Science.gov

Sample records for northeast artificial intelligence

  1. Northeast Artificial Intelligence Consortium Annual Report for 1987. Volume 7. Parallel, Structural, and Optimal Techniques in Vision

    DTIC Science & Technology

    1989-03-01

    RADC-TR-88-324, Vol VII (of nine), Part B Interim ReportMarch 1969 AD-A208 611 NORTHEAST ARTIFICIAL INTELLIGENCE CONSORTIUM ANNUAL REPORT 1987...Northeast Artificial (If applicable) Rome Air Development Center (IRRE) Intelligence Consortium (NAIC) I 6c. ADDRESS (City, State, and ZIP Code) 7b...62702F 4594 18 E2 11. TITLE (Include Security Classification) NORTHEAST ARTIFICIAL INTELLIGENCE CONSORTIUM ANNUAL REPORT,1987 Parallel, Structural, and

  2. Northeast Artificial Intelligence Consortium (NAIC). Volume 4. Distributed artificial intelligence for communications network management. Final report, Sep 84-Dec 89

    SciTech Connect

    Meyer, R.A.; Conry, S.E.

    1990-12-01

    The Northeast Artificial Intelligence Consortium (NAIC) was created by the Air Force Systems Command, Rome Air Development Center, and the office of Scientific Research. Its purpose was to conduct pertinent research in artificial intelligence and to perform activities ancillary to this research. This report describes progress during the existence of the NAIC on the technical research tasks undertaken at the member universities. The topics covered in general are: versatile expert system for equipment maintenance, distributed AI for communications system control, automatic photointerpretation, time-oriented problem solving, speech understanding systems, knowledge base maintenance, hardware architectures for very large systems, knowledge based reasoning and planning, and a knowledge acquisition, assistance, and explanation system. The specific topic for this volume is the use of knowledge based systems for communications network management and control via an architecture for a diversely distributed multi-agent system.

  3. Artificial Intelligence.

    ERIC Educational Resources Information Center

    Waltz, David L.

    1982-01-01

    Describes kinds of results achieved by computer programs in artificial intelligence. Topics discussed include heuristic searches, artificial intelligence/psychology, planning program, backward chaining, learning (focusing on Winograd's blocks to explore learning strategies), concept learning, constraint propagation, language understanding…

  4. Artificial Intelligence.

    ERIC Educational Resources Information Center

    Information Technology Quarterly, 1985

    1985-01-01

    This issue of "Information Technology Quarterly" is devoted to the theme of "Artificial Intelligence." It contains two major articles: (1) Artificial Intelligence and Law" (D. Peter O'Neill and George D. Wood); (2) "Artificial Intelligence: A Long and Winding Road" (John J. Simon, Jr.). In addition, it contains two sidebars: (1) "Calculating and…

  5. Artificial Intelligence.

    ERIC Educational Resources Information Center

    Thornburg, David D.

    1986-01-01

    Overview of the artificial intelligence (AI) field provides a definition; discusses past research and areas of future research; describes the design, functions, and capabilities of expert systems and the "Turing Test" for machine intelligence; and lists additional sources for information on artificial intelligence. Languages of AI are…

  6. Artificial Intelligence,

    DTIC Science & Technology

    PATTERN RECOGNITION, * ARTIFICIAL INTELLIGENCE , *TEXTBOOKS, COMPUTER PROGRAMMING, MATHEMATICAL LOGIC, ROBOTS, PROBLEM SOLVING, STATISTICAL ANALYSIS, GAME THEORY, NATURAL LANGUAGE, SELF ORGANIZING SYSTEMS.

  7. Northeast Artificial Intelligence Consortium annual report 1986. Volume 3. Distributed artificial intelligence for communication network management. Interim report, January-December 1986

    SciTech Connect

    Meyer, R.A.; Conry, S.E.

    1988-06-01

    The Northeast Consortium conducts pertinent research in artificial intelligence and performs activities ancillary to this research. This report describes progress made in the second year of the existence of the consortium on the technical research tasks undertaken at the member universities. The topics covered in general are: versatile expert system for equipment maintenance, distributed AI for communications system control, automatic photo interpretation, time-oriented problem solving, speech-understanding systems, knowledge-base maintenance, hardware architectures for very large systems, knowledge-based reasoning and planning, and a knowledge acquisition, assistance and explanation system. The specific topic for this volume is the use of knowledge-based systems for communications network management and control via an architecture for a diversely distributed multi-agent system.

  8. Artificial Intelligence.

    PubMed

    Lawrence, David R; Palacios-González, César; Harris, John

    2016-04-01

    It seems natural to think that the same prudential and ethical reasons for mutual respect and tolerance that one has vis-à-vis other human persons would hold toward newly encountered paradigmatic but nonhuman biological persons. One also tends to think that they would have similar reasons for treating we humans as creatures that count morally in our own right. This line of thought transcends biological boundaries-namely, with regard to artificially (super)intelligent persons-but is this a safe assumption? The issue concerns ultimate moral significance: the significance possessed by human persons, persons from other planets, and hypothetical nonorganic persons in the form of artificial intelligence (AI). This article investigates why our possible relations to AI persons could be more complicated than they first might appear, given that they might possess a radically different nature to us, to the point that civilized or peaceful coexistence in a determinate geographical space could be impossible to achieve.

  9. Northeast Artificial Intelligence Consortium Annual Report 1986. Volume 4. Part A. Hierarchical Region-Based Approach to Automatic Photointerpretation. Part B. Application of AI Techniques to Image Segmentation and Region Identification

    DTIC Science & Technology

    1988-01-01

    MONITORING ORGANIZATION Northeast Artificial (If applicaole)nelincCostum(AcRome Air Development Center (COCU) Inteligence Consortium (NAIC)I 6c. ADDRESS...f, Offell RADC-TR-88-1 1, Vol IV (of eight) Interim Technical ReportS June 1988 NORTHEAST ARTIFICIAL INTELLIGENCE CONSORTIUM ANNUAL REPORT 1986...13441-5700 EMENT NO NO NO ACCESSION NO62702F 5 8 71 " " over) I 58 27 13 " ൓ TITLE (Include Security Classification) NORTHEAST ARTIFICIAL INTELLIGENCE

  10. Artificial Intelligence and Robotics.

    DTIC Science & Technology

    1984-02-01

    D-Ai42 488 ARTIFICIAL INEELLIGENCE AND ROBOTICS (U) MASSACHUSETTS i/1 INST OF TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB M BRADY FEB 84 AI-M-756...Subtile) S. TYPE OF REPORT A PERIOD COVERED Artificial Intelligence and Robotics 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(*) S. CONTRACT OR GRANT NUMBER...Identify by block niiniber) -. Since Robotics is the field concerned with the connection of perception to action, Artificial Intelligence must have a

  11. Northeast Artificial Intelligence Consortium annual report - 1988. Volume 4. Distributed AI for communications network management. Interim report, January-December 1988

    SciTech Connect

    Meyer, R.A.; Conry, S.E.

    1989-10-01

    The Northeast Artificial Intelligence Consortium (NAIC) was created by the Air Force Systems Command, Rome Air Development Center, and the Office of Scientific Research. Its purpose is to conduct pertinent research in artificial intelligence and to perform activities ancillary to this research. This report describes progress that has been made in the fourth year of the existence of the NAIC on the technical research tasks undertaken at the member universities. The topics covered in general are: versatile expert system for equipment maintenance, distributed AI for communications system control, automatic photointerpretation, time-oriented problem solving, speech understanding systems, knowledge-based reasoning and planning, knowledge base maintenance, hardware architectures for very large systems, and a knowledge acquisition, assistance, and explanation system. The specific topic for this volume is the use of knowledge-based systems for communications network management and control via an architecture for a diversely distributed multi-agent system.

  12. Intelligence: Real or artificial?

    PubMed Central

    Schlinger, Henry D.

    1992-01-01

    Throughout the history of the artificial intelligence movement, researchers have strived to create computers that could simulate general human intelligence. This paper argues that workers in artificial intelligence have failed to achieve this goal because they adopted the wrong model of human behavior and intelligence, namely a cognitive essentialist model with origins in the traditional philosophies of natural intelligence. An analysis of the word “intelligence” suggests that it originally referred to behavior-environment relations and not to inferred internal structures and processes. It is concluded that if workers in artificial intelligence are to succeed in their general goal, then they must design machines that are adaptive, that is, that can learn. Thus, artificial intelligence researchers must discard their essentialist model of natural intelligence and adopt a selectionist model instead. Such a strategic change should lead them to the science of behavior analysis. PMID:22477051

  13. STANFORD ARTIFICIAL INTELLIGENCE PROJECT.

    DTIC Science & Technology

    ARTIFICIAL INTELLIGENCE , GAME THEORY, DECISION MAKING, BIONICS, AUTOMATA, SPEECH RECOGNITION, GEOMETRIC FORMS, LEARNING MACHINES, MATHEMATICAL MODELS, PATTERN RECOGNITION, SERVOMECHANISMS, SIMULATION, BIBLIOGRAPHIES.

  14. Artificial intelligence: Recent developments

    SciTech Connect

    Not Available

    1987-01-01

    This book presents the papers given at a conference on artificial intelligence. Topics considered at the conference included knowledge representation for expert systems, the use of robots in underwater vehicles for resource management, precision logic, an expert system for arc welding, data base management, a knowledge based approach to fault trees, and computer-aided manufacturing using simulation combined with artificial intelligence.

  15. Heidegger and artificial intelligence

    SciTech Connect

    Diaz, G.

    1987-01-01

    The discipline of Artificial Intelligence, in its quest for machine intelligence, showed great promise as long as its areas of application were limited to problems of a scientific and situation neutral nature. The attempts to move beyond these problems to a full simulation of man's intelligence has faltered and slowed it progress, largely because of the inability of Artificial Intelligence to deal with human characteristic, such as feelings, goals, and desires. This dissertation takes the position that an impasse has resulted because Artificial Intelligence has never been properly defined as a science: its objects and methods have never been identified. The following study undertakes to provide such a definition, i.e., the required ground for Artificial Intelligence. The procedure and methods employed in this study are based on Heidegger's philosophy and techniques of analysis as developed in Being and Time. Results of this study show that both the discipline of Artificial Intelligence and the concerns of Heidegger in Being and Time have the same object; fundamental ontology. The application of Heidegger's conclusions concerning fundamental ontology unites the various aspects of Artificial Intelligence and provides the articulation which shows the parts of this discipline and how they are related.

  16. Artificial Intelligence and Robotics.

    DTIC Science & Technology

    1982-09-20

    8217’AD-A122 414 ARTIFICIAL INTELLIGENCE AND ROBOTICS (.) ARMY SCIENCE 1/j 13OARD WA SH INGTON Od I C PEDEN ET AL. 20 SEP 82 UNCLASSIFIED F/G 15/3 NL LEE...AND ACQUISITION WASHINGTON, D. C. 20310 A RMY CIENCE BOARD AD HOC SUBGROUP REPORT ON ARTIFICIAL INTELLIGENCE AND ROBOTICS SEPTEMBER 1982 DTIC DEC 1 5...TITLE (aid Subtitle) S TYPE OF REPORT & PERIOD COVERED Army Science Board AHSG Report Final Artificial Intelligence and Robotics S. PERFORMING ORG

  17. Bibliography: Artificial Intelligence.

    ERIC Educational Resources Information Center

    Smith, Richard L.

    1986-01-01

    Annotates reference material on artificial intelligence, mostly at an introductory level, with applications to education and learning. Topics include: (1) programing languages; (2) expert systems; (3) language instruction; (4) tutoring systems; and (5) problem solving and reasoning. (JM)

  18. Introduction to artificial intelligence

    NASA Technical Reports Server (NTRS)

    Cheeseman, P.; Gevarter, W.

    1986-01-01

    This paper presents an introductory view of Artificial Intelligence (AI). In addition to defining AI, it discusses the foundations on which it rests, research in the field, and current and potential applications.

  19. Artificial intelligence: Human effects

    SciTech Connect

    Yazdani, M.; Narayanan, A.

    1984-01-01

    This book presents an up-to-date study of the interaction between the fast-growing discipline of artificial intelligence and other human endeavors. The volume explores the scope and limitations of computing, and presents a history of the debate on the possibility of machines achieving intelligence. The authors offer a state-of-the-art survey of Al, concentrating on the ''mind'' (language understanding) and the ''body'' (robotics) of intelligent computing systems.

  20. Artificial intelligence in nanotechnology.

    PubMed

    Sacha, G M; Varona, P

    2013-11-15

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines.

  1. Artificial intelligence in nanotechnology

    NASA Astrophysics Data System (ADS)

    Sacha, G. M.; Varona, P.

    2013-11-01

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines.

  2. Introducing artificial intelligence

    SciTech Connect

    Simons, G.L.

    1985-01-01

    This book is an introduction to the field of artificial intelligence. The volume sets Al in a broad context of historical attitudes, imaginative insights, and ideas about intelligence in general. The author offers a wide-ranging survey of Al concerns, including cognition, knowledge engineering, problem inference, speech understanding, and perception. He also discusses expert systems, LISP, smart robots, and other Al products, and provides a listing of all major Al systems.

  3. Web Intelligence and Artificial Intelligence in Education

    ERIC Educational Resources Information Center

    Devedzic, Vladan

    2004-01-01

    This paper surveys important aspects of Web Intelligence (WI) in the context of Artificial Intelligence in Education (AIED) research. WI explores the fundamental roles as well as practical impacts of Artificial Intelligence (AI) and advanced Information Technology (IT) on the next generation of Web-related products, systems, services, and…

  4. Artificial intelligence and robotics

    SciTech Connect

    Peden, I.C.; Braddock, J.V.; Brown, W.; Langendorf, R.M.

    1982-09-01

    This report examines the state-of-the-art in artificial intelligence and robotics technologies and their potential in terms of Army needs. Assessment includes battlefield technology, research and technology insertions, management considerations and recommendations related to research and development personnel, and recommendations regarding the Army's involvement in the automated plant.

  5. Artificial intelligence. Second edition

    SciTech Connect

    Winston, P.H.

    1984-01-01

    This book introduces the basic concepts of the field of artificial intelligence. It contains material covering the latest advances in control, representation, language, vision, and problem solving. Problem solving in design and analysis systems is addressed. Mitcell's version-space learning procedure, Morevec's reduced-images stereo procedure, and the Strips problem solver are covered.

  6. Artificial Intelligence and CALL.

    ERIC Educational Resources Information Center

    Underwood, John H.

    The potential application of artificial intelligence (AI) to computer-assisted language learning (CALL) is explored. Two areas of AI that hold particular interest to those who deal with language meaning--knowledge representation and expert systems, and natural-language processing--are described and examples of each are presented. AI contribution…

  7. Artificial Intelligence Project

    DTIC Science & Technology

    1990-01-01

    Computer Science, New Delhi, India , December 1986. (Also University of Texas, Artificial Intelligence Laboratory AITR-41, August 1987). Kumar, V. and...the Tenth ICAI ) A187-55 Expert Systems for Monitoring and Control, D. Dvorak, May 1987. Many large-scale industrial processes and services are

  8. Artificial intelligence and psychiatry.

    PubMed

    Servan-Schreiber, D

    1986-04-01

    This paper provides a brief historical introduction to the new field of artificial intelligence and describes some applications to psychiatry. It focuses on two successful programs: a model of paranoid processes and an expert system for the pharmacological management of depressive disorders. Finally, it reviews evidence in favor of computerized psychotherapy and offers speculations on the future development of research in this area.

  9. Artificial intelligence within AFSC

    NASA Technical Reports Server (NTRS)

    Gersh, Mark A.

    1990-01-01

    Information on artificial intelligence research in the Air Force Systems Command is given in viewgraph form. Specific research that is being conducted at the Rome Air Development Center, the Space Technology Center, the Human Resources Laboratory, the Armstrong Aerospace Medical Research Laboratory, the Armamant Laboratory, and the Wright Research and Development Center is noted.

  10. Instructional Applications of Artificial Intelligence.

    ERIC Educational Resources Information Center

    Halff, Henry M.

    1986-01-01

    Surveys artificial intelligence and the development of computer-based tutors and speculates on the future of artificial intelligence in education. Includes discussion of the definitions of knowledge, expert systems (computer systems that solve tough technical problems), intelligent tutoring systems (ITS), and specific ITSs such as GUIDON, MYCIN,…

  11. THRESHOLD LOGIC IN ARTIFICIAL INTELLIGENCE

    DTIC Science & Technology

    COMPUTER LOGIC, ARTIFICIAL INTELLIGENCE , BIONICS, GEOMETRY, INPUT OUTPUT DEVICES, LINEAR PROGRAMMING, MATHEMATICAL LOGIC, MATHEMATICAL PREDICTION, NETWORKS, PATTERN RECOGNITION, PROBABILITY, SWITCHING CIRCUITS, SYNTHESIS

  12. Artificial intelligence in medicine.

    PubMed

    Hamet, Pavel; Tremblay, Johanne

    2017-04-01

    Artificial Intelligence (AI) is a general term that implies the use of a computer to model intelligent behavior with minimal human intervention. AI is generally accepted as having started with the invention of robots. The term derives from the Czech word robota, meaning biosynthetic machines used as forced labor. In this field, Leonardo Da Vinci's lasting heritage is today's burgeoning use of robotic-assisted surgery, named after him, for complex urologic and gynecologic procedures. Da Vinci's sketchbooks of robots helped set the stage for this innovation. AI, described as the science and engineering of making intelligent machines, was officially born in 1956. The term is applicable to a broad range of items in medicine such as robotics, medical diagnosis, medical statistics, and human biology-up to and including today's "omics". AI in medicine, which is the focus of this review, has two main branches: virtual and physical. The virtual branch includes informatics approaches from deep learning information management to control of health management systems, including electronic health records, and active guidance of physicians in their treatment decisions. The physical branch is best represented by robots used to assist the elderly patient or the attending surgeon. Also embodied in this branch are targeted nanorobots, a unique new drug delivery system. The societal and ethical complexities of these applications require further reflection, proof of their medical utility, economic value, and development of interdisciplinary strategies for their wider application.

  13. Artificial Intelligence and Language Comprehension.

    ERIC Educational Resources Information Center

    National Inst. of Education (DHEW), Washington, DC. Basic Skills Group. Learning Div.

    The three papers in this volume concerning artificial intelligence and language comprehension were commissioned by the National Institute of Education to further the understanding of the cognitive processes that enable people to comprehend what they read. The first paper, "Artificial Intelligence and Language Comprehension," by Terry Winograd,…

  14. In Pursuit of Artificial Intelligence.

    ERIC Educational Resources Information Center

    Watstein, Sarah; Kesselman, Martin

    1986-01-01

    Defines artificial intelligence and reviews current research in natural language processing, expert systems, and robotics and sensory systems. Discussion covers current commercial applications of artificial intelligence and projections of uses and limitations in library technical and public services, e.g., in cataloging and online information and…

  15. A Primer on Artificial Intelligence.

    ERIC Educational Resources Information Center

    Leal, Ralph A.

    A survey of literature on recent advances in the field of artificial intelligence provides a comprehensive introduction to this field for the non-technical reader. Important areas covered are: (1) definitions, (2) the brain and thinking, (3) heuristic search, and (4) programing languages used in the research of artificial intelligence. Some…

  16. What Is Artificial Intelligence Anyway?

    ERIC Educational Resources Information Center

    Kurzweil, Raymond

    1985-01-01

    Examines the past, present, and future status of Artificial Intelligence (AI). Acknowledges the limitations of AI but proposes possible areas of application and further development. Urges a concentration on the unique strengths of machine intelligence rather than a copying of human intelligence. (ML)

  17. Artificial Intelligence in Space Platforms.

    DTIC Science & Technology

    1984-12-01

    computer algorithms, there still appears to be a need for Artificial Inteligence techniques in the navigation area. The reason is that navigaion, in...RD-RI32 679 ARTIFICIAL INTELLIGENCE IN SPACE PLRTFORNSMU AIR FORCE 1/𔃼 INST OF TECH WRIGHT-PRTTERSON AFB OH SCHOOL OF ENGINEERING M A WRIGHT DEC 94...i4 Preface The purpose of this study was to analyze the feasibility of implementing Artificial Intelligence techniques to increase autonomy for

  18. Artificial intelligence: Principles and applications

    SciTech Connect

    Yazdami, M.

    1985-01-01

    The book covers the principles of AI, the main areas of application, as well as considering some of the social implications. The applications chapters have a common format structured as follows: definition of the topic; approach with conventional computing techniques; why 'intelligence' would provide a better approach; and how AI techniques would be used and the limitations. The contents discussed are: Principles of artificial intelligence; AI programming environments; LISP, list processing and pattern-making; AI programming with POP-11; Computer processing of natural language; Speech synthesis and recognition; Computer vision; Artificial intelligence and robotics; The anatomy of expert systems - Forsyth; Machine learning; Memory models of man and machine; Artificial intelligence and cognitive psychology; Breaking out of the chinese room; Social implications of artificial intelligence; and Index.

  19. Artificial intelligence in hematology.

    PubMed

    Zini, Gina

    2005-10-01

    Artificial intelligence (AI) is a computer based science which aims to simulate human brain faculties using a computational system. A brief history of this new science goes from the creation of the first artificial neuron in 1943 to the first artificial neural network application to genetic algorithms. The potential for a similar technology in medicine has immediately been identified by scientists and researchers. The possibility to store and process all medical knowledge has made this technology very attractive to assist or even surpass clinicians in reaching a diagnosis. Applications of AI in medicine include devices applied to clinical diagnosis in neurology and cardiopulmonary diseases, as well as the use of expert or knowledge-based systems in routine clinical use for diagnosis, therapeutic management and for prognostic evaluation. Biological applications include genome sequencing or DNA gene expression microarrays, modeling gene networks, analysis and clustering of gene expression data, pattern recognition in DNA and proteins, protein structure prediction. In the field of hematology the first devices based on AI have been applied to the routine laboratory data management. New tools concern the differential diagnosis in specific diseases such as anemias, thalassemias and leukemias, based on neural networks trained with data from peripheral blood analysis. A revolution in cancer diagnosis, including the diagnosis of hematological malignancies, has been the introduction of the first microarray based and bioinformatic approach for molecular diagnosis: a systematic approach based on the monitoring of simultaneous expression of thousands of genes using DNA microarray, independently of previous biological knowledge, analysed using AI devices. Using gene profiling, the traditional diagnostic pathways move from clinical to molecular based diagnostic systems.

  20. Interdisciplinary Study on Artificial Intelligence.

    DTIC Science & Technology

    1983-07-01

    systems, uiophysics of information processing, cognitive science, and traditional artificial intelligence. The objective behi d this objective was to...information processing, cognitive science, and traditional * artificial intelligence. The objective behind this objective was to provide a vehicle for reviewing...Another departure from ’classical’ neurodynamics must be sought in the strong coupling between the micro and macroscopic scales. No other physical mechanism

  1. Artificial Intelligence and Its Importance in Education.

    ERIC Educational Resources Information Center

    Tilmann, Martha J.

    Artificial intelligence, or the study of ideas that enable computers to be intelligent, is discussed in terms of what it is, what it has done, what it can do, and how it may affect the teaching of tomorrow. An extensive overview of artificial intelligence examines its goals and applications and types of artificial intelligence including (1) expert…

  2. Computational aerodynamics and artificial intelligence

    NASA Technical Reports Server (NTRS)

    Mehta, U. B.; Kutler, P.

    1984-01-01

    The general principles of artificial intelligence are reviewed and speculations are made concerning how knowledge based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use expert systems, and how expert systems may speed the design and development process. In addition, the anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements for using artificial intelligence in computational fluid dynamics and aerodynamics are examined. Three main conclusions are presented. First, there are two related aspects of computational aerodynamics: reasoning and calculating. Second, a substantial portion of reasoning can be achieved with artificial intelligence. It offers the opportunity of using computers as reasoning machines to set the stage for efficient calculating. Third, expert systems are likely to be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.

  3. Training Applications of Artificial Intelligence.

    DTIC Science & Technology

    1987-03-23

    nearifest tLer,sclvCs in ELO r operatii.L costs in the life C’VclE Of the ef’uijjteft. E F re\\ lously rcntione6 ey~ arrle of usingF the 1lirefineer...Ibid., p. 35. 4. Avron Barr and Edward Feigenbaum, The Handbook of Artificial Intelligence, Vol. 1, p. 2. 5. Wissam W. Ahmed, "Theories of Artificial...Barr, Avron and Geigenbaum, Edward A. ed. The Handbook of Arti- ficial Intelligence. Vol. 1. Stanford: heuristech Press. 1981. Gevartner, William B

  4. Artificial Intelligence Databases: A Survey and Comparison.

    ERIC Educational Resources Information Center

    Stern, David

    1990-01-01

    Identifies and describes online databases containing references to materials on artificial intelligence, robotics, and expert systems, and compares them in terms of scope and usage. Recommendations for conducting online searches on artificial intelligence and related fields are offered. (CLB)

  5. Introducing artificial intelligence

    SciTech Connect

    Simons, G.L.

    1984-01-01

    This book describes the background to AI, explores some characteristic objectives and methods, and indicates some of the practical ramifications for expert, robotic and other types of systems. Following a brief discussion of the nature of intelligence, the recent history of AI is outlined. Characteristic activities of AI systems are explored in Part II. Here it is emphasized that AI systems are not only concerned with ''thought'' but with ''action''-it is an obvious requirement of intelligent commercial and other systems that they behave with competence in a real-world environment. Finally some of the current and future uses of AI systems are explored.

  6. Applications of artificial intelligence III

    SciTech Connect

    Gilmore, J.F.

    1986-01-01

    This book presents the papers given at a conference on expert systems and artificial intelligence. Topics considered at the conference included an expert system for computer performance management, real-time image understanding, knowledge-based systems, textured image segmentation, knowledge representation, pattern recognition, robotics, and the computer-aided design of integrated circuits.

  7. Engineering for Artificial Intelligence Software

    DTIC Science & Technology

    1990-12-01

    CLIPS User’s Guide. Artificial Intelligence Center, Lyndon B. Johnson Space Center, .June 1988. Version 4.2 of CLIPS; [12] Allen Ginsberg . A new...Washington, DC, October 1987. IEEE Computer Society. [13] Allen Ginsberg . Knowledge-base reduction: A new approach to check- ing knowledge-bases for

  8. Artificial Intelligence Assists Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Schaefer, Lloyd A.; Willenberg, James D.

    1992-01-01

    Subtle indications of flaws extracted from ultrasonic waveforms. Ultrasonic-inspection system uses artificial intelligence to help in identification of hidden flaws in electron-beam-welded castings. System involves application of flaw-classification logic to analysis of ultrasonic waveforms.

  9. Thinking, Creativity, and Artificial Intelligence.

    ERIC Educational Resources Information Center

    DeSiano, Michael; DeSiano, Salvatore

    This document provides an introduction to the relationship between the current knowledge of focused and creative thinking and artificial intelligence. A model for stages of focused and creative thinking gives: problem encounter/setting, preparation, concentration/incubation, clarification/generation and evaluation/judgment. While a computer can…

  10. Artificial Intelligence: The Expert Way.

    ERIC Educational Resources Information Center

    Bitter, Gary G.

    1989-01-01

    Discussion of artificial intelligence (AI) and expert systems focuses on their use in education. Characteristics of good expert systems are explained; computer software programs that contain applications of AI are described, highlighting one used to help educators identify learning-disabled students; and the future of AI is discussed. (LRW)

  11. Artificial Intelligence and Expert Systems.

    ERIC Educational Resources Information Center

    Lawlor, Joseph

    Artificial intelligence (AI) is the field of scientific inquiry concerned with designing machine systems that can simulate human mental processes. The field draws upon theoretical constructs from a wide variety of disciplines, including mathematics, psychology, linguistics, neurophysiology, computer science, and electronic engineering. Some of the…

  12. Artificial intelligence and the future.

    PubMed

    Clocksin, William F

    2003-08-15

    We consider some of the ideas influencing current artificial-intelligence research and outline an alternative conceptual framework that gives priority to social relationships as a key component and constructor of intelligent behaviour. The framework starts from Weizenbaum's observation that intelligence manifests itself only relative to specific social and cultural contexts. This is in contrast to a prevailing view, which sees intelligence as an abstract capability of the individual mind based on a mechanism for rational thought. The new approach is not based on the conventional idea that the mind is a rational processor of symbolic information, nor does it require the idea that thought is a kind of abstract problem solving with a semantics that is independent of its embodiment. Instead, priority is given to affective and social responses that serve to engage the whole agent in the life of the communities in which it participates. Intelligence is seen not as the deployment of capabilities for problem solving, but as constructed by the continual, ever-changing and unfinished engagement with the social group within the environment. The construction of the identity of the intelligent agent involves the appropriation or 'taking up' of positions within the conversations and narratives in which it participates. Thus, the new approach argues that the intelligent agent is shaped by the meaning ascribed to experience, by its situation in the social matrix, and by practices of self and of relationship into which intelligent life is recruited. This has implications for the technology of the future, as, for example, classic artificial intelligence models such as goal-directed problem solving are seen as special cases of narrative practices instead of as ontological foundations.

  13. Artificial Intelligence Study (AIS).

    DTIC Science & Technology

    1987-02-01

    ARTIFICIAL INTELLIGNECE HARDWARE ....... 2-50 AI Architecture ................................... 2-49 AI Hardware ....................................... 2...Epstein (1986) has suggested that this version of PROLOG has been used for business and industrial applications in Eastern Europe. The Japanese have...have been in building expert systems in the business analysis area. Expert systems for policy and rate selection for insurance (i.e., risk analysis) and

  14. Artificial intelligence and simulation

    SciTech Connect

    Holmes, W.M.

    1985-01-01

    The research and development of AI are discussed. Papers are presented on an expert system for chemical process control, an ocean surveillance information fusion expert system, a distributed intelligence system and aircraft pilotage, a procedure for speeding innovation by transferring scientific knowledge more quickly, and syntax programming, expert systems, and real-time fault diagnosis. Consideration is given to an expert system for modeling NASA flight control room usage, simulating aphasia, a method for single neuron recognition of letters, numbers, faces, and certain types of concepts, integrating AI and control system approach, testing an expert system for manufacturing, and the human memory.

  15. Artificial intelligence: Principles and applications

    SciTech Connect

    Yazdani, M.

    1986-01-01

    Following the Japanese announcement that they intend to devise, make, and market, in the 1990s, computers incorporating a level of intelligence, a vast amount of energy and expense has been diverted at the field of Artificial Intelligence. Workers for the past 25 years in this discipline have tried to reproduce human behavior on computers and this book presents their achievements and the problems. Subjects include: computer vision, speech processing, robotics, natural language processing expert systems and machine learning. The book also attempts to show the general principles behind the various applications and finally attempts to show their implications for other human endeavors such as philosophy, psychology, and the development of modern society.

  16. Ten Problems in Artificial Intelligence.

    DTIC Science & Technology

    1987-01-01

    REPORT NUMBER -9 dVT ACCES~iIVN NO𔃻 3 RCCIPIENT’S CATALOG NUMGER 4. TITLE (and Subtile) S YEOF REPORT A PERIOO COvEREC Ten ~ .i in Arti’Ficiz1...7 AD-F1183 552 TEN PROBLEMS IN RTIFICIL INTELLIGENCE(U) VLE UNIV j’ N UN HVEN CT DEPT OF COMPUTER SCIENCE RSCHANK ET AL. JAN 8? VALEU/CSD/RR-514...IET VI Ten Problems in Artificial Intelligence Roger C. Schank Christopher C. Owens YALEU/CSD/RR #514 January 1987 I~~~. -- ’ -.... e"- . .I YALE

  17. Automated Scheduling Via Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Biefeld, Eric W.; Cooper, Lynne P.

    1991-01-01

    Artificial-intelligence software that automates scheduling developed in Operations Mission Planner (OMP) research project. Software used in both generation of new schedules and modification of existing schedules in view of changes in tasks and/or available resources. Approach based on iterative refinement. Although project focused upon scheduling of operations of scientific instruments and other equipment aboard spacecraft, also applicable to such terrestrial problems as scheduling production in factory.

  18. Innovative applications of artificial intelligence

    SciTech Connect

    Schorr, H.; Rappaport, A.

    1989-01-01

    Papers concerning applications of artificial intelligence are presented, covering applications in aerospace technology, banking and finance, biotechnology, emergency services, law, media planning, music, the military, operations management, personnel management, retail packaging, and manufacturing assembly and design. Specific topics include Space Shuttle telemetry monitoring, an intelligent training system for Space Shuttle flight controllers, an expert system for the diagnostics of manufacturing equipment, a logistics management system, a cooling systems design assistant, and a knowledge-based integrated circuit design critic. Additional topics include a hydraulic circuit design assistant, the use of a connector assembly specification expert system to harness detailed assembly process knowledge, a mixed initiative approach to airlift planning, naval battle management decision aids, an inventory simulation tool, a peptide synthesis expert system, and a system for planning the discharging and loading of container ships.

  19. Innovative applications of artificial intelligence

    NASA Astrophysics Data System (ADS)

    Schorr, Herbert; Rappaport, Alain

    Papers concerning applications of artificial intelligence are presented, covering applications in aerospace technology, banking and finance, biotechnology, emergency services, law, media planning, music, the military, operations management, personnel management, retail packaging, and manufacturing assembly and design. Specific topics include Space Shuttle telemetry monitoring, an intelligent training system for Space Shuttle flight controllers, an expert system for the diagnostics of manufacturing equipment, a logistics management system, a cooling systems design assistant, and a knowledge-based integrated circuit design critic. Additional topics include a hydraulic circuit design assistant, the use of a connector assembly specification expert system to harness detailed assembly process knowledge, a mixed initiative approach to airlift planning, naval battle management decision aids, an inventory simulation tool, a peptide synthesis expert system, and a system for planning the discharging and loading of container ships.

  20. Research and applications: Artificial intelligence

    NASA Technical Reports Server (NTRS)

    Raphael, B.; Duda, R. O.; Fikes, R. E.; Hart, P. E.; Nilsson, N. J.; Thorndyke, P. W.; Wilber, B. M.

    1971-01-01

    Research in the field of artificial intelligence is discussed. The focus of recent work has been the design, implementation, and integration of a completely new system for the control of a robot that plans, learns, and carries out tasks autonomously in a real laboratory environment. The computer implementation of low-level and intermediate-level actions; routines for automated vision; and the planning, generalization, and execution mechanisms are reported. A scenario that demonstrates the approximate capabilities of the current version of the entire robot system is presented.

  1. Advanced Artificial Intelligence Technology Testbed

    NASA Technical Reports Server (NTRS)

    Anken, Craig S.

    1993-01-01

    The Advanced Artificial Intelligence Technology Testbed (AAITT) is a laboratory testbed for the design, analysis, integration, evaluation, and exercising of large-scale, complex, software systems, composed of both knowledge-based and conventional components. The AAITT assists its users in the following ways: configuring various problem-solving application suites; observing and measuring the behavior of these applications and the interactions between their constituent modules; gathering and analyzing statistics about the occurrence of key events; and flexibly and quickly altering the interaction of modules within the applications for further study.

  2. Epistasis analysis using artificial intelligence.

    PubMed

    Moore, Jason H; Hill, Doug P

    2015-01-01

    Here we introduce artificial intelligence (AI) methodology for detecting and characterizing epistasis in genetic association studies. The ultimate goal of our AI strategy is to analyze genome-wide genetics data as a human would using sources of expert knowledge as a guide. The methodology presented here is based on computational evolution, which is a type of genetic programming. The ability to generate interesting solutions while at the same time learning how to solve the problem at hand distinguishes computational evolution from other genetic programming approaches. We provide a general overview of this approach and then present a few examples of its application to real data.

  3. Artificial Intelligence in Autonomous Telescopes

    NASA Astrophysics Data System (ADS)

    Mahoney, William; Thanjavur, Karun

    2011-03-01

    Artificial Intelligence (AI) is key to the natural evolution of today's automated telescopes to fully autonomous systems. Based on its rapid development over the past five decades, AI offers numerous, well-tested techniques for knowledge based decision making essential for real-time telescope monitoring and control, with minimal - and eventually no - human intervention. We present three applications of AI developed at CFHT for monitoring instantaneous sky conditions, assessing quality of imaging data, and a prototype for scheduling observations in real-time. Closely complementing the current remote operations at CFHT, we foresee further development of these methods and full integration in the near future.

  4. Improving designer productivity. [artificial intelligence

    NASA Technical Reports Server (NTRS)

    Hill, Gary C.

    1992-01-01

    Designer and design team productivity improves with skill, experience, and the tools available. The design process involves numerous trials and errors, analyses, refinements, and addition of details. Computerized tools have greatly speeded the analysis, and now new theories and methods, emerging under the label Artificial Intelligence (AI), are being used to automate skill and experience. These tools improve designer productivity by capturing experience, emulating recognized skillful designers, and making the essence of complex programs easier to grasp. This paper outlines the aircraft design process in today's technology and business climate, presenting some of the challenges ahead and some of the promising AI methods for meeting these challenges.

  5. Economic reasoning and artificial intelligence.

    PubMed

    Parkes, David C; Wellman, Michael P

    2015-07-17

    The field of artificial intelligence (AI) strives to build rational agents capable of perceiving the world around them and taking actions to advance specified goals. Put another way, AI researchers aim to construct a synthetic homo economicus, the mythical perfectly rational agent of neoclassical economics. We review progress toward creating this new species of machine, machina economicus, and discuss some challenges in designing AIs that can reason effectively in economic contexts. Supposing that AI succeeds in this quest, or at least comes close enough that it is useful to think about AIs in rationalistic terms, we ask how to design the rules of interaction in multi-agent systems that come to represent an economy of AIs. Theories of normative design from economics may prove more relevant for artificial agents than human agents, with AIs that better respect idealized assumptions of rationality than people, interacting through novel rules and incentive systems quite distinct from those tailored for people.

  6. Artificial Intelligence in Education: An Exploration.

    ERIC Educational Resources Information Center

    Cumming, Geoff

    1998-01-01

    Gives a brief outline of the development of Artificial Intelligence in Education (AIED) which includes psychology, education, cognitive science, computer science, and artificial intelligence. Highlights include learning environments; learner modeling; a situated approach to learning; and current examples of AIED research. (LRW)

  7. Research and applications: Artificial intelligence

    NASA Technical Reports Server (NTRS)

    Raphael, B.; Fikes, R. E.; Chaitin, L. J.; Hart, P. E.; Duda, R. O.; Nilsson, N. J.

    1971-01-01

    A program of research in the field of artificial intelligence is presented. The research areas discussed include automatic theorem proving, representations of real-world environments, problem-solving methods, the design of a programming system for problem-solving research, techniques for general scene analysis based upon television data, and the problems of assembling an integrated robot system. Major accomplishments include the development of a new problem-solving system that uses both formal logical inference and informal heuristic methods, the development of a method of automatic learning by generalization, and the design of the overall structure of a new complete robot system. Eight appendices to the report contain extensive technical details of the work described.

  8. Artificial Intelligence and Information Management

    NASA Astrophysics Data System (ADS)

    Fukumura, Teruo

    After reviewing the recent popularization of the information transmission and processing technologies, which are supported by the progress of electronics, the authors describe that by the introduction of the opto-electronics into the information technology, the possibility of applying the artificial intelligence (AI) technique to the mechanization of the information management has emerged. It is pointed out that althuogh AI deals with problems in the mental world, its basic methodology relies upon the verification by evidence, so the experiment on computers become indispensable for the study of AI. The authors also describe that as computers operate by the program, the basic intelligence which is concerned in AI is that expressed by languages. This results in the fact that the main tool of AI is the logical proof and it involves an intrinsic limitation. To answer a question “Why do you employ AI in your problem solving”, one must have ill-structured problems and intend to conduct deep studies on the thinking and the inference, and the memory and the knowledge-representation. Finally the authors discuss the application of AI technique to the information management. The possibility of the expert-system, processing of the query, and the necessity of document knowledge-base are stated.

  9. Artificial Intelligence and Vocational Education: An Impending Confluence.

    ERIC Educational Resources Information Center

    Roth, Gene L.; McEwing, Richard A.

    1986-01-01

    Reports on the relatively new field of artificial intelligence and its relationship to vocational education. Compares human intelligence with artificial intelligence. Discusses expert systems, natural language technology, and current trends. Lists potential applications for vocational education. (CH)

  10. An overview of artificial intelligence and robotics. Volume 1: Artificial intelligence. Part C: Basic AI topics

    NASA Technical Reports Server (NTRS)

    Gevarter, W. B.

    1983-01-01

    Readily understandable overviews of search oriented problem solving, knowledge representation, and computational logic are provided. Mechanization, automation and artificial intelligence are discussed as well as how they interrelate.

  11. Artificial intelligence: Learning to see and act

    NASA Astrophysics Data System (ADS)

    Schölkopf, Bernhard

    2015-02-01

    An artificial-intelligence system uses machine learning from massive training sets to teach itself to play 49 classic computer games, demonstrating that it can adapt to a variety of tasks. See Letter p.529

  12. What Artificial Intelligence Is Doing for Training.

    ERIC Educational Resources Information Center

    Kirrane, Peter R.; Kirrane, Diane E.

    1989-01-01

    Discusses the three areas of research and application of artificial intelligence: (1) robotics, (2) natural language processing, and (3) knowledge-based or expert systems. Focuses on what expert systems can do, especially in the area of training. (JOW)

  13. Artificial Intelligence, Robots and Education: Selected Sources.

    ERIC Educational Resources Information Center

    Kissinger, Pat

    1987-01-01

    This annotated bibliography describes 12 books, 10 ERIC publications, and 7 periodical articles about artificial intelligence and robotics that were selected by the author as resources for educators. (CLB)

  14. Artificial Intelligence and the Future Classroom.

    ERIC Educational Resources Information Center

    Green, John O.

    1984-01-01

    Discusses how the power and potential of the computer may shape the classroom of the future by presenting a scenario of a classroom in the year 2001. The role of artificial intelligence in this environment is considered. (JN)

  15. Artificial Intelligence and Spacecraft Power Systems

    NASA Technical Reports Server (NTRS)

    Dugel-Whitehead, Norma R.

    1997-01-01

    This talk will present the work which has been done at NASA Marshall Space Flight Center involving the use of Artificial Intelligence to control the power system in a spacecraft. The presentation will include a brief history of power system automation, and some basic definitions of the types of artificial intelligence which have been investigated at MSFC for power system automation. A video tape of one of our autonomous power systems using co-operating expert systems, and advanced hardware will be presented.

  16. Artificial intelligence approaches to astronomical observation scheduling

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.; Miller, Glenn

    1988-01-01

    Automated scheduling will play an increasing role in future ground- and space-based observatory operations. Due to the complexity of the problem, artificial intelligence technology currently offers the greatest potential for the development of scheduling tools with sufficient power and flexibility to handle realistic scheduling situations. Summarized here are the main features of the observatory scheduling problem, how artificial intelligence (AI) techniques can be applied, and recent progress in AI scheduling for Hubble Space Telescope.

  17. Artificial Intelligence for Controlling Robotic Aircraft

    NASA Technical Reports Server (NTRS)

    Krishnakumar, Kalmanje

    2005-01-01

    A document consisting mostly of lecture slides presents overviews of artificial-intelligence-based control methods now under development for application to robotic aircraft [called Unmanned Aerial Vehicles (UAVs) in the paper] and spacecraft and to the next generation of flight controllers for piloted aircraft. Following brief introductory remarks, the paper presents background information on intelligent control, including basic characteristics defining intelligent systems and intelligent control and the concept of levels of intelligent control. Next, the paper addresses several concepts in intelligent flight control. The document ends with some concluding remarks, including statements to the effect that (1) intelligent control architectures can guarantee stability of inner control loops and (2) for UAVs, intelligent control provides a robust way to accommodate an outer-loop control architecture for planning and/or related purposes.

  18. [Biological versus artificial intelligence: a critical approach].

    PubMed

    Sanvito, W L

    1995-09-01

    After brief considerations about intelligence, a comparative study between biologic and artificial intelligence is made. The specialists in Artificial Intelligence found that intelligence is purely a matter of physical symbol manipulation. The enterprise of Artificial Intelligence aims to understand what we might call Brain Intelligence in terms of concepts and techniques of engineering. However the philosophers believed that computer-machine can have syntax, but can never have semantics. In other words, that they can follow rules, such as those of arithmetic or grammar, but not understand what to us are meanings of symbols, such as words. In the present paper it is stressed that brain/mind complex constitutes a monolithic systemic that functions with emergent properties at several levels of hierarchical organization. These hierarchical levels are non-reducible to one another. They are at least three (neuronal, functional, and semantic), and they function within an interactional plan. The brain/mind complex, which transform informations in meanings, deals with problems by means of both logical and non-logical mechanisms; while logic allows the mind to arrange the elements for reasoning, the non-logical mechanisms (fuzzy logic, heuristics, insights) allows the mind to develop strategies to find solutions. The model for construction of the "intelligent machine" is the operating way of the brain/mind complex, which does not always use logical processes. The role of information science in Artificial Intelligence is to search for knowledge itself (virtual knowledge), rather than to simply attempt a logico-mathematical formalization of knowledge.

  19. Resources in Technology: Introduction to Artificial Intelligence.

    ERIC Educational Resources Information Center

    Technology Teacher, 1987

    1987-01-01

    Introduces the concept of artificial intelligence, discusses where it is currently used, and describes an expert computer system that can be used in the technology laboratory. Included is a learning activity that describes ideas for using intelligent computers as problem-solving tools. (Author/CH)

  20. Artificial Intelligence Applications for Education: Promise, ...Promises.

    ERIC Educational Resources Information Center

    Adams, Dennis M.; Hamm, Mary

    1988-01-01

    Surveys the current status of artificial intelligence (AI) technology. Discusses intelligent tutoring systems, robotics, and applications for educators. Likens the status of AI at present to that of aviation in the very early 1900s. States that educators need to be involved in future debates concerning AI. (CW)

  1. Artificial intelligence: the clinician of the future.

    PubMed

    Gallagher, S M

    2001-09-01

    Human beings have long been fascinated with the idea of artificial intelligence. This fascination is fueled by popular films such as Stanley Kubrick's 2001: A Space Odyssey and Stephen Spielberg's recent film, AI. However intriguing artificial intelligence may be, Hubert and Spencer Dreyfus contend that qualities exist that are uniquely human--the qualities thought to be inaccessible to the computer "mind." Patricia Benner further investigated the qualities that guide clinicians in making decisions and assessments that are not entirely evidence-based or grounded in scientific data. Perhaps it is the intuitive nature of the human being that separates us from the machine. The state of artificial intelligence is described herein, along with a discussion of computerized clinical decision-making and the role of the human being in these decisions.

  2. Application Of Artificial Intelligence To Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.; Steinle, Frank W., Jr.

    1989-01-01

    Report discusses potential use of artificial-intelligence systems to manage wind-tunnel test facilities at Ames Research Center. One of goals of program to obtain experimental data of better quality and otherwise generally increase productivity of facilities. Another goal to increase efficiency and expertise of current personnel and to retain expertise of former personnel. Third goal to increase effectiveness of management through more efficient use of accumulated data. System used to improve schedules of operation and maintenance of tunnels and other equipment, assignment of personnel, distribution of electrical power, and analysis of costs and productivity. Several commercial artificial-intelligence computer programs discussed as possible candidates for use.

  3. Fundamental research in artificial intelligence at NASA

    NASA Technical Reports Server (NTRS)

    Friedland, Peter

    1990-01-01

    This paper describes basic research at NASA in the field of artificial intelligence. The work is conducted at the Ames Research Center and the Jet Propulsion Laboratory, primarily under the auspices of the NASA-wide Artificial Intelligence Program in the Office of Aeronautics, Exploration and Technology. The research is aimed at solving long-term NASA problems in missions operations, spacecraft autonomy, preservation of corporate knowledge about NASA missions and vehicles, and management/analysis of scientific and engineering data. From a scientific point of view, the research is broken into the categories of: planning and scheduling; machine learning; and design of and reasoning about large-scale physical systems.

  4. Abstraction and reformulation in artificial intelligence.

    PubMed Central

    Holte, Robert C.; Choueiry, Berthe Y.

    2003-01-01

    This paper contributes in two ways to the aims of this special issue on abstraction. The first is to show that there are compelling reasons motivating the use of abstraction in the purely computational realm of artificial intelligence. The second is to contribute to the overall discussion of the nature of abstraction by providing examples of the abstraction processes currently used in artificial intelligence. Although each type of abstraction is specific to a somewhat narrow context, it is hoped that collectively they illustrate the richness and variety of abstraction in its fullest sense. PMID:12903653

  5. A Primer for Problem Solving Using Artificial Intelligence.

    ERIC Educational Resources Information Center

    Schell, George P.

    1988-01-01

    Reviews the development of artificial intelligence systems and the mechanisms used, including knowledge representation, programing languages, and problem processing systems. Eleven books and 6 journals are listed as sources of information on artificial intelligence. (23 references) (CLB)

  6. Artificial intelligence: Deep neural reasoning

    NASA Astrophysics Data System (ADS)

    Jaeger, Herbert

    2016-10-01

    The human brain can solve highly abstract reasoning problems using a neural network that is entirely physical. The underlying mechanisms are only partially understood, but an artificial network provides valuable insight. See Article p.471

  7. Strong Artificial Intelligence and National Security: Operational and Strategic Implications

    DTIC Science & Technology

    2015-05-18

    FINAL 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Strong Artificial Intelligence and National Security 5a...Prominent business and science leaders believe that technological advances will soon allow humankind to develop artificial intelligence (AI) that...its potential strategic pitfalls. 15. SUBJECT TERMS Artificial Intelligence 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT

  8. Counseling, Artificial Intelligence, and Expert Systems.

    ERIC Educational Resources Information Center

    Illovsky, Michael E.

    1994-01-01

    Considers the use of artificial intelligence and expert systems in counseling. Limitations are explored; candidates for counseling versus those for expert systems are discussed; programming considerations are reviewed; and techniques for dealing with rational, nonrational, and irrational thoughts and feelings are described. (Contains 46…

  9. A Starter's Guide to Artificial Intelligence.

    ERIC Educational Resources Information Center

    McConnell, Barry A.; McConnell, Nancy J.

    1988-01-01

    Discussion of the history and development of artificial intelligence (AI) highlights a bibliography of introductory books on various aspects of AI, including AI programing; problem solving; automated reasoning; game playing; natural language; expert systems; machine learning; robotics and vision; critics of AI; and representative software. (LRW)

  10. Dynamic Restructuring Of Problems In Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Schwuttke, Ursula M.

    1992-01-01

    "Dynamic tradeoff evaluation" (DTE) denotes proposed method and procedure for restructuring problem-solving strategies in artificial intelligence to satisfy need for timely responses to changing conditions. Detects situations in which optimal problem-solving strategies cannot be pursued because of real-time constraints, and effects tradeoffs among nonoptimal strategies in such way to minimize adverse effects upon performance of system.

  11. Artificial Intelligence. LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Rodgers, Kay, Comp.

    Desgined to serve as a guide to resources on artificial intelligence (AI) and expert systems, this Library of Congress bulletin is divided into 18 sections that contain lists of books, journal articles, periodicals, associations, and other sources of information. A brief statement of the scope of the guide introduces the sections, which are listed…

  12. The Application of Artificial Intelligence to Contract Management.

    DTIC Science & Technology

    1984-08-01

    INTELLIGENCE 2.1 Definition of Artificial Intelligence. .. .. ... .... 7 2.2 History of Artificial Intelligence. .. .. .. ... .... 8 V2.3 Approaches to...Ig d. not by nuebtb hua aror fot.Itelligence hoeeiOoNoesl eie ineteeeit opeieciei 8 2.2 History of Artificial Intelligence Al is a very young field...down into individual components but must be evaluated as a complete sentence. Some examples of propositions are: the truck has four wheels, the poodle

  13. Projective simulation for artificial intelligence.

    PubMed

    Briegel, Hans J; De las Cuevas, Gemma

    2012-01-01

    We propose a model of a learning agent whose interaction with the environment is governed by a simulation-based projection, which allows the agent to project itself into future situations before it takes real action. Projective simulation is based on a random walk through a network of clips, which are elementary patches of episodic memory. The network of clips changes dynamically, both due to new perceptual input and due to certain compositional principles of the simulation process. During simulation, the clips are screened for specific features which trigger factual action of the agent. The scheme is different from other, computational, notions of simulation, and it provides a new element in an embodied cognitive science approach to intelligent action and learning. Our model provides a natural route for generalization to quantum-mechanical operation and connects the fields of reinforcement learning and quantum computation.

  14. Projective simulation for artificial intelligence

    NASA Astrophysics Data System (ADS)

    Briegel, Hans J.; de Las Cuevas, Gemma

    2012-05-01

    We propose a model of a learning agent whose interaction with the environment is governed by a simulation-based projection, which allows the agent to project itself into future situations before it takes real action. Projective simulation is based on a random walk through a network of clips, which are elementary patches of episodic memory. The network of clips changes dynamically, both due to new perceptual input and due to certain compositional principles of the simulation process. During simulation, the clips are screened for specific features which trigger factual action of the agent. The scheme is different from other, computational, notions of simulation, and it provides a new element in an embodied cognitive science approach to intelligent action and learning. Our model provides a natural route for generalization to quantum-mechanical operation and connects the fields of reinforcement learning and quantum computation.

  15. Artificial intelligence - NASA. [robotics for Space Station

    NASA Technical Reports Server (NTRS)

    Erickson, J. D.

    1985-01-01

    Artificial Intelligence (AI) represents a vital common space support element needed to enable the civil space program and commercial space program to perform their missions successfully. It is pointed out that advances in AI stimulated by the Space Station Program could benefit the U.S. in many ways. A fundamental challenge for the civil space program is to meet the needs of the customers and users of space with facilities enabling maximum productivity and having low start-up costs, and low annual operating costs. An effective way to meet this challenge may involve a man-machine system in which artificial intelligence, robotics, and advanced automation are integrated into high reliability organizations. Attention is given to the benefits, NASA strategy for AI, candidate space station systems, the Space Station as a stepping stone, and the commercialization of space.

  16. Artificial intelligence in medicine: the challenges ahead.

    PubMed

    Coiera, E W

    1996-01-01

    The modern study of artificial intelligence in medicine (AIM) is 25 years old. Throughout this period, the field has attracted many of the best computer scientists, and their work represents a remarkable achievement. However, AIM has not been successful-if success is judged as making an impact on the practice of medicine. Much recent work in AIM has been focused inward, addressing problems that are at the crossroads of the parent disciplines of medicine and artificial intelligence. Now, AIM must move forward with the insights that it has gained and focus on finding solutions for problems at the heart of medical practice. The growing emphasis within medicine on evidence-based practice should provide the right environment for that change.

  17. Artificial intelligence in medicine: the challenges ahead.

    PubMed Central

    Coiera, E W

    1996-01-01

    The modern study of artificial intelligence in medicine (AIM) is 25 years old. Throughout this period, the field has attracted many of the best computer scientists, and their work represents a remarkable achievement. However, AIM has not been successful-if success is judged as making an impact on the practice of medicine. Much recent work in AIM has been focused inward, addressing problems that are at the crossroads of the parent disciplines of medicine and artificial intelligence. Now, AIM must move forward with the insights that it has gained and focus on finding solutions for problems at the heart of medical practice. The growing emphasis within medicine on evidence-based practice should provide the right environment for that change. PMID:8930853

  18. Artificial Intelligence Software Acquisition Program. Volume 1.

    DTIC Science & Technology

    1987-12-01

    Definition To date, many Artificial Intelligence ( AI ) systems have been developed in university and other. research environments with relatively few...for AI systems which had either completed development or were well underway towards completing a prototype. During the Phase I data collection activity...conducting the AI /KBS system case studies. The questionnaire, contained in Appendix B, is divided into four parts: 1. Introduction 2. Background 3

  19. Encyclopedia of artificial intelligence: 2 Vol. set

    SciTech Connect

    Shapiro, S.C.

    1987-01-01

    Drawing on the fields of computer science, electrical engineering, linguistics, mathematics, philosophy, psychology, and physiology, this one-volume encyclopedia brings together the core of knowledge on artificial intelligence. It provides an overview of how to program computers to emulate human behavior, offering a wide range of techniques for speech and visual generation, problem-solving and more. Over 250 entries are organized alphabetically, cross-referenced and indexed.

  20. Dictionary of Artificial Intelligence and robotics

    SciTech Connect

    Rosenberg, J.M.

    1986-01-01

    A compilation of over 4000 terms and their definitions relevant to artificial intelligence and robotics. It includes multiple and alternative meanings, abbreviations, acronyms, and foreign expressions. This text supplies both general and specialized entries and cites the relationship between robotics, AI, and computer control terms where applicable. Groups entries containing mutual concepts are together alphabetically, by their common term. It also identifies archaic terms and their preferred alternatives.

  1. Computer vision and artificial intelligence in mammography.

    PubMed

    Vyborny, C J; Giger, M L

    1994-03-01

    The revolution in digital computer technology that has made possible new and sophisticated imaging techniques may next influence the interpretation of radiologic images. In mammography, computer vision and artificial intelligence techniques have been used successfully to detect or to characterize abnormalities on digital images. Radiologists supplied with this information often perform better at mammographic detection or characterization tasks in observer studies than do unaided radiologists. This technology therefore could decrease errors in mammographic interpretation that continue to plague human observers.

  2. Flang: A language for artificial intelligence

    SciTech Connect

    Mantsivoda, A.V.

    1994-05-01

    Logic programming - an area of informatics combining mathematical logic, artificial intelligence, and programming - has undergone considerably accelerated development in the past few years. The Prolog language - the principal representative of logic programming - is gaining ever-increasing popularity for the solution of practical problems. The appearance of the Warren abstract machine has greatly increased the effectiveness of Prolog. Nevertheless, a number of serious difficulties remain in logic programming.

  3. Artificial intelligence for turboprop engine maintenance

    SciTech Connect

    1995-01-01

    Long-term maintenance operations, causing the unit to out of action, may seem economical - but they result in reduced operating readiness. Offsetting that concern, careless, hurried maintenance reduces margins of safety and reliability. Any tool that improves maintenance without causing a sharp increase in cost is valuable. Artificial intelligence (AI) is one of the tools. Expert system and neural networks are two different areas of AI that show promise for turboprop engine maintenance.

  4. Applications of artificial intelligence to scientific research

    NASA Technical Reports Server (NTRS)

    Prince, Mary Ellen

    1986-01-01

    Artificial intelligence (AI) is a growing field which is just beginning to make an impact on disciplines other than computer science. While a number of military and commercial applications were undertaken in recent years, few attempts were made to apply AI techniques to basic scientific research. There is no inherent reason for the discrepancy. The characteristics of the problem, rather than its domain, determines whether or not it is suitable for an AI approach. Expert system, intelligent tutoring systems, and learning programs are examples of theoretical topics which can be applied to certain areas of scientific research. Further research and experimentation should eventurally make it possible for computers to act as intelligent assistants to scientists.

  5. Artificial Intelligence and Computer Assisted Instruction. CITE Report No. 4.

    ERIC Educational Resources Information Center

    Elsom-Cook, Mark

    The purpose of the paper is to outline some of the major ways in which artificial intelligence research and techniques can affect usage of computers in an educational environment. The role of artificial intelligence is defined, and the difference between Computer Aided Instruction (CAI) and Intelligent Computer Aided Instruction (ICAI) is…

  6. Artificial intelligence applications in the nuclear industry

    SciTech Connect

    Majumdar, D.

    1988-10-01

    This is a state-of-the-art review of artificial intelligence (AI) applications in the nuclear industry. It was initiated as a result of the American Nuclear Society-sponsored conference on ''Artificial Intelligence and Other Innovative Computer Applications in the Nuclear Industry,'' held in Snowbird, Utah, August 1987. This conference brought together a large number of international experts and showed extensive worldwide applications of expert systems in the nuclear industry. This document is a postconference review and a reflection on the current status and the future of AI in the nuclear industry. Because artificial intelligence techniques can analyze large and complex arrays of information, develop smaller sets of higher-level conclusions, incorporate human expertise, and present information suitable for human intelligence, it is very appropriate for applications in complex nuclear power plant operation. Some advances have already been made in several areas. However, among the many applications in the nuclear industry, there does not appear to be any outstanding application to date such as the ones found in the medical or geological fields. What comes out clearly is that the nuclear industry is experimenting in many areas with the expert system technology and determining its usefulness for the industry. On the international scene, the United States is the current leader in knowledge and applications, followed by Japan and France. However, the Japanese appear to have embraced the AI concept more wholeheartedly. This review encompasses a large number of areas including fault diagnosis, reactor control, plant operation, alarm filtering, accident management, robotics, probabilistic risk assessment, and the human element of expert systems. The potential for useful application of AI technology in the nuclear industry is shown to be promising. 383 refs., 13 figs., 11 tabs.

  7. Artificial Intelligence for VHSIC Systems Design (AIVD) User Reference Manual

    DTIC Science & Technology

    1988-12-01

    AD-A259 518 C;ý I RESEARCH TRIANGLE INSTITUTE ARTIFICIAL INTELLIGENCE FOR IVHSIC SYSTEMS DESIGN (AIVD) DTIC USER REFERENCE MANUAL * ScELECTE fl2...Report 14. SUBJECT TERMS IS. MUMBER OF PAGES VHSIC, Software/hardware codesign, Artificial Intelligence graph transformation, ADAS 14. PRICE CODE 17... ARTIFICIAL INTELLIGENCE FOR I VHSIC SYSTEMS DESIGN (AIVD) USER REFERENCE MANUAL December 1988 I Department of the Army ,,’ U.S. Army Electronics Research

  8. Artificial Intelligence Information Sources for the Beginner and Expert

    DTIC Science & Technology

    1991-05-01

    SUBPLEETAR TMS T bepbhdi" Artificial Intelligence ApplictionsforMlitar Expertis SystemsWilasbrVA 527Mrh 91 12a. DSCRIBTION C AIITY 6 STAEENRTY CTO SECb.T...DLSIFC ISTR BUMATION OC Apnclassified pu ncrlase; ituied inlsife unlimited. Artificial Intelligence Information Sources for the Beginner and Expert...mgivenfdsac.dia.mil UUCP: {...).osu-cisidsac!mgiven ABSTRACT A tremendous amount of information on artificial intelligence is available via different

  9. Non-Newtonian Aspects of Artificial Intelligence

    NASA Astrophysics Data System (ADS)

    Zak, Michail

    2016-05-01

    The challenge of this work is to connect physics with the concept of intelligence. By intelligence we understand a capability to move from disorder to order without external resources, i.e., in violation of the second law of thermodynamics. The objective is to find such a mathematical object described by ODE that possesses such a capability. The proposed approach is based upon modification of the Madelung version of the Schrodinger equation by replacing the force following from quantum potential with non-conservative forces that link to the concept of information. A mathematical formalism suggests that a hypothetical intelligent particle, besides the capability to move against the second law of thermodynamics, acquires such properties like self-image, self-awareness, self-supervision, etc. that are typical for Livings. However since this particle being a quantum-classical hybrid acquires non-Newtonian and non-quantum properties, it does not belong to the physics matter as we know it: the modern physics should be complemented with the concept of the information force that represents a bridge to intelligent particle. As a follow-up of the proposed concept, the following question is addressed: can artificial intelligence (AI) system composed only of physical components compete with a human? The answer is proven to be negative if the AI system is based only on simulations, and positive if digital devices are included. It has been demonstrated that there exists such a quantum neural net that performs simulations combined with digital punctuations. The universality of this quantum-classical hybrid is in capability to violate the second law of thermodynamics by moving from disorder to order without external resources. This advanced capability is illustrated by examples. In conclusion, a mathematical machinery of the perception that is the fundamental part of a cognition process as well as intelligence is introduced and discussed.

  10. A development framework for distributed artificial intelligence

    NASA Technical Reports Server (NTRS)

    Adler, Richard M.; Cottman, Bruce H.

    1989-01-01

    The authors describe distributed artificial intelligence (DAI) applications in which multiple organizations of agents solve multiple domain problems. They then describe work in progress on a DAI system development environment, called SOCIAL, which consists of three primary language-based components. The Knowledge Object Language defines models of knowledge representation and reasoning. The metaCourier language supplies the underlying functionality for interprocess communication and control access across heterogeneous computing environments. The metaAgents language defines models for agent organization coordination, control, and resource management. Application agents and agent organizations will be constructed by combining metaAgents and metaCourier building blocks with task-specific functionality such as diagnostic or planning reasoning. This architecture hides implementation details of communications, control, and integration in distributed processing environments, enabling application developers to concentrate on the design and functionality of the intelligent agents and agent networks themselves.

  11. Artificial intelligence and space power systems automation

    NASA Technical Reports Server (NTRS)

    Weeks, David J.

    1987-01-01

    Various applications of artificial intelligence to space electrical power systems are discussed. An overview is given of completed, on-going, and planned knowledge-based system activities. These applications include the Nickel-Cadmium Battery Expert System (NICBES) (the expert system interfaced with the Hubble Space Telescope electrical power system test bed); the early work with the Space Station Experiment Scheduler (SSES); the three expert systems under development in the space station advanced development effort in the core module power management and distribution system test bed; planned cooperation of expert systems in the Core Module Power Management and Distribution (CM/PMAD) system breadboard with expert systems for the space station at other research centers; and the intelligent data reduction expert system under development.

  12. Applications of artificial intelligence/robotics

    SciTech Connect

    Brown, D.R.; Fowler, D.V.; Park, W.T.; Robinson, A.E.

    1982-01-01

    One hundred applications of artificial intelligence technology and robotics in army combat and combat support that may be possible and worthwhile are identified. These possible applications have been divided into ten categories, and one example in each category has been examined in detail. Research and development plans have been developed showing the basic and applied research that would be needed to make the applications possible. Although the number of possible applications is large, the number of key technology elements is relatively small, and many of the same technology elements are required in many different applications. 19 references.

  13. Application of artificial intelligence to robotic vision

    SciTech Connect

    Chao, P.S.; Frick, P.A.

    1983-01-01

    A brief introduction to artificial intelligence (AI) and the general vision process is provided. Two samples of AI researchers' work toward general computer vision are given. The first is a model-based vision system while the second is based on results of studies on human vision. The current state of machine vision in industrial robotics is demonstrated using a well known vision algorithm developed at SRI International. A part of a prototype robotic assembly project with vision is sketched to show the application of some AI tools to practical work. 8 references.

  14. Probabilistic machine learning and artificial intelligence.

    PubMed

    Ghahramani, Zoubin

    2015-05-28

    How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.

  15. Artificial intelligence applied to process signal analysis

    NASA Technical Reports Server (NTRS)

    Corsberg, Dan

    1988-01-01

    Many space station processes are highly complex systems subject to sudden, major transients. In any complex process control system, a critical aspect of the human/machine interface is the analysis and display of process information. Human operators can be overwhelmed by large clusters of alarms that inhibit their ability to diagnose and respond to a disturbance. Using artificial intelligence techniques and a knowledge base approach to this problem, the power of the computer can be used to filter and analyze plant sensor data. This will provide operators with a better description of the process state. Once a process state is recognized, automatic action could be initiated and proper system response monitored.

  16. Probabilistic machine learning and artificial intelligence

    NASA Astrophysics Data System (ADS)

    Ghahramani, Zoubin

    2015-05-01

    How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.

  17. Beyond Artificial Intelligence toward Engineered Psychology

    NASA Astrophysics Data System (ADS)

    Bozinovski, Stevo; Bozinovska, Liljana

    This paper addresses the field of Artificial Intelligence, road it went so far and possible road it should go. The paper was invited by the Conference of IT Revolutions 2008, and discusses some issues not emphasized in AI trajectory so far. The recommendations are that the main focus should be personalities rather than programs or agents, that genetic environment should be introduced in reasoning about personalities, and that limbic system should be studied and modeled. Engineered Psychology is proposed as a road to go. Need for basic principles in psychology are discussed and a mathematical equation is proposed as fundamental law of engineered and human psychology.

  18. Accelerating artificial intelligence with reconfigurable computing

    NASA Astrophysics Data System (ADS)

    Cieszewski, Radoslaw

    Reconfigurable computing is emerging as an important area of research in computer architectures and software systems. Many algorithms can be greatly accelerated by placing the computationally intense portions of an algorithm into reconfigurable hardware. Reconfigurable computing combines many benefits of both software and ASIC implementations. Like software, the mapped circuit is flexible, and can be changed over the lifetime of the system. Similar to an ASIC, reconfigurable systems provide a method to map circuits into hardware. Reconfigurable systems therefore have the potential to achieve far greater performance than software as a result of bypassing the fetch-decode-execute operations of traditional processors, and possibly exploiting a greater level of parallelism. Such a field, where there is many different algorithms which can be accelerated, is an artificial intelligence. This paper presents example hardware implementations of Artificial Neural Networks, Genetic Algorithms and Expert Systems.

  19. An overview of artificial intelligence and robotics. Volume 1: Artificial intelligence. Part A: The core ingredients

    NASA Technical Reports Server (NTRS)

    Gevarter, W. B.

    1983-01-01

    Artificial Intelligence (AI) is an emerging technology that has recently attracted considerable attention. Many applications are now under development. The goal of Artificial Intelligence is focused on developing computational approaches to intelligent behavior. This goal is so broad - covering virtually all aspects of human cognitive activity - that substantial confusion has arisen as to the actual nature of AI, its current status and its future capability. This volume, the first in a series of NBS/NASA reports on the subject, attempts to address these concerns. Thus, this report endeavors to clarify what AI is, the foundations on which it rests, the techniques utilized, applications, the participants and, finally, AI's state-of-the-art and future trends. It is anticipated that this report will prove useful to government and private engineering and research managers, potential users, and others who will be affected by this field as it unfolds.

  20. Artificial intelligence approaches to software engineering

    NASA Technical Reports Server (NTRS)

    Johannes, James D.; Macdonald, James R.

    1988-01-01

    Artificial intelligence approaches to software engineering are examined. The software development life cycle is a sequence of not so well-defined phases. Improved techniques for developing systems have been formulated over the past 15 years, but pressure continues to attempt to reduce current costs. Software development technology seems to be standing still. The primary objective of the knowledge-based approach to software development presented in this paper is to avoid problem areas that lead to schedule slippages, cost overruns, or software products that fall short of their desired goals. Identifying and resolving software problems early, often in the phase in which they first occur, has been shown to contribute significantly to reducing risks in software development. Software development is not a mechanical process but a basic human activity. It requires clear thinking, work, and rework to be successful. The artificial intelligence approaches to software engineering presented support the software development life cycle through the use of software development techniques and methodologies in terms of changing current practices and methods. These should be replaced by better techniques that that improve the process of of software development and the quality of the resulting products. The software development process can be structured into well-defined steps, of which the interfaces are standardized, supported and checked by automated procedures that provide error detection, production of the documentation and ultimately support the actual design of complex programs.

  1. Predicting asthma exacerbations using artificial intelligence.

    PubMed

    Finkelstein, Joseph; Wood, Jeffrey

    2013-01-01

    Modern telemonitoring systems identify a serious patient deterioration when it already occurred. It would be much more beneficial if the upcoming clinical deterioration were identified ahead of time even before a patient actually experiences it. The goal of this study was to assess artificial intelligence approaches which potentially can be used in telemonitoring systems for advance prediction of changes in disease severity before they actually occur. The study dataset was based on daily self-reports submitted by 26 adult asthma patients during home telemonitoring consisting of 7001 records. Two classification algorithms were employed for building predictive models: naïve Bayesian classifier and support vector machines. Using a 7-day window, a support vector machine was able to predict asthma exacerbation to occur on the day 8 with the accuracy of 0.80, sensitivity of 0.84 and specificity of 0.80. Our study showed that methods of artificial intelligence have significant potential in developing individualized decision support for chronic disease telemonitoring systems.

  2. Artificial intelligence. Fears of an AI pioneer.

    PubMed

    Russell, Stuart; Bohannon, John

    2015-07-17

    From the enraged robots in the 1920 play R.U.R. to the homicidal computer H.A.L. in 2001: A Space Odyssey, science fiction writers have embraced the dark side of artificial intelligence (AI) ever since the concept entered our collective imagination. Sluggish progress in AI research, especially during the “AI winter” of the 1970s and 1980s, made such worries seem far-fetched. But recent breakthroughs in machine learning and vast improvements in computational power have brought a flood of research funding— and fresh concerns about where AI may lead us. One researcher now speaking up is Stuart Russell, a computer scientist at the University of California, Berkeley, who with Peter Norvig, director of research at Google, wrote the premier AI textbook, Artificial Intelligence: A Modern Approach, now in its third edition. Last year, Russell joined the Centre for the Study of Existential Risk at Cambridge University in the United Kingdom as an AI expert focusing on “risks that could lead to human extinction.” Among his chief concerns, which he aired at an April meeting in Geneva, Switzerland, run by the United Nations, is the danger of putting military drones and weaponry under the full control of AI systems. This interview has been edited for clarity and brevity.

  3. Marine litter prediction by artificial intelligence.

    PubMed

    Balas, Can Elmar; Ergin, Aysen; Williams, Allan T; Koc, Levent

    2004-03-01

    Artificial intelligence techniques of neural network and fuzzy systems were applied as alternative methods to determine beach litter grading, based on litter surveys of the Antalya coastline (the Turkish Riviera). Litter measurements were categorized and assessed by artificial intelligence techniques, which lead to a new litter categorization system. The constructed neural network satisfactorily predicted the grading of the Antalya beaches and litter categories based on the number of litter items in the general litter category. It has been concluded that, neural networks could be used for high-speed predictions of litter items and beach grading, when the characteristics of the main litter category was determined by field studies. This can save on field effort when fast and reliable estimations of litter categories are required for management or research studies of beaches--especially those concerned with health and safety, and it has economic implications. The main advantages in using fuzzy systems are that they consider linguistic adjectival definitions, e.g. many/few, etc. As a result, additional information inherent in linguistic comments/refinements and judgments made during field studies can be incorporated in grading systems.

  4. Artificial Intelligence Research Branch future plans

    NASA Technical Reports Server (NTRS)

    Stewart, Helen (Editor)

    1992-01-01

    This report contains information on the activities of the Artificial Intelligence Research Branch (FIA) at NASA Ames Research Center (ARC) in 1992, as well as planned work in 1993. These activities span a range from basic scientific research through engineering development to fielded NASA applications, particularly those applications that are enabled by basic research carried out in FIA. Work is conducted in-house and through collaborative partners in academia and industry. All of our work has research themes with a dual commitment to technical excellence and applicability to NASA short, medium, and long-term problems. FIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at the Jet Propulsion Laboratory (JPL) and AI applications groups throughout all NASA centers. This report is organized along three major research themes: (1) Planning and Scheduling: deciding on a sequence of actions to achieve a set of complex goals and determining when to execute those actions and how to allocate resources to carry them out; (2) Machine Learning: techniques for forming theories about natural and man-made phenomena; and for improving the problem-solving performance of computational systems over time; and (3) Research on the acquisition, representation, and utilization of knowledge in support of diagnosis design of engineered systems and analysis of actual systems.

  5. The Potential of Artificial Intelligence in Aids for the Disabled.

    ERIC Educational Resources Information Center

    Boyer, John J.

    The paper explores the possibilities for applying the knowledge of artificial intelligence (AI) research to aids for the disabled. Following a definition of artificial intelligence, the paper reviews areas of basic AI research, such as computer vision, machine learning, and planning and problem solving. Among application areas relevant to the…

  6. The 1993 Goddard Conference on Space Applications of Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Hostetter, Carl F. (Editor)

    1993-01-01

    This publication comprises the papers presented at the 1993 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/Goddard Space Flight Center, Greenbelt, MD on May 10-13, 1993. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed.

  7. A Research Program on Artificial Intelligence in Process Engineering.

    ERIC Educational Resources Information Center

    Stephanopoulos, George

    1986-01-01

    Discusses the use of artificial intelligence systems in process engineering. Describes a new program at the Massachusetts Institute of Technology which attempts to advance process engineering through technological advances in the areas of artificial intelligence and computers. Identifies the program's hardware facilities, software support,…

  8. The 1994 Goddard Conference on Space Applications of Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Hostetter, Carl F. (Editor)

    1994-01-01

    This publication comprises the papers presented at the 1994 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/GSFC, Greenbelt, Maryland, on 10-12 May 1994. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed.

  9. The 1990 Goddard Conference on Space Applications of Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Rash, James L. (Editor)

    1990-01-01

    The papers presented at the 1990 Goddard Conference on Space Applications of Artificial Intelligence are given. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The proceedings fall into the following areas: Planning and Scheduling, Fault Monitoring/Diagnosis, Image Processing and Machine Vision, Robotics/Intelligent Control, Development Methodologies, Information Management, and Knowledge Acquisition.

  10. The Biological Relevance of Artificial Life: Lessons from Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Colombano, Silvano

    2000-01-01

    There is no fundamental reason why A-life couldn't simply be a branch of computer science that deals with algorithms that are inspired by, or emulate biological phenomena. However, if these are the limits we place on this field, we miss the opportunity to help advance Theoretical Biology and to contribute to a deeper understanding of the nature of life. The history of Artificial Intelligence provides a good example, in that early interest in the nature of cognition quickly was lost to the process of building tools, such as "expert systems" that, were certainly useful, but provided little insight in the nature of cognition. Based on this lesson, I will discuss criteria for increasing the biological relevance of A-life and the probability that this field may provide a theoretical foundation for Biology.

  11. Intelligent machines: An introductory perspective of artificial intelligence and robotics

    SciTech Connect

    Gevarter, W.B.

    1985-01-01

    This book provides an integrated view of the many diverse aspects of the fields of artificial intelligence (AI) and robotics. It incorporates a summary of the basic concepts utilized in each of the many technical areas; a review of the state-of-the-art; research developments and needs, an indiction of the organizations involved; applications; and a 5-10 year forecast of emerging technology. AI and robotics terms are introduced and immediately defined. The book is designed in a modular format with each chapter essentially complete unto itself. It features extensive use of diagrams, charts, tables that illustrate the concepts and provide material in an easy-to-understand form. Simple illustrative examples clarify and make concrete ideas and material presented. It features an extensive glossary of AI terms and many sets of references and sources of further information.

  12. An overview of artificial intelligence and robotics. Volume 1: Artificial intelligence. Part B: Applications

    NASA Technical Reports Server (NTRS)

    Gevarter, W. B.

    1983-01-01

    Artificial Intelligence (AI) is an emerging technology that has recently attracted considerable attention. Many applications are now under development. This report, Part B of a three part report on AI, presents overviews of the key application areas: Expert Systems, Computer Vision, Natural Language Processing, Speech Interfaces, and Problem Solving and Planning. The basic approaches to such systems, the state-of-the-art, existing systems and future trends and expectations are covered.

  13. Robotics and artificial intelligence: Jewish ethical perspectives.

    PubMed

    Rappaport, Z H

    2006-01-01

    In 16th Century Prague, Rabbi Loew created a Golem, a humanoid made of clay, to protect his community. When the Golem became too dangerous to his surroundings, he was dismantled. This Jewish theme illustrates some of the guiding principles in its approach to the moral dilemmas inherent in future technologies, such as artificial intelligence and robotics. Man is viewed as having received the power to improve upon creation and develop technologies to achieve them, with the proviso that appropriate safeguards are taken. Ethically, not-harming is viewed as taking precedence over promoting good. Jewish ethical thinking approaches these novel technological possibilities with a cautious optimism that mankind will derive their benefits without coming to harm.

  14. Artificial Intelligence In Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Vogel, Alison Andrews

    1991-01-01

    Paper compares four first-generation artificial-intelligence (Al) software systems for computational fluid dynamics. Includes: Expert Cooling Fan Design System (EXFAN), PAN AIR Knowledge System (PAKS), grid-adaptation program MITOSIS, and Expert Zonal Grid Generation (EZGrid). Focuses on knowledge-based ("expert") software systems. Analyzes intended tasks, kinds of knowledge possessed, magnitude of effort required to codify knowledge, how quickly constructed, performances, and return on investment. On basis of comparison, concludes Al most successful when applied to well-formulated problems solved by classifying or selecting preenumerated solutions. In contrast, application of Al to poorly understood or poorly formulated problems generally results in long development time and large investment of effort, with no guarantee of success.

  15. Artificial intelligence in the materials processing laboratory

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Kaukler, William F.

    1990-01-01

    Materials science and engineering provides a vast arena for applications of artificial intelligence. Advanced materials research is an area in which challenging requirements confront the researcher, from the drawing board through production and into service. Advanced techniques results in the development of new materials for specialized applications. Hand-in-hand with these new materials are also requirements for state-of-the-art inspection methods to determine the integrity or fitness for service of structures fabricated from these materials. Two problems of current interest to the Materials Processing Laboratory at UAH are an expert system to assist in eddy current inspection of graphite epoxy components for aerospace and an expert system to assist in the design of superalloys for high temperature applications. Each project requires a different approach to reach the defined goals. Results to date are described for the eddy current analysis, but only the original concepts and approaches considered are given for the expert system to design superalloys.

  16. Artificial Intelligence Software Engineering (AISE) model

    NASA Technical Reports Server (NTRS)

    Kiss, Peter A.

    1990-01-01

    The American Institute of Aeronautics and Astronautics has initiated a committee on standards for Artificial Intelligence. Presented are the initial efforts of one of the working groups of that committee. A candidate model is presented for the development life cycle of knowledge based systems (KBSs). The intent is for the model to be used by the aerospace community and eventually be evolved into a standard. The model is rooted in the evolutionary model, borrows from the spiral model, and is embedded in the standard Waterfall model for software development. Its intent is to satisfy the development of both stand-alone and embedded KBSs. The phases of the life cycle are shown and detailed as are the review points that constitute the key milestones throughout the development process. The applicability and strengths of the model are discussed along with areas needing further development and refinement by the aerospace community.

  17. Amplify scientific discovery with artificial intelligence

    SciTech Connect

    Gil, Yolanda; Greaves, Mark T.; Hendler, James; Hirsch, Hyam

    2014-10-10

    Computing innovations have fundamentally changed many aspects of scientific inquiry. For example, advances in robotics, high-end computing, networking, and databases now underlie much of what we do in science such as gene sequencing, general number crunching, sharing information between scientists, and analyzing large amounts of data. As computing has evolved at a rapid pace, so too has its impact in science, with the most recent computing innovations repeatedly being brought to bear to facilitate new forms of inquiry. Recently, advances in Artificial Intelligence (AI) have deeply penetrated many consumer sectors, including for example Apple’s Siri™ speech recognition system, real-time automated language translation services, and a new generation of self-driving cars and self-navigating drones. However, AI has yet to achieve comparable levels of penetration in scientific inquiry, despite its tremendous potential in aiding computers to help scientists tackle tasks that require scientific reasoning. We contend that advances in AI will transform the practice of science as we are increasingly able to effectively and jointly harness human and machine intelligence in the pursuit of major scientific challenges.

  18. Artificial Intelligence/Robotics Applications to Navy Aircraft Maintenance.

    DTIC Science & Technology

    1984-06-01

    AD-A143 219 ARTIFICIAL INTELLIGENCE/ROBOTICS APPLICATIONS TO NAVV T7T AIRCRAFT HAINTENANCE(U) SRI INTERNATIONAL HENLO PARK CA D R BROWN ET AL...34^! * -.’.-. v.’: ;- • ’_*-••.-. - - m i i • i >«••»......» i 0> CO < Final Report ARTIFICIAL INTELLIGENCE/ROBOTICS APPLICATIONS TO NAVY...8217• . . i * • ’ * ’ ** ’.- *_» "-_ _* _- _• -J> . „• „ (ss3 QB e 25 f//w/ Report ARTIFICIAL INTELLIGENCE/ROBOTICS APPLICATIONS TO NAVY

  19. Intelligent Tutoring System: A Tool for Testing the Research Curiosities of Artificial Intelligence Researchers

    ERIC Educational Resources Information Center

    Yaratan, Huseyin

    2003-01-01

    An ITS (Intelligent Tutoring System) is a teaching-learning medium that uses artificial intelligence (AI) technology for instruction. Roberts and Park (1983) defines AI as the attempt to get computers to perform tasks that if performed by a human-being, intelligence would be required to perform the task. The design of an ITS comprises two distinct…

  20. Third Conference on Artificial Intelligence for Space Applications, part 2

    NASA Technical Reports Server (NTRS)

    Denton, Judith S. (Compiler); Freeman, Michael S. (Compiler); Vereen, Mary (Compiler)

    1988-01-01

    Topics relative to the application of artificial intelligence to space operations are discussed. New technologies for space station automation, design data capture, computer vision, neural nets, automatic programming, and real time applications are discussed.

  1. Software Reviews. PC Software for Artificial Intelligence Applications.

    ERIC Educational Resources Information Center

    Epp, Helmut; And Others

    1988-01-01

    Contrasts artificial intelligence and conventional programming languages. Reviews Personal Consultant Plus, Smalltalk/V, and Nexpert Object, which are PC-based products inspired by problem-solving paradigms. Provides information on background and operation of each. (RT)

  2. An Artificial Intelligence Approach to Analyzing Student Errors in Statistics.

    ERIC Educational Resources Information Center

    Sebrechts, Marc M.; Schooler, Lael J.

    1987-01-01

    Describes the development of an artificial intelligence system called GIDE that analyzes student errors in statistics problems by inferring the students' intentions. Learning strategies involved in problem solving are discussed and the inclusion of goal structures is explained. (LRW)

  3. Third Conference on Artificial Intelligence for Space Applications, part 1

    NASA Technical Reports Server (NTRS)

    Denton, Judith S. (Compiler); Freeman, Michael S. (Compiler); Vereen, Mary (Compiler)

    1987-01-01

    The application of artificial intelligence to spacecraft and aerospace systems is discussed. Expert systems, robotics, space station automation, fault diagnostics, parallel processing, knowledge representation, scheduling, man-machine interfaces and neural nets are among the topics discussed.

  4. Vibration energy harvester optimization using artificial intelligence

    NASA Astrophysics Data System (ADS)

    Hadas, Z.; Ondrusek, C.; Kurfurst, J.; Singule, V.

    2011-06-01

    This paper deals with an optimization study of a vibration energy harvester. This harvester can be used as autonomous source of electrical energy for remote or wireless applications, which are placed in environment excited by ambient mechanical vibrations. The ambient energy of vibrations is usually on very low level but the harvester can be used as alternative source of energy for electronic devices with an expected low level of power consumption of several mW. The optimized design of the vibration energy harvester was based on previous development and the sensitivity of harvester design was improved for effective harvesting from mechanical vibrations in aeronautic applications. The vibration energy harvester is a mechatronic system which generates electrical energy from ambient vibrations due to precision tuning up generator parameters. The optimization study for maximization of harvested power or minimization of volume and weight are the main goals of our development. The optimization study of such complex device is complicated therefore artificial intelligence methods can be used for tuning up optimal harvester parameters.

  5. Using artificial intelligence to automate remittance processing.

    PubMed

    Adams, W T; Snow, G M; Helmick, P M

    1998-06-01

    The consolidated business office of the Allegheny Health Education Research Foundation (AHERF), a large integrated healthcare system based in Pittsburgh, Pennsylvania, sought to improve its cash-related business office activities by implementing an automated remittance processing system that uses artificial intelligence. The goal was to create a completely automated system whereby all monies it processed would be tracked, automatically posted, analyzed, monitored, controlled, and reconciled through a central database. Using a phased approach, the automated payment system has become the central repository for all of the remittances for seven of the hospitals in the AHERF system and has allowed for the complete integration of these hospitals' existing billing systems, document imaging system, and intranet, as well as the new automated payment posting, and electronic cash tracking and reconciling systems. For such new technology, which is designed to bring about major change, factors contributing to the project's success were adequate planning, clearly articulated objectives, marketing, end-user acceptance, and post-implementation plan revision.

  6. Artificial intelligence: contemporary applications and future compass.

    PubMed

    Khanna, Sunali

    2010-08-01

    The clinical use of information technology in the dental profession has increased substantially in the past 10 to 20 years. In most developing countries an insufficiency of medical and dental specialists has increased the mortality of patients suffering from various diseases. Employing technology, especially artificial intelligence technology, in medical and dental application could reduce cost, time, human expertise and medical error. This approach has the potential to revolutionise the dental public health scenario in developing countries. Clinical decision support systems (CDSS) are computer programs that are designed to provide expert support for health professionals. The applications in dental sciences vary from dental emergencies to differential diagnosis of orofacial pain, radiographic interpretations, analysis of facial growth in orthodontia to prosthetic dentistry. However, despite the recognised need for CDSS, the implementation of these systems has been limited and slow. This can be attributed to lack of formal evaluation of the systems, challenges in developing standard representations, cost and practitioner scepticism about the value and feasibility of CDSS. Increasing public awareness of safety and quality has accelerated the adoption of generic knowledge based CDSS. Information technology applications for dental practice continue to develop rapidly and will hopefully contribute to reduce the morbidity and mortality of oral and maxillofacial diseases and in turn impact patient care.

  7. Applications of artificial intelligence to mission planning

    NASA Technical Reports Server (NTRS)

    Ford, Donnie R.; Rogers, John S.; Floyd, Stephen A.

    1990-01-01

    The scheduling problem facing NASA-Marshall mission planning is extremely difficult for several reasons. The most critical factor is the computational complexity involved in developing a schedule. The size of the search space is large along some dimensions and infinite along others. It is because of this and other difficulties that many of the conventional operation research techniques are not feasible or inadequate to solve the problems by themselves. Therefore, the purpose is to examine various artificial intelligence (AI) techniques to assist conventional techniques or to replace them. The specific tasks performed were as follows: (1) to identify mission planning applications for object oriented and rule based programming; (2) to investigate interfacing AI dedicated hardware (Lisp machines) to VAX hardware; (3) to demonstrate how Lisp may be called from within FORTRAN programs; (4) to investigate and report on programming techniques used in some commercial AI shells, such as Knowledge Engineering Environment (KEE); and (5) to study and report on algorithmic methods to reduce complexity as related to AI techniques.

  8. The Potential Role of Artificial Intelligence Technology in Education.

    ERIC Educational Resources Information Center

    Salem, Abdel-Badeeh M.

    The field of Artificial Intelligence (AI) and Education has traditionally a technology-based focus, looking at the ways in which AI can be used in building intelligent educational software. In addition AI can also provide an excellent methodology for learning and reasoning from the human experiences. This paper presents the potential role of AI in…

  9. Artificial Intelligence, Language and the Study of Knowledge.

    ERIC Educational Resources Information Center

    Goldstein, Ira; And Others

    This paper studies the relationship of artificial intelligence (AI) to the study of language and the representation of the underlying knowledge that supports the comprehension process. It develops the view that intelligence is based on the ability to use large amounts of diverse kinds of knowledge in procedural ways, rather than on the possession…

  10. Applications of Artificial Intelligence in Education--A Personal View.

    ERIC Educational Resources Information Center

    Richer, Mark H.

    1985-01-01

    Discusses: how artificial intelligence (AI) can advance education; if the future of software lies in AI; the roots of intelligent computer-assisted instruction; protocol analysis; reactive environments; LOGO programming language; student modeling and coaching; and knowledge-based instructional programs. Numerous examples of AI programs are cited.…

  11. Application of Artificial Intelligence Techniques in Uninhabited Aerial Vehicle Flight

    NASA Technical Reports Server (NTRS)

    Dufrene, Warren R., Jr.

    2004-01-01

    This paper describes the development of an application of Artificial Intelligence (AI) for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in AI at NOVA Southeastearn University and a beginning project at NASA Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an Artificial Intelligence method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed.

  12. Application of Artificial Intelligence Techniques in Uninhabitated Aerial Vehicle Flight

    NASA Technical Reports Server (NTRS)

    Dufrene, Warren R., Jr.

    2003-01-01

    This paper describes the development of an application of Artificial Intelligence (AI) for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in AI at NOVA southeastern University and a beginning project at NASA Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an Artificial Intelligence method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed.

  13. Artificial intelligence and nuclear power. Report by the Technology Transfer Artificial Intelligence Task Team

    SciTech Connect

    Not Available

    1985-06-01

    The Artificial Intelligence Task Team was organized to review the status of Artificial Intelligence (AI) technology, identify guidelines for AI work, and to identify work required to allow the nuclear industry to realize maximum benefit from this technology. The state of the nuclear industry was analyzed to determine where the application of AI technology could be of greatest benefit. Guidelines and criteria were established to focus on those particular problem areas where AI could provide the highest possible payoff to the industry. Information was collected from government, academic, and private organizations. Very little AI work is now being done to specifically support the nuclear industry. The AI Task Team determined that the establishment of a Strategic Automation Initiative (SAI) and the expansion of the DOE Technology Transfer program would ensure that AI technology could be used to develop software for the nuclear industry that would have substantial financial payoff to the industry. The SAI includes both long and short term phases. The short-term phase includes projects which would demonstrate that AI can be applied to the nuclear industry safely, and with substantial financial benefit. The long term phase includes projects which would develop AI technologies with specific applicability to the nuclear industry that would not be developed by people working in any other industry.

  14. Artificial intelligence for the CTA Observatory scheduler

    NASA Astrophysics Data System (ADS)

    Colomé, Josep; Colomer, Pau; Campreciós, Jordi; Coiffard, Thierry; de Oña, Emma; Pedaletti, Giovanna; Torres, Diego F.; Garcia-Piquer, Alvaro

    2014-08-01

    The Cherenkov Telescope Array (CTA) project will be the next generation ground-based very high energy gamma-ray instrument. The success of the precursor projects (i.e., HESS, MAGIC, VERITAS) motivated the construction of this large infrastructure that is included in the roadmap of the ESFRI projects since 2008. CTA is planned to start the construction phase in 2015 and will consist of two arrays of Cherenkov telescopes operated as a proposal-driven open observatory. Two sites are foreseen at the southern and northern hemispheres. The CTA observatory will handle several observation modes and will have to operate tens of telescopes with a highly efficient and reliable control. Thus, the CTA planning tool is a key element in the control layer for the optimization of the observatory time. The main purpose of the scheduler for CTA is the allocation of multiple tasks to one single array or to multiple sub-arrays of telescopes, while maximizing the scientific return of the facility and minimizing the operational costs. The scheduler considers long- and short-term varying conditions to optimize the prioritization of tasks. A short-term scheduler provides the system with the capability to adapt, in almost real-time, the selected task to the varying execution constraints (i.e., Targets of Opportunity, health or status of the system components, environment conditions). The scheduling procedure ensures that long-term planning decisions are correctly transferred to the short-term prioritization process for a suitable selection of the next task to execute on the array. In this contribution we present the constraints to CTA task scheduling that helped classifying it as a Flexible Job-Shop Problem case and finding its optimal solution based on Artificial Intelligence techniques. We describe the scheduler prototype that uses a Guarded Discrete Stochastic Neural Network (GDSN), for an easy representation of the possible long- and short-term planning solutions, and Constraint

  15. A Framework for Intelligent Instructional Systems: An Artificial Intelligence Machine Learning Approach.

    ERIC Educational Resources Information Center

    Becker, Lee A.

    1987-01-01

    Presents and develops a general model of the nature of a learning system and a classification for learning systems. Highlights include the relationship between artificial intelligence and cognitive psychology; computer-based instructional systems; intelligent instructional systems; and the role of the learner's knowledge base in an intelligent…

  16. Robotics and artificial intelligence across the Atlantic and Pacific

    SciTech Connect

    Schlussel, K.

    1983-08-01

    World research and develoments in robotics and artificial intelligence have received significant attention in the past few years. While the United States has both an active and advanced program in robotics and artificial intelligence, other countries have been working and organizing their activities and are starting to produce some interesting results. The paper presents some highlights of foreign efforts in robotics and artificial intelligence research and development. It is not the purpose of this paper to be all inclusive of every foreign robotics program, but to give a sample of selective developments and briefly examine the international cooperation of many programs. Projects in western Europe, Japan, and the eastern bloc countries are discussed. 31 references.

  17. The Coming of Age of Artificial Intelligence in Medicine*

    PubMed Central

    Patel, Vimla L.; Shortliffe, Edward H.; Stefanelli, Mario; Szolovits, Peter; Berthold, Michael R.; Bellazzi, Riccardo; Abu-Hanna, Ameen

    2009-01-01

    Summary This paper is based on a panel discussion held at the Artificial Intelligence in Medicine Europe (AIME) conference in Amsterdam, The Netherlands, in July 2007. It had been more than 15 years since Edward Shortliffe gave a talk at AIME in which he characterized artificial intelligence (AI) in medicine as being in its “adolescence” (Shortliffe EH. The adolescence of AI in medicine: Will the field come of age in the ‘90s? Artificial Intelligence in Medicine 1993; 5:93–106). In this article, the discussants reflect on medical AI research during the subsequent years and attempt to characterize the maturity and influence that has been achieved to date. Participants focus on their personal areas of expertise, ranging from clinical decision making, reasoning under uncertainty, and knowledge representation to systems integration, translational bioinformatics, and cognitive issues in both the modeling of expertise and the creation of acceptable systems. PMID:18790621

  18. The coming of age of artificial intelligence in medicine.

    PubMed

    Patel, Vimla L; Shortliffe, Edward H; Stefanelli, Mario; Szolovits, Peter; Berthold, Michael R; Bellazzi, Riccardo; Abu-Hanna, Ameen

    2009-05-01

    This paper is based on a panel discussion held at the Artificial Intelligence in Medicine Europe (AIME) conference in Amsterdam, The Netherlands, in July 2007. It had been more than 15 years since Edward Shortliffe gave a talk at AIME in which he characterized artificial intelligence (AI) in medicine as being in its "adolescence" (Shortliffe EH. The adolescence of AI in medicine: will the field come of age in the '90s? Artificial Intelligence in Medicine 1993;5:93-106). In this article, the discussants reflect on medical AI research during the subsequent years and characterize the maturity and influence that has been achieved to date. Participants focus on their personal areas of expertise, ranging from clinical decision-making, reasoning under uncertainty, and knowledge representation to systems integration, translational bioinformatics, and cognitive issues in both the modeling of expertise and the creation of acceptable systems.

  19. [Artificial intelligence--the knowledge base applied to nephrology].

    PubMed

    Sancipriano, G P

    2005-01-01

    The idea that efficacy efficiency, and quality in medicine could not be reached without sorting the huge knowledge of medical and nursing science is very common. Engineers and computer scientists have developed medical software with great prospects for success, but currently these software applications are not so useful in clinical practice. The medical doctor and the trained nurse live the 'information age' in many daily activities, but the main benefits are not so widespread in working activities. Artificial intelligence and, particularly, export systems charm health staff because of their potential. The first part of this paper summarizes the characteristics of 'weak artificial intelligence' and of expert systems important in clinical practice. The second part discusses medical doctors' requirements and the current nephrologic knowledge bases available for artificial intelligence development.

  20. A review of European applications of artificial intelligence to space

    NASA Technical Reports Server (NTRS)

    Drummond, Mark (Editor); Stewart, Helen (Editor)

    1993-01-01

    The purpose is to describe the applications of Artificial Intelligence (AI) to the European Space program that are being developed or have been developed. The results of a study sponsored by the Artificial Intelligence Research and Development program of NASA's Office of Advanced Concepts and Technology (OACT) are described. The report is divided into two sections. The first consists of site reports, which are descriptions of the AI applications seen at each place visited. The second section consists of two summaries which synthesize the information in the site reports by organizing this information in two different ways. The first organizes the material in terms of the type of application, e.g., data analysis, planning and scheduling, and procedure management. The second organizes the material in terms of the component technologies of Artificial Intelligence which the applications used, e.g., knowledge based systems, model based reasoning, procedural reasoning, etc.

  1. Artificial intelligence and robot responsibilities: innovating beyond rights.

    PubMed

    Ashrafian, Hutan

    2015-04-01

    The enduring innovations in artificial intelligence and robotics offer the promised capacity of computer consciousness, sentience and rationality. The development of these advanced technologies have been considered to merit rights, however these can only be ascribed in the context of commensurate responsibilities and duties. This represents the discernable next-step for evolution in this field. Addressing these needs requires attention to the philosophical perspectives of moral responsibility for artificial intelligence and robotics. A contrast to the moral status of animals may be considered. At a practical level, the attainment of responsibilities by artificial intelligence and robots can benefit from the established responsibilities and duties of human society, as their subsistence exists within this domain. These responsibilities can be further interpreted and crystalized through legal principles, many of which have been conserved from ancient Roman law. The ultimate and unified goal of stipulating these responsibilities resides through the advancement of mankind and the enduring preservation of the core tenets of humanity.

  2. Artificial intelligence approaches for rational drug design and discovery.

    PubMed

    Duch, Włodzisław; Swaminathan, Karthikeyan; Meller, Jarosław

    2007-01-01

    Pattern recognition, machine learning and artificial intelligence approaches play an increasingly important role in rational drug design, screening and identification of candidate molecules and studies on quantitative structure-activity relationships (QSAR). In this review, we present an overview of basic concepts and methodology in the fields of machine learning and artificial intelligence (AI). An emphasis is put on methods that enable an intuitive interpretation of the results and facilitate gaining an insight into the structure of the problem at hand. We also discuss representative applications of AI methods to docking, screening and QSAR studies. The growing trend to integrate computational and experimental efforts in that regard and some future developments are discussed. In addition, we comment on a broader role of machine learning and artificial intelligence approaches in biomedical research.

  3. Fifth Conference on Artificial Intelligence for Space Applications

    NASA Technical Reports Server (NTRS)

    Odell, Steve L. (Compiler)

    1990-01-01

    The Fifth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: automation for Space Station; intelligent control, testing, and fault diagnosis; robotics and vision; planning and scheduling; simulation, modeling, and tutoring; development tools and automatic programming; knowledge representation and acquisition; and knowledge base/data base integration.

  4. Artificial intelligence (AI) systems for interpreting complex medical datasets.

    PubMed

    Altman, R B

    2017-02-09

    Advances in machine intelligence have created powerful capabilities in algorithms that find hidden patterns in data, classify objects based on their measured characteristics, and associate similar patients/diseases/drugs based on common features. However, artificial intelligence (AI) applications in medical data have several technical challenges: complex and heterogeneous datasets, noisy medical datasets, and explaining their output to users. There are also social challenges related to intellectual property, data provenance, regulatory issues, economics, and liability.

  5. The 1988 Goddard Conference on Space Applications of Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Rash, James (Editor); Hughes, Peter (Editor)

    1988-01-01

    This publication comprises the papers presented at the 1988 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland on May 24, 1988. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers in these proceedings fall into the following areas: mission operations support, planning and scheduling; fault isolation/diagnosis; image processing and machine vision; data management; modeling and simulation; and development tools/methodologies.

  6. Bionics: A Step toward Artificial Intelligence Systems

    ERIC Educational Resources Information Center

    Dutton, Robert E.

    1970-01-01

    Recent developments and future prospects in the borrowing of biological principles to build problem solving relationships between human intelligence and the information storage and manipulation capacities of computers. Twenty-one references. (LY)

  7. Artificial intelligence and synthetic biology: A tri-temporal contribution.

    PubMed

    Bianchini, Francesco

    2016-10-01

    Artificial intelligence can make numerous contributions to synthetic biology. I would like to suggest three that are related to the past, present and future of artificial intelligence. From the past, works in biology and artificial systems by Turing and von Neumann prove highly interesting to explore within the new framework of synthetic biology, especially with regard to the notions of self-modification and self-replication and their links to emergence and the bottom-up approach. The current epistemological inquiry into emergence and research on swarm intelligence, superorganisms and biologically inspired cognitive architecture may lead to new achievements on the possibilities of synthetic biology in explaining cognitive processes. Finally, the present-day discussion on the future of artificial intelligence and the rise of superintelligence may point to some research trends for the future of synthetic biology and help to better define the boundary of notions such as "life", "cognition", "artificial" and "natural", as well as their interconnections in theoretical synthetic biology.

  8. Artificial evolution: a new path for artificial intelligence?

    PubMed

    Husbands, P; Harvey, I; Cliff, D; Miller, G

    1997-06-01

    Recently there have been a number of proposals for the use of artificial evolution as a radically new approach to the development of control systems for autonomous robots. This paper explains the artificial evolution approach, using work at Sussex to illustrate it. The paper revolves around a case study on the concurrent evolution of control networks and visual sensor morphologies for a mobile robot. Wider intellectual issues surrounding the work are discussed, as is the use of more abstract evolutionary simulations as a new potentially useful tool in theoretical biology.

  9. Robotics, Artificial Intelligence, Computer Simulation: Future Applications in Special Education.

    ERIC Educational Resources Information Center

    Moore, Gwendolyn B.; And Others

    The report describes three advanced technologies--robotics, artificial intelligence, and computer simulation--and identifies the ways in which they might contribute to special education. A hybrid methodology was employed to identify existing technology and forecast future needs. Following this framework, each of the technologies is defined,…

  10. Proceedings of the third conference on artificial intelligence applications

    SciTech Connect

    Not Available

    1987-01-01

    This book presents the papers given at a conference on artificial intelligence. Topics considered at the conference included a knowledge-based imaging system for electromagnetic testing, natural language processing, diagnostic techniques, knowledge acquisition, manufacturing, real-time programming, robotics, search, uncertainty, design, planning, and software.

  11. An Artificial Intelligence Course for Liberal Arts Students.

    ERIC Educational Resources Information Center

    Skala, Helen

    1988-01-01

    Outlines a course in artificial intelligence for liberal arts students that has no programing prerequisites. Topics and projects included in the course are described, including problem solving; natural language; expert systems; image understanding, or character recognition; and robotic systems. (28 references) (Author/LRW)

  12. Artificial Intelligence and the High School Computer Curriculum.

    ERIC Educational Resources Information Center

    Dillon, Richard W.

    1993-01-01

    Describes a four-part curriculum that can serve as a model for incorporating artificial intelligence (AI) into the high school computer curriculum. The model includes examining questions fundamental to AI, creating and designing an expert system, language processing, and creating programs that integrate machine vision with robotics and…

  13. Massachusetts Institute of Technology Artificial Intelligence Laboratory Bibliography.

    ERIC Educational Resources Information Center

    Massachusetts Inst. of Tech., Cambridge. Artificial Intelligence Lab.

    Massachusetts Institute of Technology (MIT) presents a bibliography of more than 350 reports, theses, and papers from its artificial intelligence laboratory. Title, author, and identification number are given for all items, and most also have a date and contract number. Some items are no longer available, and others may be obtained from National…

  14. Magical Stories: Blending Virtual Reality and Artificial Intelligence.

    ERIC Educational Resources Information Center

    McLellan, Hilary

    Artificial intelligence (AI) techniques and virtual reality (VR) make possible powerful interactive stories, and this paper focuses on examples of virtual characters in three dimensional (3-D) worlds. Waldern, a virtual reality game designer, has theorized about and implemented software design of virtual teammates and opponents that incorporate AI…

  15. Second Conference on Artificial Intelligence for Space Applications

    NASA Technical Reports Server (NTRS)

    Dollman, Thomas (Compiler)

    1988-01-01

    The proceedings of the conference are presented. This second conference on Artificial Intelligence for Space Applications brings together a diversity of scientific and engineering work and is intended to provide an opportunity for those who employ AI methods in space applications to identify common goals and to discuss issues of general interest in the AI community.

  16. Artificial Intelligence in ADA: Pattern-Directed Processing. Final Report.

    ERIC Educational Resources Information Center

    Reeker, Larry H.; And Others

    To demonstrate to computer programmers that the programming language Ada provides superior facilities for use in artificial intelligence applications, the three papers included in this report investigate the capabilities that exist within Ada for "pattern-directed" programming. The first paper (Larry H. Reeker, Tulane University) is…

  17. New directions for Artificial Intelligence (AI) methods in optimum design

    NASA Technical Reports Server (NTRS)

    Hajela, Prabhat

    1989-01-01

    Developments and applications of artificial intelligence (AI) methods in the design of structural systems is reviewed. Principal shortcomings in the current approach are emphasized, and the need for some degree of formalism in the development environment for such design tools is underscored. Emphasis is placed on efforts to integrate algorithmic computations in expert systems.

  18. The Seeds of Artificial Intelligence. SUMEX-AIM.

    ERIC Educational Resources Information Center

    Research Resources Information Center, Rockville, MD.

    Written to provide an understanding of the broad base of information on which the artificial intelligence (AI) branch of computer science rests, this publication presents a general view of AI, the concepts from which it evolved, its current abilities, and its promise for research. The focus is on a community of projects that use the SUMEX-AIM…

  19. Artificial intelligence technologies for power system operations. Final report

    SciTech Connect

    Talukdar, S.N.; Cardozo, E.

    1986-01-01

    Researchers in this study examined the potential of artificial intelligence (AI) technologies for improving problem-solving strategies in 16 power system operations. To demonstrate the use of AI in the area they considered most promising, contingency selection-security assessment, they also developed two programs - one to simulate network protection schemes, the other to diagnose faults.

  20. Reflections on the relationship between artificial intelligence and operations research

    NASA Technical Reports Server (NTRS)

    Fox, Mark S.

    1989-01-01

    Historically, part of Artificial Intelligence's (AI's) roots lie in Operations Research (OR). How AI has extended the problem solving paradigm developed in OR is explored. In particular, by examining how scheduling problems are solved using OR and AI, it is demonstrated that AI extends OR's model of problem solving through the opportunistic use of knowledge, problem reformulation and learning.

  1. Systems in Science: Modeling Using Three Artificial Intelligence Concepts.

    ERIC Educational Resources Information Center

    Sunal, Cynthia Szymanski; Karr, Charles L.; Smith, Coralee; Sunal, Dennis W.

    2003-01-01

    Describes an interdisciplinary course focusing on modeling scientific systems. Investigates elementary education majors' applications of three artificial intelligence concepts used in modeling scientific systems before and after the course. Reveals a great increase in understanding of concepts presented but inconsistent application. (Author/KHR)

  2. Evolution and Revolution in Artificial Intelligence in Education

    ERIC Educational Resources Information Center

    Roll, Ido; Wylie, Ruth

    2016-01-01

    The field of Artificial Intelligence in Education (AIED) has undergone significant developments over the last twenty-five years. As we reflect on our past and shape our future, we ask two main questions: What are our major strengths? And, what new opportunities lay on the horizon? We analyse 47 papers from three years in the history of the…

  3. Artificial Intelligence: Is the Future Now for A.I.?

    ERIC Educational Resources Information Center

    Ramaswami, Rama

    2009-01-01

    In education, artificial intelligence (AI) has not made much headway. In the one area where it would seem poised to lend the most benefit--assessment--the reliance on standardized tests, intensified by the demands of the No Child Left Behind Act of 2001, which holds schools accountable for whether students pass statewide exams, precludes its use.…

  4. An Artificial Intelligence-Based Distance Education System: Artimat

    ERIC Educational Resources Information Center

    Nabiyev, Vasif; Karal, Hasan; Arslan, Selahattin; Erumit, Ali Kursat; Cebi, Ayca

    2013-01-01

    The purpose of this study is to evaluate the artificial intelligence-based distance education system called ARTIMAT, which has been prepared in order to improve mathematical problem solving skills of the students, in terms of conceptual proficiency and ease of use with the opinions of teachers and students. The implementation has been performed…

  5. Artificial Intelligence Models for Human Problem-Solving.

    ERIC Educational Resources Information Center

    Goldin, Gerald A.; Luger, George F.

    A theory that there is a correspondence between Piagetian conservation operations and groups of symmetry transformations, and that these symmetry transformations may be used in explaining human problem solving behaviors, is developed in this paper. Current research in artificial intelligence is briefly reviewed, then details of the symmetry…

  6. Artificial Intelligence in Business: Technocrat Jargon or Quantum Leap?

    ERIC Educational Resources Information Center

    Burford, Anna M.; Wilson, Harold O.

    This paper addresses the characteristics and applications of artificial intelligence (AI) as a subsection of computer science, and briefly describes the most common types of AI programs: expert systems, natural language, and neural networks. Following a brief presentation of the historical background, the discussion turns to an explanation of how…

  7. Artificial Intelligence: Themes in the Second Decade. Memo Number 67.

    ERIC Educational Resources Information Center

    Feigenbaum, Edward A.

    The text of an invited address on artificial intelligence (AI) research over the 1963-1968 period is presented. A survey of recent studies on the computer simulation of intellective processes emphasizes developments in heuristic programing, problem-solving and closely related learning models. Progress and problems in these areas are indicated by…

  8. Robotics, Artificial Intelligence, Computer Simulation: Future Applications in Special Education.

    ERIC Educational Resources Information Center

    Moore, Gwendolyn B.; And Others

    1986-01-01

    Describes possible applications of new technologies to special education. Discusses results of a study designed to explore the use of robotics, artificial intelligence, and computer simulations to aid people with handicapping conditions. Presents several scenarios in which specific technological advances may contribute to special education…

  9. The 1992 Goddard Conference on Space Applications of Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Rash, James L. (Editor)

    1992-01-01

    The purpose of this conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers fall into the following areas: planning and scheduling, control, fault monitoring/diagnosis and recovery, information management, tools, neural networks, and miscellaneous applications.

  10. Artificial intelligence - New tools for aerospace project managers

    NASA Technical Reports Server (NTRS)

    Moja, D. C.

    1985-01-01

    Artificial Intelligence (AI) is currently being used for business-oriented, money-making applications, such as medical diagnosis, computer system configuration, and geological exploration. The present paper has the objective to assess new AI tools and techniques which will be available to assist aerospace managers in the accomplishment of their tasks. A study conducted by Brown and Cheeseman (1983) indicates that AI will be employed in all traditional management areas, taking into account goal setting, decision making, policy formulation, evaluation, planning, budgeting, auditing, personnel management, training, legal affairs, and procurement. Artificial intelligence/expert systems are discussed, giving attention to the three primary areas concerned with intelligent robots, natural language interfaces, and expert systems. Aspects of information retrieval are also considered along with the decision support system, and expert systems for project planning and scheduling.

  11. Methodology Investigation of AI(Artificial Intelligence) Test Officer Support Tool. Volume 1

    DTIC Science & Technology

    1989-03-01

    American Association for Artificial inteligence A! ............. Artificial inteliigence AMC ............ Unt:ed States Army Maeriel Comand ASL...block number) FIELD GROUP SUB-GROUP Artificial Intelligence, Expert Systems Automated Aids to Testing 9. ABSTRACT (Continue on reverse if necessary and...identify by block number) This report covers the application of Artificial Intelligence-Techniques to the problem of creating automated tools to

  12. Performance evaluation of artificial intelligence classifiers for the medical domain.

    PubMed

    Smith, A E; Nugent, C D; McClean, S I

    2002-01-01

    The application of artificial intelligence systems is still not widespread in the medical field, however there is an increasing necessity for these to handle the surfeit of information available. One drawback to their implementation is the lack of criteria or guidelines for the evaluation of these systems. This is the primary issue in their acceptability to clinicians, who require them for decision support and therefore need evidence that these systems meet the special safety-critical requirements of the domain. This paper shows evidence that the most prevalent form of intelligent system, neural networks, is generally not being evaluated rigorously regarding classification precision. A taxonomy of the types of evaluation tests that can be carried out, to gauge inherent performance of the outputs of intelligent systems has been assembled, and the results of this presented in a clear and concise form, which should be applicable to all intelligent classifiers for medicine.

  13. Artificial pigs in space: using artificial intelligence and artificial life techniques to design animal housing.

    PubMed

    Stricklin, W R; de Bourcier, P; Zhou, J Z; Gonyou, H W

    1998-10-01

    Computer simulations have been used by us since the early 1970s to gain an understanding of the spacing and movement patterns of confined animals. The work has progressed from the early stages, in which we used randomly positioned points, to current investigations of animats (computer-simulated animals), which show low levels of learning via artificial neural networks. We have determined that 1) pens of equal floor area but of different shape result in different spatial and movement patterns for randomly positioned and moving animats; 2) when group size increases under constant density, freedom of movement approaches an asymptote at approximately six animats; 3) matching the number of animats with the number of corners results in optimal freedom of movement for small groups of animats; and 4) perimeter positioning occurs in groups of animats that maximize their distance to first- and second-nearest neighbors. Recently, we developed animats that move, compete for social dominance, and are motivated to obtain resources (food, resting sites, etc.). We are currently developing an animat that learns its behavior from the spatial and movement data collected on live pigs. The animat model is then used to pretest pen designs, followed by new pig spatial data fed into the animat model, resulting in a new pen design to be tested, and the steps are repeated. We believe that methodologies from artificial-life and artificial intelligence can contribute to the understanding of basic animal behavior principles, as well as to the solving of problems in production agriculture in areas such as animal housing design.

  14. Teaching artificial intelligence to read electropherograms.

    PubMed

    Taylor, Duncan; Powers, David

    2016-11-01

    Electropherograms are produced in great numbers in forensic DNA laboratories as part of everyday criminal casework. Before the results of these electropherograms can be used they must be scrutinised by analysts to determine what the identified data tells us about the underlying DNA sequences and what is purely an artefact of the DNA profiling process. A technique that lends itself well to such a task of classification in the face of vast amounts of data is the use of artificial neural networks. These networks, inspired by the workings of the human brain, have been increasingly successful in analysing large datasets, performing medical diagnoses, identifying handwriting, playing games, or recognising images. In this work we demonstrate the use of an artificial neural network which we train to 'read' electropherograms and show that it can generalise to unseen profiles.

  15. Modelling fuel cell performance using artificial intelligence

    NASA Astrophysics Data System (ADS)

    Ogaji, S. O. T.; Singh, R.; Pilidis, P.; Diacakis, M.

    Over the last few years, fuel cell technology has been increasing promisingly its share in the generation of stationary power. Numerous pilot projects are operating worldwide, continuously increasing the amount of operating hours either as stand-alone devices or as part of gas turbine combined cycles. An essential tool for the adequate and dynamic analysis of such systems is a software model that enables the user to assess a large number of alternative options in the least possible time. On the other hand, the sphere of application of artificial neural networks has widened covering such endeavours of life such as medicine, finance and unsurprisingly engineering (diagnostics of faults in machines). Artificial neural networks have been described as diagrammatic representation of a mathematical equation that receives values (inputs) and gives out results (outputs). Artificial neural networks systems have the capacity to recognise and associate patterns and because of their inherent design features, they can be applied to linear and non-linear problem domains. In this paper, the performance of the fuel cell is modelled using artificial neural networks. The inputs to the network are variables that are critical to the performance of the fuel cell while the outputs are the result of changes in any one or all of the fuel cell design variables, on its performance. Critical parameters for the cell include the geometrical configuration as well as the operating conditions. For the neural network, various network design parameters such as the network size, training algorithm, activation functions and their causes on the effectiveness of the performance modelling are discussed. Results from the analysis as well as the limitations of the approach are presented and discussed.

  16. Air Quality Forecasting through Different Statistical and Artificial Intelligence Techniques

    NASA Astrophysics Data System (ADS)

    Mishra, D.; Goyal, P.

    2014-12-01

    Urban air pollution forecasting has emerged as an acute problem in recent years because there are sever environmental degradation due to increase in harmful air pollutants in the ambient atmosphere. In this study, there are different types of statistical as well as artificial intelligence techniques are used for forecasting and analysis of air pollution over Delhi urban area. These techniques are principle component analysis (PCA), multiple linear regression (MLR) and artificial neural network (ANN) and the forecasting are observed in good agreement with the observed concentrations through Central Pollution Control Board (CPCB) at different locations in Delhi. But such methods suffers from disadvantages like they provide limited accuracy as they are unable to predict the extreme points i.e. the pollution maximum and minimum cut-offs cannot be determined using such approach. Also, such methods are inefficient approach for better output forecasting. But with the advancement in technology and research, an alternative to the above traditional methods has been proposed i.e. the coupling of statistical techniques with artificial Intelligence (AI) can be used for forecasting purposes. The coupling of PCA, ANN and fuzzy logic is used for forecasting of air pollutant over Delhi urban area. The statistical measures e.g., correlation coefficient (R), normalized mean square error (NMSE), fractional bias (FB) and index of agreement (IOA) of the proposed model are observed in better agreement with the all other models. Hence, the coupling of statistical and artificial intelligence can be use for the forecasting of air pollutant over urban area.

  17. Autonomous operations through onboard artificial intelligence

    NASA Technical Reports Server (NTRS)

    Sherwood, R. L.; Chien, S.; Castano, R.; Rabideau, G.

    2002-01-01

    The Autonomous Sciencecraft Experiment (ASE) will fly onboard the Air Force TechSat 21 constellation of three spacecraft scheduled for launch in 2006. ASE uses onboard continuous planning, robust task and goal-based execution, model-based mode identification and reconfiguration, and onboard machine learning and pattern recognition to radically increase science return by enabling intelligent downlink selection and autonomous retargeting. Demonstration of these capabilities in a flight environment will open up tremendous new opportunities in planetary science, space physics, and earth science that would be unreachable without this technology.

  18. An application of artificial intelligence theory to reconfigurable flight control

    NASA Technical Reports Server (NTRS)

    Handelman, David A.

    1987-01-01

    Artificial intelligence techniques were used along with statistical hpyothesis testing and modern control theory, to help the pilot cope with the issues of information, knowledge, and capability in the event of a failure. An intelligent flight control system is being developed which utilizes knowledge of cause and effect relationships between all aircraft components. It will screen the information available to the pilots, supplement his knowledge, and most importantly, utilize the remaining flight capability of the aircraft following a failure. The list of failure types the control system will accommodate includes sensor failures, actuator failures, and structural failures.

  19. Artificial intelligence and robotics in high throughput post-genomics.

    PubMed

    Laghaee, Aroosha; Malcolm, Chris; Hallam, John; Ghazal, Peter

    2005-09-15

    The shift of post-genomics towards a systems approach has offered an ever-increasing role for artificial intelligence (AI) and robotics. Many disciplines (e.g. engineering, robotics, computer science) bear on the problem of automating the different stages involved in post-genomic research with a view to developing quality assured high-dimensional data. We review some of the latest contributions of AI and robotics to this end and note the limitations arising from the current independent, exploratory way in which specific solutions are being presented for specific problems without regard to how these could be eventually integrated into one comprehensible integrated intelligent system.

  20. Artificial Intelligence Application in Power Generation Industry: Initial considerations

    NASA Astrophysics Data System (ADS)

    Ismail, Rahmat Izaizi B.; Ismail Alnaimi, Firas B.; AL-Qrimli, Haidar F.

    2016-03-01

    With increased competitiveness in power generation industries, more resources are directed in optimizing plant operation, including fault detection and diagnosis. One of the most powerful tools in faults detection and diagnosis is artificial intelligence (AI). Faults should be detected early so correct mitigation measures can be taken, whilst false alarms should be eschewed to avoid unnecessary interruption and downtime. For the last few decades there has been major interest towards intelligent condition monitoring system (ICMS) application in power plant especially with AI development particularly in artificial neural network (ANN). ANN is based on quite simple principles, but takes advantage of their mathematical nature, non-linear iteration to demonstrate powerful problem solving ability. With massive possibility and room for improvement in AI, the inspiration for researching them are apparent, and literally, hundreds of papers have been published, discussing the findings of hybrid AI for condition monitoring purposes. In this paper, the studies of ANN and genetic algorithm (GA) application will be presented.

  1. An artificial neural network controller for intelligent transportation systems applications

    SciTech Connect

    Vitela, J.E.; Hanebutte, U.R.; Reifman, J.

    1996-04-01

    An Autonomous Intelligent Cruise Control (AICC) has been designed using a feedforward artificial neural network, as an example for utilizing artificial neural networks for nonlinear control problems arising in intelligent transportation systems applications. The AICC is based on a simple nonlinear model of the vehicle dynamics. A Neural Network Controller (NNC) code developed at Argonne National Laboratory to control discrete dynamical systems was used for this purpose. In order to test the NNC, an AICC-simulator containing graphical displays was developed for a system of two vehicles driving in a single lane. Two simulation cases are shown, one involving a lead vehicle with constant velocity and the other a lead vehicle with varying acceleration. More realistic vehicle dynamic models will be considered in future work.

  2. The mind and the machine: Philosophical aspects of artificial intelligence

    SciTech Connect

    Torrance, S.

    1984-01-01

    What light do current developments in computing shed on philosophical and psychological understanding of the human mind. A group of authors from philosophy, artificial intelligence, linguistics, psychology, and computing provide answers in one of the first texts to bring together a wide range of disciplines into a single area of general international concern. Drawing heavily on current research, the topics discussed are relevant to the growth of public interest in artificial intelligence, expert systems, and fifth generation computers. Topics considered include thought experiments and conceptual investigations, remarks on the language of thought, machines and mind: the functional sphere and epistemological circles, machines, self-control and internationality, linguistic theory, computational models of reasoning, a computer scientist's view of meaning, and learning as a non-deterministic but exact logical process.

  3. Synthetic biology routes to bio-artificial intelligence.

    PubMed

    Nesbeth, Darren N; Zaikin, Alexey; Saka, Yasushi; Romano, M Carmen; Giuraniuc, Claudiu V; Kanakov, Oleg; Laptyeva, Tetyana

    2016-11-30

    The design of synthetic gene networks (SGNs) has advanced to the extent that novel genetic circuits are now being tested for their ability to recapitulate archetypal learning behaviours first defined in the fields of machine and animal learning. Here, we discuss the biological implementation of a perceptron algorithm for linear classification of input data. An expansion of this biological design that encompasses cellular 'teachers' and 'students' is also examined. We also discuss implementation of Pavlovian associative learning using SGNs and present an example of such a scheme and in silico simulation of its performance. In addition to designed SGNs, we also consider the option to establish conditions in which a population of SGNs can evolve diversity in order to better contend with complex input data. Finally, we compare recent ethical concerns in the field of artificial intelligence (AI) and the future challenges raised by bio-artificial intelligence (BI).

  4. Evaluation of artificial intelligence based models for chemical biodegradability prediction.

    PubMed

    Baker, James R; Gamberger, Dragan; Mihelcic, James R; Sabljić, Aleksandar

    2004-12-31

    This study presents a review of biodegradability modeling efforts including a detailed assessment of two models developed using an artificial intelligence based methodology. Validation results for these models using an independent, quality reviewed database, demonstrate that the models perform well when compared to another commonly used biodegradability model, against the same data. The ability of models induced by an artificial intelligence methodology to accommodate complex interactions in detailed systems, and the demonstrated reliability of the approach evaluated by this study, indicate that the methodology may have application in broadening the scope of biodegradability models. Given adequate data for biodegradability of chemicals under environmental conditions, this may allow for the development of future models that include such things as surface interface impacts on biodegradability for example.

  5. Synthetic biology routes to bio-artificial intelligence

    PubMed Central

    Zaikin, Alexey; Saka, Yasushi; Romano, M. Carmen; Giuraniuc, Claudiu V.; Kanakov, Oleg; Laptyeva, Tetyana

    2016-01-01

    The design of synthetic gene networks (SGNs) has advanced to the extent that novel genetic circuits are now being tested for their ability to recapitulate archetypal learning behaviours first defined in the fields of machine and animal learning. Here, we discuss the biological implementation of a perceptron algorithm for linear classification of input data. An expansion of this biological design that encompasses cellular ‘teachers’ and ‘students’ is also examined. We also discuss implementation of Pavlovian associative learning using SGNs and present an example of such a scheme and in silico simulation of its performance. In addition to designed SGNs, we also consider the option to establish conditions in which a population of SGNs can evolve diversity in order to better contend with complex input data. Finally, we compare recent ethical concerns in the field of artificial intelligence (AI) and the future challenges raised by bio-artificial intelligence (BI). PMID:27903825

  6. Northeast Artificial Intelligence Consortium (NAIC). Volume 11. Knowledge Base Maintenance

    DTIC Science & Technology

    1990-12-01

    serious metaProlog-based experiments. We then began extensions of the abstract machine underlying the Prolog byte-code interpreter aimed at produc- ing...an abstract machine suitable for the compilation of metaPro’og. We explored a number of alternatives which presented themselves, eventually...metaProlog machine ; these instructions are executed by an abstract machine inter- preter coded in C. (Following the pattern for ordinary Prolog

  7. Northeast Artificial Intelligence Consortium (NAIC). Volume 7. Automatic Photointerpretation

    DTIC Science & Technology

    1990-12-01

    in genetic search. The transformation that produces the temporal sequence of messages is based upon a cellular automata simulation of wavefronts...ansformng spatial structure into temporal structure. The algorithm is based upon a cellular automata simulation of waverronts emanating from point sources...fronts permits the computation of non-planar graph structures. A significant aspect of the algorithm is its use of cellular automata transformations

  8. Summary of the Northeast Artificial Intelligence Consortium (NAIC)

    DTIC Science & Technology

    1991-09-01

    rwwmg ranjac , s ,ct vm V w- ta so’l-e- gattwrig anl r %w-,"g Tor d"n reec " ,T rr wid rmwmV tlcdeax, of rformrou Serd cTrrts r wdeg u- s b’u-d e,te cr m...y Orw aspec c: ’ded=of iormr ru.dig & ux for redc"- & ,ase to WastVcn Hoec e*tts S wuvc DcIaraoe for forz Operg us a iRepl . 12s 5 .-e-i-c D Nis HkwW... S l* 1204. Arkxpcr VA 202432, n to &is Office of Mwvgrr rt and BLcxg Ppwwork Reducr1 Prj ;t (0704-010 ). WsagwigtoR OC 205C3 . AGENCY USE ONLY

  9. Northeast Artificial Intelligence Consortium Annual Report 1986. Volume 3. Distributed Artificial Intelligence for Communication Network Management

    DTIC Science & Technology

    1988-06-01

    Director delegates the task of controlling Cast member activity to the Grip. The job of routing messages to and from Cast members is given to the Messenger...and s-goals it has instantiated. Relative to each of its goals, it knows a number of alternatives for goal 0 satisfiction . An alternative is comprised

  10. Northeast Artificial Intelligence Consortium Annual Report 1986: Artificial Intelligence Applications to Speech Recognition. Volume 7

    DTIC Science & Technology

    1988-06-01

    7-21 7.2.4 Formant Tracking ............................. 7-21 7.2.5 Pitch Tracking ............................... 27 7.3...34 " - faster than the 64-bin linear spectra. 7.2.4 Formant Tracking It has been known for many years that formant frequency patterns are one of the most...to track formant frequencies. Formants appear on spectrograms as broad bands of energy. Although it is relatively easy for a trained phonetician to

  11. Application of Artificial Intelligence to Improve Aircraft Survivability.

    DTIC Science & Technology

    1985-12-01

    AD-A164 172 APPLICATION OF ARTIFICIAL INTELLIGENCE TO IMPROVE 1/1 AIRCRAFT SURVASRILITY(U) NAVAL POSTGRADUATE SCHOOL UNCR7SIFEDMONTEREY CA N L DECKER...4 5- * . . . . . . 5~5~ * . . - -- &:~~-::-~&~ S.- ~ ~ S. . ~ ~.’ ~ VV ~ NAVAL POSTGRADUATE SCHOOL Monterey, California DTIC FEB 1406 D4 THESIS... School 6 7 Naval Postgraduate School 6C ADDRESS (City, State. and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code) Monterey, California 93943-5100

  12. Robotic air vehicle. Blending artificial intelligence with conventional software

    NASA Technical Reports Server (NTRS)

    Mcnulty, Christa; Graham, Joyce; Roewer, Paul

    1987-01-01

    The Robotic Air Vehicle (RAV) system is described. The program's objectives were to design, implement, and demonstrate cooperating expert systems for piloting robotic air vehicles. The development of this system merges conventional programming used in passive navigation with Artificial Intelligence techniques such as voice recognition, spatial reasoning, and expert systems. The individual components of the RAV system are discussed as well as their interactions with each other and how they operate as a system.

  13. [I, Robot: artificial intelligence, uniqueness and self-consciousness].

    PubMed

    Agrest, Martín

    2008-01-01

    The cinematographic version of the science fiction classical book by Isaac Asimov (I, Robot) is used as a starting point, from the Artificial Intelligence perspective, in order to analyze what it is to have a self. Uniqueness or the exchange impossibility and the continuity of being one self are put forward to understand the movie's characters as well as the possibilities of feeling self conscious.

  14. Issues in management of artificial intelligence based projects

    NASA Technical Reports Server (NTRS)

    Kiss, P. A.; Freeman, Michael S.

    1988-01-01

    Now that Artificial Intelligence (AI) is gaining acceptance, it is important to examine some of the obstacles that still stand in the way of its progress. Ironically, many of these obstacles are related to management and are aggravated by the very characteristcs that make AI useful. The purpose of this paper is to heighten awareness of management issues in AI development and to focus attention on their resolution.

  15. Artificial intelligence issues related to automated computing operations

    NASA Technical Reports Server (NTRS)

    Hornfeck, William A.

    1989-01-01

    Large data processing installations represent target systems for effective applications of artificial intelligence (AI) constructs. The system organization of a large data processing facility at the NASA Marshall Space Flight Center is presented. The methodology and the issues which are related to AI application to automated operations within a large-scale computing facility are described. Problems to be addressed and initial goals are outlined.

  16. Artificial intelligence, expert systems, computer vision, and natural language processing

    NASA Technical Reports Server (NTRS)

    Gevarter, W. B.

    1984-01-01

    An overview of artificial intelligence (AI), its core ingredients, and its applications is presented. The knowledge representation, logic, problem solving approaches, languages, and computers pertaining to AI are examined, and the state of the art in AI is reviewed. The use of AI in expert systems, computer vision, natural language processing, speech recognition and understanding, speech synthesis, problem solving, and planning is examined. Basic AI topics, including automation, search-oriented problem solving, knowledge representation, and computational logic, are discussed.

  17. Artificial intelligence programming languages for computer aided manufacturing

    NASA Technical Reports Server (NTRS)

    Rieger, C.; Samet, H.; Rosenberg, J.

    1979-01-01

    Eight Artificial Intelligence programming languages (SAIL, LISP, MICROPLANNER, CONNIVER, MLISP, POP-2, AL, and QLISP) are presented and surveyed, with examples of their use in an automated shop environment. Control structures are compared, and distinctive features of each language are highlighted. A simple programming task is used to illustrate programs in SAIL, LISP, MICROPLANNER, and CONNIVER. The report assumes reader knowledge of programming concepts, but not necessarily of the languages surveyed.

  18. Application of temporal LNC logic in artificial intelligence

    NASA Astrophysics Data System (ADS)

    Adamek, Marek; Mulawka, Jan

    2016-09-01

    This paper presents the temporal logic inference engine developed in our university. It is an attempt to demonstrate implementation and practical application of temporal logic LNC developed in Cardinal Stefan Wyszynski University in Warsaw.1 The paper describes the fundamentals of LNC logic, architecture and implementation of inference engine. The practical application is shown by providing the solution for popular in Artificial Intelligence problem of Missionaries and Cannibals in terms of LNC logic. Both problem formulation and inference engine are described in details.

  19. Experiments with microcomputer-based artificial intelligence environments

    USGS Publications Warehouse

    Summers, E.G.; MacDonald, R.A.

    1988-01-01

    The U.S. Geological Survey (USGS) has been experimenting with the use of relatively inexpensive microcomputers as artificial intelligence (AI) development environments. Several AI languages are available that perform fairly well on desk-top personal computers, as are low-to-medium cost expert system packages. Although performance of these systems is respectable, their speed and capacity limitations are questionable for serious earth science applications foreseen by the USGS. The most capable artificial intelligence applications currently are concentrated on what is known as the "artificial intelligence computer," and include Xerox D-series, Tektronix 4400 series, Symbolics 3600, VAX, LMI, and Texas Instruments Explorer. The artificial intelligence computer runs expert system shells and Lisp, Prolog, and Smalltalk programming languages. However, these AI environments are expensive. Recently, inexpensive 32-bit hardware has become available for the IBM/AT microcomputer. USGS has acquired and recently completed Beta-testing of the Gold Hill Systems 80386 Hummingboard, which runs Common Lisp on an IBM/AT microcomputer. Hummingboard appears to have the potential to overcome many of the speed/capacity limitations observed with AI-applications on standard personal computers. USGS is a Beta-test site for the Gold Hill Systems GoldWorks expert system. GoldWorks combines some high-end expert system shell capabilities in a medium-cost package. This shell is developed in Common Lisp, runs on the 80386 Hummingboard, and provides some expert system features formerly available only on AI-computers including frame and rule-based reasoning, on-line tutorial, multiple inheritance, and object-programming. ?? 1988 International Association for Mathematical Geology.

  20. Experiments with microcomputer-based artificial intelligence environments

    SciTech Connect

    Summers, E.G.; MacDonald, R.A.

    1988-11-01

    The US Geological Survey (USGS) has been experimenting with the use of relatively inexpensive microcomputers as artificial intelligence (AI) development environments. Several AI languages are available that perform fairly well on desk-top personal computers, as are low-to-medium cost expert system packages. Although performance of these systems is respectable, their speed and capacity limitations are questionable for serious earth science applications foreseen by the USGS. The most capable artificial intelligence applications currently are concentrated on what is known as the artificial intelligence computer, and include Xerox D-series, Tektronix 4400 series, Symbolics 3600, VAX, LMI, and Texas Instruments Explorer. The artificial intelligence computer runs expert system shells and Lisp, Prolog, and Smalltalk programming languages. However, these AI environments are expensive. Recently inexpensive 32-bit hardware has become available for the IBM/AT microcomputer. USGS has acquired and recently completed Beta-testing of the Golf Hill Systems 80386 Hummingboard, which runs Common Lisp on an IBM/AT microcomputer. Hummingboard appears to have the potential to overcome many of the speed/capacity limitations observed with AI-applications on standard personal computers. USGS is a Beta-test site for the Gold Hill Systems GoldWorks expert system. GoldWorks combines some high-end expert system shell capabilities in a medium-cost package. This shell is developed in Common Lisp, runs on the 80386 Hummingboard, and provides some expert system features formerly available only on AI-computers including frame and rule-based reasoning, on-line tutorial, multiple inheritance, and object-programming.

  1. Exodus - Distributed artificial intelligence for Shuttle firing rooms

    NASA Technical Reports Server (NTRS)

    Heard, Astrid E.

    1990-01-01

    This paper describes the Expert System for Operations Distributed Users (EXODUS), a knowledge-based artificial intelligence system developed for the four Firing Rooms at the Kennedy Space Center. EXODUS is used by the Shuttle engineers and test conductors to monitor and control the sequence of tasks required for processing and launching Shuttle vehicles. In this paper, attention is given to the goals and the design of EXODUS, the operational requirements, and the extensibility of the technology.

  2. Future applications of artificial intelligence to Mission Control Centers

    NASA Technical Reports Server (NTRS)

    Friedland, Peter

    1991-01-01

    Future applications of artificial intelligence to Mission Control Centers are presented in the form of the viewgraphs. The following subject areas are covered: basic objectives of the NASA-wide AI program; inhouse research program; constraint-based scheduling; learning and performance improvement for scheduling; GEMPLAN multi-agent planner; planning, scheduling, and control; Bayesian learning; efficient learning algorithms; ICARUS (an integrated architecture for learning); design knowledge acquisition and retention; computer-integrated documentation; and some speculation on future applications.

  3. The 1991 Goddard Conference on Space Applications of Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Rash, James L. (Editor)

    1991-01-01

    The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The papers in this proceeding fall into the following areas: Planning and scheduling, fault monitoring/diagnosis/recovery, machine vision, robotics, system development, information management, knowledge acquisition and representation, distributed systems, tools, neural networks, and miscellaneous applications.

  4. The Outline of Personhood Law Regarding Artificial Intelligences and Emulated Human Entities

    NASA Astrophysics Data System (ADS)

    Muzyka, Kamil

    2013-12-01

    On the verge of technological breakthroughs, which define and revolutionize our understanding of intelligence, cognition, and personhood, especially when speaking of artificial intelligences and mind uploads, one must consider the legal implications of granting personhood rights to artificial intelligences or emulated human entities

  5. Artificial intelligence in IVF: a need.

    PubMed

    Siristatidis, Charalampos; Pouliakis, Abraham; Chrelias, Charalampos; Kassanos, Dimitrios

    2011-08-01

    Predicting the outcome of in-vitro fertilization (IVF) treatment is an extremely semantic issue in reproductive medicine. Discrepancies in results among reproductive centres still exist making the construction of new systems capable to foresee the desired outcome a necessity. As such, artificial neural networks (ANNs) represent a combination of a learning, self-adapting, and predicting machine. In this review hypothesis paper we summarize the past efforts of the ANNs systems to predict IVF outcomes. This will be considered together with other statistical models, such as the ensemble techniques, Classification And Regression Tree (CART) and regression analysis techniques, discriminant analysis, and case based reasoning systems. We also summarize the various inputs that have been employed as parameters in these studies to predict the IVF outcome. Finally, we report our attempt to construct a new ANN architecture based on the Learning Vector Quantizer promising good generalization: a system filled by a complete data set of our IVF unit, formulated parameters most commonly used in similar studies, trained by a network expert, and evaluated in terms of predictive power.

  6. Space Communication Artificial Intelligence for Link Evaluation Terminal (SCAILET)

    NASA Technical Reports Server (NTRS)

    Shahidi, Anoosh K.; Schlegelmilch, Richard F.; Petrik, Edward J.; Walters, Jerry L.

    1992-01-01

    A software application to assist end-users of the high burst rate (HBR) link evaluation terminal (LET) for satellite communications is being developed. The HBR LET system developed at NASA Lewis Research Center is an element of the Advanced Communications Technology Satellite (ACTS) Project. The HBR LET is divided into seven major subsystems, each with its own expert. Programming scripts, test procedures defined by design engineers, set up the HBR LET system. These programming scripts are cryptic, hard to maintain and require a steep learning curve. These scripts were developed by the system engineers who will not be available for the end-users of the system. To increase end-user productivity a friendly interface needs to be added to the system. One possible solution is to provide the user with adequate documentation to perform the needed tasks. With the complexity of this system the vast amount of documentation needed would be overwhelming and the information would be hard to retrieve. With limited resources, maintenance is another reason for not using this form of documentation. An advanced form of interaction is being explored using current computer techniques. This application, which incorporates a combination of multimedia and artificial intelligence (AI) techniques to provided end-users with an intelligent interface to the HBR LET system, is comprised of an intelligent assistant, intelligent tutoring, and hypermedia documentation. The intelligent assistant and tutoring systems address the critical programming needs of the end-user.

  7. An Artificial Intelligence Approach for Gears Diagnostics in AUVs

    PubMed Central

    Marichal, Graciliano Nicolás; Del Castillo, María Lourdes; López, Jesús; Padrón, Isidro; Artés, Mariano

    2016-01-01

    In this paper, an intelligent scheme for detecting incipient defects in spur gears is presented. In fact, the study has been undertaken to determine these defects in a single propeller system of a small-sized unmanned helicopter. It is important to remark that although the study focused on this particular system, the obtained results could be extended to other systems known as AUVs (Autonomous Unmanned Vehicles), where the usage of polymer gears in the vehicle transmission is frequent. Few studies have been carried out on these kinds of gears. In this paper, an experimental platform has been adapted for the study and several samples have been prepared. Moreover, several vibration signals have been measured and their time-frequency characteristics have been taken as inputs to the diagnostic system. In fact, a diagnostic system based on an artificial intelligence strategy has been devised. Furthermore, techniques based on several paradigms of the Artificial Intelligence (Neural Networks, Fuzzy systems and Genetic Algorithms) have been applied altogether in order to design an efficient fault diagnostic system. A hybrid Genetic Neuro-Fuzzy system has been developed, where it is possible, at the final stage of the learning process, to express the fault diagnostic system as a set of fuzzy rules. Several trials have been carried out and satisfactory results have been achieved. PMID:27077868

  8. Application of Artificial Intelligence Techniques in Unmanned Aerial Vehicle Flight

    NASA Technical Reports Server (NTRS)

    Bauer, Frank H. (Technical Monitor); Dufrene, Warren R., Jr.

    2003-01-01

    This paper describes the development of an application of Artificial Intelligence for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in Artificial Intelligence (AI) at Nova southeastern University and as an adjunct to a project at NASA Goddard Space Flight Center's Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an AI method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed. A low cost approach was taken using freeware, gnu, software, and demo programs. The focus of this research has been to outline some of the AI techniques used for UAV flight control and discuss some of the tools used to apply AI techniques. The intent is to succeed with the implementation of applying AI techniques to actually control different aspects of the flight of an UAV.

  9. An Artificial Intelligence Approach for Gears Diagnostics in AUVs.

    PubMed

    Marichal, Graciliano Nicolás; Del Castillo, María Lourdes; López, Jesús; Padrón, Isidro; Artés, Mariano

    2016-04-12

    In this paper, an intelligent scheme for detecting incipient defects in spur gears is presented. In fact, the study has been undertaken to determine these defects in a single propeller system of a small-sized unmanned helicopter. It is important to remark that although the study focused on this particular system, the obtained results could be extended to other systems known as AUVs (Autonomous Unmanned Vehicles), where the usage of polymer gears in the vehicle transmission is frequent. Few studies have been carried out on these kinds of gears. In this paper, an experimental platform has been adapted for the study and several samples have been prepared. Moreover, several vibration signals have been measured and their time-frequency characteristics have been taken as inputs to the diagnostic system. In fact, a diagnostic system based on an artificial intelligence strategy has been devised. Furthermore, techniques based on several paradigms of the Artificial Intelligence (Neural Networks, Fuzzy systems and Genetic Algorithms) have been applied altogether in order to design an efficient fault diagnostic system. A hybrid Genetic Neuro-Fuzzy system has been developed, where it is possible, at the final stage of the learning process, to express the fault diagnostic system as a set of fuzzy rules. Several trials have been carried out and satisfactory results have been achieved.

  10. Knowledge Based Simulation: An Artificial Intelligence Approach to System Modeling and Automating the Simulation Life Cycle.

    DTIC Science & Technology

    1988-04-13

    Simulation: An Artificial Intelligence Approach to System Modeling and Automating the Simulation Life Cycle Mark S. Fox, Nizwer Husain, Malcolm...years of research in the application of Artificial Intelligence to Simulation. Our focus has been in two areas: the use of Al knowledge representation...this problem by using Artificial Intelligence (Al) knowledge representation techniques, such as frames, to represent the objects and their

  11. Artificial intelligence support for scientific model-building

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.

    1992-01-01

    Scientific model-building can be a time-intensive and painstaking process, often involving the development of large and complex computer programs. Despite the effort involved, scientific models cannot easily be distributed and shared with other scientists. In general, implemented scientific models are complex, idiosyncratic, and difficult for anyone but the original scientific development team to understand. We believe that artificial intelligence techniques can facilitate both the model-building and model-sharing process. In this paper, we overview our effort to build a scientific modeling software tool that aids the scientist in developing and using models. This tool includes an interactive intelligent graphical interface, a high-level domain specific modeling language, a library of physics equations and experimental datasets, and a suite of data display facilities.

  12. Artificial intelligence in sports on the example of weight training.

    PubMed

    Novatchkov, Hristo; Baca, Arnold

    2013-01-01

    The overall goal of the present study was to illustrate the potential of artificial intelligence (AI) techniques in sports on the example of weight training. The research focused in particular on the implementation of pattern recognition methods for the evaluation of performed exercises on training machines. The data acquisition was carried out using way and cable force sensors attached to various weight machines, thereby enabling the measurement of essential displacement and force determinants during training. On the basis of the gathered data, it was consequently possible to deduce other significant characteristics like time periods or movement velocities. These parameters were applied for the development of intelligent methods adapted from conventional machine learning concepts, allowing an automatic assessment of the exercise technique and providing individuals with appropriate feedback. In practice, the implementation of such techniques could be crucial for the investigation of the quality of the execution, the assistance of athletes but also coaches, the training optimization and for prevention purposes. For the current study, the data was based on measurements from 15 rather inexperienced participants, performing 3-5 sets of 10-12 repetitions on a leg press machine. The initially preprocessed data was used for the extraction of significant features, on which supervised modeling methods were applied. Professional trainers were involved in the assessment and classification processes by analyzing the video recorded executions. The so far obtained modeling results showed good performance and prediction outcomes, indicating the feasibility and potency of AI techniques in assessing performances on weight training equipment automatically and providing sportsmen with prompt advice. Key pointsArtificial intelligence is a promising field for sport-related analysis.Implementations integrating pattern recognition techniques enable the automatic evaluation of data

  13. Artificial Intelligence in Sports on the Example of Weight Training

    PubMed Central

    Novatchkov, Hristo; Baca, Arnold

    2013-01-01

    The overall goal of the present study was to illustrate the potential of artificial intelligence (AI) techniques in sports on the example of weight training. The research focused in particular on the implementation of pattern recognition methods for the evaluation of performed exercises on training machines. The data acquisition was carried out using way and cable force sensors attached to various weight machines, thereby enabling the measurement of essential displacement and force determinants during training. On the basis of the gathered data, it was consequently possible to deduce other significant characteristics like time periods or movement velocities. These parameters were applied for the development of intelligent methods adapted from conventional machine learning concepts, allowing an automatic assessment of the exercise technique and providing individuals with appropriate feedback. In practice, the implementation of such techniques could be crucial for the investigation of the quality of the execution, the assistance of athletes but also coaches, the training optimization and for prevention purposes. For the current study, the data was based on measurements from 15 rather inexperienced participants, performing 3-5 sets of 10-12 repetitions on a leg press machine. The initially preprocessed data was used for the extraction of significant features, on which supervised modeling methods were applied. Professional trainers were involved in the assessment and classification processes by analyzing the video recorded executions. The so far obtained modeling results showed good performance and prediction outcomes, indicating the feasibility and potency of AI techniques in assessing performances on weight training equipment automatically and providing sportsmen with prompt advice. Key points Artificial intelligence is a promising field for sport-related analysis. Implementations integrating pattern recognition techniques enable the automatic evaluation of data

  14. A Review of Intelligent Driving Style Analysis Systems and Related Artificial Intelligence Algorithms

    PubMed Central

    Meiring, Gys Albertus Marthinus; Myburgh, Hermanus Carel

    2015-01-01

    In this paper the various driving style analysis solutions are investigated. An in-depth investigation is performed to identify the relevant machine learning and artificial intelligence algorithms utilised in current driver behaviour and driving style analysis systems. This review therefore serves as a trove of information, and will inform the specialist and the student regarding the current state of the art in driver style analysis systems, the application of these systems and the underlying artificial intelligence algorithms applied to these applications. The aim of the investigation is to evaluate the possibilities for unique driver identification utilizing the approaches identified in other driver behaviour studies. It was found that Fuzzy Logic inference systems, Hidden Markov Models and Support Vector Machines consist of promising capabilities to address unique driver identification algorithms if model complexity can be reduced. PMID:26690164

  15. A Review of Intelligent Driving Style Analysis Systems and Related Artificial Intelligence Algorithms.

    PubMed

    Meiring, Gys Albertus Marthinus; Myburgh, Hermanus Carel

    2015-12-04

    In this paper the various driving style analysis solutions are investigated. An in-depth investigation is performed to identify the relevant machine learning and artificial intelligence algorithms utilised in current driver behaviour and driving style analysis systems. This review therefore serves as a trove of information, and will inform the specialist and the student regarding the current state of the art in driver style analysis systems, the application of these systems and the underlying artificial intelligence algorithms applied to these applications. The aim of the investigation is to evaluate the possibilities for unique driver identification utilizing the approaches identified in other driver behaviour studies. It was found that Fuzzy Logic inference systems, Hidden Markov Models and Support Vector Machines consist of promising capabilities to address unique driver identification algorithms if model complexity can be reduced.

  16. Artificial intelligence program in a computer application supporting reactor operations

    SciTech Connect

    Stratton, R.C.; Town, G.G.

    1985-01-01

    Improving nuclear reactor power plant operability is an ever-present concern for the nuclear industry. The definition of plant operability involves a complex interaction of the ideas of reliability, safety, and efficiency. This paper presents observations concerning the issues involved and the benefits derived from the implementation of a computer application which combines traditional computer applications with artificial intelligence (AI) methodologies. A system, the Component Configuration Control System (CCCS), is being installed to support nuclear reactor operations at the Experimental Breeder Reactor II.

  17. Artificial Intelligence For A Safer And More Efficient Car Driving

    NASA Astrophysics Data System (ADS)

    Adorni, Giovanni

    1989-03-01

    In this paper a project, PROMETHEUS, is described in which fourteen of Europe's leading car manufacturers are to join with approximately forty research institutes and governmental agencies to make the traffic of Europe safer, more efficient and more economical. PROMETHEUS project is divided into seven areas. In this paper one of the seven areas, PRO-ART, is described. PRO-ART is aimed at clarifying the need for and the principles of the artificial intelligence to be used in the next generation automobile. After a brief description of the overhall project, the description of the seven years PRO-ART Italian research programme will be given.

  18. Artificial intelligence techniques for embryo and oocyte classification.

    PubMed

    Manna, Claudio; Nanni, Loris; Lumini, Alessandra; Pappalardo, Sebastiana

    2013-01-01

    One of the most relevant aspects in assisted reproduction technology is the possibility of characterizing and identifying the most viable oocytes or embryos. In most cases, embryologists select them by visual examination and their evaluation is totally subjective. Recently, due to the rapid growth in the capacity to extract texture descriptors from a given image, a growing interest has been shown in the use of artificial intelligence methods for embryo or oocyte scoring/selection in IVF programmes. This work concentrates the efforts on the possible prediction of the quality of embryos and oocytes in order to improve the performance of assisted reproduction technology, starting from their images. The artificial intelligence system proposed in this work is based on a set of Levenberg-Marquardt neural networks trained using textural descriptors (the local binary patterns). The proposed system was tested on two data sets of 269 oocytes and 269 corresponding embryos from 104 women and compared with other machine learning methods already proposed in the past for similar classification problems. Although the results are only preliminary, they show an interesting classification performance. This technique may be of particular interest in those countries where legislation restricts embryo selection. One of the most relevant aspects in assisted reproduction technology is the possibility of characterizing and identifying the most viable oocytes or embryos. In most cases, embryologists select them by visual examination and their evaluation is totally subjective. Recently, due to the rapid growth in our capacity to extract texture descriptors from a given image, a growing interest has been shown in the use of artificial intelligence methods for embryo or oocyte scoring/selection in IVF programmes. In this work, we concentrate our efforts on the possible prediction of the quality of embryos and oocytes in order to improve the performance of assisted reproduction technology

  19. Artificial intelligence techniques for scheduling Space Shuttle missions

    NASA Technical Reports Server (NTRS)

    Henke, Andrea L.; Stottler, Richard H.

    1994-01-01

    Planning and scheduling of NASA Space Shuttle missions is a complex, labor-intensive process requiring the expertise of experienced mission planners. We have developed a planning and scheduling system using combinations of artificial intelligence knowledge representations and planning techniques to capture mission planning knowledge and automate the multi-mission planning process. Our integrated object oriented and rule-based approach reduces planning time by orders of magnitude and provides planners with the flexibility to easily modify planning knowledge and constraints without requiring programming expertise.

  20. Artificial intelligence in medicine: humans need not apply?

    PubMed

    Diprose, William; Buist, Nicholas

    2016-05-06

    Artificial intelligence (AI) is a rapidly growing field with a wide range of applications. Driven by economic constraints and the potential to reduce human error, we believe that over the coming years AI will perform a significant amount of the diagnostic and treatment decision-making traditionally performed by the doctor. Humans would continue to be an important part of healthcare delivery, but in many situations, less expensive fit-for-purpose healthcare workers could be trained to 'fill the gaps' where AI are less capable. As a result, the role of the doctor as an expensive problem-solver would become redundant.

  1. Effect of altering local protein fluctuations using artificial intelligence

    NASA Astrophysics Data System (ADS)

    Nishiyama, Katsuhiko

    2017-03-01

    The fluctuations in Arg111, a significantly fluctuating residue in cathepsin K, were locally regulated by modifying Arg111 to Gly111. The binding properties of 15 dipeptides in the modified protein were analyzed by molecular simulations, and modeled as decision trees using artificial intelligence. The decision tree of the modified protein significantly differed from that of unmodified cathepsin K, and the Arg-to-Gly modification exerted a remarkable effect on the peptide binding properties. By locally regulating the fluctuations of a protein, we may greatly alter the original functions of the protein, enabling novel applications in several fields.

  2. Using artificial intelligence to control fluid flow computations

    NASA Technical Reports Server (NTRS)

    Gelsey, Andrew

    1992-01-01

    Computational simulation is an essential tool for the prediction of fluid flow. Many powerful simulation programs exist today. However, using these programs to reliably analyze fluid flow and other physical situations requires considerable human effort and expertise to set up a simulation, determine whether the output makes sense, and repeatedly run the simulation with different inputs until a satisfactory result is achieved. Automating this process is not only of considerable practical importance but will also significantly advance basic artificial intelligence (AI) research in reasoning about the physical world.

  3. The application of artificial intelligence techniques to large distributed networks

    NASA Technical Reports Server (NTRS)

    Dubyah, R.; Smith, T. R.; Star, J. L.

    1985-01-01

    Data accessibility and transfer of information, including the land resources information system pilot, are structured as large computer information networks. These pilot efforts include the reduction of the difficulty to find and use data, reducing processing costs, and minimize incompatibility between data sources. Artificial Intelligence (AI) techniques were suggested to achieve these goals. The applicability of certain AI techniques are explored in the context of distributed problem solving systems and the pilot land data system (PLDS). The topics discussed include: PLDS and its data processing requirements, expert systems and PLDS, distributed problem solving systems, AI problem solving paradigms, query processing, and distributed data bases.

  4. The application of artificial intelligence technology to aeronautical system design

    NASA Technical Reports Server (NTRS)

    Bouchard, E. E.; Kidwell, G. H.; Rogan, J. E.

    1988-01-01

    This paper describes the automation of one class of aeronautical design activity using artificial intelligence and advanced software techniques. Its purpose is to suggest concepts, terminology, and approaches that may be useful in enhancing design automation. By understanding the basic concepts and tasks in design, and the technologies that are available, it will be possible to produce, in the future, systems whose capabilities far exceed those of today's methods. Some of the tasks that will be discussed have already been automated and are in production use, resulting in significant productivity benefits. The concepts and techniques discussed are applicable to all design activity, though aeronautical applications are specifically presented.

  5. Fourth Conference on Artificial Intelligence for Space Applications

    NASA Technical Reports Server (NTRS)

    Odell, Stephen L. (Compiler); Denton, Judith S. (Compiler); Vereen, Mary (Compiler)

    1988-01-01

    Proceedings of a conference held in Huntsville, Alabama, on November 15-16, 1988. The Fourth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: space applications of expert systems in fault diagnostics, in telemetry monitoring and data collection, in design and systems integration; and in planning and scheduling; knowledge representation, capture, verification, and management; robotics and vision; adaptive learning; and automatic programming.

  6. Artificial intelligence and expert systems in-flight software testing

    NASA Technical Reports Server (NTRS)

    Demasie, M. P.; Muratore, J. F.

    1991-01-01

    The authors discuss the introduction of advanced information systems technologies such as artificial intelligence, expert systems, and advanced human-computer interfaces directly into Space Shuttle software engineering. The reconfiguration automation project (RAP) was initiated to coordinate this move towards 1990s software technology. The idea behind RAP is to automate several phases of the flight software testing procedure and to introduce AI and ES into space shuttle flight software testing. In the first phase of RAP, conventional tools to automate regression testing have already been developed or acquired. There are currently three tools in use.

  7. The role of artificial intelligence techniques in scheduling systems

    NASA Technical Reports Server (NTRS)

    Geoffroy, Amy L.; Britt, Daniel L.; Gohring, John R.

    1990-01-01

    Artificial Intelligence (AI) techniques provide good solutions for many of the problems which are characteristic of scheduling applications. However, scheduling is a large, complex heterogeneous problem. Different applications will require different solutions. Any individual application will require the use of a variety of techniques, including both AI and conventional software methods. The operational context of the scheduling system will also play a large role in design considerations. The key is to identify those places where a specific AI technique is in fact the preferable solution, and to integrate that technique into the overall architecture.

  8. Outlier Detection with a Hybrid Artificial Intelligence Method

    NASA Astrophysics Data System (ADS)

    Mejía-Lavalle, Manuel; Obregón, Ricardo Gómez; Vivar, Atlántida Sánchez

    We propose a simple and efficient hybrid artificial intelligence method to detect exceptional data. The proposed method includes a novel end-user explanation feature. After various attempts, the best design was based on an unsupervised learning schema, which uses an hybrid adaptation of the Artificial Neural Network paradigms, the Case Based Reasoning methodology, the Data Mining area, and the Expert System shells. In our method, the cluster that contains the smaller number of instances is considered as outlier data. The method provides an explanation to the end user about why this cluster is exceptional regarding to the data universe. The proposed method has been tested and compared successfully not only with well-known academic data, but also with a real and very large financial database that contains attributes with numerical and categorical values.

  9. Forecasting municipal solid waste generation using artificial intelligence modelling approaches.

    PubMed

    Abbasi, Maryam; El Hanandeh, Ali

    2016-10-01

    Municipal solid waste (MSW) management is a major concern to local governments to protect human health, the environment and to preserve natural resources. The design and operation of an effective MSW management system requires accurate estimation of future waste generation quantities. The main objective of this study was to develop a model for accurate forecasting of MSW generation that helps waste related organizations to better design and operate effective MSW management systems. Four intelligent system algorithms including support vector machine (SVM), adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN) and k-nearest neighbours (kNN) were tested for their ability to predict monthly waste generation in the Logan City Council region in Queensland, Australia. Results showed artificial intelligence models have good prediction performance and could be successfully applied to establish municipal solid waste forecasting models. Using machine learning algorithms can reliably predict monthly MSW generation by training with waste generation time series. In addition, results suggest that ANFIS system produced the most accurate forecasts of the peaks while kNN was successful in predicting the monthly averages of waste quantities. Based on the results, the total annual MSW generated in Logan City will reach 9.4×10(7)kg by 2020 while the peak monthly waste will reach 9.37×10(6)kg.

  10. Natural and Artificial Intelligence, Language, Consciousness, Emotion, and Anticipation

    NASA Astrophysics Data System (ADS)

    Dubois, Daniel M.

    2010-11-01

    The classical paradigm of the neural brain as the seat of human natural intelligence is too restrictive. This paper defends the idea that the neural ectoderm is the actual brain, based on the development of the human embryo. Indeed, the neural ectoderm includes the neural crest, given by pigment cells in the skin and ganglia of the autonomic nervous system, and the neural tube, given by the brain, the spinal cord, and motor neurons. So the brain is completely integrated in the ectoderm, and cannot work alone. The paper presents fundamental properties of the brain as follows. Firstly, Paul D. MacLean proposed the triune human brain, which consists to three brains in one, following the species evolution, given by the reptilian complex, the limbic system, and the neo-cortex. Secondly, the consciousness and conscious awareness are analysed. Thirdly, the anticipatory unconscious free will and conscious free veto are described in agreement with the experiments of Benjamin Libet. Fourthly, the main section explains the development of the human embryo and shows that the neural ectoderm is the whole neural brain. Fifthly, a conjecture is proposed that the neural brain is completely programmed with scripts written in biological low-level and high-level languages, in a manner similar to the programmed cells by the genetic code. Finally, it is concluded that the proposition of the neural ectoderm as the whole neural brain is a breakthrough in the understanding of the natural intelligence, and also in the future design of robots with artificial intelligence.

  11. "It's Going to Kill Us!" and Other Myths about the Future of Artificial Intelligence

    ERIC Educational Resources Information Center

    Atkinson, Robert D.

    2016-01-01

    Given the promise that artificial intelligence (AI) holds for economic growth and societal advancement, it is critical that policymakers not only avoid retarding the progress of AI innovation, but also actively support its further development and use. This report provides a primer on artificial intelligence and debunks five prevailing myths that,…

  12. Games and Machine Learning: A Powerful Combination in an Artificial Intelligence Course

    ERIC Educational Resources Information Center

    Wallace, Scott A.; McCartney, Robert; Russell, Ingrid

    2010-01-01

    Project MLeXAI [Machine Learning eXperiences in Artificial Intelligence (AI)] seeks to build a set of reusable course curriculum and hands on laboratory projects for the artificial intelligence classroom. In this article, we describe two game-based projects from the second phase of project MLeXAI: Robot Defense--a simple real-time strategy game…

  13. Artificial intelligence in sports biomechanics: new dawn or false hope?

    PubMed

    Bartlett, Roger

    2006-12-15

    This article reviews developments in the use of Artificial Intelligence (AI) in sports biomechanics over the last decade. It outlines possible uses of Expert Systems as diagnostic tools for evaluating faults in sports movements ('techniques') and presents some example knowledge rules for such an expert system. It then compares the analysis of sports techniques, in which Expert Systems have found little place to date, with gait analysis, in which they are routinely used. Consideration is then given to the use of Artificial Neural Networks (ANNs) in sports biomechanics, focusing on Kohonen self-organizing maps, which have been the most widely used in technique analysis, and multi-layer networks, which have been far more widely used in biomechanics in general. Examples of the use of ANNs in sports biomechanics are presented for javelin and discus throwing, shot putting and football kicking. I also present an example of the use of Evolutionary Computation in movement optimization in the soccer throw in, which predicted an optimal technique close to that in the coaching literature. After briefly overviewing the use of AI in both sports science and biomechanics in general, the article concludes with some speculations about future uses of AI in sports biomechanics. Key PointsExpert Systems remain almost unused in sports biomechanics, unlike in the similar discipline of gait analysis.Artificial Neural Networks, particularly Kohonen Maps, have been used, although their full value remains unclear.Other AI applications, including Evolutionary Computation, have received little attention.

  14. Space applications of artificial intelligence; 1990 Goddard Conference, Greenbelt, MD, May 1, 2, 1990, Selected Papers

    NASA Technical Reports Server (NTRS)

    Rash, James L. (Editor)

    1990-01-01

    The papers presented at the 1990 Goddard Conference on Space Applications of Artificial Intelligence are given. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed. The proceedings fall into the following areas: Planning and Scheduling, Fault Monitoring/Diagnosis, Image Processing and Machine Vision, Robotics/Intelligent Control, Development Methodologies, Information Management, and Knowledge Acquisition.

  15. Evolvable mathematical models: A new artificial Intelligence paradigm

    NASA Astrophysics Data System (ADS)

    Grouchy, Paul

    We develop a novel Artificial Intelligence paradigm to generate autonomously artificial agents as mathematical models of behaviour. Agent/environment inputs are mapped to agent outputs via equation trees which are evolved in a manner similar to Symbolic Regression in Genetic Programming. Equations are comprised of only the four basic mathematical operators, addition, subtraction, multiplication and division, as well as input and output variables and constants. From these operations, equations can be constructed that approximate any analytic function. These Evolvable Mathematical Models (EMMs) are tested and compared to their Artificial Neural Network (ANN) counterparts on two benchmarking tasks: the double-pole balancing without velocity information benchmark and the challenging discrete Double-T Maze experiments with homing. The results from these experiments show that EMMs are capable of solving tasks typically solved by ANNs, and that they have the ability to produce agents that demonstrate learning behaviours. To further explore the capabilities of EMMs, as well as to investigate the evolutionary origins of communication, we develop NoiseWorld, an Artificial Life simulation in which interagent communication emerges and evolves from initially noncommunicating EMM-based agents. Agents develop the capability to transmit their x and y position information over a one-dimensional channel via a complex, dialogue-based communication scheme. These evolved communication schemes are analyzed and their evolutionary trajectories examined, yielding significant insight into the emergence and subsequent evolution of cooperative communication. Evolved agents from NoiseWorld are successfully transferred onto physical robots, demonstrating the transferability of EMM-based AIs from simulation into physical reality.

  16. AIonAI: a humanitarian law of artificial intelligence and robotics.

    PubMed

    Ashrafian, Hutan

    2015-02-01

    The enduring progression of artificial intelligence and cybernetics offers an ever-closer possibility of rational and sentient robots. The ethics and morals deriving from this technological prospect have been considered in the philosophy of artificial intelligence, the design of automatons with roboethics and the contemplation of machine ethics through the concept of artificial moral agents. Across these categories, the robotics laws first proposed by Isaac Asimov in the twentieth century remain well-recognised and esteemed due to their specification of preventing human harm, stipulating obedience to humans and incorporating robotic self-protection. However the overwhelming predominance in the study of this field has focussed on human-robot interactions without fully considering the ethical inevitability of future artificial intelligences communicating together and has not addressed the moral nature of robot-robot interactions. A new robotic law is proposed and termed AIonAI or artificial intelligence-on-artificial intelligence. This law tackles the overlooked area where future artificial intelligences will likely interact amongst themselves, potentially leading to exploitation. As such, they would benefit from adopting a universal law of rights to recognise inherent dignity and the inalienable rights of artificial intelligences. Such a consideration can help prevent exploitation and abuse of rational and sentient beings, but would also importantly reflect on our moral code of ethics and the humanity of our civilisation.

  17. Artificial intelligence (AI) based tactical guidance for fighter aircraft

    NASA Technical Reports Server (NTRS)

    Mcmanus, John W.; Goodrich, Kenneth H.

    1990-01-01

    A research program investigating the use of artificial intelligence (AI) techniques to aid in the development of a Tactical Decision Generator (TDG) for Within Visual Range air combat engagements is discussed. The application of AI programming and problem solving methods in the development and implementation of the Computerized Logic For Air-to-Air Warfare Simulations (CLAWS), a second generation TDG, is presented. The knowledge-based systems used by CLAWS to aid in the tactical decision-making process are outlined in detail, and the results of tests to evaluate the performance of CLAWS versus a baseline TDG developed in FORTRAN to run in real time in the Langley Differential Maneuvering Simulator, are presented. To date, these test results have shown significant performance gains with respect to the TDG baseline in one-versus-one air combat engagements, and the AI-based TDG software has proven to be much easier to modify and maintain than the baseline FORTRAN TDG programs.

  18. The use of artificial intelligence for safeguarding fuel reprocessing plants

    SciTech Connect

    Wachter, J.W.; Forgy, C.L.

    1987-01-01

    Recorded process data from the ''Minirun'' campaigns conducted at the Barnwell Nuclear Fuel Plant (BNFP) in Barnwell, South Carolina during 1980 to 1981 have been utilized to study the suitability of computer-based Artificial Intelligence (AI) methods for process monitoring for safeguards purposes. The techniques of knowledge engineering were used to formulate the decision-making software which operates on the process data customarily used for process operations. The OPS5 AI language was used to construct an Expert System for this purpose. Such systems are able to form reasoned conclusions from incomplete, inaccurate or otherwise ''fuzzy'' data, and to explain the reasoning that led to them. The programs were tested using minirun data taken during simulated diversions ranging in size from 1 to 20 L of solution that had been monitored previously using conventional procedural techniques. 13 refs., 3 figs.

  19. Application of Artificial Intelligence for Bridge Deterioration Model

    PubMed Central

    Chen, Zhang; Wu, Yangyang; Li, Li; Sun, Lijun

    2015-01-01

    The deterministic bridge deterioration model updating problem is well established in bridge management, while the traditional methods and approaches for this problem require manual intervention. An artificial-intelligence-based approach was presented to self-updated parameters of the bridge deterioration model in this paper. When new information and data are collected, a posterior distribution was constructed to describe the integrated result of historical information and the new gained information according to Bayesian theorem, which was used to update model parameters. This AI-based approach is applied to the case of updating parameters of bridge deterioration model, which is the data collected from bridges of 12 districts in Shanghai from 2004 to 2013, and the results showed that it is an accurate, effective, and satisfactory approach to deal with the problem of the parameter updating without manual intervention. PMID:26601121

  20. Implementing Artificial Intelligence Behaviors in a Virtual World

    NASA Technical Reports Server (NTRS)

    Krisler, Brian; Thome, Michael

    2012-01-01

    In this paper, we will present a look at the current state of the art in human-computer interface technologies, including intelligent interactive agents, natural speech interaction and gestural based interfaces. We describe our use of these technologies to implement a cost effective, immersive experience on a public region in Second Life. We provision our Artificial Agents as a German Shepherd Dog avatar with an external rules engine controlling the behavior and movement. To interact with the avatar, we implemented a natural language and gesture system allowing the human avatars to use speech and physical gestures rather than interacting via a keyboard and mouse. The result is a system that allows multiple humans to interact naturally with AI avatars by playing games such as fetch with a flying disk and even practicing obedience exercises using voice and gesture, a natural seeming day in the park.

  1. An intercomparison of artificial intelligence approaches for polar scene identification

    NASA Technical Reports Server (NTRS)

    Tovinkere, V. R.; Penaloza, M.; Logar, A.; Lee, J.; Weger, R. C.; Berendes, T. A.; Welch, R. M.

    1993-01-01

    The following six different artificial-intelligence (AI) approaches to polar scene identification are examined: (1) a feed forward back propagation neural network, (2) a probabilistic neural network, (3) a hybrid neural network, (4) a 'don't care' feed forward perception model, (5) a 'don't care' feed forward back propagation neural network, and (6) a fuzzy logic based expert system. The ten classes into which six AVHRR local-coverage arctic scenes were classified were: water, solid sea ice, broken sea ice, snow-covered mountains, land, stratus over ice, stratus over water, cirrus over water, cumulus over water, and multilayer cloudiness. It was found that 'don't care' back propagation neural network produced the highest accuracies. This approach has also low CPU requirement.

  2. Artificial intelligence applications in space and SDI: A survey

    NASA Technical Reports Server (NTRS)

    Fiala, Harvey E.

    1988-01-01

    The purpose of this paper is to survey existing and planned Artificial Intelligence (AI) applications to show that they are sufficiently advanced for 32 percent of all space applications and SDI (Space Defense Initiative) software to be AI-based software. To best define the needs that AI can fill in space and SDI programs, this paper enumerates primary areas of research and lists generic application areas. Current and planned NASA and military space projects in AI will be reviewed. This review will be largely in the selected area of expert systems. Finally, direct applications of AI to SDI will be treated. The conclusion covers the importance of AI to space and SDI applications, and conversely, their importance to AI.

  3. Estimation of mechanical properties of nanomaterials using artificial intelligence methods

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, V.; Garg, A.; Wong, C. H.; Tai, K.

    2014-09-01

    Computational modeling tools such as molecular dynamics (MD), ab initio, finite element modeling or continuum mechanics models have been extensively applied to study the properties of carbon nanotubes (CNTs) based on given input variables such as temperature, geometry and defects. Artificial intelligence techniques can be used to further complement the application of numerical methods in characterizing the properties of CNTs. In this paper, we have introduced the application of multi-gene genetic programming (MGGP) and support vector regression to formulate the mathematical relationship between the compressive strength of CNTs and input variables such as temperature and diameter. The predictions of compressive strength of CNTs made by these models are compared to those generated using MD simulations. The results indicate that MGGP method can be deployed as a powerful method for predicting the compressive strength of the carbon nanotubes.

  4. Application of Artificial Intelligence to Reservoir Characterization - An Interdisciplinary Approach

    SciTech Connect

    Kelkar, B.G.; Gamble, R.F.; Kerr, D.R.; Thompson, L.G.; Shenoi, S.

    2000-01-12

    The primary goal of this project is to develop a user-friendly computer program to integrate geological and engineering information using Artificial Intelligence (AI) methodology. The project is restricted to fluvially dominated deltaic environments. The static information used in constructing the reservoir description includes well core and log data. Using the well core and the log data, the program identifies the marker beds, and the type of sand facies, and in turn, develops correlation's between wells. Using the correlation's and sand facies, the program is able to generate multiple realizations of sand facies and petrophysical properties at interwell locations using geostatistical techniques. The generated petrophysical properties are used as input in the next step where the production data are honored. By adjusting the petrophysical properties, the match between the simulated and the observed production rates is obtained.

  5. Artificial intelligence for multi-mission planetary operations

    NASA Technical Reports Server (NTRS)

    Atkinson, David J.; Lawson, Denise L.; James, Mark L.

    1990-01-01

    A brief introduction is given to an automated system called the Spacecraft Health Automated Reasoning Prototype (SHARP). SHARP is designed to demonstrate automated health and status analysis for multi-mission spacecraft and ground data systems operations. The SHARP system combines conventional computer science methodologies with artificial intelligence techniques to produce an effective method for detecting and analyzing potential spacecraft and ground systems problems. The system performs real-time analysis of spacecraft and other related telemetry, and is also capable of examining data in historical context. Telecommunications link analysis of the Voyager II spacecraft is the initial focus for evaluation of the prototype in a real-time operations setting during the Voyager spacecraft encounter with Neptune in August, 1989. The preliminary results of the SHARP project and plans for future application of the technology are discussed.

  6. Artificial intelligence and the space station software support environment

    NASA Technical Reports Server (NTRS)

    Marlowe, Gilbert

    1986-01-01

    In a software system the size of the Space Station Software Support Environment (SSE), no one software development or implementation methodology is presently powerful enough to provide safe, reliable, maintainable, cost effective real time or near real time software. In an environment that must survive one of the most harsh and long life times, software must be produced that will perform as predicted, from the first time it is executed to the last. Many of the software challenges that will be faced will require strategies borrowed from Artificial Intelligence (AI). AI is the only development area mentioned as an example of a legitimate reason for a waiver from the overall requirement to use the Ada programming language for software development. The limits are defined of the applicability of the Ada language Ada Programming Support Environment (of which the SSE is a special case), and software engineering to AI solutions by describing a scenario that involves many facets of AI methodologies.

  7. Training Software in Artificial-Intelligence Computing Techniques

    NASA Technical Reports Server (NTRS)

    Howard, Ayanna; Rogstad, Eric; Chalfant, Eugene

    2005-01-01

    The Artificial Intelligence (AI) Toolkit is a computer program for training scientists, engineers, and university students in three soft-computing techniques (fuzzy logic, neural networks, and genetic algorithms) used in artificial-intelligence applications. The program promotes an easily understandable tutorial interface, including an interactive graphical component through which the user can gain hands-on experience in soft-computing techniques applied to realistic example problems. The tutorial provides step-by-step instructions on the workings of soft-computing technology, whereas the hands-on examples allow interaction and reinforcement of the techniques explained throughout the tutorial. In the fuzzy-logic example, a user can interact with a robot and an obstacle course to verify how fuzzy logic is used to command a rover traverse from an arbitrary start to the goal location. For the genetic algorithm example, the problem is to determine the minimum-length path for visiting a user-chosen set of planets in the solar system. For the neural-network example, the problem is to decide, on the basis of input data on physical characteristics, whether a person is a man, woman, or child. The AI Toolkit is compatible with the Windows 95,98, ME, NT 4.0, 2000, and XP operating systems. A computer having a processor speed of at least 300 MHz, and random-access memory of at least 56MB is recommended for optimal performance. The program can be run on a slower computer having less memory, but some functions may not be executed properly.

  8. Space Communications Artificial Intelligence for Link Evaluation Terminal (SCAILET)

    NASA Technical Reports Server (NTRS)

    Shahidi, Anoosh

    1991-01-01

    A software application to assis end-users of the Link Evaluation Terminal (LET) for satellite communication is being developed. This software application incorporates artificial intelligence (AI) techniques and will be deployed as an interface to LET. The high burst rate (HBR) LET provides 30 GHz transmitting/20 GHz receiving, 220/110 Mbps capability for wideband communications technology experiments with the Advanced Communications Technology Satellite (ACTS). The HBR LET and ACTS are being developed at the NASA Lewis Research Center. The HBR LET can monitor and evaluate the integrity of the HBR communications uplink and downlink to the ACTS satellite. The uplink HBR transmission is performed by bursting the bit-pattern as a modulated signal to the satellite. By comparing the transmitted bit pattern with the received bit pattern, HBR LET can determine the bit error rate BER) under various atmospheric conditions. An algorithm for power augmentation is applied to enhance the system's BER performance at reduced signal strength caused by adverse conditions. Programming scripts, defined by the design engineer, set up the HBR LET terminal by programming subsystem devices through IEEE488 interfaces. However, the scripts are difficult to use, require a steep learning curve, are cryptic, and are hard to maintain. The combination of the learning curve and the complexities involved with editing the script files may discourage end-users from utilizing the full capabilities of the HBR LET system. An intelligent assistant component of SCAILET that addresses critical end-user needs in the programming of the HBR LET system as anticipated by its developers is described. A close look is taken at the various steps involved in writing ECM software for a C&P, computer and at how the intelligent assistant improves the HBR LET system and enhances the end-user's ability to perform the experiments.

  9. [Artificial intelligence to assist clinical diagnosis in medicine].

    PubMed

    Lugo-Reyes, Saúl Oswaldo; Maldonado-Colín, Guadalupe; Murata, Chiharu

    2014-01-01

    Medicine is one of the fields of knowledge that would most benefit from a closer interaction with Computer studies and Mathematics by optimizing complex, imperfect processes such as differential diagnosis; this is the domain of Machine Learning, a branch of Artificial Intelligence that builds and studies systems capable of learning from a set of training data, in order to optimize classification and prediction processes. In Mexico during the last few years, progress has been made on the implementation of electronic clinical records, so that the National Institutes of Health already have accumulated a wealth of stored data. For those data to become knowledge, they need to be processed and analyzed through complex statistical methods, as it is already being done in other countries, employing: case-based reasoning, artificial neural networks, Bayesian classifiers, multivariate logistic regression, or support vector machines, among other methodologies; to assist the clinical diagnosis of acute appendicitis, breast cancer and chronic liver disease, among a wide array of maladies. In this review we shift through concepts, antecedents, current examples and methodologies of machine learning-assisted clinical diagnosis.

  10. Comparison of Artificial Intelligence Techniques for river flow forecasting

    NASA Astrophysics Data System (ADS)

    Firat, M.

    2008-01-01

    The use of Artificial Intelligence methods is becoming increasingly common in the modeling and forecasting of hydrological and water resource processes. In this study, applicability of Adaptive Neuro Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN) methods, Generalized Regression Neural Networks (GRNN) and Feed Forward Neural Networks (FFNN), and Auto-Regressive (AR) models for forecasting of daily river flow is investigated and Seyhan River and Cine River was chosen as case study area. For the Seyhan River, the forecasting models are established using combinations of antecedent daily river flow records. On the other hand, for the Cine River, daily river flow and rainfall records are used in input layer. For both stations, the data sets are divided into three subsets, training, testing and verification data set. The river flow forecasting models having various input structures are trained and tested to investigate the applicability of ANFIS and ANN and AR methods. The results of all models for both training and testing are evaluated and the best fit input structures and methods for both stations are determined according to criteria of performance evaluation. Moreover the best fit forecasting models are also verified by verification set which was not used in training and testing processes and compared according to criteria. The results demonstrate that ANFIS model is superior to the GRNN and FFNN forecasting models, and ANFIS can be successfully applied and provide high accuracy and reliability for daily river flow forecasting.

  11. Programming environment for distributed applications design in artificial intelligence

    NASA Astrophysics Data System (ADS)

    Baujard, Olivier; Pesty, Sylvie; Garbay, Catherine

    1992-03-01

    Complex applications in artificial intelligence need a multiple representation of knowledge and tasks in terms of abstraction levels and points of view. The integration of numerous resources (knowledge-based systems, real-time systems, data bases, etc.), often geographically distributed on different machines connected into a network, is moreover a necessity for the development of real scale systems. The distributed artificial intelligence (DAI) approach is thus becoming important to solve problems in complex situations. There are several currents in DAI research and we are involved in the design of DAI programming platforms for large and complex real-world problem solving systems. Blackboard systems constitute the earlier architecture. It is based on a shared memory which permits the communication among a collection of specialists and an external and unique control structure. Blackboard architectures have been extended, especially to introduce parallelism. Multi-agent architectures are based on coordinated agents (problem-solvers) communicating most of the time via message passing. A solution is found through the cooperation between several agents, each of them being in charge of a specific task, but no one having sufficient resources to obtain a solution. Coordination, cooperation, knowledge, goal, plan, exchanges are then necessary to reach a global solution. Our own research is along this last line. The current presentation describes Multi-Agent Problem Solver (MAPS) which is an agent-oriented language for a DAI system design embedded in a full programming environment. An agent is conceived as an autonomous entity with specific goals, roles, skills, and resources. Knowledge (descriptive and operative) is distributed among agents organized into networks (agents communicate through message sending). Agents are moreover geographically distributed and run in a parallel mode. Our purpose is to build a powerful environment for DAI applications design that not only

  12. Virtual Reality for Artificial Intelligence: human-centered simulation for social science.

    PubMed

    Cipresso, Pietro; Riva, Giuseppe

    2015-01-01

    There is a long last tradition in Artificial Intelligence as use of Robots endowing human peculiarities, from a cognitive and emotional point of view, and not only in shape. Today Artificial Intelligence is more oriented to several form of collective intelligence, also building robot simulators (hardware or software) to deeply understand collective behaviors in human beings and society as a whole. Modeling has also been crucial in the social sciences, to understand how complex systems can arise from simple rules. However, while engineers' simulations can be performed in the physical world using robots, for social scientist this is impossible. For decades, researchers tried to improve simulations by endowing artificial agents with simple and complex rules that emulated human behavior also by using artificial intelligence (AI). To include human beings and their real intelligence within artificial societies is now the big challenge. We present an hybrid (human-artificial) platform where experiments can be performed by simulated artificial worlds in the following manner: 1) agents' behaviors are regulated by the behaviors shown in Virtual Reality involving real human beings exposed to specific situations to simulate, and 2) technology transfers these rules into the artificial world. These form a closed-loop of real behaviors inserted into artificial agents, which can be used to study real society.

  13. Applications of artificial intelligence to space station: General purpose intelligent sensor interface

    NASA Technical Reports Server (NTRS)

    Mckee, James W.

    1988-01-01

    This final report describes the accomplishments of the General Purpose Intelligent Sensor Interface task of the Applications of Artificial Intelligence to Space Station grant for the period from October 1, 1987 through September 30, 1988. Portions of the First Biannual Report not revised will not be included but only referenced. The goal is to develop an intelligent sensor system that will simplify the design and development of expert systems using sensors of the physical phenomena as a source of data. This research will concentrate on the integration of image processing sensors and voice processing sensors with a computer designed for expert system development. The result of this research will be the design and documentation of a system in which the user will not need to be an expert in such areas as image processing algorithms, local area networks, image processor hardware selection or interfacing, television camera selection, voice recognition hardware selection, or analog signal processing. The user will be able to access data from video or voice sensors through standard LISP statements without any need to know about the sensor hardware or software.

  14. The socio-organizational age of artificial intelligence in medicine.

    PubMed

    Stefanelli, M

    2001-08-01

    The increasing pressure on Health Care Organizations (HCOs) to ensure efficiency and cost-effectiveness, balancing quality of care and cost containment, will drive them towards a more effective management of medical knowledge derived from research findings. The relation between science and health services has until recently been too casual. The primary job of medical research has been to understand the mechanisms of disease and produce new treatments, not to worry about the effectiveness of the new treatments or their implementation. As a result many new treatments have taken years to become part of routine practice, ineffective treatments have been widely used, and medicine has been opinion rather than evidence based. This results in suboptimal care for patients. Knowledge management technology may provide effective approaches in speeding up the diffusion of innovative medical procedures whose clinical effectiveness have been proved: the most interesting one is represented by computer-based utilization of evidence-based clinical guidelines. As researchers in Artificial Intelligence in Medicine (AIM), we are committed to foster the strategic transition from opinion to evidence-based decision making. Reviews of the effectiveness of various methods of guideline dissemination show that the most predictable impact is achieved when the guideline is made accessible through computer-based and patient specific reminders that are integrated into the clinician's workflow. However, the traditional single doctor-patient relationship is being replaced by one in which the patient is managed by a team of health care professionals, each specializing in one aspect of care. Such shared care depends critically on the ability to share patient-specific information and medical knowledge easily among them. Strategically there is a need to take a more clinical process view of health care delivery and to identify the appropriate organizational and information infrastructures to support

  15. Instrumentation for Scientific Computing in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics.

    DTIC Science & Technology

    1987-10-01

    This was an instrumentation grant to purchase equipment of support of research in neural networks, information science , artificial intelligence, and applied mathematics. Computer lab equipment, motor control and robotics lab equipment, speech analysis equipment and computational vision equipment were purchased.

  16. On the Need for Artificial Intelligence and Advanced Test and Evaluation Methods for Space Exploration

    NASA Astrophysics Data System (ADS)

    Scheidt, D. H.; Hibbitts, C. A.; Chen, M. H.; Paxton, L. J.; Bekker, D. L.

    2017-02-01

    Implementing mature artificial intelligence would create the ability to significantly increase the science return from a mission, while potentially saving costs in mission and instrument operations, and solving currently intractable problems.

  17. A Modular Artificial Intelligence Inference Engine System (MAIS) for support of on orbit experiments

    NASA Technical Reports Server (NTRS)

    Hancock, Thomas M., III

    1994-01-01

    This paper describes a Modular Artificial Intelligence Inference Engine System (MAIS) support tool that would provide health and status monitoring, cognitive replanning, analysis and support of on-orbit Space Station, Spacelab experiments and systems.

  18. Making Computers Smarter: A Look At the Controversial Field of Artificial Intelligence.

    ERIC Educational Resources Information Center

    Green, John O.

    1984-01-01

    Defines artificial intelligence (AI) and discusses its history; the current state of the art, research, experimentation, and practical applications; and probable future developments. Key dates in the history of AI and eight references are provided. (MBR)

  19. Computer-aided diagnosis and artificial intelligence in clinical imaging.

    PubMed

    Shiraishi, Junji; Li, Qiang; Appelbaum, Daniel; Doi, Kunio

    2011-11-01

    Computer-aided diagnosis (CAD) is rapidly entering the radiology mainstream. It has already become a part of the routine clinical work for the detection of breast cancer with mammograms. The computer output is used as a "second opinion" in assisting radiologists' image interpretations. The computer algorithm generally consists of several steps that may include image processing, image feature analysis, and data classification via the use of tools such as artificial neural networks (ANN). In this article, we will explore these and other current processes that have come to be referred to as "artificial intelligence." One element of CAD, temporal subtraction, has been applied for enhancing interval changes and for suppressing unchanged structures (eg, normal structures) between 2 successive radiologic images. To reduce misregistration artifacts on the temporal subtraction images, a nonlinear image warping technique for matching the previous image to the current one has been developed. Development of the temporal subtraction method originated with chest radiographs, with the method subsequently being applied to chest computed tomography (CT) and nuclear medicine bone scans. The usefulness of the temporal subtraction method for bone scans was demonstrated by an observer study in which reading times and diagnostic accuracy improved significantly. An additional prospective clinical study verified that the temporal subtraction image could be used as a "second opinion" by radiologists with negligible detrimental effects. ANN was first used in 1990 for computerized differential diagnosis of interstitial lung diseases in CAD. Since then, ANN has been widely used in CAD schemes for the detection and diagnosis of various diseases in different imaging modalities, including the differential diagnosis of lung nodules and interstitial lung diseases in chest radiography, CT, and position emission tomography/CT. It is likely that CAD will be integrated into picture archiving and

  20. Color regeneration from reflective color sensor using an artificial intelligent technique.

    PubMed

    Saracoglu, Ömer Galip; Altural, Hayriye

    2010-01-01

    A low-cost optical sensor based on reflective color sensing is presented. Artificial neural network models are used to improve the color regeneration from the sensor signals. Analog voltages of the sensor are successfully converted to RGB colors. The artificial intelligent models presented in this work enable color regeneration from analog outputs of the color sensor. Besides, inverse modeling supported by an intelligent technique enables the sensor probe for use of a colorimetric sensor that relates color changes to analog voltages.

  1. The application of neural networks with artificial intelligence technique in the modeling of industrial processes

    SciTech Connect

    Saini, K. K.; Saini, Sanju

    2008-10-07

    Neural networks are a relatively new artificial intelligence technique that emulates the behavior of biological neural systems in digital software or hardware. These networks can 'learn', automatically, complex relationships among data. This feature makes the technique very useful in modeling processes for which mathematical modeling is difficult or impossible. The work described here outlines some examples of the application of neural networks with artificial intelligence technique in the modeling of industrial processes.

  2. The Application of Neural Networks with Artificial Intelligence Technique in the Modeling of Industrial Processes

    NASA Astrophysics Data System (ADS)

    Saini, K. K.; Saini, Sanju

    2008-10-01

    Neural networks are a relatively new artificial intelligence technique that emulates the behavior of biological neural systems in digital software or hardware. These networks can "learn," automatically, complex relationships among data. This feature makes the technique very useful in modeling processes for which mathematical modeling is difficult or impossible. The work described here outlines some examples of the application of neural networks with artificial intelligence technique in the modeling of industrial processes.

  3. The role of artificial intelligence and expert systems in increasing STS operations productivity

    NASA Technical Reports Server (NTRS)

    Culbert, C.

    1985-01-01

    Artificial Intelligence (AI) is discussed. A number of the computer technologies pioneered in the AI world can make significant contributions to increasing STS operations productivity. Application of expert systems, natural language, speech recognition, and other key technologies can reduce manpower while raising productivity. Many aspects of STS support lend themselves to this type of automation. The artificial intelligence section of the mission planning and analysis division has developed a number of functioning prototype systems which demonstrate the potential gains of applying AI technology.

  4. The 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies

    NASA Technical Reports Server (NTRS)

    Hostetter, Carl F. (Editor)

    1995-01-01

    This publication comprises the papers presented at the 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland, on May 9-11, 1995. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed.

  5. Artificial Intelligent Control for a Novel Advanced Microwave Biodiesel Reactor

    NASA Astrophysics Data System (ADS)

    Wali, W. A.; Hassan, K. H.; Cullen, J. D.; Al-Shamma'a, A. I.; Shaw, A.; Wylie, S. R.

    2011-08-01

    Biodiesel, an alternative diesel fuel made from a renewable source, is produced by the transesterification of vegetable oil or fat with methanol or ethanol. In order to control and monitor the progress of this chemical reaction with complex and highly nonlinear dynamics, the controller must be able to overcome the challenges due to the difficulty in obtaining a mathematical model, as there are many uncertain factors and disturbances during the actual operation of biodiesel reactors. Classical controllers show significant difficulties when trying to control the system automatically. In this paper we propose a comparison of artificial intelligent controllers, Fuzzy logic and Adaptive Neuro-Fuzzy Inference System(ANFIS) for real time control of a novel advanced biodiesel microwave reactor for biodiesel production from waste cooking oil. Fuzzy logic can incorporate expert human judgment to define the system variables and their relationships which cannot be defined by mathematical relationships. The Neuro-fuzzy system consists of components of a fuzzy system except that computations at each stage are performed by a layer of hidden neurons and the neural network's learning capability is provided to enhance the system knowledge. The controllers are used to automatically and continuously adjust the applied power supplied to the microwave reactor under different perturbations. A Labview based software tool will be presented that is used for measurement and control of the full system, with real time monitoring.

  6. Classification of stilbenoid compounds by entropy of artificial intelligence.

    PubMed

    Castellano, Gloria; Lara, Ana; Torrens, Francisco

    2014-01-01

    A set of 66 stilbenoid compounds is classified into a system of periodic properties by using a procedure based on artificial intelligence, information entropy theory. Eight characteristics in hierarchical order are used to classify structurally the stilbenoids. The former five features mark the group or column while the latter three are used to indicate the row or period in the table of periodic classification. Those stilbenoids in the same group are suggested to present similar properties. Furthermore, compounds also in the same period will show maximum resemblance. In this report, the stilbenoids in the table are related to experimental data of bioactivity and antioxidant properties available in the technical literature. It should be noted that stilbenoids with glycoxyl groups esterified with benzoic acid derivatives, in the group g11000 in the extreme right of the periodic table, show the greatest antioxidant activity as confirmed by experiments in the bibliography. Moreover, the second group from the right (g10111) contains E-piceatannol, which antioxidant activity is recognized in the literature. The experiments confirm our results of the periodic classification.

  7. Levels and loops: the future of artificial intelligence and neuroscience.

    PubMed Central

    Bell, A J

    1999-01-01

    In discussing artificial intelligence and neuroscience, I will focus on two themes. The first is the universality of cycles (or loops): sets of variables that affect each other in such a way that any feed-forward account of causality and control, while informative, is misleading. The second theme is based around the observation that a computer is an intrinsically dualistic entity, with its physical set-up designed so as not to interfere with its logical set-up, which executes the computation. The brain is different. When analysed empirically at several different levels (cellular, molecular), it appears that there is no satisfactory way to separate a physical brain model (or algorithm, or representation), from a physical implementational substrate. When program and implementation are inseparable and thus interfere with each other, a dualistic point-of-view is impossible. Forced by empiricism into a monistic perspective, the brain-mind appears as neither embodied by or embedded in physical reality, but rather as identical to physical reality. This perspective has implications for the future of science and society. I will approach these from a negative point-of-view, by critiquing some of our millennial culture's popular projected futures. PMID:10670021

  8. (Artificial intelligence, human factors, robotics, and computer simulation)

    SciTech Connect

    Spelt, P.F.

    1990-09-06

    Traveler was invited to participate in information exchange between Oak Ridge National Laboratory (ORNL) and CISC/JAERI on four topics: Artificial Intelligence, Human Factors, robotics, and computer simulation. This exchange took the form of 9 (2-hour) lectures presented by traveler on work done in CS HF Group, and four presentations by Japanese for traveler's edification. Seven of traveler's lectures were to CISC/JAERI, one to Toshiba Corporation, and one to the AI Steering Committee of JAERI. There was also a presentation by Toshiba Corporation on HF work connected with their Boiling Water Reactor (BWR) control room. Final discussion between traveler and JAERI personnel concerned an umbrella agreement with the US Department of Energy (DOE) permitting researcher exchange similar to nuclear researchers. Conclusions are: the US has definite advantages in most areas of AI progress; the Japanese are creating a Monte Carlo radiation dose calculation simulation which will operate at the level of radiating particles (neutrons) with doses calculated for all major organ systems of humans, and major circuits for robots; they are gaining experience in creating major integrated simulations of human/robot activity in a nuclear reactor; and that it would be advantageous for us to have a formal agreement permitting scientists to visit there for more than 15 days at a time.

  9. N-person game playing and artificial intelligence

    SciTech Connect

    Luckhardt, C.A.

    1989-01-01

    Game playing in artificial intelligence (AI) has produced effective algorithms enabling a computer to play two-person, non-cooperative, zero-sum and perfect information games such as checkers and chess. Game theory suggests solution sets for games, but does not shed much light on how to make moves in a game. This dissertation couples AI with game theory and determines ways for a computer to play multiplayer games. The max{sup n} algorithm is defined and analyzed for playing non-cooperative, n-person games. The max{sup n} procedure finds an equilibrium point for a game and allows some pruning of calculated payoff values but not pruning of subtrees. An evaluation for representing a cooperative game is defined using the max{sup n} procedure on all possible coalitions. This evaluation is used along with an earnings function in order to define the stability of a coalition and coalition structure. Finally, a solution algorithm is developed that is based on coalition stability for a computer to use in playing cooperative n-person games using look ahead, heuristic evaluation function, and back-up techniques. The solution algorithm gives a result that is sometimes in game-theoretic solution sets such as the core, stable set, kernel, and bargaining set. Potential applications for this work are in AI, conflict resolution, economics, mathematics, and social psychology.

  10. An intercomparison of artificial intelligence approaches for polar scene identification

    NASA Astrophysics Data System (ADS)

    Tovinkere, V. R.; Penaloza, M.; Logar, A.; Lee, J.; Weger, R. C.; Berendes, T. A.; Welch, R. M.

    1993-03-01

    Six advanced very high resolution radiometer local area coverage arctic scenes are classified into 10 classes. These include water, solid sea ice, broken sea ice, snow-covered mountains, land, stratus over ice, stratus over water, cirrus over ice, cumulus over water, and multilayer cloudiness. Eight spectral and textural features are computed. The textural features are based upon the gray level difference vector method. Six different artificial intelligence classifiers are examined: (1) the feed forward back propagation neural network; (2) the probabilistic neural network; (3) the hybrid back propagation neural network; (4) the "don't care" perceptron network; (5) the "don't care" back propagation neural network; and (6) a fuzzy logic-based expert system. Accuracies in excess of 95% are obtained for all but the hybrid neural network. The "don't care" back propagation neural network produces the highest accuracies and also has low CPU requirements. Thin fog/stratus over ice is the class consistently with the lowest accuracy, often misclassified as broken sea ice. Water, land, cirrus over ice, and snow-covered mountains are all classified with high accuracy (≥98%). The high accuracy achieved in the present study can be traced to (1) accurate classifiers; (2) an excellent choice for the feature vector; and (3) accurate labeling. A sophisticated new interactive visual image classification system is used for the labeling.

  11. An intercomparison of artificial intelligence approaches for polar scene identification

    SciTech Connect

    Tovinkere, V.R.; Penaloza, M.; Logar, A.; Lee, J.; Weger, R.C.; Berendes, T.A.; Welch, R.M. )

    1993-03-20

    Six advanced very high resolution radiometer local area coverage arctic scenes are classified into 10 classes. These include water, solid sea ice, broken sea ice, snow-covered mountains, land, stratus over ice, stratus over water, cirrus over ice, cumulus over water, and multilayer cloudiness. Eight spectral and textural features are computed. The textural features are based upon the gray level difference vector method. Six different artificial intelligence classifiers are examined: (1) the feed forward back propagation neural network; (2) the probabilistic neural network; (3) the hybrid back propagation neural network; (4) the [open quotes]don't care[close quotes] perceptron network; (5) the [open quotes]don't care[close quotes] back propagation neural network; and (6) a fuzzy logic-based expert system. Accuracies in excess of 95% are obtained for all but the hybrid neural network. The [open quotes]don't care[close quotes] back propagation neural network produces the highest accuracies and also has low CPU requirements. Thin fog/stratus over ice is the class consistently with the lowest accuracy, often misclassified as broken sea ice. Water, land, cirrus over ice, and snow-covered mountains are all classified with high accuracy ([ge]98%). The high accuracy achieved in the present study can be traced to (1) accurate classifiers; (2) an excellent choice for the feature vector, and (3) accurate labeling. A sophisticated new interactive visual image classification system is used for the labeling. 33 refs., 8 figs., 7 tabs.

  12. Implementing embedded artificial intelligence rules within algorithmic programming languages

    NASA Technical Reports Server (NTRS)

    Feyock, Stefan

    1988-01-01

    Most integrations of artificial intelligence (AI) capabilities with non-AI (usually FORTRAN-based) application programs require the latter to execute separately to run as a subprogram or, at best, as a coroutine, of the AI system. In many cases, this organization is unacceptable; instead, the requirement is for an AI facility that runs in embedded mode; i.e., is called as subprogram by the application program. The design and implementation of a Prolog-based AI capability that can be invoked in embedded mode are described. The significance of this system is twofold: Provision of Prolog-based symbol-manipulation and deduction facilities makes a powerful symbolic reasoning mechanism available to applications programs written in non-AI languages. The power of the deductive and non-procedural descriptive capabilities of Prolog, which allow the user to describe the problem to be solved, rather than the solution, is to a large extent vitiated by the absence of the standard control structures provided by other languages. Embedding invocations of Prolog rule bases in programs written in non-AI languages makes it possible to put Prolog calls inside DO loops and similar control constructs. The resulting merger of non-AI and AI languages thus results in a symbiotic system in which the advantages of both programming systems are retained, and their deficiencies largely remedied.

  13. A grounded theory of abstraction in artificial intelligence.

    PubMed

    Zucker, Jean-Daniel

    2003-07-29

    In artificial intelligence, abstraction is commonly used to account for the use of various levels of details in a given representation language or the ability to change from one level to another while preserving useful properties. Abstraction has been mainly studied in problem solving, theorem proving, knowledge representation (in particular for spatial and temporal reasoning) and machine learning. In such contexts, abstraction is defined as a mapping between formalisms that reduces the computational complexity of the task at stake. By analysing the notion of abstraction from an information quantity point of view, we pinpoint the differences and the complementary role of reformulation and abstraction in any representation change. We contribute to extending the existing semantic theories of abstraction to be grounded on perception, where the notion of information quantity is easier to characterize formally. In the author's view, abstraction is best represented using abstraction operators, as they provide semantics for classifying different abstractions and support the automation of representation changes. The usefulness of a grounded theory of abstraction in the cartography domain is illustrated. Finally, the importance of explicitly representing abstraction for designing more autonomous and adaptive systems is discussed.

  14. Parameter tuning of PVD process based on artificial intelligence technique

    NASA Astrophysics Data System (ADS)

    Norlina, M. S.; Diyana, M. S. Nor; Mazidah, P.; Rusop, M.

    2016-07-01

    In this study, an artificial intelligence technique is proposed to be implemented in the parameter tuning of a PVD process. Due to its previous adaptation in similar optimization problems, genetic algorithm (GA) is selected to optimize the parameter tuning of the RF magnetron sputtering process. The most optimized parameter combination obtained from GA's optimization result is expected to produce the desirable zinc oxide (ZnO) thin film from the sputtering process. The parameters involved in this study were RF power, deposition time and substrate temperature. The algorithm was tested to optimize the 25 datasets of parameter combinations. The results from the computational experiment were then compared with the actual result from the laboratory experiment. Based on the comparison, GA had shown that the algorithm was reliable to optimize the parameter combination before the parameter tuning could be done to the RF magnetron sputtering machine. In order to verify the result of GA, the algorithm was also been compared to other well known optimization algorithms, which were, particle swarm optimization (PSO) and gravitational search algorithm (GSA). The results had shown that GA was reliable in solving this RF magnetron sputtering process parameter tuning problem. GA had shown better accuracy in the optimization based on the fitness evaluation.

  15. Integrating artificial and human intelligence into tablet production process.

    PubMed

    Gams, Matjaž; Horvat, Matej; Ožek, Matej; Luštrek, Mitja; Gradišek, Anton

    2014-12-01

    We developed a new machine learning-based method in order to facilitate the manufacturing processes of pharmaceutical products, such as tablets, in accordance with the Process Analytical Technology (PAT) and Quality by Design (QbD) initiatives. Our approach combines the data, available from prior production runs, with machine learning algorithms that are assisted by a human operator with expert knowledge of the production process. The process parameters encompass those that relate to the attributes of the precursor raw materials and those that relate to the manufacturing process itself. During manufacturing, our method allows production operator to inspect the impacts of various settings of process parameters within their proven acceptable range with the purpose of choosing the most promising values in advance of the actual batch manufacture. The interaction between the human operator and the artificial intelligence system provides improved performance and quality. We successfully implemented the method on data provided by a pharmaceutical company for a particular product, a tablet, under development. We tested the accuracy of the method in comparison with some other machine learning approaches. The method is especially suitable for analyzing manufacturing processes characterized by a limited amount of data.

  16. Macrocell path loss prediction using artificial intelligence techniques

    NASA Astrophysics Data System (ADS)

    Usman, Abraham U.; Okereke, Okpo U.; Omizegba, Elijah E.

    2014-04-01

    The prediction of propagation loss is a practical non-linear function approximation problem which linear regression or auto-regression models are limited in their ability to handle. However, some computational Intelligence techniques such as artificial neural networks (ANNs) and adaptive neuro-fuzzy inference systems (ANFISs) have been shown to have great ability to handle non-linear function approximation and prediction problems. In this study, the multiple layer perceptron neural network (MLP-NN), radial basis function neural network (RBF-NN) and an ANFIS network were trained using actual signal strength measurement taken at certain suburban areas of Bauchi metropolis, Nigeria. The trained networks were then used to predict propagation losses at the stated areas under differing conditions. The predictions were compared with the prediction accuracy of the popular Hata model. It was observed that ANFIS model gave a better fit in all cases having higher R2 values in each case and on average is more robust than MLP and RBF models as it generalises better to a different data.

  17. Artificial intelligence approach for spot application project system design

    NASA Astrophysics Data System (ADS)

    Lefevre, M. J.; Fisse, G.; Martin, E.; de Boissezon, H.; Galaup, M.

    1993-11-01

    Over the past four years, CNES has been engaged in a major programme focusing on the development of SPOT Operational Application Projects. With a total of sixty projects now complete, we can draw a number of meaningful conclusions and identify a number of objectives to be satisfied by advanced remote sensing methodology. One of the main conclusions points to the importance of human vision in studies on natural complex space imagery. This being so, visual recognition must be one of the main phases of the ``Pilot Project for the Application of Remote Sensing to Agricultural Statistics'': only human experts have the ability to make a meaningful analysis of Spot TM imagery. Non-expert operators will not be able to manage the subsequent rational production phase alone. The first part of this paper describes an approach to the formalization and modelling of expert know-how based on the use of artificial intelligence. The second part puts forward a cooperative operator/computer system based on a cognitive structure. Our proposal comprises 1) a specific knowledge base, 2) an ergonomic interface associated with functional software that is based on automatic image enhancement coupled with perception support functions.

  18. A grounded theory of abstraction in artificial intelligence.

    PubMed Central

    Zucker, Jean-Daniel

    2003-01-01

    In artificial intelligence, abstraction is commonly used to account for the use of various levels of details in a given representation language or the ability to change from one level to another while preserving useful properties. Abstraction has been mainly studied in problem solving, theorem proving, knowledge representation (in particular for spatial and temporal reasoning) and machine learning. In such contexts, abstraction is defined as a mapping between formalisms that reduces the computational complexity of the task at stake. By analysing the notion of abstraction from an information quantity point of view, we pinpoint the differences and the complementary role of reformulation and abstraction in any representation change. We contribute to extending the existing semantic theories of abstraction to be grounded on perception, where the notion of information quantity is easier to characterize formally. In the author's view, abstraction is best represented using abstraction operators, as they provide semantics for classifying different abstractions and support the automation of representation changes. The usefulness of a grounded theory of abstraction in the cartography domain is illustrated. Finally, the importance of explicitly representing abstraction for designing more autonomous and adaptive systems is discussed. PMID:12903672

  19. Advanced aerospace composite material structural design using artificial intelligent technology

    SciTech Connect

    Sun, S.H.; Chen, J.L.; Hwang, W.C.

    1993-12-31

    Due to the complexity in the prediction of property and behavior, composite material has not substituted for metal widely yet, though it has high specific-strength and high specific-modulus that are more important in the aerospace industry. In this paper two artificial intelligent techniques, the expert systems and neural network technology, were introduced to the structural design of composite material. Expert System which has good ability in symbolic processing can helps us to solve problem by saving experience and knowledge. It is, therefore, a reasonable way to combine expert system technology to tile composite structural design. The development of a prototype expert system to help designer during the process of composite structural design is presented. Neural network is a network similar to people`s brain that can simulate the thinking way of people and has the ability of learning from the training data by adapting the weights of network. Because of the bottleneck in knowledge acquisition processes, the application of neural network and its learning ability to strength design of composite structures are presented. Some examples are in this paper to demonstrate the idea.

  20. Spike: Artificial intelligence scheduling for Hubble space telescope

    NASA Technical Reports Server (NTRS)

    Johnston, Mark; Miller, Glenn; Sponsler, Jeff; Vick, Shon; Jackson, Robert

    1990-01-01

    Efficient utilization of spacecraft resources is essential, but the accompanying scheduling problems are often computationally intractable and are difficult to approximate because of the presence of numerous interacting constraints. Artificial intelligence techniques were applied to the scheduling of the NASA/ESA Hubble Space Telescope (HST). This presents a particularly challenging problem since a yearlong observing program can contain some tens of thousands of exposures which are subject to a large number of scientific, operational, spacecraft, and environmental constraints. New techniques were developed for machine reasoning about scheduling constraints and goals, especially in cases where uncertainty is an important scheduling consideration and where resolving conflicts among conflicting preferences is essential. These technique were utilized in a set of workstation based scheduling tools (Spike) for HST. Graphical displays of activities, constraints, and schedules are an important feature of the system. High level scheduling strategies using both rule based and neural network approaches were developed. While the specific constraints implemented are those most relevant to HST, the framework developed is far more general and could easily handle other kinds of scheduling problems. The concept and implementation of the Spike system are described along with some experiments in adapting Spike to other spacecraft scheduling domains.

  1. Artificial Intelligence (AI) Based Tactical Guidance for Fighter Aircraft

    NASA Technical Reports Server (NTRS)

    McManus, John W.; Goodrich, Kenneth H.

    1990-01-01

    A research program investigating the use of Artificial Intelligence (AI) techniques to aid in the development of a Tactical Decision Generator (TDG) for Within Visual Range (WVR) air combat engagements is discussed. The application of AI programming and problem solving methods in the development and implementation of the Computerized Logic For Air-to-Air Warfare Simulations (CLAWS), a second generation TDG, is presented. The Knowledge-Based Systems used by CLAWS to aid in the tactical decision-making process are outlined in detail, and the results of tests to evaluate the performance of CLAWS versus a baseline TDG developed in FORTRAN to run in real-time in the Langley Differential Maneuvering Simulator (DMS), are presented. To date, these test results have shown significant performance gains with respect to the TDG baseline in one-versus-one air combat engagements, and the AI-based TDG software has proven to be much easier to modify and maintain than the baseline FORTRAN TDG programs. Alternate computing environments and programming approaches, including the use of parallel algorithms and heterogeneous computer networks are discussed, and the design and performance of a prototype concurrent TDG system are presented.

  2. Artificial intelligence in the service of system administrators

    NASA Astrophysics Data System (ADS)

    Haen, C.; Barra, V.; Bonaccorsi, E.; Neufeld, N.

    2012-12-01

    The LHCb online system relies on a large and heterogeneous IT infrastructure made from thousands of servers on which many different applications are running. They run a great variety of tasks: critical ones such as data taking and secondary ones like web servers. The administration of such a system and making sure it is working properly represents a very important workload for the small expert-operator team. Research has been performed to try to automatize (some) system administration tasks, starting in 2001 when IBM defined the so-called “self objectives” supposed to lead to “autonomic computing”. In this context, we present a framework that makes use of artificial intelligence and machine learning to monitor and diagnose at a low level and in a non intrusive way Linux-based systems and their interaction with software. Moreover, the multi agent approach we use, coupled with an “object oriented paradigm” architecture should increase our learning speed a lot and highlight relations between problems.

  3. Can Artificial Intelligences Suffer from Mental Illness? A Philosophical Matter to Consider.

    PubMed

    Ashrafian, Hutan

    2017-04-01

    The potential for artificial intelligences and robotics in achieving the capacity of consciousness, sentience and rationality offers the prospect that these agents have minds. If so, then there may be a potential for these minds to become dysfunctional, or for artificial intelligences and robots to suffer from mental illness. The existence of artificially intelligent psychopathology can be interpreted through the philosophical perspectives of mental illness. This offers new insights into what it means to have either robot or human mental disorders, but may also offer a platform on which to examine the mechanisms of biological or artificially intelligent psychiatric disease. The possibility of mental illnesses occurring in artificially intelligent individuals necessitates the consideration that at some level, they may have achieved a mental capability of consciousness, sentience and rationality such that they can subsequently become dysfunctional. The deeper philosophical understanding of these conditions in mankind and artificial intelligences might therefore offer reciprocal insights into mental health and mechanisms that may lead to the prevention of mental dysfunction.

  4. Monitoring of space station life support systems with miniature mass spectrometry and artificial intelligence

    NASA Technical Reports Server (NTRS)

    Yost, Richard A.; Johnson, Jodie V.; Wong, Carla M.

    1987-01-01

    The combination of quadrupole ion trap tandem mass spectroscopy with artificial intelligence is a promising approach for monitoring the performance of the life support systems in the space station. Such an analytical system can provide the selectivity, sensitivity, speed, small size, and decision making intelligence to detect, identify, and quantify trace toxic compounds which may accumulate in the space station habitat.

  5. Modeling Common-Sense Decisions in Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2010-01-01

    A methodology has been conceived for efficient synthesis of dynamical models that simulate common-sense decision- making processes. This methodology is intended to contribute to the design of artificial-intelligence systems that could imitate human common-sense decision making or assist humans in making correct decisions in unanticipated circumstances. This methodology is a product of continuing research on mathematical models of the behaviors of single- and multi-agent systems known in biology, economics, and sociology, ranging from a single-cell organism at one extreme to the whole of human society at the other extreme. Earlier results of this research were reported in several prior NASA Tech Briefs articles, the three most recent and relevant being Characteristics of Dynamics of Intelligent Systems (NPO -21037), NASA Tech Briefs, Vol. 26, No. 12 (December 2002), page 48; Self-Supervised Dynamical Systems (NPO-30634), NASA Tech Briefs, Vol. 27, No. 3 (March 2003), page 72; and Complexity for Survival of Living Systems (NPO- 43302), NASA Tech Briefs, Vol. 33, No. 7 (July 2009), page 62. The methodology involves the concepts reported previously, albeit viewed from a different perspective. One of the main underlying ideas is to extend the application of physical first principles to the behaviors of living systems. Models of motor dynamics are used to simulate the observable behaviors of systems or objects of interest, and models of mental dynamics are used to represent the evolution of the corresponding knowledge bases. For a given system, the knowledge base is modeled in the form of probability distributions and the mental dynamics is represented by models of the evolution of the probability densities or, equivalently, models of flows of information. Autonomy is imparted to the decisionmaking process by feedback from mental to motor dynamics. This feedback replaces unavailable external information by information stored in the internal knowledge base. Representation

  6. Artificial Intelligence and the Brave New World of Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Devinney, E.; Guinan, E.; Bradstreet, D.; DeGeorge, M.; Giammarco, J.; Alcock, C.; Engle, S.

    2005-12-01

    The explosive growth of observational capabilities and information technology over the past decade has brought astronomy to a tipping point - we are going to be deluged by a virtual fire hose (more like Niagara Falls!) of data. An important component of this deluge will be newly discovered eclipsing binary stars (EBs) and other valuable variable stars. As exploration of the Local Group Galaxies grows via current and new ground-based and satellite programs, the number of EBs is expected to grow explosively from some 10,000 today to 8 million as GAIA comes online. These observational advances will present a unique opportunity to study the properties of EBs formed in galaxies with vastly different dynamical, star formation, and chemical histories than our home Galaxy. Thus the study of these binaries (e.g., from light curve analyses) is expected to provide clues about the star formation rates and dynamics of their host galaxies as well as the possible effects of varying chemical abundance on stellar evolution and structure. Additionally, minimal-assumption-based distances to Local Group objects (and possibly 3-D mapping within these objects) shall be returned. These huge datasets of binary stars will provide tests of current theories (or suggest new theories) regarding binary star formation and evolution. However, these enormous data will far exceed the capabilities of analysis via human examination. To meet the daunting challenge of successfully mining this vast potential of EBs and variable stars for astrophysical results with minimum human intervention, we are developing new data processing techniques and methodologies. Faced with an overwhelming volume of data, our goal is to integrate technologies of Machine Learning and Pattern Processing (Artificial Intelligence [AI]) into the data processing pipelines of the major current and future ground- and space-based observational programs. Data pipelines of the future will have to carry us from observations to

  7. The use of artificially intelligent agents with bounded rationality in the study of economic markets

    SciTech Connect

    Rajan, V.; Slagle, J.R.

    1996-12-31

    The concepts of {open_quote}knowledge{close_quote} and {open_quote}rationality{close_quote} are of central importance to fields of science that are interested in human behavior and learning, such as artificial intelligence, economics, and psychology. The similarity between artificial intelligence and economics - both are concerned with intelligent thought, rational behavior, and the use and acquisition of knowledge - has led to the use of economic models as a paradigm for solving problems in distributed artificial intelligence (DAI) and multi agent systems (MAS). What we propose is the opposite; the use of artificial intelligence in the study of economic markets. Over the centuries various theories of market behavior have been advanced. The prevailing theory holds that an asset`s current price converges to the risk adjusted value of the rationally expected dividend stream. While this rational expectations model holds in equilibrium or near-equilibrium conditions, it does not sufficiently explain conditions of market disequilibrium. An example of market disequilibrium is the phenomenon of a speculative bubble. We present an example of using artificially intelligent agents with bounded rationality in the study of speculative bubbles.

  8. Evaluation of an artificial intelligence program for estimating occupational exposures.

    PubMed

    Johnston, Karen L; Phillips, Margaret L; Esmen, Nurtan A; Hall, Thomas A

    2005-03-01

    Estimation and Assessment of Substance Exposure (EASE) is an artificial intelligence program developed by UK's Health and Safety Executive to assess exposure. EASE computes estimated airborne concentrations based on a substance's vapor pressure and the types of controls in the work area. Though EASE is intended only to make broad predictions of exposure from occupational environments, some occupational hygienists might attempt to use EASE for individual exposure characterizations. This study investigated whether EASE would accurately predict actual sampling results from a chemical manufacturing process. Personal breathing zone time-weighted average (TWA) monitoring data for two volatile organic chemicals--a common solvent (toluene) and a specialty monomer (chloroprene)--present in this manufacturing process were compared to EASE-generated estimates. EASE-estimated concentrations for specific tasks were weighted by task durations reported in the monitoring record to yield TWA estimates from EASE that could be directly compared to the measured TWA data. Two hundred and six chloroprene and toluene full-shift personal samples were selected from eight areas of this manufacturing process. The Spearman correlation between EASE TWA estimates and measured TWA values was 0.55 for chloroprene and 0.44 for toluene, indicating moderate predictive values for both compounds. For toluene, the interquartile range of EASE estimates at least partially overlapped the interquartile range of the measured data distributions in all process areas. The interquartile range of EASE estimates for chloroprene fell above the interquartile range of the measured data distributions in one process area, partially overlapped the third quartile of the measured data in five process areas and fell within the interquartile range in two process areas. EASE is not a substitute for actual exposure monitoring. However, EASE can be used in conditions that cannot otherwise be sampled and in preliminary

  9. The application of artificial intelligence to astronomical scheduling problems

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.

    1992-01-01

    Efficient utilization of expensive space- and ground-based observatories is an important goal for the astronomical community; the cost of modern observing facilities is enormous, and the available observing time is much less than the demand from astronomers around the world. The complexity and variety of scheduling constraints and goals has led several groups to investigate how artificial intelligence (AI) techniques might help solve these kinds of problems. The earliest and most successful of these projects was started at Space Telescope Science Institute in 1987 and has led to the development of the Spike scheduling system to support the scheduling of Hubble Space Telescope (HST). The aim of Spike at STScI is to allocate observations to timescales of days to a week observing all scheduling constraints and maximizing preferences that help ensure that observations are made at optimal times. Spike has been in use operationally for HST since shortly after the observatory was launched in Apr. 1990. Although developed specifically for HST scheduling, Spike was carefully designed to provide a general framework for similar (activity-based) scheduling problems. In particular, the tasks to be scheduled are defined in the system in general terms, and no assumptions about the scheduling timescale are built in. The mechanisms for describing, combining, and propagating temporal and other constraints and preferences are quite general. The success of this approach has been demonstrated by the application of Spike to the scheduling of other satellite observatories: changes to the system are required only in the specific constraints that apply, and not in the framework itself. In particular, the Spike framework is sufficiently flexible to handle both long-term and short-term scheduling, on timescales of years down to minutes or less. This talk will discuss recent progress made in scheduling search techniques, the lessons learned from early HST operations, the application of Spike

  10. Decision-Making and the Interface between Human Intelligence and Artificial Intelligence. AIR 1987 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Henard, Ralph E.

    Possible future developments in artificial intelligence (AI) as well as its limitations are considered that have implications for institutional research in higher education, and especially decision making and decision support systems. It is noted that computer software programs have been developed that store knowledge and mimic the decision-making…

  11. Worldwide Intelligent Systems: Approaches to Telecommunications and Network Management. Frontiers in Artificial Intelligence and Applications, Volume 24.

    ERIC Educational Resources Information Center

    Liebowitz, Jay, Ed.; Prerau, David S., Ed.

    This is an international collection of 12 papers addressing artificial intelligence (AI) and knowledge technology applications in telecommunications and network management. It covers the latest and emerging AI technologies as applied to the telecommunications field. The papers are: "The Potential for Knowledge Technology in…

  12. Northeast Artificial Intelligence Consortium (NAIC). Volume 13. Image Understanding and Intelligent Parallel Systems

    DTIC Science & Technology

    1990-12-01

    Nelson 1990- (Flow fields); Cooper 1988, (Struc- ture recognition); Slier 1987a,b,c (Probabilistic low-level visio -.); Swain 1988 (Object recognition...Confidence First algorithm, segmentation, and depth boundary calculation. Experiments with stereo disparity-data (II). 17 the object in the image, considerable...tracking, rapid gaze shifts, gaze stabilization against head motion, verging the cameras, binocular stereo , optic flow and kinetic depth cal- culations

  13. Hybrid Intelligent Perception System: Intelligent perception through combining Artificial Neural Networks and an Expert System

    SciTech Connect

    Glover, C.W.; Spelt, P.F.

    1990-01-01

    This paper presents a report of work-in-progress on a project to combine Artificial Neural Networks (ANNs) and Expert Systems (ESs) into a hybrid, self-improving pattern recognition system. The purpose of this project is to explore methods of combining multiple classifiers into a Hybrid Intelligent Perception (HIP) System. The central research issue to be addressed for a multiclassifier hybrid system is whether such a system can perform better than the two classifiers taken by themselves. ANNs and ESs have different strengths and weaknesses, which are being exploited in this project in such a way that they are complementary to each other: Strengths in one system make up for weaknesses in the other, and vice versa. There is presently considerable interest in the AI community in ways to exploit the strengths of these methodologies to produce an intelligent system which is more robust and flexible than one using either technology alone. Perception, which involves both data-driven (bottom-up) and concept-driven (top-down) processing, is a process which seems especially well-suited to displaying the capabilities of such a hybrid system. This work has been funded for the past six months by an Oak Ridge National Laboratory seed grant, and most of the system components are operating in both the PC and the hypercube computer environments. Here we report on the efforts to develop the low-level ANNs and a graphic representation of their knowledge, and discuss ways of using an ES to integrate and supervise the entire system. 11 refs., 3 figs.

  14. Importance of nonverbal expression to the emergence of emotive artificial intelligence systems

    NASA Astrophysics Data System (ADS)

    Pioggia, Giovanni; Hanson, David; Dinelli, Serena; Di Francesco, Fabio; Francesconi, R.; De Rossi, Danilo

    2002-07-01

    The nonverbal expression of the emotions, especially in the human face, has rapidly become an area of intense interest in computer science and robotics. Exploring the emotions as a link between external events and behavioural responses, artificial intelligence designers and psychologists are approaching a theoretical understanding of foundational principles which will be key to the physical embodiment of artificial intelligence. In fact, it has been well demonstrated that many important aspects of intelligence are grounded in intimate communication with the physical world- so-called embodied intelligence . It follows naturally, then, that recent advances in emotive artificial intelligence show clear and undeniable broadening in the capacities of biologically-inspired robots to survive and thrive in a social environment. The means by which AI may express its foundling emotions are clearly integral to such capacities. In effect: powerful facial expressions are critical to the development of intelligent, sociable robots. Following discussion the importance of the nonverbal expression of emotions in humans and robots, this paper describes methods used in robotically emulating nonverbal expressions using human-like robotic faces. Furthermore, it describes the potentially revolutionary impact of electroactive polymer (EAP) actuators as artificial muscles for such robotic devices.

  15. Artificial intelligence and design: Opportunities, research problems and directions

    NASA Technical Reports Server (NTRS)

    Amarel, Saul

    1990-01-01

    The issues of industrial productivity and economic competitiveness are of major significance in the U.S. at present. By advancing the science of design, and by creating a broad computer-based methodology for automating the design of artifacts and of industrial processes, we can attain dramatic improvements in productivity. It is our thesis that developments in computer science, especially in Artificial Intelligence (AI) and in related areas of advanced computing, provide us with a unique opportunity to push beyond the present level of computer aided automation technology and to attain substantial advances in the understanding and mechanization of design processes. To attain these goals, we need to build on top of the present state of AI, and to accelerate research and development in areas that are especially relevant to design problems of realistic complexity. We propose an approach to the special challenges in this area, which combines 'core work' in AI with the development of systems for handling significant design tasks. We discuss the general nature of design problems, the scientific issues involved in studying them with the help of AI approaches, and the methodological/technical issues that one must face in developing AI systems for handling advanced design tasks. Looking at basic work in AI from the perspective of design automation, we identify a number of research problems that need special attention. These include finding solution methods for handling multiple interacting goals, formation problems, problem decompositions, and redesign problems; choosing representations for design problems with emphasis on the concept of a design record; and developing approaches for the acquisition and structuring of domain knowledge with emphasis on finding useful approximations to domain theories. Progress in handling these research problems will have major impact both on our understanding of design processes and their automation, and also on several fundamental questions

  16. Fourth-generation inverters add artificial intelligence to the control of GMA welding

    SciTech Connect

    Nacey, T.J. . Panasonic Factory Automation Co.)

    1993-01-01

    A new level of control has been achieved over the welding arc by using some of the latest techniques in artificial machine-intelligence computer control and by direct control of the short-circuit waveform. By controlling the short-circuit waveform in real time, these artificially intelligent power supplies control the instantaneous welding conditions and improve the GMAW process in terms of welding performance. These artificial-intelligent power supplies can yield many benefits. Among them are lower spatter levels, both in argon-based shielding gases and 100% CO[sub 2] shielding gases. Another benefit is faster arc speeds. In many cases the arc speeds can be 25% faster. Better productivity, through the better arc-striking capability and reduction of downtime associated with spatter on peripheral equipment, is another important factor. These power supplies are synergic and therefore provide for easier operator control. In addition, they have higher electrical efficiency; thus they yield lower operating cost.

  17. New Trends in Computing Anticipatory Systems : Emergence of Artificial Conscious Intelligence with Machine Learning Natural Language

    NASA Astrophysics Data System (ADS)

    Dubois, Daniel M.

    2008-10-01

    This paper deals with the challenge to create an Artificial Intelligence System with an Artificial Consciousness. For that, an introduction to computing anticipatory systems is presented, with the definitions of strong and weak anticipation. The quasi-anticipatory systems of Robert Rosen are linked to open-loop controllers. Then, some properties of the natural brain are presented in relation to the triune brain theory of Paul D. MacLean, and the mind time of Benjamin Libet, with his veto of the free will. The theory of the hyperincursive discrete anticipatory systems is recalled in view to introduce the concept of hyperincursive free will, which gives a similar veto mechanism: free will as unpredictable hyperincursive anticipation The concepts of endo-anticipation and exo-anticipation are then defined. Finally, some ideas about artificial conscious intelligence with natural language are presented, in relation to the Turing Machine, Formal Language, Intelligent Agents and Mutli-Agent System.

  18. Artificial Intelligence and Its Use in Cost Type analyses with an Example in Cost Performance Measurement.

    DTIC Science & Technology

    1985-01-01

    7-Ai6i 817 ARTIFICIAL INTELLIGENCE AND ITS USE IN COST TYE1/I ANALYSES WdITH ANt EXAMPLE IN COST PERFORMANCE I MERSUREMENT(U) DEFENSE SYSTEMS...INTELLIGENCE-THE EMERGING TECHNOLOGY/ NATURAL LANGUAGE PROCESSORS K ~ With the advent of ARTIFICAL INTELLEGENCE (AI), we are entering into a new era of...language processor which is commerically available is INTELLECT, by Artifical Intellegence Incorporated, Waltham, Mass. To illustrate what a natural

  19. An overview of the artificial intelligence and expert systems component of RICIS

    NASA Technical Reports Server (NTRS)

    Feagin, Terry

    1987-01-01

    Artificial Intelligence and Expert Systems are the important component of RICIS (Research Institute and Information Systems) research program. For space applications, a number of problem areas that should be able to make good use of the above tools include: resource allocation and management, control and monitoring, environmental control and life support, power distribution, communications scheduling, orbit and attitude maintenance, redundancy management, intelligent man-machine interfaces and fault detection, isolation and recovery.

  20. An Artificial Intelligence Technique to Generate Self-Optimizing Experimental Designs.

    DTIC Science & Technology

    1983-02-01

    pattern or a binary chopping technique in the space of decision variables while carrying out a sequence of contiroLled experiments on the strategy ...7 AD-A127 764 AN ARTIFICIAL INTELLIGENCE TECHNIQUE TO GENERATE 1/1 SELF-OPTIMIZING EXPERIME. .(U) ARIZONA STATE UNIV TEMPE GROUP FOR COMPUTER STUDIES...6 3 A - - II 1* Ii.LI~1 11. AI-. jMR.TR- 3 0 3 37 AN ARTIFICIAL INTELLIGENCE TECHNIQUE TO GENERATE SELF-OPTIMIZING EXPERIMENTAL DESIGNS Nicholas V

  1. Proceedings of the thirteenth national conference on artificial intelligence and the eighth innovative applications of artificial intelligence conference. Volume 1 and 2

    SciTech Connect

    1996-12-31

    This report contain papers from the Thirteenth National Conference on Artificial Intelligence and the Eighth Conference on Innovative Applications of Artificial Intelligence collected in two volumes. General areas of research for these papers are: interaction; internet agents; multiagent learning; multiagent problem solving; negotiation and coalition; AI in art and entertainment; constraint satisfaction; data consistency; game-tree search; phase transition; search control; search and learning; stochastic search; temporal reasoning; education; information retrieval and natural language processing; knowledge-based systems; knowledge compilation; knowledge representation; belief and belief revision; description logics and probabilities reasoning; knowledge-base and context; nonmonotonic reasoning; reasoning about action; learning; mobile robots; model-based reasoning; natural language; preception; planning; rule-based reasoning and connectionism; uncertainty; robot competition; student abstracts; and case studies.

  2. A Paradigmatic Example of an Artificially Intelligent Instructional System.

    ERIC Educational Resources Information Center

    Brown, John Seely; Burton, Richard R.

    1978-01-01

    Describes the philosophy of intelligent instructional systems and presents an example of such a system, BLOCKS. The notion of BLOCKS as a paradigmatic system is explicated from both the system development and educational points of view. (Author/VT)

  3. Smart Collections: Can Artificial Intelligence Tools and Techniques Assist with Discovering, Evaluating and Tagging Digital Learning Resources?

    ERIC Educational Resources Information Center

    Leibbrandt, Richard; Yang, Dongqiang; Pfitzner, Darius; Powers, David; Mitchell, Pru; Hayman, Sarah; Eddy, Helen

    2010-01-01

    This paper reports on a joint proof of concept project undertaken by researchers from the Flinders University Artificial Intelligence Laboratory in partnership with information managers from the Education Network Australia (edna) team at Education Services Australia to address the question of whether artificial intelligence techniques could be…

  4. United States Army Training and Doctrine Command (TRADOC) - artificial intelligence and robotics symposium

    SciTech Connect

    Not Available

    1985-01-01

    Various papers on artificial intelligence and robotics and their applications for the US Army are presented. Topics include US Army robotics development directions; mobile robots for surveillance, reconnaissance, and manipulative missions in hazardous environments; technology development in intelligent machine systems; control of a multi-robot process line using AI; land vehicles; remote control weapons platforms; expert systems for logistic analysis. Also addressed are software architecture for real-time, embedded expert systems; knowledge integrity maintenance; embedding AI systems into command and control; a natural language understanding system for maneuver control; and a design of a generic intelligent trainer.

  5. Northeast Artificial Intelligence Consortium (NAIC). Volume 18. A distributed Artificial Intelligence Approach to Information Fusion and Object Classification

    DTIC Science & Technology

    1990-12-01

    situation[2] can be used to provide up -to-date in- formation about potential ground-based threats to a flight of aircraft attempting to penetrate hostile...considered here, which is discussed later. Operational speed: Concurrency can increase the speed of computation and reasoning. It may also open up ...blackboard system for a particular applica- tion. A more detailed discussion of the blackboard structures implemented todate along with their features and

  6. Guidance for human interface with artificial intelligence systems

    NASA Technical Reports Server (NTRS)

    Potter, Scott S.; Woods, David D.

    1991-01-01

    The beginning of a research effort to collect and integrate existing research findings about how to combine computer power and people is discussed, including problems and pitfalls as well as desirable features. The goal of the research is to develop guidance for the design of human interfaces with intelligent systems. Fault management tasks in NASA domains are the focus of the investigation. Research is being conducted to support the development of guidance for designers that will enable them to make human interface considerations into account during the creation of intelligent systems.

  7. Artificial Intelligence: Expert Systems for Corps Tactical Planning and Other Applications.

    DTIC Science & Technology

    1987-03-23

    Artificial intelligence is fast becoming a part of everyday life. How much it can eventually do remains to be seen but only an intellectual simpleton can doubt...us --Look for AA which avoids hitting enemy hond on (we must project enemri locos. - Does it mapri st moueint? - Does it W k m c (Dde forword ad Dde

  8. Artificial intelligence. 1972-March, 1983 (Citations from the International Aerospace Abstracts Data Base)

    SciTech Connect

    Not Available

    1983-03-01

    This bibliography contains citations concerning artificial intelligence. Topics include pattern recognition theory and algorithms, image processing, automatic word processing, computer aids in pattern recognition, talking and answering systems, systems for the medical profession, and robotics. (This updated bibliography contains 284 citations, 96 of which are new entries to the previous edition.)

  9. Artificial intelligence. 1970-March, 1983 (Citations from the Engineering Index Data Base)

    SciTech Connect

    Not Available

    1983-03-01

    This bibliography contains citations concerning artificial intelligence. Topics include pattern recognition theory and algorithms, image processing, automatic word processing, computer aids in pattern recognition, talking and answering systems, systems for the medical profession, and robotics. Applications in the aerospace industry are also included. (This updated bibliography contains 350 citations, 20 of which are new entries to the previous edition.)

  10. Artificial intelligence in process control: Knowledge base for the shuttle ECS model

    NASA Technical Reports Server (NTRS)

    Stiffler, A. Kent

    1989-01-01

    The general operation of KATE, an artificial intelligence controller, is outlined. A shuttle environmental control system (ECS) demonstration system for KATE is explained. The knowledge base model for this system is derived. An experimental test procedure is given to verify parameters in the model.

  11. The Use of Artificial Neural Networks to Estimate Speech Intelligibility from Acoustic Variables: A Preliminary Analysis.

    ERIC Educational Resources Information Center

    Metz, Dale Evan; And Others

    1992-01-01

    A preliminary scheme for estimating the speech intelligibility of hearing-impaired speakers from acoustic parameters, using a computerized artificial neural network to process mathematically the acoustic input variables, is outlined. Tests with 60 hearing-impaired speakers found the scheme to be highly accurate in identifying speakers separated by…

  12. Artificial intelligence guides system's best practices, cutting costs and improving services.

    PubMed

    1999-06-01

    One for the history books. Clinical care improvement initiatives guided by a sophisticated artificial intelligence program have helped a major Virginia integrated health system make dramatic improvements in the cost and quality of its health care services. Find out how the technological innovation has earned Sentara Health System a place in the permanent collection of the Smithsonian's National Museum of American History.

  13. Three Years of Using Robots in an Artificial Intelligence Course: Lessons Learned

    ERIC Educational Resources Information Center

    Kumar, Amruth N.

    2004-01-01

    We have been using robots in our artificial intelligence course since fall 2000. We have been using the robots for open-laboratory projects. The projects are designed to emphasize high-level knowledge-based AI algorithms. After three offerings of the course, we paused to analyze the collected data and to see if we could answer the following…

  14. ICCE/ICCAI 2000 Full & Short Papers (Artificial Intelligence in Education).

    ERIC Educational Resources Information Center

    2000

    This document contains the full and short papers on artificial intelligence in education from ICCE/ICCAI 2000 (International Conference on Computers in Education/International Conference on Computer-Assisted Instruction) covering the following topics: a computational model for learners' motivation states in individualized tutoring system; a…

  15. An Artificial Intelligence Tutor: A Supplementary Tool for Teaching and Practicing Braille

    ERIC Educational Resources Information Center

    McCarthy, Tessa; Rosenblum, L. Penny; Johnson, Benny G.; Dittel, Jeffrey; Kearns, Devin M.

    2016-01-01

    Introduction: This study evaluated the usability and effectiveness of an artificial intelligence Braille Tutor designed to supplement the instruction of students with visual impairments as they learned to write braille contractions. Methods: A mixed-methods design was used, which incorporated a single-subject, adapted alternating treatments design…

  16. The Roles of Artificial Intelligence in Education: Current Progress and Future Prospects

    ERIC Educational Resources Information Center

    McArthur, David; Lewis, Matthew; Bishary, Miriam

    2005-01-01

    This report begins by summarizing current applications of ideas from artificial intelligence (Al) to education. It then uses that summary to project various future applications of Al--and advanced technology in general--to education, as well as highlighting problems that will confront the wide­ scale implementation of these technologies in the…

  17. Identification and interpretation of patterns in rocket engine data: Artificial intelligence and neural network approaches

    NASA Technical Reports Server (NTRS)

    Ali, Moonis; Whitehead, Bruce; Gupta, Uday K.; Ferber, Harry

    1995-01-01

    This paper describes an expert system which is designed to perform automatic data analysis, identify anomalous events and determine the characteristic features of these events. We have employed both artificial intelligence and neural net approaches in the design of this expert system.

  18. Artificial Intelligence Is for Real: Undergraduate Students Should Know about It.

    ERIC Educational Resources Information Center

    Liebowitz, Jay

    1988-01-01

    Discussion of the possibilities of introducing artificial intelligence (AI) into the undergraduate curriculum highlights the introduction of AI in an introduction to information processing course for business students at George Washington University. Topics discussed include robotics, expert systems prototyping in class, and the interdisciplinary…

  19. Telerobot task planning and reasoning: Introduction to JPL artificial intelligence research

    NASA Technical Reports Server (NTRS)

    Atkinson, D. J.

    1987-01-01

    A view of the capabilities and areas of artificial intelligence research which are required for autonomous space telerobotics extending through the year 2000 is given. In the coming years, JPL will be conducting directed research to achieve these capabilities, as well as drawing heavily on collaborative efforts conducted with other research laboratories.

  20. Keeping Pace with New Technology: An Introduction to Robotics, FORTH, and Artificial Intelligence.

    ERIC Educational Resources Information Center

    Reck, Gene

    A course was developed to introduce students at a community college to four major areas of emphasis in emerging technologies: FORTH programming language, elementary electronic theory, robotics, and artificial intelligence. After a needs assessment indicated the importance of such a course, a pretest focusing on the four areas was given to students…

  1. Implications of Artificial Intelligence for End User Use of Online Systems.

    ERIC Educational Resources Information Center

    Smith, Linda C.

    1980-01-01

    Reviewed are several studies which demonstrate how artificial intelligence techniques can be applied in the design of end user-oriented interfaces (which would eliminate the need for an intermediary) to existing online systems, as well as in the development of future generations of online systems intended for the end user. (Author/SW)

  2. Artificial Intelligence in Education--State of the Art and Perspectives. ZIFF Papiere 111.

    ERIC Educational Resources Information Center

    Buiu, Catalin

    This review contains an overview of past and present trends in the application of what is called "artificial intelligence" in traditional face-to-face education and in distance education. The reviewed trends are illustrated with examples of research projects and results throughout the world. The first section of the review discusses intelligence…

  3. A Retrospective and Prospective View of Information Retrieval and Artificial Intelligence in the 21st Century.

    ERIC Educational Resources Information Center

    Garfield, Eugene

    2001-01-01

    Traces the development of information retrieval/services and suggests that the creation of large digital libraries seems inevitable. Examines possibilities for increasing electronic access and the role of artificial intelligence. Highlights include: searching full text; sending full texts; selective dissemination of information (SDI) profiling and…

  4. Prediction of shipboard electromagnetic interference (EMI) problems using artificial intelligence (AI) technology

    NASA Technical Reports Server (NTRS)

    Swanson, David J.

    1990-01-01

    The electromagnetic interference prediction problem is characteristically ill-defined and complicated. Severe EMI problems are prevalent throughout the U.S. Navy, causing both expected and unexpected impacts on the operational performance of electronic combat systems onboard ships. This paper focuses on applying artificial intelligence (AI) technology to the prediction of ship related electromagnetic interference (EMI) problems.

  5. Artificial Intelligence and Linguistics: A Brief History of a One-Way Relationship.

    ERIC Educational Resources Information Center

    Rosenberg, Richard S.

    For the past 15 years there has been a serious interest in the processing of natural language (English) by researchers in Artificial Intelligence (A.I.). This processing has included machine translation, question-answering systems, man-machine dialogue, and speech understanding. This interest has engendered an awareness of and a concern with the…

  6. Development of the CODER System: A Testbed for Artificial Intelligence Methods in Information Retrieval.

    ERIC Educational Resources Information Center

    Fox, Edward A.

    1987-01-01

    Discusses the CODER system, which was developed to investigate the application of artificial intelligence methods to increase the effectiveness of information retrieval systems, particularly those involving heterogeneous documents. Highlights include the use of PROLOG programing, blackboard-based designs, knowledge engineering, lexicological…

  7. PROLOG to the Future: A Glimpse of Things to Come in Artificial Intelligence.

    ERIC Educational Resources Information Center

    Herther, Nancy K.

    1986-01-01

    Briefly introduces the programming languages of artificial intelligence and presents information on some of the new versions of these languages available for microcomputers. A tutorial for PROLOG-86, a new microcomputer version of PROLOG, is given. Information on other microcomputer versions of these programs and a bibliography are included.…

  8. Artificial Intelligence in Teaching and Learning: An Introduction.

    ERIC Educational Resources Information Center

    Stubbs, Malcolm; Piddock, Peter

    1985-01-01

    Discussion of intelligent computer assisted learning (CAL) systems considers both those that offer natural language communication to the user and those that are adaptive, generative, or self-improving. Current interest in student-built learning environments (exemplified by work with LOGO and PROLOG) is examined, and obstacles to future intelligent…

  9. A Paradigmatic Example of an Artificially Intelligent Instructional System.

    ERIC Educational Resources Information Center

    Brown, John Seely; Burton, Richard R.

    This paper describes the philosophy of intelligent instructional systems and presents an example of one such system in the domain of manipulative mathematics--BLOCKS. The notion of BLOCKS as a paradigmatic system is explicated from both the system development and educational viewpoints. From a developmental point of view, the modular design of…

  10. Classification of intelligence quotient via brainwave sub-band power ratio features and artificial neural network.

    PubMed

    Jahidin, A H; Megat Ali, M S A; Taib, M N; Tahir, N Md; Yassin, I M; Lias, S

    2014-04-01

    This paper elaborates on the novel intelligence assessment method using the brainwave sub-band power ratio features. The study focuses only on the left hemisphere brainwave in its relaxed state. Distinct intelligence quotient groups have been established earlier from the score of the Raven Progressive Matrices. Sub-band power ratios are calculated from energy spectral density of theta, alpha and beta frequency bands. Synthetic data have been generated to increase dataset from 50 to 120. The features are used as input to the artificial neural network. Subsequently, the brain behaviour model has been developed using an artificial neural network that is trained with optimized learning rate, momentum constant and hidden nodes. Findings indicate that the distinct intelligence quotient groups can be classified from the brainwave sub-band power ratios with 100% training and 88.89% testing accuracies.

  11. Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space 1994

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space (i-SAIRAS 94), held October 18-20, 1994, in Pasadena, California, was jointly sponsored by NASA, ESA, and Japan's National Space Development Agency, and was hosted by the Jet Propulsion Laboratory (JPL) of the California Institute of Technology. i-SAIRAS 94 featured presentations covering a variety of technical and programmatic topics, ranging from underlying basic technology to specific applications of artificial intelligence and robotics to space missions. i-SAIRAS 94 featured a special workshop on planning and scheduling and provided scientists, engineers, and managers with the opportunity to exchange theoretical ideas, practical results, and program plans in such areas as space mission control, space vehicle processing, data analysis, autonomous spacecraft, space robots and rovers, satellite servicing, and intelligent instruments.

  12. Collective intelligence of the artificial life community on its own successes, failures, and future.

    PubMed

    Rasmussen, Steen; Raven, Michael J; Keating, Gordon N; Bedau, Mark A

    2003-01-01

    We describe a novel Internet-based method for building consensus and clarifying conflicts in large stakeholder groups facing complex issues, and we use the method to survey and map the scientific and organizational perspectives of the artificial life community during the Seventh International Conference on Artificial Life (summer 2000). The issues addressed in this survey included artificial life's main successes, main failures, main open scientific questions, and main strategies for the future, as well as the benefits and pitfalls of creating a professional society for artificial life. By illuminating the artificial life community's collective perspective on these issues, this survey illustrates the value of such methods of harnessing the collective intelligence of large stakeholder groups.

  13. An intelligent artificial throat with sound-sensing ability based on laser induced graphene

    PubMed Central

    Tao, Lu-Qi; Tian, He; Liu, Ying; Ju, Zhen-Yi; Pang, Yu; Chen, Yuan-Quan; Wang, Dan-Yang; Tian, Xiang-Guang; Yan, Jun-Chao; Deng, Ning-Qin; Yang, Yi; Ren, Tian-Ling

    2017-01-01

    Traditional sound sources and sound detectors are usually independent and discrete in the human hearing range. To minimize the device size and integrate it with wearable electronics, there is an urgent requirement of realizing the functional integration of generating and detecting sound in a single device. Here we show an intelligent laser-induced graphene artificial throat, which can not only generate sound but also detect sound in a single device. More importantly, the intelligent artificial throat will significantly assist for the disabled, because the simple throat vibrations such as hum, cough and scream with different intensity or frequency from a mute person can be detected and converted into controllable sounds. Furthermore, the laser-induced graphene artificial throat has the advantage of one-step fabrication, high efficiency, excellent flexibility and low cost, and it will open practical applications in voice control, wearable electronics and many other areas. PMID:28232739

  14. A comparative study of artificial intelligent-based maximum power point tracking for photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Hussain Mutlag, Ammar; Mohamed, Azah; Shareef, Hussain

    2016-03-01

    Maximum power point tracking (MPPT) is normally required to improve the performance of photovoltaic (PV) systems. This paper presents artificial intelligent-based maximum power point tracking (AI-MPPT) by considering three artificial intelligent techniques, namely, artificial neural network (ANN), adaptive neuro fuzzy inference system with seven triangular fuzzy sets (7-tri), and adaptive neuro fuzzy inference system with seven gbell fuzzy sets. The AI-MPPT is designed for the 25 SolarTIFSTF-120P6 PV panels, with the capacity of 3 kW peak. A complete PV system is modelled using 300,000 data samples and simulated in the MATLAB/SIMULINK. The AI-MPPT has been tested under real environmental conditions for two days from 8 am to 18 pm. The results showed that the ANN based MPPT gives the most accurate performance and then followed by the 7-tri-based MPPT.

  15. An intelligent artificial throat with sound-sensing ability based on laser induced graphene

    NASA Astrophysics Data System (ADS)

    Tao, Lu-Qi; Tian, He; Liu, Ying; Ju, Zhen-Yi; Pang, Yu; Chen, Yuan-Quan; Wang, Dan-Yang; Tian, Xiang-Guang; Yan, Jun-Chao; Deng, Ning-Qin; Yang, Yi; Ren, Tian-Ling

    2017-02-01

    Traditional sound sources and sound detectors are usually independent and discrete in the human hearing range. To minimize the device size and integrate it with wearable electronics, there is an urgent requirement of realizing the functional integration of generating and detecting sound in a single device. Here we show an intelligent laser-induced graphene artificial throat, which can not only generate sound but also detect sound in a single device. More importantly, the intelligent artificial throat will significantly assist for the disabled, because the simple throat vibrations such as hum, cough and scream with different intensity or frequency from a mute person can be detected and converted into controllable sounds. Furthermore, the laser-induced graphene artificial throat has the advantage of one-step fabrication, high efficiency, excellent flexibility and low cost, and it will open practical applications in voice control, wearable electronics and many other areas.

  16. Recent Research in Artificial Intelligence, Heuristic Programming, and Network Protocols

    DTIC Science & Technology

    1974-07-01

    and Joshua Lederberg , Co-principal Investigators NETWORK PROTOCOL DEVELOPMENT PROJECT Vinton Cerf, Principal Investigator ABSTRACT This is a...by Edward Feigenbaum, Professor of Computer Science, and Joshua Lederberg , Professor of Genetics, and was initially an element of the Artificial...Quam, J. Lederberg , E. Levinthal. R. Tucker, B. Eros». J. Pollack. Variable Features on Mars II: Mariner 9 Global Results, Journal of Geophysical

  17. METEOR - an artificial intelligence system for convective storm forecasting

    SciTech Connect

    Elio, R.; De haan, J.; Strong, G.S.

    1987-03-01

    An AI system called METEOR, which uses the meteorologist's heuristics, strategies, and statistical tools to forecast severe hailstorms in Alberta, is described, emphasizing the information and knowledge that METEOR uses to mimic the forecasting procedure of an expert meteorologist. METEOR is then discussed as an AI system, emphasizing the ways in which it is qualitatively different from algorithmic or statistical approaches to prediction. Some features of METEOR's design and the AI techniques for representing meteorological knowledge and for reasoning and inference are presented. Finally, some observations on designing and implementing intelligent consultants for meteorological applications are made. 7 references.

  18. Artificial intelligence, neural network, and Internet tool integration in a pathology workstation to improve information access

    NASA Astrophysics Data System (ADS)

    Sargis, J. C.; Gray, W. A.

    1999-03-01

    The APWS allows user friendly access to several legacy systems which would normally each demand domain expertise for proper utilization. The generalized model, including objects, classes, strategies and patterns is presented. The core components of the APWS are the Microsoft Windows 95 Operating System, Oracle, Oracle Power Objects, Artificial Intelligence tools, a medical hyperlibrary and a web site. The paper includes a discussion of how could be automated by taking advantage of the expert system, object oriented programming and intelligent relational database tools within the APWS.

  19. Games and machine learning: a powerful combination in an artificial intelligence course

    NASA Astrophysics Data System (ADS)

    Wallace, Scott A.; McCartney, Robert; Russell, Ingrid

    2010-03-01

    Project MLeXAI (Machine Learning eXperiences in Artificial Intelligence (AI)) seeks to build a set of reusable course curriculum and hands on laboratory projects for the artificial intelligence classroom. In this article, we describe two game-based projects from the second phase of project MLeXAI: Robot Defense - a simple real-time strategy game and Checkers - a classic turn-based board game. From the instructors' prospective, we examine aspects of design and implementation as well as the challenges and rewards of using the curricula. We explore students' responses to the projects via the results of a common survey. Finally, we compare the student perceptions from the game-based projects to non-game based projects from the first phase of Project MLeXAI.

  20. Artificial intelligence costs, benefits, and risks for selected spacecraft ground system automation scenarios

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walter F.; Silverman, Barry G.; Kahn, Martha; Hexmoor, Henry

    1988-01-01

    In response to a number of high-level strategy studies in the early 1980s, expert systems and artificial intelligence (AI/ES) efforts for spacecraft ground systems have proliferated in the past several years primarily as individual small to medium scale applications. It is useful to stop and assess the impact of this technology in view of lessons learned to date, and hopefully, to determine if the overall strategies of some of the earlier studies both are being followed and still seem relevant. To achieve that end four idealized ground system automation scenarios and their attendant AI architecture are postulated and benefits, risks, and lessons learned are examined and compared. These architectures encompass: (1) no AI (baseline); (2) standalone expert systems; (3) standardized, reusable knowledge base management systems (KBMS); and (4) a futuristic unattended automation scenario. The resulting artificial intelligence lessons learned, benefits, and risks for spacecraft ground system automation scenarios are described.

  1. Artificial intelligence costs, benefits, risks for selected spacecraft ground system automation scenarios

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walter F.; Silverman, Barry G.; Kahn, Martha; Hexmoor, Henry

    1988-01-01

    In response to a number of high-level strategy studies in the early 1980s, expert systems and artificial intelligence (AI/ES) efforts for spacecraft ground systems have proliferated in the past several years primarily as individual small to medium scale applications. It is useful to stop and assess the impact of this technology in view of lessons learned to date, and hopefully, to determine if the overall strategies of some of the earlier studies both are being followed and still seem relevant. To achieve that end four idealized ground system automation scenarios and their attendant AI architecture are postulated and benefits, risks, and lessons learned are examined and compared. These architectures encompass: (1) no AI (baseline), (2) standalone expert systems, (3) standardized, reusable knowledge base management systems (KBMS), and (4) a futuristic unattended automation scenario. The resulting artificial intelligence lessons learned, benefits, and risks for spacecraft ground system automation scenarios are described.

  2. Applying artificial intelligence technology to support decision-making in nursing: A case study in Taiwan.

    PubMed

    Liao, Pei-Hung; Hsu, Pei-Ti; Chu, William; Chu, Woei-Chyn

    2015-06-01

    This study applied artificial intelligence to help nurses address problems and receive instructions through information technology. Nurses make diagnoses according to professional knowledge, clinical experience, and even instinct. Without comprehensive knowledge and thinking, diagnostic accuracy can be compromised and decisions may be delayed. We used a back-propagation neural network and other tools for data mining and statistical analysis. We further compared the prediction accuracy of the previous methods with an adaptive-network-based fuzzy inference system and the back-propagation neural network, identifying differences in the questions and in nurse satisfaction levels before and after using the nursing information system. This study investigated the use of artificial intelligence to generate nursing diagnoses. The percentage of agreement between diagnoses suggested by the information system and those made by nurses was as much as 87 percent. When patients are hospitalized, we can calculate the probability of various nursing diagnoses based on certain characteristics.

  3. DeepStack: Expert-level artificial intelligence in heads-up no-limit poker.

    PubMed

    Moravčík, Matej; Schmid, Martin; Burch, Neil; Lisý, Viliam; Morrill, Dustin; Bard, Nolan; Davis, Trevor; Waugh, Kevin; Johanson, Michael; Bowling, Michael

    2017-03-02

    Artificial intelligence has seen several breakthroughs in recent years, with games often serving as milestones. A common feature of these games is that players have perfect information. Poker is the quintessential game of imperfect information, and a longstanding challenge problem in artificial intelligence. We introduce DeepStack, an algorithm for imperfect information settings. It combines recursive reasoning to handle information asymmetry, decomposition to focus computation on the relevant decision, and a form of intuition that is automatically learned from self-play using deep learning. In a study involving 44,000 hands of poker, DeepStack defeated with statistical significance professional poker players in heads-up no-limit Texas hold'em. The approach is theoretically sound and is shown to produce more difficult to exploit strategies than prior approaches.

  4. Utilization of artificial intelligence techniques for the Space Station power system

    NASA Technical Reports Server (NTRS)

    Evatt, Thomas C.; Gholdston, Edward W.

    1988-01-01

    Due to the complexity of the Space Station Electrical Power System (EPS) as currently envisioned, artificial intelligence/expert system techniques are being investigated to automate operations, maintenance, and diagnostic functions. A study was conducted to investigate this technology as it applies to failure detection, isolation, and reconfiguration (FDIR) and health monitoring of power system components and of the total system. Control system utilization of expert systems for load scheduling and shedding operations was also researched. A discussion of the utilization of artificial intelligence/expert systems for Initial Operating Capability (IOC) for the Space Station effort is presented along with future plans at Rocketdyne for the utilization of this technology for enhanced Space Station power capability.

  5. Artificial Intelligence (AI) Center of Excellence at the University of Pennsylvania

    DTIC Science & Technology

    1995-07-01

    March 1995 10 4 List of all Participating Scientific Personnel showing any advanced degrees earned by them while employed on the project n 5 Report of...knowledge bases; 5 ) Parallel processing in Artificial Intelligence. 2 Summary of the Most Important Results • Computer Graphics and Animation A long...walk- ing algorithm was improved with actual biomechanical data. Approach and repel behaviors were implemented in order to study higher level

  6. A Non-Cognitive Formal Approach to Knowledge Representation in Artificial Intelligence.

    DTIC Science & Technology

    1986-06-01

    Language," Information and Control, 54: 25-47 (July/August 1982). Dahl, Veronica . "Logic Programming as a Representation of Knowledge," Computer, 16...34Procedural Control in Production Systems.," % Artificial Intelligence, 18: 175-201 (March 1982). Hayes- Roth , Frederick and others. "Principles of Pattern...Directed Inference Systems," Pattern-Directed Inference Systems, edited by D.A. Waterman and Frederick Hayes- Roth . New York: Academic Press, 1978. Langley

  7. Ontologies, knowledge representation, artificial intelligence - hype or prerequisites for international pHealth Interoperability?

    PubMed

    Blobel, Bernd

    2011-01-01

    Nowadays, eHealth and pHealth solutions have to meet advanced interoperability challenges. Enabling pervasive computing and even autonomic computing, pHealth system architectures cover many domains, scientifically managed by specialized disciplines using their specific ontologies. Therefore, semantic interoperability has to advance from a communication protocol to an ontology coordination challenge including semantic integration, bringing knowledge representation and artificial intelligence on the table. The resulting solutions comprehensively support multi-lingual and multi-jurisdictional environments.

  8. Artificial intelligence for Space Station automation: Crew safety, productivity, autonomy, augmented capability

    NASA Technical Reports Server (NTRS)

    Firschein, O.; Georgeff, M. P.; Park, W.; Cheeseman, P. C.; Geldberg, J.

    1986-01-01

    Artificial intelligence (AI) R&D projects for the successful and efficient operation of the Space Station are described. The book explores the most advanced AI-based technologies, reviews the results of concept design studies to determine required AI capabilities, details demonstrations that would indicate the existence of these capabilities, and develops an R&D plan leading to such demonstrations. Particular attention is given to teleoperation and robotics, sensors, expert systems, computers, planning, and man-machine interface.

  9. Applications of artificial intelligence III; Proceedings of the Meeting, Orlando, FL, Apr. 1-3, 1986

    SciTech Connect

    Gilmore, J.F.

    1986-01-01

    Papers are presented on expert systems for such functions as model management, the labeling segment in FLIR imagery, and on-board fault monitoring and diagnosis; procedures for analyzing and interpreting images; and knowledge-based systems for planning, ship identification, fault-identification systems, design issues, interpretation of signal images, and electronic circuit-diagram interpretation. Topics discussed include image procesing, heuristic systems, and knowledge presentation. Consideration is given to pattern recognition, robotics, and a number of artificial intelligence applications.

  10. Artificial intelligence for Space Station automation: crew safety, productivity, autonomy, augmented capability

    SciTech Connect

    Firschein, O.; Georgeff, M.P.; Park, W.; Cheeseman, P.C.; Geldberg, J.

    1986-01-01

    Artificial intelligence (AI) RandD projects for the successful and efficient operation of the Space Station are described. The book explores the most advanced AI-based technologies, reviews the results of concept design studies to determine required AI capabilities, details demonstrations that would indicate the existence of these capabilities, and develops an RandD plan leading to such demonstrations. Particular attention is given to teleoperation and robotics, sensors, expert systems, computers, planning, and man-machine interface. 293 references.

  11. Real Estate Site Selection: An Application of Artificial Intelligence for Military Retail Facilities

    DTIC Science & Technology

    2006-09-01

    selection in recent years. This project looks into possible advantages of applying artificial intelligent models to model consumer behavior in an effort...and available real estate. Basically, this process will model consumer behavior within a market related to current and potentially available real...city for retail purposes. This applied Newtonian physics to consumer behavior . The attractiveness of the location was related to the distance

  12. Application of artificial intelligence (AI) concepts to the development of space flight parts approval model

    NASA Technical Reports Server (NTRS)

    Krishnan, G. S.

    1997-01-01

    A cost effective model which uses the artificial intelligence techniques in the selection and approval of parts is presented. The knowledge which is acquired from the specialists for different part types are represented in a knowledge base in the form of rules and objects. The parts information is stored separately in a data base and is isolated from the knowledge base. Validation, verification and performance issues are highlighted.

  13. The use of artificial intelligence techniques to improve the multiple payload integration process

    NASA Technical Reports Server (NTRS)

    Cutts, Dannie E.; Widgren, Brian K.

    1992-01-01

    A maximum return of science and products with a minimum expenditure of time and resources is a major goal of mission payload integration. A critical component then, in successful mission payload integration is the acquisition and analysis of experiment requirements from the principal investigator and payload element developer teams. One effort to use artificial intelligence techniques to improve the acquisition and analysis of experiment requirements within the payload integration process is described.

  14. Method and apparatus for optimizing operation of a power generating plant using artificial intelligence techniques

    SciTech Connect

    Wroblewski, David; Katrompas, Alexander M.; Parikh, Neel J.

    2009-09-01

    A method and apparatus for optimizing the operation of a power generating plant using artificial intelligence techniques. One or more decisions D are determined for at least one consecutive time increment, where at least one of the decisions D is associated with a discrete variable for the operation of a power plant device in the power generating plant. In an illustrated embodiment, the power plant device is a soot cleaning device associated with a boiler.

  15. Artificial General Intelligence: Concept, State of the Art, and Future Prospects

    NASA Astrophysics Data System (ADS)

    Goertzel, Ben

    2014-12-01

    In recent years broad community of researchers has emerged, focusing on the original ambitious goals of the AI field - the creation and study of software or hardware systems with general intelligence comparable to, and ultimately perhaps greater than, that of human beings. This paper surveys this diverse community and its progress. Approaches to defining the concept of Artificial General Intelligence (AGI) are reviewed including mathematical formalisms, engineering, and biology inspired perspectives. The spectrum of designs for AGI systems includes systems with symbolic, emergentist, hybrid and universalist characteristics. Metrics for general intelligence are evaluated, with a conclusion that, although metrics for assessing the achievement of human-level AGI may be relatively straightforward (e.g. the Turing Test, or a robot that can graduate from elementary school or university), metrics for assessing partial progress remain more controversial and problematic.

  16. VWPS: A Ventilator Weaning Prediction System with Artificial Intelligence

    NASA Astrophysics Data System (ADS)

    Chen, Austin H.; Chen, Guan-Ting

    How to wean patients efficiently off mechanical ventilation continues to be a challenge for medical professionals. In this paper we have described a novel approach to the study of a ventilator weaning prediction system (VWPS). Firstly, we have developed and written three Artificial Neural Network (ANN) algorithms to predict a weaning successful rate based on the clinical data. Secondly, we have implemented two user-friendly weaning success rate prediction systems; the VWPS system and the BWAP system. Both systems could be used to help doctors objectively and effectively predict whether weaning is appropriate for patients based on the patients' clinical data. Our system utilizes the powerful processing abilities of MatLab. Thirdly, we have calculated the performance through measures such as sensitivity and accuracy for these three algorithms. The results show a very high sensitivity (around 80%) and accuracy (around 70%). To our knowledge, this is the first design approach of its kind to be used in the study of ventilator weaning success rate prediction.

  17. Applications of artificial intelligence in safe human-robot interactions.

    PubMed

    Najmaei, Nima; Kermani, Mehrdad R

    2011-04-01

    The integration of industrial robots into the human workspace presents a set of unique challenges. This paper introduces a new sensory system for modeling, tracking, and predicting human motions within a robot workspace. A reactive control scheme to modify a robot's operations for accommodating the presence of the human within the robot workspace is also presented. To this end, a special class of artificial neural networks, namely, self-organizing maps (SOMs), is employed for obtaining a superquadric-based model of the human. The SOM network receives information of the human's footprints from the sensory system and infers necessary data for rendering the human model. The model is then used in order to assess the danger of the robot operations based on the measured as well as predicted human motions. This is followed by the introduction of a new reactive control scheme that results in the least interferences between the human and robot operations. The approach enables the robot to foresee an upcoming danger and take preventive actions before the danger becomes imminent. Simulation and experimental results are presented in order to validate the effectiveness of the proposed method.

  18. Building intelligent systems - Artificial intelligence research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Friedland, Peter; Lum, Henry

    1987-01-01

    The basic components that make up the goal of building autonomous intelligent systems are discussed, and ongoing work at the NASA Ames Research Center is described. It is noted that a clear progression of systems can be seen through research settings (both within and external to NASA) to Space Station testbeds to systems which actually fly on the Space Station. The starting point for the discussion is a 'truly' autonomous Space Station intelligent system, responsible for a major portion of Space Station control. Attention is given to research in fiscal 1987, including reasoning under uncertainty, machine learning, causal modeling and simulation, knowledge from design through operations, advanced planning work, validation methodologies, and hierarchical control of and distributed cooperation among multiple knowledge-based systems.

  19. Building intelligent systems: Artificial intelligence research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Friedland, P.; Lum, H.

    1987-01-01

    The basic components that make up the goal of building autonomous intelligent systems are discussed, and ongoing work at the NASA Ames Research Center is described. It is noted that a clear progression of systems can be seen through research settings (both within and external to NASA) to Space Station testbeds to systems which actually fly on the Space Station. The starting point for the discussion is a truly autonomous Space Station intelligent system, responsible for a major portion of Space Station control. Attention is given to research in fiscal 1987, including reasoning under uncertainty, machine learning, causal modeling and simulation, knowledge from design through operations, advanced planning work, validation methodologies, and hierarchical control of and distributed cooperation among multiple knowledge-based systems.

  20. Artificial intelligence based decision support for trumpeter swan management

    USGS Publications Warehouse

    Sojda, Richard S.

    2002-01-01

    The number of trumpeter swans (Cygnus buccinator) breeding in the Tri-State area where Montana, Idaho, and Wyoming come together has declined to just a few hundred pairs. However, these birds are part of the Rocky Mountain Population which additionally has over 3,500 birds breeding in Alberta, British Columbia, Northwest Territories, and Yukon Territory. To a large degree, these birds seem to have abandoned traditional migratory pathways in the flyway. Waterfowl managers have been interested in decision support tools that would help them explore simulated management scenarios in their quest towards reaching population recovery and the reestablishment of traditional migratory pathways. I have developed a decision support system to assist biologists with such management, especially related to wetland ecology. Decision support systems use a combination of models, analytical techniques, and information retrieval to help develop and evaluate appropriate alternatives. Swan management is a domain that is ecologically complex, and this complexity is compounded by spatial and temporal issues. As such, swan management is an inherently distributed problem. Therefore, the ecological context for modeling swan movements in response to management actions was built as a multiagent system of interacting intelligent agents that implements a queuing model representing swan migration. These agents accessed ecological knowledge about swans, their habitats, and flyway management principles from three independent expert systems. The agents were autonomous, had some sensory capability, and could respond to changing conditions. A key problem when developing ecological decision support systems is empirically determining that the recommendations provided are valid. Because Rocky Mountain trumpeter swans have been surveyed for a long period of time, I was able to compare simulated distributions provided by the system with actual field observations across 20 areas for the period 1988

  1. A multi-assets artificial stock market with zero-intelligence traders

    NASA Astrophysics Data System (ADS)

    Ponta, L.; Raberto, M.; Cincotti, S.

    2011-01-01

    In this paper, a multi-assets artificial financial market populated by zero-intelligence traders with finite financial resources is presented. The market is characterized by different types of stocks representing firms operating in different sectors of the economy. Zero-intelligence traders follow a random allocation strategy which is constrained by finite resources, past market volatility and allocation universe. Within this framework, stock price processes exhibit volatility clustering, fat-tailed distribution of returns and reversion to the mean. Moreover, the cross-correlations between returns of different stocks are studied using methods of random matrix theory. The probability distribution of eigenvalues of the cross-correlation matrix shows the presence of outliers, similar to those recently observed on real data for business sectors. It is worth noting that business sectors have been recovered in our framework without dividends as only consequence of random restrictions on the allocation universe of zero-intelligence traders. Furthermore, in the presence of dividend-paying stocks and in the case of cash inflow added to the market, the artificial stock market points out the same structural results obtained in the simulation without dividends. These results suggest a significative structural influence on statistical properties of multi-assets stock market.

  2. Comparison of artificial intelligence methods and empirical equations to estimate daily solar radiation

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, Saeid; Behmanesh, Javad; Khalili, Keivan

    2016-08-01

    In the present research, three artificial intelligence methods including Gene Expression Programming (GEP), Artificial Neural Networks (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) as well as, 48 empirical equations (10, 12 and 26 equations were temperature-based, sunshine-based and meteorological parameters-based, respectively) were used to estimate daily solar radiation in Kerman, Iran in the period of 1992-2009. To develop the GEP, ANN and ANFIS models, depending on the used empirical equations, various combinations of minimum air temperature, maximum air temperature, mean air temperature, extraterrestrial radiation, actual sunshine duration, maximum possible sunshine duration, sunshine duration ratio, relative humidity and precipitation were considered as inputs in the mentioned intelligent methods. To compare the accuracy of empirical equations and intelligent models, root mean square error (RMSE), mean absolute error (MAE), mean absolute relative error (MARE) and determination coefficient (R2) indices were used. The results showed that in general, sunshine-based and meteorological parameters-based scenarios in ANN and ANFIS models presented high accuracy than mentioned empirical equations. Moreover, the most accurate method in the studied region was ANN11 scenario with five inputs. The values of RMSE, MAE, MARE and R2 indices for the mentioned model were 1.850 MJ m-2 day-1, 1.184 MJ m-2 day-1, 9.58% and 0.935, respectively.

  3. [Artificial intelligence in medicine: project of a mobile platform in an intelligent environment for the care of disabled and elderly people].

    PubMed

    Cortés, Ulises; Annicchiarico, Roberta; Campana, Fabio; Vázquez-Salceda, Javier; Urdiales, Cristina; Canãmero, Lola; López, Maite; Sánchez-Marrè, Miquel; Di Vincenzo, Sarah; Caltagirone, Carlo

    2004-04-01

    A project based on the integration of new technologies and artificial intelligence to develop a device--e-tool--for disabled patients and elderly people is presented. A mobile platform in intelligent environments (skilled-care facilities and home-care), controlled and managed by a multi-level architecture, is proposed to support patients and caregivers to increase self-dependency in activities of daily living.

  4. Prediction of Human intestinal absorption of compounds using artificial intelligence techniques.

    PubMed

    Kumar, Rajnish; Sharma, Anju; Siddiqui, Mohammed Haris; Tiwari, Rajesh Kumar

    2017-04-04

    Information about Pharmacokinetics of compounds is an essential component of drug design and development. Modeling the pharmacokinetic properties require identification of the factors effecting absorption, distribution, metabolism and excretion of compounds. There have been continuous attempts in the prediction of absorption of compounds using various Artificial intelligence methods in the effort to reduce the attrition rate of drug candidates entering to preclinical and clinical trials. Currently, there are large numbers of individual predictive models available for absorption using machine learning approaches. In current work, we are presenting a comprehensive study of prediction of absorption. Six Artificial intelligence methods namely, Support vector machine, k- nearest neighbor, Probabilistic neural network, Artificial neural network, Partial least square and Linear discriminant analysis were used for prediction of absorption of compounds with prediction accuracy of 91.54%, 88.33%, 84.30%, 86.51%, 79.07% and 80.08% respectively. Comparative analysis of all the six prediction models suggested that Support vector machine with Radial basis function based kernel is comparatively better for binary classification of compounds using human intestinal absorption and may be useful at preliminary stages of drug design and development.

  5. Estimation of urban runoff and water quality using remote sensing and artificial intelligence.

    PubMed

    Ha, S R; Park, S Y; Park, D H

    2003-01-01

    Water quality and quantity of runoff are strongly dependent on the landuse and landcover (LULC) criteria. In this study, we developed a more improved parameter estimation procedure for the environmental model using remote sensing (RS) and artificial intelligence (AI) techniques. Landsat TM multi-band (7bands) and Korea Multi-Purpose Satellite (KOMPSAT) panchromatic data were selected for input data processing. We employed two kinds of artificial intelligence techniques, RBF-NN (radial-basis-function neural network) and ANN (artificial neural network), to classify LULC of the study area. A bootstrap resampling method, a statistical technique, was employed to generate the confidence intervals and distribution of the unit load. SWMM was used to simulate the urban runoff and water quality and applied to the study watershed. The condition of urban flow and non-point contaminations was simulated with rainfall-runoff and measured water quality data. The estimated total runoff, peak time, and pollutant generation varied considerably according to the classification accuracy and percentile unit load applied. The proposed procedure would efficiently be applied to water quality and runoff simulation in a rapidly changing urban area.

  6. Heart failure analysis dashboard for patient's remote monitoring combining multiple artificial intelligence technologies.

    PubMed

    Guidi, G; Pettenati, M C; Miniati, R; Iadanza, E

    2012-01-01

    In this paper we describe an Heart Failure analysis Dashboard that, combined with a handy device for the automatic acquisition of a set of patient's clinical parameters, allows to support telemonitoring functions. The Dashboard's intelligent core is a Computer Decision Support System designed to assist the clinical decision of non-specialist caring personnel, and it is based on three functional parts: Diagnosis, Prognosis, and Follow-up management. Four Artificial Intelligence-based techniques are compared for providing diagnosis function: a Neural Network, a Support Vector Machine, a Classification Tree and a Fuzzy Expert System whose rules are produced by a Genetic Algorithm. State of the art algorithms are used to support a score-based prognosis function. The patient's Follow-up is used to refine the diagnosis.

  7. Demonstrating artificial intelligence for space systems - Integration and project management issues

    NASA Technical Reports Server (NTRS)

    Hack, Edmund C.; Difilippo, Denise M.

    1990-01-01

    As part of its Systems Autonomy Demonstration Project (SADP), NASA has recently demonstrated the Thermal Expert System (TEXSYS). Advanced real-time expert system and human interface technology was successfully developed and integrated with conventional controllers of prototype space hardware to provide intelligent fault detection, isolation, and recovery capability. Many specialized skills were required, and responsibility for the various phases of the project therefore spanned multiple NASA centers, internal departments and contractor organizations. The test environment required communication among many types of hardware and software as well as between many people. The integration, testing, and configuration management tools and methodologies which were applied to the TEXSYS project to assure its safe and successful completion are detailed. The project demonstrated that artificial intelligence technology, including model-based reasoning, is capable of the monitoring and control of a large, complex system in real time.

  8. Applications of artificial intelligence VIII; Proceedings of the Meeting, Orlando, FL, Apr. 17-19, 1990

    SciTech Connect

    Trivedi, M.M.

    1990-01-01

    The present conference on applications of artificial intelligence (AI) encompasses computer vision, knowledge acquisition and representation, model-based vision, neural networks, robot planning, knowledge-based systems, path planning, image analysis, AI in aerospace systems, and semiconductor manufacturing systems. Specific issues addressed include object detection using scale space, nonmonotonic scene interpretation, 3D object reconstruction from multiple stereo views, recognition via alignment using aspect models, target detection in a neural-network environment, the optimization of precedence-constraint robot assembly sequences, and free-space representations for robot-path planning. Also addressed are an edge-detection method, an approach to elemental task learning, issues in building intelligent grasping systems, an oral task-oriented dialogue for air-traffic controller training, and the experimental optimization of the neuronlike network applied for the processing of moving images.

  9. A development framework for artificial intelligence based distributed operations support systems

    NASA Technical Reports Server (NTRS)

    Adler, Richard M.; Cottman, Bruce H.

    1990-01-01

    Advanced automation is required to reduce costly human operations support requirements for complex space-based and ground control systems. Existing knowledge based technologies have been used successfully to automate individual operations tasks. Considerably less progress has been made in integrating and coordinating multiple operations applications for unified intelligent support systems. To fill this gap, SOCIAL, a tool set for developing Distributed Artificial Intelligence (DAI) systems is being constructed. SOCIAL consists of three primary language based components defining: models of interprocess communication across heterogeneous platforms; models for interprocess coordination, concurrency control, and fault management; and for accessing heterogeneous information resources. DAI applications subsystems, either new or existing, will access these distributed services non-intrusively, via high-level message-based protocols. SOCIAL will reduce the complexity of distributed communications, control, and integration, enabling developers to concentrate on the design and functionality of the target DAI system itself.

  10. Artificial intelligence: a new approach for prescription and monitoring of hemodialysis therapy.

    PubMed

    Akl, A I; Sobh, M A; Enab, Y M; Tattersall, J

    2001-12-01

    The effect of dialysis on patients is conventionally predicted using a formal mathematical model. This approach requires many assumptions of the processes involved, and validation of these may be difficult. The validity of dialysis urea modeling using a formal mathematical model has been challenged. Artificial intelligence using neural networks (NNs) has been used to solve complex problems without needing a mathematical model or an understanding of the mechanisms involved. In this study, we applied an NN model to study and predict concentrations of urea during a hemodialysis session. We measured blood concentrations of urea, patient weight, and total urea removal by direct dialysate quantification (DDQ) at 30-minute intervals during the session (in 15 chronic hemodialysis patients). The NN model was trained to recognize the evolution of measured urea concentrations and was subsequently able to predict hemodialysis session time needed to reach a target solute removal index (SRI) in patients not previously studied by the NN model (in another 15 chronic hemodialysis patients). Comparing results of the NN model with the DDQ model, the prediction error was 10.9%, with a not significant difference between predicted total urea nitrogen (UN) removal and measured UN removal by DDQ. NN model predictions of time showed a not significant difference with actual intervals needed to reach the same SRI level at the same patient conditions, except for the prediction of SRI at the first 30-minute interval, which showed a significant difference (P = 0.001). This indicates the sensitivity of the NN model to what is called patient clearance time; the prediction error was 8.3%. From our results, we conclude that artificial intelligence applications in urea kinetics can give an idea of intradialysis profiling according to individual clinical needs. In theory, this approach can be extended easily to other solutes, making the NN model a step forward to achieving artificial-intelligent

  11. Application of Artificial Intelligence technology to the analysis and synthesis of reliable software systems

    NASA Technical Reports Server (NTRS)

    Wild, Christian; Eckhardt, Dave

    1987-01-01

    The development of a methodology for the production of highly reliable software is one of the greatest challenges facing the computer industry. Meeting this challenge will undoubtably involve the integration of many technologies. This paper describes the use of Artificial Intelligence technologies in the automated analysis of the formal algebraic specifications of abstract data types. These technologies include symbolic execution of specifications using techniques of automated deduction and machine learning through the use of examples. On-going research into the role of knowledge representation and problem solving in the process of developing software is also discussed.

  12. Validating a UAV artificial intelligence control system using an autonomous test case generator

    NASA Astrophysics Data System (ADS)

    Straub, Jeremy; Huber, Justin

    2013-05-01

    The validation of safety-critical applications, such as autonomous UAV operations in an environment which may include human actors, is an ill posed problem. To confidence in the autonomous control technology, numerous scenarios must be considered. This paper expands upon previous work, related to autonomous testing of robotic control algorithms in a two dimensional plane, to evaluate the suitability of similar techniques for validating artificial intelligence control in three dimensions, where a minimum level of airspeed must be maintained. The results of human-conducted testing are compared to this automated testing, in terms of error detection, speed and testing cost.

  13. Natural and artificial intelligence. Processor systems compared to the human brain

    SciTech Connect

    de Callatay, A.M.

    1986-01-01

    This comparison of artificial intelligence systems to the human brain has implications for a variety of disciplines. Original views are specified and compared with traditional models. Main Features: 1. Integration of logic programming in the brain functions. 2. New computer parallel architecture (for hardware engineers). 3. Main principles of symbolic manipulation by logic programming (for software engineers in Al, expert systems and logic programming). 4. Logical models of brain connections and functions (for neuroscientists). 5. Definition of memory types and functions (for psychologists). 6. Parallel between Al applied to robots and theory of knowledge (for philosophers).

  14. Process of research investigations in artificial intelligence-an unified view

    SciTech Connect

    Baldwin, D.; Yadav, S.B.

    1995-05-01

    A number of research communities recognize Artificial Intelligence (AI) as a valid reference discipline. However, several papers have criticized AI`s research methodologies. This paper attempts to clarify and improve the methods used in AI. Definitions are proposed for terms such as AI theory, principles, hypotheses, and observations. Next, a unified view of AI research methodology is proposed. This methodology contains a long term dimension based upon the scientific method and an individual project dimension. The individual project dimension identifies four strategies: Hypothetical/deductive, hermeneutical/inductive, case-based, and historical analysis. The strategies differ according to how prototyping is used in an experiment. 78 refs.

  15. Artificial intelligence system for the realtime monitoring and analysis of textural information

    SciTech Connect

    Clippinger, J.H.

    1983-01-01

    This paper describes a prototype artificial intelligence system for the monitoring, filtering, and interpretation of realtime textual information. The user sets alerts for topics of interest and the system scans, parses, and interprets the texts and triggers an alert when an appropriate topic is found. Features and limitations of the system are discussed. Syntactically directed parses were found to be too weak for unrestricted texts. An expectations directed approach using discourse and case frame semantics is proposed as a more efficient and practical alternative. 3 references.

  16. Approximate Matching as a Key Technique in Organization of Natural and Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Mack, Marilyn; Lapir, Gennadi M.; Berkovich, Simon

    2000-01-01

    The basic property of an intelligent system, natural or artificial, is "understanding". We consider the following formalization of the idea of "understanding" among information systems. When system I issues a request to system 2, it expects a certain kind of desirable reaction. If such a reaction occurs, system I assumes that its request was "understood". In application to simple, "push-button" systems the situation is trivial because in a small system the required relationship between input requests and desired outputs could be specified exactly. As systems grow, the situation becomes more complex and matching between requests and actions becomes approximate.

  17. Validating an artificial intelligence human proximity operations system with test cases

    NASA Astrophysics Data System (ADS)

    Huber, Justin; Straub, Jeremy

    2013-05-01

    An artificial intelligence-controlled robot (AICR) operating in close proximity to humans poses risk to these humans. Validating the performance of an AICR is an ill posed problem, due to the complexity introduced by the erratic (noncomputer) actors. In order to prove the AICR's usefulness, test cases must be generated to simulate the actions of these actors. This paper discusses AICR's performance validation in the context of a common human activity, moving through a crowded corridor, using test cases created by an AI use case producer. This test is a two-dimensional simplification relevant to autonomous UAV navigation in the national airspace.

  18. Identification of Artificial Intelligence (AI) Applications for Maintenance, Monitoring, and Control of Airway Facilities

    DTIC Science & Technology

    1994-05-01

    Goernmeni AcceOn No. 3 . Rweponrs Catalog No. DOT/FAA/CT-TN92 / 4 , I 4. TiO Wid SuW te S. Report Dat Identification of Artificial Intelligence (AI) May...CONTENTS Page EXECUTIVE SUMMARY ix 1. INTRODUCTION I 1.1 Background 1 1.2 Purpose 1 1.3 Scope 2 I.4 Organization 2 2. STUDY APPROACH 3 2. 1 Methodology... 3 2.2 Information Sources 4 3 . CURRENT FAA AF MAINTENANCE OPERATIONS 4 3 . 1 The AF Systems and Maintenance Operations Field Work Force 6 3 . 1. 1 AF

  19. Artificial Intelligence Procedures for Tree Taper Estimation within a Complex Vegetation Mosaic in Brazil.

    PubMed

    Nunes, Matheus Henrique; Görgens, Eric Bastos

    2016-01-01

    Tree stem form in native tropical forests is very irregular, posing a challenge to establishing taper equations that can accurately predict the diameter at any height along the stem and subsequently merchantable volume. Artificial intelligence approaches can be useful techniques in minimizing estimation errors within complex variations of vegetation. We evaluated the performance of Random Forest® regression tree and Artificial Neural Network procedures in modelling stem taper. Diameters and volume outside bark were compared to a traditional taper-based equation across a tropical Brazilian savanna, a seasonal semi-deciduous forest and a rainforest. Neural network models were found to be more accurate than the traditional taper equation. Random forest showed trends in the residuals from the diameter prediction and provided the least precise and accurate estimations for all forest types. This study provides insights into the superiority of a neural network, which provided advantages regarding the handling of local effects.

  20. Prediction of Metabolism of Drugs using Artificial Intelligence: How far have we reached?

    PubMed

    Kumar, Rajnish; Sharma, Anju; Siddiqui, Mohammed Haris; Tiwari, Rajesh Kumar

    2016-01-01

    Information about drug metabolism is an essential component of drug development. Modeling the drug metabolism requires identification of the involved enzymes, rate and extent of metabolism, the sites of metabolism etc. There has been continuous attempts in the prediction of metabolism of drugs using artificial intelligence in effort to reduce the attrition rate of drug candidates entering to preclinical and clinical trials. Currently, there are number of predictive models available for metabolism using Support vector machines, Artificial neural networks, Bayesian classifiers etc. There is an urgent need to review their progress so far and address the existing challenges in prediction of metabolism. In this attempt, we are presenting the currently available literature models and some of the critical issues regarding prediction of drug metabolism.

  1. Artificial Intelligence Procedures for Tree Taper Estimation within a Complex Vegetation Mosaic in Brazil

    PubMed Central

    Nunes, Matheus Henrique

    2016-01-01

    Tree stem form in native tropical forests is very irregular, posing a challenge to establishing taper equations that can accurately predict the diameter at any height along the stem and subsequently merchantable volume. Artificial intelligence approaches can be useful techniques in minimizing estimation errors within complex variations of vegetation. We evaluated the performance of Random Forest® regression tree and Artificial Neural Network procedures in modelling stem taper. Diameters and volume outside bark were compared to a traditional taper-based equation across a tropical Brazilian savanna, a seasonal semi-deciduous forest and a rainforest. Neural network models were found to be more accurate than the traditional taper equation. Random forest showed trends in the residuals from the diameter prediction and provided the least precise and accurate estimations for all forest types. This study provides insights into the superiority of a neural network, which provided advantages regarding the handling of local effects. PMID:27187074

  2. Intelligent postoperative morbidity prediction of heart disease using artificial intelligence techniques.

    PubMed

    Hsieh, Nan-Chen; Hung, Lun-Ping; Shih, Chun-Che; Keh, Huan-Chao; Chan, Chien-Hui

    2012-06-01

    Endovascular aneurysm repair (EVAR) is an advanced minimally invasive surgical technology that is helpful for reducing patients' recovery time, postoperative morbidity and mortality. This study proposes an ensemble model to predict postoperative morbidity after EVAR. The ensemble model was developed using a training set of consecutive patients who underwent EVAR between 2000 and 2009. All data required for prediction modeling, including patient demographics, preoperative, co-morbidities, and complication as outcome variables, was collected prospectively and entered into a clinical database. A discretization approach was used to categorize numerical values into informative feature space. Then, the Bayesian network (BN), artificial neural network (ANN), and support vector machine (SVM) were adopted as base models, and stacking combined multiple models. The research outcomes consisted of an ensemble model to predict postoperative morbidity after EVAR, the occurrence of postoperative complications prospectively recorded, and the causal effect knowledge by BNs with Markov blanket concept.

  3. OPUS One: An Intelligent Adaptive Learning Environment Using Artificial Intelligence Support

    NASA Astrophysics Data System (ADS)

    Pedrazzoli, Attilio

    2010-06-01

    AI based Tutoring and Learning Path Adaptation are well known concepts in e-Learning scenarios today and increasingly applied in modern learning environments. In order to gain more flexibility and to enhance existing e-learning platforms, the OPUS One LMS Extension package will enable a generic Intelligent Tutored Adaptive Learning Environment, based on a holistic Multidimensional Instructional Design Model (PENTHA ID Model), allowing AI based tutoring and adaptation functionality to existing Web-based e-learning systems. Relying on "real time" adapted profiles, it allows content- / course authors to apply a dynamic course design, supporting tutored, collaborative sessions and activities, as suggested by modern pedagogy. The concept presented combines a personalized level of surveillance, learning activity- and learning path adaptation suggestions to ensure the students learning motivation and learning success. The OPUS One concept allows to implement an advanced tutoring approach combining "expert based" e-tutoring with the more "personal" human tutoring function. It supplies the "Human Tutor" with precise, extended course activity data and "adaptation" suggestions based on predefined subject matter rules. The concept architecture is modular allowing a personalized platform configuration.

  4. Application of an Artificial Intelligence Method for Velocity Calibration and Events Location in Microseismic Monitoring

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Chen, X.

    2013-12-01

    Good quality hydraulic fracture maps are heavily dependent upon the best possible velocity structure. Particle Swarm Optimization inversion scheme, an artificial intelligence technique for velocity calibration and events location could serve as a viable option, able to produce high quality data. Using perforation data to recalibrate the 1D isotropic velocity model derived from dipole sonic logs (or even without them), we are able to get the initial velocity model used for consequential events location. Velocity parameters can be inverted, as well as the thickness of the layer, through an iterative procedure. Performing inversion without integrating available data is unlikely to produce reliable results; especially if there are only one perforation shot and a single poor-layer-covered array along with low signal/noise ratio signal. The inversion method was validated via simulations and compared to the Fast Simulated Annealing approach and the Conjugate Gradient method. Further velocity model refinement can be accomplished while calculating events location during the iterative procedure minimizing the residuals from both sides. This artificial intelligence technique also displays promising application to the joint inversion of large-scale seismic activities data.

  5. Identification and interpretation of patterns in rocket engine data: Artificial intelligence and neural network approaches

    NASA Technical Reports Server (NTRS)

    Ali, Moonis; Whitehead, Bruce; Gupta, Uday K.; Ferber, Harry

    1989-01-01

    This paper describes an expert system which is designed to perform automatic data analysis, identify anomalous events, and determine the characteristic features of these events. We have employed both artificial intelligence and neural net approaches in the design of this expert system. The artificial intelligence approach is useful because it provides (1) the use of human experts' knowledge of sensor behavior and faulty engine conditions in interpreting data; (2) the use of engine design knowledge and physical sensor locations in establishing relationships among the events of multiple sensors; (3) the use of stored analysis of past data of faulty engine conditions; and (4) the use of knowledge-based reasoning in distinguishing sensor failure from actual faults. The neural network approach appears promising because neural nets (1) can be trained on extremely noisy data and produce classifications which are more robust under noisy conditions than other classification techniques; (2) avoid the necessity of noise removal by digital filtering and therefore avoid the need to make assumptions about frequency bands or other signal characteristics of anomalous behavior; (3) can, in effect, generate their own feature detectors based on the characteristics of the sensor data used in training; and (4) are inherently parallel and therefore are potentially implementable in special-purpose parallel hardware.

  6. SHARP: A multi-mission artificial intelligence system for spacecraft telemetry monitoring and diagnosis

    NASA Astrophysics Data System (ADS)

    Lawson, Denise L.; James, Mark L.

    1989-05-01

    The Spacecraft Health Automated Reasoning Prototype (SHARP) is a system designed to demonstrate automated health and status analysis for multi-mission spacecraft and ground data systems operations. Telecommunications link analysis of the Voyager 2 spacecraft is the initial focus for the SHARP system demonstration which will occur during Voyager's encounter with the planet Neptune in August, 1989, in parallel with real time Voyager operations. The SHARP system combines conventional computer science methodologies with artificial intelligence techniques to produce an effective method for detecting and analyzing potential spacecraft and ground systems problems. The system performs real time analysis of spacecraft and other related telemetry, and is also capable of examining data in historical context. A brief introduction is given to the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory. The current method of operation for monitoring the Voyager Telecommunications subsystem is described, and the difficulties associated with the existing technology are highlighted. The approach taken in the SHARP system to overcome the current limitations is also described, as well as both the conventional and artificial intelligence solutions developed in SHARP.

  7. Application of artificial intelligence to reservoir characterization: An interdisciplinary approach. January 1, 1996--March 31, 1996

    SciTech Connect

    Kerr, D.R.; Thompson, L.G.; Shenoi, S.

    1996-05-01

    The basis of this research is to apply novel techniques from artificial Intelligence and Expert Systems in capturing, integrating and articulating key knowledge from geology, geostatistics, and petroleum engineering to develop accurate descriptions of petroleum reservoirs. The ultimate goal is to design and implement a single powerful expert system for use by small producers and independents to efficiently exploit reservoirs. The main challenge of the proposed research is to automate the generation of detailed reservoir descriptions honoring all the available ``software`` and ``hardware`` data that ranges from qualitative and semi-quantitative geological interpretations to numeric data obtained from cores, well tests, well logs and production statistics. In this sense, the proposed research project is truly multidisciplinary. It involves significant amount of information exchange between researchers in geology, geostatistics, and petroleum engineering. Computer science (and artificial intelligence) provides the means to effectively acquire, integrate and automate the key expertise in the various disciplines in a reservoir characterization expert system. Additional challenges are the verification and validation of the expert system, since much of the interpretation of the experts is based on extended experience in reservoir characterization. Accomplishments to date are discussed.

  8. Role of Artificial Intelligence Techniques (Automatic Classifiers) in Molecular Imaging Modalities in Neurodegenerative Diseases.

    PubMed

    Cascianelli, Silvia; Scialpi, Michele; Amici, Serena; Forini, Nevio; Minestrini, Matteo; Fravolini, Mario Luca; Sinzinger, Helmut; Schillaci, Orazio; Palumbo, Barbara

    2017-01-01

    Artificial Intelligence (AI) is a very active Computer Science research field aiming to develop systems that mimic human intelligence and is helpful in many human activities, including Medicine. In this review we presented some examples of the exploiting of AI techniques, in particular automatic classifiers such as Artificial Neural Network (ANN), Support Vector Machine (SVM), Classification Tree (ClT) and ensemble methods like Random Forest (RF), able to analyze findings obtained by positron emission tomography (PET) or single-photon emission tomography (SPECT) scans of patients with Neurodegenerative Diseases, in particular Alzheimer's Disease. We also focused our attention on techniques applied in order to preprocess data and reduce their dimensionality via feature selection or projection in a more representative domain (Principal Component Analysis - PCA - or Partial Least Squares - PLS - are examples of such methods); this is a crucial step while dealing with medical data, since it is necessary to compress patient information and retain only the most useful in order to discriminate subjects into normal and pathological classes. Main literature papers on the application of these techniques to classify patients with neurodegenerative disease extracting data from molecular imaging modalities are reported, showing that the increasing development of computer aided diagnosis systems is very promising to contribute to the diagnostic process.

  9. SHARP: A multi-mission artificial intelligence system for spacecraft telemetry monitoring and diagnosis

    NASA Technical Reports Server (NTRS)

    Lawson, Denise L.; James, Mark L.

    1989-01-01

    The Spacecraft Health Automated Reasoning Prototype (SHARP) is a system designed to demonstrate automated health and status analysis for multi-mission spacecraft and ground data systems operations. Telecommunications link analysis of the Voyager 2 spacecraft is the initial focus for the SHARP system demonstration which will occur during Voyager's encounter with the planet Neptune in August, 1989, in parallel with real time Voyager operations. The SHARP system combines conventional computer science methodologies with artificial intelligence techniques to produce an effective method for detecting and analyzing potential spacecraft and ground systems problems. The system performs real time analysis of spacecraft and other related telemetry, and is also capable of examining data in historical context. A brief introduction is given to the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory. The current method of operation for monitoring the Voyager Telecommunications subsystem is described, and the difficulties associated with the existing technology are highlighted. The approach taken in the SHARP system to overcome the current limitations is also described, as well as both the conventional and artificial intelligence solutions developed in SHARP.

  10. A review on integration of artificial intelligence into water quality modelling.

    PubMed

    Chau, Kwok-wing

    2006-07-01

    With the development of computing technology, numerical models are often employed to simulate flow and water quality processes in coastal environments. However, the emphasis has conventionally been placed on algorithmic procedures to solve specific problems. These numerical models, being insufficiently user-friendly, lack knowledge transfers in model interpretation. This results in significant constraints on model uses and large gaps between model developers and practitioners. It is a difficult task for novice application users to select an appropriate numerical model. It is desirable to incorporate the existing heuristic knowledge about model manipulation and to furnish intelligent manipulation of calibration parameters. The advancement in artificial intelligence (AI) during the past decade rendered it possible to integrate the technologies into numerical modelling systems in order to bridge the gaps. The objective of this paper is to review the current state-of-the-art of the integration of AI into water quality modelling. Algorithms and methods studied include knowledge-based system, genetic algorithm, artificial neural network, and fuzzy inference system. These techniques can contribute to the integrated model in different aspects and may not be mutually exclusive to one another. Some future directions for further development and their potentials are explored and presented.

  11. Health managers' attitudes toward robotics and artificial computer intelligence: an empirical investigation.

    PubMed

    Mendell, J S; Palkon, D S; Popejoy, M W

    1991-06-01

    An empirical investigation of the perceived role of robotics and artificial computer intelligence in the future of health care reveals factors favoring a positive attitude by health administrators. The study employed a two-part survey administered in late 1989 and early 1990 to health care managers in hospitals and nursing homes. Part One of the survey asked about the participant, his or her work habits and work environment. Part Two obtained a psychological profile of rationality vs. intuition in problem solving. Through bivariate and multivariate post hoc statistical tests, we discovered the following variables which significantly determined attitudes toward robotics and artificial computer intelligence: sex; number of employees supervised; perceptions of waste and inefficiency in the workplace; perceptions of time-consuming personnel problems; perceived need to make more efficient use of time, money, and facilities; and perceived favorable climate for innovation. Among the factors which did not have an effect on attitudes toward advanced technology were three measures of rationality vs. intuition in problem solving.

  12. Northeast Artificial Intelligence Consortium Annual Report 1987. Volume 8. Knowledge Base Maintenance Using Logic Programming Methodologies

    DTIC Science & Technology

    1989-03-01

    small toy example, the code above demonstrates the ease with which knowledge base implementers can directly define notions of consistency and maintance ...It seems apparent that (2) could be replaced or supplemented by maintance of other sorts of relationships between theories, in particular, the sorts

  13. Northeast Artificial Intelligence Consortium Annual Report for 1986. Volume 1. Executive Summary.

    DTIC Science & Technology

    1988-06-01

    JUN 89 RROC-TR-O6-:11-YOL-1 UNPSIFE 30M6-6-C-MO F/G 12/9 ML Kumhhhhhhhhl mohhhmmomhomhl = lN UTIION TESI " CHAR1 V WI 1%. !~ I~ AD-A198 085. Con, WU. 4...each of the member institutions to add new faculty members, post- doctoral students and US graduate students specializing in Al. Some progress has been...number of graduate and post- doctoral (where applicable) students in their AI research programs, including an increase in the number of US students

  14. Northeast Artificial Intelligence Consortium Annual Report for 1987. Volume 7. Part A. Time Oriented Problem Solving

    DTIC Science & Technology

    1989-03-01

    USERS UNCLASSIFIED 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TEEPHONE nlu( Area Code) 22c. OFFICE SYMBOL NORTHRUP FOWLER, III (315) 330-7794 RADC/COES...Recognition Research in discourse analysis, story understanding, and user modeling for expert systems has shown great interest in plan recognition...a formally well defined set of tools for building an automated reasoning system. It’s emphasis is on flexibility of representation, allowing the user

  15. Northeast Artificial Intelligence Consortium (NAIC) Review of Technical Tasks. Volume 2, Part 2.

    DTIC Science & Technology

    1987-07-01

    tullE ~ 13 2. I IIIIL 140 Il-i 112 .0 -11125 11.4 111. MICROCOPY RESOLUTION TEST CHART kAT,014h BftAv~ OF SWAMS6I- C- 1%. -- F WNwp ’~RADC-TR-86-218...aircraft using the invariant moments of Hu. % Other approaches are described in [9], [12]. .- :,. To test the invariance of both the Fourier descriptors...Fourier and moment descriptors. The full 16 member attributes vector gave the best clustering e.. of the test patterns. Neither the area, perimeter or

  16. Northeast Artificial Intelligence Consortium (NAIC). Volume 2. Discussing, Using, and Recognizing Plans

    DTIC Science & Technology

    1990-12-01

    plans as schedules of events for third parties (or multiple agents) [131, 10 2.3 INTENSIONAL REPRESENTATIONS We now give an overview of our...This is a more natural way of modeling actions and avoids the need for specifying multiple operators for doing the same action in different situations...on the context that exists at that time. This flexibility in dynamically determining the effects of acts is what enables us to avoid having multiple

  17. Northeast Artificial Intelligence Consortium Annual Report. Volume 2. 1988 Discussing, Using, and Recognizing Plans (NLP)

    DTIC Science & Technology

    1989-10-01

    must also be usable by the agent to understand other agents’ actions. We are not treating plans as schedules of events for third parties (or multiple ...the need for specifying multiple operators for doing the same action in different situations, which is a major criticism of earlier planners[6]. In...the effects of acts is what enables us to avoid having multiple operators for the same action. When preconditions for an act exist and some of them

  18. Northeast Artificial Intelligence Consortium (NAIC) Review of Technical Tasks. Volume 2, Part 1.

    DTIC Science & Technology

    1987-07-01

    displays the structure 0 of CASSIE’s mind (cf. Carnap 1928. Sect. 14). Another answer is by means of sensor- and effectors, either linguistic or robotc. The...Knowledge and Symbol Level Accounts of KRYPTON," Proc. IJCAI 9(1985)532- .1’’.. 539. (E) Carnap , Rudolf, The Logical Structure of the World (1928), R. A

  19. Northeast Artificial Intelligence Consortium Annual Report - 1988. Volume 12. Computer Architectures for Very Large Knowledge Bases

    DTIC Science & Technology

    1989-10-01

    SLMs (Silicon/PLZT modulator [LEE86]). The Photo- DKDP (Deuterated Potassium Dihydrogen Phosphate [ARM85, DON73]) light valve must be cooled down to...surrogate file disk subsystm and are attached to a SFP through double buffers . In our system, one partition of surrogate file of a relation is stored...transfers. 11 SFPM SFF Controller Buffer Interconnection Network Interface Buffer J " IAssociative Projection - Processorl S FAP Output Bus Buffer

  20. Northeast Artificial Intelligence Consortium (NAIC). Volume 12. Computer Architecture for Very Large Knowledge Bases

    DTIC Science & Technology

    1990-12-01

    as a variable stack. 5. microcontroller which generates all control signals used in the HUU. 6. clock generator which generates clock pulses when the...Sharing) PSI- II [20] ICOT 100 Sequential, WAM PIE [39,73] U. of Tokyo N/A Parallel Interpreter (Structure Sharing) PEK [71] U. of Kobe 40 Sequential...Execution of Logic Programs. Kluwer Academic Publishers. Boston, Massachusetts, 1987. [ ii ] J. Crammond. A comparative study of unification algorithms

  1. Northeast Artificial Intelligence Consortium Annual Report 1987. Volume 2, Part B. Discussing, Using, and Recognizing Plans

    DTIC Science & Technology

    1989-03-01

    as (i) a test to determine whether two network nodes are identical , (ii) a test to determine whether two bounded surface strings match, and (iii) a...the tests discussed in Section 2.2.4: IDENTITY -TEST, STRING-MATCH-TEST, and PRECEDES-TEST. S-CAT is defined to be the set of all the names of string...the NL system and could not be effi- cently implemented in the declarative SNePS language. a) Identity test takes two network nodes as arguments, and

  2. Northeast Artificial Intelligence Consortium (NAIC). Volume 14. Knowledge Base Retrieval Using Plausible Inference

    DTIC Science & Technology

    1990-12-01

    the users. 4. The activation level is a function of the level of activation of the originating document, the strength of the link, and the current...were involved in the original relevance judgments and because documents with the most sources of evidence (P and C and N) did not have the highest...some information about the original text structure, thus allowing more powerful inferences. The conclusions we draw from our survey of techniques are

  3. Northeast Artificial Intelligence Consortium Annual Report 1987. Volume 9. Computer Architectures for Very Large Knowledge Bases

    DTIC Science & Technology

    1989-03-01

    expand the file from 8 to 16 buckets. In gene . al, to implement linear hashing, starting from a file of "N’ buckets, we need a sequence of hashing...the primary index file is: encoded in a fixed number of bytes equal to 9-B-3 lThe surrogate file processing cime SFTII is subdivided -i . ’ C B- [ into

  4. Northeast Artificial Intelligence Consortium (NAIC). Volume 3. The Versatile Maintenance Expert System (VMES)

    DTIC Science & Technology

    1990-12-01

    Assistant Permanent Resident 77 Byung S. Yoo, MS 7/88 - 10/88 Research Assistant Permanent Resident Industry, IBM David B. Satnik 7/87 - 5/88 Research... Shin Crovela, Mark E. Lombardo, Karen Yen, Shyh-Guang CS Other than Al (1989, through June) Arora, Rajendra Grupka, Laurette Sherman, Paul J. Chang...Debbins, Catherine Lew, Kurk Yoo, Byung Govindaraju, Venugopal Lo, Ka-Chiu CS Other than AI (1988) Arora, Rajenda Duh, Ying Ying Lam, William Azar

  5. A rapid prototyping/artificial intelligence approach to space station-era information management and access

    NASA Technical Reports Server (NTRS)

    Carnahan, Richard S., Jr.; Corey, Stephen M.; Snow, John B.

    1989-01-01

    Applications of rapid prototyping and Artificial Intelligence techniques to problems associated with Space Station-era information management systems are described. In particular, the work is centered on issues related to: (1) intelligent man-machine interfaces applied to scientific data user support, and (2) the requirement that intelligent information management systems (IIMS) be able to efficiently process metadata updates concerning types of data handled. The advanced IIMS represents functional capabilities driven almost entirely by the needs of potential users. Space Station-era scientific data projected to be generated is likely to be significantly greater than data currently processed and analyzed. Information about scientific data must be presented clearly, concisely, and with support features to allow users at all levels of expertise efficient and cost-effective data access. Additionally, mechanisms for allowing more efficient IIMS metadata update processes must be addressed. The work reported covers the following IIMS design aspects: IIMS data and metadata modeling, including the automatic updating of IIMS-contained metadata, IIMS user-system interface considerations, including significant problems associated with remote access, user profiles, and on-line tutorial capabilities, and development of an IIMS query and browse facility, including the capability to deal with spatial information. A working prototype has been developed and is being enhanced.

  6. Artificial Intelligence and Semantics through the Prism of Structural, Post-Structural and Transcendental Approaches.

    PubMed

    Gasparyan, Diana

    2016-12-01

    There is a problem associated with contemporary studies of philosophy of mind, which focuses on the identification and convergence of human and machine intelligence. This is the problem of machine emulation of sense. In the present study, analysis of this problem is carried out based on concepts from structural and post-structural approaches that have been almost entirely overlooked by contemporary philosophy of mind. If we refer to the basic definitions of "sign" and "meaning" found in structuralism and post-structuralism, we see a fundamental difference between the capabilities of a machine and the human brain engaged in the processing of a sign. This research will exemplify and provide additional evidence to support distinctions between syntactic and semantic aspects of intelligence, an issue widely discussed by adepts of contemporary philosophy of mind. The research will demonstrate that some aspect of a number of ideas proposed in relation to semantics and semiosis in structuralism and post-structuralism are similar to those we find in contemporary analytical studies related to the theory and philosophy of artificial intelligence. The concluding part of the paper offers an interpretation of the problem of formalization of sense, connected to its metaphysical (transcendental) properties.

  7. Self-Calibration and Optimal Response in Intelligent Sensors Design Based on Artificial Neural Networks

    PubMed Central

    Rivera, José; Carrillo, Mariano; Chacón, Mario; Herrera, Gilberto; Bojorquez, Gilberto

    2007-01-01

    The development of smart sensors involves the design of reconfigurable systems capable of working with different input sensors. Reconfigurable systems ideally should spend the least possible amount of time in their calibration. An autocalibration algorithm for intelligent sensors should be able to fix major problems such as offset, variation of gain and lack of linearity, as accurately as possible. This paper describes a new autocalibration methodology for nonlinear intelligent sensors based on artificial neural networks, ANN. The methodology involves analysis of several network topologies and training algorithms. The proposed method was compared against the piecewise and polynomial linearization methods. Method comparison was achieved using different number of calibration points, and several nonlinear levels of the input signal. This paper also shows that the proposed method turned out to have a better overall accuracy than the other two methods. Besides, experimentation results and analysis of the complete study, the paper describes the implementation of the ANN in a microcontroller unit, MCU. In order to illustrate the method capability to build autocalibration and reconfigurable systems, a temperature measurement system was designed and tested. The proposed method is an improvement over the classic autocalibration methodologies, because it impacts on the design process of intelligent sensors, autocalibration methodologies and their associated factors, like time and cost.

  8. Artificial Intelligence versus Statistical Modeling and Optimization of Cholesterol Oxidase Production by using Streptomyces Sp.

    PubMed Central

    Niwas, Ram; Osama, Khwaja; Khan, Saif; Haque, Shafiul; Tripathi, C. K. M.; Mishra, B. N.

    2015-01-01

    Cholesterol oxidase (COD) is a bi-functional FAD-containing oxidoreductase which catalyzes the oxidation of cholesterol into 4-cholesten-3-one. The wider biological functions and clinical applications of COD have urged the screening, isolation and characterization of newer microbes from diverse habitats as a source of COD and optimization and over-production of COD for various uses. The practicability of statistical/ artificial intelligence techniques, such as response surface methodology (RSM), artificial neural network (ANN) and genetic algorithm (GA) have been tested to optimize the medium composition for the production of COD from novel strain Streptomyces sp. NCIM 5500. All experiments were performed according to the five factor central composite design (CCD) and the generated data was analysed using RSM and ANN. GA was employed to optimize the models generated by RSM and ANN. Based upon the predicted COD concentration, the model developed with ANN was found to be superior to the model developed with RSM. The RSM-GA approach predicted maximum of 6.283 U/mL COD production, whereas the ANN-GA approach predicted a maximum of 9.93 U/mL COD concentration. The optimum concentrations of the medium variables predicted through ANN-GA approach were: 1.431 g/50 mL soybean, 1.389 g/50 mL maltose, 0.029 g/50 mL MgSO4, 0.45 g/50 mL NaCl and 2.235 ml/50 mL glycerol. The experimental COD concentration was concurrent with the GA predicted yield and led to 9.75 U/mL COD production, which was nearly two times higher than the yield (4.2 U/mL) obtained with the un-optimized medium. This is the very first time we are reporting the statistical versus artificial intelligence based modeling and optimization of COD production by Streptomyces sp. NCIM 5500. PMID:26368924

  9. Artificial Intelligence versus Statistical Modeling and Optimization of Cholesterol Oxidase Production by using Streptomyces Sp.

    PubMed

    Pathak, Lakshmi; Singh, Vineeta; Niwas, Ram; Osama, Khwaja; Khan, Saif; Haque, Shafiul; Tripathi, C K M; Mishra, B N

    2015-01-01

    Cholesterol oxidase (COD) is a bi-functional FAD-containing oxidoreductase which catalyzes the oxidation of cholesterol into 4-cholesten-3-one. The wider biological functions and clinical applications of COD have urged the screening, isolation and characterization of newer microbes from diverse habitats as a source of COD and optimization and over-production of COD for various uses. The practicability of statistical/ artificial intelligence techniques, such as response surface methodology (RSM), artificial neural network (ANN) and genetic algorithm (GA) have been tested to optimize the medium composition for the production of COD from novel strain Streptomyces sp. NCIM 5500. All experiments were performed according to the five factor central composite design (CCD) and the generated data was analysed using RSM and ANN. GA was employed to optimize the models generated by RSM and ANN. Based upon the predicted COD concentration, the model developed with ANN was found to be superior to the model developed with RSM. The RSM-GA approach predicted maximum of 6.283 U/mL COD production, whereas the ANN-GA approach predicted a maximum of 9.93 U/mL COD concentration. The optimum concentrations of the medium variables predicted through ANN-GA approach were: 1.431 g/50 mL soybean, 1.389 g/50 mL maltose, 0.029 g/50 mL MgSO4, 0.45 g/50 mL NaCl and 2.235 ml/50 mL glycerol. The experimental COD concentration was concurrent with the GA predicted yield and led to 9.75 U/mL COD production, which was nearly two times higher than the yield (4.2 U/mL) obtained with the un-optimized medium. This is the very first time we are reporting the statistical versus artificial intelligence based modeling and optimization of COD production by Streptomyces sp. NCIM 5500.

  10. Artificial Intelligence Techniques for the Estimation of Direct Methanol Fuel Cell Performance

    NASA Astrophysics Data System (ADS)

    Hasiloglu, Abdulsamet; Aras, Ömür; Bayramoglu, Mahmut

    2016-04-01

    Artificial neural networks and neuro-fuzzy inference systems are well known artificial intelligence techniques used for black-box modelling of complex systems. In this study, Feed-forward artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) are used for modelling the performance of direct methanol fuel cell (DMFC). Current density (I), fuel cell temperature (T), methanol concentration (C), liquid flow-rate (q) and air flow-rate (Q) are selected as input variables to predict the cell voltage. Polarization curves are obtained for 35 different operating conditions according to a statistically designed experimental plan. In modelling study, various subsets of input variables and various types of membership function are considered. A feed -forward architecture with one hidden layer is used in ANN modelling. The optimum performance is obtained with the input set (I, T, C, q) using twelve hidden neurons and sigmoidal activation function. On the other hand, first order Sugeno inference system is applied in ANFIS modelling and the optimum performance is obtained with the input set (I, T, C, q) using sixteen fuzzy rules and triangular membership function. The test results show that ANN model estimates the polarization curve of DMFC more accurately than ANFIS model.

  11. Semen parameters can be predicted from environmental factors and lifestyle using artificial intelligence methods.

    PubMed

    Girela, Jose L; Gil, David; Johnsson, Magnus; Gomez-Torres, María José; De Juan, Joaquín

    2013-04-01

    Fertility rates have dramatically decreased in the last two decades, especially in men. It has been described that environmental factors as well as life habits may affect semen quality. In this paper we use artificial intelligence techniques in order to predict semen characteristics resulting from environmental factors, life habits, and health status, with these techniques constituting a possible decision support system that can help in the study of male fertility potential. A total of 123 young, healthy volunteers provided a semen sample that was analyzed according to the World Health Organization 2010 criteria. They also were asked to complete a validated questionnaire about life habits and health status. Sperm concentration and percentage of motile sperm were related to sociodemographic data, environmental factors, health status, and life habits in order to determine the predictive accuracy of a multilayer perceptron network, a type of artificial neural network. In conclusion, we have developed an artificial neural network that can predict the results of the semen analysis based on the data collected by the questionnaire. The semen parameter that is best predicted using this methodology is the sperm concentration. Although the accuracy for motility is slightly lower than that for concentration, it is possible to predict it with a significant degree of accuracy. This methodology can be a useful tool in early diagnosis of patients with seminal disorders or in the selection of candidates to become semen donors.

  12. Northeast Artificial Intelligence Consortium (NAIC). Volume 6. Building an Intelligent Assistant: The Acquisition, Integration, and Maintenance of Complex Distributed Tasks

    DTIC Science & Technology

    1990-12-01

    Interpretation System," Univer- sity of Massachusetts/Amherst Computer and Information Science Department Technical Report 89-39, April 1989. Connell , M...learning style, and on-line experience with the system. It should dynanically reason about a user’s actions, the curriculum , and the discourse history. In...CONSULTING WITH CLIENT 0 QUESTION/ 4 ANSWERS , - n CURRICULUM INTERVENTIONS ON-LINE PROFILE 4 ’NORM OFw90 1 11,000 ’T KS"’ - ;7 0 PEOPLE HU= SKILLS w

  13. Fuzzy Logic, Neural Networks, Genetic Algorithms: Views of Three Artificial Intelligence Concepts Used in Modeling Scientific Systems

    ERIC Educational Resources Information Center

    Sunal, Cynthia Szymanski; Karr, Charles L.; Sunal, Dennis W.

    2003-01-01

    Students' conceptions of three major artificial intelligence concepts used in the modeling of systems in science, fuzzy logic, neural networks, and genetic algorithms were investigated before and after a higher education science course. Students initially explored their prior ideas related to the three concepts through active tasks. Then,…

  14. AI at Ames: Artificial Intelligence research and application at NASA Ames Research Center, Moffett Field, California, February 1985

    NASA Technical Reports Server (NTRS)

    Andrews, Alison E. (Editor)

    1985-01-01

    Charts are given that illustrate function versus domain for artificial intelligence (AI) applications and interests and research area versus project number for AI research. A list is given of project titles with associated project numbers and page numbers. Also, project descriptions, including title, participants, and status are given.

  15. Artificial intelligence methods applied in the controlled synthesis of polydimethilsiloxane - poly (methacrylic acid) copolymer networks with imposed properties

    NASA Astrophysics Data System (ADS)

    Rusu, Teodora; Gogan, Oana Marilena

    2016-05-01

    This paper describes the use of artificial intelligence method in copolymer networks design. In the present study, we pursue a hybrid algorithm composed from two research themes in the genetic design framework: a Kohonen neural network (KNN), path (forward problem) combined with a genetic algorithm path (backward problem). The Tabu Search Method is used to improve the performance of the genetic algorithm path.

  16. CBT Pilot Program Instructional Guide. Basic Drafting Skills Curriculum Delivered through CAD Workstations and Artificial Intelligence Software.

    ERIC Educational Resources Information Center

    Smith, Richard J.; Sauer, Mardelle A.

    This guide is intended to assist teachers in using computer-aided design (CAD) workstations and artificial intelligence software to teach basic drafting skills. The guide outlines a 7-unit shell program that may also be used as a generic authoring system capable of supporting computer-based training (CBT) in other subject areas. The first section…

  17. Application of artificial intelligence to reservoir characterization: An interdisciplinary approach. [Quarterly report], April 1--June 30, 1995

    SciTech Connect

    Kerr, D.R.; Thompson, L.G.; Shenoi, S.

    1995-09-01

    Objective is to apply artificial intelligence and expert systems to capturing, integrating, and articulating key knowledge from geology, geostatistics, and petroleum engineering to develop accurate descriptions of petroleum reservoirs. Goal is to develop a single expert system for use by small producers and independents to efficiently exploit reservoirs.

  18. The Effects of Textisms on Learning, Study Time, and Instructional Perceptions in an Online Artificial Intelligence Instructional Module

    ERIC Educational Resources Information Center

    Beasley, Robert; Bryant, Nathan L.; Dodson, Phillip T.; Entwistle, Kevin C.

    2013-01-01

    The purpose of this study was to investigate the effects of textisms (i.e., abbreviated spellings, acronyms, and other shorthand notations) on learning, study time, and instructional perceptions in an online artificial intelligence instructional module. The independent variable in this investigation was experimental condition. For the control…

  19. Application of Artificial Intelligence (AI) programming techniques to tactical guidance for fighter aircraft

    NASA Technical Reports Server (NTRS)

    Mcmanus, John W.; Goodrich, Kenneth H.

    1989-01-01

    A research program investigating the use of Artificial Intelligence (AI) programming techniques to aid in the development of a Tactical Decision Generator (TDG) for Within-Visual-Range (WVR) air combat engagements is discussed. The application of AI methods for development and implementation of the TDG is presented. The history of the Adaptive Maneuvering Logic (AML) program is traced and current versions of the (AML) program is traced and current versions of the AML program are compared and contrasted with the TDG system. The Knowledge-Based Systems (KBS) used by the TDG to aid in the decision-making process are outlined and example rules are presented. The results of tests to evaluate the performance of the TDG against a version of AML and against human pilots in the Langley Differential Maneuvering Simulator (DMS) are presented. To date, these results have shown significant performance gains in one-versus-one air combat engagements.

  20. An application of artificial intelligence to the interpretation of mass spectra.

    NASA Technical Reports Server (NTRS)

    Buchanan, B. G.; Duffield, A. M.; Robertson, A. V.

    1971-01-01

    Description of the DENDRAL (Dendritic Algorithm) project, the objectives of which were to base the computer program on an alogorithm that generates an exhaustive, nonredundant list of all the structural isomers of a given chemical composition, and to devise a computer program that would perform an organic structure determination, given a molecular formula and a mass spectrum. This program is called 'Heuristic DENDRAL' and it operates by using the known structure/spectrum correlations to constrain the DENDRAL isomer generator to produce a single isomer for that composition. The collaboration of chemists and computer scientists has produced a tool of some practical utility from the chemical viewpoint, and an interesting program from the viewpoint of artificial intelligence.

  1. Artificial intelligence (AI)-based relational matching and multimodal medical image fusion: generalized 3D approaches

    NASA Astrophysics Data System (ADS)

    Vajdic, Stevan M.; Katz, Henry E.; Downing, Andrew R.; Brooks, Michael J.

    1994-09-01

    A 3D relational image matching/fusion algorithm is introduced. It is implemented in the domain of medical imaging and is based on Artificial Intelligence paradigms--in particular, knowledge base representation and tree search. The 2D reference and target images are selected from 3D sets and segmented into non-touching and non-overlapping regions, using iterative thresholding and/or knowledge about the anatomical shapes of human organs. Selected image region attributes are calculated. Region matches are obtained using a tree search, and the error is minimized by evaluating a `goodness' of matching function based on similarities of region attributes. Once the matched regions are found and the spline geometric transform is applied to regional centers of gravity, images are ready for fusion and visualization into a single 3D image of higher clarity.

  2. Knowledge creation using artificial intelligence: a twin approach to improve breast screening attendance.

    PubMed

    Baskaran, Vikraman; Bali, Rajeev K; Arochena, Hisbel; Naguib, Rauf N G; Wallis, Matthew; Wheaton, Margot

    2006-01-01

    Knowledge management (KM) is rapidly becoming established as a core organizational element within the healthcare industry to assist in the delivery of better patient care. KM is a cyclical process which typically starts with knowledge creation (KC), progresses to knowledge sharing, knowledge accessibility and eventually results in new KC (in the same or a related domain). KC plays a significant role in KM as it creates the necessary "seeds" for propagating many more knowledge cycles. This paper addresses the potential of KC in the context of the UK's National Health Service (NHS) breast screening service. KC can be automated to a greater extent by embedding processes within an artificial intelligence (AI) based environment. The UK breast screening service is concerned about non-attendance and this paper discusses issues pertaining to increasing attendance.

  3. Artificial intelligence and the law: will expert systems replace expert lawyers

    SciTech Connect

    Grossman, G.S.

    1983-01-01

    Summary form only given, as follows. The commercial availability of expert systems utilizing specially developed knowledge bases raises significant questions about their potential utility in the practice of law. These systems, built with the aid of recent developments in artificial intelligence research, may only prove useful in certain areas of legal practice. Counselling and interviewing are areas where expert systems are likely to effect marked changes in the practice of law. In contract, computerized legal research using a knowledge-based system is more difficult to envision. This is due to complexities presented by the multiplicity of sources of the law, and by conflicting opinions and interpretations in the common law. In the coming decade, use of expert systems in science and medicine will grow rapidly, and attempts will continue to be made to automate the legal reasoning process. As past research efforts have demonstrated, this will not be an easy task.

  4. Artificial Intelligence Techniques for the Berth Allocation and Container Stacking Problems in Container Terminals

    NASA Astrophysics Data System (ADS)

    Salido, Miguel A.; Rodriguez-Molins, Mario; Barber, Federico

    The Container Stacking Problem and the Berth Allocation Problem are two important problems in maritime container terminal's management which are clearly related. Terminal operators normally demand all containers to be loaded into an incoming vessel should be ready and easily accessible in the terminal before vessel's arrival. Similarly, customers (i.e., vessel owners) expect prompt berthing of their vessels upon arrival. In this paper, we present an artificial intelligence based-integrated system to relate these problems. Firstly, we develop a metaheuristic algorithm for berth allocation which generates an optimized order of vessel to be served according to existing berth constraints. Secondly, we develop a domain-oriented heuristic planner for calculating the number of reshuffles needed to allocate containers in the appropriate place for a given berth ordering of vessels. By combining these optimized solutions, terminal operators can be assisted to decide the most appropriated solution in each particular case.

  5. A survey on the design of multiprocessing systems for artificial intelligence applications

    NASA Technical Reports Server (NTRS)

    Wah, Benjamin W.; Li, Guo Jie

    1989-01-01

    Some issues in designing computers for artificial intelligence (AI) processing are discussed. These issues are divided into three levels: the representation level, the control level, and the processor level. The representation level deals with the knowledge and methods used to solve the problem and the means to represent it. The control level is concerned with the detection of dependencies and parallelism in the algorithmic and program representations of the problem, and with the synchronization and sheduling of concurrent tasks. The processor level addresses the hardware and architectural components needed to evaluate the algorithmic and program representations. Solutions for the problems of each level are illustrated by a number of representative systems. Design decisions in existing projects on AI computers are classed into top-down, bottom-up, and middle-out approaches.

  6. W. Grey Walter, pioneer in the electroencephalogram, robotics, cybernetics, artificial intelligence.

    PubMed

    Bladin, Peter F

    2006-02-01

    With the announcement by William Lennox at the 1935 London International Neurology Congress of the use of electroencephalography in the study of epilepsy, it became evident that a new and powerful technique for the investigation of seizures had been discovered. William Grey Walter, a young researcher finishing his post-graduate studies at Cambridge, was selected to construct and study the EEG in clinical neurology at the Maudsley Hospital, London. His hugely productive pioneering career in the use of EEG would eventually lead to groundbreaking work in other fields --the emerging sciences of robotics, cybernetics, and early work in artificial intelligence. In this historical note his pioneering work in the fields of clinical neurophysiology is documented, both in the areas of epileptology and tumour detection. His landmark contributions to clinical neurophysiology are worthy of documentation.

  7. Use of artificial intelligence to enhance the safety of nuclear power plants

    SciTech Connect

    Uhrig, R.E.

    1988-01-01

    In the operation of a nuclear power plant, the sheer magnitude of the number of process parameters and systems interactions poses difficulties for the operators, particularly during abnormal or emergency situations. Recovery from an upset situation depends upon the facility with which the available raw data can be converted into and assimilated as meaningful knowledge. Plant personnel are sometimes affected by stress and emotion, which may have varying degrees of influence on their performance. Expert systems can take some of the uncertainty and guesswork out of their decisions by providing expert advice and rapid access to a large information base. Application of artificial intelligence technologies, particularly expert systems, to control room activities in a nuclear power plant has the potential to reduce operator error and improve power plant safety and reliability. 12 refs.

  8. Artificial intelligence technology assessment for the US Army Depot System Command

    SciTech Connect

    Pennock, K A

    1991-07-01

    This assessment of artificial intelligence (AI) has been prepared for the US Army's Depot System Command (DESCOM) by Pacific Northwest Laboratory. The report describes several of the more promising AI technologies, focusing primarily on knowledge-based systems because they have been more successful in commercial applications than any other AI technique. The report also identifies potential Depot applications in the areas of procedural support, scheduling and planning, automated inspection, training, diagnostics, and robotic systems. One of the principal objectives of the report is to help decisionmakers within DESCOM to evaluate AI as a possible tool for solving individual depot problems. The report identifies a number of factors that should be considered in such evaluations. 22 refs.

  9. Artificial Intelligence Tools for Scaling Up of High Shear Wet Granulation Process.

    PubMed

    Landin, Mariana

    2017-01-01

    The results presented in this article demonstrate the potential of artificial intelligence tools for predicting the endpoint of the granulation process in high-speed mixer granulators of different scales from 25L to 600L. The combination of neurofuzzy logic and gene expression programing technologies allowed the modeling of the impeller power as a function of operation conditions and wet granule properties, establishing the critical variables that affect the response and obtaining a unique experimental polynomial equation (transparent model) of high predictability (R(2) > 86.78%) for all size equipment. Gene expression programing allowed the modeling of the granulation process for granulators of similar and dissimilar geometries and can be improved by implementing additional characteristics of the process, as composition variables or operation parameters (e.g., batch size, chopper speed). The principles and the methodology proposed here can be applied to understand and control manufacturing process, using any other granulation equipment, including continuous granulation processes.

  10. Past, present and prospect of an Artificial Intelligence (AI) based model for sediment transport prediction

    NASA Astrophysics Data System (ADS)

    Afan, Haitham Abdulmohsin; El-shafie, Ahmed; Mohtar, Wan Hanna Melini Wan; Yaseen, Zaher Mundher

    2016-10-01

    An accurate model for sediment prediction is a priority for all hydrological researchers. Many conventional methods have shown an inability to achieve an accurate prediction of suspended sediment. These methods are unable to understand the behaviour of sediment transport in rivers due to the complexity, noise, non-stationarity, and dynamism of the sediment pattern. In the past two decades, Artificial Intelligence (AI) and computational approaches have become a remarkable tool for developing an accurate model. These approaches are considered a powerful tool for solving any non-linear model, as they can deal easily with a large number of data and sophisticated models. This paper is a review of all AI approaches that have been applied in sediment modelling. The current research focuses on the development of AI application in sediment transport. In addition, the review identifies major challenges and opportunities for prospective research. Throughout the literature, complementary models superior to classical modelling.

  11. Neural networks predict protein folding and structure: artificial intelligence faces biomolecular complexity.

    PubMed

    Casadio, R; Compiani, M; Fariselli, P; Jacoboni, I; Martelli, P L

    2000-01-01

    In the genomic era DNA sequencing is increasing our knowledge of the molecular structure of genetic codes from bacteria to man at a hyperbolic rate. Billions of nucleotides and millions of aminoacids are already filling the electronic files of the data bases presently available, which contain a tremendous amount of information on the most biologically relevant macromolecules, such as DNA, RNA and proteins. The most urgent problem originates from the need to single out the relevant information amidst a wealth of general features. Intelligent tools are therefore needed to optimise the search. Data mining for sequence analysis in biotechnology has been substantially aided by the development of new powerful methods borrowed from the machine learning approach. In this paper we discuss the application of artificial feedforward neural networks to deal with some fundamental problems tied with the folding process and the structure-function relationship in proteins.

  12. 3D image analysis and artificial intelligence for bone disease classification.

    PubMed

    Akgundogdu, Abdurrahim; Jennane, Rachid; Aufort, Gabriel; Benhamou, Claude Laurent; Ucan, Osman Nuri

    2010-10-01

    In order to prevent bone fractures due to disease and ageing of the population, and to detect problems while still in their early stages, 3D bone micro architecture needs to be investigated and characterized. Here, we have developed various image processing and simulation techniques to investigate bone micro architecture and its mechanical stiffness. We have evaluated morphological, topological and mechanical bone features using artificial intelligence methods. A clinical study is carried out on two populations of arthritic and osteoporotic bone samples. The performances of Adaptive Neuro Fuzzy Inference System (ANFIS), Support Vector Machines (SVM) and Genetic Algorithm (GA) in classifying the different samples have been compared. Results show that the best separation success (100 %) is achieved with Genetic Algorithm.

  13. Processing and representation of meta-data for sleep apnea diagnosis with an artificial intelligence approach.

    PubMed

    Nettleton, D; Muñiz, J

    2001-09-01

    In this article, we revise and try to resolve some of the problems inherent in questionnaire screening of sleep apnea cases and apnea diagnosis based on attributes which are relevant and reliable. We present a way of learning information about the relevance of the data, comparing this with the definition of the information by the medical expert. We generate a predictive data model using a data aggregation operator which takes relevance and reliability information about the data into account to produce a diagnosis for each case. We also introduce a grade of membership for each question response which allows the patient to indicate a level of confidence or doubt in their own judgement. The method is tested with data collected from patients in a Sleep Clinic using questionnaires specially designed for the study. Other artificial intelligence predictive modeling algorithms are also tested on the same data and their predictive accuracy compared to that of the aggregation operator.

  14. Open source hardware and software platform for robotics and artificial intelligence applications

    NASA Astrophysics Data System (ADS)

    Liang, S. Ng; Tan, K. O.; Lai Clement, T. H.; Ng, S. K.; Mohammed, A. H. Ali; Mailah, Musa; Azhar Yussof, Wan; Hamedon, Zamzuri; Yussof, Zulkifli

    2016-02-01

    Recent developments in open source hardware and software platforms (Android, Arduino, Linux, OpenCV etc.) have enabled rapid development of previously expensive and sophisticated system within a lower budget and flatter learning curves for developers. Using these platform, we designed and developed a Java-based 3D robotic simulation system, with graph database, which is integrated in online and offline modes with an Android-Arduino based rubbish picking remote control car. The combination of the open source hardware and software system created a flexible and expandable platform for further developments in the future, both in the software and hardware areas, in particular in combination with graph database for artificial intelligence, as well as more sophisticated hardware, such as legged or humanoid robots.

  15. An overview of Space Communication Artificial Intelligence for Link Evaluation Terminal (SCAILET) Project

    NASA Technical Reports Server (NTRS)

    Shahidi, Anoosh K.; Schlegelmilch, Richard F.; Petrik, Edward J.; Walters, Jerry L.

    1991-01-01

    A software application to assist end-users of the link evaluation terminal (LET) for satellite communications is being developed. This software application incorporates artificial intelligence (AI) techniques and will be deployed as an interface to LET. The high burst rate (HBR) LET provides 30 GHz transmitting/20 GHz receiving (220/110 Mbps) capability for wideband communications technology experiments with the Advanced Communications Technology Satellite (ACTS). The HBR LET can monitor and evaluate the integrity of the HBR communications uplink and downlink to the ACTS satellite. The uplink HBR transmission is performed by bursting the bit-pattern as a modulated signal to the satellite. The HBR LET can determine the bit error rate (BER) under various atmospheric conditions by comparing the transmitted bit pattern with the received bit pattern. An algorithm for power augmentation will be applied to enhance the system's BER performance at reduced signal strength caused by adverse conditions.

  16. Artificial Intelligence (AI), Operations Research (OR), and Decision Support Systems (DSS): A conceptual framework

    NASA Technical Reports Server (NTRS)

    Parnell, Gregory S.; Rowell, William F.; Valusek, John R.

    1987-01-01

    In recent years there has been increasing interest in applying the computer based problem solving techniques of Artificial Intelligence (AI), Operations Research (OR), and Decision Support Systems (DSS) to analyze extremely complex problems. A conceptual framework is developed for successfully integrating these three techniques. First, the fields of AI, OR, and DSS are defined and the relationships among the three fields are explored. Next, a comprehensive adaptive design methodology for AI and OR modeling within the context of a DSS is described. These observations are made: (1) the solution of extremely complex knowledge problems with ill-defined, changing requirements can benefit greatly from the use of the adaptive design process, (2) the field of DSS provides the focus on the decision making process essential for tailoring solutions to these complex problems, (3) the characteristics of AI, OR, and DSS tools appears to be converging rapidly, and (4) there is a growing need for an interdisciplinary AI/OR/DSS education.

  17. Artificial intelligence research in particle accelerator control systems for beam line tuning

    SciTech Connect

    Pieck, Martin

    2008-01-01

    Tuning particle accelerators is time consuming and expensive, with a number of inherently non-linear interactions between system components. Conventional control methods have not been successful in this domain and the result is constant and expensive monitoring of the systems by human operators. This is particularly true for the start-up and conditioning phase after a maintenance period or an unexpected fault. In turn, this often requires a step-by-step restart of the accelerator. Surprisingly few attempts have been made to apply intelligent accelerator control techniques to help with beam tuning, fault detection, and fault recovery problems. The reason for that might be that accelerator facilities are rare and difficult to understand systems that require detailed expert knowledge about the underlying physics as well as months if not years of experience to understand the relationship between individual components, particularly if they are geographically disjoint. This paper will give an overview about the research effort in the accelerator community that has been dedicated to the use of artificial intelligence methods for accelerator beam line tuning.

  18. Is chess the drosophila of artificial intelligence? A social history of an algorithm.

    PubMed

    Ensmenger, Nathan

    2012-02-01

    Since the mid 1960s, researchers in computer science have famously referred to chess as the 'drosophila' of artificial intelligence (AI). What they seem to mean by this is that chess, like the common fruit fly, is an accessible, familiar, and relatively simple experimental technology that nonetheless can be used productively to produce valid knowledge about other, more complex systems. But for historians of science and technology, the analogy between chess and drosophila assumes a larger significance. As Robert Kohler has ably described, the decision to adopt drosophila as the organism of choice for genetics research had far-reaching implications for the development of 20th century biology. In a similar manner, the decision to focus on chess as the measure of both human and computer intelligence had important and unintended consequences for AL research. This paper explores the emergence of chess as an experimental technology, its significance in the developing research practices of the AI community, and the unique ways in which the decision to focus on chess shaped the program of AI research in the decade of the 1970s. More broadly, it attempts to open up the virtual black box of computer software--and of computer games in particular--to the scrutiny of historical and sociological analysis.

  19. Gene selection for microarray cancer classification using a new evolutionary method employing artificial intelligence concepts.

    PubMed

    Dashtban, M; Balafar, Mohammadali

    2017-03-01

    Gene selection is a demanding task for microarray data analysis. The diverse complexity of different cancers makes this issue still challenging. In this study, a novel evolutionary method based on genetic algorithms and artificial intelligence is proposed to identify predictive genes for cancer classification. A filter method was first applied to reduce the dimensionality of feature space followed by employing an integer-coded genetic algorithm with dynamic-length genotype, intelligent parameter settings, and modified operators. The algorithmic behaviors including convergence trends, mutation and crossover rate changes, and running time were studied, conceptually discussed, and shown to be coherent with literature findings. Two well-known filter methods, Laplacian and Fisher score, were examined considering similarities, the quality of selected genes, and their influences on the evolutionary approach. Several statistical tests concerning choice of classifier, choice of dataset, and choice of filter method were performed, and they revealed some significant differences between the performance of different classifiers and filter methods over datasets. The proposed method was benchmarked upon five popular high-dimensional cancer datasets; for each, top explored genes were reported. Comparing the experimental results with several state-of-the-art methods revealed that the proposed method outperforms previous methods in DLBCL dataset.

  20. Enhancement of submarine pressure hull steel ultrasonic inspection using imaging and artificial intelligence

    NASA Astrophysics Data System (ADS)

    Hay, D. Robert; Brassard, Michel; Matthews, James R.; Garneau, Stephane; Morchat, Richard

    1995-06-01

    The convergence of a number of contemporary technologies with increasing demands for improvements in inspection capabilities in maritime applications has created new opportunities for ultrasonic inspection. An automated ultrasonic inspection and data collection system APHIUS (automated pressure hull intelligent ultrasonic system), incorporates hardware and software developments to meet specific requirements for the maritime vessels, in particular, submarines in the Canadian Navy. Housed within a hardened portable computer chassis, instrumentation for digital ultrasonic data acquisition and transducer position measurement provide new capabilities that meet more demanding requirements for inspection of the aging submarine fleet. Digital data acquisition enables a number of new important capabilites including archiving of the complete inspection session, interpretation assistance through imaging, and automated interpretation using artificial intelligence methods. With this new reliable inspection system, in conjunction with a complementary study of the significance of real defect type and location, comprehensive new criteria can be generated which will eliminate unnecessary defect removal. As a consequence, cost savings will be realized through shortened submarine refit schedules.

  1. Use of artificial intelligence in analytical systems for the clinical laboratory.

    PubMed

    Place, J F; Truchaud, A; Ozawa, K; Pardue, H; Schnipelsky, P

    1995-01-01

    The incorporation of information-processing technology into analytical systems in the form of standard computing software has recently been advanced by the introduction of artificial intelligence (AI), both as expert systems and as neural networks.This paper considers the role of software in system operation, control and automation, and attempts to define intelligence. AI is characterized by its ability to deal with incomplete and imprecise information and to accumulate knowledge. Expert systems, building on standard computing techniques, depend heavily on the domain experts and knowledge engineers that have programmed them to represent the real world. Neural networks are intended to emulate the pattern-recognition and parallel processing capabilities of the human brain and are taught rather than programmed. The future may lie in a combination of the recognition ability of the neural network and the rationalization capability of the expert system.In the second part of the paper, examples are given of applications of AI in stand-alone systems for knowledge engineering and medical diagnosis and in embedded systems for failure detection, image analysis, user interfacing, natural language processing, robotics and machine learning, as related to clinical laboratories.It is concluded that AI constitutes a collective form of intellectual propery, and that there is a need for better documentation, evaluation and regulation of the systems already being used in clinical laboratories.

  2. An Application of Artificial Intelligence to the Implementation of Electronic Commerce

    NASA Astrophysics Data System (ADS)

    Srivastava, Anoop Kumar

    In this paper, we present an application of Artificial Intelligence (AI) to the implementation of Electronic Commerce. We provide a multi autonomous agent based framework. Our agent based architecture leads to flexible design of a spectrum of multiagent system (MAS) by distributing computation and by providing a unified interface to data and programs. Autonomous agents are intelligent enough and provide autonomy, simplicity of communication, computation, and a well developed semantics. The steps of design and implementation are discussed in depth, structure of Electronic Marketplace, an ontology, the agent model, and interaction pattern between agents is given. We have developed mechanisms for coordination between agents using a language, which is called Virtual Enterprise Modeling Language (VEML). VEML is a integration of Java and Knowledge Query and Manipulation Language (KQML). VEML provides application programmers with potential to globally develop different kinds of MAS based on their requirements and applications. We have implemented a multi autonomous agent based system called VE System. We demonstrate efficacy of our system by discussing experimental results and its salient features.

  3. Artificial intelligence based models for stream-flow forecasting: 2000-2015

    NASA Astrophysics Data System (ADS)

    Yaseen, Zaher Mundher; El-shafie, Ahmed; Jaafar, Othman; Afan, Haitham Abdulmohsin; Sayl, Khamis Naba

    2015-11-01

    The use of Artificial Intelligence (AI) has increased since the middle of the 20th century as seen in its application in a wide range of engineering and science problems. The last two decades, for example, has seen a dramatic increase in the development and application of various types of AI approaches for stream-flow forecasting. Generally speaking, AI has exhibited significant progress in forecasting and modeling non-linear hydrological applications and in capturing the noise complexity in the dataset. This paper explores the state-of-the-art application of AI in stream-flow forecasting, focusing on defining the data-driven of AI, the advantages of complementary models, as well as the literature and their possible future application in modeling and forecasting stream-flow. The review also identifies the major challenges and opportunities for prospective research, including, a new scheme for modeling the inflow, a novel method for preprocessing time series frequency based on Fast Orthogonal Search (FOS) techniques, and Swarm Intelligence (SI) as an optimization approach.

  4. Use of artificial intelligence in analytical systems for the clinical laboratory

    PubMed Central

    Truchaud, Alain; Ozawa, Kyoichi; Pardue, Harry; Schnipelsky, Paul

    1995-01-01

    The incorporation of information-processing technology into analytical systems in the form of standard computing software has recently been advanced by the introduction of artificial intelligence (AI), both as expert systems and as neural networks. This paper considers the role of software in system operation, control and automation, and attempts to define intelligence. AI is characterized by its ability to deal with incomplete and imprecise information and to accumulate knowledge. Expert systems, building on standard computing techniques, depend heavily on the domain experts and knowledge engineers that have programmed them to represent the real world. Neural networks are intended to emulate the pattern-recognition and parallel processing capabilities of the human brain and are taught rather than programmed. The future may lie in a combination of the recognition ability of the neural network and the rationalization capability of the expert system. In the second part of the paper, examples are given of applications of AI in stand-alone systems for knowledge engineering and medical diagnosis and in embedded systems for failure detection, image analysis, user interfacing, natural language processing, robotics and machine learning, as related to clinical laboratories. It is concluded that AI constitutes a collective form of intellectual propery, and that there is a need for better documentation, evaluation and regulation of the systems already being used in clinical laboratories. PMID:18924784

  5. Modeling of Steam Distillation Mechanism during Steam Injection Process Using Artificial Intelligence

    PubMed Central

    Ahadi, Arash; Kharrat, Riyaz

    2014-01-01

    Steam distillation as one of the important mechanisms has a great role in oil recovery in thermal methods and so it is important to simulate this process experimentally and theoretically. In this work, the simulation of steam distillation is performed on sixteen sets of crude oil data found in the literature. Artificial intelligence (AI) tools such as artificial neural network (ANN) and also adaptive neurofuzzy interference system (ANFIS) are used in this study as effective methods to simulate the distillate recoveries of these sets of data. Thirteen sets of data were used to train the models and three sets were used to test the models. The developed models are highly compatible with respect to input oil properties and can predict the distillate yield with minimum entry. For showing the performance of the proposed models, simulation of steam distillation is also done using modified Peng-Robinson equation of state. Comparison between the calculated distillates by ANFIS and neural network models and also equation of state-based method indicates that the errors of the ANFIS model for training data and test data sets are lower than those of other methods. PMID:24883365

  6. Modeling of steam distillation mechanism during steam injection process using artificial intelligence.

    PubMed

    Daryasafar, Amin; Ahadi, Arash; Kharrat, Riyaz

    2014-01-01

    Steam distillation as one of the important mechanisms has a great role in oil recovery in thermal methods and so it is important to simulate this process experimentally and theoretically. In this work, the simulation of steam distillation is performed on sixteen sets of crude oil data found in the literature. Artificial intelligence (AI) tools such as artificial neural network (ANN) and also adaptive neurofuzzy interference system (ANFIS) are used in this study as effective methods to simulate the distillate recoveries of these sets of data. Thirteen sets of data were used to train the models and three sets were used to test the models. The developed models are highly compatible with respect to input oil properties and can predict the distillate yield with minimum entry. For showing the performance of the proposed models, simulation of steam distillation is also done using modified Peng-Robinson equation of state. Comparison between the calculated distillates by ANFIS and neural network models and also equation of state-based method indicates that the errors of the ANFIS model for training data and test data sets are lower than those of other methods.

  7. Automatic system for radar echoes filtering based on textural features and artificial intelligence

    NASA Astrophysics Data System (ADS)

    Hedir, Mehdia; Haddad, Boualem

    2016-11-01

    Among the very popular Artificial Intelligence (AI) techniques, Artificial Neural Network (ANN) and Support Vector Machine (SVM) have been retained to process Ground Echoes (GE) on meteorological radar images taken from Setif (Algeria) and Bordeaux (France) with different climates and topologies. To achieve this task, AI techniques were associated with textural approaches. We used Gray Level Co-occurrence Matrix (GLCM) and Completed Local Binary Pattern (CLBP); both methods were largely used in image analysis. The obtained results show the efficiency of texture to preserve precipitations forecast on both sites with the accuracy of 98% on Bordeaux and 95% on Setif despite the AI technique used. 98% of GE are suppressed with SVM, this rate is outperforming ANN skills. CLBP approach associated to SVM eliminates 98% of GE and preserves precipitations forecast on Bordeaux site better than on Setif's, while it exhibits lower accuracy with ANN. SVM classifier is well adapted to the proposed application since the average filtering rate is 95-98% with texture and 92-93% with CLBP. These approaches allow removing Anomalous Propagations (APs) too with a better accuracy of 97.15% with texture and SVM. In fact, textural features associated to AI techniques are an efficient tool for incoherent radars to surpass spurious echoes.

  8. Prodiag--a hybrid artificial intelligence based reactor diagnostic system for process faults

    SciTech Connect

    Reifman, J.; Wei, T.Y.C.; Vitela, J.E.; Applequist, C. A.; Chasensky, T.M.

    1996-03-01

    Commonwealth Research Corporation (CRC) and Argonne National Laboratory (ANL) are collaborating on a DOE-sponsored Cooperative Research and Development Agreement (CRADA), project to perform feasibility studies on a novel approach to Artificial Intelligence (Al) based diagnostics for component faults in nuclear power plants. Investigations are being performed in the construction of a first-principles physics-based plant level process diagnostic expert system (ES) and the identification of component-level fault patterns through operating component characteristics using artificial neural networks (ANNs). The purpose of the proof-of-concept project is to develop a computer-based system using this Al approach to assist process plant operators during off-normal plant conditions. The proposed computer-based system will use thermal hydraulic (T-H) signals complemented by other non-T-H signals available in the data stream to provide the process operator with the component which most likely caused the observed process disturbance.To demonstrate the scale-up feasibility of the proposed diagnostic system it is being developed for use with the Chemical Volume Control System (CVCS) of a nuclear power plant. A full-scope operator training simulator representing the Commonwealth Edison Braidwood nuclear power plant is being used both as the source of development data and as the means to evaluate the advantages of the proposed diagnostic system. This is an ongoing multi-year project and this paper presents the results to date of the CRADA phase.

  9. Is Artificial Intelligence Intelligent?

    ERIC Educational Resources Information Center

    Nielsen, Janni

    In order for information to be stored and processed in a computer, it must be reduced to data and organized and systematized in accordance with the rules and principles of formal logic. Reducing manifold reality to data for use by the computer results in loss of information because an arbitrary screening of data eliminates that gathered by the…

  10. Artificial Intelligence Based Selection of Optimal Cutting Tool and Process Parameters for Effective Turning and Milling Operations

    NASA Astrophysics Data System (ADS)

    Saranya, Kunaparaju; John Rozario Jegaraj, J.; Ramesh Kumar, Katta; Venkateshwara Rao, Ghanta

    2016-06-01

    With the increased trend in automation of modern manufacturing industry, the human intervention in routine, repetitive and data specific activities of manufacturing is greatly reduced. In this paper, an attempt has been made to reduce the human intervention in selection of optimal cutting tool and process parameters for metal cutting applications, using Artificial Intelligence techniques. Generally, the selection of appropriate cutting tool and parameters in metal cutting is carried out by experienced technician/cutting tool expert based on his knowledge base or extensive search from huge cutting tool database. The present proposed approach replaces the existing practice of physical search for tools from the databooks/tool catalogues with intelligent knowledge-based selection system. This system employs artificial intelligence based techniques such as artificial neural networks, fuzzy logic and genetic algorithm for decision making and optimization. This intelligence based optimal tool selection strategy is developed using Mathworks Matlab Version 7.11.0 and implemented. The cutting tool database was obtained from the tool catalogues of different tool manufacturers. This paper discusses in detail, the methodology and strategies employed for selection of appropriate cutting tool and optimization of process parameters based on multi-objective optimization criteria considering material removal rate, tool life and tool cost.

  11. Baby, Where Did You Get Those Eyes?: IEEE Pulse talks with Mark Sagar about the new face of artificial intelligence.

    PubMed

    Campbell, Sarah

    2015-01-01

    Mark Sagar is changing the way we look at computers by giving them faces?disconcertingly realistic human faces. Sagar first gained widespread recognition for his pioneering work in rendering faces for Hollywood movies, including Avatar and King Kong. With a Ph.D. degree in bioengineering and two Academy Awards under his belt, Sagar now directs a research lab at the University of Auckland, New Zealand, a combinatorial hub where artificial intelligence (AI), neuroscience, computer science, philosophy, and cognitive psychology intersect in creating interactive, intelligent technologies.

  12. [Artificial intelligence meeting neuropsychology. Semantic memory in normal and pathological aging].

    PubMed

    Aimé, Xavier; Charlet, Jean; Maillet, Didier; Belin, Catherine

    2015-03-01

    Artificial intelligence (IA) is the subject of much research, but also many fantasies. It aims to reproduce human intelligence in its learning capacity, knowledge storage and computation. In 2014, the Defense Advanced Research Projects Agency (DARPA) started the restoring active memory (RAM) program that attempt to develop implantable technology to bridge gaps in the injured brain and restore normal memory function to people with memory loss caused by injury or disease. In another IA's field, computational ontologies (a formal and shared conceptualization) try to model knowledge in order to represent a structured and unambiguous meaning of the concepts of a target domain. The aim of these structures is to ensure a consensual understanding of their meaning and a univariant use (the same concept is used by all to categorize the same individuals). The first representations of knowledge in the AI's domain are largely based on model tests of semantic memory. This one, as a component of long-term memory is the memory of words, ideas, concepts. It is the only declarative memory system that resists so remarkably to the effects of age. In contrast, non-specific cognitive changes may decrease the performance of elderly in various events and instead report difficulties of access to semantic representations that affect the semantics stock itself. Some dementias, like semantic dementia and Alzheimer's disease, are linked to alteration of semantic memory. We propose in this paper, using the computational ontologies model, a formal and relatively thin modeling, in the service of neuropsychology: 1) for the practitioner with decision support systems, 2) for the patient as cognitive prosthesis outsourced, and 3) for the researcher to study semantic memory.

  13. Progress in cybernetics and systems research. Vol. XI. Data base design. International Information Systems. Semiotic Systems. Artificial Intelligence. Cybernetics and Philosophy. Special aspects

    SciTech Connect

    Trappl, R.; Findler, N.V.; Horn, W.

    1982-01-01

    This book covers current research topics in six areas. These are data base design, international information systems, semiotic systems, artificial intelligence, cybernetics and philosophy, and special aspects of systems research. 1326 references.

  14. Spatiotemporal groundwater level modeling using hybrid artificial intelligence-meshless method

    NASA Astrophysics Data System (ADS)

    Nourani, Vahid; Mousavi, Shahram

    2016-05-01

    Uncertainties of the field parameters, noise of the observed data and unknown boundary conditions are the main factors involved in the groundwater level (GL) time series which limit the modeling and simulation of GL. This paper presents a hybrid artificial intelligence-meshless model for spatiotemporal GL modeling. In this way firstly time series of GL observed in different piezometers were de-noised using threshold-based wavelet method and the impact of de-noised and noisy data was compared in temporal GL modeling by artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). In the second step, both ANN and ANFIS models were calibrated and verified using GL data of each piezometer, rainfall and runoff considering various input scenarios to predict the GL at one month ahead. In the final step, the simulated GLs in the second step of modeling were considered as interior conditions for the multiquadric radial basis function (RBF) based solve of governing partial differential equation of groundwater flow to estimate GL at any desired point within the plain where there is not any observation. In order to evaluate and compare the GL pattern at different time scales, the cross-wavelet coherence was also applied to GL time series of piezometers. The results showed that the threshold-based wavelet de-noising approach can enhance the performance of the modeling up to 13.4%. Also it was found that the accuracy of ANFIS-RBF model is more reliable than ANN-RBF model in both calibration and validation steps.

  15. Artificial Intelligence vs. Statistical Modeling and Optimization of Continuous Bead Milling Process for Bacterial Cell Lysis

    PubMed Central

    Haque, Shafiul; Khan, Saif; Wahid, Mohd; Dar, Sajad A.; Soni, Nipunjot; Mandal, Raju K.; Singh, Vineeta; Tiwari, Dileep; Lohani, Mohtashim; Areeshi, Mohammed Y.; Govender, Thavendran; Kruger, Hendrik G.; Jawed, Arshad

    2016-01-01

    For a commercially viable recombinant intracellular protein production process, efficient cell lysis and protein release is a major bottleneck. The recovery of recombinant protein, cholesterol oxidase (COD) was studied in a continuous bead milling process. A full factorial response surface methodology (RSM) design was employed and compared to artificial neural networks coupled with genetic algorithm (ANN-GA). Significant process variables, cell slurry feed rate (A), bead load (B), cell load (C), and run time (D), were investigated and optimized for maximizing COD recovery. RSM predicted an optimum of feed rate of 310.73 mL/h, bead loading of 79.9% (v/v), cell loading OD600 nm of 74, and run time of 29.9 min with a recovery of ~3.2 g/L. ANN-GA predicted a maximum COD recovery of ~3.5 g/L at an optimum feed rate (mL/h): 258.08, bead loading (%, v/v): 80%, cell loading (OD600 nm): 73.99, and run time of 32 min. An overall 3.7-fold increase in productivity is obtained when compared to a batch process. Optimization and comparison of statistical vs. artificial intelligence techniques in continuous bead milling process has been attempted for the very first time in our study. We were able to successfully represent the complex non-linear multivariable dependence of enzyme recovery on bead milling parameters. The quadratic second order response functions are not flexible enough to represent such complex non-linear dependence. ANN being a summation function of multiple layers are capable to represent complex non-linear dependence of variables in this case; enzyme recovery as a function of bead milling parameters. Since GA can even optimize discontinuous functions present study cites a perfect example of using machine learning (ANN) in combination with evolutionary optimization (GA) for representing undefined biological functions which is the case for common industrial processes involving biological moieties. PMID:27920762

  16. Artificial Intelligence vs. Statistical Modeling and Optimization of Continuous Bead Milling Process for Bacterial Cell Lysis.

    PubMed

    Haque, Shafiul; Khan, Saif; Wahid, Mohd; Dar, Sajad A; Soni, Nipunjot; Mandal, Raju K; Singh, Vineeta; Tiwari, Dileep; Lohani, Mohtashim; Areeshi, Mohammed Y; Govender, Thavendran; Kruger, Hendrik G; Jawed, Arshad

    2016-01-01

    For a commercially viable recombinant intracellular protein production process, efficient cell lysis and protein release is a major bottleneck. The recovery of recombinant protein, cholesterol oxidase (COD) was studied in a continuous bead milling process. A full factorial response surface methodology (RSM) design was employed and compared to artificial neural networks coupled with genetic algorithm (ANN-GA). Significant process variables, cell slurry feed rate (A), bead load (B), cell load (C), and run time (D), were investigated and optimized for maximizing COD recovery. RSM predicted an optimum of feed rate of 310.73 mL/h, bead loading of 79.9% (v/v), cell loading OD600nm of 74, and run time of 29.9 min with a recovery of ~3.2 g/L. ANN-GA predicted a maximum COD recovery of ~3.5 g/L at an optimum feed rate (mL/h): 258.08, bead loading (%, v/v): 80%, cell loading (OD600nm): 73.99, and run time of 32 min. An overall 3.7-fold increase in productivity is obtained when compared to a batch process. Optimization and comparison of statistical vs. artificial intelligence techniques in continuous bead milling process has been attempted for the very first time in our study. We were able to successfully represent the complex non-linear multivariable dependence of enzyme recovery on bead milling parameters. The quadratic second order response functions are not flexible enough to represent such complex non-linear dependence. ANN being a summation function of multiple layers are capable to represent complex non-linear dependence of variables in this case; enzyme recovery as a function of bead milling parameters. Since GA can even optimize discontinuous functions present study cites a perfect example of using machine learning (ANN) in combination with evolutionary optimization (GA) for representing undefined biological functions which is the case for common industrial processes involving biological moieties.

  17. Two hybrid Artificial Intelligence approaches for modeling rainfall-runoff process

    NASA Astrophysics Data System (ADS)

    Nourani, Vahid; Kisi, Özgür; Komasi, Mehdi

    2011-05-01

    SummaryThe need for accurate modeling of the rainfall-runoff process has grown rapidly in the past decades. However, considering the high stochastic property of the process, many models are still being developed in order to define such a complex phenomenon. Recently, Artificial Intelligence (AI) techniques such as the Artificial Neural Network (ANN) and the Adaptive Neural-Fuzzy Inference System (ANFIS) have been extensively used by hydrologists for rainfall-runoff modeling as well as for other fields of hydrology. In this paper, two hybrid AI-based models which are reliable in capturing the periodicity features of the process are introduced for watershed rainfall-runoff modeling. In the first model, the SARIMAX (Seasonal Auto Regressive Integrated Moving Average with exogenous input)-ANN model, an ANN is used to find the non-linear relationship among the residuals of the fitted linear SARIMAX model. In the second model, the wavelet-ANFIS model, wavelet transform is linked to the ANFIS concept and the main time series of two variables (rainfall and runoff) are decomposed into some multi-frequency time series by wavelet transform. Afterwards, these time series are imposed as input data to the ANFIS to predict the runoff discharge one time step ahead. The obtained results of the models applications for the rainfall-runoff modeling of two watersheds (located in Azerbaijan, Iran) show that, although the proposed models can predict both short and long terms runoff discharges by considering seasonality effects, the second model is relatively more appropriate because it uses the multi-scale time series of rainfall and runoff data in the ANFIS input layer.

  18. [Detection of endpoint for segmentation between consonants and vowels in aphasia rehabilitation software based on artificial intelligence scheduling].

    PubMed

    Deng, Xingjuan; Chen, Ji; Shuai, Jie

    2009-08-01

    For the purpose of improving the efficiency of aphasia rehabilitation training, artificial intelligence-scheduling function is added in the aphasia rehabilitation software, and the software's performance is improved. With the characteristics of aphasia patient's voice as well as with the need of artificial intelligence-scheduling functions under consideration, the present authors have designed a set of endpoint detection algorithm. It determines the reference endpoints, then extracts every word and ensures the reasonable segmentation points between consonants and vowels, using the reference endpoints. The results of experiments show that the algorithm is able to attain the objects of detection at a higher accuracy rate. Therefore, it is applicable to the detection of endpoint on aphasia-patient's voice.

  19. An Opening Chapter of the First Generation of Artificial Intelligence in Medicine: The First Rutgers AIM Workshop, June 1975.

    PubMed

    Kulikowski, C A

    2015-08-13

    The first generation of Artificial Intelligence (AI) in Medicine methods were developed in the early 1970's drawing on insights about problem solving in AI. They developed new ways of representing structured expert knowledge about clinical and biomedical problems using causal, taxonomic, associational, rule, and frame-based models. By 1975, several prototype systems had been developed and clinically tested, and the Rutgers Research Resource on Computers in Biomedicine hosted the first in a series of workshops on AI in Medicine that helped researchers and clinicians share their ideas, demonstrate their models, and comment on the prospects for the field. These developments and the workshops themselves benefited considerably from Stanford's SUMEX-AIM pioneering experiment in biomedical computer networking. This paper focuses on discussions about issues at the intersection of medicine and artificial intelligence that took place during the presentations and panels at the First Rutgers AIM Workshop in New Brunswick, New Jersey from June 14 to 17, 1975.

  20. Applications of artificial intelligence X: Machine vision and robotics; Proceedings of the Meeting, Orlando, FL, Apr. 22-24, 1992

    SciTech Connect

    Bowyer, K.W.

    1992-01-01

    Various papers on artificial intelligence in machine vision and robotics are presented. The general topics addressed include: design of a robot head, machine vision inspection techniques, segmentation of fused range and intensity imagery, parallel and VLSI architectures for machine vision, comparison of range image segmentation algorithms, state of the art in postcanny edge detection, simulation and visualization environments for autonomous robots, exploration of recognition by components representation and matching, reactive robotic control strategies, image processing techniques.

  1. Knowledge-Based Aircraft Automation: Managers Guide on the use of Artificial Intelligence for Aircraft Automation and Verification and Validation Approach for a Neural-Based Flight Controller

    NASA Technical Reports Server (NTRS)

    Broderick, Ron

    1997-01-01

    The ultimate goal of this report was to integrate the powerful tools of artificial intelligence into the traditional process of software development. To maintain the US aerospace competitive advantage, traditional aerospace and software engineers need to more easily incorporate the technology of artificial intelligence into the advanced aerospace systems being designed today. The future goal was to transition artificial intelligence from an emerging technology to a standard technology that is considered early in the life cycle process to develop state-of-the-art aircraft automation systems. This report addressed the future goal in two ways. First, it provided a matrix that identified typical aircraft automation applications conducive to various artificial intelligence methods. The purpose of this matrix was to provide top-level guidance to managers contemplating the possible use of artificial intelligence in the development of aircraft automation. Second, the report provided a methodology to formally evaluate neural networks as part of the traditional process of software development. The matrix was developed by organizing the discipline of artificial intelligence into the following six methods: logical, object representation-based, distributed, uncertainty management, temporal and neurocomputing. Next, a study of existing aircraft automation applications that have been conducive to artificial intelligence implementation resulted in the following five categories: pilot-vehicle interface, system status and diagnosis, situation assessment, automatic flight planning, and aircraft flight control. The resulting matrix provided management guidance to understand artificial intelligence as it applied to aircraft automation. The approach taken to develop a methodology to formally evaluate neural networks as part of the software engineering life cycle was to start with the existing software quality assurance standards and to change these standards to include neural network

  2. An Intelligent Tutoring System.

    ERIC Educational Resources Information Center

    Corbett, Albert

    1988-01-01

    Discusses a research project that uses artificial intelligence techniques to help teach programing. Describes principles and implementation of the LISP Intelligent Tutoring System (LISPITS). Explains how the artificial intelligence technique was developed and possible future research. (MVL)

  3. Application of artificial intelligence to reservoir characterization: An interdisciplinary approach. Final report, August 31, 1997

    SciTech Connect

    Kerr, D.R.; Thompson, L.G.; Shenoi, S.

    1998-03-01

    The primary goal of the project is to develop a user-friendly computer program to integrate geological and engineering information using Artificial Intelligence (AI) methodology. The project is restricted to fluvially dominated deltaic environments. The static information used in constructing the reservoir description includes well core and log data. Using the well core and the log data, the program identifies the marker beds, and the type of sand facies, and in turn, develops correlations between wells. Using the correlations and sand facies, the program is able to generate multiple realizations of sand facies and petrophysical properties at interwell locations using geostatistical techniques. The generated petrophysical properties are used as input in the next step where the production data are honored. By adjusting the petrophysical properties, the match between the simulated and the observed production rates is obtained. Although all the components within the overall system are functioning, the integration of dynamic data may not be practical due to the single-phase flow limitations and the computationally intensive algorithms. The future work needs to concentrate on making the dynamic data integration computationally efficient.

  4. Application of Artificial Intelligence (AI) Programming Techniques to Tactical Guidance for Fighter Aircraft

    NASA Technical Reports Server (NTRS)

    McManus, John W.; Goodrich, Kenneth H.

    1989-01-01

    A research program investigating the use of Artificial Intelligence (AI) techniques to aid in the development of a Tactical Decision Generator (TDG) for Within-Visual-Range (WVR) air combat engagements is discussed. The application of AI methods for development and implementation of the TDG is presented. The history of the Adaptive Maneuvering Logic (AML) program is traced and current versions of the AML program are compared and contrasted with the TDG system. The Knowledge-Based Systems (KBS) used by the TDG to aid in the decision-making process are outlined in detail and example rules are presented. The results of tests to evaluate the performance of the TDG versus a version of AML and versus human pilots in the Langley Differential Maneuvering Simulator (DMS) are presented. To date, these results have shown significant performance gains in one-versus-one air combat engagements, and the AI-based TDG software has proven to be much easier to modify than the updated FORTRAN AML programs.

  5. Heat wave hazard classification and risk assessment using artificial intelligence fuzzy logic.

    PubMed

    Keramitsoglou, Iphigenia; Kiranoudis, Chris T; Maiheu, Bino; De Ridder, Koen; Daglis, Ioannis A; Manunta, Paolo; Paganini, Marc

    2013-10-01

    The average summer temperatures as well as the frequency and intensity of hot days and heat waves are expected to increase due to climate change. Motivated by this consequence, we propose a methodology to evaluate the monthly heat wave hazard and risk and its spatial distribution within large cities. A simple urban climate model with assimilated satellite-derived land surface temperature images was used to generate a historic database of urban air temperature fields. Heat wave hazard was then estimated from the analysis of these hourly air temperatures distributed at a 1-km grid over Athens, Greece, by identifying the areas that are more likely to suffer higher temperatures in the case of a heat wave event. Innovation lies in the artificial intelligence fuzzy logic model that was used to classify the heat waves from mild to extreme by taking into consideration their duration, intensity and time of occurrence. The monthly hazard was subsequently estimated as the cumulative effect from the individual heat waves that occurred at each grid cell during a month. Finally, monthly heat wave risk maps were produced integrating geospatial information on the population vulnerability to heat waves calculated from socio-economic variables.

  6. Predicting adsorptive removal of chlorophenol from aqueous solution using artificial intelligence based modeling approaches.

    PubMed

    Singh, Kunwar P; Gupta, Shikha; Ojha, Priyanka; Rai, Premanjali

    2013-04-01

    The research aims to develop artificial intelligence (AI)-based model to predict the adsorptive removal of 2-chlorophenol (CP) in aqueous solution by coconut shell carbon (CSC) using four operational variables (pH of solution, adsorbate concentration, temperature, and contact time), and to investigate their effects on the adsorption process. Accordingly, based on a factorial design, 640 batch experiments were conducted. Nonlinearities in experimental data were checked using Brock-Dechert-Scheimkman (BDS) statistics. Five nonlinear models were constructed to predict the adsorptive removal of CP in aqueous solution by CSC using four variables as input. Performances of the constructed models were evaluated and compared using statistical criteria. BDS statistics revealed strong nonlinearity in experimental data. Performance of all the models constructed here was satisfactory. Radial basis function network (RBFN) and multilayer perceptron network (MLPN) models performed better than generalized regression neural network, support vector machines, and gene expression programming models. Sensitivity analysis revealed that the contact time had highest effect on adsorption followed by the solution pH, temperature, and CP concentration. The study concluded that all the models constructed here were capable of capturing the nonlinearity in data. A better generalization and predictive performance of RBFN and MLPN models suggested that these can be used to predict the adsorption of CP in aqueous solution using CSC.

  7. Artificial Neural Network and Genetic Algorithm Hybrid Intelligence for Predicting Thai Stock Price Index Trend

    PubMed Central

    Boonjing, Veera; Intakosum, Sarun

    2016-01-01

    This study investigated the use of Artificial Neural Network (ANN) and Genetic Algorithm (GA) for prediction of Thailand's SET50 index trend. ANN is a widely accepted machine learning method that uses past data to predict future trend, while GA is an algorithm that can find better subsets of input variables for importing into ANN, hence enabling more accurate prediction by its efficient feature selection. The imported data were chosen technical indicators highly regarded by stock analysts, each represented by 4 input variables that were based on past time spans of 4 different lengths: 3-, 5-, 10-, and 15-day spans before the day of prediction. This import undertaking generated a big set of diverse input variables with an exponentially higher number of possible subsets that GA culled down to a manageable number of more effective ones. SET50 index data of the past 6 years, from 2009 to 2014, were used to evaluate this hybrid intelligence prediction accuracy, and the hybrid's prediction results were found to be more accurate than those made by a method using only one input variable for one fixed length of past time span. PMID:27974883

  8. Artificial intelligence techniques used in respiratory sound analysis--a systematic review.

    PubMed

    Palaniappan, Rajkumar; Sundaraj, Kenneth; Sundaraj, Sebastian

    2014-02-01

    Artificial intelligence (AI) has recently been established as an alternative method to many conventional methods. The implementation of AI techniques for respiratory sound analysis can assist medical professionals in the diagnosis of lung pathologies. This article highlights the importance of AI techniques in the implementation of computer-based respiratory sound analysis. Articles on computer-based respiratory sound analysis using AI techniques were identified by searches conducted on various electronic resources, such as the IEEE, Springer, Elsevier, PubMed, and ACM digital library databases. Brief descriptions of the types of respiratory sounds and their respective characteristics are provided. We then analyzed each of the previous studies to determine the specific respiratory sounds/pathology analyzed, the number of subjects, the signal processing method used, the AI techniques used, and the performance of the AI technique used in the analysis of respiratory sounds. A detailed description of each of these studies is provided. In conclusion, this article provides recommendations for further advancements in respiratory sound analysis.

  9. Identification of time-varying structural dynamic systems - An artificial intelligence approach

    NASA Technical Reports Server (NTRS)

    Glass, B. J.; Hanagud, S.

    1992-01-01

    An application of the artificial intelligence-derived methodologies of heuristic search and object-oriented programming to the problem of identifying the form of the model and the associated parameters of a time-varying structural dynamic system is presented in this paper. Possible model variations due to changes in boundary conditions or configurations of a structure are organized into a taxonomy of models, and a variant of best-first search is used to identify the model whose simulated response best matches that of the current physical structure. Simulated model responses are verified experimentally. An output-error approach is used in a discontinuous model space, and an equation-error approach is used in the parameter space. The advantages of the AI methods used, compared with conventional programming techniques for implementing knowledge structuring and inheritance, are discussed. Convergence conditions and example problems have been discussed. In the example problem, both the time-varying model and its new parameters have been identified when changes occur.

  10. Artificial intelligence in public health prevention of legionelosis in drinking water systems.

    PubMed

    Sinčak, Peter; Ondo, Jaroslav; Kaposztasova, Daniela; Virčikova, Maria; Vranayova, Zuzana; Sabol, Jakub

    2014-08-21

    Good quality water supplies and safe sanitation in urban areas are a big challenge for governments throughout the world. Providing adequate water quality is a basic requirement for our lives. The colony forming units of the bacterium Legionella pneumophila in potable water represent a big problem which cannot be overlooked for health protection reasons. We analysed several methods to program a virtual hot water tank with AI (artificial intelligence) tools including neuro-fuzzy systems as a precaution against legionelosis. The main goal of this paper is to present research which simulates the temperature profile in the water tank. This research presents a tool for a water management system to simulate conditions which are able to prevent legionelosis outbreaks in a water system. The challenge is to create a virtual water tank simulator including the water environment which can simulate a situation which is common in building water distribution systems. The key feature of the presented system is its adaptation to any hot water tank. While respecting the basic parameters of hot water, a water supplier and building maintainer are required to ensure the predefined quality and water temperature at each sampling site and avoid the growth of Legionella. The presented system is one small contribution how to overcome a situation when legionelosis could find good conditions to spread and jeopardize human lives.

  11. An Artificial Intelligence System to Predict Quality of Service in Banking Organizations.

    PubMed

    Castelli, Mauro; Manzoni, Luca; Popovič, Aleš

    2016-01-01

    Quality of service, that is, the waiting time that customers must endure in order to receive a service, is a critical performance aspect in private and public service organizations. Providing good service quality is particularly important in highly competitive sectors where similar services exist. In this paper, focusing on banking sector, we propose an artificial intelligence system for building a model for the prediction of service quality. While the traditional approach used for building analytical models relies on theories and assumptions about the problem at hand, we propose a novel approach for learning models from actual data. Thus, the proposed approach is not biased by the knowledge that experts may have about the problem, but it is completely based on the available data. The system is based on a recently defined variant of genetic programming that allows practitioners to include the concept of semantics in the search process. This will have beneficial effects on the search process and will produce analytical models that are based only on the data and not on domain-dependent knowledge.

  12. Artificial Intelligence and the 'Good Society': the US, EU, and UK approach.

    PubMed

    Cath, Corinne; Wachter, Sandra; Mittelstadt, Brent; Taddeo, Mariarosaria; Floridi, Luciano

    2017-03-28

    In October 2016, the White House, the European Parliament, and the UK House of Commons each issued a report outlining their visions on how to prepare society for the widespread use of artificial intelligence (AI). In this article, we provide a comparative assessment of these three reports in order to facilitate the design of policies favourable to the development of a 'good AI society'. To do so, we examine how each report addresses the following three topics: (a) the development of a 'good AI society'; (b) the role and responsibility of the government, the private sector, and the research community (including academia) in pursuing such a development; and (c) where the recommendations to support such a development may be in need of improvement. Our analysis concludes that the reports address adequately various ethical, social, and economic topics, but come short of providing an overarching political vision and long-term strategy for the development of a 'good AI society'. In order to contribute to fill this gap, in the conclusion we suggest a two-pronged approach.

  13. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligence Revolutionizing Wildlife Monitoring and Conservation.

    PubMed

    Gonzalez, Luis F; Montes, Glen A; Puig, Eduard; Johnson, Sandra; Mengersen, Kerrie; Gaston, Kevin J

    2016-01-14

    Surveying threatened and invasive species to obtain accurate population estimates is an important but challenging task that requires a considerable investment in time and resources. Estimates using existing ground-based monitoring techniques, such as camera traps and surveys performed on foot, are known to be resource intensive, potentially inaccurate and imprecise, and difficult to validate. Recent developments in unmanned aerial vehicles (UAV), artificial intelligence and miniaturized thermal imaging systems represent a new opportunity for wildlife experts to inexpensively survey relatively large areas. The system presented in this paper includes thermal image acquisition as well as a video processing pipeline to perform object detection, classification and tracking of wildlife in forest or open areas. The system is tested on thermal video data from ground based and test flight footage, and is found to be able to detect all the target wildlife located in the surveyed area. The system is flexible in that the user can readily define the types of objects to classify and the object characteristics that should be considered during classification.

  14. Artificial intelligence techniques coupled with seasonality measures for hydrological regionalization of Q90 under Brazilian conditions

    NASA Astrophysics Data System (ADS)

    Beskow, Samuel; de Mello, Carlos Rogério; Vargas, Marcelle M.; Corrêa, Leonardo de L.; Caldeira, Tamara L.; Durães, Matheus F.; de Aguiar, Marilton S.

    2016-10-01

    Information on stream flows is essential for water resources management. The stream flow that is equaled or exceeded 90% of the time (Q90) is one the most used low stream flow indicators in many countries, and its determination is made from the frequency analysis of stream flows considering a historical series. However, stream flow gauging network is generally not spatially sufficient to meet the necessary demands of technicians, thus the most plausible alternative is the use of hydrological regionalization. The objective of this study was to couple the artificial intelligence techniques (AI) K-means, Partitioning Around Medoids (PAM), K-harmonic means (KHM), Fuzzy C-means (FCM) and Genetic K-means (GKA), with measures of low stream flow seasonality, for verification of its potential to delineate hydrologically homogeneous regions for the regionalization of Q90. For the performance analysis of the proposed methodology, location attributes from 108 watersheds situated in southern Brazil, and attributes associated with their seasonality of low stream flows were considered in this study. It was concluded that: (i) AI techniques have the potential to delineate hydrologically homogeneous regions in the context of Q90 in the study region, especially the FCM method based on fuzzy logic, and GKA, based on genetic algorithms; (ii) the attributes related to seasonality of low stream flows added important information that increased the accuracy of the grouping; and (iii) the adjusted mathematical models have excellent performance and can be used to estimate Q90 in locations lacking monitoring.

  15. An Artificial Intelligence System to Predict Quality of Service in Banking Organizations

    PubMed Central

    Popovič, Aleš

    2016-01-01

    Quality of service, that is, the waiting time that customers must endure in order to receive a service, is a critical performance aspect in private and public service organizations. Providing good service quality is particularly important in highly competitive sectors where similar services exist. In this paper, focusing on banking sector, we propose an artificial intelligence system for building a model for the prediction of service quality. While the traditional approach used for building analytical models relies on theories and assumptions about the problem at hand, we propose a novel approach for learning models from actual data. Thus, the proposed approach is not biased by the knowledge that experts may have about the problem, but it is completely based on the available data. The system is based on a recently defined variant of genetic programming that allows practitioners to include the concept of semantics in the search process. This will have beneficial effects on the search process and will produce analytical models that are based only on the data and not on domain-dependent knowledge. PMID:27313604

  16. Application of artificial intelligence to melter control: Realtime process advisor for the scale melter facility

    SciTech Connect

    Edwards, Jr, R E

    1988-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Plant (SRP) is currently under construction and when completed will process high-level radioactive waste into a borosilicate glass wasteform. This facility will consist of numerous batch chemical processing steps as well as the continuous operation of a joule-heated melter and its off-gas treatment system. A realtime process advisor system based on Artificial Intelligence (AI) techniques has been developed and is currently in use at the semiworks facility, which is operating a 2/3 scale of the DWPF joule-heated melter. The melter advisor system interfaces to the existing data collection and control system and monitors current operations of this facility. The advisor then provides advice to operators and engineers when it identifies process problems. The current system is capable of identifying process problems such as feed system pluggages and thermocouple failures and providing recommended actions. The system also provides facilities normally with distributed control systems. These include the ability to display process flowsheets, monitor alarm conditions, and check the status of process interlocks. 7 figs.

  17. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligence Revolutionizing Wildlife Monitoring and Conservation

    PubMed Central

    Gonzalez, Luis F.; Montes, Glen A.; Puig, Eduard; Johnson, Sandra; Mengersen, Kerrie; Gaston, Kevin J.

    2016-01-01

    Surveying threatened and invasive species to obtain accurate population estimates is an important but challenging task that requires a considerable investment in time and resources. Estimates using existing ground-based monitoring techniques, such as camera traps and surveys performed on foot, are known to be resource intensive, potentially inaccurate and imprecise, and difficult to validate. Recent developments in unmanned aerial vehicles (UAV), artificial intelligence and miniaturized thermal imaging systems represent a new opportunity for wildlife experts to inexpensively survey relatively large areas. The system presented in this paper includes thermal image acquisition as well as a video processing pipeline to perform object detection, classification and tracking of wildlife in forest or open areas. The system is tested on thermal video data from ground based and test flight footage, and is found to be able to detect all the target wildlife located in the surveyed area. The system is flexible in that the user can readily define the types of objects to classify and the object characteristics that should be considered during classification. PMID:26784196

  18. Acquisition of high-resolution 3D data and processing using Artificial Intelligence

    NASA Astrophysics Data System (ADS)

    Meng, Hui; Sheng, J.; Yang, W.; Pu, Y.

    1996-11-01

    Holographic PIV (HPIV) is a promising 3D velocity field measurement technique providing high spatial-temporal resolution needed for understanding complex and turbulent flows. An HPIV system, combining in-line recording and off-axis viewing (IROV) holography and Heuristic Morphology Particle Pairing (HMPP) method, is being developed in this work. Unlike 2D PIV, HPIV instantaneously records a volume of particle images through holographic imaging. Its data processing involves special difficulties such as speckle noise, sparse pairs and large data sets. The HMPP algorithm is an adaptive parallel processing scheme applying artificial intelligence searching theory. Based on similar morphology of a particle group at successive instants separated by a small interval, HMPP matches a group of particle images between double exposures and provides velocity vectors for individual particle pairs, providing much higher spatial resolution than conventional correlation algorithm and lower measurement error caused by large velocity gradients. Taking advantages of IROV and HMPP, the system being developed appears highly promising as a practical HPIV configuration.

  19. The systems approach for applying artificial intelligence to space station automation (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Grose, Vernon L.

    1985-12-01

    The progress of technology is marked by fragmentation -- dividing research and development into ever narrower fields of specialization. Ultimately, specialists know everything about nothing. And hope for integrating those slender slivers of specialty into a whole fades. Without an integrated, all-encompassing perspective, technology becomes applied in a lopsided and often inefficient manner. A decisionary model, developed and applied for NASA's Chief Engineer toward establishment of commercial space operations, can be adapted to the identification, evaluation, and selection of optimum application of artificial intelligence for space station automation -- restoring wholeness to a situation that is otherwise chaotic due to increasing subdivision of effort. Issues such as functional assignments for space station task, domain, and symptom modules can be resolved in a manner understood by all parties rather than just the person with assigned responsibility -- and ranked by overall significance to mission accomplishment. Ranking is based on the three basic parameters of cost, performance, and schedule. This approach has successfully integrated many diverse specialties in situations like worldwide terrorism control, coal mining safety, medical malpractice risk, grain elevator explosion prevention, offshore drilling hazards, and criminal justice resource allocation -- all of which would have otherwise been subject to "squeaky wheel" emphasis and support of decision-makers.

  20. Artificial Neural Network and Genetic Algorithm Hybrid Intelligence for Predicting Thai Stock Price Index Trend.

    PubMed

    Inthachot, Montri; Boonjing, Veera; Intakosum, Sarun

    2016-01-01

    This study investigated the use of Artificial Neural Network (ANN) and Genetic Algorithm (GA) for prediction of Thailand's SET50 index trend. ANN is a widely accepted machine learning method that uses past data to predict future trend, while GA is an algorithm that can find better subsets of input variables for importing into ANN, hence enabling more accurate prediction by its efficient feature selection. The imported data were chosen technical indicators highly regarded by stock analysts, each represented by 4 input variables that were based on past time spans of 4 different lengths: 3-, 5-, 10-, and 15-day spans before the day of prediction. This import undertaking generated a big set of diverse input variables with an exponentially higher number of possible subsets that GA culled down to a manageable number of more effective ones. SET50 index data of the past 6 years, from 2009 to 2014, were used to evaluate this hybrid intelligence prediction accuracy, and the hybrid's prediction results were found to be more accurate than those made by a method using only one input variable for one fixed length of past time span.