Science.gov

Sample records for northern coastal plain

  1. Coastal geomorphology of the Martian northern plains

    NASA Technical Reports Server (NTRS)

    Parker, Timothy J.; Gorsline, Donn S.; Saunders, Stephen R.; Pieri, David C.; Schneeberger, Dale M.

    1993-01-01

    The paper considers the question of the formation of the outflow channels and valley networks discovered on the Martian northern plains during the Mariner 9 mission. Parker and Saunders (1987) and Parker et al. (1987, 1989) data are used to describe key features common both in the lower reaches of the outflow channels and within and along the margins of the entire northern plains. It is suggested, that of the geological processes capable of producing similar morphologies on earth, lacustrine or marine deposition and subsequent periglacial modification offer the simplest and most consistent explanation for the suit of features found on Mars.

  2. 40 CFR 81.149 - Northern Coastal Plain Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Northern Coastal Plain Intrastate Air... Air Quality Control Regions § 81.149 Northern Coastal Plain Intrastate Air Quality Control Region. The Northern Coastal Plain Intrastate Air Quality Control Region (North Carolina) consists of the...

  3. Geochemistry of the northern Atlantic Coastal Plain aquifer system

    USGS Publications Warehouse

    Knobel, L.L.; Chapelle, F.H.; Meisler, Harold

    1998-01-01

    Sediments of the northern Atlantic Coastal Plain comprise a complex multiaquifer flow system. On a large scale (greater than 500 square miles) ground water in this system evolves from predominantly calcium magnesium bicarbonate water with a low dissolved-solids content and low pH, near outcrop-recharge areas, to predominantly sodium bicarbonate water with a high-dissolved solids content and high pH, downgradient. This sodium bicarbonate water then grades into a sodium chloride water. This large-scale predictable progression of hydrochemical facies results from the summation of many smaller scale geochemical processes that chiefly depend on the sedimentary depositional environments of the aquifers.

  4. Glaciation of the Coastal Plain of Northern Alaska

    NASA Astrophysics Data System (ADS)

    Jorgenson, M. T.; Shur, Y.

    2008-12-01

    Our 15 years of studies of permafrost soils on the coastal plain of northern Alaska show that it was affected by a continental ice sheet during the last glacial maximum. Evidence for this includes: occurrence of buried glacial basal ice at Barter Island; widespread sandy diamicton from Demarcation Bay to Barrow of late Pleistocene age; orientation of surficial deposits; poorly integrated drainage and gentle ridge and swale topography; the continuity of glacial-related deposits from the coast to the Brooks Foothills; and perennially frozen sediments unlike those of unglaciated Arctic regions. We documented a 10-m-high exposure ~1 km long at Barter Island that had abundant basal glacier ice with large-scale deformation structures, complex ice-contact deposits, and highly deformed bedded silt, sand, and gravel inclusions within the basal ice. Similar ice structures were observed at Prudhoe Bay and Cape Halkett. The glacial till is highly unusual in that it is comprised of massive, non-fossiliferous, brackish, slightly pebbly loamy sand with occasional gravel to cobble-sized clasts. In most areas the till is only 2-5 m thick, although at Barter Island the till was up to 10- m thick. Gravel particles, which comprise 1-5% of the deposits, usually are 0.5-2 cm long, mostly durable chert, highly polished, and frequently cracked off at one end, with the broken face faceted and polished. We believe the material mostly originated from marine deposits on the continental shelf, although rocks of Canadian provenance also occur. Prevalent, large (1-5 m) deformation features of discontinuous yellow oxidized and gray reduced sediment suggest deformation of sediment during collapse of the ice sheet. The sandy till is found along most of the Beaufort coast with the exception of deltas and lagoons and is found inland as much as 80 km. The sandy till is easily eroded, causing the morainal margin to be indistinct and the topography subdued. Previous thermoluminescence dating by

  5. Is there continental crust underneath the northern Natal Valley and the Mozambique Coastal Plains?

    NASA Astrophysics Data System (ADS)

    Leinweber, Volker Thor; Jokat, W.

    2011-07-01

    To draw conclusions about the crustal nature and history of the Natal Valley and the Mozambique Ridge, systematic potential field data were obtained during the AISTEK III cruise with R/V Pelagia in 2009. This paper presents and interprets the results of that expedition. The new magnetic data reveal a pattern of linear magnetic spreading anomalies, NW-SE trending in the southwestern part of the Mozambique Ridge and E-W trending on its central part. The Ariel Graben, which separates the Mozambique Ridge from the Northern Natal Valley, is represented by a pronounced negative anomaly in the magnetic- as well as the free-air gravity field. The Northern Natal Valley bears a complicated pattern of anomalies with mainly SW-NE trends. In the Northern Natal Valley, no indications for a continent-ocean-boundary between continental crust in the north and oceanic crust in the south exist, either in the free-air gravity or in the magnetic field. The magnetic wavelengths of the Mozambique Coastal Plains are similar to those of the Northern Natal Valley and the Mozambique Ridge. Particularly in the gravity data, the Mozambique coastal plains, the Northern Natal Valley and the Mozambique Ridge appear as one continuous geological province. We interpret the region from the Mateke-Sabi monocline in the north to the southwestern tip of the Mozambique Ridge as mainly being floored by thickened oceanic crust.

  6. Geohydrology of the Englishtown Formation in the northern Coastal Plain of New Jersey

    USGS Publications Warehouse

    Nichols, W.D.

    1977-01-01

    The Englishtown Formation of the Matawan Group of Late Cretaceous age is exposed in the western part of the New Jeresy Coastal Plain along a northeast-southwest trending zone extending from Raritan Bay to Delaware Bay. In outcrop, in the northern part of the Coastal Plain, the Englishtown typically consists of a series of thin, cross-stratified, fine- to medium-grained lignitic quartz sand beds intercalated with thin beds of sandy silty clay and clayey silt, ranging in total thickness from about 140 feet (43 meters) near Raritan Bay to about 50 feet (15 meters) near Trenton. In the subsurface of the northern part of the Coastal Plain, the formation retains most of the lithologic characteristics displayed in outcrop. In northern and eastern Ocean County the Englishtown can be subdivided into three distinct lithologic units; upper and lower units of quartz sand with thin interbeds of dark sandy silt, separated by a thick sequence of sandy and clayey lignitic silt. The confined part of the aquifer in the Englishtown Formation is utilized as a source of water over an area of about 1,100 square miles (2,849 square kilometers) of the New Jersey Coastal Plain and is an important source of supply in Monmouth and northern Ocean Counties. The annual average rate of withdrawal from the aquifer in the two-county area increased from 5.5 million gallons per day (0.24 cubic meters per second) in 1959 to 9.5 million gallons per day (0.4 cubic meters per second) in 1970. Water levels in parts of this area were declining 8 to 12 feet (2.4 to 3.6 meters) per year as of 1970 and they declined as much as 140 feet (43 meters) between 1959 and 1970 near pumping centers. The aquifer transmissivity ranges from 2,400 square feet per day to 650 square feet per day (223 square meters per day to 60 square meters per day); the estimated hydraulic conductivity ranges from about 11 feet per day to 20 feet per day (3.3 meters per day to 6.1 meters per day); and the storage coefficient ranges from

  7. Shifting balance of thermokarst lake ice regimes across the Arctic Coastal Plain of northern Alaska

    USGS Publications Warehouse

    Arp, Christopher D.; Jones, Benjamin M.; Lu, Zong; Whitman, Matthew S.

    2012-01-01

    The balance of thermokarst lakes with bedfast- and floating-ice regimes across Arctic lowlands regulates heat storage, permafrost thaw, winter-water supply, and over-wintering aquatic habitat. Using a time-series of late-winter synthetic aperture radar (SAR) imagery to distinguish lake ice regimes in two regions of the Arctic Coastal Plain of northern Alaska from 2003–2011, we found that 18% of the lakes had intermittent ice regimes, varying between bedfast-ice and floating-ice conditions. Comparing this dataset with a radar-based lake classification from 1980 showed that 16% of the bedfast-ice lakes had shifted to floating-ice regimes. A simulated lake ice thinning trend of 1.5 cm/yr since 1978 is believed to be the primary factor driving this form of lake change. The most profound impacts of this regime shift in Arctic lakes may be an increase in the landscape-scale thermal offset created by additional lake heat storage and its role in talik development in otherwise continuous permafrost as well as increases in over-winter aquatic habitat and winter-water supply.

  8. Forest statistics for the northern coastal plain of South Carolina, 1992. Forest Service resource bulletin

    SciTech Connect

    Thompson, M.T.; Sheffield, R.M.

    1993-05-01

    Since 1986, the area of timberland in the Northern Coastal Plain of South Carolina increased by 3 percent to 4.7 million acres. Nonindustrial private forest landowners control 67 percent of the region's timberland. Area classified as a pine type remained stable at 1.9 million acres. More than 116,000 acres were harvested annually, while 177,000 acres were regenerated by artificial and natural means. The volume of softwood growing stock decreased 26 percent to 2.5 billion cubic feet. The volume of hardwood growing stock declined 13 percent to 3.1 billion cubic feet. Extremely high mortality drove net growth downward. Net annual growth of softwoods declined 84 percent to 28 million cubic feet. Hardwood growth dropped 77 percent to 23 million cubic feet. Annual removals of softwood growing stock increased 9 percent to 175 million cubic feet; hardwood removals jumped 18 percent to 87 million cubic feet. Annual mortality of softwood growing stock was up eight times the level recorded in 1986, whereas hardwood mortality was up four times the previous level.

  9. Plan of study for the Northern Atlantic Coastal Plain Regional Aquifer System Analysis

    USGS Publications Warehouse

    Meisler, Harold

    1980-01-01

    Sediments of Cretaceous to Holocene age compose the Northern Atlantic Coastal Plain aquifer system in an area of 50,000 square miles in parts of New York, New Jersey, Delaware, Maryland, Virginia, and North Carolina. The aquifer system is a major source of water supply in the area. About 1.4 billion gallons is withdrawn from its aquifers each day. Increasing withdrawal of ground water has created or intensified several problems such as declining water levels, development of large cones of depression, saltwater intrusion, spreading of ground-water contamination, and land subsidence. The U.S. Geological Survey has begun a comprehensive study that will define the geology, hydrology, and geochemistry of the aquifer system. The effects of future utilization of the aquifer system will be determined and alternative plans for water withdrawal will be evaluated through computer simulation modeling. This report describes the objectives, organization, and work plans of the study, and describes the work to be accomplished in each U.S. Geological Survey District of the study area.

  10. Historical and contemporary imagery to assess ecosystem change on the Arctic coastal plain of northern Alaska

    USGS Publications Warehouse

    Tape, Ken D.; Pearce, John M.; Walworth, Dennis; Meixell, Brandt W.; Fondell, Tom F.; Gustine, David D.; Flint, Paul L.; Hupp, Jerry W.; Schmutz, Joel A.; Ward, David H.

    2014-01-01

    In this report, we describe and make available a set of 61 georectified aerial images of the Arctic Coastal Plain (taken from 1948 to 2010) that were obtained by the USGS to inform research objectives of the USGS CAE Initiative. Here, we describe the origins, metadata, and public availability of these images that were obtained within four main study areas on the Arctic Coastal Plain: Teshekpuk Lake Special Area, Chipp River, the Colville River Delta, and locations along the Dalton Highway Corridor between the Brooks Range and Deadhorse. We also provide general descriptions of observable changes to the geomorphology of landscapes that are apparent by comparing historical and contemporary images. These landscape changes include altered river corridors, lake drying, coastal erosion, and new vegetation communities. All original and georectified images and metadata are available through the USGS Alaska Science Center Portal (search under ‘Project Name’ using title of this report) or by contacting ascweb@usgs.gov.

  11. Digital computer simulation model of the Englishtown aquifer in the northern coastal plain of New Jersey

    USGS Publications Warehouse

    Nichols, W.D.

    1977-01-01

    Continued decline of water levels in the Englishtown aquifer, in New Jersey, has caused considerable concern regarding the ability of the aquifer to meet future yield demands. A detailed study of the capability of the aquifer to yield water entailed the use of a digital computer simulation model to evaluate aquifer and confining layer coefficients and to test alternative concepts of the hydrodynamics of the flow system. The modeled area includes about 750 square miles of the northern Coastal Plain of New Jersey and encompasses all the major centers of pumping from the Englishtown aquifer. The simulation model was calibrated by matching computed declines with historical water-level declines over the 12-year period, 1959-70. The volume of transient and steady leakage into the Englishtown aquifer from and through the adjacent confining layers equaled more than 90 percent of the total volume of water withdrawn from the aquifer between 1959 and 1970. The analytical estimate of transient leakage indicates that about 60 percent of the water withdrawn from the Englishtown between 1959 and 1970 was replaced by water released from storage in the adjacent confining beds. An additional 34 percent of the withdrawal over this time period was supported by steady leakage through the overlying confining bed from the Mount Laurel aquifer. Of the more than 30 billion gallons withdrawn from the aquifer over the 12-year period, about 2 billion gallons were obtained from storage in the aquifer. The values of aquifer and confining-layer coefficients used in the model are nearly the same as the average values obtained from field and laboratory data. (Woodard-USGS)

  12. Preliminary delineation of salty ground water in the northern Atlantic Coastal Plain

    USGS Publications Warehouse

    Meisler, Harold

    1980-01-01

    Salty ground water underlies freshwater in the eastern part of the northern Atlantic Coastal Plain. The transition zone between freshwater and saltwater is represented in this report by a series of maps showing the depths to chloride concentrations of 250, 1,000, 10,000, and 18,000 milligrams per liter. The maps are based on chloride concentrations obtained from self-potential logs as well as from water-quality analyses. Depths to the designated chloride concentrations generally increase inland from the coast except in New Jersey where they are greatest along the coast and in North Carolina where depths to the 10,000 and 18,000 milligrams per liter concentrations are greatest beneath Pamlico Sound. The transition zone between 250 and 18,000 milligrams per liter of chloride is generally 1,500 to 2,300 feet thick except in part of North Carolina, where it is less than 1,000 feet. Depths to 250 and 1,000 milligrams per liter of chloride are probably controlled by the natural flow pattern of fresh ground water. Areas where these concentrations are relatively shallow generally coincide with areas of natural ground-water discharge. Depths to 10,000 and 18,000 milligrams per liter of chloride, and the occurrence offshore of ground water that is fresher than seawater, is attributed to long-term hydrologic conditions during which sea level fluctuations of a few hundred feet recurred several times. The origin of ground water that is saltier than seawater is attributed to the leaching of evaporitic strata beneath the Continental Shelf and Slope followed by westward movement of the brines during periods of sea-level rise.

  13. Assessment of groundwater availability in the Northern Atlantic Coastal Plain aquifer system From Long Island, New York, to North Carolina

    USGS Publications Warehouse

    Masterson, John P.; Pope, Jason P.; Fienen, Michael N.; Monti, Jr., Jack; Nardi, Mark R.; Finkelstein, Jason S.

    2016-08-31

    Executive SummaryThe U.S. Geological Survey began a multiyear regional assessment of groundwater availability in the Northern Atlantic Coastal Plain (NACP) aquifer system in 2010 as part of its ongoing regional assessments of groundwater availability of the principal aquifers of the Nation. The goals of this national assessment are to document effects of human activities on water levels and groundwater storage, explore climate variability effects on the regional water budget, and provide consistent and integrated information that is useful to those who use and manage the groundwater resource. As part of this nationwide assessment, the USGS evaluated available groundwater resources within the NACP aquifer system from Long Island, New York, to northeastern North Carolina.The northern Atlantic Coastal Plain physiographic province depends heavily on groundwater to meet agricultural, industrial, and municipal needs. The groundwater assessment of the NACP aquifer system included an evaluation of how water use has changed over time; this evaluation primarily used groundwater budgets and development of a numerical modeling tool to assess system responses to stresses from future human uses and climate trends.This assessment focused on multiple spatial and temporal scales to examine changes in groundwater pumping, storage, and water levels. The regional scale provides a broad view of the sources and demands on the system with time. The sub-regional scale provides an evaluation of the differing response of the aquifer system across geographic areas allowing for closer examination of the interaction between different aquifers and confining units and the changes in these interactions under pumping and recharge conditions in 2013 and hydrologic stresses as much as 45 years in the future. By focusing on multiple scales, water-resource managers may utilize this study to understand system response to changes as they affect the system as a whole.The NACP aquifer system extends from

  14. Estimating contributions of nitrate and herbicides from groundwater to headwater streams, northern Atlantic Coastal Plain, USA

    USGS Publications Warehouse

    Ator, Scott; Denver, Judith M.

    2012-01-01

    Groundwater transport often complicates understanding of surface-water contamination. We estimated the regional flux of nitrate and selected herbicides from groundwater to nontidal headwater streams of the Atlantic Coastal Plain (New Jersey through North Carolina) based on late-winter or spring base-flow samples from 174 streams. Sampled streams were selected randomly, and flux estimates are based on resulting population estimates rather than on empirical models, which have been used previously for similar estimates. Base-flow flux in the estimated 8,834 headwater streams of the study area are an estimated 21,200 kg/day of nitrate (as N) and 5.83, 0.565, and 20.7 kg/day of alachlor, atrazine, and metolachlor (and selected degradates), respectively. Base-flow flux of alachlor and metolachlor is <3% of the total base-flow flux of those compounds plus degradates. Base-flow flux of nitrate and herbicides as a percentage of applications is typically highest in well-drained areas and lowest in areas with abundant poor drainage and anoxic conditions. In Coastal Plain watersheds of Albemarle and Pamlico Sounds, <2% of applied nitrogen reaches headwater streams as base flow. On the Delmarva Peninsula part of the Chesapeake Bay watershed, however, more than 10% of such applications are transported through groundwater to streams, and base-flow nitrate flux represents 70% of total nitrogen flux in headwater streams.

  15. Methods to assess natural and anthropogenic thaw lake drainage on the western Arctic coastal plain of northern Alaska

    NASA Astrophysics Data System (ADS)

    Hinkel, Kenneth M.; Jones, Benjamin M.; Eisner, Wendy R.; Cuomo, Chris J.; Beck, Richard A.; Frohn, Robert

    2007-06-01

    Thousands of lakes are found on the Arctic Coastal Plain of northern Alaska and northwestern Canada. Developed atop continuous permafrost, these thaw lakes and associated drained thaw lake basins are the dominant landscape elements and together cover 46% of the 34,570 km2 western Arctic Coastal Plain (WACP). Lakes drain by a variety of episodic processes, including coastal erosion, stream meandering, and headward erosion, bank overtopping, and lake coalescence. Comparison of Landsat multispectral scanner (MSS) imagery from the mid-1970s to Landsat 7 enhanced thematic mapper (ETM+) imagery from around 2000 shows that 50 lakes completely or partially drained over the approximately 25 year period, indicating landscape stability. The lake-specific drainage mechanism can be inferred in some cases and is partially dependant on geographic settings conducive to active erosion such as riparian and coastal zones. In many cases, however, the cause of drainage is unknown. The availability of high-resolution aerial photographs for the Barrow Peninsula extends the record back to circa 1950; mapping spatial time series illustrates the dynamic nature of lake expansion, coalescence, and drainage. Analysis of these historical images suggests that humans have intentionally or inadvertently triggered lake drainage near the village of Barrow. Efforts to understand landscape processes and identify events have been enhanced by interviewing Iñupiaq elders and others practicing traditional subsistence lifestyles. They can often identify the year and process by which individual lakes drained, thereby providing greater dating precision and accuracy in assessing the causal mechanism. Indigenous knowledge has provided insights into events, landforms, and processes not previously identified or considered.

  16. Methods to assess natural and anthropogenic thaw lake drainage on the western Arctic coastal plain of northern Alaska

    USGS Publications Warehouse

    Hinkel, Kenneth M.; Jones, Benjamin M.; Eisner, Wendy R.; Cuomo, Chris J.; Beck, R.A.; Frohn, R.

    2007-01-01

    Thousands of lakes are found on the Arctic Coastal Plain of northern Alaska and northwestern Canada. Developed atop continuous permafrost, these thaw lakes and associated drained thaw lake basins are the dominant landscape elements and together cover 46% of the 34,570 km2western Arctic Coastal Plain (WACP). Lakes drain by a variety of episodic processes, including coastal erosion, stream meandering, and headward erosion, bank overtopping, and lake coalescence. Comparison of Landsat multispectral scanner (MSS) imagery from the mid-1970s to Landsat 7 enhanced thematic mapper (ETM+) imagery from around 2000 shows that 50 lakes completely or partially drained over the approximately 25 year period, indicating landscape stability. The lake-specific drainage mechanism can be inferred in some cases and is partially dependant on geographic settings conducive to active erosion such as riparian and coastal zones. In many cases, however, the cause of drainage is unknown. The availability of high-resolution aerial photographs for the Barrow Peninsula extends the record back to circa 1950; mapping spatial time series illustrates the dynamic nature of lake expansion, coalescence, and drainage. Analysis of these historical images suggests that humans have intentionally or inadvertently triggered lake drainage near the village of Barrow. Efforts to understand landscape processes and identify events have been enhanced by interviewing Iñupiaq elders and others practicing traditional subsistence lifestyles. They can often identify the year and process by which individual lakes drained, thereby providing greater dating precision and accuracy in assessing the causal mechanism. Indigenous knowledge has provided insights into events, landforms, and processes not previously identified or considered.

  17. Regional chloride distribution in the Northern Atlantic Coastal Plain aquifer system from Long Island, New York, to North Carolina

    USGS Publications Warehouse

    Charles, Emmanuel G.

    2016-08-31

    Although additional offshore chloride data are available compared to 27 years ago (1989), the offshore information remains sparse, resulting in less confidence in the offshore interpretations than in the onshore interpretations. Regionally, the 250- and 10,000-mg/L isochlors tend to map progressively eastward from the deepest to the shallowest aquifers across the Northern Atlantic Coastal Plain aquifer system but with some exceptions. The additional data, conceptual understanding, and interpretations in the vicinity of the buried Chesapeake Bay impact structure in eastern Virginia resulted in substantial refinement of isochlors in that area. Overall, the interpretations in this study are updates of the previous regional study from 1989 but do not comprise major differences in interpretation and do not indicate regional movement of the freshwater-saltwater interface since then.

  18. Natural and Human Influences on Water Quality in a Shallow Regional Unconsolidated Aquifer, Northern Atlantic Coastal Plain

    USGS Publications Warehouse

    Ator, Scott W.

    2008-01-01

    Data collected from more than 400 wells in the surficial unconfined aquifer in the Northern Atlantic Coastal Plain (New York through North Carolina) were compiled and analyzed to improve understanding of multiple natural and human influences on water quality in such shallow regional aquifers. Geochemical patterns were identified and described through principal components analysis on major ions, and correlation and logistic regression were used to relate observed concentrations of nitrate and selected pesticide compounds (atrazine, metolachlor, simazine, and deethylatrazine, an atrazine degradate) and volatile organic compounds (chloroform, 1,1,1-trichloroethane, tetrachlorethene, and methyl tert-butyl ether) to likely influences, such as observed geochemical patterns, land use, hydrogeology, and soils. Variability in major-ion concentrations is primarily related to ionic strength and redox condition. Concentrations of nitrate, pesticides, and volatile organic compounds are related to natural conditions, as well as the distribution of likely sources reflected in land use. Nitrate is most common in aerobic ground water and in relatively well-drained areas, for example; concentrations greater than 0.4 milligrams per liter may result from a variety of human activities, although concentrations greater than 3 milligrams per liter are more likely in agricultural areas. Atrazine, deethylatrazine, and metolachlor also are related to geochemical patterns, likely because ground-water geochemistry reflects hydrogeologic and soil conditions affecting pesticide transport to the water table. Results demonstrate the value of geochemical information along with the distribution of sources and other influences to understanding the regional occurrence of selected compounds in ground water. Such influences are not unique to the Northern Atlantic Coastal Plain, and thus observations and interpretations are relevant to broader areas.

  19. Selective extinction and survival across the Cretaceous/Tertiary boundary in the northern Atlantic Coastal Plain

    SciTech Connect

    Gallagher, W.B. )

    1991-10-01

    The inner Atlantic Coastal Plain in New Jersey and the Delmarva Peninsula is underlain by an Upper Cretaceous-lower Tertiary sequence of marine and paralic sand, clay, and glauconitic beds. Campanian, Maastrichtian, Danian, and Thanetian deposits are especially fossiliferous and yield a succession of marine faunas that reveal a pattern of selective extinction and survival across the Cretaceous/Tertiary (K/T) boundary in this area. Cretaceous benthic invertebrate communities are dominated by oysters and other semi-infaunal and infaunal molluscs with planktotrophic larval stages. These are replaced in the Danian by brachiopod-dominated communities that are composed of epifaunal benthos with a variety of nonplanktotrophic reproductive strategies. A similar pattern is observable in the nektonic cephalopod populations in this sequence; the typical ammonites of the Cretaceous became extinct at the K/T boundary, whereas the nautilids survived. Ammonites are thought to have had a planktotrophic larval stage, whereas nautilids are known to lay large lecithotrophic eggs. This pattern of differential survival is attributed to the planktonic population crash at the K/T boundary which placed planktotrophically reproducing species at a disadvantage while favoring the varied groups that practiced alternative reproductive strategies.

  20. Assessing groundwater availability in the Northern Atlantic Coastal Plain aquifer system

    USGS Publications Warehouse

    Masterson, John P.; Pope, Jason P.; Monti, Jack; Nardi, Mark R.

    2011-01-01

    The U.S. Geological Survey's Groundwater Resources Program is conducting an assessment of groundwater availability throughout the United States to gain a better understanding of the status of the Nation's groundwater resources and how changes in land use, water use, and climate may affect those resources. The goal of this National assessment is to improve our ability to forecast water availability for future economic and environmental uses. Assessments will be completed for the Nation's principal aquifer systems to help characterize how much water is currently available, how water availability is changing, and how much water we can expect to have in the future (Reilly and others, 2008). The concept of groundwater availability is more than just how much water can be pumped from any given aquifer. Groundwater availability is a function of many factors, including the quantity and quality of water and the laws, regulations, economics, and environmental factors that control its use. The primary objective of the North Atlantic Coastal Plain groundwater-availability study is to identify spatial and temporal changes in the overall water budget by more fully determining the natural and human processes that control how water enters, moves through, and leaves the groundwater system. Development of tools such as numerical models can help hydrologists gain an understanding of this groundwater system, allowing forecasts to be made about the response of this system to natural and human stresses, and water quality and ecosystem health to be analyzed, throughout the region.

  1. Northern Plains 'Crater'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    10 December 2004 The lower left (southwest) corner of this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the location of a somewhat filled and buried meteor impact crater on the northern plains of Mars. The dark dots are boulders. A portion of a similar feature is seen in the upper right (northeast) corner of the image. This picture, showing landforms (including the odd mound north/northeast of the crater) that are typical of the martian northern lowland plains, was obtained as part of the MGS MOC effort to support the search for a landing site for the Phoenix Mars Scout lander. Phoenix will launch in 2007 and land on the northern plains in 2008. This image is located near 68.0oN, 227.4oW, and covers an area approximately 3 km (1.9 mi) wide. The scene is illuminated by sunlight from the lower left.

  2. Assessment of groundwater availability in the Northern Atlantic Coastal Plain aquifer system From Long Island, New York, to North Carolina

    USGS Publications Warehouse

    Masterson, John P.; Pope, Jason P.; Fienen, Michael N.; Monti, Jr., Jack; Nardi, Mark R.; Finkelstein, Jason S.

    2016-08-31

    Executive SummaryThe U.S. Geological Survey began a multiyear regional assessment of groundwater availability in the Northern Atlantic Coastal Plain (NACP) aquifer system in 2010 as part of its ongoing regional assessments of groundwater availability of the principal aquifers of the Nation. The goals of this national assessment are to document effects of human activities on water levels and groundwater storage, explore climate variability effects on the regional water budget, and provide consistent and integrated information that is useful to those who use and manage the groundwater resource. As part of this nationwide assessment, the USGS evaluated available groundwater resources within the NACP aquifer system from Long Island, New York, to northeastern North Carolina.The northern Atlantic Coastal Plain physiographic province depends heavily on groundwater to meet agricultural, industrial, and municipal needs. The groundwater assessment of the NACP aquifer system included an evaluation of how water use has changed over time; this evaluation primarily used groundwater budgets and development of a numerical modeling tool to assess system responses to stresses from future human uses and climate trends.This assessment focused on multiple spatial and temporal scales to examine changes in groundwater pumping, storage, and water levels. The regional scale provides a broad view of the sources and demands on the system with time. The sub-regional scale provides an evaluation of the differing response of the aquifer system across geographic areas allowing for closer examination of the interaction between different aquifers and confining units and the changes in these interactions under pumping and recharge conditions in 2013 and hydrologic stresses as much as 45 years in the future. By focusing on multiple scales, water-resource managers may utilize this study to understand system response to changes as they affect the system as a whole.The NACP aquifer system extends from

  3. Digital elevations and extents of regional hydrogeologic units in the Northern Atlantic Coastal Plain aquifer system from Long Island, New York, to North Carolina

    USGS Publications Warehouse

    Pope, Jason P.; Andreasen, David C.; Mcfarland, E. Randolph; Watt, Martha K.

    2016-08-31

    Digital geospatial datasets of the extents and top elevations of the regional hydrogeologic units of the Northern Atlantic Coastal Plain aquifer system from Long Island, New York, to northeastern North Carolina were developed to provide an updated hydrogeologic framework to support analysis of groundwater resources. The 19 regional hydrogeologic units were delineated by elevation grids and extent polygons for 20 layers: the land and bathymetric surface at the top of the unconfined surficial aquifer, the upper surfaces of 9 confined aquifers and 9 confining units, and the bedrock surface that defines the base of all Northern Atlantic Coastal Plain sediments. The delineation of the regional hydrogeologic units relied on the interpretive work from source reports for New York, New Jersey, Delaware and Maryland, Virginia, and North Carolina rather than from re-analysis of fundamental hydrogeologic data. This model of regional hydrogeologic unit geometries represents interpolation, extrapolation, and generalization of the earlier interpretive work. Regional units were constructed from available digital data layers from the source studies in order to extend units consistently across political boundaries and approximate units in offshore areas.Though many of the Northern Atlantic Coastal Plain hydrogeologic units may extend eastward as far as the edge of the Atlantic Continental Shelf, the modeled boundaries of all regional hydrogeologic units in this study were clipped to an area approximately defined by the furthest offshore extent of fresh to brackish water in any part of the aquifer system, as indicated by chloride concentrations of 10,000 milligrams per liter. Elevations and extents of units that do not exist onshore in Long Island, New York, were not included north of New Jersey. Hydrogeologic units in North Carolina were included primarily to provide continuity across the Virginia-North Carolina State boundary, which was important for defining the southern edge of

  4. The genus Krithe (Ostracoda) from the Campanian and Maastrichtian (Upper Cretaceous) of the northern US Gulf Coastal Plain

    USGS Publications Warehouse

    Puckett, T.M.

    1997-01-01

    The ostracode genus Krithe is one of the most common genera in the Upper Cretaceous (late Santonian to Maastrichtian) deposits of the northern Gulf Coastal Plain of North America. Although it is never abundant, the genus occurs in sediments that were deposited under a wide range of palaeoenvironments, including nearshore sandy marls to offshore, nearly pure, chalk. The taxonomy of this taxon has been problematical, and what is herein considered to be a single species, K. cushmani, has been referred to in the literature under five different names. Two morphotypes were observed: relatively large individuals with 'mushroom'-shaped vestibules collected from chalk, and smaller individuals with pocket-shaped vestibules collected from nearshore deposits. Species of Krithe have been hypothesized to be useful in estimating dissolved oxygen concentration in ancient ocean floors, based on details of their morphology. Whereas the relationship between size and environment corroborates with previous predictions (larger individuals live in deeper water), the morphology of the vestibules contradicts predictions (the larger vestibules occur in the nearshore deposits and the smaller, more constricted vestibules occur in the chalk). A causal relationship between environment and morphology is discussed.

  5. Effect of eustatic sea-level changes on saltwater-freshwater relations in the Northern Atlantic Coastal Plain

    USGS Publications Warehouse

    Meisler, Harold; Leahy, P. Patrick; Knobel, LeRoy L.

    1984-01-01

    A finite-difference computer model was used to analyze the effect of eustatic sea-level changes on the development of the transition zone between fresh ground water and underlying saltwater in the northern Atlantic Coastal Plain. The model simulates, in cross section, the sedimentary wedge from the Delaware River estuary in New Jersey to the Continental Slope. Simulated steady-state freshwater flow is separated from static saltwater by a sharp interface. The model was used to test the sensitivity of the simulated interface position to anisotropy as well as to sea-level elevation. Increasing anisotropy causes the interface to be shallower and extend farther offshore. Lowering sea level causes the interface to be deeper and to extend farther offshore. Simulations using hydraulic conductivities based on available data suggest that the transition zone is not in equilibrium with present sea level. The position of the transition zone probably reflects a long-term average sea level of between 50 and 100 ft below present sea level. The cyclic movement of salty ground water in response to sea-level fluctuations during the Quaternary and Late Tertiary caused the saltwater to mix with freshwater, thus producing a broad transition zone. The freshwater is predominantly sodium bicarbonate in character. The saltwater, from New Jersey to Virginia, probably is a sodium calcium chloride brine. In North Carolina, it is primarily seawater.

  6. Hydrogeochemical features of groundwater of semi-confined coastal aquifer in Amol-Ghaemshahr plain, Mazandaran Province, Northern Iran.

    PubMed

    Khairy, Houshang; Janardhana, M R

    2013-11-01

    Hydrogeochemical data of groundwater from the semi-confined aquifer of a coastal two-tier aquifer in Amol-Ghaemshahr plain, Mazandaran Province, Northern Iran reveal salinization of the fresh groundwater (FGW). The saline groundwater zone is oriented at an angle to both Caspian Sea coastline and groundwater flow direction and extends inland from the coastline for more than 40 km. Spearman's rank correlation coefficient matrices, factor analysis data, and values of C ratio, chloro-alkaline indices, and Na(+)/Cl(-) molar ratio indicate that the ionic load in the FGW is derived essentially from carbonic acid-aided weathering of carbonates and aluminosilicate minerals, relict connate saline water, and ion exchange reactions. Saline groundwater samples (SGWS) (n = 20) can be classified into two groups. SGWS of group 1 (n = 17) represent the saline groundwater zone below the Caspian Sea level, and salinization is attributed essentially to (1) lateral intrusion of Caspian seawater as a consequence of (a) excessive withdrawal of groundwater from closely spaced bore wells located in the eastern part of the coastal zone and (b) imbalance between recharge and discharge of the two-tier aquifer and (2) upconing of paleobrine (interfaced with FGW) along deep wells. SGWS of this group contain, on average, 7.9% of saltwater, the composition of which is similar to that of Caspian seawater. SGWS of group 2 (n = 3) belong to the saline groundwater zone encountered above the Caspian Sea level, and salinization of the groundwater representing these samples is attributed to irrigation return flow (n = 2) and inflow of saline river water (n = 1).

  7. Spatio-temporal analysis of gyres in oriented lakes on the Arctic Coastal Plain of northern Alaska based on remotely sensed images

    USGS Publications Warehouse

    Zhan, Shengan; Beck, Richard A.; Hinkel, Kenneth M.; Liu, Hongxing; Jones, Benjamin M.

    2014-01-01

    The formation of oriented thermokarst lakes on the Arctic Coastal Plain of northern Alaska has been the subject of debate for more than half a century. The striking elongation of the lakes perpendicular to the prevailing wind direction has led to the development of a preferred wind-generated gyre hypothesis, while other hypotheses include a combination of sun angle, topographic aspect, and/or antecedent conditions. A spatio-temporal analysis of oriented thermokarst lake gyres with recent (Landsat 8) and historical (Landsat 4, 5, 7 and ASTER) satellite imagery of the Arctic Coastal Plain of northern Alaska indicates that wind-generated gyres are both frequent and regionally extensive. Gyres are most common in lakes located near the Arctic coast after several days of sustained winds from a single direction, typically the northeast, and decrease in number landward with decreasing wind energy. This analysis indicates that the conditions necessary for the Carson and Hussey (1962) wind-generated gyre for oriented thermokarst lake formation are common temporally and regionally and correspond spatially with the geographic distribution of oriented lakes on the Arctic Coastal Plain. Given an increase in the ice-free season for lakes as well as strengthening of the wind regime, the frequency and distribution of lake gyres may increase. This increase has implications for changes in northern high latitude aquatic ecosystems, particularly if wind-generated gyres promote permafrost degradation and thermokarst lake expansion.

  8. Northern Plains Patterns

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-513, 14 October 2003

    Patterns are common on the northern plains of Mars. Like their terrestrial counterparts in places like Siberia, Alaska, and northern Canada, patterned ground on Mars might be an indicator of the presence of ground ice. Whether it is true that the patterns on Mars are related to ground ice and whether the ice is still present beneath the martian surface are unknown. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) picture shows an example of patterned ground on the martian northern plains near 72.4oN, 252.6oW. The dark dots and lines are low mounds and chains of mounds. The circular feature near the center of the image is the location of a buried meteor impact crater; its presence today is marked only by the dark boulders on its rim and ejecta blanket that have managed to remain uncovered at the martian surface. The area shown is 3 km (1.9 mi) wide and illuminated by sunlight from the lower left.

  9. Stratigraphy and depositional environments of Vicksburgian Oligocene of northern Gulf Coastal Plain

    SciTech Connect

    Coleman, J.L. Jr.

    1983-03-01

    The Vicksburg Group (Oligocene) is a predominantly carbonate unit that extends in a narrow belt from Rosefield, Louisiana, to western Florida. East of the LaSalle arch (eastern Louisiana) the carbonates of the Vicksburg Group are continental shelf in origin and display a sedimentary strike of approximately eastwest. The carbonate formations of the Vicksburg Group are demonstrated to be facies of one another and to constitute a single sedimentary cycle. The outcrop belt strikes west-northwest across the sedimentary strike displaying changes in the lithofacies of the group. The Byram Formation is redefined to include the silty sands and wackestones of a regressive carbonate shelf/destructional bank facies. The Glendon Formation is restricted to include only the skeletal grainstones and coarse sands of a carbonate shoal/shoreline. The Marianna Formation includes mudstones of an algal mud shelf bottom and silty sands of a back-bank facies. The Mint Spring Formation consists of silty sands of a destructional delta environment and includes those glauconite sands that overlie the prodelta clays of the Forest Hill Formation. The Rosefield Formation is probably a chenier plain silty clay with a coquina beach zone of fossils common to the Byram Formation. Penecontemporaneous or post-Vicksburg erosion on the crest of the Wiggins uplift apparently restricted or removed possible Vicksburgian coral-algal reef or nummulitic bank sediments. Limited subsurface data show that a nummulitic bank did develop on the north flank of the uplift. This bank migrated northward as the Marianna back-bank area shoaled and produced the Nummulites-Lepidocyclina grainstone/sand of the Glendon Formation at its type locality.

  10. Evolution of Pre-Jurassic basement beneath northern Gulf of Mexico coastal plain

    SciTech Connect

    Van Siclen, D.C.

    1990-09-01

    Data from the northern Gulf Coast region reveal a late Paleozoic wrench fault system along which North America (NA) moved southeast (present directions) alongside the northeastern edge of future South America (SA), to where collision with that continent converted a broad continental embankment off the Southern Oklahoma aulacogen into the Ouachita thrust belt. At the same time, Africa farther east, to which protruding SA was firmly joined, was continuing to advance the Appalachian thrusts on the opposite side of these faults. This relationship left no space between the American continents for the conventional remnant ocean or microcontinents. By Late Triassic time, however, extension south of the Ouachita Mountains was forming the series of Interior rift basins, at both ends of which new wrench faults transferred the extension southward to the DeSoto Canyon and South Texas rift basins. Genetically, the Ouachita thrusts are part of the subduction zone along the front of a former SA forearc basin, which continued to receive marine sediments into middle Permian. The Wiggins arch southeast of it is a sliver of that continent, left with NA when the Interior basin rifting jumped from that forearc basin southward across bordering outer basement highs to begin opening the deep Gulf of Mexico (GOM) basin. The Late Triassic crustal extension resulted from right-lateral translation of NA around the bulge of northwestern Africa. About 200 mi of this placed Cape Hatteras against Africa's Cap Blanc, in the configuration from which the magnetic data indicate spreading began in the Central North Atlantic Ocean. The reality of this translation is confirmed by widespread rifting at the same time in western North Africa and between all three northern Atlantic continents; this drew the tip of the Tethys sea southward to Cape Hatteras and led to deposition of voluminous Late Triassic red beds and evaporites along it.

  11. Widespread Degradation of Ice Wedges on the Arctic Coastal Plain in Northern Alaska in Response to the Recent Warmer Climate

    NASA Astrophysics Data System (ADS)

    Shur, Y.; Jorgenson, M. T.; Pullman, E. R.

    2003-12-01

    The continuous permafrost on the Arctic Coastal Plain in northern Alaska has been considered stable because permafrost temperatures remain low, even with an increase of several degrees during the last decades. Ice wedges, however, are particularly susceptible to degradation because only a very thin layer of permafrost (the transient layer) exists between the ice and the bottom of the active layer. An increase in the active layer during unusually warm periods causes the thawing front to encounter the underlying ice wedges and initiate degradation. Field observations and photogrammetric analysis of 1945, 1979, and 2001 aerial photography indicate that there has been widespread degradation of the ice wedges on the Arctic Coastal Plain west of the Colville Delta over the recent 57-year period, and indications are that most of the degradation occurred during the last two decades. Field sampling at 46 polygonal troughs and their intersections showed that ice wedge degradation has been relatively recent as indicated by newly drowned vegetation. We found thermokarst was widespread on a variety of terrain conditions, but most prevalent on, ice-rich centers of old drained lake basins and alluvial-marine terraces, which have the greatest ice wedge development in the studied landscape. Ice wedges on these terrains typically occupy from 10 to 20 % of the upper permafrost. We attributed the natural degradation to warm weather during the last decades, because disturbance of the ground surface, which could have similar impact on ice wedges, was not evident. While, ice-wedge degradation probably has been periodically occurring at low rates over the preceding centuries, it has greatly accelerated during the last several decades. We identified six stages of ice-wedge degradation and stabilization. They include: (1) the loss of transient layer of upper permafrost above ice wedges, leading to enhanced nutrient availability and vegetative growth; (2) thawing of ice wedges and surface

  12. Biogenic origin of coalbed gas in the northern Gulf of Mexico Coastal Plain, U.S.A

    USGS Publications Warehouse

    Warwick, P.D.; Breland, F.C.; Hackley, P.C.

    2008-01-01

    New coal-gas exploration and production in northern Louisiana and south-central Mississippi, Gulf of Mexico Basin, is focused on the Wilcox Group (Paleocene-Eocene), where the depth to targeted subbituminous C to high volatile C bituminous coal beds ranges from 300 to 1680??m, and individual coal beds have a maximum thickness of about 6??m. Total gas content (generally excluding residual gas) of the coal beds ranges from less than 0.37??cm3/g (as-analyzed or raw basis; 1.2??cm3/g, dry, ash free basis, daf) at depths less than 400??m, to greater than 7.3??cm3/g (as-analyzed basis; 8.76??cm3/g, daf) in deeper (> 1,500??m) parts of the basin. About 20 Wilcox coal-gas wells in northern Louisiana produce from 200 to 6485??m3 of gas/day and cumulative gas production from these wells is approximately 25??million m3 (as of December, 2006). U.S. Geological Survey assessment of undiscovered, technically recoverable gas resources in the Gulf of Mexico Coastal Plain, including northern and south-central Mississippi, indicates that coal beds of the Wilcox Group contain an estimated mean total 109.3??million m3 (3.86??trillion ft3) of producible natural gas. To determine the origin of the Wilcox Group coal gases in northern Louisiana, samples of gas, water, and oil were collected from Wilcox coal and sandstone reservoirs and from under- and overlying Late Cretaceous and Eocene carbonate and sandstone reservoirs. Isotopic data from Wilcox coal-gas samples have an average ??13CCH4 value of - 62.6??? VPDB (relative to Vienna Peedee Belemnite) and an average ??DCH4 value of - 199.9??? VSMOW (relative to Vienna Standard Mean Ocean Water). Values of ??13CCO2 range from - 25.4 to 3.42??? VPDB. Produced Wilcox saline water collected from oil, conventional gas, and coalbed gas wells have ??DH2O values that range from - 27.3 to - 18.0??? VSMOW. These data suggest that the coal gases primarily are generated in saline formation water by bacterial reduction of CO2. Shallow (< 150??m) Wilcox

  13. Early to middle Pleistocene Arctic coastal ice caps in the Northern Interior Plains of Canada, a comparison with northeastern Siberian coastal uplands

    NASA Astrophysics Data System (ADS)

    Duk-Rodkin, A.; Barendregt, R. W.; Velichko, A. A.; Galloway, J. M.; McNeil, D.

    2012-12-01

    A stratigraphic record of four to five ice-cap developments during the last 2.6 myr was discovered along the Northern Interior Plains (NIP) of the Canadian Continental Arctic Coast below 500 m elevation. Paleomagnetism, macrofossils, foraminifera, till fabrics and pebble lithologies were obtained from outcrops. This glacial stratigraphic record is less extensive than that found west of the continental divide in the Northern Canadian Cordillera, where at least 11 glaciations occurred in the last 2.7 Ma and where uplift along the south side of NW North America during the Pliocene set the stage for large scale glaciations. These coastal mountains and the continental divide created a double rain shadow effect that limited Pacific moisture reaching the NIP. East of the continental divide, moisture supply was only sufficient to form valley glaciers in five of the glacial periods that affected the Cordillera. The NIP was also affected by five glaciations. Ice-caps developed periodically and in the late Pleistocene, the Laurentide Ice Sheet covered all of the NIP. During interglacial times, the NIP experienced dry steppe conditions, similar to modern northern climates found in regions of extreme continentality. The geographic setting along the eastern Siberian coast is comparable to conditions of the NIP, but no record of glaciations exists from upland areas near the Arctic Ocean. Moisture supply and temperature were likely insufficient to form local ice caps at low coastal elevations (<600 m) during the Pleistocene; only in the mountains to the south did glaciers form. Climatic conditions leading to the formation of ice-caps in the NIP may be related to local influences, such as an open or partially open Arctic Ocean. Ice caps may have formed during interglacial times when warm waters periodically entered the Arctic Ocean. There is sufficient data linking marine life from the Bering Sea to western Canadian Arctic to support the idea that warm waters from the NE Pacific

  14. A regional classification of the effectiveness of depressional wetlands at mitigating nitrogen transport to surface waters in the Northern Atlantic Coastal Plain

    USGS Publications Warehouse

    Ator, Scott W.; Denver, Judith M.; LaMotte, Andrew E.; Sekellick, Andrew J.

    2013-01-01

    Nitrogen from nonpoint sources contributes to eutrophication, hypoxia, and related ecological degradation in Atlantic Coastal Plain streams and adjacent coastal estuaries such as Chesapeake Bay and Pamlico Sound. Although denitrification in depressional (non-riparian) wetlands common to the Coastal Plain can be a significant landscape sink for nitrogen, the effectiveness of individual wetlands at removing nitrogen varies substantially due to varying hydrogeologic, geochemical, and other landscape conditions, which are often poorly or inconsistently mapped over large areas. A geographic model describing the spatial variability in the likely effectiveness of depressional wetlands in watershed uplands at mitigating nitrogen transport from nonpoint sources to surface waters was constructed for the Northern Atlantic Coastal Plain (NACP), from North Carolina through New Jersey. Geographic and statistical techniques were used to develop the model. Available medium-resolution (1:100,000-scale) stream hydrography was used to define 33,799 individual watershed catchments in the study area. Sixteen landscape metrics relevant to the occurrence of depressional wetlands and their effectiveness as nitrogen sinks were defined for each catchment, based primarily on available topographic and soils data. Cluster analysis was used to aggregate the 33,799 catchments into eight wetland landscape regions (WLRs) based on the value of three principal components computed for the 16 original landscape metrics. Significant differences in topography, soil, and land cover among the eight WLRs demonstrate the effectiveness of the clustering technique. Results were used to interpret the relative likelihood of depressional wetlands in each WLR and their likely effectiveness at mitigating nitrogen transport from upland source areas to surface waters. The potential effectiveness of depressional wetlands at mitigating nitrogen transport varies substantially over different parts of the NACP

  15. Shot Ingestion by Wintering Female Northern Pintails (Anas acuta) in the Texas Coastal Plain, 2012-14.

    PubMed

    Huck, Nathaniel R; Ballard, Bart M; Fedynich, Alan M; Kraai, Kevin J; Castro, Mauro E

    2016-01-01

    Historically, lead poisoning through lead shot ingestion was one of the largest health issues affecting waterfowl in North America. Lead shot was banned for use in waterfowl hunting in the US in 1991 and was banned in Canada in 1997. However, biologists need to understand how, and if, lead shot remaining in the environment will continue to impact waterfowl. Our goal was to estimate lead and nontoxic shot consumption by female Northern Pintails (Anas acuta) wintering along the Texas coast. We found shot or metal fragments (or both) in the gizzards of 39 (17%) of 227 female Northern Pintails collected along the Texas coast. Of these, lead shot was found in seven gizzards, steel shot was found in 24 gizzards, and other metal and fragments were found in 20 gizzards. Some females consumed multiple shot types. Overall, shot (lead and nontoxic combined) ingestion rates were similar to those found prior to the lead shot ban in Texas (14%) and Louisiana (17%); however, lead shot ingestion rates were considerably lower, suggesting that it is becoming less available over time. All Northern Pintails that had lead shot in their gizzards were collected from coastal habitats. While it seems that lead shot ingestion by Northern Pintails has decreased since the ban was put in place, monitoring lead shot ingestion rates from different regions will provide insight into its availability in different habitats and under various environmental conditions.

  16. The fault pattern in the northern Negev and southern Coastal Plain of Israel and its hydrogeological implications for groundwater flow in the Judea Group aquifer

    NASA Astrophysics Data System (ADS)

    Weinberger, G.; Rosenthal, E.

    1994-03-01

    On the basis of a broadly expanding data base, the hydrogeological properties of the Judea Group sequence in the northern Negev and southern Coastal Plain of Israel have been reassessed. The updated subsurface model is based on data derived from water- and oil-wells and on recent large-scale geophysical investigations. A new regional pattern of the reassessed geological through the subsurface of the study area has been revealed. In view of the reassessed geological and hydrological subsurface setting, it appears that the Judea Group aquifer should not be regarded as one continuous and undisturbed hydrological unit; owing to the occurrence of regional faults, its subaquifers are locally interconnected. These subaquifers, which contain mainly high-quality water, are juxtaposed, as a result of faulting, against Kurnub Group sandstones containing brackish paleowater. The latter Group is faulted against late Jurassic formations containing highly saline groundwater. In the Beer Sheva area, the Judea Group aquifer is vertically displaced against the Senonian and Eocene Mt. Scopus and Avdat Groups, which also contain brackish and saline water. In the southern Coastal Plain, major faults locally dissect also the Pleistocene Kurkar Group, facilitating inflow of Mg-rich groundwater deriving from Judea Group dolomites. The new geological evidence and its hydrogeological implications provide new solutions for previously unexplained salinization phenomena.

  17. Geophysical modeling of the northern Appalachian Brompton-Cameron, Central Maine, and Avalon terranes under the New Jersey Coastal Plain

    USGS Publications Warehouse

    Maguire, T.J.; Sheridan, R.E.; Volkert, R.A.

    2004-01-01

    A regional terrane map of the New Jersey Coastal Plain basement was constructed using seismic, drilling, gravity and magnetic data. The Brompton-Cameron and Central Maine terranes were coalesced as one volcanic island arc terrane before obducting onto Laurentian, Grenville age, continental crust in the Taconian orogeny [Rankin, D.W., 1994. Continental margin of the eastern United States: past and present. In: Speed, R.C., (Ed.), Phanerozoic Evolution of North American Continent-Ocean Transitions. DNAG Continent-Ocean Transect Volume. Geological Society of America, Boulder, Colorado, pp. 129-218]. Volcanic island-arc rocks of the Avalon terrane are in contact with Central Maine terrane rocks in southern Connecticut where the latter are overthrust onto the Brompton-Cameron terrane, which is thrust over Laurentian basement. Similarities of these allochthonous island arc terranes (Brompton-Cameron, Central Maine, Avalon) in lithology, fauna and age suggest that they are faulted segments of the margin of one major late Precambrian to early Paleozoic, high latitude peri-Gondwana island arc designated as "Avalonia", which collided with Laurentia in the early to middle Paleozoic. The Brompton Cameron, Central Maine, and Avalon terranes are projected as the basement under the eastern New Jersey Coastal Plain based on drill core samples of metamorphic rocks of active margin/magmatic arc origin. A seismic reflection profile across the New York Bight traces the gentle dipping (approximately 20 degrees) Cameron's Line Taconian suture southeast beneath allochthonous Avalon and other terranes to a 4 sec TWTT depth (approximately 9 km) where the Avalonian rocks are over Laurentian crust. Gentle up-plunge (approximately 5 degrees) projections to the southwest bring the Laurentian Grenville age basement and the drift-stage early Paleozoic cover rocks to windows in Burlington Co. at approximately 1 km depth and Cape May Co. at approximately 2 km depths. The antiformal Shellburne

  18. Geohydrology and digital-simulation model of the Farrington aquifer in the northern coastal plain of New Jersey

    USGS Publications Warehouse

    Farlekas, George M.

    1979-01-01

    A two-dimensional digital-computer flow model was developed to simulate the Farrington aquifer in the northern part of the Coastal Plain of New Jersey. The area of detailed study includes approximately 500 square miles in Middlesex and Monmouth Couties where the aquifer provides a large part of the municipal and industrial water supply. The area modeled is much larger, extending seaward as well as northeastward into Long Island. The aquifer consists chiefly of the Farrington Sand Member of the Raritan Formation and is composed of sand and some gravel. It thickens from a featheredge in outcrop to more than 170 feet, 11 miles to the southeast. The confining unit between the Farrington and the overlying Old Bridge Sand Member of the Magothy Formation consists primarily of the Woodbridge Clay Member of the Raritan Formation and has a maximum thickness of 244 feet. The model simulates both water-table and artesian conditions. The confining unit overlying the Farrington aquifer is simulated as having a variable thickness and vertical hydraulic conductivity. The effect of a declining water level in the overlying Old Bridge aquifer on the Farrington aquifer is also simulated by the model. Values used to describe the hydraulic properties of the Farrington aquifer are: a hydraulic conductivity of 105 feet per day, a storage coefficient of 1.6 x 10-4 for artesian conditions, and a specific yield of 0.25 for water-table conditions. Values for the overlying confining unit are: a vertical hydraulic conductivity ranging from 4.2 x 10-7 to 1.0 x 10-10 feet per second and a specific storage of 4 x 10-5 feet-1. Aquifer simulation for the 15-year period, 1959-73, was used to calibrage the model. The model was calibrated by comparing the observed potentiometric surface of November 1973 with the simulated potentiometric surface. In addition, hydrographs for selected wells were compared with model results. Ground-water withdrawals for 1959 and 1973 were 12.1 and 28.5 milion gallons per

  19. The role of dunes in contrasting saltwater intrusion in coastal areas; a case study in the southern Po Plain Adriatic coast (Ravenna, Northern Italy)

    NASA Astrophysics Data System (ADS)

    Marconi, V.; Antonellini, M.; Balugani, E.; Minchio, A.; Gabbianelli, G.

    2009-04-01

    Due to climate changes and to anthropogenic interventions, saltwater intrusion is affecting the aquifers and the surface water of the Po plain along the Adriatic coast. During the last decade, we recognized in this area a pattern of climate change: precipitations are less frequent and the yearly amount of rain is concentrated in a few strong storm events. This pattern results in an increase of gales strength during the winter, which causes shoreline retreat and an erosion of the coastal dunes. The coastal part of the Po plain consists of a low-lying and mechanically-drained farmland further from the sea and of a narrow belt of dunes and pine forests in the backshore area. The wide sandy beaches are now retreating and the dune system (only a few meters in height) is almoust destroyed, because of tourism development and of disaggregated rivers and shorelines management. A still active dune system is preserved in our study area, a coastal plain included between the Fiumi Uniti and Bevano rivers near the city of Ravenna. As a result of an intensive exploitation of coastal aquifers for agricultural, industrial, and civil uses, both the phreatic aquifer and the surface waters have been contaminated by seawater. Despite its value for the natural ecosystem and the agricultural soil, the phreatic aquifer is not considered of interest by the regional authorities responsible for water management. A detailed hydrogeological survey was performed by our research group during the Summer 2008 within the framework of the CIRCLE-ERANET project WATERKNOW on the effects of climate change on the mediterranean catchments. In this survey 29 auger holes with an average spacing of 350 m where drilled with the objective of determining the top groundwater quality in the coastal aquifer. At the same time, we measured the chemical and physical parameters of the surface waters. The data collected in the field show that a fresh groundwater lens is still present in the aquifer of the backshore

  20. Modelling water-table depth in a primary aquifer to identify potential wetland hydrogeomorphic settings on the northern Maputaland Coastal Plain, KwaZulu-Natal, South Africa

    NASA Astrophysics Data System (ADS)

    Kelbe, Bruce E.; Grundling, Althea T.; Price, Jonathan S.

    2016-02-01

    The primary aquifer on the Maputaland Coastal Plain in northern KwaZulu-Natal, South Africa, is the principal source of water for rivers, lakes and most of the wetlands in dry periods, and is recharged by these systems in wet periods. Modelling hydrologic conditions that control regional water-table depth can provide insight into the spatial patterns of wetland occurrence and of the persistence of wet conditions that control their character. This project used a groundwater model (MODFLOW) to simulate 10-year water-table fluctuations on the Maputaland Coastal Plain from January 2000 to December 2010, to contrast the conditions between wet and dry years. Remote sensing imagery was used to map "permanent" and "temporary" wetlands in dry and wet years to evaluate the effectiveness of identifying the suitable conditions for their formation using numerical modelling techniques. The results confirm that topography plays an important role on a sub-regional and local level to support wetland formation. The wetlands' extent and distribution are directly associated with the spatial and temporal variations of the water table in relation to the topographical profile. Groundwater discharge zones in the lowland (1-50 masl) areas support more permanent wetlands with dominantly peat or high organic soil substrates, including swamp forest and most of the permanent open water areas. Most temporary wetlands associated with low-percentage clay occurrence are through-flow low-lying interdune systems characterised by regional fluctuation of the water table, while other temporary wetlands are perched or partially perched. The latter requires a more sophisticated saturated-unsaturated modelling approach.

  1. Estimating the Regional Flux of Nitrate and Agricultural Herbicide Compounds from Groundwater to Headwater Streams of the Northern Atlantic Coastal Plain, USA

    NASA Astrophysics Data System (ADS)

    Ator, S.; Denver, J. M.

    2011-12-01

    Agriculture is common in the Northern Atlantic Coastal Plain (NACP, including New Jersey through North Carolina), and groundwater discharge provides nitrogen (primarily in the form of nitrate) and herbicide compounds from agricultural sources along with the majority of flow to NACP streams. Poor water quality has contributed to ecological degradation of tidal streams and estuaries along much of the adjacent mid-Atlantic coast. Although statistical models have provided estimates of total instream nutrient flux in the Coastal Plain, the regional flux of nitrogen and herbicides during base flow is less well understood. We estimated the regional flux of nitrate and selected commonly used herbicide compounds from groundwater to non-tidal headwater streams of the NACP on the basis of late-winter or spring base-flow samples from 174 such streams. Sampled streams were selected using an unequal-probability random approach, and flux estimates are based on resulting population estimates rather than empirical models, which are commonly used for such estimates. Base-flow flux in the estimated 8,834 NACP non-tidal headwater streams are an estimated 21,200 kilograms per day of nitrate (as N) and 5.83, 0.565, and 20.7 kilograms per day of alachlor, atrazine, and metolachlor (including selected degradates), respectively. Base-flow flux of alachlor and metolachlor is dominated by degradates; flux of parent compounds is less than 3 percent of the total flux of parent plus degradates. Base-flow flux of nitrate and herbicides as a percentage of applications generally varies predictably with regional variations in hydrogeology. Abundant nonpoint (primarily agricultural) sources and hydrogeologic conditions, for example, contribute to particularly large base-flow flux from the Delmarva Peninsula to Chesapeake Bay. In the Delmarva Peninsula part of the Chesapeake Watershed, more than 10 percent of total nonpoint nitrogen applications is transported through groundwater to stream base flow

  2. Reconstructing conditions during dolomite formation on a Carnian coastal sabkha/alluvial plain using 87Sr/86Sr isotopes - Travenanzes Formation, northern Italy

    NASA Astrophysics Data System (ADS)

    Rieder, Maximilian; Wegner, Wencke; Horschinegg, Monika; Preto, Nereo; Breda, Anna; Klötzli, Urs; Peckmann, Jörn; Meister, Patrick

    2016-04-01

    indicated by oxygen isotopes. The marine 87Sr/86Sr values have been reconstructed for most of the Phanerozoic and are nearly constant in the Carnian (McArthur et al., 2012), while the age of the dolomite beds of the Travenanzes Formation is constrained by their stratigraphic position in the measured section (Dibona Section; Preto et al., 2015). The continental Sr isotope signal is governed by weathering rates, especially during silicate weathering of the source rock in the catchment area (McArthur et al., 2012). Through 87Sr/86Sr isotope investigation of primary dolomite in beds and nodules of the coastal sabkha or alluvial plain environment, the influence of marine or continental conditions can be determined. The finding of celestine SrSO4 and Sr-rich barite BaSO4 within the cemented dolomite by SEM indicates enrichment of Sr, possibly during strong evaporative conditions. Hence, the generation of phase-specific Sr-isotope data will allow for a more precise reconstruction of the conditions that led to dolomite formation in the Triassic shallow coastal sabkha/alluvial plain environment. McArthur et al. (2012) Strontium isotope stratigraphy. In: "The geologic time scale" (F.M Gradstein et al., eds.), Elsevier, p. 127-144. Preto et al. (2015) Primary dolomite in the Late Triassic Travenanzes Formation Dolomites, Northern Italy: Facies control and possible bacterial influence. Sedimentology 62, p. 697-716.

  3. Geology, geochemistry, and tectonostratigraphic relations of the crystalline basement beneath the coastal plain of New Jersey and contiguous areas

    USGS Publications Warehouse

    Volkert, Richard A.; Drake, Avery Ala; Sugarman, Peter J.

    1996-01-01

    Coastal plain sediments are underlain by pre-Mesozoic crystalline rocks. The inner coastal plain is underlain by schist that is correlated with the Potomac Terrane, as well as by mafic rocks probably equivalent to the Wilmington or Bel Air-Rising Sun terranes. The northern and central outer coastal plain is underlain by metasedimentary rocks similar to the Brompton-Cameron Terrane. Rocks beneath the southern coastal plain probably correlate with those of the Chopawamsic and Roanoke Rapids terranes.

  4. Hydrogeology and hydrologic conditions of the Northern Atlantic Coastal Plain aquifer System from Long Island, New York, to North Carolina

    USGS Publications Warehouse

    Masterson, John P.; Pope, Jason P.; Monti, Jack; Nardi, Mark R.; Finkelstein, Jason S.; McCoy, Kurt J.

    2013-11-14

    Updates to the regional hydrologic budget include revised estimates of aquifer recharge, water use and streamflow data. Inflow to the aquifer system of about 20,000 million gallons per day (Mgal/d) includes 19,600 Mgal/d from recharge from precipitation, 200 Mgal/d of recharge from wastewater via onsite domestic septic systems, and 200 Mgal/d from the release of water from aquifer storage. Outflow from the aquifer system includes groundwater discharge to streams (11,900 Mgal/d), groundwater withdrawals (1,500 Mgal/d), and groundwater discharge to coastal waters (6,600 Mgal/d). A numerical modeling analysis is required to improve this hydrologic budget calculation and to forecast future changes in water levels and aquifer storage caused by groundwater withdrawals, land-use changes, and the effects of climate variability and change.

  5. Assessment of pingo distribution and morphometry using an IfSAR derived digital surface model, western Arctic Coastal Plain, Northern Alaska

    USGS Publications Warehouse

    Jones, Benjamin M.; Grosse, G.; Hinkel, Kenneth M.; Arp, C.D.; Walker, S.; Beck, R.A.; Galloway, J.P.

    2012-01-01

    Pingos are circular to elongate ice-cored mounds that form by injection and freezing of pressurized water in near-surface permafrost. Here we use a digital surface model (DSM) derived from an airborne Interferometric Synthetic Aperture Radar (IfSAR) system to assess the distribution and morphometry of pingos within a 40,000km2 area on the western Arctic Coastal Plain of northern Alaska. We have identified 1247 pingo forms in the study region, ranging in height from 2 to 21m, with a mean height of 4.6m. Pingos in this region are of hydrostatic origin, with 98% located within 995 drained lake basins, most of which are underlain by thick eolian sand deposits. The highest pingo density (0.18km-2) occurs where streams have reworked these deposits. Morphometric analyses indicate that most pingos are small to medium in size (<200m diameter), gently to moderately sloping (<30??), circular to slightly elongate (mean circularity index of 0.88), and of relatively low height (2 to 5m). However, 57 pingos stand higher than 10m, 26 have a maximum slope greater than 30??, and 42 are larger than 200m in diameter. Comparison with a legacy pingo dataset based on 1950s stereo-pair photography indicates that 66 may have partially or completely collapsed over the last half-century. However, we mapped over 400 pingos not identified in the legacy dataset, and identified only three higher than 2m to have formed between ca. 1955 and ca. 2005, indicating that caution should be taken when comparing contemporary and legacy datasets derived by different techniques. This comprehensive database of pingo location and morphometry based on an IfSAR DSM may prove useful for land and resource managers as well as aid in the identification of pingo-like features on Mars. ?? 2011.

  6. Assessment of pingo distribution and morphometry using an IfSAR derived digital surface model, western Arctic Coastal Plain, Northern Alaska

    NASA Astrophysics Data System (ADS)

    Jones, Benjamin M.; Grosse, Guido; Hinkel, Kenneth M.; Arp, Christopher D.; Walker, Shane; Beck, Richard A.; Galloway, John P.

    2012-02-01

    Pingos are circular to elongate ice-cored mounds that form by injection and freezing of pressurized water in near-surface permafrost. Here we use a digital surface model (DSM) derived from an airborne Interferometric Synthetic Aperture Radar (IfSAR) system to assess the distribution and morphometry of pingos within a 40,000 km 2 area on the western Arctic Coastal Plain of northern Alaska. We have identified 1247 pingo forms in the study region, ranging in height from 2 to 21 m, with a mean height of 4.6 m. Pingos in this region are of hydrostatic origin, with 98% located within 995 drained lake basins, most of which are underlain by thick eolian sand deposits. The highest pingo density (0.18 km - 2 ) occurs where streams have reworked these deposits. Morphometric analyses indicate that most pingos are small to medium in size (< 200 m diameter), gently to moderately sloping (< 30°), circular to slightly elongate (mean circularity index of 0.88), and of relatively low height (2 to 5 m). However, 57 pingos stand higher than 10 m, 26 have a maximum slope greater than 30°, and 42 are larger than 200 m in diameter. Comparison with a legacy pingo dataset based on 1950s stereo-pair photography indicates that 66 may have partially or completely collapsed over the last half-century. However, we mapped over 400 pingos not identified in the legacy dataset, and identified only three higher than 2 m to have formed between ca. 1955 and ca. 2005, indicating that caution should be taken when comparing contemporary and legacy datasets derived by different techniques. This comprehensive database of pingo location and morphometry based on an IfSAR DSM may prove useful for land and resource managers as well as aid in the identification of pingo-like features on Mars.

  7. Summary of northern Atlantic coastal plain hydrology and its relation to disposal of high-level radioactive waste in buried crystalline rock; a preliminary appraisal

    USGS Publications Warehouse

    Lloyd, O.B.; Larson, J.D.; Davis, R.W.

    1985-01-01

    Interpretation of available hydrologic data suggests that some areas beneath the Coastal Plain in the States of Delaware, Maryland, New Jersey, North Carolina, and Virginia might have some potential for the disposal of nuclear waste in crystalline rock that is buried beneath the Coastal Plain sediments. The areas of major interest occur where the top of the basement rock lies between 1,000 and 4,000 feet below sea level, the aquifer(s) immediately above the basement rock are saturated with saline water, confining material overlies the saline water bearing aquifer(s), and groundwater flow in the saline water aquifer(s) can be established. Preliminary data on (1) the distribution and thickness of the lowermost aquifers and confining beds, (2) the distribution of hydraulic conductivity in the lowermost aquifers, (3) estimated hydraulic heads and inferred direction of lateral groundwater flow for 1980, and (4) the distribution of saline water and brine, indicate eastern parts of the study area relatively best meet most of the criteria proposed for sediments that would overlie any potential buried crystalline-rock disposal site.

  8. The Virginia Coastal Plain Hydrogeologic Framework

    USGS Publications Warehouse

    McFarland, E. Randolph; Bruce, T. Scott

    2006-01-01

    and Exmore matrix confining units, and the Chickahominy confining unit. Piney Point aquifer sediments of early Eocene to middle Miocene age overlie most of the Chesapeake Bay impact crater and beyond, but are a locally significant ground-water supply resource only outside of the crater across the middle reaches of the Northern Neck, Middle, and York-James Peninsulas. Sediments of middle Miocene to late Miocene age that compose the Calvert confining unit and overlying Saint Marys confining unit effectively separate the underlying Piney Point aquifer and deeper aquifers from overlying shallow aquifers. Saint Marys aquifer sediments of late Miocene age separate the Calvert and Saint Marys confining units across two limited areas only. Sediments of the Yorktown-Eastover aquifer of late Miocene to late Pliocene age form the second most heavily used ground-water supply resource. The Yorktown confining zone approximates a transition to the overlying late Pliocene to Holocene sediments of the surficial aquifer, which extends across the entire land surface in the Virginia Coastal Plain and is a moderately used supply. The Yorktown-Eastover aquifer and the eastern part of the surficial aquifer are closely associated across complex and extensive hydraulic connections and jointly compose a shallow, generally semiconfined ground-water system that is hydraulically separated from the deeper system. Vertical faults extend from the basement upward through most of the hydrogeologic units but may be more widespread and ubiquitous than recognized herein, because areas of sparse boreholes do not provide adequate spatial control. Hydraulic conductivity probably is decreased locally by disruption of depositional intergranular structure by fault movement in the generally incompetent sediments. Localized fluid flow in open fractures may be unique in the Chickahominy confining unit. Some hydrogeologic units are partly to wholly truncated where displacements are large rela

  9. Chinese Tallow: Invading the Southeastern Coastal Plain

    USGS Publications Warehouse

    U.S. Geological Survey

    2000-01-01

    Chinese tallow is an ornamental tree with colorful autumn foliage that can survive full sunlight and shade, flooding, drought, and in some cases fire. To horticulturists this kind of tree sounds like a dream, but to ecologists, land managers, and land owners this kind of tree can be a nightmare, especially when it invades an area and takes over native vegetation. Chinese tallow (Triadica sebifera), a nonnative tree from China, is currently transforming the southeastern Coastal Plain. Over the last 30 years, Chinese tallow has become a common tree in old fields and bottomland swamps of coastal Louisiana. Several studies at the U.S. Geological Survey's National Wetlands Research Center (NWRC), Lafayette, Louisiana, are aimed at understanding the factors that contribute to Chinese tallow growth, spread, and management. When tallow invades, it eventually monopolizes an area, creating a forest without native animal or plant species. This tree exhibits classic traits of most nonnative invaders: it is attractive so people want to distribute it, it has incredible resiliency, it grows quickly and in a variety of soils, and it is resistant to pests. In the coastal prairie of Louisiana and Texas, Chinese tallow can grow up to 30 feet and shade out native sun-loving prairie species. The disappearing of prairie species is troublesome because less than 1% of original coastal prairie remains, and in Louisiana, less than 500 of the original 2.2 million acres still exist. Tallow reproduces and grows quickly and can cause large-scale ecosystem modification (fig. 1). For example, when it completely replaces native vegetation, it has a negative effect on birds by degrading the habitat. Besides shading out grasses that cattle like to eat, it can also be potentially harmful to humans and animals because of its berries (fig. 2) and plant sap that contain toxins. There is some concern its leaves may shed toxins that change the soil chemistry and make it difficult for other plants to grow.

  10. Hydrogeochemical characterization of the phreatic system of the coastal wetland located between Fiumi Uniti and Bevano rivers in the southern Po plain (Northern Italy).

    NASA Astrophysics Data System (ADS)

    Marconi, V.; Dinelli, E.; Antonellini, M.; Capaccioni, B.; Balugani, E.; Gabbianelli, G.

    2009-04-01

    A hydrogeochemical study has been undertaken on the phreatic system of the coastal area included between Fiumi Uniti and Bevano rivers (in the southern part of the Po plain, near the city of Ravenna) within the framework of the CIRCLE-ERANET project WATERKNOW on the effects of climate change on the mediterranean catchments. It is one of the first attempt in the area to characterize the shallow groundwater water system and to investigate if the arsenic anomaly, known in deeper groundwater (about 100 µg/l according to recent Annual Groundwater Quality Reports of Emilia-Romagna Region), occurs also in the phreatic system. The coastal part of the Po plain consists of a low-lying and mechanically-drained farmland further from the sea and of a narrow belt of dunes and pine forests in the backshore area. The study area is recognized as a protected area at european (ZPS and SIC, site code number: IT 14070009), national and regional level (Po delta Park area). As a result of an intensive exploitation of coastal aquifers for agricultural, industrial, and civil uses, both the phreatic aquifer and the surface waters (drainage ditches and ponds) have been contaminated by seawater and by deeper groundwater. Samples representative of the top of the water table were collected in Summer 2008 in 22 auger-holes and in 3 shallow piezometers (6 m deep) documenting the deeper layers of the phreatic groundwater system. Temperature, electrical conductivity, pH and Eh of the groundwater and of the surface water were measured on site using portable instruments. Samples were filtered directly in the field, an aliquot was acidified with diluted HCl for metal analysis. Cations were determined by Flame Atomic Absorption (thermo S-series spectrometer), anions by ion chromatography (Dionex ICS-90), Fe, As, Si, B by ICP-OES (Thermo iCAP6000). The data collected in the field show that a fresh groundwater lens is still present at the top of the phreatic aquifer in the backshore area and that the

  11. Chinese tallow: Invading the southeastern Coastal Plain

    USGS Publications Warehouse

    ,

    2000-01-01

    Chinese tallow is an ornamental tree with colorful autumn foliage that can survive full sunlight and shade, flooding, drought, and in some cases fire. To horticulturists this kind of tree sounds like a dream, but to ecologists, land managers, and land owners this kind of tree can be a nightmare, especially when it invades an area and takes over native vegetation. Chinese tallow (Triadica sebifera), a nonnative tree from China, is currently transforming the southeastern Coastal Plain.Over the last 30 years, Chinese tallow has become a common tree in old fields and bottomland swamps of coastal Louisiana. Several studies at the U.S. Geological Survey’s National Wetlands Research Center (NWRC), Lafayette, Louisiana, are aimed at understanding the factors that contribute to Chinese tallow growth, spread, and management.When tallow invades, it eventually monopolizes an area, creating a forest without native animal or plant species. This tree exhibits classic traits of most nonnative invaders: it is attractive so people want to distribute it, it has incredible resiliency, it grows quickly and in a variety of soils, and it is resistant to pests.In the coastal prairie of Louisiana and Texas, Chinese tallow can grow up to 30 feet and shade out native sun-loving prairie species. The disappearing of prairie species is troublesome because less than 1% of original coastal prairie remains, and in Louisiana, less than 500 of the original 2.2 million acres still exist.Tallow reproduces and grows quickly and can cause large-scale ecosystem modification (fig. 1). For example, when it completely replaces native vegetation, it has a negative effect on birds by degrading the habitat. Besides shading out grasses that cattle like to eat, it can also be potentially harmful to humans and animals because of its berries (fig. 2) and plant sap that contain toxins. There is some concern its leaves may shed toxins that change the soil chemistry and make it difficult for other plants to grow.

  12. BIOLOGICAL INTEGRITY IN MID-ATLANTIC COASTAL PLAINS HEADWATER STREAMS

    EPA Science Inventory

    The objective of this study was to assess the applicability of landscape metrics, in conjunction with stream water quality to estimate the biological integrity of headwater streams in the Mid-Atlantic Coastal Plains using multivariate techniques.

  13. A scheme for the uniform mapping and monitoring of earth resources and environmental complexes: An assessment of natural vegetation, environmental, and crop analogs. [Sierra-Lahontan and Colorado Plateaus, Northern Great Valley (CA), and Louisiana Coastal Plain

    NASA Technical Reports Server (NTRS)

    Poulton, C. E.; Welch, R. I. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. A study was performed to develop and test a procedure for the uniform mapping and monitoring of natural ecosystems in the semi-arid and wood regions of the Sierra-Lahontan and Colorado Plateau areas, and for the estimating of rice crop production in the Northern Great Valley (Ca.) and the Louisiana Coastal Plain. ERTS-1 and high flight and low flight aerial photos were used in a visual photointerpretation scheme to identify vegetation complexes, map acreages, and evaluate crop vigor and stress. Results indicated that the vegetation analog concept is valid; that depending on the kind of vegetation and its density, analogs are interpretable at different levels in the hierarchical classification from second to the fourth level. The second level uses physiognomic growth form-structural criteria, and the fourth level uses floristic or taxonomic criteria, usually at generic level. It is recommended that analog comparisons should be made in relatively small test areas where large homogeneous examples can be found of each analog.

  14. Flood hydrology and methylmercury availability in coastal plain rivers.

    PubMed

    Bradley, Paul M; Journey, Celeste A; Chapelle, Francis H; Lowery, Mark A; Conrads, Paul A

    2010-12-15

    Mercury (Hg) burdens in top-predator fish differ substantially between adjacent South Carolina Coastal Plain river basins with similar wetlands coverage. In the Congaree River, floodwaters frequently originate in the Blue Ridge and Piedmont regions, where wetlands coverage and surface water dissolved methylmercury (MeHg) concentrations are low. Piedmont-driven flood events can lead to downward hydraulic gradients in the Coastal Plain riparian wetland margins, inhibiting MeHg transport from wetland sediments, and decreasing MeHg availability in the Congaree River habitat. In the adjacent Edisto River basin, floodwaters originate only within Coastal Plain sediments, maintaining upward hydraulic gradients even during flood events, promoting MeHg transport to the water column, and enhancing MeHg availability in the Edisto River habitat. These results indicate that flood hydrodynamics contribute to the variability in Hg vulnerability between Coastal Plain rivers and that comprehensive regional assessment of the relationship between flood hydrodynamics and Hg risk in Coastal Plain streams is warranted.

  15. Flood hydrology and methylmercury availability in Coastal Plain rivers

    USGS Publications Warehouse

    Bradley, Paul M.; Journey, Celeste A.; Chapelle, Francis H.; Lowery, Mark A.; Conrads, Paul A.

    2010-01-01

    Mercury (Hg) burdens in top-predator fish differ substantially between adjacent South Carolina Coastal Plain river basins with similar wetlands coverage. In the Congaree River, floodwaters frequently originate in the Blue Ridge and Piedmont regions, where wetlands coverage and surface water dissolved methylmercury (MeHg) concentrations are low. Piedmont-driven flood events can lead to downward hydraulic gradients in the Coastal Plain riparian wetland margins, inhibiting MeHg transport from wetland sediments, and decreasing MeHg availability in the Congaree River habitat. In the adjacent Edisto River basin, floodwaters originate only within Coastal Plain sediments, maintaining upward hydraulic gradients even during flood events, promoting MeHg transport to the water column, and enhancing MeHg availability in the Edisto River habitat. These results indicate that flood hydrodynamics contribute to the variability in Hg vulnerability between Coastal Plain rivers and that comprehensive regional assessment of the relationship between flood hydrodynamics and Hg risk in Coastal Plain streams is warranted.

  16. Campanian coastal plain sediments in southeastern Missouri and southern Illinois - Significance to the early geologic history of the northern Mississippi Embayment

    USGS Publications Warehouse

    Harrison, R.W.; Litwin, R.J.

    1997-01-01

    Basal Cretaceous deposits in the northernmost part of the Mississippi Embayment in southeastern Missouri and southern Illinois have been correlated previously with the Tuscaloosa Formation of Alabama. New palynological data indicate that these clastic deposits comprise non-marine and marine sections of middle to late Campanian age. They consist of a lower non-marine deposit, the herein newly proposed Post Creek Formation, and an upper marine deposit that we correlate in part with the Coffee Sand of Tennessee. These Campanian deposits overlie a diachronous Mesozoic paleosol, Little Bear Formation, and are progressively overlain by the McNairy Sand of early to middle Maastrichtian age, the Owl Creek Formation of middle to late Maastrichtian age, and the Porters Creek Clay of late Paleocene age. Outcrops and subsurface occurrences of the Post Creek Formation are widespread around the northern margin of the Mississippi Embayment. In contrast, the Coffee Sand is more restricted in distribution, and is present in southeast Missouri only as an outlier. Extensive occurrences of the Coffee Sand are found in Tennessee and further south in the embayment. This study shows that (1) the basal Cretaceous deposits in the northern Mississippi Embayment are not equivalent to the Tuscaloosa Formation, but are entirely separate stratigraphic units, (2) the shallow Cretaceous Interior Seaway occupied the northernmost part of the present Mississippi Embayment by the late Campanian, and (3) a large part of the northern embayment may have experienced an episode of uplift and erosion during the latest Campanian or earliest Maastrichtian, prior to deposition of McNairy Sand. ?? 1997 Academic Press Limited.

  17. Stratigraphic and hydrogeologic framework of the Alabama Coastal Plain

    USGS Publications Warehouse

    Davis, M.E.

    1988-01-01

    Tertiary and Cretaceous sand aquifers of the Southeastern United States Coastal Plain comprise a major multlstate aquifer system informally defined as the Southeastern Coastal Plain aquifer system, which is being studied as part of the U.S. Geological Survey's Regional Aquifer System Analysis (RASA) program. The major objectives of each RASA study are to identify, delineate, and map the distribution of permeable clastlc rock, to examine the pattern of ground-water flow within the regional aquifers, and to develop digital computer simulations to understand the flow system. The Coastal Plain aquifers in Alabama are being studied as a part of this system. This report describes the stratlgraphlc framework of the Cretaceous, Tertiary, and Quaternary Systems in Alabama to aid in delineating aquifers and confining units within the thick sequence of sediments that comprises the Southeastern Coastal Plain aquifer system in the State. Stratigraphlc units of Cretaceous and Tertiary age that make up most of the aquifer system in the Coastal Plain of Alabama consist of clastlc deposits of Early Cretaceous age; the Coker and Gordo Formations of the Tuscaloosa Group, Eutaw Formation, and Selma Group of Late Cretaceous age; and the Midway, Wilcox, and Clalborne Groups of Tertiary age. However, stratigraphlc units of late Eocene to Holocene age partially overlie and are hydraulically connected to clastic deposits in southern Alabama. These upper carbonate and clastlc stratlgraphic units also are part of the adjoining Florldan and Gulf Coastal Lowlands aquifer systems. The Coastal Plain aquifer system is underlain by pre-Cretaceous rocks consisting of low-permeabillty sedimentary rocks of Paleozolc, Triassic, and Jurassic age, and a complex of metamorphic and igneous rocks of Precambrian and Paleozolc age similar to those found near the surface in the Piedmont physiographic province. Twelve hydrogeologlc units in the Alabama Coastal Plain are defined--slx aquifers and six confining

  18. Lineaments in coastal plain sediments as seen in ERTS imagery

    NASA Technical Reports Server (NTRS)

    Withington, C. F.

    1973-01-01

    Examination of satellite imagery over the Atlantic Coastal Plain near Washington, D. C. shows numerous lineaments, which cannot be accounted for by any known cultural or natural features. At least some of these lineaments represent the surface expression of faults, for one of them has been correlated with the outcrop of a fault that had been traced for several miles in southern Prince Georges County, Maryland. If a substantial number of these lineaments do indeed represent fault traces, the fact that they show on the surface suggests that the geologic history of the Coastal Plain is much more complex than has previously been recognized, and that faulting may have occurred in the Holocene, much later than has generally been recognized. The importance that such recent movements could have on future development of the Coastal Plain should be emphasized.

  19. 40 CFR 81.152 - Southern Coastal Plain Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Southern Coastal Plain Intrastate Air... Air Quality Control Regions § 81.152 Southern Coastal Plain Intrastate Air Quality Control Region. The Southern Coastal Plain Intrastate Air Quality Control Region (North Carolina) consists of the...

  20. SWAT application in low-gradient Coastal Plain landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low-gradient coastal plain watersheds present unique challenges for watershed modeling. Broad low-gradient floodplains with considerable in-stream vegetation contribute to low-velocity streamflow. In addition, direct interaction between streamflow and surficial aquifers must also be considered. H...

  1. BIOLOGICAL INTEGRITY IN MID-ATLANTIC COASTAL PLAINS HEADWATER STREAMS

    EPA Science Inventory

    The objective of this study was to assess the applicability of using landscape variables in conjunction with water quality and benthic data to efficiently estimate stream condition of select headwater streams in the Mid-Atlantic Coastal Plains. Eighty-two streams with riffle sit...

  2. Water Ice Clouds over the Northern Plains

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 14 May 2002) The Science This image, centered near 48.5 N and 240.5 W, displays splotchy water ice clouds that obscure the northern lowland plains in the region where the Viking 2 spacecraft landed. This image is far enough north to catch the edge of the north polar hood that develops during the northern winter. This is a cap of water and carbon dioxide ice clouds that form over the Martian north pole. As Mars progresses into northern spring, the persistent north polar hood ice clouds will dissipate and the surface viewing conditions will improve greatly. As the season develops, an equatorial belt of water ice clouds will form. This belt of water ice clouds is as characteristic of the Martian climate as the southern hemisphere summer dust storm season. Seasons on Mars have a dramatic effect on the state of the dynamic Martian atmosphere. The Story Muted in an almost air-brushed manner, this image doesn't have the crispness that most THEMIS images have. That's because clouds were rising over the surface of the red planet on the day this picture was taken. Finding clouds on Mars might remind us of conditions here on Earth, but these Martian clouds are made of frozen water and frozen carbon dioxide -- in other words, clouds of ice and 'dry ice.' Strange as that may sound, the clouds seen here form on a pretty regular basis at the north Martian pole during its winter season. As springtime comes to the northern hemisphere of Mars (and fall comes to the southern), these clouds will slowly disappear, and a nice belt of water ice clouds will form around the equator. So, if you were a THEMIS camera aimer, that might tell you when your best viewing conditions for different areas on Mars would be. As interesting as clear pictures of Martian landforms are, however, you wouldn't want to bypass the weather altogether. Pictures showing seasonal shifts are great for scientists to study, because they reveal a lot about the patterns of the Martian climate and the

  3. Land Cover Trends in the Southern Florida Coastal Plain

    USGS Publications Warehouse

    Kambly, Steven; Moreland, Thomas R.

    2009-01-01

    This report presents an assessment of land use and land cover change in the Southern Florida Coastal Plain ecoregion for the period from 1973 to 2000. The ecoregion is one of 84 level III ecoregions defined by the Environmental Protection Agency; ecoregions have been designed to serve as a spatial framework for environmental resource management and denote areas that contain a geographically distinct assemblage of biotic and abiotic phenomena, including geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The Southern Florida Coastal Plain ecoregion covers an area of approximately 22,407 square kilometers [8,651 square miles] across the lower portion of the Florida peninsula, from Lake Okeechobee southward through the Florida Keys. It comprises flat plains with wet soils, marshland and swamp land cover with Everglades and palmetto prairie vegetation types.

  4. Arctic Refuge coastal plain terrestrial wildlife research summaries

    USGS Publications Warehouse

    Douglas, David C.; Reynolds, Patricia E.; Rhode, E.B.

    2002-01-01

    In 1980, when the U.S. Congress enacted the Alaska National Interest Lands Conservation Act (ANILCA), it also mandated a study of the coastal plain of the Arctic National Wildlife Refuge. Section 1002 of ANILCA stated that a comprehensive inventory of fish and wildlife resources would be conducted on 1.5 million acres of the Arctic Refuge coastal plain (1002 Area). Potential petroleum reserves in the 1002 Area were also to be evaluated from surface geological studies and seismic exploration surveys. Results of these studies and recommendations for future management of the Arctic Refuge coastal plain were to be prepared in a report to Congress. In 1987, the Department of the Interior published the Arctic National Wildlife Refuge, Alaska, Coastal Plain Resource Assessment - Report and Recommendations to the Congress of the United States and Final Environmental Impact Statement. This report to Congress identified the potential for oil and gas production (updated* most recently by the U.S. Geological Survey in 2001), described the biological resources, and evaluated the potential adverse effects to fish and wildlife resources. The 1987 report analyzed the potential environmental consequences of five management alternatives for the coastal plain, ranging from wilderness designation to opening the entire area to lease for oil and gas developement. The report's summary recommended opening the 1002 Area to an orderly oil and gas leasing program, but cautioned that adverse effects to some wildlife populations were possible. Congress did not act on this recommendation nor any other alternative for the 1002 Area, and scientists continued studies of key wildlife species and habitats on the coastal plain of the Arctic Refuge and surrounding areas. This report contains updated summaries of those scientific investigations of caribou, muskoxen, predators (grizzly bears, wolves, golden eagles), polar bears, snow geese, and their wildlife habitats. Contributions to this report were

  5. Hydrogeologic Framework of the New Jersey Coastal Plain

    USGS Publications Warehouse

    Zapecza, Otto S.

    1989-01-01

    This report presents the results of a water-resources, oriented subsurface mapping program within the Coastal Plain of New Jersey. The occurrence and configuration of 15 regional hydrogeologic units have been defined, primarily on the basis of an interpretation of borehole geophysical data. The nine aquifers and six confining beds are composed of unconsolidated clay, silt, sand, and gravel and range in age from Cretaceous to Quaternary. Electric and gamma-ray logs from more than 1,000 Coastal Plain wells were examined. Of these, interpretive data for 302 sites were selected, on the basis of logged depth, quality of data, and data distribution, to prepare structure contour and thickness maps for each aquifer and a thickness map for each confining bed. These maps, together with 14 hydrogeologic sections, show the geometry, lateral extent, and vertical and horizontal relationships among the 15 hydrogeologic units. The hydrogeologic maps and sections show that distinct lower, middle, and upper aquifers are present within the Potomac, Raritan-Magothy aquifer system near the Delaware River from Burlington County to Salem County. Although the lower aquifer is recognized only in this area, the middle aquifer extends into the northeastern Coastal Plain of New Jersey, where it is stratigraphically equivalent to the Farrington aquifer. The upper aquifer extends throughout most of the New Jersey Coastal Plain and is stratigraphically equivalent to the Old Bridge aquifer in the northeastern Coastal Plain. The overlying Merchantville-Woodbury confining bed is the most regionally extensive confining bed within the New Jersey Coastal Plain. Its thickness ranges from less than 100 feet near the outcrop to more than 450 feet along the coast. The Englishtown aquifer system acts as a single aquifer throughout most of its subsurface extent, but it contains two water-bearing sands in pars of Monmouth and Ocean Counties. The overlying Marshalltown-Wenonah confining bed is a thin, leaky

  6. Water quality of surficial aquifers in the Georgia-Florida Coastal Plain

    USGS Publications Warehouse

    Crandall, C.A.; Berndt, M.P.

    1996-01-01

    than 6 inches than in large diameter, uncased, or iron-cased wells. The median nitrate concentration was 0.05 mg/L in water from monitoring wells, 1.0 mg/L in samples from iron cased wells, and 2.0 mg/L in samples from uncased wells. Concentrations of volatile organic compounds were mostly less than the detection levels and exceeded 1 ug/L in only four samples. Compounds detected at concentrations greater than 1 ug/L were: tetrachloroethane (8.77 ug/L), toluene (23 ug/L) and chloromethane (21 ug/L). Atrazine, desethyl-atrazine, and metolachlor were the only pesticides detected; concentrations were less than 0.02 ug/L, except for metolachlor (2.5 ug/L). Detection of organic compounds in surficial aquifer may be associated with specific activities or sources near the well. Concentrations of radon exceeded the U.S. Environmental Protection Agency proposed maximum contaminant level of 300 picocuries per liter (pCi/L) in 33 samples from wells on the Coastal Flatwoods and the Southern Coastal Plain. Concentrations as high as 13,000 pCi/L were detected in northern Florida. Although uranium concentrations were less than 1 ug/L in all but one sample (1.3 ug/L) from the Southern Coastal Plain, elevated radon concentrations indicate that uranium is present in aquifer material. Uranium is most likely sorbed to iron oxides and clays in subsurface materials. Tritium concentrations indicated that ground water was recharged by precipitation during the past 40 years. Higher concentrations of tritium in ground water were found in the northern part of the study area and may be related to Savannah River Nuclear Facility.

  7. The oligocene stratigraphic framework of the coastal plain of the southeastern United States

    SciTech Connect

    Huddlestun, P.F. )

    1993-03-01

    Four lithostratigraphic associations are recognized in the Oligocene of the southeastern Coastal Plain: (1) an eastern Gulf of Mexico stratigraphic association, (2) a Gulf Trough stratigraphic association, (3) a Florida Bank stratigraphic association and (4), an Atlantic continental shelf stratigraphic association. Oligocene formations and faunal provinces appear to be directly related to the stratigraphic associations. The Vicksburg Group is restricted to the eastern Gulf of Mexico continental shelf stratigraphic association and to the Coastal Plain north and west of the Gulf Trough. The Gulf Trough stratigraphic association includes the Ochlockonee Formation, Wolf Pit Dolostone, Okapilco Limestone, and Bridgeboro Limestone (the Bridgeboro Limestones occurs only on and adjacent to the northern and southern flanks of the trough). The Florida Bank stratigraphic association is largely restricted to the area south of the Gulf Trough and includes the Ellaville Limestone, Suwannacoochee Dolostone, and Suwannee Limestone (the Suwannee Limestone also occurs immediately north of the Gulf Trough in the central Georgia Coastal Plain). The Cooper and Lazaretto Creek Formations are restricted to the Atlantic continental shelf stratigraphic association and occur only in the coastal area of Georgia, South Carolina, and beneath the continental shelf. Three faunal provinces (or subprovinces) are recognized in the southeastern Coastal Plain during the Oligocene: (1) a Gulf of Mexico continental shelf faunal province that characterizes the Gulf Trough and the region north and west of the trough, (2) a Florida province characteristic and largely restricted to the Florida Bank and (3), an Atlantic continental shelf faunal province. Through the Early Oligocene, the trough marked the limits of the Gulf of Mexico and Florida provinces.

  8. Geologic map of the northern plains of Mars

    USGS Publications Warehouse

    Tanaka, Kenneth L.; Skinner, James A.; Hare, Trent M.

    2005-01-01

    The northern plains of Mars cover nearly a third of the planet and constitute the planet's broadest region of lowlands. Apparently formed early in Mars' history, the northern lowlands served as a repository both for sediments shed from the adjacent ancient highlands and for volcanic flows and deposits from sources within and near the lowlands. Geomorphic evidence for extensive tectonic deformation and reworking of surface materials through release of volatiles occurs throughout the northern plains. In the polar region, Planum Boreum contains evidence for the accumulation of ice and dust, and surrounding dune fields suggest widespread aeolian transport and erosion. The most recent regional- and global-scale maps describing the geology of the northern plains are largely based on Viking Orbiter image data (Dial, 1984; Witbeck and Underwood, 1984; Scott and Tanaka, 1986; Greeley and Guest, 1987; Tanaka and Scott, 1987; Tanaka and others, 1992a; Rotto and Tanaka, 1995; Crumpler and others, 2001; McGill, 2002). These maps reveal highland, plains, volcanic, and polar units based on morphologic character, albedo, and relative ages using local stratigraphic relations and crater counts. This geologic map of the northern plains is the first published map that covers a significant part of Mars using topography and image data from both the Mars Global Surveyor and Mars Odyssey missions. The new data provide a fresh perspective on the geology of the region that reveals many previously unrecognizable units, features, and temporal relations. In addition, we adapted and instituted terrestrial mapping methods and stratigraphic conventions that we think result in a clearer and more objective map. We focus on mapping with the intent of reconstructing the history of geologic activity within the northern plains, including deposition, volcanism, erosion, tectonism, impact cratering, and other processes with the aid of comprehensive crater-density determinations. Mapped areas include all

  9. River diversions, avulsions and captures in the Tortuguero coastal plain

    NASA Astrophysics Data System (ADS)

    Galve, Jorge Pedro; Alvarado, Guillermo; Pérez Peña, José Vicente; Azañón, José Miguel; Mora, Mauricio; Booth-Rea, Guillermo

    2016-04-01

    The Tortuguero area is a coastal plain that forms part of the North Limón sedimentary basin, the back-arc region of the Caribbean side of Costa Rica. This coastal plain is characterised by an abnormal drainage pattern with river captures, diversions and shifts in channel directions. We are analyzing this anomalous drainage network adopting a classical geomorphological approach combined with geomorphometric techniques. The SRTM DEM at 1 arc-second of resolution (~30 m) from NASA, topographic maps 1:50,000, satellital images and the digital cartography of the drainage network have been used for inventorying the channel pattern anomalies. River segments were categorized according to sinuosity, orientation, slope changes and incision using GIS tools. Initially, anomalies in the analyzed river courses suggested that buried thrust fronts could disrupt their natural pattern. However, we have not identified any evidence to link the activity of buried structures with the disruption of natural drainage. Blind thrusts detected through seismic subsurface exploration in the SE sector of the Tortuguero plain do not seem to produce changes in the sinuosity, orientation, slope and incision of rivers as those observed in the deeply studied tectonically active area of the Po Plain (Italy). The identified river pattern anomalies have been explained due to other alternative causes: (1) the migration of the mouths of Reventazón, Pacuare and Matina rivers is produced by sand sedimentation in the coast because of a successive ridge beach formation. This migration to the SE has the same direction than the main ocean currents those deposited the sand. (2) The anomalous course of Parismina river is most probably conditioned by the fracturation of the dissected volcanic apron of Turrialba volcano. (3) Channel migration and capture of Barbilla river by Matina river can be triggered by the tectonic tilting of the coastal plain towards the SE. The subsidence of the SE sector of the plain was

  10. Groundwater quality in the Santa Barbara Coastal Plain, California

    USGS Publications Warehouse

    Davis, Tracy A.; Belitz, Kenneth

    2016-10-03

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California established the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Santa Barbara Coastal Plain is one of the study units.

  11. Hydrogeologic conditions in the coastal plain of New Jersey

    USGS Publications Warehouse

    Vowinkel, Eric F.; Foster, W. Kendall

    1981-01-01

    A wedge-shaped mass of unconsolidated sediments composed of alternating layers of clay, silt, sand, and gravel underlies the Coastal Plain of New Jersey. The hydrologic units of this mass vary in thickness, lateral extent, lithology, and water-bearing characteristics. Some of the units act as aquifers, whereas other units act as confining layers. The entire sediment wedge is almost an independent and isolated hydrologic system. Components of the long-term hydrologic budget for the Coastal Plain are precipitation, streamflow, and water loss. Under natural conditions, average precipitation is about 44 inches per year; while streamflow and water loss are about 20 and 24 inches per year, respectively. More than 75 percent of the streamflow in the Coastal Plain is derived from ground-water runoff. Some activities of man have modified the natural hydrologic cycle in the Coastal Plain. The primary activity affecting the system has been the withdrawal of ground water. Major changes in the flow patterns of water in several aquifers have been recognized during the past few decades partially as a result of increasing ground-water withdrawal. Where head gradients are large enough, water can be induced to flow from adjacent surface-water bodies or through confining beds. Induced recharge from the Delaware River to the Potomac-Raritan-Magothy aquifer system is occurring as a result of pumping stresses in the outcrop area of the aquifer. Recharge from the river to the aquifer from Salem to Burlington County was estimated to be about 113 cubic feet per second in 1978. (USGS)

  12. Groundwater Quality in the Santa Barbara Coastal Plain, California

    USGS Publications Warehouse

    Davis, T.A.; Belitz, Kenneth

    2016-10-03

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California established the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Santa Barbara Coastal Plain is one of the study units.

  13. Gulf coastal plain evolution in West Louisiana: Heavy mineral provenance and Pleistocene alluvial chronology

    NASA Astrophysics Data System (ADS)

    Mange, Maria A.; Otvos, Ervin G.

    2005-12-01

    High Resolution Heavy Mineral Analysis (HRHMA) of late Pleistocene terrace samples, their Tertiary source rocks, and modern river sediments provided an effective tool for reconstructing sediment provenance and mapping heavy mineral provinces in southwest Louisiana. Each province, linked to a discrete source region, represents Pleistocene fluvial channel belts within which depositional activity was controlled by periods of climate, sediment supply, and sea level changes. Four coastal heavy mineral provinces have been identified. The Northern Province (NP), drained by the lower reaches of the Sabine and Calcasieu Rivers underlies level mid- and late Pleistocene coastal terrace surfaces and is distinguished by high-grade metamorphic assemblages (kyanite, staurolite, sillimanite) and abundant zircon, probably of Ouachita Mts. derivation. Transporting eroded Cretaceous, Tertiary, and Pleistocene coastal plain deposits, the modern Calcasieu and Sabine River sands in west-central and southwest Louisiana and east Texas, display identical heavy mineral composition to that of the NP. Level Late Pleistocene coastal terrace areas in the east represent the Red River Province (RRP) with dominant epidote, tourmaline, garnet, and zircon. Its mineralogy is influenced significantly by Paleozoic-Mesozoic sedimentary units that frame the drainage basin upstream. Modern Red River sands differ in their spectra both from Red River Pleistocene coastal terrace and valley terrace deposits, interpreted by temporal fluctuations in sediment supply initiating a variable contribution of detritus from different sources. Tributaries that drain formations with high concentrations of high-grade metamorphic minerals also affected Red River valley Pleistocene terrace deposits in west-central Louisiana, enriching them in kyanite and staurolite. The Mississippi Province (MP) occupies the eastern-southeastern area of the low, flat, gently seaward-sloping Prairie coastal terrace. Whereas modern

  14. SRTM Perspective View with Landsat Overlay: Costa Rica Coastal Plain

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This perspective view shows the northern coastal plain of Costa Rica with the Cordillera Central, composed of a number of active and dormant volcanoes, rising in the background. This view looks toward the south over the Rio San Juan, which marks the boundary between Costa Rica and Nicaragua. The smaller river joining Rio San Juan in the center of the image is Rio Sarapiqui, which is navigable upstream as far inland as Puerto Viejo (Old Port) de Sarapiqui at the mountain's base. This river was an important transportation route for those few hardy settlers who first moved into this region, although as recently as 1953 a mere three thatched-roof houses were all that comprised the village of Puerto Viejo.

    This coastal plain is a sedimentary basin formed about 50 million years ago composed of river alluvium and lahar (mud and ash flow) deposits from the volcanoes of the Cordillera Central. It comprises the province of Heredia (the smallest of Costa Rica's seven) and demonstrates a wide range of climatic conditions, from warm and humid lowlands to cool and damp highlands, and including the mild but seasonally wet and dry Central Valley.

    This image was generated in support of the Central American Commission for Environment and Development through an agreement with NASA. The Commission involves eight nations working to develop the Mesoamerican Biological Corridor, an effort to study and preserve some of the most biologically diverse regions of the planet.

    This three-dimensional perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM) and an enhanced false-color Landsat 7 satellite image. Colors are from Landsat bands 5, 4, and 2 as red, green and blue, respectively. Topographic expression is exaggerated 2X.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter resolution of most Landsat images and will substantially help in analyses of the large

  15. Water-Level Changes in Aquifers of the Atlantic Coastal Plain, Predevelopment to 2000

    USGS Publications Warehouse

    dePaul, Vincent T.; Rice, Donald E.; Zapecza, Otto S.

    2008-01-01

    The Atlantic Coastal Plain aquifer system, which underlies a large part of the east coast of the United States, is an important source of water for more than 20 million people. As the population of the region increases, further demand is being placed on those ground-water resources. To define areas of past and current declines in ground-water levels, as well as to document changes in those levels, historical water-level data from more than 4,000 wells completed in 13 regional aquifers in the Atlantic Coastal Plain were examined. From predevelopment to 1980, substantial water-level declines occurred in many areas of the Atlantic Coastal Plain. Regional variability in water-level change in the confined aquifers of the Atlantic Coastal Plain resulted from regional differences in aquifer properties and patterns of ground-water withdrawals. Within the Northern Atlantic Coastal Plain, declines of more than 100 ft were observed in New Jersey, Delaware, Maryland, Virginia, and North Carolina. Regional declines in water levels were most widespread in the deeper aquifers that were most effectively confined?the Upper, Middle, and Lower Potomac aquifers. Within these aquifers, water levels had declined up to 200 ft in southern Virginia and to more than 100 ft in New Jersey, Delaware, Maryland, and North Carolina. Substantial water-level declines were also evident in the regional Lower Chesapeake aquifer in southeastern New Jersey; in the Castle Hayne-Piney Point aquifer in Delaware, Maryland, southern Virginia and east-central North Carolina; in the Peedee-Severn aquifer in east-central New Jersey and southeastern North Carolina; and in the Black Creek-Matawan aquifer in east-central New Jersey and east-central North Carolina. Conversely, declines were least severe in the regional Upper Chesapeake aquifer during this period. In the Southeastern Coastal Plain, declines of more than 100 ft in the Chattahoochee River aquifer occurred in eastern South Carolina and in southwestern

  16. Hydrologic Controls On Methylmercury Availability In Coastal Plain Rivers

    NASA Astrophysics Data System (ADS)

    Bradley, P. M.; Brigham, M. E.; Burns, D. A.; Button, D. T.; Lutz, M. A.; Marvin-DiPasquale, M. C.; Riva-Murray, K.; Journey, C.

    2011-12-01

    Methylmercury (MeHg) in streams is often attributed to methylation in up-gradient wetland areas, with episodic flood events maximizing wetland-stream hydrologic connectivity and dominating MeHg supply to the stream habitat. A number of studies have demonstrated that Coastal Plain streams in the southeastern United States are particularly vulnerable to high MeHg bioaccumulation and have attributed this vulnerability to wetland abundance and strong hydrologic connectivity between wetland areas and adjacent stream aquatic habitat. Because characteristically coarse-grained Coastal Plain sediments favor vertical infiltration with little surface runoff, flood events attributable to Coastal Plain precipitation are driven by rising groundwater, promoting efficient transport of MeHg from wetland/floodplain source areas to the stream habitat and increasing in-stream availability. Several observations at McTier Creek, South Carolina, however, suggest that good hydrologic connectivity and efficient MeHg transport in Coastal Plain systems are not limited to flood conditions. Close correspondence between stream and shallow-groundwater water levels at McTier indicate good hydrologic connectivity exists prior to flood conditions. Dissolved MeHg concentrations do not increase under flood conditions. Thus, we assessed the flux of water and dissolved mercury (Hg) species (FMeHg and total Hg (FTHg)) from surface water and groundwater sources in a short reach at McTier Creek during separate events in April and July 2009, to determine the importance of shallow groundwater Hg transport from floodplain areas to the stream under non-flood conditions. Mass balance assessments indicated that, under non-flood conditions, the primary supply of water, FMeHg, and FTHg within the reach (excluding upstream surface-water influx) was groundwater discharge, rather than tributary transport from wetlands, in-stream MeHg production, or atmospheric deposition. The results indicate efficient transport of

  17. Mercury dynamics in a Coastal Plain watershed: Insights from multiple models and empirical data

    NASA Astrophysics Data System (ADS)

    Golden, H. E.; Knightes, C. D.; Conrads, P. A.; Davis, G. M.; Feaster, T.; Benedict, S.; Journey, C.; Brigham, M. E.; Bradley, P. M.

    2011-12-01

    Interactions among atmospherically deposited mercury, abundant wetlands, and surface waters with elevated acidity and dissolved organic carbon (DOC) often lead to widespread mercury-related fish consumption advisories in the Coastal Plain of the southeastern United States (US). However, the science behind understanding mercury dynamics in these mixed land cover, Coastal Plain watersheds is just beginning to emerge. Watershed models are important tools for answering questions related to watershed mercury cycling - including the spatial and temporal variations in surface water mercury concentrations and fluxes - particularly when limited data exist and multiple models with different underlying dynamics are available. We quantify total mercury (HgT) concentrations and fluxes to the outlet of McTier Creek Watershed, located in the upper Coastal Plain of South Carolina, US, an area with more diverse land cover, a larger drainage area, and different geophysical setting than many previous mercury studies in North America (primarily from small forested headwater boreal or northern forested catchments). We apply three independently developed watershed mercury models with distinct mathematical frameworks that emphasize different system processes. Because spatially-explicit watershed scale mercury modeling is a recent advancement, the use of multiple models combined with data affords broader insights to HgT dynamics in the watershed. As a result, we employ a spatially-explicit grid based watershed mercury model (GBMM), the spatially-explicit VELMA-Hg model, and the semi-empirical TOPLOAD-Hg model for HgT concentration and flux calculations. We use the S-LOADEST model for seasonal HgT fluxes, while measured in-stream HgT concentrations and fluxes provide additional insights and data for model calibrations. Our findings begin to elucidate important abiotic processes controlling HgT, areas within the landscape where HgT at the outlet is derived, and potential governing dynamics

  18. Ice in the northern plains: Relic of a frozen ocean?

    NASA Technical Reports Server (NTRS)

    Lucchitta, B. K.

    1993-01-01

    Viking images revealed many features in the northern plains and along their boundary that early investigators believed to be formed by ice-related processes. The features are possible pingos, pseudocraters, table mountains and moberg ridges, thermokarst depressions, moraines, patterned ground, and lobate aprons that suggest viscous flow such as that of ice or rock glaciers. More recently, many of these features were reinterpreted as related to sedimentation in hypothetical former polar lakes, oceans, or alluvial plains or as shoreline features of associated water bodies. Some evidence that points toward the existence of former bodies of standing water in the northern plains, but is also consistent with the idea that these bodies were ice covered or completely frozen is reviewed.

  19. A Socioeconomic Profile of the Northern Great Plains Coal Region.

    ERIC Educational Resources Information Center

    Myers, Paul R.; And Others

    When historic (1940-70) and recent (1970-74) trends in population, income, and employment for the Northern Great Plains coal region are compared with that for the entire U.S. and all U.S. nonmetro counties, data reveal a minimal population increase from 1940 to 1970, a period of declining agricultural employment and high outmigration rates. In…

  20. Acanthosis Nigricans among Northern Plains American Indian Children

    ERIC Educational Resources Information Center

    Brown, Blakely; Noonan, Curtis; Bentley, Bonnie; Conway, Kathrene; Corcoran, Mary; FourStar, Kris; Gress, Shannon; Wagner, Sharon

    2010-01-01

    The purpose of this study is to present cross-sectional and prospective data on acanthosis nigricans (AN) prevalence in the context of other risk factors for diabetes including high body mass index (BMI), abnormal blood pressure (BP), physical inactivity and family history of diabetes among Northern Plains American Indian (AI) children.…

  1. Long-term Agroecosystem Research in the Northern Great Plains.

    NASA Astrophysics Data System (ADS)

    Schmer, M.; Sanderson, M.; Liebig, M. A.; Wienhold, B.; Awada, T.; Papiernik, S.; Osborne, S.; Kemp, W.; Okalebo, J. A.; Riedall, W.

    2015-12-01

    The Northern Great Plains is the bread basket of the United States, accounting for a substantial portion of U.S. agricultural production. This region faces critical challenges regarding balancing food needs, resource conservation (e.g Ogallala aquifer), environmental concerns, and rural economy development. Developing transformative, multifunctional systems will require equally imaginative and efficient tools to help farmers manage complex agroecosystems in a rapidly changing climate. The Northern Plains long-term agroecosystem research (LTAR) site at Mandan, ND and the Platte River High Plains LTAR (ARS/University of Nebraska-Lincoln) at Lincoln, NE in collaboration with USDA-ARS research units in Brookings, SD and Fargo, ND are collaborating to address the grand challenge of providing and sustaining multiple service provisions from Northern Great Plains agroecosystems. We propose to attain these goals through sustainable intensification based on the adoption of conservation agriculture principles including reduced soil disturbance, livestock integration, and greater complexity and diversity in the cropping system. Here, we summarize new concepts these locations have pioneered in dynamic cropping systems, resource use efficiency, and agricultural management technologies. As part of the LTAR network, we will conduct long-term cross-site research to design and assess new agricultural practices and systems aimed at improving our understanding of decision making processes and outcomes across an array of agricultural systems.

  2. Amphibians of the northern Great Plains

    USGS Publications Warehouse

    Larson, Diane L.; Euliss, Ned H.; Lannoo, Michael J.; Mushet, David M.; Mac, M.J.; Opler, P.A.; Puckett Haecker, C. E.; Doran, P.D.

    1998-01-01

    No cry of alarm has been sounded over the fate of amphibian populations in the northern grasslands of North America, yet huge percentages of prairie wetland habitat have been lost, and the destruction continues. Scarcely 30% of the original mixedgrass prairie remains in Nebraska, South Dakota, and North Dakota (See Table 1 in this chapter). If amphibian populations haven’t declined, why haven’t they? Or, have we simply failed to notice? Amphibians in the northern grasslands evolved in a boom-or-bust environment: species that were unable to survive droughts lasting for years died out long before humans were around to count them. Species we find today are expert at seizing the rare, wet moment to rebuild their populations in preparation for the next dry season. When numbers can change so rapidly, who can say if a species is rare or common? A lot depends on when you look.

  3. Hydrogeologic framework of the North Carolina Coastal Plain aquifer system

    USGS Publications Warehouse

    Winner, M.D.; Coble, R.W.

    1989-01-01

    The hydrogeologic framework of the North Carolina Coastal Plain aquifer system consists of ten aquifers separated by nine confining units. From top to bottom the aquifers are: the surficial aquifer, Yorktown aquifer, Pungo River aquifer, Castle Hayne aquifer, Beaufort aquifer, Peedee aquifer, Black Creek aquifer, upper Cape Fear aquifer, lower Cape Fear aquifer, and the Lower Cretaceous aquifer. The uppermost aquifer (the surficial aquifer in most places) is a water-table aquifer and the bottom of the system is underlain by crystalline bedrock. The sedimentary deposits forming the aquifers are of Holocene to Cretaceous age and are composed mostly of sand with lesser amounts of gravel and limestone. Confining units between aquifers are composed primarily of clay and silt. The thickness of the aquifers ranges from zero along the Fall Line to more than 10,000 feet at Cape Hatteras. Prominent structural features are the increasing easterly homoclinal dip of the sediments and the Cape Fear arch, the axis of which trends in a southeast direction. The stratigraphic continuity is determined from correlations of 161 geophysical logs along with data from drillers' and geologists' logs. Aquifers were defined by means of these logs plus water-level and water-quality data and evidence of the continuity of pumping effects. Eighteen hydrogeologic sections depict the correlation of these aquifers throughout the Coastal Plain.

  4. Hydrogeologic framework of the North Carolina coastal plain

    USGS Publications Warehouse

    Winner, M.D.; Coble, R.W.

    1996-01-01

    The hydrogeologic framework of the North Carolina Coastal Plain aquifer system consists of 10 aquifers separated by 9 confining units. From top to bottom, the aquifers are the surficial aquifer, Yorktown aquifer, Pungo River aquifer, Castle Hayne aquifer, Beaufort aquifer, Peedee aquifer, Black Creek aquifer, upper Cape Fear aquifer, lower Cape Fear aquifer, and Lower Cretaceous aquifer. The uppermost aquifer (the surficial aquifer in most places) is a water-table aquifer, and the bottom of the system is underlain by crystalline bedrock. The sedimentary deposits forming the aquifers are of Holocene to Cretaceous age and are composed mostly of sand, with lesser amounts of gravel and limestone. The confining units between the aquifers are composed primarily of clay and silt. The thickness of the aquifers ranges from zero along the Fall Line to more than 10,000 feet at Cape Hatteras. Prominent structural features are the increasing easterly homoclinal dip of the sediments and the Cape Fear arch, the axis of which trends in a southeast direction. Stratigraphic continuity was determined from correlations of 161 geophysical logs along with data from drillers? and geologists? logs. Aquifers were defined by means of these logs as well as water-level and water-quality data and evidence of the continuity of pumping effects. Eighteen hydrogeologic sections depict the correlation of these aquifers throughout the North Carolina Coastal Plain.

  5. Estimating canopy fuel parameters for Atlantic Coastal Plain forest types.

    SciTech Connect

    Parresol, Bernard, R.

    2007-01-15

    Abstract It is necessary to quantify forest canopy characteristics to assess crown fire hazard, prioritize treatment areas, and design treatments to reduce crown fire potential. A number of fire behavior models such as FARSITE, FIRETEC, and NEXUS require as input four particular canopy fuel parameters: 1) canopy cover, 2) stand height, 3) crown base height, and 4) canopy bulk density. These canopy characteristics must be mapped across the landscape at high spatial resolution to accurately simulate crown fire. Currently no models exist to forecast these four canopy parameters for forests of the Atlantic Coastal Plain, a region that supports millions of acres of loblolly, longleaf, and slash pine forests as well as pine-broadleaf forests and mixed species broadleaf forests. Many forest cover types are recognized, too many to efficiently model. For expediency, forests of the Savannah River Site are categorized as belonging to 1 of 7 broad forest type groups, based on composition: 1) loblolly pine, 2) longleaf pine, 3) slash pine, 4) pine-hardwood, 5) hardwood-pine, 6) hardwoods, and 7) cypress-tupelo. These 7 broad forest types typify forests of the Atlantic Coastal Plain region, from Maryland to Florida.

  6. Connecting Indigenous Knowledge to Thaw Lake Cycle Research on the Arctic Coastal Plain of Alaska

    NASA Astrophysics Data System (ADS)

    Eisner, W. R.; Cuomo, C. J.; Hinkel, K. M.; Jones, B. M.; Hurd, J.

    2005-12-01

    Thaw lakes cover about 20% of the Arctic Coastal Plain of Alaska. Another 26% is scarred by basins that form when lakes drain, and these drained thaw-lake basins are sites for preferential carbon accumulation as plant biomass. Recent studies in the continuous permafrost zone of Western Siberia suggest that lakes have been expanding in the past several decades in response to regional warming. Anticipated regional warming would likely mobilize sequestered soil organic carbon, resulting in the emission of CO2 and CH4. Our understanding of the processes leading to thaw lake formation, expansion, and drainage in northern Alaska has been limited because models are specific to the flat, young Outer (seaward) Coastal Plain comprising 1/3 of the region. Furthermore, spatial and temporal analysis of lake dynamics is largely restricted to the period since 1948, when aerial photographs first became available across large regions of the Coastal Plain. In order to fill these gaps, we have been interviewing Iñupiaq elders, hunters, and berry pickers from the villages of Atqasuk and Barrow. The objective of these interviews is to obtain accounts of lake formation, expansion and drainage that have occurred within living or oral memory, and extend the record back several generations. To date, we have interviewed fifteen Iñupiat; most of these are people who travel the tundra frequently and have done so for decades. They have first-hand experience of lake drainage, sea cliff and river bank erosion, permafrost degradation, and other landscape changes. Many informants expressed concern that landscape changes are occurring at an increasingly rapid rate. They have identified lakes that have drained, areas where the permafrost is thawing, and places where the sea and river coastline is eroding. We have been able to corroborate reports of lake drainage from our informants with a series of aerial photographs, satellite images, and radiocarbon dates. In many instances, the elders have

  7. Hot-Cross-Bun' on the Northern Plains

    NASA Technical Reports Server (NTRS)

    2000-01-01

    [figure removed for brevity, see original site]

    The Mars Global Surveyor Mars Orbiter Camera narrow angle image (top) shows what, at first glance, might look like a 'hot crossed bun' on the martian northern plains. The context for this landform is shown in the picture on the right. Unlike the southern highlands of Mars, the northern plains are lower and have far fewer impact craters on them. The relatively few craters that are present in the north have been severely eroded and/or buried. The context image shows a circle of mounds on the northern plains near the Phlegra Montes. These mounds were once the rim of a crater formed by impact of a meteorite. The mound in the high-resolution view (top) has been cracked and was at one time mostly covered by a thin veneer of light-toned material that is now seen only partly covering it. These two pictures were taken simultaneously on August 16, 1999, and occur near 45.9oN, 191.1oW. Both images are illuminated by sunlight from the lower right, the high resolution picture covers an area 3 km (1.9 mi) wide by 10.8 km (6.7 mi) long; the context image is about 115 km (71 miles) on a side. The bright, wispy features in the context image are clouds, their dark shadows can be seen cast upon the surface to the right of each cloud feature.

  8. Data-driven models of groundwater salinization in coastal plains

    NASA Astrophysics Data System (ADS)

    Felisa, G.; Ciriello, V.; Antonellini, M.; Di Federico, V.; Tartakovsky, D. M.

    2015-12-01

    Salinization of shallow coastal aquifers is particularly critical for ecosystems and agricultural activities. Management of such aquifers is an open challenge, because predictive models, on which science-based decisions are to be made, often fail to capture the complexity of relevant natural and anthropogenic processes. Complicating matters further is the sparsity of hydrologic and geochemical data that are required to parameterize spatially distributed models of flow and transport. These limitations often undermine the veracity of modeling predictions and raise the question of their utility. As an alternative, we employ data-driven statistical approaches to investigate the underlying mechanisms of groundwater salinization in low coastal plains. A time-series analysis and auto-regressive moving average models allow us to establish dynamic relations between key hydrogeological variables of interest. The approach is applied to the data collected at the phreatic coastal aquifer of Ravenna, Italy. We show that, even in absence of long time series, this approach succeeds in capturing the behavior of this complex system, and provides the basis for making predictions and decisions.

  9. Effect of fire in the Northern Great Plains

    USGS Publications Warehouse

    Higgins, K.F.; Kruse, A.D.; Piehl, J.L.

    1989-01-01

    This publication is a review of selected literature about prescribed burning in the Northern Great Plains (NGP) for management of wildlife. It also will be useful to other resource managers and researchers and to persons interested in the NGP. It is more 'descriptive' than 'interpretative.'The publication is a joint effort of the South Dakota State Cooperative Fish and Wildlife Research Unit (SDCFWRU), South Dakota State University, Brookings; the Northern Prairie Wildlife Research Center (NPWRC), Jamestown, N.D.; and the U.S. Fish and Wildlife Service (USFWS), Fergus Falls, Minn. Manuscript typing and library services were shared between SDCFWRU and NPWRC.This publication (EC 761) is the second of three SDSU Extension circulars on grassland fires. EC 760 is Prescribed burning guidelines in the Northern Great Plains; EC 762 is Annotated bibliography of fire literature relative to northern grasslands in South-Central Canada and North-Central United States and contains many more citations than presented in this publication. All three circulars may be obtained from either the Wildlife and Fisheries Sciences Department; SDSU Box 2206; ph (605) 688-6121; or from the Ag Communications Bulletin Room; SDSU Box 2231; ph (605) 688-5628; both in Brookings, S.D. 57007.

  10. Effects of fire in the Northern Great Plains

    USGS Publications Warehouse

    Higgins, Kenneth F.; Kruse, Arnold D.; Piehl, James L.

    1989-01-01

    This publication is a review of selected literature about prescribed burning in the Northern Great Plains (NGP) for management of wildlife. It also will be useful to other resource managers and researchers and to persons interested in the NGP. It is more 'descriptive' than 'interpretative.'The publication is a joint effort of the South Dakota State Cooperative Fish and Wildlife Research Unit (SDCFWRU), South Dakota State University, Brookings; the Northern Prairie Wildlife Research Center (NPWRC), Jamestown, N.D.; and the U.S. Fish and Wildlife Service (USFWS), Fergus Falls, Minn. Manuscript typing and library services were shared between SDCFWRU and NPWRC.This publication (EC 761) is the second of three SDSU Extension circulars on grassland fires. EC 760 is Prescribed burning guidelines in the Northern Great Plains; EC 762 is Annotated bibliography of fire literature relative to northern grasslands in South-Central Canada and North-Central United States and contains many more citations than presented in this publication. All three circulars may be obtained from either the Wildlife and Fisheries Sciences Department; SDSU Box 2206; ph (605) 688-6121; or from the Ag Communications Bulletin Room; SDSU Box 2231; ph (605) 688-5628; both in Brookings, S.D. 57007.

  11. Pesticides in Ground Water of the Maryland Coastal Plain

    USGS Publications Warehouse

    Denver, Judith M.; Ator, Scott W.

    2006-01-01

    Selected pesticides are detectable at low levels (generally less than 0.1 microgram per liter) in unconfined ground water in many parts of the Maryland Coastal Plain. Samples were recently collected (2001-04) from 47 wells in the Coastal Plain and analyzed for selected pesticides and degradate compounds (products of pesticide degradation). Most pesticide degradation occurs in the soil zone before infiltration to the water table, and degradates of selected pesticides were commonly detected in ground water, often at higher concentrations than their respective parent compounds. Pesticides and their degradates often occur in ground water in mixtures of multiple compounds, reflecting similar patterns in usage. All measured concentrations in ground water were below established standards for drinking water, and nearly all were below other health-based guidelines. Although drinking-water standards and guidelines are typically much higher than observed concentrations in ground water, they do not exist for many detected compounds (particularly degradates), or for mixtures of multiple compounds. The distribution of observed pesticide compounds reflects known usage patterns, as well as chemical properties and environmental factors that affect the fate and transport of these compounds in the environment. Many commonly used pesticides, such as glyphosate, pendimethalin, and 2,4-D were not detected in ground water, likely because they were sorbed onto organic matter or degraded in the soil zone. Others that are more soluble and (or) persistent, like atrazine, metolachlor, and several of their degradates, were commonly detected in ground water where they have been used. Atrazine, for example, an herbicide used primarily on corn, was most commonly detected in ground water on the Eastern Shore (where agriculture is common), particularly where soils are well drained. Conversely, dieldrin, an insecticide previously used heavily for termite control, was detected only on the Western

  12. Groundwater and microbial processes of Alabama coastal plain aquifers

    NASA Astrophysics Data System (ADS)

    Penny, Elizabeth; Lee, Ming-Kuo; Morton, Cynthia

    2003-11-01

    We integrate groundwater geochemistry, microbiology, and numerical modeling techniques to study the origin of elevated salinity and chemical evolution of groundwaters in the coastal plain aquifers of Alabama. Our field data indicate that chemical composition of groundwater evolves by various geochemical and microbial processes as it moves deeper into the subsurface. Sequential peaks of Ca2+, Mg2+, K+, and Na+ along flow paths indicate that separation of ions may be driven by cation exchange. Microbial-mediated reactions are important for the formation of several discrete hydrochemical zones containing Fe2+, Mn2+, Sr2+, and SO42- rich groundwaters. Elevated Fe2+, Mn2+, and Sr2+ concentrations may be derived from bacterial iron and manganese reduction. High sulfate concentrations observed a short distance from the recharge may be partly explained by microbial sulfur oxidation and nitrate reduction (denitrification). The presence of denitrifying and sulfur-oxidizing bacteria in water further supports these reactions. Major ion compositions and δD and δ18O values are used to determine the source of salinity and the nature of mixing of different groundwaters. Three water types were identified; these include carbonate groundwater, brines associated with evaporites, and groundwater of meteoric origin. Groundwater age differences and flow velocities were calculated using the 36Cl/Cl ratios. Calculated groundwater flow velocities within the Eutaw and Tuscaloosa aquifers are about 0.20 m/yr and 0.15 m/yr, respectively. We modeled basin-scale hydrologic and solute transport processes in a cross section extending from the aquifer outcrops to the Gulf Coast. The modeling result shows that the buried Jurassic Louann Salt can significantly increase groundwater salinity in the overlying coastal plain aquifers by density-driven advection and hydrodynamic dispersion. The modeling results are consistent with Cl/Br ratios and O/H isotope signatures, which indicate that salinity of

  13. Coastal vulnerability assessment of the Northern Gulf of Mexico to sea-level rise and coastal change

    USGS Publications Warehouse

    Pendleton, E.A.; Barras, J.A.; Williams, S.J.; Twichell, D.C.

    2010-01-01

    A coastal vulnerability index (CVI) was used to map the relative vulnerability of the coast to future sea-level rise along the Northern Gulf of Mexico from Galveston, TX, to Panama City, FL. The CVI ranks the following in terms of their physical contribution to sea-level rise-related coastal change: geomorphology, regional coastal slope, rate of relative sea-level rise, historical shoreline change rate, mean tidal range, and mean significant wave height. The rankings for each variable are combined and an index value is calculated for 1-kilometer grid cells along the coast. The CVI highlights those regions where the physical effects of sea-level rise might be the greatest. The CVI assessment presented here builds on an earlier assessment conducted for the Gulf of Mexico. Recent higher resolution shoreline change, land loss, elevation, and subsidence data provide the foundation for a better assessment for the Northern Gulf of Mexico. The areas along the Northern Gulf of Mexico that are likely to be most vulnerable to sea-level rise are parts of the Louisiana Chenier Plain, Teche-Vermillion Basin, and the Mississippi barrier islands, as well as most of the Terrebonne and Barataria Bay region and the Chandeleur Islands. These very high vulnerability areas have the highest rates of relative sea-level rise and the highest rates of shoreline change or land area loss. The information provided by coastal vulnerability assessments can be used in long-term coastal management and policy decision making.

  14. Sediment Retention Within Coastal Plain Bottomland Forested Wetlands

    NASA Astrophysics Data System (ADS)

    Ross, K. M.; Hupp, C. R.

    2002-12-01

    Coastal Plain forested wetlands are unique ecosystems where fluvial geomorphic processes control sediment retention and vegetation patterns, which are intimately connected to each other. Yet, these inter-disciplinary associations are typically lacking in traditional ecologic or geomorphic research within these ecosystems. Floodplain sedimentation rates and patterns, suspended sediment concentrations, substrate characteristics, vegetation and fluvial geomorphology were measured in field studies in eight 1-ha sites along three tributaries of the Chesapeake Bay to determine the dominant physical processes controlling deposition, substrate, and vegetation patterns in forested wetlands. Annual deposition was measured at 104 locations with feldspar clay pads. Sedimentation rates across the floodplain sites are highly variable, ranging from 0.5 mm/yr to 26.6 mm/yr. Multiple regression analyses suggest that the spatial patterns in net-annual and long-term deposition and substrate properties (grain sizes, sand:clay, and sorting) are controlled by the frequency and duration of inundation events and the total number of inundated days per year, the manner that sediment is distributed through the floodplain (dominant flow paths and/or the presence of slough networks, for example), and the potential for deposition of suspended sediments. Similarly, floodplain community diversity is significantly related to fluvial geomorphic processes (annual net deposition rates, percent inundation per year, and inundation duration per event). The results of this study provide valuable information on the development and evolution of Coastal Plain floodplains in the context of vegetation diversity patterns that have significant implications for the restoration and conservation of these systems.

  15. Shorebird abundance and distribution on the coastal plain of the Arctic National Wildlife Refuge

    USGS Publications Warehouse

    Brown, S.; Bart, J.; Lanctot, Richard B.; Johnson, J.A.; Kendall, S.; Payer, D.; Johnson, J.

    2007-01-01

    The coastal plain of the Arctic National Wildlife Refuge hosts seven species of migratory shorebirds listed as highly imperiled or high priority by the U.S. Shorebird Conservation Plan and five species listed as Birds of Conservation Concern by the U.S. Fish and Wildlife Service. During the first comprehensive shorebird survey of the 674 000 ha "1002 Area" on the coastal plain, we recorded 14 species of breeding shorebirds at 197 rapidly surveyed plots during June 2002 and 2004. We also estimated detection ratios with a double counting technique, using data collected at 37 intensively studied plots located on the North Slope of Alaska and northern Canada. We stratified the study area by major habitat types, including wetlands, moist areas, uplands, and riparian areas, using previously classified Landsat imagery. We developed population estimates with confidence limits by species, and estimated the total number of shorebirds in the study area to be 230 000 (95% CI: 104 000-363 000), which exceeds the biological criterion for classification as both a Western Hemisphere Shorebird Reserve Network Site of International Importance (100 000 birds) and a Ramsar Wetland of International Importance (20 000 birds), even when conservatively estimated. Species richness and the density of many species were highest in wetland or riparian habitats, which are clustered along the coast. ?? The Cooper Ornithological Society 2007.

  16. Estimation of Dust Emission from the Western Coastal Plains of Arabian Peninsula

    NASA Astrophysics Data System (ADS)

    Anisimov, Anatolii; Stenchikov, Georgiy

    2016-04-01

    This study is aimed at quantifying local-scale dust emission from the coastal areas of western Arabian Peninsula. The dust emitted from these areas is frequently deposited directly to the Red Sea, acting as an important component of the nutrient balance of marine ecosystems. Most chemicals including iron, phosphorus, and nitrogen are introduced to the Red Sea with airborne dust. This process is especially significant for the oligotrophic northern Red Sea, where nutrients from the Indian Ocean cannot reach and the nutrient supply from land river discharge is negligible. The dust deposition to the Red Sea associated with major dust storms was recently estimated to be about 6 Tg/yr, but this estimate does not account for local, small-scale dust outbreaks occurring during fair weather conditions or moderate winds. The seasonality and the magnitude of this nutrient supply are largely unknown. In the present study, we quantify dust emissions using the fine-scale off-line version-4 of the Community Land Model (CLM4) with the high-resolution datasets as input parameters. We examine the model sensitivity to the spatial resolution of input land cover and vegetation data, and compare the results with weather station observations and reanalysis to choose the best model configuration. The model results are shown to be in reasonable agreement with station visibility measurements and the frequency of dust event reports. To improve the spatial characteristics of dust emission, we apply two state-of-the-art dust source functions. We found that the source function based on measurements from SEVIRI satellite substantially improves the simulation results, being in good agreement with both reanalysis data and station measurements. We identify the major dust source hot-spot areas over the coastal plain and analyze the seasonal and diurnal variability of dust emissions. The annual dust generation from the 145000 km2 coastal area reaches 6 Tg/yr. Roughly half of emitted dust could be

  17. Indications of Subsurface Ice: Polygons on the Northern Plains

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Someone's kitchen floor? A stone patio?This picture actually does show a floor--the floor of an old impact crater on the northern plains of Mars. Each 'tile' is somewhat larger than a football field. Polygonal patterns are familiar to Mars geologists because they are also common in arctic and antarctic environments on Earth. Typically, such polygons result from the stresses induced in frozen ground by the freeze-thaw cycles of subsurface ice. This picture was taken by MOC in May 1999 and is illuminated from the lower left.

  18. EAARL Coastal Topography - Northern Gulf of Mexico

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Sallenger, Abby; Wright, C. Wayne; Travers, Laurinda J.; Lebonitte, James

    2008-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived coastal topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. One objective of this research is to create techniques to survey areas for the purposes of geomorphic change studies following major storm events. The USGS Coastal and Marine Geology Program's National Assessment of Coastal Change Hazards project is a multi-year undertaking to identify and quantify the vulnerability of U.S. shorelines to coastal change hazards such as effects of severe storms, sea-level rise, and shoreline erosion and retreat. Airborne Lidar surveys conducted during periods of calm weather are compared to surveys collected following extreme storms in order to quantify the resulting coastal change. Other applications of high-resolution topography include habitat mapping, ecological monitoring, volumetric change detection, and event assessment. The purpose of this project is to provide highly detailed and accurate datasets of the northern Gulf of Mexico coastal areas, acquired on September 19, 2004, immediately following Hurricane Ivan. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Airborne Advanced Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532 nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking RGB (red-green-blue) digital camera, a high-resolution multi

  19. Mid Pliocene sea levels along the southeast US coastal plain

    NASA Astrophysics Data System (ADS)

    Rovere, A.; Hearty, P. J.; Raymo, M. E.; Mitrovica, J. X.; Inglis, J.

    2012-12-01

    Proxy data suggest that during the Mid-Pliocene Warm Period (MPWP) atmospheric CO2 levels were roughly similar to today (between 350 and 450 ppmv) and that global average temperature was elevated by as much as 3°C with respect to preindustrial values. Estimates of sea level (SL) during the MPWP range from +10 m to >+40 m relative to present, reflecting uncertainties in our knowledge of the sensitivity to modest climate warming of the East Antarctic, West Antarctic and Greenland Ice Sheets. A primary objective of the PLIOMAX project (www.pliomax.org) is to combine models of paleosea-level signals with geological observations to significantly improve constraints on eustatic sea level during the MPWP. In this regard, the southeast US coastal plain is of strategic importance in MPWP sea level studies (Dowsett and Cronin, Geology, 1990). In fact, it is one of the few places where predicted glacio-isostatic effects are expected to exhibit a significant geographic variation (in this case, north-to-south). The coastal plain may also be influenced by dynamic topography driven by mantle convective flow. In this area, two factors drive the up-to-the-west dynamic tilting of the coast. The first is the descent of the Farallon slab, now located under the mid-part of the North American continent. The other is upwelling return flow under the east coast (Moucha et al., Earth Planet. Sci. Lett., 2008). That is, over the last few million years, dynamic topography is responsible for potentially tens of meters of uplift (sea-level fall) of the Pliocene shoreline along the southeast US coastal plain. We have mapped an almost continuous MPWP shoreline cut into Miocene and older formations. However, as a result of multiple inter-state investigations extending over the last century, both the geomorphic escarpment and the associated deposits have been named differently across the region. In Virginia, the Chippenham Thornburg scarp is associated with the Moore House formation; in North and

  20. Saline lakes of the glaciated Northern Great Plains

    USGS Publications Warehouse

    Mushet, David M.

    2011-01-01

    Unless you have flown over the region or seen aerial photographs, it is hard to grasp the scale of the millions of lakes and wetlands that dot the prairie landscape of the glaciated Northern Great Plains (Figure 1). This region of abundant aquatic habitats within a grassland matrix provides for the needs of a wide diversity of wildlife species and has appropriately been deemed the "duck factory of North America." While the sheer number of lakes and wetlands within this area of the Northern Great Plains can be truly awe-inspiring, their diversity in terms of the chemical composition of their water adds an equally important component supporting biotic diversity and productivity. Water within these lakes and wetlands can range from extremely fresh with salinities approaching that of rainwater to hypersaline with salinity ten times greater than that of seawater. Additionally, while variation in salinity among these water bodies can be great, the ionic composition of lakes and wetlands with similar salinities can vary markedly, influencing the overall spatial and temporal diversity of the region's biota.

  1. Stratigraphy of Glen Rose Formation, Gulf coastal plain

    SciTech Connect

    Pittman, J.G. )

    1989-09-01

    Strata of the Glen Rose Formation and equivalent units crop out in a continuous band across the Edwards Plateau, the area of outcrop skirting the Llano uplift, the Lampasas cut plain, north-central Texas, southeastern Oklahoma, and southwestern Arkansas. These rocks dip into the subsurface of the Gulf coastal plain. Although the Glen Rose interval has been studied on outcrop and in the subsurface in these areas through numerous investigations of local scale and several regional review papers, a synthesis integrating subsurface with outcrop across the broad region and a more detailed lithostratigraphic framework are needed. On outcrop on the Edwards Plateau, the Glen Rose is divided into upper and lower members by the Corbula bed, a thin but widespread accumulation of the minute clam Carycorbula matinae. In this region, the Corbula bed lies beneath anhydrite and gypsum beds (dissolution zones on outcrop), which may be traced through laterally equivalent limestones in the subsurface around the Llano uplift to thin anhydrite stringers above the Ferry Lake Anhydrite in northeastern Texas. These stringers may be traced to the lower part of the Thorp Springs Member of the Glen Rose din the subsurface and outcrop area of north-central Texas. In the Paluxy River Valley, the Corbula bed occurs beneath the Thorp Springs. This specific correlation allows clear demarcation between beds of the upper and lower Glen Rose members in the region. Correlation of this type within the Glen Rose interval allows a detailed understanding of the depositional history of this sequence and provides a more explicitly defined lithostratigraphic framework into which future studies may be integrated.

  2. Effects of Concrete Channels on Stream Biogeochemistry, Maryland Coastal Plain

    NASA Astrophysics Data System (ADS)

    Prestegaard, K. L.; Gilbert, L.; Phemister, K.

    2005-05-01

    In the 1950's and 60's, extensive networks of cement-lined channels were built in suburban watersheds near Washington, D.C. to convey storm water to downstream locations. These cement-lined stream channels limit interactions between surface and groundwater and they provide sources of alkalinity in Maryland Coastal Plain watersheds that normally have low alkalinity. This project was designed to 1) compare base flow water chemistry in headwater reaches of urban and non-urban streams, and 2) to evaluate downstream changes in water chemistry in channelized urban streams in comparison with non-urban reference streams. During a drought year, headwater streams in both urban and non-urban sites had significant concentrations of Fe(II) that were discharged from groundwater sources and rapidly oxidized by iron-oxidizing bacteria. During a wet year, the concentrations of Fe(II) were higher in headwater urban streams than in the non-urban streams. This suggests that impervious surfaces in headwater urban watersheds prevent the recharge of oxygen-rich waters during storm events, which maintains iron-rich groundwater discharge to the stream. Downstream changes in water chemistry are prominent in cement-lined urban channels because they are associated with distinctive microbial communities. The headwater zones of channelized streams are dominated by iron-ozidizing bacteria, that are replaced downstream by manganese-oxidizing zones, and replaced further downstream by biofilms dominated by photosynthesizing cyanobacteria. The reaches dominated by cyanobacteria exhibit diurnal changes in pH due to uptake of CO2 for photosynthesis. Diurnal changes range from 7.5 to 8.8 in the summer months to 7.0 to 7.5 in the cooler months, indicating both the impact of photosynthesis and the additional source of alkalinity provided by concrete. The dissolved oxygen, pH, and other characteristics of tributaries dominated by cyanobacteria are similar to the water chemistry characteristics observed in

  3. THE EFFECTS OF RIPARIAN MANAGEMENT ON DETRITUS PROCESSING AND INVERTEBRATE ASSEMBLAGES IN COASTAL PLAIN INTERMITTENT STREAMS

    EPA Science Inventory

    Silviculture is the primary land use within many Coastal Plain watersheds of the southeastern United States, where most forested wetlands are found along headwater intermittent streams. Our study compared invertebrate assemblages and breakdown of buried detritus (leaves, wood, a...

  4. Invertebrate colonization of leaves and roots within sediments of intermittent coastal plain streams across hydrologic phases

    EPA Science Inventory

    We compared benthic invertebrate assemblages colonizing three types of buried substrates (leaves, roots and plastic roots) among three intermittent Coastal Plain streams over a one year period. Invertebrate density was significantly lower in root litterbags than in plastic root l...

  5. Mercury dynamics in a coastal plain watershed: insights from multiple models and empirical data

    EPA Science Inventory

    Interactions among atmospherically deposited mercury, abundant wetlands, and surface waters with elevated acidity and dissolved organic carbon (DOC) often lead to widespread mercury-related fish consumption advisories in the Coastal Plain of the southeastern United States (US). H...

  6. Savannah River Region: Transition between the Gulf and Atlantic Coastal Plains. Proceedings

    SciTech Connect

    Zullo, V.A.; Harris, W.B.; Price, V.

    1990-12-31

    The focus of the this conference of Coastal Plains geologists was on the Savannah River region of Georgia and South Carolina, and particularly on the geology of the US Department of Energy`s 300 square mile Savannah River Site (SRS) in western South Carolina. Current geological studies indicate that the Mesozoic-Cenozoic section in the Savannah River region is transitional between that of the Gulf Coastal Plain to the southwest and that of the Atlantic Coastal Plain to the northeast. With the transitional aspect of the region as its theme, the first session was devoted to overviews of Cretaceous and Paleogene geology in the Gulf and Atlantic Coastal Plains. Succeeding presentations and resulting discussions dealt with more specific problems in structural, lithostratigraphic, hydrological, biostratigraphic, and cyclostratigraphic analysis, and of correlation to standard stratigraphic frameworks. For these conference proceedings, individual papers have been processed separately for the Energy Data Base.

  7. Organized Stone Stripes in the Northern Plains of Mars

    NASA Astrophysics Data System (ADS)

    Mayer, D. P.

    2008-12-01

    Polygonally-patterned ground at scales of meters to tens of meters is nearly ubiquitous in the northern plains of Mars. Collections of cobble to boulder-sized clasts are commonly found superimposed on polygonal terrain in a regular pattern that resembles the surface of a basketball [Mellon et al., 2008; Malin and Edgett, 2001]. Here we describe a variation of this basketball terrain, dubbed "stone stripes," in which piles of clastic debris are arranged into a series of parallel to subparallel ridges spaced at intervals of ~40 m. Stone stripes appear to be continuous or nearly continuous over areas of tens to hundreds of square kilometers. This type of landform is most prevalent poleward of ~70°N latitude, at the northern margin of Utopia Planitia . We hypothesize that the orientation of stone stripes is controlled by regional structures, such as wrinkle ridges. First results from a survey of THEMIS VIS images within the area from 60°N-80°N and from 70°E-130°E show no obvious correlation between wrinkle ridge orientation and the orientation of stone stripes. Work is ongoing to further characterize the orientation of stone stripes in relation to regional structures and local and regional topographic slopes. Mellon et al., (2008), Periglacial landforms at the Phoenix landing site and the northern plains of Mars, Journal of Geophysical Research, doi:10.1029/2007JE003039, in press. Malin and Edgett, (2001), Mars global surveyor mars orbiter camera: Interplanetary cruise through primary mission, Journal of Geophysical Research, 106, 23429-23570.

  8. Groundwater discharge along a channelized Coastal Plain stream

    USGS Publications Warehouse

    LaSage, D.M.; Sexton, J.L.; Mukherjee, A.; Fryar, A.E.; Greb, S.F.

    2008-01-01

    In the Coastal Plain of the southeastern USA, streams have commonly been artificially channelized for flood control and agricultural drainage. However, groundwater discharge along such streams has received relatively little attention. Using a combination of stream- and spring-flow measurements, spring temperature measurements, temperature profiling along the stream-bed, and geologic mapping, we delineated zones of diffuse and focused discharge along Little Bayou Creek, a channelized, first-order perennial stream in western Kentucky. Seasonal variability in groundwater discharge mimics hydraulic-head fluctuations in a nearby monitoring well and spring-discharge fluctuations elsewhere in the region, and is likely to reflect seasonal variability in recharge. Diffuse discharge occurs where the stream is incised into the semi-confined regional gravel aquifer, which is comprised of the Mounds Gravel. Focused discharge occurs upstream where the channel appears to have intersected preferential pathways within the confining unit. Seasonal fluctuations in discharge from individual springs are repressed where piping results in bank collapse. Thereby, focused discharge can contribute to the morphological evolution of the stream channel. ?? 2008 Elsevier B.V. All rights reserved.

  9. Shallow Groundwater Mercury Supply in a Coastal Plain Stream

    PubMed Central

    2012-01-01

    Fluvial methylmercury (MeHg) is attributed to methylation in up-gradient wetland areas. This hypothesis depends on efficient wetland-to-stream hydraulic transport under nonflood and flood conditions. Fluxes of water and dissolved (filtered) mercury (Hg) species (FMeHg and total Hg (FTHg)) were quantified in April and July of 2009 in a reach at McTier Creek, South Carolina to determine the relative importance of tributary surface water and shallow groundwater Hg transport from wetland/floodplain areas to the stream under nonflood conditions. The reach represented less than 6% of upstream main-channel distance and 2% of upstream basin area. Surface-water discharge increased within the reach by approximately 10%. Mean FMeHg and FTHg fluxes increased within the reach by 23–27% and 9–15%, respectively. Mass balances indicated that, under nonflood conditions, the primary supply of water, FMeHg, and FTHg within the reach (excluding upstream surface water influx) was groundwater discharge, rather than tributary transport from wetlands, in-stream MeHg production, or atmospheric Hg deposition. These results illustrate the importance of riparian wetland/floodplain areas as sources of fluvial MeHg and of groundwater Hg transport as a fundamental control on Hg supply to Coastal Plain streams. PMID:22734594

  10. Groundwater Discharge along a Channelized Coastal Plain Stream

    SciTech Connect

    LaSage, Danita M; Sexton, Joshua L; Mukherjee, Abhijit; Fryar, Alan E; Greb, Stephen F

    2015-10-01

    In the Coastal Plain of the southeastern USA, streams have commonly been artificially channelized for flood control and agricultural drainage. However, groundwater discharge along such streams has received relatively little attention. Using a combination of stream- and spring-flow measurements, spring temperature measurements, temperature profiling along the stream-bed, and geologic mapping, we delineated zones of diffuse and focused discharge along Little Bayou Creek, a channelized, first-order perennial stream in western Kentucky. Seasonal variability in groundwater discharge mimics hydraulic-head fluctuations in a nearby monitoring well and spring-discharge fluctuations elsewhere in the region, and is likely to reflect seasonal variability in recharge. Diffuse discharge occurs where the stream is incised into the semi-confined regional gravel aquifer, which is comprised of the Mounds Gravel. Focused discharge occurs upstream where the channel appears to have intersected preferential pathways within the confining unit. Seasonal fluctuations in discharge from individual springs are repressed where piping results in bank collapse. Thereby, focused discharge can contribute to the morphological evolution of the stream channel.

  11. Shallow groundwater mercury supply in a coastal plain stream

    USGS Publications Warehouse

    Bradley, Paul M.; Journey, Celeste A.; Lowery, Mark A.; Brigham, Mark E.; Burns, Douglas A.; Button, Daniel T.; Chapelle, Francis H.; Lutz, Michelle A.; Marvin-DiPasquale, Mark C.; Riva-Murray, Karen

    2012-01-01

    Fluvial methylmercury (MeHg) is attributed to methylation in up-gradient wetland areas. This hypothesis depends on efficient wetland-to-stream hydraulic transport under nonflood and flood conditions. Fluxes of water and dissolved (filtered) mercury (Hg) species (FMeHg and total Hg (FTHg)) were quantified in April and July of 2009 in a reach at McTier Creek, South Carolina to determine the relative importance of tributary surface water and shallow groundwater Hg transport from wetland/floodplain areas to the stream under nonflood conditions. The reach represented less than 6% of upstream main-channel distance and 2% of upstream basin area. Surface-water discharge increased within the reach by approximately 10%. Mean FMeHg and FTHg fluxes increased within the reach by 23–27% and 9–15%, respectively. Mass balances indicated that, under nonflood conditions, the primary supply of water, FMeHg, and FTHg within the reach (excluding upstream surface water influx) was groundwater discharge, rather than tributary transport from wetlands, in-stream MeHg production, or atmospheric Hg deposition. These results illustrate the importance of riparian wetland/floodplain areas as sources of fluvial MeHg and of groundwater Hg transport as a fundamental control on Hg supply to Coastal Plain streams.

  12. Agroecosystem diversity and pollinator ecosystem services on the northern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The northern Great Plains provide critical habitat to pollinators. In 2012, North and South Dakota produced one-third of the total honey in the U.S. According to large scale analyses, crop diversity in the northern Great Plains has increased during the past 35 years. Increased diversity, greater com...

  13. The 16 May 1909 northern Great Plains earthquake

    USGS Publications Warehouse

    Bakun, W.H.; Stickney, M.C.; Rogers, Gary C.

    2011-01-01

    The largest historical earthquake in the northern Great Plains occurred on 16 May 1909. Our analysis of intensity assignments places the earthquake location (48.81° N, 105.38° W) close to the Montana–Saskatchewan border with an intensity magnitude MI of 5.3–5.4. Observations from two seismic observatories in Europe give an average Ms value of 5.3. The 1909 earthquake is near an alignment of epicenters of small earthquakes in Montana and Saskatchewan and on strike with the mapped Hinsdale fault in Montana. Thus, the 1909 earthquake may have occurred on a 300-km-long seismically active fault, which could have seismic-hazard implications for the region, particularly for the hydraulically emplaced earth-filled Fort Peck Dam, constructed in the 1930s on the Missouri River in northeast Montana.

  14. Biostratigraphic correlation of Pleistocene marine deposits and sea levels, Atlantic coastal plain of the southeastern United States

    USGS Publications Warehouse

    Cronin, T. M.

    1980-01-01

    Marine ostracodes from 50 localities were studied to determine the age and elevation of Pleistocene sea levels in the Atlantic coastal plain from Maryland to northern Florida. Using ostracode taxon and concurrent ranges, published planktic biostratigraphic, paleomagnetic, and radiometric data, ostracode assemblage zones representing early (1.8-1.0 my), middle (0.7-0.4 my), and late (0.3-0.01 my) Pleistocene deposition were recognized and used as a basis for correlation. Ostracode biofacies signifying lagoonal, oyster bank, estuarine, open sound, and inner sublittoral environments provided estimated ranges of paleodepths for each locality. From these data the following minimum and maximum Pleistocene sea-level estimates were determined for the southeastern coastal plain: late Pleistocene, 2-10 m from Maryland to northern Florida; middle Pleistocene, 6-15 m in northern South Carolina; early Pleistocene, 4-22 m in central North Carolina, 13-35 m in southern North Carolina, and 6-27 m in South Carolina. Climatically induced glacio-eustatic sea-level fluctuations adequately account for the late Pleistocene sea-level data, but other factors, possibly differential crustal uplift, may have complicated the early Pleistocene record. ?? 1980.

  15. Dissolved phosphorus retention and release from southeastern USA Coastal Plain in-stream wetlands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the southeastern USA Coastal Plain region, many inland surface water systems will meander through flat or depressional landscape areas prior to discharge into coastal estuaries. Slow water flow through these areas often causes flooding that promotes formation of in-stream wetlands with dense vege...

  16. A Surficial Hydrogeologic Framework for the Mid-Atlantic Coastal Plain

    USGS Publications Warehouse

    Ator, Scott W.; Denver, Judith M.; Krantz, David E.; Newell, Wayne L.; Martucci, Sarah K.

    2005-01-01

    A surficial hydrogeologic framework was developed for the Mid-Atlantic Coastal Plain, from New Jersey through North Carolina. The framework includes seven distinct hydrogeologic subregions within which the primary natural physical factors affecting the flow and chemistry of shallow ground water and small streams are relatively consistent. Within most subregions, the transport of chemicals from the land surface to ground water and streams can be described by a fairly uniform set of natural processes; some subregions include mixed hydrogeologic settings that are indistinguishable at the regional scale. The hydrogeologic framework and accompanying physiographic and geologic delineations are presented in digital and printed format. The seven hydrogeologic subregions that constitute the framework were delineated primarily on the basis of physiography and the predominant texture (typical grain size) of surficial and (where surficial sediments are particularly thin) subcropping sediments. Physiography for the Mid-Atlantic Coastal Plain was constructed by standardizing and extrapolating previously published interpretations for the Coastal Plain of South Carolina and New Jersey, based on similar work in the other States. Surficial and subcropping geology were similarly compiled from previous publications by resolving inconsistencies in nomenclature, interpretation, and scale, and interpolating across unmapped areas. A bulk sediment texture was determined for each mapped geologic unit on the basis of published descriptions. Fundamental differences among the seven hydrogeologic subregions are described on the basis of hypotheses about surficial and shallow subsurface hydrology and water chemistry in each, as well as variable land use, soils, and topography. On the regional scale, the Coastal Lowlands (Subregion 1), the Middle Coastal Plain Fine Sediments (Subregion 3), the Middle Coastal Plain Sands with Overlying Gravels (Subregion 4), and the Inner Coastal Plain Upland

  17. Ecology of tundra ponds of the Arctic Coastal Plain: a community profile

    SciTech Connect

    Hobbie, J.E.

    1984-06-01

    The Arctic Coastal Plain is a flat or gently rolling area of tundra which covers the entire coastal region of northern Alaska. This profile synthesizes data on the ecology of the thousands of small shallow ponds that form an important wetland community on the tundra. These polygonal ponds are formed by the freezing, thawing, and cracking of the perma-frost. Nutrient concentrations and rates of supply to the water column are controlled by interactions with the iron-rich peat sediments. Iron concentrations control phosphorus concentrations and these in turn control the growth of algae. Two fringing emergent vascular plants, Carex and Arctophila, are often the most important primary producers in the ponds. Most algae and higher plant biomass is decomposed by microbes in a detrital food web concentrated in the pond sediments. Chironomid larvae, oligochaete worms and other insects are the dominant benthic animals. Because the ponds freeze to the bottom each winter they contain no fish; however, the community is important for many species of migratory waterfowl and shorebirds that use the ponds for feeding and breeding. Activities associated with oil production, including spills, roads, and off-road vehicles, are the major issues facing managers of this wetland community. 63 references.

  18. Empirically Modeling Carbon Fluxes over the Northern Great Plains Grasslands

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Wylie, B. K.; Ji, L.; Gilmanov, T.; Tieszen, L. L.

    2007-12-01

    Grasslands cover nearly one-fifth of the global terrestrial surface and store most of their carbon below ground. The grassland ecosystem in the Great Plains occupies over 1.5 million km2 of land area and is the primary resource for livestock production in North America. However, the contributions of grasslands to local and regional carbon budgets remain uncertain due to the lack of carbon flux data for the expansive grassland ecosystems under various managements, land uses, and climate variability. A quantitative understanding of carbon fluxes across these systems is essential for developing regional, national, and global carbon budgets and providing guidance to policy makers and managers when substantial conversion to biofuels are implemented. Additionally, these estimates will provide insights into how the grassland ecosystem will respond to future climate and what systems are sustainable and offer net carbon sinks. This knowledge base and decisions support tools are needed for developing land management strategies for the region under a variety of environmental conditions and land use options. In the past, we used a remote sensing-based piecewise regression (PWR) model to estimate the grassland carbon fluxes in the northern Great Plains using the 1-km SPOT VEGETATION normalized difference vegetation index (NDVI) data. We estimated the carbon fluxes through integrated spatial databases and remotely sensed extrapolations of flux tower data to regional scales. The PWR model was applied to derive an empirical relationship between environmental variables and tower-based measurements. The PWR equations were then applied through time and space to estimate carbon fluxes across the study area at 1-km resolution. We now improve this modeling approach by 1) using Moderate Resolution Imaging Spectroradiometer (MODIS) data with higher temporal, spatial, and spectral resolutions (8-day, 500-m, and 7-band) as input; 2) incorporating the actual vegetation evapotranspiration

  19. Biological integrity in mid-atlantic coastal plains headwater streams.

    PubMed

    Megan, Mehaffey H; Nash, Maliha S; Neale, Anne C; Pitchford, Ann M

    2007-01-01

    The objective of this study was to assess the applicability of using landscape variables in conjunction with water quality and benthic data to efficiently estimate stream condition of select headwater streams in the Mid-Atlantic Coastal Plains. Eighty-two streams with riffle sites were selected from eight-two independent watersheds across the region for sampling and analyses. Clustering of the watersheds by landscape resulted in three distinct groups (forest, crop, and urban) which coincided with watersheds dominant land cover or use. We used non-parametric analyses to test differences in benthos and water chemistry between groups, and used regression analyses to evaluate responses of benthic communities to water chemistry within each of the landscape groups. We found that typical water chemistry measures associated with urban runoff such as specific conductance and dissolved chloride were significantly higher in the urban group. In the crop group, we found variables commonly associated with farming such as nutrients and pesticides significantly greater than in the other two groups. Regression analyses demonstrated that the numbers of tolerant and facultative macroinvertebrates increased significantly in forested watersheds with small shifts in pollutants, while in human use dominated watersheds the intolerant macroinvertebrates were more sensitive to shifts in chemicals present at lower concentrations. The results from this study suggest that landscape based clustering can be used to link upstream landscape characteristics, water chemistry and biotic integrity in order to assess stream condition and likely cause of degradation without the use of reference sites. Notice: Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy.

  20. Localized sulfate-reducing zones in a coastal plain aquifer

    USGS Publications Warehouse

    Brown, C.J.; Coates, J.D.; Schoonen, M.A.A.

    1999-01-01

    High concentrations of dissolved iron in ground water of coastal plain or alluvial aquifers contribute to the biofouling of public supply wells for which treatment and remediation is costly. Many of these aquifers, however, contain zones in which microbial sulfate reduction and the associated precipitation of iron-sulfide minerals decreases iron mobility. The principal water-bearing aquifer (Magothy Aquifer of Cretaceous age) in Suffolk County, New York, contains localized sulfate-reducing zones in and near lignite deposits, which generally are associated with clay lenses. Microbial analyses of core samples amended with [14C]-acetate indicate that microbial sulfate reduction is the predominant terminal-electron-accepting process (TEAP) in poorly permeable, lignite-rich sediments at shallow depths and near the ground water divide. The sulfate-reducing zones are characterized by abundant lignite and iron-sulfide minerals, low concentrations of Fe(III) oxyhydroxides, and by proximity to clay lenses that contain pore water with relatively high concentrations of sulfate and dissolved organic carbon. The low permeability of these zones and, hence, the long residence time of ground water within them, permit the preservation and (or) allow the formation of iron-sulfide minerals, including pyrite and marcasite. Both sulfate-reducing bacteria (SRB) and iron-reducing bacteria (IRB) are present beneath and beyond the shallow sulfate-reducing zones. A unique Fe(III)-reducing organism, MD-612, was found in core sediments from a depth of 187 m near the southern shore of Long Island. The distribution of poorly permeable, lignite-rich, sulfate-reducing zones with decreased iron concentration is varied within the principal aquifer and accounts for the observed distribution of dissolved sulfate, iron, and iron sulfides in the aquifer. Locating such zones for the placement of production wells would be difficult, however, because these zones are of limited aerial extent.

  1. Rates of Microbial Metabolism in Deep Coastal Plain Aquifers

    PubMed Central

    Chapelle, Francis H.; Lovley, Derek R.

    1990-01-01

    Rates of microbial metabolism in deep anaerobic aquifers of the Atlantic coastal plain of South Carolina were investigated by both microbiological and geochemical techniques. Rates of [2-14C]acetate and [U-14C]glucose oxidation as well as geochemical evidence indicated that metabolic rates were faster in the sandy sediments composing the aquifers than in the clayey sediments of the confining layers. In the sandy aquifer sediments, estimates of the rates of CO2 production (millimoles of CO2 per liter per year) based on the oxidation of [2-14C] acetate were 9.4 × 10−3 to 2.4 × 10−1 for the Black Creek aquifer, 1.1 × 10−2 for the Middendorf aquifer, and <7 × 10−5 for the Cape Fear aquifer. These estimates were at least 2 orders of magnitude lower than previously published estimates that were based on the accumulation of CO2 in laboratory incubations of similar deep subsurface sediments. In contrast, geochemical modeling of groundwater chemistry changes along aquifer flowpaths gave rate estimates that ranged from 10−4 to 10−6 mmol of CO2 per liter per year. The age of these sediments (ca. 80 million years) and their organic carbon content suggest that average rates of CO2 production could have been no more than 10−4 mmol per liter per year. Thus, laboratory incubations may greatly overestimate the in situ rates of microbial metabolism in deep subsurface environments. This has important implications for the use of laboratory incubations in attempts to estimate biorestoration capacities of deep aquifers. The rate estimates from geochemical modeling indicate that deep aquifers are among the most oligotrophic aquatic environments in which there is ongoing microbial metabolism. PMID:16348227

  2. Rates of microbial metabolism in deep coastal plain aquifers

    SciTech Connect

    Chapelle, F.H. ); Lovley, D.R. )

    1990-06-01

    Rates of microbial metabolism in deep anaerobic aquifers of the Atlantic coastal plain of South Carolina were investigated by both microbiological and geochemical techniques. Rates of (2-{sup 14}C)acetate and (U-{sup 14}C)glucose oxidation as well as geochemical evidence indicated that metabolic rates were faster in the sandy sediments composing the aquifers than in the clayey sediments of the confirming layers. In the many aquifer sediments, estimates of the rates of CO{sub 2} production (millimoles of CO{sub 2} per liter per year) based on the oxidation of (2-{sup 14}C) acetate were 9.4 {times} 10{sup {minus}3} to 2.4 {times} 10{sup {minus}1} for the Black Creek aquifer, 1.1 {times} 10{sup {minus}2} for the Middendorf aquifer, and < 7 {times} 10{sup {minus}5} for the Cape Fear aquifer. These estimates were at least 2 orders of magnitude lower than previously published estimates that were based on the accumulation of CO{sub 2} in laboratory incubations of similar deep subsurface sediments. In contrast, geochemical modeling of groundwater chemistry changes along aquifer flowpaths gave rate estimates that ranged from 10{sup {minus}4} to 10{sup {minus}6} mmol of CO{sub 2} production could have been no more than 10{sup {minus}4} mmol per liter per year. Thus, laboratory incubations may greatly overestimate the in situ rates of microbial metabolism in deep subsurface environments. This has important implications for the use of laboratory incubations in attempts to estimate biorestoration capacities of deep aquifers. The rate estimates from geochemical modeling indicate that deep aquifers are among the most oligotrophic aquatic environments in which there is ongoing microbial metabolism.

  3. Rates of microbial metabolism in deep coastal plain aquifers

    USGS Publications Warehouse

    Chapelle, F.H.; Lovley, D.R.

    1990-01-01

    Rates of microbial metabolism in deep anaerobic aquifers of the Atlantic coastal plain of South Carolina were investigated by both microbiological and geochemical techniques. Rates of [2-14C]acetate and [U-14C]glucose oxidation as well as geochemical evidence indicated that metabolic rates were faster in the sandy sediments composing the aquifers than in the clayey sediments of the confining layers. In the sandy aquifer sediments, estimates of the rates of CO2 production (millimoles of CO2 per liter per year) based on the oxidation of [2-14C]acetate were 9.4 x 10-3 to 2.4 x 10-1 for the Black Creek aquifer, 1.1 x 10-2 for the Middendorf aquifer, and <7 x 10-5 for the Cape Fear aquifer. These estimates were at least 2 orders of magnitude lower than previously published estimates that were based on the accumulation of CO2 in laboratory incubations of similar deep subsurface sediments. In contrast, geochemical modeling of groundwater chemistry changes along aquifer flowpaths gave rate estimates that ranged from 10-4 to 10-6 mmol of CO2 per liter per year. The age of these sediments (ca. 80 million years) and their organic carbon content suggest that average rates of CO2 production could have been no more than 10-4 mmol per liter per year. Thus, laboratory incubations may greatly overestimate the in situ rates of microbial metabolism in deep subsurface environments. This has important implications for the use of laboratory incubations in attempts to estimate biorestoration capacities of deep aquifers. The rate estimates from geochemical modeling indicate that deep aquifers are among the most oligotrophic aquatic environments in which there is ongoing microbial metabolism.

  4. Fractures/Pits in Northern Plains (Utopia Plains: 44.9 N, 274.7 W)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Although northern plains are often called 'flat' or 'featureless' by people who study altimetry data, clearly this isn't true. This area has an indurated (strong or cemented) crust that has been subjected to directional stress (that's why the beaded-pitted fractures are almost all aligned the same direction) and that has been undermined (hence the pitting at both the small scale--the beaded fractures--and the large scale--the large irregular depressions.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  5. Waterfowl research priorities in the northern Great Plains

    USGS Publications Warehouse

    Cox, R.R.; Johnson, D.H.; Johnson, M.A.; Kirby, R.E.; Nelson, J.W.; Reynolds, R.E.

    2000-01-01

    It is necessary periodically to identify research priorities so that future research will be directed toward the most pertinent issues in waterfowl ecology and management. To that end, Northern Prairie Wildlife Research Center convened a quorum of experts on the ecology of breeding waterfowl, the Waterfowl Working Group, to 1) develop a mission statement, 2) identify waterfowl research priorities in the northern Great Plains, and 3) determine the frequency for re-identifying research needs. Research needs (nonprioritized) identified by the group and described in detail herein included: 1) determine effects of landscape factors on demographics and recruitment of ducks in the Prairie Pothole Region; 2) develop, improve, or update estimates of important parameters used in existing models for management and planning; 3) evaluate waterfowl management activities at broad, regional scales; 4) direct studies at waterfowl species of concern; and 5) evaluate applicability of the bird-conservation-area concept to waterfowl. The Waterfowl Working Group will reconsider research priorities at 2-year intervals.

  6. Geologic Map of the Santa Barbara Coastal Plain Area, Santa Barbara County, California

    USGS Publications Warehouse

    Minor, Scott A.; Kellogg, Karl S.; Stanley, Richard G.; Gurrola, Larry D.; Keller, Edward A.; Brandt, Theodore R.

    2009-01-01

    This report presents a newly revised and expanded digital geologic map of the Santa Barbara coastal plain area at a compilation scale of 1:24,000 (one inch on the map to 2,000 feet on the ground)1 and with a horizontal positional accuracy of at least 20 m. The map depicts the distribution of bedrock units and surficial deposits and associated deformation underlying and adjacent to the coastal plain within the contiguous Dos Pueblos Canyon, Goleta, Santa Barbara, and Carpinteria 7.5' quadrangles. The new map supersedes an earlier preliminary geologic map of the central part of the coastal plain (Minor and others, 2002; revised 2006) that provided coastal coverage only within the Goleta and Santa Barbara quadrangles. In addition to new mapping to the west and east, geologic mapping in parts of the central map area has been significantly revised from the preliminary map compilation - especially north of downtown Santa Barbara in the Mission Ridge area - based on new structural interpretations supplemented by new biostratigraphic data. All surficial and bedrock map units, including several new units recognized in the areas of expanded mapping, are described in detail in the accompanying pamphlet. Abundant new biostratigraphic and biochronologic data based on microfossil identifications are presented in expanded unit descriptions of the marine Neogene Monterey and Sisquoc Formations. Site-specific fault kinematic observations embedded in the digital map database are more complete owing to the addition of slip-sense determinations. Finally, the pamphlet accompanying the present report includes an expanded and refined summary of stratigraphic and structural observations and interpretations that are based on the composite geologic data contained in the new map compilation. The Santa Barbara coastal plain is located in the western Transverse Ranges physiographic province along an east-west-trending segment of the southern California coastline about 100 km (62 mi) northwest

  7. Dendroclimatic potential of plains cottonwood (Populus deltoides subsp. monilifera) from the Northern Great Plains, USA

    USGS Publications Warehouse

    Edmonson, Jesse; Friedman, Jonathan; Meko, David; Touchan, Ramzi; Scott, Julian; Edmonson, Alan

    2014-01-01

    A new 368-year tree-ring chronology (A.D. 1643–2010) has been developed in western North Dakota using plains cottonwood (Populus deltoides subsp. monilifera) growing on the relatively undisturbed floodplain of the Little Missouri River in the North Unit of Theodore Roosevelt National Park. We document many slow-growing living trees between 150–370 years old that contradict the common understanding that cottonwoods grow fast and die young. In this northern location, cottonwood produces distinct annual rings with dramatic interannual variability that strongly crossdate. The detrended tree-ring chronology is significantly positively correlated with local growing season precipitation and soil moisture conditions (r  =  0.69). This time series shows periods of prolonged low radial tree growth during the known droughts of the instrumental record (e.g. 1931–1939 and 1980–1981) and also during prehistory (e.g. 1816–1823 and 1856–1865) when other paleoclimate studies have documented droughts in this region. Tree rings of cottonwood will be a useful tool to help reconstruct climate, streamflow, and the floodplain history of the Little Missouri River and other northern river systems.

  8. Lacustrine carbonates of the northern Great Plains of Canada

    NASA Astrophysics Data System (ADS)

    Last, Fawn M.; Last, William M.

    2012-11-01

    The northern Great Plains of western Canada, a vast region stretching from the Precambrian Shield east of Winnipeg, Manitoba, westward for some 1600 km to the foothills of the Rocky Mountains, contains literally millions of lakes and wetlands. Although often characterized as a saline, Na-SO4 system, in fact the wide range of water chemistries exhibited by the lakes results in an unusually large diversity of sediment composition. Despite a long history of limnogeological study, it is only recently that the spectrum of carbonate minerals and sedimentological processes in these lakes has been realized. About 30 species of carbonate minerals have been reported from the modern and Holocene sediment of about 50 basins in the region. The ubiquity of detrital calcite and dolomite is a legacy of the carbonate bedrock and carbonate-rich glacial sediments. Elevated salinities of the lakes, together with high alkalinities, productivity, and pH values, act in concert to create thermodynamically saturated or supersaturated conditions with respect to many carbonate minerals. The most common non-detrital components are Mg-calcite, aragonite and non-stoichiometric dolomite. Many of the basins whose brines have very high Mg/Ca ratios also contain hydromagnesite, magnesite, and nesquehonite. Although not common, sodium carbonates, including trona, natron and nahcolite, also occur in some of the hypersaline lakes. Because of their great range of formative conditions, carbonates have been the workhorse for much of the physical and geochemical paleolimnology in the Canadian Great Plains. However, the often-difficult task of distinguishing endogenic lacustrine carbonates from allogenic and authigenic minerals has limited the use of carbonate stratigraphy in the region. Despite this problem, the carbonates have been useful in deciphering (i) past changes in hydrology and drainage basin characteristics, (ii) lake level and water column stratification fluctuations, and (iii) water chemistry

  9. Workshop on the Martian Northern Plains: Sedimentological, Periglacial, and Paleoclimatic Evolution

    NASA Technical Reports Server (NTRS)

    Kargel, Jeffrey S. (Editor); Moore, Jeffrey (Editor); Parker, Timothy (Editor)

    1993-01-01

    Papers that have been accepted for presentation at the Workshop on the Martian Northern Plains: Sedimentological, Periglacial, and Paleoclimatic Evolution, on 12-14 Aug. 1993 in Fairbanks, Alaska are included. Topics covered include: hydrological consequences of ponded water on Mars; morphological and morphometric studies of impact craters in the Northern Plains of Mars; a wet-geology and cold-climate Mars model: punctuation of a slow dynamics approach to equilibrium; the distribution of ground ice on Mars; and stratigraphy of the Martian Northern Plains.

  10. Contrasting soils and landscapes of the Piedmont and Coastal Plain, eastern United States

    USGS Publications Warehouse

    Markewich, H.W.; Pavich, M.J.; Buell, G.R.

    1990-01-01

    The Piedmont and Coastal Plain physiographic provinces comprise 80 percent of the Atlantic Coastal states from New Jersey to Georgia. The provinces are climatically similar. The soil moisture regime is udic. The soil temperature regime is typically thermic from Virginia through Georgia, although it is mesic at altitudes above 400 m in Georgia and above 320 m in Virginia. The soil temperature regime is mesic for the Piedmont and Coastal Plain from Maryland through New Jersey. The tightly folded, structurally complex crystalline rocks of the Piedmont and the gently dipping "layer-cake" clastic sedimentary rocks and sediments of the Coastal Plain respond differently to weathering, pedogenesis, and erosion. The different responses result in two physiographically contrasting terrains; each has distinctive near-surface hydrology, regolith, drainage morphology, and morphometry. The Piedmont is predominantly an erosional terrain. Interfluves are as narrow as 0.5 to 2 km, and are convex upward. Valleys are as narrow as 0.1 to 0.5 km and generally V-shaped in cross section. Alluvial terraces are rare and discontinuous. Soils in the Piedmont are typically less than 1 m thick, have less sand and more clay than Coastal Plain soils, and generally have not developed sandy epipedons. Infiltration rates for Piedmont soils are low at 6-15 cm/h. The soil/saprolite, soil/rock, and saprolite/rock boundaries are distinct (can be placed within 10 cm) and are characterized by ponding and/or lateral movement of water. Water movement through soil into saprolite, and from saprolite into rock, is along joints, foliation, bedding planes and faults. Soils and isotopic data indicate residence times consistent with a Pleistocene age for most Piedmont soils. The Coastal Plain is both an erosional and a constructional terrain. Interfluves commonly are broader than 2 km and are flat. Valleys are commonly as wide as 1 km to greater than 10 km, and contain numerous alluvial and estuarine terrace

  11. Episodic acidification of a coastal plain stream in Virginia

    USGS Publications Warehouse

    O'Brien, A. K.; Eshleman, K.N.

    1996-01-01

    This study investigates the episodic acidification of Reedy Creek, a wetland-influenced coastal plain stream near Richmond, Virginia. Primary objectives of the study were to quantify the episodic variability of acid- base chemistry in Reedy Creek, to examine the seasonal variability in episodic response and to explain the hydrological and geochemical factors that contribute to episodic acidification. Chemical response was similar in each of the seven storms examined, however, the ranges in concentrations observed were commonly greater in summer/fall storms than in winter/spring storms. An increase in SO4/2- concentration with discharge was observed during all storms and peak concentration occurred at or near peak flow. Small increases in Mg2+, Ca2+, K+ concentrations and dissolved organic carbon (DOC) were observed during most storms. At the same time, ANC, Na+ and Cl- concentrations usually decreased with increasing discharge. In summer/fall storms, the absolute increase in SO4/2- concentration was one-third to 15 times the increase observed in winter/spring storms; the decrease in ANC during summer/fall storms was usually within the range of the decrease observed in winter/spring storms. In contrast, the decrease in Na+ and Cl- concentrations during winter/spring storms was much greater than that observed during summer/fall storms. Data show that while base flow anion deficit was higher in summer/fall than in winter/spring, anion deficit decreased during most summer/fall storms. In contrast, base flow anion deficit was lower in spring and winter, but increased during winter/spring storms. Increased SO4/2- concentration was the main cause of episodic acidification during storms at Reedy Creek, but increased anion deficit indicates organic acids may contribute to episodic acidification during winter/spring storms. Changes in SO4/2- concentration coincident with the hydrograph rise indicate quick routing of water through the watershed. Saturation overland flow

  12. Estuarine infill and coastal progradation, southern van diemen gulf, northern Australia

    NASA Astrophysics Data System (ADS)

    Woodroffe, C. D.; Mulrennan, M. E.; Chappell, J.

    1993-03-01

    There are several estuaries associated with the pronouncedly seasonal rivers which drain northwards from the Middle Proterozoic sandstone Arnhem Land plateau, and the Tertiary Koolpinyah land surface, into the macrotidal van Diemen Gulf, in the Northern Territory of Australia. The Holocene development of these, investigated in greatest detail for the South Alligator River with an upland catchment of > 10,000 km 2. through drilling, palynology and radiocarbon dating, comprises both estuarine infill and coastal progradation. Three phases of estuarine infill can be recognised: (i) a transgressive phase (8000-6800 years B.P.) of marine incursion; (ii) a big swamp phase (6800-5300 years B.P.) of widespread mangrove forest development; and (iii) a sinuous/cuspate phase of floodplain development since 5300 years B.P., during which the tidal river has meandered and reworked earlier estuarine sediments. Since 6000 years B.P., the South Alligator coastal plain has prograded at a decelerating rate, with two phases of chenier ridge formation. A similar pattern of estuarine infill, and decelerating coastal plain progradation, is demonstrated for the Adelaide and Mary Rivers, both with catchments of > 6000 km 2. The southern shore of van Diemem Gulf appears to have changed its overall position little during the last 2000 years. The major source for the clay, silt and fine sands which have infilled the estuary and coastal plain has been from seaward. Dispite the similarity of development, coastal sediment build up has had different effects on the morphology of each tidal river. The Adelaide has undergone a major diversion and no longer flows directly into van Diemen Gulf, but occupies a former fluvial course, and the Mary has been blocked entirely, and its former estuarine palaeochannels have been infilled with tide-transported sediment.

  13. Ground water contamination and costs of pesticide restrictions in the southeastern coastal plain

    SciTech Connect

    Danielson, L.E.; Carlson, G.A.; Liu, S.; Weber, J.B.; Warren, R.

    1993-01-01

    The project developed new methodology for estimating: (1) groundwater contamination potential (GWCP) in the Southeast Coastal Plain, and (2) the potential economic impacts of selected policies that restrict pesticide use. The potential for ground water contamination was estimated by use of a simple matrix for combining ratings for both soil leaching potential and pesticide leaching potential. Key soil variables included soil texture, soil acidity and organic matter content. Key pesticide characteristics included Koc, pesticide half-life, the rate of application and the fraction of the pesticide hitting the soil. Comparisons of pesticide use from various farmer and expert opinion surveys were made for pesticide groups and for individual pesticide products. Methodology for merging the GWCP changes and lost benefits from selected herbicide cancellations was developed using corn production in the North Carolina Coastal Plain. Economic evaluations of pesticide cancellations for corn included national and Coastal Plain estimates for atrazine; metolachlor; dicamba; dicamba and atrazine; and dicamba, atrazine and metolachlor.

  14. Prediction of episodic acidification in Maryland Coastal Plain streams. Final report

    SciTech Connect

    Gerritsen, J.; Dietz, J.; Wilson, H.T.; Janicki, A.J.

    1989-12-01

    Episodic acidification from acidic precipitation in Coastal Plain streams of the Chesapeake Bay watershed is a potential threat to spawning and survival of anadromous fish species. The study is part of a process of selection of streams for mitigation of acidic episodes to increase the spawning success of anadromous fish stocks. It describes the development of practical, empirical models to predict the chemical response of Coastal Plain streams during precipitation events. One of the design criteria for the models was that they predict the response of a stream to precipitation events using data that are relatively easy to obtain. Data used to build and test the models were from several intensive studies of episodic acidification in the Maryland Coastal Plain. Regression models were developed to predict minimum pH during an event, change in pH during an event and minimum ANC (alkalinity) during an event. Two models were developed for each dependent variable.

  15. Evaluation of stream chemistry and watershed characteristics in the mid-atlantic coastal plain

    SciTech Connect

    Janicki, A.; Morgan, M.; Lynch, J.

    1995-12-31

    The purpose of this study was to apply the stream classification model developed from Maryland Synoptic Stream Chemistry Study data base to assess the relative importance of acidic deposition and other anthropogenic disturbances on acidity in Mid-Atlantic Coastal Plain streams. Data pertaining to Mid-Atlantic Coastal Plain watershed geology, soils, land use type, and stream chemistry were obtained from USEPA National Stream Survey, USGS and County Soil Conservation Services from New Jersey to North Carolina. These data were used in a regression analysis to establish the relative importance of ions determining stream water acidity. The study results support the conclusion that acidic deposition has substantially altered the acid base chemistry of Mid-Atlantic Coastal Plain Streams.

  16. Avian associations of the Northern Great Plains grasslands

    USGS Publications Warehouse

    Kantrud, H.A.; Kologiski, R.L.

    1983-01-01

    The grassland region of the northern Great Plains was divided into six broad subregions by application of an avian indicator species analysis to data obtained from 582 sample plots censused during the breeding season. Common, ubiquitous species and rare species had little classificatory value and were eliminated from the data set used to derive the avian associations. Initial statistical division of the plots likely reflected structure of the dominant plant species used for nesting; later divisions probably were related to foraging or nesting cover requirements based on vegetation height or density, habitat heterogeneity, or possibly to the existence of mutually similar distributions or shared areas of greater than average abundance for certain groups of species. Knowledge of the effects of grazing, mostly by cattle, on habitat use by the breeding bird species was used to interpret the results of the indicator species analysis. Moderate grazing resulted in greater species richness in nearly all subregions; effects of grazing on total bird density were more variable.

  17. Environmental factors that influence prescribed burning in the Northern Plains

    USGS Publications Warehouse

    Kruse, A.D.; Higgins, K.F.; Piehl, J.L.

    1983-01-01

    Several environmental conditions were recorded and analyzed for 192 prescribed burns in the Northern Great Plains. The purpose of these burns was to improve wildlife habitat and manipulate native prairie vegetation. All of the fires occurred in grassland and shrubsteppe vegetation types. Fuels were predominantly grasses and forbs intermixed with patches of shrubs. Nearly all of the fuels were 0.05 cm/h, do not burn. However, these are good conditions to burn stockpiles of unwanted fuels that are usually high risk elements during regular prescribed burns.2) Produce partial burns. Partial burns are defined as those where fire is discontinuous and patches of standing and lodged vegetation are left unburned. Partial burns occur most often when fine fuels feel moist when handled, where less than 2 days have passed since the last measurable precipitation, and when cloud cover is complete. Other conditions associated with partial burns are relative humidities >50 percent, temperatures 32 km/h, relative humidities 35 deg.C. These conditions occur most often in July, August, and September, but can occur anytime from April through October.

  18. Historical Influences on Contemporary Tobacco Use by Northern Plains and Southwestern American Indians

    PubMed Central

    2016-01-01

    There are great differences in smoking- and tobacco-related mortality between American Indians on the Northern Plains and those in the Southwest that are best explained by (1) ecological differences between the two regions, including the relative inaccessibility and aridity of the Southwest and the lack of buffalo, and (2) differences between French and Spanish Indian relations policies. The consequence was the disruption of inter- and intratribal relations on the Northern Plains, where as a response to disruption the calumet (pipe) ceremony became widespread, whereas it did not in the Southwest. Tobacco was, thus, integrated into social relationships with religious sanctions on the Northern Plains, which increased the acceptability of commercial cigarettes in the 20th century. Smoking is, therefore, more deeply embedded in religious practices and social relationships on the Northern Plains than in the Southwest. PMID:26691134

  19. Historical Influences on Contemporary Tobacco Use by Northern Plains and Southwestern American Indians.

    PubMed

    Kunitz, Stephen J

    2016-02-01

    There are great differences in smoking- and tobacco-related mortality between American Indians on the Northern Plains and those in the Southwest that are best explained by (1) ecological differences between the two regions, including the relative inaccessibility and aridity of the Southwest and the lack of buffalo, and (2) differences between French and Spanish Indian relations policies. The consequence was the disruption of inter- and intratribal relations on the Northern Plains, where as a response to disruption the calumet (pipe) ceremony became widespread, whereas it did not in the Southwest. Tobacco was, thus, integrated into social relationships with religious sanctions on the Northern Plains, which increased the acceptability of commercial cigarettes in the 20th century. Smoking is, therefore, more deeply embedded in religious practices and social relationships on the Northern Plains than in the Southwest. PMID:26691134

  20. A new GIS approach for reconstructing and mapping dynamic late Holocene coastal plain palaeogeography

    NASA Astrophysics Data System (ADS)

    Pierik, H. J.; Cohen, K. M.; Stouthamer, E.

    2016-10-01

    The geomorphological development of Holocene coastal plains around the world has been studied since the beginning of the twentieth century from various disciplines, resulting in large amounts of data. However, the overwhelming quantities and heterogeneous nature of this data have caused the divided knowledge to remain inconsistent and fragmented. To keep improving the understanding of coastal plain geomorphology and geology, cataloguing of data and integration of knowledge are essential. In this paper we present a GIS that incorporates the accumulated data of the Netherlands' coastal plain and functions as a storage and integration tool for coastal plain mapped data. The GIS stores redigitised architectural elements (beach barriers, tidal channels, intertidal flats, supratidal flats, and coastal fresh water peat) from earlier mappings in separate map layers. A coupled catalogue-style database stores the dating information of these elements, besides references to source studies and annotations regarding changed insights. Using scripts, the system automatically establishes palaeogeographical maps for any chosen moment, combining the above mapping and dating information. In our approach, we strip the information to architectural element level, and we separate mapping from dating information, serving the automatic generation of time slice maps. It enables a workflow in which the maker can iteratively regenerate maps, which speeds up fine-tuning and thus the quality of palaeogeographical reconstruction. The GIS currently covers the late Holocene coastal plain development of the Netherlands. This period witnessed widespread renewed flooding along the southern North Sea coast, coinciding with large-scale reclamation and human occupation. Our GIS method is generic and can be expanded and adapted to allow faster integrated processing of growing amounts of data for many coastal areas and other large urbanising lowlands around the world. It allows maintaining actual data

  1. Preliminary geologic map of the Santa Barbara coastal plain area, Santa Barbara County, California

    USGS Publications Warehouse

    Minor, Scott A.; Kellogg, Karl S.; Stanley, Richard G.; Stone, Paul; Powell, Charles L.; Gurrola, Larry D.; Selting, Amy J.; Brandt, Theodore R.

    2002-01-01

    This report presents a new geologic digital map of the Santa Barbara coastal plain area at a compilation scale of 1:24,000 (one inch on the map = 2,000 feet on the ground) and with a horizontal positional accuracy of at least 20 m. This preliminary map depicts the distribution of bedrock units and surficial deposits and associated deformation underlying and adjacent to the coastal plain within the contiguous Santa Barbara and Goleta 7.5' quadrangles. A planned second version will extend the mapping westward into the adjoining Dos Pueblos Canyon quadrangle and eastward into the Carpinteria quadrangle. The mapping presented here results from the collaborative efforts of geologists with the U.S. Geological Survey Southern California Areal Mapping Project (SCAMP) (Minor, Kellogg, Stanley, Stone, and Powell) and the tectonic geomorphology research group at the University of California at Santa Barbara (Gurrola and Selting). C.L. Powell, II, performed all new fossil identifications and interpretations reported herein. T.R. Brandt designed and edited the GIS database,performed GIS database integration and created the digital cartography for the map layout. The Santa Barbara coastal plain is located in the western Transverse Ranges physiographic province along a west-trending segment of the southern California coastline about 100 km (62 mi) northwest of Los Angeles. The coastal plain region, which extends from the Santa Ynez Mountains on the north to the Santa Barbara Channel on the south, is underlain by numerous active and potentially active folds and partly buried thrust faults of the Santa Barbara fold and fault belt. Strong earthquakes that occurred in the region in 1925 (6.8 magnitude) and 1978 (5.1 magnitude) are evidence that such structures pose a significant earthquake hazard to the approximately 200,000 people living within the major coastal population centers of Santa Barbara and Goleta. Also, young landslide deposits along the steep lower flank of the Santa

  2. Importance of Small Isolated Wetlands for Herpetofaunal Diversity in Managed, Young Growth Forests in the Coastal Plain of South Carolina

    SciTech Connect

    Russell, K.R.; Guynn, D.C., Jr.; Hanlin, H.G.

    2002-03-27

    Assessment and comparison of richness, abundance and difference of herpetofauna at five small isolated wetlands located within a commercial forest landscape in the South Carolina Coastal Plain. Data indicates small isolated wetlands are focal points of herpetofaunal richness and abundance in managed coastal plain forest and contribute more to regional biodiversity than is implied by their small size or ephemeral hydrology.

  3. Oil and gas developments in Atlantic Coastal Plain and Outer Continental Shelf in 1985 and 1986

    SciTech Connect

    Amato, R.V.

    1987-10-01

    Drilling activity for 1985 was not reported previously due to the low level of activity. No exploratory drilling took place on the Atlantic outer continental shelf in 1985 or 1986. One shallow well was drilled onshore in Georgia on the Atlantic coastal plan in 1985, and 2 wells were completed in Georgia in 1986. Texaco drilled 6 core holes on the Virginia coastal plain in 1986. 2 tables.

  4. Luminescence chronology of Upper Pleistocene and Holocene aeolianites from Netanya South — Sharon Coastal Plain, Israel

    NASA Astrophysics Data System (ADS)

    Engelmann, Anette; Neber, Alexander; Frechen, Manfred; Wolfgang Boenigk; Ronen, Avraham

    2001-12-01

    The coastal cliff at Netanya South in the Sharon Coastal Plain of Israel was investigated with luminescence dating methods. Twenty-four samples were taken from the exposed aeolianites and intercalated paleosols. The 24 IRSL and 24 TL age estimates suggest that the lower 45 m of the section were deposited in Oxygen Isotope Stage 3. The uppermost 7 m of the section are of Holocene age and clearly separated by a hiatus of 20-30 ka from the lower part.

  5. InSAR detects possible thaw settlement in the Alaskan Arctic Coastal Plain

    USGS Publications Warehouse

    Rykhus, R.P.; Lu, Zhiming

    2008-01-01

    Satellite interferometric synthetic aperture radar (InSAR) has proven to be an effective tool for monitoring surface deformation from volcanoes, earthquakes, landslides, and groundwater withdrawal. This paper seeks to expand the list of applications of InSAR data to include monitoring subsidence possibly associated with thaw settlement over the Alaskan Arctic Coastal Plain. To test our hypothesis that InSAR data are sufficiently sensitive to detect subsidence associated with thaw settlement, we acquired all Japanese Earth Resources Satellite-1 (JERS-1) L-band data available for the summers of 1996, 1997, and 1998 over two sites on the Alaska North Slope. The least amount of subsidence for both study sites was detected in the interferograms covering the summer of 1996 (2-3 cm), interferograms from 1997 and 1998 revealed that about 3 cm of subsidence occurred at the northern Cache One Lake site, and about 5 cm of subsidence was detected at the southern Kaparuk River site. These preliminary results illustrate the capacity of the L-band (24 cm) wavelength JERS-1 radar data to penetrate the short Arctic vegetation to monitor subsidence possibly associated with thaw settlement of the active layer and (or) other hydrologic changes over relatively large areas. ?? 2008 CASI.

  6. Mesozoic (Upper Jurassic-Lower Cretaceous) deep gas reservoir play, central and eastern Gulf coastal plain

    USGS Publications Warehouse

    Mancini, E.A.; Li, P.; Goddard, D.A.; Ramirez, V.O.; Talukdar, S.C.

    2008-01-01

    The Mesozoic (Upper Jurassic-Lower Cretaceous) deeply buried gas reservoir play in the central and eastern Gulf coastal plain of the United States has high potential for significant gas resources. Sequence-stratigraphic study, petroleum system analysis, and resource assessment were used to characterize this developing play and to identify areas in the North Louisiana and Mississippi Interior salt basins with potential for deeply buried gas reservoirs. These reservoir facies accumulated in Upper Jurassic to Lower Cretaceous Norphlet, Haynesville, Cotton Valley, and Hosston continental, coastal, and marine siliciclastic environments and Smackover and Sligo nearshore marine shelf, ramp, and reef carbonate environments. These Mesozoic strata are associated with transgressive and regressive systems tracts. In the North Louisiana salt basin, the estimate of secondary, nonassociated thermogenic gas generated from thermal cracking of oil to gas in the Upper Jurassic Smackover source rocks from depths below 3658 m (12,000 ft) is 4800 tcf of gas as determined using software applications. Assuming a gas expulsion, migration, and trapping efficiency of 2-3%, 96-144 tcf of gas is potentially available in this basin. With some 29 tcf of gas being produced from the North Louisiana salt basin, 67-115 tcf of in-place gas remains. Assuming a gas recovery factor of 65%, 44-75 tcf of gas is potentially recoverable. The expelled thermogenic gas migrated laterally and vertically from the southern part of this basin to the updip northern part into shallower reservoirs to depths of up to 610 m (2000 ft). Copyright ?? 2008. The American Association of Petroleum Geologists. All rights reserved.

  7. Geochemistry of shallow ground water in coastal plain environments in the southeastern United States: Implications for aquifer susceptibility

    USGS Publications Warehouse

    Tesoriero, A.J.; Spruill, T.B.; Eimers, J.L.

    2004-01-01

    Ground-water chemistry data from coastal plain environments have been examined to determine the geochemical conditions and processes that occur in these areas and assess their implications for aquifer susceptibility. Two distinct geochemical environments were studied to represent a range of conditions: an inner coastal plain setting having more well-drained soils and lower organic carbon (C) content and an outer coastal plain environment that has more poorly drained soils and high organic C content. Higher concentrations of most major ions and dissolved inorganic and organic C in the outer coastal plain setting indicate a greater degree of mineral dissolution and organic matter oxidation. Accordingly, outer coastal plain waters are more reducing than inner coastal plain waters. Low dissolved oxygen (O2) and nitrate (NO 3-) concentrations and high iron (Fe) concentrations indicate that ferric iron (Fe (III)) is an important electron acceptor in this setting, while dissolved O2 is the most common terminal electron acceptor in the inner coastal plain setting. The presence of a wide range of redox conditions in the shallow aquifer system examined here underscores the importance of providing a detailed geochemical characterization of ground water when assessing the intrinsic susceptibility of coastal plain settings. The greater prevalence of aerobic conditions in the inner coastal plain setting makes this region more susceptible to contamination by constituents that are more stable under these conditions and is consistent with the significantly (p<0.05) higher concentrations of NO3- found in this setting. Herbicides and their transformation products were frequently detected (36% of wells sampled), however concentrations were typically low (<0.1 ??g/L). Shallow water table depths often found in coastal plain settings may result in an increased risk of the detection of pesticides (e.g., alachlor) that degrade rapidly in the unsaturated zone.

  8. Catastrophic failure of the Northern Great Plains: A unifying hypothesis

    SciTech Connect

    Clausen, E.N. . Science Div.)

    1992-01-01

    The Northern Great Plains, at peak Laurentide glaciation, was a 1,600 km thick barrier between meltwater sources and the lower Missouri Valley. Meltwater and floodwaters flowed along the ice margin, moved between the Black Hills and Laurentide ice. Water was trapped between ice to the N and E and mountains to the W and S. The Pine Ridge Escarpment began as the S wall of a W-trending headcut while other headcuts eroded N, parallel to the ice margin. Sheetflow from the west and northwest stripped the easily-eroded surface between major headcuts. The Cheyenne Valley headcut then captured sheetflow from the eastern Powder River Basin, both N and S of the Black Hills. Sheetflow moving through the western Powder River Basin, however, continued to spill over the southern wall of the initial headcut, carving the upper White River Valley. These floodwaters filled the lower White River Valley, including the Scenic and Sage Creek Basins, and breached divides by spilling over into the newly formed Cheyenne Valley. Another W-trending headcut next initiated the upper Little Missouri Valley by diverting sheetflow from the northeastern Powder River Basin. The Little Missouri Valley was extended northward by diversion of flow to a fourth major headcut and then again by diversion to the Missouri Valley headcut. Sheetflow, moving SE into the Powder River Basin, was progressively captured and diverted as SW-trending headcuts formed the Yellowstone-Powder, Yellowstone-Tongue, and Yellowstone-Bighorn valleys. At the same time sheetflow was progressively captured and diverted by a northerly set of SW-trending headcuts which eroded the Redwater, Big Dry, and Musselshell valleys. Major spillways finally breached the 1,600 km thick barrier by cutting between the Highwood and Bearpaw Mountains and between Milk River Ridge and the Cypress Hills.

  9. Prescribed burning guidelines in the Northern Great Plains

    USGS Publications Warehouse

    Higgins, Kenneth F.; Piehl, James L.; Kruse, Arnold D.

    1989-01-01

    The use of fire to manage grasslands for wildlife is a relatively new management option for resource managers in the Northern Great Plains (NGP). Nearly all of the burning during the past 20-25 years has been conducted without the aid of specific guidelines for the region. This state-of-the-art set of recommendations was compiled because of this void.Records of 902 grassland fires (primarily on U.S. Fish and Wildlife lands), personal experiences, and synopses of other published fire research were used in developing the guidelines in this manual.Fifty-two percent of the 902 fires were in native prairie grasslands with lesser amounts in tame and native grass plantings, wetlands, and woodlands.Prescription grassland fires averaged 31 ha (77 acres) per burn. The personnel needed to safely conduct a grassland fire depended on the size of the burn the kind of firebreaks, available equipment, and weather conditions. Costs and hours of effort to conduct fires were inversely related to burn area size. Cost ratios are extremely high for fires of less than 4 ha (10 acres). They are essentially the same for burns of 16 to 113 ha (40 to 280 acres).The two primary reasons for burning grasslands are wildlife habitat improvement and native prairie restoration. Fire use steadily increased between 1965 and 1984, but the greatest increase occurred following workshop instruction in 1978.These guidelines present a set of reasons, criteria, techniques, and examples of simple prescriptions which aid in the planning and execution of a safe and effective prescribed burning program for wildlife enhancement in grassland areas of the NGP.

  10. Quaternary stratigraphy and sea-level history of the U.S. Middle Atlantic Coastal Plain

    NASA Astrophysics Data System (ADS)

    Toscano, Marguerite A.; York, Linda L.

    Middle-Atlantic, inner continental shelf stratigraphic studies document a regional, Late Pleistocene, fossiliferous mud deposit, from northern New Jersey to Cape Lookout, North Carolina. Seismic reconnaissance and detailed stratigraphic analyses reveal the nature of the mud, termed unit Q2, on the Maryland inner continental shelf. Extensive amino acid relative age determinations (from the single genus Mulinia), combined with additional amino acid analyses from onshore deposits having radiometric dates for calibration, indicate an age range for unit Q2 corresponding to Oxygen Isotope Stage 5. Ostracode assemblages delineate four distinct climatic episodes in unit Q2, enabling correlation of the zones in Q2 to the deep sea isotopic record of climatic fluctuations (substages) in Stage 5. Late Stage 5 is represented, on the Maryland shelf, by the 6 meter-thick mud of unit Q2, deposited in an open-shelf environment at slightly depressed sea levels relative to Substage 5e. Late Stage 5 sea levels (including sea-level minima) can be estimated for the mid-Atlantic Coastal Plain by direct measurement of the altitudes of ostracode zone boundaries offshore, and from peak transgressive facies in correlative deposits onshore. Late Stage 5 sea levels determined from the inner shelf and adjacent nearshore facies on the Atlantic coast comprise the most complete sea-level history for Stage 5 yet proposed. Some recent revisions of glacioeustatic sea-level models advocate slightly higher sea levels during late Stage 5 (Substage 5c in particular) than originally estimated from uplifting reef tracts, and support sea levels higher than estimates from deep-sea isotopic records. The sea-level record from the Maryland inner continental shelf confirms these recent estimates in an area of minimal tectonism, and adds sea-level minima estimates for Substages 5d and 5b. Offshore, a more complete record of Stage 5 is preserved than in onshore deposits, which are limited to peak transgressive

  11. Stormflow Response as a Function of Alluvial Storage in a Small Atlantic Coastal Plain Watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Total available groundwater storage in alluvial floodplains has been shown to have a significant impact upon stormflow within larger (16.7 to 50 km2) watersheds within the Atlantic Coastal Plain. Groundwater and streamflow data from a small (0.5 km2) watershed were examined to evaluate the temporal...

  12. Characterizing mercury concentrations and flux dynamics in a coastal plain watershed using multiple models

    EPA Science Inventory

    The primary goal was to asess Hg cycling within a small coastal plain watershed (McTier Creek) using multiple watershed models with distinct mathematical frameworks that emphasize different system dynamics; a secondary goal was to identify current needs in watershed-scale Hg mode...

  13. ASSESSING THE HYDROGEOLOGIC CLASSIFICATION SYSTEM IN MID-ATLANTIC COASTAL PLAIN STREAMS USING BENTHIC MACROINVERTEBRATES

    EPA Science Inventory

    Assessing classification systems that describe natural variation across regions is an important first step for developing indicators. We evaluated a hydrogeologic framework for first order streams in the mid-Atlantic Coastal Plain as part of the LIPS-MACS (Landscape Indicators f...

  14. APPLICATION OF A MULTIPURPOSE UNEQUAL-PROBABILITY STREAM SURVEY IN THE MID-ATLANTIC COASTAL PLAIN

    EPA Science Inventory

    A stratified random sample with unequal-probability selection was used to design a multipurpose survey of headwater streams in the Mid-Atlantic Coastal Plain. Objectives for data from the survey include unbiased estimates of regional stream conditions, and adequate coverage of un...

  15. Ground-water use in the coastal plain of Maryland, 1900-1980

    USGS Publications Warehouse

    Wheeler, J.C.; Wilde, F.D.

    1989-01-01

    This report presents groundwater withdrawal data from 1900 through 1980 for Maryland counties lying with the Coastal Plain physiographic province, as well as a summary section for the total Maryland Coastal Plain. The types of water use included are domestic, military, water supplier, industrial/commercial, and irrigation. The data were obtained from state and county reports, biannual pumpage reports submitted to the Maryland Water Resources Administration, communication with individual owners, and estimates based on existing published data. The amount of groundwater withdrawn from aquifers in the Maryland Coastal Plain in 1900 was approximately 26 million gallons per day (Mgal/d) compared to nearly 134 Mgal/d in 1980. Jurisdictions withdrawing more than 10 Mgal/d for most of the 80-year period were Anne Arundel and Baltimore Counties and Baltimore City. The greatest withdrawals for most of the early part of the period were for domestic and industrial/commercial uses; however, water-supplier use dominated after 1965. Groundwater use for irrigation became important in the Coastal Plain around 1960 and increased steadily from approximately 2 Mgal/d in 1960 to nearly 12 Mgal/d in 1980. (USGS)

  16. MINERALIZATION OF NITROGEN FROM BROILER LITTER AS AFFECTED BY SOIL TEXTURE IN THE SOUTHEASTERN COASTAL PLAIN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A field study was conducted during 2004-2005 to determine nitrogen (N) mineralization of broiler litter (BL) in two Coastal Plain soils of differing texture, sandy or clayey. The soils were a Tifton loamy sand (fine-loamy, siliceous, thermic, Plinthic Kandiudults) and a Greenville sandy clay loam (...

  17. Nitrogen Mineralization of Broiler Litter Applied to Southeastern Coastal Plain Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A field study was conducted to determine nitrogen (N) mineralization of broiler litter (BL) in two Coastal Plain soils of differing texture, sandy or clayey. The soils were a Tifton loamy sand (fine-loamy, siliceous, thermic, Plinthic Kandiudults) and a Greenville sandy clay loam (clayey, kaoliniti...

  18. Characterizing mercury concentrations and flux dynamics in a coastal plain watershed using multiple models and data

    EPA Science Inventory

    Mercury-related fish consumption advisories are widespread in the coastal plain of the southeastern U.S., where atmospherically deposited mercury interacts with an abundance of wetlands and high-dissolved organic carbon (DOC), acidic waters. Recent trends in decision making proce...

  19. Impact of biochar amendment on fertility of a southeastern Coastal Plain soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural soils in the southeastern USA Coastal Plain region have meager soil fertility characteristics due to their sandy textures, acidic pH values, kaolinitic clays, low cation exchange capacities (CEC), and diminutive soil organic carbon (SOC) contents. We hypothesized that biochar additions ...

  20. Projected climate change for the coastal plain region of Georgia, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climatic patterns for the Coastal Plain region of Georgia, USA, centered on Tifton, Georgia (31 28 30N, 83 31 54W) were examined for long term patterns in precipitation and air temperature. Climate projections based upon output from seven Global Circulation Models (GCMs) and three future Green Hous...

  1. Air Emissions from Organic Soil Burning on the Coastal Plain of North Carolina

    EPA Science Inventory

    Emissions of trace gases and particles <10 and 2.5 microns aerodynamic diameter (PM10 and PM2.5, respectively) from fires during 2009-2011 on the North Carolina coastal plain were collected and analyzed. Carbon mass balance techniques were used to quantify emission factors (EFs)....

  2. Soil organic carbon dynamics in a sod-based rotation on coastal plain soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A frequently used cropping system in the southeastern Coastal Plain is an annual rotation of cotton (Gossypium hirsutum L.) and peanut (Arachis hypogaea L.) under conventional tillage (CT). The traditional peanut-cotton rotation (TR) often results in erosion and loss of soil organic carbon (SOC). In...

  3. Sediment loss and runoff from cropland in a Southeast Atlantic Coastal Plain landscape

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Widespread implementation of conservation-tillage (CsT) systems during cotton and peanut production in the Atlantic Coastal Plain region (USA) has substantially reduced erosion and sediment loss. However, benefits of CsT in these cropping systems are being threatened by weather shifts that include i...

  4. Distribution of breeding shorebirds on the Arctic Coastal Plain of Alaska

    USGS Publications Warehouse

    Johnson, J.A.; Lanctot, Richard B.; Andres, B.A.; Bart, J.R.; Brown, S.C.; Kendall, S.J.; Payer, David C.

    2007-01-01

    Available information on the distribution of breeding shorebirds across the Arctic Coastal Plain of Alaska is dated, fragmented, and limited in scope. Herein, we describe the distribution of 19 shorebird species from data gathered at 407 study plots between 1998 and 2004. This information was collected using a single-visit rapid area search technique during territory establishment and early incubation periods, a time when social displays and vocalizations make the birds highly detectable. We describe the presence or absence of each species, as well as overall numbers of species, providing a regional perspective on shorebird distribution. We compare and contrast our shorebird distribution maps to those of prior studies and describe prominent patterns of shorebird distribution. Our examination of how shorebird distribution and numbers of species varied both latitudinally and longitudinally across the Arctic Coastal Plain of Alaska indicated that most shorebird species occur more frequently in the Beaufort Coastal Plain ecoregion (i.e., closer to the coast) than in the Brooks Foothills ecoregion (i.e., farther inland). Furthermore, the occurrence of several species indicated substantial longitudinal directionality. Species richness at surveyed sites was highest in the western portion of the Beaufort Coastal Plain ecoregion. The broad-scale distribution information we present here is valuable for evaluating potential effects of human development and climate change on Arctic-breeding shorebird populations. ?? The Arctic Institute of North America.

  5. Characteristics of Human Resources in the Rural Southeast Coastal Plain...With Emphasis on the Poor.

    ERIC Educational Resources Information Center

    McElveen, Jackson V.; And Others

    The objectives of this study were to determine the anatomy, typology, and conditions surrounding low incomes in the Coastal Plain of South Carolina and to determine the measures most suitable to reduce low income within the area. A sample of 1,000 households was selected and stratified among the 10 counties and between the open-country rural area…

  6. Hydrogeologic setting and potential for denitrification in ground water, coastal plain of southern Maryland

    USGS Publications Warehouse

    Krantz, David E.; Powars, David S.

    2000-01-01

    The types and distribution of Coastal Plain sediments in the Patuxent River Basin may contribute to relatively low concentrations of nitrate (typically less than 1 milligram per liter) in stream base flow because of the chemical reduction of dissolved nitrate (denitrification) in ground water. Water chemistry data from synoptic stream base-flow surveys in the Patuxent River Basin show higher dissolved nitrate concentrations in the Piedmont than in the Coastal Plain section of the watershed. Stream base flow reflects closely the chemistry of ground water discharging from the surficial (unconfined) aquifer to the stream. Because land use in the sampled subbasins is virtually the same in each section, differences in the physical and geochemical characteristics of the surficial aquifer may explain the observed differences in water chemistry. One possible cause of lower nitrate concentrations in the Coastal Plain is denitrification within marine sediments that contain chemically reduced compounds. During denitrification, the oxygen atoms on the nitrate (N03-) molecule are transferred to a reduced compound and N gas is produced. Organic carbon and ferrous iron (Fe2+), derived from the dissolution of minerals such as pyrite (FeS2) and glauconite (an iron aluminosilicate clay), can act as reducing substrates; these reduced chemical species are common in the marine and estuarine deposits in Southern Maryland. The spatial distribution of geologic units and their lithology (sediment type) has been used to create a map of the potential for denitrification of ground water in the surficial aquifer of the Coastal Plain in Southern Maryland.

  7. Forest transpiration from sap flux density measurements in a Southeastern Coastal Plain riparian buffer system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Forested riparian buffers are prevalent throughout the Southeastern Coastal Plain Region of the United States (US). Because they make up a significant portion of the regional landscape, transpiration within these riparian buffers is believed to have an important impact on the hydrologic budget of r...

  8. ASSESSMENT FRAMEWORK FOR MID-ATLANTIC COASTAL PLAIN STREAMS USING BENTHIC MACRO INVERTEBRATES

    EPA Science Inventory

    A collaborative study among 6 states along the mid-Atlantic seaboard of the USA developed a consistent approach for collecting and interpreting macroinvertebrate data for low-gradient streams of the coastal plain. The study had 3 objectives: 1) to evaluate the validity of aggrega...

  9. Effect of habitat and foraging height on bat activity in the coastal plain of South Carolina.

    SciTech Connect

    Menzel, Jennifer, M.; Menzel, Michael A.; Kilgo, John C.; Ford, W. Mark; Edwards, John W.; McCracken, Gary F.

    2005-07-01

    A comparison of bat activity levels in the Coastal Plain of South Carolina among 5 habitat types: forested riparian areas, clearcuts, young pine plantations, mature pine plantations and pine savannas, using time expansion radio-microphones and integrated detectors to simultaneously monitor bat activity at three heights in each habitat type.

  10. Geostatistical Modeling of the Spatial Distribution of Sediment Oxygen Demand Within a Coastal Plain Blackwater Watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blackwater streams of the Georgia Coastal Plain are often listed as impaired due to chronically low DO levels. Previous research has shown that high sediment oxygen demand (SOD) values, a hypothesized cause of lowered DO within these waters, are significantly positively correlated with TOC within th...

  11. Ground-water withdrawals from the Coastal Plain of New Jersey, 1956-1980

    USGS Publications Warehouse

    Vowinkel, E.F.

    1984-01-01

    Withdrawals and site data for wells with a pump capacity of 100 ,000 gallons per day or greater in the Coastal Plain of New Jersey are stored in computer files for 1956-80. The data are aggregated by computer into tables, graphs and maps to show the distribution of ground-water withdrawals. Withdrawals are reported by type of use and aquifer for each county in the Coastal Plain. Public-supply wells withdraw the largest quantity of ground water in the Coastal Plain, followed by industrial and agricultural wells. In 1980 public-supply withdrawals were about 280 million gallons per day; the maximum monthly rate was about 355 million gallons per day in July, and the lowest was about 215 million gallons per day in February. Average industrial withdrawals were about 65 million gallons per day. Ground-water withdrawals used for agriculture vary significantly during the year. In 1980, about 75 percent of the agricultural withdrawals occurred from June through September. Several aquifers are used as sources of water supply in the Coastal Plain. Five regional aquifers are the major sources of water for public-supply, industrial, or agricultural use. In decreasing order of withdrawals in 1980, in million gallons per day, they are: The Potomac-Raritan-Magothy aquifer system, 243; Kirkwood-Cohansey aquifer system, 70; Atlantic City 800-foot sand, 21; Englishtown aquifer, 12; and the Wenonah-Mount Laurel aquifer system, 5. (USGS)

  12. Assessment of undiscovered sandstone-hosted uranium resources in the Texas Coastal Plain, 2015

    USGS Publications Warehouse

    Mihalasky, Mark J.; Hall, Susan M.; Hammarstrom, Jane M.; Tureck, Kathleen R.; Hannon, Mark T.; Breit, George N.; Zielinski, Robert A.; Elliott, Brent

    2015-12-02

    The U.S. Geological Survey estimated a mean of 220 million pounds of recoverable uranium oxide (U3O8 ) remaining as potential undiscovered resources in southern Texas. This estimate used a geology-based assessment method for Tertiary sandstone-hosted uranium deposits in the Texas Coastal Plain sedimentary strata (fig.1).

  13. Seasonal Hydrologic Impacts of Conservation Tillage for a Coastal Plain Soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation tillage has proven to be an effective water management tool for cotton production on sandy, drought-prone soils throughout the Coastal Plain. Conservation tillage increases crop residue at the surface, leading to reduced evaporation, reduced raindrop impact, increased infiltration, red...

  14. Research from the Coastal Plain Experiment Station, Tifton, Georgia, to minimize contamination in peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scientists with the United States Department of Agriculture - Agricultural Research Service and scientists with the University of Georgia located at the Coastal Plain Experiment Station in Tifton, Georgia have been conducting research on aflatoxin contamination of peanut since the early 1960's. Ear...

  15. Tsunami Recurrences in the Ryukyu Arc-trench System: Geological Records in the Jinshan Coastal Plain of North Taiwan

    NASA Astrophysics Data System (ADS)

    Yu, N. T.; Yen, J. Y.; Lin, L. H.; Liu, J. H.

    2014-12-01

    Active continental margin like the Ryukyu arc-trench system poses high tsunami risk, which however remains poorly assessed due to the sparse historic records and geological studies. In order to better understand the tsunami risk in northern Taiwan of the southernmost Ryukyu active margin, borehole cores of the Jinshan Coastal Plain were investigated for the tsunami deposits of 1867 event and possibly its precursors. Based on facies characteristics, two decimeter-thick marine event sand beds are identified intercalated with the fluvial gravelly deposit that has been accumulated in a microtidal barred estuary over the past millennium. Distributed all over the coastal plain except the coastal sand spits, the fluvial deposit are predominantly sourced from the Pleistocene arc andesite, and thus commonly reddish in color due to the high iron content. The marine beds are rich in quartz sand and granule, whitish gray in color, and rounded to subangular in grain shape, indicating a sediment source from the coastal sand spits which receive longshore drift from the nearby rocky coasts dominated by the Oligocene and Miocene quartzose sandstone and mudstone. The facies succession of marine bed is characterized by erosion base, planar lamination, normal grading, soft-sediment deformation, and variations in magnetic susceptibility, Si, K, Ti, and Fe. The succession reflects the sedimentary processes from incoming wave erosion, rapid marine deposition, backflow reworking, and suspension fall-out. The marine beds are traceable landward based on the facies characteristics and C14 dating over a distance up to two kilometers before thinning out and grading into carbonaceous mud. According to the C14 dating, the two marine beds are linked to the 1867 tsunami and an earlier event in the late 17th century. Based on their ages and distributions, the two event beds further suggest two marine incursions of similar extant in an approximate recurrence interval of ~170 yr.

  16. Artesian water in the Malabar coastal plain of southern Kerala, India

    USGS Publications Warehouse

    Taylor, George C.; Ghosh, P.K.

    1964-01-01

    The present report is based on a geological and hydrological reconnaissance during 1954 of the Malabar Coastal Plain and adjacent island area of southern Kerala to evaluate the availability of ground water for coastal villages and municipalities and associated industries and the potentialities for future development. The work was done in cooperation with the Geological Survey of India and under the auspices of the U.S. Technical Cooperation Mission to India. The State of Kerala, which lies near the southern tip of India and along the eastern shore of the Caspian Sea, contains a total area of 14,937 square miles. The eastern part of the state is s rugged mountainous highland which attains altitudes of more than 6,000 feet. This highland descends westward through piedmont upland to s narrow coastal plain, which reaches a maximum width of about 16 miles in the latitude of Shertalli. A tropical monsoon rain-forest climate prevails in most of Kerala, and annual rainfall ranges from 65 to 130 inches in the southern part of the coastal plain to as much a 200 inches in the highland. The highland and piedmont upland tracts of Kerala are underlain by Precambrian meamorphic and igneous rocks belonging in large parabola-the so-called Charnockite Series. Beneath ahe coastal plain are semiconsolidated asunconsolidated sedimentary deposits whose age ranges from Miocene to Recent. These deposits include sofa sandstone and clay shale containing some marl or limestone and sand, and clay and pea containing some gravel. The sofa sandstone, sand, and gravel beds constitute important aquifers a depths ranging from a few tens of feet to 400 feet or more below the land surface. The shallow ground war is under water-able or unconfined conditions, but the deeper aquifers contain water under artesian pressure. Near the coast, drilled wells tapping the deeper aquifers commonly flow with artesian heads as much as 10 to 12 feet above the land surface. The draft from existing wells in the

  17. The Northern Plains MSATT Meeting, and a call for a field-oriented successor to MSATT

    NASA Technical Reports Server (NTRS)

    Kargel, J. S.

    1993-01-01

    The workshop was devoted to a review of our knowledge of the Martian northern plains and presentation of recent ideas pertaining to the geologic and climatic evolution of this interesting region. The meeting was held in Fairbanks to allow easy access to Mars-like terrains in central and northern Alaska. There is no place on Earth that is a close analog of the Martian northern plains, but parts of Alaska come reasonably close in some respects, so we may expect that some of the processes occurring there are similar to processes that have occurred on Mars.

  18. Simulation of ground-water flow in the Coastal Plain aquifer system of North Carolina

    USGS Publications Warehouse

    Giese, G.I.; Eimers, J.L.; Coble, R.W.

    1997-01-01

    areas. Hydrologic analysis of the flow system using the calibrated model indicated that, because of ground-water withdrawals, areas of ground-water recharge have expanded and encroached upon some major stream valleys and into coastal area. Simulations of pumping conditions indicate that by 1980 large parts of the former coastal discharge areas had become areas of potential or actual recharge. Declines of ground-water level, which are the result of water taken from storage, are extensive in some areas and minimal in others. Hydraulic head declines of more than 135 feet have occurred in the northern Coastal Plain since 1940 primarily due to withdrawals in the Franklin area in Virginia. Declines of ground-water levels greater than 110 feet have occurred in aquifers in the central Coastal Plain due to combined effects of pumpage for public and industrial water supplies. Water-level declines exceeding 100 feet have occurred in the Beaufort County area because of withdrawals for a mining operation and water supplies for a chemical plant. Head declines have been less than 10 feet in the shallow surficial and Yorktown aquifers and in the updip parts of the major confined aquifers distant from areas of major withdrawals. In 1980, contribution from aquifer storage was 14 cubic feet per second, which is about 4.8 percent of pumpage and about 0.05 percent of ground-water recharge. A water-budget analysis using the model simulations indicates that much of the water removed from the ground-water system by pumping ultimately is made up by a reduction in water leaving the aquifer system, which discharges to streams as base flow. The reduction in stream base flow was 294 cubic feet per second in 1980 and represents about 1.1 percent of the ground-water recharge. The net reduction to streamflow is not large, however, because most pumped ground water is eventually discharged to streams. In places, such as at rock quarries in Onslow and Craven Counties, water is lost from st

  19. Patterns of Seasonal Abundance and Social Segregation in Inland and Coastal Plain Swamp Sparrows in a Delaware Tidal Marsh

    EPA Science Inventory

    The Coastal Plain Swamp Sparrow (Melospiza georgiana nigrescens, CPSS) breeds in the coastal brackish marshes of the North American Mid-Atlantic States. During the non-breeding season, coastal brackish marshes are occupied by both this subspecies and two far more widespread inte...

  20. 27 CFR 9.207 - Outer Coastal Plain.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... May, Atlantic, and Ocean Counties and portions of Salem, Gloucester, Camden, Burlington, and Monmouth... Joline Avenue; then (20) Proceed northeasterly on Joline Avenue to the Atlantic Ocean shoreline; then (21) Follow the Atlantic Ocean shoreline south, encompassing all coastal islands, onto the Trenton,...

  1. 27 CFR 9.207 - Outer Coastal Plain.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... May, Atlantic, and Ocean Counties and portions of Salem, Gloucester, Camden, Burlington, and Monmouth... Joline Avenue; then (20) Proceed northeasterly on Joline Avenue to the Atlantic Ocean shoreline; then (21) Follow the Atlantic Ocean shoreline south, encompassing all coastal islands, onto the Trenton,...

  2. 27 CFR 9.207 - Outer Coastal Plain.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... May, Atlantic, and Ocean Counties and portions of Salem, Gloucester, Camden, Burlington, and Monmouth... Joline Avenue; then (20) Proceed northeasterly on Joline Avenue to the Atlantic Ocean shoreline; then (21) Follow the Atlantic Ocean shoreline south, encompassing all coastal islands, onto the Trenton,...

  3. 27 CFR 9.207 - Outer Coastal Plain.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... May, Atlantic, and Ocean Counties and portions of Salem, Gloucester, Camden, Burlington, and Monmouth... Joline Avenue; then (20) Proceed northeasterly on Joline Avenue to the Atlantic Ocean shoreline; then (21) Follow the Atlantic Ocean shoreline south, encompassing all coastal islands, onto the Trenton,...

  4. 27 CFR 9.207 - Outer Coastal Plain.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... May, Atlantic, and Ocean Counties and portions of Salem, Gloucester, Camden, Burlington, and Monmouth... Joline Avenue; then (20) Proceed northeasterly on Joline Avenue to the Atlantic Ocean shoreline; then (21) Follow the Atlantic Ocean shoreline south, encompassing all coastal islands, onto the Trenton,...

  5. Factors Affecting Nitrate Delivery to Streams from Shallow Ground Water in the North Carolina Coastal Plain

    USGS Publications Warehouse

    Harden, Stephen L.; Spruill, Timothy B.

    2008-01-01

    An analysis of data collected at five flow-path study sites between 1997 and 2006 was performed to identify the factors needed to formulate a comprehensive program, with a focus on nitrogen, for protecting ground water and surface water in the North Carolina Coastal Plain. Water-quality protection in the Coastal Plain requires the identification of factors that affect the transport of nutrients from recharge areas to streams through the shallow ground-water system. Some basins process or retain nitrogen more readily than others, and the factors that affect nitrogen processing and retention were the focus of this investigation to improve nutrient management in Coastal Plain streams and to reduce nutrient loads to coastal waters. Nitrate reduction in ground water was observed at all five flow-path study sites in the North Carolina Coastal Plain, although the extent of reduction at each site was influenced by various environmental, hydrogeologic, and geochemical factors. Denitrification was the most common factor responsible for decreases in nitrate along the ground-water flow paths. Specific factors, some of which affect denitrification rates, that appeared to influence ground-water nitrate concentrations along the flow paths or in the streams include soil drainage, presence or absence of riparian buffers, evapotranspiration, fertilizer use, ground-water recharge rates and residence times, aquifer properties, subsurface tile drainage, sources and amounts of organic matter, and hyporheic processes. The study data indicate that the nitrate-reducing capacity of the buffer zone combined with that of the hyporheic zone can substantially lower the amount of ground-water nitrate discharged to streams in agricultural settings of the North Carolina Coastal Plain. At the watershed scale, the effects of ground-water discharge on surface-water quality appear to be greatly influenced by streamflow conditions and the presence of extensive riparian vegetation. Streamflow statistics

  6. Groundwater availability in the Atlantic Coastal Plain of North and South Carolina

    USGS Publications Warehouse

    Campbell, Bruce G.; Coes, Alissa L.

    2010-01-01

    The Atlantic Coastal Plain aquifers and confining units of North and South Carolina are composed of crystalline carbonate rocks, sand, clay, silt, and gravel and contain large volumes of high-quality groundwater. The aquifers have a long history of use dating back to the earliest days of European settlement in the late 1600s. Although extensive areas of some of the aquifers have or currently (2009) are areas of groundwater level declines from large-scale, concentrated pumping centers, large areas of the Atlantic Coastal Plain contain substantial quantities of high-quality groundwater that currently (2009) are unused. Groundwater use from the Atlantic Coastal Plain aquifers in North Carolina and South Carolina has increased during the past 60 years as the population has increased along with demands for municipal, industrial, and agricultural water needs. While North Carolina and South Carolina work to increase development of water supplies in response to the rapid growth in these coastal populations, both States recognize that they are facing a number of unanswered questions regarding availability of groundwater supplies and the best methods to manage these important supplies. An in-depth assessment of groundwater availability of the Atlantic Coastal Plain aquifers of North and South Carolina has been completed by the U.S. Geological Survey Groundwater Resources Program. This assessment includes (1) a determination of the present status of the Atlantic Coastal Plain groundwater resources; (2) an explanation for how these resources have changed over time; and (3) development of tools to assess the system's response to stresses from potential future climate variability. Results from numerous previous investigations of the Atlantic Coastal Plain by Federal and State agencies have been incorporated into this effort. The primary products of this effort are (1) comprehensive hydrologic datasets such as groundwater levels, groundwater use, and aquifer properties; (2) a

  7. Coastal Rapid Environmental Assessment in the Northern Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Simoncelli, Simona; Pinardi, Nadia; Oddo, Paolo; Mariano, Arthur J.; Montanari, Giuseppe; Rinaldi, Attilio; Deserti, Marco

    2011-09-01

    A new Coastal Rapid Environmental Assessment (CREA) methodology, based on an operational regional forecasting system and coastal monitoring networks of opportunity, has been developed and successfully applied to the Northern Adriatic Sea. The methodology aims at improving the initial condition estimates by combining operational coarse model fields with coastal observations to improve medium to short range predictability which is required by coastal zone and emergency management. The CREA modeling framework system consists of a high resolution, O(800 m), Adriatic SHELF model (ASHELF) nested into the Adriatic Forecasting System (AFS) at 2.2 km resolution. The CREA observational system is composed of coastal networks sampling the water column temperature and salinity between depths of 5 and 40 m. The initialization technique blends the AFS fields with the available observations using a multi-input, multi-scale optimal interpolation technique and a spin-up period for the high resolution ASHELF model to dynamically adjust initial conditions from the coarser resolution AFS model. The high resolution spin up period has been investigated through a dedicated set of experiments and it was found that a week time is enough to have new energetic features in the model initial condition field estimates to be blended with observations. Five CREA study cases have been analyzed for different months of the year, one per month from May to September 2003, chosen on the basis of the availability of the coastal observations for both model initialization and validation. The CREA 7-days forecasts show skill improvements in the coastal area salinity and temperature profiles, deriving from the blending and the spin-up period in the initialization methodology. The main conclusion is that forecasting in coastal areas by nesting necessitates of the observations to correct the coarse resolution model fields providing informations where parent and child model topographies mismatch. Results

  8. A conceptual model to facilitate amphibian conservation in the northern Great Plains

    USGS Publications Warehouse

    Mushnet, David M.; Euliss, Ned H.; Stockwell, Craig A.

    2012-01-01

    As pressures on agricultural landscapes to meet worldwide resource needs increase, amphibian populations face numerous threats including habitat destruction, chemical contaminants, disease outbreaks, wetland sedimentation, and synergistic effects of these perturbations. To facilitate conservation planning, we developed a conceptual model depicting elements critical for amphibian conservation in the northern Great Plains. First, we linked upland, wetland, and landscape features to specific ecological attributes. Ecological attributes included adult survival; reproduction and survival to metamorphosis; and successful dispersal and recolonization. Second, we linked ecosystem drivers, ecosystem stressors, and ecological effects of the region to each ecological attribute. Lastly, we summarized information on these ecological attributes and the drivers, stressors, and effects that work in concert to influence the maintenance of viable and genetically diverse amphibian populations in the northern Great Plains. While our focus was on the northern Great Plains, our conceptual model can be tailored to other geographic regions and taxa.

  9. Corrosiveness of ground water in the Kirkwood-Cohansey aquifer system of the New Jersey Coastal Plain

    USGS Publications Warehouse

    Barringer, J.L.; Kish, G.R.; Velnich, A.J.

    1993-01-01

    Ground water from the unconfined part of the Kirkwood-Cohansey aquifer system in the New Jersey Coastal Plain typically is corrosive-- that is, it is acidic, soft, and has low concentrations of alkalinity. Corrosive ground water has the potential to leach trace elements and asbestos fibers from plumbing materials used in potable- water systems, thereby causing potentially harmful concentrations of these substances in drinking water. Corrosion indices were calculated from water-quality data for 370 wells in the unconfined Kirkwood-Cohansey aquifer system. Values of the Langelier Saturation Index are predominantly negative, indicating that the water is undersaturated with respect to calcium carbonate, and, therefore, is potentially corrosive. Values of the Aggressive Index, a similar estimator of the corrosiveness of water, range from 3.9 (highly corrosive) to 11.9 (moderately corrosive). The median Aggressive Index value calculated for the 370 wells is 6.0, a value that indicates that the water is highly corrosive. Moderately corrosive ground water is found in some coastal areas. Isolated instances of moderately corrosive water are found in northern Ocean County, and in Burlington, Camden, and Salem Counties. In the vicinity of Ocean County corrosion-index values change little with depth, but in Atlantic, Burlington, and Salem Counties the corrosiveness of ground water generally appears to decrease with depth. Analyses of standing tap water from newly constructed homes in the Coastal Plain show concentrations of lead and other trace elements are significantly higher than those in ambient ground water. The elevated trace-element concentrations are attributed to the corrosion of plumbing materials by ground water. Results of the tap-water analyses substantiate the corrosiveness of Kirkwood-Cohansey ground water, as estimated by corrosion-index values.

  10. Paleoenvironmental analyses of an organic deposit from an erosional landscape remnant, Arctic Coastal Plain of Alaska

    SciTech Connect

    Eisner, W R; Bockheim, J G; Hinkel, K M; Brown, T A; Nelson, F E; Peterson, K M; Jones, B M

    2005-01-02

    The dominant landscape process on the Arctic Coastal Plain of northern Alaska is the formation and drainage of thaw lakes. Lakes and drained thaw lake basins account for approximately 75% of the modern surface expression of the Barrow Peninsula. The thaw lake cycle usually obliterates lacustrine or peat sediments from previous cycles which could otherwise be used for paleoecological reconstruction of long-term landscape and vegetation changes. Several possible erosional remnants of a former topographic surface that predates the formation of the thaw lakes have been tentatively identified. These remnants are characterized by a higher elevation, a thick organic layer with very high ground ice content in the upper permafrost, and a plant community somewhat atypical of the region. Ten soil cores were collected from one site, and one core was intensively sampled for soil organic carbon content, pollen analysis, and {sup 14}C dating. The lowest level of the organic sediments represents the earliest phase of plant growth and dates to ca. 9000 cal BP. Palynological evidence indicates the presence of mesic shrub tundra (including sedge, birch, willow, and heath vegetation); and microfossil indicators point to wetter eutrophic conditions during this period. Carbon accumulation was rapid due to high net primary productivity in a relatively nutrient-rich environment. These results are interpreted as the local response to ameliorating climate during the early Holocene. The middle Holocene portion of the record contains an unconformity, indicating that between 8200 and 4200 cal BP sediments were eroded from the site, presumably in response to wind activity during a drier period centered around 4500 cal BP. The modern vegetation community of the erosional remnant was established after 4200 cal BP, and peat growth resumed. During the late Holocene, carbon accumulation rates were greatly reduced in response to the combined effects of declining productivity associated with climatic

  11. Age and correlation of emerged pliocene and pleistocene deposits, U.S. Atlantic Coastal Plain

    USGS Publications Warehouse

    Cronin, T. M.; Bybell, L.M.; Poore, R.Z.; Blackwelder, B. W.; Liddicoat, J.C.; Hazel, J.E.

    1984-01-01

    Paleontologic and paleomagnetic investigations were conducted on several hundred Pliocene and Pleistocene marine samples from five regions of the emerged Atlantic Coastal Plain: (1) the Delmarva Peninsula, (2) eastern Virginia, (3) central and northern North Carolina, (4) southern North Carolina and northeastern South Carolina, and (5) the Charleston area, South Carolina. Molluscan and ostracode interval and assemblage zonations, which are the primary means of regional correlation, have been calibrated using planktic biochronologic, paleomagnetic, radiometric and amino-acid recemization data. These multiple dating criteria were used to determine the age and, where possible, the duration of marine transgressive/regressive sequences. A correlation chart illustrates the age relationships of 27 formations from five regions. One important conclusion is some of the Yorktown Formation of Virginia and North Carolina (including the "Duplin" Formation), and some of the Raysor of South Carolina are late Pliocene in age. The late Pliocene Chowan River Formation of North Carolina is older than the early Pleistocene Waccamaw Formation of South Carolina, which in turn may be older than the James City Formation of North Carolina. During the last 1.0 million years, multiple marine transgressions occurred in each region, but the age of these middle and late Pleistocene formations often may differ from one area to the next. A significant result of the study is the evidence for the lack of time equivalence of formations in the five different regions; that is, the sequence of marine transgressions in one region does not necessarily correspond to that in another. This appears to be the result of differing subsidence and uplift histories, the patchiness of the depositional record, and the limitations of the dating techniques in light of the rapidity and frequency of sea-level fluctuations. ?? 1984.

  12. Prioritizing watersheds for conservation actions in the southeastern coastal plain ecoregion.

    PubMed

    Jang, Taeil; Vellidis, George; Kurkalova, Lyubov A; Boll, Jan; Hyman, Jeffrey B

    2015-03-01

    The aim of this study was to apply and evaluate a recently developed prioritization model which uses the synoptic approach to geographically prioritize watersheds in which Best Management Practices (BMPs) can be implemented to reduce water quality problems resulting from erosion and sedimentation. The model uses a benefit-cost framework to rank candidate watersheds within an ecoregion or river basin so that BMP implementation within the highest ranked watersheds will result in the most water quality improvement per conservation dollar invested. The model was developed to prioritize BMP implementation efforts in ecoregions containing watersheds associated with the USDA-NRCS Conservation Effects Assessment Project (CEAP). We applied the model to HUC-8 watersheds within the southeastern Coastal Plain ecoregion (USA) because not only is it an important agricultural area but also because it contains a well-studied medium-sized CEAP watershed which is thought to be representative of the ecoregion. The results showed that the three HUC-8 watersheds with the highest rankings (most water quality improvement expected per conservation dollar invested) were located in the southern Alabama, northern Florida, and eastern Virginia. Within these watersheds, measures of community attitudes toward conservation practices were highly ranked, and these indicators seemed to push the watersheds to the top of the rankings above other similar watersheds. The results, visualized as maps, can be used to screen and reduce the number of watersheds that need further assessment by managers and decision-makers within the study area. We anticipate that this model will allow agencies like USDA-NRCS to geographically prioritize BMP implementation efforts. PMID:25528594

  13. Trends and transformation of nutrients and pesticides in a Coastal Plain aquifer system, United States

    USGS Publications Warehouse

    Denver, J.M.; Tesoriero, A.J.; Barbaro, J.R.

    2010-01-01

    Four local-scale sites in areas with similar corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] agriculture were studied to determine the effects of different hydrogeologic settings of the Northern Atlantic Coastal Plain (NACP) on the transport of nutrients and pesticides in groundwater. Settings ranged from predominantly well-drained soils overlying thick, sandy surficial aquifers to predominantly poorly drained soils with complex aquifer stratigraphy and high organic matter content. Apparent age of groundwater, dissolved gases, N isotopes, major ions, selected pesticides and degradates, and geochemical environments in groundwater were studied. Agricultural chemicals were the source of most dissolved ions in groundwater. Specific conductance was strongly correlated with reconstructed nitrate (the sum of N in nitrate and N gas) (R2 = 0.81, p < 0.0001), and is indicative of the relative degree of agricultural effects on groundwater. Trends in nitrate were primarily related to changes in manure and fertilizer use at the well-drained sites where aquifer conditions were consistently oxic. Nitrate was present in young groundwater but completely removed over time through denitrification at the poorly drained sites where there were variations in chemical input and in geochemical environment. Median concentrations of atrazine (6-chloro-N-ethyl-N'-(1- methylethyl)-1,3,5-triazine-2,4-diamine), metolachlor (2-chloro-N-(2-ethyl-6- methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide), and some of their common degradates were higher at well-drained sites than at poorly drained sites, with concentrations of degradates generally higher than those of the parent compounds at all sites. An increase in the percentage of deethylatrazine to total atrazine over time at one well-drained site may be related to changes in manure application. Copyright ?? 2010 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  14. Prioritizing Watersheds for Conservation Actions in the Southeastern Coastal Plain Ecoregion

    NASA Astrophysics Data System (ADS)

    Jang, Taeil; Vellidis, George; Kurkalova, Lyubov A.; Boll, Jan; Hyman, Jeffrey B.

    2015-03-01

    The aim of this study was to apply and evaluate a recently developed prioritization model which uses the synoptic approach to geographically prioritize watersheds in which Best Management Practices (BMPs) can be implemented to reduce water quality problems resulting from erosion and sedimentation. The model uses a benefit-cost framework to rank candidate watersheds within an ecoregion or river basin so that BMP implementation within the highest ranked watersheds will result in the most water quality improvement per conservation dollar invested. The model was developed to prioritize BMP implementation efforts in ecoregions containing watersheds associated with the USDA-NRCS Conservation Effects Assessment Project (CEAP). We applied the model to HUC-8 watersheds within the southeastern Coastal Plain ecoregion (USA) because not only is it an important agricultural area but also because it contains a well-studied medium-sized CEAP watershed which is thought to be representative of the ecoregion. The results showed that the three HUC-8 watersheds with the highest rankings (most water quality improvement expected per conservation dollar invested) were located in the southern Alabama, northern Florida, and eastern Virginia. Within these watersheds, measures of community attitudes toward conservation practices were highly ranked, and these indicators seemed to push the watersheds to the top of the rankings above other similar watersheds. The results, visualized as maps, can be used to screen and reduce the number of watersheds that need further assessment by managers and decision-makers within the study area. We anticipate that this model will allow agencies like USDA-NRCS to geographically prioritize BMP implementation efforts.

  15. Pleistocene Shorelines and Coastal Rivers: Sensitive Indicators of Quaternary Faults, Atlantic Coastal Plain, USA

    NASA Astrophysics Data System (ADS)

    Bartholomew, M. J.; Rich, F. J.

    2002-05-01

    Eight possible active faults beneath Quaternary Coastal Plain sediments are indicated by models showing expected patterns of shoreline regression and river deflections along tectonically inactive and active (where subsurface faults may affect surface processes) parts of the passive margin. Non-tectonic processes produce consistently spaced parallel shorelines and an absence of river deflections or seaward deflections of shorelines by major deltas with spacing dependent upon sediment influx rates. Differential regional uplift will cause divergence of shorelines toward, and deflection of rivers away from the end with greater uplift. Tectonic models show shoreline regression with a shoreline-parallel fault that is either seaward-side-up (SSU) or seaward-side-down (SSD) or with a shoreline-perpendicular fault (SPF). SSU interrupts non-tectonic patterns with convex-seaward deflections and wider spacing of older shorelines across uplifts and river deflections toward uplift-margins. SSD produces a convex-landward deflection and wider spacing of younger shorelines on the down-dropped side of faults and river deflections toward uplift-margins. SPF produces: convex-seaward deflections with wider spacing of older shorelines across uplifts and river deflections toward uplift-margins; convex-landward deflection and wider spacing of younger shorelines on down-dropped sides of faults where river deflections merge toward the lowest area; shorelines are discontinuous and may be difficult to correlate across faults. SPF patterns in the vicinity of the 1886 Charleston, SC earthquake indicate a NW-trending, 50-km long, NE-side-up fault active since Early Pleistocene near the Ashley River and suggest a similar 30-km long fault near the North Edisto River and a NW-trending, 50-km long, SW-side-up fault near the Broad River. Variations of SPF patterns in NC suggest E-W-trending, 150-km long, N-side-up faults extending westward from both Cape Fear and Cape Lookout and possibly a shorter

  16. ERTS-1 applied for structural and morphological investigtions case studies. 1: Los Angeles, California. 2: Coastal plain, New Jersey

    NASA Technical Reports Server (NTRS)

    Kedar, E. Y.

    1973-01-01

    Two major earth's resources management problems, the application of ERTS-1 imagery for geomorphotectonics, and subsequently seismic-risk, earthquake, and mineral exploration applications are discussed. Case studies are presented for Los Angeles, California, and New Jersey coastal plain.

  17. Stable isotope enrichment in paleowaters of the southeast Atlantic coastal plain, United States

    USGS Publications Warehouse

    Plummer, L.N.

    1993-01-01

    Paleowaters from the Floridan aquifer system in the southeastern Atlantic coastal plain have higher D/H and 18O/16O ratios than local Holocene ground water. Maximum ??18O enrichments in ground water having adjusted radiocarbon ages of 20,000 to 26,000 years are 0.7 to 2.3 per mil. The trend in isotopic enrichment in paleowaters is the reverse of that normally observed in continental glacial age ground water. Dissolved nitrogen and argon concentrations indicate, however, that the average recharge temperature was 5.3??C cooler than that today. The data indicate cool conditions in the southeast Atlantic coastal plain during the last glacial maximum, with recharge limited primarily to late summer tropical cyclones and hurricanes.

  18. Selected aquifer-test information for the coastal plain aquifers of South Carolina

    USGS Publications Warehouse

    Aucott, W.R.; Newcome, Roy

    1986-01-01

    Aquifer and well hydraulic characteristics were determined from more than 100 multiple-well and single-well aquifer tests in the Coastal Plain of South Carolina and tabulated by county. Multiple-well aquifer tests were analyzed by the This method for nonleaky aquifers and the Hantush-Jacob method for leaky aquifers. Single-well tests were analyzed by straight line solution techniques for drawdown and recovery tests. Specific-capacity data are presented for many areas where aquifer-test information is sparse. The characteristics determined are based largely on well performance tests conducted by well drillers and consulting engineers. Although use of this information has many limitations, it has value in establishing transmissivity and storage coefficient values for the Coastal Plain aquifers. (Peters-PTT)

  19. Stable isotope enrichment in paleowaters of the southeast atlantic coastal plain, United States

    SciTech Connect

    Plummer, L.N. )

    1993-12-24

    Paleowaters from the Floridan aquifer system in the southeastern Atlantic coastal plain have higher D/H and [sup 18]O/[sup 16]O ratios than local Holocene groundwater. Maximum [delta][sup 18]O enrichments in groundwater having adjusted radiocarbon ages of 20,000 to 26,000 years are 0.7 to 2.3 per mil. The trend in isotopic enrichment in paleowaters is the reverse of that normally observed in continental glacial age groundwater. Dissolved nitrogen and argon concentrations indicate, however, that the average recharge temperature was 5.3[degrees]C cooler than that today. The data indicate cool conditions in the southeast Atlantic coastal plain during the last glacial maximum, with recharge limited primarily to late summer tropical cyclones and hurricanes.

  20. Stratigraphic nomenclature and geologic sections of the Gulf Coastal Plain of Texas

    USGS Publications Warehouse

    Baker, E.T.

    1995-01-01

    Geologic sections showing the subsurface delineation of approximately 100 Stratigraphic units composing the Mesozoic and Cenozoic Eras illustrate the interrelation of these units across most of the Gulf Coastal Plain of Texas. The geologic names that constitute the nomenclature have been published, and the vast majority are approved for use by the U.S. Geological Survey. Four dip sections and four strike sections, extending from the land surface to a maximum of about 18,000 feet below sea level, provide continuity of correlation from the outcrop to the deep subsurface. Stratigraphic units containing water with less than 3,000 milligrams per liter concentration of dissolved solids are shown on the geologic sections and serve as an indicator of water quality in the Gulf Coastal Plain of Texas.

  1. Stable isotope enrichment in paleowaters of the southeast atlantic coastal plain, United States.

    PubMed

    Plummer, L N

    1993-12-24

    Paleowaters from the Floridan aquifer system in the southeastern Atlantic coastal plain have higher D/H and (18)O/(16)O ratios than local Holocene ground water. Maximum delta(18)O enrichments in ground water having adjusted radiocarbon ages of 20,000 to 26,000 years are 0.7 to 2.3 per mil. The trend in isotopic enrichment in paleowaters is the reverse of that normally observed in continental glacial age ground water. Dissolved nitrogen and argon concentrations indicate, however, that the average recharge temperature was 5.3 degrees C cooler than that today. The data indicate cool conditions in the southeast Atlantic coastal plain during the last glacial maximum, with recharge limited primarily to late summer tropical cyclones and hurricanes.

  2. Correlation of lineaments with soil gas anomalies in the Atlantic Coastal Plain

    SciTech Connect

    Wyatt, D.E. |; Richers, D.

    1994-08-23

    Results from a soil gas survey, performed in the Atlantic Coastal Plain and centered on the US Department of Energy Savannah River Site discovered areas of anomalous (greater than one standard deviation above the mean) methane, ethane, propane, hydrogen and carbon dioxide. A lineament study was performed to investigate whether these anomalies may be associated with fractures or faults and therefore be sourced in basement rocks. The lineament study used a regional aeromagnetic map, various scale topographic maps and a Landsat image. The results of the study suggest the following: (1) correcting for barometric pumping effects, the soil gas anomalies have a strong coincidence with lineations, (2) comparing linear features discernible on a variety of sources mapped at different scales allows for a combined data set to be formed that may define a lineation zone, and (3) linear trends compare favorably with suspected structural trends for the coastal plain.

  3. Hydrogeology of the Southeastern Coastal Plain aquifer system in Mississippi, Alabama, Georgia, and South Carolina

    USGS Publications Warehouse

    Renken, Robert A.

    1996-01-01

    The Southeastern Coastal Plain aquifer system consists of a thick sequence of unconsolidated to poorly consolidated Cretaceous and Tertiary rocks that extend from Mississippi to South Carolina. Four regional sand and gravel aquifers are separated by three regional confining units of clay, shale, and chalk that do not conform everywhere to stratigraphic boundaries. The change in geologic facies is the most important factor controlling the distribution of transmissivity within the aquifer system.

  4. Identifying riparian buffer effects on stream nitrogen in southeastern coastal plain watersheds.

    PubMed

    Christensen, Jay R; Nash, Maliha S; Neale, Anne

    2013-11-01

    Within the Southeastern (SE) Coastal Plain of the U.S., numerous freshwaters and estuaries experience eutrophication with significant nutrient contributions by agricultural non-point sources (NPS). Riparian buffers are often used to reduce agricultural NPS yet the effect of buffers in the watershed is difficult to quantify. Using corrected Akaike information criterion (AICc) and model averaging, we compared flow-path riparian buffer models with land use/land cover (LULC) models in 24 watersheds from the SE Coastal Plain to determine the ability of riparian buffers to reduce or mitigate stream total nitrogen concentrations (TNC). Additional models considered the relative importance of headwaters and artificial agricultural drainage in the Coastal Plain. A buffer model which included cropland and non-buffered cropland best explained stream TNC (R (2) = 0.75) and was five times more likely to be the correct model than the LULC model. The model average predicted that current buffers removed 52 % of nitrogen from the edge-of-field and 45 % of potential nitrogen from the average SE Coastal Plain watershed. On average, 26 % of stream nitrogen leaked through buffered cropland. Our study suggests that stream TNC could potentially be reduced by 34 % if buffers were adequately restored on all cropland. Such estimates provide realistic expectations of nitrogen removal via buffers to watershed managers as they attempt to meet water quality goals. In addition, model comparisons of AICc values indicated that non-headwater buffers may contribute little to stream TNC. Model comparisons also indicated that artificial drainage should be considered when accessing buffers and stream nitrogen.

  5. Recharge and sustainability of a coastal aquifer in northern Albania

    NASA Astrophysics Data System (ADS)

    Kumanova, X.; Marku, S.; Fröjdö, S.; Jacks, G.

    2014-06-01

    The River Mati in Albania has formed a coastal plain with Holocene and Pleistocene sediments. The outer portion of the plain is clay, with three underlying aquifers that are connected to an alluvial fan at the entry of the river into the plain. The aquifers supply water for 240,000 people. Close to the sea the aquifers are brackish. The brackish water is often artesian and found to be thousands of years old. Furthermore, the salinity, supported by δ18O results, does not seem to be due to mixing with old seawater but due to diffusion from intercalated clay layers. Heavy metals from mines in the upstream section of River Mati are not an immediate threat, as the pH buffering of the river water is good. Moreover, the heavy metals are predominantly found in suspended and colloidal phases. Two sulphur isotope signatures, one mirroring seawater sulphate in the brackish groundwater (δ34S >21 ‰) and one showing the influence of sulphide in the river and the fresh groundwater (δ34S <10 ‰), indicate that the groundwater in the largest well field is recharged from the river. The most serious threat is gravel extraction in the alluvial fan, decreasing the hydraulic head necessary for recharge and causing clogging of sediments.

  6. 76 FR 28850 - Northern Plains Railroad, Inc.-Intra-Corporate Family Operation Exemption-Mohall Central Railroad...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-18

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Surface Transportation Board Northern Plains Railroad, Inc.--Intra-Corporate Family Operation Exemption--Mohall Central Railroad, Inc. Northern Plains Railroad, Inc. (NPR), a Class III rail common carrier, has filed a verified notice of...

  7. Distribution, abundance, and habitat affinities of the Coastal Plain Swamp Sparrow

    USGS Publications Warehouse

    Beadell, J.; Greenberg, R.; Droege, S.; Royle, J. Andrew

    2003-01-01

    We examined the distribution and abundance of the Coastal Plain Swamp Sparrow (Melospiza georgiana nigrescens) at previously occupied sites and points within potential habitat. We found Swamp Sparrows throughout their formerly documented range except in southern Chesapeake Bay. Swamp Sparrows were most common in the Mullica River region of New Jersey where we detected individuals at 78% of systematically chosen points with a mean count of 4.1 birds/point. The percentages of points with positive detections in. the regions of Delaware River (39%), eastern Delaware Bay (23%), western Delaware Bay (34%), and Tuckahoe River (31%) were lower. The mean count of birds/point was between 0.4 and 0.6 in these regions. A higher resolution Poisson model of relative abundance suggested that the greatest concentrations of Swamp Sparrows occurred not only in the Mullica River area but also along northwestern Delaware Bay. Regression analysis of Swamp Sparrow counts and habitat features identified shrubs (Iva frutescens and Baccharis halimifolia) as a key habitat component. By applying density estimates generated by DISTANCE (Thomas et al. 1998) to the approximate area of potential shrub habitat along Delaware Bay, we estimated that the core population of Coastal Plain Swamp Sparrows was less than 28,000 pairs. We recommend that the Coastal Plain Swamp Sparrow be listed as a subspecies of concern by state and local governments because of its relatively small population size, restricted distribution in the mid-Atlantic region, and narrow habitat requirements.

  8. Coastal morphodynamics and Chenier-Plain evolution in southwestern Louisiana, USA: A geomorphic model

    NASA Astrophysics Data System (ADS)

    McBride, Randolph A.; Taylor, Matthew J.; Byrnes, Mark R.

    2007-08-01

    Using 28 topographic profiles, air-photo interpretation, and historical shoreline-change data, coastal processes were evaluated along the Chenier Plain to explain the occurrence, distribution, and geomorphic hierarchy of primary landforms, and existing hypotheses regarding Chenier-Plain evolution were reconsidered. The Chenier Plain of SW Louisiana, classified as a low-profile, microtidal, storm-dominated coast, is located west and downdrift of the Mississippi River deltaic plain. This Late-Holocene, marginal-deltaic environment is 200 km long and up to 30 km wide, and is composed primarily of mud deposits capped by marsh interspersed with thin sand- and shell-rich ridges ("cheniers") that have elevations of up to 4 m. In this study, the term "ridge" is used as a morphologic term for a narrow, linear or curvilinear topographic high that consists of sand and shelly material accumulated by waves and other physical coastal processes. Thus, most ridges in the Chenier Plain represent relict open-Gulf shorelines. On the basis of past movement trends of individual shorelines, ridges may be further classified as transgressive, regressive, or laterally accreted. Geomorphic zones that contain two or more regressive, transgressive, or laterally accreted ridges are termed complexes. Consequently, we further refine the Chenier-Plain definition by Otvos and Price [Otvos, E.G. and Price, W.A., 1979. Problems of chenier genesis and terminology—an overview. Marine Geology, 31: 251-263] and define Chenier Plain as containing at least two or more chenier complexes. Based on these definitions, a geomorphic hierarchy of landforms was refined relative to dominant process for the Louisiana Chenier Plain. The Chenier Plain is defined as a first-order feature (5000 km 2) composed of three second-order features (30 to 300 km 2): chenier complex, beach-ridge complex, and spit complex. Individual ridges of each complex type were further separated into third-order features: chenier, beach

  9. Water-Level Conditions in Selected Confined Aquifers of the New Jersey and Delaware Coastal Plain, 2003

    USGS Publications Warehouse

    dePaul, Vincent T.; Rosman, Robert; Lacombe, Pierre J.

    2009-01-01

    underlying the southern part of the peninsula remained about the same as in 1998. To the south, recoveries up to 8 feet were observed in southern Lower Township as withdrawals had decreased since 1998. In the northern part of Cape May County, water levels had not changed substantially from historic conditions. In the Rio Grande water-bearing zone, water levels rose by as much as 13 ft at the Rio Grande well field; elsewhere across the aquifer, little change had occurred. In the Atlantic City 800-foot sand, water-level changes were greatest in southern Cape May County; at the Cape May desalination wells, water levels were as much as 32 ft lower in 2003 than in 1998. In contrast, water levels at the center of a regional cone of depression near Atlantic City rose by as much as 10 ft. Within the Piney Point aquifer water levels rose by 46 ft near Seaside Park. Similarly, water levels increased by more than 30 ft in and around the major cone of depression underlying Dover, Delaware. In the Vincentown aquifer, water levels stabilized or recovered by 2 ft to 6 ft from 1998 to 2003 in most of the wells measured; the exception is near Adelphia in Monmouth County, where water levels rose by as much as 18 ft. From 1998 to 2003, water levels near the center of a large cone of depression that extends from Monmouth to Ocean County recovered by as much as 20 ft in the Wenonah-Mount Laurel aquifer. Concurrently, ground-water levels within the Englishtown aquifer system declined by as much as 13 ft in the same area. Water levels across much of the Upper Potomac-Raritan-Magothy aquifer in the northern Coastal Plain remained about the same as 5 years previous, except in northern Ocean County where ground-water levels declined 10 ft to 33 ft. Water levels in the Middle Potomac-Raritan-Magothy aquifer declined from 5 to 9 ft along the border between Monmouth and Middlesex County. Elsewhere, across the northern part of the Coastal Plain, water levels stabilized within the Cretaceous-a

  10. USDA Northern Plains Regional Climate Hub assessment of climate change variability and adaptation and mitigation strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ranchers, farmers and forest land owners in the Northern Plains have experienced warmer temperatures (1 to 1.5 degrees F), longer growing seasons (about a week and a half) and generally more precipitation (5 to >15% increases over the eastern 2/3 of this region) over the past twenty years compared t...

  11. Modified Mercalli Intensity Assignments for the May 16, 1909, Northern Plains Earthquake

    USGS Publications Warehouse

    Bakun, W.H.; Stickney, M.C.; Rogers, G.

    2009-01-01

    We combine newspaper accounts and Nuttli's (1976) isoseismal map to assign modified Mercalli intensity (MMI) at 76 towns for the May 16, 1909 Northern Plains earthquake. The earthquake was felt across more than 1,500,000 km2 in the States of Minnesota, Montana, North Dakota, South Dakota, and Wyoming and the Provinces of Alberta, Manitoba, Ontario, and Saskatchewan.

  12. Seasonal weather-related decision making for cattle production in the Northern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High inter-annual variability of seasonal weather patterns can greatly affect forage and therefore livestock production in the Northern Great Plains. This variability can make it difficult for ranchers to set yearly stocking rates, particularly in advance of the grazing season. To better understand ...

  13. Genotypic diversity of Beauveria bassiana isolates in Acridids from the Northern Plains of the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beauveria bassiana is naturally present in grasshopper populations of the U.S. Northern Plains. It is often rare in a population, but at times can reach a prevalence of 10-15%. One strain, GHA, is registered in the U.S. for use against grasshoppers as well as other insects. We explored the genotypic...

  14. Particulate matter concentrations for mono-slope beef cattle facilities in the Northern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Confined cattle facilities are an increasingly common housing system in the Northern Great Plains region of the United States. Producers may maintain a deep-bedded manure pack (Pack), they may remove all bedding/manure material from the pens weekly (Scrape), or use a combination of management styles...

  15. Grasshopper responses to fire and postfire grazing in the northern Great Plains vary among species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rangeland management practices such as burning and grazing management may affect grasshopper populations by impacting development, survival and reproduction. Experiments are lacking in the northern Great Plains examining the effects of fire and grazing intensity on grasshoppers. As part of a larger ...

  16. Groundwater levels in Northern Texas High Plains:Baseline for existing agricultural management practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New groundwater policies are being debated for the northern High Plains of Texas due to the depletion of the underlying Ogallala Aquifer, the major source of water for irrigation, and they should be thoroughly evaluated using a calibrated groundwater model for assessing the impact on subsequent grou...

  17. Water-level records for the northern High Plains of Colorado, 1979-83

    USGS Publications Warehouse

    Blattner, Joe L.; Rasmuson, Bruce D.

    1983-01-01

    Water-level measurements were made in 638 wells in the winter of 1982-83, in the northern High Plains of Colorado. The water-level measurements for the winter of 1982-83 and for four preceding winters are given in a table, which also contains the location, depth, land-surface elevation and the aquifer for each well. (USGS)

  18. Inmigrants to the Northern Great Plains: Survey Results from Nebraska and North Dakota.

    ERIC Educational Resources Information Center

    Leistritz, F. Larry; Cordes, Sam; Sell, Randall S.; Allen, John C.; Filkins, Rebecca

    2000-01-01

    A study of characteristics and motives of migrants to the Northern Great Plains surveyed 1,590 new residents in Nebraska and North Dakota. New arrivals were younger and had higher educational levels than existing residents. Most often cited reasons for moving were desire to be closer to relatives, safety concerns, and quality of the natural…

  19. Low-dose glyphosate does not control annual bromes in the northern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Annual bromes (downy brome and Japanese brome) have been shown to decrease perennial grass forage production and alter ecosystem functions in northern Great Plains rangelands. Large-scale chemical control might be a method for increasing rangeland forage production if low application rates confer co...

  20. National coal resource assessment: Fort Union coals of the Northern Rocky Mountains and Great Plains

    SciTech Connect

    Flores, R.M.; Bader, L.R.; Ellis, M.S. |

    1996-12-31

    The present investigation assesses geologic controls on the distribution, resource occurrence, and quality of the Paleocene Fort Union and equivalent coals in the northern Rocky Mountains and Great Plains. Results of this investigation will assist in predicting areas wit h high quality coals that will be available for development. Published products will include digital output and hard copy readily accessible for analysis and utilization.

  1. Developing the 18th indicator for interpreting indicators of rangeland health on Northern Great Plains rangelands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    National Resources Inventory (NRI) resource assessment report shows little to no departure on Rangeland Health for most Northern Great Plains Rangelands. This information is supported by Interpreting Indicators of Rangeland Health (IIRH) data collected at local to regional scales. There is however a...

  2. Effects of sea level rise on deltaic coastal marshlands, Mississippi River deltaic plain

    SciTech Connect

    Ramsey, K.E.; Penland, S. ); Roberts, H.H.; Coleman, J.M. )

    1990-05-01

    Low-relief deltaic coastal plains commonly experience land loss because of the cumulative effects of natural and human-induced processes. Although it is difficult to separate the individual factors within the overall process, interplay between these factors can result in a rate of relative sea level rise greater than the natural rate of coastal-plain aggradation that causes land loss. Between 1956 and 1978, about 11,400 and 2,490 ha of marsh were lost in east Texas and Mississippi, respectively. Louisiana's loss was 18,755 ha. Relative sea level rise over the last 65 yr has averaged 0.23 cm/yr in the Gulf and as much as 1-1.5 cm/yr in the delta plain. The Environmental Protection Agency predicts the rate of sea level rise to increase over the next century. Rates of relative sea level rise for the Gulf of Mexico are expected to increase from 0.23-1.5 cm/yr to 0.6-3.7 cm/yr. The current rate of relative sea level rise and land loss in the subsiding Mississippi delta is a response that can be expected for many US coastal areas over the next century. With the predicted change, the Mississippi River delta complex will experience dramatically increased rates of land loss. Isles Dernieres will disappear by the year 2000, and Plaquemines and Terrebonne marshes will be gone between 2020 and 2080. Based on the lowest predicted sea level rise rate, by the year 2100, the delta plain could be reduced from 150.9 {times} 10{sup 3} ha to 29.8 x 10{sup 3} ha or to 4.9 {times} 10{sup 3} ha if calculations are based on the highest rate.

  3. Novel microsatellites for Calibrachoa heterophylla (Solanaceae) endemic to the South Atlantic Coastal Plain of South America1

    PubMed Central

    Silva-Arias, Gustavo Adolfo; Mäder, Geraldo; Bonatto, Sandro L.; Freitas, Loreta B.

    2015-01-01

    Premise of the study: Calibrachoa heterophylla (Solanaceae) is a petunia species restricted to the South Atlantic Coastal Plain of South America and presents a recent history of colonization from continental to coastal environments and diversification following the formation of the Coastal Plain during the Quaternary period. Methods and Results: This study reports a suite of 16 microsatellite loci for C. heterophylla. The applicability of these markers was assessed by genotyping 57 individuals from two natural populations. Of the 16 described loci, 12 were found to be polymorphic. Successful cross-amplification tests were obtained using 12 Calibrachoa species. Conclusions: The development of microsatellite markers will be useful to recover the contemporary history of the colonization of the Coastal Plain and to provide information for the conservation of this endemic species. PMID:26191462

  4. Age of fracturing and mesa development in the Elysium Area, northern Martian plains

    NASA Technical Reports Server (NTRS)

    Mcgill, George E.

    1987-01-01

    One of the fundamental questions of Martian crustal history is the origin of the crustal dichotomy between northern plains and southern highlands. Hypotheses for the origin of the dichotomy may be constrained by global scale, geophysical considerations, or by detailed geological studies of the genesis and relative ages of materials and landforms in the northern plains of Mars and along the boundary between the plains and the highlands. This abstract summarizes progress on one aspect of a long-range geological study intended to constrain hypotheses for the dichotomy by tracing the history of the northern plains from the most recent events backward -- essentially the same approach used to understand old events in Earth history. Both the giant impact and the mantle convection models for the crustal dichotomy imply a major coeval fracturing event. As has been known for some time, the present dichotomy boundary lies well south of its original position, at least in some places. Nevertheless, there is severe fracturing of this present dichotomy boundary in many places. The specific objectives of this study are to determine the ages of fracturing along the present dichotomy boundary.

  5. Estimating SGD flux in the Pingtung Plain coastal area by using Radon and Radium isotopes

    NASA Astrophysics Data System (ADS)

    Li Chang, Yao; Chieh Su, Chih

    2015-04-01

    In the past two decades, submarine groundwater discharge (SGD) has been recognized as an important pathway to transport material into coastal area. Our study area is located at Pingtung Plain which is the second largest plain in Taiwan with three major rivers, including Gaoping, Donggang and Linbian Rivers, flow through the plain. The Gaoping River, which has the largest drainage area, flows throughout the central part of the plain. The Pingtung Plain composed by four aquifers in different depths (0, 50, 100, and 200 m) and each layer extends to coastal area. Groundwater is an important water resource for local agriculture and aquaculture. However, the long-term over-pumping induced subsidence problem makes salinization at some coastal area. Some previous studies pointed out the SGD accounts for 80% or more of the mass of freshwater in Fangshan coast, depends on salinity and stable isotopes research. In this study, the radioactive tracers, Radon (222Rn, T1/2=3.8 d) and short-lived Ra isotopes (223Ra, T1/2=11.4 d & 224Ra, T1/2=3.6 d) are used in tracing SGD off the Pingtung Plain. During 2013 to 2014, the terrestrial water samples were collected from Gaoping, Donggang, Linbian Rivers and springs in different seasons. We also conducted two coastal waters cruises by using R/V Ocean Researcher 3 (OR3-1768 and 1799 cruises in May and September 2014). Continuous 222Rn was measured by RAD7 equipped with RAD-AQUA system and large volume (20 L) seawater samples were collected by CTD/Rosette water sampler with Niskin sterile bottles. Water samples were flow through Mn-fiber (flow rate < 1 LPM) to concentrate the Ra isotopes, and counted via RaDeCC system. In spatial variation, our result shows the excess 224Ra in the downstream of Gaoping River (2.39 dpm 100L-1) is higher than upstream (1.09 dpm 100L-1). It indicates the groundwater input may play an important role at the downstream of Gaoping River. For temporal variation, excess 224Ra in the Gaoping River are higher in wet

  6. Coastal Evolution of the Mississippi River Chenier Plain: A Geomorphic Process-Response Model

    NASA Astrophysics Data System (ADS)

    McBride, R. A.; Taylor, M. J.; Byrnes, M. R.

    2007-12-01

    Using 28 topographic profiles, air-photo interpretation, and historical shoreline-change data, coastal processes were evaluated along the Mississippi River Chenier Plain to explain the occurrence, distribution, and geomorphic hierarchy of primary landforms. The Louisiana Chenier Plain, classified as a low-profile, microtidal, storm- dominated coast, is located west and downdrift of the Mississippi River deltaic plain. This late-Holocene, marginal-deltaic environment is 200 km long, less than 30 km wide, and composed of mud deposits capped by marsh interspersed with thin sand- and shell-rich ridges ("cheniers") that are less than 4 m in elevation. Most Chenier-Plain ridges represent open-Gulf paleoshorelines. Past shoreline morphodynamics allow ridges to be classified as transgressive (cheniers), regressive (beach ridges), or laterally accreted (spits). Geomorphic zones that contain two or more regressive, transgressive, or laterally accreted ridges are termed complexes. Consequently, we further refine the Chenier-Plain definition by Otvos and Price (1979, Marine Geology) and define Chenier Plain as containing at least two or more chenier complexes. As such, a geomorphic hierarchy of landforms is devised relative to dominant coastal process. The Chenier Plain is defined as a first-order feature (5000 km2) composed of three second-order features (30 to 300 km2): chenier complex, beach ridge complex, and spit complex. Individual ridges of each complex type were further separated into third-order features: chenier, beach ridge, and spit. To understand long-term evolution of the Chenier Plain, modern tidal-inlet processes operating at Sabine, Calcasieu, and Mermentau river entrances were also examined relative to the inlet-stability ratio. Prior to human modification and stabilization efforts, the Mermentau River entrance is classified as wave-dominated, Sabine Pass as tide-dominated, and Calcasieu Pass as tide-dominated to mixed. Hoyt (1969, American Association of

  7. High-resolution correlation of coastal plain strata for definition of reservoir attributes

    SciTech Connect

    Navarre, J.C.; Cross, T.A.

    1995-08-01

    Three type of stratigraphic cycles are recognized in coastal-plain strata of the MesaVerde Group (Cretaceous) San Juan Basin, Colorado. The cycle types change as a function of accommodation and geographic position. The cycles record oscillations of base level and concomitant oscillations of increasing and decreasing accommodation. Coastal-plain strata were traced physically into shoreface strata to establish temporal equivalency of strata within the two environments, and thus ensure correct recognition of base-level rise and fall hemicycles in coastal-plain strata. Potential reservoir units are channel belt sandstones and backbarrier and bay sandstones which occur in two of the cycle types. These sandstones change geometry, connectivity, and volumes within cycles, reflecting changes in accommodation, the types of original geomorphic elements within environments, and sediment preservation during base-level cycles. The occurrence of different facies successions in the different types of cycles establishes the empirical basis for recognizing such cycles with well-log inversion techniques. One type of stratigraphic cycle, which occurs in the lowest accommodation condition of the Mesa Verde Group, is an alternation between laterally amalgamated channels and either crevasse splay/crevasse channel complexes or floodplain vertical accretion deposits and soils. Laterally amalgamated channel sandstones accumulated during base-level rise hemicycles. The third type of stratigraphic cycle also occurs in the maximum accommodation conditions, but in a more seaward position than the previous type. Like the first, this type of stratigraphic cycle comprises an alternation of two types of facies associations. This type is an alternation between tidally dominated estuarine and bay sandstones and mudstones which accumulated during base-level rise, and shallowing-up and bed-thickening up hummocky cross stratified back-barrier and bay sandstones which accumulated during base-level fall.

  8. Pleistocene sea-level fluctuations and human evolution on the southern coastal plain of South Africa

    NASA Astrophysics Data System (ADS)

    Compton, John S.

    2011-03-01

    Humans evolved in Africa, but where and how remain unclear. Here it is proposed that the southern coastal plain (SCP) of South Africa may have served as a geographical point of origin through periodic expansion and contraction (isolation) in response to glacial/interglacial changes in sea level and climate. During Pleistocene interglacial highstands when sea level was above -75 m human populations were isolated for periods of 360-3400 25-yr generations on the SCP by the rugged mountains of the Cape Fold Belt, climate and vegetation barriers. The SCP expands five-fold as sea level falls from -75 to -120 m during glacial maxima to form a continuous, unobstructed coastal plain accessible to the interior. An expanded and wet glacial SCP may have served as a refuge to humans and large migratory herds and resulted in the mixing of previously isolated groups. The expansive glacial SCP habitat abruptly contracts, by as much as one-third in 300 yr, during the rapid rise in sea level associated with glacial terminations. Rapid flooding may have increased population density and competition on the SCP to select for humans who expanded their diet to include marine resources or hunted large animals. Successful adaptations developed on an isolated SCP are predicted to widely disperse during glacial terminations when the SCP rapidly contracts or during the initial opening of the SCP in the transition to glacial maxima. The hypothesis that periodic expansion and contraction of the SCP, as well as the coastal plain of North Africa, contributed to the stepwise origin of our species over the last 800 thousand years (kyr) is evaluated by comparing the archeological, DNA and sea-level records. These records generally support the hypothesis, but more complete and well dated records are required to resolve the extent to which sea-level fluctuations influenced the complex history of human evolution.

  9. Reactivated basement structures in the central Savannah River area and their relationship to coastal plain deformation

    SciTech Connect

    Cumbest, R.J.; Price, V. ); Temples, T.J. ); Fallaw, W.C. . Dept. of Geology); Snipes, D.S. . Dept. of Earth Sciences)

    1993-03-01

    Structural surface mapping and geophysical studies have identified several faults in the crystalline basement and overlying Coastal Plain sedimentary sequences in the central Savannah River area. Major subsurface basement shear zones occur parallel to and near Upper Three Runs Creek and Tinker Creek and are associated with linear aeromagnetic anomalies. Reflection seismic imaging of the basement shows a band of southeast dipping events parallel to Upper Three Runs Creek. Drill core from basement contain phyllonites, mylonites, fault breccia and pseudotachylite. The magnetic anomalies also mark the boundary separating greenschist facies metavolcanic rocks from amphibolite facies felsic gneiss, schist, and amphibolite. These features are similar to those that characterize other Paleozoic faults of the Eastern Piedmont Fault system. Reflection seismic imaging shows the sub-Cretaceous unconformity as well defined and easily identified event as well as easily traced laterally extensive events in Coastal Plain sequences. The unconformity and sedimentary sequences are faulted or deformed in several locations which also coincide with changes in dip of the unconformity. In the vicinity of Upper Three Runs Creek the unconformity shows a broad warping across which the elevation drops to the southeast and sedimentary sequences show a marked rate of thickening southeast. This indicates deformation of the basement exerted a control on deposition of the Coastal Plain sediments with down to the southeast movement. The basement shear zones are closely associated with the Dunbarton basin and are probable reactivated Paleozoic structures associated with extensional basin development as commonly seen associated with extensional basins on the east coast of North America.

  10. Evidence for a major, tectonically active structure beneath the coastal plain of North and South Carolina

    SciTech Connect

    Marple, R.T.; Talwani, P. . Geology Dept.); Olson, O.

    1994-03-01

    Evaluation of Landsat imagery, aerial photography, potential field data, and topographic maps have revealed a linear, [approximately]400-km-long, NNE-trending zone in the coastal plain of North and South Carolina. This zone is composed of subtle topographic highs, aeromagnetic anomalies, and in some locations mapped and inferred faults. It is also associated with a zone of river anomalies (ZRA). Various data suggest that the ZRA may be associated with tectonic activity on a large right-lateral strike-slip fault system. The ZRA in the South Carolina coastal plain is defined by an [approximately]15-km-wide NNE-trending zone that crosses NW-SE-flowing rivers. Along this zone the rivers are characterized by river bends that are convex toward the NNE, incised channels, changes in river patterns, and convex-upward longitudinal profiles. In the coastal plain and eastern Slate Belt of North Carolina the ZRA (width yet to be determined) displays a slightly more northeasterly trend that is highlighted by linear aeromagnetic anomalies and right-lateral offsets of larger rivers crossing its trend. This feature is not traceable across the southern flank of the Cape Fear Arch and north of this area the ZRA's trend is offset [approximately]15 km toward the east (right step geometry) from that of the ZRA in South Carolina. Analyses of geologic and geophysical data further indicate that these two zones may be the result of ongoing tectonic uplift along a NNE-trending right-lateral strike-slip fault zone possibly associated with recent seismicity near Charleston.

  11. Assessment of forest plantations from low altitude aerial photography. [North Carolina coastal plains

    NASA Technical Reports Server (NTRS)

    Nelson, H. A.

    1977-01-01

    Vertical color, and color-infrared, aerial photography obtained from altitudes between 183 m and 915 m provide a cost effective method of determining tree survival and height growth in pine plantations on the North Carolina Coastal Plain. All interpretations were performed by professional forestry personnel from the original 70 mm color transparencies. Prompt assessment of tree survival is necessary if failed spots are to be successfully replanted. Counts of living trees made after the third growing season, and sometimes only two growing seasons after planting, are accurate enough to permit planning of replanting operations without extensive ground surveys.

  12. Impacts of sewage effluent on tree survival, water quality and nutrient removal in coastal plain swamps

    SciTech Connect

    Kuenzler, E.J.

    1987-09-01

    An investigation was conducted of the impacts of sprayed municipal sewage on swamp tree survival and the effects of the swamp system on nutrient concentrations below the outfalls on two streams on the coastal plain of North Carolina. Effluent was discharged to one swamp stream by aerial spraying and to the other stream by way of a small ditch. Ninety-eight percent of the trees struck directly by the spray were dead within 18 months of the date spraying began. Both swamp systems removed sufficient quantities of nitrogen and phosphorus within a few kilometers to account for virtually all of the sewage nutrient load to the swamps.

  13. Oil plays in Smackover reservoirs of the eastern Gulf Coastal Plain

    SciTech Connect

    Mancini, E.A.; Mink, R.M.; Tew, B.H.; Kopaskamerkel, D.C.; Mann, S.D. )

    1991-03-01

    Five Smackover (Upper Jurassic, Oxfordian) oil plays can be delineated in the eastern Gulf Coastal Plain. These include the basement ridge play, the regional peripheral fault trend play, the Mississippi interior salt basin play, the Mobile graben fault system play, and the Wiggins arch complex play. Plays are recognized by basinal position, relationships to regional structural features, and characteristic petroleum traps. Within two plays, subplays can be distinguished based on oil gravities and reservoir characteristics. Reservoirs are distinguished primarily by depositional setting and diagenetic overprint. The geology and petroleum characteristics of these plays are discussed.

  14. Potential Oil Production from Coastal Plain of Arctic National Wildlife Refuge: Updated Assessment

    EIA Publications

    2000-01-01

    The Energy Information Administration (EIA) received a letter (dated March 10, 2000) from Senator Frank H. Murkowski as Chairman of the Senate Committee on Energy and Natural Resources requesting an EIA Service Report with plausible scenarios for the Arctic National Wildlife Refuge (ANWR) supply development consistent with the most recent U.S. Geological Survey resource assessments. This service report is prepared in response to the request of Senator Murkowski. It focuses on the ANWR coastal plain, a region currently restricted from exploration and development, and updates EIA's 1987 ANWR assessment.

  15. The Maryland Coastal Plain Aquifer Information System: A GIS-based tool for assessing groundwater resources

    USGS Publications Warehouse

    Andreasen, David C.; Nardi, Mark R.; Staley, Andrew W.; Achmad, Grufron; Grace, John W.

    2016-01-01

    Groundwater is the source of drinking water for ∼1.4 million people in the Coastal Plain Province of Maryland (USA). In addition, groundwater is essential for commercial, industrial, and agricultural uses. Approximately 0.757 × 109 L d–1 (200 million gallons/d) were withdrawn in 2010. As a result of decades of withdrawals from the coastal plain confined aquifers, groundwater levels have declined by as much as 70 m (230 ft) from estimated prepumping levels. Other issues posing challenges to long-term groundwater sustainability include degraded water quality from both man-made and natural sources, reduced stream base flow, land subsidence, and changing recharge patterns (drought) caused by climate change. In Maryland, groundwater supply is managed primarily by the Maryland Department of the Environment, which seeks to balance reasonable use of the resource with long-term sustainability. The chief goal of groundwater management in Maryland is to ensure safe and adequate supplies for all current and future users through the implementation of appropriate usage, planning, and conservation policies. To assist in that effort, the geographic information system (GIS)–based Maryland Coastal Plain Aquifer Information System was developed as a tool to help water managers access and visualize groundwater data for use in the evaluation of groundwater allocation and use permits. The system, contained within an ESRI ArcMap desktop environment, includes both interpreted and basic data for 16 aquifers and 14 confining units. Data map layers include aquifer and ­confining unit layer surfaces, aquifer extents, borehole information, hydraulic properties, time-series groundwater-level data, well records, and geophysical and lithologic logs. The aquifer and confining unit layer surfaces were generated specifically for the GIS system. The system also contains select groundwater-quality data and map layers that quantify groundwater and surface-water withdrawals. The aquifer

  16. Development of an empirical model of episodic acidification in Coastal Plain streams

    SciTech Connect

    Gerritsen, J.; Dietz, J.; Wilson, H.

    1991-07-01

    The study forms part of an ongoing process to develop understanding of the effects of acidic deposition in Maryland and to develop tools for managing its consequences on natural resources. Episodic acidification is common in poorly buffered streams of the Coastal Plain of Maryland and may harm sensitive life stages of migratory fish that spawn in small sreams of the region. The study described here was intended to test and validate the modeling approach with independent data and to improve the confidence of model predictions.

  17. Late Cenozoic stages and molluscan zones of the U.S. Middle Atlantic Coastal Plain.

    USGS Publications Warehouse

    Blackwelder, B. W.

    1981-01-01

    Pliocene to Holocene deposits of the U.S.Atlantic Coastal Plain from Maryland to Georgia are divided into four stages and four substages using molluscan biostratigraphic data. These divisions are the Wiltonian and Burwellian Stages (early Pliocene), Gouldian and Windyan Substages of the Colerainian Stage (late Pliocene to early Pleistocene), and Myrtlean and Yongesian Substages of the Longian Stage (late Pleistocene to Holocene). These stages may be recognized from Florida to as far north as Massachusetts and will facilitate correlation with other regions.-Author

  18. Coastal Fog Sustains Summer Baseflow in Northern Californian Watershed

    NASA Astrophysics Data System (ADS)

    Chung, M.; Dufour, A.; Leonardson, R.; Thompson, S. E.; Dawson, T. E.

    2015-12-01

    The Mediterranean climate of Northern California imposes significant water stress on ecosystems and water resources during the dry summer months. During summer, frequently the only water inputs occur as occult precipitation, in the form of fog and dew. In this study, we characterized the role of coastal fog, a dominant feature of Northern Californian coastal ecosystems and a widespread phenomenon associated with deep marine upwelling in west coast, arid, and Mediterranean climates worldwide. We monitored fog occurrence and intensity, throughfall following canopy interception of fog, soil moisture, streamflow, and meteorological variables, and made visual observations of the spatial extent of fog using time-lapse imagery in Upper Pilarcitos Creek Watershed (managed by San Francisco Public Utilities Commission as part of the San Francisco area water supply). We adopted a stratified sampling design that captured the watershed's elevation gradient, forest-edge versus interior locations, and different vegetation cover. The point-scale observations of throughfall inputs and transpiration suppression, estimated from the Penman equation, were upscaled using such watershed features and the observed fog "footprint" identified from the time-lapse images. When throughfall input and fog-induced transpiration suppression were incorporated into the operational watershed model, they improved estimates of summer baseflow, which remained persistently higher than could be explained without the fog effects. Fog, although providing relatively small volumetric inputs to the water balance, appears to offer significant relief of water stress throughout the terrestrial and aquatic components of the coastal Californian ecosystem and thus should be accounted for when assessing water stress availability in dry ecosystems.

  19. Lateglacial and Holocene environmental changes in Ganga plain, Northern India

    NASA Astrophysics Data System (ADS)

    Sharma, S.; Joachimski, M.; Sharma, M.; Tobschall, H. J.; Singh, I. B.; Sharma, C.; Chauhan, M. S.; Morgenroth, G.

    2004-01-01

    Stable isotope, elemental geochemistry and pollen analysis of a sediment profile from Sanai lake, Central Ganga Plain, were used to document climatic oscillations during the last ˜15,000 yr in Indian subcontinent. Micaceous sandy sediments at the base of the profile indicate an active channel and humid conditions before ˜15,000 14C yr BP. The channel was abandoned during comparatively arid conditions (15,000-13,000 14C yr BP) and converted into a swamp. Enhanced humidity around 13,000 14C yr BP led to submergence of marshes and establishment of a large lake. A dry phase is also identified around an estimated age of 11,500-10,500 14C yr BP which might correspond to the Younger Dryas event witnessed globally. The Early to Mid-Holocene climatic optimum (˜10,000-5800 14C yr BP) is characterised by a lake environment. Occurence of warmth loving aquatic plants, lower δ 18O values of gastropod aragonite, heavier δ 13C org values indicate a sensitive response of the lake ecology to the climatic warming and increased rainfall. This is followed by an arid event during 5000-2000 14C yr BP and from ˜1700 14C yr BP there is evidence of climatic amelioration. The sequence and magnitude of the millenium-scale climatic oscillations documented along the lake profile correlate well with records from other parts of the Indian subcontinent indicating that the recorded changes are an expression of broad scale, probably global and climatic change.

  20. Development of a media campaign on fetal alcohol spectrum disorders for Northern Plains American Indian communities.

    PubMed

    Hanson, Jessica D; Winberg, Austin; Elliott, Amy

    2012-11-01

    Alcohol-exposed pregnancies are especially of concern for American Indians. The Indian Health Service reported that 47% to 56% of pregnant patients admitted to drinking alcohol during their pregnancy. In addition, rates of Fetal Alcohol Syndrome are estimated to be as high as 3.9 to 9.0 per 1,000 live births among American Indians in the Northern Plains, making prevention of alcohol-exposed pregnancies an important public health effort for this population. The goal of this article is to add to the literature on universal prevention of Fetal Alcohol Spectrum disorders by describing the development, dissemination, and evaluation of a media campaign on Fetal Alcohol Spectrum Disorders that was created by and for American Indian communities in the Northern Plains.

  1. The Pilbara coast: a riverine coastal plain in a tropical arid setting, northwestern Australia

    NASA Astrophysics Data System (ADS)

    Semeniuk, V.

    1993-03-01

    The unifying feature of the Pilbara Coast of northwestern Australia is that it is a sedimentary repository for a range of rivers that drains a high-relief Precambrian rocky hinterland and discharges sediments along a coastal plain which fronts a wave-dominated environment in a tropical arid climate. The combination of fluvial and shoreline accretion processes, coastal cementation, coastal erosion, and ancestral landform architecture, such as residual Pleistocene limestone ridges and large outcrops of Precambrian bedrock, has produced a complex coastal system during the Quaternary. As a result, the coast is dominated by active deltas, beach/dune shores, inactive, eroding parts of deltas and their barriers, limestone barrier coasts, bays associated with eroded limestone barriers, and archipelago/ria coasts. Quaternary sediments throughout the area, while varied in their distribution and history at the smaller scales, exhibit a recurring pattern of lithotopes and lithologies in the region. There are three main Quaternary suites: Pleistocene red siliciclastic sediments (alluvium, deltaic sediments, and aeolian sand) that form an inland zone; Pleistocene limestones that form local barriers; and a Holocene system, within which are the sedimentary suites of deltas, beach/dunes, tidal-flats, and tidal-embayments.

  2. Modified Mercalli intensity assignments for the May 16, 1909, Northern Plains earthquake

    USGS Publications Warehouse

    Bakun, W.H.; Stickney, M.C.; Rogers, G.; Ristau, J.

    2010-01-01

    We use newspaper accounts from the United States and Canada to assign modified Mercalli intensity (MMI) at 90 towns for the May 16, 1909 Northern Plains earthquake. Our MMI assignments generally are consistent with those plotted on Nuttli's (1976) isoseiemal map. The earthquake was felt over more than 1,500,000 km2 in the states of Minnesota, Montana, North Dakota, South Dakota, and Wyoming and the provinces of Alberta, Manitoba, Ontario, and Saskatchewan.

  3. History of transcontinental railroads and coal mining on the Northern Plains to 1920

    SciTech Connect

    Bryans, W.S.

    1987-01-01

    This history examines the symbiotic relationship between three transcontinental railroads-the Union Pacific, Northern Pacific, and Great Northern-and coal mining in Montana, North Dakota, and Wyoming through 1920. Throughout their dual existence, American railroads and the coal industry enjoyed a mutually beneficial association. On the Northern Plains, however, this partnership assumed new dimensions. There, the coal and rails exerted unique influences upon one another. The location of deposits determined many of the transcontinentals' early decisions, especially route selection. The native fuel also was used to promote settlement on railroad lands. Two of the roads, the Union Pacific and Northern Pacific, held land grants containing valuable deposits. The Great Northern, having no such subsidy, acquired coal lands in northern Montana. On these properties, the three railroads pioneered the region's commercial coal mining industry. Eventually, each formed subsidiaries to direct their coal operations. While much of their production supplied steam locomotives, some was sold to the public. Furthermore, the policies of the Northern Pacific and Great Northern especially enabled their coal to stimulate non-railroad enterprises. In addition, all three provided the transportation which made exploitation by others economically feasible.

  4. Coastal SAR Altimetry: An Experiment in the Northern Caspian Sea

    NASA Astrophysics Data System (ADS)

    Dinardo, Salvatore; Lucas, Bruno; Benveniste, Jerome

    2013-04-01

    backscattered power distribution vs. Doppler beam angle as achieved integrating the SAR STACK's power echoes. This RMSS parameter is an indicator of how much specular or diffusive is the surface illuminated by the radar. The RMSS parameter will be hence fed as input in the SAMOSA Physical Model in order to adapt the model itself automatically to the changed water scenario conditions, turning the model's classic long-tail SAR waveform into a very peaky waveform. THE SAMOSA model will be implemented in its full analytical formulation (zero-order and first-order term), neglecting only the effect of the water surface skewness. The benefit of this methodology is that we use either for open ocean conditions either for coastal still water conditions the same model and re-tracker scheme, avoiding hence any bias or discontinuity in height, typically occurring when one swaps waveform model or re-tracker scheme during the same pass. The experiment will be run at the wetlands of the Volga's Delta in the Northern Caspian Sea in summer time. CryoSat-2 is covering the area in SAR mode and along the passes, the instrument is facing an abrupt transition from diffusive open sea condition to very specular water conditions over the Volga's Delta wetlands. Hence, this seems to be the ideal environment where to test the proposed methodology.

  5. Cancer Screening in Native Americans from the Northern Plains

    PubMed Central

    Pandhi, Nancy; Guadagnolo, B. Ashleigh; Kanekar, Shalini; Petereit, Daniel G.; Smith, Maureen A.

    2010-01-01

    Background Native Americans from the Northern Plains have the highest age-adjusted cancer mortality compared to Native Americans from any other region in the U.S. Purpose This study examined the utilization and determinants of cancer screening in a large sample of Native Americans from the Northern Plains. Methods A survey was administered orally to 975 individuals in 2004â2006 from three reservations and among the urban Native American community in the service region of the Rapid City Regional Hospital. Data analysis was conducted in 2007â2008. Results Forty-four percent of individuals reported ever receiving any cancer screening. Particularly low levels were found in breast, cervical, prostate, and colon cancer screening. In multivariate analyses, the strongest determinant of receiving cancer screening overall or cancer screening for a specific cancer site was recommendation for screening by a doctor or nurse. Other determinants associated with increased likelihood of ever having cancer screening included older age, female gender, and receiving physical exams more than once a year. Increased age was a determinant of breast cancer screening and receiving physical exams was associated with cervical cancer screening. Conclusions Cancer screening was markedly underutilized in this sample of Native Americans from the Northern Plains. Future research should evaluate the potential for improving cancer screening. PMID:20307807

  6. The Prevalence of Metabolic Syndrome and Associated Risk Factors in Northern Plains and Southwest American Indians

    PubMed Central

    Sinclair, Kaìmi A.; Bogart, Andy; Buchwald, Dedra; Henderson, Jeffrey A.

    2011-01-01

    OBJECTIVE To estimate the prevalence of metabolic syndrome by age, sex, and diabetes status in Northern Plains and Southwest American Indians. RESEARCH DESIGN AND METHODS Data for this analysis came from the Education and Research Toward Health (EARTH) study, a 5-year cross-sectional study of Southwest and Northern Plains American Indian adults. The National Cholesterol Education Program's Adult Treatment Panel III (NCEP/ATP III) guidelines were used to identify adults with metabolic syndrome. RESULTS The age-adjusted prevalence of the metabolic syndrome was 49.8% among 4,457 participants aged 18–88 years. Age-adjusted prevalence was 42.4% for participants without diabetes and 86.6% for participants with diabetes. In participants aged <40 years, the overall prevalence of metabolic syndrome was 53.1%; 44.9% after excluding individuals with diabetes. CONCLUSIONS This study confirms a high prevalence of the metabolic syndrome among Northern Plains and Southwest American Indians of all ages. PMID:20864516

  7. Estimated areal extent of colonies of black-tailed prairie dogs in the northern Great Plains

    USGS Publications Warehouse

    Sidle, John G.; Johnson, Douglas H.; Euliss, Betty R.

    2001-01-01

    During 1997–1998, we undertook an aerial survey, with an aerial line-intercept technique, to estimate the extent of colonies of black-tailed prairie dogs (Cynomys ludovicianus) in the northern Great Plains states of Nebraska, North Dakota, South Dakota, and Wyoming. We stratified the survey based on knowledge of colony locations, computed 2 types of estimates for each stratum, and combined ratio estimates for high-density strata with average density estimates for low-density strata. Estimates of colony areas for black-tailed prairie dogs were derived from the average percentages of lines intercepting prairie dog colonies and ratio estimators. We selected the best estimator based on the correlation between length of transect line and length of intercepted colonies. Active colonies of black-tailed prairie dogs occupied 2,377.8 km2 ± 186.4 SE, whereas inactive colonies occupied 560.4 ± 89.2 km2. These data represent the 1st quantitative assessment of black-tailed prairie dog colonies in the northern Great Plains. The survey dispels popular notions that millions of hectares of colonies of black-tailed prairie dogs exist in the northern Great Plains and can form the basis for future survey efforts.

  8. Estimated areal extent of colonies of black-tailed prairie dogs in the northern Great Plains

    USGS Publications Warehouse

    Sidle, John G.; Johnson, D.H.; Euliss, B.R.

    2001-01-01

    During 1997-1998, we undertook an aerial survey, with an aerial line-intercept technique, to estimate the extent of colonies of black-tailed prairie dogs (Cynomys ludovicianus) in the northern Great Plains states of Nebraska, North Dakota, South Dakota, and Wyoming. We stratified the survey based on knowledge of colony locations, computed 2 types of estimates for each stratum, and combined ratio estimates for high-density strata with average density estimates for low-density strata. Estimates of colony areas for black-tailed prairie dogs were derived from the average percentages of lines intercepting prairie dog colonies and ratio estimators. We selected the best estimator based on the correlation between length of transect line and length of intercepted colonies. Active colonies of black-tailed prairie dogs occupied 2,377.8 km2 i?? 186.4 SE, whereas inactive colonies occupied 560.4 i?? 89.2 km2. These data represent the 1st quantitative assessment of prairie-dog colonies in the northern Great Plains. The survey dispels popular notions that millions of square kilometers of colonies of black-tailed prairie dogs exist in the northern Great Plains and can form the basis for future survey efforts

  9. Influence of coarse woody debris on the soricid community in southeastern Coastal Plain pine stands.

    SciTech Connect

    Davis, Justin, C.; Castleberry, Steven, B.; Kilgo, John, C.

    2010-07-01

    Shrew abundance has been linked to the presence of coarse woody debris (CWD), especially downed logs, in many regions in the United States. We investigated the importance of CWD to shrew communities in managed upland pine stands in the southeastern United States Coastal Plain. Using a randomized complete block design, 1 of the following treatments was assigned to twelve 9.3-ha plots: removal (n 5 3; all downed CWD _10 cm in diameter and _60 cm long removed), downed (n 5 3; 5-fold increase in volume of downed CWD), snag (n 5 3; 10-fold increase in volume of standing dead CWD), and control (n 5 3; unmanipulated). Shrews (Blarina carolinensis, Sorex longirostris, and Cryptotis parva) were captured over 7 seasons from January 2007 to August 2008 using drift-fence pitfall trapping arrays within treatment plots. Topographic variables were measured and included as treatment covariates. More captures of B. carolinensis were made in the downed treatment compared to removal, and captures of S. longirostris were greater in downed and snag compared to removal. Captures of C. parva did not differ among treatments. Captures of S. longirostris were positively correlated with slope. Our results suggest that abundance of 2 of the 3 common shrew species of the southeastern Coastal Plain examined in our study is influenced by the presence of CWD.

  10. Supergroup stratigraphy of the Atlantic and Gulf Coastal Plains (Middle? Jurassic through holocene, Eastern North America)

    USGS Publications Warehouse

    Weems, R.E.; ,; Edwards, L.E.

    2004-01-01

    An inclusive supergroup stratigraphic framework for the Atlantic and Gulf Coastal Plains is proposed herein. This framework consists of five supergroups that 1) are regionally inclusive and regionally applicable, 2) meaningfully reflect the overall stratigraphic and structural history of the Coastal Plains geologic province of the southeastern United States, and 3) create stratigraphic units that are readily mappable and useful at a regional level. Only the Marquesas Supergroup (Lower Cretaceous to lowest Upper Cretaceous) has been previously established. The Trent Supergroup (middle middle Eocene to basal lower Miocene) is an existing name here raised to supergroup rank. The Minden Supergroup (Middle? through Upper Jurassic), the Ancora Supergroup (Upper Cretaceous to lower middle Eocene), and the Nomini Supergroup (lower Miocene to Recent) are new stratigraphic concepts proposed herein. In order to bring existing groups and formations into accord with the supergroups described here, the following stratigraphic revisions are made. 1) The base of the Shark River Formation (Trent Supergroup) is moved upward. 2) The Old Church Formation is removed from the Chesapeake Group (Nomini Supergroup) and moved to the Trent Supergroup without group placement. 3) The Tiger Leap and Penney Farms formations are removed from the Hawthorn Group (Nomini Supergroup) and moved to the Trent Supergroup without group placement. 4) The Piney Point and Chickahominy formations are removed from the Pamunkey Group (Ancora Supergroup) and moved to the Trent Supergroup without group placement. 5) the Tallahatta Formation is removed from the Claiborne Group (Trent Supergroup) and placed within the Ancora Supergroup without group placement.

  11. Quaternary climates and sea levels of the u.s. Atlantic coastal plain.

    PubMed

    Cronin, T M; Szabo, B J; Ager, T A; Hazel, J E; Owens, J P

    1981-01-16

    Uranium-series dating of corals from marine deposits of the U.S. Atlantic Coastal Plain coupled with paleoclimatic reconstructions based on ostracode (marine) and pollen (continent) data document at least five relatively warm intervals during the last 500,000 years. On the basis of multiple paleoenvironmental criteria, we determined relative sea level positions during the warm intervals, relative to present mean sea level, were 7 +/- 5 meters at 188,000 years ago, 7.5 +/- 1.5 meters at 120,000 years ago, 6.5 +/- 3.5 meters at 94,000 years ago, and 7 +/- 3 meters at 72,000 years ago. The composite sea level chronology for the Atlantic Coastal Plain is inconsistent with independent estimates of eustatic sea level positions during interglacial intervals of the last 200,000 years. Hydroisostatic adjustment from glacial-interglacial sea level fluctuations, lithospheric flexure, and isostatic uplift from sediment unloading due to erosion provide possible mechanisms to account for the discrepancies. Alternatively, current eustatic sea level estimates for the middle and late Quaternary may require revision.

  12. Geochronology of upper Paleocene and lower Eocene strata, eastern Gulf Coastal Plain

    SciTech Connect

    Mancini, E.A.; Tew, B.H. Geological Survey of Alabama, Tuscaloosa, AL )

    1994-03-01

    Four samples of glauconitic sand from upper Paleocene and lower Eocene strata of the eastern Gulf Coastal Plain were analyzed for conventional potassium-argon (K-Ar) age determination. Results from these analyses are as follows: Coal Bluff Marl Member of the Naheola Formation of the Midway Group (58.2 [+-] 1.5 MA), Ostrea thirsae beds of the Nanafalia Formation of the Wilcox Group (56.3 [+-] 1.5 MA), upper Tuscahoma Sand of the Wilcox Group (54.5 [+-] 1.4 MA), and Bashi Marl Member of the Hatchetigbee Formation of the Wilcox Group (53.4 [+-] 1.4 MA). The Nanafalia Formation (Wilcox Group) disconformably overlies the Naheola Formation (Midway Group), and based on the data presented here, the age of this unconformity is bracketed between 59.7 and 54.8 MA. The Paleocene-Eocene Epoch boundary occurs in the Wilcox Group and coincides with the lithostratigraphic contact of the upper Paleocene Tuscahoma Sand with the lower eocene Hatchetigbee Formation. The age of this boundary, which is also an unconformity, can be placed between 55.9 and 52.0 MA. The K-Ar age dates for this boundary in the Gulf Coastal Plain compare favorably with the numerical limits placed on the Paleocene-Eocene boundary in the published literature. Generally, the Paleocene-Eocene Epoch boundary is reported as approximately 54 to 55 MA.

  13. Contribution of landbird migration to the biological diversity of the northwest gulf coastal plain

    USGS Publications Warehouse

    Barrow, W.C.; Hamilton, R.B.; Powell, M.A.; Ouchley, K.

    2000-01-01

    This study examined seasonal diversity and feeding behavior of those avian species utilizing that region of the Northwest Gulf Coastal Plain known as the Chenier Plain. Field observations were conducted at three forested locations on coastal cheniers for three years (1993-95) in the spring and at one location for three years (1996-98) in autumn to determine species presence and diet. One hundred and twenty-eight species were present during the spring and 103 species in autumn. The majority of these species were migrants (103 species in spring and 89 species in autumn) and the majority of these were Nearctic/Neotropical species (73 species in spring and 66 species in autumn). The diet of these migrants was more variable than expected. Many insectivorous species were observed to consume seeds, fruit and nectar as well as insects. Because of these varied diets, many species serve as seed dispersers, occasional pollinators and important predators of herbivorus insects. Wooded areas were found to be important in providing food, cover and water for migrating species. A review of historical changes in the landscape of this area is presented and management practices designed to restore wooded habitat to this area are proposed.

  14. Microbial acetogenesis as a source of organic acids in ancient Atlantic Coastal Plain sediments

    USGS Publications Warehouse

    Chapelle, F.H.; Bradley, P.M.

    1996-01-01

    Field and laboratory evidence shows that deeply buried (90-888 m) fine-grained sediments of the Atlantic Coastal Plain contain viable acetogenic microorganisms, and that these microorganisms actively produce organic acids. Concentrations of formate, acetate, and propionate in pore waters extracted from fine-grained sediments ranged from 50 ??M to 5 mM and were much higher than in adjacent pore waters associated with sandy sediments (<2 ??M). Laboratory studies showed that asceptically cored fine-grained sediments incubated under a H2 atmosphere produced formate and acetate, and that H14CO-3 was converted to 14C-acetate and 14C-formate over time. An enrichment culture of these acetogenic microorganisms was recovered from one long-term incubation that showed the presence of several morphologically distinct gram-positive, rod-shaped bacteria. These microorganisms were capable of growth under autotrophic (H2 + CO2), heterotrophic (syringate), and mixotrophic (H2 + CO2 + syringate) conditions. These results suggest that microbial acetogenesis, rather than abiotic processes, is the most important organic acid-producing mechanism during low-temperature (???30 ??C) diagenesis of Atlantic Coastal Plain sediments.

  15. Documentation of revisions to the regional aquifer system analysis model of the New Jersey coastal plain

    USGS Publications Warehouse

    Voronin, Lois M.

    2004-01-01

    The model, which simulates flow in the New Jersey Coastal Plain sediments, developed for the U.S. Geological Survey Regional Aquifer System Analysis (RASA) program was revised. The RASA model was revised with (1) a rediscretization of the model parameters with a finer cell size, (2) a spatially variable recharge rate that is based on rates determined by recent studies and, (3) ground-water withdrawal data from 1981 to 1998. The RASA model framework, which subdivided the Coastal Plain sediments into 10 aquifers and 9 confining units, was preserved in the revised model. A transient model that simulates flow conditions from January 1, 1968 to December 31, 1998, was constructed using 21 stress periods. The model was calibrated by attempting to match the simulated results with (1) estimated base flow for five river basins, (2) measured water levels in long-term hydrographs for 28 selected observation wells, and (3) potentiometric surfaces in the model area for 1978, 1983, 1998, 1993, and 1998 conditions. The estimated and simulated base flow in the five river basins compare well. In general, the simulated water levels matched the interpreted potentiometric surfaces and the measured water levels of the hydrographs within 25 feet.

  16. Paleolimnological reconstruction of Holocene environments in wetland ponds of the Upper Atlantic Coastal Plain

    SciTech Connect

    Gaiser, E.E.; Taylor, B.E.

    1995-06-01

    The paleohydrology and paleoecology of Carolina bays and upland wetland ponds on the Savannah River Site (SRS), Aiken, South Carolina are being investigated to reconstruct environmental changes brought about by long-term variation in the climate of the Upper Atlantic Coastal Plain. Cores were taken in transacts through Flamingo Bay, a temporary pond on the SRS, to determine the vertical and horizontal sediment particle size and diatom, plant phytolith and sponge spicule microfossils. Stratigraphic data were used to construct a 3-dimensional map of the basin. In conjunction with archaeological data from the rim of the pond, physical stratigraphic data indicate a decrease in pond size and depth during the past 10,000 years. In order to infer past ecological settings from the fossil record, a survey to determine microhabitat requirements of regional diatom flora was undertaken in 43 temporary ponds throughout the coastal plain of South Carolina. The relationships between diatom assemblages and environmental variables were assessed using canonical correspondence analysis. Variables contributing significantly to the diatom-environment relationship included surface core location (near shore or pelagic), water depth, hydroperiod, microhabitat substrate, and sampling date, in order of decreasing influence. Strong relationships of diatom assemblages to drought frequency within and among basins provides a reliable basis for water level reconstruction in upland temporary ponds.

  17. Waterfowl communities in the northern plains: Chapter 13

    USGS Publications Warehouse

    Johnson, Douglas H.; Cody, M.L.; Smallwood, J.A.

    1996-01-01

    ecologists than have many other groups of birds despite the importance attributed to waterfowl by biologists more generally, as well as by the public. Exceptions include work by Nudds and colleagues in Canada and by P?ysS and colleagues in Finland (see Nudds 1992 and references contained therein). Further, waterfowl are important ecologically; in much of the prairie of the North American midcontinent, waterfowl are numerically among the most common bird species and are certainly dominant in terms of biomass. This chapter addresses some influences on waterfowl communities in mixed-grass prairie pothole habitat. It takes a temporal perspective, based on annual censuses of breeding ducks for 25 years on a specific study area at Woodworth, North Dakota. Any changes in the structural features of the habitat that may have occurred during this period at the census site were at most gradual. I examine how the waterfowl communities varied in response to influences that did change annually, such as climate, conditions of the wetlands on the study area, the regional populations of birds from which the communities were constituted, and the population at Woodworth during the previous year. The results of the analyses are interpreted relative to individual characteristics of 11 waterfowl species: Mallard (Anas platyrhynchos), Gadwall (Anas strepera), Green-winged Teal (Anas crecca), Blue-winged Teal (Anas discors), Northern Pintail (Anas acuta), Northern Shoveler (Anas clypeata), American Wigeon (Anas americana), Canvasback (Aythya valisineria), Redhead (Aythya americana), Lesser Scaup (Aythya affinis), and Ruddy Duck (Oxyura jamaicensis).

  18. Mapping the northern plains of Mars: origins, evolution and response to climate change

    NASA Astrophysics Data System (ADS)

    Balme, Matthew; Conway, Susan; Costard, François; Gallagher, Colman; van Gasselt, Stephan; Hauber, Ernst; Johnsson, Andreas; Kereszturi, Akos; Platz, Thomas; Ramsdale, Jason; Reiss, Dennis; Séjourné, Antoine; Skinner, James; Swirad, Zuzanna

    2014-05-01

    An ISSI (International Space Science Institute) international team has been convened to study the Northern Plain of Mars. The northern plains are extensive, geologically young, low-lying areas that contrast in age and relief to Mars' older, heavily cratered, southern highlands. Mars' northern plains are characterised by a wealth of landforms and landscapes that have been inferred to be related to the presence of ice or ice-rich material near, beneath, or at the surface. Such landforms include 'scalloped' pits and depressions, polygonally-patterned grounds, and viscous flow features similar in form to terrestrial glacial or ice-sheet landforms. Furthermore, new (within the last few years) impact craters have exposed ice in the northern plains, and spectral data from orbiting instruments have revealed the presence of tens of percent by weight of water within the upper most ~50 cm of the martian surface at high latitudes. The northern plains comprise three linked zones: Acidalia Planitia, Utopia Planitia and Arcadia Planitia. Each region consists of a shallow basin, with the three areas are separated by low topographic divides. Our aim is to study the ice-related geomorphology of each region in order to understand the origins, evolution and response to climate change of ice on Mars. In particular, by comparing and contrasting the three separate basins we hope to determine if the processes that created the ice-related terrains are regional (perhaps basin limited) or global in scope, and whether the differing geology of each basin has an effect on the ice-related features observed there. The ISSI team is using planetary geomorphological mapping to meet this aim. Three long strips, each about 250 km wide and spanning the ~30N to ~80N latitude range have been defined and sub-teams are each mapping a single area. The group contains experts in mapping, GIS and crater counting (details in the size-frequency distribution of impact craters on a planetary surface can reveal

  19. Age and correlation of tertiary sediments in the western South Carolina Coastal Plain

    SciTech Connect

    Laws, R.A.; Harris, W.B.; Zullo, V.A.; Fallaw, W.C.; Price, V.

    1987-01-01

    Integration of coastal onlap stratigraphy, calcareous nannofossil, dinoflagellate, and megafossil biostratigraphy provide new data for interpretation of age and interregional correlation of Paleocene to Oligocene deposits of the western South Carolina Coastal Plain. Clastic and calcareous sediments examined in cores and outcrops in the vicinity of the Savannah River Plant record at least seven coastal onlap cycles. Basal Tertiary sediments of the Ellenton Formation represent cycles TA1.1 - 1.3 and contain dinoflagellates of Midwayan to Sabinian age. The overlying Williamsburg Formation probably represents deposits of cycle TA2.1. The superjacent siliciclastics of the Congaree Formation contain few fossils, but may preserve transgressive and highstand deposits of cycles TA2.4 - 3.3. The overlying unit is commonly calcareous, contains nannofossils indicative of zones NP16-17 (Upper Claibornian), and marks a significant change in depositional style subsequent to the 49.5 Ma eustatic fall. ''Marls'' of the overlying Griffins Landing Member of the Dry Branch Formation contain micro- and megafossils of Late Eocene (Jacksonian) age and represent transgressive deposits of cycle TA4.1. The discontinuous lateral distribution of these calcareous units and overlying clastics of the Dry Branch and Tobacco Road Formations results largely from erosion and deep incision during the mid-Oligocene eustatic fall (30 Ma). The ''Upland'' unit is interpreted as being deposited on this erosional surface.

  20. Greenhouse gas fluxes in southeastern U.S. coastal plain wetlands under contrasting land uses.

    PubMed

    Morse, Jennifer L; Ardón, Marcelo; Bernhardt, Emily S

    2012-01-01

    Whether through sea level rise or wetland restoration, agricultural soils in coastal areas will be inundated at increasing rates, renewing connections to sensitive surface waters and raising critical questions about environmental trade-offs. Wetland restoration is often implemented in agricultural catchments to improve water quality through nutrient removal. Yet flooding of soils can also increase production of the greenhouse gases nitrous oxide and methane, representing a potential environmental trade-off. Our study aimed to quantify and compare greenhouse gas emissions from unmanaged and restored forested wetlands, as well as actively managed agricultural fields within the North Carolina coastal plain, USA. In sampling conducted once every two months over a two-year comparative study, we found that soil carbon dioxide flux (range: 8000-64 800 kg CO2 x ha(-1) x yr(-1)) comprised 66-100% of total greenhouse gas emissions from all sites and that methane emissions (range: -6.87 to 197 kg CH4 x ha(-1) x yr(-1)) were highest from permanently inundated sites, while nitrous oxide fluxes (range: -1.07 to 139 kg N2O x ha(-1) x yr(-1)) were highest in sites with lower water tables. Contrary to predictions, greenhouse gas fluxes (as CO2 equivalents) from the restored wetland were lower than from either agricultural fields or unmanaged forested wetlands. In these acidic coastal freshwater ecosystems, the conversion of agricultural fields to flooded young forested wetlands did not result in increases in greenhouse gas emissions.

  1. Groundwater freshening following coastal progradation and land reclamation of the Po Plain, Italy

    NASA Astrophysics Data System (ADS)

    Antonellini, M.; Allen, D. M.; Mollema, P. N.; Capo, D.; Greggio, N.

    2015-08-01

    Many coastal areas historically were inundated by seawater, but have since undergone land reclamation to enable settlements and farming. This study focuses on the coastal unconfined aquifer in the Po Plain near Ravenna, Italy. Freshwater is present as isolated thin (1-5 m) lenses on top of brackish to saline water. Historical maps show large areas of sea inundation until approximately 150-200 years ago when coastal progradation and construction of the drainage canals began. Since then, the aquifer has been freshening from recharge. A three-dimensional SEAWAT model is used to simulate a 200-year freshening history, starting with a model domain that is saturated with seawater, and applying recharge across the top model layer. Calibration to the observed concentrations for discrete depths within many monitoring wells is remarkably good. The current distribution of freshwater is largely controlled by the drainage network. Within and adjacent to the drains, the groundwater has high salinity due to up-coning of salt water. Between drains, the surface layers of the aquifer are fresh due to the flushing action of recharge. The modeling results are consistent with cation exchange processes revealed in the groundwater chemistry and with freshwater lenses identified in electrical resistivity soundings.

  2. Hydrologic characteristics of soils in the High Plains, northern Great Plains, and Central Texas Carbonates Regional Aquifer Systems

    USGS Publications Warehouse

    Dugan, Jack T.; Hobbs, Ryne D.; Ihm, Laurie A.

    1990-01-01

    Certain physical characteristics of soils, including permeability, available water capacity, thickness, and topographic position, have a measurable effect on the hydrology of an area. These characteristics control the rate at which precipitation infiltrates or is transmitted through the soil, and thus they have an important role in determining the rates of actual evapotranspiration (consumptive water use), groundwater recharge, and surface runoff. In studies of groundwater hydrology, it is useful to differentiate soils spatially according to their physical characteristics and to assign values that indicate their hydrologic responses.The principal purpose of this report is to describe the relation between the hydrologic characteristics of the soils in the study area and those environmental factors that affect the development and distribution of the soils. This objective will be achieved by (1) defining both qualitatively and quantitatively those soil characteristics that affect hydrology, and (2) classifying and delineating the boundaries of the soils in the study area according to these hydrologic characteristics.The study area includes the High Plains, Northern Great Plains, the Central Texas Carbonates, and parts of the Central Midwest Regional Aquifer Systems as described by the U.S. Geological Survey Regional Aquifer-System Analysis (RASA) Program (Sun, 1986, p.5and Sun, personal commun., June 1985) and shown in figures 1 through 5. The spatial patterns of the soils classified according to their quantifiable hydrologic characteristics will subsequently serve as an integral component in the analysis of actual evapotranspiration (consumptive water use), consumptive irrigation requirements, and potential ground-water recharge of the study area.The classification system used to describe the soils in this report is compatible with that of Dugan (1986). Dugan described the same characteristics of soils that are immediately underlain by principal aquifers of

  3. Soil respiration flux in northern coastal temperate rainforest ecosystems

    NASA Astrophysics Data System (ADS)

    D'Amore, D. V.; Nay, S. M.; Edwards, R.; Valentine, D. W.; Hood, E. W.

    2009-12-01

    Forest carbon budgets are of increasing concern because of their linkages with changing climate. The potential source strength of northern forested ecosystems is of great interest due to the large carbon stock of these systems, especially the extensive peatlands. Where very few long-term measurements of soil carbon cycles have been made, such as the North Pacific coastal temperate margin, peatlands have potentially large but largely unknown source strengths, particularly through soil respiration. The easily and widely measured factors that influence the metabolism of plants and microorganisms in soils, such as temperature, moisture and substrate quality, must be coupled with a network of plot-scale measurements of soil respiration fluxes in this region in order to produce reasonable models of soil respiration flux across gradients of climate, vegetation and soil types. We designed a study to address this issue and measured soil respiration across a hydrologic gradient to quantify the influence of soil temperature and moisture on the magnitude and seasonality of carbon fluxes in the coastal temperate rainforest biome. Replicated study sites were established in three common ecosystem types (peatlands, forested wetlands, and upland forest) within three coastal watersheds. In total, nine sites of the three ecosystem types were measured at monthly intervals during the snow-free period between May and November for two years. Soil respiration fluxes during the six-month measurement period were used to construct a respiration flux model for each landscape type. Soil respiration fluxes followed the seasonal temperature pattern in all ecosystem types and also varied with soil saturation as well in uplands. Temperature dependent models of soil respiration flux were best fit to intermediate drainage conditions in forested wetlands and explained up to 85% of the variation in this ecosystem type. Modeled soil respiration estimates were better at low temperatures with high water

  4. Soil respiration flux in northern coastal temperate rainforest ecosystems

    NASA Astrophysics Data System (ADS)

    D'Amore, David; Nay, S. Mark; Edwards, Richard; Valentine, David; Hood, Eran

    2010-05-01

    Forest carbon budgets are of increasing concern because of their linkages with changing climate. The potential source strength of northern forested ecosystems is of great interest due to the large carbon stock of these systems, especially the extensive peatlands. Where very few long-term measurements of soil carbon cycles have been made, such as the North Pacific coastal temperate margin, peatlands have potentially large but largely unknown source strengths, particularly through soil respiration. The easily and widely measured factors that influence the metabolism of plants and microorganisms in soils, such as temperature, moisture and substrate quality, must be coupled with a network of plot-scale measurements of soil respiration fluxes in this region in order to produce reasonable models of soil respiration flux across gradients of climate, vegetation and soil types. We designed a study to address this issue and measured soil respiration across a hydrologic gradient to quantify the influence of soil temperature and moisture on the magnitude and seasonality of carbon fluxes in the coastal temperate rainforest biome. Replicated study sites were established in three common ecosystem types (peatlands, forested wetlands, and upland forest) within three coastal watersheds. In total, nine sites of the three ecosystem types were measured at monthly intervals during the snow-free period between May and November for two years. Soil respiration fluxes during the six-month measurement period were used to construct a respiration flux model for each landscape type. Soil respiration fluxes followed the seasonal temperature pattern in all ecosystem types and also varied with soil saturation as well in uplands. Temperature dependent models of soil respiration flux were best fit to intermediate drainage conditions in forested wetlands and explained up to 85% of the variation in this ecosystem type. Modeled soil respiration estimates were better at low temperatures with high water

  5. Socioeconomic factors, attitudes and practices associated with malaria prevention in the coastal plain of Chiapas, Mexico

    PubMed Central

    2014-01-01

    Background Mexico is in the malaria pre-elimination phase; therefore, continuous assessment and understanding of the social and behavioural risk factors related to exposure to malaria are necessary to achieve the overall goal. The aim of this research was to investigate socio-economic backgrounds, attitudes and practices related with malaria in rural locations from the coastal plain of Chiapas. Methods In January 2012, 542 interviews were conducted to householders from 20 villages across the coastal plain of Chiapas. Questions were about housing conditions, protection from mosquito bites and general information of householders. Chi2 analyses were performed to see whether there was a dependence of those reported having malaria with their house conditions and their malaria preventive practices. Results were discussed and also compared statistically against those obtained 17 years ago from the same area. Results Most households had 2–5 people (73.6%), 91.6% of houses had 1–3 bedrooms. The physical structure of the houses consisted of walls mainly made of block or brick 72.3%, the floor made of cement 90.0%, while the roof made of zinc sheet 43.9%, and straw or palm 42.2%. A 23.1% of the interviewed completed elementary school and 16.6% was illiterate. A 9.9% of the residents reported at least one family member having had malaria. A 98.1% of families used some method to prevent mosquito bites; those using bed nets were 94.3%. Almost 72% of families bought products for mosquito protection. A total of 537 out of 542 families agreed with the indoor residual spraying (IRS) of insecticide and a frequency of application as often as every two months was preferred. Conclusion Housing conditions and malaria preventive practices have improved in these rural areas in 17 years, which could be in favor of malaria elimination in this area. Information generated by this study could help in the decision making about whether to use insecticide as indoor residual spraying or to

  6. Comparison of soil amendments to decrease high strength in SE USA Coastal Plain soils using fuzzy decision-making analyses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cemented subsurface layers restrict root growth in many southeastern USA Coastal Plain soils. Though cementation is usually reduced by tillage, soil amendments can offer a more permanent solution if they develop aggregation. To increase aggregation, we amended 450 g of a Norfolk soil blend of 90% E ...

  7. Late Cenozoic marine deposition in the United States Atlantic Coastal Plain related to tectonism and global climate

    USGS Publications Warehouse

    Blackwelder, B. W.

    1981-01-01

    Major hiatuses in upper Cenozoic marine deposits in the United States Atlantic Coastal Plain are recognized on the basis of molluscan faunal changes at erosional unconformities. These hiatuses generally coincided with periods of global cooling and ice sheet formation. Such hiatuses provide information to supplement global climatic data. Major hiatuses are recognized within the early Miocene (23-20 m.y. ago), at the end of the middle Miocene (??? 11-10 m.y. ago), at the end of the late Miocene (???6.5-5 m.y. ago), at the end of the early Pliocene (???4.0-2.5 m.y. ago), at the end of the late Pliocene (???1.9 or 1.8 m.y. ago), within the Pleistocene (???1.1-0.5 m.y. ago) and several times within the last 0.4 m.y. Estimates of the amount of water contained in ice sheets at different times in the Pliocene and Pleistocene facilitate calculation of probable minimum sea levels on the Coastal Plain during different high stands of the sea. The altitudes of dated shoreline deposits in the Atlantic Coastal Plain show that the amount of uplift in the Cape Fear area has averaged at least 1.3 cm per 1000 years since the beginning of Pliocene time. The Coastal Plain of Georgia has apparently experienced relatively little vertical deformation during this same time. ?? 1981.

  8. 50 CFR Appendix I to Part 37 - Legal Description of the Coastal Plain, Arctic National Wildlife Refuge, Alaska

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., Arctic National Wildlife Refuge, Alaska I Appendix I to Part 37 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM GEOLOGICAL AND GEOPHYSICAL EXPLORATION OF THE COASTAL PLAIN, ARCTIC NATIONAL WILDLIFE REFUGE, ALASKA Pt....

  9. 50 CFR Appendix I to Part 37 - Legal Description of the Coastal Plain, Arctic National Wildlife Refuge, Alaska

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., Arctic National Wildlife Refuge, Alaska I Appendix I to Part 37 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM GEOLOGICAL AND GEOPHYSICAL EXPLORATION OF THE COASTAL PLAIN, ARCTIC NATIONAL WILDLIFE REFUGE, ALASKA Pt....

  10. Ameliorating soil chemical properties of a hard setting subsoil layer in coastal plain USA with different designer biochars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Norfolk soils in the southeastern United States of America (USA) Coastal Plain region have meager soil fertility characteristics because of their sandy textures, acidic pH values, kaolinitic clays and with depleted organic carbon contents. Extensive clay mineral weathering and clay eluviation along ...

  11. Soil carbon sequestration with continuous no-till management of grain cropping systems in the Virginia coastal plain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon sequestration in agroecosystems represents a significant opportunity to offset a portion of anthropogenic CO2 emissions. Climatic conditions in the Virginia coastal plain and modern production practices make it possible for high annual photosynthetic CO2 fixation. There is potential to seques...

  12. The Estimated Likelihood of Nutrients and Pesticides in Nontidal Headwater Streams of the Maryland Coastal Plain During Base Flow

    EPA Science Inventory

    Water quality in nontidal headwater (first-order) streams of the Coastal Plain during base flow in the late winter and spring is related to land use, hydrogeology, and other natural or human influences in contributing watersheds. A random survey of 174 headwater streams of the Mi...

  13. An integrated system of summer solarization and fallow tillage for Cyperus esculentus and nematode management in the southeastern coastal plain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solarization is a form of pest control using clear plastic mulch that allows sunlight to heat the soil to temperatures lethal to plant pests. Fallow tillage is a proven practice to reduce baseline weed densities. Field trials were conducted at the Coastal Plain Experiment Station in Tifton, GA fro...

  14. Water levels in major artesian aquifers of the New Jersey Coastal Plain, 1983

    USGS Publications Warehouse

    Eckel, J.A.; Walker, R.L.

    1986-01-01

    Water levels and changes in water levels in the major aquifers of the New Jersey Coastal Plain are documented. Water levels in 1,071 wells were measured in 1983, and are compared with 827 water level measurements made in the same wells in 1978. Increased groundwater withdrawals from the major artesian aquifers that underlie the New Jersey Coastal Plain have caused large cones of depression in the artesian heads. These cones are delineated on detailed potentiometric surface maps based on water level data collected in the fall of 1983. Hydrographs from observation wells show trends of water levels for the 6-year period of 1978 through 1983. The Potomac-Raritan-Magothy aquifer system is divided into the lower, middle, and upper aquifers. The potentiometric surfaces in these aquifers form large cones of depression centered in the Camden and Middlesex-Monmouth County areas. Measured water levels declined as much as 23 ft in these areas for the period of study. The lowest levels are 96 ft below sea level in Camden County and 91 ft below sea level in the Middlesex-Monmouth County area. Deep cones of depression in coastal Monmouth and Ocean counties in both the Englishtown aquifer system and Wenonah-Mount Laurel aquifer are similar in location and shape. This is because of an effective hydraulic connection between these aquifers. Measured water levels declined as much as 29 ft in the Englishtown aquifer system and 21 ft in the Wenonah-Mount Laurel aquifer during the period of study. The lowest levels are 249 ft below sea level in the Englishtown aquifer system and 196 ft below sea level in the Wenonah-Mount Laurel aquifer. Water levels in the Piney Point aquifer are as low as 75 ft below sea level at Seaside Park, Ocean County and 35 ft below sea level in southern Cumberland County. Water levels in Cumberland County are affected by large withdrawals of groundwater in Kent County, Delaware. Water levels in the Atlantic City 800 ft sand of the Kirkwood Formation define an

  15. Digital-simulation model of the Wenonah-Mount Laurel Aquifer in the coastal plain of New Jersey

    USGS Publications Warehouse

    Nemickas, Bronius

    1976-01-01

    to 9.5 million gallons per day (416 cubic decimetres per second) in 1970. Water-level declines for the same period are as much as 140 feet (42.7 metres) near centers of pumping. The digital-simulation model was calibrated by matching computed declines in the Wenonah-Mount Laurel aquifer with historic water-level declines over the 12-year period, 1959-70. The results of the modelling show that recharge to the aquifer occurs as leakage from the upper confining unit owing to withdrawals from the aquifer. Of equal significance is the effect of water-level declines in the Englishtown aquifer, which generate leakage from the Wenonah-Mount Laurel aquifer through the lower confining unit, which in turn generates leakage (recharge) to the aquifer from the upper confining unit. The rapid declines of water levels in the Wenonah-Mount Laurel aquifer in the northern part of the New Jersey Coastal Plain, hence, are caused directly by the withdrawals from the Wenonah-Mount Laurel aquifer and indirectly by withdrawals from the underlying Englishtown aquifer.

  16. Intermittent Elevated Radium Concentrations in Coastal Plain Groundwater of South Carolina, U.S.A.

    SciTech Connect

    Denham, Miles; Millings, Margaret; Noonkester, Jay

    2005-09-22

    To learn the cause of intermittent radium concentrations in groundwater of Coastal Plain aquifers, 31 groundwater wells in South Carolina, U.S.A. were sampled for radium and other geochemical parameters. Sediments cored from near the well screens were also sampled to examine any relationship between sediment properties and radium concentration in the groundwater. Elevated radium concentrations only occurred in groundwater with low electrical conductivity and pH values below 6.3. The adsorption edge for radium on hematite--a major surface active mineral in these aquifers--is at a pH value of about 6. Near this value, small changes in pH can result in significant adsorption or desorption of radium. In groundwater with initially low alkalinity, small intermittent decreases in partial pressure of carbon dioxide in groundwater cause decreases in pH and desorption of radium. The result is intermittent elevated radium concentrations.

  17. Nomenclature of regional hydrogeologic units of the Southeastern Coastal Plain aquifer system

    USGS Publications Warehouse

    Miller, J.A.; Renken, R.A.

    1988-01-01

    Clastic sediments of the Southeastern Coastal Plain aquifer system can be divided into four regional aquifers separated by three regional confining units. The four regional aquifers have been named for major rivers that cut across their outcrop areas and expose the aquifer materials. From youngest to oldest, the aquifers are called the Chickasawhay River, Pearl River, Chattahoochee River, and Black Warrior River aquifers, and the regional confining units separating them are given the same name as the aquifer they overlie. Most of the regional hydrogeologic units are subdivided within each of the four States that comprise the study area. Correlation of regional units is good with hydrogeologic units delineated by a similar regional study to the west and southwest. Because of complexity created by a major geologic structure to the northeast of the study area and dramatic facies change from clastic to carbonate strata to the southeast, correlation of regional hydrogeologic units is poor in these directions. (Author 's abstract)

  18. Magmatic history of Red Sea rifting: perspective from the central Saudi Arabian coastal plain.

    USGS Publications Warehouse

    Pallister, J.S.

    1987-01-01

    An early stage of magmatism related to Red Sea rifting is recorded by a Tertiary dyke complex and comagmatic volcanic rocks exposed on the central Saudi Arabian coastal plain. Field relations and new K/Ar dates indicate episodic magmatism from approx 30 m.y. to the present day and rift-related magmatism as early as 50 m.y. Localized volcanism and sheeted dyke injection ceased at approx 20 m.y. and were replaced by the intrusion of thick gabbro dykes, marking the onset of sea-floor spreading in the central Red Sea. Differences in the depths and dynamics of mantle-melt extraction and transport may account for the transition from mixed alkaline-subalkaline bimodal magmatism of the pre-20 m.y. rift basin to exclusively subalkaline (tholeiitic) magmatism of the Red Sea spreading axis and the alkali basalt volcanism inland.-L.C.H.

  19. The hydrogeologic framework for the southeastern Coastal Plain aquifer system of the United States

    USGS Publications Warehouse

    Renken, R.A.

    1984-01-01

    Tertiary and Cretaceous age sand aquifers of the southeastern United States Coastal Plain constitute a distinct multistate hydrogeologic regime informally defined as the southeastern sand aquifer. Seven regional hydrogeologic units are defined; four regional aquifer units and three regional confining beds. Sand aquifers of this system consist of quartzose, feldspathic, and coarse to fine sand and sandstone and minor limestone; confining beds are composed of clay, shale, chalk, and marl. Three hydrogeologic units of Cretaceous to Holocene age overlie the sand system: the surficial aquifer, upper confining unit, and Floridan aquifer system. These three units are not part of the southeastern sand aquifer, but are an integral element of the total hydrogeologic system, and some act as a source of recharge to, or discharge from the underlying clastic sediments. Low-permeability strata of Paleozoic to early Mesozoic age form the base off the total system. (USGS)

  20. Simulation of Groundwater Flow in the Coastal Plain Aquifer System of Virginia

    USGS Publications Warehouse

    Heywood, Charles E.; Pope, Jason P.

    2009-01-01

    The groundwater model documented in this report simulates the transient evolution of water levels in the aquifers and confining units of the Virginia Coastal Plain and adjacent portions of Maryland and North Carolina since 1890. Groundwater withdrawals have lowered water levels in Virginia Coastal Plain aquifers and have resulted in drawdown in the Potomac aquifer exceeding 200 feet in some areas. The discovery of the Chesapeake Bay impact crater and a revised conceptualization of the Potomac aquifer are two major changes to the hydrogeologic framework that have been incorporated into the groundwater model. The spatial scale of the model was selected on the basis of the primary function of the model of assessing the regional water-level responses of the confined aquifers beneath the Coastal Plain. The local horizontal groundwater flow through the surficial aquifer is not intended to be accurately simulated. Representation of recharge, evapotranspiration, and interaction with surface-water features, such as major rivers, lakes, the Chesapeake Bay, and the Atlantic Ocean, enable simulation of shallow flow-system details that influence locations of recharge to and discharge from the deeper confined flow system. The increased density of groundwater associated with the transition from fresh to salty groundwater near the Atlantic Ocean affects regional groundwater flow and was simulated with the Variable Density Flow Process of SEAWAT (a U.S. Geological Survey program for simulation of three-dimensional variable-density groundwater flow and transport). The groundwater density distribution was generated by a separate 108,000-year simulation of Pleistocene freshwater flushing around the Chesapeake Bay impact crater during transient sea-level changes. Specified-flux boundaries simulate increasing groundwater underflow out of the model domain into Maryland and minor underflow from the Piedmont Province into the model domain. Reported withdrawals accounted for approximately

  1. The Chesapeake Bay bolide impact: A convulsive event in Atlantic Coastal Plain evolution

    USGS Publications Warehouse

    Poag, C.W.

    1997-01-01

    Until recently, Cenozoic evolution of the Atlantic Coastal Plain has been viewed as a subcyclical continuum of deposition and erosion. Marine transgressions alternated with regressions on a slowly subsiding passive continental margin, their orderly succession modified mainly by isostatic adjustments, occasional Appalachian tectonism, and paleoclimatic change. This passive scenario was dramatically transformed in the late Eocene, however, by a bolide impact on the inner continental shelf. The resultant crater is now buried 400-500 m beneath lower Chesapeake Bay, its surrounding peninsulas, and the continental shelf east of Delmarva Peninsula. This convulsive event, and the giant tsunami it engendered, fundamentally changed the regional geological framework and depositional regime of the Virginia Coastal Plain, and produced the following principal consequences. (1) The impact excavated a roughly circular crater, twice the size of Rhode Island (???6400 km2) and nearly as deep as the Grand Canyon (???1.3 km deep). (2) The excavation truncated all existing ground-water aquifers in the target area by gouging ???4300 km3 of rock from the upper lithosphere, including Proterozoic and Paleozoic crystalline basement rocks and Middle Jurassic to upper Eocene sedimentary rocks. (3) Synimpact depositional processes, including ejecta fallback, massive crater-wall failure, water-column collapse, and tsunami backwash, filled the crater with a porous breccia lens, 600-1200 m thick, at a phenomenal rate of ???1200 m/hr. The breccia lens replaced the truncated ground-water aquifers with a single 4300 km3 reservoir, characterized by ground water ???1.5 times saltier than normal sea water (chlorinities as high as 25,700 mg/l). (4) A structural and topographic low, created by differential subsidence of the compacting breccia, persisted over the crater at least through the Pleistocene. In the depression are preserved postimpact marine lithofacies and biofacies (upper Eocene, lower

  2. Biostratigraphic implications of the first Eocene land-mammal fauna from the North American coastal plain

    NASA Astrophysics Data System (ADS)

    Westgate, James W.

    1988-11-01

    A newly discovered vertebrate fossil assemblage, the Casa Blanca local fauna, comes from the Laredo Formation, Claiborne Group, of Webb County, Texas, and is the first reported Eocene land-mammal fauna from the coastal plain of North America. The mammalian fauna is correlated with the Serendipity and Candelaria local faunas of west Texas, the Uinta C faunas of the Rocky Mountains, the Santiago Formation local fauna of southern California, and the Swift Current Creek local fauna of Saskatchewan. The vertebrate-bearing deposit lies about 32 m above a horizon containing the marine gastropod Turritella cortezi, which ranges from east Texas to northeast Mexico in the lower half of the Cook Mountain and Laredo Formations and is a guide fossil to the Hurricane Lentil in the Cook Mountain Formation. Nannoplankton found in these middle Eocene formations belong to the upper half of Nannoplankton Zone I6 and allow correlation with European beds of late Lutetian to early Bartonian age.

  3. Biostratigraphic implications of the first Eocene land-mammal fauna from the North American coastal plain

    SciTech Connect

    Westgate, J.W. )

    1988-11-01

    A newly discovered vertebrate fossil assemblage, the Casa Blanca local fauna, comes from the Laredo Formation, Claiborne Group, of Webb County, Texas, and is the first reported Eocene land-mammal fauna from the coastal plain of North America. The mammalian fauna is correlated with the Serendipity and Canderlaria local faunas of west Texas, the Uinta C faunas of the Rocky Mountains, the Santiago Formation local fauna of southern California, and the Swift Current Creek local fauna of Saskatchewan, The vertebrate-bearing deposit lies about 32 m above a horizon containing the marine gastropod Turritella cortezi, which ranges from east Texas to northeast Mexico in the lower half of the Cook Mountain and Laredo Formations and is a guide fossil to the Hurricane Lentil in the Cook Mountain Formation. Nannoplankton found in these middle Eocene formations belong to the upper half of Nannoplankton Zone 16 and allow correlation with European beds of late Lutetian to early Bartonian age.

  4. Past permafrost on the Mid-Atlantic coastal plain, eastern United States

    USGS Publications Warehouse

    French, H.; Demitroff, M.; Newell, W.L.

    2009-01-01

    Sand-wedge casts, soil wedges and other non-diastrophic, post-depositional sedimentary structures suggest that Late-Pleistocene permafrost and deep seasonal frost on the Mid-Atlantic Coastal Plain extended at least as far south as southern Delaware, the Eastern Shore and southern Maryland. Heterogeneous cold-climate slope deposits mantle lower valley-side slopes in central Maryland. A widespread pre-existing fragipan is congruent with the inferred palaeo-permafrost table. The high bulk density of the fragipan was probably enhanced by either thaw consolidation when icy permafrost degraded at the active layer-permafrost interface or by liquefaction and compaction when deep seasonal frost thawed. ?? 2009 John Wiley & Sons, Ltd.

  5. Salt-dome locations in the Gulf Coastal Plain, South-Central United States

    USGS Publications Warehouse

    Beckman, J.D.; Williamson, A.K.

    1990-01-01

    Information on salt domes in Gulf of Mexico Coastal Plain, south-central United States and the adjacent Continental Shelf were compiled from major published sources, 1973-84. The location of 624 salt domes is shown on a map at a scale of 1:1 ,500,000. A color-coding system was used to show that the occurrence, size, shape, and location of these domes varies among sources. Two tables of additional data accompany the map and include other available information such as: identifying sources, depth to salt and caprock, diameter, volume, name, and uppermost zone of surrounding sediment that is penetrated, as well as the number of matches between sources. The locations of salt domes that penetrate specific zones within the gulf coast regional aquifer system are shown on maps. (USGS)

  6. ERTS surveys a 500 km squared locust breeding site in Saudi Arabia. [Red Sea coastal plain

    NASA Technical Reports Server (NTRS)

    Pedgley, D. E.

    1974-01-01

    From September 1972 to January 1973, ERTS-1 precisely located a 500 sq km area on the Red Sea coastal plain of Saudi Arabia within which the Desert Locust (Schistocerca gregaria, Forsk.) bred successfully and produced many small swarms. Growth of vegetation shown by satellite imagery was confirmed from ground surveys and raingauge data. The experiment demonstrates the feasibility of detecting potential locust breeding sites by satellite, and shows that an operational satellite would be a powerful tool for routine survey of the 3 x 10 to the 7th power sq km invasion area of the Desert Locust in Africa and Asia, as well as of other locust species in the arid and semi-arid tropics.

  7. A Science Plan for a Comprehensive Regional Assessment of the Atlantic Coastal Plain Aquifer System in Maryland

    USGS Publications Warehouse

    Shedlock, Robert J.; Bolton, David W.; Cleaves, Emery T.; Gerhart, James M.; Nardi, Mark R.

    2007-01-01

    The Maryland Coastal Plain region is, at present, largely dependent upon ground water for its water supply. Decades of increasing pumpage have caused ground-water levels in parts of the Maryland Coastal Plain to decline by as much as 2 feet per year in some areas of southern Maryland. Continued declines at this rate could affect the long-term sustainability of ground-water resources in Maryland's heavily populated Coastal Plain communities and the agricultural industry of the Eastern Shore. In response to a recommendation in 2004 by the Advisory Committee on the Management and Protection of the State's Water Resources, the Maryland Geological Survey and the U.S. Geological Survey have developed a science plan for a comprehensive assessment that will provide new scientific information and new data management and analysis tools for the State to use in allocating ground water in the Coastal Plain. The comprehensive assessment has five goals aimed at improving the current information and tools used to understand the resource potential of the aquifer system: (1) document the geologic and hydrologic characteristics of the aquifer system in the Maryland Coastal Plain and appropriate areas of adjacent states; (2) conduct detailed studies of the regional ground-water-flow system and water budget for the aquifer system; (3) improve documentation of patterns of water quality in all Coastal Plain aquifers, including the distribution of saltwater; (4) enhance ground-water-level, streamflow, and water-quality-monitoring networks in the Maryland Coastal Plain; and (5) develop science-based tools to facilitate sound management of the ground-water resources in the Maryland Coastal Plain. The assessment, as designed, will be conducted in three phases and if fully implemented, is expected to take 7 to 8 years to complete. Phase I, which was initiated in January 2006, is an effort to assemble all the information and investigation tools needed to do a more comprehensive assessment of

  8. Radar and Geomorphic Evidence of the Occurrence of Massive Ground Ice in the Martian Northern Plains

    NASA Astrophysics Data System (ADS)

    Clifford, S. M.; PetitJean, M.; Costard, F.; Mouginot, J.; Parker, T. J.

    2013-09-01

    The possibility that a large ocean or massive ice-sheet once occupied the Martian northern plains has been proposed based on the interpretive identification of various landforms, including sedimentary deposits [1, 2], outwash plains [3] and possible paleoshorelines - the latter based largely on the work of Parker et al. [4-7], who identified evidence of a series of nested levels, which they interpreted as shorelines, located along the highland/lowland boundary. The combination of high-resolution orbiter images with MOLA gridded topography has enabled the compilation of regional and global maps of the proposed shorelines. The highest and oldest of these is called the 'Arabian Level' and is believed to date back to the Late Noachian. In the much higher resolution (~0.2 - 20 m/pixel) MOC, HiRISE and HRSC images, the Arabian Level exhibits evidence of terracing (potentially indicative of wave-cut erosion); however, the topographically lower/younger 'shore-lines' do not. The interior plains encompassed by these lower levels include vast expanses of coldclimate landforms, such as polygonal ground and scalloped depressions [8], a relationship that is consistent with either an initially warm, but progresssively cooling, aqueous environment - or initial conditions that were cold from the outset. In either case, the flow-front-like morphologies associated with the lower levels may have resulted from ice-shoving due to shortlived transgresssive events caused by later episodes of outflow channel activity around the northern plains [6]. Apparent discrepancies between the absolute elevation of the Arabian Level with the perimeter of an equipotential surface have been cited as potential serious weaknesses of the paleoocean hypothesis [2]. However, improved shoreline maps, based on the recent influx of new, higher-resolution images, combined with recognition of the potential effect of true polar wander on the post-ocean/ice-sheet deformation of shorelines [9] have helped resolve

  9. Characterizing mercury concentrations and fluxes in a Coastal Plain watershed: Insights from dynamic modeling and data

    USGS Publications Warehouse

    Golden, H.E.; Knightes, C.D.; Conrads, P.A.; Davis, G.M.; Feaster, T.D.; Journey, C.A.; Benedict, S.T.; Brigham, M.E.; Bradley, P.M.

    2012-01-01

    Mercury (Hg) is one of the leading water quality concerns in surface waters of the United States. Although watershed-scale Hg cycling research has increased in the past two decades, advances in modeling watershed Hg processes in diverse physiographic regions, spatial scales, and land cover types are needed. The goal of this study was to assess Hg cycling in a Coastal Plain system using concentrations and fluxes estimated by multiple watershed-scale models with distinct mathematical frameworks reflecting different system dynamics. We simulated total mercury (Hg T, the sum of filtered and particulate forms) concentrations and fluxes from a Coastal Plain watershed (McTier Creek) using three watershed Hg models and an empirical load model. Model output was compared with observed in-stream Hg T. We found that shallow subsurface flow is a potentially important transport mechanism of particulate Hg T during periods when connectivity between the uplands and surface waters is maximized. Other processes (e.g., stream bank erosion, sediment re-suspension) may increase particulate Hg T in the water column. Simulations and data suggest that variable source area (VSA) flow and lack of rainfall interactions with surface soil horizons result in increased dissolved Hg T concentrations unrelated to DOC mobilization following precipitation events. Although flushing of DOC-Hg T complexes from surface soils can also occur during this period, DOC-complexed Hg T becomes more important during base flow conditions. TOPLOAD simulations highlight saturated subsurface flow as a primary driver of daily Hg T loadings, but shallow subsurface flow is important for Hg T loads during high-flow events. Results suggest limited seasonal trends in Hg T dynamics. Copyright 2012 by the American Geophysical Union.

  10. Characterizing mercury concentrations and fluxes in a Coastal Plain watershed: Insights from dynamic modeling and data

    USGS Publications Warehouse

    Golden, H.E.; Knightes, C.D.; Conrads, P.A.; Davis, G.M.; Feaster, T.D.; Journey, C.A.; Benedict, S.T.; Brigham, M.E.; Bradley, P.M.

    2012-01-01

    Mercury (Hg) is one of the leading water quality concerns in surface waters of the United States. Although watershed-scale Hg cycling research has increased in the past two decades, advances in modeling watershed Hg processes in diverse physiographic regions, spatial scales, and land cover types are needed. The goal of this study was to assess Hg cycling in a Coastal Plain system using concentrations and fluxes estimated by multiple watershed-scale models with distinct mathematical frameworks reflecting different system dynamics. We simulated total mercury (HgT, the sum of filtered and particulate forms) concentrations and fluxes from a Coastal Plain watershed (McTier Creek) using three watershed Hg models and an empirical load model. Model output was compared with observed in-stream HgT. We found that shallow subsurface flow is a potentially important transport mechanism of particulate HgT during periods when connectivity between the uplands and surface waters is maximized. Other processes (e.g., stream bank erosion, sediment re-suspension) may increase particulate HgT in the water column. Simulations and data suggest that variable source area (VSA) flow and lack of rainfall interactions with surface soil horizons result in increased dissolved HgT concentrations unrelated to DOC mobilization following precipitation events. Although flushing of DOC-HgT complexes from surface soils can also occur during this period, DOC-complexed HgT becomes more important during base flow conditions. TOPLOAD simulations highlight saturated subsurface flow as a primary driver of daily HgT loadings, but shallow subsurface flow is important for HgT loads during high-flow events. Results suggest limited seasonal trends in HgT dynamics.

  11. Water Levels In Major Artesian Aquifers Of The New Jersey Coastal Plain, 1988

    USGS Publications Warehouse

    Rosman, Robert; Lacombe, Pierre J.; Storck, Donald A.

    1995-01-01

    Water levels in 1,251 wells in the New Jersey Coastal Plain, Philadelphia County, Pennsylvania, and Kent and New Castle Counties, Delaware, were measured from October 1988 to February 1989 and compared with 1,071 water levels measured from September 1983 to May 1984. Water levels in 916 of the wells measured in the 1983 study were remeasured in the 1988 study. Alternate wells were selected to replace wells used in 1983 that were inaccessible at the time of the water-level measurements in 1988 or had been destroyed. New well sites were added in strategic locations to increase coverage where possible. Large cones of depression have formed or expanded in the nine major artesian aquifers that underlie the New Jersey Coastal Plain. Water levels are shown on nine potentiometric-surface maps. Hydrographs for observation wells typically show water-level declines for 1983, through 1989. In the confined Cohansey aquifer, the lowest water level, 20 feet below sea level, was measured in a well located at Cape May City Water Department, Cape May County. Water levels in the Atlantic City 800-foot sand declined as much as 21 feet at Ventnor, Atlantic County, over the 6-year period from the 1983 study to this study for 1988. Water levels in the Piney Point aquifer were as low as 56 feet below sea level at Seaside Park, Ocean County; 45 feet below sea level in southern Cumberland County; and 28 feet below sea level at Margate, Atlantic County. Water levels in the Vincentown aquifer did not change over the 6-year period. The lowest water levels in the Wenonah-Mount Laurel aquifer and the Englishtown aquifer system were 218 feet and 256 feet below sea level, respectively. Large cones of depression in the Potomac- Raritan-Magothy aquifer system are centered in the Camden County area and the Middlesex and Monmouth County area. Water levels declined as much as 46 feet in these areas over the 6-year period.

  12. Mitigation bank promotes research on restoring Coastal Plain depression wetlands (South Carolina).

    SciTech Connect

    Barton, Christopher D.; DeSteven, Diane; Kilgo, John C.

    2004-12-31

    Barton, Christopher, D., Diane DeSteven and John C. Kilgo. 2004. Mitigation bank promotes research on restoring Coastal Plain depression wetlands (South Carolina). Ecol. Rest. 22(4):291-292. Abstract: Carolina bays and smaller depression wetlands support diverse plant communities and provide critical habitat for semi-aquatic fauna throughout the Coastal Plain region of the southeastern United States. Historically, many depression wetlands were altered or destroyed by surface ditching, drainage, and agricultural or silviculture uses. These important habitats are now at further risk of alteration and loss following a U.S. Supreme Court decision in 2001 restricting federal regulation of isolated wetlands. Thus, there is increased attention towards protecting intact sites and developing methods to restore others. The U.S. Department of Energy's (DOE) 312-mi2 (800-km2) Savannah River Site (SRS) in west-central South Carolina includes about 350 Carolina bays and bay-like wetland depressions, of which about two-thirds were degraded or destroyed prior to federal acquisition of the land. Although some of the altered wetlands have recovered naturally, others still have active active drainage ditches and contain successional forests typical of drained sites. In 1997, DOE established a wetland mitigation bank to compensate for unavoidable wetland impacts on the SRS. This effort provided an opportunity fir a systematic research program to investigate wetland restoration techniques and ecological responses. Consequently, research and management staffs from the USDA Forest Service, Westinghouse Savannah River Corporation, the Savannah River Technology Center, the Savannah River Ecology Laboratory (SREL) and several universities developed a collaborative project to restore degraded depression wetlands on the SRS. The mitigation project seeks cost-effective methods to restore the hydrology and vegetation typical of natural depression wetlands, and so enhance habitats for wetland

  13. Characterizing mercury concentrations and fluxes in a Coastal Plain watershed: Insights from dynamic modeling and data

    NASA Astrophysics Data System (ADS)

    Golden, H. E.; Knightes, C. D.; Conrads, P. A.; Davis, G. M.; Feaster, T. D.; Journey, C. A.; Benedict, S. T.; Brigham, M. E.; Bradley, P. M.

    2012-03-01

    Mercury (Hg) is one of the leading water quality concerns in surface waters of the United States. Although watershed-scale Hg cycling research has increased in the past two decades, advances in modeling watershed Hg processes in diverse physiographic regions, spatial scales, and land cover types are needed. The goal of this study was to assess Hg cycling in a Coastal Plain system using concentrations and fluxes estimated by multiple watershed-scale models with distinct mathematical frameworks reflecting different system dynamics. We simulated total mercury (HgT, the sum of filtered and particulate forms) concentrations and fluxes from a Coastal Plain watershed (McTier Creek) using three watershed Hg models and an empirical load model. Model output was compared with observed in-stream HgT. We found that shallow subsurface flow is a potentially important transport mechanism of particulate HgTduring periods when connectivity between the uplands and surface waters is maximized. Other processes (e.g., stream bank erosion, sediment re-suspension) may increase particulate HgT in the water column. Simulations and data suggest that variable source area (VSA) flow and lack of rainfall interactions with surface soil horizons result in increased dissolved HgTconcentrations unrelated to DOC mobilization following precipitation events. Although flushing of DOC-HgTcomplexes from surface soils can also occur during this period, DOC-complexed HgT becomes more important during base flow conditions. TOPLOAD simulations highlight saturated subsurface flow as a primary driver of daily HgT loadings, but shallow subsurface flow is important for HgTloads during high-flow events. Results suggest limited seasonal trends in HgT dynamics.

  14. Upper Maastrichtian ammonite biostratigraphy of the Gulf Coastal Plain (Mississippi Embayment, southern USA)

    USGS Publications Warehouse

    Larina, Ekaterina; Garb, Matthew P.; Landman, Neil H.; Dastas, Natalie; Thibault, Nicolas; Edwards, Lucy E.; Phillips, George; Rovelli, Remy; Myers, Corinne; Naujokaityte, Jone

    2016-01-01

    The Cretaceous outcrop belt of the Mississippi Embayment in the Gulf Coastal Plain (GCP) spans the Cretaceous/Paleogene (K/Pg) boundary. A detailed reconstruction of this time interval is critical for understanding the nature of biotic and environmental changes preceding the end-Cretaceous Mass Extinction event and for deciphering the likely extinction mechanism (i.e., bolide impact versus volcanism). Eight sections encompassing the K/Pg succession across the Mississippi Embayment were analyzed using biostratigraphic sampling of ammonites, dinoflagellates, and nannofossils. An upper Maastrichtian ammonite zonation is proposed as follows, from oldest to youngest:Discoscaphites conradi Zone, D. minardi Zone, and D. iris Zone. Our study documents that the ammonite zonation established in the Atlantic Coastal Plain (ACP) extends to the GCP. This zonation is integrated with nannofossil and dinoflagellate biostratigraphy to provide a framework to more accurately determine the age relationships in this region. We demonstrate that ammonites and dinoflagellates are more reliable stratigraphic indicators in this area than nannofossils because age-diagnostic nannofossils are not consistently present within the upper Maastrichtian in the GCP. This biostratigraphic framework has the potential to become a useful tool for correlation of strata both within the GCP and between the GCP, Western Interior, and ACP. The presence of the uppermost Maastrichtian ammonite D. iris, calcareous nannofossil Micula prinsii, and dinoflagellates Palynodinium grallator and Disphaerogena carposphaeropsis suggests that the K/Pg succession in the GCP is nearly complete. Consequently, the GCP is an excellent setting for investigating fine scale temporal changes across the K/Pg boundary and ultimately elucidating the mechanisms causing extinction.

  15. Storm-event flow pathways in lower coastal plain forested watersheds of the southeastern United States

    NASA Astrophysics Data System (ADS)

    Griffin, Michael P.; Callahan, Timothy J.; Vulava, Vijay M.; Williams, Thomas M.

    2014-10-01

    The landscape of the coastal plain of the southeastern United States is rapidly changing due to urbanization and climate-change-related impacts. In addition to the forecasted population increase, this region could experience significant changes in precipitation patterns making watershed management very challenging. In order to establish baseline data, storm-event flow pathways were studied in three lower coastal plain (LCP) forested lowland watersheds of the southeastern United States between 2010 and 2011. Two of the watersheds had clay loam subsoils while the third had sandy soils throughout the profile. Stream flow and water samples from water-table wells, piezometers, lysimeters, and rain gauges were analyzed for ion concentrations; ion trends were assessed using principal components analysis; and chemical hydrograph separation was performed for nine storm events using end-member mixing analysis. End-members consisted of lower concentration rainwater; a near-stream source (riparian or streambed groundwater); and a distant or deep groundwater source. Storm-event stream water on the clayey sites was composed primarily of rainwater (45-67% by volume) and shallow groundwater (21-55%), with small inputs from deep (below the clay-rich soil horizon) groundwater (0.2-21%). At the sandy site, a greater proportion was groundwater (56-61%), with smaller inputs from rainwater (28-33%) and soil water (6-16%). Dry antecedent soil moisture (ASM) conditions and larger storms resulted in greater rainwater contribution at the clayey sites. Shallow groundwater was an important contributor even in dry ASM conditions, perhaps due to the high specific retention of the soils. The results from this study will inform researchers about stormwater routing in forested, shallow water table watersheds and provide land managers with baseline data as they plan stormwater mitigation practices.

  16. Loess record of the Pleistocene-Holocene transition on the northern and central Great Plains, USA

    USGS Publications Warehouse

    Mason, J.A.; Miao, X.; Hanson, P.R.; Johnson, W.C.; Jacobs, P.M.; Goble, R.J.

    2008-01-01

    Various lines of evidence support conflicting interpretations of the timing, abruptness, and nature of climate change in the Great Plains during the Pleistocene-Holocene transition. Loess deposits and paleosols on both the central and northern Great Plains provide a valuable record that can help address these issues. A synthesis of new and previously reported optical and radiocarbon ages indicates that the Brady Soil, which marks the boundary between late Pleistocene Peoria Loess and Holocene Bignell Loess, began forming after a reduction in the rate of Peoria Loess accumulation that most likely occurred between 13.5 and 15 cal ka. Brady Soil formation spanned all or part of the B??lling-Aller??d episode (approximately 14.7-12.9 cal ka) and all of the Younger Dryas episode (12.9-11.5 cal ka) and extended at least 1000 years beyond the end of the Younger Dryas. The Brady Soil was buried by Bignell Loess sedimentation beginning around 10.5-9 cal ka, and continuing episodically through the Holocene. Evidence for a brief increase in loess influx during the Younger Dryas is noteworthy but very limited. Most late Quaternary loess accumulation in the central Great Plains was nonglacigenic and was under relatively direct climatic control. Thus, Brady Soil formation records climatic conditions that minimized eolian activity and allowed effective pedogenesis, probably through relatively high effective moisture. Optical dating of loess in North Dakota supports correlation of the Leonard Paleosol on the northern Great Plains with the Brady Soil. Thick loess in North Dakota was primarily derived from the Missouri River floodplain; thus, its stratigraphy may in part reflect glacial influence on the Missouri River. Nonetheless, the persistence of minimal loess accumulation and soil formation until 10 cal ka at our North Dakota study site is best explained by a prolonged interval of high effective moisture correlative with the conditions that favored Brady Soil formation. Burial

  17. Interpretation and compendium of historical fire accounts in the Northern Great Plains

    USGS Publications Warehouse

    Higgins, K.F.

    1986-01-01

    This interpretation and compendium of historical fire accounts in the northern Great Plains provides resource managers with background information to justify the study or use of fire in management and provides a reference of historic fire accounts for those without ready access to major library collections. Historical accounts of fire are critiqued to aid interpreting the compendium accounts. An interpretation is included by the author.Lightning-set fires were recorded in the literature far less frequently than were Indian-set fires. The kinds of fire most frequently reported were scattered, single events of short duration and small extent. Although fires occurred in wetlands, wetlands as well as sandy soil sites usually were good areas for escape from the effects of fire. Both Indians and wild animals were reportedly injured or killed during prairie fires. The frequency of historic fires was less evident in the literature than the descriptions of fire distribution in time and space. Indian-set fires were reported in every month except January. Fires occurred mainly in two periods, March through May with a peak in April, and July to early November with a peak in October. Grassland fuels burned readily within a few hours or days after rain and even during light snowfall.I agree with arguments that support the concept that Indians of the northern Great Plains generally did not subscribe to annual wholesale or promiscuous burning practices, but that they did purposely use fire as a tool to aid hunting and gathering of food and materials. Apparently, the northern plains Indians did not pattern their use of fire with the seasonal patterns of lightning fires. More likely they developed seasonal patterns of burning the prairies in harmony with bison (Bison bison) herd movements because the hunter-gatherer economy of these nomadic tribes was centrally focused and largely dependent on bison and bison ecology.

  18. Periglacial landforms at the Phoenix landing site and the northern plains of Mars

    NASA Astrophysics Data System (ADS)

    Mellon, Michael T.; Arvidson, Raymond E.; Marlow, Jeffrey J.; Phillips, Roger J.; Asphaug, Erik

    2008-11-01

    We examine potentially periglacial landforms in Mars Orbiter Camera (MOC) and High Resolution Imaging Science Experiment (HiRISE) images at the Phoenix landing site and compare them with numerical models of permafrost processes to better understand the origin, nature, and history of the permafrost and the surface of the northern plains of Mars. Small-scale (3-6 m) polygonal-patterned ground is ubiquitous throughout the Phoenix landing site and northern plains. Larger-scale (20-25 m) polygonal patterns and regularly spaced (20-35 m) rubble piles (localized collections of rocks and boulders) are also common. Rubble piles were previously identified as ``basketball terrain'' in MOC images. The small polygon networks exhibit well-developed and relatively undegraded morphology, and they overlay all other landforms. Comparison of the small polygons with a numerical model shows that their size is consistent with a thermal contraction origin on current-day Mars and are likely active. In addition, the observed polygon size is consistent with a subsurface rheology of ice-cemented soil on depth scales of about 10 m. The size and morphology of the larger polygonal patterns and rubble piles indicate a past episode of polygon formation and rock sorting in thermal contraction polygons, while the ice table was about twice as deep as it is presently. The pervasive nature of small and large polygons, and the extensive sorting of surface rocks, indicates that widespread overturning of the surface layer to depths of many meters has occurred in the recent geologic past. This periglacial reworking has had a significant influence on the landscape at the Phoenix landing site and over the Martian northern plains.

  19. Hydrogeologic considerations for an interstate ground-water compact on the Madison aquifer, northern Great Plains

    USGS Publications Warehouse

    Konikow, Leonard F.

    1978-01-01

    The development of an interstate ground-water compact for the Madison aquifer in the Northern Great Plains may provide a framework to allocate equitably this large ground-water resource while avoiding possible future interstate legal conflicts. However, some technical problems will have to be resolved first. A compact designed to regulate or to allocate the available ground water will have to be written in very precise, legally acceptable definitions. The required definitions may infer a degree of measurement accuracy that cannot be technically or economically provided. Therefore, a trade off may be required between preserving natural conditions and allowing beneficial use of the ground-water resource.

  20. Analysis of nutrients in the surface waters of the Georgia-Florida Coastal Plain study unit, 1970-91

    USGS Publications Warehouse

    Ham, L.K.; Hatzell, H.H.

    1996-01-01

    Aucilla River basin had the lowest. Median concentrations of nitrate and ammonia among all major basins were below USEPA guidelines. The median total-phosphorus concentrations for the following river basins exceeded the USEPA guideline-Hillsborough, St. Johns, Suwannee, Ochlockonee, Satilla, Altamaha, and Ogeechee. Although nutrient concentrations within the study unit were low, long-term increasing trends were found in all four nutrients. All 18 study-unit wide nitrate trends had increasing slopes ranging from less than 0.01 to 0.07 (mg/L)/yr. The range in slope for the 13 ammonia trends was -0.03 to 0.01 (mg/L)/yr with 6 increasing trends in the northern part of the study unit. Of the 17 total-phosphorus trends found in the study unit, 10 were found at sites where the median concentration exceeded the USEPA guideline. At these 10 sites, 4 sites had increasing trends with slopes ranging from less than 0.01 to 0.07 (mg/L)/yr, 5 sites had decreasing trends with slopes ranging from -0.01 to -0.24 (mg/L)/yr, and one site showed a seasonal concentration trend. Median nutrient concentrations were significantly different among the four land resource provinces-Southern Piedmont, Southern Coastal Plain, Coastal Flatwoods, and Central Florida Ridge. As a result, nutrient concentrations among basins with similar nutrient inputs but located within different land resource provinces are not expected to be the same due to differences in the combination of factors such as soil permeability, runoff rates, and stream channel slopes. This concept is an important consideration in designing a surface-water quality network within the study area. For the most part, the Coastal Flatwoods showed the lowest median nutrient concentrations and the Southern Coastal Plain had the highest median nutrient concentrations. Lower median nitrate concentrations in surface-water basins were associated with the forest/wetland land-use category and higher median concentrations of nitrate and ammonia with

  1. Jurassic sequence stratigraphy of the eastern Gulf Coastal Plain: Applications to hydrocarbon exploration

    SciTech Connect

    Tew, B.H.; Mancini, E.A.; Mink, R.M. )

    1991-03-01

    Based on regional stratigraphic and sedimentologic data, three unconformity-bounded depositional sequences associated with cycles of relative sea-level change and coastal onlap are recognized for Jurassic strata in the eastern Gulf Coastal Plain area. These sequences are designated, in ascending order, the LZAGC (Lower Zuni A Gulf Coast)-3.1, the LZAGC-4.1, and the LZAGC-4.2 sequences and include Callovian through Kimmeridgian Stage strata. An understanding of the relationship of Jurassic reservoirs to sequence stratigraphy can serve as an aid to hydrocarbon exploration in the eastern gulf area. The most extensive and productive Jurassic hydrocarbon reservoirs in the study area occur within the progradational, regressive highstand deposits of the LZAGC-3.1 and LZAGC-4.1 depositional sequences. For example, the majority of Norphlet sandstone reservoirs in the onshore and offshore Alabama area are interpreted to have accumulated in eolian dune, interdune, and wadi (fluvial) depositional environments, which occurred in association with the highstand regressive system of the LZAGC-3.1 sequence. The most important Smackover reservoirs generally consist of partially to completely dolomitized ooid and peloid packstones and grainstones in the upper portion of the unit. These reservoirs occur in subtidal to supratidal, shoaling-upward carbonate mudstone to grainstone cycles in the highstand regressive system of the LZAGC-4.1 sequence. In addition, minor reservoirs that are discontinuous and not well developed are associated with the shelf margin and transgressive systems of the LZAGC-4.1.

  2. Aminostratigraphy of surface and subsurface Quaternary sediments, North Carolina coastal plain, USA

    USGS Publications Warehouse

    Wehmiller, J. F.; Thieler, E.R.; Miller, D.; Pellerito, V.; Bakeman, Keeney V.; Riggs, S.R.; Culver, S.; Mallinson, D.; Farrell, K.M.; York, L.L.; Pierson, J.; Parham, P.R.

    2010-01-01

    The Quaternary stratigraphy and geochronology of the Albemarle Embayment of the North Carolina (NC) Coastal Plain is examined using amino acid racemization (AAR) in marine mollusks, in combination with geophysical, lithologic, and biostratigraphic analysis of 28 rotasonic cores drilled between 2002 and 2006. The Albemarle Embayment is bounded by structural highs to the north and south, and Quaternary strata thin westward toward the Suffolk paleoshoreline, frequently referred to as the Suffolk Scarp. The Quaternary section is up to ???90. m thick, consists of a variety of estuarine, shelf, back-barrier, and lagoonal deposits, and has been influenced by multiple sea-level cycles. The temporal resolution of the amino acid racemization method is tested statistically and with the stratigraphic control provided by this geologic framework, and it is then applied to the correlation and age estimation of subsurface units throughout the region. Over 500 specimens (primarily Mercenaria and Mulinia) from the subsurface section have been analyzed using either gas chromatographic (GC) or reverse-phase liquid chromatographic (RPLC) techniques. The subsurface stratigraphic data are compared with AAR results from numerous natural or excavated exposures from the surrounding region, as well as results from NC beach collections, to develop a comprehensive aminostratigraphic database for the entire Quaternary record within the NC coastal system. Age mixing, recognized in the beach collections, is also seen in subsurface sections, usually where major seismic reflections or core lithology indicate the presence of stratigraphic discontinuities. Kinetic models for racemization are tested within the regional stratigraphic framework, using either radiocarbon or U-series calibrations or comparison with regional biostratigraphy. Three major Pleistocene aminozones [AZ2, AZ3, and AZ4] are found throughout the region, all being found in superposition in several cores. Each can be subdivided

  3. Greenhouse Gas Fluxes in Southeastern US Coastal Plain Wetlands Under Contrasting Land Uses

    NASA Astrophysics Data System (ADS)

    Morse, J. L.; Ardón, M.; Bernhardt, E. S.

    2010-12-01

    Whether through sea level rise or wetland restoration, agricultural soils in coastal areas will be inundated at increasing rates, renewing connections to sensitive surface waters and raising critical questions about environmental tradeoffs. Wetland restoration is often implemented in agricultural catchments to improve water quality through nutrient removal. Yet higher soil moisture or flooding of soils can also increase the production of the greenhouse gases nitrous oxide and methane, representing a potential environmental tradeoff. Our study aimed to quantify and compare greenhouse gas emissions from natural and restored wetlands as well as actively managed agricultural fields within the NC coastal plain. In bimonthly sampling conducted over a two-year comparative study, we found that carbon dioxide was the dominant source (66-100%) of total emissions from all sites; that methane emissions were highest from permanently inundated sites, while nitrous oxide was a larger contributor to the radiative balance than methane for sites with lower water tables. In contrast to our predictions, greenhouse gas fluxes in the restored wetland were not higher compared to agricultural soils or forested wetlands. In these acidic coastal freshwater ecosystems, methane emissions tended to be low while nitrous oxide emissions tended to be high, relative to reported values for natural wetlands, suggesting that nitrogen loading or edaphic conditions in these systems may be promoting denitrification and nitrification as nitrous oxide sources while suppressing methanogenesis. Mean GHG fluxes (± standard error) and CO2 equivalents by site: agricultural field (Ag), restored wetland (RW) with 3 hydrologic classes, and two forested wetland sites (PA, PP). Different letters indicate statistical differences between sites (p < 0.1).

  4. Numerical simulation of groundwater flow in Dar es Salaam Coastal Plain (Tanzania)

    NASA Astrophysics Data System (ADS)

    Luciani, Giulia; Sappa, Giuseppe; Cella, Antonella

    2016-04-01

    They are presented the results of a groundwater modeling study on the Coastal Aquifer of Dar es Salaam (Tanzania). Dar es Salaam is one of the fastest-growing coastal cities in Sub-Saharan Africa, with with more than 4 million of inhabitants and a population growth rate of about 8 per cent per year. The city faces periodic water shortages, due to the lack of an adequate water supply network. These two factors have determined, in the last ten years, an increasing demand of groundwater exploitation, carried on by quite a number of private wells, which have been drilled to satisfy human demand. A steady-state three dimensional groundwater model has been set up by the MODFLOW code, and calibrated with the UCODE code for inverse modeling. The aim of the model was to carry out a characterization of groundwater flow system in the Dar es Salaam Coastal Plain. The inputs applied to the model included net recharge rate, calculated from time series of precipitation data (1961-2012), estimations of average groundwater extraction, and estimations of groundwater recharge, coming from zones, outside the area under study. Parametrization of the hydraulic conductivities was realized referring to the main geological features of the study area, based on available literature data and information. Boundary conditions were assigned based on hydrogeological boundaries. The conceptual model was defined in subsequent steps, which added some hydrogeological features and excluded other ones. Calibration was performed with UCODE 2014, using 76 measures of hydraulic head, taken in 2012 referred to the same season. Data were weighted on the basis of the expected errors. Sensitivity analysis of data was performed during calibration, and permitted to identify which parameters were possible to be estimated, and which data could support parameters estimation. Calibration was evaluated based on statistical index, maps of error distribution and test of independence of residuals. Further model

  5. Coastal deformation between the Versilia and the Garigliano plains (Italy) since the last interglacial stage

    NASA Astrophysics Data System (ADS)

    Nisi, Marco F.; Antonioli, Fabrizio; Pra, Giuseppe Dai; Leoni, Gabriele; Silenzi, Sergio

    2003-12-01

    The opening of the north-central Tyrrhenian Sea is the result of the Cretaceous-Paleogene alpine collision, which triggered a series of regional uplift, subsidence and transcurrent tectonic mechanisms along the coastal Tyrrhenian sectors of peninsular Italy. These tectonic processes, in conjunction with the effects of glacio- and hydro-isostasy during the Quaternary, produced substantial crustal responses that, in some cases, reached metres in extent. In the study of coastal neotectonics, geomorphological markers of the last interglacial maximum, corresponding to marine isotope stage 5.5, are generally used to quantify the magnitude of the vertical crustal displacements that have occurred since 125 kyr. Through altimetrical, palaeoenvironmental and chronological reinterpretation of the most significant works published since 1913, combined with an additional set of data reported here, a detailed reconstruction of the shoreline displacements evident along 500 km of coast between northern Tuscany and southern Latium is presented. The reconstruction was carried out by quantifying the vertical movement since the last interglacial period and by identifying the tectonic behaviour of different coastal sectors. This has been done by carefully choosing the eustatic marker, among those available at each study site, in order to minimize the margin of error associated with the measurements. Copyright

  6. Validating Northern Texas High Plains Groundwater Model with Data from Observation Wells

    NASA Astrophysics Data System (ADS)

    Hernandez, J. E.; Gowda, P. H.; Misra, D.; Marek, T. H.; Howell, T. A.

    2009-12-01

    Diminishing groundwater supplies will severely reduce regional crop and animal production in the Northern High Plains of Texas where irrigated crop production accounts for a major portion of groundwater withdrawals from the Ogallala aquifer. The objective of this study was to develop, calibrate and validate a groundwater model for a 4-county area (Dallam, Sherman, Hartley, and Moore counties) in the Northwest region of the Texas High Plains. This study is a major component of a comprehensive regional analysis of groundwater depletion in the Ogallala aquifer region with the purpose of understanding short- and long-term effects of existing and alternative land use scenarios on groundwater changes. Hydrologic simulations were conducted using the MODFLOW-2000. The model was calibrated for predevelopment period by reproducing and comparing groundwater levels of the 1950s using steady state boundary conditions representing no change in the land use. Similarly, the model was calibrated for the period 1950-2000 with a transient model to account for agricultural development occurred during that period. The model was validated by simulating and comparing ground water levels with the observed data for the period 2001-2008. Calibration and validation results indicate that model performed satisfactorily. The calibrated model will be used to evaluate the effects of change in land use/land cover on sustainability of the aquifer life in the Texas High Plains.

  7. Applications of Quaternary stratigraphic, soil-geomorphic, and quantitative geomorphic analyses to the evaluation of tectonic activity and landscape evolution in the Upper Coastal Plain, South Carolina

    SciTech Connect

    Hanson, K.L.; Bullard, T.F.; de Wit, M.W.; Stieve, A.L.

    1993-07-01

    Geomorphic analyses combined with mapping of fluvial terraces and upland geomorphic surfaces provide new approaches and data for evaluating the Quaternary activity of post-Cretaceous faults that are recognized in subsurface data at the Savannah River Site in the Upper Coastal Plain of southwestern South Carolina. Analyses of longitudinal stream and terrace profiles, regional slope maps, and drainage basin morphometry indicate long-term uplift and southeast tilt of the site region. Preliminary results of drainage basin characterization suggests an apparent rejuvenation of drainages along the trace of the Pen Branch fault (a Tertiary reactivated reverse fault that initiated as a basin-margin normal fault along the northern boundary of the Triassic Dunbarton Basin). This apparent rejuvenation of drainages may be the result of nontectonic geomorphic processes or local tectonic uplift and tilting within a framework of regional uplift.

  8. Lithologic descriptions of two cores and ground-water-quality data from five counties in the northeastern part of the coastal plain of South Carolina, 1988 and 1991

    USGS Publications Warehouse

    Falls, W.F.

    1994-01-01

    This report presents data collected as part of a hydrologic investigation of Darlington, Dillon, Florence, Marion, and Marlboro Counties in the northeastern part of the Coastal Plain of South Carolina. These data include lithologic descriptions of sediment recovered from two continuously cored boreholes and water-quality results for samples collected from 17 existing wells. One continuously cored borehole was drilled near Lake Darpo in the northern part of Darlington County to a total depth of 447 feet below land surface. The other borehole was drilled in Lake City in the south-central part of Florence County to a total depth of 1,090 feet below land surface. Water-quality results presented in this report include specific conductance, dissolved oxygen, temperature, pH, alkalinity, major- and minor-ion chemistry, and hydrogen sulfide.

  9. Young Adult Migration from a Northern Plains Indian Reservation: Who Stays and Who Leaves

    PubMed Central

    Croy, Calvin D.; Mitchell, Christina M.; Bezdek, Marjorie; Spicer, Paul

    2009-01-01

    We evaluated how ambitions, community ties, monetary sufficiency, employment, and alcohol consumption related to whether young American Indian adults had moved from their Northern Plains reservation. Of 518 Northern Plains reservation residents in 1993, we located 472 in 2003-2005 and found that 89 lived more than a four-hour drive from the reservation. Coding the 472 as to whether they had stayed on/near the reservation or moved away, we ran logistic regressions on data they reported in 1996 to determine which demographic and attitudinal variables were associated with having moved. We found ambitions and goals were more associated with moving away than were ties to the community, which in turn were more related than monetary and personal characteristics that promote independence and prosperity. The more importance they placed on getting a good education or carrying on the tribe’s traditions, the more likely they were to have moved away. We found too that the odds of moving away decreased with greater alcohol consumption. Tribal council members and college administrators therefore may wish to promote policies that increase opportunities for young adults to achieve higher education goals while remaining on reservation to carry on tribal traditions. Benefits may also come from encouraging and assisting reservation members studying off-reservation to return after completing their education. These findings would argue too for greater investment in alcohol services for reservation-dwelling populations. PMID:20161560

  10. Implications of the Utopia Gravity Anomaly for the Resurfacing of the Northern Plains of Mars

    NASA Technical Reports Server (NTRS)

    Banerdt, W. B.

    2004-01-01

    Whereas the surface units of the northern plain of Mars generally exhibit ages ranging from late Hesperian to Amazonian, interpretation of precise topographic measurements indicate that the age of the underlying "basement" is early Noachian, or almost as old as the southern highlands. This suggests that widespread but relatively superficial resurfacing has occurred throughout the northern plains since the end of early heavy bombardment. In this abstract I examine some of the possible implications of the subsurface structure inferred for the Utopia basin from gravity data on the nature of this resurfacing. The large, shallow, circular depression in Utopia Planitia has been identified as a huge impact basin, based on both geological evidence and detailed analysis of MOLA topography. Its diameter (approx. 3000 km) is equivalent to that of the Hellas basin, as is its inferred age (early Noachian). However, whereas Hellas is extremely deep with rough terrain and large slopes, the Utopia basin is a smooth, shallow, almost imperceptible bowl. Conversely, Utopia displays one of the largest (non-Tharsis-related) positive geoid anomalies on Mars, in contrast to a much more subdued negative anomaly over Hellas.

  11. Statistical Methods for Quantifying Uncertainty in ENSO on Wind Power in the Northern Great Plains

    NASA Astrophysics Data System (ADS)

    Harper, B. R.

    2006-12-01

    The El Nino Southern Oscillation (ENSO) is a well-known source of inter-annual climate variability for both precipitation and temperature in the northern Great Plains. The northern Great Plains also have the largest wind resource in the United States. With the continued growth of wind energy, ENSO's effect on wind speed needs to be examined because of our current lack of understanding about how wind speeds are affected by inter-annual variability. After having previously established that a teleconnection to ENSO exists, we set out to quantify the uncertainty in this relationship with this study. Our method uses the sign test and resampling of hourly airport wind speed measurements for the past half-century at 4 airports in both North Dakota and South Dakota. Airport data are useful in this case because they have very long and continuous measurement of hourly wind speed. With this data, we were able to show that ENSO did have an effect on wind speeds as well as on wind power. The warm phase of El Nino, in particular, was correlated with the largest reductions in wind speed in South Dakota. In North Dakota, it was the cold phase that produced the largest reduction in wind power. The largest differences occurred in April, while the smallest differences occurred in July. It is our hope that this method will also be a useful tool for wind farm developers across the country to more accurately assess the value of their site based on limited in-situ data.

  12. Young Adult Migration from a Northern Plains Indian Reservation: Who Stays and Who Leaves.

    PubMed

    Croy, Calvin D; Mitchell, Christina M; Bezdek, Marjorie; Spicer, Paul

    2009-10-01

    We evaluated how ambitions, community ties, monetary sufficiency, employment, and alcohol consumption related to whether young American Indian adults had moved from their Northern Plains reservation. Of 518 Northern Plains reservation residents in 1993, we located 472 in 2003-2005 and found that 89 lived more than a four-hour drive from the reservation. Coding the 472 as to whether they had stayed on/near the reservation or moved away, we ran logistic regressions on data they reported in 1996 to determine which demographic and attitudinal variables were associated with having moved. We found ambitions and goals were more associated with moving away than were ties to the community, which in turn were more related than monetary and personal characteristics that promote independence and prosperity. The more importance they placed on getting a good education or carrying on the tribe's traditions, the more likely they were to have moved away. We found too that the odds of moving away decreased with greater alcohol consumption. Tribal council members and college administrators therefore may wish to promote policies that increase opportunities for young adults to achieve higher education goals while remaining on reservation to carry on tribal traditions. Benefits may also come from encouraging and assisting reservation members studying off-reservation to return after completing their education. These findings would argue too for greater investment in alcohol services for reservation-dwelling populations. PMID:20161560

  13. Evaluation of herbacceous biomass crops in the northern Great Plains. Final report

    SciTech Connect

    Meyer, D.W.; Norby, W.E.; Erickson, D.O.; Johnson, R.G.

    1994-08-01

    Herbaceous lignocellulose crops are a potential renewable feedstock for biochemical conversion systems second in size to wood products. Several herbaceous crops are utilized as forage crops in the northern Great Plains, but forage quality considerations usually dictates a early harvest. Biomass cropping does not have this constraint; therefore, little information was available on herbaceous crops utilized as energy crops prior to this project. Our primary objectives were to evaluate the biomass yield and select chemical components of several herbaceous crops for energy crops in the northern Great Plains, compare the economic feasibility of energy crops with common competing crops, and evaluate biomass cropping on summer fallow lands. Three good, two marginal, and one irrigated sites were used during 1988 to 1992 for the first component. At least six perennial and four annual biomass species were included at all sites. Three to four nitrogen (N) levels and a crop-recrop comparison (annuals only) were management intensities included. Biomass cropping on idled lands was performed on dryland at Carrington and evaluated the effects of removing leguminous biomass on fallowed lands. This report summarizes results from the 5-year project.

  14. The distribution and composition of REE-bearing minerals in placers of the Atlantic and Gulf coastal plains, USA

    USGS Publications Warehouse

    Bern, Carleton; Shah, Anjana K.; Benzel, William M.; Lowers, Heather

    2016-01-01

    Rare earth element (REE) resources are currently of great interest because of their importance as raw materials for high-technology manufacturing. The REE-phosphates monazite (light REE enriched) and xenotime (heavy REE enriched) resist weathering and can accumulate in placer deposits as part of the heavy mineral assemblage. The Atlantic and Gulf coastal plains of the southeastern United States are known to host heavy mineral deposits with economic concentrations of zircon, ilmenite and rutile. This study provides a perspective on the distribution and composition of REE phosphate minerals in the region. The elemental chemistry and mineralogy of sands and associated heavy-mineral assemblages from new and archived sediment samples across the coastal plains are examined, along with phase-specific compositions of monazite, xenotime and zircon. Both monazite and xenotime are present across the coastal plains. The phase-specific compositions allow monazite content to be estimated using La as a geochemical proxy. Similarly, both Y and Yb are geochemical proxies for xenotime, but their additional presence in zircon and monazite require a correction to prevent overestimation of xenotime content. Applying this correction, maps of monazite and xenotime content across the coastal plains were generated using sample coverage from the National Geochemical Database (NGS) and National Uranium Resource Evaluation (NURE). The NGS and NURE approach of sampling stream sediments in small watersheds links samples to nearby lithologies. The results show an approximately 40 km-wide band of primarily Cretaceous, marine sediments bordering the Piedmont province from North Carolina to Alabama in which monazite and xenotime content are relatively high (up to 4.4 wt. % in < 150 μm bulk sediment). Strong correlations between concentrations of the two phases were found, with estimated monazite:xenotime ratios ranging approximately 6:1 to 12:1 depending upon the dataset analyzed. From a resource

  15. The latitudinal distribution of putative periglacial sites on the northern martian plains.

    NASA Astrophysics Data System (ADS)

    Barrett, Alex; Balme, Matt; Patel, Manish; Hagermann, Axel

    2013-04-01

    Periglacial landscapes are found in cold regions of Earth where the freezing and thawing of the permafrost active layer plays an important role in shaping the landscape. A variety of distinctive landforms such as sorted circles, thermokarst depressions and solifluction lobes are indicative of periglacial environments on Earth. It has been suggested that similar features on the northern plains of Mars could be the result of the same, or similar processes (1). Since the formation of a periglacial landscape requires the freezing and thawing of water their presence on Mars would indicate that the thawing of water-ice has occurred in the geologically recent past. Periglacial landforms could have formed in past periods of higher obliquity when the environment was more conducive to the action of liquid water or due to the depression of the freezing point by brines under current conditions. We have conducted a survey of putative periglacial landforms across the northern Martian plains. Over 400 HiRISE images of the walls and floors of >1 km diameter craters have been examined to map the locations of these landforms across regions of Acidalia, Utopia and Arcadia Planitia between 30 and 80 Degrees North. These data allow an assessment of the latitudinal distribution of these features. Variations between the types of landform found in different regions of the Northern Plains of mars can also be assessed. Scalloped depressions and gullies have a similar latitude range, and are frequently found south of 60 Degrees North. There are a large number of scalloped depressions in Utopia as noted by other studies (2), similar features are found in both Acidalia and Arcadia but are not found over as wide a range of latitudes in Acidalia. Possible sorted landforms (lobes, polygons etc) can be found as far south as 40 and as far north as 70 Degrees North but most are found between 45-65 Degrees North. They seem to occur over a wider range of latitudes in Utopia Planitia than in Acidalia

  16. Impacts of shore expansion and catchment characteristics on lacustrine thermokarst records in permafrost lowlands, Alaska Arctic Coastal Plain

    USGS Publications Warehouse

    Lenz, Josefine; Jones, Benjamin M.; Wetterich, Sebastian; Tjallingii, Rik; Fritz, Michael; Arp, Christopher D.; Rudaya, Natalia; Grosse, Guido

    2016-01-01

    Arctic lowland landscapes have been modified by thermokarst lake processes throughout the Holocene. Thermokarst lakes form as a result of ice-rich permafrost degradation, and they may expand over time through thermal and mechanical shoreline erosion. We studied proximal and distal sedimentary records from a thermokarst lake located on the Arctic Coastal Plain of northern Alaska to reconstruct the impact of catchment dynamics and morphology on the lacustrine depositional environment and to quantify carbon accumulation in thermokarst lake sediments. Short cores were collected for analysis of pollen, sedimentological, and geochemical proxies. Radiocarbon and 210Pb/137Cs dating, as well as extrapolation of measured historic lake expansion rates, were applied to estimate a minimum lake age of ~1400 calendar years BP. The pollen record is in agreement with the young lake age as it does not include evidence of the “alder high” that occurred in the region ~4000 cal yr BP. The lake most likely initiated from a remnant pond in a drained thermokarst lake basin (DTLB) and deepened rapidly as evidenced by accumulation of laminated sediments. Increasing oxygenation of the water column as shown by higher Fe/Ti and Fe/S ratios in the sediment indicate shifts in ice regime with increasing water depth. More recently, the sediment source changed as the thermokarst lake expanded through lateral permafrost degradation, alternating from redeposited DTLB sediments, to increased amounts of sediment from eroding, older upland deposits, followed by a more balanced combination of both DTLB and upland sources. The characterizing shifts in sediment sources and depositional regimes in expanding thermokarst lakes were, therefore, archived in the thermokarst lake sedimentary record. This study also highlights the potential for Arctic lakes to recycle old carbon from thawing permafrost and thermokarst processes.

  17. Shallow, low-permeability reservoirs of northern Great Plains - assessment of their natural gas resources.

    USGS Publications Warehouse

    Rice, D.D.; Shurr, G.W.

    1980-01-01

    Major resources of natural gas are entrapped in low-permeability, low-pressure reservoirs at depths less than 1200m in the N.Great Plains. This shallow gas is the product of the immature stage of hydrocarbon generation and is referred to as biogenic gas. Prospective low-permeability, gas-bearing reservoirs range in age from late Early to Late Cretaceous. The following facies were identified and mapped: nonmarine rocks, coastal sandstones, shelf sandstones, siltstones, shales, and chalks. The most promising low-permeability reservoirs are developed in the shelf sandstone, siltstone, and chalk facies. Reservoirs within these facies are particularly attractive because they are enveloped by thick sequences of shale which serve as both a source and a seal for the gas.-from Author

  18. Icefield-to-ocean linkages across the northern Pacific coastal temperate rainforest ecosystem

    USGS Publications Warehouse

    O'Neel, Shad; Hood, Eran; Bidlack, Allison L.; Fleming, Sean W.; Arimitsu, Mayumi L.; Arendt, Anthony; Burgess, Evan W.; Sergeant, Christopher J.; Beaudreau, Anne E.; Timm, Kristin; Hayward, Gregory D.; Reynolds, Joel H.; Pyare, Sanjay

    2015-01-01

    Rates of glacier mass loss in the northern Pacific coastal temperate rainforest (PCTR) are among the highest on Earth, and changes in glacier volume and extent will affect the flow regime and chemistry of coastal rivers, as well as the nearshore marine ecosystem of the Gulf of Alaska. Here we synthesize physical, chemical and biological linkages that characterize the northern PCTR ecosystem, with particular emphasis on the potential impacts of glacier change in the coastal mountain ranges on the surface–water hydrology, biogeochemistry, coastal oceanography and aquatic ecology. We also evaluate the relative importance and interplay between interannual variability and long-term trends in key physical drivers and ecological responses. To advance our knowledge of the northern PCTR, we advocate for cross-disciplinary research bridging the icefield-to-ocean ecosystem that can be paired with long-term scientific records and designed to inform decisionmakers.

  19. High frequency water quality and flow observations of a hypereutrophic Coastal Plain millpond

    NASA Astrophysics Data System (ADS)

    Andres, S.; Ullman, W. J.; Voynova, Y. G.

    2014-12-01

    Eutrophication due to runoff of N and P occurs in many impoundments in agricultural areas around the world with deleterious impacts on fisheries, drinking water, and recreational resources. Coursey Pond, a hypereutrophic, shallow, Coastal Plain mill pond located on the Murderkill River in central Delaware has seasonal algal blooms between May and October. High frequency automated water quality, meteorlogical, and flow observations initiated in June 2014 as part of the NEWRNet project provide insights into the relationships between hydrologic events, changes in water quality, and primary productivity. During blooms the pond becomes stratified, allowing for dissolved oxygen (DO) levels at the surface to exceed 150% saturation, while DO within 2 m of the surface to falls below 50% saturation. During fair weather turbidity and dissolved organic carbon (DOC) also gradually rise. Turbidity, DOC, and DO quickly decrease in response to storms and increased flow, indicating that storms are important regulators of water column stratification. Decreases in primary productivity due to decreased sunlight, dilution by addition of rain and runoff, and mixing in response to storm winds and flows abruptly end blooms, although they often return within a few days of storm events. Analysis of hourly meterological data will help determine the importance of solar insolation, winds, and rainfall intensity to the timing, rate, and magnitude of these water quality changes. Groundwater is the primary source of water to the streams that feed the pond and delivers nitrogen as nitrate. Historical grab sample nitrate concentration data from summer months (<1 mg/L) in comparison to winter months (4-8 mg/L) indicate that primary productivity consumes nearly all available nitrate during algal blooms, and perhaps improving water quality in downstream areas. There is no clear relationship between storms, flow and nitrate in the short period of high frequency observations, when nitrate concentrations

  20. The origin of high sodium bicarbonate waters in the Atlantic and Gulf Coastal Plains

    USGS Publications Warehouse

    Foster, M.D.

    1950-01-01

    Some sodium bicarbonate waters at depth in the Atlantic and Gulf Coastal Plains have the same bicarbonate content as the shallower calcium bicarbonate waters in the same formation and appear to be the result of replacement of calcium by sodium through the action of base-exchange minerals. Others, however, contain several hundred parts per million more of bicarbonate than any of the calcium bicarbonate waters and much more bicarbonate than can be attributed to solution of calcium carbonate through the action of carbon dioxide derived from the air and soil. As the waters in the Potomac group (Cretaceous) are all low in sulphate and as the environmental conditions under which the sediments of the Potomac group were deposited do not indicate that large amounts of sulphate are available for solution, it does not seem probable that carbon dioxide generated by chemical or biochemical breakdown of sulphate is responsible for the high sodium bicarbonate waters in this area. Sulphate as a source of oxygen is not necessary for the generation of carbon dioxide by carbonaceous material. Oxygen is an important constituent of carbonaceous material and carbon dioxide is a characteristic decomposition product of such material-as, for example, peat and lignite. Experimental work showed that distilled water, calcium bicarbonate water, and sodium bicarbonate water, after contact with lignite, calcium carbonate, and permutite (a base-exchange material), had all increased greatly in sodium bicarbonate content and had become similar in chemical character and in mineral content to high sodium bicarbonate waters found in the Coastal Plain. The tests indicated that carbonaceous material can act as a source of carbon dioxide, which, when dissolved in water, enables it to take into solution more calcium carbonate. If base-exchange materials are also present to replace calcium with sodium, a still greater amount of bicarbonate can be held in solution. The presence of carbonaceous material

  1. Simulation of ground-water flow in the coastal plain aquifer system of North Carolina

    USGS Publications Warehouse

    Giese, G.L.; Eimers, J.L.; Coble, R.W.

    1991-01-01

    A 3-D finite difference digital model was used to simulate groundwater flow in the 25,000 sq mi aquifer system of the North Carolina Coastal Plain. The model was developed from a geohydrologic framework that is based on an alternating sequence of 10 aquifers and 9 confining units, which comprise a seaward-thickening wedge of sediments that form the Coastal Plain aquifer system in North Carolina. The model was calibrated by comparing observed and simulated water levels. The maximum transmissivity of an individual aquifer in the calibrated model is 200,000 sq ft/d in a part of the Castle Hayne aquifer, which is composed predominately of limestone. The maximum simulated vertical hydraulic conductivity in a confining unit was 2.5 ft/d in a part of the confining unit overlying the upper Cape Fear aquifer. Analysis indicated the model is highly sensitive to changes in transmissivity and leakage near pumping centers; away from pumping centers, the model is only slightly sensitive to changes in transmissivity but is moderately sensitive to changes in leakance. Recharge from precipitation to the surficial aquifer ranges from about 12 in/yr in areas having clay at the surface, to about 20 in/yr in areas having sand at the surface. Most of this recharge moves laterally to streams, with only about 1 in/yr moving down to the confined parts of the aquifer system. Groundwater level declines, which are the result of water taken from storage, are extensive in some area and minimal in others. Water level declines exceeding 100 ft have occurred in the Beaufort County area because of withdrawals for a mining operation and water supplies for a chemical plant. Head declines have been less than 10 ft in the shallow surficial and Yorktown aquifers and in the updip parts of the major confined aquifers distant from areas of major withdrawals. A water-budget analysis using the model simulations indicates that much of the water removed from the groundwater system by pumping ultimately is made

  2. Persistence of Coastal Vegetation in Supratidal Zones of Northern China

    PubMed Central

    Yang, Hongxiao; Chu, Jianmin

    2013-01-01

    Coastal vegetation comprises a number of coastal specialists and terrestrial generalists. It remains unclear how they persist on disturbed and undisturbed coastal conditions. We tested the hypothesis that coastal specialists may be superior to terrestrial generalists on supratidal zones of coasts, but their superiority can be influenced by human disturbances. Eight separate sandy coasts of the Shandong Peninsula were sampled, representing for disturbed and undisturbed sandy coasts. Plants growing on their supratidal zones were surveyed. On this basis, we compared the relative dominances, niche widths, and commonness of all species, and also analyzed species diversities of the coasts. Coastal specialists were found to be more common and widespread on supratidal zones of the sandy coasts than terrestrial generalists haphazardly invading from hinterlands. Coastal specialists exhibited lower Sørensen dissimilarities than terrestrial generalists among the coasts. Tourist trampling seemed more detrimental than pond fishery to coastal vegetation. Relative to terrestrial generalists, coastal specialists responded to human disturbances more deterministically, with steady decreases in species diversities. These evidences verify that coastal specialists are intrinsically superior to terrestrial generalists on supratidal zones of coasts, especially of undisturbed coasts, because their dispersal among coasts adapts well to local storm surge regime. They also validate that human disturbances can depress the superiority of coastal specialists, partly by inducing invasion of terrestrial generalists. PMID:24224026

  3. Modern Environmental Changes on Amapa Coastal Plain under Amazon River Influence

    NASA Astrophysics Data System (ADS)

    Santos, V. F.; Figueiredo, A. G.; Silveira, O. M.; Polidori, L.

    2007-05-01

    The Amazonian coastal environment is very dynamic compared to other coasts. It is situated at the edge of the Earth's largest forest, and is segmented by fluvial systems, with the biggest being the Amazon River. The rivers are particularly influenced by the Intertropical Convergence Zone (ITCZ), which controls the water and particle discharge, and the flooding regime. Moderate and strong El Nino conditions correlate with low-precipitation periods, and La Nina events cause precipitation to increase. These variables and others related to the Amazon dispersal system create an interesting area for the study of global and regional environmental changes. The Araguari River floodplain on the Amapa coast is influenced by natural processes of global scale such as ENSO events and ITCZ, and by local processes such as Amazon River discharge, tides and tidal bore (pororoca). Anthropogenic processes such as extensive water-buffalo farming also promote environmental changes. Time- series analyses of remote sensing images and suspended sediment have shown that the maximum turbidity zone inside Araguari River is related to the pororoca phenomenon. The pororoca remobilizes sediment from the river bottom and margins, developing sediment suspension >15 g/l as it passes - creating fluid muds. The pororoca also introduces Amazon- and shelf-derived sediment into the Araguari estuary. Measurements during eight spring-tide cycles indicate erosion of 3 cm of consolidated mud and deposition of 1 cm. The pororoca also influences the remobilization and cycling of nutrients and consequently affects the distribution of benthic organisms, including benthonic foraminifera and thecamoebians. For more than a century, the coastal plain has had water-buffalo farming (>42,000 animals today), which modifies the drainage system and affects sedimentary processes. Areas with more buffalo trails have higher suspended-sediment concentration (SSC) during the dry season and lower SSC during the rainy season

  4. Summer Roost Tree Selection by Eastern Red, Seminole, and Evening Bats in the Upper Coastal Plain of South Carolina

    SciTech Connect

    Menzel, M.A.; Carter, T.C.; Ford, W.M.; Chapman, B.R.; Ozier, J.

    2000-01-01

    Radiotraction of six eastern red bats, six seminole bats and twenty-four evening bats to 55, 61, and 65 day roosts during 1996 to 1997 in the Upper Coastal Plain of South Carolina. For each species, testing was done for differences between used roost trees and randomly located trees. Also tested for differences between habitat characteristics surrounding roost trees and randomly located trees. Eastern Red and Seminole bats generally roosted in canopies of hardwood and pine while clinging to foilage and small branches. Evening bats roosted in cavities or under exfoliating bark in pines and dead snags. Forest management strategies named within the study should be beneficial for providing roosts in the Upper Coastal Plain of South Carolina.

  5. Ecosystem carbon balance and vulnerability of soil carbon in a drained lower coastal plain loblolly pine plantation

    NASA Astrophysics Data System (ADS)

    Noormets, A.; McNulty, S. G.; Gavazzi, M.; Domec, J.; Sun, G.; King, J. S.; Chen, J.

    2008-12-01

    Coastal plain ecosystems comprise only about 5% of total U.S. land area, but the soil carbon density in these ecosystems is about 10-fold higher than in upland ecosystems and they may therefore play a disproportionately large role in ecosystem-climate feedbacks. The role of these ecosystems in continental carbon exchange is largely unclear because they have been underrepresented in flux monitoring networks. We monitored ecosystem carbon fluxes and pools for three years in two lower coastal plain loblolly pine plantations (3 and 17 years of age). The contribution of soil to ecosystem respiration decreased from over 90% immediately following a harvest to about 50% by age 17. The replenishment of soil C through litterfall exceeded heterotrophic respiration (Rh) by 2-9% in two years, but was 30% lower than Rh in the third year, highlighting the vulnerability of soil carbon stocks to interannual climate variability.

  6. Effect of coarse woody debris manipulation on soricid and herpetofaunal communities in upland pine stands of the southeastern coastal plain.

    SciTech Connect

    Davis, Justin, Charles

    2009-04-01

    Abstract -The majority of studies investigating the importance of coarse woody debris (CWD) to forest- floor vertebrates have taken place in the Pacific Northwest and southern Appalachian Mountains, while comparative studies in the southeastern Coastal Plain are lacking. My study was a continuation of a long-term project investigating the importance of CWD as a habitat component for shrew and herpetofaunal communities within managed pine stands in the southeastern Coastal Plain. Results suggest that addition of CWD can increase abundance of southeastern and southern short-tailed shrews. However, downed wood does not appear to be a critical habitat component for amphibians and reptiles. Rising petroleum costs and advances in wood utilization technology have resulted in an emerging biofuels market with potential to decrease CWD volumes left in forests following timber harvests. Therefore, forest managers must understand the value of CWD as an ecosystem component to maintain economically productive forests while conserving biological diversity.

  7. Jurassic petroleum trends in eastern Gulf Coastal Plain and central and eastern Gulf of Mexico

    SciTech Connect

    Mancini, E.A.; Mink, R.M.; Bearden, B.L.

    1986-05-01

    Three Jurassic petroleum trends can be delineated in Mississippi, Alabama, and Florida, and in the central and eastern Gulf of Mexico. These trends are recognized by characteristic petroleum traps, reservoirs, and hydrocarbon types. The source for the Jurassic hydrocarbons is Smackover algal mudstones. The Jurassic oil trend includes the area north of the regional peripheral fault systems in the tri-state area, and extends into the area north of the Destin anticline. Traps are basement highs and salt anticlines, with Smackover grainstones and dolostones and Norphlet marine, eolian, and wadi sandstones as reservoirs. This trend has potential for Jurassic oil accumulations in the eastern Gulf of Mexico. The Jurassic oil and gas-condensate trend includes the onshore area between the regional peripheral fault systems and Wiggins arch and extends into the area of the Destin anticline. Traps are basement highs, salt related anticlines, and extensional faults. Cotton Valley fluvial-deltaic sandstones, Haynesville carbonates and fluvial-deltaic sandstones, Smackover grainstones, packstones, dolostones, and marine sandstones, and Norphlet marine, eolian, and wadi sandstones serve as reservoirs. This trend contains most of the Jurassic fields in the eastern Gulf coastal plain. The trend has high potential for significant petroleum accumulations in the eastern Gulf of Mexico. The Jurassic deep natural gas trend includes the onshore area south of the Wiggins arch and extends into the Mississippi-Alabama shelf. Traps are faulted salt anticlines with basement highs as potential traps. Cotton Valley deltaic-strandplain sandstones and Norphlet eolian sandstones are the reservoirs. Several gas discoveries below 20,000 ft have been made in this trend in Mississippi and offshore Alabama. The trend has excellent potential for major gas accumulations in coastal Alabama and central Gulf of Mexico.

  8. Predicting breeding shorebird distributions on the Arctic Coastal Plain of Alaska

    USGS Publications Warehouse

    Saalfeld, Sarah T.; Lanctot, Richard B.; Brown, Stephen C.; Saalfeld, David T.; Johnson, James A.; Andres, Brad A.; Bart, Jonathan R.

    2013-01-01

    The Arctic Coastal Plain (ACP) of Alaska is an important region for millions of migrating and nesting shorebirds. However, this region is threatened by climate change and increased human development (e.g., oil and gas production) that have the potential to greatly impact shorebird populations and breeding habitat in the near future. Because historic data on shorebird distributions in the ACP are very coarse and incomplete, we sought to develop detailed, contemporary distribution maps so that the potential impacts of climate-mediated changes and development could be ascertained. To do this, we developed and mapped habitat suitability indices for eight species of shorebirds (Black-bellied Plover [Pluvialis squatarola], American Golden-Plover [Pluvialis dominica], Semipalmated Sandpiper [Calidris pusilla], Pectoral Sandpiper [Calidris melanotos], Dunlin [Calidris alpina], Long-billed Dowitcher [Limnodromus scolopaceus], Red-necked Phalarope [Phalaropus lobatus], and Red Phalarope [Phalaropus fulicarius]) that commonly breed within the ACP of Alaska. These habitat suitability models were based on 767 plots surveyed during nine years between 1998 and 2008 (surveys were not conducted in 2003 and 2005), using single-visit rapid area searches during territory establishment and incubation (8 June, 1 July). Species specific habitat suitability indices were developed and mapped using presence-only modeling techniques (partitioned Mahalanobis distance) and landscape environmental variables. For most species, habitat suitability was greater at lower elevations (i.e., near the coast and river deltas) and lower within upland habitats. Accuracy of models was high for all species, ranging from 65 -98%. Our models predicted that the largest fraction of suitable habitat for the majority of species occurred within the National Petroleum Reserve-Alaska, with highly suitable habitat also occurring within coastal areas of the Arctic National Wildlife Refuge west to Prudhoe Bay.

  9. Carbon Sources and Sinks in Freshwater and Estuarine Environments of the Arctic Coastal Plain.

    NASA Astrophysics Data System (ADS)

    Lougheed, V.; Tarin, G.; Tweedie, C. E.

    2015-12-01

    The source, fate and transport of terrestrially derived carbon as it moves through multiple landscape components (i.e. groundwater, rivers, ponds, wetlands, lakes, lagoons) on a path from land to sea in permafrost-dominated watersheds is poorly understood. Critical to our understanding of Arctic carbon budgets are small, but numerically abundant watersheds that dominate the landscape of the Alaskan Arctic Coastal Plain (ACP), which appears to be changing rapidly in response to climate warming and other environmental changes. This study was designed to understand the contribution of freshwater ecosystems in the Arctic to regional carbon budgets. pCO2 was logged continually in ponds, lakes and streams sites near Barrow, AK and recorded across transects in Elson Lagoon, a coastal lagoon on the Beaufort coast. Average pCO2 of the pond over 2 weeks in August (1196 μatm) was double that of lakes and streams, and four times higher than Elson Lagoon (216 μatm); thus, the Lagoon was acting as a small sink while the pond was a substantial source of CO2 to the atmosphere. The uptake of CO2 in Elson Lagoon, combined with an oversaturation of O2, may be due to enhanced primary productivity caused by freshwater nutrient inputs. Conversely, pCO2, chlorophyll-a and DOC increased substantially in the pond after a large rain event, suggesting that run-off introduced large amounts of terrestrially-derived carbon from groundwater. Further studies are required to elucidate the fate and transport of carbon in the numerically abundant smaller watersheds of the Arctic.

  10. Hydrogeochemical considerations about the origin of groundwater salinization in some coastal plains of Elba Island (Tuscany, Italy).

    PubMed

    Giménez-Forcada, Elena; Bencini, Alberto; Pranzini, Giovanni

    2010-06-01

    Several coastal plains of the Elba Island (Marina di Campo, Portoferraio, Schiopparello, Mola, Porto Azzurro and Barbarossa plains) in Tuscany (Italy) were studied to determine the causes of decline in groundwater quality, using major ion chemistry to establish the causes of groundwater salinization. The study demonstrates that salinization of coastal plain alluvial aquifers is not simply linked to seawater intrusion but is also intimately related to inflows from adjacent aquifers. Ionic ratios, correlation graphs and distribution value maps were employed as the means to understand the hydrochemistry of the study areas. The Mg/Cl ratio in particular can be considered a good tracer to distinguish the main salinization processes that control groundwater chemistry. Seawater intrusion only partly determines the chemistry of some groundwaters, which generally belong to a chloride facies where the salinity is derived principally from freshwater-seawater mixing and the participation of cation exchange. Proceeding inland groundwater quality seems to be principally determined by the inflow of Mg, Ca-HCO(3) or Ca, Na-HCO(3) waters formed from the weathering of silicate minerals in adjoining aquifers. Hydrolysis of these minerals is of prime importance in controlling groundwater chemistry in adjacent alluvial plains. The lateral recharge flows introduce water with a different chemical composition and this variable of freshwater recharge changes the hydrochemistry as a result of mixing between two or more waters types. This situation is further complicated when seawater and base exchange reactions participate, due to seawater intrusion.

  11. Susceptibility of coastal plain aquifers to contamination, Fairfax County, Virginia; a computer composite map

    USGS Publications Warehouse

    Johnston, Richard H.; Van Driel, J. Nicholas

    1978-01-01

    A map is presented that classifies the Coastal Plain of Fairfax County, Virginia according to the susceptibility of the principal sand aquifers to contamination from surface sources. The following classification is used: (1) areas where leachate can readily enter the principal sand aquifers, (2) areas offering great natural protection against migration of leachate into the aquifers, and, (3) areas where the contamination risk is uncertain and onsite investigations are needed. Approximately 20 percent of the area is in the high-risk category. The map is computer generated and was made by combining four source maps depicting those hydrogeologic factors related to movement of contaminants into the aquifers. These factors are (1) lithologic character of the upper 25 feet of sediments, (2) clay thickness above uppermost sand aquifer, (3) hydraulic gradient direction and head difference between water table and artesian head in principal aquifer, and (4) areal occurrence of moderate to high transmissiviry aquifers. The map is designed to be used by planners with little or no earth-science background, however, a technical discussion for hydrologists and geologists is also provided. (Woodard-USGS)

  12. The Sunny Point Formation: a new Upper Cretaceous subsurface unit in the Carolina Coastal Plain

    USGS Publications Warehouse

    Balson, Audra E.; Self-Trail, Jean; Terry, Dennis O.

    2013-01-01

    This paper formally defines the Sunny Point Formation, a new Upper Cretaceous subsurface unit confined to the outer Atlantic Coastal Plain of North and South Carolina. Its type section is established in corehole NH-C-1-2001 (Kure Beach) from New Hanover County, North Carolina. The Sunny Point Formation consists of light-olive-gray to greenish-gray, fine to coarse micaceous sands and light-olive-brown and grayish-red silty, sandy clays. The clay-rich sections typically include ironstone, lignitized wood, root traces, hematite concretions, goethite, limonite, and sphaerosiderites. The Sunny Point Formation is also documented in cores from Bladen County, North Carolina, and from Dorchester and Horry Counties, South Carolina. Previously, strata of the Sunny Point Formation had been incorrectly assigned to the Cape Fear and Middendorf Formations. The Sunny Point occupies a stratigraphic position above the Cenomanian marine Clubhouse Formation and below an upper Turonian unnamed marine unit. Contacts between these units are sharp and unconformable. Calcareous nannofossil and palynomorph analyses indicate that the Sunny Point Formation is Turonian.

  13. Forest response and recovery following disturbance in upland forests of the Atlantic Coastal Plain

    PubMed Central

    Schäfer, Karina V. R.; Renninger, Heidi J.; Carlo, Nicholas J.; Vanderklein, Dirk W.

    2014-01-01

    Carbon and water cycling of forests contribute significantly to the Earth's overall biogeochemical cycling and may be affected by disturbance and climate change. As a larger body of research becomes available about leaf-level, ecosystem and regional scale effects of disturbances on forest ecosystems, a more mechanistic understanding is developing which can improve modeling efforts. Here, we summarize some of the major effects of physical and biogenic disturbances, such as drought, prescribed fire, and insect defoliation, on leaf and ecosystem-scale physiological responses as well as impacts on carbon and water cycling in an Atlantic Coastal Plain upland oak/pine and upland pine forest. During drought, stomatal conductance and canopy stomatal conductance were reduced, however, defoliation increased conductance on both leaf-level and canopy scale. Furthermore, after prescribed fire, leaf-level stomatal conductance was unchanged for pines but decreased for oaks, while canopy stomatal conductance decreased temporarily, but then rebounded the following growing season, thus exhibiting transient responses. This study suggests that forest response to disturbance varies from the leaf to ecosystem level as well as species level and thus, these differential responses interplay to determine the fate of forest structure and functioning post disturbance. PMID:25018759

  14. Bacteria in deep coastal plain sediments of Maryland: A possible source of CO2 to groundwater

    NASA Astrophysics Data System (ADS)

    Chapelle, Francis H.; Zelibor, Joseph L., Jr.; Grimes, D. Jay; Knobel, Leroy L.

    1987-08-01

    Nineteen cores of unconsolidated Coastal Plain sediments obtained from depths of 14 to 182 m below land surface near Waldorf, Maryland, were collected and examined for metabolically active bacteria. The age of the sediments cored range from Miocene to Early Cretaceous. Acridine orange direct counts of total (viable and nonviable) bacteria in core subsamples ranged from 108 to 104 bacteria/g of dry sediment. Direct counts of viable bacteria ranged from 106 to 103 bacteria/g of dry sediment. Three cores contained viable methanogenic bacteria, and seven cores contained viable sulfate-reducing bacteria. The observed presence of bacteria in these sediments suggest that heterotrophic bacterial metabolism, with lignitic organic material as the primary substrate, is a plausible source of CO2 to groundwater. However, the possibility that abiotic processes also produce CO2 cannot be ruled out. Estimated rates of CO2 production in the noncalcareous Magothy/Upper Patapsco and Lower Patapsco aquifers based on mass balance of dissolved inorganic carbon, groundwater flow rates, and flow path segment lengths are in the range 10-3 to 10-5 mmol L-1 yr-1. Isotope balance calculations suggest that aquifer-generated CO2 is much heavier isotopically (˜—10 to + 5 per mil) than lignite (˜-24 per mil) present in these sediments. This may reflect isotopic fractionation during methanogenesis and possibly other bacterially mediated processes.

  15. Distribution of total and fecal coliform organisms from septic effluent in selected coastal plain soils.

    PubMed Central

    Reneau, R B; Pettry, D E; Shanholtz, M I; Graham, S A; Weston, C W

    1977-01-01

    Distribution of total and fecal coliform bacteria in three Atlantic coastal plain soils in Virginia were monitored in situ over a 3-year period. The soils studied were Varina, Goldsboro, and Beltsville sandy loams. These and similar soils are found extensively along the populous Atlantic seaboard of the United States. They are considered only marginally suitable for septic tank installation because the restricting soil layers result in the subsequent development of seasonal perched water tables. To determine both horizontal and vertical movement of indicator organisms, samples were collected from piezometers placed at selected distances and depths from the drainfields in the direction of the ground water flow. Large reductions in total and fecal coliform bacteria were noted in the perched ground waters above the restricting layers as distance from the drainfield increased. These restricting soil layers appear to be effective barriers to the vertical movement of indicator organisms. The reduction in the density of the coliform bacteria above the restricting soil layers can probably be attributed to dilution, filtration, and dieoff as the bacteria move through the natural soil systems. PMID:325589

  16. Quality of groundwater in the Coastal Plain Sands aquifer of the Akwa Ibom State, Nigeria

    NASA Astrophysics Data System (ADS)

    Ajayi, Owolabi; Umoh, Obot A.

    1998-08-01

    The Coastal Plain Sands Formation is exploited by most of the population of the Akwa Ibom State in southeastern Nigeria. The aquifer is mostly coarse-grained, pebbly and poorly sorted sands with minor clay intercalations. It is up to 1500 m thick near the coast, but only a few metres thick along the northeastern boundary. Groundwater occurs principally under unconfined conditions. Boreholes penetrating less than 130 m yield over 300 m 3 hr -1. The main groundwater flow direction is seaward from north to south. The probable location of the fresh water-sea water interface is seaward. Forty-two groundwater and two surface water samples were analysed. Groundwater quality meets the WHO standards for potability and is dominated by bicarbonates of Na, Ca and Mg. The Sodium Adsorption Ratio lies between 0.2 and 2.0, indicating that the water is suitable for irrigation. The area has very high annual rainfall exceeding 2000 mm annually. Groundwater recharge should be high, although it is recommended that groundwater levels and quality near the coast be monitored regularly, especially in urban areas with high groundwater abstraction, to detect the onset of sea water intrusion which remains a potential hazard in this area.

  17. Warming-Induced Shrub Expansion and Lichen Decline Across the Tuktoyaktuk Coastal Plain

    NASA Astrophysics Data System (ADS)

    Fraser, R.; Lantz, T. C.; Olthof, I.; Kokelj, S. V.; Sims, R. A.

    2014-12-01

    Recent field and remote sensing studies show that shrub expansion has been widespread in low-Arctic ecosystems. However, there are still uncertainties regarding the extent of these changes, the plant functional groups involved, and the relative importance of climate and disturbance as causes of observed changes. Some authors have suggested that shrub expansion may have caused declines in lichens important for caribou forage, but these changes have not been examined at regional scales. Our research on the Tuktoyaktuk Coastal Plain using 30m resolution Landsat satellite imagery from 1985-2011 and high resolution (1:2000) vertical aerial photographs from 1980 and 2013 shows that shrub expansion has been associated with widespread lichen decline . Our analysis shows that the most likely driver of shrub expansion is a 4°C winter temperature increase over the past 30 years, leading to warmer soils and enhanced supply of growth-limiting nutrients. Natural and human-caused disturbances also stimulated increases in shrub cover, but these effects were limited spatially. Our observations are consistent with plot-scale warming experiments showing reductions in lichen cover from shrub growth, and modeling studies predicting large-scale vegetation shifts in the low-Arctic from climate change. These vegetation changes have implications for caribou forage, wildfire regimes, and permafrost conditions.

  18. Groundwater-derived contaminant fluxes along a channelized Coastal Plain stream

    SciTech Connect

    LaSage, Danita m; Fryar, Alan E; Mukherjee, Abhijit; Sturchio, Neil C; Heraty, Linnea J

    2008-10-01

    Recent studies in various settings across eastern North America have examined the movement of volatile organic compound (VOC) plumes from groundwater to streams, but few studies have addressed focused discharge of such plumes in unlithified sediments. From 1999 through 2002, we monitored concentrations of trichloroethene (TCE) and the non-volatile co-contaminant technetium-99 along Little Bayou Creek, a first -order perennial stream in the Coastal Plain of western Kentucky. Spring flow contributed TCE and technetium-99 to the creek, and TCE concentrations tended to vary with technetium-99 in springs. Contaminant concentrations in stream water fluctuated seasonally, but not always synchronously with stream flow. However, contaminant influxes varied seasonally with stream flow and were dominated by a few springs. Concentrations of O2, NO3⁻, and SO2-4, values of δ37CL in groundwater, and the lack of less-chlorinated ethenes in groundwater and stream water indicated that aerobic biodegradation of TCE was unlikely. Losses of TCE along Little Bayou Creek resulted mainly from volatilization, in contrast to streams receiving diffuse contaminated discharge, where intrinsic bioremediation of VOCs appears to be prevalent.

  19. Presence and absence of bats across habitat scales in the Upper Coastal Plain of South Carolina.

    SciTech Connect

    Ford, W.Mark; Menzel, Jennifer M.; Menzel, Michael A.: Edwards, John W.; Kilgo, John C.

    2006-10-01

    Abstract During 2001, we used active acoustical sampling (Anabat II) to survey foraging habitat relationships of bats on the Savannah River Site (SRS) in the upper Coastal Plain of South Carolina. Using an a priori information-theoretic approach, we conducted logistic regression analysis to examine presence of individual bat species relative to a suite of microhabitat, stand, and landscape-level features such as forest structural metrics, forest type, proximity to riparian zones and Carolina bay wetlands, insect abundance, and weather. There was considerable empirical support to suggest that the majority of the activity of bats across most of the 6 species occurred at smaller, stand-level habitat scales that combine measures of habitat clutter (e.g., declining forest canopy cover and basal area), proximity to riparian zones, and insect abundance. Accordingly, we hypothesized that most foraging habitat relationships were more local than landscape across this relatively large area for generalist species of bats. The southeastern myotis (Myotis austroriparius) was the partial exception, as its presence was linked to proximity of Carolina bays (best approximating model) and bottomland hardwood communities (other models with empirical support). Efforts at SRS to promote open longleaf pine (Pinus palustris) and loblolly pine (P. taeda) savanna conditions and to actively restore degraded Carolina bay wetlands will be beneficial to bats. Accordingly, our results should provide managers better insight for crafting guidelines for bat habitat conservation that could be linked to widely accepted land management and environmental restoration practices for the region.

  20. Application of a multipurpose unequal probability stream survey in the Mid-Atlantic Coastal Plain

    USGS Publications Warehouse

    Ator, S.W.; Olsen, A.R.; Pitchford, A.M.; Denver, J.M.

    2003-01-01

    A stratified, spatially balanced sample with unequal probability selection was used to design a multipurpose survey of headwater streams in the Mid-Atlantic Coastal Plain. Objectives for the survey include unbiased estimates of regional stream conditions, and adequate coverage of unusual but significant environmental settings to support empirical modeling of the factors affecting those conditions. The design and field application of the survey are discussed in light of these multiple objectives. A probability (random) sample of 175 first-order nontidal streams was selected for synoptic sampling of water chemistry and benthic and riparian ecology during late winter and spring 2000. Twenty-five streams were selected within each of seven hydrogeologic subregions (strata) that were delineated on the basis of physiography and surficial geology. In each subregion, unequal inclusion probabilities were used to provide an approximately even distribution of streams along a gradient of forested to developed (agricultural or urban) land in the contributing watershed. Alternate streams were also selected. Alternates were included in groups of five in each subregion when field reconnaissance demonstrated that primary streams were inaccessible or otherwise unusable. Despite the rejection and replacement of a considerable number of primary streams during reconnaissance (up to 40 percent in one subregion), the desired land use distribution was maintained within each hydrogeologic subregion without sacrificing the probabilistic design.

  1. Floodplain geomorphic processes and environmental impacts of human alteration along coastal plain rivers, USA

    USGS Publications Warehouse

    Hupp, C.R.; Pierce, A.R.; Noe, G.B.

    2009-01-01

    Human alterations along stream channels and within catchments have affected fluvial geomorphic processes worldwide. Typically these alterations reduce the ecosystem services that functioning floodplains provide; in this paper we are concerned with the sediment and associated material trapping service. Similarly, these alterations may negatively impact the natural ecology of floodplains through reductions in suitable habitats, biodiversity, and nutrient cycling. Dams, stream channelization, and levee/canal construction are common human alterations along Coastal Plain fluvial systems. We use three case studies to illustrate these alterations and their impacts on floodplain geomorphic and ecological processes. They include: 1) dams along the lower Roanoke River, North Carolina, 2) stream channelization in west Tennessee, and 3) multiple impacts including canal and artificial levee construction in the central Atchafalaya Basin, Louisiana. Human alterations typically shift affected streams away from natural dynamic equilibrium where net sediment deposition is, approximately, in balance with net erosion. Identification and understanding of critical fluvial parameters (e.g., stream gradient, grain-size, and hydrography) and spatial and temporal sediment deposition/erosion process trajectories should facilitate management efforts to retain and/or regain important ecosystem services. ?? 2009, The Society of Wetland Scientists.

  2. Hydrochemical processes regulating groundwater quality in the coastal plain of Al Musanaah, Sultanate of Oman

    NASA Astrophysics Data System (ADS)

    Askri, Brahim

    2015-06-01

    The Al Batinah coastal aquifer is the principal source of water in northwestern Oman. The rainfall in the Jabal Al Akhdar mountain region recharges the plain with freshwater that allowed agricultural and industrial activities to develop. The over-exploitation of this aquifer since the 1970s for municipal, agricultural and industrial purposes, excessive use of fertilizers in agriculture and leakage from septic tanks led to the deterioration of groundwater quality. The objective of this study was to investigate the hydrochemical processes regulating the groundwater quality in the southwestern section of Al Batinah. From available data collected during the spring of 2010 from 58 wells located in Al Musanaah wilayat, it was determined that the groundwater salinity increased in the direction from the south to the north following the regional flow direction. In addition to salinisation, the groundwater in the upstream and intermediate regions was contaminated with nitrate, while groundwater in the downstream region was affected by fluoride. Calculations of ionic ratios and seawater fraction indicated that seawater intrusion was not dominant in the study area. The primary factors controlling the groundwater chemistry in Al Musanaah appear to be halite dissolution, reverse ion exchange with clay material and anthropogenic pollutants.

  3. Aquifers in Cretaceous rocks of the central Coastal Plain of North Carolina

    USGS Publications Warehouse

    Winner, M.D.; Lyke, W.L.

    1989-01-01

    Aquifers in rocks of Cretaceous age are the major source of groundwater for public supplies in the central Coastal Plain. These aquifers consist of sand, gravel, and limestone beds of the Peedee, Black Creek, and the upper and lower Cape Fear aquifers, each separated by a confining unit composed of clay and silt beds. The aquifers and confining units (1) rest upon crystalline basement rocks; (2) dip and thicken to the east-southeast; and (3) are overlain by younger aquifers and confining units in deposits of Quaternary and Tertiary age. The top of the uppermost aquifer, the Peedee, ranges from 122 ft above to 595 ft below sea level. The maximum thickness of all aquifers and confining units in Cretaceous rocks is more than 1,600 ft. Aquifers and confining units were defined and correlated for this report using 125 geophysical logs and accompanying drillers ' logs, water level data, and water quality information regarding chloride concentrations in water. This analysis allowed the construction of seven hydrogeologic cross sections that depict the continuity of all the aquifers and confining units. These cross sections also show water levels and chloride concentrations in water from various test intervals and describe where chloride concentration in water exceeds 250 mg/L within each aquifer. Detailed maps of each Cretaceous aquifer show altitude of its top, thickness, areas of selected sand percentages, transition zones from fresh to saltwater, and the thickness of the confining unit.

  4. Phyllosilicate and hydrated silica detections in the knobby terrains of Acidalia Planitia, northern plains, Mars

    NASA Astrophysics Data System (ADS)

    Pan, L.; Ehlmann, B. L.

    2014-03-01

    Here we report detections of Fe/Mg phyllosilicates and hydrated silica in discrete stratigraphic units within the knobby terrains of Acidalia Planitia made using data acquired by Compact Reconnaissance Imaging Spectrometer for Mars. Fe/Mg phyllosilicates are detected in knobs that were eroded during southward retreat of the dichotomy boundary. A second later unit, now eroded to steep-sided platforms embaying the knobs, contains hydrated silica, which may have formed via localized vapor weathering, thin-film leaching, or transient water that resulted in surface alteration. These are then overlain by smooth plains with small cones, hypothesized to be mud volcanoes which previous studies have shown to have no hydrated minerals. In spite of Acidalia's location within the putative northern ocean, collectively, the data record a history of aqueous processes much like that in the southern highlands with progressively less intensive aqueous chemical alteration from the Noachian to Amazonian.

  5. The Saga of Leafy Spurge (Euphorbia esula) in the Northern Great Plains

    USGS Publications Warehouse

    Larson, Diane L.

    2009-01-01

    Leafy spurge (Euphorbia esula L.) is an invasive Eurasian perennial introduced into the United States as a contaminant of crop seed in the 1880s and 1890s. It typically forms monocultures in rangeland and natural areas of the northern Great Plains where, because of the latex that occurs in all parts of the plant, it is not consumed by naturally occurring herbivores. U.S. Geological Survey (USGS) scientists and their collaborators have been studying leafy spurge at Theodore Roosevelt National Park (TRNP) and at Arrowwood and Tewaukon National Wildlife Refuges in North Dakota since 1998. Study findings have been published in Larson and Grace (2004), Larson and others (2006), Larson and others (2007), Jordan and others (2008), and Larson and others (2008). This fact sheet summarizes that body of research.

  6. Selected hydrogeologic data from the Northern Great Plains area of Montana

    USGS Publications Warehouse

    Levings, Gary W.

    1981-01-01

    Selected hydrologic data have been used in a 4-year study of aquifers of Cenozoic and Mesozoic age in the northern Great Plains to define the hydrologic system and to generate hydrologic maps. Records of 6,754 wells and 188 springs are tabulated in the report. The well data include site location, county, date completed, depth of well, casing diameter, type of lift, use of water, principal aquifer, altitude of land surface, water level, discharge, specific capacity, specific conductance, and water temperature. The spring data include site location, county, use of water, principal aquifer, altitude of land surface, type of spring, discharge, date discharge measured, specific conductance, and water temperature. Locations of the wells and springs are shown on a map at a scale of 1:1,000,000. (USGS)

  7. Cadmium and associated metals in soils and sediments of wetlands across the Northern Plains, USA.

    PubMed

    Jacob, Donna L; Yellick, Alex H; Kissoon, La Toya T; Asgary, Aida; Wijeyaratne, Dimuthu N; Saini-Eidukat, Bernhardt; Otte, Marinus L

    2013-07-01

    Cadmium, present locally in naturally high concentrations in the Northern Plains of the United States, is of concern because of its toxicity, carcinogenic properties, and potential for trophic transfer. Reports of natural concentrations in soils are dominated by dryland soils with agricultural land uses, but much less is known about cadmium in wetlands. Four wetland categories - prairie potholes, shallow lakes, riparian wetlands, and river sediments - were sampled comprising more than 300 wetlands across four states, the majority in North Dakota. Cd, Zn, P, and other elements were analyzed by ICP-MS, in addition to pH and organic matter (as loss-on-ignition). The overall cadmium content was similar to the general concentrations in the area's soils, but distinct patterns occurred within categories. Cd in wetland soils is associated with underlying geology and hydrology, but also strongly with concentrations of P and Zn, suggesting a link with agricultural land use surrounding the wetlands. PMID:23583941

  8. Prevalence of substance use among white and American Indian young adolescents in a Northern Plains state.

    PubMed

    Spear, Suzanne; Longshore, Douglas; McCaffrey, Daniel; Ellickson, Phyllis

    2005-03-01

    This article documents the prevalence of self-reported substance use among White and American Indian adolescents enrolled in seventh grade (ages 12 through 13) in 1997 in a Northern Plains state. Data were collected by self-administered questionnaire preceding adolescents' participation in a randomized field trial of Project Alert, a seventh and eighth grade substance use prevention curriculum. Rates of lifetime and past-month use of cigarettes and marijuana were higher among American Indians than among Whites of the same gender. American Indian girls exceeded American Indian boys as well as White girls and White boys on lifetime and past-month use of cigarettes and marijuana as well as alcohol and inhalants; differences on cigarette and inhalant use reached statistical significance. These findings add to the sparse literature on substance use among adolescents as young as 12 through 13 years old and underscore the importance of examining gender-specific substance use patterns early in adolescence.

  9. Selected drill-stem-test data from the Northern Great Plains area of Montana

    USGS Publications Warehouse

    Levings, Gary W.

    1981-01-01

    Selected drill-stem-test data were collected for use in the hydrologic analysis of aquifers in the northern Great Plains area of Montana. To supplement existing data defining the potentiometric surface of various aquifers, shut-in pressures recorded during drill-stem tests of oil and gas test wells were used to calculate the altitude of the potentiometric surface. The transmissivity of the aquifers also was calculated if sufficient data existed. Records for 627 drill-stem tests from 523 wells are tabulated in this report. Data include well location, well name, formation tested, well epth, tested interval, date tested, test number, flow period, transmissivity, shut-in pressure, and altitude of water surface. Locations of the wells are shown on a map at a scale of 1:1,000,000. (USGS)

  10. Teen Pregnancy Prevention Program Recommendations from Urban and Reservation Northern Plains American Indian Community Members

    PubMed Central

    McMahon, Tracey R.; Hanson, Jessica D.; Griese, Emily R.; Kenyon, DenYelle Baete

    2015-01-01

    Despite declines over the past few decades, the United States has one of the highest rates of teen pregnancy compared to other industrialized nations. American Indian youth have experienced higher rates of teen pregnancy compared to the overall population for decades. Although it's known that community and cultural adaptation enhance program effectiveness, few teen pregnancy prevention programs have published on recommendations for adapting these programs to address the specific needs of Northern Plains American Indian youth. We employed a mixed-methods analysis of 24 focus groups and 20 interviews with a combined total of 185 urban and reservation-based American Indian youth and elders, local health care providers, and local school personnel to detail recommendations for the cultural adaptation, content, and implementation of a teen pregnancy prevention program specific to this population. Gender differences and urban /reservation site differences in the types of recommendations offered and the potential reasons for these differences are discussed. PMID:26550005

  11. Effects of 50-years unmanaged water resource in Southern Tuscany coastal plains (Italy)

    NASA Astrophysics Data System (ADS)

    Rossetto, R.; Debolini, M.; Galli, M. A.; Bonari, E.

    2012-04-01

    Southern Tuscany coastal plains show favorable conditions from the agro-pedoclimatic point of view and are characterized by a relevant touristic flux, being one of the most popular seaside resort. In such conditions, water resource is one of the main assets: disregarded water management may then lead to severe consequences for the development and growth of the socio-economic system and agro-ecosystem maintenance. During the 1960 decade, ante-II World War projects for hydropower production (i.e. the Farma-Merse scheme) were rearranged in favor of irrigation and the enhancement of crop production. Storage of about 110 Mm3 was thought to provide water for about 35000 Ha. At the end of the 70's, mass tourism began to take place in coastal areas giving rise to water access conflicts between agriculture and the touristic infrastructure. Being none of these projects realized, the increasing demand for drinking water was satisfied by tapping the Mount Amiata aquifer for 70% of the annual demand, and the remaining 30% coming from local aquifers. Due to the absence of rainfall and then of surface water flow in streams at the end of the spring and during the summer period, irrigation requirements were also satisfied by means of groundwater withdrawals. As a consequence of overdraft, aquifer salinisation started in most of the coastal areas (Regione Toscana, 1995; Bianchi et al., 2011; Scuola Superiore Sant'Anna, 2011). All this happened in the completely absence of controls on groundwater abstractions. In the early 90's, the Commissione Leon (Regione Toscana, 1991) re-analyzed the largest dam projects and presented as feasible a conjunctive use of surface water stored in artificial basins (to be built) and by planned and controlled local aquifers. Anyway, political issues and environmental concerns halted any kind of realization, so that today the largest basin in the area is private, it dates back to 1930, and it shows a reduced capacity of about 1.8 Mm3, instead than the

  12. Potential effects of anthropogenic greenhouse gases on avian habitats and populations in the northern Great Plains

    USGS Publications Warehouse

    Larson, Diane L.

    1994-01-01

    Biotic response to the buildup of greenhouse gases in Earth's atmosphere is considerably more complex than an adjustment to changing temperature and precipitation. The fertilization effect carbon dioxide has on some plants, the impact UVB radiation has on health and productivity of organisms, and the resulting changes in competitive balance and trophic structure must also be considered. The intent of this paper is to review direct and indirect effects of anthropogenic greenhouse gases on wildlife, and to explore possible effects on populations of birds and their habitats in the northern Great Plains.Many of the potential effects of increasing greenhouse gases, such as declining plant nutritional value, changes in timing of insect emergence, and fewer and saltier wetlands, foreshadow a decline in avian populations on the Great Plains. However, other possible effects such as increased drought resistance and water use efficiency of vegetation, longer growing seasons, and greater overall plant biomass promise at least some mitigation. Effects of multiple simultaneous perturbations such as can be expected under doubled carbon dioxide scenarios will require substantial basic research to clarify.

  13. Workshop on the Martian Northern Plains: Sedimentological, periglacial, and paleoclimatic evolution

    NASA Technical Reports Server (NTRS)

    Kargel, J. S. (Editor); Parker, T. J. (Editor); Moore, J. M. (Editor)

    1993-01-01

    The penultimate meeting in the Mars Surface and Atmosphere Through Time (MSATT) series of workshops was held on the campus of the University of Alaska in Fairbanks, Alaska, 12-13 Aug. 1993. This meeting, entitled 'The Martian Northern Plains: Sedimentological, Periglacial, and Paleoclimatic Evolution,' hosted by the Geophysical Institute at the University of Alaska, was designed to help foster an exchange of ideas among researchers of the Mars science community and the terrestrial glacial and periglacial science community. The technical sessions of the workshop were complemented by field trips to the Alaska Range and to the Fairbanks area and a low-altitude chartered overflight to the Arctic Costal Plain, so that, including these trips, the meeting lasted from 9-14 Aug. 1993. The meeting, field trips, and overflight were organized and partially funded by the Lunar and Planetary Institute and the MSATT Study Group. The major share of logistical support was provided by the Publications and Program Services Department of the Lunar and Planetary Institute. The workshop site was selected to allow easy access to field exposures of active glaciers and glacial and periglacial landforms. In all, 25 scientists attended the workshop, 24 scientists (plus 4 guests and the meeting coordinator) participated in the field trips, and 18 took part in the overflight. This meeting reaffirmed the value of expertly led geologic field trips conducted in association with topical workshops.

  14. Insights into the stratigraphy of Mars' northern plains from impact crater mineralogy

    NASA Astrophysics Data System (ADS)

    Pan, Lu; Ehlmann, Bethany; Carter, John; Ernst, Carolyn; CRISM Team

    2016-10-01

    The northern lowland of Mars has an ancient basement, buried underneath widespread Hesperian lavas and outflow channel sediments, and may have recorded geologic and aqueous activity related to global climate, e.g., the existence of a northern ocean. To better understand the geologic record of this depositional basin, we conducted a comprehensive survey of the mineralogy of northern plains impact craters, using 1905 images covering 689 impact craters, acquired by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) onboard the Mars Reconnaissance Orbiter (MRO). Mafic minerals are detected in 33% of all the craters, and hydrated minerals in 10% of the craters. Thus, though the northern plains surface is relatively spectrally homogeneous, the subsurface is spectrally diverse and includes a set of mafic (olivine and pyroxene) and hydrated minerals (Fe/Mg phyllosilicate, chlorite/prehnite, hydrated silica etc.) similar to the southern highlands. The distribution of hydrated minerals, especially Fe/Mg phyllosilicates, is more concentrated in large craters, while mafic minerals are relatively insensitive to crater size. This is consistent with a deeper origin for hydrated minerals compared to mafic minerals, or alternatively the post-impact formation of hydrated minerals due to impact-induced hydrothermal alteration only in the largest craters. Under the assumption of excavation from depth, we calculate the possible origin of these hydrated minerals to be -5000 ~ -6000 m relative to the global Mars Orbital Laser Altimeter (MOLA) datum, possibly representing the ancient basement buried by 1-2 km layer with mafic minerals. In contrast, the mafic materials are derived from only ~200 m deep. We also delineate several distinct topographic and geographic provinces. The large number of mafic mineral detections in Chryse Planitia probably indicates the influence of a local volcanic source; and Arcadia and Amazonis Planitiae probably have been resurfaced more recently

  15. Attitudes toward HPV Vaccination among Rural American Indian Women and Urban White Women in the Northern Plains

    ERIC Educational Resources Information Center

    Buchwald, Dedra; Muller, Clemma; Bell, Maria; Schmidt-Grimminger, Delf

    2013-01-01

    Background: American Indian women in the Northern Plains have a high incidence of cervical cancer. We assessed attitudes on vaccination against human papillomavirus (HPV) in this population. Method: In partnership with two tribal communities, from 2007 to 2009, we surveyed women 18 to 65 years old attending two reservation clinics ("n" =…

  16. Chryse Planitia region, Mars: Channeling history, flood-volume estimates, and scenarios for bodies of water in the northern plains

    NASA Technical Reports Server (NTRS)

    Rotto, Susan L.; Tanaka, Kenneth L.

    1992-01-01

    The Chryse Planitia region of Mars includes several outflow channels that debouched into a single basin. Here we evaluate possible volumes and areal extents of standing bodies of water that collected in the northern lowland plains, based on evidence provided by topography, fluvial relations, and channel chronology and geomorphology.

  17. Long-term agroecosystem research on northern Great Plains mixed-grass prairie near Mandan, North Dakota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 1915, a stocking rate experiment was started on 101 ha of native mixed-grass prairie at the Northern Great Plains Research Laboratory (NGPRL) near Mandan, ND (100.9132 N 46.7710 W). Here, we document the origin, evolution, and scientific outcomes from this long-term experiment. Four pastures of 1...

  18. 77 FR 67442 - Northern Plains Railroad, Inc.-Temporary Trackage Rights Exemption-Soo Line Railroad Company

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-09

    ... Surface Transportation Board Northern Plains Railroad, Inc.--Temporary Trackage Rights Exemption--Soo Line... Docket No. FD 35690, must be filed with the Surface Transportation Board, 395 E Street SW., Washington... are available on our Web site at www.stb.dot.gov . Decided: November 5, 2012. By the Board,...

  19. Site, environmental and airflow characteristics for mono-slope beef cattle facilities in the Northern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In conjunction with an emission monitoring study, long-term airflow and environmental data were collected from four regional producer-owned and -operated mono-slope beef cattle facilities in the Northern Great Plains. The barns were oriented east-west, with approximate dimensions of an 8-m south wal...

  20. Ammonia and hydrogen sulfide concentration and emission patterns for mono-slope beef cattle facilities in the Northern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mono-slope buildings are one type of roofed and confined cattle feeding facility that is becoming increasingly popular in the Northern Great Plains. In response to questions and concerns about the barn environment and air quality regulations, the objectives of this study were to determine gas concen...

  1. Warming in the Northern Great Plains: Impact and Response in the Agricultural Community

    NASA Astrophysics Data System (ADS)

    Seielstad, G.; Welling, L.

    2001-12-01

    Because agricultural production in the northern Great Plains contributes significantly to both domestic and international markets the impacts of climate change, as well as the response strategies undertaken by the region's residents, will be felt throughout the nation and the world. The national assessment of Climate Change Impacts on the United States has pointed out that the northern Great Plains could be favored under global warming scenarios in that future climates could increase crop yields [Reilly, Tubiello, McCarl, and Melillo, 2000]. Yield, though, is only one measure of the consequences that rapid warming might have on this region. Challenges to a changing environment must be met by people. Producers here, as well as in other agricultural regions, already function under multiple stresses that are completely separate from climate variability and change. These include falling prices, globalization, complex trade relations, changes in government policy, environmental constraints, and changing consumer preferences. It is against the backdrop of these stresses that pending climate changes must be considered. Interactions with stakeholders through the NGP Assessment workshops, held in 1997 and 1999, identified key concerns and outlined potential mitigation and optimization strategies for the consequences of climate change in this region. We will present examples of the successful implementation of some of these strategies: actions that farmers and ranchers are employing to 1) increase their awareness of environmental factors, 2) enhance their ability to respond quickly to environmental change, 3) improve their economic returns, and 4) decrease environmental degradation. We will also highlight other "no regrets" actions and policies under consideration that may offer individual producers greater flexibility in their management decisions and provide a healthier environment for society at large.

  2. Adaptive data-driven models for estimating carbon fluxes in the Northern Great Plains

    USGS Publications Warehouse

    Wylie, B.K.; Fosnight, E.A.; Gilmanov, T.G.; Frank, A.B.; Morgan, J.A.; Haferkamp, Marshall R.; Meyers, T.P.

    2007-01-01

    Rangeland carbon fluxes are highly variable in both space and time. Given the expansive areas of rangelands, how rangelands respond to climatic variation, management, and soil potential is important to understanding carbon dynamics. Rangeland carbon fluxes associated with Net Ecosystem Exchange (NEE) were measured from multiple year data sets at five flux tower locations in the Northern Great Plains. These flux tower measurements were combined with 1-km2 spatial data sets of Photosynthetically Active Radiation (PAR), Normalized Difference Vegetation Index (NDVI), temperature, precipitation, seasonal NDVI metrics, and soil characteristics. Flux tower measurements were used to train and select variables for a rule-based piece-wise regression model. The accuracy and stability of the model were assessed through random cross-validation and cross-validation by site and year. Estimates of NEE were produced for each 10-day period during each growing season from 1998 to 2001. Growing season carbon flux estimates were combined with winter flux estimates to derive and map annual estimates of NEE. The rule-based piece-wise regression model is a dynamic, adaptive model that captures the relationships of the spatial data to NEE as conditions evolve throughout the growing season. The carbon dynamics in the Northern Great Plains proved to be in near equilibrium, serving as a small carbon sink in 1999 and as a small carbon source in 1998, 2000, and 2001. Patterns of carbon sinks and sources are very complex, with the carbon dynamics tilting toward sources in the drier west and toward sinks in the east and near the mountains in the extreme west. Significant local variability exists, which initial investigations suggest are likely related to local climate variability, soil properties, and management.

  3. Brown-headed cowbird, Molothrus ater, parasitism and abundance in the northern Great Plains

    USGS Publications Warehouse

    Igl, L.D.; Johnson, D.H.

    2007-01-01

    The Brown-headed Cowbird (Molothrus ater) reaches its highest abundance in the northern Great Plains, but much of our understanding of cowbird ecology and host-parasite interactions comes from areas outside of this region. We examine cowbird brood parasitism and densities during two studies of breeding birds in the northern Great Plains during 1990-2006. We found 2649 active nests of 75 species, including 746 nonpasserine nests and 1902 passerine nests. Overall, <1% of non-passerine nests and 25% of passerine nests were parasitized by Brown-headed Cowbirds. Although the overall frequency of cowbird parasitism in passerine nests in these two studies is considered moderate, the frequency of multiple parasitism among parasitized nests was heavy (nearly 50%). The mean number of cowbird eggs per parasitized passerine nest was 1.9 ?? 1.2 (SD; range = 1-8 cowbird eggs). The parasitism rates were 9.5% for passerines that typically nest in habitats characterized by woody vegetation, 16.4% for grassland-nesting passerines, 4.7% for passerines known to consistently eject cowbird eggs, and 28.2% for passerines that usually accept cowbird eggs. The Red-winged Blackbird (Agelaius phoeniceus) was the most commonly parasitized species (43.1 % parasitism, 49.6% multiple parasitism, 71.2% of all cases of parasitism). Passerine nests found within areas of higher female cowbird abundance experienced higher frequencies of cowbird parasitism than those found in areas of lower female cowbird abundance. Densities of female cowbirds were positively related to densities and richness of other birds in the breeding bird community.

  4. Stratigraphic correlation of oligocene marginal marine and fluvial deposits across the middle and lower coastal plain, South Carolina

    NASA Astrophysics Data System (ADS)

    Katuna, Michael P.; Geisler, Jonathan H.; Colquhoun, Donald J.

    1997-02-01

    The age and stratigraphic relationship of the Upland Unit, which crops out at the Savannah River Site near Barnwell, South Carolina has been the focus of many recent investigations. The geological interpretation of the Upland Unit is particularly significant since it serves as the upper confining unit used in the storage of lowlevel radioactive wastes at the Savannah River Site. The age and regional extent of the unit is also important in providing an accurate geological map of the upper coastal plain. The age of the Upland Unit has been in dispute because it lacks datable material. Extensive coring and seismic studies have been conducted to investigate the occurrence and regional distribution of this stratigraphic unit. Lithologically, the Upland Unit consists of poorly sorted, clayey to silty, medium- to coarse-grained sands and gravels of fluvial origin. Similar quartz gravel deposits have been reported from the Chandler Bridge Formation near Charleston, South Carolina. These 'Upland-like' gravels are the oldest gravels of Tertiary age reported in the lower coastal plain. The Chandler Bridge Formation is interpreted as a downdip marginal marine facies of an extensive fluvial drainage system which once extended from the upper to the lower coastal plain of South Carolina. Where present, the Chandler Bridge Formation is overlain by nodular phosphate deposits of the Edisto Formation (late Oligocene to early Miocene), and underlain by the Ashley Formation of late Oligocene age. Pollen and dinoflagellate analyses conducted on sediment samples also confirm a late Chattian age for the Chandler Bridge Formation. Consequently, if quartz clasts in the Chandler Bridge Formation represent fluvial transport of Upland Unit gravels from the upper coastal plain which seems likely, then the age of the Upland Unit can be no younger than late Oligocene. Lithologic and stratigraphic analyses suggest that the Upland Unit and the Chandler Bridge Formation are correlative and represent

  5. Effects of infiltration chemistry on the mobilization potential of mercury (Hg) in soils from the New Jersey Coastal Plain

    SciTech Connect

    MacLeod, C.; Taylor, E. . Dept. of Geological and Geophysical Sciences)

    1992-01-01

    Mercury concentrations in ground water exceeding the USEPA maximum contaminant level of 2 [mu]g/l have been found in wells 60 to 100 feet deep in the Kirkwood-Cohansey Aquifer System of the New Jersey Coastal Plain. The aquifer is a sand and gravel aquifer consisting primarily of quartz with minor amounts of biotite, plagioclase feldspars and ilmenite. This is the shallowest aquifer system in the NJ Coastal Plain and is unconfined over much of central and southern NJ. Soils on these aquifer sediments are quartz-rich with poorly developed A[sub 0] and B horizons. These are weakly-buffered acid soils with a pH ranging from 4.0 to 5.5, and little or no capacity for metal retention. Mercury contaminated soils from Gloucester County, NJ were used to determine the mobilization potential of Hg by run-off solutions containing 0.02M NaCl and 0.02M CaCl[sub 2] salt solutions that approximate diluted highway de-icing salts; and by a simulated acid rain solution of pH 4.0. These experimental data are in agreement with previous studies suggesting that chlorides from de-icing salts are capable of mobilizing Hg. However, the mobilization potential of Hg in coastal plain soils attributable to acid rain is much greater (approx. 1 to 2 orders of magnitude) than that estimated for de-icing salts. These data also indicate that in NJ Coastal Plain soils Hg mobilization may be controlled by colloidal movement during an infiltration event. Mobilization of Hg by the simulated acid rain solution was found to coincide with the resuspension of Fe and Al colloids, while no colloidal movement was found with either of the salt solutions. Thus Hg sorbed to Fe and Al colloids in NJ Coastal Plain soils is more likely to be mobilized by infiltration of acidic rain water or fluctuating acidic ground water than by highway de-icing salts.

  6. Simulation of ground-water flow and movement of the freshwater-saltwater interface in the New Jersey coastal plain

    USGS Publications Warehouse

    Pope, Daryll A.; Gordon, Alison D.

    1999-01-01

    The confined aquifers of the New Jersey Coastal Plain are sands that range in thickness from 50 to 600 feet and are separated by confining units. The confining units are composed of silts and clays that range in thickness from 500 to 1,000 feet. The aquifers are recharged by precipitation on their outcrop areas. This water then flows laterally downdip and vertically to the deeper confined aquifers. The confined aquifers ultimately discharge to the Raritan and Delaware Bays and to the Atlantic Ocean. In 1988, ground-water withdrawals from confined and unconfined New Jersey Coastal Plain aquifers were approximately 345 million gallons per day, more than 75 percent of which was pumped from the confined aquifers. These withdrawals have created large cones of depression in several Coastal Plain aquifers near populated areas, particularly in Camden and Monmouth Counties. The continued decline of water levels in confined aquifers can cause saltwater intrusion, reduce stream discharge near the outcrop areas, and threaten the quality of the ground-water supply. SHARP, a quasi-three-dimensional finite-difference computer model that can simulate freshwater and saltwater flow, was used to simulate the ground-water flow system in the New Jersey Coastal Plain, including the location and movement of the freshwater-saltwater interface in nine aquifers and eight intervening confining units. The freshwater-saltwater interface is defined as the hypothetical line seaward of which the chloride concentration is equal to or greater than 10,000 milligrams per liter. Model simulations were used to estimate the location and movement of the freshwater-saltwater interface resulting from (1) eustatic sea-level changes over the past 84,000 years, (2) ground-water withdrawals from 1896 through 1988, (3) and future ground-water withdrawals from 1988 to 2040 from Coastal Plain aquifers. Simultion results showed that the location and movement of the freshwater-saltwater interface are more dependent

  7. Paleoclimatic modeling and phylogeography of least killifish, Heterandria formosa: insights into Pleistocene expansion-contraction dynamics and evolutionary history of North American Coastal Plain freshwater biota

    PubMed Central

    2013-01-01

    Background Climatic and sea-level fluctuations throughout the last Pleistocene glacial cycle (~130-0 ka) profoundly influenced present-day distributions and genetic diversity of Northern Hemisphere biotas by forcing range contractions in many species during the glacial advance and allowing expansion following glacial retreat ('expansion-contraction’ model). Evidence for such range dynamics and refugia in the unglaciated Gulf-Atlantic Coastal Plain stems largely from terrestrial species, and aquatic species Pleistocene responses remain relatively uninvestigated. Heterandria formosa, a wide-ranging regional endemic, presents an ideal system to test the expansion-contraction model within this biota. By integrating ecological niche modeling and phylogeography, we infer the Pleistocene history of this livebearing fish (Poeciliidae) and test for several predicted distributional and genetic effects of the last glaciation. Results Paleoclimatic models predicted range contraction to a single southwest Florida peninsula refugium during the Last Glacial Maximum, followed by northward expansion. We inferred spatial-population subdivision into four groups that reflect genetic barriers outside this refuge. Several other features of the genetic data were consistent with predictions derived from an expansion-contraction model: limited intraspecific divergence (e.g. mean mtDNA p-distance = 0.66%); a pattern of mtDNA diversity (mean Hd = 0.934; mean π = 0.007) consistent with rapid, recent population expansion; a lack of mtDNA isolation-by-distance; and clinal variation in allozyme diversity with higher diversity at lower latitudes near the predicted refugium. Statistical tests of mismatch distributions and coalescent simulations of the gene tree lent greater support to a scenario of post-glacial expansion and diversification from a single refugium than to any other model examined (e.g. multiple-refugia scenarios). Conclusions Congruent results from diverse data

  8. Geomorphology of the 2007 Phoenix Mission Landing Sites in the Northern Plains of Mars

    NASA Astrophysics Data System (ADS)

    Seelos, K. D.; Arvidson, R. E.; Golombek, M.; Parker, T.; Tamppari, L.; Smith, P.

    2005-12-01

    In 2008, the Phoenix lander will touch down in the northern plains of Mars to sample and characterize near surface and underlying ice-rich soils, gather meteorological data, and provide insight into the evolution of the surrounding landscape. Three regions from 65 to 72 N and (A) 250-270E, (B) 120-140E, and (C) 65-85E that meet both engineering and scientific constraints were chosen for concentrated acquisition of remote data to support landing site selection. Smaller areas (150x75 km) within these regions devoid of large craters or other hazards were selected as potential landing sites; center coordinates for these targeted areas are (A) 68N, 260E, (B) 67.5N, 130E, and (C) 70N, 80E. MOLA topographic data along with MOC imagery and THEMIS 36m/pixel visible, 18m/pixel visible, and ~100m/pixel infrared data are utilized to produce geomorphologic maps at 36m/pixel for the larger regions and 18m/pixel for the targeted sites. All regions are dominated by intercrater plains units, with the plains in regions B and C comprised of slightly elevated, multiple kilometer-scale polygonal blocks surrounded or infilled by finer-grained material. The plains unit of region A lacks large polygons, instead exhibiting a smooth to mottled appearance. Patterned ground is ubiquitous throughout all regions. The characteristic dimpled texture of "basketball" terrain is most common, being superposed on the large polygons in regions B and C, and often organized into stripes with orientations partially controlled by local slopes. Small-scale polygonal ground is also observed usually in association with crater ejecta. Craters throughout all regions appear highly degraded, with most small craters (< 1km) remarkably worn with little or no rim definition and ejecta present only as a faint dark halo. Larger craters frequently exhibit pedestal-style ejecta. The style and state of landform degradation and the consistent presence of patterned ground throughout all regions suggests the long

  9. Study of the United States coal resources. [Appalachian Plateau, Interior Basins, Gulf Coastal Plain, Rocky Mountain Basins, High Plains, North Alaska

    SciTech Connect

    Ferm, J.C.; Muthig, P.J.

    1982-09-15

    The objectives of this study were: (1) the identification of geologically significant coal resources for the United States, including Alaska; and (2) the preparation of statistically controlled tonnage estimates for each resource type. Particular emphasis was placed on the identification and description of coals in terms of seam thickness, inclination, depth of cover, discontinuities caused by faulting and igneous intrusion, and occurrence as isolated or multiseam deposits. The national resource was organized into six major coal provinces: the Appalachian Plateau, the Interior Basins, the Gulf Coastal Plain, the Rocky Mountain Basins, the High Plains, and North Alaska. Total coal tonnage for a subarea was estimated from an analysis of the cumulative coal thickness derived from borehole or surface section records and subsequently categorized in terms of seam thickness, dip, overburden, multiseam proportions, coal quality, and tonnage impacted by severe faulting and igneous intrusions. Results indicate an aggregate resource in place of 11.6 trillion tons, of which North Alaska accounts for 3.5 trillion tons of subbituminous and bituminous coal; the Rocky Mountains, 2.2 trillion tons of bituminous and subbituminous deposits; and the Gulf Coast, 3.8 trillion tons of lignites. The Appalachian Plateau and Interior Basins are estimated to contain slightly less than 1 trillion tons each of bituminous coal, and the High Plains slightly more than 0.5 trillion tons of lignite. The Appalachian Plateau and Interior Basins are estimated to contain slightly less than 1 trillion tons each, and the High Plains Province is estimated to contain a bit more than 0.5 trillion tons. The implications of the results for research on advanced mining systems are discussed. 27 figures, 25 tables.

  10. Mercury Enrichment in Sediments of the Coastal Area of Northern Latium, Italy.

    PubMed

    Scanu, Sergio; Piazzolla, Daniele; Frattarelli, Francesco Manfredi; Mancini, Emanuele; Tiralongo, Francesco; Brundo, Maria Violetta; Tibullo, Daniele; Pecoraro, Roberta; Copat, Chiara; Ferrante, Margherita; Marcelli, Marco

    2016-05-01

    The purpose of this study was to evaluate the extent of the Hg geochemical anomaly arising in the Amiata and Tolfa complex to the coastal area of northern Latium and to examine the possible influence on this area by the Mignone River, and by the small coastal basins, which are characterized by both previous mining activities and decades of past industrial impact. The results confirm the extension of the anomaly of concentrations of Hg in the coastal area of northern Latium, with the northern sector influenced by the contributions of the Fiora and Mignone Rivers and the southern sector influenced by the contributions of minor basins. The results show high values of the Adverse Effect Index throughout the considered area and highlight the need for further investigation in order to assess the impact of human activities on the present and past values of Hg in marine sediments.

  11. Mercury Enrichment in Sediments of the Coastal Area of Northern Latium, Italy.

    PubMed

    Scanu, Sergio; Piazzolla, Daniele; Frattarelli, Francesco Manfredi; Mancini, Emanuele; Tiralongo, Francesco; Brundo, Maria Violetta; Tibullo, Daniele; Pecoraro, Roberta; Copat, Chiara; Ferrante, Margherita; Marcelli, Marco

    2016-05-01

    The purpose of this study was to evaluate the extent of the Hg geochemical anomaly arising in the Amiata and Tolfa complex to the coastal area of northern Latium and to examine the possible influence on this area by the Mignone River, and by the small coastal basins, which are characterized by both previous mining activities and decades of past industrial impact. The results confirm the extension of the anomaly of concentrations of Hg in the coastal area of northern Latium, with the northern sector influenced by the contributions of the Fiora and Mignone Rivers and the southern sector influenced by the contributions of minor basins. The results show high values of the Adverse Effect Index throughout the considered area and highlight the need for further investigation in order to assess the impact of human activities on the present and past values of Hg in marine sediments. PMID:26994618

  12. Radiative characteristics of fog over the Indo-Gangetic Plains during northern winter

    NASA Astrophysics Data System (ADS)

    Sathiyamoorthy, V.; Arya, R.; Kishtawal, C. M.

    2016-09-01

    The Indo-Gangetic plains (IGP), spread across northern parts of India, Pakistan and Bangladesh is a hot-spot for fog formation during northern winter. The unavailability of long-term fog data over the IGP from any space based platform incites the utilization of monthly International Satellite Cloud Climatology Project (ISCCP-D2) cloud data for studying fog at this region. Fog is primarily represented as low level stratus and stratocumulus clouds in ISCCP cloud data. Top of atmosphere cloud radiative forcing measured by Clouds and the Earth's Radiant Energy System instruments onboard Aqua/Terra satellites indicates a net radiative cooling by fog over the IGP region. Also, the analysis of gridded surface temperature data from India meteorological department suggests that negative temperature anomalies prevail over the regions of radiative cooling exerted by fog. These negative anomalies in surface temperature may cause further dipping of the temperature over the IGP during fog years. This study suggests that foggy winter will be colder than non-foggy winter over the IGP.

  13. Old groundwater in parts of the upper Patapsco aquifer,Atlantic Coastal Plain, Maryland, USA: Evidence fromradiocarbon, chlorine-36 and helium-4

    USGS Publications Warehouse

    Plummer, L. Niel; Eggleston, John R.; Raffensperger, Jeff P.; Hunt, Andrew G.; Casile, Gerolamo C.; Andreasen, D.C.

    2012-01-01

    Apparent groundwater ages along two flow paths in the upper Patapsco aquifer of the Maryland Atlantic Coastal Plain, USA, were estimated using 14C, 36Cl and 4He data. Most of the ages range from modern to about 500 ka, with one sample at 117 km downgradient from the recharge area dated by radiogenic 4He accumulation at more than one Ma. Last Glacial Maximum (LGM) water was located about 20 km downgradient on the northern flow path where the radiocarbon age was 21.5 ka, paleorecharge temperatures were 0.5 to 1.5 °C (a maximum cooling of about 12 °C relative to the modern mean annual temperature of 13 °C), and Cl-, Cl/Br, and stable isotopes of water were minimum. Low recharge temperatures (typically 5-7 °C) indicate that recharge occurred predominantly during glacial periods when coastal heads were lowest due to low sea-level stand. Flow velocities averaged about 1.0 ma-1 in upgradient parts of the upper Patapsco aquifer and decreased from 0.13 ma-1 to 0.04 ma-1 at 40 km and 80 km further downgradient, respectively. This study demonstrates that most water in the upper Patapsco aquifer is non-renewable on human timescales under natural gradients, thus highlighting the importance of effective water-supply management to prolong the resource.

  14. Changes in Thaw Lake Morphometry on the Barrow Peninsula, Alaskan Arctic Coastal Plain, 1955-2002

    NASA Astrophysics Data System (ADS)

    Jones, B. M.; Hinkel, K. M.; Eisner, W. R.; Peterson, K. M.; Frohn, R. C.; Beck, R. A.

    2005-12-01

    Since the early 1950s, there have been several studies of thaw lakes on the Barrow Peninsula of northern Alaska that focused largely on lake orientation and morphometry. To date, a comprehensive examination of changes in lake area has not been conducted. Lake expansion can result from shoreline erosion and ground subsidence as permafrost thaws. Lake area reduction occurs in response to complete or partial drainage triggered by infilling, stream activity, or coastal erosion. This study examines the changes in lake area (those >10 hectares) over the period 1955 to 2002. The 1955 data was obtained by digitizing lakes from a digital raster graphic of the 1:63360 scale U.S.G.S. topographic map derived from 1955 aerial survey photography. More recently, lakes were identified on high-resolution ORRI and IFSAR data collected in 2002. During this period, total lake area decreased from 22.0% to 20.8%. The number of lakes decreased by 72, from 337 to 265, and average lake size increased from 139 ha in 1955 to 166 ha in 2002. These changes resulted from lake coalescence, or from partial drainage that reduced lake area below the 10 ha threshold. Of the 72 lakes that are no longer larger than 10 hectares, 22 have completely drained. It appears that 16 have drained by natural causes (headward erosion by streams or coastal erosion) and 6 have drained as a result of human disturbance. There are 4 lakes in 2002 that were not present in 1955; these appear to have resulted from the merger of smaller lakes. By increasing the size of interest to 40 ha to focus on larger lakes, the same general trend is observed. There are currently fewer lakes larger than 40 ha, average lake size has increased, yet aerial coverage of lakes larger than 40 ha has decreased. These results contrast to recent findings reported by Smith and colleagues for large lakes in the continuous permafrost zone of Siberia.

  15. Sele coastal plain flood risk due to wave storm and river flow interaction

    NASA Astrophysics Data System (ADS)

    Benassai, Guido; Aucelli, Pietro; Di Paola, Gianluigi; Della Morte, Renata; Cozzolino, Luca; Rizzo, Angela

    2016-04-01

    Wind waves, elevated water levels and river discharge can cause flooding in low-lying coastal areas, where the water level is the interaction between wave storm elevated water levels and river flow interaction. The factors driving the potential flood risk include weather conditions, river water stage and storm surge. These data are required to obtain inputs to run the hydrological model used to evaluate the water surface level during ordinary and extreme events regarding both the fluvial overflow and storm surge at the river mouth. In this paper we studied the interaction between the sea level variation and the river hydraulics in order to assess the location of the river floods in the Sele coastal plain. The wave data were acquired from the wave buoy of Ponza, while the water level data needed to assess the sea level variation were recorded by the tide gauge of Salerno. The water stages, river discharges and rating curves for Sele river were provided by Italian Hydrographic Service (Servizio Idrografico e Mareografico Nazionale, SIMN).We used the dataset of Albanella station (40°29'34.30"N, 15°00'44.30"E), located around 7 km from the river mouth. The extreme river discharges were evaluated through the Weibull equation, which were associated with their return period (TR). The steady state river water levels were evaluated through HEC-RAS 4.0 model, developed by Hydrologic Engineering Center (HEC) of the United States Army Corps of Engineers Hydrologic Engineering Center (USACE,2006). It is a well-known 1D model that computes water surface elevation (WSE) and velocity at discrete cross-sections by solving continuity, energy and flow resistance (e.g., Manning) equation. Data requirements for HEC-RAS include topographic information in the form of a series of cross-sections, friction parameter in the form of Manning's n values across each cross-section, and flow data including flow rates, flow change locations, and boundary conditions. For a steady state sub

  16. A late Quaternary multiple paleovalley system from the Adriatic coastal plain (Biferno River, Southern Italy)

    NASA Astrophysics Data System (ADS)

    Amorosi, Alessandro; Bracone, Vito; Campo, Bruno; D'Amico, Carmine; Rossi, Veronica; Rosskopf, Carmen M.

    2016-02-01

    A buried paleovalley system, up to 2 km wide and exceeding 50 m in relief, made up of multiple cross-cutting depressions incised into the Lower Pleistocene bedrock, is reported from the central Adriatic coastal plain at the mouth of Biferno River. Through a multi-proxy approach that included geomorphological, stratigraphic, sedimentological and paleontological (benthic foraminifers, ostracods and molluscs) investigations, the facies architecture of distinct, superposed valley fills is reconstructed and their relative chronology established along a transverse profile with extremely high data density (average borehole spacing 75 m). Regional tectonic uplift appears as the major controlling factor of initial (Middle Pleistocene) river down-cutting and paleovalley formation. In contrast, glacio-eustatic fluctuations drove fluvial-system response over the last 120 ky, when valley incision was primarily induced by the last glacial base-level lowering and climatic forcing. A fragmented record of coastal and shallow-marine deposits is available for the lower paleovalley fill, which is penetrated by a limited borehole dataset. Multiple erosion phases probably related to the post-MIS 5e sea-level fall are reconstructed from the upper paleovalley fill, where a buried fluvial terrace succession is identified a few tens of meters below the ground surface. The flat surfaces of two buried fluvial terraces suggest longer-term, stepped relative sea-level fall, and are correlated with fluvial incisions that took place possibly at the MIS 5/4 transition and at the MIS 3/2 transition, respectively. A laterally extensive gravel body developed on the valley floor during the Last Glacial Maximum. During the ensuing latest Pleistocene-early Holocene sea-level rise the Biferno paleovalley was transformed into an estuary. Upstream from the maximum shoreline ingression, the vertical succession of well-drained floodplain, poorly-drained floodplain, and swamp deposits evidences increasing

  17. A case study of the synoptic patterns influencing midwinter snowmelt across the northern Great Plains

    NASA Astrophysics Data System (ADS)

    Grundstein, Andrew J.; Leathers, Daniel J.

    1998-12-01

    Snow cover is found across extensive areas of the northern hemisphere during the winter and early spring seasons. Meltwater provided by this snow cover can be an important source of freshwater for agriculture, domestic uses and hydroelectric power. Rapid ablation of the snowpack, however, can also pose environmental hazards such as flooding.The ability to forecast meltwater quantities is dependent upon a knowledge of the factors influencing the snowmelt process. This paper employs a hybrid modelling and synoptic climatological approach to investigate the relationships between synoptic weather patterns, surface energy fluxes and midwinter snowmelt in the northern Great Plains. The first objective of this study is to identify distinct synoptic patterns that are associated with days where significant snow cover ablation occurred. The second objective is to evaluate the relationships between synoptic-scale weather patterns, snow surface energy transfers and snowmelt. A case study of 21 February 1975 is used to illustrate these relationships. Unlike the other synoptic-type studies, which rely on empirically derived energy flux data from single index sites, this study employs a physically based snowpack model to generate estimates of energy fluxes. The use of modelled fluxes instead of measured values allows for a more spatially extensive analysis as surface fluxes over the entire study region can be analysed in conjunction with the prevailing synoptic-scale weather patterns.Three major synoptic types, characterized by the presence of a midlatitude cyclone, are associated with large midwinter snowmelt episodes in the northern Great Plains. The case study illustrates how variations in temperature, humidity, cloud cover and wind speeds associated with such cyclonic storms can play a major role in affecting snow surface-atmosphere energy exchanges. As expected, elevated wind speeds and stronger temperature and humidity gradients significantly increased the transfers of

  18. Persistent summertime water ice deposits in the northern plains of Mars: Observations from MRO CRISM

    NASA Astrophysics Data System (ADS)

    Seelos, K. D.; Seelos, F. P.; Murchie, S. L.; Titus, T. N.; CRISM Team

    2007-12-01

    Analysis of MRO CRISM multispectral mapping data obtained during the late northern summer season on Mars (Ls = 130-180 degrees) reveals small water ice deposits distributed throughout the northern plains at latitudes quite distant from the residual polar cap. These outliers range in size from a few hundreds of meters to several kilometers, and are generally associated with the northward facing slopes of crater rims or other elevated landforms. In a few instances the ice deposits are located on the leeward (southeast-facing) sides of larger craters, and may indicate the presence of wintertime CO2 frost formation from orographic lifting. The brighter frost sublimes more slowly than the surrounding CO2 ice, ultimately forming a late spring cold trap and inducing an accumulation of water ice. During the first 4 months of MRO primary science phase (PSP), CRISM was able to cover ~75% of the northern plains surface (at 75 degrees latitude) with 73 channel visible/near infrared (0.41 to 3.92 μm) multispectral data as part of its systematic global mapping campaign. These long, 10 km-wide strips of data are mosaicked together and resampled to 256 pix/deg (~231 m/pix) spatial resolution. CRISM's wavelength range is particularly well-suited to distinguishing between different types and grain sizes of CO2 and water ice, as well as iron- bearing minerals, sulfates, and phyllosilicates. False color composites of the multispectral data allow consistent mapping of the lowest latitudes of water ice occurrences and comparison to other global datasets. The average minimum latitude that water ice is observed during this time period is 75.5 degrees, with excursions of up to 10 degrees. Albedo appears to be a secondary control after local slope, and large scale topographic trends do not influence the locations of residual ice patches. Further comparison to Mars Odyssey GRS inferred subsurface water ice distribution may provide important clues regarding subsurface

  19. Management Effects on Soil Respiration in North Carolina Coastal Plain Loblolly Pine Plantations

    NASA Astrophysics Data System (ADS)

    Gavazzi, M.; McNulty, S.; Noormets, A.; Treasure, E.

    2012-12-01

    Loblolly pine is the most widely planted tree for plantation management in the southern US. In the southern coastal plain, where much of the original longleaf pine and bottomland hardwood forests have been converted to loblolly pine plantations, inland areas are commonly characterized by deep organic soils that can store up to 80 kg C m-2. Intensive management activities on these sites disturb the forest floor and soil and their impact on soil respiration rates and long term soil storage capabilities is unclear. We measured soil respiration rates in three loblolly pine plantations being managed with a combination of ditching, bedding, clearcutting, thinning and fertilization. Sites and management regimes represented a wide range of real world conditions found in managed southern US forestry plantations. Soil efflux rates along with soil temperature and moisture were measured throughout the year at four to six plots on each site and best fit relationships were developed. Annual soil respiration rates where modeled using 30-minute soil temperature and moisture measurements recorded at a centralized meteorological station on each site. Soil efflux rates were highly correlated with soil temperature and moisture, but interaction between the two effects was uncommon. Soil temperature was the primary driver of soil respiration rates, but rates were suppressed under high soil moisture content. Modeled annual soil efflux rates were higher the first two years following clearcut harvest and thinning operations, but lower two years following fertilization. Rates were lower in the gaps, where entire tree rows were removed, compared to thinned areas, especially on the unfertilized site. Results indicate that soil respiration rates can be strongly impacted by forest management practices; however, the period of increased soil CO2 efflux due to site disturbance may last only a few years.

  20. Dissolved phosphorus retention and release from a coastal plain in-stream wetland.

    PubMed

    Novak, J M; Stone, K C; Szogi, A A; Watts, D W; Johnson, M H

    2004-01-01

    Dissolved phosphorus (DP) can be released from wetlands as a result of flooding or shifts in water column concentrations. Our objectives were to determine the long-term (1460 d) DP retention and release characteristics of an in-stream wetland, and to evaluate how these characteristics respond to flooding, draining, and changes in DP concentrations. The studied in-stream wetland drains an agriculturally intensive subwatershed in the North Carolina Coastal Plain region. The wetland's DP retention and release characteristics were evaluated by measuring inflow and outflow DP concentrations, DP mass balance, and DP movement across the sediment-water column interface. Phosphorus sorption isotherms were measured to determine the sediment's equilibria P concentration (EPCo), and passive samplers were used to measure sediment pore water DP concentrations. Initially, the in-stream wetland was undersized (0.31 ha) and released 1.5 kg of DP. Increasing the in-stream wetland area to 0.67 ha by flooding resulted in more DP retention (28 kg) and low outflow DP concentrations. Draining the in-stream wetland from 0.67 to 0.33 ha caused the release of stored DP (12.1 kg). Shifts both in sediment pore water DP concentrations and sediment EPCo values corroborate the release of stored DP. Reflooding the wetland from 0.33 to 0.85 ha caused additional release of stored DP into the outflowing stream (10.9 kg). We conclude that for a time period, this in-stream wetland did provide DP retention. During other time periods, DP was released due to changes in wetland area, rainfall, and DP concentrations. PMID:14964396

  1. Carbon in Natural, Cultivated, and Restored Depressional Wetlands in the Mid-Atlantic Coastal Plain.

    PubMed

    Fenstermacher, D E; Rabenhorst, M C; Lang, M W; McCarty, G W; Needelman, B A

    2016-03-01

    Aerial extent of wetland ecosystems has decreased dramatically since precolonial times due to the conversion of these areas for human use. Wetlands provide various ecosystem services, and conservation efforts are being made to restore wetlands and their functions, including soil carbon storage. This Mid-Atlantic Regional USDA Wetland Conservation Effects Assessment Project study was conducted to evaluate the effects and effectiveness of wetland conservation practices along the Mid-Atlantic Coastal Plain. This study examined 48 wetland sites in Delaware, Maryland, Virginia, and North Carolina under natural, prior converted cropland, and 5- to 10-yr post wetland restoration states. The North Carolina sites mainly contained soils dominated by organic soil materials and therefore were analyzed separately from the rest of the sites, which primarily contained mineral soils. Soil samples were collected using the bulk density core method by horizon to a depth of 1 m and were analyzed for percent carbon. The natural wetlands were found to have significantly greater carbon stocks (21.5 ± 5.2 kg C m) than prior converted croplands (7.95 ± 1.93 kg C m; < 0.01) and restored wetlands (4.82 ± 1.13 kg C m; < 0.001). The restored and prior converted sites did not differ significantly, possibly the result of the methods used to restore the wetlands, and the relatively young age of the restored sites. Wetlands were either restored by plugging drainage structures, with minimal surface disturbance, or by scraping the surface (i.e., excavation) to increase hydroperiod. Sites restored with the scraping technique had significantly lower carbon stocks (2.70 ± 0.38 kg C m) than those restored by passive techniques (6.06 ± 1.50 kg C m; = 0.09). Therefore, techniques that involve excavation and scraping to restore hydrology appear to negatively affect C storage. PMID:27065423

  2. Overview of investigations into mercury in ground water, soils, and septage, New Jersey coastal plain

    USGS Publications Warehouse

    Barringer, J.L.; Szabo, Z.

    2006-01-01

    Since the early 1980s, investigations by health departments of eight counties in southern New Jersey, by the NJ Department of Environmental Protection (NJDEP), and subsequently by the US Geological Survey (USGS), have shown that Hg concentrations in water tapped by about 600 domestic wells exceed the maximum contaminant level (MCL) of 2 ??g/L. The wells are finished in the areally extensive unconfined Kirkwood-Cohansey aquifer system of New Jersey's Coastal Plain; background concentrations of Hg in water from this system are < 0.01 ??g/L. Evidence of contributions from point sources of Hg, such as landfills or commercial and industrial hazardous-waste sites, is lacking. During 1996-2003, the USGS collected water samples from 203 domestic, irrigation, observation, and production wells using ultraclean techniques; septage, leach-field effluent, soils, and aquifer sediments also were sampled. Elevated concentrations of NH4, B, Cl, NO3, and Na and presence of surfactants in domestic-well water indicate that septic-system effluent can affect water quality in unsewered residential areas, but neither septage nor effluent appears to be a major Hg source. Detections of hydrogen sulfide in ground water at a residential area indicate localized reducing conditions; undetectable SO4 concentrations in water from other residential areas indicate that reducing conditions, which could be conducive to Hg methylation, may be common locally. Volatile organic compounds (VOCs), mostly chlorinated solvents, also are found in ground water at the affected areas, but statistically significant associations between presence of Hg and VOCs were absent for most areas evaluated. Hg concentrations are lower in some filtered water samples than in paired unfiltered samples, likely indicating that some Hg is associated with particles or colloids. The source of colloids may be soils, which, when undisturbed, contain higher concentrations of Hg than do disturbed soils and aquifer sediments. Soil

  3. Mercury and methylmercury dynamics in a coastal plain watershed, New Jersey, USA

    USGS Publications Warehouse

    Barringer, J.L.; Riskin, M.L.; Szabo, Z.; Reilly, P.A.; Rosman, R.; Bonin, J.L.; Fischer, J.M.; Heckathorn, H.A.

    2010-01-01

    The upper Great Egg Harbor River watershed in New Jersey's Coastal Plain is urbanized but extensive freshwater wetlands are present downstream. In 2006-2007, studies to assess levels of total mercury (THg) found concentrations in unfiltered streamwater to range as high as 187 ng/L in urbanized areas. THg concentrations were <20 ng/L in streamwater in forested/wetlands areas where both THg and dissolved organic carbon concentrations tended to increase while pH and concentrations of dissolved oxygen and nitrate decreased with flushing of soils after rain. Most of the river's flow comes from groundwater seepage; unfiltered groundwater samples contained up to 177 ng/L of THg in urban areas where there is a history of well water with THg that exceeds the drinking water standard (2,000 ng/L). THg concentrations were lower (<25 ng/L) in unfiltered groundwater from downstream wetland areas. In addition to higher THg concentrations (mostly particulate), concentrations of chloride were higher in streamwater and groundwater from urban areas than in those from downstream wetland areas. Methylmercury (MeHg) concentrations in unfiltered streamwater ranged from 0.17 ng/L at a forest/wetlands site to 2.94 ng/L at an urban site. The percentage of THg present as MeHg increased as the percentage of forest + wetlands increased, but also was high in some urban areas. MeHg was detected only in groundwater <1 m below the water/sediment interface. Atmospheric deposition is presumed to be the main source of Hg to the wetlands and also may be a source to groundwater, where wastewater inputs in urban areas are hypothesized to mobilize Hg deposited to soils. ?? 2010 US Government.

  4. Quaternary Sea-Level History from the US Atlantic Coastal Plain

    NASA Astrophysics Data System (ADS)

    Poirier, R. K.; Cronin, T. M.; Katz, M. E.; Browning, J. V.; Miller, K. G.; Willard, D. A.

    2014-12-01

    Analyses of emerged Quaternary paleo-shorelines and marine deposits aid in the reconstruction of environmental conditions and variability surrounding recent ice volume and sea-level histories derived from oxygen isotope records. We present preliminary results from a project designed to analyze the age, elevation, and paleoclimate history of Quaternary sediments deposited during sea level highstands along the United States Atlantic Coastal Plain (ACP) from Maryland to Florida. Prior studies have shown that, depending on the region, ACP sediments correlate with past interglacial periods corresponding to Marine Isotope Stages (MIS) 5, 7, possibly 9, and 11. Stratigraphy, marine micropaleontology, and palynology indicate at least two major marine transgressive sequences on the Delmarva Peninsula in Virginia corresponding to MIS 5a and 11, the Nassawadox Formation and Accomack beds of the Omar Formation, respectively. These depositional sequences represent sea-level positions of approximately +10m and +15m, relative to today. Despite generally corresponding to glacio-eustatic sea levels of +5-9m for MIS 5a-e (Potter & Lambeck, 2003; Kopp et al., 2009), and of +6-13m for MIS 11 (Raymo & Mitrovica, 2012), the relative sea-level positions during both interglacial periods were likely affected by glacio-isostatic adjustment in the region. Corresponding marine units and paleo-shorelines, identified by pronounced inland scarps separated by intermittent terraces on the western side of the Chesapeake Bay, are likely from MIS 5, 7, and 11. Ostracode and foraminifera assemblages identify significant environmental variability within these transgressive interglacial deposits, likely driven by relatively minor, suborbital climatic and sea-level oscillations.

  5. Microclimate and actual evapotranspiration in a humid coastal-plain environment

    NASA Astrophysics Data System (ADS)

    Dennehy, Kevin F.; McMahon, Peter B.

    1987-09-01

    Continuous hourly measurements of twelve meteorologic variables recorded during 1983 and 1984 were used to examine the microclimate and actual evapotranspiration at a low-level radioactive-waste burial site near Barnwell, South Carolina. The study area is in the Atlantic Coastal Plain of southwestern South Carolina. Monthly, daily, and hourly trends in net radiation, incoming and reflected short-wave radiation, incoming and emitted long-wave radiation, soil-heat flux, dry- and wet-bulb temperatures, soil temperatures, wind direction and speed, and precipitation were used to characterize the microclimate. Average daily air temperatures ranged from -9 to 32° Celsius during the period of study. Net radiation varied from about -27 to 251 watts m -2 and was dominated by incoming short-wave radiation throughout the year. The peak net radiation during a summer day generally occurred 2-3h before the peak vapor pressure deficit. In the winter, these peaks occurred at about the same time of day. Monthly precipitation varied from 15 to 241 mm. The Bowen ratio method was used to estimate hourly evapotranspiration, which was summed to also give daily and monthly evapotranspiration. Actual evapotranspiration varied from 0.0 to 0.7 mm h -1, 0.8-5 mm d -1, and 20-140 mm month -1 during 1983 and 1984. The maximum rate of evapotranspiration generally occurred at the same time of day as maximum net radiation, suggesting net radiation was the main driving force for evapotranspiration. Precipitation exceeded evapotranspiration during 14 months of the 2yr study period. Late fall, winter, and early spring contained the majority of these months. The maximum excess precipitation was 115 mm in February 1983.

  6. Pre-Mesozoic terranes and the tectonic framework of the Gulf Coastal Plain

    SciTech Connect

    Thomas, W.A. . Dept. of Geological Sciences)

    1993-03-01

    Pre-Mesozoic rocks beneath the Gulf Coastal Plain reflect the late Precambrian (Pc)-Cambrian (Cb) rifted continental margin and the late Paleozoic Appalachian-Ouachita orogen (AOO). The AL promontory of Pc continental crust is bounded by a NW-striking transform margin (AL-OK transform) and a NE-striking rifted margin (southern Blue Ridge rift). Terrane accretion during the AOO differed markedly on the orthogonal adjacent sides of the AL promontory (ALp). Late Paleozoic compressional fabrics and terrane-boundary sutures, as well as extensional fabrics of the older rifted margin, influenced the geometry of Mesozoic extension and opening of the Gulf of Mexico. Along the SW side of the ALp, arc-continent collision resulted in accretion of an arc and subduction complex onto the margin of N American crust. The Ouachita allochthon includes off-shelf passive-margin rocks in an accretionary prism and synorogenic turbidites that represent a forearc basin and trench. Carbonate-shelf strata of the N American passive margin remained in place beneath the Ouachita allochthon. Along the southeast side of the ALp, passive-margin carbonate-shelf rocks are imbricated in the Appalachian thrust belt and bordered by an internal metamorphic belt of accreted terranes; both are underlain by relatively shallow Pc basement. The SE-dipping Suwannee-Wiggins suture terminates the shallow continental crust, truncates previously accreted terranes, and forms the boundary between N America and the Suwannee terrane. Mesozoic extensional structures include NE-and NW-striking fault systems. A NE-striking Triassic graben overlies the Suwannee-Wiggins suture, suggesting that Mesozoic extension used the Late Paleozoic compressional fabric of the suture. A NW-striking system of Triassic fault-bounded basins coincides with the trace of the Cb AL-OK transform fault, suggesting that the older crustal boundary controlled the location of a Mesozoic transform/transfer fault system.

  7. Transplanting native dominant plants to facilitate community development in restored coastal plain wetlands.

    SciTech Connect

    De Steven, Diane; Sharitz, Rebecca R.

    2007-12-01

    Abstract: Drained depressional wetlands are typically restored by plugging ditches or breaking drainage tiles to allow recovery of natural ponding regimes, while relying on passive recolonization from seed banks and dispersal to establish emergent vegetation. However, in restored depressions of the southeastern United States Coastal Plain, certain characteristic rhizomatous graminoid species may not recolonize because they are dispersal-limited and uncommon or absent in the seed banks of disturbed sites. We tested whether selectively planting such wetland dominants could facilitate restoration by accelerating vegetative cover development and suppressing non-wetland species. In an operational-scale project in a South Carolina forested landscape, drained depressional wetlands were restored in early 2001 by completely removing woody vegetation and plugging surface ditches. After forest removal, tillers of two rhizomatous wetland grasses (Panicum hemitomon, Leersia hexandra) were transplanted into singlespecies blocks in 12 restored depressions that otherwise were revegetating passively. Presence and cover of all plant species appearing in planted plots and unplanted control plots were recorded annually. We analyzed vegetation composition after two and four years, during a severe drought (2002) and after hydrologic recovery (2004). Most grass plantings established successfully, attaining 15%–85% cover in two years. Planted plots had fewer total species and fewer wetland species compared to control plots, but differences were small. Planted plots achieved greater total vegetative cover during the drought and greater combined cover of wetland species in both years. By 2004, planted grasses appeared to reduce cover of non-wetland species in some cases, but wetter hydrologic conditions contributed more strongly to suppression of non-wetland species. Because these two grasses typically form a dominant cover matrix in herbaceous depressions, our results indicated that

  8. Narrow endemics on coastal plains: Miocene divergence of the critically endangered genus Avellara (Compositae).

    PubMed

    Fernández-Mazuecos, M; Jiménez-Mejías, P; Martín-Bravo, S; Buide, M L; Álvarez, I; Vargas, P

    2016-07-01

    Critically endangered species representing ancient, evolutionarily isolated lineages must be given priority when allocating resources for conservation projects. Sound phylogenetic analyses and divergence time estimations are required to detect them, and studies on their population genetics, ecological requirements and breeding system are needed to understand their evolutionary history and to design efficient conservation strategies. Here we present the paradigmatic case of Avellara, a critically endangered monotypic genus of Compositae inhabiting a few swamps in the west-southwest Iberian coastal plains. Our phylogenetic and dating analyses based on nuclear (ITS) and plastid (matK) DNA sequences support a Miocene (>8.6 Ma) divergence between Avellara and closely related genera, resulting in marked morphological and ecological differentiation. We found alarmingly low levels of genetic diversity, based on AFLPs and plastid DNA sequences, and confirmed the prevalence of clonal reproduction. Species distribution modelling suggested a large macroclimatically suitable area for Avellara in the western Iberian Peninsula, but its apparently narrow microecological requirements restrict its distribution to peatlands with low-mineralised waters. Although five populations have been recorded from Spain and Portugal in the past, its current distribution may be reduced to only one population, recurrently found in the last decade but threatened by herbivory and habitat degradation. All this confirms the consideration of Avellara as a threatened species with high phylogenetic singularity, and makes it a flagship species for plant conservation in both Spain and Portugal that should be given priority in the design of in situ and ex situ conservation programmes.

  9. The effect of sea level rise on coastal plain estuaries, with examples from Chesapeake Bay

    SciTech Connect

    Colman, S.M. )

    1990-05-01

    Estuaries are geologically transitory features whose evolution depends on a delicate balance among relative sea level basin geometry, shoreline erosion, fluvial sediment discharge, littoral drift, and tidal exchange. Models of modern estuarine development require specific sea level scenarios; almost all assume a continuation of the decelerating sea level rise of the last few thousand years. However, under constant external conditions, estuaries are ephemeral because they rapidly fill with fluvial and marine sediment. The rate of filling changes with time, but only a few thousand years are required to fill most estuaries. The persistence of estuaries, therefore, requires that relative sea level rises at a rate sufficient to compensate for the inherent tendency of estuaries to fill with sediment. Coastal plain estuaries, of which Chesapeake Bay is a prime example, are often referred to as drowned river valleys. Although this description is appropriate for the first-order morphology of Chesapeake Bay, the implied passivity can be misleading, especially in the high-tidal-energy area of the bay mouth where dramatic spit progradation and channel migration have occurred in the last few thousand years. Holocene sediment accumulation rates are more irregular along the length of the estuary than most models would predict; but in general, sediment accumulation has been greater at the mouth and at the head of the bay and less along the middle reaches. If relative sea level were to stabilize, the estuary would fill with sediment from both ends within a few thousand years. Evidence for two previous generations of the bay is preserved as the estuarine fill of major fluvial valleys, demonstrating that estuarine episodes have been closely tied to cyclic sea level changes.

  10. [Reproductive phenology of three vegetation types from a coastal plain of Paraguana Penninsula, Venezuela].

    PubMed

    Lemus-Jiménez, Luis José; Ramírez, Nelson

    2002-01-01

    Reproductive phenology of 51 plant species was evaluated according to life form and vegetation types in a coastal plain of the Paraguaná Peninsula, Estado Falcón, Venezuela. Plant species distribution according to three vegetation types (herbaceous littoral, herbaceous psamophil, and mangrove area) was determined. Life form frequency was different according to vegetation type. Herbaceous littoral and herbaceous psamophil vegetation were dominated by herbaceous species; woody species were mostly frequent in the mangrove vegetation. Phenological data revealed that 14 (27.5%) plant species flower and fruit year-round; 23 (45.1%) plant species flower and fruit at the beginning of the wet season; seven (13.7%) plant species flower at the end of wet season, and seven (13.7%) more flower at the beginning of the dry season. Flowsring and fruiting phenology showed similar frequency distribution during the year; reproductive phenology was independent of life forms. Flowering and fruiting peaks occurred during the rainy season and the beginning of the dry season for trees and perennial herbs, and from one to three months later for shrubs and annual herbs. The lowest proportion of flowering and fruiting occurred before rain increase for all life forms. Flowering and fruiting phenologies were similar for the three vegetation types evaluated: flowering peak occurred during the lowest value of precipitation, three to four months after precipitation peak, and fruiting peak occurred four months later from the precipitation peak. These results suggest that flowering and fruiting phenology were not affected by life form and vegetation types. The peaks of flowering and fruiting during the lowest values of precipitation may be considered as a slow and late response to the precipitation maximum, and to the proximity between maximum and minimum of precipitation.

  11. Hydrology and chemistry of groundwater and seasonal ponds in the Atlantic Coastal Plain in Delaware, USA

    NASA Astrophysics Data System (ADS)

    Phillips, Patrick J.; Shedlock, Robert J.

    1993-01-01

    The hydrochemistry of small seasonal ponds was investigated by studying relations between ground-water and surface water in a forested Coastal Plain drainage basin. Observation of changes in the water table in a series of wells equipped with automatic water-level recorders showed that the relation between water-table configuration and basin topography changes seasonally, and particularly in response to spring recharge. Furthermore, in this study area the water table is not a subdued expression of the land surface topography, as is commonly assumed. During the summer and fall months, a water-table trough underlies sandy ridges separating the seasonal ponds, and maximum water-table altitudes prevail in the sediments beneath the dry pond bottoms. As the ponds fill with water during the winter, maximum water-table altitudes shift to the upland-margin zone adjacent to the seasonal ponds. Increases in pond stage are associated with the development of transient water-table mounds at the upland-margin wells during the spring. The importance of small local-flow systems adjacent to the seasonal ponds also is shown by the similarities in the chemistry of the shallow groundwater in the upland margin and water in the seasonal ponds. The upland margin and surface water samples have low pH (generally less than 5.0), and contain large concentrations of dissolved aluminum (generally more than 100 μg 1 -1), and low bicarbonate concentrations (2 mg l 4 or less). In contrast, the parts of the surficial aquifer that do not experience transient mounding have higher pH and larger concentrations of bicarbonate. These results suggest that an understanding of the hydrochemistry of seasonally ponded wetlands requires intensive study of the adjacent shallow groundwater-flow system.

  12. Sedimentology of paleochannels on foreland coastal plain, Judith River Formation (upper Cretaceous), southeast Alberta

    SciTech Connect

    Koster, E.H.

    1984-04-01

    The upper 90 m (295 ft) of the sub-Bearpaw Judith River Formation, continuously exposed in the badlands along the Red Deer River 185 km (115 mi) east of Calgary, is famous for the unrivaled assemblage of dinosaur fossils. Dinosaur Provincial Park presents are a rare opportunity to view the architecture of a foreland coastal-plain sequence as well as to clarify the origin and distribution of subbituminous coal zones and gas reservoirs associated with this formation across southeast Alberta. The distal reaches of paleodrainage from the developing Cordillera to the Western Interior seaway are being examined by north-south traversed across the badlands. Sharp-based paleochannel units, enclosed by rooted, olive-gray mudstone sequences that are commonly 4-6 m (13-20 ft) thick, vary between 2 end members. The first contains laterally accreted sand-mud couplets with abundant macrofloral debris, and represents cyclical, low-energy growth of point bars, possible with an estuarine influence. The second, mainly comprising cosets of large trough cross-beds with mudstone intraclasts, was formed by episodic aggradation of high-energy systems. An intermediate composite type displays evidence for an energy increase as channel sinuosity decreased. This variation in paleochannel type is attributed to alternating alluviation/rejuvenation associated with an unstable base level. Coal zones and potential reservoirs appear to be associated with the transgressive and regressive phases, respectively, of the Bearpaw coast. Amalgamation of paleochannels - marked by laterally extensive horizons of bone fragments, lithic and intraclastic gravel - is more common seaward over the axial region of the Sweetgrass arch.

  13. Comparison of fish and macroinvertebrate bioassessments from South Carolina coastal plain streams

    SciTech Connect

    Paller, M.H.

    1999-12-03

    Stream bioassessments are often based on a single taxonomic assemblage, such as fishes or macroinvertebrates, with the assumption that this assemblage is representative of other assemblages. However, ecological and physiological differences between taxonomic groups may cause different responses to disturbance and result in different assessment results. In this study, fish and macroinvertebrate bioassessments were conducted concurrently in South Carolina coastal plain streams and compared on the basis of precision, sensitivity, accuracy, and agreement. Fish and macroinvertebrate data were evaluated with previously developed multimetric indices including a modified Index of Biotic Integrity (IBI) based on electrofishing data and a benthic macroinvertebrate multimetric index (HDMI) based on data collected with Hester-Dendy artificial substrates. Benthic macroinvertebrates were also collected from natural substrates for comparative purposes. The IBI was more precise than the HDMI but the average difference between disturbed and reference sites was greater for the HDMI, resulting in equal sensitivity (i.e., ability to measure disturbance in relation to index variability). Regression of the HDMI on the IBI was significant (P{lt}0.0001) but moderate (R2 of 0.39). Agreement between indices was strong for highly disturbed sites but weak for slightly and moderately disturbed sites. Ordination of taxonomic data indicated that fish and macroinvertebrates responded differently to some disturbances regardless of whether macroinvertebates were collected from Hester-Dendy samplers or natural substrates. Disagreement between macroinvertebrate and fish assessments at moderately disturbed sites implies that biotic integrity cannot always be adequately evaluated from a single taxonomic group. Identification of disturbed sites was most accurate when HDMI and IBI results were combined. To improve the accuracy of stream bioassessments, future research should emphasize methods for cost

  14. Physiological diversity and distributions of heterotrophic bacteria in deep cretaceous sediments of the Atlantic coastal plain

    SciTech Connect

    Fredrickson, J.K.; Zachara, J.M.; Li, S.W.; Brockman, F.J.; Simmons, M.A. ); Balkwill, D.L. )

    1991-02-01

    A series of 23 intact core segments was obtained from two distinct deep subsurface geological formations, the Middendorf and the Cape Fear formations, underlying the southeastern coastal plain of South Carolina. Aerobic chemoheterotrophic bacteria were enumerated on a dilute medium, and populations ranged from 3.1 to 6.4 log CFU g of sediment[sup [minus]1] in the Middendorf cores and from below detection to 4.3 log CFU g[sup [minus]1] in the Cape Fear cores. A total of 198 morphologically distinct colony types were isolated, purified, and subjected to 108 different physiological measurements. The isolates from the two formations were distinct as were those in different core samples from the same formation. Cluster analysis revealed 21 different biotypes based on similarities of 75% or higher in response patterns to 21 physiological assays. One biotype contained 57 of the subsurface isolates, 10 biotypes contained 5 or more isolates, and the remainder had 4 or fewer. The organic compounds that were most commonly metabolized by the subsurface bacteria included Tween 40 and [beta]-hydroxybutyric acid. Organic acids, in general, were also commonly metabolized by the subsurface bacteria. Isolates from the Cape Fear core segments were capable of metabolizing a higher percentage of the substrates than were bacteria isolated from the Middendorf formation. Although the heterogeneous distributions of bacteria in deep subsurface sediments may make it difficult to use aquifer microcosms to predict in situ biotransformation rates, the diversity of the physiological properties of these organisms offers promise for in situ remediation of contaminants.

  15. Mesozoic basin development beneath the southeastern US coastal plain: evidence from new COCORP profiling

    SciTech Connect

    McBride, J.H.; Nelson, K.D.; Arnow, J.A.; Oliver, J.E.; Brown, L.D.; Kaufman, S.

    1985-01-01

    New COCORP profiling on the Georgia coastal plain indicates that the Triassic/Early Jurassic South Georgia basin is a composite feature, which includes several large half-grabens separated by intervening regions where the Triassic/Early Jurassic section is much thinner. Two half-grabens imaged on the profiles have apparent widths of 125 and 40 km, and at their deepest points contain about 5 km of basin fill. Both basins are bounded on their south flanks by major normal faults that dip moderately steeply toward the north, and are disrupted internally by subsidiary normal faults within the basin fill sequences. The orientation of the main basin-bounding faults suggests that they might have reactivated Paleozoic south-vergent structures formed on the south side of the Alleghenian suture. Evolution of the South Georgia basin appears to follow a model of initial, rapid rifting followed by flexural subsidence. The major episode of normal faulting, and hence extension, within the South Georgia basin occurred prior to extrusion of an areally extensive sequence of Early Jurassic basalt flows. This sequence is traceable across most of the width of the South Georgia basin in western Georgia, and may extend as far east as offshore South Carolina. Jurassic strata above the basalt horizon are notably less faulted and accumulated within a broadly subsiding basin that thins both to the north and south. The occurrence of the basalt relatively late in the rift sequence supports the hypothesis that the southeastern US may have been a major area of incipient spreading after Pangea had begun to separate.

  16. Assessing Landscape Change and Processes of Recurrence, Replacement, and Recovery in the Southeastern Coastal Plains, USA

    NASA Astrophysics Data System (ADS)

    Drummond, Mark A.; Stier, Michael P.; Auch, Roger F.; Taylor, Janis L.; Griffith, Glenn E.; Riegle, Jodi L.; Hester, David J.; Soulard, Christopher E.; McBeth, Jamie L.

    2015-11-01

    The processes of landscape change are complex, exhibiting spatial variability as well as linear, cyclical, and reversible characteristics. To better understand the various processes that cause transformation, a data aggregation, validation, and attribution approach was developed and applied to an analysis of the Southeastern Coastal Plains (SECP). The approach integrates information from available national land-use, natural disturbance, and land-cover data to efficiently assess spatially-specific changes and causes. Between 2001 and 2006, the processes of change affected 7.8 % of the SECP but varied across small-scale ecoregions. Processes were placed into a simple conceptual framework to explicitly identify the type and direction of change based on three general characteristics: replacement, recurrence, and recovery. Replacement processes, whereby a land use or cover is supplanted by a new land use, including urbanization and agricultural expansion, accounted for approximately 15 % of the extent of change. Recurrent processes that contribute to cyclical changes in land cover, including forest harvest/replanting and fire, accounted for 83 %. Most forest cover changes were recurrent, while the extents of recurrent silviculture and forest replacement processes such as urbanization far exceeded forest recovery processes. The total extent of landscape recovery, from prior land use to natural or semi-natural vegetation cover, accounted for less than 3 % of change. In a region of complex change, increases in transitory grassland and shrubland covers were caused by large-scale intensive plantation silviculture and small-scale activities including mining reclamation. Explicit identification of the process types and dynamics presented here may improve the understanding of land-cover change and landscape trajectory.

  17. Assessing Landscape Change and Processes of Recurrence, Replacement, and Recovery in the Southeastern Coastal Plains, USA.

    PubMed

    Drummond, Mark A; Stier, Michael P; Auch, Roger F; Taylor, Janis L; Griffith, Glenn E; Riegle, Jodi L; Hester, David J; Soulard, Christopher E; McBeth, Jamie L

    2015-11-01

    The processes of landscape change are complex, exhibiting spatial variability as well as linear, cyclical, and reversible characteristics. To better understand the various processes that cause transformation, a data aggregation, validation, and attribution approach was developed and applied to an analysis of the Southeastern Coastal Plains (SECP). The approach integrates information from available national land-use, natural disturbance, and land-cover data to efficiently assess spatially-specific changes and causes. Between 2001 and 2006, the processes of change affected 7.8% of the SECP but varied across small-scale ecoregions. Processes were placed into a simple conceptual framework to explicitly identify the type and direction of change based on three general characteristics: replacement, recurrence, and recovery. Replacement processes, whereby a land use or cover is supplanted by a new land use, including urbanization and agricultural expansion, accounted for approximately 15% of the extent of change. Recurrent processes that contribute to cyclical changes in land cover, including forest harvest/replanting and fire, accounted for 83%. Most forest cover changes were recurrent, while the extents of recurrent silviculture and forest replacement processes such as urbanization far exceeded forest recovery processes. The total extent of landscape recovery, from prior land use to natural or semi-natural vegetation cover, accounted for less than 3% of change. In a region of complex change, increases in transitory grassland and shrubland covers were caused by large-scale intensive plantation silviculture and small-scale activities including mining reclamation. Explicit identification of the process types and dynamics presented here may improve the understanding of land-cover change and landscape trajectory. PMID:26163198

  18. Assessing landscape change and processes of recurrence, replacement, and recovery in the Southeastern Coastal Plains, USA

    USGS Publications Warehouse

    Drummond, Mark A.; Stier, Michael P.; Auch, Roger F.; Taylor, Janis; Griffith, Glenn E.; Hester, David J.; Riegle, Jodi L.; Soulard, Christopher E.; McBeth, Jamie L.

    2015-01-01

    The processes of landscape change are complex, exhibiting spatial variability as well as linear, cyclical, and reversible characteristics. To better understand the various processes that cause transformation, a data aggregation, validation, and attribution approach was developed and applied to an analysis of the Southeastern Coastal Plains (SECP). The approach integrates information from available national land-use, natural disturbance, and land-cover data to efficiently assess spatially-specific changes and causes. Between 2001 and 2006, the processes of change affected 7.8 % of the SECP but varied across small-scale ecoregions. Processes were placed into a simple conceptual framework to explicitly identify the type and direction of change based on three general characteristics: replacement, recurrence, and recovery. Replacement processes, whereby a land use or cover is supplanted by a new land use, including urbanization and agricultural expansion, accounted for approximately 15 % of the extent of change. Recurrent processes that contribute to cyclical changes in land cover, including forest harvest/replanting and fire, accounted for 83 %. Most forest cover changes were recurrent, while the extents of recurrent silviculture and forest replacement processes such as urbanization far exceeded forest recovery processes. The total extent of landscape recovery, from prior land use to natural or semi-natural vegetation cover, accounted for less than 3 % of change. In a region of complex change, increases in transitory grassland and shrubland covers were caused by large-scale intensive plantation silviculture and small-scale activities including mining reclamation. Explicit identification of the process types and dynamics presented here may improve the understanding of land-cover change and landscape trajectory.

  19. Microclimate and actual evapotranspiration in a humid coastal-plain environment

    USGS Publications Warehouse

    Dennehy, K.F.; McMahon, P.B.

    1987-01-01

    Continuous hourly measurements of twelve meteorologic variables recorded during 1983 and 1984 were used to examine the microclimate and actual evapotranspiration at a low-level radioactive-waste burial site near Barnwell, South Carolina. The study area is in the Atlantic Coastal Plain of southwestern South Carolina. Monthly, daily, and hourly trends in net radiation, incoming and reflected short-wave radiation, incoming and emitted long-wave radiation, soil-heat flux, dry- and wet-bulb temperatures, soil temperatures, wind direction and speed, and precipitation were used to characterize the microclimate. Average daily air temperatures ranged from -9 to 32?? Celsius during the period of study. Net radiation varied from about -27 to 251 watts m-2 and was dominated by incoming short-wave radiation throughout the year. The peak net radiation during a summer day generally occurred 2-3h before the peak vapor pressure deficit. In the winter, these peaks occurred at about the same time of day. Monthly precipitation varied from 15 to 241 mm. The Bowen ratio method was used to estimate hourly evapotranspiration, which was summed to also give daily and monthly evapotranspiration. Actual evapotranspiration varied from 0.0 to 0.7 mm h-1, 0.8-5 mm d-1, and 20-140 mm month-1 during 1983 and 1984. The maximum rate of evapotranspiration generally occurred at the same time of day as maximum net radiation, suggesting net radiation was the main driving force for evapotranspiration. Precipitation exceeded evapotranspiration during 14 months of the 2yr study period. Late fall, winter, and early spring contained the majority of these months. The maximum excess precipitation was 115 mm in February 1983. ?? 1987.

  20. Physiological diversity and distributions of heterotrophic bacteria in deep cretaceous sediments of the atlantic coastal plain.

    PubMed

    Fredrickson, J K; Balkwill, D L; Zachara, J M; Li, S M; Brockman, F J; Simmons, M A

    1991-02-01

    A series of 23 intact core segments was obtained from two distinct deep subsurface geological formations, the Middendorf and the Cape Fear formations, underlying the southeastern coastal plain of South Carolina. The Middendorf formation in this region consists of permeable, saturated, sandy sediments; the Cape Fear formation consists mainly of less permeable sediments. The core segments were separated by vertical distances ranging from several centimeters to 48 m. Aerobic chemoheterotrophic bacteria were enumerated on a dilute medium, and populations ranged from 3.1 to 6.4 log CFU g of sediment in the Middendorf cores and from below detection to 4.3 log CFU g in the Cape Fear cores. A total of 198 morphologically distinct colony types were isolated, purified, and subjected to 108 different physiological measurements. The isolates from the two formations were distinct (i.e., they produced substantially different response patterns to the various physiological measurements), as were those in different core samples from the same formation. Cluster analysis revealed 21 different biotypes based on similarities of 75% or higher in response patterns to 21 physiological assays. One biotype contained 57 (29%) of the subsurface isolates, 10 biotypes contained 5 or more isolates, and the remainder had 4 or fewer. The organic compounds that were most commonly metabolized by the subsurface bacteria included Tween 40 (85%) and beta-hydroxybutyric acid (60%). Organic acids, in general, were also commonly metabolized by the subsurface bacteria. Isolates from the Cape Fear core segments were capable of metabolizing a higher percentage of the substrates than were bacteria isolated from the Middendorf formation. Although the heterogeneous distributions of bacteria in deep subsurface sediments may make it difficult to use aquifer microcosms to predict in situ biotransformation rates, the diversity of the physiological properties of these organisms offers promise for in situ remediation

  1. Distribution and ecology of campylobacters in coastal plain streams (Georgia, United States of America).

    PubMed

    Vereen, Ethell; Lowrance, R Richard; Cole, Dana J; Lipp, Erin K

    2007-03-01

    Campylobacter is the leading cause of bacterium-associated diarrhea in the United States and most developed countries. While this disease is considered a food-borne disease, many clinical cases cannot be linked to a food source. In rural and agrarian areas environmental transmission may be an important factor contributing to case loads. Here we investigated the waterborne prevalence of campylobacters in a mixed-use rural watershed in the coastal plain of southern Georgia (United States). Six sites representing various degrees of agricultural and human influence were surveyed biweekly to monthly for 1 year for the presence of culturable thermophilic campylobacters and other measures of water quality. Campylobacters were frequently present in agriculture- and sewage-impacted stretches of streams. The mean campylobacter counts and overall prevalence were highest downstream from a wastewater treatment plant that handled both human and poultry slaughterhouse waste (

  2. Effects of flooding and drought on water quality in Gulf Coastal Plain streams in Georgia.

    PubMed

    Golladay, Stephen W; Battle, Juliann

    2002-01-01

    Since 1994, water-quality constituents have been measured monthly in three adjacent Coastal Plain watersheds in southwestern Georgia. During 1994, rainfall was 650 mm above annual average and the highest flows on record were observed. From November 1998 through November 2000, 19 months had below average rainfall. Lowest flows on record were observed during the summer of 2000. The watersheds are human-dominated with row-crop agriculture and managed forestlands being the major land uses. However, one watershed (Chickasawhatchee Creek) had 10 to 13% less agriculture and greater wetland area, especially along the stream. Suspended particles, dissolved organic carbon, NH4-N, and soluble reactive phosphorus concentrations were greater during wet and flood periods compared with dry and drought periods for each stream. Regional hydrologic conditions had little effect on NO3-N or dissolved inorganic carbon. Chickasawhatchee Creek had significantly lower suspended sediment and NO3-N concentrations and greater organic and inorganic carbon concentrations, reflecting greater wetland area and stronger connection to a regional aquifer system. Even though substantial human land use occurred within all watersheds, water quality was generally good and can be attributed to low stream drainage density and relatively intact floodplain forests. Low drainage density minimizes surface run-off into streams. Floodplain forests reduce nonpoint-source pollutants through biological and physical absorption. In addition to preserving water quality, floodplain forests provide important ecological functions through the export of nutrients and organic carbon to streams. Extreme low flows may be disruptive to aquatic life due to both the lack of water and to the scarcity of biologically important materials originating from floodplain forests.

  3. Causes of acidity in the River Lillån in the coastal zone of central northern Sweden

    NASA Astrophysics Data System (ADS)

    Jansson, Mats; Ivarsson, Hans

    1994-08-01

    Factors controlling acidity were studied in the acidic River Lillån in the coastal zone of central northern Sweden. The stream drains the hilly wave-washed terrain and the sediment-covered coastal plain which are the dominating types of landscape in the region. A synoptic study of 38 small streams, representing both types of landscape was also made. Acidity in all streams is caused by organic acids in combination with catchment sources of sulfate. The most acidic streams occur in the hilly terrain because of a high terrestrial export of organic acids and low buffering capacity. Acidic episodes during snowmelt were associated with strongly decreased base cation concentrations, decreased SO 2-4 and slightly increased organic acids concentrations. Frequently occurring acid episodes caused by rainstorms and associated outwash of organic acids from forest soils are typical for events in late summer and autumn. It is suggested that, in all essential aspects, the acidity in surface waters in this part of Sweden is of natural origin.

  4. High Arctic Paraglacial Coastal Evolution in Northern Billefjorden, Svalbard

    NASA Astrophysics Data System (ADS)

    Strzelecki, Matt; Long, Antony; Lloyd, Jerry

    2013-04-01

    Most sediment budget studies in paraglacial, High Arctic, environments have focussed attention on quantifying sediment fluxes in glacial and fluvial catchments. In contrast, little attention has been paid to the functioning of the paraglacial coastal zone with existing models of coastal change based on relict systems developed in mid latitude settings. The pristine coasts of Spitsbergen provided a superb opportunity to quantify how High Arctic coasts are respondingto rapid climate warming and associated paraglacial landscape transformation. In this paper we reconstruct the development of the paraglacial coasts in Petuniabukta and Adolfbukta, the northernmost bays of Billefjorden, central Spitsbergen. The study area is characterized by a sheltered location, a semi-arid, sub-polar climate, limited wave fetch and tidal range, and rapid retreat of all surrounding glaciers. Using a combination of geomorphological, sedimentological, remote sensing and dating methods, we study the processes controlling the coastal zone development over annual, century and millennial timescales. Interannual changes observed between 2008-2010 show that gravel barriers in the study area are resilient to the impacts of local storms and the operation of sea-ice processes. In general, the processes controlling the short-term barrier development often operate in the opposite direction to the landforming patterns visible in the longer-term evolution. Over multi-decadal timescales, since the end of the Little Ice Age. we observe drammatic changes in sediment flux and coastal response under an interval characterised by a warming climate, retreating local ice masses, a shortened winter sea-ice season and melting permafrost. A new approach of dating juvenile mollusc found in uplifted marine barriers led to the better understating of the Late Holocene evolution of a Petuniabukta coastal zone and its reaction to deglaciation, glacioisostatic uplift and sea-level fluctuations. We propose a new

  5. Conservation agriculture practices to enhance soil organic in Lombardy plain (Northern Italy)

    NASA Astrophysics Data System (ADS)

    Perego, Alessia; Giussani, Andrea; Corsi, Stefano; Tosini, Andrea; Acutis, Marco

    2016-04-01

    It has been demonstrated that conservation agriculture (CA) determines a long-term increase in soil organic carbon (SOC) stock in cropland. The present study aimed to estimate the amount of SOC stored in soil of Lombardy plain (Northern Italy) following the change from tillage agriculture (TA) to CA by using crop ARMOSA crop over 23 years (1989-2011). The territorial analysis was performed at agrarian region scale (AR) after identification of the representative crops rotation and soil types. The land use information were data available at cadastral scale and referred to 5 years (from 2007 to 2011). The meteorological data (i.e. maximum and minimum temperature, precipitation) were measured at 14 monitoring stations. Solar radiation was estimated using the equation of the Bristow and Campbell model (1994). A spatial interpolation method was used to extend the meteorological data throughout the entire plain of the region by employing Thiessen polygon method; the meteorological data of the polygon were assigned to each AR. ARMOSA was parameterized to simulate the two tillage systems. For TA and CA scenario the depth of tillage was limited to 35 and 10 cm, respectively; crop residual incorporation was not simulated under CA. In TA scenario, we used the parameters calibrated and validated by Perego et al.(2013) on a wide dataset collected at six monitoring sites in Lombardy plain. In CA, the rate of C decomposition of humified organic C was assumed to be smaller by 30% in no-tillage than in TA (Oorts et al., 2007). The model results showed a significant improve of SOC (p<0.01) from TA to CA under all the crop rotations with a potential SOC sequestration ranged from 0.1 to 0.48 t C ha-1 y-1. While soil type did not affect significantly the SOC sequestration, crop residue determined relevant increases in SOC. That was particularly evident in grain maize monoculture with or without cover crop. References: Oorts K., Garnier P., Findeling A., Mary B., Richard G., Nicolardot B

  6. Excavation of Stratified Phyllosilicate-Bearing Rocks in the Northern Plains of Mars

    NASA Astrophysics Data System (ADS)

    Gross, C.; Carter, J.; Tornabene, L. L.; Sowe, M.; Bishop, J. L.

    2014-12-01

    The Noachian southern highlands of Mars bear old crustal material which appears mostly unaltered (Bandfield, 2002; Bibring et al., 2005; Christensen et al., 2005) and contains phyllosilicate-rich material. Phyllosilicates are of particular interest, as they require the presence of liquid water over long terms and may represent habitable environments. Most phyllosilicates formed early in Mars' history during the Noachian period (Bibring et al., 2006). However, a set of Hesperian-aged impact craters, Toro (Marzo et al., 2010) and Majuro (Mangold et al., 2012) bear evidence for impact-induced hydrothermal activity in the southern highlands. Phyllosilicate outcrops in the northern plains are exclusively found in and around impact craters. This could lead to the conclusion that they might form excavation products of preexisting, buried deposits, exposed by impacting and erosion (Carter et al. 2010; Bibring et al. 2006; Murchie et al. 2009). Nevertheless, when investigating alteration associated with impact craters, pre-, syn- and post-impact scenarios have to be considered (Osinski et al., 2013; Tornabene et al., 2013). We revisited a set of impact sites described by Carter et al. (2010) for further investigation and to test the theory of impact excavation of old preexisting strata versus impact-induced hydrothermal activity. This can be achieved as coverage of high resolution data has drastically increased during the time of that study. We here report the presence of uplifted, stratified, phyllosilicate-rich material in an impact crater, located in the northern plains of Mars, close to the dichotomy boundary. References: Bandfield (2002) JGR, 107, E6, 5042. Bibring et al. (2005) Science, 307, 1576-1581. Christensen et al. (2005) Nature, 436, 504-509. Bibring et al. (2006) Science, 312, 400-404. Marzo et al. (2010) Icarus, 208, 667-683. Mangold et al. (2012) PSS, 72, 18-30. Carter et al. (2010) Science, 328, 1682-1686. Murchie et al. (2009) JGR, 114, E00D06. Osinski et

  7. Saltwater Intrusion and its Long-Term Consequences in a Coastal Alluvial Aquifer of Northern Oman

    NASA Astrophysics Data System (ADS)

    Weyhenmeyer, C. E.; Waber, H. N.

    2002-12-01

    The alluvial aquifer of the Eastern Batinah coastal plain supplies water for the most densely populated, cultivated and industrialized areas in the Sultanate of Oman. In recent years, overexploitation of these groundwater resources has resulted in a drastic lowering of the groundwater table and consequent seawater intrusion into the coastal aquifer sections. During recent drilling operations near the coast (~3 km) groundwater samples were taken at depths intervals of 2-5 m. The front of the saline intrusion wedge was encountered at a depth of 70-80 mbs as suggested by sudden changes in groundwater chemistry and isotope values. Groundwater near the saline intrusion front is characterized by lower Na/Cl and higher Ca/Mg ratios compared to ion ratios expected from groundwater mixing calculations between fresh- and saltwater. The observed changes in ion ratios suggest that Na is removed from the groundwater and replaced by Ca from cation exchange surfaces in the aquifer (e.g., clay particles), which is an indication that the saline front is still migrating inland. To date, a deterioration of overall groundwater quality can be recognized as far inland as 15 km and Cl and Na concentrations in these areas are well above the general quality standards for drinking water. Estimates of infiltration rates based on isotope ratios (Sr, O, H) suggest that less than 10% of the total groundwater recharge occurs on the coastal plain itself, with the remaining 90% originating in the adjacent Oman Mountains. Groundwater residence times on the coastal plain are in the order of a few hundred to several thousand years as suggested by a number of radioactive isotopes (3H, 85Kr, 39Ar, 14C). Therefore, these groundwater resources essentially have to be considered non-renewable and there is a pressing requirement for the development of sustainable groundwater management strategies. Attempts to artificially increase infiltration on the coastal plain by the construction of large recharge dams

  8. Arsenic in New Jersey Coastal Plain streams, sediments, and shallow groundwater: effects from different geologic sources and anthropogenic inputs on biogeochemical and physical mobilization processes

    USGS Publications Warehouse

    Barringer, Julia L.; Reilly, Pamela A.; Eberl, Dennis D.; Mumford, Adam C.; Benzel, William M.; Szabo, Zoltan; Shourds, Jennifer L.; Young, Lily Y.

    2013-01-01

    With a history of agriculture in the New Jersey Coastal Plain, anthropogenic inputs of As, such as residues from former pesticide applications in soils, can amplify any geogenic As in runoff. Such inputs contribute to an increased total As load to a stream at high stages of flow. As a result of yet another anthropogenic influence, microbes that reduce and mobilize As beneath the streambeds are stimulated by inputs of dissolved organic carbon (DOC). Although DOC is naturally occurring, anthropogenic contributions from wastewater inputs may deliver increased levels of DOC to subsurface soils and ultimately groundwater. Arsenic concentrations may increase with the increases in pH of groundwater and stream water in developed areas receiving wastewater inputs, as As mobilization caused by pH-controlled sorption and desorption reactions are likely to occur in waters of neutral or alkaline pH (for example, Nimick and others, 1998; Barringer and others, 2007b). Because of the difference in As content of the geologic materials in the two sub-provinces of the Coastal Plain, the amount of As that is mobile in groundwater and stream water is, potentially, substantially greater in the Inner Coastal Plain than in the Outer Coastal Plain. In turn, streams within the Inner and Outer Coastal Plain can receive substantially more As in groundwater discharge from developed areas than from environments where DOC appears to be of natural origin.

  9. The role of strong earthquakes and tsunami in the Late Holocene evolution of the Fortore River coastal plain (Apulia, Italy): A synthesis

    NASA Astrophysics Data System (ADS)

    Mastronuzzi, Giuseppe; Sansò, Paolo

    2012-02-01

    Morphological analysis of the Fortore River coastal plain and the Lesina Lake coastal barrier integrated with radiocarbon age data indicates that the evolution of the coastal landscape has been strongly affected by a number of strong earthquakes and related tsunamis which occurred during the last 3000 years. The first seismic event struck this coastal area in the V century BC. It produced strong erosion of the Fortore River coastal plain and significant emersion of Punta delle Pietre Nere, as well as the large tsunami responsible for the development of the Sant'Andrea washover fan. The second event occurred in 493 AD; it induced severe erosion of the Fortore River coastal plain and triggered the large tsunami that hit the Lesina Lake coastal barrier, producing the Foce Cauto washover fan. Then later in 1627, an earthquake was responsible for the further coseismic uplift of Punta delle Pietre Nere, the subsidence of Lesina village area and the development of a tsunami which produced two washover fans. Morphological analysis points out that seismic events strong enough to control the morphological evolution of local coastal landscapes show a statistical return period of about 1000 years. These major events produced important coseismic vertical movements and large tsunamis. However, the correct identification of the tectonic structure responsible for the generation of these strong earthquakes is still an unsolved problem.

  10. Fishery Resources and Threatened Coastal Habitats in the Northern Gulf of Mexico (Abstract)

    EPA Science Inventory

    We have explored relationships between selected fishery species of the northern Gulf of Mexico and important features of their habitats. The principal goal of our research is to predict the cumulative effects of habitat alterations on coastal resources and ecosystems. Pink shrimp...

  11. Accuracy assessment, using stratified plurality sampling, of portions of a LANDSAT classification of the Arctic National Wildlife Refuge Coastal Plain

    NASA Technical Reports Server (NTRS)

    Card, Don H.; Strong, Laurence L.

    1989-01-01

    An application of a classification accuracy assessment procedure is described for a vegetation and land cover map prepared by digital image processing of LANDSAT multispectral scanner data. A statistical sampling procedure called Stratified Plurality Sampling was used to assess the accuracy of portions of a map of the Arctic National Wildlife Refuge coastal plain. Results are tabulated as percent correct classification overall as well as per category with associated confidence intervals. Although values of percent correct were disappointingly low for most categories, the study was useful in highlighting sources of classification error and demonstrating shortcomings of the plurality sampling method.

  12. A conceptual framework and monitoring strategy for movement of saltwater in the coastal plain aquifer system of Virginia

    USGS Publications Warehouse

    Mcfarland, E. Randolph

    2015-09-04

    Some aspects of observation-well construction and sampling are of particular importance to monitoring saltwater movement in the Virginia Coastal Plain aquifer system. Observation wells should feature screened intervals generally of no more than 10 feet that isolate distinct parts of the aquifer, and be thoroughly developed for removal of drilling fluid and introduced water. Presample purging should fully displace stratified saltwater in the well casing upward to the pump. Stable flow should be maintained as field parameters are measured and sample containers are filled with filtered water isolated from the atmosphere and unaffected by surface temperature. Groundwater samples from both upconing and lateral-intrusion obse

  13. Uranium disequilibrium as a hydrological aid in studying the salinization processes in the Southeastern Coastal Plain of Israel.

    PubMed

    Avisar, D; Kronfeld, J

    2009-01-01

    Saline waters, of unknown origin, have been encountered in the basal portions of the phreatic Coastal Plain aquifer of Israel. (234)U/(238)U disequilibrium was used to trace their origin to the evaporate layers within the Saqiye aquiclude, the most saline, and the warmest (up to 42 degrees C) waters are also those that have the highest uranium concentrations combined with low (234)U/(238)U activity ratios, derived as the ascending brines traverse underlying uranium-rich Senonian phosphorites, in secular equilibrium along fault conduits.

  14. A conceptual framework and monitoring strategy for movement of saltwater in the coastal plain aquifer system of Virginia

    USGS Publications Warehouse

    Mcfarland, E. Randolph

    2015-01-01

    Some aspects of observation-well construction and sampling are of particular importance to monitoring saltwater movement in the Virginia Coastal Plain aquifer system. Observation wells should feature screened intervals generally of no more than 10 feet that isolate distinct parts of the aquifer, and be thoroughly developed for removal of drilling fluid and introduced water. Presample purging should fully displace stratified saltwater in the well casing upward to the pump. Stable flow should be maintained as field parameters are measured and sample containers are filled with filtered water isolated from the atmosphere and unaffected by surface temperature. Groundwater samples from both upconing and lateral-intrusion obse

  15. Women's Life Course in Northern Plains Indian Societies: Achieving the Honored Rank of Old Lady.

    ERIC Educational Resources Information Center

    Kehoe, Alice B.

    Among Indian groups of the Northwestern Plains (Blackfoot, Plains Cree, Dakota, Plains Ojibwa), older persons are respected for the spiritual power they have obtained. Differences exist between the several ethnic groups, but in general they assume that attainment of maturity and then old age proves spiritual power and makes the elder a proper…

  16. Upper Cretaceous sequences and sea-level history, New Jersey Coastal Plain

    USGS Publications Warehouse

    Miller, K.G.; Sugarman, P.J.; Browning, J.V.; Kominz, M.A.; Olsson, R.K.; Feigenson, M.D.; Hernandez, J.C.

    2004-01-01

    We developed a Late Cretaceous sealevel estimate from Upper Cretaceous sequences at Bass River and Ancora, New Jersey (ODP [Ocean Drilling Program] Leg 174AX). We dated 11-14 sequences by integrating Sr isotope and biostratigraphy (age resolution ??0.5 m.y.) and then estimated paleoenvironmental changes within the sequences from lithofacies and biofacies analyses. Sequences generally shallow upsection from middle-neritic to inner-neritic paleodepths, as shown by the transition from thin basal glauconite shelf sands (transgressive systems tracts [TST]), to medial-prodelta silty clays (highstand systems tracts [HST]), and finally to upper-delta-front quartz sands (HST). Sea-level estimates obtained by backstripping (accounting for paleodepth variations, sediment loading, compaction, and basin subsidence) indicate that large (>25 m) and rapid (???1 m.y.) sea-level variations occurred during the Late Cretaceous greenhouse world. The fact that the timing of Upper Cretaceous sequence boundaries in New Jersey is similar to the sea-level lowering records of Exxon Production Research Company (EPR), northwest European sections, and Russian platform outcrops points to a global cause. Because backstripping, seismicity, seismic stratigraphic data, and sediment-distribution patterns all indicate minimal tectonic effects on the New Jersey Coastal Plain, we interpret that we have isolated a eustatic signature. The only known mechanism that can explain such global changes-glacio-eustasy-is consistent with foraminiferal ??18O data. Either continental ice sheets paced sea-level changes during the Late Cretaceous, or our understanding of causal mechanisms for global sea-level change is fundamentally flawed. Comparison of our eustatic history with published ice-sheet models and Milankovitch predictions suggests that small (5-10 ?? 106 km3), ephemeral, and areally restricted Antarctic ice sheets paced the Late Cretaceous global sea-level change. New Jersey and Russian eustatic estimates

  17. Microbial Responses to Forest Management in the Western Gulf Coastal Plain, USA

    NASA Astrophysics Data System (ADS)

    Foote, J. A.; Boutton, T. W.; Scott, D. A.

    2013-12-01

    to the more severe harvest treatments; however, while TN was significantly impacted by harvest and varied over time, SOC varied only with time. Temporal variations in SMB-C and -N, TN, and SOC were correlated with temperature, precipitation, and volumetric soil moisture. Data suggest that forest harvest practices that minimize removal of above-ground biomass will favor soil N retention and the maintenance of the SMB pool. Since N limits tree growth in the sandy soils of the western Gulf Coastal Plain, and because SMB plays a key role in N mineralization, harvest practices that favor N retention and SMB will ensure the productivity of future rotations.

  18. Seasonal variability of microbial use of dissolved organic matter in Coastal Plain headwater streams

    NASA Astrophysics Data System (ADS)

    Hosen, J. D.; Febria, C. M.; Palmer, M.

    2013-12-01

    At the interface between land and water, headwater streams are conduits for a globally relevant amount of dissolved organic matter (DOM). Headwater systems act as more than pipes, but rather as sites where substantial DOM processing by heterotrophic microbial communities are known to occur. The amount of DOM processed by microorganisms has been shown to be related to the composition of the organic matter source. Other factors are also important to varying degrees, including the availability of inorganic nutrients such as nitrogen and phosphorus, and the activity and composition of the microbial community itself. Despite a widespread appreciation of microbial DOM cycling in headwaters, empirical studies that address the interaction of these factors at the watershed scale are needed to help fully understand and predict DOM processing across large environmental gradients, especially in the face of climate change. To address this need, we studied several properties of DOM and microbial communities in Coastal Plain headwater streams of Maryland, USA. Baseflow stream water samples were collected from 8 sites on a quarterly basis from November 2011 through Feburary 2013. Streamwater was filtered to 0.2 μm and a downstream common inoculum was added to each replicate. DOM bioavailability was determined by measuring non-purgeable organic carbon concentration before and after a 28 day incubation at 20 degrees Celsius. Other measurements collected on unamended stream water included DOM fluorescence spectroscopy, nitrogen species, ortho-phosphate, and extracellular enzyme activity (EEA). The most important factors related to DOM bioavailability changed across seasons. DOM bioavailability was positively related to fluorescence index values, indicating greater bioavailability of autochthonous material. Bioavailability also increased with increasing nitrogen concentrations, indicating that nitrogen was a limiting resource for heterotrophic microbes in the streams studied. DOM

  19. Assessing coastal plain wetland composition using advanced spaceborne thermal emission and reflection radiometer imagery

    NASA Astrophysics Data System (ADS)

    Pantaleoni, Eva

    Establishing wetland gains and losses, delineating wetland boundaries, and determining their vegetative composition are major challenges that can be improved through remote sensing studies. We used the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) to separate wetlands from uplands in a study of 870 locations on the Virginia Coastal Plain. We used the first five bands from each of two ASTER scenes (6 March 2005 and 16 October 2005), covering the visible to the short-wave infrared region (0.52-2.185mum). We included GIS data layers for soil survey, topography, and presence or absence of water in a logistic regression model that predicted the location of over 78% of the wetlands. While this was slightly less accurate (78% vs. 86%) than current National Wetland Inventory (NWI) aerial photo interpretation procedures of locating wetlands, satellite imagery analysis holds great promise for speeding wetland mapping, lowering costs, and improving update frequency. To estimate wetland vegetation composition classes, we generated a classification and regression tree (CART) model and a multinomial logistic regression (logit) model, and compared their accuracy in separating woody wetlands, emergent wetlands and open water. The overall accuracy of the CART model was 73.3%, while for the logit model was 76.7%. The CART producer's accuracy of the emergent wetlands was higher than the accuracy from the multinomial logit (57.1% vs. 40.7%). However, we obtained the opposite result for the woody wetland category (68.7% vs. 52.6%). A McNemar test between the two models and NWI maps showed that their accuracies were not statistically different. We conducted a subpixel analysis of the ASTER images to estimate canopy cover of forested wetlands. We used top-of-atmosphere reflectance from the visible and near infrared bands, Delta Normalized Difference Vegetation Index, and a tasseled cap brightness, greenness, and wetness in linear regression model with canopy

  20. Estimating Cleanup Times for Organic Contaminants in Shallow Coastal Plain Aquifers

    NASA Astrophysics Data System (ADS)

    Chapelle, F. H.; Widdowson, M. A.; Casey, C.

    2001-05-01

    Monitored natural attenuation (MNA) can be a cost-effective strategy for restoring contaminated aquifer systems either as a stand-alone technology or in combination with other engineered remedial actions. However, USEPA guidance specifically requires MNA to achieve site-specific cleanup objectives "within a reasonable time frame" (USEPA, 1999). Thus, it is necessary to provide estimates of cleanup times whenever MNA is proposed as part of a cleanup strategy. This problem can be approached in terms of a mass-balance in which rates of contaminant delivery to the environment (dissolution of NAPL, desorption etc.) are quantitatively compared to rates of contaminant destruction (principally biodegradation). Because of the complex interaction of contaminant sources and sinks, and because these factors operate within the context of dynamic ground-water systems, solutions to this problem generally requires the use of solute-transport models. This paper outlines a methodology for estimating cleanup times associated with MNA as a stand-alone remedial strategy and in conjunction with source-area removal using the numerical model Sequential Electron Acceptor Model for 3D transport (SEAM3D). The code incorporates physical transport, retardation and intrinsic biodegradation (aerobic and sequential anaerobic) within a three-dimensional flow field. SEAM3D also includes a module for simulating the dissolution of contaminants from a non-aqueous phase liquid (NAPL), such as gasoline or chlorinated solvents. With this capability, a mass-based approach is employed to simulate a contaminant source combined with attenuation of an aqueous-phase plume and to address time frames associated with MNA. This methodology is illustrated by considering the time of remediation in chlorinated ethene contaminated coastal-plain aquifers in Pensacola, Florida (trichloroethene, TCE) and in Kings Bay, Georgia (tetrachloroethene, PCE). At both sites, reductive dechlorination was a significant attenuation

  1. Sp receiver function imaging of a passive margin: Transect across Texas's Gulf Coastal Plain

    NASA Astrophysics Data System (ADS)

    Ainsworth, Ryan; Pulliam, Jay; Gurrola, Harold; Evanzia, Dominic

    2014-09-01

    The Gulf Coast of Texas has been the subject of intensive geological and geophysical investigation in pursuit of hydrocarbons but studies that penetrate beyond the upper crust are limited to a few refraction profiles and regional surface wave investigations. The passing of EarthScope's Transportable Array has facilitated regional investigations of the lithosphere but its 70-km station spacing does not allow many important tectonic features to be imaged. A broadband seismic transect across the Texas Gulf Coastal Plain was therefore performed in order to image deep structure beneath this passive margin and the transition to the neighboring craton. A 2D Sp receiver function common conversion point (CCP) stacked image produced for this transect reveals several discontinuities in the sub-crustal lithosphere. The region nearest the shoreline is underlain by an anomalous ∼18 km thick low velocity layer that produces a strong negative pulse in the Sp receiver functions. The drop in velocity is too large to be due to any reasonable change in Fe or Mg content but could be produced by partial melt or mantle hydration. It is unlikely that partial melt would still be found in a 160-180-year-old passive margin, such as the Gulf Coast, but hydration, possibly introduced by a through-going Balcones fault system, and resulting serpentinization could produce the observed anomaly. An event with negative polarity appears at a depth of ∼110 km, which we interpret to be the lithosphere-asthenosphere boundary (LAB). Thermal variations alone would not produce a sufficiently sharp discontinuity to be imaged by Sp converted phases. Recent shear-wave splitting studies revealed unusually large delay times in this region, along with fast polarization directions that differ from measurements on the Laurentian craton. Large delay times may imply significant flow, which could also produce frictional heating, due to shearing, and partial melt, which would steepen the velocity gradients. An

  2. Carbon, nitrogen, and phosphorus accumulation in floodplains of Atlantic Coastal Plain rivers, USA

    USGS Publications Warehouse

    Noe, G.B.; Hupp, C.R.

    2005-01-01

    Net nutrient accumulation rates were measured in riverine floodplains of the Atlantic Coastal Plain in Virginia, Maryland, and Delaware, USA. The floodplains were located in watersheds with different land use and included two sites on the Chickahominy River (urban), one site on the Mattaponi River (forested), and five sites on the Pocomoke River (agricultural). The Pocomoke River floodplains lie along reaches with natural hydrogeomorphology and on reaches with restricted flooding due to channelization and levees. A network of feldspar clay marker horizons was placed on the sediment surface of each floodplain site 3-6 years prior to sampling. Sediment cores were collected from the material deposited over the feldspar clay pads. This overlying sediment was separated from the clay layer and then dried, weighed, and analyzed for its total carbon (C), nitrogen (N), and phosphorus (P) content. Mean C accumulation rates ranged from 61 to 212 g??m-2??yr-1, N accumulation rates ranged from 3.5 to 13.4 g??m -2??yr-1, and P accumulation rates ranged from 0.2 to 4.1 g??m-2??yr-1 among the eight floodplains. Patterns of intersite variation in mineral sediment and P accumulation rates were similar to each other, as was variation in organic sediment and C and N accumulation rates. The greatest sediment and C, N, and P accumulation rates were observed on Chickahominy River floodplains downstream from the growing metropolitan area of Richmond, Virginia. Nutrient accumulation rates were lowest on Pocomoke River floodplains that have been hydraulically disconnected from the main channel by channelization and levees. Sediment P concentrations and P accumulation rates were much greater on the hydraulically connected floodplain immediately downstream of the limit of channelization and dense chicken agriculture of the upper Pocomoke River watershed. These findings indicate that (1) watershed land use has a large effect on sediment and nutrient retention in floodplains, and (2) limiting

  3. Sterol-inhibiting fungicide impacts on soil microbial ecology in Atlantic Coastal Plain soils

    NASA Astrophysics Data System (ADS)

    White, P. M.; Potter, T. L.; Strickland, T. C.

    2008-12-01

    Seventy-five percent of the peanuts (Arachus hypogaia) produced in the United States are grown in the Atlantic Coastal Plain region. Portions of this area, including Alabama and Georgia, exhibit a subtropical climate that promotes soil-borne plant fungal diseases. Most fields receive repeated fungicide applications during the growing season to suppress the disease causing organisms, such as Sclerotium rolfsii, Rhizoctonia solani, and Cylindrocladium parasiticum. Information regarding fungicide effects on the soil microbial community, with components principally responsible for transformation and fate of fungicides and other soil-applied pesticides, is limited. The objectives of the study were to assess soil microbial community response to (1) varying rates of the sterol-inhibiting fungicide tebuconazole (0, single application, season max, 2x season max), and (2) field rates of the sterol-inhibitors cyproconazole, prothioconazole, tebuconazole, and flutriafol, and thiol-competitor chlorothalonil. The sterol-inhibitors exhibited different half lives, as listed in the FOOTPRINT database, ranging from <1 day to >1300 d. Chlorothalonil was chosen because it is the most frequently applied fungicide to peanut. Shifts in the fungi, gram positive and gram negative bacteria, were monitored during the experiments using phospholipid fatty acid (PLFA) profiles. Ergosterol levels and pesticide decay rates were also monitored to evaluate the effectiveness of the fungicide and soil residence time, respectively. In the rate study, the highest rate of tebuconazole reduced the fungal biomarker 18:2ω6,9c to 2.6 nmol g-1 dry soil at 17 d, as compared to the control (4.1 nmol g-1 dry soil). However, levels of the fungal PLFA biomarker were similar regardless of rate at 0 and 32 d. The gram negative bacterial PLFA mole percent was greater at 17 d for the two highest rates of tebuconazole, but was similar at 0 and 32 d. Gram positive and fungal mole percents were not affected at any time

  4. Response of soil respiration to experimental warming and precipitation manipulation in a northern Great Plains grassland

    NASA Astrophysics Data System (ADS)

    Flanagan, L. B.; Sharp, E. J.; Letts, M. G.

    2012-12-01

    The interacting effects of altered temperature and precipitation are expected to have significant consequences for ecosystem net carbon storage. Here we report the results of an experiment that evaluated the effects of elevated temperature and altered precipitation, alone and in combination, on plant biomass production and soil respiration rates in a northern Great Plains grassland, near Lethbridge, Alberta Canada. Open-top chambers and rain shelters were used to establish an experiment with two temperature treatments (warmed and control), each combined with three precipitation treatments (minus 50%, ambient (no manipulation), and plus 50%). Our objectives were to determine the sensitivity of plant biomass production and soil respiration to temperature and moisture manipulations, and to test for direct and indirect effects of the environmental changes on soil respiration rates. The experimental manipulations resulted primarily in a significant increase in air temperature in the warmed treatment. There were no significant treatment effects on soil moisture content. Aboveground biomass was not significantly affected by the experimental manipulations, but the warmed plots of the ambient precipitation treatment showed an increase in root biomass relative to the control plots. The warmed treatment increased the cumulative loss of carbon in soil respiration by approximately 400 g C m-2 compared to the control during July-September. This higher soil respiration rate was not directly caused by differences among treatments in soil temperature or soil moisture, but was likely an indirect result of increased carbon substrate availability in the warmed relative to the control treatment.

  5. “Exploring Effects of Climate Change on Northern Plains American Indian Health”

    PubMed Central

    Redsteer, Margaret Hiza; Eggers, Margaret J.

    2013-01-01

    American Indians have unique vulnerabilities to the impacts of climate change because of the links among ecosystems, cultural practices, and public health, but also as a result of limited resources available to address infrastructure needs. On the Crow Reservation in south-central Montana, a Northern Plains American Indian Reservation, there are community concerns about the consequences of climate change impacts for community health and local ecosystems. Observations made by Tribal Elders about decreasing annual snowfall and milder winter temperatures over the 20th century initiated an investigation of local climate and hydrologic data by the Tribal College. The resulting analysis of meteorological data confirmed the decline in annual snowfall and an increase in frost free days. In addition, the data show a shift in precipitation from winter to early spring and a significant increase in days exceeding 90° F (32° C). Streamflow data show a long-term trend of declining discharge. Elders noted that the changes are affecting fish distribution within local streams and plant species which provide subsistence foods. Concerns about warmer summer temperatures also include heat exposure during outdoor ceremonies that involve days of fasting without food or water. Additional community concerns about the effects of climate change include increasing flood frequency and fire severity, as well as declining water quality. The authors call for local research to understand and document current effects and project future impacts as a basis for planning adaptive strategies. PMID:24265512

  6. The Pierre Shale, northern Great Plains: a potential isolation medium for radioactive waste

    USGS Publications Warehouse

    Shurr, George W.

    1977-01-01

    The purpose of this reconnaissance is to assess the potential of the Pierre Shale, of Late Cretaceous age, as a possible isolation medium for radioactive wastes. The regional stratigraphic and structural setting of the Pierre Shale in the northern Great Plains is summarized from subsurface data. Geologic attributes mapped and employed in the identification of areas warranting further evaluation are: depth to the base of the Pierre Shale, shale thickness, overburden thickness, lithology and mineralogy of the shale, and penetrations by oil and gas wells. Three areas emerge as most favorable; each may contain many potential disposal sites. These large geologic study areas are further described on the basis of general structural and seismic considerations and are compared with respect to topography and mineral and water resources. A large area in west-central South Dakota is recommended for extensive further study. A smaller area in northeastern Colorado also may warrant additional investigation. A relatively small area in north-central North Dakota is also delineated, but currently is not proposed for further studies.

  7. Wind and Wildlife in the Northern Great Plains: Identifying Low-Impact Areas for Wind Development

    PubMed Central

    Fargione, Joseph; Kiesecker, Joseph; Slaats, M. Jan; Olimb, Sarah

    2012-01-01

    Wind energy offers the potential to reduce carbon emissions while increasing energy independence and bolstering economic development. However, wind energy has a larger land footprint per Gigawatt (GW) than most other forms of energy production and has known and predicted adverse effects on wildlife. The Northern Great Plains (NGP) is home both to some of the world’s best wind resources and to remaining temperate grasslands, the most converted and least protected ecological system on the planet. Thus, appropriate siting and mitigation of wind development is particularly important in this region. Steering energy development to disturbed lands with low wildlife value rather than placing new developments within large and intact habitats would reduce impacts to wildlife. Goals for wind energy development in the NGP are roughly 30 GW of nameplate capacity by 2030. Our analyses demonstrate that there are large areas where wind development would likely have few additional impacts on wildlife. We estimate there are ∼1,056 GW of potential wind energy available across the NGP on areas likely to have low-impact for biodiversity, over 35 times development goals. New policies and approaches will be required to guide wind energy development to low-impact areas. PMID:22848505

  8. Grazing improves C and N cycling in the Northern Great Plains: a meta-analysis.

    PubMed

    Wang, Xiaoyu; McConkey, Brian G; VandenBygaart, A J; Fan, Jianling; Iwaasa, Alan; Schellenberg, Mike

    2016-01-01

    Grazing potentially alters grassland ecosystem carbon (C) and nitrogen (N) storage and cycles, however, the overall direction and magnitude of such alterations are poorly understood on the Northern Great Plains (NGP). By synthesizing data from multiple studies on grazed NGP ecosystems, we quantified the response of 30 variables to C and N pools and fluxes to grazing using a comprehensive meta-analysis method. Results showed that grazing enhanced soil C (5.2 ± 4.6% relative) and N (11.3 ± 9.1%) pools in the top layer, stimulated litter decomposition (26.8 ± 18.4%) and soil N mineralization (22.3 ± 18.4%) and enhanced soil NH4(+) (51.5 ± 42.9%) and NO3(-) (47.5 ± 20.7%) concentrations. Our results indicate that the NGP grasslands have sequestered C and N in the past 70 to 80 years, recovering C and N lost during a period of widespread grassland deterioration that occurred in the first half of the 20(th) century. Sustainable grazing management employed after this deterioration has acted as a critical factor for C and N amelioration of degraded NGP grasslands and about 5.84 Mg C ha(-1) CO2-equivalent of anthropogenic CO2 emissions has been offset by these grassland soils. PMID:27616184

  9. Intention to receive cancer screening in Native Americans from the Northern Plains

    PubMed Central

    Guadagnolo, B. Ashleigh; Kanekar, Shalini; Petereit, Daniel G.; Karki, Chitra; Smith, Maureen A.

    2011-01-01

    Background Native Americans are disproportionately affected by cancer morbidity and mortality. This study examined intention to receive cancer screening in a large sample of Native Americans from the Northern Plains, a region with high cancer mortality rates. Methods A survey was administered orally to 975 individuals in 2004–2006 from three reservations and among the urban Native American community in the service region of the Rapid City Regional Hospital. Data analysis was conducted in 2009. Results About 63% of the sample planned to receive cancer screening. In multivariate analyses, individuals who planned to receive cancer screening were women, responsible for four or more people, received physical examinations at least yearly and had received prior cancer screening. They also were more likely to hold the belief that most people would go through cancer treatment even though these treatments can be emotionally or physically uncomfortable. About 90% of those who did not plan to receive cancer screening would be more likely to intend to receive cancer screening if additional resources were available. Conclusions In an area of high cancer morbidity and mortality, over one-third of screening eligible individuals did not plan to receive cancer screening. Future research should evaluate the potential for improving cancer screening rates through interventions that seek to facilitate increased knowledge about cancer screening and access to cancer screening services in the community. PMID:21132524

  10. Wind and wildlife in the Northern Great Plains: identifying low-impact areas for wind development.

    PubMed

    Fargione, Joseph; Kiesecker, Joseph; Slaats, M Jan; Olimb, Sarah

    2012-01-01

    Wind energy offers the potential to reduce carbon emissions while increasing energy independence and bolstering economic development. However, wind energy has a larger land footprint per Gigawatt (GW) than most other forms of energy production and has known and predicted adverse effects on wildlife. The Northern Great Plains (NGP) is home both to some of the world's best wind resources and to remaining temperate grasslands, the most converted and least protected ecological system on the planet. Thus, appropriate siting and mitigation of wind development is particularly important in this region. Steering energy development to disturbed lands with low wildlife value rather than placing new developments within large and intact habitats would reduce impacts to wildlife. Goals for wind energy development in the NGP are roughly 30 GW of nameplate capacity by 2030. Our analyses demonstrate that there are large areas where wind development would likely have few additional impacts on wildlife. We estimate there are ∼1,056 GW of potential wind energy available across the NGP on areas likely to have low-impact for biodiversity, over 35 times development goals. New policies and approaches will be required to guide wind energy development to low-impact areas.

  11. Breaking sod or breaking even? Flax on the northern Great Plains and Prairies, 1889-1930.

    PubMed

    MacFayden, Joshua D

    2009-01-01

    A new thirst for paint and color in cities made extensive flax production profitable in the northern Great Plains and Prairies and contributed to the cultivation of the most fragile grassland ecosystems. The production of flax seed for linseed oil became an early spin-off of the Prairie wheat economy but, unlike wheat, flax vanished from old land after one or two rotations and reappeared in districts with the most new breaking. Officials explained the migrant crop as preparing native grasslands for cultivation or exhausting soil in old land, but farmers brought flax to their new breaking for other reasons. Producers would only put flax on any land when a range of economic and environmental conditions were in place. It was never sown without promise of adequately high prices or in the absence of affordable seed and other inputs. When price allowed, it usually appeared on new breaking because it could be planted later and transported further without upsetting the balance of other activities and without farmers learning many new techniques. Scientists discovered that diseased soil drove flax off old land, not soil exhaustion. Circumventing the disease was possible but costly, and farmers simply replaced flax with the next most lucrative commodity.

  12. Subtask 7.3 - The Socioeconomic Impact of Climate Shifts in the Northern Great Plains

    SciTech Connect

    Jaroslav Solc; Tera Buckley; Troy Simonsen

    2007-12-31

    The Energy & Environmental Research Center (EERC) evaluated the water demand response/vulnerability to climate change factors of regional economic sectors in the northern Great Plains. Regardless of the cause of climatic trends currently observed, the research focused on practical evaluation of climate change impact, using water availability as a primary factor controlling long-term regional economic sustainability. Project results suggest that the Upper Missouri, Red River, and Upper Mississippi Watersheds exhibit analogous response to climate change, i.e., extended drought influences water availability in the entire region. The modified trend suggests that the next period for which the Red River Basin can expect a high probability of below normal precipitation will occur before 2050. Agriculture is the most sensitive economic sector in the region; however, analyses confirmed relative adaptability to changing conditions. The price of agricultural commodities is not a good indicator of the economic impact of climate change because production and price do not correlate and are subject to frequent and irregular government intervention. Project results confirm that high water demand in the primary economic sectors makes the regional economy extremely vulnerable to climatic extremes, with a similar response over the entire region. Without conservation-based water management policies, long-term periods of drought will limit socioeconomic development in the region and may threaten even the sustainability of current conditions.

  13. Holocene intracontinental deformation of the northern North China Plain: Evidence of tectonic ground fissures

    NASA Astrophysics Data System (ADS)

    Xu, Liqing; Li, Sanzhong; Cao, Xianzhi; Somerville, I. D.; Suo, Yanhui; Liu, Xin; Dai, Liming; Zhao, Shujuan; Guo, Lingli; Wang, Pengcheng; Cao, Huahua

    2016-04-01

    Following the collecting and analyzing of field data on the geometry and kinematics characteristics of ground fissures in the northern North China Plain (NNCP), this paper shows that en échelon ground fissures or tectonic ground fissures with a length of several meters to tens of kilometers extending along active faults are possibly controlled by underlying active faults. There are two groups of tectonic ground fissures developed in the NNCP. One group consists of ENE-trending "right-stepping" ground fissures, some of which have a component of sinistral motion. The other group is NNE-trending "left-stepping" ground fissures with dextral motion. A large amount of data from trenches, boreholes and seismic exploration reflect that they are active-faulting-related. The NNW-trending regional extensional stress field and the reactivation of pre-existing faults are the major factors controlling ground fissures. Data from the Quaternary sedimentary records, deep incised valleys, the distribution of earthquakes and ground fissures, and our field work show that the Holocene intracontinental deformation of the NNCP is characterized by intense faulting and northwestward tilting, which may be related to a NNW-SSE-oriented tensional stress field in the shallow crust and asthenospheric upwelling in the mantle.

  14. Grazing improves C and N cycling in the Northern Great Plains: a meta-analysis

    PubMed Central

    Wang, Xiaoyu; McConkey, Brian G.; VandenBygaart, A. J.; Fan, Jianling; Iwaasa, Alan; Schellenberg, Mike

    2016-01-01

    Grazing potentially alters grassland ecosystem carbon (C) and nitrogen (N) storage and cycles, however, the overall direction and magnitude of such alterations are poorly understood on the Northern Great Plains (NGP). By synthesizing data from multiple studies on grazed NGP ecosystems, we quantified the response of 30 variables to C and N pools and fluxes to grazing using a comprehensive meta-analysis method. Results showed that grazing enhanced soil C (5.2 ± 4.6% relative) and N (11.3 ± 9.1%) pools in the top layer, stimulated litter decomposition (26.8 ± 18.4%) and soil N mineralization (22.3 ± 18.4%) and enhanced soil NH4+ (51.5 ± 42.9%) and NO3− (47.5 ± 20.7%) concentrations. Our results indicate that the NGP grasslands have sequestered C and N in the past 70 to 80 years, recovering C and N lost during a period of widespread grassland deterioration that occurred in the first half of the 20th century. Sustainable grazing management employed after this deterioration has acted as a critical factor for C and N amelioration of degraded NGP grasslands and about 5.84 Mg C ha−1 CO2-equivalent of anthropogenic CO2 emissions has been offset by these grassland soils. PMID:27616184

  15. Life-cycle assessment of the beef cattle production system for the northern great plains, USA.

    PubMed

    Lupo, Christopher D; Clay, David E; Benning, Jennifer L; Stone, James J

    2013-09-01

    A life-cycle assessment (LCA) model was developed to estimate the environmental impacts associated with four different U.S. Northern Great Plains (NPG) beef production systems. The LCA model followed a "cradle-to-gate" approach and incorporated all major unit processes, including mineral supplement production. Four distinct operation scenarios were modeled based on production strategies common to the NGP, and a variety of impacts were determined. The scenarios include a normal operation, early weaning of the calf, fast-tack backgrounding, and grassfed. Enteric emissions and manure emissions and handling were consistently the largest contributors to the LCA impacts. There was little variability between production scenarios except for the grassfed, where the greenhouse gas (GHG) emissions were 37% higher due to a longer finishing time and lower finishing weight. However, reductions to GHG emissions (15-24%) were realized when soil organic carbon accrual was considered and may be a more realistic estimate for the NGP. Manure emissions and handing were primary contributors to potential eutrophication and acidification impacts. Mitigation strategies to reduce LCA impacts, including diet manipulation and management strategies (i.e., treatment of manure), were considered from a whole-systems perspective. Model results can be used for guidance by NGP producers, environmental practitioners, and policymakers. PMID:24216416

  16. Potential Agricultural Uses of Flue Gas Desulfurization Gypsum in the Northern Great Plains

    SciTech Connect

    DeSutter, T.M.; Cihacek, L.J.

    2009-07-15

    Flue gas desulfurization gypsum (FGDG) is a byproduct from the combustion of coal for electrical energy production. Currently, FGDG is being produced by 15 electrical generating stations in Alabama, Florida, Indiana, Iowa, Kentucky, Ohio, North Carolina, South Carolina, Tennessee, Texas, and Wisconsin. Much of this byproduct is used in the manufacturing of wallboard. The National Network for Use of FGDG in Agriculture was initiated to explore alternative uses of this byproduct. In the northern Great Plains (North Dakota, South Dakota, and Montana), FGDG has the potential to be used as a Ca or S fertilizer, as an acid soil ameliorant, and for reclaiming or mitigating sodium-affected soils. Greater than 1.4 million Mg of FGDG could initially be used in these states for these purposes. Flue gas desulfurization gypsum can be an agriculturally important resource for helping to increase the usefulness of problem soils and to increase crop and rangeland production. Conducting beneficial use audits would increase the public awareness of this product and help identify to coal combustion electrical generating stations the agriculturally beneficial outlets for this byproduct.

  17. Coal in the Northern Rocky Mountains and Great Plains Region -- Clean, compliant, and available

    SciTech Connect

    Stricker, G.D.; Ellis, M.S.; Flores, R.M.; Bader, L.R.

    1998-12-31

    The Northern Rocky Mountains and Great Plains region produced over 340 million short tons of coal in 1997, approximately 30 percent of the nation`s total coal production. Coals from this region are shipped to 26 states in the western, midwest, southern, and eastern US and production is projected to increase to 415 million short tons by 2015; the projected increase will be utilized primarily for production of electric power. The coals are economically attractive because they can be produced by surface mining, and do not require costly beneficiation to be compliant with emission standards. The coals are compliant because their chemical composition was influenced by tectonic settings of the coal basins and provenance of the sediments entering the basins. Tectonics during the Paleocene also influenced rates of precipitation and depositional systems. These factors, in concert, controlled the amount, distribution, and levels of sulfur, ash, and trace elements of environmental concern in the region`s coals. The emphasis of this paper is on the chemistry of these thick, high-quality coals and the geologic controls that resulted in their accumulation.

  18. Prairie dog poisoning in northern Great Plains: An analysis of programs and policies

    NASA Astrophysics Data System (ADS)

    Roemer, David M.; Forrest, Steven C.

    1996-05-01

    This paper describes the programs and policies regarding prairie dog control in the northern Great Plains states of Montana, South Dakota, and Wyoming. The poisoning programs of federal and state agencies are described, along with the statutes and legal mandates that shape agency management of prairie dogs. Current policies on National Grasslands and other federal lands typically limit prairie dogs to small percentages of available potential habitat, to the detriment of prairie dogs and associated species. State programs to assist landowners in prairie dog control differ greatly, employing cost-share incentives (Wyoming) and regulatory fines (South Dakota) to encourage the poisoning of prairie dogs. Prairie dog control is not actively funded or practiced by state or county agencies in Montana. We document federal and state involvement in more than 1 million acres of prairie dog poisoning in the study area during 1978 1992. In combination with undocumented poisoning by private landowners, plague, and shooting, prairie dogs may be experiencing net regional declines, contributing to the disintegration of the prairie dog ecosystem. We recommend that Animal Damage Control operations concerning prairie dogs be terminated, on the basis that they duplicate state programs and are at cross purposes with federal wildlife management programs that seek to perpetuate and/or recover wildlife species that depend on the prairie dog ecosystem. We further recommend that federal range improvement funds be offered as subsidies for the integration of prairie dogs in range management, as opposed to funding prairie dog eradication programs.

  19. Fish assemblages and habitat relationships in a small northern Great Plains stream

    USGS Publications Warehouse

    Barfoot, C.A.; White, R.G.

    1999-01-01

    We examined fish populations and environmental characteristics of pool and riffle habitats of Little Beaver Creek, Montana, a small northern Great Plains stream. We collected 4,980 fishes representing 20 species in eight families. The most abundant and species-rich family was Cyprinidae. Nearly 88% (4,369) of all fishes were collected in pools. Pools also supported greater numbers ofspecies (x = 6.3, SO = 2.6, n = 58) than did riffles ( x = 2.2, SO = 1.9, n = 47). Most species showed distinct patterns of relative abundance along the stream gradient. Community changes were primarily reflected by the downstream addition of species; species replacement was of less importance. A multivariate analysis of fish relative abundance identified two relatively well-defined pool fish assemblages: a downstream assemblage comprised largely of native fluvial cyprinids, and a more diverse midstream-upstream assemblage comprised of fishes from several families. No well-defined assemblages were identified in riffle habitats. Environmental measures of stream size, substrate characteristics, water clarity, and banks ide conditions appeared to be associated with differences in fish assemblage structure. However, correlations between habitat conditions and fish assemblages were weak, possibly because a complex of factors act conculTently to shape assemblages.

  20. Toward Understanding Mechanisms Controlling Urea Delivery in a Coastal Plain Watershed

    NASA Astrophysics Data System (ADS)

    Tzilkowski, S. S.; Buda, A. R.; Boyer, E. W.; Bryant, R. B.; May, E. B.

    2012-12-01

    Improved understanding of nutrient mobilization and delivery to surface waters is critical to protecting water quality in agricultural watersheds. Urea, a form of organic nitrogen, is a common nutrient found in fertilizers, manures, and human waste, and is gaining recognition as an important driver of coastal eutrophication, particularly through the development of harmful algal blooms. While several studies have documented elevated urea concentrations in tributaries draining to the Chesapeake Bay, little is known about the potential sources and flow pathways responsible for urea delivery from the landscape to surface waters, as well as how these sources and pathways might vary with changing seasons, antecedent conditions, and storm types. In this study, we investigated hydrologic controls on urea delivery in the Manokin River watershed through the analysis of urea concentration dynamics and hysteresis patterns during seven storm events that occurred in 2010 and 2011. The Manokin River is a Coastal Plain watershed (11.1 km2) on the Delmarva Peninsula that drains directly to the Chesapeake Bay and is characterized by extensive rural development coupled with intensive agriculture, particularly poultry production. Sampling was conducted through monthly grab sampling at baseflow conditions and by time-weighted, automated (Sigma) samplers during stormflow events. Monitored storms were chosen to represent a spectrum of antecedent conditions based on precipitation and groundwater levels in the area. Flushing from the landscape during events was found to be the predominant urea delivery mechanism, as urea concentrations increased 3-9 times above baseflow concentrations during storms. The timing and number of flushes, as well as the degree of increased concentrations were dependent on antecedent conditions and the characteristics of the storm event. For instance, during an intense (13.7 mm hr-1), short-duration (4 hrs) storm in August of 2010 when antecedent conditions were

  1. Geophysical detection of on-site wastewater plumes in the North Carolina Coastal Plain, USA

    NASA Astrophysics Data System (ADS)

    Smith, Matthew

    Nonpoint source pollution (NPS) continues to be the leading cause of water quality degradation in the United States. On-site wastewater systems (OWS) contribute to NPS; however, due to the range of system designs and complexity of the subsurface, OWS contributions to groundwater pollution are not well understood. As the population of coastal North Carolina continues to increase, better methods to locate and characterize wastewater impacted groundwater are needed. Previous studies have demonstrated the ability of non-intrusive geophysical methods to provide high resolution information on various contaminants in different geologic settings. The goals of this study were to evaluate the utility of ground penetrating radar (GPR) and capacitively coupled resistivity (CCR) for detecting OWS components, delineating associated wastewater plumes, and monitoring temporal variations in groundwater quality. Cross-sectional and three dimensional (3D) geophysical surveys were conducted periodically over a one year period (February 2011--January 2012) at two schools utilizing OWS in the lower Neuse River Basin (NRB) in the North Carolina Coastal Plain (NCCP). Cores were collected at both study sites; as well as monthly groundwater depth, temperature, and specific conductivity measurements to better constrain the geophysical interpretations. Additionally, dissolved inorganic nitrogen (DIN) and Cl concentrations were monitored bi-monthly to assess nutrient transport at the sites. The 3D GPR surveys effectively located the wastewater drainage trenches at both sites, in close agreement with locations described in as-built OWS blueprints. Regression analysis of resistivity versus groundwater specific conductivity revealed an inverse relationship, suggesting resistivity ≤ 250 ohm.m was indicative of wastewater impacted groundwater at both sites. The 3D resistivity models identified regions of low resistivity beneath the drainfields relative to background values. Regression analysis of

  2. The Goals and Approach of the Phoenix Mission for Evaluating the Habitabiity of the Northern Plains on Mars

    NASA Technical Reports Server (NTRS)

    Stoker, Carol R.

    2006-01-01

    The first goal of the Mars Exploration program, as defined by the Mars Exploration Payload Analysis Group (MEPAG) is to determine if life ever arose on Mars [1]. The Phoenix landing site was chosen to sample near surface ground ice in the Northern Plains discovered by the GRS experiment on Mars Odyssey [2]. A goal of Phoenix is to determine whether this environment was habitable for life at some time in its history.

  3. On the use of InSAR technology to assess land subsidence in Jakarta coastal flood plain

    NASA Astrophysics Data System (ADS)

    Koudogbo, Fifame; Duro, Javier; Garcia Robles, Javier; Arnaud, Alain; Abidin, Hasanuddin Z.

    2014-05-01

    Jakarta is the capital of Indonesia and is home to approximately 10 million people on the coast of the Java Sea. It is situated on the northern coastal alluvial plane of Java which shares boundaries with West Java Province in the south and in the east, and with Banten Province in the west. The Capital District of Jakarta (DKI) sits in the lowest lying areas of the basin. Its topography varies, with the northern part just meters above current sea level and lying on a flood plain. Subsequently, this portion of the city frequently floods. The southern part of the city is hilly. Thirteen major rivers flow through Jakarta to the Java Sea. The Ciliwung River is the most significant river and divides the city West to East. In the last three decades, urban growing of Jakarta has been very fast in sectors as industry, trade, transportation, real estate, among others. This exponential development has caused several environmental issues; land subsidence is one of them. Subsidence in Jakarta has been known since the early part of the 20th century. It is mainly due to groundwater extraction, the fast development (construction load), soil natural consolidation and tectonics. Evidence of land subsidence exists through monitoring with GPS, level surveys and InSAR investigations. InSAR states for "Interferometric Synthetic Aperture Radar". Its principle is based on comparing the distance between the satellite and the ground in consecutive satellite passes over the same area on the Earth's surface. Radar satellites images record, with very high precision, the distance travelled by the radar signal that is emitted by the satellite is registered. When this distance is compared through time, InSAR technology can provide highly accurate ground deformation measurements. ALTAMIRA INFORMATION, company specialized in ground motion monitoring, has developed GlobalSARTM, which combines several processing techniques and algorithms based on InSAR technology, to achieve ground motion

  4. Numerical modelling and hydrochemical characterisation of a fresh-water lens in the Belgian coastal plain

    NASA Astrophysics Data System (ADS)

    Vandenbohede, A.; Lebbe, L.

    2002-05-01

    The distribution of fresh and salt water in coastal aquifers is influenced by many processes. The influence of aquifer heterogeneity and human interference such as land reclamation is illustrated in the Belgian coastal plain where, around A.D. 1200, the reclamation of a tidally influenced environment was completed. The aquifer, which was filled with salt water, was thereafter freshened. The areal distribution of peat, clay, silt and sand influences the general flow and distribution of fresh and salt water along with the drainage pattern and results in the development of fresh-water lenses. The water quality in and around the fresh-water lenses below an inverted tidal channel ridge is surveyed. The hydrochemical evolution of the fresh water lens is reconstructed, pointing to cation exchange, solution of calcite and the oxidation of organic material as the major chemical reactions. The formation and evolution of the fresh water lens is modelled using a two-dimensional density-dependent solute transport model and the sensitivity of drainage and conductivities are studied. Drainage level mainly influences the depth of the fresh-water lens, whereas the time of formation is mainly influenced by conductivity. Résumé. La répartition de l'eau douce et de l'eau salée dans les aquifères littoraux est influencée par de nombreux mécanismes. L'influence de l'hétérogénéité de l'aquifère et des interférences anthropiques telles que la mise en valeur des terres est illustrée par la plaine côtière belge où, depuis l'an 1200, on a mis en valeur un environnement soumis aux marées. L'aquifère, qui contenait de l'eau salée, contient maintenant de l'eau douce. La distribution spatiale de tourbe, d'argile, de silt et de sable joue un rôle dans l'écoulement général et dans la répartition de l'eau douce et de l'eau salée le long du réseau de drainage et produit des lentilles d'eau douce. La qualité de l'eau dans et autour des lentilles d'eau douce sous une lev

  5. Topographic Rise in the Northern Smooth Plains of Mercury: Characteristics from Messenger Image and Altimetry Data and Candidate Modes of Origin

    NASA Technical Reports Server (NTRS)

    Dickson, James L.; Head, James W.; Whitten, Jennifer L.; Fassett, Caleb I.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.; Phillips, Roger J.

    2012-01-01

    MESSENGER observations from orbit around Mercury have revealed that a large contiguous area of smooth plains occupies much of the high northern latitudes and covers an area in excess of approx.6% of the surface of the planet [1] (Fig. 1). Smooth surface morphology, embayment relationships, color data, candidate flow fronts, and a population of partly to wholly buried craters provide evidence for the volcanic origin of these plains and their emplacement in a flood lava mode to depths at least locally in excess of 1 km. The age of these plains is similar to that of plains associated with and postdating the Caloris impact basin, confirming that volcanism was a globally extensive process in the post-heavy bombardment history of Mercury [1]. No specific effusive vent structures, constructional volcanic edifices, or lava distributary features (leveed flow fronts or sinuous rilles) have been identified in the contiguous plains, although vent structures and evidence of high-effusion-rate flood eruptions are seen in adjacent areas [1]. Subsequent to the identification and mapping of the extensive north polar smooth plains, data from the Mercury Laser Altimeter (MLA) on MESSENGER revealed the presence of a broad topographic rise in the northern smooth plains that is 1,000 km across and rises more than 1.5 km above the surrounding smooth plains [2] (Fig. 2). The purpose of this contribution is to characterize the northern plains rise and to outline a range of hypotheses for its origin.

  6. Coastal geomorphology of arctic Alaska

    USGS Publications Warehouse

    Barnes, Peter W.; Rawlinson, Stuart E.; Reimnitz, Erk

    1988-01-01

    The treeless, tundra-plain of northern Alaska merges with the Arctic Ocean along a coastal area characterized by low tundra bluffs, and sparse coastal and delta dunes. Coastal engineering projects that aggrade or degrade permafrost will alter the geomorphology and rates of coastal processes by changing coastal stability. Similarly, projects that modify the ice environment (artificial islands) or the coastal configuration (causeways) will cause nature to readjust to the new process regime, resulting in modification of the coast. In this paper the authors describe the coastal geomorphology from Barrow to the Canadian border. In addition, they provide a general outline and extensive references of the major coastal processes operating in this environment that will be useful on coastal environments elsewhere in the Arctic.

  7. Aeromagnetic and aeromagnetic-based geologic maps of the Coastal Belt, Franciscan Complex, northern California

    USGS Publications Warehouse

    Langenheim, V.E.; Jachens, R.C.; McLaughlin, R.J.

    2011-01-01

    The Coastal belt of the Franciscan Complex represents a Late Cretaceous to Miocene accretionary prism and overlying slope deposits. Its equivalents may extend from the offshore outer borderland of southern California to north of the Mendocino Triple Junction under the Eel River Basin and in the offshore of Cascadia. The Coastal belt is exposed on land in northern California, yet its structure and stratigraphy are incompletely known because of discontinuous exposure, structural disruption, and lithologically non-distinctive clastic rocks. The intent of this report is to make available, in map form, aeromagnetic data covering the Coastal belt that provide a new dataset to aid in mapping, understanding, and interpreting the incompletely understood geology and structure in northern California. The newly merged aeromagnetic data over the Coastal belt of the Franciscan Complex reveal long, linear anomalies that indicate remarkably coherent structure within a terrane where mapping at the surface indicates complex deformation and that has been described as "broken formation" and, even locally as "melange". The anomalies in the Coastal belt are primarily sourced by volcanic-rich graywackes and exotic blocks of basalt. Some anomalies along the contact of the Coastal belt with the Central belt are likely caused by local interleaving of components of the Coast Ranges ophiolite. These data can be used to map additional exotic blocks within the Coastal belt and to distinguish lithologically indistinct graywackes within the Coastal terrane. Using anomaly asymmetry allows projection of these "layers" into the subsurface. This analysis indicates predominant northeast dips consistent with tectonic interleaving of blocks within a subduction zone.

  8. Characterization of geomorphic units in the alluvial valleys and channels of Gulf Coastal Plain rivers in Texas, with examples from the Brazos, Sabine, and Trinity Rivers, 2010

    USGS Publications Warehouse

    Coffman, David K.; Malstaff, Greg; Heitmuller, Franklin T.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the Texas Water Development Board, described and characterized examples of geomorphic units within the channels and alluvial valleys of Texas Gulf Coastal Plain rivers using a geomorphic unit classification scale that differentiates geomorphic units on the basis of their location either outside or inside the river channel. The geomorphic properties of a river system determine the distribution and type of potential habitat both within and adjacent to the channel. This report characterizes the geomorphic units contained in the river channels and alluvial valleys of Texas Gulf Coastal Plain rivers in the context of the River Styles framework. This report is intended to help Texas Instream Flow Program practitioners, river managers, ecologists and biologists, and others interested in the geomorphology and the physical processes of the rivers of the Texas Gulf Coastal Plain (1) gain insights into how geomorphic units develop and adjust spatially and temporally, and (2) be able to recognize common geomorphic units from the examples cataloged in this report. Recent aerial imagery (high-resolution digital orthoimagery) collected in 2008 and 2009 were inspected by using geographic information system software to identify representative examples of the types of geomorphic units that occurred in the study area. Geomorphic units outside the channels of Texas Gulf Coastal Plain rivers are called \\"valley geomorphic units\\" in this report. Valley geomorphic units for the Texas Gulf Coastal Plain rivers described in this report are terraces, flood plains, crevasses and crevasse splays, flood-plain depressions, tie channels, tributaries, paleochannels, anabranches, distributaries, natural levees, neck cutoffs, oxbow lakes, and constructed channels. Channel geomorphic units occur in the river channel and are subject to frequent stresses associated with flowing water and sediment transport; they adjust (change) relatively quickly in

  9. Late Hesperian plains formation and degradation in a low sedimentation zone of the northern lowlands of Mars

    USGS Publications Warehouse

    Rodriguez, J.A.P.; Tanaka, K.L.; Berman, D.C.; Kargel, J.S.

    2010-01-01

    The plains materials that form the martian northern lowlands suggest large-scale sedimentation in this part of the planet. The general view is that these sedimentary materials were transported from zones of highland erosion via outflow channels and other fluvial systems. The study region, the northern circum-polar plains south of Gemini Scopuli on Planum Boreum, comprises the only extensive zone in the martian northern lowlands that does not include sub-basin floors nor is downstream from outflow channel systems. Therefore, within this zone, the ponding of fluids and fluidized sediments associated with outflow channel discharges is less likely to have taken place relative to sub-basin areas that form the other northern circum-polar plains surrounding Planum Boreum. Our findings indicate that during the Late Hesperian sedimentary deposits produced by the erosion of an ancient cratered landscape, as well as via sedimentary volcanism, were regionally emplaced to form extensive plains materials within the study region. The distribution and magnitude of surface degradation suggest that groundwater emergence from an aquifer that extended from the Arabia Terra cratered highlands to the northern lowlands took place non-catastrophically and regionally within the study region through faulted upper crustal materials. In our model the margin of the Utopia basin adjacent to the study region may have acted as a boundary to this aquifer. Partial destruction and dehydration of these Late Hesperian plains, perhaps induced by high thermal anomalies resulting from the low thermal conductivity of these materials, led to the formation of extensive knobby fields and pedestal craters. During the Early Amazonian, the rates of regional resurfacing within the study region decreased significantly; perhaps because the knobby ridges forming the eroded impact crater rims and contractional ridges consisted of thermally conductive indurated materials, thereby inducing freezing of the tectonically

  10. Mammal Diversity and Infection Prevalence in the Maintenance of Enzootic Borrelia burgdorferi along the Western Coastal Plains of Maryland

    PubMed Central

    ANDERSON, JENNIFER M.; SWANSON, KATHERINE I.; SCHWARTZ, TIMOTHY R.; GLASS, GREGORY E.; NORRIS, DOUGLAS E.

    2014-01-01

    The primary vector of Borrelia burgdorferi in North America, Ixodes scapularis, feeds on various mammalian, avian, and reptilian hosts. Several small mammal hosts; Peromyscus leucopus, Tamias striatus, Microtus pennsylvanicus, and Blarina spp. can serve as reservoirs in an enzootic cycle of Lyme disease. The primary reservoir in the northeast United States is the white-footed mouse, P. leucopus. The infection prevalence of this reservoir as well as the roles of potential secondary reservoirs has not been established in southern Maryland, a region of low to moderate Borrelia infection in humans. Intensive trapping at 96 locations throughout the western Coastal Plains of Maryland was conducted and we found that 31.6% of P. leucopus were infected with B. burgdorferi. Sequence and phylogenetic analysis revealed that only B. burgdorferi sensu stricto circulated in southern Maryland. Feral house mice and voles also were infected and may serve as secondary hosts. Peromyscus gender, age and month of capture were significantly associated with infection status. Larval I. scapularis were the dominant ectoparasite collected from captured rodents even though host seeking A. americanum and D. variabilis were collected in greater numbers across the sampling region. Our findings illustrate that the enzootic cycle of LD is maintained in the western Coastal Plains region of southern Maryland between I. scapularis and P. leucopus as the dominant reservoir. PMID:17187577

  11. High-resolution hydro- and geo-stratigraphy at Atlantic Coastal Plain drillhole CR-622 (Strat 8)

    USGS Publications Warehouse

    Wrege, B.M.; Isely, J.J.

    2009-01-01

    We interpret borehole geophysical logs in conjunction with lithology developed from continuous core to produce high-resolution hydro- and geo-stratigraphic profiles for the drillhole CR-622 (Strat 8) in the Atlantic Coastal Plain of North Carolina. The resulting hydrologic and stratigraphic columns show a generalized relation between hydrologic and geologic units. Fresh-water aquifers encountered are the surficial, Yorktown, Pungo River and Castle Hayne. Geologic units present are of the middle and upper Tertiary and Quaternary periods, these are the Castle Hayne (Eocene), Pungo River (Miocene), Yorktown (Pliocene), James City and Flanner Beach (Pleistocene), and the topsoil (Holocene). The River Bend Formation (Oligocene) is missing as a distinct unit between the Pungo River Formation and the Castle Hayne Formation. The confining unit underlying the Yorktown Aquifer corresponds to the Yorktown Geologic Unit. The remaining hydrologic units and geologic units are hydrologically transitional and non-coincident. The lower Pungo River Formation serves as the confining unit for the Castle Hayne Aquifer, rather than the River Bend Aquifer, and separates the Pungo River Aquifer from the upper Castle Hayne Aquifer. All geologic formations were bound by unconformities. All aquifers were confined by the anticipated hydrologic units. We conclude that CR-622 (Strat 8) represents a normal sequence in the Atlantic Coastal Plain.

  12. Seismic hazard in the South Carolina coastal plain: 2002 update of the USGS national seismic hazard maps

    USGS Publications Warehouse

    Cramer, C.H.; Mays, T.W.; ,

    2005-01-01

    The damaging 1886 moment magnitude ???7 Charleston, South Carolina earthquake is indicative of the moderately likely earthquake activity along this portion of the Atlantic Coast. A recurrence of such an earthquake today would have serious consequences for the nation. The national seismic hazard maps produced by the U.S. Geological Survey (USGS) provide a picture of the levels of seismic hazard across the nation based on the best and most current scientific information. The USGS national maps were updated in 2002 and will become part of the International Codes in 2006. In the past decade, improvements have occurred in the scientific understanding of the nature and character of earthquake activity and expected ground motions in the central and eastern U.S. The paper summarizes the new knowledge of expected earthquake locations, magnitudes, recurrence, and ground-motion decay with distance. New estimates of peak ground acceleration and 0.2 s and 1.0 s spectral acceleration are compared with those displayed in the 1996 national maps. The 2002 maps show increased seismic hazard in much of the coastal plain of South Carolina, but a decrease in long period (1 s and greater) hazard by up to 20% at distances of over 50 km from the Charleston earthquake zone. Although the national maps do not account for the effects of local or regional sediments, deep coastal-plain sediments can significally alter expected ground shaking, particularly at long period motions where it can be 100% higher than the national maps.

  13. Landsat digital data as tool for mining exploration and geologic mapping in coastal plain of Malaysian Peninsula

    SciTech Connect

    Prelat, A.E.

    1986-07-01

    Landsat Multispectral Scanner (MSS) data were used for systematic mapping of the coastal plain of the Malaysian Peninsula. The study was conducted to evaluate the use of Landsat digital data to assist the geologist in the exploration and mapping of the coastal plain of the Malaysian peninsula. The brightness of the four Landsat MSS channels and six ratios were recorded for each pixel, and were subsequently used as input to the supervised classification technique. Several lithologic units were selected to define training groups, and the remaining study area was classified into the preselected categories. The results indicated that using Landsat digital data combined with geologic and topographic information can improve the interpretation and quality of the geologic maps. The Landsat information was an effective tool to delineate the structural features and recognize different geologic patterns that can be defined as exploration targets. The most useful Landsat parameters to study the geology in the area were channels 5 and 7 and their ratio 7/5. Vegetation areas were enhanced by the ratio 6/4. Further field work in the area will confirm the results of the present study.

  14. Magmatic intrusions and deglaciation at mid-latitude in the northern plains of Mars

    NASA Astrophysics Data System (ADS)

    Michaut, Chloé; Baratoux, David; Thorey, Clément

    2013-07-01

    large aspect ratios of some of these features may be reconciled with a mafic composition and a shallow emplacement (a few hundred meters) as well as a relatively large injection rate. Magma emplacement below an ice-rich horizon that was subsequently removed offers a plausible scenario for their partial exhumation. This scenario is supported by independent signs of ice-removal and deflation events in the northern plains. The formation of these intrusions appear therefore to be related to an unusual context of magma ascent below a thick and low-density ice-rich horizon.

  15. Importance of coastal primary production in the northern Baltic Sea.

    PubMed

    Ask, Jenny; Rowe, Owen; Brugel, Sonia; Strömgren, Mårten; Byström, Pär; Andersson, Agneta

    2016-10-01

    In this study, we measured depth-dependent benthic microalgal primary production in a Bothnian Bay estuary to estimate the benthic contribution to total primary production. In addition, we compiled data on benthic microalgal primary production in the entire Baltic Sea. In the estuary, the benthic habitat contributed 17 % to the total annual primary production, and when upscaling our data to the entire Bothnian Bay, the corresponding value was 31 %. This estimated benthic share (31 %) is three times higher compared to past estimates of 10 %. The main reason for this discrepancy is the lack of data regarding benthic primary production in the northern Baltic Sea, but also that past studies overestimated the importance of pelagic primary production by not correcting for system-specific bathymetric variation. Our study thus highlights the importance of benthic communities for the northern Baltic Sea ecosystem in general and for future management strategies and ecosystem studies in particular. PMID:27075572

  16. Identification of metapopulation dynamics among Northern Goshawks of the Alexander Archipelago, Alaska, and Coastal British Columbia

    USGS Publications Warehouse

    Sonsthagen, Sarah A.; McClaren, Erica L.; Doyle, Frank I.; Titus, K.; Sage, George K.; Wilson, Robert E.; Gust, J.R.; Talbot, Sandra L.

    2012-01-01

    Northern Goshawks occupying the Alexander Archipelago, Alaska, and coastal British Columbia nest primarily in old-growth and mature forest, which results in spatial heterogeneity in the distribution of individuals across the landscape. We used microsatellite and mitochondrial data to infer genetic structure, gene flow, and fluctuations in population demography through evolutionary time. Patterns in the genetic signatures were used to assess predictions associated with the three population models: panmixia, metapopulation, and isolated populations. Population genetic structure was observed along with asymmetry in gene flow estimates that changed directionality at different temporal scales, consistent with metapopulation model predictions. Therefore, Northern Goshawk assemblages located in the Alexander Archipelago and coastal British Columbia interact through a metapopulation framework, though they may not fit the classic model of a metapopulation. Long-term population sources (coastal mainland British Columbia) and sinks (Revillagigedo and Vancouver islands) were identified. However, there was no trend through evolutionary time in the directionality of dispersal among the remaining assemblages, suggestive of a rescue-effect dynamic. Admiralty, Douglas, and Chichagof island complex appears to be an evolutionarily recent source population in the Alexander Archipelago. In addition, Kupreanof island complex and Kispiox Forest District populations have high dispersal rates to populations in close geographic proximity and potentially serve as local source populations. Metapopulation dynamics occurring in the Alexander Archipelago and coastal British Columbia by Northern Goshawks highlight the importance of both occupied and unoccupied habitats to long-term population persistence of goshawks in this region.

  17. Private Domestic-Well Characteristics and the Distribution of Domestic Withdrawals among Aquifers in the Virginia Coastal Plain

    USGS Publications Warehouse

    Pope, Jason P.; McFarland, E. Randolph; Banks, R. Brent

    2008-01-01

    A comprehensive analysis of private domestic wells and self-supplied domestic ground-water withdrawals in the Coastal Plain Physiographic Province of Virginia indicates that the magnitudes of these withdrawals and their effects on local and regional ground-water flow are larger and more important than previous reports have stated. Self-supplied ground-water withdrawals for domestic use in the Virginia Coastal Plain are estimated to be approximately 40 million gallons per day, or about 28 percent of all ground-water withdrawals in the area. Contrary to widely held assumptions, only 22 percent of domestic wells in the Virginia Coastal Plain are completed in the shallow, unconfined surficial aquifer to which the water is returned directly by home septic systems. Fifty-three percent of the wells are completed in six deeper confined aquifers, and the remaining 25 percent are completed in the Potomac aquifer and confining zone, the deepest units in the confined system. Assuming an equal rate of withdrawal per well, 78 percent of domestic ground-water withdrawal, or about 30 million gallons per day, is removed from the regional confined ground-water system. Domestic ground-water withdrawal from an estimated 200,000 private wells supplies more than 15 percent of the population of the area and provides almost the entire source of water in some rural counties. The geographic distribution of these withdrawals is dependent on the self-supplied population and is highly variable. Domestic-well characteristics vary spatially as well, primarily because of geographic differences in depths to particular aquifers, but also because of well-drilling practices that are influenced by geographic, regulatory, and socioeconomic factors. Domestic ground-water withdrawals in the Virginia Coastal Plain were characterized as part of a larger study to analyze the regional ground-water flow system. Characterizing the withdrawals required differentiation of the withdrawals among the aquifers in

  18. Atlantic tropical forest mapping in the northern coastal zone of Sao Paulo State, Brazil

    SciTech Connect

    Simi, R. Jr.; Almeida, S.A.S.; Manso, A.P.

    1997-06-01

    The northern coastal zone of Sao Paulo State includes the cities of Ubatuba, Caraguatatuba, Sao Sebastiao and Ilha Bela. Large development projects, such as road and highway constructions and joint real estate exploration of susceptible coastal ecosystems have threatened the harmony and ecological stability of these ecosystems. Recently, the Atlantic tropical rain forest has been the most destructed ecosystem in the coastal zone in response to real estate investments in urban areas along the main roads. In the northern coastal zone of Sao Paulo State, 80% of the counties are included in the State Park of Serra do Mar. As tourism is a strong growing economical activity, as well as coastal production, it should be of interest to create a plan for sustainable development. The objective of this study is to map and characterize land use cover changes with emphasis on the Atlantic tropical rain forest degradation using Landsat TM images. Preliminary results for land use cover changes indicate that the Atlantic tropical rain forest was reduced by 6.1 % during the period of July 1992 and October 1995.

  19. Resurfacing history of the northern plains of Mars based on geologic mapping of Mars Global Surveyor data

    USGS Publications Warehouse

    Tanaka, K.L.; Skinner, J.A.; Hare, T.M.; Joyal, T.; Wenker, A.

    2003-01-01

    Geologic mapping of the northern plains of Mars, based on Mars Orbiter Laser Altimeter topography and Viking and Mars Orbiter Camera images, reveals new insights into geologic processes and events in this region during the Hesperian and Amazonian Periods. We propose four successive stages of lowland resurfacing likely related to the activity of near-surface volatiles commencing at the highland-lowland boundary (HLB) and progressing to lower topographic levels as follows (highest elevations indicated): Stage 1, upper boundary plains, Early Hesperian, <-2.0 to -2.9 km; Stage 2, lower boundary plains and outflow channel dissection, Late Hesperian, <-2.7 to -4.0 km; Stage 3, Vastitas Borealis Formation (VBF) surface, Late Hesperian to Early Amazonian, <-3.1 to -4.1 km; and Stage 4, local chaos zones, Early Amazonian, <-3.8 to -5.0 km. At Acidalia Mensa, Stage 2 and 3 levels may be lower (<-4.4 and -4.8 km, respectively). Contractional ridges form the dominant structure in the plains and developed from near the end of the Early Hesperian to the Early Amazonian. Geomorphic evidence for a northern-plains-filling ocean during Stage 2 is absent because one did not form or its evidence was destroyed by Stage 3 resurfacing. Remnants of possible Amazonian dust mantles occur on top of the VBF. The north polar layered deposits appear to be made up of an up to kilometer-thick lower sequence of sandy layers Early to Middle Amazonian in age overlain by Late Amazonian ice-rich dust layers; both units appear to have outliers, suggesting that they once were more extensive.

  20. Salinization and freshening of coastal aquifers with land reclamation, in the SE Po plain (Italy), the Netherlands and Belgium

    NASA Astrophysics Data System (ADS)

    Mollema, P. N.; Antonellini, M. A.; Dinelli, E.; Greggio, N.; Stuyfzand, P. J.; Vandenbohede, A.

    2012-12-01

    The coastal aquifers of the Southern Po plain in Italy, the Netherlands and Belgium have a similar setting. All three areas are characterized by one or more dune belts parallel to the coast and low lying, mechanically drained polders and formed during the Holocene resulting in a comparable geology. Nonetheless, the salinization and freshening trends of the groundwater are different resulting in a different hydrochemical signature. This is due to differences in climate, recharge areas and human interference. Impoldering started in the 1960's in Italy. The coastal aquifer of the southern Po plain currently contains mostly brackish to saline NaCl type groundwater. Calcium rich water is found only in the rivers, in the irrigation channels and in a few wells. Cation, anion, stable isotopes and the analysis of tracers such as SO4/Cl- and 18O/Cl- show that most ground water samples are a mix between fresh water and Adriatic Sea water. Six hydrosomes were recognized: Holocene transgression, Po River, Apennine River, new coastal dune, paleodunes, and current lagoon water. As the sea regressed 30 km eastwards in the past 6000 yrs, fresh water infiltrated into the beach sand deposits but because of the small recharge areas and small amount of recharge, there was never enough fresh water to expel the Holocene seawater. Land reclamation dried the original marshes and lagoons. The location of pumping stations far from the coast caused the formation of hydraulic gradients enhancing saltwater intrusion inland. Land reclamation and impoldering started very early (10th century) in the Belgian and Dutch case and was completed in the 12th century in Belgium and in the Netherlands not until 1967. The aquifer system in the Netherlands is thicker than in Belgium. Complex Holocene evolution with mudflats alternating with peat bogs resulted in a current day complex fresh-saltwater distribution in the Belgian and Dutch coastal plain. Young fresh water lenses occur above older brackish water

  1. [Nitrate contamination of the groundwater of the Akkar Plain in northern Lebanon].

    PubMed

    Halwani, J; Baroudi, B O; Wartel, M

    1999-01-01

    The Akkar Plain in northern Lebanon covers an area of 130 km2 and is the second largest agricultural region in the country. It also borders the Mediterranean Sea (Figure 1). Groundwater supplies are the only source of drinking water in this region and there is no public drinking water network. This area has a population of about 75,000 inhabitants, who have depended on and used the water from these aquifers for many years, with no treatment, filtration or monitoring system in place. The inhabitants and farmers depend on groundwater supplies for crop irrigation and other uses. The plain provides ideal conditions for agriculture and the use of chemical fertilizers has been increasing. Over-fertilization, resulting in the application of excess nitrogen, and the lack of vegetation during the winter have disturbed the nitrogen cycle, leading to the pollution of groundwater supplies with high concentrations of nitrate. Nitrates seep slowly into the soil at a rate of about 0.5 to 1 meter per year until they reach the water table. However, tons of nitrogen are carried into the groundwater each year by runoff and infiltration. If a water source is found to be heavily contaminated with nitrate, it is probably too late and too difficult to correct the problem within a short period of time. Corrective measures may not be effective, as shown by current high nitrate concentrations despite previous efforts to resolve the problem. Therefore, we must try to keep nitrate levels within acceptable limits. If action is not taken now, future generations will pay the price of current bad practice in agriculture. International water quality guidelines permit a maximum of 50 mg nitrates/l for adults and of 25 mg/l for infants and pregnant women. The intake of nitrates in drinking water by humans is currently one of the major environmental problems associated with agricultural practice. Nitrate is itself inert but concern arises due to its possible conversion into nitrite, which is highly

  2. Thermal and hydraulic considerations regarding the fate of water discharged by the outflow channels to the Martian northern plains

    NASA Technical Reports Server (NTRS)

    Clifford, S. M.

    1993-01-01

    The identification of possible shorelines in the Martian northern plains suggests that the water discharged by the circum-Chryse outflow channels may have led to the formation of transient seas, or possibly even an ocean, covering as much as one-third of the planet. Speculations regarding the possible fate of this water have included local ponding and reinfiltration into the crust; freezing, sublimation, and eventual cold-trapping at higher latitudes; or the in situ survival of this now frozen water to the present day -- perhaps aided by burial beneath a protective cover of eolian sediment or lavas. Although neither cold-trapping at higher latitudes nor the subsequent freezing and burial of flood waters can be ruled out, thermal and hydraulic considerations effectively eliminate the possibility that any significant reassimilation of this water by local infiltration has occurred given climatic conditions resembling those of today. The arguments against the local infiltration of flood water into the northern plains are two-fold. First, given the climatic and geothermal conditions that are thought to have prevailed on Mars during the Late Hesperian (the period of peak outflow channel activity in the northern plains), the thickness of the cryosphere in Chryse Planitia is likely to have exceeded 1 km. A necessary precondition for the widespread occurrence of groundwater is that the thermodynamic sink represented by the cryosphere must already be saturated with ice. For this reason, the ice-saturated cryosphere acts as an impermeable barrier that effectively precludes the local resupply of subpermafrost groundwater by the infiltration of water discharged to the surface by catastraphic floods. Note that the problem of local infiltration is not significantly improved even if the cryosphere were initially dry, for as water attempts to infiltrate the cold, dry crust, it will quickly freeze, creating a seal that prevents any further infiltration from the ponded water above

  3. Periodic isolation of the southern coastal plain of South Africa and the evolution of modern humans over late Quaternary glacial to interglacial cycles

    NASA Astrophysics Data System (ADS)

    Compton, J. S.

    2012-04-01

    Humans evolved in Africa, but where in Africa and by what mechanisms remain unclear. The evolution of modern humans over the last million years is associated with the onset of major global climate fluctuations, glacial to interglacial cycles, related to the build up and melting of large ice sheets in the Northern Hemisphere. During interglacial periods, such as today, warm and wet climates favored human expansion but during cold and dry glacial periods conditions were harsh and habitats fragmented. These large climate fluctuations periodically expanded and contracted African ecosystems and led to human migrations to more hospitable glacial refugia. Periodic isolation of relatively small numbers of humans may have allowed for their rapid evolutionary divergence from the rest of Africa. During climate transitions these divergent groups may have then dispersed and interbred with other groups (hybridization). Two areas at the opposite ends of Africa stand out as regions that were periodically isolated from the rest of Africa: North Africa (the Maghreb) and the southern coastal plain (SCP) of South Africa. The Maghreb is isolated by the Sahara Desert which periodically greens and is reconnected to the rest of Africa during the transition from glacial to interglacial periods. The SCP of South Africa is isolated from the rest of Africa by the rugged mountains of the Cape Fold Belt associated with inedible vegetation and dry climates to the north. The SCP is periodically opened when sea level falls by up to 130 m during glacial maxima to expose the present day submerged inner continental shelf. A five-fold expansion of the SCP receiving more rainfall in glacial periods may have served as a refuge to humans and large migratory herds. The expansive glacial SCP habitat abruptly contracts, by as much as one-third in 300 yr, during the rapid rise in sea level associated with glacial terminations. Rapid flooding may have increased population density and competition on the SCP to

  4. Do Tsunami Deposits Thin Landward? Observations from the 11 March 2011 Tohoku-oki Tsunami on the Sendai Coastal Plain

    NASA Astrophysics Data System (ADS)

    Richmond, B. M.; Jaffe, B. E.; Gelfenbaum, G. R.; Szczucinski, W.; Goto, K.; Sugawara, D.; Witter, R. C.; Tappin, D. R.; Shigehiro, F.; Nishimura, Y.; Chague-Goff, C.; Goff, J. R.

    2012-12-01

    Case studies of recent tsunami impacts have proven to be extremely useful in understanding the geologic processes involved during inundation and return flow, and refining the criteria used to identify paleotsunami deposits in the geologic record. Here, we report on the spatial distribution of deposit thickness resulting from the March, 2011 Tohoku-oki tsunami along a nearly 4.5 km shore-normal sampling transect on the coastal plain near Sendai, Japan. The study area consisted of a broad, low-relief prograding coastal plain which comprised a broad sand beach backed by low (~3 m) sand dunes and forest; a wetland and a shore-parallel engineered drainage canal several meters deep and ~40 m wide; agricultural rice fields marked by low-lying rectangular dyke systems with occasional buildings, canals, and roads; and an elevated highway embankment which generally marked the landward extent of inundation except where gaps in the structure allowed flow to penetrate further inland. Field observations in May 2011 documented a tsunami deposit that generally thinned landward from an average maximum ~30 cm thick sand deposit in the coastal forest to a thin mud drape several mm thick near the inundation limit. Although there was an overall thinning of the deposit, this trend was often interrupted by localized features that led to variability in deposit thickness (from 0 to 20+ cm) over short distances (<10 m) along transect and adjacent to the main transect. The variability in both the along- and transverse flow directions is related to micro-topography, sediment source availability, and gradients in flow speed and duration. Although there is an overall landward thinning of the deposit, localized thinning and thickening occurred in numerous locations along our transect. This information is critical for accurately identifying paleotsunami deposits and for improving tsunami hazard assessment from the geologic record.

  5. Vertical Gradients in Water Chemistry and Age in the Northern High Plains Aquifer, Nebraska, 2003

    USGS Publications Warehouse

    McMahon, P.B.; Böhlke, J.K.; Carney, C.P.

    2007-01-01

    The northern High Plains aquifer is the primary source of water used for domestic, industrial, and irrigation purposes in parts of Colorado, Kansas, Nebraska, South Dakota, and Wyoming. Despite the aquifer's importance to the regional economy, fundamental ground-water characteristics, such as vertical gradients in water chemistry and age, remain poorly defined. As part of the U.S. Geological Survey's National Water-Quality Assessment Program, water samples from nested, short-screen monitoring wells installed in the northern High Plains aquifer were analyzed for major ions, nutrients, trace elements, dissolved organic carbon, pesticides, stable and radioactive isotopes, dissolved gases, and other parameters to evaluate vertical gradients in water chemistry and age in the aquifer. Chemical data and tritium and radiocarbon ages show that water in the aquifer was chemically and temporally stratified in the study area, with a relatively thin zone of recently recharged water (less than 50 years) near the water table overlying a thicker zone of older water (1,800 to 15,600 radiocarbon years). In areas where irrigated agriculture was an important land use, the recently recharged ground water was characterized by elevated concentrations of major ions and nitrate and the detection of pesticide compounds. Below the zone of agricultural influence, major-ion concentrations exhibited small increases with depth and distance along flow paths because of rock/water interactions. The concentration increases were accounted for primarily by dissolved calcium, sodium, bicarbonate, sulfate, and silica. In general, the chemistry of ground water throughout the aquifer was of high quality. None of the approximately 90 chemical constituents analyzed in each sample exceeded primary drinking-water standards. Mass-balance models indicate that changes in ground-water chemistry along flow paths in the aquifer can be accounted for by small amounts of feldspar and calcite dissolution; goethite and

  6. EVALUATING SHORT-TERM CLIMATE VARIABILITY IN THE LATE HOLOCENE OF THE NORTHERN GREAT PLAINS

    SciTech Connect

    Joseph H. Hartman

    1999-09-01

    This literature study investigated methods and areas to deduce climate change and climate patterns, looking for short-term cycle phenomena and the means to interpret them. Many groups are actively engaged in intensive climate-related research. Ongoing research might be (overly) simplified into three categories: (1) historic data on weather that can be used for trend analysis and modeling; (2) detailed geological, biological (subfossil), and analytical (geochemical, radiocarbon, etc.) studies covering the last 10,000 years (about since last glaciation); and (3) geological, paleontological, and analytical (geochemical, radiometric, etc.) studies over millions of years. Of importance is our ultimate ability to join these various lines of inquiry into an effective means of interpretation. At this point, the process of integration is fraught with methodological troubles and misconceptions about what each group can contribute. This project has met its goals to the extent that it provided an opportunity to study resource materials and consider options for future effort toward the goal of understanding the natural climate variation that has shaped our current civilization. A further outcome of this project is a proposed methodology based on ''climate sections'' that provides spatial and temporal correlation within a region. The method would integrate cultural and climate data to establish the climate history of a region with increasing accuracy with progressive study and scientific advancement (e. g., better integration of regional and global models). The goal of this project is to better understand natural climatic variations in the recent past (last 5000 years). The information generated by this work is intended to provide better context within which to examine global climate change. The ongoing project will help to establish a basis upon which to interpret late Holocene short-term climate variability as evidenced in various studies in the northern Great Plains, northern

  7. Bed site selection by neonate deer in grassland habitats on the northern Great Plains

    USGS Publications Warehouse

    Grovenburg, T.W.; Jacques, C.N.; Klaver, R.W.; Jenks, J.A.

    2010-01-01

    Bed site selection is an important behavioral trait influencing neonate survival. Vegetation characteristics of bed sites influence thermal protection of neonates and concealment from predators. Although previous studies describe bed site selection of neonatal white-tailed deer (Odocoileus virginianus) in regions of forested cover, none determined microhabitat effects on neonate bed site selection in the Northern Great Plains, an area of limited forest cover. During summers 2007–2009, we investigated bed site selection (n  =  152) by 81 radiocollared neonate white-tailed deer in north-central South Dakota, USA. We documented 80 (52.6%) bed sites in tallgrass–Conservation Reserve Program lands, 35 (23.0%) bed sites in forested cover, and 37 (24.3%) in other habitats (e.g., pasture, alfalfa, wheat). Bed site selection varied with age and sex of neonate. Tree canopy cover (P < 0.001) and tree basal area (P < 0.001) decreased with age of neonates, with no bed sites observed in forested cover after 18 days of age. Male neonates selected sites with less grass cover (P < 0.001), vertical height of understory vegetation (P < 0.001), and density of understory vegetation (P < 0.001) but greater bare ground (P  =  0.047), litter (P  =  0.028), and wheat (P  =  0.044) than did females. Odds of bed site selection increased 3.5% (odds ratio  =  1.035, 95% CI  =  1.008–1.062) for every 1-cm increase in vertical height of understory vegetation. Management for habitat throughout the grasslands of South Dakota that maximizes vertical height of understory vegetation would enhance cover characteristics selected by neonates.

  8. Preserving prairies: Understanding temporal and spatial patterns of invasive annual bromes in the Northern Great Plains

    USGS Publications Warehouse

    Ashton, Isabel; Symstad, Amy; Davis, Christopher; Swanson, Daniel J.

    2016-01-01

    Two Eurasian invasive annual brome grasses, cheatgrass (Bromus tectorum) and Japanese brome (Bromus japonicus), are well known for their impact in steppe ecosystems of the western United States where these grasses have altered fire regimes, reduced native plant diversity and abundance, and degraded wildlife habitat. Annual bromes are also abundant in the grasslands of the Northern Great Plains (NGP), but their impact and ecology are not as well studied. It is unclear whether the lessons learned from the steppe will translate to the mixed-grass prairie where native plant species are adapted to frequent fires and grazing. Developing a successful annual brome management strategy for National Park Service units and other NGP grasslands requires better understanding of (1) the impact of annual bromes on grassland condition; (2) the dynamics of these species through space and time; and (3) the relative importance of environmental factors within and outside managers' control for these spatiotemporal dynamics. Here, we use vegetation monitoring data collected from 1998 to 2015 in 295 sites to relate spatiotemporal variability of annual brome grasses to grassland composition, weather, physical environmental characteristics, and ecological processes (grazing and fire). Concern about the impact of these species in NGP grasslands is warranted, as we found a decline in native species richness with increasing annual brome cover. Annual brome cover generally increased over the time of monitoring but also displayed a 3- to 5-yr cycle of reduction and resurgence. Relative cover of annual bromes in the monitored areas was best predicted by park unit, weather, extant plant community, slope grade, soil composition, and fire history. We found no evidence that grazing reduced annual brome cover, but this may be due to the relatively low grazing pressure in our study. By understanding the consequences and patterns of annual brome invasion, we will be better able to preserve and restore

  9. Performance of TMPA satellite precipitation product over the Northern Great Plains

    NASA Astrophysics Data System (ADS)

    Kharel, G.; Kirilenko, A.; Zhang, X.

    2011-12-01

    Satellite derived precipitation can be used as supplement and/or replacement to ground data in various applications including modeling and weather forecasting based on its accuracy, reliability and validity. We analyzed Tropical Rainfall Measuring Mission Multisatellite Precipitation Analysis (TMPA) 3B42 v.6 Level 3 product (0.25° × 0.25°, 3-hour resolution) against the United States Historical Climatology Network (USHCN) ground data from 98 stations in the Northern Great Plains (NGP) over the period of seven years (2003 to 2009). NGP, comprised of Wyoming, Montana, North Dakota, Minnesota, South Dakota and Nebraska states of the US, is located between the latitudes 41° - 49° N and longitudes 94° - 113.5° E within the TMPA product latitude band (50° NS).The goal of this research was to investigate the performance of TMPA over the NGP region. Results showed that the TMPA daily data has poor rainfall detection ability (POD ~ 0.3), weak correlation with the meteorological data (ρ=0.46) and high root mean square deviation (RMSD = 4.9 mm/day). We also found noticeable seasonal differences in the daily TMPA product performance. It underperformed during cold season (November to March) with weaker correlation (0.25) and worse POD (~ 0.15), as compared to relatively modest correlation (0.47) and POD (~0.30) during warm season (April to October). Our analysis at monthly scale revealed significantly better performance of TMPA with higher correlation (0.82) and lower RMSD (0.72 mm/day). Based on our findings, the TMPA daily data might be a poor replacement to ground data, however, at a monthly scale, TMPA can be used to estimate spatial rainfall distribution in NGP and/or as an input to a stochastic daily weather generator.

  10. Land cover changes associated with recent energy development in the Williston Basin; Northern Great Plains, USA

    USGS Publications Warehouse

    Preston, Todd M.; Kim, Kevin

    2016-01-01

    The Williston Basin in the Northern Great Plains has experienced rapid energy development since 2000. To evaluate the land cover changes resulting from recent (2000 – 2015) development, the area and previous land cover of all well pads (pads) constructed during this time was determined, the amount of disturbed and reclaimed land adjacent to pads was estimated, land cover changes were analyzed over time for three different well types, and the effects from future development were predicted. The previous land cover of the 12,990 ha converted to pads was predominately agricultural (49.5%) or prairie (47.4%) with lesser amounts of developed (2.3%), aquatic (0.5%), and forest (0.4%). Additionally, 12,121 ha have likely been disturbed and reclaimed. The area required per gas well remained constant through time while the land required per oil well increased initially and then decreased as development first shifted from conventional to unconventional drilling and then to multi-bore pads. For non-oil-and- gas wells (i.e. stratigraphic test wells, water wells, injection wells, etc.), the area per well increased through time likely due to increased produced water disposal requirements. Future land cover change is expected to be 2.7 times greater than recent development with much of the development occurring in five counties in the core Bakken development area. Direct land cover change and disturbance from recent and expected development are predicted to affect 0.4% of the landscape across the basin; however, in the core Bakken development area, 2.3% of the landscape will be affected including 2.1% of the remaining grassland. Although future development will result in significant land cover change, evolving industry practices and proactive siting decisions, such as development along energy corridors and placing pads in areas previously altered by human activity, have the potential to reduce the ecological effects of future energy development in the Williston Basin.

  11. Land cover changes associated with recent energy development in the Williston Basin; Northern Great Plains, USA.

    PubMed

    Preston, Todd M; Kim, Kevin

    2016-10-01

    The Williston Basin in the Northern Great Plains has experienced rapid energy development since 2000. To evaluate the land cover changes resulting from recent (2000-2015) development, the area and previous land cover of all well pads (pads) constructed during this time were determined, the amount of disturbed and reclaimed land adjacent to pads was estimated, land cover changes were analyzed over time for three different well types, and the effects from future development were predicted. The previous land cover of the 12,990ha converted to pads was predominately agricultural (49.5%) or prairie (47.4%) with lesser amounts of developed (2.3%), aquatic (0.5%), and forest (0.4%). Additionally, 12,121ha has likely been disturbed and reclaimed. The area required per gas well remained constant through time while the land required per oil well increased initially and then decreased as development first shifted from conventional to unconventional drilling and then to multi-bore pads. For non-oil-and-gas wells (i.e. stratigraphic test wells, water wells, and injection wells), the area per well increased through time likely due to increased produced water disposal requirements. Future land cover change is expected to be 2.7 times greater than recent development with much of the development occurring in five counties in the core Bakken development area. Direct land cover change and disturbance from recent and expected development are predicted to affect 0.4% of the landscape across the basin; however, in the core Bakken development area, 2.3% of the landscape will be affected including 2.1% of the remaining grassland. Although future development will result in significant land cover change, evolving industry practices and proactive siting decisions, such as development along energy corridors and placing pads in areas previously altered by human activity, have the potential to reduce the ecological effects of future energy development in the Williston Basin. PMID:27318516

  12. Buteo Nesting Ecology: Evaluating Nesting of Swainson's Hawks in the Northern Great Plains.

    PubMed

    Inselman, Will M; Datta, Shubham; Jenks, Jonathan A; Jensen, Kent C; Grovenburg, Troy W

    2015-01-01

    Swainson's hawks (Buteo swainsoni) are long-distance migratory raptors that nest primarily in isolated trees located in areas of high grassland density. In recent years, anthropogenic conversion of grassland habitat has raised concerns about the status of the breeding population in the northern Great Plains. In 2013, we initiated a study to investigate the influence of extrinsic factors influencing Swainson's hawk nesting ecology in north-central South Dakota and south-central North Dakota. Using ground and aerial surveys, we located and monitored nesting Swainson's hawk pairs: 73 in 2013 and 120 in 2014. We documented 98 successful breeding attempts that fledged 163 chicks; 1.52 and 1.72 fledglings per successful nest in 2013 and 2014, respectively. We used Program MARK to evaluate the influence of land cover on nest survival. The top model, SDist2Farm+%Hay, indicated that nest survival (fledging at least one chick) decreased as nests were located farther from farm sites and as the percent of hay cover increased within 1200-m of the nest site (34.4%; 95% CI = 27.6%-42.3%). We used logistic regression analysis to evaluate the influence of landscape variables on nest-site selection; Swainson's hawks selected for nest sites located closer to roads. We suggest that tree belts associated with farm sites, whether occupied or not, provide critical breeding sites for Swainson's hawks. Additionally, poor breeding success may be related to the late migratory behavior of this species which requires them to occupy marginal habitat due to other raptors occupying the most suitable habitat prior to Swainson's hawks arriving to the breeding grounds. PMID:26327440

  13. Buteo Nesting Ecology: Evaluating Nesting of Swainson's Hawks in the Northern Great Plains.

    PubMed

    Inselman, Will M; Datta, Shubham; Jenks, Jonathan A; Jensen, Kent C; Grovenburg, Troy W

    2015-01-01

    Swainson's hawks (Buteo swainsoni) are long-distance migratory raptors that nest primarily in isolated trees located in areas of high grassland density. In recent years, anthropogenic conversion of grassland habitat has raised concerns about the status of the breeding population in the northern Great Plains. In 2013, we initiated a study to investigate the influence of extrinsic factors influencing Swainson's hawk nesting ecology in north-central South Dakota and south-central North Dakota. Using ground and aerial surveys, we located and monitored nesting Swainson's hawk pairs: 73 in 2013 and 120 in 2014. We documented 98 successful breeding attempts that fledged 163 chicks; 1.52 and 1.72 fledglings per successful nest in 2013 and 2014, respectively. We used Program MARK to evaluate the influence of land cover on nest survival. The top model, SDist2Farm+%Hay, indicated that nest survival (fledging at least one chick) decreased as nests were located farther from farm sites and as the percent of hay cover increased within 1200-m of the nest site (34.4%; 95% CI = 27.6%-42.3%). We used logistic regression analysis to evaluate the influence of landscape variables on nest-site selection; Swainson's hawks selected for nest sites located closer to roads. We suggest that tree belts associated with farm sites, whether occupied or not, provide critical breeding sites for Swainson's hawks. Additionally, poor breeding success may be related to the late migratory behavior of this species which requires them to occupy marginal habitat due to other raptors occupying the most suitable habitat prior to Swainson's hawks arriving to the breeding grounds.

  14. Buteo Nesting Ecology: Evaluating Nesting of Swainson’s Hawks in the Northern Great Plains

    PubMed Central

    Inselman, Will M.; Datta, Shubham; Jenks, Jonathan A.; Jensen, Kent C.; Grovenburg, Troy W.

    2015-01-01

    Swainson’s hawks (Buteo swainsoni) are long-distance migratory raptors that nest primarily in isolated trees located in areas of high grassland density. In recent years, anthropogenic conversion of grassland habitat has raised concerns about the status of the breeding population in the northern Great Plains. In 2013, we initiated a study to investigate the influence of extrinsic factors influencing Swainson’s hawk nesting ecology in north-central South Dakota and south-central North Dakota. Using ground and aerial surveys, we located and monitored nesting Swainson’s hawk pairs: 73 in 2013 and 120 in 2014. We documented 98 successful breeding attempts that fledged 163 chicks; 1.52 and 1.72 fledglings per successful nest in 2013 and 2014, respectively. We used Program MARK to evaluate the influence of land cover on nest survival. The top model, SDist2Farm+%Hay, indicated that nest survival (fledging at least one chick) decreased as nests were located farther from farm sites and as the percent of hay cover increased within 1200-m of the nest site (34.4%; 95% CI = 27.6%–42.3%). We used logistic regression analysis to evaluate the influence of landscape variables on nest-site selection; Swainson’s hawks selected for nest sites located closer to roads. We suggest that tree belts associated with farm sites, whether occupied or not, provide critical breeding sites for Swainson’s hawks. Additionally, poor breeding success may be related to the late migratory behavior of this species which requires them to occupy marginal habitat due to other raptors occupying the most suitable habitat prior to Swainson’s hawks arriving to the breeding grounds. PMID:26327440

  15. Land cover changes associated with recent energy development in the Williston Basin; Northern Great Plains, USA.

    PubMed

    Preston, Todd M; Kim, Kevin

    2016-10-01

    The Williston Basin in the Northern Great Plains has experienced rapid energy development since 2000. To evaluate the land cover changes resulting from recent (2000-2015) development, the area and previous land cover of all well pads (pads) constructed during this time were determined, the amount of disturbed and reclaimed land adjacent to pads was estimated, land cover changes were analyzed over time for three different well types, and the effects from future development were predicted. The previous land cover of the 12,990ha converted to pads was predominately agricultural (49.5%) or prairie (47.4%) with lesser amounts of developed (2.3%), aquatic (0.5%), and forest (0.4%). Additionally, 12,121ha has likely been disturbed and reclaimed. The area required per gas well remained constant through time while the land required per oil well increased initially and then decreased as development first shifted from conventional to unconventional drilling and then to multi-bore pads. For non-oil-and-gas wells (i.e. stratigraphic test wells, water wells, and injection wells), the area per well increased through time likely due to increased produced water disposal requirements. Future land cover change is expected to be 2.7 times greater than recent development with much of the development occurring in five counties in the core Bakken development area. Direct land cover change and disturbance from recent and expected development are predicted to affect 0.4% of the landscape across the basin; however, in the core Bakken development area, 2.3% of the landscape will be affected including 2.1% of the remaining grassland. Although future development will result in significant land cover change, evolving industry practices and proactive siting decisions, such as development along energy corridors and placing pads in areas previously altered by human activity, have the potential to reduce the ecological effects of future energy development in the Williston Basin.

  16. Geochemical characterization of Rocky Mountain, Northern Great Plains, and Interior Province coals

    SciTech Connect

    Affolter, R.H.; Hatch, J.R.

    1984-04-01

    Statistical summaries of proximate and ultimate analyses, heat of combustion, and content of 36 major, minor, and trace elements were calculated for 37 Eocene, 470 Paleocene, and 419 Cretaceous coal samples from 31 coal fields or areas in the Rocky Mountain and Northern Great Plains coal provinces and for 503 Pennsylvanian coal samples from 14 areas in the Interior coal province. These analyses show that coal within an age group have similar ranges in composition, and that each group has its own distinctive compositional characteristics. Most variability in element content can be related to changes in rank and differences in ash and total sulfur contents. Mean contents of Ca, Mg, Na, Ba, and Sr are related to rank and decrease as apparent coal rank increases from lignite A to high-volatile B bituminous coal. Mean contents of Si, Al, K, Ti, Ga, Li, Sc, Th, V, Y, and Yb increase as the mean ash content increases (correlation coefficients 0.6), suggesting that these elements are present as aluminosilicates, stable oxides, or phosphate mineral phases. Mean contents of Fe, As, Cd, Co, Cu, Mo, Ni, Pb, Sb, and Zn show high correlation with total sulfur. Contents of these elements are low in Paleocene (0.6% sulfur) and Cretaceous (0.7% sulfur) coals, higher in Eocene (1.8% sulfur) coals, and generally highest in Pennsylvanian (3.9% sulfur) coals. The mean contents of B, Be, Cr, F, Hg, Mn, Nb, Se, U and Zr show no direct relationships to changes in rank or ash and total sulfur contents. Decrease in element content with increased rank probably is related to loss of functional groups that act as cation-exchange sites on organic matter. Ash and sulfur contents are dependent on pH-controlled levels of bacterial activity in ancestral peat swamps.

  17. Surface faults in the gulf coastal plain between Victoria and Beaumont, Texas

    USGS Publications Warehouse

    Verbeek, E.R.

    1979-01-01

    Displacement of the land surface by faulting is widespread in the Houston-Galveston region, an area which has undergone moderate to severe land subsidence associated with fluid withdrawal (principally water, and to a lesser extent, oil and gas). A causative link between subsidence and fluid extraction has been convincingly reported in the published literature. However, the degree to which fluid withdrawal affects fault movement in the Texas Gulf Coast, and the mechanism(s) by which this occurs are as yet unclear. Faults that offset the ground surface are not confined to the large (>6000-km2) subsidence "bowl" centered on Houston, but rather are common and characteristic features of Gulf Coast geology. Current observations and conclusions concerning surface faults mapped in a 35,000-km2 area between Victoria and Beaumont, Texas (which area includes the Houston subsidence bowl) may be summarized as follows: 1. (1) Hundreds of faults cutting the Pleistocene and Holocene sediments exposed in the coastal plain have been mapped. Many faults lie well outside the Houston-Galveston