Science.gov

Sample records for nos jogos sul-americanos

  1. Gambling Disorder Due to Brazilian Animal Game ("Jogo do bicho"): Gambling Behavior and Psychopathology.

    PubMed

    Medeiros, Gustavo; Grant, Jon; Tavares, Hermano

    2016-03-01

    Gambling is currently widespread across the globe and despite legally restricted, it is significantly common in Brazil. A traditional and common form of gambling in Brazil is the Brazilian animal game (BAG)--"Jogo do bicho" in Portuguese. In 2013, BAG activities collected approximately 19 billion Brazilian reais--equivalent to more than 8 billon American dollars, a figure almost 60 % higher than legal lotteries. Although a common form of gambling, the gambling behavior and psychopathology of gambling disorder (GD) associated with BAG has never been systematically studied. The aim of this study is to conduct, the first research approaching GD due to BAG. We assessed 897 participants of whom 63 subjects (7.0 %) presented with GD due to BAG and 834 with GD associated with other forms of gambling. After comparing these two groups, major differences were found in demographics, gambling behavior elements and psychopathological variables. This research reinforces the need for further research on BAG and the need for specific approaches in GD. The particularities of BAG may affect treatment strategies as, for example, suggest some adaptations in social and psychotherapeutic approaches. We also highlight the need to acknowledge the "hidden" BAG as a potential addictive game.

  2. Gambling disorder due to Brazilian animal game (“Jogo do bicho”): gambling behavior and psychopathology

    PubMed Central

    Medeiros, Gustavo; Grant, Jon; Tavares, Hermano

    2015-01-01

    Gambling is currently widespread across the globe and despite legally restricted, it is significantly common in Brazil. A traditional and common form of gambling in Brazil is the Brazilian animal game (BAG) - “Jogo do bicho” in Portuguese. In 2013, BAG activities collected approximately 19 billion Brazilian reais - equivalent to more than 8 billon American dollars, a figure almost 60% higher than legal lotteries. Although a common form of gambling, the gambling behavior and psychopathology of gambling disorder (GD) associated with BAG has never been systematically studied. The aim of this study is to conduct, the first research approaching GD due to BAG. We assessed 897 participants of whom 63 subjects (7.0%) presented with GD due to BAG and 834 with GD associated with other forms of gambling. After comparing these two groups, major differences were found in demographics, gambling behavior elements and psychopathological variables. This research reinforces the need for further research on BAG and the need for specific approaches in GD. The particularities of BAG may affect treatment strategies as, for example, suggest some adaptations in social and psychotherapeutic approaches. We also highlight the need to acknowledge the “hidden” BAG as a potential addictive game. PMID:25680739

  3. The NOS Challenge

    ERIC Educational Resources Information Center

    Quigley, Cassie; Buck, Gayle; Akerson, Valarie

    2011-01-01

    "The picture of a scientist is me!" exclaims first grader Kendra during a nature of science (NOS) lesson. She drew a picture of a scientist and explained that she was going to be a scientist when she grew up because she "loved to observe like a scientist." Kendra's experience was a part of a 30-day unit designed specifically for first graders.…

  4. The NOS Challenge

    ERIC Educational Resources Information Center

    Quigley, Cassie; Buck, Gayle; Akerson, Valarie

    2011-01-01

    "The picture of a scientist is me!" exclaims first grader Kendra during a nature of science (NOS) lesson. She drew a picture of a scientist and explained that she was going to be a scientist when she grew up because she "loved to observe like a scientist." Kendra's experience was a part of a 30-day unit designed specifically for first graders.…

  5. Endothelial NOS (NOS3) impairs myocardial function in developing sepsis.

    PubMed

    van de Sandt, Annette M; Windler, Rainer; Gödecke, Axel; Ohlig, Jan; Zander, Simone; Reinartz, Michael; Graf, Jürgen; van Faassen, Ernst E; Rassaf, Tienush; Schrader, Jürgen; Kelm, Malte; Merx, Marc W

    2013-03-01

    Endothelial nitric oxide synthase (NOS)3-derived nitric oxide (NO) modulates inotropic response and diastolic interval for optimal cardiac performance under non-inflammatory conditions. In sepsis, excessive NO production plays a key role in severe hypotension and myocardial dysfunction. We aimed to determine the role of NOS3 on myocardial performance, NO production, and time course of sepsis development. NOS3(-/-) and C57BL/6 wildtype mice were rendered septic by cecum ligation and puncture (CLP). Cardiac function was analyzed by serial echocardiography, in vivo pressure and isolated heart measurements. Cardiac output (CO) increased to 160 % of baseline at 10 h after sepsis induction followed by a decline to 63 % of baseline after 18 h in wildtype mice. CO was unaltered in septic NOS3(-/-) mice. Despite the hyperdynamic state, cardiac function and mean arterial pressure were impaired in septic wildtype as early as 6 h post CLP. At 12 h, cardiac function in septic wildtype was refractory to catecholamines in vivo and respective isolated hearts showed impaired pressure development and limited coronary flow reserve. Hemodynamics remained stable in NOS3(-/-) mice leading to significant survival benefit. Unselective NOS inhibition in septic NOS3(-/-) mice diminished this survival benefit. Plasma NO( x )- and local myocardial NO( x )- and NO levels (via NO spin trapping) demonstrated enhanced NO( x )- and bioactive NO levels in septic wildtype as compared to NOS3(-/-) mice. Significant contribution by inducible NOS (NOS2) during this early phase of sepsis was excluded. Our data suggest that NOS3 relevantly contributes to bioactive NO pool in developing sepsis resulting in impaired cardiac contractility.

  6. Association analysis of nitric oxide synthases: NOS1, NOS2A and NOS3 genes, with multiple sclerosis.

    PubMed

    AlFadhli, Suad; Mohammed, Eiman M A; Al Shubaili, Asmahan

    2013-07-01

    Multiple sclerosis (MS) is a chronic inflammatory autoimmune disorder of the central nervous system. To explore the genetic basis of three nitric oxide synthase (NOS) genes: NOS1, NOS2A and NOS3, with susceptibility to MS. A total of 122 MS patients and 118 healthy controls screened for NOS1 (rs2682826, rs41279104), NOS2A (CCTTT)n/(TAAA)n and NOS3 (rs1800783, rs1800779, rs2070744, 27bpVNTR) markers, using TaqMan®SNP Genotyping Assays and fragment analysis were enrolled in this study. QRT-PCR and ELISA were used to analyse the expression of NOS3 mRNA and Nitric Oxide (NO) levels. Two NOS3 markers were associated with susceptibility to MS and early disease development. The NOS3 rs1800779 G-allele (p = 0.04) and GG-genotype (p = 0.02) showed association with susceptibility to MS. Short NOS2 (CCTTT)n (p = 0.03) and short/long repeat (p = 0.04) genotypes also showed associations with MS. These associations were intensified by sub-division of patients into Kuwaiti Arabs and Persians (p < 0.05). The NOS3-27 bp-VNTR a-allele was associated with early MS disease onset ≤26 years (p = 0.04). The NOS3-27 bp-VNTR a/b-genotype resulted in 23% lower NO production and the NOS3-rs1800779 AA-genotype resulted in lower NOS3 expression. Haplotypes obtained from NOS2A and NOS3 showed increased susceptibility to MS. NOS1 showed no significant association with MS. This study provides evidence for the association between selected NOS2 and NOS3 markers and MS susceptibility.

  7. NOS1 — EDRN Public Portal

    Cancer.gov

    NOS1, or nitric oxide synthase 1 (neuronal), along with inducible nitric oxide synthase (NOS2) and endothelial nitric oxide synthase (NOS3), catalyze the generation of nitric oxide and L-citrulline from L-arginine and molecular oxygen. Nitric oxide is a messenger molecule with diverse functions throughout the body. In the brain and peripheral nervous system, nitric oxide displays many properties of a neurotransmitter. NOS1 also displays antimicrobial and antitumoral activities.

  8. Expression profiles of NOS isoforms in gingiva of nNOS knockout mice.

    PubMed

    Ishioka, M; Ishizuka, Y; Shintani, S; Yanagisawa, T; Inoue, T; Sasaki, J; Watanabe, H

    2014-04-01

    Nitric oxide is a gaseous molecule associated with many distinct physiological functions, and is derived from L-arginine catalyzed by nitric oxide synthase (NOS). Nitric oxide synthase has 3 isoforms: nNOS, iNOS and eNOS. Although these NOS isoforms are believed to play an important role in gingival tissue, little information is available on their morphological dynamics. The aim of this study was to investigate the profiles of NOS isoforms in deficiency of nNOS in gingiva of mice. Twelve male (6 normal (C57BL/6) and 6 nNOS knockout) mice were used. All mice were 5-week-old, weighing approximately 20-25 g each. After sacrifice, the jaws of the mice were removed by mechanical means and specimens analyzed by histology, in situ hybridization and immunohistochemistry. Immunohistochemical observation revealed positive staining for iNOS and eNOS, especially in lamina propria. Similar results in the mRNA expression levels were shown by in situ hybridization analysis. It may suggest that iNOS and eNOS compensated nNOS deficiency in the gingiva of nNOS knockout mice.

  9. Vascular and Perivascular NO Release and Transport: Biochemical Pathways of NOS1 and NOS3

    PubMed Central

    Chen, Kejing; Popel, Aleksander S.

    2007-01-01

    Nitric oxide (NO) derived from nitric oxide synthase (NOS) is an important paracrine effector that maintains vascular tone. The release of NO mediated by NOS isozymes under various O2 conditions critically determines the NO bioavailability in tissues. Because of experimental difficulties, there has been no direct information on how enzymatic NO production and distribution change around arterioles under various oxygen conditions. In this study, we used computational models based on the analysis of biochemical pathways of enzymatic NO synthesis and the availability of NOS isozymes to quantify the NO production by neuronal NOS (NOS1) and endothelial NOS (NOS3). We compared the catalytic activities of NOS1 and NOS3 and their sensitivities to the concentration of substrate O2. Based on the NO release rates predicted from kinetic models, the geometric distribution of NO sources and mass balance analysis, we predicted the NO concentration profiles around an arteriole under various O2 conditions. The results indicated that NOS1-catalyzed NO production was significantly more sensitive to ambient O2 concentration than that catalyzed by NOS3. Also, the high sensitivity of NOS1 catalytic activity to O2 was associated with significantly reduced NO production and therefore NO concentrations, upon hypoxia. Moreover, the major source determining the distribution of NO was NOS1, which was abundantly expressed in the nerve fibers and mast cells close to arterioles, rather than NOS3, which was expressed in the endothelium. Finally, the perivascular NO concentration predicted by the models under conditions of normoxia was paradoxically at least an order of magnitude lower than a number of experimental measurements, suggesting a higher abundance of NOS1 or NOS3 and/or the existence of other enzymatic or non-enzymatic sources of NO in the microvasculature. PMID:17320763

  10. Nitric oxide synthase enzymes in the airways of mice exposed to ovalbumin: NOS2 expression is NOS3 dependent.

    PubMed

    Bratt, Jennifer M; Williams, Keisha; Rabowsky, Michelle F; Last, Michael S; Franzi, Lisa M; Last, Jerold A; Kenyon, Nicholas J

    2010-01-01

    The function of the airway nitric oxide synthase (NOS) isoforms and the lung cell types responsible for its production are not fully understood. We hypothesized that NO homeostasis in the airway is important to control inflammation, which requires upregulation, of NOS2 protein expression by an NOS3-dependent mechanism. Mice from a C57BL/6 wild-type, NOS1(-/-), NOS2(-/-), and NOS3(-/-) genotypes were used. All mice strains were systemically sensitized and exposed to filtered air or ovalbumin (OVA) aerosol for two weeks to create a subchronic model of allergen-induced airway inflammation. We measured lung function, lung lavage inflammatory and airway epithelial goblet cell count, exhaled NO, nitrate and nitrite concentration, and airway NOS1, NOS2, and NOS3 protein content. Deletion of NOS1 or NOS3 increases NOS2 protein present in the airway epithelium and smooth muscle of air-exposed animals. Exposure to allergen significantly reduced the expression of NOS2 protein in the airway epithelium and smooth muscle of the NOS3(-/-) strain only. This reduction in NOS2 expression was not due to the replacement of epithelial cells with goblet cells as remaining epithelial cells did not express NOS2. NOS1(-/-) animals had significantly reduced goblet cell metaplasia compared to C57Bl/6 wt, NOS2(-/-), and NOS3(-/-) allergen-exposed mice. The airway epithelial and smooth muscle cells maintain a stable airway NO concentration under noninflammatory conditions. This "homeostatic" mechanism is unable to distinguish between NOS derived from the different constitutive NOS isoforms. NOS3 is essential for the expression of NOS2 under inflammatory conditions, while NOS1 expression contributes to allergen-induced goblet cell metaplasia.

  11. Nitric Oxide Synthase Enzymes in the Airways of Mice Exposed to Ovalbumin: NOS2 Expression Is NOS3 Dependent

    PubMed Central

    Bratt, Jennifer M.; Williams, Keisha; Rabowsky, Michelle F.; Last, Michael S.; Franzi, Lisa M.; Last, Jerold A.; Kenyon, Nicholas J.

    2010-01-01

    Objectives and Design. The function of the airway nitric oxide synthase (NOS) isoforms and the lung cell types responsible for its production are not fully understood. We hypothesized that NO homeostasis in the airway is important to control inflammation, which requires upregulation, of NOS2 protein expression by an NOS3-dependent mechanism. Materials or Subjects. Mice from a C57BL/6 wild-type, NOS1−/−, NOS2−/−, and NOS3−/− genotypes were used. All mice strains were systemically sensitized and exposed to filtered air or ovalbumin (OVA) aerosol for two weeks to create a subchronic model of allergen-induced airway inflammation. Methods. We measured lung function, lung lavage inflammatory and airway epithelial goblet cell count, exhaled NO, nitrate and nitrite concentration, and airway NOS1, NOS2, and NOS3 protein content. Results. Deletion of NOS1 or NOS3 increases NOS2 protein present in the airway epithelium and smooth muscle of air-exposed animals. Exposure to allergen significantly reduced the expression of NOS2 protein in the airway epithelium and smooth muscle of the NOS3−/− strain only. This reduction in NOS2 expression was not due to the replacement of epithelial cells with goblet cells as remaining epithelial cells did not express NOS2. NOS1−/− animals had significantly reduced goblet cell metaplasia compared to C57Bl/6 wt, NOS2−/−, and NOS3−/− allergen-exposed mice. Conclusion. The airway epithelial and smooth muscle cells maintain a stable airway NO concentration under noninflammatory conditions. This “homeostatic” mechanism is unable to distinguish between NOS derived from the different constitutive NOS isoforms. NOS3 is essential for the expression of NOS2 under inflammatory conditions, while NOS1 expression contributes to allergen-induced goblet cell metaplasia. PMID:20953358

  12. Multifaceted NOS Instruction: Contextualizing Nature of Science with Documentary Films

    ERIC Educational Resources Information Center

    Bloom, Mark; Binns, Ian C.; Koehler, Catherine

    2015-01-01

    This research focuses on inservice science teachers' conceptions of nature of science (NOS) before and after a two-week intensive summer professional development (PD). The PD combined traditional explicit NOS instruction, numerous interactive interventions that highlighted NOS aspects, along with documentary films that portrayed NOS in context of…

  13. mNos2 Deletion and Human NOS2 Replacement in Alzheimer Disease Models

    PubMed Central

    Colton, Carol A.; Wilson, Joan G.; Everhart, Angela; Wilcock, Donna M.; Puoliväli, Jukka; Heikkinen, Taneli; Oksman, Juho; Jääskeläinen, Olli; Lehtimäki, Kimmo; Laitinen, Teemu; Vartiainen, Nina; Vitek, Michael P.

    2014-01-01

    Abstract Understanding the pathophysiologic mechanisms underlying Alzheimer disease relies on knowledge of disease onset and the sequence of development of brain pathologies. We present a comprehensive analysis of early and progressive changes in a mouse model that demonstrates a full spectrum of characteristic Alzheimer disease–like pathologies. This model demonstrates an altered immune redox state reminiscent of the human disease and capitalizes on data indicating critical differences between human and mouse immune responses, particularly in nitric oxide levels produced by immune activation of the NOS2 gene. Using the APPSwDI+/+/mNos2−/− (CVN-AD) mouse strain, we show a sequence of pathologic events leading to neurodegeneration,which include pathologically hyperphosphorylated tau in the perforant pathway at 6 weeks of age progressing to insoluble tau, early appearance of β-amyloid peptides in perivascular deposits around blood vessels in brain regions known to be vulnerable to Alzheimer disease, and progression to damage and overt loss in select vulnerable neuronal populations in these regions. The role of species differences between hNOS2 and mNos2 was supported by generating mice in which the human NOS2 gene replaced mNos2. When crossed with CVN-AD mice, pathologic characteristics of this new strain (APPSwDI+/−/HuNOS2tg+/+/mNos2−/−) mimicked the pathologic phenotypes found in the CVN-AD strain. PMID:25003233

  14. mNos2 deletion and human NOS2 replacement in Alzheimer disease models.

    PubMed

    Colton, Carol A; Wilson, Joan G; Everhart, Angela; Wilcock, Donna M; Puoliväli, Jukka; Heikkinen, Taneli; Oksman, Juho; Jääskeläinen, Olli; Lehtimäki, Kimmo; Laitinen, Teemu; Vartiainen, Nina; Vitek, Michael P

    2014-08-01

    Understanding the pathophysiologic mechanisms underlying Alzheimer disease relies on knowledge of disease onset and the sequence of development of brain pathologies. We present a comprehensive analysis of early and progressive changes in a mouse model that demonstrates a full spectrum of characteristic Alzheimer disease-like pathologies. This model demonstrates an altered immune redox state reminiscent of the human disease and capitalizes on data indicating critical differences between human and mouse immune responses, particularly in nitric oxide levels produced by immune activation of the NOS2 gene. Using the APPSwDI(+)/(+)mNos2(-/-) (CVN-AD) mouse strain, we show a sequence of pathologic events leading to neurodegeneration,which include pathologically hyperphosphorylated tau in the perforant pathway at 6 weeks of age progressing to insoluble tau, early appearance of β-amyloid peptides in perivascular deposits around blood vessels in brain regions known to be vulnerable to Alzheimer disease, and progression to damage and overt loss in select vulnerable neuronal populations in these regions. The role of species differences between hNOS2 and mNos2 was supported by generating mice in which the human NOS2 gene replaced mNos2. When crossed with CVN-AD mice, pathologic characteristics of this new strain (APPSwDI(+)/(-)/HuNOS2(tg+)/(+)/mNos2(-/-)) mimicked the pathologic phenotypes found in the CVN-AD strain.

  15. 15 CFR Supplement Nos. 3-4 to Part... - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 2 2011-01-01 2011-01-01 false Nos. Supplement Nos. 3-4 to Part 742 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF... CONTROLS Supplement Nos. 3-4 to Part 742 ...

  16. 15 CFR Supplement Nos. 3-4 to Part... - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 2 2013-01-01 2013-01-01 false Nos. Supplement Nos. 3-4 to Part 742 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF... CONTROLS Supplement Nos. 3-4 to Part 742 ...

  17. 15 CFR Supplement Nos. 3-4 to Part... - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Nos. Supplement Nos. 3-4 to Part 742 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF... CONTROLS Supplement Nos. 3-4 to Part 742 ...

  18. 15 CFR Supplement Nos. 3-4 to Part... - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 2 2012-01-01 2012-01-01 false Nos. Supplement Nos. 3-4 to Part 742 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF... CONTROLS Supplement Nos. 3-4 to Part 742 ...

  19. 15 CFR Supplement Nos. 3-4 to Part... - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 2 2014-01-01 2014-01-01 false Nos. Supplement Nos. 3-4 to Part 742 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF... CONTROLS Supplement Nos. 3-4 to Part 742 ...

  20. Functional significance of differential eNOS translocation

    PubMed Central

    Sánchez, Fabiola A.; Savalia, Nirav B.; Durán, Ricardo G.; Lal, Brajesh K.; Boric, Mauricio P.; Durán, Walter N.

    2006-01-01

    Nitric oxide (NO) regulates flow and permeability. ACh and platelet-activating factor (PAF) lead to endothelial NO synthase (eNOS) phosphorylation and NO release. While ACh causes only vasodilation, PAF induces vasoconstriction and hyperpermeability. The key differential signaling mechanisms for discriminating between vasodilation and hyperpermeability are unknown. We tested the hypothesis that differential translocation may serve as a regulatory mechanism of eNOS to determine specific vascular responses. We used ECV-304 cells permanently transfected with eNOS-green fluorescent protein (ECVeNOS-GFP) and demonstrated that the agonists activate eNOS and reproduce their characteristic endothelial permeability effects in these cells. We evaluated eNOS localization by lipid raft analysis and immunofluorescence microscopy. After PAF and ACh, eNOS moves away from caveolae. eNOS distributes both in the plasma membrane and Golgi in control cells. ACh (10−5 M, 10−4 M) translocated eNOS preferentially to the trans-Golgi network (TGN) and PAF (10−7 M) preferentially to the cytosol. We suggest that PAF-induced eNOS translocation preferentially to cytosol reflects a differential signaling mechanism related to changes in permeability, whereas ACh-induced eNOS translocation to the TGN is related to vasodilation. PMID:16679407

  1. Nitric oxide pathway genes (NOS1AP and NOS1) are involved in PTSD severity, depression, anxiety, stress and resilience.

    PubMed

    Bruenig, Dagmar; Morris, Charles P; Mehta, Divya; Harvey, Wendy; Lawford, Bruce; Young, Ross McD; Voisey, Joanne

    2017-08-20

    The nitric oxide pathway in the hippocampus is involved in the biological stress response with detrimental consequences to cells and HPA axis feedback. Hippocampal atrophy and HPA axis feedback dysfunction are associated with posttraumatic stress disorder (PTSD). This study systematically investigates two genes of the nitric oxide pathway NOS1AP and NOS1 for a potential involvement in PTSD, comorbidities and resilience. A cohort of age and gender matched Vietnam veterans including trauma-exposed cases and controls was recruited and comprehensively assessed (n=299). A total of 49 NOS1AP and 16 NOS1 polymorphisms were analysed and genotypes correlated with gold standard clinical measures to assess PTSD severity and related phenotypes (depression, anxiety, stress, resilience) based on diagnostic status. Multiple NOS1AP polymorphisms were associated across all measures, and NOS1 polymorphisms were associated with PTSD severity, stress and resilience. The GG genotype of NOS1 polymorphism rs10744891 was associated with PTSD severity (surviving multiple correction) while the combined TT-TG genotypes were associated with resilience (p=0.005; p=0.033, respectively). This study indicates that NOS1AP and NOS1 from the nitric oxide pathway are likely to play a key role in PTSD, its comorbidities and resilience. Given the essential role of NOS1AP and NOS1 in stress response they may be reliable targets for screening and intervention strategies. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  2. Single nucleotide polymorphisms in the NOS2 and NOS3 genes are associated with exhaled nitric oxide.

    PubMed

    Dahgam, Santosh; Nyberg, Fredrik; Modig, Lars; Naluai, Asa Torinsson; Olin, Anna-Carin

    2012-03-01

    Polymorphisms in nitric oxide synthase genes (NOS1, NOS2, and NOS3) have been suggested to have a major impact on fraction of exhaled nitric oxide (FENO), a biomarker of airway inflammation. However, the genetic contribution of NOS polymorphisms to FENO is not fully understood. The aim of this study was to investigate comprehensively the association between single nucleotide polymorphisms (SNPs) in all three NOS genes and FENO in an adult population, and to assess whether such associations are modified by asthma or atopy. In 1737 adults from a Swedish general population sample, FENO was measured and genetic variation in the NOS genes was assessed using 49 SNPs. The genetic effect of NOS polymorphisms on FENO, asthma, and atopy was estimated using multiple regression methods. In a multi-SNP model based on stepwise regression analysis, two SNPs in NOS2 and one in NOS3 showed independent associations with levels of FENO. For NOS2 SNP rs9901734, subjects had 5.3% (95% CI 1.0% to 9.7%) higher levels of FENO per G allele, and for rs3729508, subjects with CC or CT genotypes had 9.4% (95% CI 3.1% to 15.2%) higher levels compared with TT. For NOS3 SNP rs7830, subjects with GT or TT had 5.6% (95% CI 0.4% to 11.1%) higher levels than GG; the genetic effect of this SNP was stronger in asthmatics (21.9%, 95% CI 4.6% to 42.0%). These results suggest that NOS2 is the major NOS gene determining variability in exhaled nitric oxide in the healthy adult population, while NOS3 may play a more important role in asthmatic adults.

  3. The dual role of iNOS in cancer☆

    PubMed Central

    Vanini, Frederica; Kashfi, Khosrow; Nath, Niharika

    2015-01-01

    Nitric oxide (NO) is one of the 10 smallest molecules found in nature. It is a simple gaseous free radical whose predominant functions is that of a messenger through cGMP. In mammals, NO is synthesized by the enzyme nitric oxide synthase (NOS) of which there are three isoforms. Neuronal (nNOS, NOS1) and endothelial (eNOS, NOS3) are constitutive calcium-dependent forms of the enzyme that regulate neural and vascular function respectively. The third isoform (iNOS, NOS2), is calcium-independent and is inducible. In many tumors, iNOS expression is high, however, the role of iNOS during tumor development is very complex and quite perplexing, with both promoting and inhibiting actions having been described. This review will aim to summarize the dual actions of iNOS-derived NO showing that the microenvironment of the tumor is a contributing factor to these observations and ultimately to cellular outcomes. PMID:26335399

  4. iNOS-dependent sweating and eNOS-dependent cutaneous vasodilation are evident in younger adults, but are diminished in older adults exercising in the heat.

    PubMed

    Fujii, Naoto; Meade, Robert D; Alexander, Lacy M; Akbari, Pegah; Foudil-Bey, Imane; Louie, Jeffrey C; Boulay, Pierre; Kenny, Glen P

    2016-02-01

    Nitric oxide synthase (NOS) contributes to sweating and cutaneous vasodilation during exercise in younger adults. We hypothesized that endothelial NOS (eNOS) and neuronal NOS (nNOS) mediate NOS-dependent sweating, whereas eNOS induces NOS-dependent cutaneous vasodilation in younger adults exercising in the heat. Further, aging may upregulate inducible NOS (iNOS), which may attenuate sweating and cutaneous vasodilator responses. We hypothesized that iNOS inhibition would augment sweating and cutaneous vasodilation in exercising older adults. Physically active younger (n = 12, 23 ± 4 yr) and older (n = 12, 60 ± 6 yr) adults performed two 30-min bouts of cycling at a fixed rate of metabolic heat production (400 W) in the heat (35°C). Sweat rate and cutaneous vascular conductance (CVC) were evaluated at four intradermal microdialysis sites with: 1) lactated Ringer (control), 2) nNOS inhibitor (nNOS-I, NPLA), 3) iNOS inhibitor (iNOS-I, 1400W), or 4) eNOS inhibitor (eNOS-I, LNAA). In younger adults during both exercise bouts, all inhibitors decreased sweating relative to control, albeit a lower sweat rate was observed at iNOS-I compared with eNOS-I and nNOS-I sites (all P < 0.05). CVC at the eNOS-I site was lower than control in younger adults throughout the intermittent exercise protocol (all P < 0.05). In older adults, there were no differences between control and iNOS-I sites for sweating and CVC during both exercise bouts (all P > 0.05). We show that iNOS and eNOS are the main contributors to NOS-dependent sweating and cutaneous vasodilation, respectively, in physically active younger adults exercising in the heat, and that iNOS inhibition does not alter sweating or cutaneous vasodilation in exercising physically active older adults. Copyright © 2016 the American Physiological Society.

  5. iNOS-dependent sweating and eNOS-dependent cutaneous vasodilation are evident in younger adults, but are diminished in older adults exercising in the heat

    PubMed Central

    Fujii, Naoto; Meade, Robert D.; Alexander, Lacy M.; Akbari, Pegah; Foudil-bey, Imane; Louie, Jeffrey C.; Boulay, Pierre

    2015-01-01

    Nitric oxide synthase (NOS) contributes to sweating and cutaneous vasodilation during exercise in younger adults. We hypothesized that endothelial NOS (eNOS) and neuronal NOS (nNOS) mediate NOS-dependent sweating, whereas eNOS induces NOS-dependent cutaneous vasodilation in younger adults exercising in the heat. Further, aging may upregulate inducible NOS (iNOS), which may attenuate sweating and cutaneous vasodilator responses. We hypothesized that iNOS inhibition would augment sweating and cutaneous vasodilation in exercising older adults. Physically active younger (n = 12, 23 ± 4 yr) and older (n = 12, 60 ± 6 yr) adults performed two 30-min bouts of cycling at a fixed rate of metabolic heat production (400 W) in the heat (35°C). Sweat rate and cutaneous vascular conductance (CVC) were evaluated at four intradermal microdialysis sites with: 1) lactated Ringer (control), 2) nNOS inhibitor (nNOS-I, NPLA), 3) iNOS inhibitor (iNOS-I, 1400W), or 4) eNOS inhibitor (eNOS-I, LNAA). In younger adults during both exercise bouts, all inhibitors decreased sweating relative to control, albeit a lower sweat rate was observed at iNOS-I compared with eNOS-I and nNOS-I sites (all P < 0.05). CVC at the eNOS-I site was lower than control in younger adults throughout the intermittent exercise protocol (all P < 0.05). In older adults, there were no differences between control and iNOS-I sites for sweating and CVC during both exercise bouts (all P > 0.05). We show that iNOS and eNOS are the main contributors to NOS-dependent sweating and cutaneous vasodilation, respectively, in physically active younger adults exercising in the heat, and that iNOS inhibition does not alter sweating or cutaneous vasodilation in exercising physically active older adults. PMID:26586908

  6. A Scallop Nitric Oxide Synthase (NOS) with Structure Similar to Neuronal NOS and Its Involvement in the Immune Defense

    PubMed Central

    Jiang, Qiufen; Zhou, Zhi; Wang, Leilei; Wang, Lingling; Yue, Feng; Wang, Jingjing; Song, Linsheng

    2013-01-01

    Background Nitric oxide synthase (NOS) is responsible for synthesizing nitric oxide (NO) from L-arginine, and involved in multiple physiological functions. However, its immunological role in mollusc was seldom reported. Methodology In the present study, an NOS (CfNOS) gene was identified from the scallop Chlamys farreri encoding a polypeptide of 1486 amino acids. Its amino acid sequence shared 50.0~54.7, 40.7~47.0 and 42.5~44.5% similarities with vertebrate neuronal (n), endothelial (e) and inducible (i) NOSs, respectively. CfNOS contained PDZ, oxygenase and reductase domains, which resembled those in nNOS. The CfNOS mRNA transcripts expressed in all embryos and larvae after the 2-cell embryo stage, and were detectable in all tested tissues with the highest level in the gonad, and with the immune tissues hepatopancreas and haemocytes included. Moreover, the immunoreactive area of CfNOS distributed over the haemocyte cytoplasm and cell membrane. After LPS, β-glucan and PGN stimulation, the expression level of CfNOS mRNA in haemocytes increased significantly at 3 h (4.0-, 4.8- and 2.7-fold, respectively, P < 0.01), and reached the peak at 12 h (15.3- and 27.6-fold for LPS and β-glucan respectively, P < 0.01) and 24 h (17.3-fold for PGN, P < 0.01). In addition, TNF-α also induced the expression of CfNOS, which started to increase at 1 h (5.2-fold, P < 0.05) and peaked at 6 h (19.9-fold, P < 0.01). The catalytic activity of the native CfNOS protein was 30.3 ± 0.3 U mgprot-1, and it decreased significantly after the addition of the selective inhibitors of nNOS and iNOS (26.9 ± 0.4 and 29.3 ± 0.1 U mgprot-1, respectively, P < 0.01). Conclusions These results suggested that CfNOS, with identical structure with nNOS and similar enzymatic characteristics to nNOS and iNOS, played the immunological role of iNOS to be involved in the scallop immune defense against PAMPs and TNF-α. PMID:23922688

  7. The Relationship Between Endothelial Nitric Oxide Synthase Gene (NOS3) Polymorphisms, NOS3 Expression, and Varicocele.

    PubMed

    Kahraman, Cigdem Yuce; Tasdemir, Sener; Sahin, Ibrahim; Marzioglu Ozdemir, Ebru; Yaralı, Oguzhan; Ziypak, Tevfik; Adanur, Senol; Kahraman, Mustafa; Tatar, Abdulgani

    2016-04-01

    Varicocele is an abnormal enlargement of the pampiniform venous plexus in the scrotum. Varicocele is the most common cause of secondary male infertility. Nitric oxide (NO), which has a role on varicocele pathophysiology, is synthesized by endothelial nitric oxide synthase gene (NOS3). In our study, we aimed to explain the relationship between varicocele, three common NOS3 polymorphisms (T-786C, G894T, 4b/a), and NOS3 mRNA expression levels. We investigated NOS3 T-786C, G894T, and 4b/a polymorphisms in 102 patients with varicocele and 100 healthy controls. Twenty-four patients and 17 controls were chosen for expression studies based on polymorphism subgroupings. Subgroup 1 includes patients who have no minor allele polymorphisms, and subgroups 2, 3, and 4 have T-786C, G894T, and 4b/a polymorphisms, respectively. The 4b/a polymorphism demonstrated significantly elevated levels in both allele and genotype analysis in the control group compared to the patient group. The G894T polymorphism was statistically elevated for genotypic frequencies in the patient group compared to the control group, but this finding did not extend to allelic frequencies. There were no statistically significant differences in either the allelic or genotypic frequencies between patients and control groups for the T-786C polymorphism. When patient and control expression levels were compared without considering the subgroups, the NOS3 expression level was found to be statistically higher in the patient group. There were no statistically significant differences in the patient and control group expression levels when stratified by subgroup, nor was there any effect of the polymorphisms under study on expression levels. The 4b/a polymorphism may have a protective effect for varicocelem and G894T polymorphism may contribute to varicocele occurrence by lowering the level of NO. The higher NOS3 expression levels in the patient group may be a kind of dilator compensatory mechanism to protect vascular

  8. Regulation of eNOS-derived superoxide by endogenous methylarginines.

    PubMed

    Druhan, Lawrence J; Forbes, Scott P; Pope, Arthur J; Chen, Chun-An; Zweier, Jay L; Cardounel, Arturo J

    2008-07-08

    The endogenous methylarginines, asymmetric dimethylarginine (ADMA) and N (G)-monomethyl- l-arginine (L-NMMA) regulate nitric oxide (NO) production from endothelial NO synthase (eNOS). Under conditions of tetrahydrobiopterin (BH 4) depletion eNOS also generates (*)O 2 (-); however, the effects of methylarginines on eNOS-derived (*)O 2 (-) generation are poorly understood. Therefore, using electron paramagnetic resonance spin trapping techniques we measured the dose-dependent effects of ADMA and L-NMMA on (*)O 2 (-) production from eNOS under conditions of BH 4 depletion. In the absence of BH 4, ADMA dose-dependently increased NOS-derived (*)O 2 (-) generation, with a maximal increase of 151% at 100 microM ADMA. L-NMMA also dose-dependently increased NOS-derived (*)O 2 (-), but to a lesser extent, demonstrating a 102% increase at 100 microM L-NMMA. Moreover, the native substrate l-arginine also increased eNOS-derived (*)O 2 (-), exhibiting a similar degree of enhancement as that observed with ADMA. Measurements of NADPH consumption from eNOS demonstrated that binding of either l-arginine or methylarginines increased the rate of NADPH oxidation. Spectrophotometric studies suggest, just as for l-arginine and L-NMMA, the binding of ADMA shifts the eNOS heme to the high-spin state, indicative of a more positive heme redox potential, enabling enhanced electron transfer from the reductase to the oxygenase site. These results demonstrate that the methylarginines can profoundly shift the balance of NO and (*)O 2 (-) generation from eNOS. These observations have important implications with regard to the therapeutic use of l-arginine and the methylarginine-NOS inhibitors in the treatment of disease.

  9. Face and Emotion Recognition in MCDD versus PDD-NOS

    ERIC Educational Resources Information Center

    Herba, Catherine M.; de Bruin, Esther; Althaus, Monika; Verheij, Fop; Ferdinand, Robert F.

    2008-01-01

    Previous studies indicate that Multiple Complex Developmental Disorder (MCDD) children differ from PDD-NOS and autistic children on a symptom level and on psychophysiological functioning. Children with MCDD (n = 21) and PDD-NOS (n = 62) were compared on two facets of social-cognitive functioning: identification of neutral faces and facial…

  10. Face and Emotion Recognition in MCDD versus PDD-NOS

    ERIC Educational Resources Information Center

    Herba, Catherine M.; de Bruin, Esther; Althaus, Monika; Verheij, Fop; Ferdinand, Robert F.

    2008-01-01

    Previous studies indicate that Multiple Complex Developmental Disorder (MCDD) children differ from PDD-NOS and autistic children on a symptom level and on psychophysiological functioning. Children with MCDD (n = 21) and PDD-NOS (n = 62) were compared on two facets of social-cognitive functioning: identification of neutral faces and facial…

  11. 15 CFR Supplement Nos. 2-3 to Part... - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 2 2011-01-01 2011-01-01 false Nos. Supplement Nos. 2-3 to Part 716 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS INITIAL AND ROUTINE...

  12. 15 CFR Supplement Nos. 2-3 to Part... - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 2 2014-01-01 2014-01-01 false Nos. Supplement Nos. 2-3 to Part 716 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS INITIAL AND ROUTINE...

  13. 15 CFR Supplement Nos. 2-3 to Part... - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 2 2012-01-01 2012-01-01 false Nos. Supplement Nos. 2-3 to Part 716 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS INITIAL AND ROUTINE...

  14. 15 CFR Supplement Nos. 2-3 to Part... - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Nos. Supplement Nos. 2-3 to Part 716 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS INITIAL AND ROUTINE...

  15. 15 CFR Supplement Nos. 2-3 to Part... - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 2 2013-01-01 2013-01-01 false Nos. Supplement Nos. 2-3 to Part 716 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE CHEMICAL WEAPONS CONVENTION REGULATIONS INITIAL AND ROUTINE...

  16. Expression of nNOS in the human larynx.

    PubMed

    Şelaru, Mircea; Rusu, Mugurel Constantin; Jianu, Adelina Maria

    2015-09-01

    Although intrinsic laryngeal neurons and ganglia have been studied in various species, they have been overlooked in humans. We aimed to investigate the presence of intrinsic laryngeal neurons in humans and, if present, to analyze their neuronal nitric oxide synthase (nNOS) expression. An immunohistochemical study using anti-nNOS antibodies was performed on samples obtained from four cadavers. Intrinsic laryngeal nNOS+ neurons were assessed in the submucosal layer, but nNOS+ nerves were found in all histological layers of the larynx. nNOS expression was also found in striated muscle fibers of larynx. This might reveal the anatomical basis of an upwards extension of the nonadrenergic noncholinergic system in human airways, but further experiments are needed to assess an exact role of NO influence on neural transmission and muscular functions of human larynx.

  17. DISTRIBUTION OF NOS ISOFORMS IN A PORCINE ENDOTOXIN SHOCK MODEL

    PubMed Central

    Doursout, Marie-Francoise; Oguchi, Takeshi; Fischer, Uwe M.; Liang, YangYan; Chelly, Brice; Hartley, Craig J.; Chelly, Jacques E.

    2012-01-01

    Sepsis is a major cause of morbidity and mortality. NO, an endogenous vasodilator, has been associated with the hypotension, catecholamine hyporesponsiveness, and myocardial depression of septic shock. Although iNOS is thought to be responsible for the hypotension and loss of vascular tone occurring several hours after endotoxin administration, little is known on the effects of constitutive eNOS on LPS-induced organ dysfunction. This study assessed the distribution of eNOS and iNOS in various vascular beds in conscious pigs challenged with LPS. Cardiac and regional hemodynamic parameters were recorded over 8 h in the presence and absence of aminoguanidine, a rather selective inhibitor of iNOS activity, and N-methyl-L-arginine, a nonspecific NOS inhibitor. Our data show that LPS-induced cardiac depression was associated with coronary, renal, and mesenteric vasoconstrictions and a hepatic vasodilatation. LPS also induced increases in eNOS in the heart and lungs, whereas iNOS was mostly detected in the liver. Nitrotyrosine formation was mainly detected in the lungs, with traces in the kidney, liver, and gut. Accordingly, our results suggest that the early decrease in blood pressure and cardiac depression are likely due to activated eNOS, whereas both isoforms are involved in the hepatic vasodilation. In contrast, carotid, coronary, mesenteric, and renal vasoconstrictions were significant at 5 and/or 6 h after LPS infusion, suggesting that NO is not the primary mediator, facilitating and/or unmasking the release of vasoconstrictor mediators. Consequently, developing newer tissue- or isoform-specific NOS inhibitors can lead to novel therapeutic agents in septic shock. PMID:17909454

  18. Vascular nitric oxide: Beyond eNOS.

    PubMed

    Zhao, Yingzi; Vanhoutte, Paul M; Leung, Susan W S

    2015-10-01

    As the first discovered gaseous signaling molecule, nitric oxide (NO) affects a number of cellular processes, including those involving vascular cells. This brief review summarizes the contribution of NO to the regulation of vascular tone and its sources in the blood vessel wall. NO regulates the degree of contraction of vascular smooth muscle cells mainly by stimulating soluble guanylyl cyclase (sGC) to produce cyclic guanosine monophosphate (cGMP), although cGMP-independent signaling [S-nitrosylation of target proteins, activation of sarco/endoplasmic reticulum calcium ATPase (SERCA) or production of cyclic inosine monophosphate (cIMP)] also can be involved. In the blood vessel wall, NO is produced mainly from l-arginine by the enzyme endothelial nitric oxide synthase (eNOS) but it can also be released non-enzymatically from S-nitrosothiols or from nitrate/nitrite. Dysfunction in the production and/or the bioavailability of NO characterizes endothelial dysfunction, which is associated with cardiovascular diseases such as hypertension and atherosclerosis.

  19. Advancing the Perceptions of the Nature of Science (NOS): Integrating Teaching the NOS in a Science Content Course

    ERIC Educational Resources Information Center

    Aflalo, Ester

    2014-01-01

    Background: Understanding the nature of science (NOS) has been a key objective in teaching sciences for many years. Despite the importance of this goal it is, until this day, a complex challenge that we are far from achieving. Purpose: The study was conducted in order to further the understanding of the NOS amongst preservice teachers. It explores…

  20. Advancing the Perceptions of the Nature of Science (NOS): Integrating Teaching the NOS in a Science Content Course

    ERIC Educational Resources Information Center

    Aflalo, Ester

    2014-01-01

    Background: Understanding the nature of science (NOS) has been a key objective in teaching sciences for many years. Despite the importance of this goal it is, until this day, a complex challenge that we are far from achieving. Purpose: The study was conducted in order to further the understanding of the NOS amongst preservice teachers. It explores…

  1. Using a Professional Development Program for Enhancing Chilean Biology Teachers' Understanding of Nature of Science (NOS) and Their Perceptions About Using History of Science to Teach NOS

    NASA Astrophysics Data System (ADS)

    Pavez, José M.; Vergara, Claudia A.; Santibañez, David; Cofré, Hernán

    2016-05-01

    A number of authors have recognized the importance of understanding the nature of science (NOS) for scientific literacy. Different instructional strategies such as decontextualized, hands-on inquiry, and history of science (HOS) activities have been proposed for teaching NOS. This article seeks to understand the contribution of HOS in enhancing biology teachers' understanding of NOS, and their perceptions about using HOS to teach NOS. These teachers ( N = 8), enrolled in a professional development program in Chile are, according to the national curriculum, expected to teach NOS, but have no specific NOS and HOS training. Teachers' views of NOS were assessed using the VNOS-D+ questionnaire at the beginning and at the end of two modules about science instruction and NOS. Both the pre- and the post-test were accompanied by interviews, and in the second session we collected information about teachers' perceptions of which interventions had been more significant in changing their views on NOS. Finally, the teachers also had to prepare a lesson plan for teaching NOS that included HOS. Some of the most important study results were: significant improvements were observed in teachers' understanding of NOS, although they assigned different levels of importance to HOS in these improvements; and although the teachers improved their understanding of NOS, most had difficulties in planning lessons about NOS and articulating historical episodes that incorporated NOS. The relationship between teachers' improved understanding of NOS and their instructional NOS skills is also discussed.

  2. Therapeutic effect of enhancing endothelial nitric oxide synthase (eNOS) expression and preventing eNOS uncoupling

    PubMed Central

    Förstermann, Ulrich; Li, Huige

    2011-01-01

    Nitric oxide (NO) produced by the endothelium is an important protective molecule in the vasculature. It is generated by the enzyme endothelial NO synthase (eNOS). Similar to all NOS isoforms, functional eNOS transfers electrons from nicotinamide adenine dinucleotide phosphate (NADPH), via the flavins flavin adenine dinucleotide and flavin mononucleotide in the carboxy-terminal reductase domain, to the heme in the amino-terminal oxygenase domain. Here, the substrate L-arginine is oxidized to L-citrulline and NO. Cardiovascular risk factors such as diabetes mellitus, hypertension, hypercholesterolaemia or cigarette smoking reduce bioactive NO. These risk factors lead to an enhanced production of reactive oxygen species (ROS) in the vessel wall. NADPH oxidases represent major sources of this ROS and have been found upregulated in the presence of cardiovascular risk factors. NADPH-oxidase-derived superoxide avidly reacts with eNOS-derived NO to form peroxynitrite (ONOO-). The essential NOS cofactor (6R-)5,6,7,8-tetrahydrobiopterin (BH4) is highly sensitive to oxidation by this ONOO-. In BH4 deficiency, oxygen reduction uncouples from NO synthesis, thereby converting NOS to a superoxide-producing enzyme. Among conventional drugs, compounds interfering with the renin-angiotensin-aldosterone system and statins can reduce vascular oxidative stress and increase bioactive NO. In recent years, we have identified a number of small molecules that have the potential to prevent eNOS uncoupling and, at the same time, enhance eNOS expression. These include the protein kinase C inhibitor midostaurin, the pentacyclic triterpenoids ursolic acid and betulinic acid, the eNOS enhancing compounds AVE9488 and AVE3085, and the polyphenolic phytoalexin trans-resveratrol. Such compounds enhance NO production from eNOS also under pathophysiological conditions and may thus have therapeutic potential. PMID:21198553

  3. NOS-2 Inhibition in Phosgene-Induced Acute Lung Injury.

    PubMed

    Filipczak, Piotr T; Senft, Albert P; Seagrave, JeanClare; Weber, Waylon; Kuehl, Philip J; Fredenburgh, Laura E; McDonald, Jacob D; Baron, Rebecca M

    2015-07-01

    Phosgene exposure via an industrial or warfare release produces severe acute lung injury (ALI) with high mortality, characterized by massive pulmonary edema, disruption of epithelial tight junctions, surfactant dysfunction, and oxidative stress. There are no targeted treatments for phosgene-induced ALI. Previous studies demonstrated that nitric oxide synthase 2 (NOS-2) is upregulated in the lungs after phosgene exposure; however, the role of NOS-2 in the pathogenesis of phosgene-induced ALI remains unknown. We previously demonstrated that NOS-2 expression in lung epithelium exacerbates inhaled endotoxin-induced ALI in mice, mediated partially through downregulation of surfactant protein B (SP-B) expression. Therefore, we hypothesized that a selective NOS-2 inhibitor delivered to the lung epithelium by inhalation would mitigate phosgene-induced ALI. Inhaled phosgene produced increases in bronchoalveolar lavage fluid protein, histologic lung injury, and lung NOS-2 expression at 24 h. Administration of the selective NOS-2 inhibitor 1400 W via inhalation, but not via systemic delivery, significantly attenuated phosgene-induced ALI and preserved epithelial barrier integrity. Furthermore, aerosolized 1400 W augmented expression of SP-B and prevented downregulation of tight junction protein zonula occludens 1 (ZO-1), both critical for maintenance of normal lung physiology and barrier integrity. We also demonstrate for the first time that NOS-2-derived nitric oxide downregulates the ZO-1 expression at the transcriptional level in human lung epithelial cells, providing a novel target for ameliorating vascular leak in ALI. Our data demonstrate that lung NOS-2 plays a critical role in the development of phosgene-induced ALI and suggest that aerosolized NOS-2 inhibitors offer a novel therapeutic strategy for its treatment. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e

  4. NOS-2 Inhibition in Phosgene-Induced Acute Lung Injury

    PubMed Central

    Filipczak, Piotr T.; Senft, Albert P.; Seagrave, JeanClare; Weber, Waylon; Kuehl, Philip J.; Fredenburgh, Laura E.; McDonald, Jacob D.; Baron, Rebecca M.

    2015-01-01

    Phosgene exposure via an industrial or warfare release produces severe acute lung injury (ALI) with high mortality, characterized by massive pulmonary edema, disruption of epithelial tight junctions, surfactant dysfunction, and oxidative stress. There are no targeted treatments for phosgene-induced ALI. Previous studies demonstrated that nitric oxide synthase 2 (NOS-2) is upregulated in the lungs after phosgene exposure; however, the role of NOS-2 in the pathogenesis of phosgene-induced ALI remains unknown. We previously demonstrated that NOS-2 expression in lung epithelium exacerbates inhaled endotoxin-induced ALI in mice, mediated partially through downregulation of surfactant protein B (SP-B) expression. Therefore, we hypothesized that a selective NOS-2 inhibitor delivered to the lung epithelium by inhalation would mitigate phosgene-induced ALI. Inhaled phosgene produced increases in bronchoalveolar lavage fluid protein, histologic lung injury, and lung NOS-2 expression at 24 h. Administration of the selective NOS-2 inhibitor 1400 W via inhalation, but not via systemic delivery, significantly attenuated phosgene-induced ALI and preserved epithelial barrier integrity. Furthermore, aerosolized 1400 W augmented expression of SP-B and prevented downregulation of tight junction protein zonula occludens 1 (ZO-1), both critical for maintenance of normal lung physiology and barrier integrity. We also demonstrate for the first time that NOS-2-derived nitric oxide downregulates the ZO-1 expression at the transcriptional level in human lung epithelial cells, providing a novel target for ameliorating vascular leak in ALI. Our data demonstrate that lung NOS-2 plays a critical role in the development of phosgene-induced ALI and suggest that aerosolized NOS-2 inhibitors offer a novel therapeutic strategy for its treatment. PMID:25870319

  5. Regulation of eNOS enzyme activity by posttranslational modification.

    PubMed

    Heiss, Elke H; Dirsch, Verena M

    2014-01-01

    The regulation of endothelial NO synthase (eNOS) employs multiple different cellular control mechanisms impinging on level and activity of the enzyme. This review aims at summarizing the current knowledge on the posttranslational modifications of eNOS, including acylation, nitrosylation, phosphorylation, acetylation, glycosylation and glutathionylation. Sites, mediators and impact on enzyme localization and activity of the single modifications will be discussed. Moreover, interdependence, cooperativity and competition between the different posttranslational modifications will be elaborated with special emphasis on the susceptibility of eNOS to metabolic cues.

  6. Molecular characterization of nosRZDFYLX genes coding for denitrifying nitrous oxide reductase of Bradyrhizobium japonicum.

    PubMed

    Velasco, Leonardo; Mesa, Socorro; Xu, Chang-Ai; Delgado, María J; Bedmar, Eulogio J

    2004-04-01

    The nosRZDFYLX gene cluster for the respiratory nitrous oxide reductase from Bradyrhizobium japonicum strain USDA110 has been cloned and sequenced. Seven protein coding regions corresponding to nosR, nosZ, the structural gene, nosD, nosF, nosY, nosL, and nosX were detected. The deduced amino acid sequence exhibited a high degree of similarity to other nitrous oxide reductases from various sources. The NosZ protein included a signal peptide for protein export. Mutant strains carrying either a nosZ or a nosR mutation accumulated nitrous oxide when cultured microaerobically in the presence of nitrate. Maximal expression of a P nosZ-lacZ fusion in strain USDA110 required simultaneously both low level oxygen conditions and the presence of nitrate. Microaerobic activation of the fusion required FixLJ and FixK(2).

  7. The canonical ensemble via symplectic integrators using Nosé and Nosé-Poincaré chains.

    PubMed

    Leimkuhler, Benedict J; Sweet, Christopher R

    2004-07-01

    Simulations that sample from the canonical ensemble can be generated by the addition of a single degree of freedom, provided that the system is ergodic, as described by Nosé with subsequent modifications by Hoover to allow sampling in real time. Nosé-Hoover dynamics is not ergodic for small or stiff systems and the addition of auxiliary thermostats is needed to overcome this deficiency. Nosé-Hoover dynamics, like its derivatives, does not have a Hamiltonian structure, precluding the use of symplectic integrators which are noted for their long term stability and structure preservation. As an alternative to Nosé-Hoover, the Hamiltonian Nosé-Poincaré method was proposed by Bond, Laird, and Leimkuhler [J. Comput. Phys. 151, 114 (1999)], but the straightforward addition of thermostatting chains does not sample from the canonical ensemble. In this paper a method is proposed whereby additional thermostats can be applied to a Hamiltonian system while retaining sampling from the canonical ensemble. This technique has been used to construct thermostatting chains for the Nosé and Nosé-Poincaré methods. (c) 2004 American Institute of Physics.

  8. Association of common eNOS/NOS3 polymorphisms with preeclampsia in Tunisian Arabs.

    PubMed

    Ben Ali Gannoun, Marwa; Zitouni, Hedia; Raguema, Nozha; Maleh, Wided; Gris, Jean-Christophe; Almawi, Wassim; Mahjoub, Touhami

    2015-09-15

    We investigated the association of endothelial nitric oxide synthase (NOS3) polymorphisms -786T>C, 27-bp repeat 4b/4a, and Glu298Asp with preeclampsia (PE). This was a case-control study involving 345 unrelated Tunisian women with PE and 289 unrelated age- and ethnically matched control women. The -786C allele was significantly increased in PA patients when compared to healthy controls (P=0.015). In contrast, MAF of Glu298Asp (P=0.103) and 4b/4a (P=0.168) were not significantly different between the study groups. Higher frequencies of heterozygous Glu298/298Asp and homozygous -786T/-786T genotypes were seen in PE cases compared to healthy subjects. The combination of genotypes 221 (-786T>C, Glu298Asp, 4a/4a) was more in PE cases compared with control women (17.68% vs. 8.36%; P=0.029). Multivariate regression analysis confirmed this association. Genetic variation at the NOS3 locus represents a genetic risk factor for increased susceptibility to PE.

  9. The effect of high protein diet and exercise on irisin, eNOS, and iNOS expressions in kidney.

    PubMed

    Tastekin, Ebru; Palabiyik, Orkide; Ulucam, Enis; Uzgur, Selda; Karaca, Aziz; Vardar, Selma Arzu; Yilmaz, Ali; Aydogdu, Nurettin

    2016-08-01

    Long-term effects of high protein diets (HPDs) on kidneys are still not sufficiently studied. Irisin which increases oxygen consumption and thermogenesis in white fat cells was shown in skeletal muscles and many tissues. Nitric oxide synthases (NOS) are a family of enzymes catalyzing the production of nitric oxide (NO) from L-arginine. We aimed to investigate the effects of HPD, irisin and NO expression in kidney and relation of them with exercise and among themselves. Animals were grouped as control, exercise, HPD and exercise combined with HPD (exercise-HPD). Rats were kept on a HPD for 5 weeks and an exercise program was given them as 5 exercise and 2 rest days per week exercising on a treadmill with increasing speed and angle. In our study, while HPD group had similar total antioxidant capacity (TAC) levels with control group, exercise and exercise-HPD groups had lower levels (p < 0.05). Kidneys of exercising rats had no change in irisin or eNOS expression but their iNOS expression had increased (p < 0.001). HPD-E group has not been observed to cause kidney damage and not have a significant effect on rat kidney irisin, eNOS, or iNOS expression. Localization of irisin, eNOS, and iNOS staining in kidney is highly selective and quite clear in this study. Effects of exercise and HPD on kidney should be evaluated with different exercise protocols and contents of the diet. İrisin, eNOS, and iNOS staining localizations should be supported with various research studies.

  10. Differential roles of iNOS and nNOS at rostral ventrolateral medulla during experimental endotoxemia in the rat.

    PubMed

    Chan, J Y; Wang, S H; Chan, S H

    2001-01-01

    We investigated the differential contribution of inducible and neuronal nitric oxide synthase (iNOS and nNOS) at the rostral ventrolateral medulla (RVLM) to endotoxemia induced by E. coli lipopolysaccharide (LPS). In Sprague-Dawley rats maintained under propofol anesthesia, i.v. administration of LPS (15, 30, or 45 mg/kg) induced a reduction (phase I), followed by an augmentation (phase II) and a secondary decrease (phase III) in the power density of the vasomotor components (0-0.8 Hz) in systemic arterial pressure (SAP) signals. LPS also induced an immediate hypotension, followed by a rebound increase and a secondary decrease in SAP. In addition, the level of iNOS mRNA exhibited a significant surge that began with phase I endotoxemia, reaching progressively its peak at phase III. Discernible down-regulation of nNOS mRNA was not detected until the last phase of endotoxemia. Pretreatment with microinjection of the selective iNOS inhibitor, aminoguanidine (250 pmol), into the bilateral RVLM significantly prolonged phases II and III endotoxemia, blunted the initial and secondary hypotension, and antagonized the upregulation of iNOS mRNA. Similar pretreatment with the selective nNOS inhibitor, 7-nitroindazole (1 pmol), on the other hand, discernibly shortened phase II and prolonged phase III endotoxemia, and induced progressive hypotension by antagonizing the rebound increase in SAP. We conclude that the relative prevalence of functional expression and molecular synthesis of iNOS over nNOS in the RVLM may be a crucial determinant for the reduction or loss in power density of the vasomotor components of SAP signals during experimental endotoxemia.

  11. eNOS/iNOS and endoplasmic reticulum stress-induced apoptosis in the placentas of patients with preeclampsia

    PubMed Central

    Du, L; He, F; Kuang, L; Tang, W; Li, Y; Chen, D

    2017-01-01

    Disruption of nitric oxide pathway and endoplasmic reticulum (ER) stress had been observed in preeclampsia (PE). However, the correlation and overall detailed expression profiles of ER stress-related markers and endothelial nitric oxide synthase/inducible nitric oxide synthase (eNOS/iNOS) in patients with PE were poorly understood. In this study, placental protein expression of ER stress-related markers as well as eNOS/iNOS in normotensive control (n=32) and PE pregnancies (n=32) was examined by western blot. In addition, apoptosis was detected by terminal deoxynucleotidyl transferase-mediated nick-end labelling (TUNEL) staining in placentas. Compared with control, we found elevated ER stress response was agreeable with iNOS upregulation in placenta tissue of PE patients. Placental protein expression of ER stress-related markers, including GRP78, GRP94, p-PERK, eIF2a, p-eIF2a, XBP1, CHOP, Ire1, p-Ire1 and iNOS, was higher, and eNOS expression was lower in PE (P<0.05 for all); however, the expression of ATF6 and PERK was similar in the PE and control groups. Upregulation of CHOP and iNOS was consistent of apoptosis increasing indicated by TUNEL staining and caspase 4 expression upregulation in PE placenta. Our datas suggest that the exaggerated ER stress response and upregulated iNOS are probably associated with increased apoptosis in placenta of PE patients and may contribute to the pathophysiology of PE. PMID:27030287

  12. Interior view of connector between Building Nos. 608 & 609 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view of connector between Building Nos. 608 & 609 (HABS CO-172-DS) facing north - Fitzsimons General Hospital, Neuropsychiatric Ward, Southeast Corner of East Nineteenth Avenue & Wheeling Street (formerly South Van Valzuh Street), Aurora, Adams County, CO

  13. 36. ISLAND PLANT: Nos. 1 AND 2 TWENTYSIX INCH HORIZONTAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. ISLAND PLANT: Nos. 1 AND 2 TWENTY-SIX INCH HORIZONTAL SAMSON TURBINES - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  14. 37. ISLAND PLANT: Nos. 1 AND 2 TWENTYSIX INCH SPECIAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. ISLAND PLANT: Nos. 1 AND 2 TWENTY-SIX INCH SPECIAL HORIZONTAL SAMSON TURBINE (RIVITED CASE) - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  15. Interior of Left Powerhouse showing generator Nos. 14. This view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of Left Powerhouse showing generator Nos. 1-4. This view is from the catwalk at the level of the overhead crane, looking west. - Columbia Basin Project, Grand Coulee Dam Powerplant Complex, Grand Coulee, Grant County, WA

  16. 9. DETAIL OF BENTS NOS 3 AND 4. VIEW TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. DETAIL OF BENTS NOS 3 AND 4. VIEW TO NORTH-NORTHEAST - Milwaukee Road Railroad Overpass, Spanning Chicago, Milwaukee, St. Paul, & Pacific Railroad Grade (Milwaukee Road) at Orange Street, Missoula, Missoula County, MT

  17. 11. BENTS NOS. 3 AND 2. VIEW TO SOUTHSOUTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. BENTS NOS. 3 AND 2. VIEW TO SOUTH-SOUTHWEST - Milwaukee Road Railroad Overpass, Spanning Chicago, Milwaukee, St. Paul, & Pacific Railroad Grade (Milwaukee Road) at Orange Street, Missoula, Missoula County, MT

  18. 5. VIEW OF NORTH SECTION OF STRUCTURE SHOWING BRIDGE NOS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF NORTH SECTION OF STRUCTURE SHOWING BRIDGE NOS. 10 AND 9 FROM CENTRAL STAIRWAY. LOOKING NORTH. - Greenville Yard, Transfer Bridge System, Port of New York/New Jersey, Upper New York Bay, Jersey City, Hudson County, NJ

  19. 6. VIEW OF SOUTH SECTION OF STRUCTURE SHOWING BRIDGE NOS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF SOUTH SECTION OF STRUCTURE SHOWING BRIDGE NOS. 12, 13, AND 14 FROM CENTRAL STAIRWAY. LOOKING SOUTH. - Greenville Yard, Transfer Bridge System, Port of New York/New Jersey, Upper New York Bay, Jersey City, Hudson County, NJ

  20. Vault Area (original section), east corridor, looking north (Vault Nos. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Vault Area (original section), east corridor, looking north (Vault Nos. 1-9 - Fort McNair, Film Store House, Fort Lesley J. McNair, P Street between Third & Fourth Streets, Southwest, Washington, District of Columbia, DC

  1. Los Angeles County Poor Farm, Patient Ward Nos. 210 & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Los Angeles County Poor Farm, Patient Ward Nos. 210 & 211 - Type B Plan, 7601 Imperial Highway; bounded by Esperanza Street, Laurel Street, Flores Street, and Descanso Street, Downey, Los Angeles County, CA

  2. eNOS-uncoupling in age-related erectile dysfunction

    PubMed Central

    Johnson, JM; Bivalacqua, TJ; Lagoda, GA; Burnett, AL; Musicki, B

    2011-01-01

    Aging is associated with ED. Although age-related ED is attributed largely to increased oxidative stress and endothelial dysfunction in the penis, the molecular mechanisms underlying this effect are not fully defined. We evaluated whether endothelial nitric oxide synthase (eNOS) uncoupling in the aged rat penis is a contributing mechanism. Correlatively, we evaluated the effect of replacement with eNOS cofactor tetrahydrobiopterin (BH4) on erectile function in the aged rats. Male Fischer 344 ‘young’ (4-month-old) and ‘aged’ (19-month-old) rats were treated with a BH4 precursor sepiapterin (10 mg/kg intraperitoneally) or vehicle for 4 days. After 1-day washout, erectile function was assessed in response to electrical stimulation of the cavernous nerve. Endothelial dysfunction (eNOS uncoupling) and oxidative stress (thiobarbituric acid reactive substances, TBARS) were measured by conducting western blot in penes samples. Erectile response was significantly reduced in aged rats, whereas eNOS uncoupling and TBARS production were significantly increased in the aged rat penis compared with young rats. Sepiapterin significantly improved erectile response in aged rats and prevented increase in TBARS production, but did not affect eNOS uncoupling in the penis of aged rats. These findings suggest that aging induces eNOS uncoupling in the penis, resulting in increased oxidative stress and ED. PMID:21289638

  3. The beneficial effects of melatonin against heart mitochondrial impairment during sepsis: inhibition of iNOS and preservation of nNOS.

    PubMed

    Ortiz, Francisco; García, José A; Acuña-Castroviejo, Darío; Doerrier, Carolina; López, Ana; Venegas, Carmen; Volt, Huayqui; Luna-Sánchez, Marta; López, Luis C; Escames, Germaine

    2014-01-01

    While it is accepted that the high production of nitric oxide (NO˙) by the inducible nitric oxide synthase (iNOS) impairs cardiac mitochondrial function during sepsis, the role of neuronal nitric oxide synthase (nNOS) may be protective. During sepsis, there is a significantly increase in the expression and activity of mitochondrial iNOS (i-mtNOS), which parallels the changes in cytosolic iNOS. The existence of a constitutive NOS form (c-mtNOS) in heart mitochondria has been also described, but its role in the heart failure during sepsis remains unclear. Herein, we analyzed the changes in mitochondrial oxidative stress and bioenergetics in wild-type and nNOS-deficient mice during sepsis, and the role of melatonin, a known antioxidant, in these changes. Sepsis was induced by cecal ligation and puncture, and heart mitochondria were analyzed for NOS expression and activity, nitrites, lipid peroxidation, glutathione and glutathione redox enzymes, oxidized proteins, and respiratory chain activity in vehicle- and melatonin-treated mice. Our data show that sepsis produced a similar induction of iNOS/i-mtNOS and comparable inhibition of the respiratory chain activity in wild-type and in nNOS-deficient mice. Sepsis also increased mitochondrial oxidative/nitrosative stress to a similar extent in both mice strains. Melatonin administration inhibited iNOS/i-mtNOS induction, restored mitochondrial homeostasis in septic mice, and preserved the activity of nNOS/c-mtNOS. The effects of melatonin were unrelated to the presence or the absence of nNOS. Our observations show a lack of effect of nNOS on heart bioenergetic impairment during sepsis and further support the beneficial actions of melatonin in sepsis.

  4. In vitro and in vivo induction and activation of nNOS by LPS in oligodendrocytes

    PubMed Central

    Yao, SY.; Ljunggren-Rose, A.; Chandramohan, N.; Whetsell, W.O.; Sriram, S.

    2014-01-01

    There are currently four known isoforms of nitric oxide synthase (NOS). Of these, neuronal NOS (nNOS) is known to be present exclusively in neurons, endothelial NOS (eNOS) in vascular endothelium, while the inducible form of NOS (iNOS) is known to be activated in oligodendrocytes, astrocytes and microglia. The fourth isoform, mitochondrial NOS (mtNOS), represents a post translational modification of nNOS. Using western blotting and real time-PCR, we show induction and activation of nNOS following culture of oligodendrocyte progenitor cells (OPC) with lipopolysaccharide (LPS). Activation of nNOS results in accumulation of peroxynitrite and tyrosine nitration of proteins in oligodendrocytes resulting in reduced cell viability. Injection of LPS in vivo into the corpus callosum of rats leads to the development of extensive demyelination of the white matter tracts. Immunostaining of regions close to the injection site shows the presence of nNOS, but not iNOS, in oligodendrocytes. Neither iNOS nor nNOS was seen in astrocytes in areas of demyelination. These studies suggest that activation of nNOS in oligodendrocytes leads to oligodendrocyte injury resulting in demyelination. PMID:20724006

  5. COMPARISON OF OXYGEN–INDUCED RADICAL INTERMEDIATES IN iNOS OXYGENASE DOMAIN WITH THOSE FROM nNOS and eNOS

    PubMed Central

    Berka, Vladimir; Liu, Wen; Wu, Gang; Tsai, Ah-lim

    2014-01-01

    Inducible nitric-oxide synthase (iNOS) produces the reactive oxygen and nitrogen species (ROS/RNS) involved in bacteria killing and is crucial in the host defense mechanism. However, high level ROS/RNS can also be detrimental to normal cells and thus their production has to be tightly controlled. Availability or deficiency of tetrahydrobiopterin (BH4) cofactor and L-arginine substrate control coupling or uncoupling of NOS catalysis. Fully coupled reaction, with abundant BH4 and L-arginine, produces NO whereas the uncoupled NOS (in the absence of BH4 and/or L-arginine) generates ROS/RNS. In the current work we focus on direct rapid freeze EPR to characterize the structure and kinetics of oxygen-induced radical intermediates produced by ferrous inducible NOS oxygenase domain (iNOSox) in the presence or absence of BH4 and/or L-arginine. Fully reconstituted iNOSox (+BH4, +L-Arg) forms a dimer and yields a typical BH4 radical that indicates coupled reaction. iNOSox (–BH4) remains mainly monomeric and produces exclusively superoxide, that is only marginally affected by the presence of L-arginine. iNOSox (+BH4, −L-Arg) exists as a monomer/dimer mixture and yields both BH4 radical and superoxide. Present study is a natural extension of our previous work on the ferrous endothelial NOSox (eNOSox) [V. Berka, G. Wu, H.C. Yeh, G. Palmer, A.L. Tsai, J. Biol. Chem. 279 ( 2004) 32243–32251] and ferrous neuronal NOSox (nNOSox) [V. Berka, L.H. Wang, A.L. Tsai, Biochemistry 47 (2008) 405–420]. Overall, our data suggests different regulatory roles of L-arginine and BH4 in the production of oxygen-induced radical intermediates in NOS isoforms which nicely serve individual functional role. PMID:25016313

  6. Comparison of oxygen-induced radical intermediates in iNOS oxygenase domain with those from nNOS and eNOS.

    PubMed

    Berka, Vladimír; Liu, Wen; Wu, Gang; Tsai, Ah-Lim

    2014-10-01

    Inducible nitric-oxide synthase (iNOS) produces the reactive oxygen and nitrogen species (ROS/RNS) involved in bacteria killing and is crucial in the host defense mechanism. However, high level ROS/RNS can also be detrimental to normal cells and thus their production has to be tightly controlled. Availability or deficiency of tetrahydrobiopterin (BH4) cofactor and l-arginine substrate controls coupling or uncoupling of NOS catalysis. Fully coupled reaction, with abundant BH4 and l-arginine, produces NO whereas the uncoupled NOS (in the absence of BH4 and/or l-arginine) generates ROS/RNS. In the current work we focus on direct rapid freeze EPR to characterize the structure and kinetics of oxygen-induced radical intermediates produced by ferrous inducible NOS oxygenase domain (iNOSox) in the presence or absence of BH4 and/or l-arginine. Fully reconstituted iNOSox (+BH4, +L-Arg) forms a dimer and yields a typical BH4 radical that indicates coupled reaction. iNOSox (-BH4) remains mainly monomeric and produces exclusively superoxide, that is only marginally affected by the presence of l-arginine. iNOSox (+BH4, -L-Arg) exists as a monomer/dimer mixture and yields both BH4 radical and superoxide. Present study is a natural extension of our previous work on the ferrous endothelial NOSox (eNOSox) [V. Berka, G. Wu, H.C. Yeh, G. Palmer, A.L. Tsai, J. Biol. Chem. 279 (2004) 32243-32251] and ferrous neuronal NOSox (nNOSox) [V. Berka, L.H. Wang, A.L. Tsai, Biochemistry 47 (2008) 405-420]. Overall, our data suggests different regulatory roles of l-arginine and BH4 in the production of oxygen-induced radical intermediates in NOS isoforms which nicely serve individual functional role.

  7. Nitrous Oxide Reduction Kinetics Distinguish Bacteria Harboring Clade I NosZ from Those Harboring Clade II NosZ

    PubMed Central

    Nissen, Silke; Park, Doyoung; Sanford, Robert A.

    2016-01-01

    ABSTRACT Bacteria capable of reduction of nitrous oxide (N2O) to N2 separate into clade I and clade II organisms on the basis of nos operon structures and nosZ sequence features. To explore the possible ecological consequences of distinct nos clusters, the growth of bacterial isolates with either clade I (Pseudomonas stutzeri strain DCP-Ps1, Shewanella loihica strain PV-4) or clade II (Dechloromonas aromatica strain RCB, Anaeromyxobacter dehalogenans strain 2CP-C) nosZ with N2O was examined. Growth curves did not reveal trends distinguishing the clade I and clade II organisms tested; however, the growth yields of clade II organisms exceeded those of clade I organisms by 1.5- to 1.8-fold. Further, whole-cell half-saturation constants (Kss) for N2O distinguished clade I from clade II organisms. The apparent Ks values of 0.324 ± 0.078 μM for D. aromatica and 1.34 ± 0.35 μM for A. dehalogenans were significantly lower than the values measured for P. stutzeri (35.5 ± 9.3 μM) and S. loihica (7.07 ± 1.13 μM). Genome sequencing demonstrated that Dechloromonas denitrificans possessed a clade II nosZ gene, and a measured Ks of 1.01 ± 0.18 μM for N2O was consistent with the values determined for the other clade II organisms tested. These observations provide a plausible mechanistic basis for why the relative activity of bacteria with clade I nos operons compared to that of bacteria with clade II nos operons may control N2O emissions and determine a soil's N2O sink capacity. IMPORTANCE Anthropogenic activities, in particular fertilizer application for agricultural production, increase N2O emissions to the atmosphere. N2O is a strong greenhouse gas with ozone destruction potential, and there is concern that nitrogen may become the major driver of climate change. Microbial N2O reductase (NosZ) catalyzes N2O reduction to environmentally benign dinitrogen gas and represents the major N2O sink process. The observation that bacterial groups with clade I nosZ versus those

  8. Expression analysis of NOS family and HSP genes during thermal stress in goat (Capra hircus).

    PubMed

    Yadav, Vijay Pratap; Dangi, Satyaveer Singh; Chouhan, Vikrant Singh; Gupta, Mahesh; Dangi, Saroj K; Singh, Gyanendra; Maurya, Vijay Prakash; Kumar, Puneet; Sarkar, Mihir

    2016-03-01

    Approximately 50 genes other than heat shock protein (HSP) expression changes during thermal stress. These genes like nitric oxide synthase (NOS) need proper attention and investigation to find out their possible role in the adaptation to thermal stress in animals. So, the present study was undertaken to demonstrate the expressions of inducible form type II NOS (iNOS), endothelial type III NOS (eNOS), constitutively expressed enzyme NOS (cNOS), HSP70, and HSP90 in peripheral blood mononuclear cells (PBMCs) during different seasons in Barbari goats. Real-time polymerase chain reaction, western blot, and immunocytochemistry were applied to investigate messenger RNA (mRNA) expression, protein expression, and immunolocalization of examined factors. The mRNA and protein expressions of iNOS, eNOS, cNOS, HSP70, and HSP90 were significantly higher (P < 0.05) during peak summer, and iNOS and eNOS expressions were also observed to be significantly higher (P < 0.05) during peak winter season as compared with moderate season. The iNOS, eNOS, cNOS, HSP70, and HSP90 were mainly localized in plasma membrane and cytoplasm of PBMCs. To conclude, data generated in the present study indicate the possible involvement of the NOS family genes in amelioration of thermal stress so as to maintain cellular integrity and homeostasis in goats.

  9. Expression analysis of NOS family and HSP genes during thermal stress in goat ( Capra hircus)

    NASA Astrophysics Data System (ADS)

    Yadav, Vijay Pratap; Dangi, Satyaveer Singh; Chouhan, Vikrant Singh; Gupta, Mahesh; Dangi, Saroj K.; Singh, Gyanendra; Maurya, Vijay Prakash; Kumar, Puneet; Sarkar, Mihir

    2016-03-01

    Approximately 50 genes other than heat shock protein (HSP) expression changes during thermal stress. These genes like nitric oxide synthase (NOS) need proper attention and investigation to find out their possible role in the adaptation to thermal stress in animals. So, the present study was undertaken to demonstrate the expressions of inducible form type II NOS (iNOS), endothelial type III NOS (eNOS), constitutively expressed enzyme NOS (cNOS), HSP70, and HSP90 in peripheral blood mononuclear cells (PBMCs) during different seasons in Barbari goats. Real-time polymerase chain reaction, western blot, and immunocytochemistry were applied to investigate messenger RNA (mRNA) expression, protein expression, and immunolocalization of examined factors. The mRNA and protein expressions of iNOS, eNOS, cNOS, HSP70, and HSP90 were significantly higher ( P < 0.05) during peak summer, and iNOS and eNOS expressions were also observed to be significantly higher ( P < 0.05) during peak winter season as compared with moderate season. The iNOS, eNOS, cNOS, HSP70, and HSP90 were mainly localized in plasma membrane and cytoplasm of PBMCs. To conclude, data generated in the present study indicate the possible involvement of the NOS family genes in amelioration of thermal stress so as to maintain cellular integrity and homeostasis in goats.

  10. Pedagogical Reflections by Secondary Science Teachers at Different NOS Implementation Levels

    NASA Astrophysics Data System (ADS)

    Herman, Benjamin C.; Clough, Michael P.; Olson, Joanne K.

    2017-02-01

    This study investigated what 13 secondary science teachers at various nature of science (NOS) instruction implementation levels talked about when they reflected on their teaching. We then determined if differences exist in the quality of those reflections between high, medium, and low NOS implementers. This study sought to answer the following questions: (1) What do teachers talk about when asked general questions about their pedagogy and NOS pedagogy and (2) what qualitative differences, if any, exist within variables across teachers of varying NOS implementation levels? Evidence derived from these teachers' reflections indicated that self-efficacy and perceptions of general importance for NOS instruction were poor indicators of NOS implementation. However, several factors were associated with the extent that these teachers implemented NOS instruction, including the utility value they hold for NOS teaching, considerations of how people learn, understanding of NOS pedagogy, and their ability to accurately and deeply self-reflect about teaching. Notably, those teachers who effectively implemented the NOS at higher levels value NOS instruction for reasons that transcend immediate instructional objectives. That is, they value teaching NOS for achieving compelling ends realized long after formal schooling (e.g., lifelong socioscientific decision-making for civic reasons), and they deeply reflect about how to teach NOS by drawing from research about how people learn. Low NOS implementers' simplistic notions and reflections about teaching and learning appeared to be impeding factors to accurate and consistent NOS implementation. This study has implications for science teacher education efforts that promote NOS instruction.

  11. Pedagogical Reflections by Secondary Science Teachers at Different NOS Implementation Levels

    NASA Astrophysics Data System (ADS)

    Herman, Benjamin C.; Clough, Michael P.; Olson, Joanne K.

    2015-10-01

    This study investigated what 13 secondary science teachers at various nature of science (NOS) instruction implementation levels talked about when they reflected on their teaching. We then determined if differences exist in the quality of those reflections between high, medium, and low NOS implementers. This study sought to answer the following questions: (1) What do teachers talk about when asked general questions about their pedagogy and NOS pedagogy and (2) what qualitative differences, if any, exist within variables across teachers of varying NOS implementation levels? Evidence derived from these teachers' reflections indicated that self-efficacy and perceptions of general importance for NOS instruction were poor indicators of NOS implementation. However, several factors were associated with the extent that these teachers implemented NOS instruction, including the utility value they hold for NOS teaching, considerations of how people learn, understanding of NOS pedagogy, and their ability to accurately and deeply self-reflect about teaching. Notably, those teachers who effectively implemented the NOS at higher levels value NOS instruction for reasons that transcend immediate instructional objectives. That is, they value teaching NOS for achieving compelling ends realized long after formal schooling (e.g., lifelong socioscientific decision-making for civic reasons), and they deeply reflect about how to teach NOS by drawing from research about how people learn. Low NOS implementers' simplistic notions and reflections about teaching and learning appeared to be impeding factors to accurate and consistent NOS implementation. This study has implications for science teacher education efforts that promote NOS instruction.

  12. Modulating DDAH/NOS Pathway to Discover Vasoprotective Insulin Sensitizers

    PubMed Central

    Lai, Li; Ghebremariam, Yohannes T.

    2016-01-01

    Insulin resistance syndrome (IRS) is a configuration of cardiovascular risk factors involved in the development of metabolic disorders including type 2 diabetes mellitus. In addition to diet, age, socioeconomic, and environmental factors, genetic factors that impair insulin signaling are centrally involved in the development and exacerbation of IRS. Genetic and pharmacological studies have demonstrated that the nitric oxide (NO) synthase (NOS) genes are critically involved in the regulation of insulin-mediated glucose disposal. The generation of NO by the NOS enzymes is known to contribute to vascular homeostasis including insulin-mediated skeletal muscle vasodilation and insulin sensitivity. By contrast, excessive inhibition of NOS enzymes by exogenous or endogenous factors is associated with insulin resistance (IR). Asymmetric dimethylarginine (ADMA) is an endogenous molecule that competitively inhibits all the NOS enzymes and contributes to metabolic perturbations including IR. The concentration of ADMA in plasma and tissue is enzymatically regulated by dimethylarginine dimethylaminohydrolase (DDAH), a widely expressed enzyme in the cardiovascular system. In preclinical studies, overexpression of DDAH has been shown to reduce ADMA levels, improve vascular compliance, and increase insulin sensitivity. This review discusses the feasibility of the NOS/DDAH pathway as a novel target to develop vasoprotective insulin sensitizers. PMID:26770984

  13. Brown Norway rats show impaired nNOS-mediated information transfer in renal autoregulation.

    PubMed

    Wang, Xuemei; Cupples, William A

    2009-01-01

    Nonselective inhibition of NO synthase (NOS) augments myogenic autoregulation of renal blood flow (RBF) and profoundly reduces RBF. Previously in Wistar rats, we showed that augmented autoregulation, but not vasoconstriction, is duplicated by intrarenal inhibition of neuronal NOS (nNOS), whereas intrarenal inhibition of inducible NOS (iNOS) has no effect on RBF or on RBF dynamics. Thus macula densa nNOS transfers information from tubuloglomerular feedback to the afferent arteriole. This information flow requires that macula densa nNOS can sufficiently alter ambient NO concentration, that is, that endothelial NOS (eNOS) and iNOS do not alter local NO concentration. Because the Brown Norway rat often shows exaggerated responses to NOS inhibition and has peculiarities of renal autoregulation that are related to NO, we used this strain to study systemic and renal vascular responses to NOS inhibition. The first experiment showed transient blood pressure reduction by bolus i.v. acetylcholine that was dose-dependent in both strains and substantially prolonged in Brown Norway rats. The depressor response decayed more rapidly after nonselective NOS inhibition and the difference between strains was lost, indicating a greater activity of eNOS in Brown Norway rats. In Brown Norway rats, selective inhibition of iNOS reduced RBF (-16% +/- 7%) and augmented myogenic autoregulation, whereas nNOS inhibition reduced RBF (-25% +/- 4%) and did not augment myogenic autoregulation. The significant responses to intrarenal iNOS inhibition, the reduced modulation of autoregulation by nNOS inhibition, and the enhanced endothelial depressor response suggest that physiological signalling by NO within the kidney is impaired in Brown Norway rats because of irrelevant or inappropriate input of NO by eNOS and iNOS.

  14. Exploring Elementary Science Methods Course Contexts to Improve Preservice Teachers' NOS of Science Conceptions and Understandings of NOS Teaching Strategies

    ERIC Educational Resources Information Center

    Akerson, Valarie L.; Weiland, Ingrid; Rogers, Meredith Park; Pongsanon, Khemmawaddee; Bilican, Kader

    2014-01-01

    We explored adaptations to an elementary science methods course to determine how varied contexts could improve elementary preservice teachers' conceptions of NOS as well as their ideas for teaching NOS to elementary students. The contexts were (a) NOS Theme in which the course focused on the teaching of science through the consistent teaching…

  15. Exploring Elementary Science Methods Course Contexts to Improve Preservice Teachers' NOS of Science Conceptions and Understandings of NOS Teaching Strategies

    ERIC Educational Resources Information Center

    Akerson, Valarie L.; Weiland, Ingrid; Rogers, Meredith Park; Pongsanon, Khemmawaddee; Bilican, Kader

    2014-01-01

    We explored adaptations to an elementary science methods course to determine how varied contexts could improve elementary preservice teachers' conceptions of NOS as well as their ideas for teaching NOS to elementary students. The contexts were (a) NOS Theme in which the course focused on the teaching of science through the consistent teaching…

  16. National Plan to Expand NOS' Operational Modeling Capabilities

    NASA Astrophysics Data System (ADS)

    Zhang, A.; Burke, P.

    2016-02-01

    Real-time marine forecast products based on numerical ocean models are a powerful tool serving a variety of uses, such as marine navigation planning for commercial port operations, harmful algal bloom formation and tracking, hazard response, and emergency search and rescue. Advances in data acquisition technology, ocean dynamics, numerical schemes and visualization tools have made marine forecasting products more accurate and reliable, and the dissemination of operational model products more timely and user friendly. NOAA's National Ocean Service (NOS) has been developing and maintaining a national network of hydrodynamic operational oceanographic nowcast and forecast modeling systems to support navigational and environmental applications in U.S. coastal and estuarine waters, and the Great Lakes. These operational forecast systems (OFS) provide the maritime community with nowcast and forecast guidance of water levels, currents, water temperature, and salinity for 48 to 120 hours. NOS has collaborated with the National Weather Service (NWS) and the Office of Oceanic and Atmospheric Research (OAR) and extramural partners from academia and the local maritime community to develop and implement the current suite of NOS OFS. NOS currently operates and maintains 15 OFS for the U.S. East and West coasts, the Gulf of Mexico, and the Great Lakes, to cover approximately 35% of the CONUS coast. Over the next 8 to 10 years, NOS intends to provide complete coverage of the continental U.S and establish the necessary national infrastructure to enable other types of forecasts. This presentation will provide an overview of NOS' new regional approach to expand its OFS capabilities and services nationally, a pathway to transition research models and applications to operations, and anticipated challenges to implement this plan.

  17. Differential cardiovascular responses to blockade of nNOS or iNOS in rostral ventrolateral medulla of the rat

    PubMed Central

    Chan, Samuel H H; Wang, Ling-Lin; Wang, Shu-Huei; Chan, Julie Y H

    2001-01-01

    We investigated the contribution of neuronal or inducible nitric oxide synthase (nNOS or iNOS) at the rostral ventrolateral medulla (RVLM) to central cardiovascular regulation by endogenous nitric oxide (NO), using Sprague-Dawley rats anaesthetized and maintained with propofol.Microinjection bilaterally into the RVLM of a NO trapping agent, carboxy-2-phenyl-4,4,5,5-tetramethylimidazoline-l-oxy-l-3-oxide (10, 50 or 100 nmoles) resulted in significant hypotension and bradycardia.Similar application of a selective antagonist of nNOS, 7-nitroindazole (1, 2.5 or 5 pmoles), or selective antagonists of iNOS, aminoguanidine (125, 250 or 500 pmoles), N6-(l-iminoethyl)-L-lysine (250 pmoles) or S-methylisothiourea (250 pmoles), induced respectively a reduction or an enhancement in systemic arterial pressure, heart rate and power density of the vasomotor components in the spectrum of arterial blood pressure signals, the experimental index for sympathetic neurogenic vasomotor tone.Both hypotension and bradycardia induced by the NO precursor, L-arginine (100 nmoles), were significantly blunted when aminoguanidine (250 pmoles) was co-microinjected bilaterally into the RVLM. On the other hand, co-administered 7-nitroindazole (2.5 pmoles) was ineffective.Whereas low doses of S-nitro-N-acetylpenicillamine (0.25 or 0.5 nmoles) elicited hypertension and tachycardia, high doses of this non-nitrate NO donor (5 nmoles) induced hypotension and bradycardia.Reverse transcription – polymerase chain reaction analysis revealed that both iNOS and nNOS mRNA were expressed in the ventrolateral medulla.We conclude that the prevalence of nNOS over iNOS activity at the RVLM and the associated dominance of sympathoexcitation over sympathoinhibition may underlie the maintenance of sympathetic vasomotor outflow and stable systemic arterial pressure by the endogenous NO. PMID:11399678

  18. Las Rocas Nos Cuentan (Rocks Tell Their Stories)

    ERIC Educational Resources Information Center

    Llerandi-Roman, Pablo A.

    2012-01-01

    Many Earth science lessons today still focus on memorizing the names of rocks and minerals. This led the author to develop a lesson that reveals the fascinating stories told by rocks through the study of their physical properties. He first designed the lesson for Puerto Rican teachers, hence its Spanish title: "Las Rocas Nos Cuentan Su Historia."…

  19. 78 FR 32622 - Endangered Species; File Nos. 17557 and 17273

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-31

    ...Notice is hereby given that the National Ocean Service Marine Forensic Lab (NOS Lab) [Responsible Party: M. Katherine Moore], 219 Fort Johnson Road, Charleston, SC 29412 (File No. 17557), and the NOAA Fisheries Northeast Region, Protected Resources Division [Responsible Party: Mary Colligan], 1 Blackburn Drive, Gloucester, MA 01930 (File No. 17273), have applied in due form for permits to take......

  20. 50. INTERIOR OF BRIDGE SUSPENSION STRUCTURE ABOVE BRIDGE NOS. 10 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. INTERIOR OF BRIDGE SUSPENSION STRUCTURE ABOVE BRIDGE NOS. 10 AND 9 SHOWING CABLE COUNTERWEIGHT SYSTEM AND SCREW-TYPE VERTICAL ADJUSTMENT MACHINERY (LIFTING SCREWS). LOOKING NORTH. - Greenville Yard, Transfer Bridge System, Port of New York/New Jersey, Upper New York Bay, Jersey City, Hudson County, NJ

  1. Airfield setting of Facility Nos. 175 and 176, taken from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Airfield setting of Facility Nos. 175 and 176, taken from north end of Ford Island Runway, with landplane hangars on the right - U.S. Naval Base, Pearl Harbor, Landplane Hangar Type, Wasp Boulevard and Gambier Bay Street, Pearl City, Honolulu County, HI

  2. 4. Southwest fronts, dock nos. 491 and 492. Southeast end, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Southwest fronts, dock nos. 491 and 492. Southeast end, dock no. 492. View to north. - Offutt Air Force Base, Looking Glass Airborne Command Post, Nose Docks, On either side of Hangar Access Apron at Northwest end of Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  3. 77 FR 1061 - Endangered Species; File Nos. 16229 and 16548

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-09

    ... National Oceanic and Atmospheric Administration RIN 0648-XA881 Endangered Species; File Nos. 16229 and... issued under the authority of the Endangered Species Act of 1973, as amended (ESA; 16 U.S.C. 1531 et seq... Zoo, 4401 Zoo ] Parkway, Asheboro, NC 27203 , and the Springfield Science Museum, 21 Edwards Street...

  4. AIRMEN'S BARRACKS (FACILITY Nos. 422, 442, AND 420) IN MIDDLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AIRMEN'S BARRACKS (FACILITY Nos. 422, 442, AND 420) IN MIDDLE DISTANCE, ALSO SHOWING ESCOLTA AVENUE AT RIGHT, LOOKING SOUTHEAST FROM RESERVOIR HILL. (Part 2 of a 3 view panorama; see also CA-2398-4 and CA-2398-6.) - Hamilton Field, East of Nave Drive, Novato, Marin County, CA

  5. 7. VIEW OF NORTH SECTION OF STRUCTURE SHOWING BRIDGE NOS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF NORTH SECTION OF STRUCTURE SHOWING BRIDGE NOS. 10 AND 9 FROM BRIDGE NO. 11 APRON. LOOKING NORTH. - Greenville Yard, Transfer Bridge System, Port of New York/New Jersey, Upper New York Bay, Jersey City, Hudson County, NJ

  6. 78 FR 21112 - Marine Mammals; File Nos. 16992 and 14535

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-09

    ..., Ph.D., Hawaii Institute of Marine Biology, University of Hawaii, P.O. Box 1106, Kailua, HI 96734, has... of Marine Biology in Kaneohe, HI. Researchers would conduct hearing measurements using suction cup... National Oceanic and Atmospheric Administration RIN 0648-XB161 Marine Mammals; File Nos. 16992 and...

  7. Context view, Building Nos. 2728, looking north from a spot ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Context view, Building Nos. 27-28, looking north from a spot south of Building No. 28 - U.S. Veterans Hospital, Jefferson Barracks, Medical Officer in Charge Residence, VA Medical Center, Jefferson Barracks Division 1 Jefferson Barracks Drive, Saint Louis, Independent City, MO

  8. Context view, Building Nos. 2729, with Building No. 28 in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Context view, Building Nos. 27-29, with Building No. 28 in the center, looking west at front of buildings, from a spot south of Building No. 29 - U.S. Veterans Hospital, Jefferson Barracks, Medical Officer in Charge Residence, VA Medical Center, Jefferson Barracks Division 1 Jefferson Barracks Drive, Saint Louis, Independent City, MO

  9. Building Nos. 92, 381, and 392, view into common courtyard ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Building Nos. 92, 381, and 392, view into common courtyard between 92 (right), 391 (center deep), and 392 (left), view facing west-northwest - U.S. Naval Base, Pearl Harbor, Marine Railway No. 1 Accessories House & Apprentice Welding School, Additions, Intersection of Avenue B & Sixth Street, Pearl City, Honolulu County, HI

  10. Las Rocas Nos Cuentan (Rocks Tell Their Stories)

    ERIC Educational Resources Information Center

    Llerandi-Roman, Pablo A.

    2012-01-01

    Many Earth science lessons today still focus on memorizing the names of rocks and minerals. This led the author to develop a lesson that reveals the fascinating stories told by rocks through the study of their physical properties. He first designed the lesson for Puerto Rican teachers, hence its Spanish title: "Las Rocas Nos Cuentan Su Historia."…

  11. First light of the NIRISS Optical Simulator (NOS)

    NASA Astrophysics Data System (ADS)

    St-Antoine, Jonathan; Albert, Loïc.; Doyon, René; Vallée, Philippe; Artigau, Étienne; Hernandez, Olivier; Thibault, Simon; Brousseau, Denis

    2016-07-01

    The Near Infrared Imager and Slitless Spectrograph (NIRISS) Optical Simulator (NOS) is a laboratory simulation of the single-object slitless spectroscopy and aperture masking interferometry modes of the NIRISS instrument onboard the James Webb Space Telescope (JWST). A transiting exoplanet can be simulated by periodically eclipsing a small portion (1% - 10ppm) of a super continuum laser source (0.4 μm - 2.4 μm) with a dichloromethane filled cell. Dichloromethane exhibits multiple absorption features in the near infrared domain hence the net effect is analogous to the atmospheric absorption features of an exoplanet transiting in front of its host star. The NOS uses an HAWAII-2RG and an ASIC controller cooled to cryogenic temperatures. A separate photometric beacon provides a flux reference to monitor laser variations. The telescope jitter can be simulated using a high-resolution motorized pinhole placed along the optical path. Laboratory transiting spectroscopy data produced by the NOS will be used to refine analysis methods, characterize the noise due to the jitter, characterize the noise floor and to develop better observation strategies. We report in this paper the first exoplanet transit event simulated by the NOS. The performance is currently limited by relatively high thermal background in the system and high frequency temporal variations of the continuum source.

  12. Langley VEDIT for NOS/VE usage manual

    NASA Technical Reports Server (NTRS)

    Heaney, Margaret A.

    1987-01-01

    The use of the VEDIT editor on the CDC Network Operating System/Virtual Environment (NOS/VE) is discussed. The VEDIT, a utility, allows a user to edit files line by line (line mode). How to access and the use of VEDIT are explained. The parameters and the format of the individual commands are defined. Examples are included.

  13. Overall contextual view of Building Nos. 92, 391, and 392, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overall contextual view of Building Nos. 92, 391, and 392, taken from pier side, crane rails along bravo piers in foreground, palm tree and street light at right center, view facing east-northeast - U.S. Naval Base, Pearl Harbor, Marine Railway No. 1 Accessories House & Apprentice Welding School, Additions, Intersection of Avenue B & Sixth Street, Pearl City, Honolulu County, HI

  14. 15. Dry Dock No. 4. Longitudinal Section. Subdivision Nos. I ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Dry Dock No. 4. Longitudinal Section. Subdivision Nos. I and II (Frederic R. Harris, Inc., January 10, 1941). In Files of Cushman & Wakefield, Building no. 501, Philadelphia Naval Business Center. - Naval Base Philadelphia-Philadelphia Naval Shipyard, Dry Dock No. 4, Broad Street south of Government Avenue, Philadelphia, Philadelphia County, PA

  15. Service building. Cross section thru dry dock nos. 4 & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Service building. Cross section thru dry dock nos. 4 & 5 showing service bldg & 20-75-150 ton cranes (dry dock associates, May 23, 1941). In files of Cushman & Wakefield, building no. 501, Philadelphia Naval Business Center. - Naval Base Philadelphia-Philadelphia Naval Shipyard, Service Building, Dry Docks No. 4 & 5, League Island, Philadelphia, Philadelphia County, PA

  16. 16. Dry Dock No. 4. Longitudinal Section. Subdivision Nos. III ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Dry Dock No. 4. Longitudinal Section. Subdivision Nos. III and IV (Frederic R. Harris, Inc., January 10, 1941). In Files of Cushman & Wakefield, Building no. 501, Philadelphia Naval Business Center. - Naval Base Philadelphia-Philadelphia Naval Shipyard, Dry Dock No. 4, Broad Street south of Government Avenue, Philadelphia, Philadelphia County, PA

  17. 78 FR 50395 - Endangered Species; File Nos. 17557 and 17273

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ...: Permits and Conservation Division, Office of Protected Resources, NMFS, 1315 East-West Highway, Room 13705... NOS Lab and used to support law enforcement actions, research studies (primarily genetics), and... parts and samples would be used to support law enforcement actions, research studies (primarily genetics...

  18. Sildenafil Ameliorates Gentamicin-Induced Nephrotoxicity in Rats: Role of iNOS and eNOS

    PubMed Central

    Morsy, Mohamed A.; Ibrahim, Salwa A.; Amin, Entesar F.; Kamel, Maha Y.; Rifaai, Rehab A.; Hassan, Magdy K.

    2014-01-01

    Gentamicin, an aminoglycoside antibiotic, is used for the treatment of serious Gram-negative infections. However, its usefulness is limited by its nephrotoxicity. Sildenafil, a selective phosphodiesterase-5 inhibitor, was reported to prevent or decrease tissue injury. The aim of this study is to evaluate the potential protective effects of sildenafil on gentamicin-induced nephrotoxicity in rats. Male Wistar rats were injected with gentamicin (100 mg/kg/day, i.p.) for 6 days with and without sildenafil. Sildenafil administration resulted in nephroprotective effect in gentamicin-intoxicated rats as it significantly decreased serum creatinine and urea, urinary albumin, and renal malondialdehyde and nitrite/nitrate levels, with a concomitant increase in renal catalase and superoxide dismutase activities compared to gentamicin-treated rats. Moreover, immunohistochemical examination revealed that sildenafil treatment markedly reduced inducible nitric oxide synthase (iNOS) expression, while expression of endothelial nitric oxide synthase (eNOS) was markedly enhanced. The protective effects of sildenafil were verified histopathologically. In conclusion, sildenafil protects rats against gentamicin-induced nephrotoxicity possibly, in part, through its antioxidant activity, inhibition of iNOS expression, and induction of eNOS production. PMID:25120567

  19. Contribution of the nos-pdt operon to virulence phenotypes in methicillin-sensitive Staphylococcus aureus.

    PubMed

    Sapp, April M; Mogen, Austin B; Almand, Erin A; Rivera, Frances E; Shaw, Lindsey N; Richardson, Anthony R; Rice, Kelly C

    2014-01-01

    Nitric oxide (NO) is emerging as an important regulator of bacterial stress resistance, biofilm development, and virulence. One potential source of endogenous NO production in the pathogen Staphylococcus aureus is its NO-synthase (saNOS) enzyme, encoded by the nos gene. Although a role for saNOS in oxidative stress resistance, antibiotic resistance, and virulence has been recently-described, insights into the regulation of nos expression and saNOS enzyme activity remain elusive. To this end, transcriptional analysis of the nos gene in S. aureus strain UAMS-1 was performed, which revealed that nos expression increases during low-oxygen growth and is growth-phase dependent. Furthermore, nos is co-transcribed with a downstream gene, designated pdt, which encodes a prephenate dehydratase (PDT) enzyme involved in phenylalanine biosynthesis. Deletion of pdt significantly impaired the ability of UAMS-1 to grow in chemically-defined media lacking phenylalanine, confirming the function of this enzyme. Bioinformatics analysis revealed that the operon organization of nos-pdt appears to be unique to the staphylococci. As described for other S. aureus nos mutants, inactivation of nos in UAMS-1 conferred sensitivity to oxidative stress, while deletion of pdt did not affect this phenotype. The nos mutant also displayed reduced virulence in a murine sepsis infection model, and increased carotenoid pigmentation when cultured on agar plates, both previously-undescribed nos mutant phenotypes. Utilizing the fluorescent stain 4-Amino-5-Methylamino-2',7'-Difluorofluorescein (DAF-FM) diacetate, decreased levels of intracellular NO/reactive nitrogen species (RNS) were detected in the nos mutant on agar plates. These results reinforce the important role of saNOS in S. aureus physiology and virulence, and have identified an in vitro growth condition under which saNOS activity appears to be upregulated. However, the significance of the operon organization of nos-pdt and potential

  20. Endothelial nitric oxide synthase: From biochemistry and gene structure to clinical implications of NOS3 polymorphisms.

    PubMed

    Oliveira-Paula, Gustavo H; Lacchini, Riccardo; Tanus-Santos, Jose E

    2016-01-10

    Nitric oxide (NO) is an important vasodilator with a well-established role in cardiovascular homeostasis. While mediator is synthesized from L-arginine by neuronal, endothelial, and inducible nitric oxide synthases (NOS1,NOS3 and NOS2 respectively), NOS3 is the most important isoform for NO formation in the cardiovascular system. NOS3 is a dimeric enzyme whose expression and activity are regulated at transcriptional, posttranscriptional,and posttranslational levels. The NOS3 gene, which encodes NOS3, exhibits a number of polymorphic sites including single nucleotide polymorphisms (SNPs), variable number of tandem repeats (VNTRs), microsatellites, and insertions/deletions. Some NOS3 polymorphisms show functional effects on NOS3 expression or activity, thereby affecting NO formation. Interestingly, many studies have evaluated the effects of functional NOS3 polymorphisms on disease susceptibility and drug responses. Moreover, some studies have investigated how NOS3 haplotypes may impact endogenous NO formation and disease susceptibility. In this article,we carried out a comprehensive review to provide a basic understanding of biochemical mechanisms involved in NOS3 regulation and how genetic variations in NOS3 may translate into relevant clinical and pharmacogenetic implications.

  1. Association of NOS2 and NOS3 gene polymorphisms with susceptibility to type 2 diabetes mellitus and diabetic nephropathy in the Chinese Han population.

    PubMed

    Chen, Feng; Li, Yu-Mei; Yang, Lin-Qing; Zhong, Cai-Gao; Zhuang, Zhi-Xiong

    2016-07-01

    Inducible nitric oxide synthase (NOS2) and endothelial nitric oxide synthase (NOS3) gene play important roles in the susceptibility to type 2 diabetes mellitus (T2DM). The present study aims to detect the potential association of NOS2 and NOS3 gene polymorphisms with the susceptibility toT2DM and diabetic nephropathy (DN) in the Chinese Han population. Four hundred and ninety T2DM patients and 485 healthy controls were enrolled in this case-control study. The genotypes of NOS2 and NOS3 gene polymorphisms were analyzed by the polymerase chain reaction (PCR)-ligase detection reaction (LDR) method. Our data demonstrated that the NOS2 rs2779248 and NOS2 rs1137933 genetic polymorphisms were significantly associated with the increased susceptibility to T2DM in the heterozygote comparison, dominant model, and allele contrast; and NOS3 rs3918188 genetic polymorphism was significantly associated with the increased susceptibility to T2DM in the homozygote comparison and recessive model. The allele-C and genotype-TC of NOS2 rs2779248, allele-A and genotype-GA of NOS2 rs1137933 and genotype-AA of NOS3 rs3918188 genetic polymorphisms might be the risk factors for increasing the susceptibility to T2DM. And a significant haplotype effect of NOS2 rs10459953/C- rs1137933/G- rs2779248/T was found between T2DM cases and controls. Moreover, NOS3 rs1800783 polymorphism was significantly associated with the increased susceptibility to DN in the heterozygote comparison, recessive model and allele contrast. At last, a positive correlation of family history of diabetes with NOS3 rs11771443 polymorphism was found in DN. These preliminary findings indicate that the NOS2 rs2779248, NOS2 rs1137933, and NOS3 rs3918188 genetic polymorphisms are potentially related to the susceptibility to T2DM, and the rs1800783 polymorphism might be considered as genetic risk factors for diabetic nephropathy, and family history of diabetes was closely associated with rs11771443 polymorphism in DN, and the

  2. Influence of intravascular low level He-Ne laser irradiation on iNOS, total-NOS, and ET-1 in acute spinal cord-injured rabbits

    NASA Astrophysics Data System (ADS)

    Yin, Zhenchun; Dong, Yinghai; Zhu, Jing

    2005-07-01

    Objective To research the influence of intravascular low level Laser irradiation (ILLLI) on total NOS, iNOS, and ET-1 in spinal cord following acute spinal cord injury (ASCI), and discuss the protective effects of ILLLI on neurons .Methods 72 rabbits were randomly divided into 3 groups: treatment group, injury group and control group. In treatment group and injury group, after laminectomy at the level of T-13, ASCI was performed by using Allen"s method with slight modification (6g×10cm) on rabbits. After injury, rabbits were treated immediately with He-Ne laser (power 5 mW, 1 hour per day for 10 days). At the day of 10th after treatment, total-NOS, iNOS, and ET-1 in spinal cord tissues were measured. Results The expression level of total-NOS, iNOS, and ET-1 in spinal cord in injury group were significantly higher than those in control group (P<0.05), while after ILLLI the level of these index in treatment group decreased statistically significantly compared with those in injury group (P<0.05). Conclusion ILLLI can significantly decrease the expression level of total-NOS, iNOS, and ET-1 in spinal cord. It indicates that ILLLI can relieve the overexpression of total-NOS, iNOS, and ET-1 ,and thus can perform protective effects on neurons in the course of secondary spinal cord injury (SSCI) following ASCI

  3. Accumbens nNOS Interneurons Regulate Cocaine Relapse

    PubMed Central

    Smith, Alexander C.W.; Scofield, Michael D.; Heinsbroek, Jasper A.; Gipson, Cassandra D.; Neuhofer, Daniela; Roberts-Wolfe, Doug J.; Spencer, Sade; Garcia-Keller, Constanza; Stankeviciute, Neringa M.; Smith, Rachel J.; Allen, Nicholas P.; Lorang, Melissa R.; Griffin, William C.; Boger, Heather A.

    2017-01-01

    Relapse to drug use can be initiated by drug-associated cues. The intensity of cue-induced relapse is correlated with the induction of transient synaptic potentiation (t-SP) at glutamatergic synapses on medium spiny neurons (MSNs) in the nucleus accumbens core (NAcore) and requires spillover of glutamate from prefrontal cortical afferents. We used a rodent self-administration/reinstatement model of relapse to show that cue-induced t-SP and reinstated cocaine seeking result from glutamate spillover, initiating a metabotropic glutamate receptor 5 (mGluR5)-dependent increase in nitric oxide (NO) production. Pharmacological stimulation of mGluR5 in NAcore recapitulated cue-induced reinstatement in the absence of drug-associated cues. Using NO-sensitive electrodes, mGluR5 activation by glutamate was shown to stimulate NO production that depended on activation of neuronal nitric oxide synthase (nNOS). nNOS is expressed in ∼1% of NAcore neurons. Using a transgene strategy to express and stimulate designer receptors that mimicked mGluR5 signaling through Gq in nNOS interneurons, we recapitulated cue-induced reinstatement in the absence of cues. Conversely, using a transgenic caspase strategy, the intensity of cue-induced reinstatement was correlated with the extent of selective elimination of nNOS interneurons. The induction of t-SP during cued reinstatement depends on activating matrix metalloproteinases (MMPs) and selective chemogenetic stimulation of nNOS interneurons recapitulated MMP activation and t-SP induction (increase in AMPA currents in MSNs). These data demonstrate critical involvement of a sparse population of nNOS-expressing interneurons in cue-induced cocaine seeking, revealing a bottleneck in brain processing of drug-associated cues where therapeutic interventions could be effective in treating drug addiction. SIGNIFICANCE STATEMENT Relapse to cocaine use in a rat model is associated with transient increases in synaptic strength at prefrontal cortex

  4. Endothelial (NOS3 E298D) and inducible (NOS2 exon 22) nitric oxide synthase polymorphisms, as well as plasma NOx, influence sepsis development.

    PubMed

    Martin, Guadalupe; Asensi, Víctor; Montes, A Hugo; Collazos, Julio; Alvarez, Victoria; Pérez-Is, Laura; Carton, José A; Taboada, Francisco; Valle-Garay, Eulalia

    2014-11-15

    Nitric oxide (NO) influences susceptibility to infection and hemodynamic failure (HF) in sepsis. NOS3 and NOS2 SNPs might modify plasma nitrite/nitrate (NOx) levels, sepsis development, hemodynamics and survival. 90 severely septic and 91 non-infected ICU patients were prospectively studied. NOS3 (E298D), NOS3 (-786 T/C), NOS3 (27 bp-VNTR), and NOS2A (exon 22) SNPs and plasma NOx levels were assessed. 21 patients (11.6%) died, 7 with sepsis. TT homozygotes and T allele carriers of NOS3 (E298D) and AG carriers of the NOS2A (exon 22) SNPs were more frequent among septic compared to non-infected ICU patients (p < 0.05). Plasma NOx was higher in septic, especially in septic with hemodynamic failure (HF) or fatal outcome (p < 0.006). Plasma NOx was higher in carriers of the T allele of the NOS3 (E298D) SNP (p = 0.006). Sepsis independently associated with HF, increased NOx, peripheral neutrophils, and fibrinogen levels, decreased prothrombin and the presence of the NOS3 (E298D) and NOS2A (exon 22) SNPs. A low APACHE II score was the only variable associated with sepsis survival. NOx was independently associated with sepsis, HF, decreased neutrophils and higher APACHE. NOS3 (E298D) and NOS2A (exon 22) SNPs, individually and in combination, and plasma NOx, associated with sepsis development. NOx associated with HF and fatal outcome. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. 1. Streetscape of north ends of Detention Wards, Building Nos. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Streetscape of north ends of Detention Wards, Building Nos. 9946-B (left) and 9945-B (middle). Walled-in courtyard adjoins Building No. 9944-B at extreme right edge. Steam plant is in distance. This photo makes a panorama with photo WA-202-10-2. - Madigan Hospital, Detention Wards, Bounded by Wilson & McKinley Avenues & Garfield & Lincoln Streets, Tacoma, Pierce County, WA

  6. 38. View of DRS 1, 2, and 3 (structure nos. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. View of DRS 1, 2, and 3 (structure nos. 735, 736, and 737) console fault locator for beam power status, radio frequency (RF) and intermediate frequency (IF) fault conditions, RF switches status and TR status. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  7. TNFα antagonization alters NOS2 dependent nasopharyngeal carcinoma tumor growth.

    PubMed

    Bourouba, Mehdi; Zergoun, Ahmed-Amine; Maffei, Joseph S; Chila, Dalia; Djennaoui, Djamel; Asselah, Fatima; Amir-Tidadini, Zine-Charef; Touil-Boukoffa, Chafia; Zaman, Muhammad H

    2015-07-01

    Tumor necrosis factor (TNFα) is a pro-inflammatory cytokine which mediates via nitric oxide (NO) several carcinogenic processes. Increasing evidences suggest that NO promotes inflammation induced growth of nasopharyngeal carcinoma (NPC). In patients, TNFα synthesis associates with poor survival. To explore the effect of the cytokine on NO production and NOS2 dependent NPC growth, NO2(-) (nitrite) producing cells in patients were analyzed in vitro. We observed that patients' monocytes/macrophages (Mo/Ma) and primary tumor biopsies synthesized significant amounts of NO2(-). Interestingly, tumor explants derived NO2(-) levels were more important in elderly patients in comparison with juveniles. Endogenous TNFα neutralization with an anti-TNFα monoclonal antibody (mAb) successfully inhibited NO2(-) synthesis by blood mononuclear cells and tumor explants. Recombinant TNFα (rTNFα) enhanced NO2(-) synthesis and C666-1 NPC cell proliferation. NOS2 selective inhibition (1400W) and TNFα antagonization with an anti-TNFα mAb potently inhibited rTNFα induced C666-1 proliferation and NO2(-) production. Importantly, primary tumors treated with the anti-TNFα mAb also displayed reduced proliferation index (Ki67). Altogether, our results define monocytes/macrophages and the primary tumor as major sources of circulating NO2(-) in NPC patients and support the idea that antibody dependent inhibition of the TNFα/NOS2 pathway may alter NPC tumor growth.

  8. [Malignant fibrous histiocytoma: pleomorphic sarcoma NOS or pleomorphic fibrosarcoma].

    PubMed

    Meister, P

    2005-03-01

    The entity and nosology of pleomorphic malignant fibrous histiocytoma (MFH) is still ambiguous. The actual WHO-Classification uses pleomorphic malignant fibrous histiocytoma (MFH) and pleomorphic sarcoma NOS (not otherwise specified) synonymously. On the other hand text and illustrations convey the impression, that these tumors also could be pleomorphic lipo-, leio- or rhabdomyosarcomas etc. It would have been more informative to emphasize, that with the above mentioned specific sarcoma types MFH-like appearance may occur. Furthermore it would have been more up to date to consider pleomorphic sarcomas NOS as pleomorphic fibrosarcomas and include them in the chapter of fibroblastic and myofibroblastic tumors. This concept already has been carried out for the former myxoid variant of MFH, nowadays preferentially called myxofibrosarcoma. There is controversial discussion about the clinical significance of exact typing of pleomorphic sarcomas. Problems may also occur due to the lack of standards, which degree of desmin expression signifies leiomyosarcoma or just indicates myofibroblasts in MFH. The requirement of exclusion of other tumor-types before diagnosing pleomorphic fibrosarcoma still remains obligatory. After verification of the diagnosis pleomorphic sarcoma NOS or pleomorphic fibrosarcoma, grading e.g. according to criteria of the FFCCS can be carried out. Most cases of pleomorphic fibrosarcoma will qualify as high grade malignant.

  9. Significant negative correlations between capillary expressed eNOS and Alzheimer lesion burden.

    PubMed

    Jeynes, Brian; Provias, John

    2009-10-09

    Nitric oxide [NO] is known to have vasoregulatory, neuroprotective and blood-brain barrier (BBB) related transport functions in the human CNS. Altered NO levels are suspected of contributing to neurodegenerative disorders, including Alzheimer's disease (AD). NO is produced as a result of the activity of one or more of three isoforms of nitrogen oxide synthase (NOS). In this study we compared Alzheimer and normative comparison brain samples, from temporal and calcarine cortices, with respect to the interactive correlation between eNOS, iNOS and nNOS isoform positive capillaries and the presence of neurofibrillary tangles (NFTs) and senile plaques (SPs). Cortical samples were taken from the superior temporal and calcarine cortices of 10 confirmed AD and 10 non-demented comparison group (CG) brains. Contiguous coronal sections were stained using immunohistochemistry techniques to stain for tau protein, beta amyloid (A beta) n-termini ([40 and 42]), eNOS, iNOS and nNOS. The densities of NFTs, SPs, and eNOS, iNOS and nNOS positive capillaries were recorded. Non-parametric statistical analyses were applied to the data. Our results demonstrate a significant negative correlation between the presence of eNOS positive capillaries and NFTs and SPs in both cortices in AD brains. Our results support the view that eNOS activity should be targeted for further investigation, and that factors involved in the regulation of NO production may be amenable to therapeutic intervention.

  10. High Rates of Psychiatric Co-Morbidity in PDD-NOS

    ERIC Educational Resources Information Center

    de Bruin, Esther I.; Ferdinand, Robert F.; Meester, Sjifra; de Nijs, Pieter F. A.; Verheij, Fop

    2007-01-01

    Rates of co-morbid psychiatric conditions in children with Pervasive Developmental Disorder-Not Otherwise Specified (PDD-NOS) are hardly available, although these conditions are often considered as more responsive to treatment than the core symptoms of PDD-NOS. Ninety-four children with PDD-NOS, aged 6-12 years were included. The DISC-IV-P was…

  11. 49 CFR 173.187 - Pyrophoric solids, metals or alloys, n.o.s.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Pyrophoric solids, metals or alloys, n.o.s. 173... Class 1 and Class 7 § 173.187 Pyrophoric solids, metals or alloys, n.o.s. Packagings for pyrophoric solids, metals, or alloys, n.o.s. must conform to the requirements of part 178 of this subchapter at...

  12. 49 CFR 173.187 - Pyrophoric solids, metals or alloys, n.o.s.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Pyrophoric solids, metals or alloys, n.o.s. 173... Class 1 and Class 7 § 173.187 Pyrophoric solids, metals or alloys, n.o.s. Packagings for pyrophoric solids, metals, or alloys, n.o.s. must conform to the requirements of part 178 of this subchapter at...

  13. 49 CFR 173.187 - Pyrophoric solids, metals or alloys, n.o.s.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Pyrophoric solids, metals or alloys, n.o.s. 173... Class 1 and Class 7 § 173.187 Pyrophoric solids, metals or alloys, n.o.s. Packagings for pyrophoric solids, metals, or alloys, n.o.s. must conform to the requirements of part 178 of this subchapter at...

  14. 49 CFR 173.187 - Pyrophoric solids, metals or alloys, n.o.s.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Pyrophoric solids, metals or alloys, n.o.s. 173... Class 1 and Class 7 § 173.187 Pyrophoric solids, metals or alloys, n.o.s. Packagings for pyrophoric solids, metals, or alloys, n.o.s. must conform to the requirements of part 178 of this subchapter at...

  15. 49 CFR 173.187 - Pyrophoric solids, metals or alloys, n.o.s.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Pyrophoric solids, metals or alloys, n.o.s. 173... Class 1 and Class 7 § 173.187 Pyrophoric solids, metals or alloys, n.o.s. Packagings for pyrophoric solids, metals, or alloys, n.o.s. must conform to the requirements of part 178 of this subchapter at...

  16. 15 CFR Supplement Nos.1-3 to Part 746 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Nos.1 Supplement Nos.1-3 to Part 746 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF... CONTROLS Supplement Nos.1-3 to Part 746 ...

  17. 15 CFR Supplement Nos.1-3 to Part 746 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 2 2011-01-01 2011-01-01 false Nos.1 Supplement Nos.1-3 to Part 746 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF... CONTROLS Supplement Nos.1-3 to Part 746 ...

  18. Posttranscriptional regulation of human iNOS by the NO/cGMP pathway.

    PubMed

    Pérez-Sala, D; Cernuda-Morollón, E; Díaz-Cazorla, M; Rodríguez-Pascual, F; Lamas, S

    2001-03-01

    Nitric oxide (NO) and cGMP may exert positive or negative effects on inducible NO synthase (iNOS) expression. We have explored the influence of the NO/cGMP pathway on iNOS levels in human mesangial cells. Inhibition of NOS activity during an 8-h stimulation with IL-1beta plus tumor necrosis factor (TNF)-alpha reduced iNOS levels, while NO donors amplified iNOS induction threefold. However, time-course studies revealed a subsequent inhibitory effect of NO donors on iNOS protein and mRNA levels. This suggests that NO may contribute both to iNOS induction and downregulation. Soluble guanylyl cyclase (sGC) activation may be involved in these effects. Inhibition of sGC attenuated IL-1beta/TNF-alpha-elicited iNOS induction and reduced NO-driven amplification. Interestingly, cGMP analogs also modulated iNOS protein and mRNA levels in a biphasic manner. Inhibition of transcription unveiled a negative posttranscriptional modulation of the iNOS transcript by NO and cGMP at late times of induction. Supplementation with 8-bromo-cGMP (8-BrcGMP) reduced iNOS mRNA stability by 50%. These observations evidence a complex feedback regulation of iNOS expression, in which posttranscriptional mechanisms may play an important role.

  19. Transcriptional regulation of human inducible nitric oxide synthase (NOS2) gene by cytokines: initial analysis of the human NOS2 promoter.

    PubMed Central

    de Vera, M E; Shapiro, R A; Nussler, A K; Mudgett, J S; Simmons, R L; Morris, S M; Billiar, T R; Geller, D A

    1996-01-01

    The expression of inducible nitric oxide synthase (NOS2) is complex and is regulated in part by gene transcription. In this investigation we studied the regulation of NOS2 in a human liver epithelial cell line (AKN-1) which expresses high levels of NOS2 mRNA and protein in response to tumor necrosis factor alpha, interleukin 1 beta, and interferon gamma (cytokine mix, CM). Nuclear run-on analysis revealed that CM transcriptionally activated the human NOS2 gene. To delineate the cytokine-responsive regions of the human NOS2 promoter, we stimulated AKN-1 cells with CM following transfection of NOS2 luciferase constructs. Analysis of the first 3.8 kb upstream of the NOS2 gene demonstrated basal promoter activity but failed to show any cytokine-inducible activity. However, 3- to 5-fold inductions of luciferase activity were seen in constructs extending up to -5.8 and -7.0 kg, and a 10-fold increase was seen upon transfection of a -16 kb construct. Further analysis of various NOS2 luciferase constructs ligated upstream of the thymidine kinase promoter identified three regions containing cytokine-responsive elements in the human NOS2 gene: -3.8 to -5.8, -5.8 to -7.0, and -7.0 to -16 kb. These results are in marked contrast with the murine macrophage NOS2 promoter in which only 1 kb of the proximal 5' flanking region is necessary to confer inducibility to lipopolysaccharide and interferon gamma. These data demonstrate that the human NOS2 gene is transcriptionally regulated by cytokines and identify multiple cytokine-responsive regions in the 5' flanking region of the human NOS2 gene. Images Fig. 1 Fig. 2 PMID:8577713

  20. Exercise does not activate the β3 adrenergic receptor-eNOS pathway, but reduces inducible NOS expression to protect the heart of obese diabetic mice.

    PubMed

    Kleindienst, Adrien; Battault, Sylvain; Belaidi, Elise; Tanguy, Stephane; Rosselin, Marie; Boulghobra, Doria; Meyer, Gregory; Gayrard, Sandrine; Walther, Guillaume; Geny, Bernard; Durand, Gregory; Cazorla, Olivier; Reboul, Cyril

    2016-07-01

    Obesity and diabetes are associated with higher cardiac vulnerability to ischemia-reperfusion (IR). The cardioprotective effect of regular exercise has been attributed to β3-adrenergic receptor (β3AR) stimulation and increased endothelial nitric oxide synthase (eNOS) activation. Here, we evaluated the role of the β3AR-eNOS pathway and NOS isoforms in exercise-induced cardioprotection of C57Bl6 mice fed with high fat and sucrose diet (HFS) for 12 weeks and subjected or not to exercise training during the last 4 weeks (HFS-Ex). HFS animals were more sensitive to in vivo and ex vivo IR injuries than control (normal diet) and HFS-Ex mice. Cardioprotection in HFS-Ex mice was not associated with increased myocardial eNOS activation and NO metabolites storage, possibly due to the β3AR-eNOS pathway functional loss in their heart. Indeed, a selective β3AR agonist (BRL37344) increased eNOS activation and had a protective effect against IR in control, but not in HFS hearts. Moreover, iNOS expression, nitro-oxidative stress (protein s-nitrosylation and nitrotyrosination) and ROS production during early reperfusion were increased in HFS, but not in control mice. Exercise normalized iNOS level and reduced protein s-nitrosylation, nitrotyrosination and ROS production in HFS-Ex hearts during early reperfusion. The iNOS inhibitor 1400 W reduced in vivo infarct size in HFS mice to control levels, supporting the potential role of iNOS normalization in the cardioprotective effects of exercise training in HFS-Ex mice. Although the β3AR-eNOS pathway is defective in the heart of HFS mice, regular exercise can protect their heart against IR by reducing iNOS expression and nitro-oxidative stress.

  1. Aqueous Humor Outflow Physiology in NOS3 Knockout Mice.

    PubMed

    Lei, Yuan; Zhang, Xuejin; Song, Maomao; Wu, Jihong; Sun, Xinghuai

    2015-07-01

    To investigate the role of endothelial nitric oxide synthase (eNOS) on conventional outflow function using NOS3 knockout (KO) mice. Intraocular pressure was measured in both NOS3 KO and wild type (WT) by rebound tonometry. Outflow facility was measured by perfusing enucleated mouse eyes at multiple pressure steps. A subset of eyes was sectioned and stained for histology. Mock aqueous humor ± the nitric oxide (NO) donors nitroprusside dihydrate (SNP) or S-Nitroso-N-Acetyl-D,L-Penicillamine (SNAP) was perfused into enucleated eyes. SNP and SNAP was administered topically at 0, 1, 2, and 3 hours while the contralateral eyes served as vehicle controls. Intraocular pressure was measured in both eyes before and after the last drug treatment. Intraocular pressure was higher in KO mice (18.2 ± 0.7 mm Hg vs. 13.9 ± 0.5 mm Hg, mean ± SEM, n = 30, P < 0.05), and pressure-dependent conventional drainage was significantly lower (0.0058 ± 0.0005 μL/min/mm Hg, mean ± SEM, n = 21) compared with WT mice (0.0082 ± 0.0013 μL/min/mm Hg, n = 23, P < 0.05). No obvious morphological differences in iridiocorneal angle tissues were observed in hematoxylin and eosin (H&E)-stained sections. SNP and SNAP significantly increased pressure-dependent drainage in KO animals (n = 12, P < 0.05). In WT mice, SNP and SNAP caused a significant increase in pressure dependent drainage (n = 12, P < 0.05) to a similar degree as in KO mice. Topical application of SNP significantly reduced IOP in WT and KO mice (n = 12, P < 0.05), but SNAP did not change IOP significantly (n = 19). NOS3 KO mice have elevated IOP, which is likely the result of reduced pressure-dependent drainage. These findings are consistent with human data showing polymorphisms in the NOS3 gene associate with ocular hypertension and the development of glaucoma.

  2. Comparison of iNOS inhibition by antisense and pharmacological inhibitors after spinal cord injury.

    PubMed

    Pearse, D D; Chatzipanteli, K; Marcillo, A E; Bunge, M B; Dietrich, W D

    2003-11-01

    Inducible nitric oxide synthase (iNOS) is a key mediator of inflammation during pathological conditions. We examined, through the use of selective iNOS inhibitors, the role of iNOS in specific pathophysiological processes after spinal cord injury (SCI), including astrogliosis, blood-spinal cord barrier (BSCB) permeability, polymorphonuclear leukocyte infiltration, and neuronal cell death. Administration of iNOS antisense oligonucleotides (ASOs) (intraspinally at 3 h) or the pharmacological inhibitors, N-[3(Aminomethyl) benzyl] acetamidine (1400 W) (i.v./i.p. 3 and 9 h) or aminoguanidine (i.p. at 3 and 9 h) after moderate contusive injury decreased the number of iNOS immunoreactive cells at the injury site by 65.6% (iNOS ASOs), 62.1% (1400 W), or 59% (aminoguanidine) 24 h postinjury. iNOS activity was reduced 81.8% (iNOS ASOs), 56.7% (1400 W), or 67.9% (aminoguanidine) at this time. All iNOS inhibitors reduced the degree of BSCB disruption (plasma leakage of rat immunoglobulins), with iNOS ASO inhibition being more effective (reduced by 58%). Neutrophil accumulation within the injury site was significantly reduced by iNOS ASOs and 1400 W by 78.8% and 20.9%, respectively. Increased astrogliosis was diminished with iNOS ASOs but enhanced following aminoguanidine. Detection of necrotic and apoptotic neuronal cell death by propidium iodide and an FITC-conjugated Annexin V antibody showed that iNOS inhibition could significantly retard neuronal cell death rostral and caudal to the injury site. These novel findings indicate that acute inhibition of iNOS is beneficial in reducing several pathophysiological processes after SCI. Furthermore, we demonstrate that the antisense inhibition of iNOS is more efficacious than currently available pharmacological agents.

  3. Fluorinated indazoles as novel selective inhibitors of nitric oxide synthase (NOS): synthesis and biological evaluation.

    PubMed

    Claramunt, Rosa M; López, Concepción; Pérez-Medina, Carlos; Pérez-Torralba, Marta; Elguero, José; Escames, Germaine; Acuña-Castroviejo, Darío

    2009-09-01

    In order to find new compounds with neuroprotective activity and NOS-I/NOS-II selectivity, we have designed, synthesized, and characterized 14 new NOS inhibitors with an indazole structure. The first group corresponds to 4,5,6,7-tetrahydroindazoles (4-8), the second to the N-methyl derivatives (9-12) of 7-nitro-1H-indazole (1) and 3-bromo-7-nitro-1H-indazole (2), and the latter to 4,5,6,7-tetrafluoroindazoles (13-17). Compound 13 (4,5,6,7-tetrafluoro-3-methyl-1H-indazole) inhibited NOS-I by 63% and NOS-II by 83%. Interestingly, compound 16 (4,5,6,7-tetrafluoro-3-perfluorophenyl-1H-indazole) inhibited NOS-II activity by 80%, but it did not affect to NOS-I activity. Structural comparison between these new indazoles further supports the importance of the aromatic indazole skeleton for NOS inhibition and indicate that bulky groups or N-methylation of 1 and 2 diminish their effect on NOS activity. The fluorination of the aromatic ring increased the inhibitory potency and NOS-II selectivity, suggesting that this is a promising strategy for NOS selective inhibitors.

  4. [The effects of pronuciferine on NO and NOS production in cultured human umbilical vein endothelium cells].

    PubMed

    Xiao, Hua; Chen, Aihua; Ji, Aimin; Li, Zhiliang

    2005-06-01

    To investigate the effects of Pronuciferine on nitric oxide (NO), total nitric oxide synthase (tNOS) and inducible nitric oxide synthase (iNOS) production in cultured Human Umbilical Vein Endothelium Cells (HUVECs). Pronuciferine was extracted from plumula nelumbinis. The experiments were performed in HUVECs in vitro. Cell-morphology was observed by light microscope. Cells viability was assessed by MTT assay. NO, tNOS and iNOS were measured by Colorimetry. Cell- morphology and viability weren't affected by Pronuciferine. Pronuciferine significantly increased the level of NO and the activity of tNOS, but had no effect on the activity of iNOS. Pronuciferine increases the level of NO by the enhancement of the activity of tNOS. It may have the protection on endothelial function.

  5. Stromal cell–derived factor 2 is critical for Hsp90-dependent eNOS activation

    PubMed Central

    Siragusa, Mauro; Fröhlich, Florian; Park, Eon Joo; Schleicher, Michael; Walther, Tobias C.; Sessa, William C.

    2016-01-01

    Endothelial nitric oxide synthase (eNOS) catalyzes the conversion of l-arginine and molecular oxygen into l-citrulline and nitric oxide (NO), a gaseous second messenger that influences cardiovascular physiology and disease. Several mechanisms regulate eNOS activity and function, including phosphorylation at Ser and Thr residues and protein-protein interactions. Combining a tandem affinity purification approach and mass spectrometry, we identified stromal cell–derived factor 2 (SDF2) as a component of the eNOS macromolecular complex in endothelial cells. SDF2 knockdown impaired agonist-stimulated NO synthesis and decreased the phosphorylation of eNOS at Ser1177, a key event required for maximal activation of eNOS. Conversely, SDF2 overexpression dose-dependently increased NO synthesis through a mechanism involving Akt and calcium (induced with ionomycin), which increased the phosphorylation of Ser1177 in eNOS. NO synthesis by iNOS (inducible NOS) and nNOS (neuronal NOS) was also enhanced upon SDF2 overexpression. We found that SDF2 was a client protein of the chaperone protein Hsp90, interacting preferentially with the M domain of Hsp90, which is the same domain that binds to eNOS. In endothelial cells exposed to vascular endothelial growth factor (VEGF), SDF2 was required for the binding of Hsp90 and calmodulin to eNOS, resulting in eNOS phosphorylation and activation. Thus, our data describe a function for SDF2 as a component of the Hsp90-eNOS complex that is critical for signal transduction in endothelial cells. PMID:26286023

  6. Isolation and chromosomal localization of the human endothelial nitric oxide synthase (NOS3) gene

    SciTech Connect

    Robinson, L.J.; Michel, T.; Weremowicz, S.; Morton, C.C. )

    1994-01-15

    Endothelial NOS activity is a major determinant of vascular tone and blood pressure, and in several important (and sometimes hereditary) disease states, such as hypertension, diabetes, and atherosclerosis, the endothelial NO signaling system appears to be abnormal. To explore the relationship of the endothelial NOS activity, the authors isolated the human gene encoding the endothelial NOS. Genomic clones containing the 5[prime] end of this gene were identified in a human genomic library by applying a polymerase chain reaction (PCR)-based approach. Identification of the human gene for endothelial NOS (NOS3) was confirmed by nucleotide sequence analysis of the first coding exon, which was found to be identical to its cognate cDNA. The NOS3 gene spans at least 20 kb and appears to contain multiple introns. The transcription start site and promoter region of the NOS3 gene were identified by primer extension and ribonuclease protection assays. Sequencing of the putative promoter revealed consensus sequences for the shear stress-response element, as well as cytokine-responsive cis regulatory sequences, both possible important to the roles played by NOS3 in the normal and the diseased cardiovascular system. The authors also mapped the chromosomal location of the NOS3 gene. First, a chromosomal panel of human-rodent somatic cell hybrids was screened using PCR with oligonucleotide primers derived from the NOS3 genomic clone. The specificity of the amplified PCR product was confirmed by human and hamster genomic DNA controls, as well as by Southern blot analysis, using the NOS3 cDNA as probe. Definitive chromosomal assignment of the NOS3 gene to human chromosome 7 was based upon 0% discordancy; fluorescence in situ hybridization sublocalized the NOS3 gene to 7q36. The identification and characterization of the NOS3 gene may lead to further insights into heritable disease states associated with this gene product. 41 refs., 3 figs., 1 tab.

  7. Stromal cell-derived factor 2 is critical for Hsp90-dependent eNOS activation.

    PubMed

    Siragusa, Mauro; Fröhlich, Florian; Park, Eon Joo; Schleicher, Michael; Walther, Tobias C; Sessa, William C

    2015-08-18

    Endothelial nitric oxide synthase (eNOS) catalyzes the conversion of l-arginine and molecular oxygen into l-citrulline and nitric oxide (NO), a gaseous second messenger that influences cardiovascular physiology and disease. Several mechanisms regulate eNOS activity and function, including phosphorylation at Ser and Thr residues and protein-protein interactions. Combining a tandem affinity purification approach and mass spectrometry, we identified stromal cell-derived factor 2 (SDF2) as a component of the eNOS macromolecular complex in endothelial cells. SDF2 knockdown impaired agonist-stimulated NO synthesis and decreased the phosphorylation of eNOS at Ser(1177), a key event required for maximal activation of eNOS. Conversely, SDF2 overexpression dose-dependently increased NO synthesis through a mechanism involving Akt and calcium (induced with ionomycin), which increased the phosphorylation of Ser(1177) in eNOS. NO synthesis by iNOS (inducible NOS) and nNOS (neuronal NOS) was also enhanced upon SDF2 overexpression. We found that SDF2 was a client protein of the chaperone protein Hsp90, interacting preferentially with the M domain of Hsp90, which is the same domain that binds to eNOS. In endothelial cells exposed to vascular endothelial growth factor (VEGF), SDF2 was required for the binding of Hsp90 and calmodulin to eNOS, resulting in eNOS phosphorylation and activation. Thus, our data describe a function for SDF2 as a component of the Hsp90-eNOS complex that is critical for signal transduction in endothelial cells. Copyright © 2015, American Association for the Advancement of Science.

  8. Accumbens nNOS Interneurons Regulate Cocaine Relapse.

    PubMed

    Smith, Alexander C W; Scofield, Michael D; Heinsbroek, Jasper A; Gipson, Cassandra D; Neuhofer, Daniela; Roberts-Wolfe, Doug J; Spencer, Sade; Garcia-Keller, Constanza; Stankeviciute, Neringa M; Smith, Rachel J; Allen, Nicholas P; Lorang, Melissa R; Griffin, William C; Boger, Heather A; Kalivas, Peter W

    2017-01-25

    Relapse to drug use can be initiated by drug-associated cues. The intensity of cue-induced relapse is correlated with the induction of transient synaptic potentiation (t-SP) at glutamatergic synapses on medium spiny neurons (MSNs) in the nucleus accumbens core (NAcore) and requires spillover of glutamate from prefrontal cortical afferents. We used a rodent self-administration/reinstatement model of relapse to show that cue-induced t-SP and reinstated cocaine seeking result from glutamate spillover, initiating a metabotropic glutamate receptor 5 (mGluR5)-dependent increase in nitric oxide (NO) production. Pharmacological stimulation of mGluR5 in NAcore recapitulated cue-induced reinstatement in the absence of drug-associated cues. Using NO-sensitive electrodes, mGluR5 activation by glutamate was shown to stimulate NO production that depended on activation of neuronal nitric oxide synthase (nNOS). nNOS is expressed in ∼1% of NAcore neurons. Using a transgene strategy to express and stimulate designer receptors that mimicked mGluR5 signaling through Gq in nNOS interneurons, we recapitulated cue-induced reinstatement in the absence of cues. Conversely, using a transgenic caspase strategy, the intensity of cue-induced reinstatement was correlated with the extent of selective elimination of nNOS interneurons. The induction of t-SP during cued reinstatement depends on activating matrix metalloproteinases (MMPs) and selective chemogenetic stimulation of nNOS interneurons recapitulated MMP activation and t-SP induction (increase in AMPA currents in MSNs). These data demonstrate critical involvement of a sparse population of nNOS-expressing interneurons in cue-induced cocaine seeking, revealing a bottleneck in brain processing of drug-associated cues where therapeutic interventions could be effective in treating drug addiction. Relapse to cocaine use in a rat model is associated with transient increases in synaptic strength at prefrontal cortex synapses in the nucleus

  9. Using a Professional Development Program for Enhancing Chilean Biology Teachers' Understanding of Nature of Science (NOS) and Their Perceptions about Using History of Science to Teach NOS

    ERIC Educational Resources Information Center

    Pavez, José M.; Vergara, Claudia A.; Santibañez, David; Cofré, Hernán

    2016-01-01

    A number of authors have recognized the importance of understanding the nature of science (NOS) for scientific literacy. Different instructional strategies such as decontextualized, hands-on inquiry, and history of science (HOS) activities have been proposed for teaching NOS. This article seeks to understand the contribution of HOS in enhancing…

  10. Using a Professional Development Program for Enhancing Chilean Biology Teachers' Understanding of Nature of Science (NOS) and Their Perceptions about Using History of Science to Teach NOS

    ERIC Educational Resources Information Center

    Pavez, José M.; Vergara, Claudia A.; Santibañez, David; Cofré, Hernán

    2016-01-01

    A number of authors have recognized the importance of understanding the nature of science (NOS) for scientific literacy. Different instructional strategies such as decontextualized, hands-on inquiry, and history of science (HOS) activities have been proposed for teaching NOS. This article seeks to understand the contribution of HOS in enhancing…

  11. 10. "TEST STANDS NOS. 11, 13, & 15; CONCRETE STRUCTURAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. "TEST STANDS NOS. 1-1, 1-3, & 1-5; CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/14, Rev. B. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, Rev. B; Date: 21 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  12. 9. "TEST STANDS NOS. 11, 13, & 15; CONCRETE STRUCTURAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. "TEST STANDS NOS. 1-1, 1-3, & 1-5; CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. ENG 04-35350-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/13. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, no change; Date: 17 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  13. 15. "TEST STANDS NOS. 11, 13, & 15; STRUCTURAL STEEL; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. "TEST STANDS NOS. 1-1, 1-3, & 1-5; STRUCTURAL STEEL; PLAN & DETAILS." Specifications No. ENG 04-353-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/34, Rev. A. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, Rev. A, no change; Date: 21 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  14. 13. "TEST STANDS NOS. 11, 13, & 15; CONCRETE STRUCTURAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. "TEST STANDS NOS. 1-1, 1-3, & 1-5; CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/18, Rev. D. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, Rev. D, no change; Date: 18 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  15. 14. "TEST STANDS NOS. 11, 13, & 15; MISCELLANEOUS DETAILS." ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. "TEST STANDS NOS. 1-1, 1-3, & 1-5; MISCELLANEOUS DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/22, Rev. D. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04-353 Eng. 177, Rev. D, no change; Date: 17 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  16. 16. "TEST STANDS NOS. 11, 13, & 15; STRUCTURAL STEEL; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. "TEST STANDS NOS. 1-1, 1-3, & 1-5; STRUCTURAL STEEL; ELEVATIONS AND SECTIONS." Specifications No. ENG 04353-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/35, Rev. A. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04-353 Eng. 177, Rev. A; Date: 29 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  17. 12. "TEST STANDS NOS. 11, 13, & 15; CONCRETE STRUCTURAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. "TEST STANDS NOS. 1-1, 1-3, & 1-5; CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-06; no sheet number within title block. D.O. SERIES 1109/16, Rev. E. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, Rev. E; Date: 26 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  18. 11. "TEST STANDS NOS. 11, 13, & 15; CONCRETE STRUCTURAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. "TEST STANDS NOS. 1-1, 1-3, & 1-5; CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/15, Rev. E. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, Rev. E; Date: 21 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  19. Beer elicits vasculoprotective effects through Akt/eNOS activation.

    PubMed

    Vilahur, Gemma; Casani, Laura; Mendieta, Guiomar; Lamuela-Raventos, Rosa M; Estruch, Ramon; Badimon, Lina

    2014-12-01

    There is controversy regarding the effect of alcohol beverage intake in vascular vasodilatory function in peripheral arteries. The effects of beer intake in coronary vasodilation remain unknown. We investigated whether regular beer intake (alcohol and alcohol-free) protects against hypercholesterolaemia-induced coronary endothelial dysfunction and the mechanisms behind this effect. Pigs were fed 10 days: (i) a Western-type hypercholesterolaemic diet (WD); (ii) WD+low-dose beer (12·5 g alcohol/day); (iii) WD+moderate-dose beer (25 g alcohol/day); or (iv) WD+moderate-dose alcohol-free-beer (0·0 g alcohol/day). Coronary responses to endothelium-dependent vasoactive drugs (acetylcholine: receptor mediated; calcium ionophore-A23189: nonreceptor mediated), endothelium-independent vasoactive drug (SNP) and L-NMMA (NOS-antagonist) were evaluated in the LAD coronary artery by flow Doppler. Coronary Akt/eNOS activation, MCP-1 expression, oxidative DNA damage and superoxide production were assessed. Lipid profile, lipoproteins resistance to oxidation and urinary isoxanthohumol concentration were evaluated. Alcoholic and nonalcoholic beer intake prevented WD-induced impairment of receptor- and non-receptor-operated endothelial-dependent coronary vasodilation. All animals displayed a similar vasodilatory response to SNP and L-NMMA blunted all endothelial-dependent vasorelaxation responses. Haemodynamic parameters remained unchanged. Coronary arteries showed lower DNA damage and increased Akt/eNOS axis activation in beer-fed animals. Animals taking beer showed HDL with higher antioxidant capacity, higher LDL resistance to oxidation and increased isoxanthohumol levels. Weight, lipids levels, liver enzymes and MCP-1 expression were not affected by beer intake. Non-alcoholic-related beer components protect against hyperlipemia-induced coronary endothelial dysfunction by counteracting vascular oxidative damage and preserving the Akt/eNOS pathway. Light-to-moderate beer

  20. 102. Interior view of utilidor passageway link between building nos. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    102. Interior view of utilidor passageway link between building nos. 101 and 102 showing waveguides on left and cable tray system on right sides. Note fire suppression water supply piping (upper center). Small maintenance 3-wheel vehicle at center (Note: similar vehicles still in use in 2001.) Official photograph BMEWS Project by Hansen, Photographic Services, Riverton, NJ, BMEWS, clear as negative no. A-101123. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  1. A modified citrulline assay of NOS activity in rat brain homogenates does not detect direct effects of halothane on the kinetics of NOS activity.

    PubMed

    Tagliente, T M; Craddock Royal, B; Beasley, J; Maayani, S

    1997-09-05

    An improved citrulline radioassay of nitric oxide synthase (NOS) activity was developed to study the direct effects of the volatile anesthetic (VA) halothane on the enzyme kinetics of neuronal NOS derived from different regions of the rat central nervous system (CNS). The Vmax of NOS in both soluble cytosolic and membrane bound particulate fractions varied across regions with greatest activity in the cerebellum and least in the spinal cord. In contrast, the Km was not different across regions or in the cytosolic and particulate fractions. Halothane at 0.5, 1, 2 or 3% delivered concentration had no effect on either kinetic parameter of NOS in any of the regions studied indicating that the VAs have no direct effects on NOS activity.

  2. Adaptive Runge-Kutta integration for stiff systems: Comparing Nosé and Nosé-Hoover dynamics for the harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Graham Hoover, William; Clinton Sprott, Julien; Griswold Hoover, Carol

    2016-10-01

    We describe the application of adaptive (variable time step) integrators to stiff differential equations encountered in many applications. Linear harmonic oscillators subject to nonlinear thermal constraints can exhibit either stiff or smooth dynamics. Two closely related examples, Nosé's dynamics and Nosé-Hoover dynamics, are both based on Hamiltonian mechanics and generate microstates consistent with Gibbs' canonical ensemble. Nosé's dynamics is stiff and can present severe numerical difficulties. Nosé-Hoover dynamics, although it follows exactly the same trajectory, is smooth and relatively trouble-free. We emphasize the power of adaptive integrators to resolve stiff problems such as the Nosé dynamics for the harmonic oscillator. The solutions also illustrate the power of computer graphics to enrich numerical solutions.

  3. The return of the Scarlet Pimpernel: cobalamin in inflammation II — cobalamins can both selectively promote all three nitric oxide synthases (NOS), particularly iNOS and eNOS, and, as needed, selectively inhibit iNOS and nNOS

    PubMed Central

    Wheatley, Carmen

    2007-01-01

    The up-regulation of transcobalamins [hitherto posited as indicating a central need for cobalamin (Cbl) in inflammation], whose expression, like inducible nitric oxide synthase (iNOS), is Sp1- and interferondependent, together with increased intracellular formation of glutathionylcobalamin (GSCbl), adenosylcobalamin (AdoCbl), methylcobalamin (MeCbl), may be essential for the timely promotion and later selective inhibition of iNOS and concordant regulation of endothelial and neuronal NOS (eNOS/nNOS.) Cbl may ensure controlled high output of nitric oxide (NO) and its safe deployment, because: (1) Cbl is ultimately responsible for the synthesis or availability of the NOS substrates and cofactors heme, arginine, BH4 flavin adenine dinucleotide/flavin mononucleotide (FAD/FMN) and NADPH, via the far-reaching effects of the two Cbl coenzymes, methionine synthase (MS) and methylmalonyl CoA mutase (MCoAM) in, or on, the folate, glutathione, tricarboxylic acid (TCA) and urea cycles, oxidative phosphorylation, glycolysis and the pentose phosphate pathway. Deficiency of any of theNOS substrates and cofactors results in ‘uncoupled’ NOS reactions, decreasedNO production and increased or excessive O2−, H2O2, ONOO− and other reactive oxygen species (ROS), reactive nitric oxide species (RNIS) leading to pathology. (2) Cbl is also the overlooked ultimate determinant of positive glutathione status, which favours the formation of more benign NO species, s-nitrosothiols, the predominant form in which NO is safely deployed. Cbl status may consequently act as a ‘back-up disc’ that ensures the active status of antioxidant systems, as well as reversing and modulating the effects of nitrosylation in cell signal transduction.New evidence shows that GSCbl can significantly promote iNOS/ eNOS NO synthesis in the early stages of inflammation, thus lowering high levels of tumour necrosis factor-a that normally result in pathology, while existing evidence shows that in extreme

  4. Reversal of SIN-1-induced eNOS dysfunction by the spin trap, DMPO, in bovine aortic endothelial cells via eNOS phosphorylation

    PubMed Central

    Das, Amlan; Gopalakrishnan, Bhavani; Druhan, Lawrence J; Wang, Tse-Yao; De Pascali, Francesco; Rockenbauer, Antal; Racoma, Ira; Varadharaj, Saradhadevi; Zweier, Jay L; Cardounel, Arturo J; Villamena, Frederick A

    2014-01-01

    Background and Purpose Nitric oxide (NO) derived from eNOS is mostly responsible for the maintenance of vascular homeostasis and its decreased bioavailability is characteristic of reactive oxygen species (ROS)-induced endothelial dysfunction (ED). Because 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), a commonly used spin trap, can control intracellular nitroso-redox balance by scavenging ROS and donating NO, it was employed as a cardioprotective agent against ED but the mechanism of its protection is still not clear. This study elucidated the mechanism of protection by DMPO against SIN-1-induced oxidative injury to bovine aortic endothelial cells (BAEC). Experimental Approach BAEC were treated with SIN-1, as a source of peroxynitrite anion (ONOO−), and then incubated with DMPO. Cytotoxicity following SIN-1 alone and cytoprotection by adding DMPO was assessed by MTT assay. Levels of ROS and NO generation from HEK293 cells transfected with wild-type and mutant eNOS cDNAs, tetrahydrobiopterin bioavailability, eNOS activity, eNOS and Akt kinase phosphorylation were measured. Key Results Post-treatment of cells with DMPO attenuated SIN-1-mediated cytotoxicity and ROS generation, restoration of NO levels via increased in eNOS activity and phospho-eNOS levels. Treatment with DMPO alone significantly increased NO levels and induced phosphorylation of eNOS Ser1179 via Akt kinase. Transfection studies with wild-type and mutant human eNOS confirmed the dual role of eNOS as a producer of superoxide anion (O2−) with SIN-1 treatment, and a producer of NO in the presence of DMPO. Conclusion and Implications Post-treatment with DMPO of oxidatively challenged cells reversed eNOS dysfunction and could have pharmacological implications in the treatment of cardiovascular diseases. PMID:24405159

  5. Impact of eNOS-Dependent Oxidative Stress on Endothelial Function and Neointima Formation

    PubMed Central

    Suvorava, Tatsiana; Nagy, Nadine; Pick, Stephanie; Lieven, Oliver; Rüther, Ulrich; Dao, Vu Thao-Vi; Fischer, Jens W.; Weber, Martina

    2015-01-01

    Abstract Aims: Vascular oxidative stress generated by endothelial NO synthase (eNOS) was observed in experimental and clinical cardiovascular disease, but its relative importance for vascular pathologies is unclear. We investigated the impact of eNOS-dependent vascular oxidative stress on endothelial function and on neointimal hyperplasia. Results: A dimer-destabilized mutant of bovine eNOS where cysteine 101 was replaced by alanine was cloned and introduced into an eNOS-deficient mouse strain (eNOS-KO) in an endothelial-specific manner. Destabilization of mutant eNOS in cells and eNOS-KO was confirmed by the reduced dimer/monomer ratio. Purified mutant eNOS and transfected cells generated less citrulline and NO, respectively, while superoxide generation was enhanced. In eNOS-KO, introduction of mutant eNOS caused a 2.3–3.7-fold increase in superoxide and peroxynitrite formation in the aorta and myocardium. This was completely blunted by an NOS inhibitor. Nevertheless, expression of mutant eNOS in eNOS-KO completely restored maximal aortic endothelium-dependent relaxation to acetylcholine. Neointimal hyperplasia induced by carotid binding was much larger in eNOS-KO than in mutant eNOS-KO and C57BL/6, while the latter strains showed comparable hyperplasia. Likewise, vascular remodeling was blunted in eNOS-KO only. Innovation: Our results provide the first in vivo evidence that eNOS-dependent oxidative stress is unlikely to be an initial cause of impaired endothelium-dependent vasodilation and/or a pathologic factor promoting intimal hyperplasia. These findings highlight the importance of other sources of vascular oxidative stress in cardiovascular disease. Conclusion: eNOS-dependent oxidative stress is unlikely to induce functional vascular damage as long as concomitant generation of NO is preserved. This underlines the importance of current and new therapeutic strategies in improving endothelial NO generation. Antioxid. Redox Signal. 23, 711–723. PMID:25764009

  6. Zinc regulates iNOS-derived nitric oxide formation in endothelial cells

    PubMed Central

    Cortese-Krott, Miriam M.; Kulakov, Larissa; Opländer, Christian; Kolb-Bachofen, Victoria; Kröncke, Klaus-D.; Suschek, Christoph V.

    2014-01-01

    Aberrant production of nitric oxide (NO) by inducible NO synthase (iNOS) has been implicated in the pathogenesis of endothelial dysfunction and vascular disease. Mechanisms responsible for the fine-tuning of iNOS activity in inflammation are still not fully understood. Zinc is an important structural element of NOS enzymes and is known to inhibit its catalytical activity. In this study we aimed to investigate the effects of zinc on iNOS activity and expression in endothelial cells. We found that zinc down-regulated the expression of iNOS (mRNA+protein) and decreased cytokine-mediated activation of the iNOS promoter. Zinc-mediated regulation of iNOS expression was due to inhibition of NF-κB transactivation activity, as determined by a decrease in both NF-κB-driven luciferase reporter activity and expression of NF-κB target genes, including cyclooxygenase 2 and IL-1β. However, zinc did not affect NF-κB translocation into the nucleus, as assessed by Western blot analysis of nuclear and cytoplasmic fractions. Taken together our results demonstrate that zinc limits iNOS-derived high output NO production in endothelial cells by inhibiting NF-κB-dependent iNOS expression, pointing to a role of zinc as a regulator of iNOS activity in inflammation. PMID:25180171

  7. iNOS Activity Modulates Inflammation, Angiogenesis, and Tissue Fibrosis in Polyether-Polyurethane Synthetic Implants.

    PubMed

    Cassini-Vieira, Puebla; Araújo, Fernanda Assis; da Costa Dias, Filipi Leles; Russo, Remo Castro; Andrade, Silvia Passos; Teixeira, Mauro Martins; Barcelos, Luciola Silva

    2015-01-01

    There is considerable interest in implantation techniques and scaffolds for tissue engineering and, for safety and biocompatibility reasons, inflammation, angiogenesis, and fibrosis need to be determined. The contribution of inducible nitric oxide synthase (iNOS) in the regulation of the foreign body reaction induced by subcutaneous implantation of a synthetic matrix was never investigated. Here, we examined the role of iNOS in angiogenesis, inflammation, and collagen deposition induced by polyether-polyurethane synthetic implants, using mice with targeted disruption of the iNOS gene (iNOS(-/-)) and wild-type (WT) mice. The hemoglobin content and number of vessels were decreased in the implants of iNOS(-/-) mice compared to WT mice 14 days after implantation. VEGF levels were also reduced in the implants of iNOS(-/-) mice. In contrast, the iNOS(-/-) implants exhibited an increased neutrophil and macrophage infiltration. However, no alterations were observed in levels of CXCL1 and CCL2, chemokines related to neutrophil and macrophage migration, respectively. Furthermore, the implants of iNOS(-/-) mice showed boosted collagen deposition. These data suggest that iNOS activity controls inflammation, angiogenesis, and fibrogenesis in polyether-polyurethane synthetic implants and that lack of iNOS expression increases foreign body reaction to implants in mice.

  8. Inducible NOS mediates CNP-induced relaxation of intestinal myofibroblasts

    PubMed Central

    Chen, Yishi; Chitapanarux, Taned; Wu, Jianfeng; Soon, Russell K.; Melton, Andrew C.

    2013-01-01

    Contraction of intestinal myofibroblasts (IMF) contributes to the development of strictures and fistulas seen in inflammatory bowel disease, but the mechanisms that regulate tension within these cells are poorly understood. In this study we investigated the role of nitric oxide (NO) signaling in C-type natriuretic peptide (CNP)-induced relaxation of IMF. We found that treatment with ODQ, a soluble guanylyl cyclase (sGC) inhibitor, or NG-nitro-l-arginine (l-NNA) or NG-monomethyl-l-arginine (l-NMMA), inhibitors of NO production, all impaired the relaxation of human and mouse IMF in response to CNP. ODQ, l-NNA, and l-NMMA also prevented CNP-induced elevations in cGMP concentrations, and l-NNA or l-NMMA blocked CNP-induced decreases in myosin light phosphorylation. IMF isolated from transgenic mice deficient in inducible nitric oxide synthase (iNOS) had reduced relaxation responses to CNP compared with IMF from control mice and were insensitive to the effects of ODQ, l-NNA, and l-NMMA on CNP treatment. Together these data indicate that stimulation of sGC though NO produced by iNOS activation is required for maximal CNP-induced relaxation in IMF. PMID:23348803

  9. Galilean-invariant Nosé-Hoover-type thermostats

    NASA Astrophysics Data System (ADS)

    Pieprzyk, S.; Heyes, D. M.; Maćkowiak, Sz.; Brańka, A. C.

    2015-03-01

    A new pairwise Nosé-Hoover type thermostat for molecular dynamics (MD) simulations which is similar in construction to the pair-velocity thermostat of Allen and Schmid, [Mol. Simul. 33, 21 (2007), 10.1080/08927020601052856] (AS) but is based on the configurational thermostat is proposed and tested. Both thermostats generate the canonical velocity distribution, are Galilean invariant, and conserve linear and angular momentum. The unique feature of the pairwise thermostats is an unconditional conservation of the total angular momentum, which is important for thermalizing isolated systems and those nonequilibrium bulk systems manifesting local rotating currents. These thermostats were benchmarked against the corresponding Nosé-Hoover (NH) and Braga-Travis prescriptions, being based on the kinetic and configurational definitions of temperature, respectively. Some differences between the shear-rate-dependent shear viscosity from Sllod nonequilibrium MD are observed at high shear rates using the different thermostats. The thermostats based on the configurational temperature produced very similar monotically decaying shear viscosity (shear thinning) with increasing shear rate, while the NH method showed discontinuous shear thinning into a string phase, and the AS method produced a continuous increase of viscosity (shear thickening), after a shear thinning region at lower shear rates. Both pairwise additive thermostats are neither purely kinetic nor configurational in definition, and possible directions for further improvement in certain aspects are discussed.

  10. Scanning capacitance detection and charge trapping in NOS

    NASA Astrophysics Data System (ADS)

    Terris, Bruce D.; Barrett, Rick; Mamin, H. Jonathon

    1993-06-01

    Charge trapping in thin films of silicon nitride has long been studied for use as a non-volatile semiconductor memory. Recently, this technology has been combined with scanned probe technologies with the sharp probe tip serving as the upper electrode in a Si3N4- SiO2Si (NOS) structure. By applying a voltage pulse between the tip and silicon substrate, charge carriers can be made to tunnel through the oxide and be trapped in the nitride. This trapped charge causes a shift in the capacitance-voltage curve along the voltage axis; the voltage at which depletion occurs is increased. It has been proposed that such a system could be used as a high density data storage device. We have begun to explore some of the issues related to such an application, including data lifetime and data rates. In thermally accelerated life tests, no sign of charge spreading was seen after 100 days at 150 degree(s)C and from the rate of charge decay we would predict room temperature lifetimes in excess of 1 million years. We have also used an air-bearing spindle to conduct high speed measurements on a spinning NOS sample and obtained data rates as high as 500 kHz with carrier-to-noise ratios of approximately 60 dB in a 3 kHz bandwidth.

  11. Paraphilia NOS, nonconsent: not ready for the courtroom.

    PubMed

    Frances, Allen; First, Michael B

    2011-01-01

    Sexually violent predators (SVP) constitute a serious potential risk to public safety, especially when they are released after too short a prison sentence. Twenty states and the federal government have developed a seemingly convenient way to reduce this risk. They have passed statutes that allow for the involuntary (often lifetime) psychiatric commitment of mentally disordered sexual offenders after prison time is up. In three separate cases, the Supreme Court has accepted the constitutionality of this procedure, but only if the offender's dangerousness is caused by a mental disorder and is not a manifestation of simple criminality. The idea that paraphilic rape should be an official category in the psychiatric diagnostic manual has been explicitly rejected by Diagnostic and Statistical Manual of Mental Disorders (DSM)-III, DSM-III-R, DSM-IV, and, recently, DSM-5. Despite this, paraphilia NOS, nonconsent, is still frequently used by mental health evaluators in SVP cases to provide a mental disorder diagnosis that legitimizes psychiatric commitment and makes it appear constitutional. This commentary will show how the diagnosis paraphilia NOS, nonconsent, is based on a fundamental misreading of the original intent of the DSM-IV Paraphilia Workgroup and represents a misuse of psychiatry, all in the admittedly good cause of protecting public safety.

  12. eNOS Deficiency Predisposes Podocytes to Injury in Diabetes

    PubMed Central

    Yuen, Darren A.; Stead, Bailey E.; Zhang, Yanling; White, Kathryn E.; Kabir, M. Golam; Thai, Kerri; Advani, Suzanne L.; Connelly, Kim A.; Takano, Tomoko; Zhu, Lei; Cox, Alison J.; Kelly, Darren J.; Gibson, Ian W.; Takahashi, Takamune; Harris, Raymond C.

    2012-01-01

    Endothelial nitric oxide synthase (eNOS) deficiency may contribute to the pathogenesis of diabetic nephropathy in both experimental models and humans, but the underlying mechanism is not fully understood. Here, we studied two common sequelae of endothelial dysfunction in diabetes: glomerular capillary growth and effects on neighboring podocytes. Streptozotocin-induced diabetes increased glomerular capillary volume in both C57BL/6 and eNOS−/− mice. Inhibiting the vascular endothelial growth factor receptor attenuated albuminuria in diabetic C57BL/6 mice but not in diabetic eNOS−/− mice, even though it inhibited glomerular capillary enlargement in both. In eNOS−/− mice, an acute podocytopathy and heavy albuminuria occurred as early as 2 weeks after inducing diabetes, but treatment with either captopril or losartan prevented these effects. In vitro, serum derived from diabetic eNOS−/− mice augmented actin filament rearrangement in cultured podocytes. Furthermore, conditioned medium derived from eNOS−/− glomerular endothelial cells exposed to both high glucose and angiotensin II activated podocyte RhoA. Taken together, these results suggest that the combined effects of eNOS deficiency and hyperglycemia contribute to podocyte injury, highlighting the importance of communication between endothelial cells and podocytes in diabetes. Identifying mediators of this communication may lead to the future development of therapies targeting endothelial dysfunction in albuminuric individuals with diabetes. PMID:22997257

  13. On the configurational temperature Nosè-Hoover thermostat

    NASA Astrophysics Data System (ADS)

    Beckedahl, Derrick; Obaga, Emmanuel O.; Uken, Daniel A.; Sergi, Alessandro; Ferrario, Mauro

    2016-11-01

    In this paper we reformulate the configurational temperature Nosé-Hoover thermostat of Braga and Travis (2005) by means of a quasi-Hamiltonian theory in phase space Sergi and Ferrario (2001). The quasi-Hamiltonian structure is exploited to introduce a hybrid configurational-kinetic temperature Nosé-Hoover chain thermostat that can achieve a uniform sampling of phase space (also for stiff harmonic systems), as illustrated by simulating the dynamics of one-dimensional harmonic and quartic oscillators. An integration algorithm, based on the symmetric Trotter decomposition of the propagator, is presented and tested against implicit geometric algorithms with a structure similar to the velocity and position Verlet. In order to obtain an explicit form for the symmetric Trotter propagator algorithm, in the case of non-harmonic and non-linear interaction potentials, a position-dependent harmonically approximated propagator is introduced. Such a propagator approximates the dynamics of the configurational degrees of freedom as if they were locally moving in a harmonic potential. The resulting approximated locally harmonic dynamics is tested with good results in the case of a one-dimensional quartic oscillator: The integration is stable and locally time-reversible. Instead, the implicit geometric integrator is stable and time-reversible globally (when convergence is achieved). We also verify the stability of the approximated explicit integrator for a three-dimensional N-particle system interacting through a soft Weeks-Chandler-Andersen potential.

  14. Exercise-induced cardioprotection: a role for eNOS uncoupling and NO metabolites.

    PubMed

    Farah, C; Kleindienst, A; Bolea, G; Meyer, G; Gayrard, S; Geny, B; Obert, P; Cazorla, O; Tanguy, S; Reboul, Cyril

    2013-11-01

    Exercise is an efficient strategy for myocardial protection against ischemia-reperfusion (IR) injury. Although endothelial nitric oxide synthase (eNOS) is phosphorylated and activated during exercise, its role in exercise-induced cardioprotection remains unknown. This study investigated whether modulation of eNOS activation during IR could participate in the exercise-induced cardioprotection against IR injury. Hearts isolated from sedentary or exercised rats (5 weeks training) were perfused with a Langendorff apparatus and IR performed in the presence or absence of NOS inhibitors [N-nitro-L-arginine methyl ester, L-NAME or N5-(1-iminoethyl)-L-ornithine, L-NIO] or tetrahydrobiopterin (BH₄). Exercise training protected hearts against IR injury and this effect was abolished by L-NAME or by L-NIO treatment, indicating that exercise-induced cardioprotection is eNOS dependent. However, a strong reduction of eNOS phosphorylation at Ser1177 (eNOS-PSer1177) and of eNOS coupling during early reperfusion was observed in hearts from exercised rats (which showed higher eNOS-PSer1177 and eNOS dimerization at baseline) in comparison to sedentary rats. Despite eNOS uncoupling, exercised hearts had more S-nitrosylated proteins after early reperfusion and also less nitro-oxidative stress, indexed by lower malondialdehyde content and protein nitrotyrosination compared to sedentary hearts. Moreover, in exercised hearts, stabilization of eNOS dimers by BH4 treatment increased nitro-oxidative stress and then abolished the exercise-induced cardioprotection, indicating that eNOS uncoupling during IR is required for exercise-induced myocardial cardioprotection. Based on these results, we hypothesize that in the hearts of exercised animals, eNOS uncoupling associated with the improved myocardial antioxidant capacity prevents excessive NO synthesis and limits the reaction between NO and O₂·- to form peroxynitrite (ONOO⁻), which is cytotoxic.

  15. Compensatory lung growth in NOS3 knockout mice suggests synthase isoform redundancy.

    PubMed

    Pokall, Stefan; Maldonado, Arturo R; Klanke, Charles A; Katayama, Shuichi; Morris, Lee M; Vuletin, Jose F; Lim, Foong-Yen; Crombleholme, Timothy M

    2012-04-01

    Nitric oxide synthase 3 (NOS3) produces nitric oxide (NO) in endothelial cells, which stimulates cyclic guanosine monophosphate (cGMP) production and thereby mediates pulmonary vasodilation. Inhibition of cGMP enzymatic cleavage by sildenafil might be involved in lung growth stimulating processes in pulmonary hypoplasia. The aim of this study was to discover insights into the transcriptional regulation of NOS3 in a mouse model of compensatory lung growth (CLG). CLG was studied in wild type animals (WT) and NOS3 knockout mice (NOS3-/-) by dry weight, DNA, and protein quantification as well as relative quantification of NOS mRNA. All assessments were done on adult female mice, 10 days after left pneumonectomy (PNX) or sham thoracotomy. Weight ratios of right NOS3-/- lungs were no different than controls. There was a compensatory increase in DNA and a noncompensating increase in protein ratios in NOS3-/- mice compared with controls. Pharmacological knockdown with the pan-NOS inhibitor l-NAME (nitro-arginine methyl ester) reduced CLG by only 8% compared with the d-NAME treated control mice. Relative quantification of lung mRNA revealed no up-regulation of NOS3 expression in WT lungs after PNX, but NOS3-/- lungs showed a 2.6-fold higher inducible NOS2 expression compared with shams. These data suggest that NOS3 loss of function alone does not impair CLG in mice, possibly because of redundancy mechanisms involving NOS2. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  16. Coupled Nosé-Hoover lattice: A set of the Nosé-Hoover equations with different temperatures

    NASA Astrophysics Data System (ADS)

    Fukuda, Ikuo

    2016-07-01

    A simple scheme was presented to couple any number of the Nosé-Hoover equations with different heat-bath temperatures. In general, several practical procedures can be considered to realize such a coupling, where the system is under nonequilibrium. However, the current scheme provides an equilibrium distribution, namely, a smooth invariant measure for the present system. This is attained by a very simple idea, that is, a force scaling. The current scheme realizes coupled differential equations, analogous to coupled maps. Its theoretical possibilities, mathematical framework, and practical utilities are discussed. Numerical validations applying the method to a simple two-oscillator system are provided.

  17. 75 FR 53984 - Virginia Electric and Power Company North Anna Power Station, Unit Nos. 1 and 2 Surry Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-02

    .... DPR-32 and DPR-37, issued to Virginia Electric and Power Company (the licensee), for operation of NAPS... COMMISSION [Docket Nos. 50-338 and 50-339, Docket Nos. 50-280 and 50-281, NRC- 2010-0283] Virginia Electric and Power Company North Anna Power Station, Unit Nos. 1 and 2 Surry Power Station, Unit Nos. 1 and 2...

  18. Nitric oxide synthase (NOS) in the Japanese fireflies Luciola lateralis and Luciola cruciata.

    PubMed

    Ohtsuki, Hajime; Yokoyama, Jun; Ohba, Nobuyoshi; Ohmiya, Yoshihiro; Kawata, Masakado

    2008-12-01

    Species-specific flash patterns in firefly species are important for the investigation of the evolution of Lampyridae. Since nitric oxide synthase (NOS) is one of the key enzymes controlling flash patterns, we determined the cDNA sequences of NOS in the Japanese fireflies Luciola lateralis and L. cruciata. The identity of the NOS sequences was very high between these 2 species. Firefly NOS also exhibited a high identity with those of other insect species, and the cofactor-binding domains were particularly well conserved. Many negatively selected sites were detected throughout the NOS sequences; however, no positive selection was detected. The phylogenetic relationship of insect NOS was different from that of the general classification system, although the lineages corresponded to the major recognized taxonomic groups.

  19. Timed and targeted differential regulation of nitric oxide synthase (NOS) and anti-NOS genes by reward conditioning leading to long-term memory formation.

    PubMed

    Korneev, Sergei A; Straub, Volko; Kemenes, Ildikó; Korneeva, Elena I; Ott, Swidbert R; Benjamin, Paul R; O'Shea, Michael

    2005-02-02

    In a number of neuronal models of learning, signaling by the neurotransmitter nitric oxide (NO), synthesized by the enzyme neuronal NO synthase (nNOS), is essential for the formation of long-term memory (LTM). Using the molluscan model system Lymnaea, we investigate here whether LTM formation is associated with specific changes in the activity of members of the NOS gene family: Lym-nNOS1, Lym-nNOS2, and the antisense RNA-producing pseudogene (anti-NOS). We show that expression of the Lym-nNOS1 gene is transiently upregulated in cerebral ganglia after conditioning. The activation of the gene is precisely timed and occurs at the end of a critical period during which NO is required for memory consolidation. Moreover, we demonstrate that this induction of the Lym-nNOS1 gene is targeted to an identified modulatory neuron called the cerebral giant cell (CGC). This neuron gates the conditioned feeding response and is an essential part of the neural network involved in LTM formation. We also show that the expression of the anti-NOS gene, which functions as a negative regulator of nNOS expression, is downregulated in the CGC by training at 4 h after conditioning, during the critical period of NO requirement. This appears to be the first report of the timed and targeted differential regulation of the activity of a group of related genes involved in the production of a neurotransmitter that is necessary for learning, measured in an identified neuron of known function. We also provide the first example of the behavioral regulation of a pseudogene.

  20. Methylene Blue Attenuates iNOS Induction Through Suppression of Transcriptional Factor Binding Amid iNOS mRNA Transcription.

    PubMed

    Huang, Chao; Tong, Lijuan; Lu, Xu; Wang, Jia; Yao, Wenjuan; Jiang, Bo; Zhang, Wei

    2015-08-01

    Inducible nitric oxide synthase (iNOS) critically contributes to the development of endotoxin-mediated inflammation. It can be induced by cytokines or endotoxins via distinct signaling pathways. Lipopolysaccharide (LPS) triggers iNOS expression through activation of the inhibitor of κB-α (IκB-α)-nuclear factor κB (NF-κB) cascade, whereas interferon-γ (IFN-γ) acts primarily through Janus kinase (JAK)-signal transducer and activator of transcription 1 (STAT1). Methylene blue (MB), an agent used clinically to treat numerous ailments, has been shown to reduce NO accumulation through suppression of iNOS activity. But it remains unclear whether MB affects iNOS induction. This knowledge gap is addressed in the present study using cultured cells and endotoxemic mice. With mouse macrophages, MB treatment prevented the LPS- and/or IFN-γ-stimulated iNOS protein expression. Real-time PCR experiments showed that iNOS mRNA transcription was robustly blocked by MB treatment. The inhibitory effect of MB on iNOS expression was confirmed in vivo in endotoxemic mice. Further analysis showed that MB had no significant effect on IκB-α degradation and NF-κB or STAT1 phosphorylation in LPS/IFN-γ-stimulated cells. The nuclear transport of active NF-κB or STAT1 was also not affected by MB treatment. But MB treatment markedly reduced the binding of NF-κB and STAT1 to their DNA elements. Chromatin immunoprecipitation assays confirmed that MB reduced NF-κB and STAT1 bindings to iNOS promoter inside the cell. These studies show that MB attenuates transcriptional factor binding amid iNOS mRNA transcription, providing further insight into the molecular mechanism of MB in disease therapy.

  1. Role of muscular eNOS in skeletal arteries: Endothelium-independent hypoxic vasoconstriction of the femoral artery is impaired in eNOS-deficient mice.

    PubMed

    Kim, Hae Jin; Yoo, Hae Young; Lin, Hai Yue; Oh, Goo Taeg; Zhang, Yin Hua; Kim, Sung Joon

    2016-09-01

    We previously reported that hypoxia augments α-adrenergic contraction (hypoxic vasoconstriction, HVC) of skeletal arteries in rats. The underlying mechanism may involve hypoxic inhibition of endothelial nitric oxide synthase (eNOS) expressed in skeletal arterial myocytes (16). To further explore the novel role of muscular eNOS in the skeletal artery, we compared HVC in femoral arteries (FAs) from eNOS knockout (KO) mice with that from wild-type (WT) and heterozygous (HZ) mice. Immunohistochemical assays revealed that, in addition to endothelia, eNOS is also expressed in the medial layer of FAs, albeit at a much lower level. However, the medial eNOS signal was not evident in HZ FAs, despite strong expression in the endothelium; similar observations were made in WT carotid arteries (CAs). The amplitude of contraction induced by 1 μM phenylephrine (PhE) was greater in HZ than in WT FAs. Hypoxia (3% Po2) significantly augmented PhE-induced contraction in WT FAs but not in HZ or KO FAs. No HVC was observed in PhE-pretreated WT CAs. The NOS inhibitor nitro-l-arginine methyl ester (0.1 mM) also augmented PhE contraction in endothelium-denuded WT FAs but not in WT CAs. Inhibitors specific to neuronal NOS and inducible NOS did not augment PhE-induced contraction of WT FAs. NADPH oxidase 4 (NOX4) inhibitor (GKT137831, 5 μM), but not NOX2 inhibitor (apocynin, 100 μM), suppressed HVC. Consistent with the role of reactive oxygen species (ROS), HVC was also inhibited by pretreatment with tiron or polyethylene glycol-catalase. Taken together, these data suggest that the eNOS expressed in smooth muscle cells in FAs attenuates α-adrenergic vasoconstriction; this suppression is alleviated under hypoxia, which potentiates vasoconstriction in a NOX4/ROS-dependent mechanism. Copyright © 2016 the American Physiological Society.

  2. Haplotypes of NOS3 Gene Polymorphisms in Dilated Cardiomyopathy

    PubMed Central

    Matsa, Lova Satyanarayana; Rangaraju, Advithi; Vengaldas, Viswamitra; Latifi, Mona; Jahromi, Hossein Mehraban; Ananthapur, Venkateshwari; Nallari, Pratibha

    2013-01-01

    Dilated Cardiomyopathy (DCM) is characterized by systolic dysfunction, followed by heart failure necessitating cardiac transplantation. The genetic basis is well established by the identification of mutations in sarcomere and cytoskeleton gene/s. Modifier genes and environmental factors are also considered to play a significant role in the variable expression of the disease, hence various mechanisms are implicated and one such mechanism is oxidative stress. Nitric Oxide (NO), a primary physiological transmitter derived from endothelium seems to play a composite role with diverse anti-atherogenic effects as vasodilator. Three functional polymorphisms of endothelial nitric oxide synthase (NOS3) gene viz., T-786C of the 5′ flanking region, 27bp VNTR in intron4 and G894T of exon 7 were genotyped to identify their role in DCM. A total of 115 DCM samples and 454 controls were included. Genotyping was carried out by PCR -RFLP method. Allelic and genotypic frequencies were computed in both control & patient groups and appropriate statistical tests were employed. A significant association of TC genotype (T-786C) with an odds ratio of 1.74, (95% CI 1.14 - 2.67, p = 0.01) was observed in DCM. Likewise the GT genotypic frequency of G894T polymorphism was found to be statistically significant (OR 2.10, 95% CI 1.34–3.27, p = 0.0011), with the recessive allele T being significantly associated with DCM (OR 1.64, 95% CI 1.18 - 2.30, p = 0.003). The haplotype carrying the recessive alleles of G894T and T-786C, C4bT was found to exhibit 7 folds increased risk for DCM compared to the controls. Hence C4bT haplotype could be the risk haplotype for DCM. Our findings suggest the possible implication of NOS3 gene in the disease phenotype, wherein NOS3 may be synergistically functioning in DCM associated heart failure via the excessive production of NO in cardiomyocytes resulting in decreased myocardial contractility and systolic dysfunction, a common feature of DCM

  3. Circulating Blood eNOS Contributes to the Regulation of Systemic Blood Pressure and Nitrite Homeostasis

    PubMed Central

    Wood, Katherine C.; Cortese-Krott, Miriam M.; Kovacic, Jason C.; Noguchi, Audrey; Liu, Virginia B.; Wang, Xunde; Raghavachari, Nalini; Boehm, Manfred; Kato, Gregory J.; Kelm, Malte; Gladwin, Mark T.

    2013-01-01

    Objective Mice genetically deficient in endothelial nitric oxide synthase (eNOS−/−) are hypertensive with lower circulating nitrite levels, indicating the importance of constitutively produced nitric oxide (NO•) to blood pressure regulation and vascular homeostasis. While the current paradigm holds that this bioactivity derives specifically from expression of eNOS in endothelium, circulating blood cells also express eNOS protein. A functional red cell eNOS that modulates vascular NO• signaling has been proposed. Approach and Results To test the hypothesis that blood cells contribute to mammalian blood pressure regulation via eNOS-dependent NO• generation, we cross-transplanted WT and eNOS−/− mice, producing chimeras competent or deficient for eNOS expression in circulating blood cells. Surprisingly, we observed a significant contribution of both endothelial and circulating blood cell eNOS to blood pressure and systemic nitrite levels, the latter being a major component of the circulating NO• reservoir. These effects were abolished by the NOS inhibitor L-NAME and repristinated by the NOS substrate L-Arginine, and were independent of platelet or leukocyte depletion. Mouse erythrocytes were also found to carry an eNOS protein and convert 14C-Arginine into 14C-Citrulline in a NOS-dependent fashion. Conclusions These are the first studies to definitively establish a role for a blood borne eNOS, using cross transplant chimera models, that contributes to the regulation of blood pressure and nitrite homeostasis. This work provides evidence suggesting that erythrocyte eNOS may mediate this effect. PMID:23702660

  4. Partial eNOS deficiency causes spontaneous thrombotic cerebral infarction, amyloid angiopathy and cognitive impairment.

    PubMed

    Tan, Xing-Lin; Xue, Yue-Qiang; Ma, Tao; Wang, Xiaofang; Li, Jing Jing; Lan, Lubin; Malik, Kafait U; McDonald, Michael P; Dopico, Alejandro M; Liao, Francesca-Fang

    2015-06-24

    Cerebral infarction due to thrombosis leads to the most common type of stroke and a likely cause of age-related cognitive decline and dementia. Endothelial nitric oxide synthase (eNOS) generates NO, which plays a crucial role in maintaining vascular function and exerting an antithrombotic action. Reduced eNOS expression and eNOS polymorphisms have been associated with stroke and Alzheimer's disease (AD), the most common type of dementia associated with neurovascular dysfunction. However, direct proof of such association is lacking. Since there are no reports of complete eNOS deficiency in humans, we used heterozygous eNOS(+/-) mice to mimic partial deficiency of eNOS, and determine its impact on cerebrovascular pathology and perfusion of cerebral vessels. Combining cerebral angiography with immunohistochemistry, we found thrombotic cerebral infarctions in eNOS(+/-) mice as early as 3-6 months of age but not in eNOS(+/+) mice at any age. Remarkably, vascular occlusions in eNOS(+/-) mice were found almost exclusively in three areas: temporoparietal and retrosplenial granular cortexes, and hippocampus this distribution precisely matching the hypoperfused areas identified in preclinical AD patients. Moreover, progressive cerebral amyloid angiopaphy (CAA), blood brain barrier (BBB) breakdown, and cognitive impairment were also detected in aged eNOS(+/-) mice. These data provide for the first time the evidence that partial eNOS deficiency results in spontaneous thrombotic cerebral infarctions that increase with age, leading to progressive CAA and cognitive impairments. We thus conclude that eNOS(+/-) mouse may represent an ideal model of ischemic stroke to address early and progressive damage in spontaneously-evolving chronic cerebral ischemia and thus, study vascular mechanisms contributing to vascular dementia and AD.

  5. Heat Shock Protein-70 Inducers and iNOS Inhibitors as Therapeutics to Ameliorate Hemorrhagic Shock

    DTIC Science & Technology

    2004-09-01

    RTO-MP-HFM-109 P28 - 1 Heat Shock Protein-70 Inducers and iNOS Inhibitors as Therapeutics to Ameliorate Hemorrhagic Shock Juliann G. Kiang...mechanisms are still not fully understood, it has been shown that nitric oxide (NO) overproduction and inducible nitric oxide synthase (iNOS...tissues and leukotriene B4 (LTB4) generation increases. In a hemorrhage/resuscitation- induced injury model, iNOS, cyclooxygenase-2, and CD14 are all

  6. Nos3 protects against systemic inflammation and myocardial dysfunction in murine polymicrobial sepsis.

    PubMed

    Bougaki, Masahiko; Searles, Robert J; Kida, Kotaro; Yu, JiaDe; Buys, Emmanuel S; Ichinose, Fumito

    2010-09-01

    NO has been implicated in the pathogenesis of septic shock. However, the role of NO synthase 3 (NOS3) during sepsis remains incompletely understood. Here, we examined the impact of NOS3 deficiency on systemic inflammation and myocardial dysfunction during peritonitis-induced polymicrobial sepsis. Severe polymicrobial sepsis was induced by colon ascendens stent peritonitis (CASP) in wild-type (WT) and NOS3-deficient (NOS3KO) mice. NOS3KO mice exhibited shorter survival time than did WT mice after CASP. NOS3 deficiency worsened systemic inflammation assessed by the expression of inflammatory cytokines in the lung, liver, and heart. Colon ascendens stent peritonitis markedly increased the number of leukocyte infiltrating the liver and heart in NOS3KO but not in WT mice. The exaggerated systemic inflammation in septic NOS3KO mice was associated with more marked myocardial dysfunction than in WT mice 22 h after CASP. The detrimental effects of NOS3 deficiency on myocardial function after CASP seem to be caused by impaired Ca handling of cardiomyocytes. The impaired Ca handling of cardiomyocytes isolated from NOS3KO mice subjected to CASP was associated with depressed mitochondrial ATP production, a determinant of the Ca cycling capacity of sarcoplasmic reticulum Ca-ATPase. The NOS3 deficiency-induced impairment of the ability of mitochondria to produce ATP after CASP was at least in part attributable to reduction in mitochondrial respiratory chain complex I activity. These observations suggest that NOS3 protects against systemic inflammation and myocardial dysfunction after peritonitis-induced polymicrobial sepsis in mice.

  7. Genetic Deletion of NOS3 Increases Lethal Cardiac Dysfunction Following Mouse Cardiac Arrest

    PubMed Central

    Beiser, David G.; Orbelyan, Gerasim A.; Inouye, Brendan T.; Costakis, James G.; Hamann, Kimm J.; McNally, Elizabeth M.; Hoek, Terry L. Vanden

    2010-01-01

    Study Aims Cardiac arrest mortality is significantly affected by failure to obtain return of spontaneous circulation (ROSC) despite cardiopulmonary resuscitation (CPR). Severe myocardial dysfunction and cardiovascular collapse further affects mortality within hours of initial ROSC. Recent work suggests that enhancement of nitric oxide (NO) signaling within minutes of CPR can improve myocardial function and survival. We studied the role of NO signaling on cardiovascular outcomes following cardiac arrest and resuscitation using endothelial NO synthase knockout (NOS3-/-) mice. Methods Adult female wild-type (WT) and NOS3-/- mice were anesthetized, intubated, and instrumented with left-ventricular pressure-volume catheters. Cardiac arrest was induced with intravenous potassium chloride. CPR was performed after 8 min of untreated arrest. ROSC rate, cardiac function, whole-blood nitrosylhemoglobin (HbNO) concentrations, heart NOS3 content and phosphorylation (p-NOS3), cyclic guanosine monophosphate (cGMP), and phospho-troponin I (p-TnI) were measured. Results Despite equal quality CPR, NOS3-/- mice displayed lower rates of ROSC compared to WT (47.6% [10/21] vs. 82.4% [14/17], p<0.005). Among ROSC animals, NOS3-/- versus WT mice exhibited increased left-ventricular dysfunction and 120 min mortality. Prior to ROSC, myocardial effectors of NO signaling including cGMP and p-TnI were decreased in NOS3-/- vs. WT mice (p<0.05). Following ROSC in WT mice, significant NOS3-dependent increases in circulating HbNO were seen by 120 min. Significant increases in cardiac p-NOS3 occurred between end-arrest and 15 min post-ROSC, while total NOS3 content was increased by 120 min post-ROSC (p<0.05). Conclusions Genetic deletion of NOS3 decreases ROSC rate and worsens post-ROSC left-ventricular function. Poor cardiovascular outcomes are associated with differences in NOS3-dependent myocardial cGMP signaling and circulating NO metabolites. PMID:20951489

  8. NOS3 protects against systemic inflammation and myocardial dysfunction in murine polymicrobial sepsis

    PubMed Central

    Bougaki, Masahiko; Searles, Robert J.; Kida, Kotaro; De Yu, Jia; Buys, Emmanuel S.; Ichinose, Fumito

    2013-01-01

    Nitric oxide (NO) has been implicated in the pathogenesis of septic shock. However, the role of NO synthase 3 (NOS3) during sepsis remains incompletely understood. Here, we examined impact of NOS3 deficiency on systemic inflammation and myocardial dysfunction during peritonitis-induced polymicrobial sepsis. Severe polymicrobial sepsis was induced by colon ascendens stent peritonitis (CASP) in wild-type (WT) and NOS3-deficient (NOS3KO) mice. NOS3KO mice exhibited shorter survival time than did WT mice after CASP. NOS3 deficiency worsened systemic inflammation assessed by the expression of inflammatory cytokines in the lung, liver, and heart. CASP markedly increased the number of leukocyte infiltrating the liver and heart in NOS3KO but not in WT mice. The exaggerated systemic inflammation in septic NOS3KO mice was associated with more marked myocardial dysfunction than in WT mice 22h after CASP. The detrimental effects of NOS3-deficiency on myocardial function after CASP appear to be caused by impaired Ca2+ handling of cardiomyocytes. The impaired Ca2+ handling of cardiomyocytes isolated from NOS3KO mice subjected to CASP was associated with depressed mitochondrial ATP production, a determinant of the Ca2+ cycling capacity of sarcoplasmic reticulum (SR) Ca2+-ATPase. The NOS3-deficiency-induced impairment of the ability of mitochondria to produce ATP after CASP was at least in part attributable to reduction in mitochondrial respiratory chain complex I activity. These observations suggest that NOS3 protects against systemic inflammation and myocardial dysfunction after peritonitis-induced polymicrobial sepsis in mice. PMID:19997049

  9. [Genetics of the neuronal NO synthase (NOS1) in the etiology of bronchial asthma].

    PubMed

    Grasemann, H

    2001-08-01

    The free radical nitric oxide (NO) is endogenously produced by enzymes known as NO synthases. NO in the airways is involved in a number of pathophysiological processes, such as airway inflammation, allergic reactions, and asthma. Asthma is a multifactorial disease that is caused by environmental and genetic factors. Genome wide screening approaches in families revealed evidence for linkage between chromosomal region 12q and allergic diseases, increased serum IgE levels as well as the development of asthma. The gene encoding for neuronal NOS (NOS1) is an attractive candidate gene for asthma, not only because it is localized in chromosomal region 12q24. Experimental studies in animals and humans suggest that NOS1 plays an important role in asthma. For instance, in a murine model of allergic asthma, NOS1 has been shown to be important for the development of bronchial hyperresponsiveness, since mice deficient for the nos1 gene were less responsive to airway challenge than both wild-type mice and mice deficient for the nos2 gene. Case-control studies in humans revealed allelic associations between polymorphic markers in the NOS1 gene and the diagnosis of asthma. Furthermore, increased concentrations of NO in the airways of asthmatics are closely related to the size of an intronic (AAT)(n)-repeat polymorphism in the NOS1 gene. The purpose of this review is to summarize studies that provide evidence for an involvement of NOS1 in the genetics of asthma.

  10. PEX7 and EBP50 Target iNOS to the Peroxisome in Hepatocytes

    PubMed Central

    Loughran, Patricia A.; Stolz, Donna B.; Barrick, Stacey R.; Wheeler, David S.; Friedman, Peter A.; Rachubinski, Richard A.; Watkins, Simon C.; Billiar, Timothy R.

    2013-01-01

    iNOS localizes to both the cytosol and peroxisomes in hepatocytes in vitro and in vivo. The structural determinants for iNOS localization are not known. One plausible mechanism for iNOS localization to the peroxisome is through the interaction with peroxisomal import proteins PEX5 or PEX7. siRNA knockdown of PEX7 reduced iNOS colocalization with the peroxisomal protein PMP70. Proteomic studies using MALDI-MS identified iNOS association with the 50-kD ezrin binding PDZ protein (EBP50). Confocal microscopy studies and immunoelectron microscopy confirmed iNOS association with EBP50, with greatest colocalization occurring at 8 hours of cytokine exposure. EBP50 associated with peroxisomes in a PEX5 and PEX7-dependent manner. iNOS localization to peroxisomes was contingent on EBP50 expression in LPS-treated mice. Thus, iNOS targeting to peroxisomes in hepatocytes involves interaction with PEX7 and EBP50. The targeting of iNOS protein to the peroxisome may shift the balance of metabolic processes that rely on heme proteins susceptible to modification by radical oxygen and nitrogen radicals. PMID:23474170

  11. Inhibition of Rho protein stimulates iNOS expression in rat vascular smooth muscle cells.

    PubMed

    Muniyappa, R; Xu, R; Ram, J L; Sowers, J R

    2000-06-01

    Inducible nitric oxide synthase (iNOS) in vascular smooth muscle cells (VSMCs) is upregulated in arterial injury and plays a role in regulating VSMC proliferation and restenosis. Inflammatory cytokines [e.g., interleukin-1beta (IL-1beta)] released during vascular injury induce iNOS. Small GTP-binding proteins of the Ras superfamily play a major role in IL-1beta-dependent signaling pathways. In this study, we examined the role of Rho GTPases in regulating iNOS expression in VSMCs. Treatment of VSMCs with mevastatin, which inhibits isoprenylation of Rho and other small GTP-binding proteins, produced significantly higher amounts of IL-1beta-evoked NO and iNOS protein compared with control. Similarly, bacterial toxins [Toxin B from Clostridium difficile and C3 ADP-ribosyl transferase (C3) toxin from Clostridium botulinium] that specifically inactivate Rho proteins increased NOS products (NO and citrulline) and iNOS expression. Toxin B increased the activity of iNOS promoter-reporter construct in VSMCs. Both toxins enhanced IL-1beta-stimulated iNOS expression and NO production. These data demonstrate for the first time that inhibition of Rho induces iNOS and suggest a role for Rho protein in IL-1beta-stimulated NO production in VSMCs.

  12. Evaluation of a multi-functional nanocarrier for targeted breast cancer iNOS gene therapy.

    PubMed

    McCarthy, Helen O; Zholobenko, Alek V; Wang, Yuhua; Canine, Brenda; Robson, Tracy; Hirst, David G; Hatefi, Arash

    2011-02-28

    The present study determines whether the novel designer biomimetic vector (DBV) can condense and deliver the cytotoxic iNOS gene to breast cancer cells to achieve a therapeutic effect. We have previously shown the benefits of iNOS for cancer gene therapy but the stumbling block to future development has been the delivery system. The DBV was expressed, purified and complexed with the iNOS gene. The particle size and charge were determined via dynamic light scattering techniques. The toxicity of the DBV/iNOS nanoparticles was quantified using the cell toxicity and clonogenic assays. Over expression of iNOS was confirmed via Western blotting and Griess test. The DBV delivery system fully condensed the iNOS gene with nanoparticles less than 100nm. Transfection with the DBV/iNOS nanoparticles resulted in a maximum of 62% cell killing and less than 20% clonogenicity. INOS overexpression was confirmed and total nitrite levels were in the range of 18μM. We report for the first time that the DBV can successfully deliver iNOS and achieve a therapeutic effect. There is significant cytotoxicity coupled with evidence of a bystander effect. We conclude that the success of the DBV fusion protein in the delivery of iNOS in vitro is worthy of future in vivo experiments.

  13. The role of endothelial nitric oxide synthase (eNOS) in the pathogenesis of sinonasal polyps.

    PubMed

    Muluk, N Bayar; Arikan, O K; Atasoy, P; Kiliç, R; Yalçinozan, E Tuna

    2014-01-01

    The pathogenesis of sinonasal polyps has not been known completely. We investigated the role of endothelial Nitric Oxide Synthase (eNOS) in the pathogenesis of sinonasal polyps. Study group (Groups 1-3) consisted of nasal polyp samples of patients with sinonasal polyps; and control group consisted of inferior turbinate samples of patients without nasal polyp. In Group 1: 14 specimens from ethmoid sinus; in Group 2: 10 specimens from nasal cavity; in Group 3: 10 specimens from maxillary sinus; and in Group 4 (Control): 9 specimens from inferior turbinate were included. By immunohistochemical staining technique, eNOS Positivity Index in mucosal layers; and in the inflammatory cells were assessed. eNOS Positivity Index was higher at apical layer of epithelium; and perivascular and glandular parts of subepithelial layer. As a rate of mononuclear cells increased, eNOS positivity increased at basal part of epithelium. In eNOS Positivity Index of mononuclear cells increased ones, eNOS values also increased at glands of subepithelial layer. In nasal cavity, eNOS positivity index of all cells was significantly higher than that of the control group. Increased eNOS all cells positivity index values were seen with decreased glandular and endothelial eNOS values. In all cells group, fibroblasts were seen beside the mononuclear cells. It was observed that eNOS was not expressed in PMNC (mainly neutrophils), growing more in acute inflammatory process; and was expressed in MNCs and all cells group with fibroblasts which were the cells of chronic inflammatory process. Especially MNCs and fibroblasts may play a role in the polyp formation process. In males and in patients with longer polyp duration, eNOS values decreased. We concluded that eNOS Positivity Index was higher at apical layer of epithelium; and perivascular and glandular parts of subepithelial layer. eNOS plays role in vascular dilatation, increases in vascular permeability; increases in nasal secretion due to glandular

  14. Depletion of arginine by recombinant arginine deiminase induces nNOS-activated neurotoxicity in neuroblastoma cells.

    PubMed

    Lin, Shan-Erh; Wu, Fe-Lin Lin; Wei, Ming-Feng; Shen, Li-Jiuan

    2014-01-01

    The abnormal regulation of inducible nitric oxide synthase (iNOS) and neuronal nitric oxide synthase (nNOS) is associated with neurodegenerative disorders. Recombinant arginine deiminase (rADI) is a selective NO modulator of iNOS and eNOS in endothelial cells, and it also exhibits neuroprotective activity in an iNOS-induced neuron-microglia coculture system. However, the effect of rADI on nNOS remains unknown. Addressing this issue is important for evaluating the potential application of rADI in neurodegenerative diseases. SH-SY5Y cells were treated with N-methyl-D-aspartic acid (NMDA) to activate nNOS. NMDA increased NO production by 39.7 ± 3.9% via nNOS under arginine-containing conditions, but there was no significant increase in both arginine-free and rADI pretreated arginine-containing (citrulline) buffer. Subsequently, neither NMDA nor rADI alone caused cytotoxicity, whereas cotreatment with NMDA and rADI resulted in dissipation of the cell mitochondrial membrane potential and decreased cell viability. The mechanism of rADI cytotoxicity in the presence of NMDA is caused by the inhibition of NO production via nNOS mediated by the NMDA receptor, which was abolished when extracellular arginine was absent, even in the presence of citrulline. rADI not only reduced NO production but also caused cellular toxicity in nNOS-activated SH-SY5Y cells, suggesting a dual role for rADI in NOS-mediated neurotoxicity.

  15. Identification of chicken eNOS gene and differential expression in highland versus lowland chicken breeds.

    PubMed

    Peng, J F; Ling, Y; Gou, W Y; Zhang, H; Wu, C X

    2012-09-01

    Nitric oxide (NO), an endothelium-derived relaxing factor, is synthesized from l-arginine by endothelial nitric oxide synthase (eNOS) in the endothelium. The objective of the present study was to preliminarily illuminate the expression of the eNOS gene in hypoxic adaptation of chicken embryonic development. The eNOS expression profiles between the Tibet and Shouguang chickens incubated under both normoxic and hypoxic conditions were detected by TaqMan real-time PCR. In this study, the chicken eNOS gene was found by both in silico cloning and RACE approaches. From the eNOS gene, we obtained a 3,310-bp mRNA sequence and a 10,666-bp DNA sequence and discovered that it was located on chicken chromosome 2 and had 7 unique transcripts. eNOS mRNA was detected in abundant amounts in some chick embryo organs (i.e., heart, liver, chorio-allantoic membrane, and lung), and expressed stably with the lowest levels in the brain. We observed that when exposed to hypoxia (13% O(2)) different embryo organ tissues had various sensitivities to hypoxia as determined by their eNOS expression profiles. Compared with the Shouguang chicken, the eNOS expression in the Tibet chicken was higher in the lung and liver, lower in the heart, and similar in the brain. In chorio-allantoic membranes, eNOS expression was higher in the Shouguang chicken than the Tibet chicken under hypoxic conditions, but not markedly different under normoxic conditions. The differences of eNOS expression between the 2 breeds may be relative to the hypoxic adaptation ability in Tibet chickens during embryonic development. This work will provide reference for future studies on the role of eNOS in hypoxic adaptation and response.

  16. Changing standard chow diet promotes vascular NOS dysfunction in Dahl S rats

    PubMed Central

    Spradley, Frank T.; Ho, Dao H.; Kang, Kyu-Tae; Pollock, Jennifer S.

    2012-01-01

    We hypothesized that vascular nitric oxide synthase (NOS) function and expression is differentially regulated in adult Dahl salt-sensitive rats maintained on Teklad or American Institutes of Nutrition (AIN)-76A standard chow diets from 3 to 16 wk old. At 16 wk old, acetylcholine (ACh)-mediated vasorelaxation and phenylephrine (PE)-mediated vasoconstriction in the presence and absence of NOS inhibitor, Nω-nitro-l-arginine methyl ester (l-NAME), was assessed in small-resistance mesenteric arteries and aortas. Rats maintained on either diet throughout the study had similar responses to ACh and PE in the presence or absence of l-NAME in both vascular preparations. We reasoned that changing from one diet to another as adults may induce vascular NOS dysfunction. In the absence of l-NAME, small arteries from Teklad-fed rats switched to AIN-76 diet and vice versa had similar responses to ACh and PE. Small-arterial NOS function was maintained in rats switched to AIN-76A from Teklad diet, whereas NOS function in response to ACh and PE was lost in the small arteries from rats changed to Teklad from AIN-76A diet. This loss of NOS function was echoed by reduced expression of NOS3, as well as phosphorylated NOS3. The change in NOS phenotype in the small arteries was observed without changes in blood pressure. Aortic responses to ACh or PE in the presence or absence of l-NAME were similar in all diet groups. These data indicate that changing standard chow diets leads to small arterial NOS dysfunction and reduced NOS signaling, predisposing Dahl salt-sensitive rats to vascular disease. PMID:22031779

  17. Arginase inhibition restores NOS coupling and reverses endothelial dysfunction and vascular stiffness in old rats

    PubMed Central

    Kim, Jae Hyung; Bugaj, Lukasz J.; Oh, Young Jun; Bivalacqua, Trinity J.; Ryoo, Sungwoo; Soucy, Kevin G.; Santhanam, Lakshmi; Webb, Alanah; Camara, Andre; Sikka, Gautam; Nyhan, Daniel; Shoukas, Artin A.; Ilies, Monica; Christianson, David W.; Champion, Hunter C.

    2009-01-01

    There is increasing evidence that upregulation of arginase contributes to impaired endothelial function in aging. In this study, we demonstrate that arginase upregulation leads to endothelial nitric oxide synthase (eNOS) uncoupling and that in vivo chronic inhibition of arginase restores nitroso-redox balance, improves endothelial function, and increases vascular compliance in old rats. Arginase activity in old rats was significantly increased compared with that shown in young rats. Old rats had significantly lower nitric oxide (NO) and higher superoxide (O2−) production than young. Acute inhibition of both NOS, with NG-nitro-l-arginine methyl ester, and arginase, with 2(S)-amino- 6-boronohexanoic acid (ABH), significantly reduced O2− production in old rats but not in young. In addition, the ratio of eNOS dimer to monomer in old rats was significantly decreased compared with that shown in young rats. These results suggest that eNOS was uncoupled in old rats. Although the expression of arginase 1 and eNOS was similar in young and old rats, inducible NOS (iNOS) was significantly upregulated. Furthermore, S-nitrosylation of arginase 1 was significantly elevated in old rats. These findings support our previously published finding that iNOS nitrosylates and activates arginase 1 (Santhanam et al., Circ Res 101: 692–702, 2007). Chronic arginase inhibition in old rats preserved eNOS dimer-to-monomer ratio and significantly reduced O2− production and enhanced endothelial-dependent vasorelaxation to ACh. In addition, ABH significantly reduced vascular stiffness in old rats. These data indicate that iNOS-dependent S-nitrosylation of arginase 1 and the increase in arginase activity lead to eNOS uncoupling, contributing to the nitroso-redox imbalance, endothelial dysfunction, and vascular stiffness observed in vascular aging. We suggest that arginase is a viable target for therapy in age-dependent vascular stiffness. PMID:19661445

  18. Differential NOS expression in freshwater and aestivating Protopterus dolloi (lungfish): heart vs kidney readjustments.

    PubMed

    Amelio, Daniela; Garofalo, Filippo; Brunelli, Elvira; Loong, Ai May; Wong, Wai Peng; Ip, Yuen Kwong; Tota, Bruno; Cerra, Maria Carmela

    2008-02-01

    African lungfish Protopterus dolloi is an obligatory air-breather, which aestivates in a cocoon during the dry season. Aestivation associates with functional modifications in many tissues and organs, including heart and kidney. Due to its pleiotropic modulatory effects, nitric oxide (NO), generated by nitric oxide synthases (NOSs), may coordinate organ rearrangement, allowing adaptive adjustments under stressful environmental conditions. By immunofluorescence, Western blotting and NADPH-diaphorase, we examined cardiac and renal localization and activity of NOSs isoforms in both freshwater (FW) and aestivating [6 days (6DA) and 40 days (40DA) of estivation] P. dolloi. In heart and kidney endothelial NOS (eNOS) is the major isoform with respect to inducible and neuronal NOS (iNOS and nNOS, respectively). Cardiac eNOS locates in the epicardium, the trabecular endothelial endocardium, and myocardiocytes of both FW and aestivating fish. Western blotting revealed that cardiac eNOS expression increases in 6DA, but decreases in 40DA fish. In FW fish kidney eNOS is present in vascular endothelial cells and in podocytes of renal corpuscles. In tubular epithelial cells it is restricted to the apical pole. With aestivation, both renal localization and expression of eNOS increase. NADPH-diaphorase revealed an enhancement of cardiac and renal NOS activities during aestivation. Results suggest that in P. dolloi NO contributes, in an autocrine-paracrine fashion, to cardiac and renal readjustments during aestivation. Our findings are of evolutionary interest, since they document for the first time the presence of a NOS system in a ancestral fish, indicative of deep phylogenetic roots of NO bio-synthesis.

  19. Coordinated induction of iNOS-VEGF-KDR-eNOS after resveratrol consumption: a potential mechanism for resveratrol preconditioning of the heart.

    PubMed

    Das, Samarjit; Alagappan, Vijay K T; Bagchi, Debasis; Sharma, Hari S; Maulik, Nilanjana; Das, Dipak K

    2005-01-01

    Existing evidence indicates that resveratrol, a red wine and grape-derived polyphenolic antioxidant, can pharmacologically precondition the heart in a nitric oxide (NO)-dependent manner. To further explore the role of NO in resveratrol-mediated cardioprotection, the induction for the expression of the potential molecular targets of NO including VEGF and KDR as well as iNOS and eNOS were examined by Western blot analysis and immunohistochemistry. Two groups of rats were studied, one group of animals was fed resveratrol for 7 days while the other group was given water only. After 1, 3, 5 and 7 days, the rats were sacrificed and the expression of the proteins was examined by Western blot analysis. Western blot detected an overexpression of iNOS and VEGF within 24 h of resveratrol treatment while the induction of KDR was not increased until after 3 days and eNOS expression after 5 days of resveratrol treatment. These expressions were further increased after 7 days of resveratrol treatment, when the rats were sacrificed for the isolated working heart preparation. Resveratrol provided cardioprotection as evidenced by superior post-ischemic ventricular recovery, reduced myocardial infarct size and decreased number of apoptotic cardiomyocytes. Immunohistochemistry was performed in the hearts at baseline, and at the end of 30-min ischemia/2-h reperfusion. The hearts obtained from resveratrol-treated rats revealed enhanced expression for iNOS, eNOS and VEGF and KDR compared to control hearts at the end of reperfusion. The results of this study demonstrate that resveratrol leads to a coordinated upregulation of iNOS-VEGF-KDR-eNOS, which is likely to play a role in resveratrol-mediated cardioprotection.

  20. Diesel Particulate Exposed Macrophages Alter Endothelial Cell Expression of eNOS, iNOS, MCP1, and Glutathione Synthesis Genes

    PubMed Central

    Weldy, Chad S.; Wilkerson, Hui-Wen; Larson, Timothy V.; Stewart, James A.; Kavanagh, Terrance J.

    2011-01-01

    There is considerable debate regarding inhaled diesel exhaust particulate (DEP) causing impairments in vascular reactivity. Although there is evidence that inhaled particles can translocate from the lung into the systemic circulation, it has been suggested that inflammatory factors produced in the lung following macrophage particle engulfment also pass into the circulation. To investigate these differing hypotheses, we used in vitro systems to model each exposure. By using a direct exposure system and a macrophage-endothelial cell co-culture model, we compared the effects of direct DEP exposure and exposure to inflammatory factors produced by DEP-treated macrophages, on endothelial cell mRNA levels for eNOS, iNOS, endothelin-1, and endothelin-converting-enzyme-1. As markers of oxidative stress, we measured the effects of DEP treatment on glutathione (GSH) synthesis genes and on total GSH. In addition, we analyzed the effect of DEP treatment on monocyte chemo-attractant protein-1. Direct DEP exposure increased endothelial GCLC and GCLM as well as total GSH in addition to increased eNOS, iNOS and Mcp1 mRNA. Alternatively, inflammatory factors released from DEP-exposed macrophages markedly up-regulated endothelial iNOS and Mcp1 while modestly down-regulating eNOS. These data support both direct exposure to DEP and the release of inflammatory cytokines as explanations for DEP-induced impairments in vascular reactivity. PMID:21920430

  1. Asiatic acid alleviates hemodynamic and metabolic alterations via restoring eNOS/iNOS expression, oxidative stress, and inflammation in diet-induced metabolic syndrome rats.

    PubMed

    Pakdeechote, Poungrat; Bunbupha, Sarawoot; Kukongviriyapan, Upa; Prachaney, Parichat; Khrisanapant, Wilaiwan; Kukongviriyapan, Veerapol

    2014-01-16

    Asiatic acid is a triterpenoid isolated from Centella asiatica. The present study aimed to investigate whether asiatic acid could lessen the metabolic, cardiovascular complications in rats with metabolic syndrome (MS) induced by a high-carbohydrate, high-fat (HCHF) diet. Male Sprague-Dawley rats were fed with HCHF diet with 15% fructose in drinking water for 12 weeks to induce MS. MS rats were treated with asiatic acid (10 or 20 mg/kg/day) or vehicle for a further three weeks. MS rats had an impairment of oral glucose tolerance, increases in fasting blood glucose, serum insulin, total cholesterol, triglycerides, mean arterial blood pressure, heart rate, and hindlimb vascular resistance; these were related to the augmentation of vascular superoxide anion production, plasma malondialdehyde and tumor necrosis factor-alpha (TNF-α) levels (p<0.05). Plasma nitrate and nitrite (NOx) were markedly high with upregulation of inducible nitric oxide synthase (iNOS) expression, but dowregulation of endothelial nitric oxide synthase (eNOS) expression (p<0.05). Asiatic acid significantly improved insulin sensitivity, lipid profiles, hemodynamic parameters, oxidative stress markers, plasma TNF-α, NOx, and recovered abnormality of eNOS/iNOS expressions in MS rats (p<0.05). In conclusion, asiatic acid improved metabolic, hemodynamic abnormalities in MS rats that could be associated with its antioxidant, anti-inflammatory effects and recovering regulation of eNOS/iNOS expression.

  2. 48 CFR Appendix to Part 6101 - Form Nos. 1-5

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Form Nos. 1-5 Appendix to Part 6101 Federal Acquisition Regulations System CIVILIAN BOARD OF CONTRACT APPEALS, GENERAL SERVICES ADMINISTRATION CONTRACT DISPUTE CASES Pt. 6101, App. Appendix to Part 6101—Form Nos. 1-5 Form 1, GSA Form...

  3. Pedagogical Reflections by Secondary Science Teachers at Different NOS Implementation Levels

    ERIC Educational Resources Information Center

    Herman, Benjamin C.; Clough, Michael P.; Olson, Joanne K.

    2017-01-01

    This study investigated what 13 secondary science teachers at various nature of science (NOS) instruction implementation levels talked about when they reflected on their teaching. We then determined if differences exist in the quality of those reflections between high, medium, and low NOS implementers. This study sought to answer the following…

  4. NOS3 polymorphisms, cigarette smoking, and cardiovascular disease risk: The Atherosclerosis Risk in Communities study

    USDA-ARS?s Scientific Manuscript database

    Endothelial nitric oxide synthase (NOS3) activity and cigarette smoking significantly influence endothelial function. We sought to determine whether cigarette smoking modified the association between NOS3 polymorphisms and risk of coronary heart disease or stroke. All 1085 incident coronary heart di...

  5. 76 FR 24062 - Florida Power and Light Company, St. Lucie, Unit Nos. 1 and 2; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-29

    ... COMMISSION Florida Power and Light Company, St. Lucie, Unit Nos. 1 and 2; Exemption 1.0 Background Florida Power & Light Company, et al. (FPL, the licensee), is the holder of Facility Operating License Nos. DPR... Commission hereby grants Florida Power & Light Company an exemption from the requirements of 10 CFR...

  6. Suggesting a NOS Map for Nature of Science for Science Education Instruction

    ERIC Educational Resources Information Center

    Oh, Jun-Young

    2017-01-01

    The aims of this research are 1) to explore the inter-relationships within the individual elements or tenets of Nature of Science (NOS), based on the dimensions of scientific knowledge in science learning, and 2) to consider Kuhn's concept of how scientific revolution takes place. This study suggests that instruction according to our NOS Flowchart…

  7. The RNA binding protein TIAR is involved in the regulation of human iNOS expression.

    PubMed

    Fechir, M; Linker, K; Pautz, A; Hubrich, T; Kleinert, H

    2005-09-05

    Human inducible NO synthase (iNOS) expression is regulated by post-transcriptional mechanisms. The 3'-untranslated region (3'-UTR) of the human iNOS mRNA contains AU-rich elements (ARE), which are known to be important for the regulation of mRNA stability. The 3'-UTR of the human iNOS mRNA has been shown to regulate human iNOS mRNA expression post-transcriptionally. One RNA-binding protein known to interact with AREs and to regulate mRNA stability is the T cell intracellular antigen-1-related protein (TIAR). In RNA binding studies TIAR displayed high affinity binding to the human iNOS 3'-UTR sequence. In RNase protection experiments, the cytokine incubation needed for iNOS expression did not change TIAR expression in DLD-1 cells. However, overexpression of TIAR in human DLD-1 colon carcinoma cells resulted in enhanced cytokine-induced iNOS expression. In conclusion, TIAR seems to be involved in the post-transcriptional regulation of human iNOS expression.

  8. Suggesting a NOS Map for Nature of Science for Science Education Instruction

    ERIC Educational Resources Information Center

    Oh, Jun-Young

    2017-01-01

    The aims of this research are 1) to explore the inter-relationships within the individual elements or tenets of Nature of Science (NOS), based on the dimensions of scientific knowledge in science learning, and 2) to consider Kuhn's concept of how scientific revolution takes place. This study suggests that instruction according to our NOS Flowchart…

  9. Inducible nitric oxide synthase (NOS II) is constitutive in human neutrophils.

    PubMed

    Cedergren, Jan; Follin, Per; Forslund, Tony; Lindmark, Maria; Sundqvist, Tommy; Skogh, Thomas

    2003-10-01

    The objective was to study the expression of inducible nitric oxide synthase (NOS II) in and NO production by human blood neutrophils and in in vivo exudated neutrophils. Cellular expression of NOS II was evaluated by flow cytometry in whole blood, in isolated blood neutrophils, and in neutrophils obtained by exudation in vivo into skin chambers. Neutrophil NOS II was also demonstrated by Western blotting. Uptake of 3H-labelled L-arginine was studied in vitro and NOS activity measured in a whole cell assay by the conversion of 3H-arginine to 3H-citrulline. In contrast to unseparated blood cells, NOS II was demonstrable both in isolated blood neutrophils and exudated cells. The failure to detect NOS II by flow cytometry in whole blood cells thus proved to be due to the quenching effect of hemoglobin. Western blotting revealed a 130 kD band corresponding to NOS II in isolated blood neutrophils, but detection was dependent on diisopropylfluorophosphate for proteinase inhibition. L-arginine was taken up by neutrophils, but enzymatic activity could not be demonstrated. We conclude that human neutrophils constitutively express NOS II, but that its demonstration by FITC-labelling is inhibited by hemoglobin-mediated quenching in whole blood samples.

  10. A downregulation of nNOS is associated to dysmotility evoked by lipopolysaccharide in rabbit duodenum.

    PubMed

    Grasa, L; Arruebo, M P; Plaza, M A; Murillo, M D

    2008-09-01

    Alterations in gastrointestinal motility have been reported in response to endotoxin. The effects of lipopolysaccharide (LPS) on motility have been attributed to several substances, including prostaglandins and nitric oxide. The aim of this study was to investigate the expression and the contribution of NOS and COX enzymes to the local effect of LPS on ACh-evoked contractions in rabbit duodenum. The ACh evoked contractions were inhibited by LPS in longitudinal and circular muscles of duodenum. L-NNA, aminoguanidine, ODQ, indomethacin, and NS-398 but not NPLA antagonized the inhibitory effect of LPS. Western blot analysis showed protein bands of 155, 130, 70 and 72 kDa for nNOS, iNOS, COX-1 and COX-2 respectively in rabbit duodenum. All of these isoforms were expressed constitutively and only the nNOS was reduced in the presence of LPS. Expression of nNOS, iNOS, COX-1 and COX-2 was detected by inmunohistochemistry in the smooth muscle layers and in the neurons of the myenteric ganglia of rabbit duodenum. In conclusion, LPS locally administered reduces the contractility of rabbit duodenum and a downregulation of nNOS is associated to this effect. The iNOS, COX-1 and COX-2 were expressed constitutively but their expression was not modified by LPS.

  11. Umbilical Cord Blood NOS1 as a Potential Biomarker of Neonatal Encephalopathy.

    PubMed

    Lei, Jun; Paules, Cristina; Nigrini, Elisabeth; Rosenzweig, Jason M; Bahabry, Rudhab; Farzin, Azadeh; Yang, Samuel; Northington, Frances J; Oros, Daniel; McKenney, Stephanie; Johnston, Michael V; Graham, Ernest M; Burd, Irina

    2017-01-01

    There are no definitive markers to aid in diagnosis of neonatal encephalopathy (NE). The purpose of our study was (1) to identify and evaluate the utility of neuronal nitric oxide synthase (NOS1) in umbilical cord blood as a NE biomarker and (2) to identify the source of NOS1 in umbilical cord blood. This was a nested case-control study of neonates >35 weeks of gestation. ELISA for NOS1 in umbilical cord blood was performed. Sources of NOS1 in umbilical cord were investigated by immunohistochemistry, western blot, ELISA, and quantitative PCR. Furthermore, umbilical cords of full-term neonates were subjected to 1% hypoxia ex vivo. NOS1 was present in umbilical cord blood and increased in NE cases compared with controls. NOS1 was expressed in endothelial cells of the umbilical cord vein, but not in artery or blood cells. In ex vivo experiments, hypoxia was associated with increased levels of NOS1 in venous endothelial cells of the umbilical cord as well as in ex vivo culture medium. This is the first study to investigate an early marker of NE. NOS1 is elevated with hypoxia, and further studies are needed to investigate it as a valuable tool for early diagnosis of neonatal brain injury.

  12. Going beyond the Consensus View: Broadening and Enriching the Scope of NOS-Oriented Curricula

    ERIC Educational Resources Information Center

    Hodson, Derek; Wong, Siu Ling

    2017-01-01

    Nature of science (NOS) is now a well-established focus of science education and a key element in defining scientific literacy. In recent years, a particular specification of NOS, often described as "the consensus view," has become very influential and has gained ready acceptance in many countries around the world as a template for…

  13. Relationships between caveolae and eNOS: everything in proximity and the proximity of everything.

    PubMed

    Goligorsky, Michael S; Li, Hong; Brodsky, Sergey; Chen, Jun

    2002-07-01

    Caveolae, flask-shaped invaginations of the plasma membrane occupying up to 30% of cell surface in capillaries, represent a predominant location of endothelial nitric oxide synthase (eNOS) in endothelial cells. The caveolar coat protein caveolin forms high-molecular-weight, Triton-insoluble complexes through oligomerization mediated by interactions between NH2-terminal residues 61-101. eNOS is targeted to caveolae by cotranslational N-myristoylation and posttranslational palmitoylation. Caveolin-1 coimmunoprecipitates with eNOS; interaction with eNOS occurs via the caveolin-1 scaffolding domain and appears to result in the inhibition of NOS activity. The inhibitory conformation of eNOS is reversed by the addition of excess Ca2+/calmodulin and by Akt-induced phosphorylation of eNOS. Here, we shall dissect the system using the classic paradigm of a reflex loop: 1) the action of afferent elements, such as fluid shear stress and its putative caveolar sensor, on caveolae; 2) the ways in which afferent signals may affect the central element, the activation of the eNOS-nitric oxide system; and 3) several resultant well-established and novel physiologically important effector mechanisms, i.e., vasorelaxation, angiogenesis, membrane fluidity, endothelial permeability, deterrance of inflammatory cells, and prevention of platelet aggregation.

  14. Pedagogical Reflections by Secondary Science Teachers at Different NOS Implementation Levels

    ERIC Educational Resources Information Center

    Herman, Benjamin C.; Clough, Michael P.; Olson, Joanne K.

    2017-01-01

    This study investigated what 13 secondary science teachers at various nature of science (NOS) instruction implementation levels talked about when they reflected on their teaching. We then determined if differences exist in the quality of those reflections between high, medium, and low NOS implementers. This study sought to answer the following…

  15. Anaphylactic shock depends on PI3K and eNOS-derived NO

    PubMed Central

    Cauwels, Anje; Janssen, Ben; Buys, Emmanuel; Sips, Patrick; Brouckaert, Peter

    2006-01-01

    Anaphylactic shock is a sudden, life-threatening allergic reaction associated with severe hypotension. Platelet-activating factor (PAF) is implicated in the cardiovascular dysfunctions occurring in various shock syndromes, including anaphylaxis. Excessive production of the vasodilator NO causes inflammatory hypotension and shock, and it is generally accepted that transcriptionally regulated inducible iNOS is responsible for this. Nevertheless, the contribution of NO to PAF-induced shock or anaphylactic shock is still ambiguous. We studied PAF and anaphylactic shock in conscious mice. Surprisingly, hyperacute PAF shock depended entirely on NO, produced not by inducible iNOS, but by constitutive eNOS, rapidly activated via the PI3K pathway. Soluble guanylate cyclase (sGC) is generally regarded as the principal vasorelaxing mediator of NO. Nevertheless, although methylene blue partially prevented PAF shock, neither 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one (ODQ) nor sGCα1 deficiency did. Also, in 2 different models of active systemic anaphylaxis, inhibition of NOS, PI3K, or Akt or eNOS deficiency provided complete protection. In contrast to the unsubstantiated paradigm that only excessive iNOS-derived NO underlies cardiovascular collapse in shock, our data strongly support the unexpected concept that eNOS-derived NO is the principal vasodilator in anaphylactic shock and define eNOS and/or PI3K or Akt as new potential targets for treating anaphylaxis. PMID:16886062

  16. Teachers' Longitudinal NOS Understanding after Having Completed a Science Teacher Education Program

    ERIC Educational Resources Information Center

    Herman, Benjamin C.; Clough, Michael P.

    2016-01-01

    The study reported here investigated experienced teachers' views on several nature of science (NOS) issues 2 to 5 years after they completed a demanding secondary science teacher education program in which the NOS was an extensive and recurring component. Both quantitative and qualitative data were collected and analyzed to determine study…

  17. 77 FR 12010 - Marine Mammals; File Nos. 1076-1789 and 14502

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-28

    ... National Oceanic and Atmospheric Administration RIN 0648-XB040 Marine Mammals; File Nos. 1076-1789 and... to Scientific Research Permit Nos. 1076-1789 and 14502. ADDRESSES: The amendment and related... importing of marine mammals (50 CFR part 216). Permit No. 1076-1789: This permit, issued on March 13, 2007...

  18. 49 CFR 173.335 - Chemical under pressure n.o.s.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Chemical under pressure n.o.s. 173.335 Section 173... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.335 Chemical under pressure n.o.s. (a) General requirements. A cylinder filled with a chemical under pressure must be offered...

  19. [Research Progress of NOS3 Participation in Regulatory Mechanisms of Cardiovascular Diseases].

    PubMed

    Sun, Ting; Chi, Qingjia; Wang, Guixue

    2016-02-01

    Cardiovascular disease has been a major threat to human's health and lives for many years. It is of great importance to explore the mechanisms and develop strategies to prevent the pathogenesis. Generally, cardiovascular disease is associated with endothelial dysfunction, which is closely related to the nitric oxide (NO)-mediated vasodilatation. The release of NO is regulated by NOS3 gene in mammals' vascular system. A great deal of evidences have shown that the polymorphism and epigenetic of NOS3 gene play vital roles in the pathological process of cardiovascular disease. To gain insights into the role of NOS3 in the cardiovascular diseases, we reviewed the molecular mechanisms underlying the development of cardiovascular diseases in this paper, including the uncoupling of NOS3 protein, epigenetic and polymorphism of NOS3 gene. The review can also offer possible strategies to prevent and treat cardiovascular diseases.

  20. Possible relation between the NOS3 gene GLU298ASP polymorphism and bladder cancer in Turkey.

    PubMed

    Verim, Levent; Toptas, Bahar; Ozkan, Nazli Ezgi; Cacina, Canan; Turan, Saime; Korkmaz, Gurbet; Yaylim, Ilhan

    2013-01-01

    Endothelial nitric oxide synthase (eNOS), encoded by the NOS3 gene, has been suggested to play an important role in uncontrolled cell growth in several cancer types. The objective of this study was to evaluate the role of the NOS3 Glu298Asp polymorphism in bladder cancer susceptibility in a Turkish population. We determined the genotypes of 66 bladder cancer cases and 88 healthy controls. Genotypes were determined by polymerase chain reaction-restriction fragment length polymorphism analysis. A significant association for NOS3 Glu298Asp heterozygotes genotypes and T allely were found between healthy controls and bladder cancer, respectively (p<0.001: p=0.002). There were no significant associations between any genotypes and the stage, grade, and histological type of bladder cancer. Our study suggested an increased risk role of NOS3 GT genotype in bladder cancer susceptibility in our Turkish population.

  1. NASA Operational Simulator (NOS) for V&V of complex systems

    NASA Astrophysics Data System (ADS)

    Zemerick, Scott A.; Morris, Justin R.; Bailey, Brandon T.

    2013-05-01

    This paper describes the development, capabilities and utility of the NASA Operational Simulator (NOS), a generic software-only simulation architecture developed for NASA missions. NOS was developed by the NASA's Independent Verification and Validation (IV&V) Independent Test Capability (ITC) team and is primarily utilized by software developers and (independent) testers to verify the functionality of a spacecraft's flight software from a system-wide perspective. NOS was initially developed in support of a software-only simulator for the Global Precipitation Measurement (GPM) mission to support verification and validation activities for NASA's IV&V Program. Due to the successes of the GPM simulator (GO-SIM), the NOS architecture is being reused to develop a simulation environment in support of the James Webb Space Telescope (JWST). While NOS has primarily been utilized on NASA missions, its generic architecture can be easily applied across domains to support V&V of complex systems.

  2. 3-Methylcholanthrene/Aryl-Hydrocarbon Receptor-Mediated Hypertension Through eNOS Inactivation.

    PubMed

    Chang, Chih-Cheng; Hsu, Yung-Ho; Chou, Hsiu-Chu; Lee, Yuan-Chii G; Juan, Shu-Hui

    2017-05-01

    Endothelial nitric oxide synthase (eNOS) modulates vascular blood pressure and is predominantly expressed in endothelial cells and activated through the protein kinase B (Akt/PKB)-dependent pathway. We previously reported that 3-methylcholanthrene (3MC) activates the aryl hydrocarbon receptor (AhR) and reduces PI3K/Akt phosphorylation. This study investigated the mechanism underlying the downregulatory effects of 3-MC on nitric oxide (NO) production occurring through the AhR/RhoA/Akt-mediated mechanism. The mechanism underlying the effects of 3-MC on eNOS activity and blood pressure was examined in vitro and in vivo through genetic and pharmacological approaches. Results indicated that 3-MC modified heat shock protein 90 (HSP90), caveolin-1, dynein, and eNOS mRNA and protein expression through the AhR/RhoA-dependent mechanism in mouse cerebral vascular endothelial cells (MCVECs) and that 3-MC reduced eNOS phosphorylation through the AhR/RhoA-mediated inactivation of Akt1. The upregulation of dynein expression was associated with decreased eNOS dimer formation (eNOS dimer; an activated form of the enzyme). Coimmunoprecipitation assay results indicated that 3-MC significantly reduced the interaction between eNOS and its regulatory proteins, including Akt1 and HSP90, but increased the interaction between eNOS and caveolin-1. Immunofluorescence and Western blot analysis revealed that 3-MC reduced the amount of membrane-bound activated eNOS, and a modified Griess assay revealed that 3-MC concomitantly reduced NO production. However, simvastatin reduced 3-MC-mediated murine hypertension. Our study results indicate that AhR, RhoA, and eNOS have major roles in blood pressure regulation. Statin intervention might provide a potential therapeutic approach for reducing hypertension caused by 3-MC. J. Cell. Physiol. 232: 1020-1029, 2017. © 2016 Wiley Periodicals, Inc.

  3. Reduced iNOS expression in adenoids from children with otitis media with effusion.

    PubMed

    Granath, Anna; Norrby-Teglund, Anna; Uddman, Rolf; Cardell, Lars-Olaf

    2010-12-01

    Nitric oxide (NO) is a key mediator in the local immune response of human airways. Inducible NO-synthases (iNOS), and endothelial NO-synthases (eNOS) are two enzymes known to regulate its production. The role of NO in middle ear disease is not fully known. Previous studies suggest that NO might have a dual role, both promoting and suppressing middle ear inflammation. The aim of the present study was to compare the eNOS and iNOS expression in adenoids obtained from children with otitis media with effusion (OME) with the expression seen in adenoids derived from children without middle ear disease. In addition, the expression of IL-1β and TNF-α were analyzed, because of their role in the iNOS-induction pathway. The iNOS and eNOS expression were analyzed with real-time PCR in 8 OME and 11 control adenoids. The corresponding proteins were demonstrated by immunohistochemical staining of adenoid tissue. A Luminex(®) assay was performed to analyze IL-1β and TNF-α in nasopharyngeal secretion in 10 OME and 8 controls, and immunohistochemistry was performed on adenoid tissue and imprints from the adenoid surface. Children with OME exhibited lower levels of iNOS than controls without middle ear disease. No such difference was seen for eNOS. The corresponding proteins were found mainly in conjunction with surface epithelium. No significant changes were seen among the cytokines tested. The present results indicate that local induction of iNOS in adenoids might be of importance for preventing development of OME. © 2010 John Wiley & Sons A/S.

  4. ChAT and NOS in human myenteric neurons: co-existence and co-absence.

    PubMed

    Beck, Martin; Schlabrakowski, Anne; Schrödl, Falk; Neuhuber, Winfried; Brehmer, Axel

    2009-10-01

    Most myenteric neurons contain one of the two generating enzymes for major excitatory and inhibitory neurotransmitters: choline acetyltransferase (ChAT) or neuronal nitric oxide synthase (NOS). Two minor groups of myenteric neurons contain either both enzymes or neither. Our study had two aims: (1) to compare the proportions of neurons stained for ChAT and/or NOS in human small and large intestinal whole-mounts by co-staining with an antibody against the human neuronal protein Hu C/D (HU); (2) to characterize these neurons morphologically by co-staining with a neurofilament (NF) antibody. In small intestinal whole-mounts co-stained with HU, we counted more ChAT-positive (ChAT+) than NOS+ neurons (52% vs. 38%), whereas the large intestine exhibited fewer ChAT+ than NOS+ neurons (38% vs. 50%). Neurons co-reactive for both ChAT and NOS accounted for about 3% in both regions, whereas neurons negative for both enzymes accounted for 7% in the small intestine and 8% in the large intestine. Co-staining with NF revealed that, in both small and large intestine, ChAT+/NOS+ neurons were either spiny (type I) neurons or displayed smaller perikarya that were weakly or not NF-stained. Of all spiny neurons, almost one third was co-reactive for ChAT and NOS, whereas nearly two thirds were positive only for NOS. Neurons negative for both ChAT and NOS were heterogeneous in size and NF reactivity. Thus, neither the co-existence nor the co-absence of ChAT and NOS in human myenteric neurons is indicative for particular neuron types, with several qualitative and quantitative parameters showing a wide range of interindividual variability.

  5. Internalization of eNOS via caveolae regulates PAF-induced inflammatory hyperpermeability to macromolecules.

    PubMed

    Sánchez, Fabiola A; Kim, David D; Durán, Ricardo G; Meininger, Cynthia J; Durán, Walter N

    2008-10-01

    Endothelial nitric oxide (NO) synthase (eNOS) is thought to regulate microvascular permeability via NO production. We tested the hypotheses that the expression of eNOS and eNOS endocytosis by caveolae are fundamental for appropriate signaling mechanisms in inflammatory endothelial permeability to macromolecules. We used bovine coronary postcapillary venular endothelial cells (CVECs) because these cells are derived from the microvascular segment responsible for the transport of macromolecules in inflammation. We stimulated CVECs with platelet-activating factor (PAF) at 100 nM and measured eNOS phosphorylation, NO production, and CVEC monolayer permeability to FITC-dextran 70 KDa (Dx-70). PAF translocated eNOS from plasma membrane to cytosol, induced changes in the phosphorylation state of the enzyme, and increased NO production from 4.3+/-3.8 to 467+/-22.6 nM. PAF elevated CVEC monolayer permeability to FITC-Dx-70 from 3.4+/-0.3 x 10(-6) to 8.5+/-0.4 x 10(-6) cm/s. The depletion of endogenous eNOS with small interfering RNA abolished PAF-induced hyperpermeability, demonstrating that the expression of eNOS is required for inflammatory hyperpermeability responses. The inhibition of the caveolar internalization by blocking caveolar scission using transfection of dynamin dominant-negative mutant, dyn2K44A, inhibited PAF-induced hyperpermeability to FITC-Dx-70. We interpret these data as evidence that 1) eNOS is required for hyperpermeability to macromolecules and 2) the internalization of eNOS via caveolae is an important mechanism in the regulation of endothelial permeability. We advance the novel concept that eNOS internalization to cytosol is a signaling mechanism for the onset of microvascular hyperpermeability in inflammation.

  6. PERSPECTIVE VIEW, CORNER UNIT AND REPRESENTATIVE INTERIOR HOUSE (NOS. 1921 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PERSPECTIVE VIEW, CORNER UNIT AND REPRESENTATIVE INTERIOR HOUSE (NOS. 1921 AND 1923). THE TWO ATTACHED STRUCTURES WERE ONCE PART OF AN EIGHT-UNIT ROW EXTENDING FOR ONE-HALF A BLOCK ON THE NORTH SIDE OF DIAMOND STREET WEST FROM NINETEENTH STREET. THIS DEVELOPMENT LIKELY ALSO INCLUDED FOUR DWELLINGS IMMEDIATELY BEHIND THESE HOUSES TO THE NORTH, FRONTING ON NINETEENTH STREET. A NOTICE FROM THE MAY 28, 1890 ISSUE OF PHILADELPHIA REAL ESTATE RECORD AND BUILDERS’ GUIDE ANNOUNCED THE DEVELOPMENT’S ANTICIPATED CONSTRUCTION BY PROLIFIC LOCAL REAL ESTATE AGENT/BUILDER THOMAS H. PARKS, WHO LIVED ONLY ONE BLOCK AWAY AT THE CORNER OF GRATZ AND DIAMOND STREETS (IN NO. 1821, NOW LOST). THOMAS PARKS HAD USED ARCHITECT ANGUS S. WADE FOR THE 1800 BLOCK OF DIAMOND STREET, BUT IT APPEARS THAT HE MAY HAVE EMPLOYED ANOTHER OF POPULAR ARCHITECT WILLIS G. HALE’S PROTÉGÉS, ROBERT W. MARPLE, FOR THIS BLOCK, AT LEAST FOR THE SUPERINTENDENCE OF ITS CONSTRUCTION. THE HOUSES’ EBULLIENCE AND EXOTICISM SUGGESTS HALE’S WORK OR THAT OF HISO FFICE; THEY BEAR NOTABLE SIMILARITY TO HOUSES DESIGNED BY HALE A YEAR EARLIER IN THE 1800 BLOCK OF W. GIRARD AVENUE. SEE HABS PA-6677 FOR MORE ON THOMAS PARKS AND THE 1800 BLOCK OF DIAMOND STREET, AND HABS PA-6678, FOR ADDITIONAL INFORMATION ABOUT WILLIS HALE AND THE 1800 BLOCK OF W. GIRARD AVENUE. - 1900 Block Diamond Street (Houses), Northwest corner of Diamond & Uber Streets, Philadelphia, Philadelphia County, PA

  7. NASA Operational Simulator for Small Satellites (NOS3)

    NASA Technical Reports Server (NTRS)

    Zemerick, Scott

    2015-01-01

    The Simulation-to-Flight 1 (STF-1) CubeSat mission aims to demonstrate how legacy simulation technologies may be adapted for flexible and effective use on missions using the CubeSat platform. These technologies, named NASA Operational Simulator (NOS), have demonstrated significant value on several missions such as James Webb Space Telescope, Global Precipitation Measurement, Juno, and Deep Space Climate Observatory in the areas of software development, mission operationstraining, verification and validation (VV), test procedure development and software systems check-out. STF-1 will demonstrate a highly portable simulation and test platform that allows seamless transition of mission development artifacts to flight products. This environment will decrease development time of future CubeSat missions by lessening the dependency on hardware resources. In addition, through a partnership between NASA GSFC, the West Virginia Space Grant Consortium and West Virginia University, the STF-1 CubeSat will hosts payloads for three secondary objectives that aim to advance engineering and physical-science research in the areas of navigation systems of small satellites, provide useful data for understanding magnetosphere-ionosphere coupling and space weather, and verify the performance and durability of III-V Nitride-based materials.

  8. Correlated NOS-Imu and myf5 expression by satellite cells in mdx mouse muscle regeneration during NOS manipulation and deflazacort treatment.

    PubMed

    Anderson, Judy E; Vargas, Cinthya

    2003-06-01

    Satellite cells, muscle precursor cells in skeletal muscle, are normally quiescent and become activated by disease or injury. A lack of dystrophin and changes in the expression or activity of neuronal nitric oxide synthase (NOS-I) affect the timing of activation in vivo. Nitric oxide synthase inhibition delays muscle repair in normal mice, and worsens muscular dystrophy in the mdx mouse, a genetic homologue of Duchenne muscular dystrophy. However, the potential role of activation and repair events mediated by nitric oxide in determining the outcome of steroid or other treatments for muscular dystrophy is not clear. We tested the hypothesis that the extent of repair in dystrophic muscles of mdx mice is partly dependent on NOS-Imu expression and activity. Myotube formation in regenerating muscle was promoted by deflazacort treatment of mdx dystrophic mice (P<0.05), and improved by combination with the nitric oxide synthase substrate, L-arginine, especially in the diaphragm. NOS-Imu mRNA expression and activity were present in satellite cells and very new myotubes of regenerating and dystrophic muscle. Deflazacort treatment resulted in increased NOS-Imu expression in regenerating muscles in a strong and specific correlation with myf5 expression (r=0.95, P<0.01), a marker for muscle repair. Nitric oxide synthase inhibition prevented the deflazacort-induced rise in NOS-Imu and myf5 expression in the diaphragm without affecting the diameter of non-regenerating fibres. These in vivo studies suggest that gains in NOS-Imu expression and nitric oxide synthase activity in satellite cells can increase the extent and speed of repair, even in the absence of dystrophin in muscle fibres. NOS-Imu may be a useful therapeutic target to augment the effects of steroidal or other treatments of muscular dystrophy.

  9. Synthesis and biological evaluation of 4,5-dihydro-1H-pyrazole derivatives as potential nNOS/iNOS selective inhibitors. Part 2: Influence of diverse substituents in both the phenyl moiety and the acyl group.

    PubMed

    Carrión, M Dora; Chayah, Mariem; Entrena, Antonio; López, Ana; Gallo, Miguel A; Acuña-Castroviejo, Darío; Camacho, M Encarnación

    2013-07-15

    In a preliminary article, we reported a series of 4,5-dihydro-1H-pyrazole derivatives as neuronal nitric oxide synthase (nNOS) inhibitors. Here we present the data about the inhibition of inducible nitric oxide synthase (iNOS) of these compounds. In general, we can confirm that these pyrazoles are nNOS selective inhibitors. In addition, taking these compounds as a reference, we have designed and synthesized a series of new derivatives by modification of the heterocycle in 1-position, and by introduction of electron-donating or electron-withdrawing substituents in the aromatic ring. These derivatives have been evaluated as nNOS and iNOS inhibitors in order to identify new compounds with improved activity and selectivity. Compound 3r, with three methoxy electron-donating groups in the phenyl moiety, is the most potent nNOS inhibitor, showing good selectivity nNOS/iNOS.

  10. Obesity, Inflammation, and Exercise Training: Relative Contribution of iNOS and eNOS in the Modulation of Vascular Function in the Mouse Aorta

    PubMed Central

    Silva, Josiane F.; Correa, Izabella C.; Diniz, Thiago F.; Lima, Paulo M.; Santos, Roger L.; Cortes, Steyner F.; Coimbra, Cândido C.; Lemos, Virginia S.

    2016-01-01

    Background: The understanding of obsesity-related vascular dysfunction remains controversial mainly because of the diseases associated with vascular injury. Exercise training is known to prevent vascular dysfunction. Using an obesity model without comorbidities, we aimed at investigating the underlying mechanism of vascular dysfunction and how exercise interferes with this process. Methods: High-sugar diet was used to induce obesity in mice. Exercise training was performed 5 days/week. Body weight, energy intake, and adipose tissues were assessed; blood metabolic and hormonal parameters were determined; and serum TNFα was measured. Blood pressure and heart rate were assessed by plethysmography. Changes in aortic isometric tension were recorded on myograph. Western blot was used to analyze protein expression. Nitric oxide (NO) was evaluated using fluorescence microscopy. Antisense oligodeoxynucleotides were used for inducible nitric oxide synthase isoform (iNOS) knockdown. Results: Body weight, fat mass, total cholesterol, low-density lipoprotein cholesterol fraction, insulin, and leptin were higher in the sedentary obese group (SD) than in the sedentary control animals (SS). Exercise training prevented these changes. No difference in glucose tolerance, insulin sensitivity, blood pressure, and heart rate was found. Decreased vascular relaxation and reduced endothelial nitric oxide synthase (eNOS) functioning in the SD group were prevented by exercise. Contractile response to phenylephrine was decreased in the aortas of the wild SD mice, compared with that of the SS group; however, no alteration was noted in the SD iNOS−/− animals. The decreased contractility was endothelium-dependent, and was reverted by iNOS inhibition or iNOS silencing. The aortas from the SD group showed increased basal NO production, serum TNFα, TNF receptor-1, and phospho-IκB. Exercise training attenuated iNOS-dependent reduction in contractile response in high-sugar diet–fed animals

  11. Molecular and biochemical characterization of dNOS: a Drosophila Ca2+/calmodulin-dependent nitric oxide synthase.

    PubMed Central

    Regulski, M; Tully, T

    1995-01-01

    Nitric oxide (NO) is an intercellular messenger involved with various aspects of mammalian physiology ranging from vasodilation and macrophage cytotoxicity to neuronal transmission. NO is synthesized from L-arginine by NO synthase (NOS). Here, we report the cloning of a Drosophila NOS gene, dNOS, located at cytological position 32B. The dNOS cDNA encodes a protein of 152 kDa, with 43% amino acid sequence identity to rat neuronal NOS. Like mammalian NOSs, DNOS protein contains putative binding sites for calmodulin, FMN, FAD, and NADPH. DNOS activity is Ca2+/calmodulin dependent when expressed in cell culture. An alternative RNA splicing pattern also exists for dNOS, which is identical to that for vertebrate neuronal NOS. These structural and functional observations demonstrate remarkable conservation of NOS between vertebrates and invertebrates. Images Fig. 2 Fig. 3 PMID:7568075

  12. Efficient Binding of the NOS1AP C-Terminus to the nNOS PDZ Pocket Requires the Concerted Action of the PDZ Ligand Motif, the Internal ExF Site and Structural Integrity of an Independent Element

    PubMed Central

    Li, Li-Li; Cisek, Katryna; Courtney, Michael J.

    2017-01-01

    Neuronal nitric oxide synthase is widely regarded as an important contributor to a number of disorders of excitable tissues. Recently the adaptor protein NOS1AP has emerged as a contributor to several nNOS-linked conditions. As a consequence, the unexpectedly complex mechanisms of interaction between nNOS and its effector NOS1AP have become a particularly interesting topic from the point of view of both basic research and the potential for therapeutic applications. Here we demonstrate that the concerted action of two previously described motif regions contributing to the interaction of nNOS with NOS1AP, the ExF region and the PDZ ligand motif, efficiently excludes an alternate ligand from the nNOS-PDZ ligand-binding pocket. Moreover, we identify an additional element with a denaturable structure that contributes to interaction of NOS1AP with nNOS. Denaturation does not affect the functions of the individual motifs and results in a relatively mild drop, ∼3-fold, of overall binding affinity of the C-terminal region of NOS1AP for nNOS. However, denaturation selectively prevents the concerted action of the two motifs that normally results in efficient occlusion of the PDZ ligand-binding pocket, and results in 30-fold reduction of competition between NOS1AP and an alternate PDZ ligand. PMID:28360833

  13. Identification and molecular characterization of nitric oxide synthase (NOS) gene in the intertidal copepod Tigriopus japonicus.

    PubMed

    Jeong, Chang-Bum; Kang, Hye-Min; Seo, Jung Soo; Park, Heum Gi; Rhee, Jae-Sung; Lee, Jae-Seong

    2016-02-10

    In copepods, no information has been reported on the structure or molecular characterization of the nitric oxide synthase (NOS) gene. In the intertidal copepod Tigriopus japonicus, we identified a NOS gene that is involved in immune responses of vertebrates and invertebrates. In silico analyses revealed that nitric oxide (NO) synthase domains, such as the oxygenase and reductase domains, are highly conserved in the T. japonicus NOS gene. The T. japonicus NOS gene was highly transcribed in the nauplii stages, implying that it plays a role in protecting the host during the early developmental stages. To examine the involvement of the T. japonicus NOS gene in the innate immune response, the copepods were exposed to lipopolysaccharide (LPS) and two Vibrio sp. After exposure to different concentrations of LPS and Vibrio sp., T. japonicus NOS transcription was significantly increased over time in a dose-dependent manner, and the NO/nitrite concentration increased as well. Taken together, our findings suggest that T. japonicus NOS transcription is induced in response to an immune challenge as part of the conserved innate immunity.

  14. Inducible nitric oxide synthase (NOS-2) in subarachnoid hemorrhage: Regulatory mechanisms and therapeutic implications

    PubMed Central

    Iqbal, Sana; Hayman, Erik G; Hong, Caron; Stokum, Jesse A; Kurland, David B; Gerzanich, Volodymyr; Simard, J Marc

    2016-01-01

    Aneurysmal subarachnoid hemorrhage (SAH) typically carries a poor prognosis. Growing evidence indicates that overabundant production of nitric oxide (NO) may be responsible for a large part of the secondary injury that follows SAH. Although SAH modulates the activity of all three isoforms of nitric oxide synthase (NOS), the inducible isoform, NOS-2, accounts for a majority of NO-mediated secondary injuries after SAH. Here, we review the indispensable physiological roles of NO that must be preserved, even while attempting to downmodulate the pathophysiologic effects of NO that are induced by SAH. We examine the effects of SAH on the function of the various NOS isoforms, with a particular focus on the pathological effects of NOS-2 and on the mechanisms responsible for its transcriptional upregulation. Finally, we review interventions to block NOS-2 upregulation or to counteract its effects, with an emphasis on the potential therapeutic strategies to improve outcomes in patients afflicted with SAH. There is still much to be learned regarding the apparently maladaptive response of NOS-2 and its harmful product NO in SAH. However, the available evidence points to crucial effects that, on balance, are adverse, making the NOS-2/NO/peroxynitrite axis an attractive therapeutic target in SAH. PMID:27774520

  15. PGE1 analog alprostadil induces VEGF and eNOS expression in endothelial cells.

    PubMed

    Haider, Dominik G; Bucek, Robert A; Giurgea, Aura G; Maurer, Gerald; Glogar, Helmut; Minar, Erich; Wolzt, Michael; Mehrabi, Mohammad R; Baghestanian, Mehrdad

    2005-11-01

    Endothelial nitric oxide synthase (eNOS), VEGF, and hypoxia-inducible factor 1-alpha (HIF-1alpha) are important regulators of endothelial function, which plays a role in the pathophysiology of heart failure (HF). PGE1 analog treatment in patients with HF elicits beneficial hemodynamic effects, but the precise mechanisms have not been investigated. We have investigated the effects of the PGE1 analog alprostadil on eNOS, VEGF, and HIF-1alpha expression in human umbilical vein endothelial cells (HUVEC) using RT-PCR and immunoblotting under normoxic and hypoxic conditions. In addition, we studied protein expression by immunohistochemical staining in explanted hearts from patients with end-stage HF, treated or untreated with systemic alprostadil. Alprostadil causes an upregulation of eNOS and VEGF protein and mRNA expression in HUVEC and decreases HIF-1alpha. Hypoxia potently increased eNOS, VEGF, and HIF-1alpha synthesis. The alprostadil-induced upregulation of eNOS and VEGF was prevented by inhibition of MAPKs with PD-98056 or U-0126. Consistently, the expression of eNOS and VEGF was increased, and HIF-1alpha was reduced in failing hearts treated with alprostadil. The potent effects of alprostadil on endothelial VEGF and eNOS synthesis may be useful for patients with HF where endothelial dysfunction is involved in the disease process.

  16. Diversity of nitrous oxide reductase (nosZ) genes in continental shelf sediments

    SciTech Connect

    Scala, D.J.; Kerkhof, L.J.

    1999-04-01

    Diversity of the nitrous oxide reductase (nosZ) gene was examined in sediments obtained from the Atlantic Ocean and Pacific Ocean continental shelves. Approximately 1,100 bp of the nosZ gene were amplified via PCR, using nosZ gene-specific primers. Thirty-seven unique copies of the nosZ gene from these marine environments were characterized, increasing the nosZ sequence database fourfold. The average DNA similarity for comparisons between all 49 variants of the nosZ gene was 64% {+-} 10%. Alignment of the derived amino acid sequences confirmed the conservation of important structural motifs. A highly conserved region is proposed as the copper binding, catalytic site (Cu{sub z}) of the mature protein. Phylogenetic analysis demonstrated three major clusters of nosZ genes, with little overlap between environmental and culture-based groups. Finally, the two non-culture-based gene clusters generally corresponded to sampling location, implying that denitrifier communities may be restricted geographically.

  17. iNOS expression and osteocyte apoptosis in idiopathic, non-traumatic osteonecrosis

    PubMed Central

    Wang, Jun; Kalhor, Ali; Lu, Shifeier; Crawford, Ross; Ni, Jiang-Dong; Xiao, Yin

    2015-01-01

    Background and purpose Non-traumatic osteonecrosis is a progressive disease with multiple etiologies. It affects younger individuals more and more, often leading to total hip arthroplasty. We investigated whether there is a correlation between inducible nitric oxide synthase (iNOS) expression and osteocyte apoptosis in non-traumatic osteonecrosis. Patients and methods We collected and studied 20 human idiopathic, non-traumatic osteonecrosis femoral heads. Subchondral bone samples in the non-sclerotic region (n = 30), collected from osteoarthritis patients, were used as controls. Spontaneously hypertensive rats were used as a model for osteonecrosis in the study. We used scanning electron microscopy, TUNEL assay, and immunohistochemical staining to study osteocyte changes and apoptosis. Results The morphology of osteocytes in the areas close to the necrotic region changed and the number of apoptotic osteocytes increased in comparison with the same region in control groups. The expression of iNOS and cytochrome C in osteocytes increased while Bax expression was not detectable in osteonecrosis samples. Using spontaneously hypertensive rats, we found a positive correlation between iNOS expression and osteocyte apoptosis in the osteonecrotic region. iNOS inhibitor (aminoguanidine) added to the drinking water for 5 weeks reduced the production of iNOS and osteonecrosis compared to a control group without aminoguanidine. Interpretation Our findings show that increased iNOS expression can lead to osteocyte apopotosis in idiopathic, non-traumatic osteonecrosis and that an iNOS inhibitor may prevent the progression of the disease. PMID:25191931

  18. Inducible nitric oxide synthase (NOS-2) in subarachnoid hemorrhage: Regulatory mechanisms and therapeutic implications.

    PubMed

    Iqbal, Sana; Hayman, Erik G; Hong, Caron; Stokum, Jesse A; Kurland, David B; Gerzanich, Volodymyr; Simard, J Marc

    2016-01-01

    Aneurysmal subarachnoid hemorrhage (SAH) typically carries a poor prognosis. Growing evidence indicates that overabundant production of nitric oxide (NO) may be responsible for a large part of the secondary injury that follows SAH. Although SAH modulates the activity of all three isoforms of nitric oxide synthase (NOS), the inducible isoform, NOS-2, accounts for a majority of NO-mediated secondary injuries after SAH. Here, we review the indispensable physiological roles of NO that must be preserved, even while attempting to downmodulate the pathophysiologic effects of NO that are induced by SAH. We examine the effects of SAH on the function of the various NOS isoforms, with a particular focus on the pathological effects of NOS-2 and on the mechanisms responsible for its transcriptional upregulation. Finally, we review interventions to block NOS-2 upregulation or to counteract its effects, with an emphasis on the potential therapeutic strategies to improve outcomes in patients afflicted with SAH. There is still much to be learned regarding the apparently maladaptive response of NOS-2 and its harmful product NO in SAH. However, the available evidence points to crucial effects that, on balance, are adverse, making the NOS-2/NO/peroxynitrite axis an attractive therapeutic target in SAH.

  19. Localization of NGF and nNOS in varicocele-induced rat testis.

    PubMed

    Celik-Ozenci, Ciler; Bayram, Zubeyde; Akkoyunlu, Gokhan; Korgun, Emin Turkay; Erdogru, Tibet; Seval, Yasemin; Ustunel, Ismail; Baykara, Mehmet; Demir, Ramazan

    2006-01-01

    Nerve growth factor (NGF) is synthesized in male germ cells. The presence of neuronal nitric oxide synthase (nNOS) in Leydig cells is related to its role in the regulation of testosterone release. Varicocele is often characterized by abnormal sperm quality and influences the fertilizing capacity of the haploid gamete. We investigated the localization of NGF and nNOS in testes of adult Wistar rats with experimentally induced varicocele after 9, 11, and 13 weeks, as well as in sham-operated controls by immunohistochemistry and Western blot. In control testis, we detected NGF in nuclei of Sertoli cells and also as small vesicular-like structures in the cytoplasm of primary spermatocytes, and in round and elongating spermatids. Varicocele-induction revealed a slight decrease of NGF at 13 weeks, especially in Sertoli cells. In control tissue, nNOS protein was present mainly in Leydig cells and in Sertoli cell cytoplasm. Additionally, nNOS immunoreactivity was present in the heads of elongated spermatids. Western blot results revealed that the decrease of NGF was not significant in the 13-week varicocele group, moreover, the amount of nNOS was not altered in any of the varicocele groups. In conclusion, NGF and nNOS have important roles for normal gametogenesis and our data for the first time indicates that varicocele induction does not necessarily affect the expression of NGF and nNOS. Thus, these two molecules do not appear to be related to varicocele induction.

  20. NOS1 S-nitrosylates PTEN and inhibits autophagy in nasopharyngeal carcinoma cells

    PubMed Central

    Zhu, Lingqun; Li, Linlin; Zhang, Qianbing; Yang, Xiao; Zou, Zhiwei; Hao, Bingtao; Marincola, Francesco M; Liu, Zhengjun; Zhong, Zhuo; Wang, Meng; Li, Xiaoxuan; Wang, Qianli; Li, Keyi; Gao, Wenwen; Yao, Kaitai; Liu, Qiuzhen

    2017-01-01

    Autophagy is a cellular survival mechanism that involves the catabolic degradation of damaged proteins and organelles during periods of metabolic stress, and when overly stimulated, commonly contributes to cell death. Nitric oxide (NO), a potent cellular messenger, participates in a complex mechanism which assists in controlling autophagy. However, the mechanism by which endogenous NO formed by distinct isoforms of nitric oxide synthase (NOS) helps to regulate autophagy in cancer cells remains unclear. Here we report that NOS1 reduces excessive levels of autophagy and promotes the survival of nasopharyngeal carcinoma cells. We found that inhibition of NOS1 increased cell death resulting from siRNA or the use of pharmacologic agents; and this effect was reversed by the autophagy inhibitor, chloroquine. The role of NOS1 in the autophagy process depended on the activation of AKT/mTOR signaling by S-nitrosylation of phosphatase and tensin homolog (PTEN) proteins. The mechanism by which NOS1 modifies PTEN protein might involve a direct interaction between these two molecules. Moreover, in an in vivo study, the NOS1 inhibitor N(G)-nitro-L-arginine methyl ester activated AKT/mTOR signaling and promoted autophagy in xenograph tumors. Our studies demonstrated that NOS1 prevents excessive autophagy via S-nitrosylation of PTEN, and activation of the AKT/mTOR signaling pathway. PTEN and the AKT/mTOR signaling pathway are promising targets for improving the chemotherapeutic treatment of cancer. PMID:28243469

  1. iNOS expression in dystrophinopathies can be reduced by somatic gene transfer of dystrophin or utrophin.

    PubMed Central

    Louboutin, J. P.; Rouger, K.; Tinsley, J. M.; Halldorson, J.; Wilson, J. M.

    2001-01-01

    BACKGROUND: Nitric oxide (NO) is an inorganic gas produced by a family of NO synthase (NOS) proteins. The presence and the distribution of inducible-NOS (NOS II or iNOS), and NADPH-diaphorase (NADPH-d), a marker for NOS catalytic activity, were determined in muscle sections from control, DMD, and BMD patients. MATERIALS AND METHODS: NADPH-d reactivity, iNOS- and nNOS (NOS I)-immunolocalization were studied in muscles from mdx mice before and after somatic gene transfer of dystrophin or utrophin. RESULTS: In control patients, few fibers (<2%) demonstrated focal accumulation of iNOS in sarcolemma. In DMD patients, a strong iNOS immunoreactivity was observed in some necrotic muscle fibers as well as in some mononuclear cells, and regenerating muscle fibers had diffusely positive iNOS immunoreactivity. In DMD patients, NADPH-d reactivity was increased and mainly localized in regenerating muscle fibers. In mdx mice quadriceps, iNOS expression was mainly observed in regenerating muscle fibers, but not prior to 4 weeks postnatal, and was still present 8 weeks after birth. The expression of dystrophin and the overexpression of utrophin using adenovirus-mediated constructs reduced the number of iNOS-positive fibers in mdx quadriceps muscles. The correction of some pathology in mdx by dystrophin expression or utrophin overexpression was independent of the presence of nNOS. CONCLUSIONS: These results suggest that iNOS could play a role in the physiopathology of DMD and that the abnormal expression of iNOS could be corrected by gene therapy. PMID:11474581

  2. Moderate exercise promotes human RBC-NOS activity, NO production and deformability through Akt kinase pathway.

    PubMed

    Suhr, Frank; Brenig, Julian; Müller, Rebecca; Behrens, Hilke; Bloch, Wilhelm; Grau, Marijke

    2012-01-01

    Nitric oxide (NO) produced by nitric oxide synthase (NOS) in human red blood cells (RBCs) was shown to depend on shear stress and to exhibit important biological functions, such as inhibition of platelet activation. In the present study we hypothesized that exercise-induced shear stress stimulates RBC-NOS activation pathways, NO signaling, and deformability of human RBCs. Fifteen male subjects conducted an exercise test with venous blood sampling before and after running on a treadmill for 1 hour. Immunohistochemical staining as well as western blot analysis were used to determine phosphorylation and thus activation of Akt kinase and RBC-NOS as well as accumulation of cyclic guanylyl monophosphate (cGMP) induced by the intervention. The data revealed that activation of NO upstream located enzyme Akt kinase was significantly increased after the test. Phosphorylation of RBC-NOSSer(1177) was also significantly increased after exercise, indicating activation of RBC-NOS through Akt kinase. Total detectable RBC-NOS content and phosphorylation of RBC-NOSThr(495) were not affected by the intervention. NO production by RBCs, determined by DAF fluorometry, and RBC deformability, measured via laser-assisted-optical-rotational red cell analyzer, were also significantly increased after the exercise test. The content of the NO downstream signaling molecule cGMP increased after the test. Pharmacological inhibition of phosphatidylinositol 3 (PI3)-kinase/Akt kinase pathway led to a decrease in RBC-NOS activation, NO production and RBC deformability. This human in vivo study first-time provides strong evidence that exercise-induced shear stress stimuli activate RBC-NOS via the PI3-kinase/Akt kinase pathway. Actively RBC-NOS-produced NO in human RBCs is critical to maintain RBC deformability. Our data gain insights into human RBC-NOS regulation by exercise and, therefore, will stimulate new therapeutic exercise-based approaches for patients with microvascular disorders.

  3. Control of food intake and energy expenditure by Nos1 neurons of the paraventricular hypothalamus.

    PubMed

    Sutton, Amy K; Pei, Hongjuan; Burnett, Korri H; Myers, Martin G; Rhodes, Christopher J; Olson, David P

    2014-11-12

    The paraventricular nucleus of the hypothalamus (PVH) contains a heterogeneous cluster of Sim1-expressing cell types that comprise a major autonomic output nucleus and play critical roles in the control of food intake and energy homeostasis. The roles of specific PVH neuronal subtypes in energy balance have yet to be defined, however. The PVH contains nitric oxide synthase-1 (Nos1)-expressing (Nos1(PVH)) neurons of unknown function; these represent a subset of the larger population of Sim1-expressing PVH (Sim1(PVH)) neurons. To determine the role of Nos1(PVH) neurons in energy balance, we used Cre-dependent viral vectors to both map their efferent projections and test their functional output in mice. Here we show that Nos1(PVH) neurons project to hindbrain and spinal cord regions important for food intake and energy expenditure control. Moreover, pharmacogenetic activation of Nos1(PVH) neurons suppresses feeding to a similar extent as Sim1(PVH) neurons, and increases energy expenditure and activity. Furthermore, we found that oxytocin-expressing PVH neurons (OXT(PVH)) are a subset of Nos1(PVH) neurons. OXT(PVH) cells project to preganglionic, sympathetic neurons in the thoracic spinal cord and increase energy expenditure upon activation, though not to the same extent as Nos1(PVH) neurons; their activation fails to alter feeding, however. Thus, Nos1(PVH) neurons promote negative energy balance through changes in feeding and energy expenditure, whereas OXT(PVH) neurons regulate energy expenditure alone, suggesting a crucial role for non-OXT Nos1(PVH) neurons in feeding regulation. Copyright © 2014 the authors 0270-6474/14/3415306-13$15.00/0.

  4. Characterization of iNOS(+) Neutrophil-like ring cell in tumor-bearing mice.

    PubMed

    Virtuoso, Lauren P; Harden, Jamie L; Sotomayor, Paula; Sigurdson, Wade J; Yoshimura, Fuminobu; Egilmez, Nejat K; Minev, Boris; Kilinc, Mehmet O

    2012-07-30

    Myeloid-derived Suppressor Cells (MDSC) have been identified as tumor-induced immature myeloid cells (IMC) with potent immune suppressive activity in cancer. Whereas strict phenotypic classification of MDSC has been challenging due to the highly heterogeneous nature of cell surface marker expression, use of functional markers such as Arginase and inducible nitric oxide synthase (iNOS) may represent a better categorization strategy. In this study we investigated whether iNOS could be utilized as a specific marker for the identification of a more informative homogenous MDSC subset. Single-cell suspensions from tumors and other organs were prepared essentially by enzymatic digestion. Flow cytometric analysis was performed on a four-color flow cytometer. Morphology, intracellular structure and localization of iNOS(+) ring cells in the tumor were determined by cytospin analysis, immunofluorescence microscopy and immunohistochemistry, respectively. For functional analysis, iNOS(+) ring subset were sorted and tested in vitro cell culture experiments. Pharmacologic inhibition of iNOS was performed both in vivo and in vitro. The results showed that intracellular iNOS staining distinguished a granular iNOS(+) SSC(hi) CD11b(+) Gr-1(dim) F4/80(+) subset with ring-shaped nuclei (ring cells) among the CD11b(+) Gr-1(+) cell populations found in tumors. The intensity of the ring cell infiltrate correlated with tumor size and these cells constituted the second major tumor-infiltrating leukocyte subset found in established tumors. Although phenotypic analysis demonstrated that ring cells shared characteristics with tumor-associated macrophages (TAM), morphological analysis revealed a neutrophil-like appearance as detected by cytospin and immunofluorescence microscopy analysis. The presence of distinct iNOS filled granule-like structures located next to the cell membrane suggested that iNOS was stored in pre-formed vesicles and available for rapid release upon activation. Tumor

  5. Genetic deletion of NOS3 increases lethal cardiac dysfunction following mouse cardiac arrest.

    PubMed

    Beiser, David G; Orbelyan, Gerasim A; Inouye, Brendan T; Costakis, James G; Hamann, Kimm J; McNally, Elizabeth M; Vanden Hoek, Terry L

    2011-01-01

    Cardiac arrest mortality is significantly affected by failure to obtain return of spontaneous circulation (ROSC) despite cardiopulmonary resuscitation (CPR). Severe myocardial dysfunction and cardiovascular collapse further affects mortality within hours of initial ROSC. Recent work suggests that enhancement of nitric oxide (NO) signaling within minutes of CPR can improve myocardial function and survival. We studied the role of NO signaling on cardiovascular outcomes following cardiac arrest and resuscitation using endothelial NO synthase knockout (NOS3(-/-)) mice. Adult female wild-type (WT) and NOS3(-/-) mice were anesthetized, intubated, and instrumented with left-ventricular pressure-volume catheters. Cardiac arrest was induced with intravenous potassium chloride. CPR was performed after 8min of untreated arrest. ROSC rate, cardiac function, whole-blood nitrosylhemoglobin (HbNO) concentrations, heart NOS3 content and phosphorylation (p-NOS3), cyclic guanosine monophosphate (cGMP), and phospho-troponin I (p-TnI) were measured. Despite equal quality CPR, NOS3(-/-) mice displayed lower rates of ROSC compared to WT (47.6% [10/21] vs. 82.4% [14/17], p<0.005). Among ROSC animals, NOS3(-/-) vs. WT mice exhibited increased left-ventricular dysfunction and 120min mortality. Prior to ROSC, myocardial effectors of NO signaling including cGMP and p-TnI were decreased in NOS3(-/-) vs. WT mice (p<0.05). Following ROSC in WT mice, significant NOS3-dependent increases in circulating HbNO were seen by 120min. Significant increases in cardiac p-NOS3 occurred between end-arrest and 15min post-ROSC, while total NOS3 content was increased by 120min post-ROSC (p<0.05). Genetic deletion of NOS3 decreases ROSC rate and worsens post-ROSC left-ventricular function. Poor cardiovascular outcomes are associated with differences in NOS3-dependent myocardial cGMP signaling and circulating NO metabolites. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  6. 75 FR 66802 - Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... COMMISSION Calvert Cliffs Nuclear Power Plant, LLC; Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2... Regulatory Commission (the Commission) has granted the request of Calvert Cliffs Nuclear Power Plant, LLC... Operating License Nos. DPR-53 and DPR-69 for the Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and...

  7. 75 FR 16521 - Virginia Electric and Power Company Surry Power Station, Unit Nos. 1 and 2; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ... COMMISSION Virginia Electric and Power Company Surry Power Station, Unit Nos. 1 and 2; Exemption 1.0 Background The Virginia Electric and Power Company, (the licensee) is the holder of Facility Operating License Nos. DPR-32 and DPR-37, which authorize operation of the Surry Power Station, Unit Nos. 1 and...

  8. 75 FR 75706 - Dresden Nuclear Power Station, Units 2 and 3 and Quad Cities Nuclear Power Station, Unit Nos. 1...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-06

    ... Power Station, Units 2 and 3 and Quad Cities Nuclear Power Station, Unit Nos. 1 and 2; Notice of... Nuclear Power Station, Units 2 and 3, respectively, located in Grundy County, Illinois, and to Renewed Facility Operating License Nos. DPR-29 and DPR-30 for Quad Cities Nuclear Power Station, Unit Nos. 1 and 2...

  9. Differential engagements of glutamate and GABA receptors in cardiovascular actions of endogenous nNOS or iNOS at rostral ventrolateral medulla of rats

    PubMed Central

    Chan, Samuel H H; Wang, Ling-Lin; Chan, Julie Y H

    2003-01-01

    We evaluated in Sprague–Dawley rats anaesthetized with propofol the engagement of soluble guanylyl cyclase (sGC)/cGMP cascade, glutamatergic and GABAergic neurotransmission in the cardiovascular actions of endogenous nitric oxide (NO) at the rostral ventrolateral medulla (RVLM). Microinjection bilaterally into the RVLM of a selective iNOS inhibitor, S-methylisothiourea (SMT, 250 pmoles), or a selective nNOS inhibitor, 7-nitroindazole (7-NI, 5 pmoles), induced respectively an enhancement or a reduction in systemic arterial pressure, heart rate and power density of the vasomotor components in the spectrum of arterial blood pressure signals, our experimental index for sympathetic neurogenic vasomotor tone. The cardiovascular actions of SMT or 7-NI in the RVLM were significantly antagonized by co-administration into the RVLM of the sGC inhibitor, 1H-[1,2,4]Oxadiazole[4,3-α]quinoxalin-1-one (ODQ, 250 or 500 pmoles). The cardiovascular excitatory effects after blockade of endogenous iNOS activity were significantly attenuated when N-methyl-D-aspartate (NMDA) receptor antagonist, dizocilpine (20 or 50 pmoles), or non-NMDA receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (250 or 500 pmoles), was co-microinjected bilaterally into the RVLM. On the other hand, the cardiovascular depressive responses to blockade of endogenous nNOS activity were significantly antagonized on co-administration of GABAA receptor antagonist, bicuculline methiodine (5 or 10 pmoles), but not GABAB receptor antagonist, 2-hydroxy saclofen (50 or 100 pmoles). We conclude that the cardiovascular actions of endogenous NO in the RVLM engage the sGC/cGMP pathway. In addition, whereas NO derived from nNOS induced sympathoexcitation via both NMDA and non-NMDA receptors in the RVLM, NO generated by iNOS elicited sympathoinhibition via GABAA receptors. PMID:12598412

  10. eNOS Protects from Atherosclerosis Despite Relevant Superoxide Production by the Enzyme in apoE−/− Mice

    PubMed Central

    Ponnuswamy, Padmapriya; Schröttle, Angelika; Ostermeier, Eva; Grüner, Sabine; Huang, Paul L.; Ertl, Georg; Hoffmann, Ulrich; Nieswandt, Bernhard; Kuhlencordt, Peter J.

    2012-01-01

    Background All three nitric oxide synthase (NOS) isoforms are expressed in atherosclerotic plaques. NOS enzymes in general catalyse NO production. However, under conditions of substrate and cofactor deficiency, the enzyme directly catalyse superoxide formation. Considering this alternative chemistry, the effects of NOS on key events in spontaneous hyperlipidemia driven atherosclerosis have not been investigated yet. Here, we evaluate how endothelial nitric oxide synthase (eNOS) modulates leukocyte/endothelial- (L/E) and platelet/endothelial- (P/E) interactions in atherosclerosis and the production of nitric oxide (NO) and superoxide by the enzyme. Principal Findings Intravital microscopy (IVM) of carotid arteries revealed significantly increased L/E-interactions in apolipoproteinE/eNOS double knockout mice (apoE−/−/eNOS−/−), while P/E-interactions did not differ, compared to apoE−/−. eNOS deficiency increased macrophage infiltration in carotid arteries and vascular cell adhesion molecule-1 (VCAM-1) expression, both in endothelial and smooth muscle cells. Despite the expression of other NOS isoforms (inducible NOS, iNOS and neuronal NOS, nNOS) in plaques, Electron Spin Resonance (ESR) measurements of NO showed significant contribution of eNOS to total circulating and vascular wall NO production. Pharmacological inhibition and genetic deletion of eNOS reduced vascular superoxide production, indicating uncoupling of the enzyme in apoE−/− vessels. Conclusion Overt plaque formation, increased vascular inflammation and L/E- interactions are associated with significant reduction of superoxide production in apoE−/−/eNOS−/− vessels. Therefore, lack of eNOS does not cause an automatic increase in oxidative stress. Uncoupling of eNOS occurs in apoE−/− atherosclerosis but does not negate the enzyme's strong protective effects. PMID:22291917

  11. Nox2-dependent glutathionylation of endothelial NOS leads to uncoupled superoxide production and endothelial barrier dysfunction in acute lung injury.

    PubMed

    Wu, Feng; Szczepaniak, William S; Shiva, Sruti; Liu, Huanbo; Wang, Yinna; Wang, Ling; Wang, Ying; Kelley, Eric E; Chen, Alex F; Gladwin, Mark T; McVerry, Bryan J

    2014-12-15

    Microvascular barrier integrity is dependent on bioavailable nitric oxide (NO) produced locally by endothelial NO synthase (eNOS). Under conditions of limited substrate or cofactor availability or by enzymatic modification, eNOS may become uncoupled, producing superoxide in lieu of NO. This study was designed to investigate how eNOS-dependent superoxide production contributes to endothelial barrier dysfunction in inflammatory lung injury and its regulation. C57BL/6J mice were challenged with intratracheal LPS. Bronchoalveolar lavage fluid was analyzed for protein accumulation, and lung tissue homogenate was assayed for endothelial NOS content and function. Human lung microvascular endothelial cell (HLMVEC) monolayers were exposed to LPS in vitro, and barrier integrity and superoxide production were measured. Biopterin species were quantified, and coimmunoprecipitation (Co-IP) assays were performed to identify protein interactions with eNOS that putatively drive uncoupling. Mice exposed to LPS demonstrated eNOS-dependent increased alveolar permeability without evidence for altered canonical NO signaling. LPS-induced superoxide production and permeability in HLMVEC were inhibited by the NOS inhibitor nitro-l-arginine methyl ester, eNOS-targeted siRNA, the eNOS cofactor tetrahydrobiopterin, and superoxide dismutase. Co-IP indicated that LPS stimulated the association of eNOS with NADPH oxidase 2 (Nox2), which correlated with augmented eNOS S-glutathionylation both in vitro and in vivo. In vitro, Nox2-specific inhibition prevented LPS-induced eNOS modification and increases in both superoxide production and permeability. These data indicate that eNOS uncoupling contributes to superoxide production and barrier dysfunction in the lung microvasculature after exposure to LPS. Furthermore, the results implicate Nox2-mediated eNOS-S-glutathionylation as a mechanism underlying LPS-induced eNOS uncoupling in the lung microvasculature.

  12. Mitochondrial NOS upregulation during renal I/R causes apoptosis in a peroxynitrite-dependent manner.

    PubMed

    Viñas, J L; Sola, A; Hotter, G

    2006-04-01

    In the last decade, various groups have found evidence of nitric oxide production by mitochondrial nitric oxide synthase (mNOS) in a range of experimental models. However, little is known about the role of mNOS in renal ischemia-reperfusion (I/R) injury and its possible involvement in the apoptotic pathway. We analyzed the role of mNOS in apoptosis promotion in rat kidney I/R and its direct implication through experiments in which isolated kidney mitochondria were subjected to hypoxia/reoxygenation. Results showed that neuronal NOS located in the inner mitochondrial membrane is upregulated during renal I/R and that this upregulation, together with the increase in nitric oxide production, is involved in the generation of intramitochondrial peroxynitrite, which in turn leads to cytochrome c release and apoptosis induction in renal I/R.

  13. 78 FR 39018 - Entergy Nuclear Operations, Inc.; Indian Point Nuclear Generating Unit Nos. 2 and 3

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-28

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Entergy Nuclear Operations, Inc.; Indian Point Nuclear Generating Unit Nos. 2 and 3 AGENCY: Nuclear Regulatory Commission. ACTION: Supplement to Final Supplement 38 to the Generic...

  14. 78 FR 23225 - Endangered Species; File Nos. 14759-01 and 16375-01

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-18

    ... Public Comment'' from the Features box on the Applications and Permits for Protected Species (APPS) home page, https://apps.nmfs.noaa.gov , and then selecting File Nos. 14759-01 and 16375-01 from the list of...

  15. 5. Walled courtyard with basketball hoop between Buildings Nos. 9944B ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Walled courtyard with basketball hoop between Buildings Nos. 9944-B (left) and 9945-B (right). - Madigan Hospital, Detention Wards, Bounded by Wilson & McKinley Avenues & Garfield & Lincoln Streets, Tacoma, Pierce County, WA

  16. Investigating the Role of NOS2 in Breast Cancer | Center for Cancer Research

    Cancer.gov

    Inducible nitric oxide synthase (NOS2) is often elevated in breast tumors that lack expression of the estrogen receptor (ER) and predicts a poor prognosis for patients with these tumors. However, it is unclear whether NOS2 directly contributes to ER-negative breast cancer aggressiveness or how NOS2 expression is controlled within the tumor microenvironment. To tease apart the regulatory pathways upstream and downstream of NOS2, David Wink, Jr., Ph.D., Senior Investigator in CCR’s Radiation Biology Branch, along with colleagues from CCR’s Pediatric Oncology Branch, Laboratory of Human Carcinogenesis, and Laboratory of Experimental Immunology and from the Prostate Cancer Institute in Ireland, carried out studies in cell culture and mouse models.

  17. Evidence of Aortopathy in Mice with Haploinsufficiency of Notch1 in Nos3-Null Background.

    PubMed

    Koenig, Sara N; Bosse, Kevin M; Nadorlik, Holly A; Lilly, Brenda; Garg, Vidu

    Thoracic aortic aneurysms (TAA) are a significant cause of morbidity and mortality in humans. While the exact etiology is unknown, genetic factors play an important role. Mutations in NOTCH1 have been linked to bicuspid aortic valve (BAV) and aortopathy in humans. The aim of this study was to determine if haploinsufficiency of Notch1 contributes to aortopathy using Notch1(+/-); Nos3(-/-) mice. Echocardiographic analysis of Notch1(+/-); Nos3(-/-) mice reveals effacement of the sinotubular junction and a trend toward dilation of the aortic sinus. Furthermore, examination of the proximal aorta of Notch1(+/-); Nos3(-/-) mice reveals elastic fiber degradation, a trend toward increased matrix metalloproteinase 2 expression, and increased smooth muscle cell apoptosis, features characteristic of aneurysmal disease. Although at a lower penetrance, we also found features consistent with aortopathic changes in Notch1 heterozygote mice and in Nos3-null mice. Our findings implicate a novel role for Notch1 in aortopathy of the proximal aorta.

  18. Combined effects of antioxidant vitamin and NOS3 genetic polymorphisms on breast cancer risk in women.

    PubMed

    Lee, Sang-Ah; Lee, Kyoung-Mu; Yoo, Keun-Young; Noh, Dong-Young; Ahn, Sei-Hyun; Kang, Daehee

    2012-02-01

    It is becoming increasingly clear that there is wide heterogeneity in genetic predisposition to breast cancer and that breast cancer risk is determined by interactive effect between genetic and environmental factors. We investigated the combined effects of antioxidant vitamin intake and NOS3 genetic polymorphisms on breast cancer risk in a Korean population (Seoul Breast Cancer Study). Histologically confirmed breast cancer cases (n = 512) and age, menopause status-matched controls (n = 512) with no present or previous history of cancer were recruited from several teaching hospitals in Seoul during 2001-2003. Two genetic polymorphisms of NOS3 (298G > T and -786 T > C) were assessed by single base extension assays. No overall association between the individual NOS3 genotypes or diplotypes and breast cancer risk was found, although the difference between cases and controls in the frequency of the NOS3 894 G > T polymorphism showed borderline significance (OR = 0.74, 95% CI = 0.52-1.06). There was no significant difference in energy intake or the intake of antioxidant vitamins between cases and controls, with the exception of vitamin E (OR = 0.49 lowest vs. highest quartile, P(trend) < 0.01). On the other hand, our results suggest that antioxidant vitamin intake may modify the effects of the NOS3 -786 T > C or 894 G > T genetic polymorphisms on breast cancer risk. Although a multiplicative interaction was not observed, the protective effect of β-carotene intake on breast cancer risk was observed predominantly in individuals with the TG:TG diplotype of NOS3 (OR = 0.68) but not observed with others diplotype. An inverse association between vitamin E intake and breast cancer risk was observed for individuals with the NOS3 786 TC + TT genotype and the NOS3 894 GG genotype. In addition, folic acid had a protective effect in the NOS3 786 TT and NOS3 894 GT + TT genotype. Our results suggest that intake of antioxidant vitamins might modify

  19. Development of nNOS-positive neurons in the rat sensory and sympathetic ganglia.

    PubMed

    Masliukov, P M; Emanuilov, A I; Madalieva, L V; Moiseev, K Y; Bulibin, A V; Korzina, M B; Porseva, V V; Korobkin, A A; Smirnova, V P

    2014-01-03

    Neurochemical features in sympathetic and afferent neurons are subject to change during development. Nitric oxide (NO) plays a developmental role in the nervous system. To better understand the neuroplasticity of sympathetic and afferent neurons during postnatal ontogenesis, the distribution of neuronal NO synthase (nNOS) immunoreactivity was studied in the sympathetic para- and prevertebral, nodose ganglion (NG) and Th2 and L4 dorsal root ganglia (DRG) from female Wistar rats of different ages (newborn, 10-day-old, 20-day-old, 30-day-old, 2-month-old, 6-month-old, 1-year-old, and 3-year-old). nNOS-positive neurons were revealed in all sensory ganglia but not in sympathetic ones from birth onward. The percentage of nNOS-immunoreactive (IR) neurons increased during first 10 days of life from 41.3 to 57.6 in Th2 DRG, from 40.9 to 59.1 in L4 DRG and from 31.6 to 38.5 in NG. The percentage of nNOS-IR neurons did not change in the NG later during development and senescence. However, in Th2 and L4 DRG the proportion of nNOS-IR neurons was high in animals between 10 and 30days of life and decreased up to the second month of life. In 2-month-old rats, the percentage of nNOS-IR neurons was 52.9 in Th2 DRG and 51.3 in L4 DRG. We did not find statistically significant differences in the percentage of nNOS-IR neurons between Th2 and L4 DRG and between young and aged rats. In NG and DRG of 10-day-old and older rats, a high proportion of nNOS-IR neurons binds isolectin B4. In newborn animals, only 41.3%, 45.3% and 28.4% of nNOS neuron profiles bind to IB4 in Th2, L4 DRG and NG, respectively. In 10-day-old and older rats, the number of sensory nNOS-IR neurons binding IB4 reached more than 90% in DRG and more than 80% in NG. Only a small number of nNOS-positive cells showed immunoreactivity to calcitonin gene-related peptide, neurofilament 200, calretinin. The information provided here will also serve as a basis for future studies investigating mechanisms of the development of

  20. RBC-NOS-dependent S-nitrosylation of cytoskeletal proteins improves RBC deformability.

    PubMed

    Grau, Marijke; Pauly, Sebastian; Ali, Jamal; Walpurgis, Katja; Thevis, Mario; Bloch, Wilhelm; Suhr, Frank

    2013-01-01

    Red blood cells (RBC) possess a nitric oxide synthase (RBC-NOS) whose activation depends on the PI3-kinase/Akt kinase pathway. RBC-NOS-produced NO exhibits important biological functions like maintaining RBC deformability. Until now, the cellular target structure for NO, to exert its influence on RBC deformability, remains unknown. In the present study we analyzed the modification of RBC-NOS activity by pharmacological treatments, the resulting influence on RBC deformability and provide first evidence for possible target proteins of RBC-NOS-produced NO in the RBC cytoskeletal scaffold. Blood from fifteen male subjects was incubated with the NOS substrate L-arginine to directly stimulate enzyme activity. Direct inhibition of enzyme activity was induced by L-N5-(1-Iminoethyl)-ornithin (L-NIO). Indirect stimulation and inhibition of RBC-NOS were achieved by applying insulin and wortmannin, respectively, substances known to affect PI3-kinase/Akt kinase pathway. The NO donor sodium nitroprusside (SNP) and the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) were additionally applied as NO positive and negative controls, respectively. Immunohistochemical staining was used to determine phosphorylation and thus activation of RBC-NOS. As a marker for NO synthesis nitrite was measured in plasma and RBCs using chemiluminescence detection. S-nitrosylation of erythrocyte proteins was determined by biotin switch assay and modified proteins were identified using LC-MS. RBC deformability was determined by ektacytometry. The data reveal that activated RBC-NOS leads to increased NO production, S-nitrosylation of RBC proteins and RBC deformability, whereas RBC-NOS inhibition resulted in contrary effects. This study first-time provides strong evidence that RBC-NOS-produced NO modifies RBC deformability through direct S-nitrosylation of cytoskeleton proteins, most likely α- and β-spectrins. Our data, therefore, gain novel insights into biological

  1. Role of the nNOS gene in ethanol-induced conditioned place preference in mice

    PubMed Central

    Itzhak, Yossef; Roger-Sánchez, Concepción; Anderson, Karen L.

    2009-01-01

    Nitric oxide (NO) produced by neuronal nitric oxide synthase (nNOS) has a role in synaptic plasticity, and evidence suggests its role in a range of effects produced by alcohol in the central nervous system. The aim of the current study was to investigate the role of the nNOS gene in the development of ethanol-induced conditioned place preference (CPP) in mice. The CPP paradigm is designed to investigate the reinforcing properties of drugs of abuse and the development of maladaptive behaviors, such as conditioned response to drug-associated stimuli, following repeated drug exposure. Adult male and female wild type (WT) and nNOS knockout (KO) mice on a mixed B6; 129S genetic background were trained by a morning saline session and afternoon ethanol (1, 2 and 3g/kg; intraperitoneally) session for four days. Place preference in a drug-free state was recorded on the following day. Results show that WT males and females developed robust CPP while nNOS KO mice did not (with the exception of female nNOS KO mice conditioned by 2g/kg ethanol). The differential response of WT and nNOS KO mice was not due to genotypic differences in motor behavior. To investigate if the absence of the nNOS gene causes specific impairment in processing the motivational effect of ethanol or an overall impairment in associative learning, WT and nNOS KO mice were trained by LiCl (150mg/kg) which causes conditioned place aversion (CPA). Results show that both WT and nNOS KO mice developed significant CPA. The findings that the absence of the nNOS gene impaired ethanol-induced CPP but not LiCl-induced CPA suggest that NO signaling has a specific role in processing the motivational effect of ethanol. Hence, inhibition of nNOS may attenuate the development of maladaptive behaviors associated with alcohol exposure. PMID:19362797

  2. The impact of human and mouse differences in NOS2 gene expression on the brain's redox and immune environment.

    PubMed

    Hoos, Michael D; Vitek, Michael P; Ridnour, Lisa A; Wilson, Joan; Jansen, Marilyn; Everhart, Angela; Wink, David A; Colton, Carol A

    2014-11-17

    Mouse models are used in the study of human disease. Despite well-known homologies, the difference in immune response between mice and humans impacts the application of data derived from mice to human disease outcomes. Nitric oxide synthase-2 (NOS2) is a key gene that displays species-specific outcomes via altered regulation of the gene promoter and via post-transcriptional mechanisms in humans that are not found in mice. The resulting levels of NO produced by activation of human NOS2 are different from the levels of NO produced by mouse Nos2. Since both tissue redox environment and immune responsiveness are regulated by the level of NO and its interactions, we investigated the significance of mouse and human differences on brain oxidative stress and on immune activation in HuNOS2tg/mNos2-/- mice that express the entire human NOS2 gene and that lack a functional mNos2 compared to wild type (WT) mice that express normal mNos2. Similarly to human, brain tissue from HuNOS2tg/mNos2-/- mice showed the presence of a NOS2 gene 3'UTR binding site. We also identified miRNA-939, the binding partner for this site, in mouse brain lysates and further demonstrated reduced levels of nitric oxide (NO) typical of the human immune response on injection with lipopolysaccharide (LPS). HuNOS2tg/mNos2-/- brain samples were probed for characteristic differences in redox and immune gene profiles compared to WT mice using gene arrays. Selected genes were also compared against mNos2-/- brain lysates. Reconstitution of the human NOS2 gene significantly altered genes that encode multiple anti-oxidant proteins, oxidases, DNA repair, mitochondrial proteins and redox regulated immune proteins. Expression levels of typical pro-inflammatory, anti-inflammatory and chemokine genes were not significantly different with the exception of increased TNFα and Ccr1 mRNA expression in the HuNOS2tg/mNos2-/- mice compared to WT or mNos2-/- mice. NO is a principle factor in establishing the tissue redox

  3. (−)-Epicatechin activation of endothelial cell eNOS, NO and related signaling pathways

    PubMed Central

    Ramirez-Sanchez, Israel; Maya, Lisandro; Ceballos, Guillermo; Villarreal, Francisco

    2010-01-01

    Recent reports indicate that (−)-epicatechin can exert cardioprotective actions, which may involve eNOS-mediated nitric oxide production in endothelial cells. However, the mechanism by which (−)-epicatechin activates eNOS remains unclear. In this study, we proposed to identify the intracellular pathways involved in (−)-epicatechin-induced effects on eNOS, utilizing human coronary artery endothelial cells in culture. Treatment of cells with (−)-epicatechin leads to time- and dose-dependent effects, which peaked at 10 min at 1 μmol/L. (−)-Epicatechin treatment activates eNOS via serine-633 and serine-1177 phosphorylation and threonine-495 dephosphorylation. Using specific inhibitors, we have established the participation of the PI3K pathway in eNOS activation. (−)-Epicatechin induces eNOS uncoupling from caveolin-1 and its association with calmodulin-1, suggesting the involvement of intracellular calcium. These results allowed us to propose that (−) epicatechin effects may be dependent on actions exerted at the cell membrane level. To test this hypothesis, cells were treated with the phospholipase C inhibitor U73122, which blocked (−)-epicatechin-induced eNOS activation. We also demonstrated inositol phosphate accumulation in (−)-epicatechin-treated cells. The inhibitory effects of the pre-incubation of cells with the CaMKII inhibitor KN-93 indicate that (−)-epicatechin-induced eNOS activation is at least partially mediated via the Ca2+/CaMKII pathway. The (−)-epicatechin stereoisomer catechin was only able to partially stimulate nitric oxide production in cells. Altogether, these results strongly suggest the presence of a cell surface acceptor-effector for the cacao flavanol (−)-epicatechin, which may mediate its cardiovascular effects. PMID:20404222

  4. Mechanism for dynamic regulation of iNOS expression after UVB-irradiation.

    PubMed

    Lu, Wei; Wu, Shiyong

    2013-08-01

    Ultraviolet B (UVB) induces an immediate activation of cNOSs, which contributes to the early release of nitric oxide after irradiation. UVB also induces the expression of iNOS, which peaks at both the mRNA and protein level near 24 h post-irradiation. The induced expression of iNOS contributes largely to the late elevation of nitric oxide after UVB irradiation. However, the regulation of iNOS expression in the early stages of UVB irradiation is not well studied. We previously reported that the UVB-induced early release of nitric oxide leads to the activation of PERK and GCN2, which phosphorylate the alpha-subunit of eIF2 and inhibit protein synthesis. In this report, we demonstrate that eIF2 phosphorylation plays a critical role in regulation of iNOS expression in the early-phase (with in 12 h) of UVB irradiation. Our data shows that with an increased phosphorylation of eIF2, the iNOS protein expression was reduced even though the iNOS mRNA expression was linearly increased in HaCaT and MEF cells after UVB irradiation. The UVB-induced dynamic up- and down-regulation of iNOS expression was almost completely lost in MEF(A/A) cells, which contain a nonphosphorylatable S51A mutation on eIF2. Our results suggest that the UVB-induced eIF2 phosphorylation does not only regulate iNOS expression at the translational level, but at the transcriptional level as well.

  5. NADPH Oxidase 4 Promotes Endothelial Angiogenesis Through eNOS Activation

    PubMed Central

    Craige, Siobhan M.; Kai, Chen; Pei, Yongmei; Chunying, Li; Xiaoyun, Huang; Christine, Chen; Shibata, Rei; Sato, Kaori; Walsh, Kenneth; Keaney, John F.

    2013-01-01

    Background Reactive Oxygen Species (ROS) serve signaling functions in the vasculature, and hypoxia has been associated with increased ROS production. NADPH oxidase 4 (Nox4) is an ROS-producing enzyme that is highly expressed in the endothelium, yet its specific role is unknown. We sought to determine the role of Nox4 in the endothelial response to hypoxia. Methods and Results Hypoxia induced Nox4 expression both in vitro and in vivo and overexpression of Nox4 was sufficient to promote endothelial proliferation, migration, and tube formation. To determine the in vivo relevance of our observations, we generated transgenic mice with endothelial-specific Nox4 overexpression using the VE-cadherin promoter (VECad-Nox4 mice). In vivo, the VECad-Nox4 mice had accelerated recovery from hind limb ischemia and enhanced aortic capillary sprouting. Because endothelial nitric oxide synthase (eNOS) is involved in endothelial angiogenic responses and eNOS is activated by ROS, we probed the effect of Nox4 on eNOS. In cultured ECs overexpressing Nox4 we observed a significant increase in eNOS protein expression and activity. To causally address the link between eNOS and Nox4 we crossed our transgenic Nox4 mice with eNOS-/- mice. Aorta from these mice did not demonstrate enhanced aortic sprouting and VECad-Nox4 mice on the eNOS-/- background did not demonstrate enhanced recovery from hind limb ischemia. Conclusions Collectively, we demonstrate that augmented endothelial Nox4 expression promotes angiogenesis and recovery from hypoxia in an eNOS-dependent manner. PMID:21788590

  6. A central role of eNOS in the protective effect of wine against metabolic syndrome.

    PubMed

    Leighton, Federico; Miranda-Rottmann, Soledad; Urquiaga, Inés

    2006-01-01

    The positive health effects derived from moderate wine consumption are pleiotropic. They appear as improvements in cardiovascular risk factors such as plasma lipids, haemostatic mechanisms, endothelial function and antioxidant defences. The active principles would be ethanol and mainly polyphenols. Results from our and other laboratories support the unifying hypothesis that the improvements in risk factors after red wine consumption are mediated by endothelial nitric oxide synthase (eNOS). Many genes are involved, but the participation of eNOS would be a constant feature. The metabolic syndrome is a cluster of metabolic risk factors associated with high risk of cardiovascular disease (CVD). The National Cholesterol Education Programmmes Adult Treatment Panel III (NCEPATP III) clinical definition of the metabolic syndrome requires the presence of at least three risk factors, from among abdominal obesity, high plasma triacylglycerols, low plasma HDL, high blood pressure and high fasting plasma glucose. The molecular mechanisms responsible for the metabolic syndrome are not known. Since metabolic syndrome apparently affects 10-30% of the population in the world, research on its pathogenesis and control is needed. The recent finding that eNOS knockout mice present a cluster of cardiovascular risk factors comparable to those of the metabolic syndrome suggests that defects in eNOS function may cause human metabolic syndrome. These mice are hypertensive, insulin resistant and dyslipidemic. Further support for a pathogenic role of eNOS comes from the finding in humans that eNOS polymorphisms associate with insulin resistance and diabetes, with hypertension, with inflammatory and oxidative stress markers and with albuminuria. So, the data sustain the hypothesis that eNOS enhancement should reduce metabolic syndrome incidence and its consequences. Therefore red wine, since it enhances eNOS function, should be considered as a potential tool for the control of metabolic

  7. Renal collecting duct NOS1 maintains fluid-electrolyte homeostasis and blood pressure.

    PubMed

    Hyndman, Kelly A; Boesen, Erika I; Elmarakby, Ahmed A; Brands, Michael W; Huang, Paul; Kohan, Donald E; Pollock, David M; Pollock, Jennifer S

    2013-07-01

    Nitric oxide is a pronatriuretic and prodiuretic factor. The highest renal NO synthase (NOS) activity is found in the inner medullary collecting duct. The collecting duct (CD) is the site of daily fine-tune regulation of sodium balance, and led us to hypothesize that a CD-specific deletion of NOS1 would result in an impaired ability to excrete a sodium load leading to a salt-sensitive blood pressure phenotype. We bred AQP2-CRE mice with NOS1 floxed mice to produce flox control and CD-specific NOS1 knockout (CDNOS1KO) littermates. CDs from CDNOS1KO mice produced 75% less nitrite, and urinary nitrite+nitrate (NOx) excretion was significantly blunted in the knockout genotype. When challenged with high dietary sodium, CDNOS1KO mice showed significantly reduced urine output, sodium, chloride, and NOx excretion, and increased mean arterial pressure relative to flox control mice. In humans, urinary NOx is a newly identified biomarker for the progression of hypertension. These findings reveal that NOS1 in the CD is critical in the regulation of fluid-electrolyte balance, and this new genetic model of CD NOS1 gene deletion will be a valuable tool to study salt-dependent blood pressure mechanisms.

  8. Inducible NOS inhibition reverses tobacco-smoke-induced emphysema and pulmonary hypertension in mice.

    PubMed

    Seimetz, Michael; Parajuli, Nirmal; Pichl, Alexandra; Veit, Florian; Kwapiszewska, Grazyna; Weisel, Friederike C; Milger, Katrin; Egemnazarov, Bakytbek; Turowska, Agnieszka; Fuchs, Beate; Nikam, Sandeep; Roth, Markus; Sydykov, Akylbek; Medebach, Thomas; Klepetko, Walter; Jaksch, Peter; Dumitrascu, Rio; Garn, Holger; Voswinckel, Robert; Kostin, Sawa; Seeger, Werner; Schermuly, Ralph T; Grimminger, Friedrich; Ghofrani, Hossein A; Weissmann, Norbert

    2011-10-14

    Chronic obstructive pulmonary disease (COPD) is one of the most common causes of death worldwide. We report in an emphysema model of mice chronically exposed to tobacco smoke that pulmonary vascular dysfunction, vascular remodeling, and pulmonary hypertension (PH) precede development of alveolar destruction. We provide evidence for a causative role of inducible nitric oxide synthase (iNOS) and peroxynitrite in this context. Mice lacking iNOS were protected against emphysema and PH. Treatment of wild-type mice with the iNOS inhibitor N(6)-(1-iminoethyl)-L-lysine (L-NIL) prevented structural and functional alterations of both the lung vasculature and alveoli and also reversed established disease. In chimeric mice lacking iNOS in bone marrow (BM)-derived cells, PH was dependent on iNOS from BM-derived cells, whereas emphysema development was dependent on iNOS from non-BM-derived cells. Similar regulatory and structural alterations as seen in mouse lungs were found in lung tissue from humans with end-stage COPD. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Nitric oxide synthase 2 (NOS2) expression in histologically normal margins of oral squamous cell carcinoma

    PubMed Central

    Itoiz, María E.; Guiñazú, Natalia; Piccini, Daniel; Gea, Susana; López-de Blanc, Silvia

    2014-01-01

    The activity of Nitric Oxide Synthase 2 (NOS2) was found in oral squamous cell carcinomas (OSCC) but not in normal mucosa. Molecular changes associated to early carcinogenesis have been found in mucosa near carcinomas, which is considered a model to study field cancerization. The aim of the present study is to analyze NOS2 expression at the histologically normal margins of OSCC. Study Design: Eleven biopsy specimens of OSCC containing histologically normal margins (HNM) were analyzed. Ten biopsies of normal oral mucosa were used as controls. The activity of NOS2 was determined by immunohistochemistry. Salivary nitrate and nitrite as well as tobacco and alcohol consumption were also analyzed. The Chi-squared test was applied. Results: Six out of the eleven HNM from carcinoma samples showed positive NOS2 activity whereas all the control group samples yielded negative (p=0.005). No statistically significant association between enzyme expression and tobacco and/or alcohol consumption and salivary nitrate and nitrite was found. Conclusions: NOS2 expression would be an additional evidence of alterations that may occur in a state of field cancerization before the appearance of potentially malignant morphological changes. Key words:Field cancerization, oral squamous cell carcinoma, Nitric Oxide Synthase 2 (NOS2), malignity markers. PMID:24316703

  10. Neuronal NOS expression in rat's cuneate nuclei following passive forelimb movements and median nerve stimulation.

    PubMed

    Garifoli, Angelo; Laureanti, Floriana; Coco, Marinella; Perciavalle, Valentina; Maci, Tiziana; Perciavalle, Vincenzo

    2010-12-01

    Nitric oxide (NO) synthase (NOS) has been observed in the Cuneate Nuclei (CN), suggesting a role for NO in the modulation of their neurons' activity. The present study was undertaken to evaluate whether passive movement of forelimb as well as electric stimulation of medial nerve modulate the expression of neuronal isoform of NOS (nNOS) within CN. The experiments were carried out on 21 male Wistar rats, by using two different protocols. In the first group of rats the median nerve was stimulated with high frequency trains (phasic stimulation) or at constant frequency (tonic stimulation); as a control, in the third group, no stimulus was delivered. Moreover, in the second group of rats, we imposed to the animal's left forepaw circular paths at a roughly constant speed (continuous movement), or rapid flexions and extensions of the wrist (sudden movement); as a control, in the third group, no movement was imposed. After the experimental session, free-floating frontal sections of medulla oblongata were processed for nNOS or glutamate (GLU) immunohistochemistry. Phasic stimulation of the median nerve or sudden movements of the forelimb determines a significant decrement of the nNOS-positive neurons within the ipsilateral CN, whereas no effects were observed on GLU positive cells. We have also found a peculiar topographical distribution within IN of nNOS-positive neurons: positive cells were clustered at periphery of some "niches" having circular or elliptical form, with GLU positive cells at center.

  11. Fenofibrate activates AMPK and increases eNOS phosphorylation in HUVEC

    SciTech Connect

    Murakami, Hisashi; Murakami, Ryuichiro . E-mail: ryuichi@med.nagoya-u.ac.jp; Kambe, Fukushi; Cao, Xia; Takahashi, Ryotaro; Asai, Toru; Hirai, Toshihisa; Numaguchi, Yasushi; Okumura, Kenji; Seo, Hisao; Murohara, Toyoaki

    2006-03-24

    Fenofibrate improves endothelial function by lipid-lowering and anti-inflammatory effects. Additionally, fenofibrate has been demonstrated to upregulate endothelial nitric oxide synthase (eNOS). AMP-activated protein kinase (AMPK) has been reported to phosphorylate eNOS at Ser-1177 and stimulate vascular endothelium-derived nitric oxide (NO) production. We report here that fenofibrate activates AMPK and increases eNOS phosphorylation and NO production in human umbilical vein endothelial cells (HUVEC). Incubation of HUVEC with fenofibrate increased the phosphorylation of AMPK and acetyl-CoA carboxylase. Fenofibrate simultaneously increased eNOS phosphorylation and NO production. Inhibitors of protein kinase A and phosphatidylinositol 3-kinase failed to suppress the fenofibrate-induced eNOS phosphorylation. Neither bezafibrate nor WY-14643 activated AMPK in HUVEC. Furthermore, fenofibrate activated AMPK without requiring any transcriptional activities. These results indicate that fenofibrate stimulates eNOS phosphorylation and NO production through AMPK activation, which is suggested to be a novel characteristic of this agonist and unrelated to its effects on peroxisome proliferator-activated receptor {alpha}.

  12. Cloning of iNOS in the small spotted catshark (Scyliorhinus canicula).

    PubMed

    Reddick, Jennifer I; Goostrey, Anna; Secombes, Chris J

    2006-01-01

    The first cartilaginous fish iNOS gene has been cloned in the small spotted catshark, Scyliorhinus canicula. The cDNA was 4568 bp long, with a 3375 bp open reading frame encoding a protein of 1125 amino acids and a predicted molecular mass of 127.8 kDa. The catshark translation had 77% amino acid similarity with chicken iNOS and 70-73% similarity with known teleost i NOS molecules. The various co-factor binding sites were well conserved, with the calmodulin site hydrophobicity profile noticeable more similar to tetrapod molecules than teleost molecules. The catshark iNOS transcript was not typically expressed constitutively, with the exception of the gills. Clear induction of the gene was seen in splenocytes after exposure to Vibrio anguillarum in vivo, and after stimulation with LPS in vitro. iNOS message was first seen 2 h after stimulation, and was still apparent 24 h post-stimulation, the last timing studies. Poly I:C was also able to induce iNOS transcript expression in splenocytes, albeit at a later timing (i.e.24 h). Such findings suggest a role for this molecule in the non-specific defences of cartilaginous fish as seen in other vertebrate groups.

  13. Role of glypican-1 in endothelial NOS activation under various steady shear stress magnitudes.

    PubMed

    Zeng, Ye; Liu, Jingxia

    2016-11-01

    Blood flow patterns in proatherogenic and antiatherogenic regions are rather different. We hypothesize that the laminar flow with steady shear stress increased nitric oxide (NO) bioavailability while disturbed flow with low shear stress reduced it, which is mediating by glypican-1. Thus, we detected the expression of glypican-1 under different shear stress magnitudes, and tested whether the magnitude of shear stress determines the level of endothelial NO synthase (eNOS) via glypican-1 by using phosphatidylinositol phospholipase C (PI-PLC). Results revealed that the expression of glypican-1 depends on the magnitude and duration of shear stress loading. Activation of eNOS in HUVECs is downregulated by 4dyn/cm(2) of shear stress, but is upregulated by 15dyn/cm(2). Removal of glypican-1 significantly suppressed the 15dyn/cm(2) shear stress-induced eNOS activity, and further reduced the 4dyn/cm(2)-inhibited eNOS activity. Therefore, eNOS activation depends on shear stress magnitudes and is mediated by glypican-1. The role of glypican-1 in mediating the eNOS activation under shear stress might involve in protecting the endothelial function against disturbed flow and enhancing the sensitive of the endothelial cell to laminar flow, supporting a potential role of glypican-1 against atherosclerosis.

  14. Activation of Endothelial Nitric Oxide (eNOS) Occurs through Different Membrane Domains in Endothelial Cells

    PubMed Central

    Tran, Jason; Magenau, Astrid; Rodriguez, Macarena; Rentero, Carles; Royo, Teresa; Enrich, Carlos; Thomas, Shane R.; Grewal, Thomas; Gaus, Katharina

    2016-01-01

    Endothelial cells respond to a large range of stimuli including circulating lipoproteins, growth factors and changes in haemodynamic mechanical forces to regulate the activity of endothelial nitric oxide synthase (eNOS) and maintain blood pressure. While many signalling pathways have been mapped, the identities of membrane domains through which these signals are transmitted are less well characterized. Here, we manipulated bovine aortic endothelial cells (BAEC) with cholesterol and the oxysterol 7-ketocholesterol (7KC). Using a range of microscopy techniques including confocal, 2-photon, super-resolution and electron microscopy, we found that sterol enrichment had differential effects on eNOS and caveolin-1 (Cav1) colocalisation, membrane order of the plasma membrane, caveolae numbers and Cav1 clustering. We found a correlation between cholesterol-induced condensation of the plasma membrane and enhanced high density lipoprotein (HDL)-induced eNOS activity and phosphorylation suggesting that cholesterol domains, but not individual caveolae, mediate HDL stimulation of eNOS. Vascular endothelial growth factor (VEGF)-induced and shear stress-induced eNOS activity was relatively independent of membrane order and may be predominantly controlled by the number of caveolae on the cell surface. Taken together, our data suggest that signals that activate and phosphorylate eNOS are transmitted through distinct membrane domains in endothelial cells. PMID:26977592

  15. Activation of Endothelial Nitric Oxide (eNOS) Occurs through Different Membrane Domains in Endothelial Cells.

    PubMed

    Tran, Jason; Magenau, Astrid; Rodriguez, Macarena; Rentero, Carles; Royo, Teresa; Enrich, Carlos; Thomas, Shane R; Grewal, Thomas; Gaus, Katharina

    2016-01-01

    Endothelial cells respond to a large range of stimuli including circulating lipoproteins, growth factors and changes in haemodynamic mechanical forces to regulate the activity of endothelial nitric oxide synthase (eNOS) and maintain blood pressure. While many signalling pathways have been mapped, the identities of membrane domains through which these signals are transmitted are less well characterized. Here, we manipulated bovine aortic endothelial cells (BAEC) with cholesterol and the oxysterol 7-ketocholesterol (7KC). Using a range of microscopy techniques including confocal, 2-photon, super-resolution and electron microscopy, we found that sterol enrichment had differential effects on eNOS and caveolin-1 (Cav1) colocalisation, membrane order of the plasma membrane, caveolae numbers and Cav1 clustering. We found a correlation between cholesterol-induced condensation of the plasma membrane and enhanced high density lipoprotein (HDL)-induced eNOS activity and phosphorylation suggesting that cholesterol domains, but not individual caveolae, mediate HDL stimulation of eNOS. Vascular endothelial growth factor (VEGF)-induced and shear stress-induced eNOS activity was relatively independent of membrane order and may be predominantly controlled by the number of caveolae on the cell surface. Taken together, our data suggest that signals that activate and phosphorylate eNOS are transmitted through distinct membrane domains in endothelial cells.

  16. Mutation screening of NOS1AP gene in a large sample of psychiatric patients and controls

    PubMed Central

    2010-01-01

    Background The gene encoding carboxyl-terminal PDZ ligand of neuronal nitric oxide synthase (NOS1AP) is located on chromosome 1q23.3, a candidate region for schizophrenia, autism spectrum disorders (ASD) and obsessive-compulsive disorder (OCD). Previous genetic and functional studies explored the role of NOS1AP in these psychiatric conditions, but only a limited number explored the sequence variability of NOS1AP. Methods We analyzed the coding sequence of NOS1AP in a large population (n = 280), including patients with schizophrenia (n = 72), ASD (n = 81) or OCD (n = 34), and in healthy volunteers controlled for the absence of personal or familial history of psychiatric disorders (n = 93). Results Two non-synonymous variations, V37I and D423N were identified in two families, one with two siblings with OCD and the other with two brothers with ASD. These rare variations apparently segregate with the presence of psychiatric conditions. Conclusions Coding variations of NOS1AP are relatively rare in patients and controls. Nevertheless, we report the first non-synonymous variations within the human NOS1AP gene that warrant further genetic and functional investigations to ascertain their roles in the susceptibility to psychiatric disorders. PMID:20602773

  17. Resolution of experimental lung injury by Monocyte-derived inducible nitric oxide synthase (iNOS)

    PubMed Central

    D’Alessio, Franco R.; Tsushima, Kenji; Aggarwal, Neil R.; Mock, Jason R.; Eto, Yoshiki; Garibaldi, Brian T.; Files, Daniel C.; Avalos, Claudia R.; Rodriguez, Jackie V.; Waickman, Adam T.; Reddy, Sekhar P.; Pearse, David B.; Sidhaye, Venkataramana K.; Hassoun, Paul M.; Crow, Michael T.; King, Landon S.

    2012-01-01

    While early events in the pathogenesis of acute lung injury (ALI) have been defined, little is known about mechanisms mediating resolution. To search for determinants of resolution, we exposed wild type (WT) mice to intratracheal lipopolysacaccharide (i.t. LPS) and assessed the response at intervals to day 10, when injury had resolved. Inducible nitric oxide synthase (iNOS) was significantly upregulated in the lung at day 4 after LPS. When iNOS−/− mice were exposed to i.t. LPS, early lung injury was attenuated, however recovery was markedly impaired compared to wild type (WT) mice. iNOS−/− mice had increased mortality and sustained increases in markers of lung injury. Adoptive transfer of WT (iNOS+/+) bone marrow-derived monocytes or direct adenoviral gene delivery of iNOS into injured iNOS−/− mice restored resolution of ALI. Irradiated bone marrow chimeras confirmed the protective effects of myeloid-derived iNOS, but not of epithelial iNOS. Alveolar macrophages exhibited sustained expression of co-signalling molecule CD86 in iNOS−/− mice compared to WT mice. Antibody-mediated blockade of CD86 in iNOS−/− mice improved survival and enhanced resolution of lung inflammation. Our findings show that monocyte-derived iNOS plays a pivotal role in mediating resolution of ALI by modulating lung immune responses, thus facilitating clearance of alveolar inflammation and promoting lung repair. PMID:22844117

  18. Converging evidence for an impact of a functional NOS gene variation on anxiety-related processes

    PubMed Central

    Haaker, Jan; Glotzbach-Schoon, Evelyn; Schümann, Dirk; Andreatta, Marta; Mechias, Marie-Luise; Raczka, Karolina; Gartmann, Nina; Büchel, Christian; Mühlberger, Andreas; Pauli, Paul; Reif, Andreas; Kalisch, Raffael; Lonsdorf, Tina B.

    2016-01-01

    Being a complex phenotype with substantial heritability, anxiety and related phenotypes are characterized by a complex polygenic basis. Thereby, one candidate pathway is neuronal nitric oxide (NO) signaling, and accordingly, rodent studies have identified NO synthase (NOS-I), encoded by NOS1, as a strong molecular candidate for modulating anxiety and hippocampus-dependent learning processes. Using a multi-dimensional and -methodological replication approach, we investigated the impact of a functional promoter polymorphism (NOS1-ex1f-VNTR) on human anxiety-related phenotypes in a total of 1019 healthy controls in five different studies. Homozygous carriers of the NOS1-ex1f short-allele displayed enhanced trait anxiety, worrying and depression scores. Furthermore, short-allele carriers were characterized by increased anxious apprehension during contextual fear conditioning. While autonomous measures (fear-potentiated startle) provided only suggestive evidence for a modulatory role of NOS1-ex1f-VNTR on (contextual) fear conditioning processes, neural activation at the amygdala/anterior hippocampus junction was significantly increased in short-allele carriers during context conditioning. Notably, this could not be attributed to morphological differences. In accordance with data from a plethora of rodent studies, we here provide converging evidence from behavioral, subjective, psychophysiological and neuroimaging studies in large human cohorts that NOS-I plays an important role in anxious apprehension but provide only limited evidence for a role in (contextual) fear conditioning. PMID:26746182

  19. iNOS inhibition improves autonomic dysfunction and oxidative status in hypertensive obese rats.

    PubMed

    da Cunha, Natalia Veronez; Lopes, Fernanda Novi Cortegoso; Panis, Carolina; Cecchini, Rubens; Pinge-Filho, Phileno; Martins-Pinge, Marli Cardoso

    2017-01-01

    It has been suggested that nitric oxide (NO) from iNOS source is involved in inflammation and oxidative stress, and hypertension in obese subjects involves an inflammatory process. However, no study evaluated the participation of iNOS inhibition on cardiovascular, autonomic, and inflammatory parameters in obese rats. Obesity was induced by the administration of 4 mg/g body weight of monosodium glutamate (MSG) or equimolar saline (CTR) in newborn rats. On the 60th day, treatment with aminoguanidine (Amino, 50 mg/kg), an iNOS inhibitor, or 0.9% saline, was started. On the 90th day, mean arterial pressure (MAP) and heart rate (HR) were recorded in conscious rats and autonomic modulation was conducted with the CardioSeries software. Plasma samples were collected to assess lipid peroxidation and prostaglandins (PGE2). In addition, iNOS immunohistochemistry in cardiac tissue was evaluated. MSG rats showed hypertension compared to CTR, and Amino treatment did not reverse it. Obese rats presented increased sympathetic and decreased parasympathetic modulation to the heart, reverted by Amino treatment. Plasma PGE2 was increased in obese rats, and Amino treatment decreased. Obese rats presented increased plasma lipoperoxidation, which was decreased after Amino treatment. Also, cardiac iNOS immunohistochemistry was decreased after Amino treatment. Our data suggest that iNOS activation is involved in the systemic and cardiac mechanisms of oxidative stress, inflammation, and autonomic dysfunction derived from obesity.

  20. Epigenetic regulation of nitric oxide synthase 2, inducible (Nos2) by NLRC4 inflammasomes involves PARP1 cleavage.

    PubMed

    Buzzo, Carina de Lima; Medina, Tiago; Branco, Laura M; Lage, Silvia L; Ferreira, Luís Carlos de Souza; Amarante-Mendes, Gustavo P; Hottiger, Michael O; De Carvalho, Daniel D; Bortoluci, Karina R

    2017-02-02

    Nitric oxide synthase 2, inducible (Nos2) expression is necessary for the microbicidal activity of macrophages. However, NOS2 over-activation causes multiple inflammatory disorders, suggesting a tight gene regulation is necessary. Using cytosolic flagellin as a model for inflammasome-dependent NOS2 activation, we discovered a surprising new role for NLRC4/caspase-1 axis in regulating chromatin accessibility of the Nos2 promoter. We found that activation of two independent mechanisms is necessary for NOS2 expression by cytosolic flagellin: caspase-1 and NF-κB activation. NF-κB activation was necessary, but not sufficient, for NOS2 expression. Conversely, caspase-1 was necessary for NOS2 expression, but dispensable for NF-κB activation, indicating that this protease acts downstream NF-κB activation. We demonstrated that epigenetic regulation of Nos2 by caspase-1 involves cleavage of the chromatin regulator PARP1 (also known as ARTD1) and chromatin accessibility of the NF-κB binding sites located at the Nos2 promoter. Remarkably, caspase-1-mediated Nos2 transcription and NO production contribute to the resistance of macrophages to Salmonella typhimurium infection. Our results uncover the molecular mechanism behind the constricted regulation of Nos2 expression and open new therapeutic opportunities based on epigenetic activities of caspase-1 against infectious and inflammatory diseases.

  1. Epigenetic regulation of nitric oxide synthase 2, inducible (Nos2) by NLRC4 inflammasomes involves PARP1 cleavage

    PubMed Central

    Buzzo, Carina de Lima; Medina, Tiago; Branco, Laura M.; Lage, Silvia L.; Ferreira, Luís Carlos de Souza; Amarante-Mendes, Gustavo P.; Hottiger, Michael O.; De Carvalho, Daniel D.; Bortoluci, Karina R.

    2017-01-01

    Nitric oxide synthase 2, inducible (Nos2) expression is necessary for the microbicidal activity of macrophages. However, NOS2 over-activation causes multiple inflammatory disorders, suggesting a tight gene regulation is necessary. Using cytosolic flagellin as a model for inflammasome-dependent NOS2 activation, we discovered a surprising new role for NLRC4/caspase-1 axis in regulating chromatin accessibility of the Nos2 promoter. We found that activation of two independent mechanisms is necessary for NOS2 expression by cytosolic flagellin: caspase-1 and NF-κB activation. NF-κB activation was necessary, but not sufficient, for NOS2 expression. Conversely, caspase-1 was necessary for NOS2 expression, but dispensable for NF-κB activation, indicating that this protease acts downstream NF-κB activation. We demonstrated that epigenetic regulation of Nos2 by caspase-1 involves cleavage of the chromatin regulator PARP1 (also known as ARTD1) and chromatin accessibility of the NF-κB binding sites located at the Nos2 promoter. Remarkably, caspase-1-mediated Nos2 transcription and NO production contribute to the resistance of macrophages to Salmonella typhimurium infection. Our results uncover the molecular mechanism behind the constricted regulation of Nos2 expression and open new therapeutic opportunities based on epigenetic activities of caspase-1 against infectious and inflammatory diseases. PMID:28150715

  2. Apoptosis in testicular tissue of rats after vasectomy: evaluation of eNOS, iNOS immunoreactivities and the effects of ozone therapy

    PubMed Central

    Alpcan, Serhan; Başar, Halil; Aydos, Tolga Reşat; Kul, Oğuz; Kısa, Üçler; Başar, Murad Mehmet

    2014-01-01

    Objective: We aimed to investigate the changes in endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) expression and apoptotic index in rat testicular tissue, as well as serum and seminal plasma sex hormone levels after vasectomy, and the effect of ozone therapy (OT). Material and methods: Adult male Wistar rats were used (n=6 per group). Control (G1), sham for 4 weeks (G2) or 6 weeks (G3), orchiectomy at the 4th (G4) or 6th (G5) week after left vasectomy, orchiectomy at the 4th (G6) or 6th (G7) week after bilateral vasectomy, orchiectomy after 6 weeks OT following left (G8) or bilateral (G9) vasectomy, orchiectomy after 6 weeks OT (G10). Results: In the left testes, while there were increases in eNOS and iNOS immunoreactivity and apoptotic indexes in G4 and G5, no changes were observed in contralateral testis. These values increased in G6 and G7, while OT inhibited these parameters in the left testis of G8 and both testes of G9. Sex hormone levels did not show any changes after vasectomy and ozone therapy. Conclusion: While OT was found to be protective against some parameters mentioned above under stress conditions, it seemed to cause some harmful effects when used in healthy conditions. PMID:26328178

  3. NITRIC OXIDE PRODUCTION AND iNOS mRNA EXPRESSION IN IFN-8-STIMULATED CHICKEN MACROPHAGES TRANSFECTED WITH iNOS siRNAs

    USDA-ARS?s Scientific Manuscript database

    Utilizing RNA interference technology with siRNA in the HD-11 macrophage cell line, we determined how the knock-down of the iNOS (inducible nitric oxide synthase) gene affected IFN-' induced macrophage production of nitric oxide (NO) and mRNA expression of genes involved in this biological pathway i...

  4. Liposomal tetrahydrobiopterin preserves eNOS coupling in the post-ischemic heart conferring in vivo cardioprotection.

    PubMed

    Xie, Lin; Talukder, M A Hassan; Sun, Jian; Varadharaj, Saradhadevi; Zweier, Jay L

    2015-09-01

    Tetrahydrobiopterin (BH4) is an essential cofactor of nitric oxide synthase (NOS), and reduced BH4 availability leads to endothelial NOS (eNOS) uncoupling and increased reactive oxygen species (ROS) generation. Questions remain regarding the functional state of eNOS and role of BH4 availability in the process of in vivo myocardial ischemia-reperfusion (I/R) injury. Rats were subjected to 60min of in vivo left coronary artery occlusion and varying periods of reperfusion with or without pre-ischemic liposomal BH4 supplementation (1mg/kg, iv). Myocardial infarction was correlated with cardiac BH4 content, eNOS protein level, NOS enzyme activity, and ROS generation. In the vehicle group, 60-min ischemia drastically reduced myocardial BH4 content in the area at risk (AAR) compared to non-ischemic (NI) area and the level remained lower during early reperfusion followed by recovery after 24-h reperfusion. Total eNOS, activated eNOS protein level (eNOS Ser1177 phosphorylation) and NOS activity were also significantly reduced during ischemia and/or early reperfusion, but recovered after 24-h reperfusion. With liposomal BH4 treatment, BH4 levels were identical in the AAR and NI area during ischemia and/or early reperfusion, and were significantly higher than with vehicle. BH4 pre-treatment preserved eNOS Ser1177 phosphorylation and NOS activity in the AAR, and significantly reduced myocardial ROS generation and infarction compared to vehicle. These findings provide direct evidence that in vivo I/R induces eNOS dysfunction secondary to BH4 depletion, and that pre-ischemic liposomal BH4 administration preserves eNOS function conferring cardioprotection with reduced oxidative stress. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Coexpression of COX-2 and iNOS in Angiogenesis of Superficial Esophageal Squamous Cell Carcinoma.

    PubMed

    Kumagai, Youichi; Sobajima, Jun; Higashi, Morihiro; Ishiguro, Toru; Fukuchi, Minoru; Ishibashi, Keiichiro; Mochiki, Erito; Yakabi, Koji; Kawano, Tatsuyuki; Tamaru, Jun-ichi; Ishida, Hideyuki

    2015-04-01

    Using immunohistochemical staining, the present study was conducted to examine whether cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) affect angiogenesis in early-stage esophageal squamous cell carcinoma (ESCC). We also analyzed the correlation between these two factors. Cyclooxygenase 2, iNOS, and angiogenesis in early-stage ESCC are unclear. Using 10 samples of normal squamous epithelium, 7 samples of low-grade intraepithelial neoplasia (LGIN), and 45 samples of superficial esophageal cancer, we observed the expression of COX-2 and iNOS. We then investigated the COX-2 and iNOS immunoreactivity scores and the correlation between COX-2 or iNOS scores and microvessel density (MVD) using CD34 or CD105. The intensity of COX-2 or iNOS expression differed significantly according to histological type (P < 0.001). The scores of COX-2 and iNOS were lowest for normal squamous epithelium, followed in ascending order by LGIN, carcinoma in situ and tumor invading the lamina propria mucosae (M1-M2 cancer); and tumor invading the muscularis mucosa (M3) or deeper cancer. The differences were significant (P < 0.001). Cancers classified M1-M2 (P < 0.01 and P < 0.05, respectively); M3; or deeper cancer (P < 0.01) had significantly higher COX-2 and iNOS scores than normal squamous epithelium. There was a significant correlation between COX-2 and iNOS scores (P < 0.001, rs = 0.51). Correlations between COX-2 score and CD34-positive MVD or CD105-positive MVD were significant (rs = 0.53, P < 0.001; rs = 0.62, P < 0.001, respectively). Inducible nitric oxide synthase score was also significantly correlated with CD34 MVD and CD105 MVD (rs = 0.45, P < 0.001; rs = 0.60, P < 0.001, respectively). Chemoprevention of COX-2 or iNOS activity may blunt the development of ESCC from precancerous lesions.

  6. The protein inhibitor of nNOS (PIN/DLC1/LC8) binding does not inhibit the NADPH-dependent heme reduction in nNOS, a key step in NO synthesis

    SciTech Connect

    Parhad, Swapnil S.; Jaiswal, Deepa; Ray, Krishanu; Mazumdar, Shyamalava

    2016-03-25

    The neuronal nitric oxide synthase (nNOS) is an essential enzyme involved in the synthesis of nitric oxide (NO), a potent neurotransmitter. Although previous studies have indicated that the dynein light chain 1 (DLC1) binding to nNOS could inhibit the NO synthesis, the claim is challenged by contradicting reports. Thus, the mechanism of nNOS regulation remained unclear. nNOS has a heme-bearing, Cytochrome P450 core, and the functional enzyme is a dimer. The electron flow from NADPH to Flavin, and finally to the heme of the paired nNOS subunit within a dimer, is facilitated upon calmodulin (CaM) binding. Here, we show that DLC1 binding to nNOS-CaM complex does not affect the electron transport from the reductase to the oxygenase domain. Therefore, it cannot inhibit the rate of NADPH-dependent heme reduction in nNOS, which results in L-Arginine oxidation. Also, the NO release activity does not decrease with increasing DLC1 concentration in the reaction mix, which further confirmed that DLC1 does not inhibit nNOS activity. These findings suggest that the DLC1 binding may have other implications for the nNOS function in the cell. - Highlights: • The effect of interaction of nNOS with DLC1 has been debatable with contradicting reports in literature. • Purified DLC1 has no effect on electron transport between reductase and oxygenase domain of purified nNOS-CaM. • The NO release activity of nNOS was not altered by DLC1, supporting that DLC1 does not inhibit the enzyme. • These findings suggest that the DLC1 binding may have other implications for the nNOS function in the cell.

  7. Influence of coronary artery diameter on eNOS protein content

    NASA Technical Reports Server (NTRS)

    Laughlin, M. H.; Turk, J. R.; Schrage, W. G.; Woodman, C. R.; Price, E. M.

    2003-01-01

    The purpose of this study was to test the hypothesis that the content of endothelial nitric oxide synthase (eNOS) protein (eNOS protein/g total artery protein) increases with decreasing artery diameter in the coronary arterial tree. Content of eNOS protein was determined in porcine coronary arteries with immunoblot analysis. Arteries were isolated in six size categories from each heart: large arteries [301- to 2,500-microm internal diameter (ID)], small arteries (201- to 300-microm ID), resistance arteries (151- to 200-microm ID), large arterioles (101- to 150-microm ID), intermediate arterioles (51- to 100-microm ID), and small arterioles(<50-microm ID). To obtain sufficient protein for analysis from small- and intermediate-sized arterioles, five to seven arterioles 1-2 mm in length were pooled into one sample for each animal. Results establish that the number of smooth muscle cells per endothelial cell decreases from a number of 10 to 15 in large coronary arteries to 1 in the smallest arterioles. Immunohistochemistry revealed that eNOS is located only in endothelial cells in all sizes of coronary artery and in coronary capillaries. Contrary to our hypothesis, eNOS protein content did not increase with decreasing size of coronary artery. Indeed, the smallest coronary arterioles had less eNOS protein per gram of total protein than the large coronary arteries. These results indicate that eNOS protein content is greater in the endothelial cells of conduit arteries, resistance arteries, and large arterioles than in small coronary arterioles.

  8. Influence of coronary artery diameter on eNOS protein content

    NASA Technical Reports Server (NTRS)

    Laughlin, M. H.; Turk, J. R.; Schrage, W. G.; Woodman, C. R.; Price, E. M.

    2003-01-01

    The purpose of this study was to test the hypothesis that the content of endothelial nitric oxide synthase (eNOS) protein (eNOS protein/g total artery protein) increases with decreasing artery diameter in the coronary arterial tree. Content of eNOS protein was determined in porcine coronary arteries with immunoblot analysis. Arteries were isolated in six size categories from each heart: large arteries [301- to 2,500-microm internal diameter (ID)], small arteries (201- to 300-microm ID), resistance arteries (151- to 200-microm ID), large arterioles (101- to 150-microm ID), intermediate arterioles (51- to 100-microm ID), and small arterioles(<50-microm ID). To obtain sufficient protein for analysis from small- and intermediate-sized arterioles, five to seven arterioles 1-2 mm in length were pooled into one sample for each animal. Results establish that the number of smooth muscle cells per endothelial cell decreases from a number of 10 to 15 in large coronary arteries to 1 in the smallest arterioles. Immunohistochemistry revealed that eNOS is located only in endothelial cells in all sizes of coronary artery and in coronary capillaries. Contrary to our hypothesis, eNOS protein content did not increase with decreasing size of coronary artery. Indeed, the smallest coronary arterioles had less eNOS protein per gram of total protein than the large coronary arteries. These results indicate that eNOS protein content is greater in the endothelial cells of conduit arteries, resistance arteries, and large arterioles than in small coronary arterioles.

  9. Hindlimb unweighting decreases endothelium-dependent dilation and eNOS expression in soleus not gastrocnemius

    NASA Technical Reports Server (NTRS)

    Woodman, C. R.; Schrage, W. G.; Rush, J. W.; Ray, C. A.; Price, E. M.; Hasser, E. M.; Laughlin, M. H.

    2001-01-01

    We tested the hypothesis that hindlimb unweighting (HLU) decreases endothelium-dependent vasodilation and expression of endothelial nitric oxide synthase (eNOS) and superoxide dismutase-1 (SOD-1) in arteries of skeletal muscle with reduced blood flow during HLU. Sprague-Dawley rats (300-350 g) were exposed to HLU (n = 15) or control (n = 15) conditions for 14 days. ACh-induced dilation was assessed in muscle with reduced [soleus (Sol)] or unchanged [gastrocnemius (Gast)] blood flow during HLU. eNOS and SOD-1 expression were measured in feed arteries (FA) and in first-order (1A), second-order (2A), and third-order (3A) arterioles. Dilation to infusion of ACh in vivo was blunted in Sol but not Gast. In arteries of Sol muscle, HLU decreased eNOS mRNA and protein content. eNOS mRNA content was significantly less in Sol FA (35%), 1A arterioles (25%) and 2A arterioles (18%). eNOS protein content was less in Sol FA (64%) and 1A arterioles (65%) from HLU rats. In arteries of Gast, HLU did not decrease eNOS mRNA or protein. SOD-1 mRNA expression was less in Sol 2A arterioles (31%) and 3A arterioles (29%) of HLU rats. SOD-1 protein content was less in Sol FA (67%) but not arterioles. SOD-1 mRNA and protein content were not decreased in arteries from Gast. These data indicate that HLU decreases endothelium-dependent vasodilation, eNOS expression, and SOD-1 expression primarily in arteries of Sol muscle where blood flow is reduced during HLU.

  10. Striatal NOS1 has dimorphic expression and activity under stress and nicotine sensitization.

    PubMed

    Díaz, David; Murias, Azucena Rodrigo; Ávila-Zarza, Carmelo Antonio; Muñoz-Castañeda, Rodrigo; Aijón, José; Alonso, José Ramón; Weruaga, Eduardo

    2015-10-01

    Nicotine exerts its addictive influence through the meso-cortico-limbic reward system, where the striatum is essential. Nicotine addiction involves different neurotransmitters, nitric oxide (NO) being especially important, since it triggers the release of the others by positive feedback. In the nervous system, NO is mainly produced by nitric oxide synthase 1 (NOS1). However, other subtypes of synthases can also synthesize NO, and little is known about the specific role of each isoform in the process of addiction. In parallel, NOS activity and nicotine addiction are also affected by stress and sexual dimorphism. To determine the specific role of this enzyme, we analyzed both NOS expression and NO synthesis in the striatum of wild-type and NOS1-knocked out (KO) mice of both sexes in situations of nicotine sensitization and stress. Our results demonstrated differences between the caudate-putamen (CP) and nucleus accumbens (NA). With respect to NOS1 expression, the CP is a dimorphic region (27.5% lower cell density in males), but with a stable production of NO, exclusively due to this isoform. Thus, the nitrergic system of CP may not be involved in stress or nicotine addiction. Conversely, the NA is much more variable and strongly involved in both situations: its NO synthesis displays dimorphic variations at both basal (68.5% reduction in females) and stress levels (65.9% reduction in males), which disappear when nicotine is infused. Thus, the KO animals showed an increase in NO production (21.7%) in the NA, probably by NOS3, in an attempt to compensate the lack of NOS1.

  11. eNOS correlates with mitochondrial biogenesis in hearts of congenital heart disease with cyanosis.

    PubMed

    Xiao, Juan; Chen, Lin; Wang, Xuefeng; Liu, Mei; Xiao, Yingbin

    2012-09-01

    Mitochondrial biogenesis program in heart appears to exhibit adaptive remodeling following biomechanical and oxidative stress. The adaptive mechanisms that protect myocardium metabolism during hypoxia are coordinated in part by nitric oxide (NO). To observe mitochondrial biogenesis and nitric oxide synthase (NOS) expression in hearts of congenital heart disease with cyanosis, discuss mitochondrial response to chronic hypoxia in myocardium. 20 patients with cyanotic (n=10) or acyanotic cardiac defects (n=10) were investigated. Samples from the right ventricular outflow tract myocardium taken during operation were studied. Morphometric analysis of mitochondria was performed with transmission electron microscope. Relative mtDNA/nDNA ratio was determined with real-time PCR. Cytochrome c oxidase subunit I (COXI), peroxisome-proliferator-activated receptor γ coactivator-1α (PGC-1α), nuclear respiratory factor 1 (NRF1), and mitochondrial transcription factor A (Tfam) transcript levels were detected by real-time fluorescent RT-PCR. COXI and nNOS, iNOS and eNOS protein levels were measured with western blot. Mitochondrial volume density (Vv) and numerical density (Nv) were significantly elevated in patients with cyanotic compared to acyanotic congenital heart disease. Elevated mtDNA and up-regulated COXI, PGC-1α, NRF1 and Tfam mRNA levels were observed in cyanotic patients. Protein levels of COXI and eNOS were significantly higher in the myocardium of cyanotic than of acyanotic patients. PGC-1α transcript levels correlated with the levels of eNOS. Mitochondrial biogenesis is activated in right ventricular outflow tract myocardium in congenital heart disease with cyanosis, which could be the adaptive response to chronic hypoxia and possibly involves eNOS up-regulation.

  12. Expression of iNOS and NF-κB in melasma: an immunohistochemical study.

    PubMed

    Samaka, Rehab Monir; Bakry, Ola Ahmed; Shoeib, Mohamed Abd El Monaem; Zaaza, Marwa M

    2014-10-01

    To investigate the role of inducible nitric oxide synthases (iNOS) and nuclear factor-kappa B (NF-κB) in the pathogenesis of melasma through their immunohistochemical (IHC) co-localization in skin of melasma and to correlate their expression with the clinical and the histopathological data. This prospective case-control study was conducted on 34 female patients with melasma and 30 age- and gender-matched healthy subjects as a control group for evaluation of IHC expression of iNOS and NF-κB in melasma. There were significant differences between lesional and perilesional skin regarding iNOS intensity, iNOS histo-score (H-score), NF-κB intensity, and NF-κB H-score (p < 0.001 for all). There were significant associations between the higher values of H-scores for both iNOS and NF-κB and positive family history (p = 0.002 and p = 0.001, respectively) and very severe melasma areas and severity index score (p < 0.001 and p = 0.001, respectively). There was a positive correlation between H-score values of both iNOS and NF-κB (r = +0.604 and p < 0.001). The IHC co-localization and direct correlation of both iNOS and NF-κB in melasma could provide evidence about their role as co-players in melanogenesis and might provide new targets for a more efficient treatment for melasma.

  13. Genetic Deletion of the NOS3 Gene in CAV1-/- Mice Restores Aqueous Humor Outflow Function.

    PubMed

    Song, Maomao; Wu, Jihong; Lei, Yuan; Sun, Xinghuai

    2017-10-01

    The purpose of this study was to investigate the impact of genetic deletion of NOS3 in CAV1-/- mice on aqueous humor outflow function using a mouse genetic double knockout model (DKO, NOS3-/- CAV1-/-). IOP was measured in DKO, NOS3 KO, CAV1 KO, and wild-type (WT) mice by rebound tonometry. Outflow facility was measured by perfusing enucleated mouse eyes at multiple pressure steps. Sodium nitroprusside (SNP) and L-NG-nitroarginine methyl ester (L-NAME) was administered topically, whereas the contralateral eyes served as vehicle controls. IOP was measured in both eyes before drug treatment and 1 hour after the last drug treatment. Mock aqueous humor ± the nitric oxide (NO) donor SNP or NOS inhibitor L-NAME was perfused into enucleated eyes. IOP was 11 ± 0.23 mm Hg in DKO mice, which was similar to WT mice and significantly lower than CAV1 KO mice (n = 18, P > 0.05). NOS3 deletion in CAV1-/- mice resulted in a 1.9-fold increase in conventional outflow facility (Ccon) compared with CAV1 KO mice (n = 7, P < 0.05). Topical application of NO donor SNP did not significantly change IOP (n = 18, P > 0.05) or Ccon in DKO mice (SNP, n = 20; vehicle, n = 11, P > 0.05). Topical application of L-NAME significantly increased IOP in WT, DKO, and CAV1 mice by reducing Ccon. Nitrotyrosine and PKG levels of DKO mice were similar to, whereas sGC was lower than, WT mice (P < 0.05). Genetic deletion of NOS3 in CAV1-deficient mice restored IOP and conventional aqueous humor drainage to WT level. NOS3 and CAV1 interaction is important to IOP regulation.

  14. Hindlimb unweighting decreases endothelium-dependent dilation and eNOS expression in soleus not gastrocnemius

    NASA Technical Reports Server (NTRS)

    Woodman, C. R.; Schrage, W. G.; Rush, J. W.; Ray, C. A.; Price, E. M.; Hasser, E. M.; Laughlin, M. H.

    2001-01-01

    We tested the hypothesis that hindlimb unweighting (HLU) decreases endothelium-dependent vasodilation and expression of endothelial nitric oxide synthase (eNOS) and superoxide dismutase-1 (SOD-1) in arteries of skeletal muscle with reduced blood flow during HLU. Sprague-Dawley rats (300-350 g) were exposed to HLU (n = 15) or control (n = 15) conditions for 14 days. ACh-induced dilation was assessed in muscle with reduced [soleus (Sol)] or unchanged [gastrocnemius (Gast)] blood flow during HLU. eNOS and SOD-1 expression were measured in feed arteries (FA) and in first-order (1A), second-order (2A), and third-order (3A) arterioles. Dilation to infusion of ACh in vivo was blunted in Sol but not Gast. In arteries of Sol muscle, HLU decreased eNOS mRNA and protein content. eNOS mRNA content was significantly less in Sol FA (35%), 1A arterioles (25%) and 2A arterioles (18%). eNOS protein content was less in Sol FA (64%) and 1A arterioles (65%) from HLU rats. In arteries of Gast, HLU did not decrease eNOS mRNA or protein. SOD-1 mRNA expression was less in Sol 2A arterioles (31%) and 3A arterioles (29%) of HLU rats. SOD-1 protein content was less in Sol FA (67%) but not arterioles. SOD-1 mRNA and protein content were not decreased in arteries from Gast. These data indicate that HLU decreases endothelium-dependent vasodilation, eNOS expression, and SOD-1 expression primarily in arteries of Sol muscle where blood flow is reduced during HLU.

  15. Post-translational Regulation of Endothelial Nitric Oxide Synthase (eNOS) by Estrogens in the Rat Vagina

    PubMed Central

    Musicki, Biljana; Liu, Tongyun; Strong, Travis D.; Lagoda, Gwen A.; Bivalacqua, Trinity J.; Burnett, Arthur L.

    2010-01-01

    Introduction Estrogens control vaginal blood flow during female sexual arousal mostly through nitric oxide (NO). Although vascular effects of estrogens are attributed to an increase in endothelial NO production, the mechanisms of endothelial NO synthase (eNOS) regulation by estrogens in the vagina are largely unknown. Aims Our hypothesis was that estrogens regulate eNOS post-translationally in the vagina, providing a mechanism to affect NO bioavailability without changes in eNOS protein expression. Methods We measured eNOS phosphorylation and eNOS interaction with caveolin-1 and heat shock protein 90 (HSP90) in the distal and proximal vagina of female rats at diestrus, 7 days after ovariectomy and 2 days after replacement of ovariectomized rats with estradiol-17β (15 μg). Main Outcome Measures Molecular mechanisms of eNOS regulation by estrogen in the rat vagina. Results We localized phospho-eNOS (Ser-1177) immunohistochemically to the endothelium lining blood vessels and vaginal sinusoids. Estrogen withdrawal decreased phosphorylation of eNOS on its positive regulatory site (Ser-1177) and increased eNOS binding to its negative regulator caveolin-1 (without affecting eNOS/HSP90 interaction), and they were both normalized by estradiol replacement. Protein expressions of phosphorylated Akt (protein kinase B) and extracellular signal-regulated protein kinase 1/2 (ERK1/2) were not affected by estrogen status, suggesting that the effect of estrogens on eNOS (Ser-1177) phosphorylation was not mediated by activated AKT or ERK1/2. eNOS phosphorylation on its negative regulatory site (Ser-114) was increased in the vagina by estrogen withdrawal and normalized by estradiol replacement, implying that the maintenance of low phosphorylation of eNOS on this site by estradiol may limit eNOS interaction with caveolin-1 and preserve the enzyme's activity. Total eNOS, inducible NOS, caveolin-1, and HSP90 protein expressions were not affected by ovariectomy or estradiol replacement

  16. Prolonged Action Potential and After depolarizations Are Not due to Changes in Potassium Currents in NOS3 Knockout Ventricular Myocytes.

    PubMed

    Wang, Honglan; Bonilla, Ingrid M; Huang, Xin; He, Quanhua; Kohr, Mark J; Carnes, Cynthia A; Ziolo, Mark T

    2012-01-01

    Ventricular myocytes deficient in endothelial nitric oxide synthase (NOS3(-/-)) exhibit prolonged action potential (AP) duration and enhanced spontaneous activity (early and delayed afterdepolarizations) during β-adrenergic (β-AR) stimulation. Studies have shown that nitric oxide is able to regulate various K(+) channels. Our objective was to examine if NOS3(-/-) myocytes had altered K(+) currents. APs, transient outward (I(to)), sustained (I(Ksus)), and inward rectifier (I(K1)) K(+) currents were measured in NOS3(-/-) and wild-type (WT) myocytes. During β-AR stimulation, AP duration (measured as 90% repolarization-APD(90)) was prolonged in NOS3(-/-) compared to WT myocytes. Nevertheless, we did not observe differences in I(to), I(Ksus), or I(K1) between WT and NOS3(-/-) myocytes. Our previous work showed that NOS3(-/-) myocytes had a greater Ca(2+) influx via L-type Ca(2+) channels with β-AR stimulation. Thus, we measured β-AR-stimulated SR Ca(2+) load and found a greater increase in NOS3(-/-) versus WT myocytes. Hence, our data suggest that the prolonged AP in NOS3(-/-) myocytes is not due to changes in I(to), I(Ksus), or I(K1). Furthermore, the increase in spontaneous activity in NOS3(-/-) myocytes may be due to a greater increase in SR Ca(2+) load. This may have important implications for heart failure patients, where arrhythmias are increased and NOS3 expression is decreased.

  17. Involvement of NOS3 in RA-Induced neural differentiation of human NT2/D1 cells.

    PubMed

    Jezierski, Anna; Deb-Rinker, Paromita; Sodja, Caroline; Walker, P Roy; Ly, Dao; Haukenfrers, Julie; Sandhu, Jagdeep K; Bani-Yaghoub, Mahmud; Sikorska, Marianna

    2012-12-01

    Nitric oxide (NO) plays a key role in neurogenesis as a regulator of cell proliferation and differentiation. NO is synthesized from the amino acid L-arginine by nitric oxide synthases (NOS1, NOS2, and NOS3), which are encoded by separate genes and display different tissue distributions. We used an in vitro model of RA-induced neural differentiation of NT2 cells to examine which of the three NO-synthesizing enzymes is involved in this process. The results revealed a transient induction of NOS3 (known as the constitutively expressed endothelial nitric oxide synthase; eNOS) during the time course of the RA treatment. The peak of gene expression and the nuclear presence of NOS3 protein coincided with cell cycle exit of NT2-derived neuronal precursors. The subsequent analysis of cytosine methylation and histone H3 acetylation of the human NOS3 5' regulatory sequences indicated that epigenetic modifications, especially upstream of the proximal promoter (-734 to -989, relative to exon 2 TSS at +1), were also taking place. NOS1 was expressed only in the differentiated neurons (NT2-N), whereas NOS2 was not expressed at all in this cellular model. Thus, a burst of NO production, possibly required to inhibit neural cell proliferation, was generated by the transient expression of NOS3. This pattern of gene expression, in turn, required epigenetic remodeling of its regulatory region. Copyright © 2012 Wiley Periodicals, Inc.

  18. Activation of eNOS in endothelial cells exposed to ionizing radiation involves components of the DNA damage response pathway

    SciTech Connect

    Nagane, Masaki; Yasui, Hironobu; Sakai, Yuri; Yamamori, Tohru; Niwa, Koichi; Hattori, Yuichi; Kondo, Takashi; Inanami, Osamu

    2015-01-02

    Highlights: • eNOS activity is increased in BAECs exposed to X-rays. • ATM is involved in this increased eNOS activity. • HSP90 modulates the radiation-induced activation of ATM and eNOS. - Abstract: In this study, the involvement of ataxia telangiectasia mutated (ATM) kinase and heat shock protein 90 (HSP90) in endothelial nitric oxide synthase (eNOS) activation was investigated in X-irradiated bovine aortic endothelial cells. The activity of nitric oxide synthase (NOS) and the phosphorylation of serine 1179 of eNOS (eNOS-Ser1179) were significantly increased in irradiated cells. The radiation-induced increases in NOS activity and eNOS-Ser1179 phosphorylation levels were significantly reduced by treatment with either an ATM inhibitor (Ku-60019) or an HSP90 inhibitor (geldanamycin). Geldanamycin was furthermore found to suppress the radiation-induced phosphorylation of ATM-Ser1181. Our results indicate that the radiation-induced eNOS activation in bovine aortic endothelial cells is regulated by ATM and HSP90.

  19. Liposomal Tetrahydrobiopterin Preserves eNOS Coupling in the Post-ischemic Heart Conferring in vivo Cardioprotection

    PubMed Central

    Xie, Lin; Talukder, M A Hassan; Sun, Jian; Varadharaj, Saradhadevi; Zweier, Jay L.

    2015-01-01

    Tetrahydrobiopterin (BH4) is an essential cofactor of nitric oxide synthase (NOS), and reduced BH4 availability leads to endothelial NOS (eNOS) uncoupling and increased reactive oxygen species (ROS) generation. Questions remain regarding the functional state of eNOS and role of BH4 availability in the process of in vivo myocardial ischemia-reperfusion (I/R) injury. Rats were subjected to 60-minutes of in vivo left coronary artery occlusion and varying periods of reperfusion with or without pre-ischemic liposomal BH4 supplementation (1 mg/kg, iv). Myocardial infarction was correlated with cardiac BH4 content, eNOS protein level, NOS enzyme activity, and ROS generation. In the vehicle group, 60-min ischemia drastically reduced myocardial BH4 content in the area at risk (AAR) compared to non-ischemic (NI) area and the level remained lower during early reperfusion followed by recovery after 24-hr reperfusion. Activated eNOS protein level (eNOS Ser1177 phosphorylation) and NOS activity were also significantly reduced during ischemia and/or early reperfusion, but recovered after 24-hr reperfusion. With liposomal BH4 treatment, BH4 levels were identical in the AAR and NI area during ischemia and/or early reperfusion, and were significantly higher than with vehicle. BH4 pre-treatment preserved eNOS Ser1177 phosphorylation and NOS activity in the AAR, and significantly reduced myocardial ROS generation and infarction compared to vehicle. These findings provide direct evidence that in vivo I/R induces eNOS dysfunction secondary to BH4 depletion, and that pre-ischemic liposomal BH4 administration preserves eNOS function conferring cardioprotection with reduced oxidative stress. PMID:26116866

  20. Outcome after BCG treatment for urinary bladder cancer may be influenced by polymorphisms in the NOS2 and NOS3 genes.

    PubMed

    Ryk, Charlotta; Koskela, Lotta Renström; Thiel, Tomas; Wiklund, N Peter; Steineck, Gunnar; Schumacher, Martin C; de Verdier, Petra J

    2015-12-01

    Bacillus Calmette-Guérin (BCG)-treatment is an established treatment for bladder cancer, but its mechanisms of action are not fully understood. High-risk non-muscle invasive bladder-cancer (NMIBC)-patients failing to respond to BCG-treatment have worse prognosis than those undergoing immediate radical cystectomy and identification of patients at risk for BCG-failure is of high priority. Several studies indicate a role for nitric oxide (NO) in the cytotoxic effect that BCG exerts on bladder cancer cells. In this study we investigated whether NO-synthase (NOS)-gene polymorphisms, NOS2-promoter microsatellite (CCTTT)n, and the NOS3-polymorphisms-786T>C (rs2070744) and Glu298Asp (rs1799983), can serve as possible molecular markers for outcome after BCG-treatment for NMIBC. All NMIBC-patients from a well-characterized population based cohort were analyzed (n=88). Polymorphism data were combined with information from 15-years of clinical follow-up. The effect of BCG-treatment on cancer-specific death (CSD), recurrence and progression in patients with varying NOS-genotypes were studied using Cox proportional hazard-models and log rank tests. BCG-treatment resulted in significantly better survival in patients without (Log rank: p=0.006; HR: 0.12, p=0.048), but not in patients with a long version ((CCTTT)n ≧13 repeats) of the NOS2-promoter microsatellite. The NOS3-rs2070744(TT) and rs1799983(GG)-genotypes showed decreased risk for CSD (Log rank(TT): p=0.001; Log rank(GG): p=0.010, HR(GG): 0.16, p=0.030) and progression (Log rank(TT): p<0.001, HR(TT): 0.05, p=0.005; Log rank(GG): p<0.001, HR(GG): 0.10, p=0.003) after BCG-therapy compared to the other genotypes. There was also a reduction in recurrence in BCG-treated patients that was mostly genotype independent. Analysis of combined genotypes identified a subgroup of 30% of the BCG-treated patients that did not benefit from BCG-treatment. Our results suggest that the investigated polymorphisms influence patient response

  1. Up-regulation of the RhoA/Rho-kinase signaling pathway in corpus cavernosum from endothelial nitric-oxide synthase (NOS), but not neuronal NOS, null mice.

    PubMed

    Priviero, Fernanda B M; Jin, Li-Ming; Ying, Zhekang; Teixeira, Cleber E; Webb, R Clinton

    2010-04-01

    We tested the hypothesis that the basal release of nitric oxide (NO) from endothelial cells modulates contractile activity in the corpus cavernosum (CC) via inhibition of the RhoA/Rho-kinase signaling pathway. Cavernosal strips from wild-type (WT), endothelial nitric-oxide synthase knockout [eNOS(-/-)], and neuronal nitric-oxide synthase knockout [nNOS(-/-)] mice were mounted in myographs, and isometric force was recorded. mRNA and protein expression of key molecules in the RhoA/Rho-kinase pathway were analyzed by real-time polymerase chain reaction and Western blot, respectively. The cGMP levels were determined. The Rho-kinase inhibitors (R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide (Y-27632) and (S)-(+)-2-methyl-1-[(4-methyl-5-isoquinolinyl)sulfonyl] homopiperazine (H-1152) reduced cavernosal contractions evoked by phenylephrine or electrical field stimulation (EFS) in a concentration-dependent manner, although this inhibition was less effective in tissues from eNOS(-/-) mice. Y-27632 enhanced relaxations induced by sodium nitroprusside, EFS, and NO (administered as acidified NaNO2) without affecting the cGMP content of the cavernosal strips. This enhancement was less prominent in CC from eNOS(-/-). The protein expression of RhoA, Rho-guanine dissociation inhibitor, and Rho-kinase beta did not differ among the strains. However, in eNOS(-/-) CC, the protein expression of Rho-kinase alpha and both mRNA and protein expression of p115-Rho-associated guanine exchange factor (RhoGEF), PDZ-RhoGEF, and leukemia-associated RhoGEF were up-regulated. Phosphorylation of MYPT1 at Thr696 was higher in tissues from eNOS(-/-) mice. A high concentration of Y-27632 significantly enhanced NO release in CC stimulated by EFS. These results suggest a basal release of NO from endothelial cells, which inhibits contractions mediated by the RhoA/Rho-kinase pathway and modulates the expression of proteins related to this pathway in mouse CC. It indicates that

  2. Up-Regulation of the RhoA/Rho-Kinase Signaling Pathway in Corpus Cavernosum from Endothelial Nitric-Oxide Synthase (NOS), but Not Neuronal NOS, Null Mice

    PubMed Central

    Jin, Li-Ming; Ying, Zhekang; Teixeira, Cleber E.; Webb, R. Clinton

    2010-01-01

    We tested the hypothesis that the basal release of nitric oxide (NO) from endothelial cells modulates contractile activity in the corpus cavernosum (CC) via inhibition of the RhoA/Rho-kinase signaling pathway. Cavernosal strips from wild-type (WT), endothelial nitric-oxide synthase knockout [eNOS(−/−)], and neuronal nitric-oxide synthase knockout [nNOS(−/−)] mice were mounted in myographs, and isometric force was recorded. mRNA and protein expression of key molecules in the RhoA/Rho-kinase pathway were analyzed by real-time polymerase chain reaction and Western blot, respectively. The cGMP levels were determined. The Rho-kinase inhibitors (R)-(+)-trans-N-(4-pyridyl)-4-(1-aminoethyl)-cyclohexanecarboxamide (Y-27632) and (S)-(+)-2-methyl-1-[(4-methyl-5-isoquinolinyl)sulfonyl] homopiperazine (H-1152) reduced cavernosal contractions evoked by phenylephrine or electrical field stimulation (EFS) in a concentration-dependent manner, although this inhibition was less effective in tissues from eNOS(−/−) mice. Y-27632 enhanced relaxations induced by sodium nitroprusside, EFS, and NO (administered as acidified NaNO2) without affecting the cGMP content of the cavernosal strips. This enhancement was less prominent in CC from eNOS(−/−). The protein expression of RhoA, Rho-guanine dissociation inhibitor, and Rho-kinase β did not differ among the strains. However, in eNOS(−/−) CC, the protein expression of Rho-kinase α and both mRNA and protein expression of p115-Rho-associated guanine exchange factor (RhoGEF), PDZ-RhoGEF, and leukemia-associated RhoGEF were up-regulated. Phosphorylation of MYPT1 at Thr696 was higher in tissues from eNOS(−/−) mice. A high concentration of Y-27632 significantly enhanced NO release in CC stimulated by EFS. These results suggest a basal release of NO from endothelial cells, which inhibits contractions mediated by the RhoA/Rho-kinase pathway and modulates the expression of proteins related to this pathway in mouse CC. It

  3. iNOS-dependent increase in colonic mucus thickness in DSS-colitic rats.

    PubMed

    Schreiber, Olof; Petersson, Joel; Waldén, Tomas; Ahl, David; Sandler, Stellan; Phillipson, Mia; Holm, Lena

    2013-01-01

    To investigate colonic mucus thickness in vivo in health and during experimental inflammatory bowel disease. Colitis was induced with 5% DSS in drinking water for 8 days prior to experiment, when the descending colonic mucosa of anesthetized rats was studied using intravital microscopy. Mucus thickness was measured with micropipettes attached to a micromanipulator. To assess the contributions of NOS and prostaglandins in the regulation of colonic mucus thickness, the non-selective NOS-inhibitor L-NNA (10 mg/kg bolus followed by 3 mg/kg/h), the selective iNOS-inhibitor L-NIL (10 mg/kg bolus followed by 3 mg/kg/h) and the non-selective COX-inhibitor diclofenac (5 mg/kg) were administered intravenously prior to experiment. To further investigate the role of iNOS in the regulation of colonic mucus thickness, iNOS -/- mice were used. Colitic rats had a thicker firmly adherent mucus layer following 8 days of DSS treatment than untreated rats (88±2 µm vs 76±1 µm). During induction of colitis, the thickness of the colonic mucus layer initially decreased but was from day 3 significantly thicker than in untreated rats. Diclofenac reduced the mucus thickness similarly in colitic and untreated rats (-16±5 µm vs -14±2 µm). While L-NNA had no effect on colonic mucus thickness in DSS or untreated controls (+3±2 µm vs +3±1 µm), L-NIL reduced the mucus thickness significantly more in colitic rats than in controls (-33±4 µm vs -10±3 µm). The importance of iNOS in regulating the colonic mucus thickness was confirmed in iNOS-/- mice, which had thinner colonic mucus than wild-type mice (35±3 µm vs 50±2 µm, respectively). Furthermore, immunohistochemistry revealed increased levels of iNOS in the colonic surface epithelium following DSS treatment. Both prostaglandins and nitric oxide regulate basal colonic mucus thickness. During onset of colitis, the thickness of the mucus layer is initially reduced followed by an iNOS mediated increase.

  4. Role of endothelial nitric oxide synthase (eNOS) in chronic stress-promoted tumour growth

    PubMed Central

    Barbieri, Antonio; Palma, Giuseppe; Rosati, Alessandra; Giudice, Aldo; Falco, Antonia; Petrillo, Antonella; Petrillo, Mario; Bimonte, Sabrina; Benedetto, Maria Di; Esposito, Giuseppe; Stiuso, Paola; Abbruzzese, Alberto; Caraglia, Michele; Arra, Claudio

    2012-01-01

    Abstract Accumulating evidence suggests that chronic stress can be a cofactor for the initiation and progression of cancer. Here we evaluated the role of endothelial nitric oxide synthase (eNOS) in stress-promoted tumour growth of murine B16F10 melanoma cell line in C57BL/6 mice. Animals subjected to restraint stress showed increased levels adrenocorticotropic hormone, enlarged adrenal glands, reduced thymus weight and a 3.61-fold increase in tumour growth in respect to no-stressed animals. Tumour growth was significantly reduced in mice treated with the β-antagonist propranolol. Tumour samples obtained from stressed mice displayed high levels of vascular endothelial growth factor (VEGF) protein in immunohistochemistry. Because VEGF can induce eNOS increase, and nitric oxide is a relevant factor in angiogenesis, we assessed the levels of eNOS protein by Western blot analysis. We found a significant increase in eNOS levels in tumour samples from stressed mice, indicating an involvement of this enzyme in stress-induced tumour growth. Accordingly, chronic stress did not promote tumour growth in eNOS−/− mice. These results disclose for the first time a pivotal role for eNOS in chronic stress-induced initiation and promotion of tumour growth. PMID:21722303

  5. Effects of Dietary Decosahexaenoic Acid (Dha) on eNOS in Human Coronary Artery Endothelial Cells

    PubMed Central

    Stebbins, Charles L.; Stice, James P.; Hart, C. Michael; Mbai, Fiona N.; Knowlton, Anne A.

    2015-01-01

    Endothelial dysfunction occurs in heart disease, and may reduce functional capacity via attenuations in peripheral blood flow. Dietary DHA may improve this dysfunction, but the mechanism is unknown. We determined if DHA enhances expression and activity of eNOS in cultured human coronary artery endothelial cells (HCAEC). HCAEC from 4 donors were treated with 5 nM, 50 nM, or 1 μM DHA for 7 days to model chronic DHA exposure. A trend for increased expression of eNOS and phospho-eNOS was observed with 5 and 50 nM DHA. DHA also enhanced expression of two proteins instrumental in activation of eNOS; phospho-Akt (5 and 50 nM) and HSP90 (50 nM and 1 μM). VEGF-induced activation of Akt increased NOx in treated (50 nM DHA) vs. untreated HCAEC (9.2±1.0 vs. 3.3±1.1 μmols/μg protein/μl). Findings suggest that DHA enhances eNOS and Akt activity, augments HSP90 expression, and increases NO bioavailability in response to Akt kinase activation PMID:18682551

  6. Nitric oxide synthase 2 (NOS2) expression in histologically normal margins of oral squamous cell carcinoma.

    PubMed

    Morelatto, Rosana; Itoiz, María-Elina; Guiñazú, Natalia; Piccini, Daniel; Gea, Susana; López-de Blanc, Silvia

    2014-05-01

    The activity of Nitric Oxide Synthase 2 (NOS2) was found in oral squamous cell carcinomas (OSCC) but not in normal mucosa. Molecular changes associated to early carcinogenesis have been found in mucosa near carcinomas, which is considered a model to study field cancerization. The aim of the present study is to analyze NOS2 expression at the histologically normal margins of OSCC. Eleven biopsy specimens of OSCC containing histologically normal margins (HNM) were analyzed. Ten biopsies of normal oral mucosa were used as controls. The activity of NOS2 was determined by immunohistochemistry. Salivary nitrate and nitrite as well as tobacco and alcohol consumption were also analyzed. The Chi-squared test was applied. Six out of the eleven HNM from carcinoma samples showed positive NOS2 activity whereas all the control group samples yielded negative (p=0.005). No statistically significant association between enzyme expression and tobacco and/or alcohol consumption and salivary nitrate and nitrite was found. NOS2 expression would be an additional evidence of alterations that may occur in a state of field cancerization before the appearance of potentially malignant morphological changes.

  7. The Neurological Outcome Scale for Traumatic Brain Injury (NOS-TBI): I. Construct validity.

    PubMed

    Wilde, Elisabeth A; McCauley, Stephen R; Kelly, Tara M; Weyand, Annie M; Pedroza, Claudia; Levin, Harvey S; Clifton, Guy L; Schnelle, Kathleen P; Shah, Monika V; Moretti, Paolo

    2010-06-01

    The Neurological Outcome Scale for Traumatic Brain Injury (NOS-TBI) is a measure adapted from the National Institutes of Health Stroke Scale (NIHSS), and is intended to capture essential neurological deficits impacting individuals with traumatic brain injury (TBI) (see Wilde et al., 2010 ). In the present study we evaluate the measure's construct validity via comparison with a quantified neurological examination performed by a neurologist. Spearman rank-order correlation between the NOS-TBI and the neurological examination was rho = 0.76, p < 0.0001, suggesting a high degree of correspondence (construct validity) between these two measures of neurological function. Additionally, items from the NOS-TBI compared favorably to the neurological examination items, with correlations ranging from 0.60 to 0.99 (all p < 0.0001). On formal neurological examination, some degree of neurological impairment was observed in every participant in this cohort of individuals undergoing rehabilitation for TBI, and on the NOS-TBI neurological impairment was evident in all but one participant. This study documents the presence of measurable neurological sequelae in a sample of patients with TBI in a post-acute rehabilitation setting, underscoring the need for formal measurement of the frequency and severity of neurological deficits in this population. The results suggest that the NOS-TBI is a valid measure of neurological functioning in patients with TBI.

  8. L-theanine promotes nitric oxide production in endothelial cells through eNOS phosphorylation.

    PubMed

    Siamwala, Jamila H; Dias, Paul M; Majumder, Syamantak; Joshi, Manoj K; Sinkar, Vilas P; Banerjee, Gautam; Chatterjee, Suvro

    2013-03-01

    Consumption of tea (Camellia sinensis) improves vascular function and is linked to lowering the risk of cardiovascular disease. Endothelial nitric oxide is the key regulator of vascular functions in endothelium. In this study, we establish that l-theanine, a non-protein amino-acid found in tea, promotes nitric oxide (NO) production in endothelial cells. l-theanine potentiated NO production in endothelial cells was evaluated using Griess reaction, NO sensitive electrode and a NO specific fluorescent probe (4-amino-5-methylamino-2',7'-difluororescein diacetate). l-Theanine induced NO production was partially attenuated in presence of l-NAME or l-NIO and completely abolished using eNOS siRNA. eNOS activation was Ca(2+) and Akt independent, as assessed by fluo-4AM and immunoblotting experiments, respectively and was associated with phosphorylation of eNOS Ser 1177. eNOS phosphorylation was inhibited in the presence of ERK1/2 inhibitor, PD-98059 and partially inhibited by PI3K inhibitor, LY-294002 and Wortmanin suggesting PI3K-ERK1/2 dependent pathway. Increased NO production was associated with vasodilation in ex ovo (chorioallantoic membrane) model. These results demonstrated that l-theanine administration in vitro activated ERK/eNOS resulting in enhanced NO production and thereby vasodilation in the artery. The results of our experiments are suggestive of l-theanine mediated vascular health benefits of tea.

  9. Impact of historical science short stories on students' attitudes and NOS understanding

    NASA Astrophysics Data System (ADS)

    Hall, Garrett

    This study examines the impact of historical short stories on upper and lower level high school chemistry students in the second semester of a two-semester course at a large Midwestern suburban school. Research focused on improved understanding of six fundamental nature of science (NOS) concepts made explicit in the stories, recollection of historical examples from the stories that supported student NOS thinking; student attitudes toward historical stories in comparison to traditional textbook readings as well as student attitudes regarding scientists and the development of science ideas. Data collection included surveys over six NOS concepts, attitudes towards science and reading, and semi-structured interviews. Analysis of the data collected in this study indicated significant increases in understanding for three of the six NOS concepts within the upper-level students and one of the six concepts for lower level students. Students were able to draw upon examples from the stories to defend their NOS views but did so more frequently when responding verbally in comparison to written responses on the surveys. The analysis also showed that students in both levels would rather utilize historical short stories over a traditional textbook and found value in learning about scientists and how scientific ideas are developed.

  10. Interaction of nNOS with PSD-95 negatively controls regenerative repair after stroke.

    PubMed

    Luo, Chun-Xia; Lin, Yu-Hui; Qian, Xiao-Dan; Tang, Ying; Zhou, Hai-Hui; Jin, Xing; Ni, Huan-Yu; Zhang, Feng-Yun; Qin, Cheng; Li, Fei; Zhang, Yu; Wu, Hai-Yin; Chang, Lei; Zhu, Dong-Ya

    2014-10-01

    Stroke is a major public health concern. The lack of effective therapies heightens the need for new therapeutic targets. Mammalian brain has the ability to rewire itself to restore lost functionalities. Promoting regenerative repair, including neurogenesis and dendritic remodeling, may offer a new therapeutic strategy for the treatment of stroke. Here, we report that interaction of neuronal nitric oxide synthase (nNOS) with the protein postsynaptic density-95 (PSD-95) negatively controls regenerative repair after stroke in rats. Dissociating nNOS-PSD-95 coupling in neurons promotes neuronal differentiation of neural stem cells (NSCs), facilitates the migration of newborn cells into the injured area, and enhances neurite growth of newborn neurons and dendritic spine formation of mature neurons in the ischemic brain of rats. More importantly, blocking nNOS-PSD-95 binding during the recovery stage improves stroke outcome via the promotion of regenerative repair in rats. Histone deacetylase 2 in NSCs may mediate the role of nNOS-PSD-95 association. Thus, nNOS-PSD-95 can serve as a target for regenerative repair after stroke. Copyright © 2014 the authors 0270-6474/14/3413535-14$15.00/0.

  11. Association between Alzheimer's disease and the NOS3 gene Glu298Asp polymorphism.

    PubMed

    Hua, Ye; Zhao, Hui; Kong, Yuenan; Lu, Xiaojie

    2014-04-01

    The Glu298Asp gene polymorphism in NOS3 gene has been extensively investigated for association to Alzheimer's disease (AD), however, results of different studies have been inconsistent. The objective of this study is to assess the relationship of NOS3 Glu298Asp polymorphism and AD risk by using meta-analysis. All eligible case-control studies were searched in PubMed and Embase. Odds ratios (OR) with the 95% confidence intervals (CI) were used to assess the association. A total of 5522 cases and 4877 controls in 20 case-control studies were included. Obvious heterogeneity among studies was detected, and no significant association was observed between the NOS3 Glu298Asp polymorphism and AD risk. After exclusion of three studies, the heterogeneity disappeared and still no association was observed. In the subgroup analysis by ethnicity, we did not find any significant association between this polymorphism and AD risk in both Asians and Caucasians. This meta-analysis suggested that the NOS3 Glu298Asp gene polymorphism is not a strong risk factor for AD. To further evaluate gene-to-gene and gene-to-environmental interactions between polymorphisms of NOS3 gene and AD risk, more studies with large groups of patients are required.

  12. PGC-1α dictates endothelial function through regulation of eNOS expression

    PubMed Central

    Craige, Siobhan M.; Kröller-Schön, Swenja; Li, Chunying; Kant, Shashi; Cai, Shenghe; Chen, Kai; Contractor, Mayur M.; Pei, Yongmei; Schulz, Eberhard; Keaney, John F.

    2016-01-01

    Endothelial dysfunction is a characteristic of many vascular related diseases such as hypertension. Peroxisome proliferator activated receptor gamma, coactivator 1α (PGC-1α) is a unique stress sensor that largely acts to promote adaptive responses. Therefore, we sought to define the role of endothelial PGC-1α in vascular function using mice with endothelial specific loss of function (PGC-1α EC KO) and endothelial specific gain of function (PGC-1α EC TG). Here we report that endothelial PGC-1α is suppressed in angiotensin-II (ATII)-induced hypertension. Deletion of endothelial PGC-1α sensitized mice to endothelial dysfunction and hypertension in response to ATII, whereas PGC-1α EC TG mice were protected. Mechanistically, PGC-1α promotes eNOS expression and activity, which is necessary for protection from ATII-induced dysfunction as mice either treated with an eNOS inhibitor (LNAME) or lacking eNOS were no longer responsive to transgenic endothelial PGC-1α expression. Finally, we determined that the orphan nuclear receptor, estrogen related receptor α (ERRα) is required to coordinate the PGC-1α -induced eNOS expression. In conclusion, endothelial PGC-1α expression protects from vascular dysfunction by promoting NO• bioactivity through ERRα induced expression of eNOS. PMID:27910955

  13. Population structure from NOS genes correlates with geographical differences in coronary incidence across Europe.

    PubMed

    Carreras-Torres, Robert; Ferran, Albert; Zanetti, Daniela; Esteban, Esther; Varesi, Laurent; Pojskic, Naris; Coia, Valentina; Chaabani, Hassen; Via, Marc; Moral, Pedro

    2016-12-01

    The population analysis of cardiovascular risk and non-risk genetic variation can help to identify adaptive or random demographic processes that shaped coronary incidence variation across geography. In this study, 114 single nucleotide polymorphisms and 17 tandem repeat polymorphisms from Nitric Oxide Synthases (NOS) regions were analyzed in 1686 individuals from 35 populations from Europe, North Africa, and the Middle East. NOS genes encode for key enzymes on nitric oxide availability, which is involved in several cardiovascular processes. These genetic variations were used to test for selection and to infer the population structure of NOS regions. Moreover, we tested whether the variation in the incidence of coronary events and in the levels of classical risk factors in 11 of these European populations could be explained by the population structure estimates. Our results supported, first, the absence of clear signs of selection for NOS genetic variants associated with cardiovascular diseases, and second, the presence of a continuous genetic pattern of variation across European and North African populations without a Mediterranean barrier for gene flow. Finally, population structure estimates from NOS regions are closely correlated with coronary event rates and classical risk parameters (explaining 39-98%) among European populations. Our results reinforce the hypothesis that genetic bases of cardiovascular diseases and associated complex phenotypes could be geographically shaped by random demographic processes. © 2016 Wiley Periodicals, Inc.

  14. Extensive Ethnogenomic Diversity of Endothelial Nitric Oxide Synthase (eNOS) Polymorphisms

    PubMed Central

    Thomas, Bolaji N.; Thakur, Tanya J.; Yi, Li; Guindo, Aldiouma; Diallo, Dapa A.; Ott, Jurg

    2013-01-01

    Nitric oxide (NO) is highly reactive, produced in endothelial cells by endothelial NO synthase (eNOS) and has been implicated in sickle cell pathophysiology. We evaluated the distribution of functionally significant eNOS variants (the T786C variant in the promoter region, the Glu298Asp variant in exon 7, and the variable number of tandem repeats (VNTR) in intron 4) in Africans, African Americans and Caucasians. The C-786 variant was more common in Caucasians than in Africans and African Americans. Consistent with other findings, the Asp-298 variant had the highest frequency in Caucasians followed by African Americans, but was completely absent in Africans. The very rare intron 4 allele, eNOS 4c, was found in some Africans and African Americans, but not in Caucasians. eNOS 4d allele was present in 2 Africans. These findings suggest a consistent and widespread genomic diversity in the distribution of eNOS variants in Africans, comparative to African Americans and Caucasians. PMID:23400313

  15. iNOS Activity Modulates Inflammation, Angiogenesis, and Tissue Fibrosis in Polyether-Polyurethane Synthetic Implants

    PubMed Central

    Cassini-Vieira, Puebla; Araújo, Fernanda Assis; da Costa Dias, Filipi Leles; Russo, Remo Castro; Andrade, Silvia Passos; Teixeira, Mauro Martins; Barcelos, Luciola Silva

    2015-01-01

    There is considerable interest in implantation techniques and scaffolds for tissue engineering and, for safety and biocompatibility reasons, inflammation, angiogenesis, and fibrosis need to be determined. The contribution of inducible nitric oxide synthase (iNOS) in the regulation of the foreign body reaction induced by subcutaneous implantation of a synthetic matrix was never investigated. Here, we examined the role of iNOS in angiogenesis, inflammation, and collagen deposition induced by polyether-polyurethane synthetic implants, using mice with targeted disruption of the iNOS gene (iNOS−/−) and wild-type (WT) mice. The hemoglobin content and number of vessels were decreased in the implants of iNOS−/− mice compared to WT mice 14 days after implantation. VEGF levels were also reduced in the implants of iNOS−/− mice. In contrast, the iNOS−/− implants exhibited an increased neutrophil and macrophage infiltration. However, no alterations were observed in levels of CXCL1 and CCL2, chemokines related to neutrophil and macrophage migration, respectively. Furthermore, the implants of iNOS−/− mice showed boosted collagen deposition. These data suggest that iNOS activity controls inflammation, angiogenesis, and fibrogenesis in polyether-polyurethane synthetic implants and that lack of iNOS expression increases foreign body reaction to implants in mice. PMID:26106257

  16. Inhibition of nNOS and iNOS following hypoxia-ischaemia improves long-term outcome but does not influence the inflammatory response in the neonatal rat brain.

    PubMed

    van den Tweel, Evelyn R W; Peeters-Scholte, Cacha M P C D; van Bel, Frank; Heijnen, Cobi J; Groenendaal, Floris

    2002-01-01

    In this study, we tested the hypothesis that combined inhibition of nNOS and iNOS will reduce neuronal damage and the inflammatory response induced by perinatal hypoxia-ischaemia (HI). In 12-day-old rats, HI was induced by right carotid artery occlusion followed by 90 min of 8% O2. Immediately upon reoxygenation, the rats were treated with NOS inhibitors (n = 24) or placebo (n = 24). Neuropathology was scored at 6 weeks after HI on a 4-point scale (n = 12 per group). The expression of heat shock protein 70 (HSP70) and mRNA expression for cytokines were measured 12 h after HI (n = 12 per group). Histopathological analysis showed that the ipsilateral hemisphere in the NOS inhibition group was less damaged than in the placebo group (p < 0.05). HI induced a significant increase in HSP70 levels (p < 0.05) in the ipsilateral hemispheres, which tended to be lower in the NOS inhibition group (p = 0.07). HI induced an increase in mRNA expression for IL-1beta, TNF-alpha and TNF-beta, but there was no difference between the ipsi- and contralateral hemispheres. Combined inhibition of nNOS and iNOS did not induce any change in cytokine expression. We conclude that the long-term neuroprotective effects of combined nNOS and iNOS inhibition were not achieved by an altered cytokine response.

  17. Integrating nature of science instruction into a physical science content course for preservice elementary teachers: NOS views of teaching assistants

    NASA Astrophysics Data System (ADS)

    Hanuscin, Deborah L.; Akerson, Valarie L.; Phillipson-Mower, Teddie

    2006-09-01

    Teacher education programs have met with limited success in improving teachers' understanding of the nature of science (NOS). Research suggests that such efforts could be enhanced by addressing NOS in preservice teachers' science courses. We planned NOS instruction in a physical science content course for preservice elementary teachers. Our first concern was the NOS views of the instructors for the course, which included undergraduate teaching assistants (UTAs). We examined the NOS views of nine UTAs, and the impact of job-embedded professional development on their views. Although initially UTAs held a number of views inconsistent with science education reforms, four modes of explicit-and-reflective interventions, including analysis of NOS views of preservice teachers, resulted in favorable changes in UTAs' views.

  18. Increased intracellular Ca(2+) decreases cisplatin resistance by regulating iNOS expression in human ovarian cancer cells.

    PubMed

    Yu, Yang; Xie, Qi; Liu, Weimin; Guo, Yuting; Xu, Na; Xu, Lu; Liu, Shibing; Li, Songyan; Xu, Ye; Sun, Liankun

    2017-02-01

    Previous studies have reported that intracellular Ca(2+) signals and inducible nitric oxide synthase (iNOS) are involved in cell apoptosis. However, the role of iNOS in cisplatin resistance in ovarian cancer remains unclear. Here, we demonstrate that SKOV3/DDP ovarian cancer cells were more resistant to cisplatin than were SKOV3 ovarian cancer cells. The expression of intracellular Ca(2+) and iNOS was more strongly induced by cisplatin in SKOV3 cells than in SKOV3/DDP cells. TAT-conjugated IP3R-derived peptide (TAT-IDP(S)) increased cisplatin-induced iNOS expression and apoptosis in SKOV3/DDP cells. 2-Aminoethoxydiphenyl borate (2-APB) decreased cisplatin-induced iNOS expression and apoptosis in SKOV3 cells. Thus, iNOS induction may be a valuable strategy for improving the anti-tumor efficacy of cisplatin in ovarian cancer.

  19. Characterization of iNOS+ Neutrophil-like ring cell in tumor-bearing mice

    PubMed Central

    2012-01-01

    Background Myeloid-derived Suppressor Cells (MDSC) have been identified as tumor-induced immature myeloid cells (IMC) with potent immune suppressive activity in cancer. Whereas strict phenotypic classification of MDSC has been challenging due to the highly heterogeneous nature of cell surface marker expression, use of functional markers such as Arginase and inducible nitric oxide synthase (iNOS) may represent a better categorization strategy. In this study we investigated whether iNOS could be utilized as a specific marker for the identification of a more informative homogenous MDSC subset. Methods Single-cell suspensions from tumors and other organs were prepared essentially by enzymatic digestion. Flow cytometric analysis was performed on a four-color flow cytometer. Morphology, intracellular structure and localization of iNOS+ ring cells in the tumor were determined by cytospin analysis, immunofluorescence microscopy and immunohistochemistry, respectively. For functional analysis, iNOS+ ring subset were sorted and tested in vitro cell culture experiments. Pharmacologic inhibition of iNOS was performed both in vivo and in vitro. Results The results showed that intracellular iNOS staining distinguished a granular iNOS+ SSChi CD11b+ Gr-1dim F4/80+ subset with ring-shaped nuclei (ring cells) among the CD11b+ Gr-1+ cell populations found in tumors. The intensity of the ring cell infiltrate correlated with tumor size and these cells constituted the second major tumor-infiltrating leukocyte subset found in established tumors. Although phenotypic analysis demonstrated that ring cells shared characteristics with tumor-associated macrophages (TAM), morphological analysis revealed a neutrophil-like appearance as detected by cytospin and immunofluorescence microscopy analysis. The presence of distinct iNOS filled granule-like structures located next to the cell membrane suggested that iNOS was stored in pre-formed vesicles and available for rapid release upon activation

  20. Comparison of AFITPAC versus NOS and a packet radio network design

    NASA Astrophysics Data System (ADS)

    Iannelli, Thomas A.

    1991-12-01

    This thesis encompasses two themes: (1) A comparison of the Network Operating System (NOS) software package, developed by Phil Karn and others, and AFITPAC, written by Marsh and Geier at the Air Force Institute of Technology. The comparison is based on the Air Force Logistics Command's requirements for the development of a Packet Radio Network program. The results of the comparison are a recommendation that use of the NOS package be pursued because it can meet all twelve of the requirements and compiles with five of the Military Standard Protocols. (2) The design of a personal computer Packet Radio Network Simulator used to analyze the network performance of AFITPAC and NOS is proposed. The proposal concludes with a discussion of problems in development of the simulation which used MODSIM IITM, C++, and a 80386/25Mhz personal computer. Recommendations are made for pursuing the simulation effort on other hardware platforms and for improvements to the design.

  1. Nitric oxide synthase (NOS) in the human umbilical cord vessels. An immunohistochemical study.

    PubMed

    Dikranian, K; Trosheva, M; Nikolov, S; Bodin, P

    1994-06-01

    Localization of nitric oxide synthase (NOS) in endothelial cells of umbilical cord vessels and in cultured human umbilical vein endothelial cells was investigated by light and electron-microscopical (immunogold) immunohistochemistry. We observed localization of NOS-immunoreactivity in the majority (97%) of the endothelial cells of the umbilical vein and in a subpopulation (6.7%) of endothelial cells of the umbilical arteries. NOS was observed as well in the amniotic epithelium and in the cells of Wharton's jelly. Immunogold labelling in human umbilical vein endothelial cells dominated in the cellular matrix and was not associated with cellular organelles. Since human umbilical vessels are unique in lacking innervation, the functional significance of endothelium derived relaxing factor EDRF/NO in the local control of vascular flow is discussed.

  2. Are Temporal Differences in GDNF and NOS Isoform Induction Contributors to Neurodegeneration? A Fluorescence Microscopy-Based Study

    PubMed Central

    Doursout, Marie-Francoise; Liang, Yangyan; Schiess, Mya C.; Padilla, Angelica; Poindexter, Brian J.; Hickson-Bick, Diane L. M.; Bick, Roger J.

    2016-01-01

    Background: Specific factors in Parkinson’s disease have become targets as to their protective and degenerative effects. We have demonstrated that cytokines and PD-CSF detrimentally affect microglia and astrocyte growth. While glial cell-derived neurotrophic factor (GDNF) has been recognized as a possible neuron-rescue agent, nitric oxide synthase (NOS) has been implicated in neurodegenerative processes. Objective: To demonstrate that glial cell activation, cytokine production, and NOS induction, play an intimate role in the loss of dopaminergic signaling, via mechanisms that are a result of inflammation and inflammatory stimuli. Methods: Study animals were sacrificed following endotoxin treatment and tissue sections were harvested and probed for GDNF and NOS isomers by fluorescence deconvolution microscopy. Fluorescence was mapped and quantified for each probe Results: An immune cell influx into ‘vulnerable’ areas of the brain was seen, and three NOS isomers, inducible (iNOS), neuronal (nNOS) and endothelial (eNOS), were synthesized in the brains, a finding which suggests that each isomer has a role in neurodegeneration. eNOS was found associated with blood vessels, while iNOS was associated with glial and matrix cells and nNOS was located with both glia and neurons. Following endotoxin treatment, serum levels of nitric oxide were higher at 6-8 hours, while tissue levels of NOS were elevated for much longer. Thus, induction of NOS occurred earlier than the induction of GDNF. Conclusion: Our findings suggest that the protective abilities of GDNF to combat neural destruction are not available rapidly enough, and do not remain at sufficiently high levels long enough to assert its protective effects. (250). PMID:27651844

  3. Detecting Nitrous Oxide Reductase (nosZ) Genes in Soil Metagenomes: Method Development and Implications for the Nitrogen Cycle

    PubMed Central

    Orellana, L. H.; Rodriguez-R, L. M.; Higgins, S.; Chee-Sanford, J. C.; Sanford, R. A.; Ritalahti, K. M.; Löffler, F. E.

    2014-01-01

    ABSTRACT Microbial activities in soils, such as (incomplete) denitrification, represent major sources of nitrous oxide (N2O), a potent greenhouse gas. The key enzyme for mitigating N2O emissions is NosZ, which catalyzes N2O reduction to N2. We recently described “atypical” functional NosZ proteins encoded by both denitrifiers and nondenitrifiers, which were missed in previous environmental surveys (R. A. Sanford et al., Proc. Natl. Acad. Sci. U. S. A. 109:19709–19714, 2012, doi:10.1073/pnas.1211238109). Here, we analyzed the abundance and diversity of both nosZ types in whole-genome shotgun metagenomes from sandy and silty loam agricultural soils that typify the U.S. Midwest corn belt. First, different search algorithms and parameters for detecting nosZ metagenomic reads were evaluated based on in silico-generated (mock) metagenomes. Using the derived cutoffs, 71 distinct alleles (95% amino acid identity level) encoding typical or atypical NosZ proteins were detected in both soil types. Remarkably, more than 70% of the total nosZ reads in both soils were classified as atypical, emphasizing that prior surveys underestimated nosZ abundance. Approximately 15% of the total nosZ reads were taxonomically related to Anaeromyxobacter, which was the most abundant genus encoding atypical NosZ-type proteins in both soil types. Further analyses revealed that atypical nosZ genes outnumbered typical nosZ genes in most publicly available soil metagenomes, underscoring their potential role in mediating N2O consumption in soils. Therefore, this study provides a bioinformatics strategy to reliably detect target genes in complex short-read metagenomes and suggests that the analysis of both typical and atypical nosZ sequences is required to understand and predict N2O flux in soils. PMID:24895307

  4. NOS2 Is Critical to the Development of Emphysema in Sftpd Deficient Mice but Does Not Affect Surfactant Homeostasis

    PubMed Central

    Guo, Chang-Jiang; Scott, Pamela A.; Haenni, Beat; Beers, Michael F.; Ochs, Matthias; Gow, Andrew J.

    2014-01-01

    Rationale Surfactant protein D (SP-D) has important immuno-modulatory properties. The absence of SP-D results in an inducible NO synthase (iNOS, coded by NOS2 gene) related chronic inflammation, development of emphysema-like pathophysiology and alterations of surfactant homeostasis. Objective In order to test the hypothesis that SP-D deficiency related abnormalities in pulmonary structure and function are a consequence of iNOS induced inflammation, we generated SP-D and iNOS double knockout mice (DiNOS). Methods Structural data obtained by design-based stereology to quantify the emphysema-like phenotype and disturbances of the intracellular surfactant were correlated to invasive pulmonary function tests and inflammatory markers including activation markers of alveolar macrophages and compared to SP-D (Sftpd−/−) and iNOS single knockout mice (NOS2−/−) as well as wild type (WT) littermates. Measurements and Results DiNOS mice had reduced inflammatory cells in BAL and BAL-derived alveolar macrophages showed an increased expression of markers of an alternative activation as well as reduced inflammation. As evidenced by increased alveolar numbers and surface area, emphysematous changes were attenuated in DiNOS while disturbances of the surfactant system remained virtually unchanged. Sftpd−/− demonstrated alterations of intrinsic mechanical properties of lung parenchyma as shown by reduced stiffness and resistance at its static limits, which could be corrected by additional ablation of NOS2 gene in DiNOS. Conclusion iNOS related inflammation in the absence of SP-D is involved in the emphysematous remodeling leading to a loss of alveoli and associated alterations of elastic properties of lung parenchyma while disturbances of surfactant homeostasis are mediated by different mechanisms. PMID:24465666

  5. Neuronal nitric oxide synthase (nNOS, NOS1) rs693534 and rs7977109 variants and risk for restless legs syndrome.

    PubMed

    Jiménez-Jiménez, Félix Javier; Alonso-Navarro, Hortensia; Martínez, Carmen; Zurdo, Martín; Turpín-Fenoll, Laura; Millán-Pascual, Jorge; Adeva-Bartolomé, Teresa; Cubo, Esther; Navacerrada, Francisco; Rojo-Sebastián, Ana; Rubio, Lluisa; Calleja, Marisol; Plaza-Nieto, José Francisco; Pilo-de-la-Fuente, Belén; Arroyo-Solera, Margarita; García-Albea, Esteban; García-Martín, Elena; Agúndez, José A G

    2015-06-01

    Several biochemical, neuropathological, and experimental data suggest a possible role of nitric oxide (NO) in the pathophysiology of restless legs syndrome (RLS). Two single nucleotide polymorphisms (SNPs) neuronal nitric oxide synthase (nNOS or NOS1) gene (rs7977109 and rs693534) have been found to be associated with the risk for RLS in Germans, although only one of them (rs7977109) remained as significant after multiple comparison tests. The aim of our study was to replicate the possible association between these SNPs and risk for RLS in the Spanish population. We studied the allelic and genotype frequencies of the SNPs rs7977109 and rs693534 in 205 patients with RLS and 328 healthy controls using TaqMan genotyping. The rs7977109 and rs693534 genotypes and allelic frequencies did not significantly differ between patients with RLS and controls and were unrelated with the age at onset of RLS, gender, ferritin levels, and response to dopaminergic or gabaergic agents. The rs7999109GA genotype was overrepresented in RLS patients with positive family history of RLS, and in patients with symptomatic response to clonazepam. The results of our study suggest that these two NOS1 SNPs are not related to the overall risk for RLS in the Spanish population.

  6. Effects of Paracetamol on NOS, COX, and CYP Activity and on Oxidative Stress in Healthy Male Subjects, Rat Hepatocytes, and Recombinant NOS

    PubMed Central

    Trettin, Arne; Böhmer, Anke; Suchy, Maria-Theresia; Probst, Irmelin; Staerk, Ulrich; Stichtenoth, Dirk O.; Frölich, Jürgen C.

    2014-01-01

    Paracetamol (acetaminophen) is a widely used analgesic drug. It interacts with various enzyme families including cytochrome P450 (CYP), cyclooxygenase (COX), and nitric oxide synthase (NOS), and this interplay may produce reactive oxygen species (ROS). We investigated the effects of paracetamol on prostacyclin, thromboxane, nitric oxide (NO), and oxidative stress in four male subjects who received a single 3 g oral dose of paracetamol. Thromboxane and prostacyclin synthesis was assessed by measuring their major urinary metabolites 2,3-dinor-thromboxane B2 and 2,3-dinor-6-ketoprostaglandin F1α, respectively. Endothelial NO synthesis was assessed by measuring nitrite in plasma. Urinary 15(S)-8-iso-prostaglanding F2α was measured to assess oxidative stress. Plasma oleic acid oxide (cis-EpOA) was measured as a marker of cytochrome P450 activity. Upon paracetamol administration, prostacyclin synthesis was strongly inhibited, while NO synthesis increased and thromboxane synthesis remained almost unchanged. Paracetamol may shift the COX-dependent vasodilatation/vasoconstriction balance at the cost of vasodilatation. This effect may be antagonized by increasing endothelial NO synthesis. High-dosed paracetamol did not increase oxidative stress. At pharmacologically relevant concentrations, paracetamol did not affect NO synthesis/bioavailability by recombinant human endothelial NOS or inducible NOS in rat hepatocytes. We conclude that paracetamol does not increase oxidative stress in humans. PMID:24799980

  7. Angiotensin II dependent cardiac remodeling in the eel Anguilla anguilla involves the NOS/NO system.

    PubMed

    Filice, Mariacristina; Amelio, Daniela; Garofalo, Filippo; David, Sabrina; Fucarino, Alberto; Jensen, Frank Bo; Imbrogno, Sandra; Cerra, Maria Carmela

    2017-05-01

    Angiotensin II (AngII), the principal effector of the Renin-Angiotensin System (RAS), plays an important role in controlling mammalian cardiac morpho-functional remodelling. In the eel Anguilla anguilla, one month administration of AngII improves cardiac performance and influences the expression and localization of molecules which regulate cell growth. To deeper investigate the morpho-functional chronic influences of AngII on the eel heart and the molecular mechanisms involved, freshwater eels (A. anguilla) were intraperitoneally injected for 2 months with AngII (1 nmol g BW(-1)). Then the isolated hearts were subjected to morphological and western blotting analyses, and nitrite measurements. If compared to control animals, the ventricle of AngII-treated hearts showed an increase in compacta thickness, vascularization, muscle mass and fibrosis. Structural changes were paralleled by a higher expression of AT2 receptor and a negative modulation of the ERK1-2 pathway, together with a decrease in nitrite concentration, indicative of a reduced Nitric Oxide Synthase (NOS)-dependent NO production. Moreover, immunolocalization revealed, particularly on the endocardial endothelium (EE) of AngII-treated hearts, a significant reduction of phosphorylated NOS detected by peNOS antibody accompanied by an increased expression of the eNOS disabling protein NOSTRIN, and a decreased expression of the positive regulators of NOS activity, pAkt and Hsp90. On the whole, results suggest that, in the eel, AngII modulates cardiac morpho-functional plasticity by influencing the molecular mechanisms that control NOS activity and the ERK1-2 pathway.

  8. Determining the chronology and components of psychosis onset: The Nottingham Onset Schedule (NOS).

    PubMed

    Singh, Swaran P; Cooper, John E; Fisher, Helen L; Tarrant, C Jane; Lloyd, Tuhina; Banjo, Jumi; Corfe, Sarah; Jones, Peter

    2005-12-01

    The Nottingham Onset Schedule (NOS) is a short, guided interview and rating schedule to measure onset in psychosis. Onset is defined as the time between the first reported/observed change in mental state/behaviour to the development of psychotic symptoms. Onset is conceptualised as comprising of (i) a prodrome of two parts: a period of 'unease' followed by 'non-diagnostic' symptoms; (ii) appearance of psychotic symptoms; and (iii) a build-up of diagnostic symptoms leading to a definite diagnosis. Twenty consecutive cases of first-episode psychosis were administered the NOS schedule to determine its psychometric properties including inter-rater and test-retest reliability. Its clinical and research potential as a reliable measure of duration of untreated psychosis (DUP) was assessed in a cohort of 99 cases of first-episode psychosis (56 schizophrenia, 43 affective psychoses). NOS identified all prodromal symptoms previously reported in other studies. There was high degree of inter-rater and test-retest reliability for all components of NOS. Duration of untreated psychosis was significantly longer (p<0.05) in schizophrenia (mean 179 days, S.D. 344; median 52 days) than in affective psychosis (mean 15 days, S.D. 116; median 12 days) but there were no gender differences between lengths of prodrome or treatment delays. The NOS provides a standardised and reliable way of recording early changes in psychosis and identifying relatively precise time points for measuring several durations in emerging psychosis. The scale is easy to use and is not time-consuming or labour intensive. Onset, as measured by NOS, is significantly longer in schizophrenic disorders than in affective psychosis. A small proportion of schizophrenia cases have very long DUP. Some cases with schizophrenia receive anti-psychotics in the prodromal phase, prior to the emergence of frank psychotic symptoms.

  9. Association Between Three eNOS Polymorphisms and Intracranial Aneurysms Risk

    PubMed Central

    Yang, Chao; Qi, Zhen-yu; Shao, Chuan; Xing, Wei-kang; Wang, Zhong

    2015-01-01

    Abstract Endothelial nitric oxide synthase (eNOS) is the catalyst of endothelial nitric oxide (NO) synthesis. Polymorphisms in the eNOS gene may influence the risk of intracranial aneurysm (IA), but the results of existing researches are still inconsistent. Thus, we performed the present meta-analysis to derive a more precise estimation between eNOS polymorphisms (T786C, G894T, 27-bp-variable number of tandem repeat [VNTR]) and IA risk. Case–control studies evaluating the association between the eNOS polymorphisms and IA risk were searched in PubMed, Ovid & Embase, Web of Science, and Chinese Wanfang datasets with the last search up to July 15, 2014. The pooled odds ratios (ORs) for the association between eNOS polymorphisms and IA and their corresponding 95% confidence intervals (CIs) were estimated using the random or fixed-effects model. Finally, 10 studies for T786C polymorphism (1819 cases and 1893 controls), 9 studies for G894T polymorphism (1393 cases and 1508 controls), and 7 studies for 27-bp-VNTR polymorphism (1281 cases and 1406 controls) were included in the meta-analyses. In the overall analysis, no evidence of association between eNOS polymorphisms and susceptibility of IA was found. When subgrouped by race descent, significantly increased risk was detected among Asians for T786C polymorphism (heterozygous comparison of codominant model: OR = 1.294, 95% CI = 1.025–1.634; dominant model: OR = 1.277, 95% CI = 1.019–1.600), but not in Caucasians or the other 2 polymorphisms. Our meta-analysis suggested that T786C polymorphism was associated with increased risk of IA among Asians, whereas G894T and 27-bp-VNTR polymorphisms might have no influence on the susceptibility of IA. PMID:25634184

  10. TRPV1 agonism inhibits endothelial cell inflammation via activation of eNOS/NO pathway.

    PubMed

    Wang, Youping; Cui, Lin; Xu, Hui; Liu, Suxiao; Zhu, Feiyun; Yan, Fengna; Shen, Si; Zhu, Mingjun

    2017-05-01

    Transient receptor potential vanilloid type 1 channel (TRPV1) is found to be expressed in endothelial cells (ECs) and activate endothelial nitric oxide synthase (eNOS). Recent studies implicate TRPV1 in attenuating inflammatory responses. However, the mechanisms underlying the beneficial effects remain unclear. In this study, we investigated whether TRPV1 suppresses inflammatory responses of ECs via eNOS/NO pathway. Human umbilical vein endothelial cells (HUVECs) and renal microvascular endothelial cells (MVECs) isolated from deoxycorticosterone (DOCA)-salt hypertensive mice were cultured in the presence of capsaicin (CAP, a specific TRPV1 agonist) with or without the specific inhibitor of TRPV1, NOS, or Ca(2+)-dependent phosphatidylinositol 3-kinase (PI3K)/Akt pathway, before lipopolysaccharide (LPS) stimulation. NO metabolites, protein expression, and inflammatory molecules were evaluated by Griess assay and immune assay-based multiplex analysis, respectively. Monocyte adhesion was determined by measuring the fluorescently labeled human monocytes attached to LPS-stimulated ECs. In HUVECs, treatment with CAP increased NO production, and CAP-induced NO production was accompanied by increased eNOS(ser1177) phosphorylation. Additionally, CAP attenuated LPS-induced cytokine and chemokine production, adhesion molecule expression, activation of NF-κB, and monocyte adhesion in HUVECs, and these effects were abrogated by the inhibition of TRPV1, NOS, or Ca(2+)-dependent PI3K/Akt pathway. Moreover, these protective actions of TRPV1 were also observed in renal MVECs isolated from DOCA-salt hypertensive mice. Our results indicate that TRPV1 activation suppresses the inflammatory response of ECs via the activation of Ca(2+)/PI3K/Akt/eNOS/NO pathway, the protective effects are also documented in ECs derived from salt-sensitive hypertensive mice. Copyright © 2017. Published by Elsevier B.V.

  11. Irisin improves endothelial function in obese mice through the AMPK-eNOS pathway.

    PubMed

    Han, Fang; Zhang, Shuxian; Hou, Ningning; Wang, Di; Sun, Xiaodong

    2015-11-01

    Irisin is a novel hormone secreted by myocytes. Lower levels of irisin are independently associated with endothelial dysfunction in obese subjects. The objective of this study was to explore whether irisin exerts a direct vascular protective effect on endothelial function in high-fat-diet-induced obese mice. Male C57BL/6 mice were given chow or a high-fat diet with or without treatment with irisin. Aortic endothelial function was determined by measuring endothelium-dependent vasodilatation (EDV). Nitric oxide (NO) in the aorta was determined. The effect of irisin on the levels of AMP-activated protein kinase (AMPK), Akt, and endothelial NO synthase (eNOS) phosphorylation in endothelial cells was determined. Human umbilical vein endothelial cells were used to study the role of irisin in the AMPK-eNOS pathway. Acetylcholine-stimulated EDV was significantly lower in obese mice compared with control mice. Treatment of obese mice with irisin significantly enhanced EDV and improved endothelial function. This beneficial effect of irisin was partly attenuated in the presence of inhibitors of AMPK, Akt, and eNOS. Treatment of obese mice with irisin enhanced NO production and phosphorylation of AMPK, Akt, and eNOS in endothelial cells. These factors were also enhanced by irisin in human umbilical vein endothelial cells in vitro. Suppression of AMPK expression by small interfering RNA blocked irisin-induced eNOS and Akt phosphorylation and NO production. We have provided the first evidence that irisin improves endothelial function in aortas of high-fat-diet-induced obese mice. The mechanism for this protective effect is related to the activation of the AMPK-eNOS signaling pathway.

  12. Is targeting eNOS a key mechanistic insight of cardiovascular defensive potentials of statins?

    PubMed

    Balakumar, Pitchai; Kathuria, Sonam; Taneja, Gaurav; Kalra, Sanjeev; Mahadevan, Nanjaian

    2012-01-01

    Statins are widely used in the treatment of dyslipidemia and associated cardiovascular abnormalities including atherosclerosis, hypertension and coronary heart disease. Needless to mention, statins have cholesterol-lowering effects by means of inhibiting 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, a rate-limiting enzyme of cholesterol biosynthesis. Besides cholesterol-lowering effects, statins possess pleiotropic anti-inflammatory, anti-oxidant, anti-platelet and anti-fibrotic properties, which may additionally play imperative roles in statins-mediated cardiovascular protection. However, the precise mechanisms involved in the cardiovascular defensive potential of statins have not completely been elucidated. Intriguingly, a considerable number of studies demonstrated the potential modulatory role of statins on endothelial nitric oxide synthase (eNOS), a key enzyme involved in the regulation of cardiovascular function by generating endothelium-derived relaxing factor (often represented 'nitric oxide'). Worthy of note is that vascular generation of nitric oxide has beneficial anti-inflammatory, anti-platelet and vasodilatory actions. The upregulation of eNOS by statins is mediated through inhibition of synthesis of isoprenoids and subsequent prevention of isoprenylation of small GTPase Rho, whereas statin-induced activation of eNOS is mediated through activation of phosphotidylinositol-3-kinase (PI3K)/protein kinase B (PKB/Akt) signals. Additionally, statins enhance eNOS activation by abrogating caveolin-1 expression in vascular endothelium. In light of this view-point, we suggest in this review that eNOS upregulation and activation, in part, could play a fundamental role in the cardiovascular defensive potential of statins. The eNOS modulatory role of statins may have an imperative influence on the functional regulation of cardiovascular system and may offer new perspectives for the better use of statins in ameliorating cardiovascular disorders.

  13. Ischemic preconditioning protects the brain against injury via inhibiting CaMKII-nNOS signaling pathway.

    PubMed

    Wang, Mei; Qi, Da-Shi; Zhou, Cui; Han, Dong; Li, Pei-Pei; Zhang, Fang; Zhou, Xiao-Yan; Han, Meng; Di, Jie-Hui; Ye, Jun-Song; Yu, Hong-Min; Song, Yuan-Jian; Zhang, Guang-Yi

    2016-03-01

    Although studies have shown that cerebral ischemic preconditioning (IPC) can ameliorate ischemia/reperfusion (I/R) induced brain damage, but its precise mechanisms remain unknown. Therefore, the aim of this study was to investigate the neuroprotective mechanisms of IPC against ischemic brain damage induced by cerebral I/R and to explore whether the Calcium/calmodulin-dependent protein kinase II (CaMKII)-mediated up-regulation of nNOS ser847-phosphorylation signaling pathway contributed to the protection provided by IPC. Transient global brain ischemia was induced by 4-vessel occlusion in adult male Sprague-Dawley rats. The rats were pretreated with 3 min of IPC alone or KN62 (selective antagonist of CaMKII) treatment before IPC, after reperfusion for 3 days, 6 min ischemia was induced. Cresyl violet staining was used to examine the survival of hippocampal CA1 pyramidal neurons. Immunoblotting was performed to measure the phosphorylation of CaMKII, nNOS, c-Jun and the expression of FasL. Immunoprecipitation was used to examine the binding between PSD95 and nNOS. The results showed that IPC could significantly protect neurons against cerebral I/R injury, furthermore, the combination of PSD95 and nNOS was increased, coinstantaneously the phosphorylation of CaMKII and nNOS (ser847) were up-regulated, however the activation of c-Jun and FasL were reduced. Conversely, KN62 treatment before IPC reversed all these effects of IPC. Taken together, the results suggest that IPC could diminish ischemic brain injury through CaMKII-mediated up-regulation of nNOS ser847-phosphorylation signaling pathway.

  14. Morphology of VIP/nNOS-immunoreactive myenteric neurons in the human gut.

    PubMed

    Brehmer, A; Schrödl, F; Neuhuber, W

    2006-05-01

    In this study, we characterized human myenteric neurons co-immunoreactive for neuronal nitric oxide synthase (nNOS) and vasoactive intestinal peptide (VIP) by their morphology and their proportion as related to the putative entire myenteric neuronal population. Nine wholemounts (small and large intestinal samples) from nine patients were triple-stained for VIP, neurofilaments (NF) and nNOS. Most neurons immunoreactive for all three markers displayed radially emanating, partly branching dendrites with spiny endings. These neurons were called spiny neurons. The spiny character of their dendrites was more pronounced in the small intestinal specimens and differed markedly from enkephalinergic stubby neurons described earlier. Exclusively in the duodenum, some neurons displayed prominent main dendrites with spiny side branches. Of the axons which could be followed from the ganglion of origin within primary strands of the myenteric plexus beyond the next ganglion (70 out of 140 traced neurons), 94.3% run anally and 5.7% orally. Very few neurons reactive for both VIP and nNOS could not be morphologically classified due to weak or absent NF-immunoreactivity. Another six wholemounts were triple-stained for VIP, nNOS and Hu proteins (HU). The proportion of VIP/nNOS-coreactive neurons in relation to the number of HU-reactive neurons was between 5.8 and 11.5% in the small and between 10.6 and 17.5% in the large intestinal specimens. We conclude that human myenteric spiny neurons co-immunoreactive for VIP and nNOS represent either inhibitory motor or descending interneurons.

  15. Key role of endothelium in the eNOS-dependent cardioprotection with exercise training.

    PubMed

    Farah, C; Nascimento, A; Bolea, G; Meyer, G; Gayrard, S; Lacampagne, A; Cazorla, O; Reboul, C

    2017-01-01

    Modulation of endothelial nitric oxide synthase (eNOS) activation is recognized as a main trigger of the cardioprotective effects of exercise training on heart vulnerability to ischemia-reperfusion (IR). However, this enzyme is expressed both in coronary endothelial cells and cardiomyocytes and the contribution of each one to such cardioprotection has never been challenged. The aim of this study was to investigate the role of eNOS from the cardiomyocytes vs. the endothelium in the exercise cardioprotection. Male Wistar rats were assigned to a chronic aerobic training (Ex) (vs. sedentary group; Sed) and we investigated the role of eNOS in the effects of exercise on sensitivity to IR or anoxia-reoxygenation (A/R) at whole heart, isolated cardiomyocytes and left coronary artery (LCA) levels. We observed that exercise increased eNOS activation (Ser1177 phosphorylation) and protein S-nitrosylation in whole heart but not at cardiomyocyte level, suggesting the specific target of endothelial cells by exercise. Consistently, in isolated cardiomyocytes submitted to the A/R procedure, exercise reduced cell death and improved cells contractility, but independently of the eNOS pathway. Next, to evaluate the contribution of endothelial cells in exercise cardioprotection, LCA were isolated before and after an IR procedure performed on Langendorff hearts. Exercise improved basal relaxation sensitivity to acetylcholine and markedly reduced the alteration of endothelium-dependent coronary relaxation induced by IR. Furthermore, inactivation of coronary endothelial cells activity just before IR, obtained with a bolus of Triton X-100, totally suppressed cardioprotective effects of exercise on both left ventricular functional recovery after IR and infarct size, whereas no effect of Triton X-100 was observed in Sed group. In conclusion, these results show that coronary endothelial cells rather than cardiomyocytes play a key role in the eNOS-dependent cardioprotection of exercise.

  16. Pregnancy increases myometrial artery myogenic tone via NOS- or COX-independent mechanisms.

    PubMed

    Eckman, Delrae M; Gupta, Ridhima; Rosenfeld, Charles R; Morgan, Timothy M; Charles, Shelton M; Mertz, Heather; Moore, Lorna G

    2012-08-15

    Myogenic tone (MT) is a primary modulator of blood flow in the resistance vasculature of the brain, kidney, skeletal muscle, and perhaps in other high-flow organs such as the pregnant uterus. MT is known to be regulated by endothelium-derived factors, including products of the nitric oxide synthase (NOS) and/or the cyclooxygenase (COX) pathways. We asked whether pregnancy influenced MT in myometrial arteries (MA), and if so, whether such an effect could be attributed to alterations in NOS and/or COX. MA (200-300 μm internal diameter, 2-3 mm length) were isolated from 10 nonpregnant and 12 pregnant women undergoing elective hysterectomy or cesarean section, respectively. In the absence of NOS and/or COX inhibition, pregnancy was associated with increased MT in endothelium-intact MA compared with MA from nonpregnant women (P < 0.01). The increase in MT was not due to increased Ca(2+) entry via voltage-dependent channels since both groups of MA exhibited similar levels of constriction when exposed to 50 mM KCl. NOS inhibition (N(ω)-nitro-L-arginine methyl ester, L-NAME) or combined NOS/COX inhibition (L-NAME/indomethacin) increased MT in MA from pregnant women (P = 0.001 and P = 0.042, respectively) but was without effect in arteries from nonpregnant women. Indomethacin alone was without effect on MT in MA from either nonpregnant or pregnant women. We concluded that MT increases in MA during human pregnancy and that this effect was partially opposed by enhanced NOS activity.

  17. Association between NOS3 genetic variants and coronary artery disease in the Han population.

    PubMed

    Zhao, G L; Li, Q J; Lu, H Y

    2016-06-03

    The enzyme endothelial nitric oxide synthase (NOS3) is an important mediator of atherosclerotic disease and is associated with coronary artery disease (CAD). There is growing evidence that polymorphisms in NOS3 influence the progression of CAD; however, there is also a controversy regarding the association of polymorphisms in the gene encoding NOS3 and CAD. To determine if the NOS3 genetic variants are associated with CAD in the Han Chinese, we examined the potential association between CAD and eight single nucleotide polymorphisms (rs1799983, rs2070744, rs11771443, rs3918188, rs2853796, rs7830, rs1541861, and rs2853792) of the NOS3 using the MassARRAY system. The allelic and genotypic frequencies of the rs1799983 (promoter regions) and rs2070744 (intron 1) polymorphisms in patients with CAD were significantly different from those in healthy controls. These patients had significantly higher frequencies of the rs1799983 T allele (χ2 = 7.717, P = 0.007, OR = 1.649, 95%CI = 1.41-2.382) and the rs2070744 G allele (χ2 = 4.548, P = 0.033, OR = 1.490, 95%CI = 1.031-2.153). Strong linkage disequilibrium was observed in three blocks (D' > 0.9). In block 1, significantly more T-T-C haplotypes (χ2 = 5.537, P = 0.019, OR = 0.632, 95%CI = 0.430-0.927) were found in controls. These findings point to a role for NOS3 polymorphisms in CAD in the Chinese Han population, and may be useful for future investigations on the pathogenesis of CAD.

  18. Genetic variants of eNOS gene may modify the susceptibility to idiopathic male infertility.

    PubMed

    Ying, Hou-Qun; Pu, Xiao-Ying; Liu, Shuo-Ran; A, Zhou-Cun

    2013-08-01

    In testis, eNOS is responsible for synthesis of nitric oxide (NO) which is an essential gas message regulator in spermatogenesis, suggesting that eNOS gene plays a role in normal spermatogenesis and the genetic variants of eNOS gene may be potential genetic risk factors of spermatogenesis impairment. In this study, the polymorphic distributions of three common polymorphism loci including T-786C, 4A4B and G894T in eNOS gene were investigated in 355 Chinese infertile patients with azoospermia or oligozoospermia and 246 healthy fertile men and a meta-analysis was carried in order to explore the possible relationship between the three loci of eNOS gene and male infertility with spermatogenesis impairment. As a result, allele -786C of T-786C (11.4% versus 6.5%, p = 0.004) and 4A of 4A4B (11.0% versus 6.3%, p = 0.005) as well as genotype TC of T-786C (22.8% versus 13.0%, p = 0.002) and AB of 4A4B (18% versus 11%, p = 0.015) were significantly associated with idiopathic male infertility. The haplotypes T-4A-G (7.4% versus 4.1%, p = 0.015) and C-4B-G (7.6% versus 4.4%, p = 0.028) could increase the susceptibility to male infertility, whereas haplotype T-4B-G (67.0% versus 75.2%, p = 0.002) might be a protective factor for male infertility. The results of meta-analysis revealed that the polymorphism of T-786C was associated with male infertility. These findings suggested that the variants of eNOS gene may modify the susceptibility to male infertility with impaired spermatogenesis.

  19. Co-expression of GAP-43 and nNOS in avulsed motoneurons and their potential role for motoneuron regeneration.

    PubMed

    Yuan, Qiuju; Hu, Bing; Chu, Tak-Ho; Su, Huanxing; Zhang, Wenming; So, Kwok-Fai; Lin, Zhixiu; Wu, Wutian

    2010-12-15

    Neuronal nitric oxide synthase (nNOS) is induced after axonal injury. The role of induced nNOS in injured neurons is not well established. In the present study, we investigated the co-expression of nNOS with GAP-43 in spinal motoneurons following axonal injury. The role of induced nNOS was discussed and evaluated. In normal rats, spinal motoneurons do not express nNOS or GAP-43. Following spinal root avulsion, expression of nNOS and GAP-43 were induced and colocalized in avulsed motoneurons. Reimplantation of avulsed roots resulted in a remarkable decrease of GAP-43- and nNOS-IR in the soma of the injured motoneurons. A number of GAP-43-IR regenerating motor axons were found in the reimplanted nerve. In contrast, the nNOS-IR was absent in reimplanted nerve. These results suggest that expression of GAP-43 in avulsed motoneurons is related to axonal regeneration whereas nNOS is not.

  20. Increased activity and expression of Ca2+-dependent NOS in renal cortex of ANG II-infused hypertensive rats

    PubMed Central

    CHIN, SO YEON; PANDEY, KAILASH N.; SHI, SHANG-JIN; KOBORI, HIROYUKI; MORENO, CAROL; NAVAR, L. GABRIEL

    2008-01-01

    We have previously demonstrated that nitric oxide (NO) exerts a greater modulatory influence on renal cortical blood flow in ANG II-infused hypertensive rats compared with normotensive rats. In the present study, we determined nitric oxide synthase (NOS) activities and protein levels in the renal cortex and medulla of normotensive and ANG II-infused hypertensive rats. Enzyme activity was determined by measuring the rate of formation of l-[14C]citrulline from l-[14C]arginine. Western blot analysis was performed to determine the regional expression of endothelial (eNOS), neuronal (nNOS), and inducible (iNOS) isoforms in the renal cortex and medulla of control and ANG II-infused rats. Male Sprague-Dawley rats were prepared by the infusion of ANG II at a rate of 65 ng/min via osmotic minipumps implanted subcutaneously for 13 days and compared with sham-operated rats. Systolic arterial pressures were 127 ± 2 and 182 ± 3 mmHg in control (n = 13) and ANG II-infused rats (n = 13), respectively. The Ca2+-dependent NOS activity, expressed as picomoles of citrulline formed per minute per gram wet weight, was higher in the renal cortex of ANG II-infused rats (91 ± 11) than in control rats (42 ± 12). Likewise, both eNOS and nNOS were markedly elevated in the renal cortex of the ANG II-treated rats. In both groups of rats, Ca2+-dependent NOS activity was higher in the renal medulla than in the cortex; however, no differences in medullary NOS activity were observed between the groups. Also, no differences in medullary eNOS levels were observed between the groups; however, medullary nNOS was decreased by 45% in the ANG II-infused rats. For the Ca2+-independent NOS activities, the renal cortex exhibited a greater activity in the control rats (174 ± 23) than in ANG II-infused rats (101 ± 10). Similarly, cortical iNOS was greater by 47% in the control rats than in ANG II-treated rats. No differences in the activity were found for the renal medulla between the groups. There was

  1. Small molecule inhibitors of PSD95-nNOS protein-protein interactions as novel analgesics

    PubMed Central

    Lee, Wan-Hung; Xu, Zhili; Ashpole, Nicole M.; Hudmon, Andy; Kulkarni, Pushkar M.; Thakur, Ganesh A.; Lai, Yvonne Y.; Hohmann, Andrea G.

    2015-01-01

    Aberrant increases in NMDA receptor (NMDAR) signaling contributes to central nervous system sensitization and chronic pain by activating neuronal nitric oxide synthase (nNOS) and generating nitric oxide (NO). Because the scaffolding protein postsynaptic density 95kDA (PSD95) tethers nNOS to NMDARs, the PSD95-nNOS complex represents a therapeutic target. Small molecule inhibitors IC87201 (EC5O: 23.94 µM) and ZL006 (EC50: 12.88 µM) directly inhibited binding of purified PSD95 and nNOS proteins in AlphaScreen without altering binding of PSD95 to ErbB4. Both PSD95-nNOS inhibitors suppressed glutamate-induced cell death with efficacy comparable to MK-801. IC87201 and ZL006 preferentially suppressed phase 2A pain behavior in the formalin test and suppressed allodynia induced by intraplantar complete Freund’s adjuvant administration. IC87201 and ZL006 suppressed mechanical and cold allodynia induced by the chemotherapeutic agent paclitaxel (ED50s: 2.47 and 0.93 mg/kg i.p. for IC87201 and ZL006, respectively). Efficacy of PSD95-nNOS disruptors was similar to MK-801. Motor ataxic effects were induced by MK-801 but not by ZL006 or IC87201. Finally, MK-801 produced hyperalgesia in the tail-flick test whereas IC87201 and ZL006 did not alter basal nociceptive thresholds. Our studies establish the utility of using AlphaScreen and purified protein pairs to establish and quantify disruption of protein-protein interactions. Our results demonstrate previously unrecognized antinociceptive efficacy of ZL006 and establish, using two small molecules, a broad application for PSD95-nNOS inhibitors in treating neuropathic and inflammatory pain. Collectively, our results demonstrate that disrupting PSD95-nNOS protein-protein interactions is effective in attenuating pathological pain without producing unwanted side effects (i.e. motor ataxia) associated with NMDAR antagonists. PMID:26071110

  2. iNOS-Dependent Increase in Colonic Mucus Thickness in DSS-Colitic Rats

    PubMed Central

    Schreiber, Olof; Petersson, Joel; Waldén, Tomas; Ahl, David; Sandler, Stellan; Phillipson, Mia; Holm, Lena

    2013-01-01

    Aim To investigate colonic mucus thickness in vivo in health and during experimental inflammatory bowel disease. Methods Colitis was induced with 5% DSS in drinking water for 8 days prior to experiment, when the descending colonic mucosa of anesthetized rats was studied using intravital microscopy. Mucus thickness was measured with micropipettes attached to a micromanipulator. To assess the contributions of NOS and prostaglandins in the regulation of colonic mucus thickness, the non-selective NOS-inhibitor L-NNA (10 mg/kg bolus followed by 3 mg/kg/h), the selective iNOS-inhibitor L-NIL (10 mg/kg bolus followed by 3 mg/kg/h) and the non-selective COX-inhibitor diclofenac (5 mg/kg) were administered intravenously prior to experiment. To further investigate the role of iNOS in the regulation of colonic mucus thickness, iNOS −/− mice were used. Results Colitic rats had a thicker firmly adherent mucus layer following 8 days of DSS treatment than untreated rats (88±2 µm vs 76±1 µm). During induction of colitis, the thickness of the colonic mucus layer initially decreased but was from day 3 significantly thicker than in untreated rats. Diclofenac reduced the mucus thickness similarly in colitic and untreated rats (−16±5 µm vs −14±2 µm). While L-NNA had no effect on colonic mucus thickness in DSS or untreated controls (+3±2 µm vs +3±1 µm), L-NIL reduced the mucus thickness significantly more in colitic rats than in controls (−33±4 µm vs −10±3 µm). The importance of iNOS in regulating the colonic mucus thickness was confirmed in iNOS−/− mice, which had thinner colonic mucus than wild-type mice (35±3 µm vs 50±2 µm, respectively). Furthermore, immunohistochemistry revealed increased levels of iNOS in the colonic surface epithelium following DSS treatment. Conclusion Both prostaglandins and nitric oxide regulate basal colonic mucus thickness. During onset of colitis, the thickness of the mucus layer is initially reduced followed by an iNOS

  3. Catalytic Promiscuity of the Radical S-adenosyl-L-methionine Enzyme NosL

    PubMed Central

    Ding, Wei; Ji, Xinjian; Li, Yongzhen; Zhang, Qi

    2016-01-01

    Catalytic promiscuity plays a key role in enzyme evolution and the acquisition of novel biological functions. Because of the high reactivity of radical species, in our view enzymes involving radical-mediated mechanisms could intrinsically be more prone to catalytic promiscuity. This mini-review summarizes the recent advances in the study of NosL, a radical S-adenosyl-L-methionine (SAM)-dependent L-tryptophan (L-Trp) lyase. We demonstrate here the interesting chemistry and remarkable catalytic promiscuity of NosL, and attempt to highlight the high evolvability of radical SAM enzymes and the potential to engineer these enzymes for novel and improved activities. PMID:27446906

  4. A vast amount of various invariant tori in the Nosé-Hoover oscillator

    SciTech Connect

    Wang, Lei; Yang, Xiao-Song

    2015-12-15

    This letter restudies the Nosé-Hoover oscillator. Some new averagely conservative regions are found, each of which is filled with different sequences of nested tori with various knot types. Especially, the dynamical behaviors near the border of “chaotic region” and conservative regions are studied showing that there exist more complicated and thinner invariant tori around the boundaries of conservative regions bounded by tori. Our results suggest an infinite number of island chains in a “chaotic sea” for the Nosé-Hoover oscillator.

  5. Circulating NOS3 Modulates Left Ventricular Remodeling following Reperfused Myocardial Infarction

    PubMed Central

    Cortese-Krott, Miriam M.; Ohlig, Jan; Rassaf, Tienush; Gödecke, Axel; Fischer, Jens W.; Heusch, Gerd; Merx, Marc W.; Kelm, Malte

    2015-01-01

    Purpose Nitric oxide (NO) is constitutively produced and released from the endothelium and several blood cell types by the isoform 3 of the NO synthase (NOS3). We have shown that NO protects against myocardial ischemia/reperfusion (I/R) injury and that depletion of circulating NOS3 increases within 24h of ischemia/reperfusion the size of myocardial infarction (MI) in chimeric mice devoid of circulating NOS3. In the current study we hypothesized that circulating NOS3 also affects remodeling of the left ventricle following reperfused MI. Methods To analyze the role of circulating NOS3 we transplanted bone marrow of NOS3−/− and wild type (WT) mice into WT mice, producing chimerae expressing NOS3 only in vascular endothelium (BC−/EC+) or in both, blood cells and vascular endothelium (BC+/EC+). Both groups underwent 60 min of coronary occlusion in a closed-chest model of reperfused MI. During the 3 weeks post MI, structural and functional LV remodeling was serially assessed (24h, 4d, 1w, 2w and 3w) by echocardiography. At 72 hours post MI, gene expression of several extracellular matrix (ECM) modifying molecules was determined by quantitative RT-PCR analysis. At 3 weeks post MI, hemodynamics were obtained by pressure catheter, scar size and collagen content were quantified post mortem by Gomori’s One-step trichrome staining. Results Three weeks post MI, LV end-systolic (53.2±5.9μl;***p≤0.001;n = 5) and end-diastolic volumes (82.7±5.6μl;*p<0.05;n = 5) were significantly increased in BC−/EC+, along with decreased LV developed pressure (67.5±1.8mmHg;n = 18;***p≤0.001) and increased scar size/left ventricle (19.5±1.5%;n = 13;**p≤0.01) compared to BC+/EC+ (ESV:35.6±2.2μl; EDV:69.1±2.6μl n = 8; LVDP:83.2±3.2mmHg;n = 24;scar size/LV13.8±0.7%;n = 16). Myocardial scar of BC−/EC+ was characterized by increased total collagen content (20.2±0.8%;n = 13;***p≤0.001) compared to BC+/EC+ (15.9±0.5;n = 16), and increased collagen type I and III subtypes

  6. Polymorphisms of the NOS3 gene and risk of myocardial infarction in the Tunisian population.

    PubMed

    Kallel, Amani; Sbaï, Mohamed Hédi; Sediri, Yousra; Abdessalem, Salem; Mourali, Mohamed Sami; Feki, Moncef; Mechmeche, Rachid; Jemaa, Riadh; Kaabachi, Naziha

    2013-12-01

    Controversial results regarding the association of eNOS gene (NOS3) polymorphisms with myocardial infarction (MI) have been reported. This study investigated the relationship of the -786T>C (rs2070744), 894G>T (rs1799983) and 4a4b polymorphisms of the NOS3 gene with the presence of MI in the Tunisian population. In addition, we also examined the association of NOS3 gene haplotypes with MI in Tunisian subjects. A total of 303 patients with MI and 225 controls were included in the study. The 894G>T and -786T>C single nucleotide polymorphisms were analyzed by PCR-RFLP, and 4a4b polymorphism just for PCR. There was significant linkage disequilibrium between the three NOS3 polymorphisms (p<0.0001). The genotype distribution and allele frequency of NOS3 4a4b, but not -786T>C and 894G>T, polymorphism was significantly different between MI patients and controls. The univariate logistic regression analysis showed a significant association of the 4a4b polymorphism and MI according to co-dominant, dominant and recessive models (co-dominant model OR: 4.38, 95%CI: 1.24-15.41; p=0.021, dominant model OR: 1.66, 95%CI: 1.14-2.42); p=0.007, and recessive model OR: 3.85, 95%CI: 1.10-13.47; p=0.035). The multivariate analysis, adjusted for traditional cardiovascular risk factors, revealed that the NOS3 4a4a genotype was an independent predisposing factor to MI, according to the models considered. In addition, a haplotype 7 (C-T-4a), (OR=12.05, p=0.010) was a risk factor of MI after controlling for classical risk factors. These finding suggest that the 4a4b polymorphism of the NOS3 gene was associated with MI in Tunisian patients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Circulating NOS3 modulates left ventricular remodeling following reperfused myocardial infarction.

    PubMed

    Gorressen, Simone; Stern, Manuel; van de Sandt, Annette M; Cortese-Krott, Miriam M; Ohlig, Jan; Rassaf, Tienush; Gödecke, Axel; Fischer, Jens W; Heusch, Gerd; Merx, Marc W; Kelm, Malte

    2015-01-01

    Nitric oxide (NO) is constitutively produced and released from the endothelium and several blood cell types by the isoform 3 of the NO synthase (NOS3). We have shown that NO protects against myocardial ischemia/reperfusion (I/R) injury and that depletion of circulating NOS3 increases within 24 h of ischemia/reperfusion the size of myocardial infarction (MI) in chimeric mice devoid of circulating NOS3. In the current study we hypothesized that circulating NOS3 also affects remodeling of the left ventricle following reperfused MI. To analyze the role of circulating NOS3 we transplanted bone marrow of NOS3-/- and wild type (WT) mice into WT mice, producing chimerae expressing NOS3 only in vascular endothelium (BC-/EC+) or in both, blood cells and vascular endothelium (BC+/EC+). Both groups underwent 60 min of coronary occlusion in a closed-chest model of reperfused MI. During the 3 weeks post MI, structural and functional LV remodeling was serially assessed (24 h, 4 d, 1 w, 2 w and 3 w) by echocardiography. At 72 hours post MI, gene expression of several extracellular matrix (ECM) modifying molecules was determined by quantitative RT-PCR analysis. At 3 weeks post MI, hemodynamics were obtained by pressure catheter, scar size and collagen content were quantified post mortem by Gomori's One-step trichrome staining. Three weeks post MI, LV end-systolic (53.2±5.9 μl; ***p≤0.001; n = 5) and end-diastolic volumes (82.7±5.6 μl; *p<0.05; n = 5) were significantly increased in BC-/EC+, along with decreased LV developed pressure (67.5±1.8 mm Hg; n = 18; ***p≤0.001) and increased scar size/left ventricle (19.5±1.5%; n = 13; **p≤0.01) compared to BC+/EC+ (ESV: 35.6±2.2 μl; EDV: 69.1±2.6 μl n = 8; LVDP: 83.2±3.2 mm Hg; n = 24; scar size/LV13.8±0.7%; n = 16). Myocardial scar of BC-/EC+ was characterized by increased total collagen content (20.2±0.8%; n = 13; ***p≤0.001) compared to BC+/EC+ (15.9±0.5; n = 16), and increased collagen type I and III subtypes

  8. NOS1AP modulates intracellular Ca2+ in cardiac myocytes and is up-regulated in dystrophic cardiomyopathy

    PubMed Central

    Treuer, Adriana V; Gonzalez, Daniel R

    2014-01-01

    NOS1AP gene (nitric oxide synthase 1-adaptor protein) is strongly associated with abnormalities in the QT interval of the electrocardiogram and with sudden cardiac death. To determine the role of NOS1AP in the physiology of the cardiac myocyte, we assessed the impact of silencing NOS1AP, using siRNA, on [Ca2+]i transients in neonatal cardiomyocytes. In addition, we examined the co-localization of NOS1AP with cardiac ion channels, and finally, evaluated the expression of NOS1AP in a mouse model of dystrophic cardiomyopathy. Using siRNA, NOS1AP levels were reduced to ~30% of the control levels (p<0.05). NOS1AP silencing in cardiac myocytes reduced significantly the amplitude of electrically evoked calcium transients (p<0.05) and the degree of S-nitrosylation of the cells (p<0.05). Using confocal microscopy, we evaluated NOS1AP subcellular location and interactions with other proteins by co-localization analysis. NOS1AP showed a high degree of co-localization with the L-type calcium channel and the inwardly rectifying potassium channel Kir3.1, a low degree of co-localization with the ryanodine receptor (RyR2) and alfa-sarcomeric actin and no co-localization with connexin 43, suggesting functionally relevant interactions with the ion channels that regulate the action potential duration. Finally, using immunofluorescence and Western blotting, we observed that in mice with dystrophic cardiomyopathy, NOS1AP was significantly up-regulated (p<0.05). These results suggest for a role of NOS1AP on cardiac arrhythmias, acting on the L-type calcium channel, and potassium channels, probably through S-nitrosylation. PMID:24665357

  9. Deficient eNOS phosphorylation is a mechanism for diabetic vascular dysfunction contributing to increased stroke size

    PubMed Central

    Li, Qian; Atochin, Dmitriy; Kashiwagi, Satoshi; Earle, John; Wang, Annie; Mandeville, Emiri; Hayakawa, Kazuhide; d'Uscio, Livius V.; Lo, Eng H.; Katusic, Zvonimir; Sessa, William; Huang, Paul

    2013-01-01

    Background and Purpose Phosphorylation of eNOS, an important post-translational modulator of its enzymatic activity, is reduced in diabetes. We hypothesized that modulation of eNOS phosphorylation could overcome diabetic vascular dysfunction and improves the outcome to stroke. Methods We used the db/db mouse model of type 2 diabetes. We mated db/db mice with eNOS knockin mice that carry single-amino acid mutations at the S1176 phosphorylation site; the phosphomimetic SD mutation shows increased eNOS enzymatic activity, while the unphosphorylatable SA mutation shows decreased eNOS activity. We characterized the vascular anatomy, baseline physiologic parameters and vascular reactivity. We used the middle cerebral artery occlusion model of stroke and measured infarct volume and neurological deficits. Results db/db mice showed diminished eNOS phosphorylation at S1176. eNOS SD and SA mutations do not change the vascular anatomy at the Circle of Willis, brain capillary density, heart rate, or arterial blood gases of db/db mice. The eNOS SD mutation, but not the SA mutation, lowers blood pressure and improves vascular reactivity to acetylcholine in db/db mice. The eNOS SD mutation reduces stroke size and neurologic deficit following middle cerebral artery occlusion. Conclusion Diminished eNOS phosphorylation is a mechanism of vascular dysfunction in db/db mice. We show here that modulation of the eNOS S1176 phosphorylation site in db/db mice is associated with improved vascular reactivity and improved outcome to stroke following middle cerebral artery occlusion. PMID:23988642

  10. Tyrosine phosphorylation of eNOS regulates myocardial survival after an ischaemic insult: role of PYK2.

    PubMed

    Bibli, Sofia-Iris; Zhou, Zongmin; Zukunft, Sven; Fisslthaler, Beate; Andreadou, Ioanna; Szabo, Csaba; Brouckaert, Peter; Fleming, Ingrid; Papapetropoulos, Andreas

    2017-07-01

    Endothelial nitric oxide (NO) synthase (eNOS) is known to play a cardioprotective protective. However, the molecular mechanisms regulating eNOS activity during ischaemia/reperfusion (I/R) injury are incompletely understood. eNOS is a substrate for several kinases that positively or negatively affect its enzymatic activity. Herein, we sought to correlate eNOS phosphorylation status with cardiomyocyte survival and we investigated the contribution of the proline-rich tyrosine kinase 2 (PYK2)/eNOS axis to the regulation of myocardial infarct size in vivo. Exposure of H9c2 cardiomyocytes to H2O2 lead to PYK2 phosphorylation on its activator site (Y402) and eNOS phosphorylation on the inhibitor site Y656 and the activator site S1176. Both H2O2-induced eNOS phosphorylation events were abolished by PYK2 pharmacological inhibition or gene knockdown. Activity assays demonstrated that phosphorylation of the tyrosine inhibitory site exerts a dominant effect over S1176. In cardiomyocytes subjected to oxidative stress or oxygen-glucose deprivation, inhibition of PYK2 limited cell injury; this effect was prevented by inhibition of NO production. In vivo, ischaemia-reperfusion induced an early activation of PYK2, leading to eNOS phosphorylation on Y656, which, in turn, reduced NO output, as judged by the low tissue levels of its downstream effector cGMP. Moreover, pharmacological blockade of PYK2 alleviated eNOS inhibition and prevented cardiac damage following I/R injury in wild-type, but not in eNOS KO mice. The current studies demonstrate that PYK2 is a pivotal regulator of eNOS function in myocardial infarction and identify PYK2 as a novel therapeutic target for cardioprotection.

  11. Consistency of the Health of the Nation Outcome Scales (HoNOS) at inpatient-to-community transition

    PubMed Central

    Harvey, Richard; Phung, Dinh; Venkatesh, Svetha; Connor, Jason P

    2016-01-01

    Objectives The Health of the Nation Outcome Scales (HoNOS) are mandated outcome-measures in many mental-health jurisdictions. When HoNOS are used in different care settings, it is important to assess if setting specific bias exists. This article examines the consistency of HoNOS in a sample of psychiatric patients transitioned from acute inpatient care and community centres. Setting A regional mental health service with both acute and community facilities. Participants 111 psychiatric patients were transferred from inpatient care to community care from 2012 to 2014. Their HoNOS scores were extracted from a clinical database; Each inpatient-discharge assessment was followed by a community-intake assessment, with the median period between assessments being 4 days (range 0–14). Assessor experience and professional background were recorded. Primary and secondary outcome measures The difference of HoNOS at inpatient-discharge and community-intake were assessed with Pearson correlation, Cohen's κ and effect size. Results Inpatient-discharge HoNOS was on average lower than community-intake HoNOS. The average HoNOS was 8.05 at discharge (median 7, range 1–22), and 12.16 at intake (median 12, range 1–25), an average increase of 4.11 (SD 6.97). Pearson correlation between two total scores was 0.073 (95% CI −0.095 to 0.238) and Cohen's κ was 0.02 (95% CI −0.02 to 0.06). Differences did not appear to depend on assessor experience or professional background. Conclusions Systematic change in the HoNOS occurs at inpatient-to-community transition. Some caution should be exercised in making direct comparisons between inpatient HoNOS and community HoNOS scores. PMID:27121703

  12. Protective effect of eNOS overexpression against ischemia/reperfusion injury in small-for-size liver transplantation

    PubMed Central

    Zhang, Bo; Liu, Qiu-Hua; Zhou, Cui-Jie; Hu, Ming-Zheng; Qian, Hai-Xin

    2016-01-01

    Ischemia/reperfusion (I/R) injury can occur during small-for-size liver transplantation, resulting in delayed graft function and decreased long-term graft survival. The aim of the present study was to evaluate the effects of genetic overexpression of endothelial nitric oxide synthase (eNOS) in protecting hepatocytes against I/R injury in a rat model of small-for-size liver transplantation. L02 liver cells were transfected with the eNOS gene using an adenovirus (Ad-eNOS). eNOS expression was detected using quantitative polymerase chain reaction and western blot analysis. To evaluate the effect of eNOS overexpression, L02 cells were placed in a hypoxic environment for 12 h and immediately transferred to an oxygen-enriched atmosphere. For in vivo testing, rats pretreated with Ad-eNOS or control underwent small-for-size liver transplantation. At 6 h after reperfusion, the bile quantity, serum transaminase and nitric oxide (NO) levels, and histological outcomes were evaluated. Cell apoptosis was assessed by flow cytometry or TUNEL assay. In vitro, Ad-eNOS prevented apoptosis in L02 cells with an increase in the level of NO in culture supernatant. In vivo, Ad-eNOS pre-treatment significantly increased bile production, improved abnormal transaminase levels, diminished apoptosis among liver cells, and decreased hepatocellular damage at 6 h after I/R injury. The eNOS-mediated renal protective effects might be associated with the downregulation of tumor necrosis factor-α and a reduction in macrophage activation in the early stage of reperfusion in small-for-size liver allografts. eNOS-derived NO production significantly attenuates hepatic I/R injury. Thus, eNOS overexpression constitutes a promising therapeutic approach to prevent liver I/R injury following small-for-size liver transplantation. PMID:27882135

  13. Carbon monoxide increases inducible NOS expression that mediates CO-induced myocardial damage during ischemia-reperfusion.

    PubMed

    Meyer, Grégory; André, Lucas; Kleindienst, Adrien; Singh, François; Tanguy, Stéphane; Richard, Sylvain; Obert, Philippe; Boucher, François; Jover, Bernard; Cazorla, Olivier; Reboul, Cyril

    2015-04-01

    We investigated the role of inducible nitric oxide (NO) synthase (iNOS) on ischemic myocardial damage in rats exposed to daily low nontoxic levels of carbon monoxide (CO). CO is a ubiquitous environmental pollutant that impacts on mortality and morbidity from cardiovascular diseases. We have previously shown that CO exposure aggravates myocardial ischemia-reperfusion (I/R) injury partly because of increased oxidative stress. Nevertheless, cellular mechanisms underlying cardiac CO toxicity remain hypothetical. Wistar rats were exposed to simulated urban CO pollution for 4 wk. First, the effects of CO exposure on NO production and NO synthase (NOS) expression were evaluated. Myocardial I/R was performed on isolated perfused hearts in the presence or absence of S-methyl-isothiourea (1 μM), a NOS inhibitor highly specific for iNOS. Finally, Ca(2+) handling was evaluated in isolated myocytes before and after an anoxia-reoxygenation performed with or without S-methyl-isothiourea or N-acetylcystein (20 μM), a nonspecific antioxidant. Our main results revealed that 1) CO exposure altered the pattern of NOS expression, which is characterized by increased neuronal NOS and iNOS expression; 2) cardiac NO production increased in CO rats because of its overexpression of iNOS; and 3) the use of a specific inhibitor of iNOS reduced myocardial hypersensitivity to I/R (infarct size, 29 vs. 51% of risk zone) in CO rat hearts. These last results are explained by the deleterious effects of NO and reactive oxygen species overproduction by iNOS on diastolic Ca(2+) overload and myofilaments Ca(2+) sensitivity. In conclusion, this study highlights the involvement of iNOS overexpression in the pathogenesis of simulated urban CO air pollution exposure.

  14. The -786T>C promoter polymorphism of the NOS3 gene is associated with prostate cancer progression

    PubMed Central

    Marangoni, Karina; Araújo, Thaíse G; Neves, Adriana F; Goulart, Luiz R

    2008-01-01

    Background There is no biological or epidemiological data on the association between NOS3 promoter polymorphisms and prostate cancer. The polymorphisms in the promoter region of NOS3 gene may be responsible for variations in the plasma NO, which may promote cancer progression by providing a selective growth advantage to tumor cells by angiogenic stimulus and by direct DNA damage. Methods This study aimed evaluating the NOS3 promoter polymorphisms by PCR-SSCP and sequencing, associating genotypes and haplotypes with NOS3 expression levels through semi-quantitative RT-PCR, and with PCA3 mRNA detection, a specific tumor biomarker, in the peripheral blood of pre-surgical samples from 177 patients; 83 PCa and 94 BPH. Results Three novel SNPs were identified -764A>G, -714G>T and -649G>A in the NOS3 gene promoter region, which together with the -786T>C generated four haplotypes (N, T, C, A). NOS3 gene expression levels were affected by the -786T>C polymorphism, and there was a 2-fold increase in NOS3 levels favored by the incorporation of each C allele. NOS3 levels higher than 80% of the constitutive gene expression level (B2M) presented a 4-fold increase in PCa occurrence. Conclusion The -786T>C polymorphism was the most important promoter alteration of the NOS3 gene that may affect the PCa progression, but not its occurrence, and the incorporation of the C allele is associated with increased levels of NOS3 transcripts. The NOS3 transcript levels presented a bimodal behavior in tumor development and may be used as a biomarker together with the PCA3 marker for molecular staging of the prostate cancer. PMID:18823560

  15. The -786T>C promoter polymorphism of the NOS3 gene is associated with prostate cancer progression.

    PubMed

    Marangoni, Karina; Araújo, Thaíse G; Neves, Adriana F; Goulart, Luiz R

    2008-09-29

    There is no biological or epidemiological data on the association between NOS3 promoter polymorphisms and prostate cancer. The polymorphisms in the promoter region of NOS3 gene may be responsible for variations in the plasma NO, which may promote cancer progression by providing a selective growth advantage to tumor cells by angiogenic stimulus and by direct DNA damage. This study aimed evaluating the NOS3 promoter polymorphisms by PCR-SSCP and sequencing, associating genotypes and haplotypes with NOS3 expression levels through semi-quantitative RT-PCR, and with PCA3 mRNA detection, a specific tumor biomarker, in the peripheral blood of pre-surgical samples from 177 patients; 83 PCa and 94 BPH. Three novel SNPs were identified -764A>G, -714G>T and -649G>A in the NOS3 gene promoter region, which together with the -786T>C generated four haplotypes (N, T, C, A). NOS3 gene expression levels were affected by the -786T>C polymorphism, and there was a 2-fold increase in NOS3 levels favored by the incorporation of each C allele. NOS3 levels higher than 80% of the constitutive gene expression level (B2M) presented a 4-fold increase in PCa occurrence. The -786T>C polymorphism was the most important promoter alteration of the NOS3 gene that may affect the PCa progression, but not its occurrence, and the incorporation of the C allele is associated with increased levels of NOS3 transcripts. The NOS3 transcript levels presented a bimodal behavior in tumor development and may be used as a biomarker together with the PCA3 marker for molecular staging of the prostate cancer.

  16. Folic acid modulates eNOS activity via effects on posttranslational modifications and protein–protein interactions☆

    PubMed Central

    Taylor, Sarah Y.; Dixon, Hannah M.; Yoganayagam, Shobana; Price, Natalie; Lang, Derek

    2013-01-01

    Folic acid enhances endothelial function and improves outcome in primary prevention of cardiovascular disease. The exact intracellular signalling mechanisms involved remain elusive and were therefore the subject of this study. Particular focus was placed on folic acid-induced changes in posttranslational modifications of endothelial nitric oxide synthase (eNOS). Cultured endothelial cells were exposed to folic acid in the absence or presence of phosphatidylinositol-3' kinase/Akt (PI3K/Akt) inhibitors. The phosphorylation status of eNOS was determined via western blotting. The activities of eNOS and PI3K/Akt were evaluated. The interaction of eNOS with caveolin-1, Heat-Shock Protein 90 and calmodulin was studied using co-immunoprecipitation. Intracellular localisation of eNOS was investigated using sucrose gradient centrifugation and confocal microscopy. Folic acid promoted eNOS dephosphorylation at negative regulatory sites, and increased phosphorylation at positive regulatory sites. Modulation of phosphorylation status was concomitant with increased cGMP concentrations, and PI3K/Akt activity. Inhibition of PI3K/Akt revealed specific roles for this kinase pathway in folic acid-mediated eNOS phosphorylation. Regulatory protein and eNOS protein associations were altered in favour of a positive regulatory effect in the absence of bulk changes in intracellular eNOS localisation. Folic acid-mediated eNOS activation involves the modulation of eNOS phosphorylation status at multiple residues and positive changes in important protein–protein interactions. Such intracellular mechanisms may in part explain improvements in clinical vascular outcome following folic acid treatment. PMID:23796957

  17. Insights into the arginine paradox: evidence against the importance of subcellular location of arginase and eNOS.

    PubMed

    Elms, Shawn; Chen, Feng; Wang, Yusi; Qian, Jin; Askari, Bardia; Yu, Yanfang; Pandey, Deepesh; Iddings, Jennifer; Caldwell, Ruth B; Fulton, David J R

    2013-09-01

    Reduced production of nitric oxide (NO) is one of the first indications of endothelial dysfunction and precedes overt cardiovascular disease. Increased expression of Arginase has been proposed as a mechanism to account for diminished NO production. Arginases consume l-arginine, the substrate for endothelial nitric oxide synthase (eNOS), and l-arginine depletion is thought to competitively reduce eNOS-derived NO. However, this simple relationship is complicated by the paradox that l-arginine concentrations in endothelial cells remain sufficiently high to support NO synthesis. One mechanism proposed to explain this is compartmentalization of intracellular l-arginine into distinct, poorly interchangeable pools. In the current study, we investigated this concept by targeting eNOS and Arginase to different intracellular locations within COS-7 cells and also BAEC. We found that supplemental l-arginine and l-citrulline dose-dependently increased NO production in a manner independent of the intracellular location of eNOS. Cytosolic arginase I and mitochondrial arginase II reduced eNOS activity equally regardless of where in the cell eNOS was expressed. Similarly, targeting arginase I to disparate regions of the cell did not differentially modify eNOS activity. Arginase-dependent suppression of eNOS activity was reversed by pharmacological inhibitors and absent in a catalytically inactive mutant. Arginase did not directly interact with eNOS, and the metabolic products of arginase or downstream enzymes did not contribute to eNOS inhibition. Cells expressing arginase had significantly lower levels of intracellular l-arginine and higher levels of ornithine. These results suggest that arginases inhibit eNOS activity by depletion of substrate and that the compartmentalization of l-arginine does not play a major role.

  18. Reliability and Validity of the HoNOS-LD and HoNOS in a Sample of Individuals with Mild to Borderline Intellectual Disability and Severe Emotional and Behavior Disorders

    ERIC Educational Resources Information Center

    Tenneij, Nienke; Didden, Robert; Veltkamp, Eline; Koot, Hans M.

    2009-01-01

    In this study, psychometric properties of the Health of the Nation Outcome scales (HoNOS) and Health of the Nation Outcome Scales for People with Learning Disabilities (HoNOS-LD) were investigated in a sample (n = 79) of (young) adults with mild to borderline intellectual disability (ID) and severe behavior and mental health problems who were…

  19. A Socioscientific Curriculum Facilitating the Development of Distal and Proximal NOS Conceptualizations

    ERIC Educational Resources Information Center

    Schalk, Kelly A.

    2012-01-01

    This study reports the effects of an innovative introductory microbiology course for undergraduates that used a socioscientific issues (SSI)-based curriculum. The study illustrates how an SSI-based intervention provides learners with pragmatic opportunities for cultivating their scientific literacy subsuming the nature of science (NOS). Empirical…

  20. Ozone exposure induces iNOS expression and tyrosine nitration in rat aorta.

    PubMed

    Sánchez-González, Dolores J; Moro, María A; Castillo-Henkel, Carlos; Herrera-González, Norma; Hernández-Pando, Rogelio; Larios-Medina, Francisco J; Cobilt, Rafael; Blanco, José A; Pedraza-Chaverrí, José; Villanueva, Cleva

    2004-05-01

    The aim was to study whether ozone affects vascular endothelium by causing inducible nitric oxide synthase (iNOS) expression and tyrosine nitration. We also studied biomarkers of endothelial function. Male Wistar rats were exposed to ozone (0.25ppm, 4h/day) or filtered air (control, ozone <0.05ppm). After ozone exposure, blood samples were taken to measure 6-keto prostaglandin F1α (6-keto PGF1α), dehydro-thromboxane B(2) (DH-TxB(2)), endothelin-1 and NO(2)(-)/NO(3)(-) (NO(x)(-)). iNOS and nitrotyrosine were detected in aorta by immunohistochemistry. Nitrotyrosine was also detected by immunoelectromicroscopy. Control aortae failed to show either iNOS or nitrotyrosine. Time-dependent positive iNOS and nitrotyrosine cells were observed in exposed animals. Except for NO(x)(-), endothelial markers decreased after 14 days of ozone exposure (P<0.05). After 28 days of ozone, 6-keto PGF1α remained low (P<0.05) while DH-TxB(2) increased (P<0.05). It is concluded that ozone causes endothelial dysfunction manifested early with peroxynitrite formation and lately with changes in endothelial markers.

  1. Muscle fatigue, nNOS and muscle fiber atrophy in limb girdle muscular dystrophy.

    PubMed

    Angelini, Corrado; Tasca, Elisabetta; Nascimbeni, Anna Chiara; Fanin, Marina

    2014-12-01

    Muscle fatigability and atrophy are frequent clinical signs in limb girdle muscular dystrophy (LGMD), but their pathogenetic mechanisms are still poorly understood. We review a series of different factors that may be connected in causing fatigue and atrophy, particularly considering the role of neuronal nitric oxide synthase (nNOS) and additional factors such as gender in different forms of LGMD (both recessive and dominant) underlying different pathogenetic mechanisms. In sarcoglycanopathies, the sarcolemmal nNOS reactivity varied from absent to reduced, depending on the residual level of sarcoglycan complex: in cases with complete sarcoglycan complex deficiency (mostly in beta-sarcoglycanopathy), the sarcolemmal nNOS reaction was absent and it was always associated with early severe clinical phenotype and cardiomyopathy. Calpainopathy, dysferlinopathy, and caveolinopathy present gradual onset of fatigability and had normal sarcolemmal nNOS reactivity. Notably, as compared with caveolinopathy and sarcoglycanopathies, calpainopathy and dysferlinopathy showed a higher degree of muscle fiber atrophy. Males with calpainopathy and dysferlinopathy showed significantly higher fiber atrophy than control males, whereas female patients have similar values than female controls, suggesting a gender difference in muscle fiber atrophy with a relative protection in females. In female patients, the smaller initial muscle fiber size associated to endocrine factors and less physical effort might attenuate gender-specific muscle loss and atrophy.

  2. Current Status of Intensive Behavioral Interventions for Young Children with Autism and PDD-NOS

    ERIC Educational Resources Information Center

    Matson, Johnny L.; Smith, Kimberly R. M.

    2008-01-01

    The development of learning based interventions has proven to be an effective means of remediating symptoms of autism and PDD-NOS. The central focus of these effects in recent years has been on early intensive behavioral interventions (EIBI) with preschool children. We use the term EIBI since it is the most often used, and we assume, preferred…

  3. 13. LONGITUDINAL VIEW OF THE SIX TURBINEGENERATOR UNITS (NO.'S 15 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. LONGITUDINAL VIEW OF THE SIX TURBINE-GENERATOR UNITS (NO.'S 1-5 ARE ORIGINAL). TURBINE-GENERATOR NO.1 IS IN THE FOREGROUND, LOOKING WEST. - Washington Water Power Company Post Falls Power Plant, Middle Channel Powerhouse & Dam, West of intersection of Spokane & Fourth Streets, Post Falls, Kootenai County, ID

  4. Burkholderia pseudomallei rpoS mediates iNOS suppression in human hepatocyte (HC04) cells

    PubMed Central

    Sanongkiet, Sucharat; Ponnikorn, Saranyoo; Udomsangpetch, Rachanee; Tungpradabkul, Sumalee

    2016-01-01

    Burkholderia pseudomallei is an intracellular Gram-negative bacterial pathogen and the causative agent of melioidosis, a widespread disease in Southeast Asia. Reactive nitrogen, in an intermediate form of nitric oxide (NO), is one of the first lines of defense used by host cells to eliminate intracellular pathogens, through the stimulation of inducible nitric oxide synthase (iNOS). Studies in phagocytotic cells have shown that the iNOS response is muted in B. pseudomallei infection, and implicated the rpoS sigma factor as a key regulatory factor mediating suppression. The liver is a main visceral organ affected by B. pseudomallei, and there is little knowledge about the interaction of liver cells and B. pseudomallei. This study investigated the induction of iNOS, as well as autophagic flux and light-chain 3 (LC3) localization in human liver (HC04) cells in response to infection with B. pseudomallei and its rpoS deficient mutant. Results showed that the rpoS mutant was unable to suppress iNOS induction and that the mutant showed less induction of autophagy and lower co-localization with LC3, and this was coupled with a lower intracellular growth rate. Combining these results suggest that B. pseudomallei rpoS is an important factor in establishing infection in liver cells. PMID:27324398

  5. Role of iNOS in Bystander Signaling Between Macrophages and Lymphoma Cells

    SciTech Connect

    Ghosh, Somnath; Maurya, Dharmendra Kumar; Krishna, Malini

    2008-12-01

    Purpose: The present report describes the bystander effects of radiation between similar and dissimilar cells and the role of iNOS in such communication. Materials and Methods: EL-4 and RAW 264.7 cells were exposed to 5 Gy {gamma}-irradiation. The medium from irradiated cells was transferred to unirradiated cells. Results: Irradiated EL-4 cells as well as those cultured in the presence of medium from {gamma}-irradiated EL-4 cells showed an upregulation of NF-{kappa}B, iNOS, p53, and p21/waf1 genes. The directly irradiated and the bystander EL-4 cells showed an increase in DNA damage, apoptosis, and NO production. Bystander signaling was also found to exist between RAW 264.7 (macrophage) and EL-4 (lymphoma) cells. Unstimulated or irradiated RAW 264.7 cells did not induce bystander effect in unirradiated EL-4 cells, but LPS stimulated and irradiated RAW 264.7 cells induced an upregulation of NF-{kappa}B and iNOS genes and increased the DNA damage in bystander EL-4 cells. Treatment of EL-4 or RAW 264.7 cells with L-NAME significantly reduced the induction of gene expression and DNA damage in the bystander EL-4 cells, whereas treatment with cPTIO only partially reduced the induction of gene expression and DNA damage in the bystander EL-4 cells. Conclusions: It was concluded that active iNOS in the irradiated cells was essential for bystander response.

  6. Impairments in Fear Conditioning in Mice Lacking the nNOS Gene

    ERIC Educational Resources Information Center

    Kelley, Jonathan B.; Balda, Mara A.; Anderson, Karen L.; Itzhak, Yossef

    2009-01-01

    The fear conditioning paradigm is used to investigate the roles of various genes, neurotransmitters, and substrates in the formation of fear learning related to contextual and auditory cues. In the brain, nitric oxide (NO) produced by neuronal nitric oxide synthase (nNOS) functions as a retrograde neuronal messenger that facilitates synaptic…

  7. Acute caffeine administration decreased NOS and Bcl2 expression in rat skeletal muscles.

    PubMed

    Corsetti, Giovanni; Pasini, Evasio; Assanelli, Deodato; Saligari, Elisa; Adobati, Massimo; Bianchi, Rossella

    2007-02-01

    Caffeine (Caf) is largely used to delay fatigue, improving physical activity. However, its role remains elusive, and there are no hemodynamic or immunohistochemical data regarding its effects on skeletal muscle. We studied the hemodynamic and NOS expression of Bax/Bcl2 in skeletal muscle after single Caf administration. Thirty-two male rats were divided into six groups: the first was iv-injected with Caf (16mg/kg), the second with Caf+L-NAME, the third with Caf+L-arg, the fourth with Caf+L-NAME+L-arg, fifth with saline. Mean arterial blood pressure (MAP) was monitored for 30', then the animals were killed. The sixth group was injected with Caf and killed after 2h. The quadriceps were isolated and processed by immunohistochemistry. We found that Caf increased MAP temporarily, while Caf+L-NAME increased it for a longer period. In untreated muscle, all NOS isoforms was expressed with different intensity and localisation, and Bcl2 was strongly expressed among the myofibrils. In Caf and Caf+L-NAME treated animals, NOS expression was lost; Bcl2 expression decreased among myofibrils but increased inside the subsarcolemma. The L-arg administration reversed these Caf and L-NAME effects. Two hours after Caf, NOS expression increased. We concluded that improved physical performance could be related to Caf's ability to interfere with the endogenous muscular synthesis of NO.

  8. A Socioscientific Curriculum Facilitating the Development of Distal and Proximal NOS Conceptualizations

    ERIC Educational Resources Information Center

    Schalk, Kelly A.

    2012-01-01

    This study reports the effects of an innovative introductory microbiology course for undergraduates that used a socioscientific issues (SSI)-based curriculum. The study illustrates how an SSI-based intervention provides learners with pragmatic opportunities for cultivating their scientific literacy subsuming the nature of science (NOS). Empirical…

  9. Using Video Modeling to Teach Children with PDD-NOS to Respond to Facial Expressions

    ERIC Educational Resources Information Center

    Axe, Judah B.; Evans, Christine J.

    2012-01-01

    Children with autism spectrum disorders often exhibit delays in responding to facial expressions, and few studies have examined teaching responding to subtle facial expressions to this population. We used video modeling to train 3 participants with PDD-NOS (age 5) to respond to eight facial expressions: approval, bored, calming, disapproval,…

  10. 32. LOOKING NORTHEAST DOWN WALKWAY CONNECTING BUILDING NO.S 271, 271G, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. LOOKING NORTHEAST DOWN WALKWAY CONNECTING BUILDING NO.S 271, 271-G, 271-I, 271-L, 271-K, ETC. MIRRORS IN UPPER RIGHT PERMIT WORKERS TO SEE AROUND CORNER TO CORRIDOR LEADING TO BUILDING NO. 271-H (LEAD AZIDE PREPARATION BUILDING). - Picatinny Arsenal, 200 Area, Shell Component Loading, State Route 15 near I-80, Dover, Morris County, NJ

  11. 6. PART 3 OF 3 PART PANORAMA WITH NOS. CA265J4 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. PART 3 OF 3 PART PANORAMA WITH NOS. CA-265-J-4 AND CA-265-J-5 OF FIGUEROA STREET AND LOS ANGELES RIVER VIADUCTS. NOTE ARROYO SECO CHANNEL ENTERING LOS ANGELES RIVER UNDER RAILROAD TRESTLE AT RIGHT. LOOKING 268°W. - Arroyo Seco Parkway, Figueroa Street Viaduct, Spanning Los Angeles River, Los Angeles, Los Angeles County, CA

  12. Neuronal nitric oxide synthase (NOS1) polymorphisms interact with financial hardship to affect depression risk.

    PubMed

    Sarginson, Jane E; Deakin, J F William; Anderson, Ian M; Downey, Darragh; Thomas, Emma; Elliott, Rebecca; Juhasz, Gabriella

    2014-11-01

    There is increasing evidence that genetic factors have a role in differential susceptibility to depression in response to severe or chronic adversity. Studies in animals suggest that nitric oxide (NO) signalling has a key role in depression-like behavioural responses to stress. This study investigated whether genetic variation in the brain-expressed nitric oxide synthase gene NOS1 modifies the relationship between psychosocial stress and current depression score. We recruited a population sample of 1222 individuals who provided DNA and questionnaire data on symptoms and stress. Scores on the List of Life-Threatening Experiences (LTE) questionnaire for the last year and self-rated current financial hardship were used as measures of recent/ongoing psychosocial stress. Twenty SNPs were genotyped. Significant associations between eight NOS1 SNPs, comprising two regional haplotypes, and current depression score were identified that survived correction for multiple testing when current financial hardship was used as the interaction term. A smaller three-SNP haplotypes (rs10507279, rs1004356 and rs3782218) located in a regulatory region of NOS1 showed one of the strongest effects, with the A-C-T haplotype associating with higher depression scores at low adversity levels but lower depression scores at higher adversity levels (p=2.3E-05). These results suggest that NOS1 SNPs interact with exposure to economic and psychosocial stressors to alter individual's susceptibility to depression.

  13. Using Video Modeling to Teach Children with PDD-NOS to Respond to Facial Expressions

    ERIC Educational Resources Information Center

    Axe, Judah B.; Evans, Christine J.

    2012-01-01

    Children with autism spectrum disorders often exhibit delays in responding to facial expressions, and few studies have examined teaching responding to subtle facial expressions to this population. We used video modeling to train 3 participants with PDD-NOS (age 5) to respond to eight facial expressions: approval, bored, calming, disapproval,…

  14. 49 CFR 173.335 - Chemical under pressure n.o.s.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... internal pressure at 65 °C (149 °F) must not exceed the test pressure of the cylinder. The vapor pressures... 49 Transportation 2 2014-10-01 2014-10-01 false Chemical under pressure n.o.s. 173.335 Section 173... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.335 Chemical under pressure...

  15. Recapitulating the History of Sickle-Cell Anemia Research: Improving Students' NOS Views Explicitly and Reflectively

    ERIC Educational Resources Information Center

    Howe, Eric Michael; Rudge, David Wyss

    2005-01-01

    This paper provides an argument in favor of a specific pedagogical method of using the history of science to help students develop more informed views about nature of science (NOS) issues. The paper describes a series of lesson plans devoted to encouraging students to engage, "unbeknownst to them", in similar reasoning that led…

  16. Spanish Students' Conceptions about NOS and STS Issues: A Diagnostic Study

    ERIC Educational Resources Information Center

    Vázquez-Alonso, Ángel; García-Carmona, Antonio; Manassero-Mas, María Antonia; Bennàssar-Roig, Antoni

    2014-01-01

    Spanish students' beliefs on themes of Science-Technology-Society (STS) and nature of science (NOS) are assessed. The sample consisted of 1050 science and non-science students who had concluded their pre-university education (18-19 years old). Each participant anonymously answered 30 items drawn from the Questionnaire of Opinions on Science,…

  17. Enhancing Students' NOS Views and Science Knowledge Using Facebook-Based Scientific News

    ERIC Educational Resources Information Center

    Huang, Hsi-Yu; Wu, Hui-Ling; She, Hsiao-Ching; Lin, Yu-Ren

    2014-01-01

    This study investigated how the different discussion approaches in Facebook influenced students' scientific knowledge acquisition and the nature of science (NOS) views. Two eighth- and two ninth-grade classes in a Taiwanese junior high school participated in the study. In two of the classes students engaged in synchronous discussion, and in the…

  18. Fluctuation theorem applied to the Nosé-Hoover thermostated Lorentz gas.

    PubMed

    Gilbert, Thomas

    2006-03-01

    We present numerical evidence supporting the validity of the Gallavotti-Cohen fluctuation theorem applied to the driven Lorentz gas with Nosé-Hoover thermostating. It is moreover argued that the asymptotic form of the fluctuation formula is independent of the amplitude of the driving force in the limit where it is small.

  19. Fluctuation theorem applied to the Nosé-Hoover thermostated Lorentz gas

    NASA Astrophysics Data System (ADS)

    Gilbert, Thomas

    2006-03-01

    We present numerical evidence supporting the validity of the Gallavotti-Cohen fluctuation theorem applied to the driven Lorentz gas with Nosé-Hoover thermostating. It is moreover argued that the asymptotic form of the fluctuation formula is independent of the amplitude of the driving force in the limit where it is small.

  20. eNOS-Dependent Antisenscence Effect of a Calcium Channel Blocker in Human Endothelial Cells

    PubMed Central

    Hayashi, Toshio; Yamaguchi, Tomoe; Sakakibara, Yasufumi; Taguchi, Kumiko; Maeda, Morihiko; Kuzuya, Masafumi; Hattori, Yuichi

    2014-01-01

    Senescence of vascular endothelial cells is an important contributor to the pathogenesis of age-associated vascular disorders such as atherosclerosis. We investigated the effects of antihypertensive agents on high glucose-induced cellular senescence in human umbilical venous endothelial cells (HUVECs). Exposure of HUVECs to high glucose (22 mM) for 3 days increased senescence-associated- β-galactosidase (SA-β-gal) activity, a senescence marker, and decreased telomerase activity, a replicative senescence marker. The calcium channel blocker nifedipine, but not the β1-adrenergic blocking agent atenolol or the angiotensin-converting enzyme inhibitor perindopril, reduced SA-β-gal positive cells and prevented a decrease in telomerase activity in a high-glucose environment. This beneficial effect of nifedipine was associated with reduced reactive oxygen species (ROS) and increased endothelial nitric oxide synthase (eNOS) activity. Thus, nifedipine prevented high glucose-induced ROS generation and increased basal eNOS phosphorylation level at Ser-1177. Treatment with NG-nitro-L-arginine (L-NAME) and transfection of small interfering RNA (siRNA) targeting eNOS eliminated the anti-senscence effect of nifedipine. These results demonstrate that nifedipine can prevent endothelial cell senescence in an eNOS-dependent manner. The anti-senescence action of nifedipine may represent a novel mechanism by which it protects against atherosclerosis. PMID:24520379

  1. Impairments in Fear Conditioning in Mice Lacking the nNOS Gene

    ERIC Educational Resources Information Center

    Kelley, Jonathan B.; Balda, Mara A.; Anderson, Karen L.; Itzhak, Yossef

    2009-01-01

    The fear conditioning paradigm is used to investigate the roles of various genes, neurotransmitters, and substrates in the formation of fear learning related to contextual and auditory cues. In the brain, nitric oxide (NO) produced by neuronal nitric oxide synthase (nNOS) functions as a retrograde neuronal messenger that facilitates synaptic…

  2. Effects of PRRSV infection on TLR-dependent induction of NOS

    USDA-ARS?s Scientific Manuscript database

    Inducible nitric oxide synthase (iNOS) is an important effector enzyme in the macrophage arsenal against pathogens. This enzyme is produced in response to bacterial cell wall components such as lipopolysaccharide (LPS) and dsRNA--a by-product of viral replication, binding to Toll-like receptors (TL...

  3. From Orthodoxy to Plurality in the Nature of Science (NOS) and Science Education: A Metacommentary

    ERIC Educational Resources Information Center

    Bazzul, Jesse

    2017-01-01

    This article provides a metacommentary on the special issue on nature of science (NOS). The issue is composed of senior scholars discussing Hodson and Wong's (2017, this issue) critique of the consensus view of nature of science, which on a basic level states that there are agreed-upon aspects of science that can be taught in K-12 schools. Each…

  4. Disrupting nNOS-PSD-95 coupling in the hippocampal dentate gyrus promotes extinction memory retrieval.

    PubMed

    Li, Jun; Han, Zhou; Cao, Bo; Cai, Cheng-Yun; Lin, Yu-Hui; Li, Fei; Wu, Hai-Ying; Chang, Lei; Luo, Chun-Xia; Zhu, Dong-Ya

    2017-09-06

    Granule cells in the dentate gyrus regenerate constantly in adult hippocampus and then integrate into neural circuits in the hippocampus thereby providing the neural basis for learning and memory. Promoting the neurogenesis in the hippocampus facilitates learning and memory such as spatial learning, object identification, and extinction learning. The interaction between neuronal nitric oxide synthase (nNOS) and postsynaptic density protein-95 (PSD-95) is reported to negatively regulate neurogenesis in brain, so we hypothesized that disrupting this interaction might facilitate the neurogenesis in the dentate gyrus (DG) and thus enhance the extinction memory retrieval of fear learning. We found that uncoupling the nNOS-PSD-95 complex in remote contextual fear condition promoted both neuronal proliferation and survival in the DG, contributing to an enhanced retrieval of the extinction memory. Moreover, the nNOS-PSD-95 uncoupling-induced neurogenesis may be mediated by the extracellular signal-regulated kinase (ERK) as the phosphorylation level of ERK1/2 was increased after uncoupling. These findings suggest that the nNOS-PSD-95 complex may serve as a novel target for the treatment of post-traumatic stress disorder (PTSD). Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Induction of expression of iNOS by N-nitrosodimethylamine (NDMA) in human leukocytes.

    PubMed

    Ratajczak-Wrona, Wioletta; Jablonska, Ewa; Jablonski, Jakub; Marcinczyk, Magdalena

    2009-01-01

    The aim of this study was to assess the influence of N-nitrosodimethylamine (NDMA) on expression of inducible nitric oxide synthase (iNOS), as well as production of nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) by human neutrophils (PMN) and peripheral blood mononuclear cells (PBMC), and the participation of the p38 MAPK kinase in this process. Furthermore, the ability of neutrophils to release superoxide anion was determined. The influence of N-nitrosodimethylamine on iNOS expression was determined in isolated PMN and PBMC cells from peripheral blood of healthy individuals. The mononuclear cells showed higher sensitivity to NDMA. Moreover, cytotoxic effect of NDMA can be influenced in some way by the impact of this xenobiotic on nitric oxide and superoxide anion release from human leukocytes. Furthermore, increased generation of these radicals by human leukocytes suggest that neutrophils and mononuclear cells that are exposed to NDMA activity can play a key role in endogenous NDMA generation. However the relationship between iNOS expression and phospho-p38 MAPK in neutrophils and mononuclear cells shows that p38 MAPK pathway participates in induction of iNOS expression in the presence of NDMA.

  6. Site overview. Part 2 of 3part panorama with nos. CA27021 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Site overview. Part 2 of 3-part panorama with nos. CA-2702-1 and CA-2707-3. Hanger no. 2 at left rear. Hangar no. 1 at right rear. Hangar no. 1 landing pad road in center. Looking 232 SW. - Marine Corps Air Station Tustin, East of Red Hill Avenue between Edinger Avenue & Barranca Parkway, Tustin, Orange County, CA

  7. Site overview. Part 2 of 3part panorama with nos. CA27021 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Site overview. Part 2 of 3-part panorama with nos. CA-2702-1 and CA-2707-3. Hanger no. 2 at left rear. Hangar no. 1 at right rear. Hangar no. 1 landing pad road in center. Looking 232 SW. - Marine Corps Air Station Tustin, Northern Lighter Than Air Ship Hangar, Meffett Avenue & Maxfield Street, Tustin, Orange County, CA

  8. 4. PART 1 OF 3 PART PANORAMA WITH NOS. CA265J5 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. PART 1 OF 3 PART PANORAMA WITH NOS. CA-265-J-5 AND CA-265-J-6 OF FIGUEROA STREET AND LOS ANGELES RIVER VIADUCTS. NOTE TUNNEL NO.1 NORTH PORTAL AT LEFT REAR. LOOKING 268°W. - Arroyo Seco Parkway, Figueroa Street Viaduct, Spanning Los Angeles River, Los Angeles, Los Angeles County, CA

  9. 5. PART 2 OF 3 PART PANORAMA WITH NOS. CA265J4 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. PART 2 OF 3 PART PANORAMA WITH NOS. CA-265-J-4 AND CA-265-J-6 OF FIGUEROA STREET AND LOS ANGELES RIVER VIADUCTS. LOOKING 308°W. - Arroyo Seco Parkway, Figueroa Street Viaduct, Spanning Los Angeles River, Los Angeles, Los Angeles County, CA

  10. Nos3-/- iPSCs model concordant signatures of in utero cardiac pathogenesis.

    PubMed

    Campbell, Katherine A; Li, Xing; Biendarra, Sherri M; Terzic, Andre; Nelson, Timothy J

    2015-10-01

    Through genome-wide transcriptional comparisons, this study interrogates the capacity of in vitro differentiation of induced pluripotent stem cells (iPSCs) to accurately model pathogenic signatures of developmental cardiac defects. Herein, we studied the molecular etiology of cardiac defects in Nos3(-/-) mice via transcriptional analysis of stage-matched embryonic tissues and iPSC-derived cells. In vitro comparisons of differentiated cells were calibrated to in utero benchmarks of health and disease. Integrated systems biology analysis of WT and Nos3(-/-) transcriptional profiles revealed 50% concordant expression patterns between in utero embryonic tissues and ex vivo iPSC-derived cells. In particular, up-regulation of glucose metabolism (p-value=3.95×10(-12)) and down-regulation of fatty acid metabolism (p-value=6.71×10(-12)) highlight a bioenergetic signature of early Nos3 deficiency during cardiogenesis that can be recapitulated in iPSC-derived differentiated cells. The in vitro concordance of early Nos3(-/-) disease signatures supports the utility of iPSCs as a cellular model of developmental heart defects. Moreover, this study supports the use of iPSCs as a platform to pinpoint initial stages of congenital cardiac pathogenesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Genetic Association Analysis of NOS3 and Methamphetamine-Induced Psychosis Among Japanese.

    PubMed

    Okochi, T; Kishi, T; Ikeda, M; Kitajima, T; Kinoshita, Y; Kawashima, K; Okumura, T; Tsunoka, T; Fukuo, Y; Inada, T; Yamada, M; Uchimura, N; Iyo, M; Sora, I; Ozaki, N; Ujike, H; Iwata, N

    2011-03-01

    Endothelial nitric oxide synthase (NOS3) is one of the enzymes influencing nitric oxide (NO) function in the human brain. NO is a gaseous neurotransmitter that is involved in a variety of mechanisms in the central nervous system, such as N-methyl-D-aspartate receptor activation and oxidative stress. The evidence from animal pharmacological studies and postmortem studies supports an association between NO and psychotic disorders. Methamphetamine (METH) use disorder is a known psychotic disorder, and we therefore conducted a gene-based case-control study between tagging single nucleotide polymorphisms (SNPs) (rs2070744, rs1799983) in NOS3 and METH-induced psychosis in Japanese subjects (183 with METH-induced psychosis and 267 controls). Written informed consent was obtained from each subject. No significant association was found between any tagging SNP in NOS3 and METH-induced psychosis in the allele/genotype-wise or haplotype-wise analyses. In conclusion, we suggest that NOS3 might not contribute to the risk of METH-induced psychosis in the Japanese population.

  12. The -786T > C polymorphism in the NOS3 gene is associated with increased cancer risk.

    PubMed

    Zhang, Yonggang; Jia, Qingyi; Xue, Pei; Liu, Yuqi; Xiong, Tianyuan; Yang, Jiqiao; Song, Chenxi; He, Qing; Du, Liang

    2014-04-01

    The -786T > C polymorphism in NOS3 gene may affect the DNA repair pathways and be associated with risk of cancer. However, the results of previous studies are inconsistent. The objective of this study is to investigate the association between the -786T > C polymorphism in NOS3 and risk of cancer by meta-analysis. We searched PubMed, Embase, CNKI, and Wanfang databases and the last search was updated on Sept. 20, 2013. Statistical analysis was performed using Revman4.2 and Stata10.0 software. A total of 9 case-control studies concerning 4,089 cases and 3,847 controls were included. The results suggested a significant association between the -786T > C polymorphism in NOS3 and cancer risk (CC vs. TT + CT; OR = 1.30, 95% CI = 1.07-1.57, P = 0.007) in total analysis. In the subgroup analysis by ethnicity and cancer types, significant associations were found in the breast cancer subgroup (OR 1.51, 95% CI 1.07-2.12; P = 0.02) and European subgroup (OR 1.26, 95% CI 1.01-1.58; P = 0.04). The current meta-analysis suggested that the -786T > C polymorphisms in NOS3 may be a risk factor for cancer. In the future, more case-control studies are needed to validate our results.

  13. NOS3 gene variants and male infertility: Association of 4a/4b with oligoasthenozoospermia.

    PubMed

    Vučić, N L J; Nikolić, Z Z; Vukotić, V D; Tomović, S M; Vuković, I I; Kanazir, S D; Savić-Pavićević, D L J; Brajušković, G N

    2017-05-03

    Results of recent studies confirmed that oxidative stress negatively affects sperm motility and causes sperm DNA damage. Produced by nitric oxide synthase 3 (NOS3), nitric oxide is considered to be one of the important mediators of oxidative stress in testis tissue. The aim of this study was to assess the possible association of three genetic variants (rs2070744, rs1799983 and intron variant 4a/4b) in NOS3 gene and infertility occurrence in two groups of infertile men (idiopathic azoospermia and oligoasthenozoospermia) and fertile controls. Genotypes for the single-nucleotide genetic variants rs1799983 and rs2070744 were determined by PCR-RFLP, while genotyping of intron 4 variant 4a/4b was performed by gel electrophoresis of PCR products. Statistical analysis was performed by SNPStats software. No significant association between the three genetic variants of the NOS3 gene and infertility risk was determined comparing allele and genotype frequencies among group of patients diagnosed with azoospermia and the control group. Nevertheless, there was a significant positive association between 4a/4b and infertility in the group of males diagnosed with oligoasthenozoospermia, under overdominant genetic model. Our findings suggest that tandem repeat variant within intron 4 of the NOS3 gene is associated with an increased risk of infertility in men diagnosed with idiopathic oligoasthenozoospermia. © 2017 Blackwell Verlag GmbH.

  14. Evidence of Aortopathy in Mice with Haploinsufficiency of Notch1 in Nos3-Null Background

    PubMed Central

    Koenig, Sara N.; Bosse, Kevin M.; Nadorlik, Holly A.; Lilly, Brenda; Garg, Vidu

    2015-01-01

    Thoracic aortic aneurysms (TAA) are a significant cause of morbidity and mortality in humans. While the exact etiology is unknown, genetic factors play an important role. Mutations in NOTCH1 have been linked to bicuspid aortic valve (BAV) and aortopathy in humans. The aim of this study was to determine if haploinsufficiency of Notch1 contributes to aortopathy using Notch1+/−; Nos3−/− mice. Echocardiographic analysis of Notch1+/−; Nos3−/− mice reveals effacement of the sinotubular junction and a trend toward dilation of the aortic sinus. Furthermore, examination of the proximal aorta of Notch1+/−; Nos3−/− mice reveals elastic fiber degradation, a trend toward increased matrix metalloproteinase 2 expression, and increased smooth muscle cell apoptosis, features characteristic of aneurysmal disease. Although at a lower penetrance, we also found features consistent with aortopathic changes in Notch1 heterozygote mice and in Nos3-null mice. Our findings implicate a novel role for Notch1 in aortopathy of the proximal aorta. PMID:25914885

  15. Site overview. Part 3 of 3part panorama with nos. CA27071 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Site overview. Part 3 of 3-part panorama with nos. CA2707-1 and CA-2707-2. Hangar no. 1. Seen from roadway leading to hangar no. 1 landing pad. Looking 250 WSW. - Marine Corps Air Station Tustin, Northern Lighter Than Air Ship Hangar, Meffett Avenue & Maxfield Street, Tustin, Orange County, CA

  16. Site overview. Part 3 of 3part panorama with nos. CA27071 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Site overview. Part 3 of 3-part panorama with nos. CA2707-1 and CA-2707-2. Hangar no. 1. Seen from roadway leading to hangar no. 1 landing pad. Looking 250 WSW. - Marine Corps Air Station Tustin, East of Red Hill Avenue between Edinger Avenue & Barranca Parkway, Tustin, Orange County, CA

  17. Identifying Demographic Variables Influencing the Nature of Science (NOS) Conceptions of Teachers

    ERIC Educational Resources Information Center

    Karaman, Ayhan

    2017-01-01

    In this survey research study, the views of practicing teachers in select aspects of NOS were investigated in connection with the effects of several variables (teaching discipline, gender, education level, teaching experience and regional work location). The instrument used to collect data was an adapted version of "Scientific Epistemological…

  18. Spanish Students' Conceptions about NOS and STS Issues: A Diagnostic Study

    ERIC Educational Resources Information Center

    Vázquez-Alonso, Ángel; García-Carmona, Antonio; Manassero-Mas, María Antonia; Bennàssar-Roig, Antoni

    2014-01-01

    Spanish students' beliefs on themes of Science-Technology-Society (STS) and nature of science (NOS) are assessed. The sample consisted of 1050 science and non-science students who had concluded their pre-university education (18-19 years old). Each participant anonymously answered 30 items drawn from the Questionnaire of Opinions on Science,…

  19. Current Status of Intensive Behavioral Interventions for Young Children with Autism and PDD-NOS

    ERIC Educational Resources Information Center

    Matson, Johnny L.; Smith, Kimberly R. M.

    2008-01-01

    The development of learning based interventions has proven to be an effective means of remediating symptoms of autism and PDD-NOS. The central focus of these effects in recent years has been on early intensive behavioral interventions (EIBI) with preschool children. We use the term EIBI since it is the most often used, and we assume, preferred…

  20. 30. BUILDING NO.S 271K AND 271L, VIEW LOOKING SOUTH AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. BUILDING NO.S 271-K AND 271-L, VIEW LOOKING SOUTH AT BACK OF BUILDING NO. 271-L (LEFT), 271-K (MIDDLE) AND ROOF OF BUILDING NO. 271-I (VISIBLE OVER WALKWAY ON RIGHT). - Picatinny Arsenal, 200 Area, Shell Component Loading, State Route 15 near I-80, Dover, Morris County, NJ

  1. Recapitulating the History of Sickle-Cell Anemia Research: Improving Students' NOS Views Explicitly and Reflectively

    ERIC Educational Resources Information Center

    Howe, Eric Michael; Rudge, David Wyss

    2005-01-01

    This paper provides an argument in favor of a specific pedagogical method of using the history of science to help students develop more informed views about nature of science (NOS) issues. The paper describes a series of lesson plans devoted to encouraging students to engage, "unbeknownst to them", in similar reasoning that led…

  2. Fluorination Effects on NOS Inhibitory Activity of Pyrazoles Related to Curcumin.

    PubMed

    Nieto, Carla I; Cabildo, María Pilar; Cornago, María Pilar; Sanz, Dionisia; Claramunt, Rosa M; Torralba, María Carmen; Torres, María Rosario; Elguero, José; García, José A; López, Ana; Acuña-Castroviejo, Darío

    2015-08-28

    A series of new (E)-3(5)-[β-(aryl)-ethenyl]-5(3)-phenyl-1H-pyrazoles bearing fluorine atoms at different positions of the aryl group have been synthesized starting from the corresponding β-diketones. All compounds have been characterized by elemental analysis, DSC as well as NMR (¹H, (13)C, (19)F and (15)N) spectroscopy in solution and in solid state. Three structures have been solved by X-ray diffraction analysis, confirming the tautomeric forms detected by solid state NMR. The in vitro study of their inhibitory potency and selectivity on the activity of nNOS and eNOS (calcium-calmodulin dependent) as well as iNOS (calcium-calmodulin independent) isoenzymes is presented. A qualitative structure-activity analysis allowed the establishment of a correlation between the presence/ absence of different substituents with the inhibition data proving that fluorine groups enhance the biological activity. (E)-3(5)-[β-(3-Fluoro-4-hydroxyphenyl)-ethenyl]-5(3)-phenyl-1H-pyrazole (13), is the best inhibitor of iNOS, being also more selective towards the other two isoforms.

  3. Antioxidative effects of cinnamomi cortex: A potential role of iNOS and COX-II

    PubMed Central

    Chung, Jin-Won; Kim, Jeong-Jun; Kim, Sung-Jin

    2011-01-01

    Background: Cinnamomi cortex has wide varieties of pharmacological actions such as anti-inflammatory action, anti-platelet aggregation, and improving blood circulation. In this study, we tested to determine whether the Cinnamomi cortex extract has antioxidant activities. Materials and Methods: Antioxidative actions were explored by measuring free radical scavenging activity, NO levels, and reducing power. The mechanism of antioxidative action of Cinnamomi cortex was determined by measuring iNOS and COX-II expression in lipopolysaccharide (LPS) stimulated Raw cells. Results: Seventy percent methanolic extract of Cinnamomi cortex exerted significant 1,1-diphenyl--2--picrylhydrazyl (DPPH) free radicals and NO scavenging activities in a dose-dependent manner. More strikingly, the Cinnamomi cortex extract exerted dramatic reducing power activity (13-fold over control). Production of iNOS induced by LPS was significantly inhibited by the Cinnamomi cortex extract, suggesting that it inhibits NO production by suppressing iNOS expression. Additionally, COX-2 induced by LPS was dramatically inhibited by the Cinnamomi cortex extract. Conclusion: These results suggest that 70% methanolic extract of Cinnamomi cortex exerts significant antioxidant activity via inhibiting iNOS and COX-II induction. PMID:22262934

  4. Depletion of circulating blood NOS3 increases severity of myocardial infarction and left ventricular dysfunction.

    PubMed

    Merx, Marc W; Gorressen, Simone; van de Sandt, Annette M; Cortese-Krott, Miriam M; Ohlig, Jan; Stern, Manuel; Rassaf, Tienush; Gödecke, Axel; Gladwin, Mark T; Kelm, Malte

    2014-01-01

    Nitric oxide (NO) derived from endothelial NO synthase (NOS3) plays a central role in myocardial ischemia/reperfusion (I/R)-injury. Subsets of circulating blood cells, including red blood cells (RBCs), carry a NOS3 and contribute to blood pressure regulation and RBC nitrite/nitrate formation. We hypothesized that the circulating blood born NOS3 also modulates the severity of myocardial infarction in disease models. We cross-transplanted bone marrow in wild-type and NOS3(-/-) mice with wild-type mice, producing chimeras expressing NOS3 only in vascular endothelium (BC-/EC+) or in both blood cells and vascular endothelium (BC+/EC+). After 60-min closed-chest coronary occlusion followed by 24 h reperfusion, cardiac function, infarct size (IS), NOx levels, RBCs NO formation, RBC deformability, and vascular reactivity were assessed. At baseline, BC-/EC+ chimera had lower nitrite levels in blood plasma (BC-/EC+: 2.13 ± 0.27 μM vs. BC+/EC+ 3.17 ± 0.29 μM; *p < 0.05), reduced DAF FM associated fluorescence within RBCs (BC-/EC+: 538.4 ± 12.8 mean fluorescence intensity (MFI) vs. BC+/EC+: 619.6 ± 6.9 MFI; ***p < 0.001) and impaired erythrocyte deformability (BC-/EC+: 0.33 ± 0.01 elongation index (EI) vs. BC+/EC+: 0.36 ± 0.06 EI; *p < 0.05), while vascular reactivity remained unaffected. Area at risk did not differ, but infarct size was higher in BC-/EC+ (BC-/EC+: 26 ± 3 %; BC+/EC+: 14 ± 2 %; **p < 0.01), resulting in decreased ejection fraction (BC-/EC+ 46 ± 2 % vs. BC+/EC+: 52 ± 2 %; *p < 0.05) and increased end-systolic volume. Application of the NOS inhibitor S-ethylisothiourea hydrobromide was associated with larger infarct size in BC+/EC+, whereas infarct size in BC-/EC+ mice remained unaffected. Reduced infarct size, preserved cardiac function, NO levels in RBC and RBC deformability suggest a modulating role of circulating NOS3 in an acute model of myocardial I/R in chimeric mice.

  5. Phenotypic characterization by high-resolution three-dimensional magnetic resonance imaging evidences differential effects of embryo genotype on intrauterine growth retardation in NOS3-deficient mice.

    PubMed

    Pallares, Pilar; Perez-Solana, Maria L; Torres-Rovira, Laura; Gonzalez-Bulnes, Antonio

    2011-05-01

    The Nos3-knockout mouse, deficient for endothelial constitutive nitric oxide synthase (NOS3), is affected by a reduction in the number and weight of the embryos and constitutes a good model for some features of preeclampsia and intrauterine growth retardation (IUGR). Deficiencies in conceptus growth and survival may result from factors inherent in the embryo itself or from deficiencies in uterine function. In the current study, we aimed to determine the effects of embryonic genotype independently of maternal genotype, which can affect uterine environment. Therefore, by using magnetic resonance imaging (MRI), we characterized the phenotypes of NOS3-defective (Nos3(-/-); n = 6), normal wild-type (Nos3(+/+); n = 5), and heterozygous (Nos3(+/-); n = 16) mouse fetuses. All of them were littermates obtained by breeding heterozygous mice (Nos3(+/-)); therefore, the maternal genotype was the same for all the fetuses. At Day 13.5 (i.e., Theiler stage TS 21-22), females were anesthetized and scanned with three-dimensional MRI. Analysis of the different measurements of the embryos and the gestational annexes showed no significant differences between Nos3(+/+) and Nos3(+/-); however, there was a trend toward larger sizes in Nos3(+/+), and values in Nos3(-/-) were significantly smaller than in Nos3(+/+) and Nos3(+/-). The reduction in the crown-rump length of Nos3(-/-) reached 12% when compared to Nos3(+/+) (P < 0.05); the effect was higher for head measurements (16% for occipito-snout length and biparietal diameter, P < 0.05 for both) and trunk diameter (17%, P < 0.05). Overall, the maximum area of fetuses in longitudinal planes decreased 27% (P < 0.05) when comparing Nos3(-/-) to wild-type Nos3(+/+). Finally, Nos3(-/-) showed a reduction of 29% in the maximum thickness of the placenta, which may be related to the appearance of IUGR due to compromised nutritional delivery to the fetus.

  6. 75 FR 17159 - Notice of Availability of the Proposed Notice of Sale (NOS) for Outer Continental Shelf (OCS) Oil...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ... Minerals Management Service Notice of Availability of the Proposed Notice of Sale (NOS) for Outer... (GOM) AGENCY: Minerals Management Service, Interior. ACTION: Notice of availability of the proposed NOS... potential bidders may be obtained from the Public Information Unit, Gulf of Mexico Region,...

  7. 76 FR 4391 - Calvert Cliffs Nuclear Power Plant, LLC, Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... COMMISSION Calvert Cliffs Nuclear Power Plant, LLC, Calvert Cliffs Nuclear Power Plant, Unit Nos. 1 and 2; Exemption 1.0 Background Calvert Cliffs Nuclear Power Plant, LLC, the licensee, is the holder of Facility Operating License Nos. DPR-53 and DPR-69 which authorizes operation of the Calvert Cliffs Nuclear...

  8. Detecting nitrous oxide reductase (nosZ) genes in soil metagenomes: method development and implications for the nitrogen cycle

    USDA-ARS?s Scientific Manuscript database

    Incomplete denitrification in soils represents a major source of nitrous oxide (N2O), a potent greenhouse gas. The key enzyme for mitigating N2O emissions is NosZ, which catalyzes N2O reduction to N2 and is generally attributed to denitrifiers. We recently described an “atypical” functional NosZ enz...

  9. eNOS uncoupling in the cerebellum after BBB disruption by exposure to Phoneutria nigriventer spider venom.

    PubMed

    Soares, Edilene Siqueira; Mendonça, Monique Culturato Padilha; da Cruz-Höfling, Maria Alice

    2015-09-15

    Numerous studies have shown that the venom of Phoneutria nigriventer (PNV) armed-spider causes excitotoxic signals and blood-brain barrier breakdown (BBBb) in rats. Nitric oxide (NO) is a signaling molecule which has a role in endothelium homeostasis and vascular health. The present study investigated the relevance of endothelial NO synthase (eNOS) uncoupling to clinical neurotoxic evolution induced by PNV. eNOS immunoblotting of cerebellum lysates processed through low-temperature SDS-PAGE revealed significant increased monomerization of the enzyme at critical periods of severe envenoming (1-2 h), whereas eNOS dimerization reversal paralleled to amelioration of animals condition (5-72 h). Moreover, eNOS uncoupling was accompanied by increased expression in calcium-sensing calmodulin protein and calcium-binding calbindin-D28 protein in cerebellar neurons. It is known that greater eNOS monomers than dimers implies the inability of eNOS to produce NO leading to superoxide production and endothelial/vascular barrier dysfunction. We suggest that transient eNOS deactivation and disturbances in calcium handling reduce NO production and enhance production of free radicals thus contributing to endothelial dysfunction in the cerebellum of envenomed rats. In addition, eNOS uncoupling compromises the enzyme capacity to respond to shear stress contributing to perivascular edema and it is one of the mechanisms involved in the BBBb promoted by PNV. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. 75 FR 32516 - Virginia Electric and Power Company; North Anna Power Station, Unit Nos. 1 and 2; Surry Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ... Station, Unit Nos. 1 and 2 (NAPS) and Surry Power Station, Unit Nos. 1 and 2 (SPS) located in Lake Anna...% nitrogen at SPS and NAPS. The licensee's letter dated November 24, 2009, contains proprietary information... model Firehawk 7 Air Mask SCBA with a gas mixture of 35% oxygen and 65% nitrogen at SPS and NAPS,...

  11. Altered Endometrial Expression of Endothelial Nitric oxide Synthase (eNOS) in women with Unexplained Recurrent Miscarriage and Infertility

    PubMed Central

    Najafi, Tohid; Novin, Marefat Ghaffari; Ghazi, Reza; Khorram, Omid

    2012-01-01

    Background Endothelial nitric oxide synthase (eNOS) has diverse roles in the female reproductive system including a role in blastocyst implantation. Aberrant expression of eNOS could therefore be significant in the pathogenesis of disorders of implantation Materials and Methods eNOS protein and mRNA levels in the endometrium of women with recurrent miscarriages, unexplained infertility, and a control group was determined by compartmental quantitative immunohistochemistry and real time RT-PCR Results eNOS was immunolocalized to all layers of the endometrium and the vascular endothelium. eNOS protein expression was higher in glandular epithelium (P=0.004) and luminal epithelium (P=0.002) but not vascular endothelium and stroma (P=0.14) in women with recurrent miscarriage. Similarly, in women with unexplained infertility eNOS expression was significantly higher (P<0.03) in luminal epithelium but not in any other compartments compared with the control group. The levels of mRNA expression as determined by real time RT-PCR confirmed the protein data demonstrating higher eNOS mRNA expression In the endometrium of women with recurrent miscarriage and unexplained infertility compared with controls Conclusion Increased expression of eNOS in glandular and luminal epithelium of the endometrium in women with recurrent miscarriages and unexplained infertility suggests a detrimental effect of excess nitric oxide in endometrial receptivity and implantation PMID:22877939

  12. 76 FR 51980 - Atlantic Shipping Company, Inc. v. Di Nos Shipping, Inc.; Notice of Filing of Complaint and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-19

    ... COMMISSION Atlantic Shipping Company, Inc. v. Di Nos Shipping, Inc.; Notice of Filing of Complaint and...) by Atlantic Shipping Company, Inc., hereinafter ``Complainant,'' against DI Nos Shipping, Inc... Respondent is in violation of the Shipping Act of 1984, 46 U.S.C. 40901 and 40902, by operating as a freight...

  13. Sociodemographic, neuropsychiatric and cognitive characteristics of pathological gambling and impulse control disorders NOS in Parkinson's disease.

    PubMed

    Pontieri, Francesco E; Assogna, Francesca; Pellicano, Clelia; Cacciari, Claudia; Pannunzi, Sara; Morrone, Annalucia; Danese, Emanuela; Caltagirone, Carlo; Spalletta, Gianfranco

    2015-01-01

    Despite of previous evidence supporting the association between impulse control disorder (ICD) and several demographic, clinical and therapeutic features in Parkinson's disease (PD), the relationships between pathological gambling (PG) or other variants of ICD (ICD-NOS) and specific neuropsychiatric or cognitive domains are not entirely defined. In this study, 155 PD patients without dementia or cognitive impairment underwent: i. the ICD diagnoses, using the Questionnaire for Impulsive-Compulsive Disorders, ii. the mood and anxiety disorders diagnoses, according to the DSM-IV-TR criteria, and iii. a comprehensive battery for measuring severity of psychopathology and neuropsychology domains. Patients were divided in those with pathological gambling (PG), ICDs not otherwise specified (ICD-NOS), or the lack of ICD (No-ICD). There was a progression in age and age at onset from the younger PG subjects throughout ICD-NOS to No-ICD. PG and ICD-NOS subjects had longer disease duration and were taking significantly higher dosages of antiparkinsonian drugs than No-ICD ones. PG subjects had significantly higher severity of depressive and anxious symptoms with respect to the other 2 groups. Both PG and ICD-NOS subjects suffer from increased severity of psychotic symptoms than No-ICD ones. The 3 groups did not differ in any cognitive measure. Our results support the concept that the different sociodemographic and neuropsychiatric profiles of PD patients are associated with different ICDs. Moreover, we clearly demonstrate the lack of relationship between ICD and cognitive performances in undemented PD patients. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  14. NOS1AP is associated with increased severity of PTSD and depression in untreated combat veterans.

    PubMed

    Lawford, Bruce R; Morris, Charles P; Swagell, Christopher D; Hughes, Ian P; Young, Ross McD; Voisey, Joanne

    2013-05-01

    Posttraumatic stress disorder (PTSD) and depressive disorder are over represented in combat veterans. Veterans with both disorders have an increased risk of suicide. The nitric oxide synthase 1 adaptor protein (NOS1AP) gene, which modulates stress-evoked N-methyl-d-aspartate (NMDA) activity, was investigated in combat veterans. A comprehensive genetic analysis of NOS1AP and its association with PTSD was investigated in Vietnam combat veterans with PTSD (n=121) and a group of healthy control individuals (n=237). PTSD patients were assessed for symptom severity and level of depression using the Mississippi Scale for Combat-Related PTSD and the Beck Depression Inventory-II (BDI). The G allele of NOS1AP SNP rs386231 was significantly associated with PTSD (p=0.002). Analysis of variance revealed significant differences in BDI-II and Mississippi scores between genotypes for rs386231 with the GG genotype associated with increased severity of depression (p=0.002 F=6.839) and higher Mississippi Scale for Combat-Related PTSD scores (p=0.033). Haplotype analysis revealed that the C/G haplotype (rs451275/rs386231) was significantly associated with PTSD (p=0.001). The sample sizes in our study were not sufficient to detect SNP associations with very small effects. In addition the study was limited by its cross sectional design. This is the first study reporting that a variant of the NOS1AP gene is associated with PTSD. Our data also suggest that a genetic variant in NOS1AP may increase the susceptibility to severe depression in patients with PTSD and increased risk for suicide. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  15. (−)-Epicatechin induces calcium and translocation independent eNOS activation in arterial endothelial cells

    PubMed Central

    Ramirez-Sanchez, Israel; Maya, Lisandro; Ceballos, Guillermo

    2011-01-01

    The consumption of cacao-derived (i.e., cocoa) products provides beneficial cardiovascular effects in healthy subjects as well as individuals with endothelial dysfunction such as smokers, diabetics, and postmenopausal women. The vascular actions of cocoa are related to enhanced nitric oxide (NO) production. These actions can be reproduced by the administration of the cacao flavanol (−)-epicatechin (EPI). To further understand the mechanisms behind the vascular action of EPI, we investigated the effects of Ca2+ depletion on endothelial nitric oxide (NO) synthase (eNOS) activation/phosphorylation and translocation. Human coronary artery endothelial cells were treated with EPI or with bradykinin (BK), a well-known Ca2+-dependent eNOS activator. Results demonstrate that both EPI and BK induce increases in intracellular calcium and NO levels. However, under Ca2+-free conditions, EPI (but not BK) is still capable of inducing NO production through eNOS phosphorylation at serine 615, 633, and 1177. Interestingly, EPI-induced translocation of eNOS from the plasmalemma was abolished upon Ca2+ depletion. Thus, under Ca2+-free conditions, EPI can stimulate NO synthesis independent of calmodulin binding to eNOS and of its translocation into the cytoplasm. We also examined the effect of EPI on the NO/cGMP/vasodilator-stimulated phosphoprotein (VASP) pathway activation in isolated Ca2+-deprived canine mesenteric arteries. Results demonstrate that under these conditions, EPI induces the activation of this vasorelaxation-related pathway and that this effect is inhibited by pretreatment with nitro-l-arginine methyl ester, suggesting a functional relevance for this phenomenon. PMID:21209365

  16. iNOS Activation Regulates β-catenin Association with Its Partners in Endothelial Cells

    PubMed Central

    Gonzalez, Deyarina; Rojas, Armando; Herrera, Maria Beatriz; Conlan, R. Steven

    2012-01-01

    Background Signals that disrupt β-catenin association to cadherins may influence the translocation of β-catenin to the nucleus to regulate transcription. Post-translational modification of proteins is a signalling event that may lead to changes in structural conformation, association or function of the target proteins. NO and its derivatives induce nitration of proteins during inflammation. It has been described that animals treated with NO donors showed increased permeability due to modulation of VE-cadherin/catenin complex. We, therefore, aim to evaluate the effect of iNOS activation on the expression, nuclear localisation and function of β-catenin in endothelial cells. Methodology/Principal Findings Expression, nuclear localisation, post-translational modifications and function of β-catenin was analysed by cell fractionation, immunoprecipitation, immunoblots, QRT-PCR and permeability assays in murine endothelial cells (H5V). Influence of macrophage activation on expression of VE-cadherin/p120-catenin/β-catenin complex in co-cultured H5V cells was also assessed. Activation of macrophages to produce NO provoked a decrease in VE-cadherin/p120-catenin/β-catenin expression in H5V cells. Phosphorylation of β-catenin, p120-catenin and VE-cadherin, and reduction in the barrier properties of the cell monolayer was associated with iNOS induction. Moreover, high NO levels provoked nitration of β-catenin, and induced its translocation to the nucleus. In the nucleus of NOS activated cells, nitration levels of β-catenin influenced its association with TCF4 and p65 proteins. High levels of NO altered β-catenin mediated gene expression of NFκB and Wnt target genes without affecting cell viability. Conclusions NOS activity modulates β-catenin post-translational modifications, function and its association with different partners to promote endothelial cell survival. Therapeutic manipulation of iNOS levels may remove a critical cytoprotective mechanism of importance in

  17. NOS3 variants, physical activity, and blood pressure in the European Youth Heart Study.

    PubMed

    Grøntved, Anders; Andersen, Lars B; Franks, Paul W; Verhage, Bas; Wareham, Nicholas J; Ekelund, Ulf; Loos, Ruth J F; Brage, Søren

    2011-04-01

    In this study, we examined the influence of genetic variation in NOS3 on resting blood pressure (BP) in children and adolescents from the European Youth Heart Study (EYHS). Because the NOS3 gene expression is altered by physical activity (PA), we also tested for interaction between habitual PA and NOS3 variants on BP. A cross-sectional, random sample of 8-10-year old children (n = 1,214) and 14-16-year old adolescents (n = 1,141) from Denmark and Estonia were genotyped for four NOS3 tagging polymorphisms (rs1800783, rs1799983 (Glu298Asp), rs3918227, rs743507). PA was measured objectively using a hip-mounted accelerometer and through self-reported bicycling and TV-viewing. Permutation testing was used to correct for multiple testing, yielding an α level of 0.006. Glu298Asp showed age-group-dependent associations with BP. In adolescents, Asp298 allele homozygotes had 0.19 s.d. (95% confidence interval (CI): 0.06; 0.13, P = 0.004) higher diastolic BP (DBP) and 0.25 s.d. (95% CI: 0.05; 0.46, P = 0.015) higher systolic BP (SBP), compared to Glu298 allele carriers. None of the three other single-nucleotide polymorphisms (SNPs) were associated with BP in adolescents. In children, none of the SNPs were associated with BP. No evidence of interaction between Glu298Asp and objectively measured PA was observed. Both self-reported bicycling and TV-viewing nominally modified the association between Glu298Asp and BP in adolescents (P < 0.05), the genetic effect being most apparent in inactive individuals. However, none of the interactions persisted after correcting for multiple testing. The NOS3 Glu298Asp variant may associate with resting BP in adolescence but not in childhood, an effect that could be modified by PA.

  18. Exposure to diesel exhaust up-regulates iNOS expression in ApoE knockout mice

    SciTech Connect

    Bai Ni; Kido, Takashi; Kavanagh, Terrance J.; Kaufman, Joel D.; Rosenfeld, Michael E.; Breemen, Cornelis van; Eeden, Stephan F. van

    2011-09-01

    Traffic related particulate matter air pollution is a risk factor for cardiovascular events; however, the biological mechanisms are unclear. We hypothesize that diesel exhaust (DE) inhalation induces up-regulation of inducible nitric oxide synthase (iNOS), which is known to contribute to vascular dysfunction, progression of atherosclerosis and ultimately cardiovascular morbidity and mortality. Methods: ApoE knockout mice (30-week) were exposed to DE (at 200 {mu}g/m{sup 3} of particulate matter) or filtered-air (control) for 7 weeks (6 h/day, 5 days/week). iNOS expression in the blood vessels and heart was evaluated by immunohistochemistry and western blotting analysis. To examine iNOS activity, thoracic aortae were mounted in a wire myograph, and vasoconstriction stimulated by phenylephrine (PE) was measured with and without the presence of the specific inhibitor for iNOS (1400 W). NF-{kappa}B (p65) activity was examined by ELISA. The mRNA expression of iNOS and NF-{kappa}B (p65) was determined by real-time PCR. Results: DE exposure significantly enhanced iNOS expression in the thoracic aorta (4-fold) and heart (1.5 fold). DE exposure significantly attenuated PE-stimulated vasoconstriction by {approx} 20%, which was partly reversed by 1400 W. The mRNA expression of iNOS and NF-{kappa}B was significantly augmented after DE exposure. NF-{kappa}B activity was enhanced 2-fold after DE inhalation, and the augmented NF-{kappa}B activity was positively correlated with iNOS expression (R{sup 2} = 0.5998). Conclusions: We show that exposure to DE increases iNOS expression and activity possibly via NF-{kappa}B-mediated pathway. We suspect that DE exposure-caused up-regulation of iNOS contributes to vascular dysfunction and atherogenesis, which could ultimately lead to urban air pollution-associated cardiovascular morbidity and mortality. - Highlights: > Exposed ApoE knockout mice (30-week) to diesel exhaust (DE) for 7 weeks. > Examine iNOS expression and activity in the

  19. Salt modulates vascular response through adenosine A(2A) receptor in eNOS-null mice: role of CYP450 epoxygenase and soluble epoxide hydrolase.

    PubMed

    Nayeem, Mohammed A; Zeldin, Darryl C; Boegehold, Matthew A; Falck, John R

    2011-04-01

    High salt (HS) intake can change the arterial tone in mice, and the nitric oxide (NO) acts as a mediator to some of the receptors mediated vascular response. The main aim of this study was to explore the mechanism behind adenosine-induced vascular response in HS-fed eNOS(+/+) and eNOS(-/-) mice The modulation of vascular response by HS was examined using aortas from mice (eNOS(+/+) and eNOS(-/-)) fed 4% (HS) or 0.45% (NS) NaCl-diet through acetylcholine (ACh), NECA (adenosine-analog), CGS 21680 (A(2A) AR-agonist), MS-PPOH (CYP epoxygenase-blocker; 10(-5) M), AUDA (sEH-blocker; 10(-5) M), and DDMS (CYP4A-blocker; 10(-5) M). ACh-response was greater in HS-eNOS(+/+) (+59.3 ± 6.3%) versus NS-eNOS(+/+) (+33.3 ± 8.0%; P < 0.05). However, there was no response in both HS-eNOS(-/-) and NS-eNOS(-/-). NECA-response was greater in HS-eNOS(-/-) (+37.4 ± 3.2%) versus NS-eNOS(-/-) (+7.4.0 ± 3.8%; P < 0.05). CGS 21680-response was also greater in HS-eNOS(-/-) (+45.4 ± 5.2%) versus NS-eNOS(-/-)(+5.1 ± 5.0%; P < 0.05). In HS-eNOS(-/-), the CGS 21680-response was reduced by MS-PPOH (+7.3 ± 3.2%; P < 0.05). In NS-eNOS(-/-), the CGS 21680-response was increased by AUDA (+38.2 ± 3.3%; P < 0.05) and DDMS (+30.1 ± 4.1%; P < 0.05). Compared to NS, HS increased CYP2J2 in eNOS(+/+) (35%; P < 0.05) and eNOS(-/-) (61%; P < 0.05), but decreased sEH in eNOS(+/+) (74%; P < 0.05) and eNOS(-/-) (40%; P < 0.05). Similarly, CYP4A decreased in HS-eNOS(+/+) (35%; P < 0.05) and HS-eNOS(-/-) (34%; P < 0.05). These data suggest that NS causes reduced-vasodilation in both eNOS(+/+) and eNOS(-/-) via sEH and CYP4A. However, HS triggers possible A(2A)AR-induced relaxation through CYP epoxygenase in both eNOS(+/+) and eNOS(-/-).

  20. Cardiomyocyte overexpression of iNOS in mice results in peroxynitrite generation, heart block, and sudden death

    PubMed Central

    Mungrue, Imran N.; Gros, Robert; You, Xiaomang; Pirani, Asif; Azad, Azar; Csont, Tamas; Schulz, Richard; Butany, Jagdish; Stewart, Duncan J.; Husain, Mansoor

    2002-01-01

    Increased inducible nitric oxide synthase (iNOS) expression is a component of the immune response and has been demonstrated in cardiomyocytes in septic shock, myocarditis, transplant rejection, ischemia, and dilated cardiomyopathy. To explore whether the consequences of such expression are adaptive or pathogenic, we have generated a transgenic mouse model conditionally targeting the expression of a human iNOS cDNA to myocardium. Chronic cardiac-specific upregulation of iNOS in transgenic mice led to increased production of peroxynitrite. This was associated with a mild inflammatory cell infiltrate, cardiac fibrosis, hypertrophy, and dilatation. While iNOS-overexpressing mice infrequently developed overt heart failure, they displayed a high incidence of sudden cardiac death due to bradyarrhythmia. This dramatic cardiac phenotype was rescued by specific attenuation of transgene activity. These data implicate cardiomyocyte iNOS overexpression as sufficient to cause cardiomyopathy, bradyarrhythmia, and sudden cardiac death. PMID:11901182

  1. The effect of embryo and maternal genotypes on prolificacy, intrauterine growth retardation and postnatal development of Nos3-knockout mice.

    PubMed

    Pallares, Pilar; Gonzalez-Bulnes, Antonio

    2010-11-01

    Mice deficient for endothelial nitric oxide synthase (NOS3(-/-)) may represent a good model for studying embryo loss and intrauterine growth retardation caused by vascular deficiencies. We determined the effects of embryo genotype (homozygous vs. heterozygous descendants with paternal or maternal source of the non-functional NOS3 allele) and maternal environment (NOS3(-/-) vs. wild-type NOS3(+/+) females) on the appearance of estrus, fertility and prolificacy rates and live weight in the first week of life as well as phenotypic characteristics of offspring during the postnatal period. The results indicated that pregnancy outcomes and postnatal development of NOS3(-/-) mice seem to be related to deficiencies in fetal programming mainly determined by maternal genotype.

  2. Exposure to Diesel Exhaust Up-regulates iNOS Expression in ApoE Knockout Mice

    PubMed Central

    Bai, Ni; Kido, Takashi; Kavanagh, Terrance J.; Kaufman, Joel D.; Rosenfeld, Michael E.; van Breemen, Cornelis; van Eeden, Stephan F.

    2012-01-01

    Traffic related particulate matter air pollution is a risk factor for cardiovascular events; however, the biological mechanisms are unclear. We hypothesize that diesel exhaust (DE) inhalation induces up-regulation of inducible nitric oxide synthase (iNOS), which is known to contribute to vascular dysfunction, progression of atherosclerosis and ultimately cardiovascular morbidity and mortality. Methods ApoE knockout mice (30-week) were exposed to DE (at 200µg/m3 of particulate matter) or filtered-air (control) for 7 weeks (6h/day, 5days/week). iNOS expression in the blood vessels and heart was evaluated by immunohistochemistry and western blotting analysis. To examine iNOS activity, thoracic aortae were mounted in a wire myograph, and vasoconstriction stimulated by phenylephrine (PE) was measured with and without the presence of the specific inhibitor for iNOS (1400W). NF-κB (p65) activity was examined by ELISA. The mRNA expression of iNOS and NF-κB (p65) was determined by real-time PCR. Results DE exposure significantly enhanced iNOS expression in the thoracic aorta (4-fold) and heart (1.5 fold). DE exposure significantly attenuated PE-stimulated vasoconstriction by ~20%, which was partly reversed by 1400W. The mRNA expression of iNOS and NF-κB was significantly augmented after DE exposure. NF-κB activity was enhanced 2-fold after DE inhalation, and the augmented NF-κB activity was positively correlated with iNOS expression (R2= 0.5998). Conclusions We show that exposure to DE increases iNOS expression and activity possibly via NF-κB-mediated pathway. We suspect that DE exposure-caused up-regulation of iNOS contributes to vascular dysfunction and atherogenesis, which could ultimately lead to urban air pollution-associated cardiovascular morbidity and mortality. PMID:21722660

  3. Functional proteomic analysis of a three-tier PKCepsilon-Akt-eNOS signaling module in cardiac protection.

    PubMed

    Zhang, Jun; Baines, Christopher P; Zong, Chenggong; Cardwell, Ernest M; Wang, Guangwu; Vondriska, Thomas M; Ping, Peipei

    2005-02-01

    Cardiac protective signaling networks have been shown to involve PKCepsilon. However, the molecular mechanisms by which PKCepsilon interacts with other members of these networks to form task-specific modules remain unknown. Among 93 different PKCepsilon-associated proteins that have been identified, Akt and endothelial nitric oxide (NO) synthase (eNOS) are of importance because of their independent abilities to promote cell survival and prevent cell death. The simultaneous association of PKCepsilon, Akt, and eNOS has not been examined, and, in particular, the formation of a module containing these three proteins and the role of such a module in the regulation of NO production and cardiac protection are unknown. The present study was undertaken to determine whether these molecules form a signaling module and, thereby, play a collective role in cardiac signaling. Using recombinant proteins in vitro and PKCepsilon transgenic mouse hearts, we demonstrate the following: 1) PKCepsilon, Akt, and eNOS interact and form signaling modules in vitro and in the mouse heart. Activation of either PKCepsilon or Akt enhances the formation of PKCepsilon-Akt-eNOS signaling modules. 2) PKCepsilon directly phosphorylates and enhances activation of Akt in vitro, and PKCepsilon activation increases phosphorylation and activation of Akt in PKCepsilon transgenic mouse hearts. 3) PKCepsilon directly phosphorylates eNOS in vitro, and this phosphorylation enhances eNOS activity. Activation of PKCepsilon in vivo increased phosphorylation of eNOS at Ser(1177), indicating eNOS activation. This study characterizes, for the first time, the physical, as well as functional, coupling of PKCepsilon, Akt, and eNOS in the heart and implicates these PKCepsilon-Akt-eNOS signaling modules as critical signaling elements during PKCepsilon-induced cardiac protection.

  4. Prolonged Action Potential and After depolarizations Are Not due to Changes in Potassium Currents in NOS3 Knockout Ventricular Myocytes

    PubMed Central

    Wang, Honglan; Bonilla, Ingrid M.; Huang, Xin; He, Quanhua; Kohr, Mark J.; Carnes, Cynthia A.; Ziolo, Mark T.

    2012-01-01

    Ventricular myocytes deficient in endothelial nitric oxide synthase (NOS3−/−) exhibit prolonged action potential (AP) duration and enhanced spontaneous activity (early and delayed afterdepolarizations) during β-adrenergic (β-AR) stimulation. Studies have shown that nitric oxide is able to regulate various K+ channels. Our objective was to examine if NOS3−/− myocytes had altered K+ currents. APs, transient outward (I to), sustained (I Ksus), and inward rectifier (I K1) K+ currents were measured in NOS3−/− and wild-type (WT) myocytes. During β-AR stimulation, AP duration (measured as 90% repolarization-APD90) was prolonged in NOS3−/− compared to WT myocytes. Nevertheless, we did not observe differences in I to, I Ksus, or I K1 between WT and NOS3−/− myocytes. Our previous work showed that NOS3−/− myocytes had a greater Ca2+ influx via L-type Ca2+ channels with β-AR stimulation. Thus, we measured β-AR-stimulated SR Ca2+ load and found a greater increase in NOS3−/− versus WT myocytes. Hence, our data suggest that the prolonged AP in NOS3−/− myocytes is not due to changes in I to, I Ksus, or I K1. Furthermore, the increase in spontaneous activity in NOS3−/− myocytes may be due to a greater increase in SR Ca2+ load. This may have important implications for heart failure patients, where arrhythmias are increased and NOS3 expression is decreased. PMID:22970362

  5. Mg-supplementation Protects Against Ritonavir-mediated Endothelial Oxidative Stress and Hepatic eNOS Downregulation

    PubMed Central

    Chen, Xi; Mak, I.Tong

    2014-01-01

    Ritonavir (RTV), a prototypical protease inhibitor currently used as a key component for anti-HIV therapy, is known for its endothelial and hepatic toxicity. The effects of RTV and Mg-supplementation on cultured bovine endothelial cells (EC) and rat hepatic endothelial nitric oxide synthase (eNOS) status were investigated. RTV dose-dependently (5–30µM) decreased EC viability after 48hrs; high Mg (2 mM) significantly attenuated the lost viability. ECs incubated with 15 µM RTV for 6 to 24 hrs. resulted in 2–4-fold elevation of oxidized glutathione and a 25% loss of total glutathione. At 24 hrs., EC superoxide production due to RTV was detected by dihydroethidium staining, and increased 41% when quantified by flow cytometry; both altered glutathione status and superoxide levels were substantially reversed by 2 mM Mg. RTV reduced eNOS mRNA (−25% at 24 hrs.), and led to decreased eNOS dimer/monomer ratios; nitric oxide (NO)-derived products decreased 40%; both changes were attenuated by Mg-supplementation. In male LewXBrown-Norway rats, RTV administration (75 mg/kg/day, 5 weeks) resulted in an 85% increase in plasma 8-isoprostane, a 30% decrease of hepatic eNOS mRNA; concomitantly, eNOS protein decreased 72%, whereas plasma nitrite level was reduced 49%. Dietary Mg-supplementation (6-fold higher than control) prevented the eNOS mRNA decrease along with lowering 8-isoprostane, and restored the eNOS protein and plasma nitrite levels comparable to controls. Conclusion Mg attenuates RTV-mediated EC oxidative eNOS dysfunction, and down-regulation of hepatic eNOS expression; we suggest that Mg can serve as a beneficial adjunct therapeutic against RTV-mediated eNOS toxicity. PMID:24434120

  6. Early ischaemic preconditioning requires Akt- and PKA-mediated activation of eNOS via serine1176 phosphorylation

    PubMed Central

    Yang, Changjun; Talukder, M.A. Hassan; Varadharaj, Saradhadevi; Velayutham, Murugesan; Zweier, Jay L.

    2013-01-01

    Aims The role of endothelial nitric oxide synthase (eNOS)/NO signalling is well documented in late ischaemic preconditioning (IPC); however, the role of eNOS and its activation in early IPC remains controversial. This study investigates the role of eNOS in early IPC and the signalling pathways and molecular interactions that regulate eNOS activation during early IPC. Methods and results Rat hearts were subjected to 30-min global ischaemia and reperfusion (I/R) with or without IPC (three cycles 5-min I and 5-min R) in the presence or absence of the NOS inhibitor l-NAME, phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 (LY), and protein kinase A (PKA) inhibitor H89 during IPC induction or prior endothelial permeablization. IPC improved post-ischaemic contractile function and reduced infarction compared with I/R with this being abrogated by l-NAME or endothelial permeablization. eNOSSer1176, AktSer473, and PKAThr197 phosphorylation was increased following IPC. I/R decreased eNOSSer1176 phosphorylation, whereas IPC increased it. Mass spectroscopy confirmed eNOSSer1176 phosphorylation and quantitative Western blots showed ∼24% modification of eNOSSer1176 following IPC. Immunoprecipitation demonstrated eNOS, Akt, and PKA complexation. Immunohistology showed IPC-induced Akt and PKA phosphorylation in cardiomyocytes and endothelium. With eNOS activation, IPC increased NO production as measured by electron paramagnetic resonance spin trapping and fluorescence microscopy. LY or H89 not only decreased AktSer473 or PKAThr197 phosphorylation, respectively, but also abolished IPC-induced preservation of eNOS and eNOSSer1176 phosphorylation as well as cardioprotection. Conclusion Thus, Akt- and PKA-mediated eNOS activation, with phosphorylation near the C-terminus, is critical for early IPC-induced cardioprotection, with eNOS-derived NO from the endothelium serving a critical role. PMID:22977010

  7. Biochemical consequences of the NOS3 Glu298Asp variation in human endothelium: altered caveolar localization and impaired response to shear.

    PubMed

    Joshi, Mandar S; Mineo, Chieko; Shaul, Philip W; Bauer, John Anthony

    2007-09-01

    Human endothelial nitric oxide synthase (NOS3) gene polymorphism at Exon 7 (Glu298Asp) has been linked to vascular endothelial dysfunction, but the mechanisms are not defined. Shear is a key modulator of NOS3 function in vivo and association with caveolae is important for the control of NOS3 protein activity. Here we tested the hypothesis that altered enrichment of NOS3 in the caveolar membrane defines Glu298Asp genotype-specific responses and NOS3 activity. Basal caveolar membrane enrichment was carried out to quantitate the NOS3 enrichment in caveolae. Cells were subjected to shear and NOS3 protein levels, phosphorylation, enzyme function were investigated. Variant genotypes had lower NOx production pre- and post-shear, but no genotype-dependent alterations in pNOS3 were observed. Asp variants had significantly lower NOS3 enrichment in the caveolar membrane fraction. Further, immunoprecipitation studies demonstrated that Asp variants had substantially less NOS3/Cav-1 association (approximately 40%) during static conditions. Furthermore, acute shear causes impaired NOS3/Cav-1 dissociation in Asp variants. The results from immunoprecipitation studies were in complete agreement with caveolar membrane preparation findings. Collectively, these data demonstrate functional consequences of the Glu298Asp NOS3 variation and further define disruption of NOS3 caveolar localization and shear-induced mobilization as the primary mechanism responsible for these differences.

  8. Association study of NOS3 gene polymorphisms and hypertension in the Han Chinese population.

    PubMed

    Wang, Linhong; Shen, Chong; Yang, Song; Chen, Yanchun; Guo, Daoxia; Jin, Yuelong; He, Lianping; Chen, Jinfeng; Zhao, Xianghai; Zhao, Hailong; Yao, Yingshui

    2015-12-01

    Recent studies have reported that NOS3 plays an important role in cardiovascular pathology, whereas the association of NOS3 and hypertension (HT) has been controversial between African Americans and European whites. Here, we aimed to further investigate the genetic effect of unexplored loci at NOS3 on the susceptibility of HT in the Han Chinese population. The association of three polymorphisms; rs4496877, rs1808593 and rs3918186 to HT was tested in a case control study that included 2012 HT cases and 2210 controls. Association analysis showed that there was no significant association between rs4496877, rs1808593 and rs3918186 of NOS3 and HT in the whole study population. Stratification analysis indicated that rs3918186 was significantly associated with HT in the ≥55-year-old population (OR = 1.245, 95% CI = 1.010-1.534, P = 0.04). The rs4496877 and rs1808593 were significantly associated with HT in the male population (P = 0.015) and <55-year-old population (P = 0.025), respectively (OR = 3.254, 95% CI = 1.257-8.425 and OR = 1.683, 95% CI = 1.066-2.657, respectively). Quantitative trait analysis showed that there were significant differences in systolic blood pressure (SBP) among the genotypes (AA, AT and TT) of rs3918186 in the non-intervention populations (P = 0.016). GMDR analysis showed that drinking and rs3918186 had significant interaction effects for risk of HT. The findings of this study indicated that the rs4496877, rs1808593 and rs3918186 polymorphisms of NOS3 contribute to the genetic susceptibility of HT and that rs3918186 was associated with SBP in the Chinese population. Age and gender might modify the genetic effect of NOS3 on HT, and drinking significantly interacts with rs3918186. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. TUMOR NECROSIS FACTOR ALPHA DECREASES NOS3 EXPRESSION PRIMARILY VIA RHO/RHO KINASE IN THE THICK ASCENDING LIMB

    PubMed Central

    Ramseyer, Vanesa; Hong, Nancy; Garvin, Jeffrey L.

    2013-01-01

    Inappropriate Na+ reabsorption by thick ascending limbs (THALs) induces hypertension. Nitric oxide (NO) produced by NO synthase type 3 (NOS3 or eNOS) inhibits NaCl reabsorption by THALs. Tumor necrosis factor alpha (TNF-α) decreases NOS3 expression in endothelial cells and contributes to increases in blood pressure. However, the effects of TNF-α on THAL NOS3 and the signaling cascade are unknown. TNF-α activates several signaling pathways including Rho/Rho kinase (ROCK) which is known to reduce NOS3 expression in endothelial cells. Therefore, we hypothesized that TNF-α decreases NOS3 expression via Rho/ROCK in rat THAL primary cultures. THAL cells were incubated with either vehicle or 1 nmol/L TNF-α for 24 hrs and NOS3 expression was measured by Western blot. TNF-α decreased NOS3 expression by 51±6% (p<0.002) and blunted stimulus-induced NO production. A 10-minutes treatment with TNF-α stimulated RhoA activity by 60±23% (p<0.04). Inhibition of Rho GTPase with 0.05 μg/mL C3 exoenzyme blocked TNF-α-induced reductions in NOS3 expression by 30±8% (p<0.02). Inhibition of ROCK with 10 μmol/L H-1152 blocked TNF-α-induced decreases in NOS3 expression by 66±15 % (p<0.001). Simultaneous inhibition of Rho and ROCK had no additive effect. Myosin light chain kinase, NO, protein kinase C, mitogen-activated kinase kinase, c-Jun amino terminal kinases and Rac-1 were also not involved in TNF-α-induced decreases in NOS3 expression. We conclude that TNF-α decreases NOS3 expression primarily via Rho/ROCK in rat THALs. These data suggest that some of the beneficial effects of ROCK inhibitors in hypertension could be due to the mitigation of TNF-α-induced reduction in NOS3 expression. PMID:22566503

  10. The SPRY domain–containing SOCS box protein SPSB2 targets iNOS for proteasomal degradation

    PubMed Central

    Kuang, Zhihe; Lewis, Rowena S.; Curtis, Joan M.; Zhan, Yifan; Saunders, Bernadette M.; Babon, Jeffrey J.; Kolesnik, Tatiana B.; Low, Andrew; Masters, Seth L.; Willson, Tracy A.; Kedzierski, Lukasz; Yao, Shenggen; Handman, Emanuela

    2010-01-01

    Inducible nitric oxide (NO) synthase (iNOS; NOS2) produces NO and related reactive nitrogen species, which are critical effectors of the innate host response and are required for the intracellular killing of pathogens such as Mycobacterium tuberculosis and Leishmania major. We have identified SPRY domain–containing SOCS (suppressor of cytokine signaling) box protein 2 (SPSB2) as a novel negative regulator that recruits an E3 ubiquitin ligase complex to polyubiquitinate iNOS, resulting in its proteasomal degradation. SPSB2 interacts with the N-terminal region of iNOS via a binding interface on SPSB2 that has been mapped by nuclear magnetic resonance spectroscopy and mutational analyses. SPSB2-deficient macrophages showed prolonged iNOS expression, resulting in a corresponding increase in NO production and enhanced killing of L. major parasites. These results lay the foundation for the development of small molecule inhibitors that could disrupt the SPSB–iNOS interaction and thus prolong the intracellular lifetime of iNOS, which may be beneficial in chronic and persistent infections. PMID:20603330

  11. Qualitative and quantitative immunohistochemical evaluation of iNOS expression in the spleen of dogs naturally infected with Leishmania chagasi.

    PubMed

    dos Santos, Fernando Rocha; Vieira, Paula Melo Abreu; Correa-Oliveira, Rodrigo; Giunchetti, Rodolfo Cordeiro; Carneiro, Claudia Martins; Reis, Alexandre Barbosa; Malaquias, Luiz Cosme Cotta

    2011-06-01

    Nitric oxide (NO), the product of the nitric oxide synthase enzymes has been detected in Leishmania-infected animals. Besides its role on the immunity to infection, the role of NO and the inducible nitric oxide synthase (iNOS) in the pathogenesis of canine visceral leishmaniasis (CVL) is not well understood. This study aimed at evaluating immunohistochemically the iNOS expression in the spleen of dogs naturally infected (ID) with Leishmania (L.) chagasi compared with non-infected dogs (NID). The ID was grouped according to the clinical form and the parasite load. Symptomatic dogs (SD) presented higher parasite load in relation to oligosymptomatic (OD) and asymptomatic (AD). The qualitative expression of iNOS was observed only in ID. SD presented strong and prominent labeling of iNOS, followed by OD and AD. Quantitatively, the results showed that the median expression of iNOS was higher in SD and OD compared to NID. Also, dog spleens with high parasitism load showed marked iNOS expression. Taken together, the results suggest that the expression of iNOS in the spleen of infected dogs with CVL was associated with clinical worsening of the disease and with high parasitism.

  12. Plgf-/-eNos-/- mice show defective angiogenesis associated with increased oxidative stress in response to tissue ischemia.

    PubMed

    Gigante, Bruna; Morlino, Giulia; Gentile, Maria Teresa; Persico, Maria Graziella; De Falco, Sandro

    2006-05-01

    Neo-angiogenesis is a complex phenomenon modulated by the concerted action of several molecular factors. We have generated a congenic line of knockout mice carrying null mutations of both placental growth factor (PlGF) and endothelial nitric oxide synthase (eNOS), two genes that play a pivotal role in the regulation of pathological angiogenesis. In the present study, we describe the phenotype of this new experimental animal model after surgically induced hind-limb ischemia. Plgf-/-, eNos-/-, Plgf-/- eNos-/-, and wild-type C57BL/6J mice were studied. Plgf-/- eNos-/- mice showed the most severe phenotype: self-amputation, and death occurred in up to 47% of the animals studied; in ischemic legs, capillary density was severely reduced; macrophage infiltration and oxidative stress increased as compared to the other groups of animals. These changes were associated with an up-regulation of both inducible NOS (iNOS) expression and vascular endothelial growth factor (VEGF) protein levels in ischemic limbs, and to an increased extent of protein nitration. Our results demonstrate that the deletion of these two genes, Plgf, which acts in synergism with VEGF, and eNos, a downstream mediator of VEGF, determines a significant change in the vascular response to an ischemic stimulus and that oxidative stress within the ischemic tissue represents a crucial factor to maintain tissue homeostasis.

  13. IL-17A induces hypo-contraction of intestinal smooth muscle via induction of iNOS in muscularis macrophages.

    PubMed

    Mori, Daisuke; Watanabe, Nobumasa; Kaminuma, Osamu; Murata, Takahisa; Hiroi, Takachika; Ozaki, Hiroshi; Hori, Masatoshi

    2014-01-01

    Intestinal inflammation causes disorder in bowel motility. Th17 cytokines are involved in intestinal inflammation. To understand the role of interleukin (IL)-17 in intestinal motility, we examined effects of IL-17A on contractile activities of organ-cultured ileum. Rat ileal smooth muscle strips were organ cultured with IL-17A. Muscle contraction was measured, and cells expressing inducible nitric oxide synthase (iNOS) were identified with immunohistochemistry. Creating Th17-transferred colitis model mice, in vivo effects of IL-17 on contractile activities, and iNOS mRNA expression in colonic smooth muscle were investigated. Treatment with IL-17A for 12 h and 3 days attenuated carbachol- and membrane depolarization-induced contractions in organ-cultured rat ileum. N(G)-Nitro-l-arginine methyl ester (100 μM), a nitric oxide synthase inhibitor, completely reversed the IL-17A-induced inhibition of contractile force. Ileal tissue cultured in the presence of IL-17A showed increased expression of iNOS mRNA and protein. Immunohistochemical analysis using an iNOS antibody revealed that iNOS protein was expressed on ED2-positive muscularis macrophages. The level of iNOS mRNA was also increased in inflamed colonic smooth muscle of Th17-transferred colitis model mice. In intestinal inflammation, IL-17A induces an intestinal motility disorder through iNOS expression in muscularis macrophages.

  14. iNOS-derived nitric oxide promotes glycolysis by inducing pyruvate kinase M2 nuclear translocation in ovarian cancer

    PubMed Central

    Hao, Bingtao; Gao, Wenwen; Wang, Qianli; Li, Keyi; Wang, Meng; Huang, Mengqiu; Liu, Zhengjun; Yang, Qiaohong; Li, Xiqing; Zhong, Zhuo; Huang, Wenhua; Xiao, Guanghui; Xu, Yang; Yao, Kaitai; Liu, Qiuzhen

    2017-01-01

    Aerobic glycolysis is essential for tumor growth and survival. Activation of multiple carcinogenic signals contributes to metabolism reprogramming during malignant transformation of cancer. Recently nitric oxide has been noted to promote glycolysis but the mechanism remains elusive. We report here the dual role of nitric oxide in glycolysis: low/physiological nitric oxide (≤ 100 nM) promotes glycolysis for ATP production, oxidative defense and cell proliferation of ovary cancer cells, whereas excess nitric oxide (≥ 500 nM) inhibits it. Nitric oxide has a positive effect on glycolysis by inducing PKM2 nuclear translocation in an EGFR/ERK2 signaling-dependent manner. Moreover, iNOS induced by mild inflammatory stimulation increased glycolysis and cell proliferation by producing low doses of nitric oxide, while hyper inflammation induced iNOS inhibited it by producing excess nitric oxide. Finally, iNOS expression is abnormally increased in ovarian cancer tissues and is correlated with PKM2 expression. Overexpression of iNOS is associated with aggressive phenotype and poor survival outcome in ovarian cancer patients. Our study indicated that iNOS/NO play a dual role of in tumor glycolysis and progression, and established a bridge between iNOS/NO signaling pathway and EGFR/ERK2/PKM2 signaling pathway, suggesting that interfering glycolysis by targeting the iNOS/NO/PKM2 axis may be a valuable new therapeutic approach of treating ovarian cancer. PMID:28380434

  15. The effects of NOS3 Glu298Asp variant on colorectal cancer risk and progression in Turkish population.

    PubMed

    Arıkan, Soykan; Cacina, Canan; Guler, Erkan; Çulcu, Serdar; Tuna, Gulay; Yaylım-Eraltan, Ilhan

    2012-03-01

    Endothelial nitric oxide synthase (eNOS), coded by the gene NOS3, may play an important role in uncontrollable cellular growth in several cancer types. Our study was performed to test the association between Glu298Asp polymorphisms in the NOS3 gene and colorectal cancer risk and progression. In this study, NOS3 Glu298Asp polymorphism was genotyped in 84 patients with colorectal cancer and 99 healthy subjects using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. There were significant differences in the distribution of NOS3 genotypes and frequencies of the alleles between colorectal cancer patients and controls (P = 0.016, P = 0.006, respectively). The increased frequency of NOS3 Glu298Asp homozygotes genotypes in patients who had advanced tumour stage was statistically significant (P = 0.042). Our findings have suggested that NOS3 Glu298Asp polymorphism might be associated with the risk and progression of colorectal cancer in Turkish population.

  16. The potent inducible nitric oxide synthase inhibitor ONO-1714 inhibits neuronal NOS and exerts antinociception in rats.

    PubMed

    Sekiguchi, Fumiko; Mita, Yoko; Kamanaka, Yoshihisa; Kawao, Naoyuki; Matsuya, Hidekazu; Taga, Chiyomi; Kawabata, Atsufumi

    2004-07-22

    We evaluated if ONO-1714, known as an inducible nitric oxide synthase (iNOS) inhibitor, could inhibit neuronal NOS (nNOS) and exert antinociception. ONO-1714 potently inhibited both crude rat cerebellar NOS and recombinant human nNOS in vitro. Systemic ONO-1714 at 1-10 mg/kg suppressed carrageenan-induced thermal hyperalgesia in rats, an effect being equivalent to the antinociception caused by L-NAME or 7-nitroindazole at 25 mg/kg. The same doses of ONO-1714 also caused hypertension. Intrathecal (i.t.) ONO-1714 potently reduced the hyperalgesia, the effective dose range (0.2-0.6 microg/rat) being much lower than the antinociceptive dose (150 microg/rat) of i.t. L-NAME. Thus, ONO-1714 is considered a potent inhibitor of nNOS in addition to iNOS. The distinct relative antinociceptive activities of systemic and i.t. ONO-1714 are attributable to its possible poor blood-brain barrier permeability.

  17. Gallic Acid Enriched Fraction of Phyllanthus emblica Potentiates Indomethacin-Induced Gastric Ulcer Healing via e-NOS-Dependent Pathway.

    PubMed

    Chatterjee, Ananya; Chatterjee, Sirshendu; Biswas, Angshuman; Bhattacharya, Sayanti; Chattopadhyay, Subrata; Bandyopadhyay, Sandip K

    2012-01-01

    The healing activity of gallic acid enriched ethanolic extract (GAE) of Phyllanthus emblica fruits (amla) against the indomethacin-induced gastric ulceration in mice was investigated. The activity was correlated with the ability of GAE to alter the cyclooxygenase- (COX-) dependent healing pathways. Histology of the stomach tissues revealed maximum ulceration on the 3rd day after indomethacin (18 mg/kg, single dose) administration that was associated with significant increase in inflammatory factors, namely, mucosal myeloperoxidase (MPO) activity and inducible nitric oxide synthase (i-NOS) expression. Proangiogenic parameters such as the levels of prostaglandin (PG) E(2), vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), von Willebrand Factor VIII, and endothelial NOS (e-NOS) were downregulated by indomethacin. Treatment with GAE (5 mg/kg/day) and omeprazole (3 mg/kg/day) for 3 days led to effective healing of the acute ulceration, while GAE could reverse the indomethacin-induced proinflammatory changes of the designated biochemical parameters. The ulcer healing activity of GAE was, however, compromised by coadministration of the nonspecific NOS inhibitor, N-nitro-L-arginine methyl ester (L-NAME), but not the i-NOS-specific inhibitor, L-N6-(1-iminoethyl) lysine hydrochloride (L-NIL). Taken together, these results suggested that the GAE treatment accelerates ulcer healing by inducing PGE(2) synthesis and augmenting e-NOS/i-NOS ratio.

  18. Invariant tori for the Nosé thermostat near the high-temperature limit

    NASA Astrophysics Data System (ADS)

    Butler, Leo T.

    2016-11-01

    Let H(q,p)=\\frac{1}{2}{{p}2}+V(q) be a 1-degree of freedom mechanical Hamiltonian with a C r periodic potential V where r  >  4. The Nosé-thermostated system associated to H is shown to have invariant tori near the infinite temperature limit. This is shown to be true for all thermostats similar to Nosé’s. These results complement the result of Legoll, Luskin and Moeckel who proved the existence of such tori near the decoupling limit (Frederic et al 2007 Arch. Ration. Mech. Anal. 184 449-63, Frederic L et al 2009 Nonlinearity 22 1673-94).

  19. The Coexistence of Invariant Tori and Topological Horseshoe in a Generalized Nosé-Hoover Oscillator

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Yang, Xiao-Song

    2017-06-01

    This paper is devoted to the study of dynamical complexity of a generalized Nosé-Hoover oscillator which is a three-dimensional quadratic polynomial system. Precisely, a lot of moderately conservative regions are found, each of which is filled with different sequences of nested tori with various knot types and is embedded in the “chaotic region”. This shows that the generalized Nosé-Hoover oscillator may possess so-called “fat fractal” structure in phase space. In addition, horseshoe chaos can be demonstrated by applying the topological horseshoe theory to a Poincaré map defined in a proper cross-section, which further shows the coexistence of infinitely stable periodic trajectories and infinite saddle periodic trajectories.

  20. Compression ignition sensitivity of NOS-365 under rapid propellant fill conditions

    NASA Technical Reports Server (NTRS)

    Mandzy, J.; Schaefer, K.; Knapton, J. D.; Morrison, W. F.

    1980-01-01

    The ullage compression ignition sensitivity of NOS-365 monopropellant under the pressure condition expected to be found in a medium caliber regenerative liquid propellant gun is evaluated. The results from the rapidly loaded propellant tests performed to date are presented. For this case, the physical state of the propellant is characterized by the presence of turbulence and a finely distributed ullage field. A description of the test fixtures, procedures and results is given. It is argued that the results to date indicate that with relatively simple precautionary measures NOS-365 can be rendered sufficiently immune to the ullage compression ignition mechanism to permit it to be safely used in a regenerative liquid propellant gun.

  1. Science learning based on local potential: Overview of the nature of science (NoS) achieved

    NASA Astrophysics Data System (ADS)

    Wilujeng, Insih; Zuhdan Kun, P.; Suryadarma, IGP.

    2017-08-01

    The research concerned here examined the effectiveness of science learning conducted with local potential as basis from the point of a review of the NoS (nature of science) achieved. It used the non equivalent control group design and took place in the regions of Magelang and Pati, Province of Central Java, and the regions of Bantul and Sleman, Province of the Special Region of Yogyakarta. The research population consisted of students of the first and second grades at each junior high school chosen with research subjects sampled by means of cluster sampling. The instruments used included: a) an observation sheet, b) a written test, and c) a questionnaire. The learning and research instruments had been declared valid and reliable according to previous developmental research. In conclusion, the science learning based on local potential was effective in terms of all the NoS aspects.

  2. Lack of association between endothelial nitric oxide synthase (NOS3) gene polymorphisms and suicide attempts

    PubMed Central

    Sáiz, Pilar A; García-Portilla, Maria P; Paredes, Begoña; Arango, Celso; Morales, Blanca; Alvarez, Victoria; Coto E, Eliecer; Bascarán, Teresa; Bousoño, Manuel; Bobes, Julio

    2007-01-01

    Objective The aim of this study is to investigate the association between two polymorphisms of endothelial nitric oxide synthase (NOS3) and suicide attempts. Methods We genotyped 186 suicide attempters and 420 unrelated healthy controls. The following polymorphisms were analysed: T-786C and 27-bp repeat in intron 4. Results No significant differences were found in genotype or in allelic distribution of the aforesaid polymorphisms. There were also no differences in the genotype distribution or allelic frequencies when separately assessing males and females or impulsive and non-impulsive attempters and normal controls. Estimated haplotype frequencies were similar in both groups. Conclusion Our data do not support the hypothesis that genetically determined changes in the NOS3 gene confer increased susceptibility for suicidal behavior. PMID:17605790

  3. The pleiotropic effects of inducible nitric oxide synthase (iNOS) on the physiology and pathology of penile erection.

    PubMed

    Gonzalez-Cadavid, N F; Rajfer, J

    2005-01-01

    The contribution of the neuronal and endothelial isoforms of nitric oxide synthase (nNOS and eNOS, respectively) in the synthesis of nitric oxide as a mediator of penile erection, at the levels of both the penile corpora cavernosa and the hypothalamic regions that control the erectile response, are well established. More recently, the role of the third NOS isoform, the inducible NOS (iNOS), has also started to be elucidated. iNOS does not appear to intervene directly in physiological penile erection or in its central control, but its transcriptional induction is postulated to be a key factor in two opposite related pathological processes, namely neurotoxicity in critical related regions of the hypothalamus during senescence, and as a defense mechanism against the aging or injury-associated fibrosis in the penile corpora cavernosa, the media of the penile arteries, and the tunica albuginea. By counteracting fibrosis that impairs cavernosal smooth muscle compliance, iNOS would protect the erectile tissue. However, further studies are needed to conclusively evaluate these putative roles in the two organs involved in reproductive function. In addition, whether iNOS induction during aging is a major cause in the net loss of trabecular smooth muscle in the corpora cavernosa through apoptosis, remains to be elucidated. The overall evaluation of these conflicting effects is important in order to decide whether pharmacological iNOS induction, or alternatively NO donors or L-arginine, may constitute a valid approach to prevent or treat penile fibrosis and vasculogenic erectile dysfunction.

  4. Resveratrol Prevented Lipopolysaccharide-Induced Endothelial Dysfunction in Rat Thoracic Aorta Through Increased eNOS Expression

    PubMed Central

    Uğurel, Seda Sultan; Kuşçu, Nilay; Özenci, Çiler Çelik; Dalaklıoğlu, Selvinaz; Taşatargil, Arda

    2016-01-01

    Background: The cardiovascular benefits of Resveratrol (RVT) have been well established by previous experimental and clinical studies. Aims: The goal of this study was to test the effectiveness of RVT administration on the impaired endothelial function induced by lipopolysaccharide (LPS), and to elucidate the role of endothelial nitric oxide synthase (eNOS)/Sirtuin 1 (SIRT1) pathway. Study Design: Animal experiment. Methods: Endotoxemia was induced by intraperitoneal injection of 10 mg/kg LPS, and the thoracic aorta was isolated six hours later. RVT was injected intraperitoneally 15 minutes before LPS administration. Six hours after LPS injection, potassium chloride (KCl), phenylephrine (Phe), acetylcholine (ACh), and sodium nitroprusside (SNP) were used to examine to vascular reactivity and endothelial function. eNOS, phospho-eNOS (p-eNOS) (Ser 1177), and SIRT1 expressions in thoracic aorta were evaluated by Western blot. Results: LPS administration significantly inhibited the relaxation response induced by ACh, while the relaxation to SNP was not significantly altered. Phe- and KCl-induced contractile responses in the thoracic aorta significantly decreased in LPS-injected group. eNOS and p-eNOS expression decreased significantly in arteries obtained from LPS group rats. The impaired vasoreactivity as well as decreased expressions of eNOS, p-eNOS, and SIRT1 in vessels from LPS-injected rats were improved by RVT treatment. Conclusion: The endothelium-dependent vasodilatation of the thoracic aorta was significantly inhibited by LPS administration, and RVT treatment may improve vascular endothelial function. The protective effect of RVT might be associated with increased eNOS expression and activity. PMID:27403381

  5. Diesel exhaust exposure enhances venoconstriction via uncoupling of eNOS

    SciTech Connect

    Knuckles, Travis L.; Lund, Amie K.; Lucas, Selita N.; Campen, Matthew J.

    2008-08-01

    Environmental air pollution is associated with adverse cardiovascular events, including increased hospital admissions due to heart failure and myocardial infarction. The exact mechanism(s) by which air pollution affects the heart and vasculature is currently unknown. Recent studies have found that exposure to air pollution enhances arterial vasoconstriction in humans and animal models. Work in our laboratory has shown that diesel emissions (DE) enhance vasoconstriction of mouse coronary arteries. Thus, we hypothesized that DE could enhance vasoconstriction in arteries and veins through uncoupling of endothelial nitric oxide synthase (eNOS). To test this hypothesis, we first bubbled DE through a physiological saline solution and exposed isolated mesenteric veins. Second, we exposed animals, whole body, to DE at 350 {mu}g/m{sup 3} for 4 h, after which mesenteric arteries and veins were isolated. Results from these experiments show that saline bubbled with DE as well as inhaled DE enhances vasoconstriction in veins but not arteries. Exposure to several representative volatile organic compounds found in the DE-exposed saline did not enhance arterial constriction. L-nitro-arginine-methyl-ester (L-NAME), an eNOS inhibitor, normalized the control vessels to the DE-exposed vessels implicating an uncoupling of eNOS as a mechanism for enhanced vasoconstriction. The principal conclusions of this research are 1) veins exhibit endothelial dysfunction following in vivo and ex vivo exposures to DE, 2) veins appear to be more sensitive to DE effects than arteries, and 3) DE components most likely induce endothelial dysfunction through the uncoupling of eNOS.

  6. High concentration of glucose inhibits glomerular endothelial eNOS through a PKC mechanism.

    PubMed

    Chu, Shaoyou; Bohlen, H Glenn

    2004-09-01

    Kidney glomeruli are important targets of diabetic nephropathy. We hypothesized a high concentration of glucose could suppress glomerular endothelial nitric oxide synthase (eNOS) by a protein kinase C (PKC) mechanism, as has been found in other tissues. Mouse kidney slices (150-200 microm) were bathed in Hanks' solution with 100 microM L-arginine and exposed to either 5 or 20-30 mM D-glucose. Immunofluorescence identified only eNOS in normal mouse glomeruli. Measurements of glomerular NO concentration with NO-sensitive fluorescent dye (4,5-diaminofluorescein diacetate) using confocal microscopy and NO-sensitive microelectrodes verified that resting glomeruli had active production of NO that was inhibited by N(G)-nitro-L-arginine methyl ester. High-concentration (20-30 mM) D-glucose inhibited 60-70% of the NO production within 15-30 min; L-glucose at the same concentration did not have any effect. Inhibition of PKC-beta with 100 nM ruboxistaurin prevented eNOS suppression in high-glucose media. Activation of PKC with 100 nM phorbol ester also suppressed the glomerular NO concentration. We concluded that eNOS in the renal glomerular capillary endothelial cells is suppressed by activity of PKC at high-glucose concentrations comparable to those in diabetic animals and humans. The consequence is a rapid decline in the generation of NO in the glomerular endothelial cells in the presence of a high concentration of glucose.

  7. Site overview. Part 1 of 3part panorama with nos. CA27022 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Site overview. Part 1 of 3-part panorama with nos. CA-2702-2 and CA-2707-3. Southern LTA ship hangar (building 28; hangar no. 2 in distant center of photograph. Seen from roadway leading to northern LTA ship hangar (building 29; hangar no. 1) landing pad. Looking 208 SSW. - Marine Corps Air Station Tustin, Northern Lighter Than Air Ship Hangar, Meffett Avenue & Maxfield Street, Tustin, Orange County, CA

  8. Site overview. Part 1 of 3part panorama with nos. CA27022 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Site overview. Part 1 of 3-part panorama with nos. CA-2702-2 and CA-2707-3. Southern LTA ship hangar (building 28; hangar no. 2 in distant center of photograph. Seen from roadway leading to northern LTA ship hangar (building 29; hangar no. 1) landing pad. Looking 208 SSW. - Marine Corps Air Station Tustin, East of Red Hill Avenue between Edinger Avenue & Barranca Parkway, Tustin, Orange County, CA

  9. Development, Implementation, and Skill Assessment of the NOAA/NOS Great Lakes Operational Forecast System

    DTIC Science & Technology

    2011-01-01

    Development, implementation, and skill assessment of the NOAA /NOS Great Lakes Operational Forecast System Philip Y. Chu & John G. W. Kelley & Gregory...USA) 2011 Abstract The NOAA Great Lakes Operational Forecast System (GLOFS) uses near-real-time atmospheric observa- tions and numerical weather...System (GLFS) was developed by researchers at The Ohio State University (OSU) and NOAA ′s Great Lakes Environmental Research Laboratory (GLERL) in the

  10. Syringin may exert sleep-potentiating effects through the NOS/NO pathway.

    PubMed

    Cui, Yue; Zhang, Ying; Liu, Gang

    2015-04-01

    Sleep is essential for basic survival as well as for optimal physical and cognitive performance in both human beings and animals. To investigate the effect of syringin on sleep of anesthetized mice and the potential mechanisms, 35 male Kunming mice were randomly divided into six experimental groups (n = 5) and one control group (n = 5). Sleep latency and sleep duration, as well as nitric oxide (NO) content and nitric oxide synthase (NOS) activity, were determined after syringin administration. The NO precursor l-Arginine (l-Arg) or NOS inhibitor NG-Nitro-l-arginine methyl ester (l-NAME) was administered alone or in combination with syringin, and time for sleep latency and duration was recorded. After intragastric administration of syringin, sleep latency decreased in a dose- and time-dependent manner, concomitant with increased sleep duration. The optimal sleep performance was obtained when syringin was given at a dose of 80 mg/kg for eight consecutive days. Syringin significantly reduced NO concentration and NOS activity. Administration of l-Arg prolonged sleep latency and shortened sleep duration, and the effects were fully reversed by syringin coadministration. Administration of L-NAME induced a significant reduction in sleep latency and a corresponding increase in sleep duration, and coadministration of syringin further enhanced the effects. The finding of our study demonstrated that syringin could exert sleep-potentiating effects on anesthetized mice in a time- and dose-dependent manner, and these effects may be intimately correlated with the NO/NOS pathway. © 2014 Société Française de Pharmacologie et de Thérapeutique.

  11. Fluctuation formula in the Nosé-Hoover thermostated Lorentz gas

    NASA Astrophysics Data System (ADS)

    Dolowschiák, M.; Kovács, Z.

    2005-02-01

    In this paper we examine numerically the Gallavotti-Cohen fluctuation formula for phase-space contraction rate and entropy production rate fluctuations in the Nosé-Hoover thermostated periodic Lorentz gas. Our results indicate that while the phase-space contraction rate fluctuations violate the fluctuation formula near equilibrium states, the entropy production rate fluctuations obey this formula near and far from equilibrium states as well.

  12. Fluctuation formula in the Nosé-Hoover thermostated Lorentz gas.

    PubMed

    Dolowschiák, M; Kovács, Z

    2005-02-01

    In this paper we examine numerically the Gallavotti-Cohen fluctuation formula for phase-space contraction rate and entropy production rate fluctuations in the Nosé-Hoover thermostated periodic Lorentz gas. Our results indicate that while the phase-space contraction rate fluctuations violate the fluctuation formula near equilibrium states, the entropy production rate fluctuations obey this formula near and far from equilibrium states as well.

  13. Role of eNOS in water exchange index maintenance-MRI studies

    NASA Astrophysics Data System (ADS)

    Atochin, D.; Litvak, M.; Huang, S.; Kim, Y. R.; Huang, P.

    2017-08-01

    Stroke studies employ experimental models of cerebral ischemic and reperfusion injury in rodents. MRI provides valuable supravital data of cerebral blood flow and brain tissue damage. This paper presents MRI applications for cerebral blood flow research in mice lines with impaired nitric oxide production by endothelial nitric oxide synthase. Our data demonstrates that specific modifications of MRI methodology in transgenic mouse models help to evaluate the role of eNOS in the brain-blood barrier function.

  14. Association of NOS3 tag polymorphisms with hypoxic-ischemic encephalopathy.

    PubMed

    Kuzmanić Samija, Radenka; Primorac, Dragan; Resić, Biserka; Lozić, Bernarda; Krzelj, Vjekoslav; Tomasović, Maja; Stoini, Eugenio; Samanović, Ljubo; Benzon, Benjamin; Pehlić, Marina; Boraska, Vesna; Zemunik, Tatijana

    2011-06-01

    To test the association of NOS3 gene with hypoxic-ischemic encephalopathy (HIE). The study included 110 unrelated term or preterm born children (69 boys and 41 girls) with HIE and 128 term and preterm born children (60 boys and 68 girls) without any neurological problems after the second year of life. Children with perinatal HIE fulfilled the diagnostic criteria for perinatal asphyxia. All children were admitted to the Clinical Hospital Split between 1992 and 2008. We analyzed 6 tagging single nucleotide polymorphisms (SNP) within NOS3 gene (rs3918186, rs3918188, rs1800783, rs1808593, rs3918227, rs1799983), in addition to previously confirmed NOS3-associated SNP rs1800779. Genotyping was conducted using real-time polymerase chain reaction (PCR). Association analyses were performed according to allelic and genotypic distribution. Allelic test did not show any SNP association with HIE. SNP rs1808593 showed genotype association (P=0.008) and rs1800783-rs1800779 TG haplotype showed an association with HIE (P<0.001). The study had 80% statistical power to detect (α=0.05) an effect with odds ratio (OR)=2.07 for rs3918186, OR=1.69 for rs3918188, OR=1.70 for rs1800783, OR=1.80 for rs1808593, OR=2.10 for rs3918227, OR=1.68 for rs1800779, and OR=1.76 for rs1799983, assuming an additive model. Despite the limited number of HIE patients, we observed genotypic and haplotype associations of NOS3 polymorphisms with HIE.

  15. Correlation of interactions between NOS3 polymorphisms and oxygen therapy with retinopathy of prematurity susceptibility.

    PubMed

    Yu, Chunhong; Yi, Jinglin; Yin, Xiaolong; Deng, Yan; Liao, Yujun; Li, Xiaobing

    2015-01-01

    This study was aimed to detect the correlation of nitric oxide synthase 3 (NOS3) gene polymorphisms (T-786C and G894T) and retinopathy of prematurity (ROP) susceptibility. Interaction between NOS3 gene polymorphisms and the duration of oxygen therapy was also explored in ROP babies. Genotypes of NOS3 gene polymorphisms were genotyped by MassArray method. Hardy-Weinberg equilibrium (HWE) was used to calculate the representativeness of the cases and controls. Crossover analysis was utilized to explore the gene environment interactions. Relative risk of ROP was presented by odds ratios (ORs) with corresponding 95% confidence intervals (95% CIs). Among the subject features, oxygen therapy had obvious difference between case and control groups (P<0.05). There existed significant association between-786C allele and ROP susceptibility (P=0.049, OR=0.669, 95% CI=0.447-0.999). Genotypes of T-786C polymorphism and genotypes and alleles of G894T polymorphism did not related to the susceptibility of ROP. Interactions were existed between NOS3 gene polymorphisms and oxygen therapy duration. When the duration of oxygen therapy was less than 17 days, both -786CC genotype and 894GT genotype were correlated with ROP susceptibility (P=0.020, OR=0.115, 95% CI=0.014-0.960; P=0.011, OR=0.294, 95% CI=0.100-0.784). -786C allele might have a protective effect for ROP. Interactions of -786CC and 894GT genotype with oxygen therapy duration (less than 17 days) were both protection factors of ROP.

  16. COX2 and NOS3 gene polymorphisms in women with gestational diabetes.

    PubMed

    Tarnowski, Maciej; Tkacz, Marta; Dziedziejko, Violetta; Safranow, Krzysztof; Pawlik, Andrzej

    2017-08-01

    Gestational diabetes (GDM) is carbohydrate intolerance occurring in pregnancy. Low-grade inflammation plays an important role in the pathogenesis of this disorder. The present study aimed to examine the association between COX2 (rs6681231) and NOS3 (rs1799983 and rs2070744) gene polymorphisms and GDM. The study included 204 pregnant women with GDM and 207 pregnant women with normal glucose tolerance. The diagnosis of GDM was based on a 75-g oral glucose tolerance test at 24-28 weeks of gestation. We observed an increased frequency of COX2 rs6681231 CC and GC genotype carriers among women with GDM (CC + GC versus GG, odds ratio = 1.55, 95% confidence interval = 1.01-2.36, p = 0.043; C versus G, odds ratio = 1.59, 95% confidence interval = 1.10-2.30, p = 0.013). There were no statistically significant differences in the distribution of NOS3 rs1799983 and rs2070744 between GDM and healthy women. Moreover, among women treated with insulin, we observed an increased frequency of COX2 rs6681231 CC and NOS3 rs1799983 TT genotype carriers. The results of the present study suggest that the CC genotype of the COX2 rs6681231 polymorphism is associated with an increased risk of GDM and the need for insulin therapy, whereas the TT genotype of the NOS3 rs1799983 polymorphism may be associated with the need for insulin therapy in women with GDM. Copyright © 2017 John Wiley & Sons, Ltd.

  17. ASK1 Inhibitor Halts Progression of Diabetic Nephropathy in Nos3-Deficient Mice.

    PubMed

    Tesch, Greg H; Ma, Frank Y; Han, Yingjie; Liles, John T; Breckenridge, David G; Nikolic-Paterson, David J

    2015-11-01

    p38 mitogen-activated protein kinase (MAPK) signaling promotes diabetic kidney injury. Apoptosis signal-regulating kinase (ASK)1 is one of the upstream kinases in the p38 MAPK-signaling pathway, which is activated by inflammation and oxidative stress, suggesting a possible role for ASK1 in diabetic nephropathy. In this study, we examined whether a selective ASK1 inhibitor can prevent the induction and progression of diabetic nephropathy in mice. Diabetes was induced in hypertensive endothelial nitric oxide synthase (Nos3)-deficient mice by five low-dose streptozotocin (STZ) injections. Groups of diabetic Nos3(-/-) mice received ASK1 inhibitor (GS-444217 delivered in chow) as an early intervention (2-8 weeks after STZ) or late intervention (weeks 8-15 after STZ). Control diabetic and nondiabetic Nos3(-/-) mice received normal chow. Treatment with GS-444217 abrogated p38 MAPK activation in diabetic kidneys but had no effect upon hypertension in Nos3(-/-) mice. Early intervention with GS-444217 significantly inhibited diabetic glomerulosclerosis and reduced renal dysfunction but had no effect on the development of albuminuria. Late intervention with GS-444217 improved renal function and halted the progression of glomerulosclerosis, renal inflammation, and tubular injury despite having no effect on established albuminuria. In conclusion, this study identifies ASK1 as a new therapeutic target in diabetic nephropathy to reduce renal inflammation and fibrosis independent of blood pressure control. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  18. The nir, nor, and nos denitrification genes are dispersed over the Bradyrhizobium japonicum chromosome.

    PubMed

    Mesa, S; Göttfert, M; Bedmar, E J

    2001-07-01

    Cleavage of genomic DNA from Bradyrhizobium japonicum strain 3I1b110 by the restriction enzymes PmeI, PacI, and SwaI has been used together with pulsed-field gel electrophoresis and Southern hybridization to locate the nirK, norCBQD, and nosRZDFYLX denitrification genes on the chromosomal map of B. japonicum strain 110spc4. Mutant strains GRK13, GRC131, and GRZ25 were obtained by insertion of plasmid pUC4-KIXX-aphII-PSP, which carries recognition sites for the enzymes PacI, PmeI and SwaI, into the B. japonicum 3I1b110 nirK, norC and nosZ genes, respectively. Restriction of strain 3I1b110 genomic DNA with PacI, PmeI and SwaI yielded three, five and nine fragments, respectively. Pulsed-field gel electrophoresis of restricted mutant DNAs resulted in an altered fragment pattern that allowed determination of the position of the selected genes. Complementary mapping data were obtained by hybridization using digoxigenin-labeled B. japonicum 3I1b110 nirK, norBQD and nosZD as gene probes. The nirK, norCBQD and nosRZDFYLX genes were located close to the groEL(2), cycH and cycVWX genes, respectively, on the strain 110spc4 genetic map. In contrast to other denitrifiers, B. japonicum 3I1b110 denitrification genes were dispersed over the entire chromosome.

  19. eNOS gene polymorphisms modify the association of PM(10) with oxidative stress.

    PubMed

    Kim, Jin Hee; Choi, Yoon-Hyeong; Bae, Sanghyuk; Park, Hye-Yin; Hong, Yun-Chul

    2012-11-15

    Previous studies have suggested that air pollution increases various health outcomes through oxidative stress and oxidative stress-related genes modify the relationship between air pollution and health outcomes. Therefore, we evaluated the effect of PM(10) on the levels of malondialdehyde (MDA), oxidative stress biomarker, and the effect modification by genetic polymorphisms of eNOS, oxidative stress-related gene, in the 560 Korean elderly. We obtained urine samples repeatedly from participants during five medical examinations between 2008 and 2010 and all ambient air pollutant concentration data from the Korea National Institute of Environmental Research air quality monitoring system. We measured urinary levels of MDA to assess oxidative stress and genotyped eNOS (rs1799983, rs2853796, and rs7830). Mixed-effect model was used to estimate the effect of PM(10) on the level of oxidative stress biomarker and their modification by genotypes. PM(10) showed apparent positive effect on MDA level after adjusting for age, sex, BMI, cotinine level, temperature, dew point, levels of SO(2), O(3), NO(2), and CO, and season (p=0.0133). Moreover, the association of PM(10) with MDA was found only in participants with eNOS GG genotype for rs1799983 (p=0.0107), TT genotype for rs2853796 (p=0.0289), or GT genotype for rs7830 (p=0.0158) and in participants with a set of risky haplotypes (GTT, GTG, GGT, and TGT) (p=0.0093). Our results suggest that PM(10) affect oxidative stress in the elderly and eNOS genotype affect the oxidative stress level in regard of exposure to PM(10).

  20. Correlation of interactions between NOS3 polymorphisms and oxygen therapy with retinopathy of prematurity susceptibility

    PubMed Central

    Yu, Chunhong; Yi, Jinglin; Yin, Xiaolong; Deng, Yan; Liao, Yujun; Li, Xiaobing

    2015-01-01

    Aim: This study was aimed to detect the correlation of nitric oxide synthase 3 (NOS3) gene polymorphisms (T-786C and G894T) and retinopathy of prematurity (ROP) susceptibility. Interaction between NOS3 gene polymorphisms and the duration of oxygen therapy was also explored in ROP babies. Methods: Genotypes of NOS3 gene polymorphisms were genotyped by MassArray method. Hardy-Weinberg equilibrium (HWE) was used to calculate the representativeness of the cases and controls. Crossover analysis was utilized to explore the gene environment interactions. Relative risk of ROP was presented by odds ratios (ORs) with corresponding 95% confidence intervals (95% CIs). Results: Among the subject features, oxygen therapy had obvious difference between case and control groups (P<0.05). There existed significant association between-786C allele and ROP susceptibility (P=0.049, OR=0.669, 95% CI=0.447-0.999). Genotypes of T-786C polymorphism and genotypes and alleles of G894T polymorphism did not related to the susceptibility of ROP. Interactions were existed between NOS3 gene polymorphisms and oxygen therapy duration. When the duration of oxygen therapy was less than 17 days, both -786CC genotype and 894GT genotype were correlated with ROP susceptibility (P=0.020, OR=0.115, 95% CI=0.014-0.960; P=0.011, OR=0.294, 95% CI=0.100-0.784). Conclusion: -786C allele might have a protective effect for ROP. Interactions of -786CC and 894GT genotype with oxygen therapy duration (less than 17 days) were both protection factors of ROP. PMID:26823875

  1. Effect of magnesium supplementation on blood rheology in NOS inhibition-induced hypertension model.

    PubMed

    Cengiz, Melike; Ülker, Pinar; Üyüklü, Mehmet; Yaraş, Nazmi; Özen, Nur; Aslan, Mutay; Özyurt, Dilek; Basralı, Filiz

    2016-01-27

    This study investigated the effects of magnesium on blood rheological properties and blood pressure in nitric oxide synthase (NOS) inhibition-induced hypertension model. Hypertension was induced by oral administration of the nonselective NOS inhibitor N-nitro-L-arginine methyl ester (L-NAME, 25 mg/kg/day) for 6 weeks and systolic blood pressure was measured by the tail-cuff method. The groups receiving magnesium supplementation were fed with rat chow containing 0.8% magnesium oxide during the experiment. At the end of experiment, blood samples were obtained from abdominal aorta, using ether anesthesia. Plasma and erythrocyte magnesium levels were determined by the atomic absorption spectrometer. RBC deformability and aggregation were determined by rotational ektacytometry. Plasma fibrinogen concentration was evaluated by ELISA. Whole blood and plasma viscosities were determined by viscometer and intracellular free Ca++ level was measured by using spectroflurometric method. Blood pressure was elevated in hypertensive groups and suppressed by magnesium therapy. Plasma viscosity and RBC aggregation were found to be higher in hypertensive rats than control animals and these parameters significantly decreased in magnesium supplemented hypertensive animals. Other measurements were not different between experimental groups. These results confirm that blood pressure, plasma viscosity and RBC aggregation increased in NOS inhibition-induced hypertension model and oral magnesium supplementation improved these parameters.

  2. Expression of NRAMP1 and iNOS in Mycobacterium avium subsp. paratuberculosis naturally infected cattle.

    PubMed

    Delgado, F; Estrada-Chávez, C; Romano, M; Paolicchi, F; Blanco-Viera, F; Capellino, F; Chavez-Gris, G; Pereira-Suárez, A L

    2010-09-01

    Paratuberculosis (PTB) is a chronic disease caused by M. avium subsp. paratuberculosis (MAP) that affects several animal species, and some studies have suggested that there may be a relationship between Crohn's disease and PTB. Significant aspects of PTB pathogenesis are not yet completely understood, such as the role of macrophages. Natural resistance-associated macrophage protein 1 (NRAMP1) and the inducible nitric oxide synthase (iNOS) molecules have shown nonspecific effects against several intracellular pathogens residing within macrophages. However, these molecules have been scarcely studied during natural infection with MAP. In this work, changes in NRAMP1 and iNOS expression were surveyed by immunohistochemistry in tissue samples from MAP-infected cattle and healthy controls. Our findings show strong specific immunolabeling against both NRAMP1 and iNOS molecules, throughout granulomatous PTB-compatible lesions in ileum and ileocaecal lymph nodes from paratuberculous cattle compared with uninfected controls, suggesting a relationship between the expression of these molecules and the pathogenesis of PTB disease. Copyright 2009 Elsevier Ltd. All rights reserved.

  3. Recapitulating the History of Sickle-Cell Anemia Research: Improving Students' NOS Views Explicitly and Reflectively

    NASA Astrophysics Data System (ADS)

    Howe, Eric Michael; Wÿss Rudge, David

    This paper provides an argument in favor of a specific pedagogical method of using the history of science to help students develop more informed views about nature of science (NOS) issues. The paper describes a series of lesson plans devoted to encouraging students to engage, unbeknownst to them, in similar reasoning that led scientists to understand sickle-cell anemia from the perspective of multiple subdisciplines in biology. Students pursue their understanding of a "mystery disease"; by means of a series of open-ended problems that invite them to discuss it from the perspective of anatomy, physiology, ecology, evolution, and molecular and cell biology. Throughout this unit, instructors incorporate techniques that invite students to explicitly and reflectively discuss various NOS issues with reference to this example and more generally. It is argued on the grounds of constructivist tenets that this pedagogy has substantial advantages over more implicit approaches. The findings of an empirical study using an open-ended survey and follow-up, semi-structured interviews to assess students' pre- and post-instruction NOS conceptions support the efficacy of this approach.

  4. Mitochondrial metabolic states and membrane potential modulate mtNOS activity.

    PubMed

    Valdez, Laura B; Zaobornyj, Tamara; Boveris, Alberto

    2006-03-01

    The mitochondrial metabolic state regulates the rate of NO release from coupled mitochondria: NO release by heart, liver and kidney mitochondria was about 40-45% lower in state 3 (1.2, 0.7 and 0.4 nmol/min mg protein) than in state 4 (2.2, 1.3 and 0.7 nmol/min mg protein). The activity of mtNOS, responsible for NO release, appears driven by the membrane potential component and not by intramitochondrial pH of the proton motive force. The intramitochondrial concentrations of the NOS substrates, L-arginine (about 310 microM) and NADPH (1.04-1.78 mM) are 60-1000 times higher than their KM values. Moreover, the changes in their concentrations in the state 4-state 3 transition are not enough to explain the changes in NO release. Nitric oxide release was exponentially dependent on membrane potential as reported for mitochondrial H2O2 production [S.S. Korshunov, V.P. Skulachev, A.A. Satarkov, High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 416 (1997) 15-18.]. Agents that decrease or abolish membrane potential minimize NO release while the addition of oligomycin that produces mitochondrial hyperpolarization generates the maximal NO release. The regulation of mtNOS activity, an apparently voltage-dependent enzyme, by membrane potential is marked at the physiological range of membrane potentials.

  5. Simultaneous abrogation of NOS-2 and COX-2 activities is lethal in partially hepatectomised mice.

    PubMed

    Zeini, Miriam; Hortelano, Sonsoles; Través, Paqui G; Martín-Sanz, Paloma; Boscá, Lisardo

    2004-06-01

    We have investigated the role of the nitric oxide (NO) and prostaglandins (PGs), respectively, synthesized by nitric oxide synthase 2 (NOS-2) and cyclooxygenase-2 (COX-2), in the outcome of liver regeneration after partial hepatectomy (PH). Liver mass recovery and molecular parameters related to cell proliferation and apoptotic death have been determined. NOS-2 and COX-2 are normally both expressed in the remnant liver after PH, and inhibition of either one delays regeneration. We found, however, that simultaneous suppression of the activities of NOS-2 (by gene knockout) and COX-2 (by pharmacological inhibition) resulted in animal death between 24 and 72 h after PH. Analysis of liver mass recovery and molecular parameters related to cell proliferation and apoptotic death revealed increased liver-cell apoptosis and an insufficient proliferative response. Broad-specificity caspase inhibitors, such as z-Val-Ala-Asp.fmk (z-VAD), or administration of NO-donors, rescued animals from death, revealing a critical apoptotic bias at this stage of proliferation. These findings demonstrate that simultaneous signaling by NO and prostaglandins plays an important role in the mechanism of liver regeneration after PH by protecting the remnant tissue from apoptotic death.

  6. Interaction between HSP 70 and iNOS in skeletal muscle injury and repair.

    PubMed

    Kim, Kijeong

    2015-10-01

    Muscle injuries are frequently occurred in various sports. The biological process and mechanism of muscle repair after injury are well known through the many studies. This study aimed at presenting heat shock protein and nitric oxide synthase are to respond to muscle damage and repair. This section discusses the results obtained through many articles. Heat shock proteins (HSPs) are considered to play an essential role in protecting cells from damage, preparing them to survive on new environmental challenges. In addition, exercise-induced changes such as heat shock, oxidative, metabolic, muscular, and cytokine stress seem to be responsible for the HSP response to exercise. Also, inducible nitric oxide synthase (iNOS) generates nitric oxide (NO) for prolonged period and causes pathophysiological effects. Furthermore, iNOS is involved in processes such as cell injury, wound repair, embryogenesis, tissue differentiation, and suppression of tumorigenesis. In conclusion, the inhibition of HSP 70 on caspase-3 and apoptosis is associated with its inhibition on iNOS that leads to less NO production.

  7. Buckling Reduces eNOS Production and Stimulates Extracellular Matrix Remodeling in Arteries in Organ Culture.

    PubMed

    Xiao, Yangming; Liu, Qin; Han, Hai-Chao

    2016-09-01

    Artery buckling alters the fluid shear stress and wall stress in the artery but its temporal effect on vascular wall remodeling is poorly understood. The purpose of this study was to investigate the early effect of artery buckling on endothelial nitric oxide synthase (eNOS) expression and extracellular matrix remodeling. Bilateral porcine carotid arteries were maintained in an ex vivo organ culture system with and without buckling while under the same physiological pressure and flow rate for 3-7 days. Matrix metalloproteinase-2 (MMP-2), MMP-9, fibronectin, elastin, collagen I, III and IV, tissue inhibitor of metalloproteinase-2 (TIMP-2), and eNOS were determined using Western blotting and immunohistochemistry. Our results showed that MMP-2 expression level was significantly higher in buckled arteries than in the controls and higher at the inner curve than at the outer curve of buckled arteries, while collagen IV content showed an opposite trend, suggesting that artery buckling increased MMP-2 expression and collagen IV degradation in a site-specific fashion. However, no differences for MMP-9, fibronectin, elastin, collagen I, III, and TIMP-2 were observed among the outer and inner curve sides of buckled arteries and straight controls. Additionally, eNOS expression was significantly decreased in buckled arteries. These results suggest that artery buckling triggers uneven wall remodeling that could lead to development of tortuous arteries.

  8. Plasma gelsolin improves lung host defense against pneumonia by enhancing macrophage NOS3 function.

    PubMed

    Yang, Zhiping; Chiou, Terry Ting-Yu; Stossel, Thomas P; Kobzik, Lester

    2015-07-01

    Plasma gelsolin (pGSN) functions as part of the "extracellular actin-scavenging system," but its potential to improve host defense against infection has not been studied. In a mouse model of primary pneumococcal pneumonia, recombinant human pGSN (rhu-pGSN) caused enhanced bacterial clearance, reduced acute inflammation, and improved survival. In vitro, rhu-pGSN rapidly improved lung macrophage uptake and killing of bacteria (Streptococcus pneumoniae, Escherichia coli, and Francisella tularensis). pGSN triggers activating phosphorylation (Ser(1177)) of macrophage nitric oxide synthase type III (NOS3), an enzyme with important bactericidal functions in lung macrophages. rhu-pGSN failed to enhance bacterial killing by NOS3(-/-) macrophages in vitro or bacterial clearance in NOS3(-/-) mice in vivo. Prophylaxis with immunomodulators may be especially relevant for patients at risk for secondary bacterial pneumonia, e.g., after influenza. Treatment of mice with pGSN challenged with pneumococci on postinfluenza day 7 (the peak of enhanced susceptibility to secondary infection) caused a ∼15-fold improvement in bacterial clearance, reduced acute neutrophilic inflammation, and markedly improved survival, even without antibiotic therapy. pGSN is a potential immunomodulator for improving lung host defense against primary and secondary bacterial pneumonia.

  9. Association of NOS3 gene variants and clinical contributors of hypoxic-ischemic encephalopathy.

    PubMed

    Kuzmanić Šamija, R; Primorac, D; Rešić, B; Pavlov, V; Čapkun, V; Punda, H; Lozić, B; Zemunik, T

    2014-10-01

    The aim of this study was to analyze the association of different clinical contributors of hypoxic-ischemic encephalopathy with NOS3 gene polymorphisms. A total of 110 children with hypoxic-ischemic encephalopathy and 128 control children were selected for this study. Association of gender, gestational age, birth weight, Apgar score, cranial ultrasonography, and magnetic resonance imaging findings with genotypic data of six haplotype-tagging single nucleotide polymorphisms and the most commonly investigated rs1800779 and rs2070744 polymorphisms was analyzed. The TGT haplotype of rs1800783, rs1800779, and rs2070744 polymorphisms was associated with hypoxic-ischemic encephalopathy. Children with the TGT haplotype were infants below 32 weeks of gestation and they had the most severe brain damage. Increased incidence of the TT genotype of the NOS3 rs1808593 SNP was found in the group of hypoxic-ischemic encephalopathy patients with medium and severe brain damage. The probability of brain damage was twice as high in children with the TT genotype than in children with the TG genotype of the same polymorphism. Furthermore, the T allele of the same polymorphism was twice as frequent in children with lower Apgar scores. This study strongly suggests associations of NOS3 gene polymorphism with intensity of brain damage and severity of the clinical picture in affected children.

  10. A Socioscientific Curriculum Facilitating the Development of Distal and Proximal NOS Conceptualizations

    NASA Astrophysics Data System (ADS)

    Schalk, Kelly A.

    2012-01-01

    This study reports the effects of an innovative introductory microbiology course for undergraduates that used a socioscientific issues (SSI)-based curriculum. The study illustrates how an SSI-based intervention provides learners with pragmatic opportunities for cultivating their scientific literacy subsuming the nature of science (NOS). Empirical data measured 26 undergraduates' distal and proximal knowledge of the NOS with respect to their ability to reason. The instruments used in this case study yielded qualitative data, which were coded using NVivo7 and inductively analyzed. All data analyses were subject to instrumental triangulation, inter-rater reliability, and member-checking. These analyses determined that undergraduates' formal epistemological knowledge of professional science matured. These changes accompanied improved reasoning skills and matured beliefs about the NOS. In particular, students' reasoning changed as they realized that scientific knowledge is never absolute or certain but tentative and subject to change. In general, the findings suggest that this SSI-based curriculum enhanced collegiate students' understanding of social issues that affect their lives. Implications of this research are discussed.

  11. Geranylgeranylacetone protects against cerebral ischemia and reperfusion injury: HSP90 and eNOS phosphorylation involved.

    PubMed

    He, Dake; Song, Xiaoqing; Li, Ling

    2015-03-02

    Cerebral ischemia and reperfusion (I/R) can trigger a cytotoxic cascade with overflow of reactive oxygen species, paradoxically causing neurological dysfunction, redox imbalance, inflammation and apoptosis. The present study aims to investigate the effect of geranylgeranylacetone(GGA) on cerebral I/R injury and the underlying mechanism. The results demonstrated that cerebral I/R increased the neurological function abnormality, brain edema, inflammation and oxidative injury in rats as well as the cognitive impairment, which was significantly reversed by GGA in a dose-dependent manner. GGA also suppressed the cell injury and apoptosis caused by cerebral I/R. Moreover, the protective effect of GGA was found to involve heat shock protein 90 (HSP90) and phosphorylated endothelial nitric oxide synthase (eNOS) expression and activity. Both the HSP90 and eNOS inhibitor abolished the effect of GGA. The data showed that GGA could protect rats against cerebral I/R injury, which may be related to the induction of HSP90 and activation of eNOS. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Bilirubin exerts pro-angiogenic property through Akt-eNOS-dependent pathway.

    PubMed

    Ikeda, Yasumasa; Hamano, Hirofumi; Satoh, Akiho; Horinouchi, Yuya; Izawa-Ishizawa, Yuki; Kihira, Yoshitaka; Ishizawa, Keisuke; Aihara, Ken-Ichi; Tsuchiya, Koichiro; Tamaki, Toshiaki

    2015-11-01

    Low serum bilirubin levels are associated with the risk of cardiovascular diseases including peripheral artery disease. Bilirubin is known to exert its property such as antioxidant effect or the enhancement of flow-mediated vasodilation, however, bilirubin action on angiogenesis remains unclear. To investigate the molecular mechanism of bilirubin on angiogenic effect, we first employed C57BL/6J mice with unilateral hindlimb ischemia surgery and divided the mice into two groups (vehicle-treated group and bilirubin-treated group). The analysis of laser speckle blood flow demonstrated the enhancement of blood flow recovery in response to ischemia of mice with bilirubin treatment. The density of capillaries was significantly higher in ischemic-adductor muscles of bilirubin-treated mice. The phosphorylated levels of endothelial nitric oxide synthase (eNOS) and Akt were increased in ischemic skeletal muscles of mice with bilirubin treatment compared with vehicle treatment. In in vitro experiments by using human aortic endothelial cells, bilirubin augmented eNOS and Akt phosphorylation, cell proliferation, cell migration and tube formation. These bilirubin actions on endothelial cell activation were inhibited by LY294002, a phosphatidylinositol 3-kinase inhibitor. In conclusion, bilirubin promotes angiogenesis through endothelial cells activation via Akt-eNOS-dependent manner.

  13. Comparing Autism, PDD-NOS, and Other Developmental Disabilities on Parent-Reported Behavior Problems: Little Evidence for ASD Subtype Validity

    ERIC Educational Resources Information Center

    Snow, Anne V.; Lecavalier, Luc

    2011-01-01

    Studies on the distinction between Autistic Disorder (AD) and Pervasive Developmental Disorder Not Otherwise Specified (PDD-NOS) have been inconclusive. This study examined the validity of PDD-NOS by comparing it to AD and other developmental disorders (DD) on parent-reported behavior problems. Fifty-four children with PDD-NOS were individually…

  14. Comparing Autism, PDD-NOS, and Other Developmental Disabilities on Parent-Reported Behavior Problems: Little Evidence for ASD Subtype Validity

    ERIC Educational Resources Information Center

    Snow, Anne V.; Lecavalier, Luc

    2011-01-01

    Studies on the distinction between Autistic Disorder (AD) and Pervasive Developmental Disorder Not Otherwise Specified (PDD-NOS) have been inconclusive. This study examined the validity of PDD-NOS by comparing it to AD and other developmental disorders (DD) on parent-reported behavior problems. Fifty-four children with PDD-NOS were individually…

  15. NOS-based biopolymers; towards novel thromboresistant NO-release materials

    NASA Astrophysics Data System (ADS)

    Abou Diwan, Charbel

    Nitric Oxide releasing biopolymers have the potential to prolong vascular graft and stent potency without adverse systemic vasodilation. It was reported in literature that eNOS-overexpressing endothelial cell seeding of synthetic small diameter vascular grafts decreased human platelet aggregation by 46% and bovine aortic smooth muscle cell proliferation by 67.2% in vitro. We hypothesized that incorporating the enzyme nitric oxide synthase (NOS) in biocompatible polymeric matrix will provide a source of NO that utilizes endogenous compounds to maintain an unlimited supply of NO. To test this hypothesis, we have incorporated the enzyme nitric oxide synthase into a polyethyleneimine film using a layer-by-layer electrostatic deposition. This approach will provide a source of NO that utilizes endogenous compounds available in the blood matrix to maintain a constant supply of NO at the blood/device interface. When coated onto the surface of various blood-contacting implantable medical devices, it will provide NO fluxes at levels equal or greater than the normal endothelial cells, and for extended time periods. This configuration will help solve the issues of both thrombosis and stenosis that occur as side effects for several types of biomedical implants. Our results indicate a proof of principle of a new approach for making antithrombotic coatings for medical devices and implants based on NO release. We have demonstrated that NOS-based polymetric films successfully generate NO under physiologic conditions at small levels equal to and higher than those observed for endothelial cells. The level of NO release can be fine-tuned through varying the number of NOS layers in the film buildup. We have shown that NO fluxes from our NOS-based PEI films are sustained for prolonged periods of time, which has the potential of producing efficient, short and long-term, antithrombotic coatings for medical devices and blood-contacting tools such as stents and catheters. We also show that

  16. NOS inhibition increases bubble formation and reduces survival in sedentary but not exercised rats.

    PubMed

    Wisløff, Ulrik; Richardson, Russell S; Brubakk, Alf O

    2003-01-15

    Previously we have shown that chronic as well as a single bout of exercise 20 h prior to a simulated dive protects rats from severe decompression illness (DCI) and death. However, the mechanism behind this protection is still not known. The present study determines the effect of inhibiting nitric oxide synthase (NOS) on bubble formation in acutely exercised and sedentary rats exposed to hyperbaric pressure. A total of 45 adult female Sprague-Dawley rats (270-320 g) were randomly assigned into exercise or sedentary control groups, with and without NOS inhibition, using L-NAME (0.05 or 1 mg ml(-1)) (a nonselective NOS inhibitor). Exercising rats ran intervals on a treadmill for 1.5 h, 20 h prior to the simulated dive. Intervals alternated between 8 min at 85-90 % of maximal oxygen uptake, and 2 min at 50-60 %. Rats were compressed (simulated dive) in a pressure chamber, at a rate of 200 kPa min(-1) to a pressure of 700 kPa, and maintained for 45 min breathing air. At the end of the exposure period, rats were decompressed linearly to the "surface" (100 kPa) at a rate of 50 kPa min(-1). Immediately after reaching the surface the animals were anaesthetised and the right ventricle was insonated using ultrasound. The study demonstrated that sedentary rats weighing more than 300 g produced a large amount of bubbles, while those weighing less than 300 g produced few bubbles and most survived the protocol. Prior exercise reduced bubble formation and increased survival in rats weighing more than 300 g, confirming the results from the previous study. During NOS inhibition, the simulated dive induced significantly more bubbles in all sedentary rats weighing less than 300 g. However, this effect could be attenuated by a single bout of exercise 20 h before exposure. The present study demonstrates two previously unreported findings: that administration of L-NAME allows substantial bubble formation and decreased survival in sedentary rats, and that a single bout of exercise

  17. Polymorphisms of the NOS3 gene in Tunisian patients with Behçet's disease.

    PubMed

    Kallel, A; Sbaï, M H; Houman, M H; Sediri, Y; Ouertani, D; Smiti Khanfir, M; Ben Ghorbel, I; Jemaa, R; Kaabachi, N

    2015-04-01

    Behçet's disease (BD) is a multisystem inflammatory disease characterized by recurrent orogenital ulceration, ocular inflammation and skin lesions. Reduced plasma nitric oxide (NO) levels in patients with BD have been implicated in the development of the endothelial abnormalities and thrombotic complications occurring in these patients. Polymorphisms in the endothelial nitric oxide synthase gene (NOS3) have been inconsistently associated with BD. This inconsistency may derive from population stratification secondary to ethnic diversity, and consideration limited to only one rather than combinations of polymorphisms. We studied three genetic variations in the NOS3 gene: a single nucleotide polymorphism in the promoter region -786T>C, in exon 7 (Glu298Asp), and a variable number of tandem repeats in intron 4 (4a4b) of the NOS3 gene in 100 unrelated Tunisian patients with BD and 148 healthy controls. In addition, we also examined the association of NOS3 gene haplotypes with BD. Analyses of the Glu298Asp, -786T>C and 4a4b polymorphisms were made by the polymerase chain reaction (PCR) restriction fragment length polymorphism technique and PCR genotyping, respectively. The distribution of the Glu298Asp genotype differed significantly between patients with BD and controls (P = 0.01). Allele Asp298 was significantly more frequent in patients with BD than in controls (P = 0.005, OR = 1.70, 95% CI 1.14-2.54). In contrast, distribution of alleles and genotypes of -786T>C and 4a4b polymorphisms was not different between the control and BD group. However, the frequency of Asp-T-4b haplotype was significantly higher in patients with BD than in healthy controls. By gender, the signification remained only for heterozygous men (P = 0.03) and homozygous women (P = 0.02). These results suggest that Glu298Asp polymorphism of the NOS3 gene is associated with BD susceptibility in Tunisian patients. © 2015 John Wiley & Sons Ltd.

  18. Effect of NOS3 gene polymorphism on response to Tricyclic antidepressants in migraine attacks.

    PubMed

    Molana, Aliasghar; Mehrpour, Masoud; Vousooghi, Nasim; Hajighasem, Mahmoud Reza; Joghataei, Mohammad Taghi

    2014-07-04

    Migraine is a chronic neurological disorder, characterized by recurrent moderate to severe headaches. Worldwide migraine affects nearly 15%. Studies suggest that genes involved in the production of nitric oxide (NO) may act as genetic factors for migraine. NO synthase 3 (NOS3) by expressing enzyme NOS regulates endothelial derived NO. One class of medications used as first-line treatment in migraine prophylaxis is tricyclic antidepressants (TCAs). The aim of this study was to determine effects of NOS3 gene Glu298Asp polymorphism in the production of NO and response of patients to TCAs in migraine attacks. A total of 80 migraine patients were invited to participate in the study. Patients recorded the characteristics of their migraine attacks such as frequency of attacks and intensity of headaches for the 1(st) month of the study. Then peripheral blood samples were taken from all subjects in order to determine patients' genotype distribution, mRNA expression level of NOS3 and NO content of plasma. Patients were then instructed to use 25 mg nortriptyline at night before bed for 3 months. At the end of 3(rd) month of the treatment patients again recorded the migraine characteristics for 1 month and blood sampling was performed in order to determine the level of plasma NO. The patients' genotype distribution for TT, GT, and GG was 9, 24, and 47 subjects, respectively. Mean NO level in patients with TT genotype was less in comparison to GT and GG genotypes before and after use of TCAs (P < 0.05). Mean intensity of headaches in patients with TT genotype was lower in comparison to GT and GG genotypes before and after use of TCAs (based on verbal numerical rating scale). Mean frequency of migraine attacks after use of TCAs was significantly decreased in all genotypes of NOS3 Glu298Asp polymorphism particularly in TT genotype (P < 0.05). Presence of T allele of the Glu298Asp polymorphism may be a factor for TT genotype patients to produce less NO and is a favorable factor

  19. Role of prostaglandin E2 in peptidoglycan mediated iNOS expression in mouse peritoneal macrophages in vitro.

    PubMed

    Dahiya, Yogesh; Pandey, Rajeev Kumar; Bhatt, Kunal H; Sodhi, Ajit

    2010-10-08

    Many extracellular stimuli, e.g. microbial products, cytokines etc., result in the expression of inducible nitric oxide synthase (iNOS) in macrophages. However, it is not known whether expression of the iNOS gene in response to microbial products is a primary response of macrophages, or is the result of paracrine/autocrine signalling induced by endogenous biomolecules that are synthesised as a result of host cell-microbe interaction. In this paper we demonstrate that iNOS expression in mouse peritoneal macrophages in response to bacterial peptidoglycan (PGN) is a secondary effect requiring autocrine signalling of endogenously produced prostaglandin E2, and that PGN stimulation is mandatory, but not sufficient in itself, for induction of iNOS expression.

  20. 75 FR 3946 - License Nos. DPR-42 and DPR-60; Northern States Power Company; Prairie Island Nuclear Generating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-25

    ... Nuclear Reactor Regulation. BILLING CODE 7590-01-P ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION License Nos. DPR-42 and DPR-60; Northern States Power Company; Prairie Island Nuclear...

  1. Reciprocal variations of nNOS and HSP90 are associated with fasting in gastrointestinal tract of the piglet.

    PubMed

    Grongnet, Jean-François; David, Jean-Claude

    2003-02-01

    The effects of fasting on neuronal NO synthase (nNOS), Heme oxygenase 2 (HO-2), and heat shock protein 90 (HSP90) was determined by immunoblotting in the stomach, duodenum, mid-jejunum, distal ileum, and proximal colon of 28-day-old piglets. nNOS expression was drastically reduced in all the gastrointestinal areas studied while HO-2 was not changed. Concomitant with the nNOS decrease, elevated expressions of HSP90 were observed in these different areas. These results are discussed in terms of the regulation relationship between NOS and HSP90 and the possible protective effect of the heat shock protein and the potential application in digestive pathologies.

  2. Effects of polymorphisms of NOS3 and GNB3 genes on skin microvascular reactivity in normal pregnancy.

    PubMed

    Radkov, O V; Volf, Ju V

    2013-05-01

    We studied the relationship between endothelial NO-synthase gene (NOS3) and G protein β3 subunit gene (GNB3) polymorphisms and reactivity of skin microvessels during physiological gestation. T-786C NOS3 polymorphism influenced the maximum blood flow rate in skin microvessels and the severity of postocclusive reactive hyperemia during the third trimester of pregnancy. The relationship between G894T NOS3 polymorphism and the duration of postocclusive reactive hyperemia was revealed. C825T GNB3 polymorphism affects the duration and severity of postocclusive reactive hyperemia during the first and third trimesters of pregnancy. Thus, NOS3 and GNB3 polymorphisms affect blood flow in the skin microvessels during physiological gestation.

  3. Proteomic Analysis of Bovine Axonemes Exposed to Acute Alcohol: Role of eNOS and HSP90 in Cilia Stimulation

    PubMed Central

    Simet, Samantha M.; Pavlik, Jacqueline A.; Sisson, Joseph H.

    2012-01-01

    Background Cilia are fingerlike motor-driven organelles, which propel inhaled particles and mucus from the lung and airways. We have previously shown that brief alcohol exposure stimulates ciliary motility through an endothelial nitric oxide (eNOS)-dependent pathway localized in the ciliary metabolon. However, the signaling molecules of the ciliary metabolon involved in alcohol-triggered cilia beat frequency (CBF) stimulation upstream of eNOS activation are unknown. Methods and Results We hypothesized that brief alcohol exposure alters threonine and serine phosphorylation of proteins involved in stimulating ciliary beat frequency. Two-dimensional electrophoresis indicated both increases and deceases in the serine and threonine phosphorylation states of several proteins. One of the proteins identified was heat shock protein 90 (HSP90), which undergoes increased threonine phosphorylation after brief alcohol exposure. Because HSP90 has been shown to associate with eNOS in lung tissue, we hypothesized that HSP90 is a key component in alcohol-triggered eNOS activation and that these two proteins co-localize within the ciliary metabolon. Immunofluorescence experiments demonstrate that eNOS and HSP90 co-localize within basal bodies of the ciliary metabolon and partially translocate to the axoneme upon brief alcohol exposure. Pretreatment with geldanamycin, which disrupts HSP90 chaperone functions, prevented eNOS-HSP90 association and prevented the translocation of eNOS from the ciliary metabolon to the axoneme. Functional cilia motility studies revealed that geldanamycin blocked alcohol-stimulated ciliary motility in bovine bronchial epithelial cells and mouse tracheal rings. Conclusions Based on the HSP90 localization with eNOS, alcohol activation of HSP90 phosphorylation, and geldanamycin’s ability inhibit HSP90-eNOS association, prevent eNOS translocation to the axoneme, and block alcohol-stimulated ciliary motility, we conclude that alcohol-induced cilia stimulation

  4. Bioinformatic comparisons and tissue expression of the neuronal nitric oxide synthase (nNOS) gene from the red drum (Sciaenops ocellatus).

    PubMed

    Zhou, Libin; Bai, Ru; Tian, Jianxiao; Liu, Xiaochun; Lu, Danqi; Zhu, Pei; Liu, Yun; Zeng, Lujiao; Luo, Wenna; Zhang, Yong; Wang, Anli

    2009-10-01

    The full length cDNA sequence for neuronal nitric oxide synthase (nNOS) gene from red drum (Sciaenops ocellatus) has been cloned, subjected to bioinformatic analysis, and examined for expression in different tissues. Red drum nNOS showed high identity to nNOS of mammals and other fish species. Notably, a unique 7-aa insertion was found in the important catalytic sites of the NO synthase domain, possibly affecting the function of red drum nNOS. Furthermore, this nNOS was expressed not only in brain but also in most of the internal organs including liver, intestine, spleen, head kidney and thymus.

  5. Expression dynamics of HSP90 and nitric oxide synthase (NOS) isoforms during heat stress acclimation in Tharparkar cattle

    NASA Astrophysics Data System (ADS)

    Bharati, Jaya; Dangi, S. S.; Bag, S.; Maurya, V. P.; Singh, G.; Kumar, P.; Sarkar, M.

    2017-03-01

    Six male Tharparkar cattle of 2-3 years old were selected for the study. After 15-day acclimation at thermoneutral zone (TNZ) in psychrometric chamber, animals were exposed at 42 °C for 6 h up to 23 days followed by 12 days of recovery period. Blood samples were collected during control period at TNZ (days 1, 5, and 12), after heat stress exposure (day 1, immediate heat stress acclimation (IHSA); days 2 to 10, short-term heat stress acclimation (STHSA); days 15 to 23, long-term heat stress acclimation (LTHSA); days 7 and 12, recovery period), and peripheral blood mononuclear cells (PBMCs) were isolated for RNA and protein extraction. The messenger RNA (mRNA) and protein expression in PBMCs were determined by qPCR and western blot, respectively. Samples at TNZ were taken as control. The mRNA expression of HSP90, iNOS, and eNOS was significantly upregulated (P < 0.05) on day 1 (ISHA) as compared to control, remained consistent during STHSA, again increased during LTHSA, and finally reduced to basal level during recovery period. The protein expression of HSP90, iNOS, and eNOS were akin to their transcript pattern. PBMC culture study was conducted to study transcriptional abundance of HSP90, iNOS, and eNOS at different temperature-time combinations. The present findings indicate that HSP90, iNOS, and eNOS could possibly play an important role in mitigating thermal insults and confer thermotolerance during long-term heat stress exposure in Tharparkar cattle.

  6. Diminished Neurogenic Femoral Artery Vasoconstrictor Response in a Zucker Obese Rat Model: Differential Regulation of NOS and COX Derivatives

    PubMed Central

    Martínez, Ana Cristina; Hernández, Medardo; Novella, Susana; Martínez, María Pilar; Pagán, Rosa María; Hermenegildo, Carlos; García-Sacristán, Albino; Prieto, Dolores; Benedito, Sara

    2014-01-01

    Objective Peripheral arterial disease is one of the macrovascular complications of type 2 diabetes mellitus. This study addresses femoral artery regulation in a prediabetic model of obese Zucker rats (OZR) by examining cross-talk between endothelial and neural factors. Methods and Results Arterial preparations from lean (LZR) and OZR were subjected to electrical field stimulation (EFS) on basal tone. Nitric oxide synthase (NOS) and cyclooxygenase (COX) isoform expression patterns were determined by immunohistochemical labelling and Western blotting. Results indicate significantly reduced noradrenergic contractions in preparations from OZR compared with those of LZR. Functional inhibition of endothelial NOS (eNOS) indicated a predominant role of this isoform in LZR and its modified activity in OZR. Neural (nNOS) and inducible NOS (iNOS) were activated and their expression was higher in femoral arteries from OZR. Neurotransmission modulated by large-conductance Ca2+-activated (BKCa) or voltage-dependent (KV) K+ channels did not seem compromised in the obese animals. Endothelial COX-1 and COX-2 were expressed in LZR and an additional adventitial location of COX-2 was also observed in OZR, explaining the higher COX-2 protein levels detected in this group. Prostanoids derived from both isoforms helped maintain vasoconstriction in LZR while in OZR only COX-2 was active. Superoxide anion inhibition reduced contractions in endothelium-intact arteries from OZR. Conclusions Endothelial dysfunction led to reduced neurogenic vasoconstriction in femoral arteries from OZR. In a setting of obesity, NO-dependent nNOS and iNOS dilation activity could be an alternative mechanism to offset COX-2- and reactive oxygen species-mediated vasoconstriction, along with impaired endothelial NO relaxation. PMID:25216050

  7. Phenylephrine activates eNOS Ser 1177 phosphorylation and nitric oxide signaling in renal hypertensive rat aorta.

    PubMed

    Silva, Bruno R; Pernomian, Laena; Grando, Marcella D; Bendhack, Lusiane M

    2014-09-05

    The endothelial nitric oxide synthase (eNOS) plays an important role in the control of the vascular tone. This work aimed to evaluate the role of an α1-adrenoceptor agonist phenylephrine (PE) on eNOS activity and downstream signaling pathway activation in normotensive (2K) and renal hypertensive (2K-1C) intact-endothelium rat aortas. Concentration-effect curves were performed for PE in intact-endothelium aortas from 2K and 2K-1C rats, in the absence of or in the presence of NOS or soluble guanylyl cyclase (sGC) inhibitor. Intact endothelium aortas were stimulated with PE in organ chambers and eNOS Ser(1177)/Thr(495) phosphorylation expression was evaluated by western blot. Nitric Oxide (NO) production was evaluated in isolated endothelial cells from 2K and 2K-1C rat aortas by flow-cytometry using NO selective fluorescent probe, DAF-2DA. The sGC activity/expression was also evaluated. PE-induced contractile response is lower in 2K-1C than in 2K intact-endothelium rat aorta. This is due to higher eNOS Ser(1177) phosphorylation in 2K-1C, which induces the eNOS overactivation. It was abolished by NOS or sGC inhibition. Phenylephrine reduces NO production in 2K as compared to the basal level, but it is not modified in 2K-1C. In PE-stimulated endothelial cells, the NO production is higher in 2K-1C than in 2K. Phenylephrine induces higher cGMP production in 2K-1C than in 2K, despite the lower expression of sGC in 2K-1C. Our results suggest that alpha1-adrenoceptor activation contributes to the increased activity of the enzyme eNOS by Ser(1177) phosphorylation in 2K-1C intact-endothelium aorta, which consequently decreases PE-induced contractile response.

  8. Sildenafil promotes eNOS activation and inhibits NADPH oxidase in the transgenic sickle cell mouse penis.

    PubMed

    Musicki, Biljana; Bivalacqua, Trinity J; Champion, Hunter C; Burnett, Arthur L

    2014-02-01

    Sickle cell disease (SCD)-associated vasculopathy in the penis is characterized by aberrant nitric oxide and phosphodiesterase (PDE) 5 signaling, and by increased oxidative stress. Preliminary clinical trials show that continuous treatment with PDE5 inhibitor sildenafil unassociated with sexual activity decreases priapic activity in patients with SCD. However, the mechanism of its vasculoprotective effect in the penis remains unclear. We evaluated whether continuous administration of PDE5 inhibitor sildenafil promotes eNOS function at posttranslational levels and decreases superoxide-producing enzyme NADPH oxidase activity in the sickle cell mouse penis. SCD transgenic mice were used as an animal model of SCD. WT mice served as controls. Mice received treatment with the PDE5 inhibitor sildenafil (100 mg/kg/day) or vehicle for 3 weeks. eNOS phosphorylation on Ser-1177 (positive regulatory site), eNOS interactions with heat-shock protein 90 (HSP90) (positive regulator), phosphorylated AKT (upstream mediator of eNOS phosphorylation on Ser-1177), an NADPH oxidase catalytic subunit gp91(phox), and a marker of oxidative stress (4-hydroxy-2-nonenal [HNE]) were measured by Western blot. Effect of continuous sildenafil treatment on eNOS posttranslational activation, NADPH oxidase catalytic subunit, and oxidative stress in the penis of the sickle cell mouse. Continuous treatment with sildenafil reversed (P < 0.05) the abnormalities in protein expressions of P-eNOS (Ser-1177), eNOS/HSP90 interaction, P-AKT, protein expression of gp91(phox), and 4-HNE, in the sickle cell mouse penis. Sildenafil treatment of WT mice did not affect any of these parameters. Our findings that sildenafil enhances eNOS activation and inhibits NADPH oxidase function in the sickle cell mouse penis offers a vasculoprotective molecular basis for the therapeutic effect of sildenafil in the penis in association with SCD. © 2013 International Society for Sexual Medicine.

  9. Sildenafil Promotes eNOS Activation and Inhibits NADPH Oxidase in the Transgenic Sickle Cell Mouse Penis

    PubMed Central

    Musicki, Biljana; Bivalacqua, Trinity J.; Champion, Hunter C.; Burnett, Arthur L.

    2014-01-01

    Introduction Sickle cell disease (SCD)-associated vasculopathy in the penis is characterized by aberrant nitric oxide and phosphodiesterase (PDE) 5 signaling, and by increased oxidative stress. Preliminary clinical trials show that continuous treatment with PDE5 inhibitor sildenafil unassociated with sexual activity decreases priapic activity in patients with SCD. However, the mechanism of its vasculoprotective effect in the penis remains unclear. Aims We evaluated whether continuous administration of PDE5 inhibitor sildenafil promotes eNOS function at posttranslational levels and decreases superoxide-producing enzyme NADPH oxidase activity in the sickle cell mouse penis. Methods SCD transgenic mice were used as an animal model of SCD. WT mice served as controls. Mice received treatment with the PDE5 inhibitor sildenafil (100 mg/kg/day) or vehicle for 3 weeks. eNOS phosphorylation on Ser-1177 (positive regulatory site), eNOS interactions with heat-shock protein 90 (HSP90) (positive regulator), phosphorylated AKT (upstream mediator of eNOS phosphorylation on Ser-1177), an NADPH oxidase catalytic subunit gp91(phox), and a marker of oxidative stress (4-hydroxy-2-nonenal [HNE]) were measured by Western blot. Main Outcome Measures Effect of continuous sildenafil treatment on eNOS posttranslational activation, NADPH oxidase catalytic subunit, and oxidative stress in the penis of the sickle cell mouse. Results Continuous treatment with sildenafil reversed (P < 0.05) the abnormalities in protein expressions of P-eNOS (Ser-1177), eNOS/HSP90 interaction, P-AKT, protein expression of gp91(phox), and 4-HNE, in the sickle cell mouse penis. Sildenafil treatment of WT mice did not affect any of these parameters. Conclusion Our findings that sildenafil enhances eNOS activation and inhibits NADPH oxidase function in the sickle cell mouse penis offers a vasculoprotective molecular basis for the therapeutic effect of sildenafil in the penis in association with SCD. PMID:24251665

  10. Expression dynamics of HSP90 and nitric oxide synthase (NOS) isoforms during heat stress acclimation in Tharparkar cattle

    NASA Astrophysics Data System (ADS)

    Bharati, Jaya; Dangi, S. S.; Bag, S.; Maurya, V. P.; Singh, G.; Kumar, P.; Sarkar, M.

    2017-08-01

    Six male Tharparkar cattle of 2-3 years old were selected for the study. After 15-day acclimation at thermoneutral zone (TNZ) in psychrometric chamber, animals were exposed at 42 °C for 6 h up to 23 days followed by 12 days of recovery period. Blood samples were collected during control period at TNZ (days 1, 5, and 12), after heat stress exposure (day 1, immediate heat stress acclimation (IHSA); days 2 to 10, short-term heat stress acclimation (STHSA); days 15 to 23, long-term heat stress acclimation (LTHSA); days 7 and 12, recovery period), and peripheral blood mononuclear cells (PBMCs) were isolated for RNA and protein extraction. The messenger RNA (mRNA) and protein expression in PBMCs were determined by qPCR and western blot, respectively. Samples at TNZ were taken as control. The mRNA expression of HSP90, iNOS, and eNOS was significantly upregulated ( P < 0.05) on day 1 (ISHA) as compared to control, remained consistent during STHSA, again increased during LTHSA, and finally reduced to basal level during recovery period. The protein expression of HSP90, iNOS, and eNOS were akin to their transcript pattern. PBMC culture study was conducted to study transcriptional abundance of HSP90, iNOS, and eNOS at different temperature-time combinations. The present findings indicate that HSP90, iNOS, and eNOS could possibly play an important role in mitigating thermal insults and confer thermotolerance during long-term heat stress exposure in Tharparkar cattle.

  11. Increases in Calmodulin Abundance and Stabilization of Activated iNOS Mediate Bacterial Killing in RAW 264.7 Macrophages

    SciTech Connect

    Smallwood, Heather S.; Shi, Liang; Squier, Thomas C.

    2006-08-01

    The rapid activation of macrophages in response to bacterial antigens is central to the innate immune system that permits the recognition and killing of pathogens to limit infection. To understand regulatory mechanisms underlying macrophage activation, we have investigated changes in the abundance of calmodulin (CaM) and iNOS in response to the bacterial cell wall component lipopolysaccharide (LPS) using RAW 264.7 macrophages. Critical to these measurements was the ability to differentiate free iNOS from the CaM-bound (active) form of iNOS associated with nitric oxide generation. We observe a rapid two-fold increase in CaM abundance during the first 30 minutes that is blocked by inhibition of NF?B nuclear translocation or protein synthesis. A similar two-fold increase in the abundance of the complex between CaM and iNOS is observed with the same time dependence. In contrast, there are no detectable increases in the CaM-free (i.e., inactive) form of iNOS within the first hour; it remains at a very low abundance during the initial phase of macrophage activation. Increasing cellular CaM levels in stably transfected cells results in a corresponding increase in the abundance of the CaM/iNOS complex that promotes effective bacterial killing following challenge by Salmonella typhimurium. Thus, LPS-dependent increases in CaM abundance function in the stabilization and activation of iNOS on the rapid time-scale associated with macrophage activation and bacterial killing. These results explain how CaM and iNOS coordinately function to form a stable complex that is part of a rapid host-response that functions within the first 30 minutes following bacterial infection to up-regulate the innate immune system involving macrophage activation.

  12. Interaction Between Neuronal NOS Signaling and Temperature Influences SR Ca2+ Leak:Role of Nitroso-Redox Balance

    PubMed Central

    Dulce, Raul A.; Mayo, Vera; Rangel, Erika B.; Balkan, Wayne; Hare, Joshua M.

    2014-01-01

    Rationale While nitric oxide (NO) signaling modulates cardiac function and excitation-contraction coupling, opposing results due to inconsistent experimental conditions, particularly with respect to temperature, confound the ability to elucidate NO signaling pathways. Here we show that temperature significantly modulates NO effects. Objective Test the hypothesis that temperature profoundly impacts nitroso-redox equilibrium, thereby affecting sarcomeric reticulum (SR) Ca2+ leak. Methods and Results We measured SR Ca2+ leak in cardiomyocytes from wild-type (WT), NO/redox imbalance (NOS1−/−), and hyper S-nitrosylation (GSNOR−/−) mice. In WT cardiomyocytes, SR Ca2+ leak increased as temperature decreased from 37°C to 23°C, whereas, in NOS1−/ −cells, the leak suddenly increased when the temperature surpassed 30°C. GSNOR−/ − cardiomyocytes exhibited low leak throughout the temperature range. Exogenously added NO had a biphasic effect on NOS1−/− cardiomyocytes; reducing leak at 37°C but increasing it at sub-physiologic temperatures. Oxypurinol and Tempol diminished the leak in NOS1−/ − cardiomyocytes. Cooling from 37° to 23°C increased ROS generation in WT but decreased it in NOS1−/− cardiomyocytes. Oxypurinol further reduced ROS generation. At 23°C in WT cells, leak was decreased by tetrahydrobiopterin, an essential NOS cofactor. Cooling significantly increased SR Ca2+ content in NOS1−/− cells but had no effect in WT or GSNOR−/−. Conclusions Ca2+ leak and temperature are normally inversely proportional, whereas NOS1 deficiency reverses this effect, increasing leak and elevating ROS production as temperature increases. Reduced denitrosylation (GSNOR deficiency) eliminates the temperature dependence of leak. Thus, temperature regulates the balance between NO and ROS which in turn has a major impact on SR Ca2+. PMID:25326127

  13. Effect of melatonin and vitamin C on expression of endothelial NOS in heart of chronic alcoholic rats.

    PubMed

    Sönmez, M F; Narin, F; Akkuş, D; Ozdamar, S

    2009-07-01

    The aim of this study was to investigate the effects of melatonin and vitamin C on expression of endothelial nitric oxide synthase (NOS) in heart tissue of chronic alcoholic rats. Twenty-four adult male Wistar rats weighing 200-250 g were used in this study. Rats were divided into four groups. The first group served as control (n = 6). The second group was treated with ethanol (%7.2) for 28 days (n = 6), which was administered in artificial isocaloric diets. The third group was given ethanol and supplemented with 40 mg/kg vitamin C [intraperitoneally (i.p.)] (n = 6). The fourth group was given ethanol and supplemented with 4 mg/kg melatonin (i.p.) (n = 6). At the end of the experiment, rats were sacrificed and heart tissues were processed for immunohistochemistry analysis to endothelial NOS (eNOS). eNOS immunoreactivity showed heterogeneous distribution in control group. eNOS immunoreactivity was (+) in some myocytes and (++) in some others. Expression of eNOS in alcohol group was heterogeneous like control group but also stronger than that. Immunoreactivity was (+++) in myocytes near the epicardial zone and (++) in myocytes near the endocardium border. In melatonin and vitamin C-treated groups, eNOS immunoreactivity was diffuse and the intensity of reaction was (+++) in subepicardial region. However, eNOS immunoreactivity scores were weaker in these groups when compared with the alcohol group. Our results indicate that alleviation of oxidative stress by antioxidant therapy reduces reactive oxygen species-mediated nitric oxide inactivation.

  14. Mesenchymal Stem Cells with eNOS Over-Expression Enhance Cardiac Repair in Rats with Myocardial Infarction.

    PubMed

    Chen, Leilei; Zhang, Yuan; Tao, Liangliang; Yang, Zhijian; Wang, Liansheng

    2017-02-01

    Transplantation of mesenchymal stem cells (MSCs) is a promising therapeutic option for patients with acute myocardial infarction. We show here that the ectopic overexpression of endothelial nitric oxide synthases (eNOS), an endothelial form of NOS, could enhance the ability of MSCs in treating ischemic heart damage after the occlusion of the coronary artery. Adenoviral delivery of human eNOS gene into mouse bone marrow-derived MSCs (BM-MSCs) conferred resistance to oxygen glucose deprivation (OGD)-induced cell death in vitro, and elevated the bioavailability of nitric oxide when injected into the myocardium in vivo. In a rat model of acute myocardial infarction, the transplantation of eNOS-overexpressing BM-MSCs significantly reduced myocardial infarct size, corrected hemodynamic parameters and increased capillary density. We also found that the synergistic effects were consistently better than either treatment alone. These findings reveal a positive role of elevated eNOS expression in cardiac repair, and suggest the combination of eNOS and MSC transplant therapy as a potential approach for treating myocardial infarction.

  15. Human red blood cells at work: identification and visualization of erythrocytic eNOS activity in health and disease.

    PubMed

    Cortese-Krott, Miriam M; Rodriguez-Mateos, Ana; Sansone, Roberto; Kuhnle, Gunter G C; Thasian-Sivarajah, Sivatharsini; Krenz, Thomas; Horn, Patrick; Krisp, Christoph; Wolters, Dirk; Heiß, Christian; Kröncke, Klaus-Dietrich; Hogg, Neil; Feelisch, Martin; Kelm, Malte

    2012-11-15

    A nitric oxide synthase (NOS)-like activity has been demonstrated in human red blood cells (RBCs), but doubts about its functional significance, isoform identity and disease relevance remain. Using flow cytometry in combination with the nitric oxide (NO)-imaging probe DAF-FM we find that all blood cells form NO intracellularly, with a rank order of monocytes > neutrophils > lymphocytes > RBCs > platelets. The observation of a NO-related fluorescence within RBCs was unexpected given the abundance of the NO-scavenger oxyhemoglobin. Constitutive normoxic NO formation was abolished by NOS inhibition and intracellular NO scavenging, confirmed by laser-scanning microscopy and unequivocally validated by detection of the DAF-FM reaction product with NO using HPLC and LC-MS/MS. Using immunoprecipitation, ESI-MS/MS-based peptide sequencing and enzymatic assay we further demonstrate that human RBCs contain an endothelial NOS (eNOS) that converts L-(3)H-arginine to L-(3)H-citrulline in a Ca(2+)/calmodulin-dependent fashion. Moreover, in patients with coronary artery disease, red cell eNOS expression and activity are both lower than in age-matched healthy individuals and correlate with the degree of endothelial dysfunction. Thus, human RBCs constitutively produce NO under normoxic conditions via an active eNOS isoform, the activity of which is compromised in patients with coronary artery disease.

  16. Ceramide mediates inhibition of the Akt/eNOS pathway by high levels of glucose in human vascular endothelial cells.

    PubMed

    Wang, Aimin; Li, Chun; Liao, Jie; Dong, Min; Xiao, Zhiming; Lei, Minxiang

    2013-01-01

    To investigate how ceramide mediates the effects of high-glucose-induced inhibition of the Akt/endothelial nitric oxide synthase (eNOS) signalling pathway in human vascular endothelial cells (HUVECs). NO levels were determined by ELISA. Endogenous ceramide levels were determined using a liquid chromatography-mass spectrometry assay. Akt and eNOS protein expressions were determined by Western blotting. High-glucose levels induce ceramide accumulation in a dose- and time-dependent manner (p<0.05). We also show that exposure of HUVECs to high-glucose conditions inhibits the insulin-mediated activation of Akt/eNOS signalling and the subsequent NO generation in a dose-dependent manner (p<0.05). Preventing de novo ceramide synthesis attenuated the antagonistic effects of high-glucose levels on the Akt/eNOS signalling pathway (p<0.05); conversely, inducing ceramide build-up augmented the inhibitory effects of high-glucose levels on the Akt/eNOS signalling pathway (p<0.05). Ceramide is both necessary and sufficient for mediating the inhibition of the Akt/eNOS signalling pathway by high-glucose levels in endothelial cells.

  17. Progression of amyloid pathology to Alzheimer's pathology in an APP transgenic mouse model by removal of NOS2

    PubMed Central

    Wilcock, Donna M.; Lewis, Matthew R.; Van Nostrand, William E.; Davis, Judianne; Previti, Mary Lou; Gharkholonarehe, Nastaran; Vitek, Michael P.; Colton, Carol A.

    2008-01-01

    Alzheimer's disease (AD) is characterized by three primary pathologies in the brain; amyloid plaques, neurofibrillary tangles and neuron loss. Mouse models have been useful for studying components of AD but are limited in their ability to fully recapitulate all pathologies. We crossed the APPSwDI transgenic mouse, which develops amyloid ß-(Aß) protein deposits only, with a NOS2 knockout mouse, which develops no AD-like pathology. APPSwDI/NOS2−/− mice displayed impaired spatial memory compared to the APPSwDI mice, yet have the unaltered levels of Aß. APPSwDI mice do not show tau pathology while APPSwDI/NOS2−/− mice displayed extensive tau pathology associated with regions of dense microvascular amyloid deposition. Also, APPSwDI mice do not have any neuron loss while the APPSwDI/NOS2−/− mice have significant neuron loss in the hippocampus and subiculum. Neuropeptide Y neurons have been shown to be particularly vulnerable in AD. These neurons appear to be particularly vulnerable in the APPSwDI/NOS2−/− mice as we observe a dramatic reduction in the number of NPY neurons in the hippocampus and subiculum. These data show that removal of NOS2 from an APP transgenic mouse results in development of full AD-like pathology and behavioral impairments. PMID:18272675

  18. Ivabradine Prevents Low Shear Stress Induced Endothelial Inflammation and Oxidative Stress via mTOR/eNOS Pathway

    PubMed Central

    Li, Bing; Zhang, Junxia; Wang, Zhimei; Chen, Shaoliang

    2016-01-01

    Ivabradine not only reduces heart rate but has other cardiac and vascular protective effects including anti-inflammation and anti-oxidation. Since endothelial nitric oxide synthase (eNOS) is a crucial enzyme in maintaining endothelial activity, we aimed to investigate the impact of ivabradine in low shear stress (LSS) induced inflammation and endothelial injury and the role of eNOS played in it. Endothelial cells (ECs) were subjected to LSS at 2dyne/cm2, with 1 hour of ivabradine (0.04μM) or LY294002 (10μM) pre-treatment. The mRNA expression of IL-6, VCAM-1 along with eNOS were measured by QPCR. Reactive oxygen species (ROS) was detected by dihydroethidium (DHE) and DCF, and protein phosphorylation was detected by western blot. It demonstrated that ivabradine decreased LSS induced inflammation and oxidative stress in endothelial cells. Western blot showed reduced rictor and Akt-Ser473 as well as increased eNOS-Thr495 phosphorylation. However, mTORC1 pathway was only increased when LSS applied within 30 minutes. These effects were reversed by ivabradine. It would appear that ivabradine diminish ROS generation by provoking mTORC2/Akt phosphorylation and repressing mTORC1 induced eNOS-Thr495 activation. These results together suggest that LSS induced endothelial inflammation and oxidative stress are suppressed by ivabradine via mTORC2/Akt activation and mTORC1/eNOS reduction. PMID:26890696

  19. Ivabradine Prevents Low Shear Stress Induced Endothelial Inflammation and Oxidative Stress via mTOR/eNOS Pathway.

    PubMed

    Li, Bing; Zhang, Junxia; Wang, Zhimei; Chen, Shaoliang

    2016-01-01

    Ivabradine not only reduces heart rate but has other cardiac and vascular protective effects including anti-inflammation and anti-oxidation. Since endothelial nitric oxide synthase (eNOS) is a crucial enzyme in maintaining endothelial activity, we aimed to investigate the impact of ivabradine in low shear stress (LSS) induced inflammation and endothelial injury and the role of eNOS played in it. Endothelial cells (ECs) were subjected to LSS at 2dyne/cm2, with 1 hour of ivabradine (0.04μM) or LY294002 (10μM) pre-treatment. The mRNA expression of IL-6, VCAM-1 along with eNOS were measured by QPCR. Reactive oxygen species (ROS) was detected by dihydroethidium (DHE) and DCF, and protein phosphorylation was detected by western blot. It demonstrated that ivabradine decreased LSS induced inflammation and oxidative stress in endothelial cells. Western blot showed reduced rictor and Akt-Ser473 as well as increased eNOS-Thr495 phosphorylation. However, mTORC1 pathway was only increased when LSS applied within 30 minutes. These effects were reversed by ivabradine. It would appear that ivabradine diminish ROS generation by provoking mTORC2/Akt phosphorylation and repressing mTORC1 induced eNOS-Thr495 activation. These results together suggest that LSS induced endothelial inflammation and oxidative stress are suppressed by ivabradine via mTORC2/Akt activation and mTORC1/eNOS reduction.

  20. Inhibition of neuronal nitric oxide synthase reduces isoflurane MAC and motor activity even in nNOS knockout mice.

    PubMed

    Engelhardt, T; Lowe, P R; Galley, H F; Webster, N R

    2006-03-01

    The glutamate-nitric oxide-cyclic GMP pathway has been identified as a potential target for volatile anaesthetic agents as acute inhibition of nitric oxide synthase (NOS) reduces the minimum alveolar concentration (MAC) in most animal studies. However, mice deficient in the type I NOS isoform (nNOS) are reported to have a similar MAC for isoflurane and are not affected by non-isoform specific inhibitors. We determined whether the nNOS specific inhibitor, 7-nitroindazole (7-NI), had an effect on isoflurane MAC and righting reflex (RRF) and investigated spontaneous motor activity in an open-field study in wild-type (WT) and knockout (KO) mice. 7-NI reduced isoflurane MAC and RRF in both WT and KO animals (all P<0.04). 7-NI profoundly reduced spontaneous motor activity in both the WT and KO animals in the open-field study as indicated by a reduction in the number of line crossings and rearings in both WT and KO mice (both P<0.001). We conclude that isoform specific inhibition of nNOS reduces MAC and spontaneous motor activity even in nNOS KO animals. Our results indicate that the NMDA receptor-nitric oxide-cyclic GMP pathway remains a credible target in modulating the effects of isoflurane.

  1. Altered glucose and lipid homeostasis in liver and adipose tissue pre-dispose inducible NOS knockout mice to insulin resistance

    PubMed Central

    Kanuri, Babu Nageswararao; Kanshana, Jitendra S.; Rebello, Sanjay C.; Pathak, Priya; Gupta, Anand P.; Gayen, Jiaur R.; Jagavelu, Kumaravelu; Dikshit, Madhu

    2017-01-01

    On the basis of diet induced obesity and KO mice models, nitric oxide is implied to play an important role in the initiation of dyslipidemia induced insulin resistance. However, outcomes using iNOS KO mice have so far remained inconclusive. The present study aimed to assess IR in iNOS KO mice after 5 weeks of LFD feeding by monitoring body composition, energy homeostasis, insulin sensitivity/signaling, nitrite content and gene expressions changes in the tissues. We found that body weight and fat content in KO mice were significantly higher while the respiratory exchange ratio (RER), volume of carbon dioxide (VCO2), and heat production were lower as compared to WT mice. Furthermore, altered systemic glucose tolerance, tissue insulin signaling, hepatic gluconeogenesis, augmented hepatic lipids, adiposity, as well as gene expression regulating lipid synthesis, catabolism and efflux were evident in iNOS KO mice. Significant reduction in eNOS and nNOS gene expression, hepatic and adipose tissue nitrite content, circulatory nitrite was also observed. Oxygen consumption rate of mitochondrial respiration has remained unaltered in KO mice as measured using extracellular flux analyzer. Our findings establish a link between the NO status with systemic and tissue specific IR in iNOS KO mice at 5 weeks. PMID:28106120

  2. Effects of TNFα, NOS3, MDR1 Gene Polymorphisms on Clinical Parameters, Prognosis and Survival of Multiple Myeloma Cases.

    PubMed

    Basmaci, C; Pehlivan, M; Tomatir, Ag; Sever, T; Okan, V; Yilmaz, M; Oguzkan-Balci, S; Pehlivan, S

    2016-01-01

    It is not clear how gene polymorphisms affecting drugs can contributes totheir efficacy in multiple myeloma (MM). We here aimed to explore associations among gene polymorphisms of tumor necrosis factor alpha (TNFα), nitric oxide synthesis 3 (NOS3) and multi-drug resistance 1 (MDR1), clinical parameters, prognosis and survival in MM patients treated with VAD (vincristine-adriamycine-dexamethasone), MP (mephalane-prednisolone), autolougus stem cell transplantation (ASCT), BODEC (bortezomib-dexamethasone-cyclophosphamide) and TD (thalidomide-dexamethasone). We analyzed TNFα, NOS 3 and MDR1 in 77 patients with MM and 77 healthy controls. The genotyping was performed with PCR and/or PCR-RFLP. There was no clinically significant difference between MM and control groups when TNF α(-238) and (-857) and MDR1 gene polymorphisms were studied. However, the TNFαgene polymorphism (-308) GG genotype (p=0.012) and NOS3 (+894) TT genotype (p=0.008) were more common in the MM group compared to healthy controls. NOS3 (VNTR) AA (p=0.007) and NOS3 (+894) GG genotypes (p=0.004) were decreased in the MM group in contrast. In conclusion, the NOS3 (+894) TT and TNF α(-308) GG genotypes may have roles in myeloma pathogenesis.

  3. Polymorphisms of the endothelial nitric oxide synthase (NOS3) gene in preeclampsia: a candidate-gene association study.

    PubMed

    Zdoukopoulos, Nikos; Doxani, Chrysa; Messinis, Ioannis E; Stefanidis, Ioannis; Zintzaras, Elias

    2011-11-03

    The endothelial nitric oxide synthase gene (NOS3) has been proposed as a candidate gene for preeclampsia. However, studies so far have produced conflicting results. This study examines the specific role of variants and haplotypes of the NOS3 gene in a population of Caucasian origin. We examined the association of three common variants of the NOS3 gene (4b/a, T-786C and G894T) and their haplotypes in a case-control sample of 102 patients with preeclampsia and 176 women with a history of uncomplicated pregnancies. Genotyping for the NOS3 variants was performed and odds ratios and 95% confidence intervals were obtained to evaluate the association between NOS3 polymorphisms and preeclampsia. The single locus analysis for the three variants using various genetic models and a model-free approach revealed no significant association in relation to clinical status. The analysis of haplotypes also showed lack of significant association. Given the limitations of the candidate-gene approach in investigating complex traits, the evidence of our study does not support the major contributory role of these common NOS3 variants in preeclampsia. Future larger studies may help in elucidating the genetics of preeclampsia further.

  4. Icariin improves eNOS/NO pathway to prohibit the atherogenesis of apolipoprotein E-null mice.

    PubMed

    Xiao, Hong-Bo; Sui, Guo-Guang; Lu, Xiang-Yang

    2016-12-22

    Impaired endothelial nitric oxide synthase (eNOS)/nitric oxide (NO) pathway induces atherogenesis. The present study examined whether icariin improves the eNOS/NO pathway to prohibit the atherogenesis of apolipoprotein E-null (ApoE(-/-)) mice. In vitro, primary human umbilical vein endothelial cells (HUVECs) were randomly divided into 7 groups: control; vehicle; icariin 10; lyphosphatidylcholine (LPC) group; LPC + icariin 1; LPC + icariin 3; and LPC + icariin 10. In vivo, 80 mice were separated randomly into 4 groups (n = 20): control, ApoE(-/-), ApoE(-/-) + icariin 10, and ApoE(-/-) + icariin 30. ApoE(-/-) mice had significantly more atherosclerosis in the aortic root together with increased aortic ROS production, body mass, plasma triglyceride (TG) and total cholesterol (TC) concentration, decreased aortic eNOS expression, and plasma NO concentration. LPC (10 μg/mL) treatment induced a big decline in NO level in the conditioned medium and eNOS expression, and an increase in intracellular reactive oxygen species (ROS) production in HUVECs. Icariin treatment decreased atherogenesis, ROS production, body mass, plasma TG concentration, and plasma TC concentration, and increased NO concentration and eNOS expression. These findings suggested icariin could improve eNOS/NO-pathway to prohibit the atherogenesis of apolipoprotein E-null mice by restraining oxidative stress.

  5. Impact of Lifestyle Intervention on HDL-Induced eNOS Activation and Cholesterol Efflux Capacity in Obese Adolescent

    PubMed Central

    Wesnigk, Jenny; De Guchtenaere, Ann; Fischer, Tina; Schuler, Gerhard; Vrints, Christiaan J.

    2016-01-01

    Background. Endothelial dysfunction occurs in obese children and adolescent and is regarded as a key step in the development of atherosclerosis. Important components for the development of endothelial dysfunction are reduced activity of endothelial nitric oxide synthase (eNOS) and an increase in cholesterol deposition in the vessel wall, due to reduced reverse cholesterol transport (RCT) activity. High density lipoprotein (HDL) exhibits antiatherosclerotic properties including modulation of eNOS activity and cholesterol efflux capacity. Lifestyle intervention programs can modify endothelial dysfunction in obese adolescents, but their impact on HDL-mediated eNOS activation and RCT is unknown so far. Methods. Obese adolescents (15 ± 1 years, BMI > 35 kg/m2) where randomized either to an intervention group (IG, n = 8; restricted diet and exercise) or to a usual care group (UC, n = 8). At the beginning and after 10 months of treatment HDL-mediated eNOS phosphorylation and cholesterol efflux capacity were evaluated. Results. Ten months of treatment resulted in a substantial weight loss (−31%), an improvement of endothelial function, and an increase in HDL-mediated eNOS-Ser1177 phosphorylation and RCT. A correlation between change in eNOS-Ser1177 phosphorylation or RCT and change in endothelial function was noted. Conclusion. A structured lifestyle intervention program improves antiatherosclerotic HDL functions, thereby positively influencing endothelial function. PMID:27965912

  6. New Findings in eNOS gene and Thalidomide Embryopathy Suggest pre-transcriptional effect variants as susceptibility factors.

    PubMed

    Kowalski, Thayne Woycinck; Fraga, Lucas Rosa; Tovo-Rodrigues, Luciana; Sanseverino, Maria Teresa Vieira; Hutz, Mara Helena; Schuler-Faccini, Lavínia; Vianna, Fernanda Sales Luiz

    2016-03-23

    Antiangiogenic properties of thalidomide have created an interest in the use of the drug in treatment of cancer. However, thalidomide is responsible for thalidomide embryopathy (TE). A lack of knowledge regarding the mechanisms of thalidomide teratogenesis acts as a barrier in the aim to synthesize a safer analogue of thalidomide. Recently, our group detected a higher frequency of alleles that impair the pro-angiogenic mechanisms of endothelial nitric oxide synthase (eNOS), coded by the NOS3 gene. In this study we evaluated variable number tandem repeats (VNTR) functional polymorphism in intron 4 of NOS3 in individuals with TE (38) and Brazilians without congenital anomalies (136). Haplotypes were estimated for this VNTR with previously analyzed polymorphisms, rs2070744 (-786C > T) and rs1799983 (894T > G), in promoter region and exon 7, respectively. Haplotypic distribution was different between the groups (p = 0.007). Alleles -786C (rs2070744) and 4b (VNTR), associated with decreased NOS3 expression, presented in higher frequency in TE individuals (p = 0.018; OR = 2.57; IC = 1.2-5.8). This association was not identified with polymorphism 894T > G (p = 0.079), which influences eNOS enzymatic activity. These results suggest variants in NOS3, with pre-transcriptional effects as susceptibility factors, influencing the risk TE development. This finding generates insight for a new approach to research that pursues a safer analogue.