of climate variability spanning the past 25,000 years. As we now begin to analyze the cores recovered by the Malawi Drilling Project in early 2005, we are considering the relationships among sedimentary signals of temperature (TEX86), northerly winds associated with a southward excursion of the Inter-Tropical Convergence Zone (per cent biogenic silica), and rainfall (terrigenous mass accumulation rate) in the well dated 1998 cores. A high-resolution record of the past 800 years suggests that rainfall in this region (10 - 12° S, 30 - 35° E) was relatively low during the Little Ice Age, when northerly winds were more prevalent, attributed to a more southerly position of the ITCZ during austral summers. The TEX86 signal of lake (surface?) temperature ranged mostly between 24 and 26°C during this period, with the coldest temperature of about 22°C around AD1680 and the warmest temperature, exceeding 27°C, in the youngest sediment sample. The cooler water temperatures coincide with periods of highest diatom productivity, consistent with the latter being due to relatively intense upwelling associated with the northerly winds. Our observation of low rainfall during periods of more southerly migration of the ITCZ is consistent with the results of McHugh and Rogers (2001), who linked rainfall in southeastern Africa to the North Atlantic Oscillation (NAO). During years of weak NAO, equatorial westerly transport of Atlantic moisture across Africa during austral summer is relatively intense, causing high rainfall in the East African Rift between the equator and 16° S. Conversely, when the NAO is positive, rainfall is higher south of 15° S than north of this latitude, which is consistent with a southward migration of the ITCZ. McHugh, M. J. and J. C. Rogers (2001). "North Atlantic Oscillation influence on

  20. North American Commission on Stratigraphic Nomenclature Report 12 – Revision of article 37, lithodemic units, of the North American Stratigraphic Code

    USGS Publications Warehouse

    Easton, Robert M.; Edwards, Lucy E.; Orndorff, Randall C.; Duguet, Manuel; Ferrusquia-Villafranca, Ismael

    2017-01-01

    At the 71st Annual Meeting of the North American Commission on Stratigraphic Nomenclature, 26 September, 2016, in Denver, Colorado, the Commission voted unanimously to accept the revision of Article 37 of the North American Stratigraphic Code (North American Commission on Stratigraphic Nomenclature, 2005), printed below. It replaces all older versions of this Article. An application for this revision (Easton et al. 2015) was published in Stratigraphy more than one year prior to the meeting; thus, the vote on this application for revision follows Article 21 of the Code.

  1. Large-Scale Antecedent Conditions Associated with 2014-2015 Winter Onset over North America and mid-Winter Storminess Along the North Atlantic Coast

    NASA Astrophysics Data System (ADS)

    Bosart, L. F.; Papin, P. P.; Bentley, A. M.; Benjamin, M.; Winters, A. C.

    2015-12-01

    Winter 2014-2015 was marked by the coldest November weather in 35 years east of the Rockies and record-breaking snowstorms and cold from the eastern Great Lakes to Atlantic Canada in January and February 2015. Record-breaking warmth prevailed across the Intermountain West and Rockies beneath a persistent upper-level ridge. Winter began with a series of arctic air mass surges that culminated in an epic lake-effect snowstorm occurred over western New York before Thanksgiving and was followed by a series of snow and ice storms that disrupted Thanksgiving holiday travel widely. Winter briefly abated in part of December, but returned with a vengeance between mid-January and mid-February 2015 when multiple extreme weather events that featured record-breaking monthly and seasonal snowfalls and record-breaking daily minimum temperatures were observed. This presentation will show how: (1) the recurvature and extratropical transition (ET) of Supertyphoon (STY) Nuri in the western Pacific in early November 2014, and its subsequent explosive reintensification as an extratropical cyclone (EC), disrupted the North Pacific jet stream and downstream Northern Hemisphere (NH) circulation, produced high-latitude ridging and the formation of an omega block over western North America, triggered downstream baroclinic development and the formation of a deep trough over eastern North America, and ushered in winter 2014-2015, (2) the ET/EC of STY Nuri increased subsequent week two predictability over the North Pacific and North America in association with diabatically influenced high-latitude ridge building, and (3) the amplification of the large-scale NH flow pattern beginning in January 2015 resulted in the formation of persistent high-amplitude ridges over northeastern Russia, Alaska, western North America, and the North Atlantic while deep troughs formed over the eastern North Pacific and eastern North America. This persistent amplified flow pattern supported the occurrence of frequent

  2. Nearshore marine benthic invertebrates moving north along the U.S. Atlantic coast

    EPA Science Inventory

    Numerous species have shifted their ranges north in response to global warming. We examined 21 years (1990-2010) of marine benthic invertebrate data from the National Coastal Assessment’s monitoring of nearshore waters along the US Atlantic coast. Data came from three bioge...

  3. Seasonal re-emergence of North Atlantic subsurface ocean temperature anomalies and Northern hemisphere climate

    NASA Astrophysics Data System (ADS)

    Sinha, Bablu; Blaker, Adam; Duchez, Aurelie; Grist, Jeremy; Hewitt, Helene; Hirschi, Joel; Hyder, Patrick; Josey, Simon; Maclachlan, Craig; New, Adrian

    2017-04-01

    A high-resolution coupled ocean atmosphere model is used to study the effects of seasonal re-emergence of North Atlantic subsurface ocean temperature anomalies on northern hemisphere winter climate. A 50-member control simulation is integrated from September 1 to 28 February and compared with a similar ensemble with perturbed ocean initial conditions. The perturbation consists of a density-compensated subsurface (deeper than 180m) temperature anomaly corresponding to the observed subsurface temperature anomaly for September 2010, which is known to have re-emerged at the ocean surface in subsequent months. The perturbation is confined to the North Atlantic Ocean between the Equator and 65 degrees North. The model has 1/4 degree horizontal resolution in the ocean and the experiment is repeated for two atmosphere horizontal resolutions ( 60km and 25km) in order to determine whether the sensitivity of the atmosphere to re-emerging temperature anomalies is dependent on resolution. The ensembles display a wide range of reemergence behaviour, in some cases re-emergence occurs by November, in others it is delayed or does not occur at all. A wide range of amplitudes of the re-emergent temperature anomalies is observed. In cases where re-emergence occurs, there is a marked effect on both the regional (North Atlantic and Europe) and hemispheric surface pressure and temperature patterns. The results highlight a potentially important process whereby ocean memory of conditions up to a year earlier can significantly enhance seasonal forecast skill.

  4. Environmental Composites for Bomb Cyclones of the Western North Atlantic in Reanalysis, 1948-2016.

    NASA Astrophysics Data System (ADS)

    Adams, R.; Sheridan, S. C.

    2017-12-01

    "Bomb" cyclones represent a small subset of mid-latitude cyclones characterized by rapid intensification and frequently are associated with extreme weather conditions along the eastern coast of North America. Like other extreme phenomena, bomb cyclone predictions are prone to error leading to inadequate or untimely hazard warnings. The rare nature of bomb cyclones and the uniqueness of their evolutions has made it difficult for researchers to make meaningful generalizations on bomb cyclone events. This paper describes bomb cyclone climatology for the western North Atlantic, using data from the NCEP-NCAR Reanalysis for 1948-2016, and uses a synoptic climatological analysis to relate these bombs to their associated atmospheric environments. A self-organizing map (SOM) of 300-hPa geopotential height tendency is created to partition the regional atmospheric environment. Thermodynamic fields are contrasted by each 300-hPa geopotential height tendency pattern for both bomb and non-bomb events in composite difference maps. The SOM patterns most significantly associated with western North Atlantic bomb cyclogenesis are characterized by both strongly and weakly negative height tendencies along the eastern United States. In both cases, these patterns exhibit strong meridional flow, a distinction marked by the weakening and breaking down of the polar vortex in the boreal Winter. The composite maps for each pattern show the mean differences in low-mid level ascent and near surface thermodynamics for bomb environments contrasted with non-bomb environments, resulting in diverse spatiotemporal distributions of bombs in the western North Atlantic.

  5. 33 CFR 334.1450 - Atlantic Ocean off north coast of Puerto Rico; practice firing areas, U.S. Army Forces Antilles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Atlantic Ocean off north coast of Puerto Rico; practice firing areas, U.S. Army Forces Antilles. 334.1450 Section 334.1450 Navigation and... RESTRICTED AREA REGULATIONS § 334.1450 Atlantic Ocean off north coast of Puerto Rico; practice firing areas...

  6. 33 CFR 334.1450 - Atlantic Ocean off north coast of Puerto Rico; practice firing areas, U.S. Army Forces Antilles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Atlantic Ocean off north coast of Puerto Rico; practice firing areas, U.S. Army Forces Antilles. 334.1450 Section 334.1450 Navigation and... RESTRICTED AREA REGULATIONS § 334.1450 Atlantic Ocean off north coast of Puerto Rico; practice firing areas...

  7. 33 CFR 334.1450 - Atlantic Ocean off north coast of Puerto Rico; practice firing areas, U.S. Army Forces Antilles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Atlantic Ocean off north coast of Puerto Rico; practice firing areas, U.S. Army Forces Antilles. 334.1450 Section 334.1450 Navigation and... RESTRICTED AREA REGULATIONS § 334.1450 Atlantic Ocean off north coast of Puerto Rico; practice firing areas...

  8. 33 CFR 334.1450 - Atlantic Ocean off north coast of Puerto Rico; practice firing areas, U.S. Army Forces Antilles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Atlantic Ocean off north coast of Puerto Rico; practice firing areas, U.S. Army Forces Antilles. 334.1450 Section 334.1450 Navigation and... RESTRICTED AREA REGULATIONS § 334.1450 Atlantic Ocean off north coast of Puerto Rico; practice firing areas...

  9. Winter Cloud Streets, North Atlantic

    NASA Image and Video Library

    2017-12-08

    NASA image acquired January 24, 2011 What do you get when you mix below-freezing air temperatures, frigid northwest winds from Canada, and ocean temperatures hovering around 39 to 40 degrees Fahrenheit (4 to 5 degrees Celsius)? Paved highways of clouds across the skies of the North Atlantic. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite collected this natural-color view of New England, the Canadian Maritimes, and coastal waters at 10:25 a.m. U.S. Eastern Standard Time on January 24, 2011. Lines of clouds stretch from northwest to southeast over the North Atlantic, while the relatively cloudless skies over land afford a peek at the snow that blanketed the Northeast just a few days earlier. Cloud streets form when cold air blows over warmer waters, while a warmer air layer—or temperature inversion—rests over top of both. The comparatively warm water of the ocean gives up heat and moisture to the cold air mass above, and columns of heated air—thermals—naturally rise through the atmosphere. As they hit the temperature inversion like a lid, the air rolls over like the circulation in a pot of boiling water. The water in the warm air cools and condenses into flat-bottomed, fluffy-topped cumulus clouds that line up parallel to the wind. Though they are easy to explain in a broad sense, cloud streets have a lot of mysteries on the micro scale. A NASA-funded researcher from the University of Wisconsin recently observed an unusual pattern in cloud streets over the Great Lakes. Cloud droplets that should have picked up moisture from the atmosphere and grown in size were instead shrinking as they moved over Lake Superior. Read more in an interview at What on Earth? NASA image by Jeff Schmaltz, MODIS Rapid Response Team, Goddard Space Flight Center. Caption by Michael Carlowicz. Instrument: Terra - MODIS Credit: NASA Earth Observatory NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth

  10. Observations of particulates within the North Atlantic Flight Corridor: POLINAT 2, September-October 1997

    NASA Astrophysics Data System (ADS)

    Paladino, J. D.; Hagen, D. E.; Whitefield, P. D.; Hopkins, A. R.; Schmid, O.; Wilson, M. R.; Schlager, H.; Schulte, P.

    2000-02-01

    This paper discusses participate concentration and size distribution data gathered using the University of Missouri-Rolla Mobile Aerosol Sampling System (UMR-MASS), and used to investigate the southern extent of the eastern end of the North Atlantic Flight Corridor (NAFC) during project Pollution From Aircraft Emissions in the North Atlantic Flight Corridor/Subsonic Assessment (SASS) Ozone and Nitrogen Oxide Experiment (POLINAT 2/SONEX) from September 19 to October 23, 1997. The analysis presented in this paper focuses on "the corridor effect," or enhancement of pollutants by jet aircraft combustion events. To investigate the phenomena, both vertical and horizontal profiles of the corridor, and regions immediately adjacent to the corridor, were performed. The profiles showed a time-dependent enhancement of particulates within the corridor, and a nonvolatile (with respect to thermal volatilization at 300°C) aerosol enhancement at corridor altitudes by a factor of 3.6. The southern extent of the North Atlantic Flight Corridor was established from a four flight average of the particulate data and yielded a boundary near 42.5°N during the study period. A size distribution analysis of the nonvolatile particulates revealed an enhancement in the <40 nm particulates for size distributions recorded within the flight corridor.

  11. The carbon balance of North American wetlands

    Treesearch

    Scott D. Bridgham; J. Patrick Megonigal; Jason K. Keller; Norman b. Bliss; Carl Trettin

    2006-01-01

    We examine the carbon balance of North American wetlands by reviewing and synthesizing the published literature and soil databases. North American wetlands contain about 220 Pg C, most of which is in peat. They are a small to moderate carbon sink of about 49 Tg C yr-l, although the uncertainty around this estimate is greater than 100%, with the...

  12. Reconstruction of the North Atlantic end-member of the thermohaline circulation across the Mid-Pleistocene Transition

    NASA Astrophysics Data System (ADS)

    Kim, J.; Seguí, M. J.; Yehudai, M.; Goldstein, S. L.; Pena, L. D.; Raymo, M. E.; Ford, H. L.; Haynes, L.; Farmer, J. R.; Hoenisch, B.

    2016-12-01

    The dominant periodicity of glacial and interglacial cycles shifted from 41 ky to 100 ky at 1.2-0.8 Ma, marking the Mid-Pleistocene Transition (MPT). Pena and Goldstein (Science, 2014) investigated changes in the Earth's global thermohaline circulation (THC), focusing on South Atlantic cores, and concluded that the THC experienced major disruptions between 950-850 ka (MIS 25 to 21), which generated the climatic conditions that intensified cold periods, prolonged their duration, and stabilized 100 ky cycles. However, knowledge of the coeval North Atlantic is key for interpreting data from the Middle and South Atlantic. We report Nd isotope ratios on Fe-Mn oxide encrusted foraminifera and fish debris from DSDP Site 607 (41.001N; 32.957W, 3427m) between 1.2-0.4 Ma, as a representative of the deep North Atlantic. Pre-MPT results (MIS 35-25) show interglacial ɛNd-values of -13.5 to -14.0, similar to today, and glacial-interglacial variability of 1 ɛNd-unit. Post-MPT results after MIS 19 also show interglacial ɛNd-values of -13.5 to -14.0, but greater glacial-interglacial variability of 2 ɛNd-units. Interglacial-to-glacial transitions throughout the core shift to higher ɛNd-values indicative of weakening THC, except for MIS 26, which is uniquely more negative than the neighboring interglacials, with ɛNd reaching -14.5. During the critical MPT interval of MIS 25-21 recognized by Pena and Goldstein (2014), and continuing beyond it through MIS 19, DSDP 607 ɛNd shows higher values of -11.5 to -12.5, like post-MPT glacials. Thus for the North Atlantic, from the point of view of ɛNd in DSDP 607, post-MPT and pre-MPT interglacials are similar, and post-MPT glacials and MPT glacials are similar. Moreover, comparison to the Pena and Goldstein (2014) South Atlantic data indicates that disruptions to North Atlantic overturning may have begun as early as MIS 27, and the recovery to the pre-MPT interglacial conditions may have been delayed beyond MIS 19.

  13. Cod Collapse and the Climate in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Meng, K. C.; Oremus, K. L.; Gaines, S.

    2014-12-01

    Effective fisheries management requires forecasting population changes. We find a negative relationship between the North Atlantic Oscillation (NAO) index and subsequently surveyed biomass and catch of Atlantic cod, Gadus morhua, off the New England coast. A 1-unit NAO increase is associated with a 17% decrease in surveyed biomass of age-1 cod the following year. This relationship persists as the cod mature, such that observed NAO can be used to forecast future adult biomass. We also document that an NAO event lowers catch for up to 15 years afterward. In contrast to forecasts by existing stock assessment models, our NAO-driven statistical model successfully hindcasts the recent collapse of New England cod fisheries following strong NAO events in 2007 and 2008 (see figure). This finding can serve as a template for forecasting other fisheries affected by climatic conditions.

  14. Lead isotopes in trade wind aerosols at Barbados: the influence of European emissions over the North Atlantic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamelin, B.; Grousset, F.E.; Biscaye, P.E.

    1989-11-15

    Previous studies have shown that Pb can be used as a transient tracer in the atmosphere and the ocean because of strong time-variability of industrial inputs and because Pb isotopic composition can be used to identify contribution from different sources. We present Pb isotopic measurements on aerosols collected from the North Atlantic Ocean in the trade wind belt. Aerosols sampled at Barbados during the 1969--1985 period have a Pb isotopic compositions different from that observed by previous investigators in Bermuda corals and Sargasso Sea waters. Barbados aerosols appear to contain significant amounts of relatively unradiogenic industrial and automotive Pb thatmore » is derived from Europe and carried to Barbados by the trade winds. In contrast, Bermuda corals and Sargasso sea waters are influenced mainly by U.S.-derived emissions, which contain more radiogenic Pb originating from Missouri-type ores. This difference generates a strong latitudinal Europe-U.S.A. isotopic gradient, thus allowing study of trans-Atlantic atmospheric transport and ocean mixing processes. {copyright} American Geophysical Union 1989« less

  15. Persistent positive North Atlantic oscillation mode dominated the Medieval Climate Anomaly.

    PubMed

    Trouet, Valérie; Esper, Jan; Graham, Nicholas E; Baker, Andy; Scourse, James D; Frank, David C

    2009-04-03

    The Medieval Climate Anomaly (MCA) was the most recent pre-industrial era warm interval of European climate, yet its driving mechanisms remain uncertain. We present here a 947-year-long multidecadal North Atlantic Oscillation (NAO) reconstruction and find a persistent positive NAO during the MCA. Supplementary reconstructions based on climate model results and proxy data indicate a clear shift to weaker NAO conditions into the Little Ice Age (LIA). Globally distributed proxy data suggest that this NAO shift is one aspect of a global MCA-LIA climate transition that probably was coupled to prevailing La Niña-like conditions amplified by an intensified Atlantic meridional overturning circulation during the MCA.

  16. Subsurface North Atlantic warming as a trigger of rapid cooling events: evidence from the early Pleistocene (MIS 31-19)

    NASA Astrophysics Data System (ADS)

    Hernández-Almeida, I.; Sierro, F.-J.; Cacho, I.; Flores, J.-A.

    2015-04-01

    Subsurface water column dynamics in the subpolar North Atlantic were reconstructed in order to improve the understanding of the cause of abrupt ice-rafted detritus (IRD) events during cold periods of the early Pleistocene. We used paired Mg / Ca and δ18O measurements of Neogloboquadrina pachyderma (sinistral - sin.), deep-dwelling planktonic foraminifera, to estimate the subsurface temperatures and seawater δ18O from a sediment core from Gardar Drift, in the subpolar North Atlantic. Carbon isotopes of benthic and planktonic foraminifera from the same site provide information about the ventilation and water column nutrient gradient. Mg / Ca-based temperatures and seawater δ18O suggest increased subsurface temperatures and salinities during ice-rafting, likely due to northward subsurface transport of subtropical waters during periods of weaker Atlantic Meridional Overturning Circulation (AMOC). Planktonic carbon isotopes support this suggestion, showing coincident increased subsurface ventilation during deposition of IRD. Subsurface accumulation of warm waters would have resulted in basal warming and break-up of ice-shelves, leading to massive iceberg discharges in the North Atlantic. The release of heat stored at the subsurface to the atmosphere would have helped to restart the AMOC. This mechanism is in agreement with modelling and proxy studies that observe a subsurface warming in the North Atlantic in response to AMOC slowdown during Marine Isotope Stage (MIS) 3.

  17. Genetic Structure and the North American Postglacial Expansion of the Barnacle, Semibalanus balanoides

    PubMed Central

    O’Brien, Megan A.; Schmidt, Paul S.; Rand, David M.

    2012-01-01

    Population genetic characteristics are shaped by the life-history traits of organisms and the geologic history of their habitat. This study provides a neutral framework for understanding the population dynamics and opportunities for selection in Semibalanus balanoides, a species that figures prominently in ecological and evolutionary studies in the Atlantic intertidal. We used mitochondrial DNA (mtDNA) control region (N = 131) and microsatellite markers (∼40 individuals/site/locus) to survey populations of the broadly dispersing acorn barnacle from 8 sites spanning 800 km of North American coast and 1 site in Europe. Patterns of mtDNA sequence evolution were consistent with larger population sizes in Europe and population expansion at the conclusion of the last ice age, approximately 20 000 years ago, in North America. A significant portion of mitochondrial diversity was partitioned between the continents (φST = 0.281), but there was only weak structure observed from mtDNA within North America. Microsatellites showed significant structuring between the continents (FST = 0.021) as well as within North America (FST = 0.013). Isolation by distance in North America was largely driven by a split between populations south of Cape Cod and all others (P < 10−4). The glacial events responsible for generating allelic diversity at mtDNA and microsatellites may also be responsible for generating selectable variation at metabolic enzymes in S. balanoides. PMID:21885571

  18. North American trade and travel trends

    DOT National Transportation Integrated Search

    2001-03-01

    Canada and Mexico are the United States largest trading and travel partnersaccounting for one-third of the value of U.S. international tradeand are the top destinations for Americans traveling abroad. Since the North American Free Trade Agre...

  19. Eddy-driven stratification initiates North Atlantic spring phytoplankton blooms.

    PubMed

    Mahadevan, Amala; D'Asaro, Eric; Lee, Craig; Perry, Mary Jane

    2012-07-06

    Springtime phytoplankton blooms photosynthetically fix carbon and export it from the surface ocean at globally important rates. These blooms are triggered by increased light exposure of the phytoplankton due to both seasonal light increase and the development of a near-surface vertical density gradient (stratification) that inhibits vertical mixing of the phytoplankton. Classically and in current climate models, that stratification is ascribed to a springtime warming of the sea surface. Here, using observations from the subpolar North Atlantic and a three-dimensional biophysical model, we show that the initial stratification and resulting bloom are instead caused by eddy-driven slumping of the basin-scale north-south density gradient, resulting in a patchy bloom beginning 20 to 30 days earlier than would occur by warming.

  20. Glacimarine Sedimentary Processes and Facies on the Polar North Atlantic Margins

    NASA Astrophysics Data System (ADS)

    Dowdeswell, J. A.; Elverhfi, A.; Spielhagen, R.

    Major contrasts in the glaciological, oceanic and atmospheric parameters affecting the Polar North Atlantic, both over space between its eastern and western margins, and through time from full glacial to interglacial conditions, have lead to the deposition of a wide variety of sedimentary facies in these ice-influenced seas. The dynamics of the glaciers and ice sheets on the hinterlands surrounding the Polar North Atlantic have exterted a major influence on the processes, rates and patterns of sedimentation on the continental margins of the Norwegian and Greenland seas over the Late Cenozoic. The western margin is influenced by the cold East Greenland Current and the Svalbard margin by the northernmost extent of the warm North Atlantic Drift and the passage of relatively warm cyclonic air masses. In the fjords of Spitsbergen and the northwestern Barents Sea, glacial meltwater is dominant in delivering sediments. In the fjords of East Greenland the large numbers of icebergs produced from fast-flowing outlets of the Greenland Ice Sheet play a more significant role in sedimentation. During full glacials, sediments are delivered to the shelf break from fast-flowing ice streams, which drain huge basins within the parent ice sheet. Large prograding fans located on the continental slope offshore of these ice streams are made up of stacked debris flows. Large-scale mass failures, turbidity currents, and gas-escape structures also rework debris in continental slope and shelf settings. Even during interglacials, both the margins and the deep ocean basins beyond them retain a glacimarine overprint derived from debris in far-travelled icebergs and sea ice. Under full glacial conditions, the glacier influence is correspondingly stronger, and this is reflected in the glacial and glacimarine facies deposited at these times.

  1. A 3000-year annual-resolution record of the North Atlantic Oscillation

    NASA Astrophysics Data System (ADS)

    Kelly, B. F.; Mariethoz, G.; Hellstrom, J.; Baker, A.

    2013-12-01

    The North Atlantic Oscillation provides an index of North Atlantic climate variability. The 947-yr long annual resolution record of the North Atlantic Oscillation (NAO) of Trouet et al. (2009, Science, 324, 78-81), the NAO Morocco-Scotland index, combined tree ring and stalagmite data, the latter a single stalagmite growth rate archive from NW Scotland. Trouet et al (2009) noted the unusual persistence of the positive phase of the NAO during the Medieval Climate Anomaly (MCA; 1050-1400AD). In order to better assess the uniqueness of the persistently positive NAO in the MCA, we extend the speleothem portion of the proxy NAO record with a composite of five stalagmites from the same cave system. We present the first-ever composite speleothem growth rate record. Using a combination of lamina counting, U-Th dating, and correlation between growth rate series, we build a continuous, annual-resolution, annually laminated, stalagmite growth rates series for the last 3000 years. We use geostatistical and stochastic approaches appropriate to stalagmite growth rate time series to characterise uncertainty in the stalagmite series and to screen them for periods of relative climate sensitivity vs. periods where there is hydrologically introduced, non-climatic variability. We produce the longest annual-resolution annual lamina record of the NAO for the last 3000 years. The screened stalagmite series is compared to instrumental and proxy records of the NAO. Spectral and wavelet analysis demonstrates that the series contains significant decadal to centennial scale periodicity throughout the record. We demonstrate that the persistently positive NAO during the MCA (1080-1460 CE) is remarkable within the last 3000 years. Two other phases of persistent, positive NAO, occur at 290-550 CE and 660-530 BCE, in agreement with the lower resolution, 5,200-yr Greenland lake sediment NAO proxy (Olsen et al, 2012, Nature Geoscience, 5, 808-812).

  2. Statistical Record of Native North Americans. Second Edition.

    ERIC Educational Resources Information Center

    Reddy, Marlita A., Ed.

    This book compiles statistical data on Native North American populations, including Alaska and Canada Natives. Data sources include federal and state agencies, census records, tribal governments, associations, and other organizations. The book includes statistics on Native North Americans as compared with other racial and ethnic groups under…

  3. Influence of ENSO on Gulf Stream cyclogenesis and the North Atlantic storm track

    NASA Astrophysics Data System (ADS)

    Li, C.; Schemm, S.; Ciasto, L.; Kvamsto, N. G.

    2015-12-01

    There is emerging evidence that climate in the North Atlantic-European sector is sensitive to vacillations of tropical Pacific sea surface temperatures, in particular, the central Pacific flavour of the El Nino Southern Oscillation (ENSO) and concomitant trends in atmospheric heating. The frequency of central Pacific ENSOs appears to have increased over the last decades and some studies suggest it may continue increasing in the future, but the precise mechanisms by which these events affect the North Atlantic synoptic scale circulation are poorly understood. Here, we show that central Pacific ENSOs influence where midlatitude cyclogenesis occurs over the Gulf Stream, producing more cyclogenesis in the jet exit region rather than in the climatologically preferred jet entrance region. The cyclones forming over the Gulf Stream in central Pacific ENSO seasons tend to veer north, penetrating deeper into the Arctic rather than into continental Europe. The shift in cyclogenesis is linked to changes in the large scale circulation, namely, the upper-level trough formed in the lee of the Rocky Mountains.

  4. An Estimate of North Atlantic Basin Tropical Cyclone Activity for 2008

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2008-01-01

    The statistics of North Atlantic basin tropical cyclones for the interval 1945-2007 are examined and estimates are given for the frequencies of occurrence of the number of tropical cyclones, number of hurricanes, number of major hurricanes, number of category 4/5 hurricanes, and number of U.S. land-falling hurricanes for the 2008 hurricane season. Also examined are the variations of peak wind speed, average peak wind speed per storm, lowest pressure, average lowest pressure per storm, recurrence rate and duration of extreme events (El Nino and La Nina), the variation of 10-yr moving averages of parametric first differences, and the association of decadal averages of frequencies of occurrence of North Atlantic basin tropical cyclones against decadal averages of Armagh Observatory, Northern Ireland, annual mean temperature (found to be extremely important for number of tropical cyclones and number of hurricanes). Because the 2008 hurricane season seems destined to be one that is non-El Nino-related and is a post-1995 season, estimates of the frequencies of occurrence for the various subsets of storms should be above long-term averages.

  5. Transport Structure and Energetic of the North Atlantic Current in Subpolar Gyre from Observations

    NASA Astrophysics Data System (ADS)

    Houpert, Loïc; Inall, Mark; Dumont, Estelle; Gary, Stefan; Porter, Marie; Johns, William; Cunningham, Stuart

    2017-04-01

    We present the first 2 years of UK-OSNAP glider missions on the Rockall Plateau in the North Atlantic subpolar gyre. From July 2014 to August 2016, 20 gliders sections were realized along 58°N, between 22°W and 15°W. Depth-averaged currents estimated from gliders show very strong values (up to 45cm.s-1) associated with meso-scale variability, due particularly to eddies and subpolar mode water formation. The variability of the flow on the eastern slope of the Iceland basin and on the Rockall Plateau is presented. Meridional absolute geostrophic transports are calculated from the glider data, and we discuss the vertical structure of the absolute meridional transport, especially the part associated with the North Atlantic Current.

  6. Phylogenetic relationships among North American Alosa species (Clupeidae)

    Treesearch

    B.R. Bowen; B.R. Kreiser; P.F. Mickel; J.F. Schaefer; S.B. Adams

    2008-01-01

    A phylogeny of the six North American species in the genus Alosa, with representatives of three Eurasian species, was generated using mtDNA sequences. This was accomplished by obtaining sequences for three North American species and additional geographical sampling of the other three species. The subgenus Alosa, including the...

  7. "Complexity" in Polarity Transitions at the Matuyama-Brunhes Boundary and top Jaramillo in North Atlantic Deep-sea Sediments

    NASA Astrophysics Data System (ADS)

    Channell, J. E. T.

    2016-12-01

    Integrated Ocean Drilling Program (IODP) Expedition 303 to the North Atlantic provided 16 records of the Matuyama-Brunhes polarity transition (MBT) and the top Jaramillo transition, based on u-channel and discrete samples, from holes drilled at three sites (Sites U1304, U1305 and U1306) that have mean Brunhes sedimentation rates of 16-18 cm/kyr. The MBT occurs during the transition from marine isotope stage (MIS) 19.3 to MIS 18.4, with mid-point at 773 ka, and a transition duration of 5-8 kyr. The top Jaramillo occurs during MIS 28 at 992 ka with a similar 5 kyr transition duration. Combining the new records with previously published North Atlantic records (ODP Sites 983, 984 and 1063) yields a total of 24 high sedimentation rate records. The MBT yields a repetitive pattern of transitional field states as virtual geomagnetic poles (VGPs) move from high southern latitudes to loop over the Pacific, cluster in NE Asia, and transit into the mid-latitude South Atlantic before reaching high latitudes in the Northern Hemisphere. The VGPs for the top Jaramillo transition feature a loop over the Pacific, then occupation of the NE Asia cluster before transit over the Indian Ocean to high southerly latitudes. The North Atlantic MBT records described here are very different to the longitudinally constrained North Atlantic VGP paths from MBT records that are the basis for a 2007 Bayesian inversion of the MBT field. We conclude that the relatively low sedimentation rate ( 4 cm/kyr) records utilized in the Bayesian inversion have been heavily smoothed by the remanence acquisition process, and do not adequately represent the MBT field. The VGPs at the MBT and top Jaramillo, as measured in the North Atlantic, have similarities with excursion (Iceland Basin) VGP paths, and are apparently guided by maxima in downward vertical flux in the modern non-dipole (ND) field, implying longevity in ND features through time.

  8. Intraseasonal interaction between the Madden-Julian Oscillation and the North Atlantic Oscillation.

    PubMed

    Cassou, Christophe

    2008-09-25

    Bridging the traditional gap between the spatio-temporal scales of weather and climate is a significant challenge facing the atmospheric community. In particular, progress in both medium-range and seasonal-to-interannual climate prediction relies on our understanding of recurrent weather patterns and the identification of specific causes responsible for their favoured occurrence, persistence or transition. Within this framework, I here present evidence that the main climate intra-seasonal oscillation in the tropics-the Madden-Julian Oscillation (MJO)-controls part of the distribution and sequences of the four daily weather regimes defined over the North Atlantic-European region in winter. North Atlantic Oscillation (NAO) regimes are the most affected, allowing for medium-range predictability of their phase far exceeding the limit of around one week that is usually quoted. The tropical-extratropical lagged relationship is asymmetrical. Positive NAO events mostly respond to a mid-latitude low-frequency wave train initiated by the MJO in the western-central tropical Pacific and propagating eastwards. Precursors for negative NAO events are found in the eastern tropical Pacific-western Atlantic, leading to changes along the North Atlantic storm track. Wave-breaking diagnostics tend to support the MJO preconditioning and the role of transient eddies in setting the phase of the NAO. I present a simple statistical model to quantitatively assess the potential predictability of the daily NAO index or the sign of the NAO regimes when they occur. Forecasts are successful in approximately 70 per cent of the cases based on the knowledge of the previous approximately 12-day MJO phase used as a predictor. This promising skill could be of importance considering the tight link between weather regimes and both mean conditions and the chances of extreme events occurring over Europe. These findings are useful for further stressing the need to better simulate and forecast the tropical

  9. Seasonal copepod lipid pump promotes carbon sequestration in the deep North Atlantic

    PubMed Central

    Jónasdóttir, Sigrún Huld; Visser, André W.; Richardson, Katherine; Heath, Michael R.

    2015-01-01

    Estimates of carbon flux to the deep oceans are essential for our understanding of global carbon budgets. Sinking of detrital material (“biological pump”) is usually thought to be the main biological component of this flux. Here, we identify an additional biological mechanism, the seasonal “lipid pump,” which is highly efficient at sequestering carbon into the deep ocean. It involves the vertical transport and metabolism of carbon rich lipids by overwintering zooplankton. We show that one species, the copepod Calanus finmarchicus overwintering in the North Atlantic, sequesters an amount of carbon equivalent to the sinking flux of detrital material. The efficiency of the lipid pump derives from a near-complete decoupling between nutrient and carbon cycling—a “lipid shunt,” and its direct transport of carbon through the mesopelagic zone to below the permanent thermocline with very little attenuation. Inclusion of the lipid pump almost doubles the previous estimates of deep-ocean carbon sequestration by biological processes in the North Atlantic. PMID:26338976

  10. Variability of sea surface height and circulation in the North Atlantic: Forcing mechanisms and linkages

    NASA Astrophysics Data System (ADS)

    Wang, Zeliang; Lu, Youyu; Dupont, Frederic; W. Loder, John; Hannah, Charles; G. Wright, Daniel

    2015-03-01

    Simulations with a coarse-resolution global ocean model during 1958-2004 are analyzed to understand the inter-annual and decadal variability of the North Atlantic. Analyses of Empirical Orthogonal Functions (EOFs) suggest relationships among basin-scale variations of sea surface height (SSH) and depth-integrated circulation, and the winter North Atlantic Oscillation (NAO) or the East Atlantic Pattern (EAP) indices. The linkages between the atmospheric indices and ocean variables are shown to be related to the different roles played by surface momentum and heat fluxes in driving ocean variability. In the subpolar region, variations of the gyre strength, SSH in the central Labrador Sea and the NAO index are highly correlated. Surface heat flux is important in driving variations of SSH and circulation in the upper ocean and decadal variations of the Atlantic Meridional Overturning Circulation (AMOC). Surface momentum flux drives a significant barotropic component of flow and makes a noticeable contribution to the AMOC. In the subtropical region, momentum flux plays a dominant role in driving variations of the gyre circulation and AMOC; there is a strong correlation between gyre strength and SSH at Bermuda.

  11. Subsurface warming in the subpolar North Atlantic during rapid climate events in the Early and Mid-Pleistocene

    NASA Astrophysics Data System (ADS)

    Hernández-Almeida, Iván; Sierro, Francisco; Cacho, Isabel; Abel Flores, José

    2014-05-01

    A new high-resolution reconstruction of the temperature and salinity of the subsurface waters using paired Mg/Ca-δ18O measurements on the planktonic foraminifera Neogloboquadrina pachyderma sinistrorsa (sin.) was conducted on a deep-sea sediment core in the subpolar North Atlantic (Site U1314). This study aims to reconstruct millennial-scale subsurface hydrography variations during the Early and Mid-Pleistocene (MIS 31-19). These rapid climate events are characterized by abrupt shifts between warm/cold conditions, and ice-sheet oscillations, as evidenced by major ice rafting events recorded in the North Atlantic sediments (Hernández-Almeida et al., 2012), similar to those found during the Last Glacial period (Marcott et al, 2011). The Mg/Ca derived paleotemperature and salinity oscillations prior and during IRD discharges at Site U1314 are related to changes in intermediate circulation. The increases in Mg/Ca paleotemperatures and salinities during the IRD event are preceded by short episodes of cooling and freshening of subsurface waters. The response of the AMOC to this perturbation is an increased of warm and salty water coming from the south, transported to high latitudes in the North Atlantic beneath the thermocline. This process is accompanied by a southward shift in the convection cell from the Nordic Seas to the subpolar North Atlantic and better ventilation of the North Atlantic at mid-depths. Poleward transport of warm and salty subsurface subtropical waters causes intense basal melting and thinning of marine ice-shelves, that culminates in large-scale instability of the ice sheets, retreat of the grounding line and iceberg discharge. The mechanism proposed involves the coupling of the AMOC with ice-sheet dynamics, and would explain the presence of these fluctuations before the establishment of high-amplitude 100-kyr glacial cycles. Hernández-Almeida, I., Sierro, F.J., Cacho, I., Flores, J.A., 2012. Impact of suborbital climate changes in the North

  12. North Atlantic salinity as a predictor of Sahel rainfall.

    PubMed

    Li, Laifang; Schmitt, Raymond W; Ummenhofer, Caroline C; Karnauskas, Kristopher B

    2016-05-01

    Water evaporating from the ocean sustains precipitation on land. This ocean-to-land moisture transport leaves an imprint on sea surface salinity (SSS). Thus, the question arises of whether variations in SSS can provide insight into terrestrial precipitation. This study provides evidence that springtime SSS in the subtropical North Atlantic ocean can be used as a predictor of terrestrial precipitation during the subsequent summer monsoon in Africa. Specifically, increased springtime SSS in the central to eastern subtropical North Atlantic tends to be followed by above-normal monsoon-season precipitation in the African Sahel. In the spring, high SSS is associated with enhanced moisture flux divergence from the subtropical oceans, which converges over the African Sahel and helps to elevate local soil moisture content. From spring to the summer monsoon season, the initial water cycling signal is preserved, amplified, and manifested in excessive precipitation. According to our analysis of currently available soil moisture data sets, this 3-month delay is attributable to a positive coupling between soil moisture, moisture flux convergence, and precipitation in the Sahel. Because of the physical connection between salinity, ocean-to-land moisture transport, and local soil moisture feedback, seasonal forecasts of Sahel precipitation can be improved by incorporating SSS into prediction models. Thus, expanded monitoring of ocean salinity should contribute to more skillful predictions of precipitation in vulnerable subtropical regions, such as the Sahel.

  13. North Atlantic salinity as a predictor of Sahel rainfall

    PubMed Central

    Li, Laifang; Schmitt, Raymond W.; Ummenhofer, Caroline C.; Karnauskas, Kristopher B.

    2016-01-01

    Water evaporating from the ocean sustains precipitation on land. This ocean-to-land moisture transport leaves an imprint on sea surface salinity (SSS). Thus, the question arises of whether variations in SSS can provide insight into terrestrial precipitation. This study provides evidence that springtime SSS in the subtropical North Atlantic ocean can be used as a predictor of terrestrial precipitation during the subsequent summer monsoon in Africa. Specifically, increased springtime SSS in the central to eastern subtropical North Atlantic tends to be followed by above-normal monsoon-season precipitation in the African Sahel. In the spring, high SSS is associated with enhanced moisture flux divergence from the subtropical oceans, which converges over the African Sahel and helps to elevate local soil moisture content. From spring to the summer monsoon season, the initial water cycling signal is preserved, amplified, and manifested in excessive precipitation. According to our analysis of currently available soil moisture data sets, this 3-month delay is attributable to a positive coupling between soil moisture, moisture flux convergence, and precipitation in the Sahel. Because of the physical connection between salinity, ocean-to-land moisture transport, and local soil moisture feedback, seasonal forecasts of Sahel precipitation can be improved by incorporating SSS into prediction models. Thus, expanded monitoring of ocean salinity should contribute to more skillful predictions of precipitation in vulnerable subtropical regions, such as the Sahel. PMID:27386525

  14. Sedimentation in the Kane fracture zone, western North Atlantic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaroslow, G.E.

    1991-03-01

    The Kane fracture zone, a deep narrow trough in oceanic crust, has provided an ideal depocenter for reservation on the seismic stratigraphic record of the North Atlantic basin. The acoustic stratigraphy in single-channel and multichannel seismic reflection profiles crossing the Kane fracture zone in the western North Atlantic has been examined in order to scrutinize age processes within a fracture zone. Maps of total sediment thickness have provided insight into overall sediment distribution and the influence of topography on sedimentation. Eight reflectors have been traced and correlated with lithostratigraphy at Deep Sea Drilling Project (DSDP) sites. The Bermuda Rise, amore » prominent topographic feature, has had a profound effect on the distribution of sediments within the fracture zone. Since late Eocene, the rise has blocked transport by turbidity currents of terrigenous sediments to distal portions of the fracture valley. A 1,000-m-thick turbidite pond within the fracture zone east of the Bermuda Rise has been determined to have been derived from local sources. Within the ponded sequence a seismic discontinuity is estimated to be early Oligocene and postdates the emergence of the Bermuda Rise, adding an independent age constraint on the development of the rise. The pond terminates against a structural dam at 55{degree}20W, east of which the fracture zone is essentially sediment starved.« less

  15. The demise of the early Eocene greenhouse - Decoupled deep and surface water cooling in the eastern North Atlantic

    NASA Astrophysics Data System (ADS)

    Bornemann, André; D'haenens, Simon; Norris, Richard D.; Speijer, Robert P.

    2016-10-01

    Early Paleogene greenhouse climate culminated during the early Eocene Climatic Optimum (EECO, 50 to 53 Ma). This episode of global warmth is subsequently followed by an almost 20 million year-long cooling trend leading to the Eocene-Oligocene glaciation of Antarctica. Here we present the first detailed planktic and benthic foraminiferal isotope single site record (δ13C, δ18O) of late Paleocene to middle Eocene age from the North Atlantic (Deep Sea Drilling Project Site 401, Bay of Biscay). Good core recovery in combination with well preserved foraminifera makes this site suitable for correlations and comparison with previously published long-term records from the Pacific Ocean (e.g. Allison Guyot, Shatsky Rise), the Southern Ocean (Maud Rise) and the equatorial Atlantic (Demerara Rise). Whereas our North Atlantic benthic foraminiferal δ18O and δ13C data agree with the global trend showing the long-term shift toward heavier δ18O values, we only observe minor surface water δ18O changes during the middle Eocene (if at all) in planktic foraminiferal data. Apparently, the surface North Atlantic did not cool substantially during the middle Eocene. Thus, the North Atlantic appears to have had a different surface ocean cooling history during the middle Eocene than the southern hemisphere, whereas cooler deep-water masses were comparatively well mixed. Our results are in agreement with previously published findings from Tanzania, which also support the idea of a muted post-EECO surface-water cooling outside the southern high-latitudes.

  16. Western Tropical Atlantic Hydrologic change during the last 130,000 years

    NASA Astrophysics Data System (ADS)

    McGrath, S. M.; Lavoie, N.; Oppo, D.

    2016-12-01

    Abrupt climate changes in the North Atlantic during the last 130,000 years are associated with hydrologic changes in the western tropical Atlantic Ocean. Previous studies on marine sediment cores from between 4°S and the equator have documented pulses of terrigenous sediment recording increased precipitation and weathering on the Brazilian Nordeste associated with Heinrich events. We worked on cores KNR197-3-11CDH (7°40'N, 53°49'W, water depth 550 m) and KNR 197-3-46CDH (7°50.1621'N, 53°39.8051'W, 947m water depth) located farther north along the South American continental slope, where sediment derives from the Amazon river basin and is transported by the North Brazilian Current. Preliminary stratigraphy based on magnetic susceptibility shows a possible correlation with the Greenland ice core δ18O stratigraphy. We use sediment elemental composition, determined by x-ray fluorescence (XRF) to evaluate variations in terrigenous sediment runoff and δ18O of the planktonic foraminifers Globierinoides ruber to evaluate variations in western tropical North Atlantic surface hydrography across North Atlantic abrupt climate events. Similarities and differences among our records and the records from the more southerly cores will help understand the mechanisms of hydrologic changes in the regions on abrupt climate time scales.

  17. Geographic variation of persistent organic pollutant levels in humpback whale (Megaptera novaeangliae) feeding areas of the North Pacific and North Atlantic.

    PubMed

    Elfes, Cristiane T; Vanblaricom, Glenn R; Boyd, Daryle; Calambokidis, John; Clapham, Phillip J; Pearce, Ronald W; Robbins, Jooke; Salinas, Juan Carlos; Straley, Janice M; Wade, Paul R; Krahn, Margaret M

    2010-04-01

    Seasonal feeding behavior and high fidelity to feeding areas allow humpback whales (Megaptera novaeangliae) to be used as biological indicators of regional contamination. Biopsy blubber samples from male individuals (n = 67) were collected through SPLASH, a multinational research project, in eight North Pacific feeding grounds. Additional male samples (n = 20) were collected from one North Atlantic feeding ground. Persistent organic pollutants were measured in the samples and used to assess contaminant distribution in the study areas. North Atlantic (Gulf of Maine) whales were more contaminated than North Pacific whales, showing the highest levels of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and chlordanes. The highest dichlorodiphenyltrichloroethane (DDT) levels were detected in whales feeding off southern California, USA. High-latitude regions were characterized by elevated levels of hexachlorocyclohexanes (HCHs) but generally nondetectable concentrations of PBDEs. Age was shown to have a positive relationship with SigmaPCBs, SigmaDDTs, Sigmachlordanes, and total percent lipid. Contaminant levels in humpback whales were comparable to other mysticetes and lower than those found in odontocete cetaceans and pinnipeds. Although these concentrations likely do not represent a significant conservation threat, levels in the Gulf of Maine and southern California may warrant further study. (c) 2009 SETAC.

  18. Bayesian hierarchical modelling of North Atlantic windiness

    NASA Astrophysics Data System (ADS)

    Vanem, E.; Breivik, O. N.

    2013-03-01

    Extreme weather conditions represent serious natural hazards to ship operations and may be the direct cause or contributing factor to maritime accidents. Such severe environmental conditions can be taken into account in ship design and operational windows can be defined that limits hazardous operations to less extreme conditions. Nevertheless, possible changes in the statistics of extreme weather conditions, possibly due to anthropogenic climate change, represent an additional hazard to ship operations that is less straightforward to account for in a consistent way. Obviously, there are large uncertainties as to how future climate change will affect the extreme weather conditions at sea and there is a need for stochastic models that can describe the variability in both space and time at various scales of the environmental conditions. Previously, Bayesian hierarchical space-time models have been developed to describe the variability and complex dependence structures of significant wave height in space and time. These models were found to perform reasonably well and provided some interesting results, in particular, pertaining to long-term trends in the wave climate. In this paper, a similar framework is applied to oceanic windiness and the spatial and temporal variability of the 10-m wind speed over an area in the North Atlantic ocean is investigated. When the results from the model for North Atlantic windiness is compared to the results for significant wave height over the same area, it is interesting to observe that whereas an increasing trend in significant wave height was identified, no statistically significant long-term trend was estimated in windiness. This may indicate that the increase in significant wave height is not due to an increase in locally generated wind waves, but rather to increased swell. This observation is also consistent with studies that have suggested a poleward shift of the main storm tracks.

  19. Influence of the North Atlantic Oscillation on European tropospheric composition: an observational and modelling study

    NASA Astrophysics Data System (ADS)

    Pope, R.; Chipperfield, M.

    2017-12-01

    The North Atlantic Oscillation (NAO) has a strong influence on winter-time North Atlantic and European circulation patterns. Under the positive phase of the NAO (NAO+), intensification of the climatological Icelandic low and Azores high pressure systems results in strong westerly flow across the Atlantic into Europe. Under the NAO negative phase (NAO-), there is a weakening of this meridional pressure gradient resulting in a southerly shift in the westerlies flow towards the sub-tropical Atlantic. Therefore, NAO+ and NAO- introduce unstable stormy and drier stable conditions into Europe, respectively. Under NAO+ conditions, the strong westerlies tend to enhance transport of European pollution (e.g. nitrogen oxides) away from anthropogenic source regions. While during NAO-, the more stable conditions lead to a build up of pollutants. However, secondary pollutants (i.e. tropospheric ozone) show the opposite signal where NAO+, while transporting primary pollutants away, introduces Atlantic ozone enriched air into Europe. Here ozone can form downwind of pollution from continental North America and be transported into Europe via the westerly flow. Under NAO-, this westerly ozone transport is reduced yielding lower European ozone concentrations also depleted further by ozone loss through the reaction with NOx, which has accumulated over the continent. Peroxyacetyl nitrate (PAN), observed in the upper troposphere - lower stratosphere (UTLS) by satellite, peaks over Iceland/Southern Greenland in NAO-, between 200-100 hPa, consistent with trapping by an anticyclone at this altitude. During NAO+, PAN is enhanced over the sub-tropical Atlantic and Arctic. Model simulations show that enhanced PAN over Iceland/Southern Greenland in NAO- is associated with vertical transport from the troposphere into the UTLS, while peak Arctic PAN in NAO+ is its accumulation given the strong northerly meridional transport in the UTLS. UTLS ozone spatial anomalies, relative to the winter

  20. Combating Terrorism: North American Aerospace Defense Command Versus Asymmetric Threats

    DTIC Science & Technology

    2016-02-01

    AU/ACSC/2016 AIR COMMAND AND STAFF COLLEGE AIR UNIVERSITY COMBATING TERRORISM: NORTH AMERICAN AEROSPACE DEFENSE COMMAND...1 SECTION II: BACKGROUND ...........................................................................................5 - North ...v LIST OF ILLUSTRATIONS Figure 1: North American Aerospace Defense Command Radars in the 1960s

  1. North American transportation in figures

    DOT National Transportation Integrated Search

    2000-01-01

    North American Transportation in Figures examines transportation and transportation-related passenger, freight, economic, safety, energy, environmental and demographic statistics relating to Canada, Mexico and the United States. This publication serv...

  2. Refining plate reconstructions of the North Atlantic and Ellesmerian domains

    NASA Astrophysics Data System (ADS)

    Shephard, Grace E.; Abdelmalak, Mansour M.; Buiter, Susanne; Piepjohn, Karsten; Jones, Morgan; Torsvik, Trond; Faleide, Jan Inge; Gaina, Carmen

    2017-04-01

    Located at the intersection of major tectonic plates, the North Atlantic and western Arctic domains have experienced both widespread and localized deformation since the Paleozoic. In conventional tectonic reconstructions, the plates of Greenland, Eurasia and North America are assumed to be rigid. However, prior to the onset of seafloor spreading, rifting lithosphere experiences significant thinning that is usually not accounted for. This leads to significant (in excess of 300 km in places) over- and under-laps between conjugate continent-ocean boundaries, an incomplete history of basin evolution, and loose correlations between climatic, volcanic, oceanographic and, geologic events. Furthermore, a handful of alternative regional reconstructions now exist, which predict different timings, rates and locations of relative motion and associated deformation. Assumptions of reference crustal thicknesses and the nature of lower crustal bodies, as well as the location of basin hinge lines have to-date not yet been incorporated into a consistent regional kinematic model. Notably, the alternative models predict varying episodes of compression or quiescence, not just orthogonal or oblique rifting. Here, we present new temporal and spatial-dependent results related to (1) the dominant rifting episodes across the North Atlantic (Carboniferous, Late Permian, Late Jurassic-Early Cenozoic and Late Cretaceous-Paleogene), and (2) restoration of compression and strike-slip motion between northern Greenland, Ellesmere Island (North America) and Spitsbergen (Eurasia) related to the Eurekan Orogeny. We achieve this by integrating a series of conjugate seismic profiles, calculated stretching factors, dated volcanic events, structural mapping and mass-balanced restorations into a global plate motion model via GPlates software. We also test alternative models of rift velocities (as kinematic boundary conditions) with 2-D lithosphere and mantle numerical models, and explore the importance of

  3. Physically driven Patchy O2 Changes in the North Atlantic Ocean simulated by the CMIP5 Earth System Models

    NASA Astrophysics Data System (ADS)

    Tagklis, Filippos; Bracco, Annalisa; Ito, Takamitsu

    2017-04-01

    Centennial trends of oxygen in the upper 700 m of the North Atlantic Ocean are investigated in Earth System Models (ESMs) included in the Coupled Model Intercomparison Project Phase 5. The focus is on the subpolar region, which is key for the oceanic uptake of oxygen and carbon dioxide. Historical simulations covering the twentieth century and projections for the twenty-first century under the Representative Concentration Pathway 8.5 scenario are investigated. Although the representation of convective activity differs among the models in space and strength, and most models have a cold bias south of Greenland resulting from a poor representation of the pathway of the North Atlantic Current, the observed climatological distribution of dissolved O2 averaged for the recent past period (1975-2005) is generally well captured. By the end of the 21st century, all models predict an increase in depth-integrated temperature of 2-3oC, a consequent solubility decrease, a weakening of the vertical mass transport, a decrease in nutrient supply into the euphotic layer, and a spatially variable change in apparent oxygen utilization (AOU). Despite an overall tendency of the North Atlantic to lose oxygen by the end of twenty-first century, patchy regions of O2 increase are observed in a subset of models. This regional resistance to deoxygenation is explained by the weakening of the North Atlantic Current that causes a regional solubility increase exceeding the effect of increasing stratification. Our results imply that potential shifts in the North Atlantic Current play a crucial role in the future projection of the regional oxygen concentration in the warming climate.

  4. Refining the Formation and Early Evolution of the Eastern North American Margin: New Insights From Multiscale Magnetic Anomaly Analyses

    NASA Astrophysics Data System (ADS)

    Greene, John A.; Tominaga, Masako; Miller, Nathaniel C.; Hutchinson, Deborah R.; Karl, Matthew R.

    2017-11-01

    To investigate the oceanic lithosphere formation and early seafloor spreading history of the North Atlantic Ocean, we examine multiscale magnetic anomaly data from the Jurassic/Early Cretaceous age Eastern North American Margin (ENAM) between 31 and 40°N. We integrate newly acquired sea surface magnetic anomaly and seismic reflection data with publicly available aeromagnetic and composite magnetic anomaly grids, satellite-derived gravity anomaly, and satellite-derived and shipboard bathymetry data. We evaluate these data sets to (1) refine magnetic anomaly correlations throughout the ENAM and assign updated ages and chron numbers to M0-M25 and eight pre-M25 anomalies; (2) identify five correlatable magnetic anomalies between the East Coast Magnetic Anomaly (ECMA) and Blake Spur Magnetic Anomaly (BSMA), which may document the earliest Atlantic seafloor spreading or synrift magmatism; (3) suggest preexisting margin structure and rifting segmentation may have influenced the seafloor spreading regimes in the Atlantic Jurassic Quiet Zone (JQZ); (4) suggest that, if the BSMA source is oceanic crust, the BSMA may be M series magnetic anomaly M42 ( 168.5 Ma); (5) examine the along and across margin variation in seafloor spreading rates and spreading center orientations from the BSMA to M25, suggesting asymmetric crustal accretion accommodated the straightening of the ridge from the bend in the ECMA to the more linear M25; and (6) observe anomalously high-amplitude magnetic anomalies near the Hudson Fan, which may be related to a short-lived propagating rift segment that could have helped accommodate the crustal alignment during the early Atlantic opening.

  5. Refining the formation and early evolution of the Eastern North American Margin: New insights from multiscale magnetic anomaly analyses

    USGS Publications Warehouse

    Greene, John A.; Tominaga, Masako; Miller, Nathaniel; Hutchinson, Deborah; Karl, Matthew R.

    2017-01-01

    To investigate the oceanic lithosphere formation and early seafloor spreading history of the North Atlantic Ocean, we examine multiscale magnetic anomaly data from the Jurassic/Early Cretaceous age Eastern North American Margin (ENAM) between 31 and 40°N. We integrate newly acquired sea surface magnetic anomaly and seismic reflection data with publicly available aeromagnetic and composite magnetic anomaly grids, satellite-derived gravity anomaly, and satellite-derived and shipboard bathymetry data. We evaluate these data sets to (1) refine magnetic anomaly correlations throughout the ENAM and assign updated ages and chron numbers to M0–M25 and eight pre-M25 anomalies; (2) identify five correlatable magnetic anomalies between the East Coast Magnetic Anomaly (ECMA) and Blake Spur Magnetic Anomaly (BSMA), which may document the earliest Atlantic seafloor spreading or synrift magmatism; (3) suggest preexisting margin structure and rifting segmentation may have influenced the seafloor spreading regimes in the Atlantic Jurassic Quiet Zone (JQZ); (4) suggest that, if the BSMA source is oceanic crust, the BSMA may be M series magnetic anomaly M42 (~168.5 Ma); (5) examine the along and across margin variation in seafloor spreading rates and spreading center orientations from the BSMA to M25, suggesting asymmetric crustal accretion accommodated the straightening of the ridge from the bend in the ECMA to the more linear M25; and (6) observe anomalously high-amplitude magnetic anomalies near the Hudson Fan, which may be related to a short-lived propagating rift segment that could have helped accommodate the crustal alignment during the early Atlantic opening.

  6. Long-term passive acoustic recordings track the changing distribution of North Atlantic right whales (Eubalaena glacialis) from 2004 to 2014.

    PubMed

    Davis, Genevieve E; Baumgartner, Mark F; Bonnell, Julianne M; Bell, Joel; Berchok, Catherine; Bort Thornton, Jacqueline; Brault, Solange; Buchanan, Gary; Charif, Russell A; Cholewiak, Danielle; Clark, Christopher W; Corkeron, Peter; Delarue, Julien; Dudzinski, Kathleen; Hatch, Leila; Hildebrand, John; Hodge, Lynne; Klinck, Holger; Kraus, Scott; Martin, Bruce; Mellinger, David K; Moors-Murphy, Hilary; Nieukirk, Sharon; Nowacek, Douglas P; Parks, Susan; Read, Andrew J; Rice, Aaron N; Risch, Denise; Širović, Ana; Soldevilla, Melissa; Stafford, Kate; Stanistreet, Joy E; Summers, Erin; Todd, Sean; Warde, Ann; Van Parijs, Sofie M

    2017-10-18

    Given new distribution patterns of the endangered North Atlantic right whale (NARW; Eubalaena glacialis) population in recent years, an improved understanding of spatio-temporal movements are imperative for the conservation of this species. While so far visual data have provided most information on NARW movements, passive acoustic monitoring (PAM) was used in this study in order to better capture year-round NARW presence. This project used PAM data from 2004 to 2014 collected by 19 organizations throughout the western North Atlantic Ocean. Overall, data from 324 recorders (35,600 days) were processed and analyzed using a classification and detection system. Results highlight almost year-round habitat use of the western North Atlantic Ocean, with a decrease in detections in waters off Cape Hatteras, North Carolina in summer and fall. Data collected post 2010 showed an increased NARW presence in the mid-Atlantic region and a simultaneous decrease in the northern Gulf of Maine. In addition, NARWs were widely distributed across most regions throughout winter months. This study demonstrates that a large-scale analysis of PAM data provides significant value to understanding and tracking shifts in large whale movements over long time scales.

  7. North American Insecurities, Fears and Anxieties: Educational Implications

    ERIC Educational Resources Information Center

    Larsen, Marianne A.

    2008-01-01

    Contemporary North American insecurities and fears are the focus of this article. In the first section, the inter-related concepts of insecurity, fear and vulnerability are theorised, and the argument put forward that these have come to constitute a dominant discourse in contemporary North American society. In the second section of the paper, the…

  8. Seasonal and weekly variability of Atlantic inflow into the northern North Sea

    NASA Astrophysics Data System (ADS)

    Sheehan, Peter; Berx, Bee; Gallego, Alejandro; Hall, Rob; Heywood, Karen

    2017-04-01

    Quantifying the variability of Atlantic inflow is necessary for managing the North Sea ecosystem and for producing accurate models for forecasting, for example, oil spill trajectories. The JONSIS hydrographic section (2.23°W to 0° at 59.28°N) crosses the path of the main inflow of Atlantic water into the northwestern North Sea. 122 occupations between 1989 and 2015 are examined to determine the annual cycle of thermohaline-driven volume transport into the North Sea. Thermohaline transport is at a minimum (0.1 Sv) during winter when it is driven by a horizontal salinity gradient across a zonal bottom front; it is at a maximum (0.35 Sv) in early autumn when it is driven by a horizontal temperature gradient that develops across the same front. The amplitude of the annual cycle of temperature-driven transport (0.15 Sv) is bigger than the amplitude of the annual cycle of salinity-driven transport (0.025 Sv). The annual cycles are approximately six months out of phase. Our quantitative results are the first to be based on a long-term dataset, and we advance previous understanding by identifying a salinity-driven flow in winter. Week-to-week variability of the Atlantic inflow is examined from ten Seaglider occupations of the JONSIS section in October and November 2013. Tidal ellipses produced from glider dive-average current observations are in good agreement with ellipses produced from tide model predictions. Total transport is derived by referencing geostrophic shear to dive-average-current observations once the tidal component of the flow has been removed. Total transport through the section during the deployment (0.5-1 Sv) is bigger than the thermohaline component (0.1-0.2 Sv), suggesting non-thermohaline forcings (e.g. wind forcing) are important at that time of year. Thermohaline transport during the glider deployment is in agreement with the annual cycle derived from the long-term observations. The addition of the glider-derived barotropic current permits a more

  9. West Nile virus: North American experience

    USGS Publications Warehouse

    Hofmeister, Erik K.

    2011-01-01

    West Nile virus, a mosquito-vectored flavivirus of the Japanese encephalitis serogroup, was first detected in North America following an epizootic in the New York City area in 1999. In the intervening 11 years since the arrival of the virus in North America, it has crossed the contiguous USA, entered the Canadian provinces bordering the USA, and has been reported in the Caribbean islands, Mexico, Central America and, more recently, South America. West Nile virus has been reported in over 300 species of birds in the USA and has caused the deaths of thousands of birds, local population declines of some avian species, the clinical illness and deaths of thousands of domestic horses, and the clinical disease in over 30 000 Americans and the deaths of over 1000. Prior to the emergence of West Nile virus in North America, St. Louis encephalitis virus and Dengue virus were the only other known mosquito-transmitted flaviviruses in North America capable of causing human disease. This review will discuss the North American experience with mosquito-borne flavivirus prior to the arrival of West Nile virus, the entry and spread of West Nile virus in North America, effects on wild bird populations, genetic changes in the virus, and the current state of West Nile virus transmission.

  10. Assimilation of TOPEX/POSEIDON altimeter data into a circulation model of the North Atlantic

    NASA Astrophysics Data System (ADS)

    Blayo, E.; Verron, J.; Molines, J. M.

    1994-12-01

    Assimilation experiments were conducted using the first 12 months of TOPEX/POSEIDON (T/P) altimeter measurements in a multilayered quasi-geostrophic model of the North Atlantic between 20°N and 60°N. These experiments demonstrate the feasibility of using T/P data to control a basin-scale circulation model by means of an assimilation procedure. Moreover, they allow us to recreate the four-dimensional behavior of the North Atlantic Ocean during the year October 1992-September 1993 and to improve our knowledge and understanding of such circulation patterns. For this study we used a four-layer quasigeostrophic model of high horizontal resolution (1/6° in latitude and longitude). The assimilation procedure used is an along-track, sequential, nudging technique. The evolution of the model general circulation is described and analyzed from a deterministic and statistical point of view, with special emphasis on the Gulf Stream area. The gross features of the North Atlantic circulation in terms of mean transport and circulation are reproduced, such as the path, penetration and recirculation of the Gulf Stream, and its meandering throughout the eastern basin. The North Atlantic Drift is, however, noticeably underestimated. A northern meander of the north wall of the Gulf Stream above the New England Seamount Chain is present for most of the year, while, just downstream, the southern part of the jet is subject to a 100-km southeastward deflection. The Azores current is shown to remain stable and to shift southward with time from the beginning of December 1992 to the end of April 1993, the amplitude of the shift being about 2°. The computation of the mean latitude of the Gulf Stream as a function of time shows an abrupt shift from a northern position to a southern position in January, and a reverse shift, from a southern position to a northern position, in July. Finally, some issues are addressed concerning the comparison of assimilation experiments using T/P data and

  11. Pliocene planktic foraminifer census data from the North Atlantic region

    USGS Publications Warehouse

    ,

    1996-01-01

    INTRODUCTION: The U.S. Geological Survey is conducting a long-term study of the climatic and oceanographic conditions of the Pliocene known as PRISM (Pliocene Research, Interpretation, and Synoptic Mapping). One of the major elements of the study involves the use of quantitative composition of planktic foraminifer assemblages to estimate seasurface temperatures and identify major oceanographic boundaries and water masses (Dowsett, 1991; Dowsett and Poore, 1991; Dowsett et al., 1992; Dowsett et al., 1994). We have analyzed more than 900 samples from 19 core sites in the North Atlantic Basin (Fig. 1) resulting in a large volume of raw census data. These data are presented here together to facilitate comparison of North Atlantic faunal assemblages. Latitude, longitude, water depth, source of faunal data and source of data used to construct age model (or publication from which age model was taken) are provided for each locality in Table 1. All ages refer to the geomagnetic polarity time scale of Berggren et al. (1985). Counts of species tabulated in each sample are given in Tables 2-20. DSDP and ODP sample designations are abbreviated in Tables 2-20 as core-section, depth within section in centimeters (eg. 10-5, 34 = core 10, section 5, 34 cm below top of section 5).

  12. North American Journal of Psychology, 2003.

    ERIC Educational Resources Information Center

    McCutcheon, Lynn E., Ed.

    2003-01-01

    "North American Journal of Psychology" publishes scientific papers of general interest to psychologists and other social scientists. Articles included in volume 5 issue 1 (March 2003) are: "Mothers' Attributional Style for Events in Their Offsprings' Lives as Predictors of Their Offsprings' Cognitive Vulnerability to Depression"; "American High…

  13. Emerging European winter precipitation pattern linked to atmospheric circulation changes over the North Atlantic region in recent decades

    NASA Astrophysics Data System (ADS)

    Ummenhofer, Caroline C.; Seo, Hyodae; Kwon, Young-Oh; Parfitt, Rhys; Brands, Swen; Joyce, Terrence M.

    2017-08-01

    Dominant European winter precipitation patterns over the past century, along with their associated extratropical North Atlantic circulation changes, are evaluated using cluster analysis. Contrary to the four regimes traditionally identified based on daily wintertime atmospheric circulation patterns, five distinct seasonal precipitation regimes are detected here. Recurrent precipitation patterns in each regime are linked to changes in atmospheric blocking, storm track, and sea surface temperatures across the North Atlantic region. Multidecadal variability in the frequency of the precipitation patterns reveals more (fewer) winters with wet conditions in northern (southern) Europe in recent decades and an emerging distinct pattern of enhanced wintertime precipitation over the northern British Isles. This pattern has become unusually common since the 1980s and is associated with changes in moisture transport and more frequent atmospheric river events. The observed precipitation changes post-1950 coincide with changes in storm track activity over the central/eastern North Atlantic toward the northern British Isles.

  14. The Global Warming Hiatus Tied to the North Atlantic Oscillation and Its Prediction

    NASA Astrophysics Data System (ADS)

    Li, J.; Sun, C.

    2015-12-01

    The twentieth century Northern Hemisphere mean surface temperature (NHT) is characterized by a multidecadal warming-cooling-warming pattern followed by a flat trend since about 2000 (recent warming hiatus). Here we demonstrate that the multidcadal variability in NHT including the recent warming hiatus is tied to the North Atlantic Oscillation (NAO) and the NAO is implicated as a useful predictor of NHT multidecadal variability. Observational analysis shows that the NAO leads both the detrended NHT and oceanic Atlantic Multidecadal Oscillation (AMO) by 15-20 years. Theoretical analysis illuminates that the NAO precedes NHT multidecadal variability through its delayed effect on the AMO due to the large thermal inertia associated with slow oceanic processes. The CCSM4 model is employed to investigate possible physical mechanisms. The positive NAO forces the strengthening of the Atlantic meridional overturning circulation (AMOC) and induces a basin-wide uniform sea surface temperature (SST) warming that corresponds to the AMO. The SST field exhibits a delayed response to the preceding enhanced AMOC, and shows a pattern similar to the North Atlantic tripole (NAT), with SST warming in the northern North Atlantic and cooling in the southern part. This SST pattern (negative NAT phase) may lead to an atmospheric response that resembles the negative NAO phase, and subsequently the oscillation proceeds, but in the opposite sense. Based on these mechanisms, a simple delayed oscillator model is established to explain the quasi-periodic multidecadal variability of the NAO. The magnitude of the NAO forcing of the AMOC/AMO and the time delay of the AMOC/AMO feedback are two key parameters of the delayed oscillator. For a given set of parameters, the quasi 60-year cycle of the NAO can be well predicted. This delayed oscillator model is useful for understanding of the oscillatory mechanism of the NAO, which has potential for decadal predictions as well as the interpretation of proxy

  15. Holocene oscillations in temperature and salinity of the surface subpolar North Atlantic.

    PubMed

    Thornalley, David J R; Elderfield, Harry; McCave, I Nick

    2009-02-05

    The Atlantic meridional overturning circulation (AMOC) transports warm salty surface waters to high latitudes, where they cool, sink and return southwards at depth. Through its attendant meridional heat transport, the AMOC helps maintain a warm northwestern European climate, and acts as a control on the global climate. Past climate fluctuations during the Holocene epoch ( approximately 11,700 years ago to the present) have been linked with changes in North Atlantic Ocean circulation. The behaviour of the surface flowing salty water that helped drive overturning during past climatic changes is, however, not well known. Here we investigate the temperature and salinity changes of a substantial surface inflow to a region of deep-water formation throughout the Holocene. We find that the inflow has undergone millennial-scale variations in temperature and salinity ( approximately 3.5 degrees C and approximately 1.5 practical salinity units, respectively) most probably controlled by subpolar gyre dynamics. The temperature and salinity variations correlate with previously reported periods of rapid climate change. The inflow becomes more saline during enhanced freshwater flux to the subpolar North Atlantic. Model studies predict a weakening of AMOC in response to enhanced Arctic freshwater fluxes, although the inflow can compensate on decadal timescales by becoming more saline. Our data suggest that such a negative feedback mechanism may have operated during past intervals of climate change.

  16. Phytogeography of Najas gracillima (Hydrocharitaceae) in North America and its cryptic introduction to California.

    PubMed

    Les, Donald H; Peredo, Elena L; Benoit, Lori K; Tippery, Nicholas P; King, Ursula M; Sheldon, Sallie P

    2013-09-01

    The discontinuous North American distribution of Najas gracillima has not been explained satisfactorily. Influences of extirpation, nonindigenous introduction, and postglacial migration on its distribution were evaluated using field, fossil, morphological, and molecular data. Najas is a major waterfowl food, and appropriate conservation measures rely on accurate characterization of populations as indigenous or imperiled. • Seed lengths of N. gracillima from native Korean populations, a nonindigenous Italian population, and North American populations were compared using digital image analysis. DNA sequence analyses from these regions provided nine nrITS genotypes and eight cpDNA haplotypes. • Najas gracillima seeds from Eurasia and California are shorter than those from eastern North America. Nuclear and chloroplast DNA sequences of N. gracillima from Korea and Italy were identical to California material but differed from native eastern North American plants. Eastern North American specimens of N. gracillima at localities above the last glacial maximum boundary were identical or similar genetically to material from the northeastern United States and Atlantic Coastal Plain and Piedmont but divergent from plants of the Interior Highlands-Mississippi Embayment region. • In California, N. gracillima is nonindigenous and introduced from Asia. In eastern North America, populations that colonized deglaciated areas were derived primarily from refugia in the Atlantic Coastal Plain and Piedmont. Genetic data indicate initial postglacial migration to northeastern North America, with subsequent westward dispersal into the Upper Great Lakes. These results differentiate potentially invasive California populations from seriously imperiled indigenous eastern North American populations.

  17. Reconstruction of intermediate water circulation in the tropical North Atlantic during the past 22,000 years

    NASA Astrophysics Data System (ADS)

    Xie, Ruifang C.; Marcantonio, Franco; Schmidt, Matthew W.

    2014-09-01

    Decades of paleoceanographic studies have reconstructed a well-resolved water mass structure for the deep Atlantic Ocean during the Last Glacial Maximum (LGM). However, the variability of intermediate water circulation in the tropics over the LGM and deglacial abrupt climate events is still largely debated. This study aims to reconstruct intermediate northern- and southern-sourced water circulation in the tropical North Atlantic during the past 22 kyr and attempts to confine the boundary between Antarctic Intermediate Water (AAIW) and northern-sourced intermediate water (i.e., upper North Atlantic Deep Water (NADW) or Glacial North Atlantic Intermediate Water) in the past. High-resolution Nd isotopic compositions of fish debris and acid-reductive leachate of bulk sediment in core VM12-107 (1079 m depth) from the Southern Caribbean are not in agreement. We suggest that the leachate method does not reliably extract the Nd isotopic compositions of seawater at this location, and that it needs to be tested in more detail in various oceanic settings. The fish debris εNd values display a general decrease from the early deglaciation to the end of the Younger Dryas, followed by a greater drop toward less radiogenic values into the early Holocene. We propose a potentially more radiogenic glacial northern endmember water mass and interpret this pattern as recording a recovery of the upper NADW during the last deglaciation. Comparing our new fish debris Nd isotope data to authigenic Nd isotope studies in the Florida Straits (546 and 751 m depth), we propose that both glacial and deglacial AAIW do not penetrate beyond the lower depth limit of modern AAIW in the tropical Atlantic.

  18. Climate vulnerability and resilience in the most valuable North American fishery.

    PubMed

    Le Bris, Arnault; Mills, Katherine E; Wahle, Richard A; Chen, Yong; Alexander, Michael A; Allyn, Andrew J; Schuetz, Justin G; Scott, James D; Pershing, Andrew J

    2018-02-20

    Managing natural resources in an era of increasing climate impacts requires accounting for the synergistic effects of climate, ecosystem changes, and harvesting on resource productivity. Coincident with recent exceptional warming of the northwest Atlantic Ocean and removal of large predatory fish, the American lobster has become the most valuable fishery resource in North America. Using a model that links ocean temperature, predator density, and fishing to population productivity, we show that harvester-driven conservation efforts to protect large lobsters prepared the Gulf of Maine lobster fishery to capitalize on favorable ecosystem conditions, resulting in the record-breaking landings recently observed in the region. In contrast, in the warmer southern New England region, the absence of similar conservation efforts precipitated warming-induced recruitment failure that led to the collapse of the fishery. Population projections under expected warming suggest that the American lobster fishery is vulnerable to future temperature increases, but continued efforts to preserve the stock's reproductive potential can dampen the negative impacts of warming. This study demonstrates that, even though global climate change is severely impacting marine ecosystems, widely adopted, proactive conservation measures can increase the resilience of commercial fisheries to climate change.

  19. A Midwinter Minimum in North Atlantic Storm Track Intensity in Years of a Strong Jet

    NASA Astrophysics Data System (ADS)

    Afargan, H.; Kaspi, Y.

    2017-12-01

    This study investigates the occurrence of a midwinter suppression in synoptic eddy activity within the North Atlantic storm track. It is found that eddy kinetic energy over the Atlantic is reduced during winter relative to fall and spring, despite the stronger wintertime jet and enhanced baroclinicity. This behavior is similar to the well-known Pacific midwinter minimum, yet the reduction over the Atlantic is smaller and persists for a shorter period. To examine the conditions favorable for this phenomenon, we present an analysis of years with stronger jet intensity versus years of weaker jets over the Atlantic and Pacific basins. When the wintertime jet is stronger, the midwinter suppression of eddy activity is more pronounced, and the jet is more equatorward. Since the climatological Atlantic jet is weaker relative to the Pacific jet, the conditions for a midwinter suppression in the Atlantic are generally less favorable, yet a midwinter suppression often occurs in years of a strong jet.

  20. Improved Decadal Climate Prediction in the North Atlantic using EnOI-Assimilated Initial Condition

    NASA Astrophysics Data System (ADS)

    Li, Q.; Xin, X.; Wei, M.; Zhou, W.

    2017-12-01

    Decadal prediction experiments of Beijing Climate Center climate system model version 1.1(BCC-CSM1.1) participated in Coupled Model Intercomparison Project Phase 5 (CMIP5) had poor skill in extratropics of the North Atlantic, the initialization of which was done by relaxing modeled ocean temperature to the Simple Ocean Data Assimilation (SODA) reanalysis data. This study aims to improve the prediction skill of this model by using the assimilation technique in the initialization. New ocean data are firstly generated by assimilating the sea surface temperature (SST) of the Hadley Centre Sea Ice and Sea Surface Temperature (HadISST) dataset to the ocean model of BCC-CSM1.1 via Ensemble Optimum Interpolation (EnOI). Then a suite of decadal re-forecasts launched annually over the period 1961-2005 is carried out with simulated ocean temperature restored to the assimilated ocean data. Comparisons between the re-forecasts and previous CMIP5 forecasts show that the re-forecasts are more skillful in mid-to-high latitude SST of the North Atlantic. Improved prediction skill is also found for the Atlantic multi-decadal Oscillation (AMO), which is consistent with the better skill of Atlantic meridional overturning circulation (AMOC) predicted by the re-forecasts. We conclude that the EnOI assimilation generates better ocean data than the SODA reanalysis for initializing decadal climate prediction of BCC-CSM1.1 model.

  1. Ozone Production from the 2004 North American Boreal Fires

    NASA Technical Reports Server (NTRS)

    Pfister, G. G.; Emmons, L. K.; Hess, P. G.; Honrath, R.; Lamarque, J.-F.; Val Martin, M.; Owen, R. C.; Avery, M. A.; Browell, E. V.; Holloway, J. S.; hide

    2006-01-01

    We examine the ozone production from boreal forest fires based on a case study of wildfires in Alaska and Canada in summer 2004. The model simulations were performed with the chemistry transport model, MOZART-4, and were evaluated by comparison with a comprehensive set of aircraft measurements. In the analysis we use measurements and model simulations of carbon monoxide (CO) and ozone (O3) at the PICO-NARE station located in the Azores within the pathway of North American outflow. The modeled mixing ratios were used to test the robustness of the enhancement ratio deltaO3/deltaCO (defined as the excess O3 mixing ratio normalized by the increase in CO) and the feasibility for using this ratio in estimating the O3 production from the wildfires. Modeled and observed enhancement ratios are about 0.25 ppbv/ppbv which is in the range of values found in the literature, and results in a global net O3 production of 12.9 2 Tg O3 during summer 2004. This matches the net O3 production calculated in the model for a region extending from Alaska to the East Atlantic (9-11 Tg O3) indicating that observations at PICO-NARE representing photochemically well-aged plumes provide a good measure of the O3 production of North American boreal fires. However, net chemical loss of fire related O3 dominates in regions far downwind from the fires (e.g. Europe and Asia) resulting in a global net O3 production of 6 Tg O3 during the same time period. On average, the fires increased the O3 burden (surface-300 mbar) over Alaska and Canada during summer 2004 by about 7-9%, and over Europe by about 2-3%.

  2. A Glacial Perspective on the Impact of Heinrich Stadials on North Atlantic Climate

    NASA Astrophysics Data System (ADS)

    Bromley, G. R.; Putnam, A. E.; Rademaker, K. M.; Balter, A.; Hall, B. L.

    2017-12-01

    The British Isles contain a rich geologic record of Late Pleistocene ice sheet behaviour in the NE North Atlantic basin. We are using cosmogenic 10Be surface-exposure dating, in conjunction with detailed glacial-geomorphic mapping, to reconstruct the timing and nature of cryospheric change - and thus climate variability - in northern Scotland since the Last Glacial Maximum. Our specific focus is Heinrich Stadial 1 (18,300-14,700 years ago), arguably the most significant abrupt climate event of the last glacial cycle and a major feature in global palaeoclimate records. Such constraint is needed because of currently conflicting models of how these events impact terrestrial environments and a recent hypothesis attributing this disparity to enhanced seasonality in the North Atlantic basin. To date, we have measured 10Be in > 30 samples from glacial erratics located on moraines deposited by the British Ice Sheet as it retreated from the continental shelf to its highland source regions. Our preliminary results indicate that the stadial was characterised by widespread deglaciation driven by atmospheric warming, a pattern that is suggestive of pronounced seasonality. Additionally, we report new exposure ages from moraines deposited during a subsequent phase of alpine glaciation (known locally as the Loch Lomond Readvance) that has long been attributed to the Younger Dryas stadial. With the growing focus on the full expression of stadials, and the inherent vulnerability of Europe to shifts in North Atlantic climate, developing the extant record of terrestrial glaciation and comparing these data to marine records is a critical step towards understanding the drivers of abrupt climate change.

  3. An anatomy of the projected North Atlantic warming hole in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Menary, Matthew B.; Wood, Richard A.

    2018-04-01

    Global mean surface air temperature has increased over the past century and climate models project this trend to continue. However, the pattern of change is not homogeneous. Of particular interest is the subpolar North Atlantic, which has cooled in recent years and is projected to continue to warm less rapidly than the global mean. This is often termed the North Atlantic warming hole (WH). In climate model projections, the development of the WH is concomitant with a weakening of the Atlantic meridional overturning circulation (AMOC). Here, we further investigate the possible link between the AMOC and WH and the competing drivers of vertical mixing and surface heat fluxes. Across a large ensemble of 41 climate models we find that the spatial structure of the WH varies considerably from model to model but is generally upstream of the simulated deep water formation regions. A heat budget analysis suggests the formation of the WH is related to changes in ocean heat transport. Although the models display a plethora of AMOC mean states, they generally predict a weakening and shallowing of the AMOC also consistent with the evolving depth structure of the WH. A lagged regression analysis during the WH onset phase suggests that reductions in wintertime mixing lead a weakening of the AMOC by 5 years in turn leading initiation of the WH by 5 years. Inter-model differences in the evolution and structure of the WH are likely to lead to somewhat different projected climate impacts in nearby Europe and North America.

  4. 76 FR 71501 - Atlantic Coastal Fisheries Cooperative Management Act Provisions; American Lobster Fishery

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-18

    ....110722404-1405-01 ] RIN 0648-BA56 Atlantic Coastal Fisheries Cooperative Management Act Provisions; American... Management Area 1 (Federal inshore waters-Gulf of Maine). Upon qualification, permit holders would be allowed... Fishery Management Plan for American Lobster. DATES: We must receive your comments no later than 5 p.m...

  5. 77 FR 32420 - Atlantic Coastal Fisheries Cooperative Management Act Provisions; American Lobster Fishery

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ....110722404-1073-02] RIN 0648-BA56 Atlantic Coastal Fisheries Cooperative Management Act Provisions; American... Management Area 1 (Area 1), located in the Federal inshore waters of the Gulf of Maine. Eligibility will be... Fishery Management Plan for American Lobster (ISFMP, Lobster Plan). DATES: This final rule is effective...

  6. An Intracratonic Record of North American Tectonics

    NASA Astrophysics Data System (ADS)

    Lovell, Thomas Rudolph

    demonstrates that changes in the detrital record of the Illinois Basin coincide with well-documented, major tectonic and eustatic events that altered and shaped North American plate margins. Chapter 4 presents 24 apatite (U-Th)/He (AHe) ages (3 - 423 Ma) taken from subsurface Cambrian and Pennsylvanian sandstones in the Illinois Basin. Time-temperature simulations used to reproduce these ages predict a basin thermal history with a maximum temperature of 170°C in post-Pennsylvanian time followed by Mesozoic cooling at 0.3°C/Myr. These thermal simulations suggest 3 km of additional post-Pennsylvanian burial (assuming 30°C/km geotherm) followed by subsequent Mesozoic - Cenozoic removal. This burial-exhumation history is concurrent with Late Mesozoic tectoniceustatic fluctuations, including Atlantic and Gulf of Mexico opening, rejuvenation of the Appalachian region, and Gulf of Mexico sediment influx, and the Cretaceous high sea level stand. The Geochronologic and thermochronologic evidence presented in the following chapters suggests the Illinois Basin potentially contains a more robust record of North American tectonics than previously thought. These observations provide a new perspective on the utility of intracratonic basins in understanding long term changes to continental bodies.

  7. Low-Latitude Western North Atlantic Climate Variability During the Past Millennium: Insights from Proxies and Models

    DTIC Science & Technology

    2009-09-01

    simulations indicate extratropical North Atlantic climate can influence the meridional position of the ITCZ [Chiang and Bitz, 2005; Broccoli et al...record from the Cariaco Basin: Baseline variability, twentieth-century warming, and Atlantic hurricane frequency. Paleoceanography, 22. Broccoli ...SSTs were not markedly cooler during the LIA suggests that the ITCZ may have responded to extra- tropical cooling. Idealized simulations [ Broccoli et al

  8. Asymmetric response of tropical cyclone activity to global warming over the North Atlantic and western North Pacific from CMIP5 model projections

    NASA Astrophysics Data System (ADS)

    Park, Doo-Sun R.; Ho, Chang-Hoi; Chan, Johnny C. L.; Ha, Kyung-Ja; Kim, Hyeong-Seog; Kim, Jinwon; Kim, Joo-Hong

    2017-01-01

    Recent improvements in the theoretical understanding of the relationship between tropical cyclones (TCs) and their large-scale environments have resulted in significant improvements in the skill for forecasting TC activity at daily and seasonal time-scales. However, future changes in TC activity under a warmer climate remain uncertain, particularly in terms of TC genesis locations and subsequent pathways. Applying a track-pattern-based statistical model to 22 Coupled Model Intercomparison Project Phase 5 (CMIP5) model runs for the historical period and the future period corresponding to the Representative Concentration Pathway 8.5 emissions scenarios, this study shows that in future climate conditions, TC passage frequency will decrease over the North Atlantic, particularly in the Gulf of Mexico, but will increase over the western North Pacific, especially that hits Korea and Japan. Unlike previous studies based on fine-resolution models, an ensemble mean of CMIP5 models projects an increase in TC activity in the western North Pacific, which is owing to enhanced subtropical deep convection and favorable dynamic conditions therein in conjunction with the expansion of the tropics and vice versa for the North Atlantic. Our results suggest that North America will experience less TC landfalls, while northeast Asia will experience more TCs than in the present-day climate.

  9. Asymmetric response of tropical cyclone activity to global warming over the North Atlantic and western North Pacific from CMIP5 model projections.

    PubMed

    Park, Doo-Sun R; Ho, Chang-Hoi; Chan, Johnny C L; Ha, Kyung-Ja; Kim, Hyeong-Seog; Kim, Jinwon; Kim, Joo-Hong

    2017-01-30

    Recent improvements in the theoretical understanding of the relationship between tropical cyclones (TCs) and their large-scale environments have resulted in significant improvements in the skill for forecasting TC activity at daily and seasonal time-scales. However, future changes in TC activity under a warmer climate remain uncertain, particularly in terms of TC genesis locations and subsequent pathways. Applying a track-pattern-based statistical model to 22 Coupled Model Intercomparison Project Phase 5 (CMIP5) model runs for the historical period and the future period corresponding to the Representative Concentration Pathway 8.5 emissions scenarios, this study shows that in future climate conditions, TC passage frequency will decrease over the North Atlantic, particularly in the Gulf of Mexico, but will increase over the western North Pacific, especially that hits Korea and Japan. Unlike previous studies based on fine-resolution models, an ensemble mean of CMIP5 models projects an increase in TC activity in the western North Pacific, which is owing to enhanced subtropical deep convection and favorable dynamic conditions therein in conjunction with the expansion of the tropics and vice versa for the North Atlantic. Our results suggest that North America will experience less TC landfalls, while northeast Asia will experience more TCs than in the present-day climate.

  10. Mercury in the atmosphere, snow and melt water ponds in the North Atlantic Ocean during Arctic summer.

    PubMed

    Aspmo, Katrine; Temme, Christian; Berg, Torunn; Ferrari, Christophe; Gauchard, L Pierre-Alexis; Fain, Xavier; Wibetoe, Grethe

    2006-07-01

    Atmospheric mercury speciation measurements were performed during a 10 week Arctic summer expedition in the North Atlantic Ocean onboard the German research vessel RV Polarstern between June 15 and August 29, 2004. This expedition covered large areas of the North Atlantic and Arctic Oceans between latitudes 54 degrees N and 85 degrees N and longitudes 16 degrees W and 16 degrees E. Gaseous elemental mercury (GEM), reactive gaseous mercury (RGM) and mercury associated with particles (Hg-P) were measured during this study. In addition, total mercury in surface snow and meltwater ponds located on sea ice floes was measured. GEM showed a homogeneous distribution over the open North Atlantic Ocean (median 1.53 +/- 0.12 ng/m3), which is in contrast to the higher concentrations of GEM observed over sea ice (median 1.82 +/- 0.24 ng/m3). It is hypothesized that this results from either (re-) emission of mercury contained in snow and ice surfaces that was previously deposited during atmospheric mercury depletion events (AMDE) in the spring or evasion from the ocean due to increased reduction potential at high latitudes during Arctic summer. Measured concentrations of total mercury in surface snow and meltwater ponds were low (all samples <10 ng/L), indicating that marginal accumulation of mercury occurs in these environmental compartments. Results also reveal low concentrations of RGM and Hg-P without a significant diurnal variability. These results indicate that the production and deposition of these reactive mercury species do not significantly contribute to the atmospheric mercury cycle in the North Atlantic Ocean during the Arctic summer.

  11. Abrupt transitions to a cold North Atlantic in the late Holocene

    NASA Astrophysics Data System (ADS)

    Geirsdóttir, Áslaug; Miller, Gifford; Larsen, Darren; Florian, Christopher; Pendleton, Simon

    2015-04-01

    The Holocene provides a time interval with boundary conditions similar to present, except for greenhouse gas concentrations. Recent high-resolution Northern Hemisphere records show general cooling related to orbital terms through the late Holocene, but also highly non-linear abrupt departures of centennial scale summer cold periods. These abrupt departures are evident within the last two millennia (the transitions between the Roman Warm Period (RWP, ~2,000 yr BP), the Dark Ages Cold Period (DACP, ~500-900 years AD), the Medieval Warm Period (MWP, 1000-1200 years AD) and the Little Ice Age (LIA, ~1300-1900 AD). A series of new, high-resolution and securely dated lake records from Iceland also show abrupt climate departures over the past 2 ka, characterized by shifts to persistent cold summers and an expanded cryosphere. Despite substantial differences in catchment-specific processes that dominate the lake records, the multi-proxy reconstructions are remarkably similar. After nearly a millennium with little evidence of significant climate shifts, the beginning of the first millennium AD is characterized by renewed summer cooling that leads to an expanding cryosphere. Slow summer cooling over the first five centuries is succeeded by widespread substantial cooling, with evidence for substantial expansion of glaciers and ice caps throughout our field areas between 530 and 900 AD, and an accompanying reduction in vegetation cover across much of Iceland that led to widespread landscape instability. These data suggest that the North Atlantic system began a transition into a new cold state early in the first millennium AD, which was amplified after 500 AD, until it was interrupted by warmer Medieval times between ~1000 and 1250 AD. Although severe soil erosion in Iceland is frequently associated with human settlement dated to 871 ±2 AD our reconstructions indicate that soil erosion began several centuries before settlement, during the DACP, whereas for several centuries

  12. Palynological evidence for a southward shift of the North Atlantic Current at 2.6 Ma during the intensification of late Cenozoic Northern Hemisphere glaciation

    NASA Astrophysics Data System (ADS)

    Hennissen, Jan A. I.; Head, Martin J.; De Schepper, Stijn; Groeneveld, Jeroen

    2014-06-01

    The position of the North Atlantic Current (NAC) during the intensification of Northern Hemisphere glaciation (iNHG) has been evaluated using dinoflagellate cyst assemblages and foraminiferal geochemistry from a 260 kyr interval straddling the base of the Quaternary System from two sites: eastern North Atlantic Deep Sea Drilling Project Site 610 in the path of the present NAC and central North Atlantic Integrated Ocean Drilling Program Site U1313 in the subtropical gyre. Stable isotope and foraminiferal Mg/Ca analyses confirm cooling near the marine isotope stage (MIS) G7-G6 transition (2.74 Ma). However, a continued dominance of the dinoflagellate cyst Operculodinium centrocarpum sensu Wall and Dale (1966) indicates an active NAC in the eastern North Atlantic for a further 140 kyr. At MIS 104 ( 2.60 Ma), a profound dinoflagellate cyst assemblage turnover indicates NAC shutdown in the eastern North Atlantic, implying elevated atmospheric pressure over the Arctic and a resulting shift in the westerlies that would have driven the NAC. These findings challenge recent suggestions that there was no significant southward shift of the NAC or the Arctic Front during iNHG, and reveal a fundamental climatic reorganization near the base of the Quaternary.

  13. Drivers and potential predictability of summer time North Atlantic polar front jet variability

    NASA Astrophysics Data System (ADS)

    Hall, Richard J.; Jones, Julie M.; Hanna, Edward; Scaife, Adam A.; Erdélyi, Róbert

    2017-06-01

    The variability of the North Atlantic polar front jet stream is crucial in determining summer weather around the North Atlantic basin. Recent extreme summers in western Europe and North America have highlighted the need for greater understanding of this variability, in order to aid seasonal forecasting and mitigate societal, environmental and economic impacts. Here we find that simple linear regression and composite models based on a few predictable factors are able to explain up to 35 % of summertime jet stream speed and latitude variability from 1955 onwards. Sea surface temperature forcings impact predominantly on jet speed, whereas solar and cryospheric forcings appear to influence jet latitude. The cryospheric associations come from the previous autumn, suggesting the survival of an ice-induced signal through the winter season, whereas solar influences lead jet variability by a few years. Regression models covering the earlier part of the twentieth century are much less effective, presumably due to decreased availability of data, and increased uncertainty in observational reanalyses. Wavelet coherence analysis identifies that associations fluctuate over the study period but it is not clear whether this is just internal variability or genuine non-stationarity. Finally we identify areas for future research.

  14. Historical biogeography of Eastern Asian-Eastern North American disjunct Melaphidina aphids (Hemiptera: Aphididae: Eriosomatinae) on Rhus hosts (Anacardiaceae).

    PubMed

    Ren, Zhumei; Zhong, Yang; Kurosu, Utako; Aoki, Shigeyuki; Ma, Enbo; von Dohlen, Carol D; Wen, Jun

    2013-12-01

    Intercontinental biotic disjunctions have been documented and analyzed in numerous Holarctic taxa. Patterns previously synthesized for animals compared to plants suggest that the timing of animal disjunctions are mostly Early Tertiary and were generated by migration and vicariance events occurring in the North Atlantic, while plant disjunctions are mostly Mid-Late Tertiary and imply migration and vicariance over Beringia. Melaphidina aphids (Hemiptera: Aphididae: Fordini) exhibit host-alternating life cycles comprising an obligate seasonal shift between Rhus subgenus Rhus species (Anacardiaceae) and mosses (Bryophyta). Similar to their Rhus hosts, melaphidines are distributed disjunctly between Eastern Asia and Eastern North America. We examined evolutionary relationships within Melaphidina to determine the position of the North American lineage, date its divergence from Asian relatives, and compare these results to a previous historical biogeographic study of Rhus. We sampled nine species and three subspecies representing all six genera of Melaphidina. Data included sequences of mitochondrial cytochrome c oxidase subunits I and II+leucine tRNA, cytochrome b, and nuclear elongation factor 1α genes. Phylogenetic analyses (Bayesian, maximum-likelihood, parsimony) of the combined data (3282 bp) supported the monophyly of all genera except Nurudea and Schlechtendalia, due to the position of N. ibofushi. While the exact position of the North American Melaphis was not well resolved, there was high support for a derived position within Asian taxa. The divergence of Melaphis from Asian relatives centered on the Eocene-Oligocene boundary (~33-35Ma), which coincides with closure of Beringian Land Bridge I. This also corresponded to the Asian-North American disjunction previously estimated for subgenus Rhus spp. We suggest the late-Eocene Bering Land Bridge as the most likely migration route for Melaphis ancestors, as was also hypothesized for North American Rhus ancestors

  15. An out of phase coupling between the atmosphere and the ocean over the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Ribera, Pedro; Ordoñez, Paulina; Gallego, David; Peña-Ortiz, Cristina

    2017-04-01

    An oscillation band, with a period ranging between 40 and 60 years, has been identified as the most intense signal over the North Atlantic Ocean using several oceanic and atmospheric reanalyses between 1856 and the present. This signal represents the Atlantic Multidecadal Oscillation, an oscillation between warmer and colder than normal conditions in SST. Simultaneously, those changes in SST are accompanied by changes in atmospheric conditions represented by surface pressure, temperature and circulation. In fact, the evolution of the surface pressure pattern along this oscillation shows a North Atlantic Oscillation-like pattern, suggesting the existence of an out of phase coupling between atmospheric and oceanic conditions. Further analysis shows that the evolution of the oceanic SST distribution modifies atmospheric baroclinic conditions in the mid to high latitudes of the North Atlantic and leads the atmospheric variability by 6-7 years. If AMO represents the oceanic conditons and NAO represents the atmospheric variability then it could be said that AMO of one sign leads NAO of the opposite sign with a lag of 6-7 years. On the other hand, the evolution of atmospheric conditions, represented by pressure distribution patterns, favors atmospheric circulation anomalies and induces a heat advection which tends to change the sign of the existing SST distribution and oceanic conditions with a lag of 16-17 years. In this case, NAO of one sign leads AMO of the same sign with a lag of 16-17 years.

  16. The influence of cut off lows on sulfate burdens over the North Atlantic during April, 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benkovitz, C.M.; Miller, M.A.; Schwartz, S.E.

    2001-01-14

    The authors have presented examples from a modeling study of the development of sulfur burdens over North America, the North Atlantic Ocean and Europe during April, 1987 using observation-derived meteorological data to represent the actual conditions for this period, focusing on the influence of cut-off lows on SO{sub 2} and sulfate column burdens over the North Atlantic Ocean. The analysis demonstrates that these systems can serve either as sources or sinks of sulfate, and that the major factor governing their resulting effect is the position during its formative stages relative to (a) sources of moisture, and (b) sulfur emissions, whichmore » regulates the availability of sulfur, cloud liquid water for sulfur oxidation, and the amount of precipitation for sulfate removal produced in the later stages of the life cycle.« less

  17. Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice.

    PubMed

    Li, Xichen; Holland, David M; Gerber, Edwin P; Yoo, Changhyun

    2014-01-23

    In recent decades, Antarctica has experienced pronounced climate changes. The Antarctic Peninsula exhibited the strongest warming of any region on the planet, causing rapid changes in land ice. Additionally, in contrast to the sea-ice decline over the Arctic, Antarctic sea ice has not declined, but has instead undergone a perplexing redistribution. Antarctic climate is influenced by, among other factors, changes in radiative forcing and remote Pacific climate variability, but none explains the observed Antarctic Peninsula warming or the sea-ice redistribution in austral winter. However, in the north and tropical Atlantic Ocean, the Atlantic Multidecadal Oscillation (a leading mode of sea surface temperature variability) has been overlooked in this context. Here we show that sea surface warming related to the Atlantic Multidecadal Oscillation reduces the surface pressure in the Amundsen Sea and contributes to the observed dipole-like sea-ice redistribution between the Ross and Amundsen-Bellingshausen-Weddell seas and to the Antarctic Peninsula warming. Support for these findings comes from analysis of observational and reanalysis data, and independently from both comprehensive and idealized atmospheric model simulations. We suggest that the north and tropical Atlantic is important for projections of future climate change in Antarctica, and has the potential to affect the global thermohaline circulation and sea-level change.

  18. Solar Geoengineering and the Modulation of North Atlantic Tropical Cyclone Frequency

    NASA Astrophysics Data System (ADS)

    Jones, A. C.; Haywood, J. M.; Hawcroft, M.; Jones, A.; Dunstone, N. J.; Hodges, K.

    2017-12-01

    Solar geoengineering (SG) refers to a wide range of proposed methods for counteracting global warming by artificially reducing solar insolation at Earth's surface. The most widely known SG proposal is stratospheric aerosol injection (SAI) which has impacts analogous to those from large-scale volcanic eruptions. Observations following major volcanic eruptions indicate that aerosol enhancements confined to a single hemisphere effectively modulate North Atlantic tropical cyclone (TC) activity in the following years. Here we investigate the effects of both single-hemisphere and global SAI scenarios on North Atlantic TC activity using the HadGEM2-ES general circulation model (GCM). We show that a 5 Tg y-1 injection of sulphur dioxide (SO2) into the northern hemisphere (NH) stratosphere would produce a global-mean cooling of 1 K and simultaneously reduce TC activity (to 8 TCs y-1), while the same injection in the southern hemisphere (SH) would enhance TC activity (to 14 TCs y-1), relative to a recent historical period (1950-2000, 10 TCs y-1). Our results reemphasize the risks of regional geoengineering and should motivate policymakers to regulate large-scale unilateral geoengineering deployments.

  19. The Asian-Bering-North American teleconnection: seasonality, maintenance, and climate impact on North America

    NASA Astrophysics Data System (ADS)

    Yu, Bin; Lin, H.; Wu, Z. W.; Merryfield, W. J.

    2018-03-01

    The Asian-Bering-North American (ABNA) teleconnection index is constructed from the normalized 500-hPa geopotential field by excluding the Pacific-North American pattern contribution. The ABNA pattern features a zonally elongated wavetrain originating from North Asia and flowing downstream across Bering Sea and Strait towards North America. The large-scale teleconnection is a year-round phenomenon that displays strong seasonality with the peak variability in winter. North American surface temperature and temperature extremes, including warm days and nights as well as cold days and nights, are significantly controlled by this teleconnection. The ABNA pattern has an equivalent barotropic structure in the troposphere and is supported by synoptic-scale eddy forcing in the upper troposphere. Its associated sea surface temperature anomalies exhibit a horseshoe-shaped structure in the North Pacific, most prominent in winter, which is driven by atmospheric circulation anomalies. The snow cover anomalies over the West Siberian plain and Central Siberian Plateau in autumn and spring and over southern Siberia in winter may act as a forcing influence on the ABNA pattern. The snow forcing influence in winter and spring can be traced back to the preceding season, which provides a predictability source for this teleconnection and for North American temperature variability. The ABNA associated energy budget is dominated by surface longwave radiation anomalies year-round, with the temperature anomalies supported by anomalous downward longwave radiation and damped by upward longwave radiation at the surface.

  20. 77 FR 61593 - North American Natural Resources, Inc. Complainant v. PJM Interconnection, L.L.C, American...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-10

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL13-10-000] North American Natural Resources, Inc. Complainant v. PJM Interconnection, L.L.C, American Electric Power Service...), North American Natural Resource, Inc. (NSANR) filed a formal complaint against PJM Interconnection, L.L...

  1. The variability of the North Atlantic Oscillation throughout the Holocene

    NASA Astrophysics Data System (ADS)

    Wassenburg, Jasper; Dietrich, Stephan; Fietzke, Jan; Fohlmeister, Jens; Wei, Wei; Jochum, Klaus Peter; Scholz, Denis; Richter, Detlev; Sabaoui, Abdellah; Lohmann, Gerrit; Andreae, Meinrat; Immenhauser, Adrian

    2013-04-01

    The North Atlantic Oscillation (NAO) has a major impact on Northern Hemisphere winter climate. Trouet et al. (2009) reconstructed the NAO for the last millennium based on a Moroccan tree ring PDSI (Palmer Drought Severity Index) reconstruction and a Scottish speleothem record. More recently, Olsen et al. (2012) extended the NAO record back to 5.2 ka BP based on a lake record from West Greenland. It is, however, well known that the NAO exhibits non-stationary behavior and the use of a single location for a NAO reconstruction may not capture the complete variability. In addition, the imprint of the NAO on European rainfall patterns in the Early and Mid Holocene on (multi-) centennial timescales is still largely unknown. This is related to difficulties in establishing robust correlations between different proxy records and the fact that proxies may not only reflect winter conditions (i.e., the season when the NAO has the largest influence). Here we present a precisely dated, high resolution speleothem δ18O record from NW Morocco covering the complete Early and Mid Holocene. Carbon and oxygen isotopes were measured at a resolution of 15 years. A multi-proxy approach provides solid evidence that speleothem δ18O values reflect changes in past rainfall intensity. The Moroccan record shows a significant correlation with a speleothem rainfall record from western Germany, which covers the entire Holocene (Fohlmeister et al., 2012). The combination with the extended speleothem record from Scotland, speleothem records from north Italy and the NAO reconstruction from West Greenland (Olsen et al., 2012) allows us to study the variability of the NAO during the entire Holocene. The relation between West German and Northwest Moroccan rainfall has not been stationary, which is evident from the changing signs of correlation. The Early Holocene is characterized by a positive correlation, which changes between 9 and 8 ka BP into a negative correlation. Simulations with the state

  2. Large Scale Drivers for the Extreme Storm Season over the North Atlantic and the UK in Winter 2013-14

    NASA Astrophysics Data System (ADS)

    Wild, Simon; Befort, Daniel J.; Leckebusch, Gregor C.

    2016-04-01

    The British Isles experienced exceptional stormy and rainy weather conditions in winter 2013-2014 while large parts of central North America recorded near record minimum surface temperatures values. Potential drivers for these cold conditions include increasingly warm surface waters of the tropical west Pacific. It has been suggested these increasing sea surface temperatures could also be the cause for extreme weather over the Europe, particularly the UK. Testing this hypothesis, we investigate mechanisms linking the tropical west Pacific and European wind storm activity. We will firstly analyse anomaly patterns along such a potential link in winter 2013-14. Secondly, we will investigate whether these identified anomaly patterns show a strong interannual relationship in the recent past. Our results, using primarily ERA-Interim Reanalysis from 1979 to 2014, show an absolute maximum of wind storm frequency over the northeast Atlantic and the British Isles in winter 2013-14. We also find absolute minimum surface temperatures in central North America and increased convective activity over the tropical west Pacific in the same season. The winter 2013-14 was additionally characterized by anomalous warm sea surface temperatures over the subtropical northwest Atlantic. Although the interannual variability of wind storms in the northeast Atlantic and surface temperatures in North America are significantly anti-correlated, we cannot directly relate wind storm frequency with tropical west Pacific anomalies. We thus conclude that the conditions over the Pacific in winter 2013-14 were favourable but not sufficient to explain the record number of wind storms in this season. Instead, we suggest that warm north Atlantic sea surface temperature anomalies in combination with cold surface temperatures over North America played a more important role for generating higher wind storm counts over the northeast Atlantic and the UK.

  3. Iron limitation of microbial phosphorus acquisition in the tropical North Atlantic

    NASA Astrophysics Data System (ADS)

    Browning, Thomas; Achterberg, Eric; Yong, Jaw Chuen; Rapp, Insa; Utermann, Caroline; Engel, Anja; Moore, Mark

    2017-04-01

    Growth-limitation of marine phytoplankton by fixed nitrogen (N) has been demonstrated for most of the low-latitude oceans; however, in the (sub)tropical North Atlantic enhanced N2 fixation leads to secondary/(co-)limitation by phosphorus (P). The dissolved organic P pool is rarely fully depleted in the modern ocean and potentially represents a substantial additional P source. Microbes can use a variety of alkaline phosphatase enzymes to access P from a major fraction of this pool. In contrast to the relatively well studied PhoA family of alkaline phosphatases that utilize zinc (Zn) as a cofactor, the recent discovery of iron (Fe) as a cofactor in the more widespread PhoX[1] and PhoD[2] enzymes imply potential for a complex, biochemically-dependant interplay between oceanic Zn, Fe and P cycles. Here we demonstrate enhanced natural community alkaline phosphatase activity (APA) following Fe amendment within the low Zn and moderately low Fe western tropical North Atlantic. In contrast, beneath the Saharan dust plume in the Eastern Atlantic no APA response to trace metal addition was observed. This is the first demonstration of intermittent Fe limitation of microbial P acquisition, providing an additional facet in the argument for Fe control of the coupling between oceanic N and P cycles. 1. Yong, S. C. et al. A complex iron-calcium cofactor catalyzing phosphotransfer chemistry. Science 345, 1170-3 (2014). 2. Rodriguez, F. et al. Crystal structure of the Bacillus subtilis phosphodiesterase PhoD reveals an iron and calcium-containing active site. J. Biol. Chem. 289, 30889-30899 (2014).

  4. Sensitivity of two Iberian lakes to North Atlantic atmospheric circulation modes

    NASA Astrophysics Data System (ADS)

    Hernández, Armand; Trigo, Ricardo M.; Pla-Rabes, Sergi; Valero-Garcés, Blas L.; Jerez, Sonia; Rico-Herrero, Mayte; Vega, José C.; Jambrina-Enríquez, Margarita; Giralt, Santiago

    2015-12-01

    The North Atlantic Oscillation (NAO) exerts a major influence on the climate of the North Atlantic region. However, other atmospheric circulation modes (ACMs), such as the East Atlantic (EA) and Scandinavian (SCAND) patterns, also play significant roles. The dynamics of lakes on the Iberian Peninsula are greatly controlled by climatic parameters, but their relationship with these various ACMs has not been investigated in detail. In this paper, we analyze monthly meteorological and limnological long-term datasets (1950-2011 and 1992-2011, respectively) from two lakes on the northern and central Iberian Peninsula (Sanabria and Las Madres) to develop an understanding of the seasonal sensitivity of these freshwater systems to the NAO, EA and SCAND circulation modes. The limnological variability within Lake Sanabria is primarily controlled by fluctuations in the seasonal precipitation and wind, and the primary ACMs associated with the winter limnological processes are the NAO and the SCAND modes, whereas only the EA mode appears to weakly influence processes during the summer. However, Lake Las Madres is affected by precipitation, wind and, to a lesser extent, temperature, whereas the ACMs have less influence. Therefore, we aim to show that the lakes of the Iberian Peninsula are sensitive to these ACMs. The results presented here indicate that the lake dynamics, in some cases, have a higher sensitivity to variations in the ACMs than single local meteorological variables. However, certain local features, such as geography, lake morphology and anthropic influences, are crucial to properly record the signals of these ACMs.

  5. The role of North African rivers in driving Mediterranean-Atlantic exchange

    NASA Astrophysics Data System (ADS)

    Flecker, Rachel; Marzocchi, Alice; van der Schee, Marlies; Meijer, Paul; Lofi, Johanna; Lunt, Dan

    2014-05-01

    The main driver for exchange through the Gibraltar Strait today is the density contrast between Mediterranean and Atlantic water. Mediterranean water is more saline than Atlantic water because the amount of water the Mediterranean loses through evaporation exceeds both precipitation and freshwater input from rivers. This means it has a negative hydrologic budget. In the Late Miocene however, a very large river known as the Esohabi River drained across North Africa and had its mouth in the Gulf of Sirt. This river was sourced in palaeo-Lake Chad and was strongly influenced by precession-driven monsoonal rainfall. Multiple General Circulation Model simulations through a single precessional cycle indicate that river water may only have reached the Mediterranean in significant quantities in summer during particular orbital configurations e.g. precession minima combined with eccentricity maxima. However, during high amplitude eccentricity maxima, the volume of water supplied through the Esohabi and Nile rivers may have been sufficient to switch the hydrologic budget from negative to positive. In doing so, the fresh water supply should have reduced the salinity of the Mediterranean and consequently the density contrast with adjacent Atlantic water leading to a reduction in exchange. In this presentation we explore the evidence for the timing and nature of freshwater input to the Mediterranean from North Africa. We also consider how relevant this freshwater flux may be in determining some of the major environmental and sedimentological changes in the Late Miocene to early Pliocene including some of the salinity changes that occurred during the Messinian Salinity Crisis.

  6. North Atlantic deep water formation and AMOC in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Heuzé, Céline

    2017-07-01

    Deep water formation in climate models is indicative of their ability to simulate future ocean circulation, carbon and heat uptake, and sea level rise. Present-day temperature, salinity, sea ice concentration and ocean transport in the North Atlantic subpolar gyre and Nordic Seas from 23 CMIP5 (Climate Model Intercomparison Project, phase 5) models are compared with observations to assess the biases, causes and consequences of North Atlantic deep convection in models. The majority of models convect too deep, over too large an area, too often and too far south. Deep convection occurs at the sea ice edge and is most realistic in models with accurate sea ice extent, mostly those using the CICE model. Half of the models convect in response to local cooling or salinification of the surface waters; only a third have a dynamic relationship between freshwater coming from the Arctic and deep convection. The models with the most intense deep convection have the warmest deep waters, due to a redistribution of heat through the water column. For the majority of models, the variability of the Atlantic Meridional Overturning Circulation (AMOC) is explained by the volumes of deep water produced in the subpolar gyre and Nordic Seas up to 2 years before. In turn, models with the strongest AMOC have the largest heat export to the Arctic. Understanding the dynamical drivers of deep convection and AMOC in models is hence key to realistically forecasting Arctic oceanic warming and its consequences for the global ocean circulation, cryosphere and marine life.

  7. The relation between AMOC, gyre circulation, and meridional heat transports in the North Atlantic in model simulations of the last millennium

    NASA Astrophysics Data System (ADS)

    Jungclaus, J. H.; Moreno-Chamarro, E.; Lohmann, K.; Zanchettin, D.

    2016-02-01

    While it is clear that the Atlantic Meridional Overturning Circulation (AMOC) is responsible for meridional heat transfer from the South Atlantic and the tropics to the North Atlantic, the majority of the heat transport in the northern North Atlantic and the Nordic seas is carried by the gyre system. However, the detailed mechanisms determining the interaction between and the temporal modulation of the components of the northward heat transport system are not clear. Long-term climate records and model simulations can help to identify important processes and to provide background for the changes that are presently observed. Multi-centennial proxy records from the subpolar North Atlantic and the Nordic Seas indicate, for example, an out-of-phase behavior of sea surface temperature and gyre circulation between the two regions with consequences for regional climate. Paleoceanographic evidence from Fram Strait shows a pronounced modulation of heat transfer to the Arctic by the Atlantic Water layer during the last 2000 years and reconstructions from the Subpolar North Atlantic suggest a role of ocean circulation in the transition between the Medieval Climate Anomaly and the Little Ice Age. Here we explore a small ensemble of last millennium simulations, carried out with the Max Planck Institute Earth System Model, and analyze mechanisms connecting the AMOC and gyre circulation and their relation to external forcing. Our results support the important role of the Subpolar Gyre strength and the related meridional mass and temperature fluxes. We find that the modulation of the northward heat transport into the Nordic Seas and the Arctic has pronounced impact on sea-ice distribution, ocean-atmosphere interaction, and the surface climate in Scandinavia and Western Europe.

  8. The relation between AMOC, gyre circulation, and meridional heat transports in the North Atlantic in model simulations of the last millennium

    NASA Astrophysics Data System (ADS)

    Jungclaus, Johann; Moreno-Chamarro, Eduardo; Lohmann, Katja

    2016-04-01

    While it is clear that the Atlantic Meridional Overturning Circulation (AMOC) is responsible for meridional heat transfer from the South Atlantic and the tropics to the North Atlantic, the majority of the heat transport in the northern North Atlantic and the Nordic seas is carried by the gyre system. However, the detailed mechanisms determining the interaction between and the temporal modulation of the components of the northward heat transport system are not clear. Long-term climate records and model simulations can help to identify important processes and to provide background for the changes that are presently observed. Multi-centennial proxy records from the subpolar North Atlantic and the Nordic Seas indicate, for example, an out-of-phase behavior of sea surface temperature and gyre circulation between the two regions with consequences for regional climate. Paleoceanographic evidence from Fram Strait shows a pronounced modulation of heat transfer to the Arctic by the Atlantic Water layer during the last 2000 years and reconstructions from the Subpolar North Atlantic suggest a role of ocean circulation in the transition between the Medieval Climate Anomaly and the Little Ice Age. Here we explore a small ensemble of last millennium simulations, carried out with the Max Planck Institute Earth System Model, and analyze mechanisms connecting the AMOC and gyre circulation and their relation to external forcing. Our results support the important role of the Subpolar Gyre strength and the related meridional mass and temperature fluxes. We find that the modulation of the northward heat transport into the Nordic Seas and the Arctic has pronounced impact on sea-ice distribution, ocean-atmosphere interaction, and the surface climate in Scandinavia and Western Europe.

  9. Coherent Multidecadal Atmospheric and Oceanic Variability in the North Atlantic: Blocking Corresponds with Warm Subpolar Ocean

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa M.; Rhines, P. B.; Worthen, D. L.

    2012-01-01

    Winters with frequent atmospheric blocking, in a band of latitudes from Greenland to Western Europe, are found to persist over several decades and correspond to a warm North Atlantic Ocean. This is evident in atmospheric reanalysis data, both modern and for the full 20th century. Blocking is approximately in phase with Atlantic multidecadal ocean variability (AMV). Wintertime atmospheric blocking involves a highly distorted jetstream, isolating large regions of air from the westerly circulation. It influences the ocean through windstress-curl and associated air/sea heat flux. While blocking is a relatively high-frequency phenomenon, it is strongly modulated over decadal timescales. The blocked regime (weaker ocean gyres, weaker air-sea heat flux, paradoxically increased transport of warm subtropical waters poleward) contributes to the warm phase of AMV. Atmospheric blocking better describes the early 20thC warming and 1996-2010 warm period than does the NAO index. It has roots in the hemispheric circulation and jet stream dynamics. Subpolar Atlantic variability covaries with distant AMOC fields: both these connections may express the global influence of the subpolar North Atlantic ocean on the global climate system.

  10. Particulate barium tracing of significant mesopelagic carbon remineralisation in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Lemaitre, Nolwenn; Planquette, Hélène; Planchon, Frédéric; Sarthou, Géraldine; Jacquet, Stéphanie; García-Ibáñez, Maribel I.; Gourain, Arthur; Cheize, Marie; Monin, Laurence; André, Luc; Laha, Priya; Terryn, Herman; Dehairs, Frank

    2018-04-01

    The remineralisation of sinking particles by prokaryotic heterotrophic activity is important for controlling oceanic carbon sequestration. Here, we report mesopelagic particulate organic carbon (POC) remineralisation fluxes in the North Atlantic along the GEOTRACES-GA01 section (GEOVIDE cruise; May-June 2014) using the particulate biogenic barium (excess barium; Baxs) proxy. Important mesopelagic (100-1000 m) Baxs differences were observed along the transect depending on the intensity of past blooms, the phytoplankton community structure, and the physical forcing, including downwelling. The subpolar province was characterized by the highest mesopelagic Baxs content (up to 727 pmol L-1), which was attributed to an intense bloom averaging 6 mg chl a m-3 between January and June 2014 and by an intense 1500 m deep convection in the central Labrador Sea during the winter preceding the sampling. This downwelling could have promoted a deepening of the prokaryotic heterotrophic activity, increasing the Baxs content. In comparison, the temperate province, characterized by the lowest Baxs content (391 pmol L-1), was sampled during the bloom period and phytoplankton appear to be dominated by small and calcifying species, such as coccolithophorids. The Baxs content, related to oxygen consumption, was converted into a remineralisation flux using an updated relationship, proposed for the first time in the North Atlantic. The estimated fluxes were of the same order of magnitude as other fluxes obtained using independent methods (moored sediment traps, incubations) in the North Atlantic. Interestingly, in the subpolar and subtropical provinces, mesopelagic POC remineralisation fluxes (up to 13 and 4.6 mmol C m-2 d-1, respectively) were equalling and occasionally even exceeding upper-ocean POC export fluxes, deduced using the 234Th method. These results highlight the important impact of the mesopelagic remineralisation on the biological carbon pump of the studied area with a near

  11. Flood events across the North Atlantic region - past development and future perspectives

    NASA Astrophysics Data System (ADS)

    Matti, Bettina; Dieppois, Bastien; Lawler, Damian; Dahlke, Helen E.; Lyon, Steve W.

    2016-04-01

    Flood events have a large impact on humans, both socially and economically. An increase in winter and spring flooding across much of northern Europe in recent years opened up the question of changing underlying hydro-climatic drivers of flood events. Predicting the manifestation of such changes is difficult due to the natural variability and fluctuations in northern hydrological systems caused by large-scale atmospheric circulations, especially under altered climate conditions. Improving knowledge on the complexity of these hydrological systems and their interactions with climate is essential to be able to determine drivers of flood events and to predict changes in these drivers under altered climate conditions. This is particularly true for the North Atlantic region where both physical catchment properties and large-scale atmospheric circulations have a profound influence on floods. This study explores changes in streamflow across North Atlantic region catchments. An emphasis is placed on high-flow events, namely the timing and magnitude of past flood events, and selected flood percentiles were tested for stationarity by applying a flood frequency analysis. The issue of non-stationarity of flood return periods is important when linking streamflow to large-scale atmospheric circulations. Natural fluctuations in these circulations are found to have a strong influence on the outcome causing natural variability in streamflow records. Long time series and a multi-temporal approach allows for determining drivers of floods and linking streamflow to large-scale atmospheric circulations. Exploring changes in selected hydrological signatures consistency was found across much of the North Atlantic region suggesting a shift in flow regime. The lack of an overall regional pattern suggests that how catchments respond to changes in climatic drivers is strongly influenced by their physical characteristics. A better understanding of hydrological response to climate drivers is

  12. Projected pH reductions by 2100 might put deep North Atlantic biodiversity at risk

    NASA Astrophysics Data System (ADS)

    Gehlen, M.; Séférian, R.; Jones, D. O. B.; Roy, T.; Roth, R.; Barry, J.; Bopp, L.; Doney, S. C.; Dunne, J. P.; Heinze, C.; Joos, F.; Orr, J. C.; Resplandy, L.; Segschneider, J.; Tjiputra, J.

    2014-06-01

    This study aims at evaluating the potential for impacts of ocean acidification on North Atlantic deep-sea ecosystems in response to IPCC AR5 Representative Concentration Pathways (RCP). Deep-sea biota is likely highly vulnerable to changes in seawater chemistry and sensitive to moderate excursions in pH. Here we show, from seven fully-coupled Earth system models, that for three out of four RCPs over 17% of the seafloor area below 500 m depth in the North Atlantic sector will experience pH reductions exceeding -0.2 units by 2100. Increased stratification in response to climate change partially alleviates the impact of ocean acidification on deep benthic environment. We report major potential consequences of pH reductions for deep-sea biodiversity hotspots, such as seamounts and canyons. By 2100 and under the high CO2 scenario RCP8.5 pH reductions exceeding -0.2, (respectively -0.3) units are projected in close to 23% (~ 15%) of North Atlantic deep-sea canyons and ~ 8% (3%) of seamounts - including seamounts proposed as sites of marine protected areas. The spatial pattern of impacts reflects the depth of the pH perturbation and does not scale linearly with atmospheric CO2 concentration. Impacts may cause negative changes of the same magnitude or exceeding the current target of 10% of preservation of marine biomes set by the convention on biological diversity implying that ocean acidification may offset benefits from conservation/management strategies relying on the regulation of resource exploitation.

  13. Taxonomy of quaternary deep-sea ostracods from the Western North Atlantic ocean

    USGS Publications Warehouse

    Yasuhara, Moriaki; Okahashi, H.; Cronin, T. M.

    2009-01-01

    Late Quaternary sediments from Ocean Drilling Program (ODP) Hole 1055B, Carolina Slope, western North Atlantic (32??47.041??? N, 76??17.179??? W; 1798m water depth) were examined for deep-sea ostracod taxonomy. A total of 13933 specimens were picked from 207 samples and c. 120 species were identified. Among them, 87 species were included and illustrated in this paper. Twenty-eight new species are described. The new species are: Ambocythere sturgio, Argilloecia abba, Argilloecia caju, Argilloecia keigwini, Argilloecia robinwhatleyi, Aversovalva carolinensis, Bythoceratina willemvandenboldi, Bythocythere eugeneschornikovi, Chejudocythere tenuis, Cytheropteron aielloi, Cytheropteron demenocali, Cytheropteron didieae, Cytheropteron richarddinglei, Cytheropteron fugu, Cytheropteron guerneti, Cytheropteron richardbensoni, Eucytherura hazeli, Eucytherura mayressi, Eucytherura namericana, Eucytherura spinicorona, Posacythere hunti, Paracytherois bondi, Pedicythere atroposopetasi, Pedicythere kennettopetasi, Pedicythere klothopetasi, Pedicythere lachesisopetasi, Ruggieriella mcmanusi and Xestoleberis oppoae. Taxonomic revisions of several common species were made to reduce taxonomic uncertainty in the literature. This study provides a robust taxonomic baseline for application to palaeoceanographical reconstruction and biodiversity analyses in the deep and intermediate-depth environments of the North Atlantic Ocean. ?? The Palaeontological Association, 2009.

  14. Hydroclimatology of Extreme Precipitation and Floods Originating from the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Nakamura, Jennifer

    This study explores seasonal patterns and structures of moisture transport pathways from the North Atlantic Ocean and the Gulf of Mexico that lead to extreme large-scale precipitation and floods over land. Storm tracks, such as the tropical cyclone tracks in the Northern Atlantic Ocean, are an example of moisture transport pathways. In the first part, North Atlantic cyclone tracks are clustered by the moments to identify common traits in genesis locations, track shapes, intensities, life spans, landfalls, seasonal patterns, and trends. The clustering results of part one show the dynamical behavior differences of tropical cyclones born in different parts of the basin. Drawing on these conclusions, in the second part, statistical track segment model is developed for simulation of tracks to improve reliability of tropical cyclone risk probabilities. Moisture transport pathways from the North Atlantic Ocean are also explored though the specific regional flood dynamics of the U.S. Midwest and the United Kingdom in part three of the dissertation. Part I. Classifying North Atlantic Tropical Cyclones Tracks by Mass Moments. A new method for classifying tropical cyclones or similar features is introduced. The cyclone track is considered as an open spatial curve, with the wind speed or power information along the curve considered as a mass attribute. The first and second moments of the resulting object are computed and then used to classify the historical tracks using standard clustering algorithms. Mass moments allow the whole track shape, length and location to be incorporated into the clustering methodology. Tropical cyclones in the North Atlantic basin are clustered with K-means by mass moments producing an optimum of six clusters with differing genesis locations, track shapes, intensities, life spans, landfalls, seasonality, and trends. Even variables that are not directly clustered show distinct separation between clusters. A trend analysis confirms recent conclusions

  15. 77 FR 22221 - Security Zones; North Atlantic Treaty Organization (NATO) Summit, Chicago, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-13

    ... affect your small business, organization, or governmental jurisdiction and you have questions concerning...-AA87 Security Zones; North Atlantic Treaty Organization (NATO) Summit, Chicago, IL AGENCY: Coast Guard... with a large scale, international political event. DATES: This rule is effective between 8 a.m. on May...

  16. 77 FR 25892 - Security Zones; North Atlantic Treaty Organization (NATO) Summit, Chicago, IL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 165 [Docket No. USCG-2012-0052] RIN 1625-AA87 Security Zones; North Atlantic Treaty Organization (NATO) Summit, Chicago, IL AGENCY: Coast Guard..., the BPYC described itself as a non-profit organization that provides tender services, mast stepping...

  17. Historic Storminess Changes in North Atlantic Region

    NASA Astrophysics Data System (ADS)

    Dawson, A. G.; Elliott, L.; Noone, S.; Hickey, K.; Foster, I.; Wadhams, P.; Mayewski, P.

    2001-05-01

    Reconstructed patterns of historic storminess (1870-1990 AD) for North Atlantic region as indicated by measurements from selected stations in Iceland, Faeroes, Scotland and Ireland show clear links with the climate "seesaw" winters first described by Van Loon and Rogers. The stormiest winters appear to have occurred during periods when measured Greenland air temperatures at Jacobshavn and reconstructed air temperatures from the Summit ice core site have been exceptionally low and when air temperature across northern Europe have been well above average. Maxima and minima of recorded winter storms for the various stations are also in agreement with the Sodium chronology from GISP2 that points to increased sea salt precipitation on Greenland ice at Summit during Greenland "below" periods of the climate seesaw.

  18. Microwave responses of the western North Atlantic

    NASA Technical Reports Server (NTRS)

    Stacey, J. M.; Girard, M. A.

    1985-01-01

    Features and objects in the Western North Atlantic Ocean - the Eastern Seaboard of the United States - are observed from Earth orbit by passive microwaves. The intensities of their radiated flux signatures are measured and displayed in color as a microwave flux image. The features of flux emitting objects such as the course of the Gulf Stream and the occurrence of cold eddies near the Gulf Stream are identified by contoured patterns of relative flux intensities. The flux signatures of ships and their wakes are displayed and discussed. Metal data buoys and aircraft are detected. Signal to clutter ratios and probabilities of detection are computed from their measured irradiances. Theoretical models and the range equations that explain passive microwave detection using the irradiances of natural sources are summarized.

  19. The influence of the North Atlantic Ocean variability on the atmosphere in the cold season at seasonal to multidecadal time scales

    NASA Astrophysics Data System (ADS)

    Frankignoul, C.

    2017-12-01

    Observational evidence of an atmospheric response to the North Atlantic horseshoe SST anomalies has been accumulating since the late 90's, suggesting that it drives a negative NAO response during late fall/early winter. The North Atlantic horseshoe SST anomaly is in part stochastically driven by the atmosphere, but at low frequency it is correlated with the Atlantic Multidecadal Oscillation (AMO). Correspondingly, an atmospheric response to the AMO has been detected at low frequency in winter, with a positive AMO phase leading a negative NAO-like pattern, consistent with sensitivity studies with atmospheric general circulation models. Both the subpolar and tropical components of the AMO seem to contribute to its influence on the atmosphere. As North Atlantic SST changes reflects internally-generated SST fluctuations as well the response to anthropogenic and other external forcing, the AMO is sensitive to the way the forced SST signal is removed; estimates of the natural variability of the AMO vary by as much as a factor of two between estimation methods, leading to possible biases in its alleged impacts. Since an intensification of the Atlantic meridional overturning circulation (AMOC) leads the AMO and drives a negative NAO in many climate models, albeit with different lead times, the relation between AMO and AMOC will be discussed, as well as possible links with the North Pacific and sea ice variability.

  20. Impact of fluctuation of hydro-physical regime in the North Atlantic on the climate of Eurasia

    NASA Astrophysics Data System (ADS)

    Serykh, Ilya; Anisimov, Mikhail; Byshev, Vladimir; Neiman, Victor; Romanov, Juri

    2015-04-01

    In the mid-1970s a heat content in the North Atlantic Ocean has substantially changed. Because of its high energy value the event appears to have a significant impact on the regional environment. To verify this suggestion we analyzed the global ocean-atmosphere data related to the negative (1950-1970) and positive (1980-1999) phases of the North Atlantic Oscillation (NAO). The analysis of these data have shown the existence of a thermal dipole in the North Atlantic upper layer which can be interpreted in a sense as an oceanic counterpart of atmospheric NAO. To identify this North Atlantic Dipole (NAD) its index was considered as the ocean 0-100-m layer temperature difference between regions (20°-40°N; 80°-30°W) and (50°-70°N; 60°-10°W). Then the NAD index was suggested a possible physical mechanism factor of the regional ocean-atmosphere system variability which in turn could produce a draw effect on the recent climate of Eurasia. The study showed that the current phase (2000-2013) of the climate in the North Atlantic region becomes qualitatively similar to the situation, typical for period 1950-1970, when the index of continentality in the Eurasian region was a very high. There is a reason to believe that in the coming decades this index is likely to increase, that would be primarily manifested by relatively cold weather in winters and by hot-dry summer seasons. To assess the variability of ocean heat content it was used a General Ocean Circulation model developed at the Institute of numerical mathematics, Russian Academy of Sciences. This model belongs to the class of σ-models, and its distinguishing feature is the splitting of the physical processes and spatial coordinates. By using the model there were performed numerical experiments for the evolution of hydrophysical regime of the North Atlantic Ocean at the period of 1958-2006, with a spatial resolution of 0.25°x0.25° for 25 horizons with time window of 1 hour. As initial conditions for the

  1. The Distribution of Dissolved Barium from US GEOTRACES cruises in the North Atlantic and Eastern Tropical South Pacific

    NASA Astrophysics Data System (ADS)

    Shiller, A. M.; Grissom, K.

    2014-12-01

    Interest in the oceanic geochemistry of barium (Ba) stems from a variety of reasons including its use as a paleo-productivity indicator, its chemical similarity to Ra, and its utility as a water source tracer. To better constrain these uses of Ba, we have obtained trace element clean samples from both the North Atlantic and Eastern Pacific US GEOTRACES cruises. Analytical work on the Pacific samples is proceeding while work on the Atlantic samples is complete. For the Pacific, 36 stations were occupied from Peru to Tahiti. For the Atlantic, dissolved Ba was determined at 32 stations across the North Atlantic during US cruises GT10 and GT11 along the meridional transect from Lisbon to the Cape Verde Islands and the zonal transect from Cape Cod to the Mauritanian coast. In the Atlantic, the general distribution of dissolved Ba exhibits a vertical bifurcation at approximately 500 m into shallow versus deep water. The greatest variation is found on the eastern side of the basin with concentrations ranging from 35 nmol/kg at the near surface (100 m) to over 83 nmol/kg at depth. A reduction of Ba in excess of 20% compared to the average of mesopelagic depths less than 500 m is observed within the Canary Current upwelling zone east of the Cape Verde Islands and accompanied to some extent by a subsequent regeneration at depth. Below 500 m, dissolved Ba correlates well with dissolved Si, whereas the correlation with alkalinity is poor at depth and shows a decoupling above 500 m. There is evidence of hydrothermal Ba input at the TAG vent system of the Mid-Atlantic Ridge along transect GT11 as indicated by the rapid increase in the dissolved Ba below 2500 m in conjunction with increases in Fe and Mn. In addition to the hydrothermal source, a near surface (~40 m) maximum of 51 nmol/kg is found along the continental slope of North America in correspondence with a minimum surface salinity (34.75) and increased dissolved manganese indicating either fluvial or sediment input

  2. Hotspot of accelerated sea-level rise on the Atlantic coast of North America

    USGS Publications Warehouse

    Sallenger,, Asbury H.; Doran, Kara S.; Howd, Peter A.

    2012-01-01

    Climate warming does not force sea-level rise (SLR) at the same rate everywhere. Rather, there are spatial variations of SLR superimposed on a global average rise. These variations are forced by dynamic processes, arising from circulation and variations in temperature and/or salinity, and by static equilibrium processes, arising from mass redistributions changing gravity and the Earth's rotation and shape. These sea-level variations form unique spatial patterns, yet there are very few observations verifying predicted patterns or fingerprints. Here, we present evidence of recently accelerated SLR in a unique 1,000-km-long hotspot on the highly populated North American Atlantic coast north of Cape Hatteras and show that it is consistent with a modelled fingerprint of dynamic SLR. Between 1950–1979 and 1980–2009, SLR rate increases in this northeast hotspot were ~ 3–4 times higher than the global average. Modelled dynamic plus steric SLR by 2100 at New York City ranges with Intergovernmental Panel on Climate Change scenario from 36 to 51 cm (ref. 3); lower emission scenarios project 24–36 cm (ref. 7). Extrapolations from data herein range from 20 to 29 cm. SLR superimposed on storm surge, wave run-up and set-up will increase the vulnerability of coastal cities to flooding, and beaches and wetlands to deterioration.

  3. North Atlantic Aerosol Properties and Direct Radiative Effects: Key Results from TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Livingston, J. M.; Schmid, B.; Bergstrom, Robert A.; Hignett, P.; Hobbs, P. V.; Durkee, P. A.

    2000-01-01

    Aerosol effects on atmospheric radiative fluxes provide a forcing function that can change the climate In potentially significant ways. This aerosol radiative forcing is a major source of uncertainty in understanding the observed climate change of the past century and in predicting future climate. To help reduce this uncertainty, the International Global Atmospheric Chemistry Project (IGAC) has endorsed a series of multiplatform aerosol field campaigns. The Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) and the second Aerosol Characterization Experiment (ACE-2) were the first IGAC campaigns to address the impact of anthropogenic aerosols, Both TARFOX and ACE-2 gathered extensive data sets on aerosol properties and radiative effects, TARFOX focused on the urban-industrial haze plume flowing from the eastern United States over the western Atlantic Ocean, whereas ACE-2 studied aerosols carried over the eastern Atlantic from both European urban/industrial and African mineral sources. These aerosols often have a marked influence on the top-of-atmosphere radiances measured by satellites. Shown there are contours of aerosol optical depth derived from radiances measured by the AVHRR sensor on the NOAA-11 satellite. The contours readily show that aerosols originating in North America, Europe, and Africa impact the radiative properties of air over the North Atlantic. However, the accurate derivation of flux changes, or radiative forcing, from the satellite measured radiances or retrieved optical depths remains a difficult challenge. In this paper we summarize key initial results from TARFOX and, to a lesser extent, ACE-2, with a focus on those results that allow an improved assessment of the flux changes caused by North Atlantic aerosols at middle latitudes.

  4. Fluvial terraces of the Little River Valley, Atlantic Coastal Plain, North Carolina

    Treesearch

    Bradley Suther; David Leigh; George Brook

    2011-01-01

    An optically-stimulated luminescence (OSL) and radiocarbon chronology is presented for fluvial terraces of the Little River, a tributary to the Cape Fear River that drains 880 km2 of the Sandhills Province of the upper Coastal Plain of North Carolina. This study differs from previous work in the southeastern Atlantic Coastal Plain in that numerical age estimates are...

  5. Knowledge Organisation Systems in North American Digital Library Collections

    ERIC Educational Resources Information Center

    Shiri, Ali; Chase-Kruszewski, Sarah

    2009-01-01

    Purpose: The purpose of this paper is to report an investigation into the types of knowledge organisation systems (KOSs) utilised in North American digital library collections. Design/methodology/approach: The paper identifies, analyses and deep scans online North American hosted digital libraries. It reviews the literature related to the…

  6. Monitoring the North Atlantic using ocean colour data

    NASA Astrophysics Data System (ADS)

    Fuentes-Yaco, C.; Caverhill, C.; Maass, H.; Porter, C.; White, GN, III

    2016-04-01

    The Remote Sensing Unit (RSU) at the Bedford Institute of Oceanography (BIO) has been monitoring the North Atlantic using ocean colour products for decades. Optical sensors used include CZCS, POLDER, SeaWiFS, MODIS/Aqua and MERIS. The monitoring area is defined by the Atlantic Zone Monitoring Program (AZMP) but certain products extend into Arctic waters, and all-Canadian waters which include the Pacific coast. RSU provides Level 3 images for various products in several formats and a range of temporal and spatial resolutions. Basic statistics for pre-defined areas of interest are compiled for each product. Climatologies and anomaly maps are also routinely produced, and custom products are delivered by request. RSU is involved in the generation of Level 4 products, such as characterizing the phenology of spring and fall phytoplankton blooms, computing primary production, using ocean colour to aid in EBSA (Ecologically and Biologically Significant Area) definition and developing habitat suitability maps. Upcoming operational products include maps of diatom distribution, biogeochemical province boundaries, and products from sensors such as VIIRS (Visible Infrared Imaging Radiometer Suite), OLCI (Ocean Land Colour Instrument), and PACE (Pre-Aerosol, Clouds and ocean Ecosystem) hyperspectral microsatellite mission.

  7. TRACEing Last Glacial Period (25-80 ka b2k) tephra horizons within North Atlantic marine cores and exploring links to the Greenland ice-cores

    NASA Astrophysics Data System (ADS)

    Abbott, P. M.; Davies, S. M.; Griggs, A. J.; Bourne, A. J.; Cook, E.; Pearce, N. J. G.; Austin, W. E. N.; Chapman, M.; Hall, I. R.; Purcell, C. S.; Scourse, J. D.; Rasmussen, T. L.

    2015-12-01

    Tephrochronology is a powerful technique for the correlation and synchronisation of disparate palaeoclimatic records from different depositional environments and has considerable potential for testing climatic phasing. For example, the relative timing of atmospheric and marine changes caused by the abrupt climatic events that punctuated the last glacial period within the North Atlantic region. Here we report on efforts to establish a framework of tephra horizons within North Atlantic marine sequences that can correlate these records and if traced in the Greenland ice-cores can act as isochronous tie-lines. Investigations have been conducted on a network of marine cores from a number of sites across the North Atlantic. Tephra horizons have been identified using cryptotephra extraction techniques more commonly applied to the study of terrestrial sequences. There are two main challenges with assessing cryptotephras in the glacial North Atlantic; i) determining the transportation processes and ii) assessing the influence of secondary reworking processes and the stratigraphic integrity of the isochrons. These processes and their influence are investigated for each cryptotephra using shard size variations, major element heterogeneity and co-variance of IRD input for some cores. Numerous Icelandic cryptophras have been successfully identified in the marine records and we will discuss the integration of a number of these with an isochronous nature into a marine tephra framework and how potential correlations to the Greenland ice-core tephra framework are determined. Spatial patterns in the nature of tephra records that are emerging from the core network will be highlighted to outline some of the key areas that could be explored in the future. In addition, the synchronisation of multiple North Atlantic records to the Greenland ice-cores using the North Atlantic Ash Zone II to test the synchroneity of an abrupt cooling in the North Atlantic will be discussed.

  8. Remote Drying in the North Atlantic as a Common Response to Precessional Changes and CO 2 Increase Over Land

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Patrick; Kravitz, Ben; Lu, Jian

    In this study, we demonstrate that changes of the North Atlantic subtropical high and its regional rainfall pattern during mid-Holocene precessional changes and idealized 4xCO 2 increase can both be understood as a remote response to increased land heating near North Africa. Despite different sources and patterns of radiative forcing (increase in CO 2 concentration versus changes in orbital parameters), we find that the pattern of energy, circulation, and rainfall responses in the Northern Hemisphere summer subtropics are remarkably similar in the two forcing scenarios because both are dominated by the same land-sea heating contrast in response to the forcing.more » An increase in energy input over arid land drives a westward displacement of the coupled North Atlantic subtropical high-monsoon circulation, consistent with increased precipitation in the Afro-Asia region and decreased precipitation in the America-Atlantic region. This study underscores the importance of land heating in dictating remote drying through zonal shifts of the subtropical circulation.« less

  9. Remote Drying in the North Atlantic as a Common Response to Precessional Changes and CO 2 Increase Over Land

    DOE PAGES

    Kelly, Patrick; Kravitz, Ben; Lu, Jian; ...

    2018-04-16

    In this study, we demonstrate that changes of the North Atlantic subtropical high and its regional rainfall pattern during mid-Holocene precessional changes and idealized 4xCO 2 increase can both be understood as a remote response to increased land heating near North Africa. Despite different sources and patterns of radiative forcing (increase in CO 2 concentration versus changes in orbital parameters), we find that the pattern of energy, circulation, and rainfall responses in the Northern Hemisphere summer subtropics are remarkably similar in the two forcing scenarios because both are dominated by the same land-sea heating contrast in response to the forcing.more » An increase in energy input over arid land drives a westward displacement of the coupled North Atlantic subtropical high-monsoon circulation, consistent with increased precipitation in the Afro-Asia region and decreased precipitation in the America-Atlantic region. This study underscores the importance of land heating in dictating remote drying through zonal shifts of the subtropical circulation.« less

  10. Astronomically paced changes in deep-water circulation in the western North Atlantic during the middle Eocene

    NASA Astrophysics Data System (ADS)

    Vahlenkamp, Maximilian; Niezgodzki, Igor; De Vleeschouwer, David; Bickert, Torsten; Harper, Dustin; Kirtland Turner, Sandra; Lohmann, Gerrit; Sexton, Philip; Zachos, James; Pälike, Heiko

    2018-02-01

    North Atlantic Deep Water (NADW) currently redistributes heat and salt between Earth's ocean basins, and plays a vital role in the ocean-atmosphere CO2 exchange. Despite its crucial role in today's climate system, vigorous debate remains as to when deep-water formation in the North Atlantic started. Here, we present datasets from carbonate-rich middle Eocene sediments from the Newfoundland Ridge, revealing a unique archive of paleoceanographic change from the progressively cooling climate of the middle Eocene. Well-defined lithologic alternations between calcareous ooze and clay-rich intervals occur at the ∼41-kyr beat of axial obliquity. Hence, we identify obliquity as the driver of middle Eocene (43.5-46 Ma) Northern Component Water (NCW, the predecessor of modern NADW) variability. High-resolution benthic foraminiferal δ18O and δ13C suggest that obliquity minima correspond to cold, nutrient-depleted, western North Atlantic deep waters. We thus link stronger NCW formation with obliquity minima. In contrast, during obliquity maxima, Deep Western Boundary Currents were weaker and warmer, while abyssal nutrients were more abundant. These aspects reflect a more sluggish NCW formation. This obliquity-paced paleoceanographic regime is in excellent agreement with results from an Earth system model, in which obliquity minima configurations enhance NCW formation.

  11. A multi-decadal study of Polar and Atlantic Water changes on the North Iceland shelf during the last Millennium

    NASA Astrophysics Data System (ADS)

    Perner, Kerstin; Moros, Matthias; Simon, Margit; Berben, Sarah; Griem, Lisa; Dokken, Trond; Wacker, Lukas; Jansen, Eystein

    2017-04-01

    The region offshore North Iceland is known to be sensitive to broad scale climatic and oceanographic changes in the North Atlantic Ocean. Changes in surface and subsurface water conditions link to the varying influence of Polar-sourced East Icelandic Current (EIC) and Atlantic-sourced North Irminger Icelandic Current (NIIC). Cold/fresh Polar waters from the East Greenland Current feed the surface flowing EIC, while warm/saline Subpolar Mode Waters (SPMW) from the Irminger Current (IC) feed the subsurface flowing NIIC. Here, we present a new and well-dated multi-proxy record that allows high-resolution reconstruction of surface and subsurface water mass changes on the western North Iceland shelf. An age-depth model for the last Millennium has been developed based on the combined information from radionuclide measurements (137Cs, 210Pb) dating, 25 AMS 14C radiocarbon dates, and identified Tephra horizons. Our dating results provide further support to previous assumptions that North of Iceland a conventional reservoir age correction application of 400 years (ΔR=0) is inadequate (e.g., Eikíksson et al., 2000; Wanamaker Jr. et al., 2012). The combined evidence from radionuclide dating and the identified Tephra horizons point to a ΔR of c. 360 years during the last Millennium. Our benthic and planktic foraminiferal assemblage and stable oxygen isotope (18O) record of Neogloboquadrina pachyderma s. (NPS) resolve the last Millennium at a centennial to multi-decadal resolution. Comparison of abundance changes of the Atlantic Water related species Cassidulina neoteretis and NPS, as well as the 18O record agree well with the instrumental data time series from the monitoring station Hunafloi nearby. This provides further support that our data is representative of relative temperature and salinity changes in surface and subsurface waters. Hence, this new record allows a more detailed investigation on the timing of Polar (EIC) and Atlantic (NIIC, IC) Water contribution

  12. Maestrichtian benthic foraminifers from Ocean Point, North Slope, Alaska ( USA).

    USGS Publications Warehouse

    McDougall, K.

    1987-01-01

    Previous studies of fauna and flora from Ocean Point, Alaska, have suggested ages ranging from Campanian to early Eocene and that these assemblages are either highly endemic or commonplace. I demonstrate that the moderately abundant benthic foraminifers constitute early Maestrichtian boreal assemblages common to Canada and northern Europe. Paleoenvironmental analysis indicates that deposition took place in outer neritic settings (50 to 150m). The Ocean Point benthic foraminiferal assemblages contain species that migrated from the US Gulf Coast, North American Interior and Europe during the Campanian, and from Europe during the Maestrichtian. These faunal affinities suggest that seaways connected the Arctic to the North American Interior and Atlantic during the Campanian and that a shallow seaway connected the Arctic to the Atlantic during the early Maestrichtian. - from Author

  13. North Atlantic cyclones; trends, impacts and links to large-scale variability

    NASA Astrophysics Data System (ADS)

    Trigo, R. M.; Trigo, I. F.; Ramos, A. M.; Paredes, D.; Garcia-Herrera, R.; Liberato, M. L. R.; Valente, M. A.

    2009-04-01

    Based on the cyclone detection and tracking algorithm previously developed (Trigo, 2006) we have assessed the inter-annual variability and cyclone frequency trends between 1960 and 2000 for the Euro-Atlantic sector using the highest spatial resolution available (1.125° x 1.125°) from the ERA-40 Surface Level Pressure. Additionally, trends for the u and v wind speed components are also computed at the monthly and seasonal scales, using the same dataset. All cyclone and wind speed trend maps were computed with the corresponding statistical significance field. Results reveal a significant frequency decrease (increase) in the western Mediterranean (Greenland and Scandinavia), particularly in December, February and March. Seasonal and monthly analysis of wind speed trends shows similar spatial patterns. We show that these changes in the frequency of low pressure centers and the associated wind patterns are partially responsible for trends of the significant height of waves. Throughout the extended winter months (ONDJFM), regions with positive (negative) wind magnitude trends, of up to 5 cm/s per year, often correspond to regions of positive (negative) significant wave height trends. The cyclone and wind speed trends computed for the JFM months are well matched by the corresponding trends in significant wave height, with February being the month with the highest trends (negative south of 50°N up to -3 cm/year, and positive up to 5cm/year just north of Scotland). Using precipitation data from ECMWF reanalyses and a CRU high resolution dataset we show the impact of these trends in cyclone frequencies upon the corresponding precipitation trends in the influenced areas. It is also shown that these changes are partially linked to major shifts on the indices of large-scale patterns modes, namely the North Atlantic Oscillation (NAO), the Eastern Atlantic (EA) and the Scandinavian Patterns (SCAN). Trigo, I. F. 2006: Climatology and Interannual Variability of Storm-Tracks in

  14. The South Atlantic Migratory Bird Initiative – An Integrated Approach to Conservation of "All Birds Across All Habitats"

    Treesearch

    Craig Watson; Chuck Hayes; Joseph McCauley; Andrew Milliken

    2005-01-01

    In 1999, the Management Board of the Atlantic Coast Joint Venture (ACJV) embraced the vision and framework of the then newly emerging North American Bird Conservation Initiative (NABCI). Traditionally a Joint Venture focused on the conservation of waterfowl and wetlands habitat, the ACJV expanded its role throughout the Atlantic Flyway to all resident and migratory...

  15. Diversity of late Neogene Monachinae (Carnivora, Phocidae) from the North Atlantic, with the description of two new species

    PubMed Central

    Peredo, Carlos Mauricio; Meyvisch, Pjotr; Louwye, Stephen

    2018-01-01

    While the diversity of ‘southern seals’, or Monachinae, in the North Atlantic realm is currently limited to the Mediterranean monk seal, Monachus monachus, their diversity was much higher during the late Miocene and Pliocene. Although the fossil record of Monachinae from the North Atlantic is mainly composed of isolated specimens, many taxa have been erected on the basis of fragmentary and incomparable specimens. The humerus is commonly considered the most diagnostic postcranial bone. The research presented in this study limits the selection of type specimens for different fossil Monachinae to humeri and questions fossil taxa that have other types of bones as type specimens, such as for Terranectes parvus. In addition, it is essential that the humeri selected as type specimens are (almost) complete. This questions the validity of partial humeri selected as type specimens, such as for Terranectes magnus. This study revises Callophoca obscura, Homiphoca capensis and Pliophoca etrusca, all purportedly known from the Lee Creek Mine, Aurora, North Carolina, in addition to their respective type localities in Belgium, South Africa and Italy, respectively. C. obscura is retained as a monachine seal taxon that lived both on the east coast of North America and in the North Sea Basin. However, H. capensis from North America cannot be identified beyond the genus level, and specimens previously assigned to Pl. etrusca from North America clearly belong to different taxa. Indeed, we also present new material and describe two new genera of late Miocene and Pliocene Monachinae from the east coast of North America: Auroraphoca atlantica nov. gen. et nov. sp., and Virginiaphoca magurai nov. gen. et nov. sp. This suggests less faunal interchange of late Neogene Monachinae between the east and west coasts of the North Atlantic than previously expected. PMID:29657825

  16. Diversity of late Neogene Monachinae (Carnivora, Phocidae) from the North Atlantic, with the description of two new species

    NASA Astrophysics Data System (ADS)

    Dewaele, Leonard; Peredo, Carlos Mauricio; Meyvisch, Pjotr; Louwye, Stephen

    2018-03-01

    While the diversity of `southern seals', or Monachinae, in the North Atlantic realm is currently limited to the Mediterranean monk seal, Monachus monachus, their diversity was much higher during the late Miocene and Pliocene. Although the fossil record of Monachinae from the North Atlantic is mainly composed of isolated specimens, many taxa have been erected on the basis of fragmentary and incomparable specimens. The humerus is commonly considered the most diagnostic postcranial bone. The research presented in this study limits the selection of type specimens for different fossil Monachinae to humeri and questions fossil taxa that have other types of bones as type specimens, such as for Terranectes parvus. In addition, it is essential that the humeri selected as type specimens are (almost) complete. This questions the validity of partial humeri selected as type specimens, such as for Terranectes magnus. This study revises Callophoca obscura, Homiphoca capensis and Pliophoca etrusca, all purportedly known from the Lee Creek Mine, Aurora, North Carolina, in addition to their respective type localities in Belgium, South Africa and Italy, respectively. C. obscura is retained as a monachine seal taxon that lived both on the east coast of North America and in the North Sea Basin. However, H. capensis from North America cannot be identified beyond the genus level, and specimens previously assigned to Pl. etrusca from North America clearly belong to different taxa. Indeed, we also present new material and describe two new genera of late Miocene and Pliocene Monachinae from the east coast of North America: Auroraphoca atlantica nov. gen. et nov. sp., and Virginiaphoca magurai nov. gen. et nov. sp. This suggests less faunal interchange of late Neogene Monachinae between the east and west coasts of the North Atlantic than previously expected.

  17. A quantitative micropaleontologic method for shallow marine peleoclimatology: Application to Pliocene deposits of the western North Atlantic Ocean

    USGS Publications Warehouse

    Cronin, T. M.; Dowsett, H.J.

    1990-01-01

    A transfer function was developed to estimate summer and winter paleotemperatures for arctic to tropical regions of the western North Atlantic Ocean using fossil ostracode assemblages. Q-mode factor analysis was run on ostracode assemblages from 100 modern bottom sediment samples from continental shelves of North America, Greenland and the Caribbean using 59 ostracode taxa. Seven factors accounting for 80% of the variance define assemblages that correspond to frigid, subfrigid, cold temperate, mild temperate, warm temperate, subtropical and tropical climatic zones. Multiple regression of the factor matrix against observed February and August bottom temperatures yielded an astracode transfer function with an accuracy of about ??2??C. The transfer function was used to reconstruct middle Pliocene (3.5-3.0 Ma) shallow marine climates of the western North Atlantic during the marine transgression that deposited the Yorktown Formation (Virginia and North Carolina), the Duplin Formation (South and North Carolina) and the Pinecrest beds (Florida). Middle Pliocene paleowater temperatures in Virginia averaged 19??C in August and 13.5??C in February, about 5??C to 8??C warmer than at comparable depths off Virginia today. August and February water temperatures in North Carolina were 23??C and 13.4??C, in South Carolina about 23??C and 13.5??C and in southern Florida about 24.6??C and 15.4??C. Marine climates north of 35??N were warmer than today; south of 35??N, they were about the same or slightly cooler. Thermal gradients along the coast were generally not as steep as they are today. The North Atlantic transfer function can be applied to other shallow marine Pliocene and Pleistocene deposits of eastern North America. ?? 1990 Elsevier Science Publishers B.V.

  18. 76 FR 38203 - Proposed Information Collection; North American Woodcock Singing Ground Survey

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-29

    ...] Proposed Information Collection; North American Woodcock Singing Ground Survey AGENCY: Fish and Wildlife... populations. The North American Woodcock Singing Ground Survey is an essential part of the migratory bird.... II. Data OMB Control Number: 1018-0019. Title: North American Woodcock Singing Ground Survey. Service...

  19. A Decadal-scale Air-sea Interaction Theory for North Atlantic Multidecadal Variability: the NAT-NAO-AMOC-AMO Coupled Mode and Its Remote Influences

    NASA Astrophysics Data System (ADS)

    Li, Jianping; Sun, Cheng; Jin, Fei-Fei

    2017-04-01

    ABSTRACT North Atlantic region shows prominent multidecadal variability. Observational analysis shows that the North Atlantic Oscillation (NAO) leads the oceanic Atlantic Multidecadal Oscillation (AMO) by 15-20 years and the latter also leads the former by around 15 years. The mechanisms are investigated using simulations from a fully coupled model, and a NATNAO-AMOC-AMO Coupled Mode is proposed to explain the multidecadal variability in North Atlantic region. The NAT-NAO-AMO-AMOC coupled mode has important remote influences on regional climates. Observational analysis identifies a significant in-phase relationship between the AMV and Siberian warm season (May to October) precipitation. The physical mechanism for this relationship is investigated using both observations and numerical simulations. North Atlantic sea surface temperature (SST) warming associated with the positive AMV phase can excite an eastward propagating wave train response across the entire Eurasian continent, which includes an east-west dipole structure over Siberia. The dipole then leads to anomalous southerly winds bringing moisture northward to Siberia; the precipitation increases correspondingly. Furthermore, a prominent teleconnection pattern of multidecadal variability of cold season (November to April) upper-level atmospheric circulation over North Africa and Eurasia (NA-EA) is revealed by empirical orthogonal function analysis of the Twentieth Century Reanalysis data, and this teleconnection pattern is referred to as the Africa-Asia multidecadal teleconnection pattern (AAMT). A strong inphase relationship is observed between the AAMT and Atlantic multidecadal variability (AMV) and this connection is mainly due to Rossby wave dynamics. The AAMT acts as an atmospheric bridge conveying the influence of AMV onto the downstream multidecadal climate variability.

  20. Integrated geologic and geophysical studies of North American continental intraplate seismicity

    USGS Publications Warehouse

    Van Lanen, X.; Mooney, W.D.

    2007-01-01

    The origin of earthquakes within stable continental regions has been the subject of debate over the past thirty years. Here, we examine the correlation of North American stable continental region earthquakes using five geologic and geophysical data sets: (1) a newly compiled age-province map; (2) Bouguer gravity data; (3) aeromagnetic anomalies; (4) the tectonic stress field; and (5) crustal structure as revealed by deep seismic-reflection profiles. We find that: (1) Archean-age (3.8-2.5 Ga) North American crust is essentially aseismic, whereas post-Archean (less than 2.5 Ga) crust shows no clear correlation of crustal age and earthquake frequency or moment release; (2) seismicity is correlated with continental paleorifts; and (3) seismicity is correlated with the NE-SW structural grain of the crust of eastern North America, which in turn reflects the opening and closing of the proto- and modern Atlantic Ocean. This structural grain can be discerned as clear NE-SW lineaments in the Bouguer gravity and aeromagnetic anomaly maps. Stable continental region seismicity either: (1) follows the NE-SW lineaments; (2) is aligned at right angles to these lineaments; or (3) forms clusters at what have been termed stress concentrators (e.g., igneous intrusions and intersecting faults). Seismicity levels are very low to the west of the Grenville Front (i.e., in the Archean Superior craton). The correlation of seismicity with NE-SW-oriented lineaments implies that some stable continental region seismicity is related to the accretion and rifting processes that have formed the North American continental crust during the past 2 b.y. We further evaluate this hypothesis by correlating stable continental region seismicity with recently obtained deep seismic-reflection images of the Appalachian and Grenville crust of southern Canada. These images show numerous faults that penetrate deep (40 km) into the crust. An analysis of hypocentral depths for stable continental region earthquakes

  1. Range-wide parallel climate-associated genomic clines in Atlantic salmon

    PubMed Central

    Stanley, Ryan R. E.; Wringe, Brendan F.; Guijarro-Sabaniel, Javier; Bourret, Vincent; Bernatchez, Louis; Bentzen, Paul; Beiko, Robert G.; Gilbey, John; Clément, Marie; Bradbury, Ian R.

    2017-01-01

    Clinal variation across replicated environmental gradients can reveal evidence of local adaptation, providing insight into the demographic and evolutionary processes that shape intraspecific diversity. Using 1773 genome-wide single nucleotide polymorphisms we evaluated latitudinal variation in allele frequency for 134 populations of North American and European Atlantic salmon (Salmo salar). We detected 84 (4.74%) and 195 (11%) loci showing clinal patterns in North America and Europe, respectively, with 12 clinal loci in common between continents. Clinal single nucleotide polymorphisms were evenly distributed across the salmon genome and logistic regression revealed significant associations with latitude and seasonal temperatures, particularly average spring temperature in both continents. Loci displaying parallel clines were associated with several metabolic and immune functions, suggesting a potential basis for climate-associated adaptive differentiation. These climate-based clines collectively suggest evidence of large-scale environmental associated differences on either side of the North Atlantic. Our results support patterns of parallel evolution on both sides of the North Atlantic, with evidence of both similar and divergent underlying genetic architecture. The identification of climate-associated genomic clines illuminates the role of selection and demographic processes on intraspecific diversity in this species and provides a context in which to evaluate the impacts of climate change. PMID:29291123

  2. Early 20th Century Arctic Warming Intensified by Pacific and Atlantic Multidecadal Variability

    NASA Astrophysics Data System (ADS)

    Tokinaga, H.; Xie, S. P.; Mukougawa, H.

    2017-12-01

    We investigate the influence of Pacific and Atlantic multidecadal variability on the Arctic temperature, with a particular focus on the early 20th century Arctic warming. Arctic surface air temperature increased rapidly over the early 20th century, at rates comparable to those of recent decades despite much weaker greenhouse gas forcing than at present. We find that the concurrent phase shift of Pacific and Atlantic multidecadal variability is the major driver for the early 20th century Arctic warming. Atmospheric model simulations reproduce the early Arctic warming when the interdecadal variability of sea surface temperature (SST) is properly prescribed. The early Arctic warming is associated with the cold-to-warm phase shifts of Atlantic and Pacific multidecadal variability modes, a SST pattern reminiscent of the positive phase of the Pacific decadal and Atlantic multidecadal oscillations. The extratropical North Atlantic and North Pacific SST warming strengthens surface westerly winds over northern Eurasia, intensifying the warming there. The equatorial Pacific warming deepens the Aleutian low, advecting warm air to the North American Arctic. Coupled ocean-atmosphere simulations support the constructive intensification of Arctic warming by a concurrent, cold-to-warm phase shift of the Pacific and Atlantic multidecadal variability. Our results aid attributing the historical Arctic warming and thereby constrain the amplified warming projected for this important region.

  3. Seasonal influence of ENSO on the Atlantic ITCZ and equatorial South America

    NASA Astrophysics Data System (ADS)

    Münnich, M.; Neelin, J. D.

    2005-11-01

    In late boreal spring, especially May, a strong relationship exists in observations among precipitation anomalies over equatorial South America and the Atlantic intertropical convergence zone (ITCZ), and eastern equatorial Pacific and central equatorial Atlantic sea surface temperature anomalies (SSTA). A chain of correlations of equatorial Pacific SSTA, western equatorial Atlantic wind stress (WEA), equatorial Atlantic SSTA, sea surface height, and precipitation supports a causal chain in which El Niño/Southern Oscillation (ENSO) induces WEA stress anomalies, which in turn affect Atlantic equatorial ocean dynamics. These correlations show strong seasonality, apparently arising within the atmospheric links of the chain. This pathway and the influence of equatorial Atlantic SSTA on South American rainfall in May appear independent of that of the northern tropical Atlantic. Brazil's Nordeste is affected by the northern tropical Atlantic. The equatorial influence lies further to the north over the eastern Amazon and the Guiana Highlands.

  4. NorthAm Fest : fostering a North American continent approach to countering terrorism.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerdes, Dick; Moore, Judy Hennessey; Whitley, John B.

    2004-12-01

    On September 14-16, 2004, the Advanced Concepts Group of Sandia National Laboratories in conjunction with the University of Texas at El Paso and the North American Institute hosted a workshop (fest) designed to explore the concept of a North American continental approach to countering terrorism. The fest began with the basic premise that the successful defense of North America against the threat of terrorism will require close collaboration among the North American allies--Canada, Mexico and the U.S.--as well as a powerful set of information collection and analysis tools and deterrence strategies. The NorthAm Fest recast the notion of ''homeland defense''more » as a tri-national effort to protect the North American continent against an evolving threat that respects no borders. This is a report of the event summarizing the ideas explored. The fest examined the uniqueness of dealing with terrorism from a tri-national North American viewpoint, the role and possible features of joint security systems, concepts for ideal continental security systems for North America, and the challenges and opportunities for such systems to become reality. The following issues were identified as most important for the advancement of this concept. (1) The three countries share a set of core values--democracy, prosperity and security--which form the basis for joint interactions and allow for the development of a culture of cooperation without affecting the sovereignty of the members. (2) The creation of a continental defensive strategy will require a set of strategic guidelines and that smart secure borders play a pivotal role. (3) Joint security systems will need to operate from a set of complementary but not identical policies and procedures. (4) There is a value in joint task forces for response and shared information systems for the prevention of attacks. (5) The private sector must play a critical role in cross-border interactions. Finally, participants envisioned a ''Tri

  5. The impact of North Atlantic wind and cyclone trends on European precipitation and significant wave height in the Atlantic.

    PubMed

    Trigo, Ricardo M; Valente, Maria A; Trigo, Isabel F; Miranda, Pedro M A; Ramos, Alexandre M; Paredes, Daniel; García-Herrera, Ricardo

    2008-12-01

    An analysis of the frequency of cyclones and surface wind velocity for the Euro-Atlantic sector is performed by means of an objective methodology. Monthly and seasonal trends of cyclones and wind speed magnitude are computed and trends between 1960 and 2000 evaluated. Results reveal a significant frequency decrease (increase) in the western Mediterranean (Greenland and Scandinavia), particularly in December, February, and March. Seasonal and monthly analysis of wind magnitude trends shows similar spatial patterns. We show that these changes in the frequency of low-pressure centers and the associated wind patterns are partially responsible for trends in the significant height of waves. Throughout the extended winter months (October-March), regions with positive (negative) wind magnitude trends, of up to 5 cm/s/year, often correspond to regions of positive (negative) significant wave height trends. The cyclone and wind speed trends computed for January-March are well matched by the corresponding trends in significant wave height, with February being the month with the highest trends (negative south of lat 50 degrees N up to -3 cm/year, and positive up to 5 cm/year just north of Scotland). Trends in European precipitation are assessed using the Climatic Research Unit data set. The results of the assessment emphasize the link with the corresponding tendencies of cyclone frequencies. Finally, it is shown that these changes are associated, to a large extent, with the preferred phases of major large-scale atmospheric circulation modes, particularly with the North Atlantic Oscillation, the eastern Atlantic pattern, and the Scandinavian pattern.

  6. Avian Influenza Ecology in North Atlantic Sea Ducks: Not All Ducks Are Created Equal

    PubMed Central

    Hall, Jeffrey S.; Russell, Robin E.; Franson, J. Christian; Soos, Catherine; Dusek, Robert J.; Allen, R. Bradford; Nashold, Sean W.; TeSlaa, Joshua L.; Jónsson, Jón Eínar; Ballard, Jennifer R.; Harms, Naomi Jane; Brown, Justin D.

    2015-01-01

    Wild waterfowl are primary reservoirs of avian influenza viruses (AIV). However the role of sea ducks in the ecology of avian influenza, and how that role differs from freshwater ducks, has not been examined. We obtained and analyzed sera from North Atlantic sea ducks and determined the seroprevalence in those populations. We also tested swab samples from North Atlantic sea ducks for the presence of AIV. We found relatively high serological prevalence (61%) in these sea duck populations but low virus prevalence (0.3%). Using these data we estimated that an antibody half-life of 141 weeks (3.2 years) would be required to attain these prevalences. These findings are much different than what is known in freshwater waterfowl and have implications for surveillance efforts, AIV in marine environments, and the roles of sea ducks and other long-lived waterfowl in avian influenza ecology. PMID:26677841

  7. Avian Influenza Ecology in North Atlantic Sea Ducks: Not All Ducks Are Created Equal.

    PubMed

    Hall, Jeffrey S; Russell, Robin E; Franson, J Christian; Soos, Catherine; Dusek, Robert J; Allen, R Bradford; Nashold, Sean W; TeSlaa, Joshua L; Jónsson, Jón Eínar; Ballard, Jennifer R; Harms, Naomi Jane; Brown, Justin D

    2015-01-01

    Wild waterfowl are primary reservoirs of avian influenza viruses (AIV). However the role of sea ducks in the ecology of avian influenza, and how that role differs from freshwater ducks, has not been examined. We obtained and analyzed sera from North Atlantic sea ducks and determined the seroprevalence in those populations. We also tested swab samples from North Atlantic sea ducks for the presence of AIV. We found relatively high serological prevalence (61%) in these sea duck populations but low virus prevalence (0.3%). Using these data we estimated that an antibody half-life of 141 weeks (3.2 years) would be required to attain these prevalences. These findings are much different than what is known in freshwater waterfowl and have implications for surveillance efforts, AIV in marine environments, and the roles of sea ducks and other long-lived waterfowl in avian influenza ecology.

  8. Avian influenza ecology in North Atlantic sea ducks: Not all ducks are created equal

    USGS Publications Warehouse

    Hall, Jeffrey S.; Russell, Robin E.; Franson, J. Christian; Soos, Catherine; Dusek, Robert J.; Allen, R. Bradford; Nashold, Sean W.; Teslaa, Joshua L.; Jónsson, Jón Einar; Ballard, Jennifer R.; Harms, Naomi Jnae; Brown, Justin D.

    2015-01-01

    Wild waterfowl are primary reservoirs of avian influenza viruses (AIV). However the role of sea ducks in the ecology of avian influenza, and how that role differs from freshwater ducks, has not been examined. We obtained and analyzed sera from North Atlantic sea ducks and determined the seroprevalence in those populations. We also tested swab samples from North Atlantic sea ducks for the presence of AIV. We found relatively high serological prevalence (61%) in these sea duck populations but low virus prevalence (0.3%). Using these data we estimated that an antibody half-life of 141 weeks (3.2 years) would be required to attain these prevalences. These findings are much different than what is known in freshwater waterfowl and have implications for surveillance efforts, AIV in marine environments, and the roles of sea ducks and other long-lived waterfowl in avian influenza ecology.

  9. Ocean Dynamics in the Key Regions of North Atlantic-Arctic Exchanges: Evaluation of Global Multi-Resolution FESOM and CMIP-type INMCM Models with Long-Term Observations

    NASA Astrophysics Data System (ADS)

    Beszczynska-Moeller, A.; Gürses, Ö.; Sidorenko, D.; Goessling, H.; Volodin, E. M.; Gritsun, A.; Iakovlev, N. G.; Andrzejewski, J.

    2017-12-01

    Enhancing the fidelity of climate models in the Arctic and North Atlantic in order to improve Arctic predictions requires better understanding of the underlying causes of common biases. The main focus of the ERA.Net project NAtMAP (Amending North Atlantic Model Biases to Improve Arctic Predictions) is on the dynamics of the key regions connecting the Arctic and the North Atlantic climate. The study aims not only at increased model realism, but also at a deeper understanding of North Atlantic-Arctic links and their contribution to Arctic predictability. Two complementary approaches employing different global coupled climate models, ECHAM6-FESOM and INMCM4/5, were adopted. The first approach is based on a recent development of climate models with ocean components based on unstructured meshes, allowing to resolve eddies and narrow boundary currents in the most crucial regions while keeping a moderate resolution elsewhere. The multi-resolution sea ice-ocean component of ECHAM6-FESOM allows studying the benefits of very high resolution in key areas of the North Atlantic. An alternative approach to address the North Atlantic and Arctic biases is also tried by tuning the performance of the relevant sub-grid-scale parameterizations in eddy resolving version the CMIP5 climate model INMCM4. Using long-term in situ and satellite observations and available climatologies we attempt to evaluate to what extent a higher resolution, allowing the explicit representation of eddies and narrow boundary currents in the North Atlantic and Nordic Seas, can alleviate the common model errors. The effects of better resolving the Labrador Sea area on reducing the model bias in surface hydrography and improved representation of ocean currents are addressed. Resolving eddy field in the Greenland Sea is assessed in terms of reducing the deep thermocline bias. The impact of increased resolution on the modeled characteristics of Atlantic water transport into the Arctic is examined with a special

  10. Hawaiian angiosperm radiations of North American origin

    PubMed Central

    Baldwin, Bruce G.; Wagner, Warren L.

    2010-01-01

    Background Putative phytogeographical links between America (especially North America) and the Hawaiian Islands have figured prominently in disagreement and debate about the origin of Pacific floras and the efficacy of long-distance (oversea) plant dispersal, given the obstacles to explaining such major disjunctions by vicariance. Scope Review of past efforts, and of progress over the last 20 years, toward understanding relationships of Hawaiian angiosperms allows for a historically informed re-evaluation of the American (New World) contribution to Hawaiian diversity and evolutionary activity of American lineages in an insular setting. Conclusions Temperate and boreal North America is a much more important source of Hawaiian flora than suggested by most 20th century authorities on Pacific plant life, such as Fosberg and Skottsberg. Early views of evolution as too slow to account for divergence of highly distinctive endemics within the Hawaiian geological time frame evidently impeded biogeographical understanding, as did lack of appreciation for the importance of rare, often biotically mediated dispersal events and ecological opportunity in island ecosystems. Molecular phylogenetic evidence for North American ancestry of Hawaiian plant radiations, such as the silversword alliance, mints, sanicles, violets, schiedeas and spurges, underlines the potential of long-distance dispersal to shape floras, in accordance with hypotheses championed by Carlquist. Characteristics important to colonization of the islands, such as dispersibility by birds and ancestral hybridization or polyploidy, and ecological opportunities associated with ‘sky islands’ of temperate or boreal climate in the tropical Hawaiian archipelago may have been key to extensive diversification of endemic lineages of North American origin that are among the most species-rich clades of Hawaiian plants. Evident youth of flowering-plant lineages from North America is highly consistent with recent geological

  11. Lead isotopes in the western North Atlantic: Transient tracers of pollutant lead inputs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veron, A.J.; Church, T.M.; Flegal, A.R.

    1998-08-01

    In the early 1980s, Patterson and colleagues demonstrated that most lead in oceanic surface waters had an anthropogenic origin. Their discovery occurred during the phasing out of leaded gasoline in North America initiated in the previous decade. The corresponding decrease in anthropogenic lead emissions, verified by Pb/{sup 210}Pb ratios, accounted for the systematic decline in lead concentrations in surface waters of the western Sargasso Sea. Subsequent changes in anthropogenic lead inputs to the western Sargasso Sea surface waters have been documented by measurements of lead concentrations, isotopic compositions ({sup 206}Pb/{sup 207}Pb, {sup 208}Pb/{sup 206}Pb), and Pb/{sup 210}Pb ratios in precipitationmore » and seawater for the period of 1981 to 1994. These data indicate the easterly trade winds are now the primary source of atmospheric lead in Bermuda, and they confirm that the decline of lead concentrations in the North Atlantic is associated with the phasing out of leaded gasoline in North America and western Europe over the past decade. Moreover, temporal variations in the relative contribution of industrial lead inputs from the two sides of the North Atlantic over that period can be quantified based on differences in their isotopic composition. The transient character of those isotopic signatures also allows calculations of pollutant lead penetration rates into the mixed layer and upper thermocline of the western Sargasso Sea.« less

  12. The spatial distribution and evolution characteristics of North Atlantic cyclones

    NASA Astrophysics Data System (ADS)

    Dacre, H.; Gray, S.

    2009-09-01

    Mid-latitude cyclones play a large role in determining the day-to-day weather conditions in western Europe through their associated wind and precipitation patterns. Thus, their typical spatial and evolution characteristics are of great interest to meteorologists, insurance and risk management companies. In this study a feature tracking algorithm is applied to a cyclone database produced using the Hewson-method of cyclone identification, based on low-level gradients of wet-bulb potential temperature, to produce a climatology of mid-latitude cyclones. The aim of this work is to compare the cyclone track and density statistics found in this study with previous climatologies and to determine reasons for any differences. This method is found to compare well with other cyclone identification methods; the north Atlantic storm track is reproduced along with the major regions of genesis. Differences are attributed to cyclone lifetime and strength thresholds, dataset resolution and cyclone identification and tracking methods. Previous work on cyclone development has been largely limited to case studies as opposed to analysis of climatological data, and does not distinguish between the different stages of cyclone evolution. The cyclone database used in this study allows cyclone characteristics to be tracked throughout the cyclone lifecycle. This enables the evaluation of the characteristics of cyclone evolution for systems forming in different genesis regions and a calculation of the spatial distribution and evolution of these characteristics in composite cyclones. It was found that most of the cyclones that cross western Europe originate in the east Atlantic where the baroclinicity and sea surface temperature gradients are weak compared to the west Atlantic. East Atlantic cyclones also have higher low-level relative vorticity and lower mean sea level pressure at their genesis point than west Atlantic cyclones. This is consistent with the hypothesis that they are secondary

  13. The spatial distribution and evolution characteristics of North Atlantic cyclones

    NASA Astrophysics Data System (ADS)

    Dacre, H.; Gray, S.

    2009-04-01

    Mid-latitude cyclones play a large role in determining the day-to-day weather conditions in western Europe through their associated wind and precipitation patterns. Thus, their typical spatial and evolution characteristics are of great interest to meteorologists, insurance and risk management companies. In this study a feature tracking algorithm is applied to a cyclone database produced using the Hewson-method of cyclone identification, based on low-level gradients of wet-bulb potential temperature, to produce a climatology of mid-latitude cyclones. The aim of this work is to compare the cyclone track and density statistics found in this study with previous climatologies. This method is found to compare well with other cyclone identification methods; the north Atlantic storm track is reproduced along with the major regions of genesis. Differences are attributed to cyclone lifetime and strength thresholds, dataset resolution and cyclone identification and tracking methods. Previous work on cyclone development has been largely limited to case studies as opposed to analysis of climatological data, and does not distinguish between the different stages of cyclone evolution. The cyclone database used in this study allows cyclone characteristics to be tracked throughout the cyclone lifecycle. This enables the evaluation of the characteristics of cyclone evolution for systems forming in different genesis regions and a calculation of the spatial distribution and evolution of these characteristics in composite cyclones. It was found that most of the cyclones that cross western Europe originate in the east Atlantic where the baroclinicity and sea surface temperature gradients are weak compared to the west Atlantic. East Atlantic cyclones also have higher low-level relative vorticity and lower mean sea level pressure at their genesis point than west Atlantic cyclones. This is consistent with the hypothesis that they are secondary cyclones developing on the trailing fronts of

  14. 2. Historic American Buildings Survey, Copied by Survey Photographer (e) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Historic American Buildings Survey, Copied by Survey Photographer (e) Ext-Old Photograph- Gen View North and East Elevations, (before 1868) - India Wharf Stores, 306-308 Atlantic Avenue, Boston, Suffolk County, MA

  15. Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic

    PubMed Central

    Vezzulli, Luigi; Grande, Chiara; Reid, Philip C.; Hélaouët, Pierre; Edwards, Martin; Höfle, Manfred G.; Brettar, Ingrid; Colwell, Rita R.; Pruzzo, Carla

    2016-01-01

    Climate change is having a dramatic impact on marine animal and plant communities but little is known of its influence on marine prokaryotes, which represent the largest living biomass in the world oceans and play a fundamental role in maintaining life on our planet. In this study, for the first time to our knowledge, experimental evidence is provided on the link between multidecadal climatic variability in the temperate North Atlantic and the presence and spread of an important group of marine prokaryotes, the vibrios, which are responsible for several infections in both humans and animals. Using archived formalin-preserved plankton samples collected by the Continuous Plankton Recorder survey over the past half-century (1958–2011), we assessed retrospectively the relative abundance of vibrios, including human pathogens, in nine areas of the North Atlantic and North Sea and showed correlation with climate and plankton changes. Generalized additive models revealed that long-term increase in Vibrio abundance is promoted by increasing sea surface temperatures (up to ∼1.5 °C over the past 54 y) and is positively correlated with the Northern Hemisphere Temperature (NHT) and Atlantic Multidecadal Oscillation (AMO) climatic indices (P < 0.001). Such increases are associated with an unprecedented occurrence of environmentally acquired Vibrio infections in the human population of Northern Europe and the Atlantic coast of the United States in recent years. PMID:27503882

  16. Atlantic salmon breeding program at the National Cold Water Marine Aquaculture Center

    USDA-ARS?s Scientific Manuscript database

    The USDA-ARS National Cold Water Marine Aquaculture Center (NCWMAC) in Franklin, ME has been supporting the U.S. coldwater marine aquaculture industry for the past thirteen years by developing a genetically improved North American Atlantic salmon. The St. John's River stock was chosen as the focal ...

  17. Radiative effects due to North American anthropogenic and lightning emissions: Global and regional modeling

    NASA Astrophysics Data System (ADS)

    Martini, Matus Novak

    We analyze the contribution of North American (NA) lightning and anthropogenic emissions to summertime ozone concentrations, radiative forcing, and exports from North America using the global University of Maryland chemistry transport model (UMD-CTM) and the regional scale Weather Research and Forecasting model with chemistry (WRF-Chem). Lightning NO contributes by 15--20 ppbv to upper tropospheric ozone concentrations over the United States with the effects of NA lightning on ozone seen as far east as North Africa and Europe. Using the UMD-CTM, we compare changes in surface and column ozone amounts due to the NOx State Implementation Plan (SIP) Call with the natural variability in ozone due to changes in meteorology and lightning. Comparing early summer 2004 with 2002, surface ozone decreased by up to 5 ppbv due to the NO x SIP Call while changes in meteorology and lightning resulted in a 0.3--1.4 ppbv increase in surface ozone. Ozone column variability was driven primarily by changes in lightning NO emissions, especially over the North Atlantic. As part of our WRF-Chem analysis, we modify the radiation schemes to use model-calculated ozone (interactive ozone) instead of climatological ozone profiles and conduct multiple 4-day simulations of July 2007. We found that interactive ozone increased the outgoing longwave radiation (OLR) by 3 W m-2 decreasing the bias with respect to remotely sensed OLR. The improvement is due to a high bias in the climatological ozone profiles. The interactive ozone had a small impact on mean upper troposphere temperature (-0.15°C). The UMD-CTM simulations indicate that NA anthropogenic emissions are responsible for more ozone export but less ozone radiative forcing than lightning NO emissions. Over the North Atlantic, NA anthropogenic emissions contributed 0.15--0.30 W m-2 to the net downward radiative flux at the tropopause while NA lightning contributed 0.30--0.50 W m-2. The ozone export from anthropogenic emissions was almost twice

  18. Plastic Accumulation in the North Atlantic Subtropical Gyre

    NASA Astrophysics Data System (ADS)

    Law, Kara Lavender; Morét-Ferguson, Skye; Maximenko, Nikolai A.; Proskurowski, Giora; Peacock, Emily E.; Hafner, Jan; Reddy, Christopher M.

    2010-09-01

    Plastic marine pollution is a major environmental concern, yet a quantitative description of the scope of this problem in the open ocean is lacking. Here, we present a time series of plastic content at the surface of the western North Atlantic Ocean and Caribbean Sea from 1986 to 2008. More than 60% of 6136 surface plankton net tows collected buoyant plastic pieces, typically millimeters in size. The highest concentration of plastic debris was observed in subtropical latitudes and associated with the observed large-scale convergence in surface currents predicted by Ekman dynamics. Despite a rapid increase in plastic production and disposal during this time period, no trend in plastic concentration was observed in the region of highest accumulation.

  19. Long term changes in flooding and heavy rainfall associated with North Atlantic tropical cyclones: Roles of the North Atlantic Oscillation and El Niño-Southern Oscillation

    NASA Astrophysics Data System (ADS)

    Aryal, Yog N.; Villarini, Gabriele; Zhang, Wei; Vecchi, Gabriel A.

    2018-04-01

    The aim of this study is to examine the contribution of North Atlantic tropical cyclones (TCs) to flooding and heavy rainfall across the continental United States. Analyses highlight the spatial variability in these hazards, their temporal changes in terms of frequency and magnitude, and their connection to large-scale climate, in particular to the North Atlantic Oscillation (NAO) and El Niño-Southern Oscillation (ENSO). We use long-term stream and rain gage measurements, and our analyses are based on annual maxima (AMs) and peaks-over-threshold (POTs). TCs contribute to ∼20-30% of AMs and POTs over Florida and coastal areas of the eastern United States, and the contribution decreases as we move inland. We do not detect statistically significant trends in the magnitude or frequency of TC floods. Regarding the role of climate, NAO and ENSO do not play a large role in controlling the frequency and magnitude of TC flooding. The connection between heavy rainfall and TCs is comparable to what observed in terms of flooding. Unlike flooding, NAO plays a significant role in TC-related extreme rainfall along the U.S. East Coast, while ENSO is most strongly linked to the TC precipitation in Texas.

  20. Release of Volatiles During North Atlantic Flood Basalt Volcanism and Correlation to the Paleocene-Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Pedersen, J. M.; Tegner, C.; Kent, A. J.; Ulrich, T.

    2017-12-01

    The opening of the North Atlantic Ocean between Greenland and Norway during the lower Tertiary led to intense flood basalt volcanism and the emplacement of the North Atlantic Igneous Province (NAIP). The volcanism is temporally overlapping with the Paleocene-Eocene Thermal Maximum (PETM), but ash stratigraphy and geochronology suggests that the main flood basalt sequence in East Greenland postdates the PETM. Significant environmental changes during the PETM have been attributed to the release of CO2 or methane gas due to either extensive melting of hydrates at the ocean floor or as a consequence of the interaction of mantle derived magmas with carbon rich sediments.Estimates suggest that a minimum of 1.8x106 km3 of basaltic lava erupted during North Atlantic flood basalt volcanism. Based on measurements of melt inclusions from the flood basalts our preliminary calculations suggest that approximately 2300 Gt of SO2 and 600 Gt of HCl were released into the atmosphere. Calculated yearly fluxes approach 23 Mt/y SO2 and 6 Mt/y HCl. These estimates are regarded as conservative.The S released into to the atmosphere during flood basalt volcanism can form acid aerosols that absorb and reflect solar radiation, causing an effective cooling effect. The climatic effects of the release of Cl into the atmosphere are not well constrained, but may be an important factor for extinction scenarios due to destruction of the ozone layer.The climatic changes due to the release of S and Cl in these amounts, and for periods extending for hundred thousand of years, although not yet fully constrained are likely to be significant. One consequence of the North Atlantic flood basalt volcanism may have been the initiation of global cooling to end the PETM.

  1. The relationship of spawning mode to conservation of North American minnows (Cyprinidae)

    Treesearch

    Carol E. Johnston

    1999-01-01

    Approximately 20 percent of North American minnows are considered imperiled. The factors responsible for imperilment in this group are complex, but the relationship of spawning mode to conservation of North American minnows has not been explored. The author provides a summary of the spawning modes of imperiled North American minnows, discuss patterns between these...

  2. Field Geometry During the Iceland Basin Event Observed from the North Atlantic Ocean, North Pacific Ocean and the South China Sea

    NASA Astrophysics Data System (ADS)

    Laj, C.; Kissel, C.; Roberts, A. P.; Hillaire-Marcel, C.; Cortijo, E.

    2004-12-01

    The Iceland Basin event (IBE), which is named for a record from ODP Site 983 in the North Atlantic Ocean (60.5°N), is a focus of growing interest in our community. This geomagnetic excursion is coeval with the marine oxygen isotope (MIS) stage 7/6 boundary at about 190 ka according to the orbitally tuned SPECMAP time scale. We have detailed new records of this excursion at two new sites from the North Atlantic (core MD99-2247; lat. 59°N, long. 31°W and core MD99-2242; lat. 59°N, long. 47°W), at one site from the North Pacific (ODP Site 884; lat. 51.5°N, long. 168.3°E), and in two others from the South China Sea (ODP Site 1146; lat. 19.5°N, long. 116.3°E and ODP Site 1145; lat. 19.6°N; long. 117.6°E). For all five sites, the event is identified at the MIS 7/6 boundary, which confirms its potential as a precise stratigraphic marker. The average sedimentation rate for this portion of the cores is 7.5, 10 and 15 cm/kyr in North Atlantic, North Pacific and South China sea cores, respectively, which allows high-resolution studies in this time interval. The event is characterized by a marked minimum in the relative paleointensity (sometimes with a double feature) and by large swings in inclination and declination. The VGP latitudes reach 78°S and 45°S for ODP sites 1146 and 1145, respectively, 37°S for ODP Site 884, and 74°S and 41°S for cores MD99-2247 and MD99-2242, respectively. The VGP paths for the four records from the North Atlantic and South China Sea cores are highly similar. For the most detailed of these records, the poles first pass over Africa, then they proceed to Antarctica and return northward over Australia. The paths are less well resolved for ODP Site 1145 and core MD99-2242, for which the poles cross the southern Indian Ocean rather than reaching Antarctica. The VGP paths for the two most detailed records (ODP Site 1146 and MD99-2247) are highly similar and are also similar to the path for ODP Site 983, which also has a high

  3. Structure and degree of magmatism of North and South Atlantic rifted margins

    NASA Astrophysics Data System (ADS)

    Faleide, Jan Inge; Breivik, Asbjørn J.; Blaich, Olav A.; Tsikalas, Filippos; Planke, Sverre; Mansour Abdelmalak, Mohamed; Mjelde, Rolf; Myklebust, Reidun

    2014-05-01

    The structure and evolution of conjugate rifted margins in the South and North Atlantic have been studied mainly based on seismic reflection and refraction profiles, complemented by potential field data and plate reconstructions. All margins exhibit distinct along-margin structural and magmatic changes reflecting both structural inheritance extending back to a complex pre-breakup geological history and the final breakup processes. The sedimentary basins at the conjugate margins developed as a result of multiple phases of rifting, associated with complex time-dependent thermal structure of the lithosphere. A series of conjugate crustal transects reveal tectonomagmatic asymmetry, both along-strike and across the conjugate margin systems. The continent-ocean transitional domain along the magma-dominated margin segments is characterized by a large volume of flood basalts and high-velocity/high-density lower crust emplaced during and after continental breakup. Both the volume and duration of excess magmatism varies. The extrusive and intrusive complexes make it difficult to pin down a COB to be used in plate reconstructions. The continent-ocean transition is usually well defined as a rapid increase of P-wave velocities at mid- to lower crustal levels. The transition is further constrained by comparing the mean P-wave velocity to the thickness of the crystalline crust. By this comparison we can also address the magmatic processes associated with breakup, whether they are convection dominated or temperature dominated. In the NE Atlantic there is a strong correlation between magma productivity and early plate spreading rate, suggesting a common cause. A model for the breakup-related magmatism should be able to explain this correlation, but also the magma production peak at breakup, the along-margin magmatic segmentation, and the active mantle upwelling. It is likely that mantle plumes (Iceland in the NE Atlantic, Tristan da Cunha in the South Atlantic) may have influenced

  4. Fifty-seventh supplement to the American Ornithologists' Union Check-list of North American Birds

    USGS Publications Warehouse

    Chesser, R. Terry; Burns, Kevin J; Cicero, Carla; Dunn, Jon L.; Kratter, Andrew W.; Lovette, Irby J.; Rasmussen, Pamela C.; Remsen, J.V.; Rising, James D.; Stotz, Douglas F.; Winker, Kevin

    2016-01-01

    This is the 16th supplement since publication of the 7th edition of the Check-list of North American Birds (American Ornithologists' Union [AOU] 1998). It summarizes decisions made between April 15, 2015, and April 15, 2016, by the AOU's Committee on Classification and Nomenclature—North and Middle America. The Committee has continued to operate in the manner outlined in the 42nd Supplement (AOU 2000).

  5. Fifty-eighth supplement to the American Ornithologists' Union: Check-list of North American Birds

    USGS Publications Warehouse

    Chesser, Terry; Burns, Kevin J; Cicero, Carla; Dunn, Jon L.; Kratter, Andrew W.; Lovette, Irby J.; Rasmussen, Pamela C.; Remsen, J.V.; Rising, James D.; Stotz, Douglas F.; Winker, Kevin

    2017-01-01

    This is the 17th supplement since publication of the 7th edition of the Check-list of North American Birds (American Ornithologists' Union [AOU] 1998). It summarizes decisions made between April 15, 2016, and April 15, 2017, by the AOS's Committee on Classification and Nomenclature—North and Middle America. The Committee has continued to operate in the manner outlined in the 42nd Supplement

  6. Fifty-sixth supplement to the American Ornithologists' Union: Check-list of North American Birds

    USGS Publications Warehouse

    Chesser, R. Terry; Banks, Richard C.; Burns, Kevin J; Cicero, Carla; Dunn, Jon L.; Kratter, Andrew W.; Lovette, Irby J.; Navarro-Siguenza, Adolfo G.; Rasmussen, Pamela C.; Remsen, J V; Rising, James D.; Stotz, Douglas F.; Winker, Kevin

    2015-01-01

    This is the 15th supplement since publication of the 7th edition of the Check-list of North American Birds (American Ornithologists' Union [AOU] 1998). It summarizes decisions made between May 15, 2014, and April 15, 2015, by the AOU's Committee on Classification and Nomenclature - North and Middle America. The Committee has continued to operate in the manner outlined in the 42nd Supplement (AOU 2000).

  7. Influence of the Iceland mantle plume on North Atlantic continental margins

    NASA Astrophysics Data System (ADS)

    White, R. S.; Isimm Team

    2003-04-01

    Early Tertiary breakup of the North Atlantic was accompanied by widespread magmatism. The histories of the Iceland mantle plume, of rifting and of magmatism are intimately related. The magmatism provides a challenge both to imaging structure, and to modelling the subsidence and development of the continental margins. We report new work which integrates state-of-the-art seismic imaging and new acquisition on the Atlantic volcanic margins with new techniques for modelling their evolution. We discuss the distribution of igneous rocks along the North Atlantic margins and discuss the temporal and spatial variations in the Iceland mantle plume in the early Tertiary, which have largely controlled this pattern of magmatism. Igneous rocks are added to the crust on rifted margins as extrusive lavas, as sills intruded into the sub-surface and as lower crustal intrusions or underplate. Each provide different, but tractable problems to seismic imaging. We show that many of these difficulties can be surmounted by using very long offsets (long streamers or two-ship methods) with a broad-band, low-frequency source, and by using fixed ocean bottom receivers. We report results from surveys on the North Atlantic continental margins using these methods. Imaging results are shown from the recent FLARE project and from the iSIMM project, which recorded new seismic data recorded in summer 2002. The iSIMM project acquired two seismic surveys, using 85 4-component ocean bottom seismometers with long streamers for wide-angle data, and vertical arrays for far-field source signature recording. One survey crosses the Faroes Shelf and adjacent continental margin, and a second the Hatton-Rockall Basin, Hatton Bank and adjacent oceanic crust. The Faroes wide-angle profiles were overshot by WesternGeco's Topaz using three single-sensor, Q-Marine streamers, 12km plus two 4km. We designed deep-towed, broad-band low-frequency sources tuned to enhance the bubble pulses, with peak frequencies at 8

  8. Precipitation, temperature, and teleconnection signals across the combined North American, Monsoon Asia, and Old World Drought Atlases

    NASA Astrophysics Data System (ADS)

    Smerdon, J. E.; Baek, S. H.; Coats, S.; Williams, P.; Cook, B.; Cook, E. R.; Seager, R.

    2017-12-01

    The tree-ring-based North American Drought Atlas (NADA), Monsoon Asia Drought Atlas (MADA), and Old World Drought Atlas (OWDA) collectively yield a near-hemispheric gridded reconstruction of hydroclimate variability over the last millennium. To test the robustness of the large-scale representation of hydroclimate variability across the drought atlases, the joint expression of seasonal climate variability and teleconnections in the NADA, MADA, and OWDA are compared against two global, observation-based PDSI products. Predominantly positive (negative) correlations are determined between seasonal precipitation (surface air temperature) and collocated tree-ring-based PDSI, with average Pearson's correlation coefficients increasing in magnitude from boreal winter to summer. For precipitation, these correlations tend to be stronger in the boreal winter and summer when calculated for the observed PDSI record, while remaining similar for temperature. Notwithstanding these differences, the drought atlases robustly express teleconnection patterns associated with the El Niño-Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO). These expressions exist in the drought atlas estimates of boreal summer PDSI despite the fact that these modes of climate variability are dominant in boreal winter, with the exception of the Atlantic Multidecadal Oscillation. ENSO and NAO teleconnection patterns in the drought atlases are particularly consistent with their well-known dominant expressions in boreal winter and over the OWDA domain, respectively. Collectively, our findings confirm that the joint Northern Hemisphere drought atlases robustly reflect large-scale patterns of hydroclimate variability on seasonal to multidecadal timescales over the 20th century and are likely to provide similarly robust estimates of hydroclimate variability prior to the existence of widespread instrumental data.

  9. A survey of North American migratory waterfowl for duck plague (duck virus enteritis) virus

    USGS Publications Warehouse

    Brand, Christopher J.; Docherty, Douglas E.

    1984-01-01

    A survey of migratory waterfowl for duck plague (DP) virus was conducted in the Mississippi and Central flyways during 1982 and in the Atlantic and Pacific flyways during 1983. Cloacal and pharyngeal swabs were collected from 3,169 migratory waterfowl in these four flyways, principally mallards (Anas platyrhynchos L.), black ducks (Anas rubripes Brewster), and pintails (Anas acuta L). In addition 1,033 birds were sampled from areas of recurrent DP outbreaks among nonmigratory and captive waterfowl, and 590 from Lake Andes National Wildlife Refuge, the site of the only known major DP outbreak in migratory waterfowl. Duck plague virus was not found in any of the samples. Results support the hypothesis that DP is not established in North American migratory waterfowl as an enzootic disease.

  10. Monitoring and Mitigation Alternatives for Protection of North Atlantic Right Whales during Offshore Wind Farm Installation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, Thomas J.; Halvorsen, Michele B.; Matzner, Shari

    2012-09-01

    Progress report on defining and determining monitoring and mitigation measures for protecting North Atlantic Right Whales from the effects of pile driving and other activities associated with installation of offshore wind farms.

  11. Dispersal and population connectivity in the deep North Atlantic estimated from physical transport processes

    NASA Astrophysics Data System (ADS)

    Etter, Ron J.; Bower, Amy S.

    2015-10-01

    Little is known about how larvae disperse in deep ocean currents despite how critical estimates of population connectivity are for ecology, evolution and conservation. Estimates of connectivity can provide important insights about the mechanisms that shape patterns of genetic variation. Strong population genetic divergence above and below about 3000 m has been documented for multiple protobranch bivalves in the western North Atlantic. One possible explanation for this congruent divergence is that the Deep Western Boundary Current (DWBC), which flows southwestward along the slope in this region, entrains larvae and impedes dispersal between the upper/middle slope and the lower slope or abyss. We used Lagrangian particle trajectories based on an eddy-resolving ocean general circulation model (specifically FLAME - Family of Linked Atlantic Model Experiments) to estimate the nature and scale of dispersal of passive larvae released near the sea floor at 4 depths across the continental slope (1500, 2000, 2500 and 3200 m) in the western North Atlantic and to test the potential role of the DWBC in explaining patterns of genetic variation on the continental margin. Passive particles released into the model DWBC followed highly complex trajectories that led to both onshore and offshore transport. Transport averaged about 1 km d-1 with dispersal kernels skewed strongly right indicating that some larvae dispersed much greater distances. Offshore transport was more likely than onshore and, despite a prevailing southwestward flow, some particles drifted north and east. Dispersal trajectories and estimates of population connectivity suggested that the DWBC is unlikely to prevent dispersal among depths, in part because of strong cross-slope forces induced by interactions between the DWBC and the deeper flows of the Gulf Stream. The strong genetic divergence we find in this region of the Northwest Atlantic is therefore likely driven by larval behaviors and/or mortality that limit

  12. North American Grasslands & Biogeographic Regions

    USDA-ARS?s Scientific Manuscript database

    North American grasslands are the product of a long interaction among land, people, and animals. Covering over one billion hectares across Canada, the United States, and Mexico, a defining trait of the realm is its vast surface area. From subtropical grasslands interspersed with wetlands in the sout...

  13. The role of North Atlantic Ocean circulation and biological sequestration on atmospheric CO2 uptake during the last deglaciation (CL Division Outstanding ECS Award Lecture)

    NASA Astrophysics Data System (ADS)

    Muschitiello, Francesco; D'Andrea, William J.; Dokken, Trond M.; Schmittner, Andreas

    2017-04-01

    Understanding the impact of ocean circulation on the global atmospheric CO2 budget is of paramount importance for anticipating the consequences of projected future changes in Atlantic Meridional Overturning Circulation (AMOC). In particular, the efficiency of the oceanic biological pump can impact atmospheric CO2 through changes in vertical carbon export mediated by variations in the nutrient inventory of the North Atlantic basin. However, the causal relationship between North Atlantic Ocean circulation, biological carbon sequestration, and atmospheric CO2 is poorly understood. Here we present new high-resolution planktic-benthic 14C data and biomarker records from an exceptionally well-dated marine core from the Nordic Seas spanning the last deglaciation ( 15,000-10,000 years BP). The records document for the first time large and rapid atmospheric CO2 drawdowns and increase in plankton stocks during major North Atlantic cooling events. Using transient climate simulations from a fully coupled climate-biosphere model, we show that minor perturbations of the North Atlantic biological pump resulting from surface freshening and AMOC weakening can have a major impact on the global atmospheric CO2 budget. Furthermore, our data help clarifying the timing and magnitude of the deglacial CO2 signal recorded in Antarctic ice cores. We conclude that the global CO2 budget is more sensitive to perturbations in North Atlantic circulation than previously thought, which has significance in the future debate of the AMOC response to anthropogenic warming.

  14. Decadal variability of extreme wave height representing storm severity in the northeast Atlantic and North Sea since the foundation of the Royal Society.

    PubMed

    Santo, H; Taylor, P H; Gibson, R

    2016-09-01

    Long-term estimation of extreme wave height remains a key challenge because of the short duration of available wave data, and also because of the possible impact of climate variability on ocean waves. Here, we analyse storm-based statistics to obtain estimates of extreme wave height at locations in the northeast Atlantic and North Sea using the NORA10 wave hindcast (1958-2011), and use a 5 year sliding window to examine temporal variability. The decadal variability is correlated to the North Atlantic oscillation and other atmospheric modes, using a six-term predictor model incorporating the climate indices and their Hilbert transforms. This allows reconstruction of the historic extreme climate back to 1661, using a combination of known and proxy climate indices. Significant decadal variability primarily driven by the North Atlantic oscillation is observed, and this should be considered for the long-term survivability of offshore structures and marine renewable energy devices. The analysis on wave climate reconstruction reveals that the variation of the mean, 99th percentile and extreme wave climates over decadal time scales for locations close to the dominant storm tracks in the open North Atlantic are comparable, whereas the wave climates for the rest of the locations including the North Sea are rather different.

  15. Decadal variability of extreme wave height representing storm severity in the northeast Atlantic and North Sea since the foundation of the Royal Society

    PubMed Central

    Taylor, P. H.; Gibson, R.

    2016-01-01

    Long-term estimation of extreme wave height remains a key challenge because of the short duration of available wave data, and also because of the possible impact of climate variability on ocean waves. Here, we analyse storm-based statistics to obtain estimates of extreme wave height at locations in the northeast Atlantic and North Sea using the NORA10 wave hindcast (1958–2011), and use a 5 year sliding window to examine temporal variability. The decadal variability is correlated to the North Atlantic oscillation and other atmospheric modes, using a six-term predictor model incorporating the climate indices and their Hilbert transforms. This allows reconstruction of the historic extreme climate back to 1661, using a combination of known and proxy climate indices. Significant decadal variability primarily driven by the North Atlantic oscillation is observed, and this should be considered for the long-term survivability of offshore structures and marine renewable energy devices. The analysis on wave climate reconstruction reveals that the variation of the mean, 99th percentile and extreme wave climates over decadal time scales for locations close to the dominant storm tracks in the open North Atlantic are comparable, whereas the wave climates for the rest of the locations including the North Sea are rather different. PMID:27713662

  16. Decadal variability of extreme wave height representing storm severity in the northeast Atlantic and North Sea since the foundation of the Royal Society

    NASA Astrophysics Data System (ADS)

    Santo, H.; Taylor, P. H.; Gibson, R.

    2016-09-01

    Long-term estimation of extreme wave height remains a key challenge because of the short duration of available wave data, and also because of the possible impact of climate variability on ocean waves. Here, we analyse storm-based statistics to obtain estimates of extreme wave height at locations in the northeast Atlantic and North Sea using the NORA10 wave hindcast (1958-2011), and use a 5 year sliding window to examine temporal variability. The decadal variability is correlated to the North Atlantic oscillation and other atmospheric modes, using a six-term predictor model incorporating the climate indices and their Hilbert transforms. This allows reconstruction of the historic extreme climate back to 1661, using a combination of known and proxy climate indices. Significant decadal variability primarily driven by the North Atlantic oscillation is observed, and this should be considered for the long-term survivability of offshore structures and marine renewable energy devices. The analysis on wave climate reconstruction reveals that the variation of the mean, 99th percentile and extreme wave climates over decadal time scales for locations close to the dominant storm tracks in the open North Atlantic are comparable, whereas the wave climates for the rest of the locations including the North Sea are rather different.

  17. North Atlantic variability and its links to European climate over the last 3000 years.

    PubMed

    Moffa-Sánchez, Paola; Hall, Ian R

    2017-11-23

    The subpolar North Atlantic is a key location for the Earth's climate system. In the Labrador Sea, intense winter air-sea heat exchange drives the formation of deep waters and the surface circulation of warm waters around the subpolar gyre. This process therefore has the ability to modulate the oceanic northward heat transport. Recent studies reveal decadal variability in the formation of Labrador Sea Water. Yet, crucially, its longer-term history and links with European climate remain limited. Here we present new decadally resolved marine proxy reconstructions, which suggest weakened Labrador Sea Water formation and gyre strength with similar timing to the centennial cold periods recorded in terrestrial climate archives and historical records over the last 3000 years. These new data support that subpolar North Atlantic circulation changes, likely forced by increased southward flow of Arctic waters, contributed to modulating the climate of Europe with important societal impacts as revealed in European history.

  18. Decadal variability in the oxygen inventory of North Atlantic subtropical underwater captured by sustained, long-term oceanographic time series observations

    NASA Astrophysics Data System (ADS)

    Montes, Enrique; Muller-Karger, Frank E.; Cianca, Andrés.; Lomas, Michael W.; Lorenzoni, Laura; Habtes, Sennai

    2016-03-01

    Historical observations of potential temperature (θ), salinity (S), and dissolved oxygen concentrations (O2) in the tropical and subtropical North Atlantic (0-500 m; 0-40°N, 10-90°W) were examined to understand decadal-scale changes in O2 in subtropical underwater (STUW). STUW is observed at four of the longest, sustained ocean biogeochemical and ecological time series stations, namely, the CArbon Retention In A Colored Ocean (CARIACO) Ocean Time Series Program (10.5°N, 64.7°W), the Bermuda Atlantic Time-series Study (BATS; 31.7°N, 64.2°W), Hydrostation "S" (32.1°N, 64.4°W), and the European Station for Time-series in the Ocean, Canary Islands (ESTOC; 29.2°N, 15.5°W). Observations over similar time periods at CARIACO (1996-2013), BATS (1988-2011), and Hydrostation S (1980-2013) show that STUW O2 has decreased approximately 0.71, 0.28, and 0.37 µmol kg-1 yr-1, respectively. No apparent change in STUW O2 was observed at ESTOC over the course of the time series (1994-2013). Ship observation data for the tropical and subtropical North Atlantic archived at NOAA National Oceanographic Data Center show that between 1980 and 2013, STUW O2 (upper ~300 m) declined 0.58 µmol kg-1 yr-1 in the southeastern Caribbean Sea (10-15°N, 60-70°W) and 0.68 µmol kg-1 yr-1 in the western subtropical North Atlantic (30-35°N, 60-65°W). A declining O2 trend was not observed in the eastern subtropical North Atlantic (25-30°N, 15-20°W) over the same period. Most of the observed O2 loss seems to result from shifts in ventilation associated with decreased wind-driven mixing and a slowing down of STUW formation rates, rather than changes in diffusive air-sea O2 gas exchange or changes in the biological oceanography of the North Atlantic. Variability of STUW O2 showed a significant relationship with the wintertime (January-March) Atlantic Multidecadal Oscillation index (AMO, R2 = 0.32). During negative wintertime AMO years trade winds are typically stronger between 10°N and 30

  19. Climate change effects on North American inland fish populations and assemblages

    USGS Publications Warehouse

    Lynch, Abigail J.; Myers, Bonnie; Chu, Cindy; Eby, Lisa A.; Falke, Jeffrey A.; Kovach, Ryan P.; Krabbenhoft, Trevor J.; Kwak, Thomas J.; Lyons, John; Paukert, Craig P.; Whitney, James E.

    2016-01-01

    Climate is a critical driver of many fish populations, assemblages, and aquatic communities. However, direct observational studies of climate change impacts on North American inland fishes are rare. In this synthesis, we (1) summarize climate trends that may influence North American inland fish populations and assemblages, (2) compile 31 peer-reviewed studies of documented climate change effects on North American inland fish populations and assemblages, and (3) highlight four case studies representing a variety of observed responses ranging from warmwater systems in the southwestern and southeastern United States to coldwater systems along the Pacific Coast and Canadian Shield. We conclude by identifying key data gaps and research needs to inform adaptive, ecosystem-based approaches to managing North American inland fishes and fisheries in a changing climate.

  20. Semidirect Dynamical and Radiative Impact of North African Dust Transport on Lower Tropospheric Clouds over the Subtropical North Atlantic in CESM 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeFlorio, Mike; Ghan, Steven J.; Singh, Balwinder

    This study uses a century length pre-industrial climate simulation by the Community Earth System Model (CESM 1.0) to explore statistical relationships between dust, clouds and atmospheric circulation, and to suggest a dynamical, rather than microphysical, mechanism linking subtropical North Atlantic lower tropospheric cloud cover with North African dust transport. The length of the run allows us to account for interannual variability of dust emissions and transport downstream of North Africa in the model. CESM’s mean climatology and probability distribution of aerosol optical depth in this region agrees well with available AERONET observations. In addition, CESM shows strong seasonal cycles ofmore » dust burden and lower tropospheric cloud fraction, with maximum values occurring during boreal summer, when a strong correlation between these two variables exists downstream of North Africa over the subtropical North Atlantic. Calculations of Estimated Inversion Strength (EIS) and composites of EIS on high and low downstream North Africa dust months during boreal summer reveal that dust is likely increasing inversion strength over this region due to both solar absorption and reflection. We find no evidence for a microphysical link between dust and lower tropospheric clouds in this region. These results yield new insight over an extensive period of time into the complex relationship between North African dust and lower tropospheric clouds over the open ocean, which has previously been hindered by spatiotemporal constraints of observations. Our findings lay a framework for future analyses using sub-monthly data over regions with different underlying dynamics.« less

  1. Response of winter North Atlantic storm track to climate change in the CNRM-CM5 simulations

    NASA Astrophysics Data System (ADS)

    Chauvin, Fabrice; Oudar, Thomas; Sanchez-Gomez, Emilia; Terray, Laurent

    2016-04-01

    Climate variability in Europe in winter is largely controlled by North Atlantic storm tracks. These are associated with transport of energy, momentum, and water vapour, between the equator and mid latitudes. Extratropical cyclones have caused severe damages over some regions in north-western Europe, since they can combine extreme precipitation and strong winds. This is why it is relevant to study the impact of climate change on the extratropical cyclones, principally on their intensity, position or lifespan. Indeed, several recent studies have focused on this subject by using atmospheric reanalysis and general circulation models (GCMs). The main conclusions from the CMIP3 simulations showed a decreasing of the total number of cyclones and a poleward shift of their tracks in response to global warming. In the recent CMIP5 exercise, the consensus is not so clear, probably due to more complex feedbacks acting in the different models. Thus, the question of changes in North Atlantic storm-tracks with warming remains open. The main goal of this work is to explore the changes in the North Atlantic storm-tracks in the past and future decades and to analyze the contributions of the different external forcings (natural and anthropogenic) versus the internal variability. On this purpose, we use the Detection and Attribution (D&A) simulations performed with the coupled model CNRM-CM5. To characterize the extratropical cyclones and their tracks, a tracking scheme based on the detection of maximum of relative vorticity at 850 hPa is conducted. We show that the coupled model fairly well reproduces the storm genesis locations as well as the tracks pathways comparing to several atmospheric reanalysis products. In the recent historical period (1950-2005), the model shows a decrease in the number of storms in the southern North-Atlantic, when all the forcings (anthropogenic and natural) are prescribed. Even if the role of internal variability is important in the last decades (the

  2. Isopycnal diffusivity in the tropical North Atlantic oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Köllner, Manuela; Visbeck, Martin; Tanhua, Toste; Fischer, Tim

    2017-04-01

    Isopycnal diffusivity plays an important role in the ventilation of the Eastern Tropical North Atlantic (ETNA) Oxygen Minimum Zone (OMZ). Lateral tracer transport is described by isopycnal diffusivity and mean advection of the tracer (e.g. oxygen), together they account for up to 70% of the oxygen supply for the OMZ. One of the big challenges is to separate diffusivity from advection. Isopycnal diffusivity was estimated to be Ky=(500 ± 200) m2 s-1 and Kx=(1200 ± 600) m2 s-1 by Banyte et. al (2013) from a Tracer Release Experiment (TRE). Hahn et al. (2014) estimated a meridional eddy diffusivity of 1350 m2 s-1 at 100 m depth decaying to less than 300 m2 s-1 below 800 m depth from repeated ship sections of CTD and ADCP data in addition with hydrographic mooring data. Uncertainties of the estimated diffusivities were still large, thus the Oxygen Supply Tracer Release Experiment (OSTRE) was set up to estimate isopycnal diffusivity in the OMZ using a newly developed sampling strategy of a control volume. The tracer was released in 2012 in the core of the OMZ at approximately 410 m depth and mapped after 6, 15 and 29 months in a regular grid. In addition to the calculation of tracer column integrals from vertical tracer profiles a new sampling method was invented and tested during two of the mapping cruises. The mean eddy diffusivity during OSTRE was found to be about (300 ± 130) m2 s-1. Additionally, the tracer has been advected further to the east and west by zonal jets. We compare different analysis methods to estimate isopycnal diffusivity from tracer spreading and show the advantage of the control volume surveys and control box approach. From the control box approach we are estimating the strength of the zonal jets within the OMZ core integrated over the TRE time period. References: Banyte, D., Visbeck, M., Tanhua, T., Fischer, T., Krahmann, G.,Karstensen, J., 2013. Lateral Diffusivity from Tracer Release Experiments in the Tropical North Atlantic Thermocline

  3. Sea Spray Aerosol Production over the North Atlantic

    NASA Astrophysics Data System (ADS)

    Bates, T. S.; Quinn, P.

    2017-12-01

    Breaking waves on the ocean surface generate air bubbles that scavenge organic matter from the surrounding seawater. When injected into the atmosphere, these bubbles burst, yielding sea spray aerosol (SSA), a mixture of organic and inorganic compounds with the organic matter enriched relative to seawater. SSA mass is well documented as the dominant component of aerosol light scattering over the remote oceans. The importance of SSA number to marine boundary layer cloud condensation nuclei (CCN) is much less certain. During the Western Atlantic Climate Study cruises (WACS-1 - August 2012 and WACS-2 - May-June 2014) and the North Atlantic Aerosols and Marine Ecosystem Study cruises (NAAMES-1 - November 2015, NAAMES-2 - May 2016, and NAAMES-3 - September 2017), we generated and measured freshly emitted SSA using the Sea Sweep SSA generator. During the 2017 cruise we also generated SSA with a Marine Aerosol Reference Tank (MART). Using the data generated on these 5 cruises and a large database of remote marine boundary layer aerosol measurements we will address three questions during this presentation: 1 - Do phytoplankton ecosystems affect the organic enrichment of freshly emitted SSA?, 2 - Do plankton ecosystems affect the number production flux of SSA?, and 3 - Is SSA a significant source of atmospheric CCN?

  4. Enhanced aridity and atmospheric high-pressure stability over the western Mediterranean during the North Atlantic cold events of the past 50 k.y.

    NASA Astrophysics Data System (ADS)

    Combourieu Nebout, N.; Turon, J. L.; Zahn, R.; Capotondi, L.; Londeix, L.; Pahnke, K.

    2002-10-01

    Multiproxy paleoenvironmental records (pollen and planktonic isotope) from Ocean Drilling Program Site 976 (Alboran Sea) document rapid ocean and climate variations during the last glacial that follow the Dansgaard-Oeschger climate oscillations seen in the Greenland ice core records, thus suggesting a close link of the Mediterranean climate swings with North Atlantic climates. Continental conditions rapidly oscillated through cold-arid and warm-wet conditions in the course of stadial-interstadial climate jumps. At the time of Heinrich events, i.e., maximum meltwater flux to the North Atlantic, western Mediterranean marine microflora and microfauna show rapid cooling correlated with increasing continental dryness. Enhanced aridity conceivably points to prolonged wintertime stability of atmospheric high-pressure systems over the southwestern Mediterranean in conjunction with cooling of the North Atlantic.

  5. Waterbird conservation for the Americas: The North American waterbird conservation plan, version 1

    USGS Publications Warehouse

    Kushlan, James A.; Steinkamp, Melanie J.; Parsons, Katharine C.; Capp, Jack; Cruz, Martin Acosta; Coulter, Malcolm; Davidson, Ian; Dickson, Loney; Edelson, Naomi; Elliot, Richard; Erwin, R. Michael; Hatch, Scott A.; Kress, Stephen; Milko, Robert; Miller, Steve; Mills, Kyra L.; Paul, Richard; Phillips, Roberto; Saliva, Jorge E.; Syderman, Bill; Trapp, John; Wheeler, Jennifer; Wohl, Kenton D.

    2002-01-01

    The North American Waterbird Conservation Plan (the Plan) is the product of an independent partnership of individuals and institutions having interest and responsibility for conservation of waterbirds and their habitats in the Americas. This partnership - Waterbird Conservation for the Americas - was created to support a vision in which the distribution, diversity, and abundance of populations and habitats of breeding, migratory, and nonbreeding waterbirds are sustained or restored throughout the lands and waters of North America, Central America, and the Caribbean.The Plan provides a continental-scale framework for the conservation and management of 210 species of waterbirds, including seabirds, coastal waterbirds, wading birds, and marshbirds utilizing aquatic habitats in 29 nations throughout North America, Central America, the islands and pelagic waters of the Caribbean Sea and western Atlantic, the U.S.-associated Pacific Islands and pelagic inland and pelagic waters of the Pacific. Birds as familiar as herons, loons, pelicans, and gulls, as well as the lesser known albatrosses, petrels, auks, and rails are among the species considered in the Plan. These birds' dependence on aquatic habitats such as wooded swamps, stream corridors, salt marshes, barrier islands, continental shelf waters and open pelagic waters make them especially vulnerable to the myriad threats facing water and wetland resources globally. In addition, the congregatory behavior of many waterbirds increases population risks by concentrating populations in limited areas.

  6. Modeling Trace Pollutants in the North Atlantic Free Troposphere and Comparisons with Observed Pollutant Concentrations at Pico

    NASA Astrophysics Data System (ADS)

    Sanyal, S.; Wuebbles, D. J.; Olsen, S. C.; Mazzoleni, L. R.; Mazzoleni, C.; Helmig, D.; Fialho, P. J.

    2016-12-01

    This study focuses on modeling free tropospheric aerosol and co-pollutants after trans-Atlantic transport of North American air pollution to the Pico Mountain Observatory (PMO) using the 3D global chemistry climate model CAM-Chem (version 4) and analyzing the model simulations relative to in-situ summertime measurements of carbon monoxide (CO), ozone (O3) and black carbon (BC) at the Pico Mountain Observatory (PMO) located in the Azores, Portugal from 2009 - 2011. The elevation of PMO ( 2225m above mean sea level) and steep slope of the surrounding mountain put the station above the regional marine boundary layer, enabling frequent sampling of free tropospheric air. Because of its unique location, air sampled at the station is rarely affected by local emissions or the ocean, and represents air masses transported over long distances to the site. The study used the Community Atmosphere Model CAM4, which is a part of the Community Earth System model version 1 (CESM1). HYSPLIT backward trajectories ran using the web-based portal READY was used to study airflow trajectory at PMO and showed that more than 50% of the air mass originated from North America. The model simulations were compared with observational data (from April - September) at PMO for the years 2009 through 2011. The fire data for the USA and Canada was compiled from the reports of National Interagency Coordination Center and Canadian Wildland Fire Information System, respectively. Time series analyses and orthogonal regression were used to compare model simulations with observations. The comparison shows simulations give a good representation of the observations, e.g., the mean concentration of CO in 2009 is 91.76 ppb and 95.05 ppb respectively from the simulation and the observations. Observed elevated pollutant concentrations also coincide with the maxima captured by the simulations. To assess the impact of North American outflow on pollution at PMO, scatter technique was used to calculate enhancement

  7. BRITICE-CHRONO and GLANAM: new exciting developments in the study of circum-North Atlantic ice sheets

    NASA Astrophysics Data System (ADS)

    Benetti, Sara; Clark, Chris D.; Petter Serjup, Hans

    2013-04-01

    This talk will present two newly funded projects on the reconstruction of former marine-based ice sheets bordering the North Atlantic Ocean and their effects on the surrounding continental margins. The NERC-funded BRITICE-CHRONO started in October 2012 and its consortium involves scientists from all over the UK with partners in Ireland, Canada and Norway. It aims to carry out a systematic campaign to collect and date material to constrain the timing and rates of change of the collapse of the former British-Irish Ice Sheet. This will be achieved by focussing on eight transects running from the shelf edge to a short distance onshore and acquiring marine and terrestrial samples for geochronometric dating. The sampling will be accomplished by two research cruises and eight fieldwork campaigns around UK and Ireland. The project will result in the world's best empirical reconstruction of a shrinking ice sheet, for use in improving ice sheet models, and to provide the long term context against which contemporary observations can be assessed. The FP7-funded Marie Curie Initial Training Networks GLANAM (Glaciated North Atlantic Margins) will start in April 2013 and aims at improving the career prospects and development of young researchers in both the public and private sector within the field of earth science, focusing specifically on North Atlantic glaciated margins. The training network comprises ten partner institutions, both academic and industrial, from Norway, UK and Denmark and will train eleven PhD and four postdoctoral researchers. The young scientists will perform multi-disciplinary research and receive training through three interconnected workpackages that collectively address knowledge gaps related to the glacial sedimentary depocentres on the North Atlantic margins. Filling these gaps will not only result in major new insights regarding glacial processes on continental margins in general, but critically will have particular impact on the exploitation of

  8. African American and Hispanic American sportsmen in the north central region

    Treesearch

    Allan Marsinko; John Dwyer

    2003-01-01

    Public forest managers need an awareness and understanding of their clients in order to better address their needs for recreational uses of forest lands. This study examines and characterizes African American and Hispanic American sportsmen (hunters and anglers) in the North Central Region of the United Stares (IA, IL, IN, MI, MN, MO, WI) and compares them to African...

  9. Positive low cloud and dust feedbacks amplify tropical North Atlantic Multidecadal Oscillation

    DOE PAGES

    Yuan, Tianle; Oreopoulos, Lazaros; Zelinka, Mark; ...

    2016-02-04

    The Atlantic Multidecadal Oscillation (AMO) is characterized by a horseshoe pattern of sea surface temperature (SST) anomalies and has a wide range of climatic impacts. While the tropical arm of AMO is responsible for many of these impacts, it is either too weak or completely absent in many climate model simulations. Here we show, using both observational and model evidence, that the radiative effect of positive low cloud and dust feedbacks is strong enough to generate the tropical arm of AMO, with the low cloud feedback more dominant. The feedbacks can be understood in a consistent dynamical framework: weakened tropicalmore » trade wind speed in response to a warm middle latitude SST anomaly reduces dust loading and low cloud fraction over the tropical Atlantic, which warms the tropical North Atlantic SST. Together they contribute to the appearance of the tropical arm of AMO. Most current climate models miss both the critical wind speed response and two positive feedbacks though realistic simulations of them may be essential for many climatic studies related to the AMO.« less

  10. Positive Low Cloud and Dust Feedbacks Amplify Tropical North Atlantic Multidecadal Variability

    NASA Technical Reports Server (NTRS)

    Yuan, Tianle; Oraiopoulos, Lazaros; Zelinka, Mark; Yu, Hongbin; Norris, Joel R.; Chin, Mian; Platnick, Steven; Meyer, Kerry

    2016-01-01

    The Atlantic Multidecadal Oscillation (AMO) is characterized by a horseshoe pattern of sea surface temperature (SST) anomalies and has a wide range of climatic impacts. While the tropical arm of AMO is responsible for many of these impacts, it is either too weak or completely absent in many climate model simulations. Here we show, using both observational and model evidence, that the radiative effect of positive low cloud and dust feedbacks is strong enough to generate the tropical arm of AMO, with the low cloud feedback more dominant. The feedbacks can be understood in a consistent dynamical framework: weakened tropical trade wind speed in response to a warm middle latitude SST anomaly reduces dust loading and low cloud fraction over the tropical Atlantic, which warms the tropical North Atlantic SST. Together they contribute to appearance of the tropical arm of AMO. Most current climate models miss both the critical wind speed response and two positive feedbacks though realistic simulations of them may be essential for many climatic studies related to the AMO.

  11. Holocene lowering of the Laurentide ice sheet affects North Atlantic gyre circulation and climate

    NASA Astrophysics Data System (ADS)

    Ivanovic, R. F.; Gregoire, L. J.; Maycock, A.; Valdes, P. J.

    2017-12-01

    The Laurentide ice sheet, which covered Canada during glacial periods, had a major influence on atmospheric circulation and surface climate, but its role in climate during the early Holocene (9-7 ka), when it was thinner and confined around Hudson Bay, is unclear. It has been suggested that the demise of the ice sheet played a role in the 8.2 ka event (an abrupt 1-3 °C Northern Hemisphere cooling lasting 160 years) through the influence of changing topography on atmospheric circulation. To test this hypothesis, and to investigate the broader implications of changing ice sheet topography for climate, we analyse a set of equilibrium climate simulations with ice sheet topographies taken at 500 year intervals from 9.5 ka to 8.0 ka. Between 9.5 and 8.0 ka, our simulations show a 2 °C cooling south of Iceland and a 1 °C warming between 40-50° N in the North Atlantic. These surface temperature changes are associated with a weakening of the subtropical and subpolar gyres caused by a decreasing wind stress curl over the mid-North Atlantic as the ice sheet lowers. The climate response is strongest during the period of peak ice volume change (9.5 ka - 8.5 ka), but becomes negligible after 8.5 ka. The climatic effects of the Laurentide ice sheet lowering are restricted to the North Atlantic sector. Thus, topographic forcing did not play a significant role in the 8.2 ka event and had only a small effect on Holocene climate change compared to the effects of changes in greenhouse gases, insolation and ice sheet meltwater.

  12. Holocene lowering of the Laurentide ice sheet affects North Atlantic gyre circulation and climate

    NASA Astrophysics Data System (ADS)

    Gregoire, Lauren J.; Ivanovic, Ruza F.; Maycock, Amanda C.; Valdes, Paul J.; Stevenson, Samantha

    2018-02-01

    The Laurentide ice sheet, which covered Canada during glacial periods, had a major influence on atmospheric circulation and surface climate, but its role in climate during the early Holocene (9-7 ka), when it was thinner and confined around Hudson Bay, is unclear. It has been suggested that the demise of the ice sheet played a role in the 8.2 ka event (an abrupt 1-3 °C Northern Hemisphere cooling lasting 160 years) through the influence of changing topography on atmospheric circulation. To test this hypothesis, and to investigate the broader implications of changing ice sheet topography for climate, we analyse a set of equilibrium climate simulations with ice sheet topographies taken at 500 year intervals from 9.5 to 8.0 ka. Between 9.5 and 8.0 ka, our simulations show a 2 °C cooling south of Iceland and a 1 °C warming between 40° and 50°N in the North Atlantic. These surface temperature changes are associated with a weakening of the subtropical and subpolar gyres caused by a decreasing wind stress curl over the mid-North Atlantic as the ice sheet lowers. The climate response is strongest during the period of peak ice volume change (9.5-8.5 ka), but becomes negligible after 8.5 ka. The climatic effects of the Laurentide ice sheet lowering during the Holocene are restricted to the North Atlantic sector. Thus, topographic forcing is unlikely to have played a major role in the 8.2 ka event and had only a small effect on Holocene climate change compared to the effects of changes in greenhouse gases, insolation and ice sheet meltwater.

  13. Two millennia of Mesoamerican monsoon variability driven by Pacific and Atlantic synergistic forcing

    NASA Astrophysics Data System (ADS)

    Lachniet, Matthew S.; Asmerom, Yemane; Polyak, Victor; Bernal, Juan Pablo

    2017-01-01

    The drivers of Mesoamerican monsoon variability over the last two millennia remain poorly known because of a lack of precisely-dated and climate-calibrated proxy records. Here, we present a new high resolution (∼2 yrs) and precisely-dated (± 4 yr) wet season hydroclimate reconstruction for the Mesoamerican sector of the North American Monsoon over the past 2250 years based on two aragonite stalagmites from southwestern Mexico which replicate oxygen isotope variations over the 950-1950 CE interval. The reconstruction is quantitatively calibrated to instrumental rainfall variations in the Basin of Mexico. Comparisons to proxy indices of ocean-atmosphere circulation show a synergistic forcing by the North Atlantic and El Niño/Southern Oscillations, whereby monsoon strengthening coincided with a La Niña-like mode and a negative North Atlantic Oscillation, and vice versa for droughts. Our data suggest that weak monsoon intervals are associated with a strong North Atlantic subtropical high pressure system and a weak Intertropical convergence zone in the eastern Pacific Ocean. Population expansions at three major highland Mexico civilization of Teotihuacan, Tula, and Aztec Tenochtitlan were all associated with drought to pluvial transitions, suggesting that urban population growth was favored by increasing freshwater availability in the semi-arid Mexican highlands, and that this hydroclimatic change was controlled by Pacific and Atlantic Ocean forcing.

  14. Coupled ocean-shelf ecosystem modelling of northern North Atlantic

    NASA Astrophysics Data System (ADS)

    Harle, J.; Holt, J. T.; Butenschön, M.; Allen, J. I.

    2016-02-01

    The biogeochemistry and ecosystems of the open-ocean and shelf seas are intimately connected. For example Northwest European continental shelf receives a substantial fraction of its nutrients from the wider North Atlantic and exports carbon at depth, sequestering it from atmospheric exchange. In the EC FP7 EuroBasin project (Holt et al 2014) we have developed a 1/12 degree basin-scale NEMO-ERSEM model with specific features relevant to shelf seas (e.g. tides and advanced vertical mixing schemes). This model is eddy resolving in the open-ocean, and resolves barotropic scales on-shelf. We use this model to explore the interaction between finely resolved physical processes and the ecosystem. Here we focus on shelf-sea processes and the connection between the shelf seas and open-ocean, and compare results with a 1/4 degree (eddy permitting) model that does not include shelf sea processes. We find tidal mixing fronts and river plume are well represented in the 1/12 degree model. Using approaches developed for the NW Shelf (Holt et al 2012), we provide estimates of across-shelf break nutrient fluxes to the seas surrounding this basin, and relate these fluxes and their interannual variability to the physical processes driving ocean-shelf exchange. Holt, J., et al, 2012. Oceanic controls on the primary production of the northwest European continental shelf: model experiments under recent past conditions and a potential future scenario. Biogeosciences 9, 97-117. Holt, J., et al, 2014. Challenges in integrative approaches to modelling the marine ecosystems of the North Atlantic: Physics to Fish and Coasts to Ocean. Progress in Oceanography doi:10.1016/j.pocean.2014.04.024.

  15. Habitat Suitability Index Models: American black duck (wintering)

    USGS Publications Warehouse

    Lewis, James C.; Garrison, Russell L.

    1984-01-01

    INTRODUCTION The American black duck, commonly known as the black duck, is migratory and has a wide geographic range. American black ducks breed from Cape Hatteras, North Carolina, west to the Mississippi River and north through the eastern Canadian boreal forest (Bellrose 1976). The winter range extends from the Rio Grande River on the Texas coast, northeast to Lake Michigan, east to Nova Scotia, south to Florida, and west to Texas (Wright 1954). American black ducks arrive on their wintering habitats between September and early December and remain there until February to April (Bellrose 1976). Their preferred habitat varies considerably through the wintering range. Habitat use appears related to food availability, freedom from disturbance, weather, and often upon the presence of large bodies of open water. These interrelated elements are essential for meeting the energy demands and other nutritional requirements of black ducks in response to the rigors of cold weather and migration. In the Atlantic Flyway, winter populations of American black ducks concentrate in marine and estuarine wetlands (U.S. Fish and Wildlife Service 1979). They use salt marshes and small tidal bays for feeding and loafing areas. In wintering areas north of Chesapeake Bay, American black ducks frequently feed on tidal flats and rest in emergent wetlands or on ice-free bays, rivers, and coastal reservoirs. In the Chesapeake bay area, migrant and wintering American black ducks occupy a wide variety of habitats (Stewart 1962). They strongly favor brackish bays with extensive adjacent agricultural lands. Estuarine bays, coastal salt marshes, tidal fresh marshes, and adjacent impoundments receive high usage. American black ducks also concentrate in forested wetlands in and adjacent to estuaries in the South Atlantic Flyway, especially in Virginia and North Carolina.

  16. North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part II: Inter-annual to decadal variability

    NASA Astrophysics Data System (ADS)

    Danabasoglu, Gokhan; Yeager, Steve G.; Kim, Who M.; Behrens, Erik; Bentsen, Mats; Bi, Daohua; Biastoch, Arne; Bleck, Rainer; Böning, Claus; Bozec, Alexandra; Canuto, Vittorio M.; Cassou, Christophe; Chassignet, Eric; Coward, Andrew C.; Danilov, Sergey; Diansky, Nikolay; Drange, Helge; Farneti, Riccardo; Fernandez, Elodie; Fogli, Pier Giuseppe; Forget, Gael; Fujii, Yosuke; Griffies, Stephen M.; Gusev, Anatoly; Heimbach, Patrick; Howard, Armando; Ilicak, Mehmet; Jung, Thomas; Karspeck, Alicia R.; Kelley, Maxwell; Large, William G.; Leboissetier, Anthony; Lu, Jianhua; Madec, Gurvan; Marsland, Simon J.; Masina, Simona; Navarra, Antonio; Nurser, A. J. George; Pirani, Anna; Romanou, Anastasia; Salas y Mélia, David; Samuels, Bonita L.; Scheinert, Markus; Sidorenko, Dmitry; Sun, Shan; Treguier, Anne-Marie; Tsujino, Hiroyuki; Uotila, Petteri; Valcke, Sophie; Voldoire, Aurore; Wang, Qiang; Yashayaev, Igor

    2016-01-01

    Simulated inter-annual to decadal variability and trends in the North Atlantic for the 1958-2007 period from twenty global ocean - sea-ice coupled models are presented. These simulations are performed as contributions to the second phase of the Coordinated Ocean-ice Reference Experiments (CORE-II). The study is Part II of our companion paper (Danabasoglu et al., 2014) which documented the mean states in the North Atlantic from the same models. A major focus of the present study is the representation of Atlantic meridional overturning circulation (AMOC) variability in the participating models. Relationships between AMOC variability and those of some other related variables, such as subpolar mixed layer depths, the North Atlantic Oscillation (NAO), and the Labrador Sea upper-ocean hydrographic properties, are also investigated. In general, AMOC variability shows three distinct stages. During the first stage that lasts until the mid- to late-1970s, AMOC is relatively steady, remaining lower than its long-term (1958-2007) mean. Thereafter, AMOC intensifies with maximum transports achieved in the mid- to late-1990s. This enhancement is then followed by a weakening trend until the end of our integration period. This sequence of low frequency AMOC variability is consistent with previous studies. Regarding strengthening of AMOC between about the mid-1970s and the mid-1990s, our results support a previously identified variability mechanism where AMOC intensification is connected to increased deep water formation in the subpolar North Atlantic, driven by NAO-related surface fluxes. The simulations tend to show general agreement in their temporal representations of, for example, AMOC, sea surface temperature (SST), and subpolar mixed layer depth variabilities. In particular, the observed variability of the North Atlantic SSTs is captured well by all models. These findings indicate that simulated variability and trends are primarily dictated by the atmospheric datasets which

  17. North Atlantic Simulations in Coordinated Ocean-Ice Reference Experiments Phase II (CORE-II) . Part II; Inter-Annual to Decadal Variability

    NASA Technical Reports Server (NTRS)

    Danabasoglu, Gokhan; Yeager, Steve G.; Kim, Who M.; Behrens, Erik; Bentsen, Mats; Bi, Daohua; Biastoch, Arne; Bleck, Rainer; Boening, Claus; Bozec, Alexandra; hide

    2015-01-01

    Simulated inter-annual to decadal variability and trends in the North Atlantic for the 1958-2007 period from twenty global ocean - sea-ice coupled models are presented. These simulations are performed as contributions to the second phase of the Coordinated Ocean-ice Reference Experiments (CORE-II). The study is Part II of our companion paper (Danabasoglu et al., 2014) which documented the mean states in the North Atlantic from the same models. A major focus of the present study is the representation of Atlantic meridional overturning circulation (AMOC) variability in the participating models. Relationships between AMOC variability and those of some other related variables, such as subpolar mixed layer depths, the North Atlantic Oscillation (NAO), and the Labrador Sea upper-ocean hydrographic properties, are also investigated. In general, AMOC variability shows three distinct stages. During the first stage that lasts until the mid- to late-1970s, AMOC is relatively steady, remaining lower than its long-term (1958-2007) mean. Thereafter, AMOC intensifies with maximum transports achieved in the mid- to late-1990s. This enhancement is then followed by a weakening trend until the end of our integration period. This sequence of low frequency AMOC variability is consistent with previous studies. Regarding strengthening of AMOC between about the mid-1970s and the mid-1990s, our results support a previously identified variability mechanism where AMOC intensification is connected to increased deep water formation in the subpolar North Atlantic, driven by NAO-related surface fluxes. The simulations tend to show general agreement in their representations of, for example, AMOC, sea surface temperature (SST), and subpolar mixed layer depth variabilities. In particular, the observed variability of the North Atlantic SSTs is captured well by all models. These findings indicate that simulated variability and trends are primarily dictated by the atmospheric datasets which include

  18. Ten-year chemical signatures associated with long-range transport observed in the free troposphere over the central North Atlantic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, B.; Owen, R. C.; Perlinger, J. A.

    Ten-year observations of trace gases at Pico Mountain Observatory (PMO), a free troposphere site in the central North Atlantic, were classified by transport patterns using the Lagrangian particle dispersion model, FLEXPART. The classification enabled identifying trace gas mixing ratios associated with background air and long- range transport of continental emissions, which were defined as chemical signatures. Comparison between the chemical signatures revealed the impacts of natural and anthropogenic sources, as well as chemical and physical processes during long transport, on air composition in the remote North Atlantic. Transport of North American anthropogenic emissions (NA-Anthro) and summertime wildfire plumes (Fire) significantlymore » enhanced CO and O 3 at PMO. Summertime CO enhancements caused by NA-Anthro were found to have been decreasing by a rate of 0.67 ± 0.60 ppbv/year in the ten-year period, due possibly to reduction of emissions in North America. Downward mixing from the upper troposphere and stratosphere due to the persistent Azores-Bermuda anticyclone causes enhanced O 3 and nitrogen oxides. The d [O 3]/d [CO] value was used to investigate O 3 sources and chemistry in different transport patterns. The transport pattern affected by Fire had the lowest d [O 3]/d [CO], which was likely due to intense CO production and depressed O 3 production in wildfire plumes. Slightly enhanced O 3 and d [O 3]/d [CO] were found in the background air, suggesting that weak downward mixing from the upper troposphere is common at PMO. Enhancements of both butane isomers were found during upslope flow periods, indicating contributions from local sources. The consistent ratio of butane isomers associated with the background air and NA-anthro implies no clear difference in the oxidation rates of the butane isomers during long transport. Based on observed relationships between non-methane hydrocarbons, the averaged photochemical age of the air masses at PMO was

  19. Ten-year chemical signatures associated with long-range transport observed in the free troposphere over the central North Atlantic

    DOE PAGES

    Zhang, B.; Owen, R. C.; Perlinger, J. A.; ...

    2017-03-06

    Ten-year observations of trace gases at Pico Mountain Observatory (PMO), a free troposphere site in the central North Atlantic, were classified by transport patterns using the Lagrangian particle dispersion model, FLEXPART. The classification enabled identifying trace gas mixing ratios associated with background air and long- range transport of continental emissions, which were defined as chemical signatures. Comparison between the chemical signatures revealed the impacts of natural and anthropogenic sources, as well as chemical and physical processes during long transport, on air composition in the remote North Atlantic. Transport of North American anthropogenic emissions (NA-Anthro) and summertime wildfire plumes (Fire) significantlymore » enhanced CO and O 3 at PMO. Summertime CO enhancements caused by NA-Anthro were found to have been decreasing by a rate of 0.67 ± 0.60 ppbv/year in the ten-year period, due possibly to reduction of emissions in North America. Downward mixing from the upper troposphere and stratosphere due to the persistent Azores-Bermuda anticyclone causes enhanced O 3 and nitrogen oxides. The d [O 3]/d [CO] value was used to investigate O 3 sources and chemistry in different transport patterns. The transport pattern affected by Fire had the lowest d [O 3]/d [CO], which was likely due to intense CO production and depressed O 3 production in wildfire plumes. Slightly enhanced O 3 and d [O 3]/d [CO] were found in the background air, suggesting that weak downward mixing from the upper troposphere is common at PMO. Enhancements of both butane isomers were found during upslope flow periods, indicating contributions from local sources. The consistent ratio of butane isomers associated with the background air and NA-anthro implies no clear difference in the oxidation rates of the butane isomers during long transport. Based on observed relationships between non-methane hydrocarbons, the averaged photochemical age of the air masses at PMO was

  20. Thermohaline circulation at three key sections in the North Atlantic over 1985-2002

    NASA Astrophysics Data System (ADS)

    Marsh, Robert; de Cuevas, Beverly A.; Coward, Andrew C.; Bryden, Harry L.; Álvarez, Marta

    2005-05-01

    Efforts are presently underway to monitor the Thermohaline Circulation (THC) in the North Atlantic. A measuring strategy has been designed to monitor both the Meridional Overturning Circulation (MOC) in the subtropics and dense outflows at higher latitudes. To provide a historical context for these new observations, we diagnose an eddy-permitting ocean model simulation of the period 1985-2002. We present time series of the THC, MOC and heat transport, at key hydrographic sections in the subtropics, the northeast Atlantic and the Labrador Sea. The simulated THC compares well with observations. We find considerable variability in the THC on each section, most strikingly in the Labrador Sea during the early 1990's, consistent with observed changes. Overturning in the northeast Atlantic declines by ~20% over the 1990's, coincident with an increase in the subtropics. We speculate that MOC weakening may soon be detected in the subtropics, if the decline continues in mid-latitudes.

  1. North American origin and recent European establishments of the amphi-Atlantic peat moss Sphagnum angermanicum.

    PubMed

    Stenøien, Hans K; Shaw, A Jonathan; Shaw, Blanka; Hassel, Kristian; Gunnarsson, Urban

    2011-04-01

    Genetic and morphological similarity between populations separated by large distances may be caused by frequent long-distance dispersal or retained ancestral polymorphism. The frequent lack of differentiation between disjunct conspecific moss populations on different continents has traditionally been explained by the latter model, and has been cited as evidence that many or most moss species are extremely ancient and slowly diverging. We have studied intercontinental differentiation in the amphi-Atlantic peat moss Sphagnum angermanicum using 23 microsatellite markers. Two major genetic clusters are found, both of which occur throughout the distributional range. Patterns of genetic structuring and overall migration patterns suggest that the species probably originated in North America, and seems to have been established twice in Northern Europe during the past 40,000 years. We conclude that similarity between S. angermanicum populations on different continents is not the result of ancient vicariance and subsequent stasis. Rather, the observed pattern can be explained by multiple long-distance dispersal over limited evolutionary time. The genetic similarity can also partly be explained by incomplete lineage sorting, but this appears to be caused by the short time since separation. Our study adds to a growing body of evidence suggesting that Sphagnum, constituting a significant part of northern hemisphere biodiversity, may be more evolutionary dynamic than previously assumed. © 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.

  2. Dominant Role of Atlantic Multidecadal Oscillation in the Recent Decadal Changes in Western North Pacific Tropical Cyclone Activity

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Vecchi, Gabriel A.; Murakami, Hiroyuki; Villarini, Gabriele; Delworth, Thomas L.; Yang, Xiaosong; Jia, Liwei

    2018-01-01

    Over the 1997-2014 period, the mean frequency of western North Pacific (WNP) tropical cyclones (TCs) was markedly lower ( 18%) than the period 1980-1996. Here we show that these changes were driven by an intensification of the vertical wind shear in the southeastern/eastern WNP tied to the changes in the Walker circulation, which arose primarily in response to the enhanced sea surface temperature (SST) warming in the North Atlantic, while the SST anomalies associated with the negative phase of the Pacific Decadal Oscillation in the tropical Pacific and the anthropogenic forcing play only secondary roles. These results are based on observations and experiments using the Geophysical Fluid Dynamics Laboratory Forecast-oriented Low-ocean Resolution Coupled Climate Model coupled climate model. The present study suggests a crucial role of the North Atlantic SST in causing decadal changes to WNP TC frequency.

  3. The global warming in the North Atlantic Sector and the role of the ocean

    NASA Astrophysics Data System (ADS)

    Hand, R.; Keenlyside, N. S.; Greatbatch, R. J.; Omrani, N. E.

    2014-12-01

    This work presents an analysis of North Atlantic ocean-atmosphere interaction in a warming climate, based on a long-term earth system model experiment forced by the RCP 8.5 scenario, the strongest greenhouse gas forcing used in the climate projections for the 5th Assessement report of the Intergovernmental Panel on Climate Change). In addition to a global increase in SSTs as a direct response to the radiative forcing, the model shows a distinct change of the local sea surface temperature (SST hereafter) patterns in the Gulf Stream region: The SST front moves northward by several hundred kilometers, likely as a response of the wind-driven part of the oceanic surface circulation, and becomes more zonal. As a consequence of a massive slowdown of the Atlantic Meridional Overturning Circulation, the northeast North Atlantic only shows a moderate warming compared to the rest of the ocean. The feedback of these changes on the atmosphere was studied in a set of sensitivity experiments based on the SST climatology of the coupled runs. The set consists of a control run based on the historical run, a run using the full SST from the coupled RCP 8.5 run and two runs, where the SST signal was deconstructed into a homogenous mean warming part and a local pattern change. In the region of the precipitation maximum in the historical run the future scenario shows an increase of absolute SSTs, but a significant decrease in local precipitation, low-level convergence and upward motion. Since warmer SSTs usually cause the opposite, this indicates that the local response in that region is connected to the (with respect to the historical run) weakened SST gradients rather than to the absolute SST. Consistently, the model shows enhanced precipitation north of this region, where the SST gradients are enhanced. However, the signal restricts to the low and mid-troposphere and does not reach the higher model levels. There is little evidence for a large-scale response to the changes in the Gulf

  4. North Atlantic teleconnection patterns signature on sea level from satellite altimetry

    NASA Astrophysics Data System (ADS)

    Iglesias, Isabel; Lázaro, Clara; Joana Fernandes, M.; Bastos, Luísa

    2015-04-01

    Presently, satellite altimetry record is long enough to appropriately study inter-annual signals in sea level anomaly and ocean surface circulation, allowing the association of teleconnection patterns of low-frequency variability with the response of sea level. The variability of the Atlantic Ocean at basin-scale is known to be complex in space and time, with the dominant mode occurring on annual timescales. However, interannual and decadal variability have already been documented in sea surface temperature. Both modes are believed to be linked and are known to influence sea level along coastal regions. The analysis of the sea level multiannual variability is thus essential to understand the present climate and its long-term variability. While in the open-ocean sea level anomaly from satellite altimetry currently possesses centimetre-level accuracy, satellite altimetry measurements become invalid or of lower accuracy along the coast due to the invalidity of the wet tropospheric correction (WTC) derived from on-board microwave radiometers. In order to adequately analyse long-term changes in sea level in the coastal regions, satellite altimetry measurements can be recovered by using an improved WTC computed from recent algorithms that combine wet path delays from all available observations (remote sensing scanning imaging radiometers, GNSS stations, microwave radiometers on-board satellite altimetry missions and numerical weather models). In this study, a 20-year (1993-2013) time series of multi-mission satellite altimetry (TOPEX/Poseidon, Jason-1, OSTM/Jason-2, ERS-1/2, ENVISAT, CryoSat-2 and SARAL), are used to characterize the North Atlantic (NA) long-term variability on sea level at basin-scale and analyse its response to several atmospheric teleconnections known to operate on the NA. The altimetry record was generated using an improved coastal WTC computed from either the GNSS-derived path Delay or the Data Combination methodologies developed by University of

  5. Connectivity between surface and deep waters determines prokaryotic diversity in the North Atlantic Deep Water

    PubMed Central

    Frank, Alexander H.; Garcia, Juan A. L.; Herndl, Gerhard J.

    2016-01-01

    Summary To decipher the influence of depth stratification and surface provincialism on the dark ocean prokaryotic community composition, we sampled the major deep‐water masses in the eastern North Atlantic covering three biogeographic provinces. Their diversity was evaluated using ordination and canonical analysis of 454 pyrotag sequences. Variance partitioning suggested that 16% of the variation in the bacterial community composition was based on depth stratification while 9% of the variation was due to geographic location. General linear mixed effect models showed that the community of the subsurface waters was connected to the dark ocean prokaryotic communities in different biogeographic provinces. Cluster analysis indicated that some prokaryotic taxa are specific to distinct regions in bathypelagic water masses. Taken together, our data suggest that the dark ocean prokaryotic community composition of the eastern North Atlantic is primed by the formation and the horizontal transport of water masses. PMID:26914787

  6. Oceanic Situational Awareness over the North Atlantic Corridor

    NASA Technical Reports Server (NTRS)

    Welch, Bryan; Greenfield, Israel

    2005-01-01

    Air traffic control (ATC) mandated, aircraft separations over the oceans impose a limitation on traffic capacity for a given corridor, given the projected traffic growth over the oceanic domain. The separations result from a lack of acceptable situational awareness over oceans where radar position updates are not available. This study considers the use of Automatic Dependent Surveillance (ADS) data transmitted over a commercial satellite communications system as an approach to provide ATC with the needed situational awareness and thusly allow for reduced aircraft separations. This study uses Federal Aviation Administration data from a single day for the North Atlantic Corridor to analyze traffic loading to be used as a benchmark against which to compare several approaches for coordinating data transmissions from the aircraft to the satellites.

  7. Climatic Impact of a Change in North Atlantic Deep Water Formation

    NASA Technical Reports Server (NTRS)

    Rind, D.

    1984-01-01

    The response of the ocean to climate changes is one of the most uncertain questions regarding the impact of increasing CO2 on climate and society. North Atlantic deep water (NADW) formation apparently depends on a complex confluence of different water masses originating in different areas, all of which will presumably be affected by changes in wind, evaporation, etc., as the atmosphere warms. To analyze from first principles what the effect will be on NADW formation is a task which requires an ocean modeling capability not yet available. As a substitute, past climates can be investigated to see if there is any evidence for alterations in NADW formation. In addition, the possible impact of such changes on climate can be explored. An estimate of NADW sensitivity (at least in the past) and of the climate consequences can be studied. The North Atlantic surface water temperatures can be reconstructed to indicate a substantial cooling between 11,000 and 10,000 years B.P. Were NADW formation to have ceased, it would have resulted in cooler surface waters; whether the reconstructed temperatures were due to this or some other effect cannot be determined at this time. Nevertheless, it was decided that it would be useful to see what the effect these colder temperatures would have had on the climate.

  8. A North American Hydroclimate Synthesis (NAHS) of the Common Era

    NASA Astrophysics Data System (ADS)

    Rodysill, Jessica R.; Anderson, Lesleigh; Cronin, Thomas M.; Jones, Miriam C.; Thompson, Robert S.; Wahl, David B.; Willard, Debra A.; Addison, Jason A.; Alder, Jay R.; Anderson, Katherine H.; Anderson, Lysanna; Barron, John A.; Bernhardt, Christopher E.; Hostetler, Steven W.; Kehrwald, Natalie M.; Khan, Nicole S.; Richey, Julie N.; Starratt, Scott W.; Strickland, Laura E.; Toomey, Michael R.; Treat, Claire C.; Wingard, G. Lynn

    2018-03-01

    This study presents a synthesis of century-scale hydroclimate variations in North America for the Common Era (last 2000 years) using new age models of previously published multiple proxy-based paleoclimate data. This North American Hydroclimate Synthesis (NAHS) examines regional hydroclimate patterns and related environmental indicators, including vegetation, lake water elevation, stream flow and runoff, cave drip rates, biological productivity, assemblages of living organisms, and salinity. Centennial-scale hydroclimate anomalies are obtained by iteratively sampling the proxy data on each of thousands of age model realizations and determining the fractions of possible time series indicating that the century-smoothed data was anomalously wet or dry relative to the 100 BCE to 1900 CE mean. Results suggest regionally asynchronous wet and dry periods over multidecadal to centennial timescales and frequent periods of extended regional drought. Most sites indicate drying during previously documented multicentennial periods of warmer Northern Hemisphere temperatures, particularly in the western U.S., central U.S., and Canada. Two widespread droughts were documented by the NAHS: from 50 BCE to 450 CE and from 800 to 1100 CE. Major hydroclimate reorganizations occurred out of sync with Northern Hemisphere temperature variations and widespread wet and dry anomalies occurred during both warm and cool periods. We present a broad assessment of paleoclimate relationships that highlights the potential influences of internal variability and external forcing and supports a prominent role for Pacific and Atlantic Ocean dynamics on century-scale continental hydroclimate.

  9. Large bio-geographical shifts in the north-eastern Atlantic Ocean: From the subpolar gyre, via plankton, to blue whiting and pilot whales

    NASA Astrophysics Data System (ADS)

    Hátún, H.; Payne, M. R.; Beaugrand, G.; Reid, P. C.; Sandø, A. B.; Drange, H.; Hansen, B.; Jacobsen, J. A.; Bloch, D.

    2009-03-01

    Pronounced changes in fauna, extending from the English Channel in the south to the Barents Sea in the north-east and off Greenland in the north-west, have occurred in the late 1920s, the late 1960s and again in the late 1990s. We attribute these events to exchanges of subarctic and subtropical water masses in the north-eastern North Atlantic Ocean, associated with changes in the strength and extent of the subpolar gyre. These exchanges lead to variations in the influence exerted by the subarctic or Lusitanian biomes on the intermediate faunistic zone in the north-eastern Atlantic. This strong and persistent bottom-up bio-physical link is demonstrated using a numerical ocean general circulation model and data on four trophically connected levels in the food chain - phytoplankton, zooplankton, blue whiting, and pilot whales. The plankton data give a unique basin-scale depiction of these changes, and a long pilot whale record from the Faroe Islands offers an exceptional temporal perspective over three centuries. Recent advances in simulating the dynamics of the subpolar gyre suggests a potential for predicting the distribution of the main faunistic zones in the north-eastern Atlantic a few years into the future, which might facilitate a more rational management of the commercially important fisheries in this region.

  10. Observed linkages between the northern annular mode/North Atlantic Oscillation, cloud incidence, and cloud radiative forcing

    NASA Astrophysics Data System (ADS)

    Li, Ying; Thompson, David W. J.; Huang, Yi; Zhang, Minghong

    2014-03-01

    The signature of the northern annular mode/North Atlantic Oscillation (NAM/NAO) in the vertical and horizontal distribution of tropospheric cloudiness is investigated in CloudSat and CALIPSO data from June 2006 to April 2011. During the Northern Hemisphere winter, the positive polarity of the NAM/NAO is marked by increases in zonally averaged cloud incidence north of ~60°N, decreases between ~25 and 50°N, and increases in the subtropics. The tripolar-like anomalies in cloud incidence associated with the NAM/NAO are largest over the North Atlantic Ocean basin/Middle East and are physically consistent with the NAM/NAO-related anomalies in vertical motion. Importantly, the NAM/NAO-related anomalies in tropospheric cloud incidence lead to significant top of atmosphere cloud radiative forcing anomalies that are comparable in amplitude to those associated with the NAM/NAO-related temperature anomalies. The results provide observational evidence that the most prominent pattern of Northern Hemisphere climate variability is significantly linked to variations in cloud radiative forcing. Implications for two-way feedback between extratropical dynamics and cloud radiative forcing are discussed.

  11. 76 FR 23794 - Stock Status Determination for Atlantic Highly Migratory Scalloped Hammerhead Shark

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-28

    ...) published in the North American Journal of Fisheries Management a stock assessment of the Atlantic... conservation and management measures to rebuild overfished stocks within 2 years of making this determination... to rebuilding the fishery within the shortest time possible in accordance with 16 U.S.C. 1854(e)(4...

  12. North Atlantic Deep Water and the World Ocean

    NASA Technical Reports Server (NTRS)

    Gordon, A. L.

    1984-01-01

    North Atlantic Deep Water (NADW) by being warmer and more saline than the average abyssal water parcel introduces heat and salt into the abyssal ocean. The source of these properties is upper layer or thermocline water considered to occupy the ocean less dense than sigma-theta of 27.6. That NADW convects even though it's warmer than the abyssal ocean is obviously due to the high salinity. In this way, NADW formation may be viewed as saline convection. The counter force removing heat and salinity (or introducing fresh water) is usually considered to to take place in the Southern Ocean where upwelling deep water is converted to cold fresher Antarctic water masses. The Southern ocean convective process is driven by low temperatures and hence may be considered as thermal convection. A significant fresh water source may also occur in the North Pacific where the northward flowing of abyssal water from the Southern circumpolar belt is saltier and denser than the southward flowing, return abyssal water. The source of the low salinity input may be vertical mixing of the low salinity surface water or the low salinity intermediate water.

  13. Role of the circulation on the anthropogenic CO2 inventory in the North-East Atlantic: A climatological analysis

    NASA Astrophysics Data System (ADS)

    Carracedo, L. I.; Pérez, F. F.; Gilcoto, M.; Velo, A.; Padín, A.; Rosón, G.

    2018-02-01

    Climatology-based storage rate of anthropogenic CO2 (Cant, referred to year 2000) in the North-East Atlantic (53 ± 9 kmol s-1, 0.020 ± 0.003 Pg-C yr-1) is described on annual mean terms. Cant advection (32 ± 14 kmol s-1) occurs mostly in the upper 1800 m and contributes to 60% of the Cant storage rate. The Azores and Portugal Currents act as 'Cant streams' importing 389 ± 90 kmol s-1, most of which recirculates southwards with the Canary Current (-214 ± 34 kmol s-1). The Azores Counter Current (-79 ± 36 kmol s-1) and the northward-flowing Mediterranean Water advective branch (-31 ± 12 kmol s-1) comprise secondary Cant export routes. By means of Cant transport decomposition, we find horizontal circulation to represent 11% of the Cant storage rate, while overturning circulation is the main driver (48% of the Cant storage rate). Within the domain of this study, overturning circulation is a key mechanism by which Cant in the upper layer (0-500 dbar) is drawdown (74 ± 14 kmol s-1) to intermediate levels (500-2000 dbar), and entrained (37 ± 7 kmol s-1) into the Mediterranean Outflow Water to form Mediterranean Water. This newly formed water mass partly exports Cant to the North Atlantic at a rate of -39 ± 9 kmol s-1 and partly contributes to the Cant storage in the North-East Atlantic (with up to 0.015 ± 0.006 Pg-C yr-1). Closing the Cant budget, 40% of the Cant storage in the North-East Atlantic is attributable to anthropogenic CO2 uptake from the atmosphere (21 ± 10 kmol s-1).

  14. Marine radiocarbon reservoir corrections (∆R) for Chesapeake Bay and the Middle Atlantic Coast of North America

    NASA Astrophysics Data System (ADS)

    Rick, Torben C.; Henkes, Gregory A.; Lowery, Darrin L.; Colman, Steven M.; Culleton, Brendan J.

    2012-01-01

    Radiocarbon dates from known age, pre-bomb eastern oyster (Crassostrea virginica) shells provide local marine reservoir corrections (∆R) for Chesapeake Bay and the Middle Atlantic coastal area of eastern North America. These data suggest subregional variability in ∆R, ranging from 148 ± 46 14C yr on the Potomac River to - 109 ± 38 14C yr at Swan Point, Maryland. The ∆R weighted mean for the Chesapeake's Western Shore (129 ± 22 14C yr) is substantially higher than the Eastern Shore (- 88 ± 23 14C yr), with outer Atlantic Coast samples falling between these values (106 ± 46 and 2 ± 46 14C yr). These differences may result from a combination of factors, including 14C-depleted freshwater that enters the bay from some if its drainages, 14C-depleted seawater that enters the bay at its mouth, and/or biological carbon recycling. We advocate using different subregional ∆R corrections when calibrating 14C dates on aquatic specimens from the Chesapeake Bay and coastal Middle Atlantic region of North America.

  15. Introduction to: Atlantic Meridional Overturning Circulation(AMOC)

    NASA Technical Reports Server (NTRS)

    Hakkinen, Sirpa; Carton, James A.

    2011-01-01

    A striking conclusion of the Intergovernmental Panel on Climate Change 2007 report is the crucial role that the Atlantic Meridional Overturning Circulation (AMOC) may play in anthropogenic climate change. However, these IPCC coupled climate simulations show a broad range of uncertainty in the magnitude and timing of AMOC transport change ranging from none to nearly complete collapse within the 21st century. The potential consequences of large changes in the characteristics of AMOC have motivated the creation in the United States of an interagency program and implementation plan to develop monitoring and prediction capabilities for the AMOC This program parallels the development of substantial monitoring efforts by European, South American and African countries -- notably the UK Rapid and Rapid-Watch programs. The papers contained in this volume are derived from presentations at the First U.S. Atlantic Meridional Overturning Circulation (AMOC) Meeting held 4 - 6 May, 2009 to review the US implementation plan and its coordination with other monitoring activities. The Atlantic Meridional Overturning Circulation consists of multiple components illustrated in an attached figure. Water enters the South Atlantic at upper and intermediate depths through both western and eastern routes (where eddy transport is especially important) and is transported northward across the equator, where it recirculates within the northern subtropical and subpolar gyres. The northern end is defined by the sinking regions of the Nordic Seas and the Labrador Sea where the waters that eventually form the upper and lower branches of North Atlantic Deep Water are conditioned. High surface salinities, the result of high net evaporation in the tropics and subtropics (including the Mediterranean Sea), and presence of regions of the Arctic Ocean that remain ice-free even in winter allow for the rapid cooling and thus densification of surface water. This dense surface water becomes the source of deep

  16. Investigators share improved understanding of the North American carbon cycle

    Treesearch

    Richard A. Birdsey; Robert Cook; Scott Denning; Peter Griffith; Beverly Law; Jeffrey Masek; Anna Michalak; Stephen Ogle; Dennis Ojima; Yude Pan; Christopher Sabine; Edwin Sheffner; Eric Sundquist

    2007-01-01

    The U.S. North American Carbon Program (NACP) sponsored an "all-scientist" meeting to review progress in understanding the dynamics of the carbon cycle of North American and adjacent oceans, and to chart a course for improved integration across scientifi c disciplines, scales, and Earth system boundaries. The meeting participants also addressed the need for...

  17. Reconstructing Late Holocene North Atlantic atmospheric circulation changes using functional paleoclimate networks

    NASA Astrophysics Data System (ADS)

    Franke, Jasper G.; Werner, Johannes P.; Donner, Reik V.

    2017-11-01

    Obtaining reliable reconstructions of long-term atmospheric circulation changes in the North Atlantic region presents a persistent challenge to contemporary paleoclimate research, which has been addressed by a multitude of recent studies. In order to contribute a novel methodological aspect to this active field, we apply here evolving functional network analysis, a recently developed tool for studying temporal changes of the spatial co-variability structure of the Earth's climate system, to a set of Late Holocene paleoclimate proxy records covering the last two millennia. The emerging patterns obtained by our analysis are related to long-term changes in the dominant mode of atmospheric circulation in the region, the North Atlantic Oscillation (NAO). By comparing the time-dependent inter-regional linkage structures of the obtained functional paleoclimate network representations to a recent multi-centennial NAO reconstruction, we identify co-variability between southern Greenland, Svalbard, and Fennoscandia as being indicative of a positive NAO phase, while connections from Greenland and Fennoscandia to central Europe are more pronounced during negative NAO phases. By drawing upon this correspondence, we use some key parameters of the evolving network structure to obtain a qualitative reconstruction of the NAO long-term variability over the entire Common Era (last 2000 years) using a linear regression model trained upon the existing shorter reconstruction.

  18. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities.

    PubMed

    Barton, Andrew D; Irwin, Andrew J; Finkel, Zoe V; Stock, Charles A

    2016-03-15

    Anthropogenic climate change has shifted the biogeography and phenology of many terrestrial and marine species. Marine phytoplankton communities appear sensitive to climate change, yet understanding of how individual species may respond to anthropogenic climate change remains limited. Here, using historical environmental and phytoplankton observations, we characterize the realized ecological niches for 87 North Atlantic diatom and dinoflagellate taxa and project changes in species biogeography between mean historical (1951-2000) and future (2051-2100) ocean conditions. We find that the central positions of the core range of 74% of taxa shift poleward at a median rate of 12.9 km per decade (km⋅dec(-1)), and 90% of taxa shift eastward at a median rate of 42.7 km⋅dec(-1) The poleward shift is faster than previously reported for marine taxa, and the predominance of longitudinal shifts is driven by dynamic changes in multiple environmental drivers, rather than a strictly poleward, temperature-driven redistribution of ocean habitats. A century of climate change significantly shuffles community composition by a basin-wide median value of 16%, compared with seasonal variations of 46%. The North Atlantic phytoplankton community appears poised for marked shift and shuffle, which may have broad effects on food webs and biogeochemical cycles.

  19. Marine biogenic source of atmospheric organic nitrogen in the subtropical North Atlantic

    PubMed Central

    Altieri, Katye E.; Fawcett, Sarah E.; Peters, Andrew J.; Sigman, Daniel M.; Hastings, Meredith G.

    2016-01-01

    Global models estimate that the anthropogenic component of atmospheric nitrogen (N) deposition to the ocean accounts for up to a third of the ocean’s external N supply and 10% of anthropogenic CO2 uptake. However, there are few observational constraints from the marine atmospheric environment to validate these findings. Due to the paucity of atmospheric organic N data, the largest uncertainties related to atmospheric N deposition are the sources and cycling of organic N, which is 20–80% of total N deposition. We studied the concentration and chemical composition of rainwater and aerosol organic N collected on the island of Bermuda in the western North Atlantic Ocean over 18 mo. Here, we show that the water-soluble organic N concentration ([WSON]) in marine aerosol is strongly correlated with surface ocean primary productivity and wind speed, suggesting a marine biogenic source for aerosol WSON. The chemical composition of high-[WSON] aerosols also indicates a primary marine source. We find that the WSON in marine rain is compositionally different from that in concurrently collected aerosols, suggesting that in-cloud scavenging (as opposed to below-cloud “washout”) is the main contributor to rain WSON. We conclude that anthropogenic activity is not a significant source of organic N to the marine atmosphere over the North Atlantic, despite downwind transport from large pollution sources in North America. This, in conjunction with previous work on ammonium and nitrate, leads to the conclusion that only 27% of total N deposition to the global ocean is anthropogenic, in contrast to the 80% estimated previously. PMID:26739561

  20. Deep-Sea coral evidence for rapid change in ventilation of the deep north atlantic 15,400 years Ago

    PubMed

    Adkins; Cheng; Boyle; Druffel; Edwards

    1998-05-01

    Coupled radiocarbon and thorium-230 dates from benthic coral species reveal that the ventilation rate of the North Atlantic upper deep water varied greatly during the last deglaciation. Radiocarbon ages in several corals of the same age, 15.41 +/- 0.17 thousand years, and nearly the same depth, 1800 meters, in the western North Atlantic Ocean increased by as much as 670 years during the 30- to 160-year life spans of the samples. Cadmium/calcium ratios in one coral imply that the nutrient content of these deep waters also increased. Our data show that the deep ocean changed on decadal-centennial time scales during rapid changes in the surface ocean and the atmosphere.