Aerodynamic flail for a spinning projectile
Cole, James K.
1990-05-01
A flail is provided which reduces the spin of a projectile in a recovery system which includes a parachute, a cable connected to the parachute, a swivel, and means for connecting the swivel to the projectile. The flail includes a plurality of flexible filaments and a rotor for attaching the filaments to the front end of the projectile. The rotor is located radially with respect to the spinning axis of the projectile. In one embodiment, the projectile includes a first nose cone section housing a deployable spin damping assembly; a second nose cone section, housing a deployable parachute assembly; a shell section, supporting the first and second nose cone sections during flight of the projectile; a mechanism for releasing the first nose cone section from the second cone section; and a mechanism for releasing the second nose cone section from the shell section. In operation of this embodiment, the deployable spin damping assembly deploys during flight of the projectile when the mechanism for releasing the first nose cone section from the second nose cone section are actuated. Then, upon actuation of the mechanism for releasing the second nose cone section from the shell section, two things happen: the spin damping assembly separates from the projectile; and the deployable parachute assembly is deployed.
Aerodynamic flail for a spinning projectile
Cole, James K.
1990-01-01
A flail is provided which reduces the spin of a projectile in a recovery system which includes a parachute, a cable connected to the parachute, a swivel, and means for connecting the swivel to the projectile. The flail includes a plurality of flexible filaments and a rotor for attaching the filaments to the front end of the projectile. The rotor is located radially with respect to the spinning axis of the projectile. In one embodiment, the projectile includes a first nose cone section housing a deployable spin damping assembly; a second nose cone section, housing a deployable parachute assembly; a shell section, supporting the first and second nose cone sections during flight of the projectile; a mechanism for releasing the first nose cone section from the second cone section; and a mechanism for releasing the second nose cone section from the shell section. In operation of this embodiment, the deployable spin damping assembly deploys during flight of the projectile when the mechanism for releasing the first nose cone section from the second nose cone section are actuated. Then, upon actuation of the mechanism for releasing the second nose cone section from the shell section, two things happen: the spin damping assembly separates from the projectile; and the deployable parachute assembly is deployed.
NASA Technical Reports Server (NTRS)
Sehgal, A. K.; Tiwari, S. N.; Singh, D. J.
1991-01-01
Hypersonic flows over cones and straight biconic configurations are calculated for a wide range of free stream conditions in which the gas behind the shock is treated as perfect. Effect of angle of attack and nose bluntness on these slender cones in air is studied extensively. The numerical procedures are based on the solution of complete Navier-Stokes equations at the nose section and parabolized Navier-Stokes equations further downstream. The flow field variables and surface quantities show significant differences when the angle of attack and nose bluntness are varied. The complete flow field is thoroughly analyzed with respect to velocity, temperature, pressure, and entropy profiles. The post shock flow field is studied in detail from the contour plots of Mach number, density, pressure, and temperature. The effect of nose bluntness for slender cones persists as far as 200 nose radii downstream.
An Evaluation of the Service Failure of Aluminum Nose Cones Using Four Test Techniques.
1987-03-01
13 LIST OF ILLUSTRATIONS 1. Schematic of nose cone. 14 2. Subsize Charpy specimen. 15 3. Simulation test fixture. 16 4. Force displacement plot from...Figure 1. Schematic of nose cone. 14 LD 0.06 03-a 0.30L IL 1.602 Figure 2. Subsize Charpy specimen. i5 RAM DISPLACEMENT COLLART WV Ualz APPLIED FORCE...between threaded and tapered regions. In all, four measurements were made on each nose cone. The two material property measurements were made using Charpy
The drag of magnetically suspended wind-tunnel models with nose-cones of various shapes
NASA Technical Reports Server (NTRS)
Dubois, G.
1983-01-01
This article concerns the experimental determination of optimum nose-cones (minimum drag) of a body of revolution at supersonic and hypersonic speeds by means of ONERA magnetic suspension. The study concerns two groups of models, specifically: a group whose nose-cone has a profile in the shape of X(n); the AGARD B group whose nose-cone is plotted in accordance with a given law. The results obtained for the first group are comparable to those calculated with the approximations of Cole and Newton and the experiments carried out by Kubota.
NASA Astrophysics Data System (ADS)
Bountin, Dmitry; Maslov, Anatoly; Gromyko, Yury
2018-05-01
Experimental results of the influence of local heating/cooling on the development of hypersonic boundary layer disturbances are reported. Local heating/cooling is applied at the cone nose tip. The experiments are carried out at the Mach number M = 5.95, stagnation temperature T0 = 360-418 K, and stagnation pressure P0 = 3.7-45 atm. The unit Reynolds number is varied in the interval Re1 = (4.5-63) × 106 m-1. The investigations are conducted in the boundary layer on a cone with an apex half-angle of 7° and varied bluntness radius of the nose tip [R = 0.03 (sharp nose), 0.75, and 1.5 mm] for different values of the local temperature factor. The nose tip is heated by an ohmic heater. Cooling is performed by supplying liquid nitrogen into the internal cavity of the model nose. A comparative analysis of pressure pulsation spectra on the cone surface is performed. It is demonstrated that heating/cooling in the case of a sharp cone leads to flow destabilization/stabilization. The opposite effect is observed for blunted cones: heating/cooling stabilizes/destabilizes the second-mode disturbances. This effect is enhanced by increasing the nose tip bluntness. All the observed effects vanish with distance downstream from the nose tip.
Comparison of aerodynamic noise from three nose-cylinder combinations
NASA Technical Reports Server (NTRS)
Guenther, R. A.; Reding, M. P.
1970-01-01
Results of experiments with three different cylinder and blunted nose combinations are discussed. Combinations include smooth cylinder with single 15 deg cone, smooth cylinder with double cone of 25 and 10 deg, and longitudinally corrugated cylinder with similar double cone.
NASA Technical Reports Server (NTRS)
Rumsey, Charles B; Lee, Dorothy B
1958-01-01
Skin-temperature measurements have been made at several locations on a flat-faced cone-cylinder nose which was flight tested on a fivestage rocket-propeller model to a Mach number of 14.64 and a free-stream Reynolds number of 2.0 x 10(exp 6), based on flat-face diameter, at an altitude of 66,300 feet. The copper nose had a 29 deg total-angle conical section which was 1.6 flat-face diameters long. The aerodynamic-heating rates determined from the temperature measurements reached 1,440 Btu/( sec) (sq ft) on the flat face. The heating rates near the center of the flat face agreed well at Mach numbers up to 13.6 with those obtained by a theory for laminar stagnation-point heating in equilibrium dissociated air (Avco Res. Rep. 1). At Mach numbers above 13.6, the heating rates at locations near the center of the flat face became progressively lower than stagnation-point theory and. were 29 percent lower at Mach number 14.6 at the end. of the test. The reason for this behavior of the heating on the central part of the flat face was not determined. Excluding the relatively low heating rates that occurred on the central part of the nose at the highest Mach numbers, the distribution of experimental heating along the innermost 0.79 of the flat-face radius, expressed as a percentage of stagnation-point heating, was in fair agreement with the distribution predicted by laminar theory. At a location of 0.71 radii from the stagnation point, the experimental heating was very near 130 percent of the theoretical stagnation-point rate at Mach numbers from 11 to 14.5. The experimental beating rates on the conical section of the nose were in good agreement with laminar-cone theory using the assumption of theoretical sharp-cone static pressure on the conical section.
Influence of Nose Radius of Blunt Cones on Drag in Supersonic and Hypersonic Flows
NASA Astrophysics Data System (ADS)
Hemateja, A.; Teja, B. Ravi; Dileep Kumar, A.; Rakesh, S. G.
2017-08-01
The objects moving at high speeds encounter forces which tend to decelerate the objects. This resistance in the medium is termed as drag which is one of the major concerns while designing high speed aircrafts. Another key factor which influences the design is the heat transfer. The main challenge faced by aerospace industries is to design the shape of the flying object that travels at high speeds with optimum values of heat generation and drag. This study deals with computational analysis of sharp and blunt cones with varying cone angles and nose radii. The effect of nose radius on the drag is studied at supersonic and hypersonic flows and at various angles of attack. It is observed that as the nose radius is increased, the heat transfer reduces & the drag increases and vice-versa. Looking at the results, the optimum value of nose radius can be chosen depending on the need of the problem.
2000-06-29
Inside the Vehicle Assembly Building, the forward section of a solid rocket booster (SRB) sits on top of the rest of the stack for mating. The forward section of each booster, from nose cap to forward skirt contains avionics, a sequencer, forward separation motors, a nose cone separation system, drogue and main parachutes, a recovery beacon, a recovery light, a parachute camera on selected flights and a range safety system. Each SRB weighs approximately 1.3 million pounds at launch. The SRB is part of the stack for Space Shuttle Discovery and the STS-92 mission, scheduled for launch Oct. 5, from Launch Pad 39A, on the fifth flight to the International Space Station
2000-06-29
Inside the Vehicle Assembly Building, the forward section of a solid rocket booster (SRB) sits on top of the rest of the stack for mating. The forward section of each booster, from nose cap to forward skirt contains avionics, a sequencer, forward separation motors, a nose cone separation system, drogue and main parachutes, a recovery beacon, a recovery light, a parachute camera on selected flights and a range safety system. Each SRB weighs approximately 1.3 million pounds at launch. The SRB is part of the stack for Space Shuttle Discovery and the STS-92 mission, scheduled for launch Oct. 5, from Launch Pad 39A, on the fifth flight to the International Space Station
Viscous shock-layer solutions with nonequilibrium chemistry for hypersonic flows past slender bodies
NASA Technical Reports Server (NTRS)
Zoby, E. V.; Gupta, R. N.; Thompson, R. A.; Simmonds, A. L.; Lee, K. P.
1988-01-01
Laminar nonequilibrium heat transfer to slender vehicles is discussed, with heating-rate results presented as a ratio of the noncatalytic to the corresponding fully catalytic value to illustrate the maximum potential for a heating reduction in dissociated nonequilibrium flow at a given flight condition. Larger blunted cone half-angles are shown to produce the most significant nonequilibrium effects at distances beyond 100 nose radii, except in the fore-cone region. Increasing nose bluntness is found to produce large reductions in the ratio for the smaller cone angles at relatively large downstream surface lengths. It is noted that the nose radius and freestream density are not independent scaling parameters in nonequilibrium flow.
Numerical analysis on cooling performance of counterflowing jet over aerodisked blunt body
NASA Astrophysics Data System (ADS)
Barzegar Gerdroodbary, M.
2014-09-01
This study investigates a combined technique of both an active flow control concept that uses counterflowing jets and an aerodisk spike as a new method to significantly modify external flowfields and heat reduction in a hypersonic flow around a nose cone. The coolant gas (Carbon Dioxide and Helium) is chosen to inject from the tip of the nose cone to cool the recirculation region. The gases are considered to be ideal, and the computational domain is axisymmetric. The analysis shows that the counterflowing jet has significant effects on the flowfield and reduces the heat load over the nose cone. The Helium jet is found to have a relatively more effective cooling performance.
Effects of Nose Bluntness on Stability of Hypersonic Boundary Layers over Blunt Cone
NASA Technical Reports Server (NTRS)
Kara, K.; Balakumar, P.; Kandil, O. A.
2007-01-01
Receptivity and stability of hypersonic boundary layers are numerically investigated for boundary layer flows over a 5-degree straight cone at a free-stream Mach number of 6.0. To compute the shock and the interaction of shock with the instability waves, we solve the Navier-Stokes equations in axisymmetric coordinates. The governing equations are solved using the 5th-order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using third-order total-variation-diminishing (TVD) Runge-Kutta scheme for time integration. After the mean flow field is computed, disturbances are introduced at the upstream end of the computational domain. Generation of instability waves from leading edge region and receptivity of boundary layer to slow acoustic waves are investigated. Computations are performed for a cone with nose radii of 0.001, 0.05 and 0.10 inches that give Reynolds numbers based on the nose radii ranging from 650 to 130,000. The linear stability results showed that the bluntness has a strong stabilizing effect on the stability of axisymmetric boundary layers. The transition Reynolds number for a cone with the nose Reynolds number of 65,000 is increased by a factor of 1.82 compared to that for a sharp cone. The receptivity coefficient for a sharp cone is about 4.23 and it is very small, approx.10(exp -3), for large bluntness.
1959-05-28
On May 28, 1959, a Jupiter Intermediate Range Ballistic Missile provided by a U.S. Army team in Redstone Arsenal, Alabama, launched a nose cone carrying Baker, A South American squirrel monkey and Able, An American-born rhesus monkey. This photograph shows Able after recovery of the nose cone of the Jupiter rocket by U.S.S. Kiowa.
NASA Technical Reports Server (NTRS)
Wing, L. D.
1976-01-01
Program calculates aerodynamic heating and shear stresses at wall for tangent-ogive noses that are slender enough to maintain an attached nose shock during portion of flight when heat transfer from boundary layer to wall is significant.
2006-11-13
NASA Dryden aircraft and avionics technicians (from left) Bryan Hookland, Art Cope, Herman Rijfkogel and Jonathan Richards install the nose cone on a Phoenix missile prior to a fit check on the center's F-15B research aircraft.
NASA Technical Reports Server (NTRS)
Nowak, R. J.; Albertson, C. W.; Hunt, L. R.
1984-01-01
The effects of free-stream unit Reynolds number, angle of attack, and nose shape on the aerothermal environment of a 3-ft basediameter, 12.5 deg half-angle cone were investigated in the Langley 8-foot high temperature tunnel at Mach 6.7. The average total temperature was 3300 R, the freestream unit Reynolds number ranged from 400,000 to 1,400,000 per foot, and the angle of attack ranged from 0 deg to 10 deg. Three nose configurations were tested on the cone: a 3-in-radius tip, a 1-in-radius tip on an ogive frustum, and a sharp tip on an ogive frustum. Surface-pressure and cold-wall heating-rate distributions were obtained for laminar, transitional temperature in the shock layer were obtained. The location of the start of transition moved forward both on windward and leeward sides with increasing free-stream Reynolds numbers, increasing angle of attack, and decreasing nose bluntness.
Hot-Air Jets/Ceramic Heat Exchangers/ Materials for Nose Cones and Reentry Vehicles
1957-09-07
L57-5383 Hot-air jets employing ceramic heat exchangers played an important role at Langley in the study of materials for ballistic missile nose cones and re-entry vehicles. Here a model is being tested in one of theses jets at 4000 degrees Fahrenheit in 1957. Photograph published in Engineer in Charge: A History of the Langley Aeronautical Laboratory, 1917-1958 by James R. Hansen. Page 477.
Experimental Modeling of a Formula Student Carbon Composite Nose Cone
Fellows, Neil A.
2017-01-01
A numerical impact study is presented on a Formula Student (FS) racing car carbon composite nose cone. The effect of material model and model parameter selection on the numerical deceleration curves is discussed in light of the experimental deceleration data. The models show reasonable correlation in terms of the shape of the deceleration-displacement curves but do not match the peak deceleration values with errors greater that 30%. PMID:28772982
Unsteady Newton-Busemann flow theory. Part 2: Bodies of revolution
NASA Technical Reports Server (NTRS)
Hui, W. H.; Tobak, M.
1981-01-01
Newtonian flow theory for unsteady flow past oscillating bodies of revolution at very high Mach numbers is completed by adding a centrifugal force correction to the impact pressures. Exact formulas for the unsteady pressure and the stability derivatives are obtained in closed form and are applicable to bodies of revolution that have arbitrary shapes, arbitrary thicknesses, and either sharp or blunt noses. The centrifugal force correction arising from the curved trajectories followed by the fluid particles in unsteady flow cannot be neglected even for the case of a circular cone. With this correction, the present theory is in excellent agreement with experimental results for sharp cones and for cones with small nose bluntness; gives poor agreement with the results of experiments in air for bodies with moderate or large nose bluntness. The pitching motions of slender power-law bodies of revulution are shown to be always dynamically stable according to Newton-Busemann theory.
Self-Contained Compressed-Flow Generation Device for Use in Making Differential Measurements
NASA Technical Reports Server (NTRS)
England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Cronise, Raymond J. (Inventor)
2014-01-01
A device used in making differential measurements of a flow includes a flow obstruction and a support arm. The flow obstruction's forward portion is a nose cone. The flow obstruction's aft portion is coupled to the nose cone. The support arm's first end is coupled to an exterior wall of a conduit, and its second end is coupled to the forward portion of the flow obstruction. The support arm positions the flow obstruction in the conduit such that a flow region is defined around its nose cone, and such that the support arm's first and second end are separated from one another with respect to a length dimension of the conduit. Measurement ports are provided in the support arm and flow obstruction. Manifolds extending through the flow obstruction and support arm couple the ports to points at the exterior wall of the conduit.
NASA Astrophysics Data System (ADS)
Moraru, Ciprian G.
The ability to predict the onset of boundary-layer transition is critical for hypersonic flight vehicles. The development of prediction methods depends on a thorough comprehension of the mechanisms that cause transition. In order to improve the understanding of hypersonic boundary-layer transition, tests were conducted on a large 7° half-angle cone at Mach 10 in the Arnold Engineering Development Complex Wind Tunnel 9. Twenty-four runs were performed at varying unit Reynolds numbers and angles of attack for sharp and blunt nosetip configurations. Heat-transfer measurements were used to determine the start of transition on the cone. Increasing the unit Reynolds number caused a forward movement of transition on the sharp cone at zero angle of attack. Increasing nosetip radius delayed transition up to a radius of 12.7 mm. Larger nose radii caused the start of transition to move forward. At angles of attack up to 10°, transition was leeside forward for nose radii up to 12.7 mm and windside forward for nose radii of 25.4 mm and 50.8 mm. Second-mode instability waves were measured on the sharp cone and cones with small nose radii. At zero angle of attack, waves at a particular streamwise location on the sharp cone were in earlier stages of development as the unit Reynolds number was decreased. The same trend was observed as the nosetip radius was increased. No second-mode waves were apparent for the cones with large nosetip radii. As the angle of attack was increased, waves at a particular streamwise location on the sharp cone moved to earlier stages of growth on the windward ray and later stages of growth on the leeward ray. RMS amplitudes of second-mode waves were computed. Comparison between maximum second-mode amplitudes and edge Mach numbers showed good correlation for various nosetip radii and unit Reynolds numbers. Using the e N method, initial amplitudes were estimated and compared to freestream noise in the second-mode frequency band. Correlations indicate that freestream noise likely has a significant influence on initial second-mode amplitudes.
NASA Technical Reports Server (NTRS)
Calloway, R. L.
1983-01-01
An investigation was conducted to compare measured and predicted pressure distributions, forces and moments, and shock shapes on a geometrically matched sphere-cone and hyperboloid. A hyperboloid with a nose radius of 0.5276 in. and an asymptotic angle of 39.9871 deg was matched to a sphere-cone with a nose radius of 0.750 in. and a cone half-angle of 45 deg. Experimental results in helium at a free-stream Mach number of 20.3 and a free-stream unit Reynolds number of 6.83 x 10 to the 6th power per foot were combined with predicted results from a theoretical method to compare the two shapes. Comparisons of experimental results showed small differences in the two shapes, but the prediction method provided better results for the hyperboloid than for the sphere-cone.
1978-08-01
91 40. Aerodynamic Coefficients for Sharp Cone at Angle of Attack 93 41. Posttest Photograph of Ablated Camphor Nose Tip, rn/rb = 0.042...94 AEDC-TR-78-40 Figure Page 42. Aerodynamic Coefficients on Spinning Model with Camphor Nose Tip with Imbedded Metal Shaving 95 43. 3...shell could be replaced with camphor (in the case of the larger spin model only, Fig. 5a), asymmetric aluminum (Fig. 5b), or carbon phenolic frustums
Presentation of structural component designs for the family of commuter airplanes
NASA Technical Reports Server (NTRS)
Russell, Mark; Haddad, Raphael; Creighton, Tom; Hendrich, Louis; Hensley, Doug; Morgan, Louise; Swift, Jerry
1987-01-01
The purpose is to present the implementation of structural commonality in the family of commuter airplanes. One of the main goals is implementation of structural commonality to as high a degree as possible. The structural layouts of those parts of the airplanes in which commonality is possible with all members of the family will be presented. The following airplane sections, which are common on all of the airplanes in the family, will be presented: common nose cone design; common wing torque box design; and common tail cone design. A proposed production and manufacturing breakdown is described. The advantages and disadvantages of implementing structural commonality and recommendations for further work will be discussed.
Subsonic Static and Dynamic Aerodynamics of Blunt Entry Vehicles
NASA Technical Reports Server (NTRS)
Mitcheltree, Robert A.; Fremaux, Charles M.; Yates, Leslie A.
1999-01-01
The incompressible subsonic aerodynamics of four entry-vehicle shapes with variable c.g. locations are examined in the Langley 20-Foot Vertical Spin Tunnel. The shapes examined are spherically-blunted cones with half-cone angles of 30, 45, and 60 deg. The nose bluntness varies between 0.25 and 0.5 times the base diameter. The Reynolds number based on model diameter for these tests is near 500,000. Quantitative data on attitude and location are collected using a video-based data acquisition system and reduced with a six deg-of-freedom inverse method. All of the shapes examined suffered from strong dynamic instabilities which could produced limit cycles with sufficient amplitudes to overcome static stability of the configuration. Increasing cone half-angle or nose bluntness increases drag but decreases static and dynamic stability.
1991-04-01
aircraft Fig. 4.6 Airborne test set-up to compare several microphone/nose-cone arrangements for self -noise generation on a glider plane Fig. 4.7 Comparison...of normalized self -noise spectra of ogive-nose-cone equipped condenser-microphones of different diameters F!g. 4.8 Frequency splitting in the noise...output is obtained at the last com-poet ot the sub-system. The electrical respose of the entire system is then the arithmetic Sof the ildividual respnsem
Computational study of generic hypersonic vehicle flow fields
NASA Technical Reports Server (NTRS)
Narayan, Johnny R.
1994-01-01
The geometric data of the generic hypersonic vehicle configuration included body definitions and preliminary grids for the forebody (nose cone excluded), midsection (propulsion system excluded), and afterbody sections. This data was to be augmented by the nose section geometry (blunt conical section mated with the noncircular cross section of the forebody initial plane) along with a grid and a detailed supersonic combustion ramjet (scramjet) geometry (inlet and combustor) which should be merged with the nozzle portion of the afterbody geometry. The solutions were to be obtained by using a Navier-Stokes (NS) code such as TUFF for the nose portion, a parabolized Navier-Stokes (PNS) solver such as the UPS and STUFF codes for the forebody, a NS solver with finite rate hydrogen-air chemistry capability such as TUFF and SPARK for the scramjet and a suitable solver (NS or PNS) for the afterbody and external nozzle flows. The numerical simulation of the hypersonic propulsion system for the generic hypersonic vehicle is the major focus of this entire work. Supersonic combustion ramjet is such a propulsion system, hence the main thrust of the present task has been to establish a solution procedure for the scramjet flow. The scramjet flow is compressible, turbulent, and reacting. The fuel used is hydrogen and the combustion process proceeds at a finite rate. As a result, the solution procedure must be capable of addressing such flows.
NASA Technical Reports Server (NTRS)
Rumsey, Charles B.; Lee, Dorothy B.
1961-01-01
Measurements of aerodynamic heat transfer have been made at six stations on the 40-inch-long 10 deg. total-angle conical nose of a rocket- propelled model which was flight tested at Mach numbers up to 5.9. are presented for a range of local Mach number just outside the bound- ary layer on the cone from 1.57 to 5.50, and a range of local Reynolds number from 6.6 x 10(exp 6) to 55.2 x 10(exp 6) based on length from the nose tip.
2007-05-09
KENNEDY SPACE CENTER, FLA. -- In NASA Kennedy Space Center's Vehicle Assembly Building, technicians are inspecting the sanding performed on Atlantis' nose cone to repair hail damage. The equipment on the side of the nose cone is the sander. In late February, Atlantis' external tank received hail damage during a severe thunderstorm that passed through the Kennedy Space Center Launch Complex 39 area. The hail caused visible divots in the giant tank's foam insulation as well as minor surface damage to about 26 heat shield tiles on the shuttle's left wing. The launch of Space Shuttle Atlantis on mission STS-117 now is targeted for June 8. Photo credit: NASA/Jack Pfaller
Repairing the damage to Atlantis' External Tank
2007-03-07
On an upper level of high bay 1 of the Vehicle Assembly Building, technicians place protective material around the nose cone of Atlantis' external tank. The nose cone will undergo repair for hail damage. A severe thunderstorm with golf ball-sized hail caused visible divots in the giant tank's foam insulation and minor surface damage to about 26 heat shield tiles on the shuttle's left wing. Further evaluation of the tank is necessary to get an accurate accounting of foam damage and determine the type of repair required and the time needed for that work. A new target launch date has not been determined, but teams will focus on preparing Atlantis for liftoff in late April on mission STS-117.
NASA Technical Reports Server (NTRS)
Perkins, Edward W; Jorgensen, Leland H; Sommer, Simon C
1958-01-01
Experimental drag measurements at zero angle of attack for various theoretical minimum drag nose shapes, hemispherically blunted cones, and other more common profiles of fineness ratios of about 3 are compared with theoretical results for a Mach number and Reynolds number range of 1.24 to 7.4 and 1.0 x 10 to the 6th power to 7.5 x 10 to the 6th power (based on body length), respectively. The results of experimental pressure-distribution measurements are used for the development of an empirical expression for predicting the pressure drag of hemispherically blunted cones.
Laminar heat-transfer distributions on biconics at incidence in hypersonic-hypervelocity flows
NASA Technical Reports Server (NTRS)
Miller, C. G., III; Micol, J. R.; Gnoffo, P. A.
1984-01-01
Laminar heating distributions were measured at hypersonic-hypervelocity flow conditions on a 1.9-percent-scale model of an aeroassisted vehiclee proposed for missions to a number of planets. This vehicle is a spherically blunted, 12.84/7deg biconic with the fore-cone axis bent upward 7 deg relative to the aft-cone axis to provide selftrim capability. Also tested was a straight biconic (i.e., without nose bend) with the same nose radius and half-angles as the bent-nose biconic. These measurements were made in the Langley Expansion Tube at free-stream velocities from 4.5 to 6.9 km/sec and Mach numbers from 6.0 to 9.0 with helium, nitrogen, air, and carbon dioxide test gases. The range of calculated thermochemical equilibrium normal-shock density ratios for these four test gases was 4 to 19. Angles of attack, referenced to the aft-cone, varied from 0 to 20 deg. Heating distributions predicted with a parabolized Navier-Stokes (PNS) code were compared with measurement for helium and air test gases. Measured windward and leeward heating levels were generally underpredicted by the PNS code for both test gases, and agreement was poorer on the leeward side than on the windward side.
Repairing the damage to Atlantis' External Tank
2007-03-07
On an upper level of high bay 1 of the Vehicle Assembly Building, technicians secure protective material around the base of the nose cone of Atlantis' external tank. The nose cone will undergo repair for hail damage. A severe thunderstorm with golf ball-sized hail caused visible divots in the giant tank's foam insulation and minor surface damage to about 26 heat shield tiles on the shuttle's left wing. Further evaluation of the tank is necessary to get an accurate accounting of foam damage and determine the type of repair required and the time needed for that work. A new target launch date has not been determined, but teams will focus on preparing Atlantis for liftoff in late April on mission STS-117.
Repairing the damage to Atlantis' External Tank
2007-03-07
On an upper level of high bay 1 of the Vehicle Assembly Building, technicians move protective material toward the nose cone (foreground) of Atlantis' external tank. The nose cone will undergo repair for hail damage. A severe thunderstorm with golf ball-sized hail caused visible divots in the giant tank's foam insulation and minor surface damage to about 26 heat shield tiles on the shuttle's left wing. Further evaluation of the tank is necessary to get an accurate accounting of foam damage and determine the type of repair required and the time needed for that work. A new target launch date has not been determined, but teams will focus on preparing Atlantis for liftoff in late April on mission STS-117.
NASA Astrophysics Data System (ADS)
Simonenko, Mikhail; Zubkov, Alexander; Kuzmin, Alexander
2018-05-01
The 3D turbulent supersonic flow over a body of revolution at various angles of attack α is studied numerically and experimentally. The body surface incorporates a forward-facing step near its midpart and a nose cone. Experiments were conducted in a wind tunnel of the Research Institute of Mechanics, Moscow State University, at the Mach number of 3 for various lengths L of the distance between the step and nose cone. Numerical simulations were performed with a finite-volume solver ANSYS CFX-15. The study reveals bands of α and L in which the pressure on the leeward side of step abruptly increases and exceeds the pressure on the windward side.
NASA Technical Reports Server (NTRS)
Bond, Aleck C.; Rumsey, Charles B.
1957-01-01
Skin temperatures and surface pressures have been measured on a slightly blunted cone-cylinder-flare configuration to a maximum Mach number of 9.89 with a rocket-propelled model. The cone had a t o t a l angle of 25 deg and the flare had a 10 deg half-angle. Temperature data were obtained at eight cone locations, four cylinder locations, and seven flare locations; pressures were measured at one cone location, one cylinder location, and three flare locations. Four stages of propulsion were utilized and a reentry type of trajectory was employed in which the high-speed portion of flight was obtained by firing the last two stages during the descent of the model from a peak altitude of 99,400 feet. The Reynolds number at peak Mach number was 1.2 x 10(exp 6) per foot of model length. The model length was 6.68 feet. During the higher speed portions of flight, temperature measurements along one element of the nose cone indicated that the boundary layer was probably laminar, whereas on the opposite side of the nose the measurements indicated transitional or turbulent flow. Temperature distributions along one meridian of the model showed the flare to have the highest temperatures and the cylinder generally to have the lowest. A maximum temperature of 970 F was measured on the cone element showing the transitional or turbulent flow; along the opposite side of the model, the maximum temperatures of the cone, cylinder, and flare were 545 F, 340 F, and 680 F, respectively, at the corresponding time.
NASA Technical Reports Server (NTRS)
Coltrane, Lucille C.
1959-01-01
A cone with a blunt nose tip and a 10.7 deg cone half angle and an ogive with a blunt nose tip and a 20 deg flared cylinder afterbody have been tested in free flight over a Mach number range of 0.30 to 2.85 and a Reynolds number range of 1 x 10(exp 6) to 23 x 10(exp 6). Time histories, cross plots of force and moment coefficients, and plots of the longitudinal force,coefficient, rolling velocity, aerodynamic center, normal- force-curve slope, and dynamic stability are presented. With the center-of-gravity location at about 50 percent of the model length, the models were both statically and dynamically stable throughout the Mach number range. For the cone, the average aerodynamic center moved slightly forward with decreasing speeds and the normal-force-curve slope was fairly constant throughout the speed range. For the ogive, the average aerodynamic center remained practically constant and the normal-force-curve slope remained practically constant to a Mach number of approximately 1.6 where a rising trend is noted. Maximum drag coefficient for the cone, with reference to the base area, was approximately 0.6, and for the ogive, with reference to the area of the cylindrical portion, was approximately 2.1.
NASA Technical Reports Server (NTRS)
Micol, John R.
1992-01-01
Pressure distributions measured on a 60 degree half-angle elliptic cone, raked off at an angle of 73 degrees from the cone centerline and having an ellipsoid nose (ellipticity equal to 2.0 in the symmetry plane) are presented for angles of attack from -10 degrees to 10 degrees. The high normal shock density ratio aspect of a real gas was simulated by testing in Mach 6 air and CF sub 4 (density ratio equal to 5.25 and 12.0, respectively). The effects of Reynolds number, angle of attack, and normal shock density ratio on these measurements are examined, and comparisons with a three dimensional Euler code known as HALIS are made. A significant effect of density ratio on pressure distributions on the cone section of the configuration was observed; the magnitude of this effect decreased with increasing angle of attack. The effect of Reynolds number on pressure distributions was negligible for forebody pressure distributions, but a measurable effect was noted on base pressures. In general, the HALIS code accurately predicted the measured pressure distributions in air and CF sub 4.
NASA Astrophysics Data System (ADS)
Leukhin, Yu L.; Pankratov, E. V.; Karpov, S. V.
2017-11-01
We have carried out Investigation into aerodynamic and convective heat transfer of the annular channel. Inner or outer surface of annular channel has shape of blunt-nosed cone tapering to outlet end. Truncated cone connects to a cyclone swirling flow generator. Asymmetric and unsteady flow from the swirling generator in the shape of periodic process gives rise to the formation of secondary flows of the type Taylor-Görtler vortices. These vortices occupy the whole space of the annular channel, with the axes, which coincide with the motion direction of the major stream. Contraction of cross-sectional area of channel (in both cases 52%) causes a marked increase in total velocity of flow, primarily due to its axial component and promotes a more intensive vortex generation. Vortex structures have a significant influence on both average heat transfer and surface distribution. At cross-sections of the annular channel we observe similarity of curves describing distribution of total velocity about wall and heat flux density on the surface. The coordinates of maximum and minimum values of velocity and heat flux coincide. At the average cross-section channel of maximum value of heat transfer is greater than minimum of about by a factor of 2.7 times for outer heat transfer surface and about by a factor of 1.7 times for inner heat transfer surface. Taper channel has a much higher influence on heat transfer of the inner surface than the outer surface and manifests itself at lower values of dimensionless axial coordinate. For the investigated taper cone geometry of the annular channel the heat transfer coefficient of inner surface increases at the outlet section and exceeds value in comparison with straight-line section by 91 … 98%. Heat transfer of the outer cylinder in the same section increases only by 5 … 11%. The increase in average heat transfer over the surfaces is 36% and 4% respectively.
Effects of Nose Bluntness on Hypersonic Boundary-Layer Receptivity and Stability Over Cones
NASA Technical Reports Server (NTRS)
Kara, Kursat; Balakumar, Ponnampalam; Kandil, Osama A.
2011-01-01
The receptivity to freestream acoustic disturbances and the stability properties of hypersonic boundary layers are numerically investigated for boundary-layer flows over a 5 straight cone at a freestream Mach number of 6.0. To compute the shock and the interaction of the shock with the instability waves, the Navier-Stokes equations in axisymmetric coordinates were solved. In the governing equations, inviscid and viscous flux vectors are discretized using a fifth-order accurate weighted-essentially-non-oscillatory scheme. A third-order accurate total-variation-diminishing Runge-Kutta scheme is employed for time integration. After the mean flow field is computed, disturbances are introduced at the upstream end of the computational domain. The appearance of instability waves near the nose region and the receptivity of the boundary layer with respect to slow mode acoustic waves are investigated. Computations confirm the stabilizing effect of nose bluntness and the role of the entropy layer in the delay of boundary-layer transition. The current solutions, compared with experimental observations and other computational results, exhibit good agreement.
2012-03-02
A spacecraft technician is performing closeout work inside the fairing that will be installed around NASA Nuclear Spectroscopic Telescope Array NuSTAR spacecraft in a processing facility at Vandenberg Air Force Base in California.
Development of Flow over Blunt-Nosed Slender Bodies at Transonic Mach Numbers
NASA Astrophysics Data System (ADS)
Yanamashetti, Gireesh; Suryanarayana, G. K.; Mukherjee, Rinku
2017-04-01
Comparisons of the development of flow over a cylinder with a 20° cone nose and a cylinder with an ogive nose, which represent typical heat-shield configurations are studied using CFD and experiments at transonic Mach numbers. The Cp plots are studied to locate expansion or separation. Experiments are carried out at M = 0.8, 0.9, 0.95 and 1.1 and Re ≈ 2.45 × 106. Computations are carried out using the commercial package, FLUENT 6.3. Inadequate spatial resolution of pressure ports in experiments as well as limitations of the CFD tool result in some differences in experimental and CFD results.
Flight motor set 36OH005 (STS-28R). Volume 5: (Nozzle component)
NASA Technical Reports Server (NTRS)
Smith, Dan M., Jr.
1990-01-01
A review of the performance and post flight condition of the STS-28 redesigned solid rocket motor (RSRM) nozzles is presented in this document. Applicable discrepancy reports (DR's) and process departures (PD's) are presented in section 5.0. The nozzle component program team (NCPT) performance evaluation and the redesign program review board (RPRB) assessment is included in section 6.0. The STS-28 nozzle assemblies were flown on the RSRM fifth flight (Space Shuttle Columbia). The nozzles were a partially submerged convergent/divergent movable design with an aft pivot point flexible bearing. The nozzle assemblies incorporated the following features: (1) RSRM forward exit cone with snubber assembly; (2) RSRM fixed housing; (3) structural backup outer boot ring (OBR); (4) RSRM cowl ring; (5) RSRM nose inlet assembly; (6) RSRM throat assembly; (7) RSRM forward nose and aft inlet ring; (8) RSRM aft exit cone assembly with linear-shaped charge (LSC); (9) RTV backfill in joints 1, 3, and 4; (10) use of EA913 NA adhesive in place of EA913; (11) redesigned nozzle plug; and (12) carbon cloth phenolic (CCP) with 750 ppm sodium content. The RSRM fifth flight test objectives are as follows: (1) verify that flexible bearing seals operate within the specified temperature range; (2) verify that flexible bearing maintained a positive gas seal between its internal components; (3) inspect flexible bearing for damage due to water impact; (4) verify performance of the nozzle liner; (5) verify that nozzle parts are reusable; (6) verify through flight demonstration and a postflight inspection that the flexible bearing is reusable; (7) verify by inspection the remaining nozzle ablative thicknesses; and (8) verify the nozzle performance margins of safety.
NASA Technical Reports Server (NTRS)
Tyler, Charles
1996-01-01
Rayleigh scattering, a nonintrusive measurement technique for the measurement of density in a hypersonic wind tunnel, is under investigation at Wright Laboratory's Mach 6 wind tunnel. Several adverse effects, i.e., extraneous scatter off walls and windows, hinder Rayleigh scattering measurements. Condensation and clustering of flow constituents also present formidable obstacles. Overcoming some of these difficulties, measurements have been achieved while the Mach 6 test section was pumped down to a vacuum, as well as for actual tunnel operation for various stagnation pressures at fixed stagnation temperatures. Stagnation pressures ranged from 0.69 MPa to 6.9 MPa at fixed stagnation temperatures of 511, 556, and 611 K. Rayleigh scatter results show signal levels much higher than expected for molecular scattering in the wind tunnel. Even with higher than expected signals, scattering measurements have been made in the flowfield of an 8-degree half-angle blunt nose cone with a nose radius of 1.5 cm.
Flow Duct Data for Validation of Acoustic Liner Codes for Impedance Eduction
NASA Technical Reports Server (NTRS)
Ahuja, K. K.; Munro, Scott; Gaeta, R. J., Jr.
2000-01-01
The objective of the study reported here was to acquire acoustic and flow data with hard and lined duct wall duct sections for validation of a liner prediction code being developed at NASA LaRC. Both the mean flowfield and acoustic flowfields were determined in a cross-plane of the rectangular duct. A flow duct facility with acoustic drivers connected to a rectangular (4.7 x 2.0 inch) source section and a linear acoustic liner mounted downstream of the source section was used in this study. The liner section was designed to allow liner materials to be placed on all 4 walls of the duct. The test liner was of the locally-reacting type and was made from a ceramic material. The material, consisting of a tubular structure, was provided by NASA LaRC. The liner was approximately 8.89 cm (3.5 inches) thick. For the current study, only the two "short" sides of the duct were lined with liner material. The other two sides were hard walls. Two especially built instrumentation sections were attached on either sides of the liner section to allow acoustic and flow measurements to be made upstream and downstream of the liner. The two instrumentation duct sections were built to allow measurement of acoustic and flow properties at planes perpendicular to flow upstream and downstream of the liner section. The instrumentation section was also designed to provide a streamwise gradient in acoustic (complex) pressure from which the acoustic particle velocity, needed for the model validation, can be computed. Flow measurements included pressure, temperature, and velocity profiles upstream of the liner section. The in-flow sound pressure levels and phases were obtained with a microphone probe equipped with a nose cone in two cross planes upstream of the liner and two cross plane downstream of the liner. In addition to the acoustic measurements at the cross planes. axial centerline acoustic data was acquired using an axially traversing microphone probe which was traversed from a location upstream of the liner to some distance downstream of the liner. All probes used here had to be calibrated with respect to a standard microphone equipped with a nose cone to allow for the effects of flow.
Combined LAURA-UPS hypersonic solution procedure
NASA Technical Reports Server (NTRS)
Wood, William A.; Thompson, Richard A.
1993-01-01
A combined solution procedure for hypersonic flowfields around blunted slender bodies was implemented using a thin-layer Navier-Stokes code (LAURA) in the nose region and a parabolized Navier-Stokes code (UPS) on the after body region. Perfect gas, equilibrium air, and non-equilibrium air solutions to sharp cones and a sharp wedge were obtained using UPS alone as a preliminary step. Surface heating rates are presented for two slender bodies with blunted noses, having used LAURA to provide a starting solution to UPS downstream of the sonic line. These are an 8 deg sphere-cone in Mach 5, perfect gas, laminar flow at 0 and 4 deg angles of attack and the Reentry F body at Mach 20, 80,000 ft equilibrium gas conditions for 0 and 0.14 deg angles of attack. The results indicate that this procedure is a timely and accurate method for obtaining aerothermodynamic predictions on slender hypersonic vehicles.
Starbuck, John Marlow; Ghoneima, Ahmed; Kula, Katherine
2014-03-01
Cleft lip with or without cleft palate (CL/P) is a relatively common craniofacial malformation involving bony and soft-tissue disruptions of the nasolabial and dentoalveolar regions. The combination of CL/P and subsequent craniofacial surgeries to close the cleft and improve appearance of the cutaneous upper lip and nose can cause scarring and muscle pull, possibly resulting in soft-tissue depth asymmetries across the face. We tested the hypothesis that tissue depths in children with unilateral CL/P exhibit differences in symmetry across the sides of the face. Twenty-eight tissue depths were measured on cone-beam computed tomography images of children with unilateral CL/P (n = 55), aged 7 to 17 years, using Dolphin software (version 11.5). Significant differences in tissue depth symmetry were found around the cutaneous upper lip and nose in patients with unilateral CL/P.
Study of boundary-layer transition using transonic cone Preston tube data
NASA Technical Reports Server (NTRS)
Reed, T. D.; Abu-Mostafa, A.
1982-01-01
Laminar layer Preston tube data on a sharp nose, ten degree cone obtained in the Ames 11 ft TWT and in flight tests are analyzed. During analyses of the laminar-boundary layer data, errors were discovered in both the wind tunnel and the flight data. A correction procedure for errors in the flight data is recommended which forces the flight data to exhibit some of the orderly characteristics of the wind tunnel data. From corrected wind tunnel data, a correlation is developed between Preston tube pressures and the corresponding values of theoretical laminar skin friction. Because of the uncertainty in correcting the flight data, a correlation for the unmodified data is developed, and, in addition, three other correlations are developed based on different correction procedures. Each of these correlations are used in conjunction with the wind tunnel correlation to define effective freestream unit Reynolds numbers for the 11 ft TWT over a Mach number range of 0.30 to 0.95. The maximum effective Reynolds numbers are approximately 6.5% higher than the normal values. These maximum values occur between freestream Mach numbers of 0.60 and 0.80. Smaller values are found outside this Mach number range. These results indicate wind tunnel noise affects the average laminar skin friction much less than it affects boundary layer transition. Data on the onset, extent, and end of boundary layer transition are summarized. Application of a procedure for studying the relative effects of varying nose radius on a ten degree cone at supercritical speeds indicates that increasing nose radius promotes boundary layer transition and separation of laminar boundary layers.
Boundary-layer transition on a flared cone in a Mach 6 quiet wind tunnel
NASA Astrophysics Data System (ADS)
Hofferth, Jerrod; Saric, William
2010-11-01
The Mach 6 Quiet Tunnel at Texas A&M is a low-disturbance blowdown facility suitable for boundary-layer stability and transition research. Following its reactivation in 2009, initial testing confirmed the presence of low-disturbance (< 0.1% Pt^'/Pt) freestream flow at select locations on the centerline of the nozzle for settling chamber pressures up to 10 atm, and a fully-traversed freestream flow-quality assessment is currently underway. As a third performance benchmark to complement these direct measurements, the present work measures the transition location on the NASA Langley 93-10 flared-cone model. This model has a 0.5m length, beginning as a 5^o half-angle circular cone. At the X=254mm station, a flare of surface radius 2.35m begins which is intended to induce transition within the quiet test core. Boundary-layer transition is detected on the thin-walled model by an observed surface temperature rise using an array of 51 embedded thermocouples. Transition data are presented for a sharp (2.5 μm) nose-tip radius case for comparison with the Lachowicz & Chokani (1996 data). Data for larger-radius nose-tips are also presented.
NASA Technical Reports Server (NTRS)
Sharpe, L., Jr.
1987-01-01
A 12.5 degree half cone with tangential slot injection at Mach 6.95 was studied to determine the heating rates to the surface of the body near and far downstream of the slot. The cone had a zero degree angle of attack. The heating rates were obtained using a computer program that was developed at NASA-Langley Research Center. The concentration of nitrogen from the slot into the boundary layer was also determined. The ratio of slot to freestream was varied to determine its effect on heating. The numerical heating rates were compared to other correlations obtained from experimental studies as well as theoretical laminar and turbulent results.
NASA Technical Reports Server (NTRS)
Rumsey, Charles B.; Lee, Dorothy B.
1961-01-01
Measurements of aerodynamic heat transfer have been made at several stations on the 15 deg total-angle conical nose of a rocket-propelled model in free flight at Mach numbers up to 5.2. Data are presented for a range of local Mach number just outside the boundary layer from 1.40 to 4.65 and a range of local Reynolds number from 3.8 x 10(exp 6) to 46.5 x 10(exp 6), based on length from the nose tip to a measurement station. Laminar, transitional, and turbulent heat-transfer coefficients were measured. The laminar data were in agreement with laminar theory for cones, and the turbulent data agreed well with turbulent theory for cones using Reynolds number based on length from the nose tip. At a nearly constant ratio of wall to local static temperature of 1.2 the Reynolds number of transition increased from 14 x 10(exp 6) to 30 x 10(exp 6) as Mach number increased from 1.4 to 2.9 and then decreased to 17 x 10(exp 6) as Mach number increased to 3.7. At Mach numbers near 3.5, transition Reynolds numbers appeared to be independent of skin temperature at skin temperatures very cold with respect to adiabatic wall temperature. The transition Reynolds number was 17.7 x 10(exp 6) at a condition of Mach number and ratio of wall to local static temperature near that for which three-dimensional disturbance theory has been evaluated and has predicted laminar boundary-layer stability to very high Reynolds numbers (approximately 10(exp 12)).
APPARATUS FOR THE MASS ANALYSIS OF PLASMA ON A CONTINUOUS BASIS
Neidigh, R.V.
1963-07-01
An apparatus for the mass analysis of plasmas on a continuous basis is described. The apparatus comprises a pair of parallel electrodes in a tubular member which serve as a velocity-selecting region for ions drawn by an accelerating potential through a tapered nose cone affixed to the tubular member. The magnetic force and electrostatic forces in the velocity-selecting region are made equal and opposite in direction to prevent the ionic species from striking either of the electrodes as they traverse the region. A pair of parallel plates is positioned within the tubular member and in alignment with the electrodes, but displaced slightly so as not to be seen by direct light coming through the entrance slit of the nose cone, and one of these plates serves as a collector plate. This collector plate is coupled to the vertical amplifier of an oscilloscope or other recorder to provide a continuous indication of the ionic coinposition of the plasma under analysis. ( DELTA EC)
NASA Astrophysics Data System (ADS)
Gao, WenZhi; Li, ZhuFei; Yang, JiMing
2015-10-01
A hybrid CFD/characteristic method (CCM) was proposed for fast design and evaluation of hypersonic inlet flow with nose bluntness, which targets the combined advantages of CFD and method of characteristics. Both the accuracy and efficiency of the developed CCM were verified reliably, and it was well demonstrated for the external surfaces design of a hypersonic forebody/inlet with nose bluntness. With the help of CCM method, effects of nose bluntness on forebody shock shapes and the flowfield qualities which dominate inlet performance were examined and analyzed on the two-dimensional and axisymmetric configurations. The results showed that blunt effects of a wedge forebody are more substantial than that of related cone cases. For a conical forebody with a properly blunted nose, a recovery of the shock front back to that of corresponding sharp nose is exhibited, accompanied with a gradually fading out of entropy layer effects. Consequently a simplification is thought to be reasonable for an axisymmetric inlet with a proper compression angle, and a blunt nose of limited radius can be idealized as a sharp nose, as the spillage and flow variations at the entrance are negligible, even though the nose scale increases to 10% cowl lip radius. Whereas for two-dimensional inlets, the blunt effects are substantial since not only the inlet capturing/starting capabilities, but also the flow uniformities are obviously degraded.
NASA Technical Reports Server (NTRS)
Dods, J. B., Jr.; Hanly, R. D.; Efting, J. H.
1975-01-01
Shadowgraphs of five space shuttle launch configurations are presented. The model was a 4 percent-scale space shuttle vehicle, tested in the 11- by 11-foot Transonic Wind Tunnel at Ames Research Center. The Mach number was varied from 0.8 to 1.4 with three angles of sideslip (0 deg, 5 deg and -5 deg) that were used in conjunction with three angles of attack (4 deg, -4 deg, and 0 deg). The model configurations included both series-burn and parallel-burn configurations, two canopy configurations, two positions of the orbiter nose relative to the HO tank nose, and two HO tank nose-cones angles (15 deg and 20 deg). The data consist entirely of shadowgraph photographs.
In-flight transition measurement on a 10 deg cone at Mach numbers from 0.5 to 2.0
NASA Technical Reports Server (NTRS)
Fisher, D. F.; Dougherty, N. S., Jr.
1982-01-01
Boundary layer transition measurements were made in flight on a 10 deg transition cone tested previously in 23 wind tunnels. The cone was mounted on the nose of an F-15 aircraft and flown at Mach numbers room 0.5 to 2.0 and altitudes from 1500 meters (5000 feet) to 15,000 meters (50,000 feet), overlapping the Mach number/Reynolds number envelope of the wind tunnel tests. Transition was detected using a traversing pitot probe in contact with the surface. Data were obtained near zero cone incidence and adiabatic wall temperature. Transition Reynolds number was found to be a function of Mach number and of the ratio of wall temperature to adiabatic all temperature. Microphones mounted flush with the cone surface measured free-stream disturbances imposed on the laminar boundary layer and identified Tollmien-Schlichting waves as the probable cause of transition. Transition Reynolds number also correlated with the disturbance levels as measured by the cone surface microphones under a laminar boundary layer as well as the free-stream impact.
IRBM in Unitary Plan Wind Tunnel
1957-09-07
L57-700 In the reentry flight path of this nose cone model of a Jupiter Intermediate range ballistic missile (IRBM) was tested in the Unitary Plan Wind Tunnel. Photograph published in Engineer in Charge: A History of the Langley Aeronautical Laboratory, 1917-1958 by James R. Hansen. Page 475.
New class of thermosetting plastics has improved strength, thermal and chemical stability
NASA Technical Reports Server (NTRS)
Burns, E. A.; Dubrow, B.; Lubowitz, H. R.
1967-01-01
New class of thermosetting plastics has high hydrocarbon content, high stiffness, thermal stability, humidity resistance, and workability in the precured state. It is designated cyclized polydiene urethane, and is applicable as matrices to prepare chemically stable ablative materials for rocket nose cones of nozzles.
- spac0114 Securing cover for TIROS V satellite prior to launching. Lettering on nose cone reads: CAUTION protected the satellite during its ride through the atmosphere into space. Image ID: spac0114, NOAA In Space Collection Category: Space/Satellite/ Vehicle/ * High Resolution Photo Available Publication of the U.S
Symmetrical and Asymmetrical separations about a yawed cone
NASA Technical Reports Server (NTRS)
Peake, D. J.; Owen, F. K.; Higuchi, H.
1979-01-01
Three-dimensional flow separations about a 5 degree (semiapex angle, theta sub C), 1.4 m long, circular cone up to moderately high relative incidence, alpha/theta sub C approximately 5, were studied in the Mach number range 0.3 M sub infinity 1.8. The cone was tested in the Ames 1.8 by 1.8 m wind tunnel at Reynolds numbers, R sub L infinity, based on the cone length, L, from 4.5 times 10 to the 6th power to 13.5 times 10 to the 6th power, under nominally zero heat transfer conditions. Overall forces and mean surface pressures were compared with earlier measurements. Supportive three-dimensional laser velocimeter measurements of mean and fluctuating velocity in a slightly asymmetric vortex wake about a slender tangent ogive cylinder at incidence having respective nose and overall body fineness ratios of 3.5 and 12, are included.
NASA Technical Reports Server (NTRS)
Walton, Thomas E., Jr.; Rashis, Bernard
1961-01-01
Transpiration-cooling parameters are presented for a turbulent boundary layer on a cone configuration with a total angle of 250 which was tested in both free flight and in an ethylene-heated high-temperature jet at a Mach number of 2.0. The flight-tested cone was flown to a maximum Mach number of 4.08 and the jet tests were conducted at stagnation temperatures ranging from 937 R to 1,850 R. In general, the experimental heat transfer was in good agreement with the theoretical values. Inclusion of the ratio of local stream temperature to wall temperature in the nondimensional flow rate parameter enabled good correlation of both sets of transpiration data. The measured pressure at the forward station coincided with the theoretical pressure over a sharp cone; however, the measured pressure increased with distance from the nose tip.
NASA Technical Reports Server (NTRS)
Bradley, D.; Ellis, R. R.
1972-01-01
A 0.00227-scale parametric model of an LMSC/MSFC water recoverable booster was tested in the MSFC 14 x 14-inch trisonic wind tunnel. The purpose of the test was to obtain high angle of attack force and static stability data which could be used by MSFC in preliminary design and aerodynamic trade studies. These data were obtained using six-component internal strain gauge balances. One hundred forty-four different geometrical combinations were possible as all model parts were interchangeable (three nose cones, three cylinder lengths, four flare sections and three sets of fins, plus a no-fin case in combination with the other components). However, due to tunnel occupancy limitations, only the most representative combinations were tested. All configurations investigated were tested at Mach 1.96, 2.74 and 4.96 with data obtained at angles of attack from 50 degrees to 90 degrees and at angles of sideslip from -10 degrees to +10 degrees (at an angle of attack of 60 degrees).
2009-05-15
CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., NASA's Lunar Reconnaissance Orbiter, or LRO, and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS, are being prepared for fairing installation. On either side are the two fairing sections that will be installed around the spacecraft for launch. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller
Application of CFD to aerothermal heating problems
NASA Technical Reports Server (NTRS)
Macaraeg, M. G.
1986-01-01
Numerical solutions of the compressible Navier-Stokes equations by an alternating direction implicit scheme, applied to two experimental investigations are presented. The first is cooling by injection of a gas jet through the nose of an ogive-cone, and the second is the aerothermal environment in the gap formed by the wing and elevon section of a test model of the space shuttle. The simulations demonstrate that accurate pressure calculations are easily obtained on a coarse grid, while convergence is obtained after the residual reduces by four orders of magnitude. Accurate heating rates, however, require a fine grid solution, with convergence requiring at least a reduction of six orders of magnitude in the residual. The effect of artificial dissipation on numerical results is also assessed.
Estimation of absorbed fraction to the anterior nose from inhaled beta emitters
NASA Astrophysics Data System (ADS)
Moussa, Hanna Moussa
2000-08-01
The main purpose of this research is to introduce a new and more realistic geometry for the anterior nose region (ET1) as an alternative to the one provided in ICRP Publication 66. For a more accurate estimation of electron absorbed fraction (AF) to the nuclei of basal cells in the ET 1 region, the proposed new geometry (frustum of a cone) replaces the cylinder geometry, which was used in ICRP 66. Since the electron absorbed fraction (AF) data in ICRP 66 are calculated based on the nose size for an adult Caucasian male, a second purpose of this research is to investigate how the nose size (different ethnic groups) and nose tissue composition (male, female and adolescent), affects the electron absorbed fraction values. The third aim of this research is to develop a Monte Carlo program to estimate the electron energies that emerge from the surface of spherical dust particles. Given that electrons can be located anywhere between the center and the surface of the sphere, we vary the sphere radius from 0.5 to 50 μm and investigate the effects of self-absorption on the emitted electron energies and absorbed fraction.
Leading-edge singularities in thin-airfoil theory
NASA Technical Reports Server (NTRS)
Jones, R. T.
1976-01-01
If the thin airfoil theory is applied to an airfoil having a rounded leading edge, a certain error will arise in the determination of the pressure distribution around the nose. It is shown that the evaluation of the drag of such a blunt nosed airfoil by the thin airfoil theory requires the addition of a leading edge force, analogous to the leading edge thrust of the lifting airfoil. The method of calculation is illustrated by application to: (1) The Joukowski airfoil in subsonic flow; and (2) the thin elliptic cone in supersonic flow. A general formula for the edge force is provided which is applicable to a variety of wing forms.
Effect of Body Perturbations on Hypersonic Flow Over Slender Power Law Bodies
NASA Technical Reports Server (NTRS)
Mirels, Harold; Thornton, Philip R.
1959-01-01
Hypersonic-slender-body theory, in the limit as the free-stream Mach number becomes infinite, is used to find the effect of slightly perturbing the surface of slender two-dimensional and axisymmetric power law bodies, The body perturbations are assumed to have a power law variation (with streamwise distance downstream of the nose of the body). Numerical results are presented for (1) the effect of boundary-layer development on two dimensional and axisymmetric bodies, (2) the effect of very small angles of attack (on tow[dimensional bodies), and (3) the effect of blunting the nose of very slender wedges and cones.
Development and tests on OREX vehicle thermal structure system
NASA Astrophysics Data System (ADS)
Yoshinaka, Toshinari; Morino, Yoshiki
1992-08-01
An overview of the thermal system structure development and their tests for Orbital Re-entry Experiment (OREX) vehicle, being developed as a part of H-2 Orbiting Plane (HOPE) development, is presented. The results of study on the OREX vehicle thermal structure system and concept of the system study are shown. The results of HOPE thermal structure system research were reflected to OREX in employing polyacrylonitrile tissues with conversion coating for the nose cap, Carbon-Thermal Protection System (TPS), and ceramic tile TPS for the structure. Test plans were established for material characteristics and design verifications, and flight validation for C/C (Carbon/Carbon Composite) nose cap and TPS, and gap filler, arc wind tunnel, heat insulation, and adhesion quality verification tests. Environment resistance of the C/C nose cone, C/C TPS, and ceramic tile TPS were verified and prospects of their manufacturing were obtained.
2010-01-04
Dr. Robert Goddard's rocket nose cone, parachute, and relase device, April 19, 1935. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook
1958-01-31
Jupiter-C Missile No. 27 assembly at the Army Ballistic Missile Agency (ABMA), Redstone Arsenal, in Huntsville, Aalabama. The Jupiter-C was a modification of the Redstone Missile, and originally developed as a nose cone re-entry test vehicle for the Jupiter Intermediate Range Ballistic Missile (IRBM). Jupiter-C successfully launched the first American Satellite, Explorer 1, in orbit on January 31, 1958.
On Heatshield Shapes for Mars Entry Capsules
NASA Technical Reports Server (NTRS)
Prabhu, DInesh K.; Saunders, David A.
2012-01-01
The 70deg sphere-cone - the standard geometry for all US Mars entry missions - is thoroughly examined via flow field simulations at a select few peak heating points along candidate flight trajectories. Emphasis is placed on turbulent heating based on the Baldwin- Lomax turbulence model. It is shown that increased leeward turbulent heating for a 70 sphere-cone flying at angle of attack is primarily due to the discontinuity in curvature between the spherical nose cap and the conical frustum - the attachment of the sonic line at this sphere-cone junction leads to a supersonic edge Mach number over the leeward acreage. In an attempt to mitigate this problem of elevated turbulent heating, alternate geometries, without any curvature discontinuities in the acreage, are developed. Two approaches, one based on nonlinear optimization with constraints, and one based on the use of non-uniform rational B-splines, are considered. All configurations examined remain axisymmetric. The aerothermal performance of alternate geometries is shown to be superior to that of the 70 sphere-cone.
Optimum shape of a blunt forebody in hypersonic flow
NASA Technical Reports Server (NTRS)
Maestrello, L.; Ting, L.
1989-01-01
The optimum shape of a blunt forebody attached to a symmetric wedge or cone is determined. The length of the forebody, its semi-thickness or base radius, the nose radius and the radius of the fillet joining the forebody to the wedge or cone are specified. The optimum shape is composed of simple curves. Thus experimental models can be built readily to investigate the utilization of aerodynamic heating for boundary layer control. The optimum shape based on the modified Newtonian theory can also serve as the preliminary shape for the numerical solution of the optimum shape using the governing equations for a compressible inviscid or viscous flow.
Hypersonic Boundary Layer Stability Experiments in a Quiet Wind Tunnel with Bluntness Effects
NASA Technical Reports Server (NTRS)
Lachowicz, Jason T.; Chokani, Ndaona
1996-01-01
Hypersonic boundary layer measurements over a flared cone were conducted in a Mach 6 quiet wind tunnel at a freestream unit Reynolds number of 2.82 million/ft. This Reynolds number provided laminar-to-transitional flow over the cone model in a low-disturbance environment. Four interchangeable nose-tips, including a sharp-tip, were tested. Point measurements with a single hot-wire using a novel constant voltage anemometer were used to measure the boundary layer disturbances. Surface temperature and schlieren measurements were also conducted to characterize the transitional state of the boundary layer and to identify instability modes. Results suggest that second mode disturbances were the most unstable and scaled with the boundary layer thickness. The second mode integrated growth rates compared well with linear stability theory in the linear stability regime. The second mode is responsible for transition onset despite the existence of a second mode subharmonic. The subharmonic disturbance wavelength also scales with the boundary layer thickness. Furthermore, the existence of higher harmonics of the fundamental suggests that nonlinear disturbances are not associated with 'high' free stream disturbance levels. Nose-tip radii greater than 2.7% of the base radius completely stabilized the second mode.
Effects of temperature distribution on boundary layer stability for a circular cone at Mach 10
NASA Astrophysics Data System (ADS)
Rigney, Jeffrey M.
A CFD analysis was conducted on a circular cone at 3 degrees angle of attack at Mach 10 using US3D and STABL 3D to determine the effect of wall temperature on the stability characteristics that lead to laminar-to-turbulent transition. Wall temperature distributions were manipulated while all other flow inputs and geometric qualities were held constant. Laminar-to-turbulent transition was analyzed for isothermal and adiabatic wall conditions, a simulated short-duration wind tunnel case, and several hot-nose temperature distributions. For this study, stability characteristics include maximum N-factor growth and the corresponding frequency range, disturbance spatial amplification rate and the corresponding modal frequency, and stability neutral point location. STABL 3D analysis indicates that temperature distributions typical of those in short-duration hypersonic wind tunnels do not result in any significant difference on the stability characteristics, as compared to an isothermal wall boundary condition. Hypothetical distributions of much greater temperatures at and past the nose tip do show a trend of dampening of second-mode disturbances, most notably on the leeward ray. The most pronounced differences existed between the isothermal and adiabatic cases.
NASA Technical Reports Server (NTRS)
Keener, E. R.; Chapman, G. T.; Taleghani, J.; Cohen, L.
1977-01-01
An experimental investigation was conducted in the Ames 12-Foot Wind Tunnel to determine the subsonic aerodynamic characteristics of four forebodies at high angles of attack. The forebodies tested were a tangent ogive with fineness ratio of 5, a paraboloid with fineness ratio of 3.5, a 20 deg cone, and a tangent ogive with an elliptic cross section. The investigation included the effects of nose bluntness and boundary-layer trips. The tangent-ogive forebody was also tested in the presence of a short afterbody and with the afterbody attached. Static longitudinal and lateral/directional stability data were obtained. The investigation was conducted to investigate the existence of large side forces and yawing moments at high angles of attack and zero sideslip. It was found that all of the forebodies experience steady side forces that start at angles of attack of from 20 deg to 35 deg and exist to as high as 80 deg, depending on forebody shape. The side is as large as 1.6 times the normal force and is generally repeatable with increasing and decreasing angle of attack and, also, from test to test. The side force is very sensitive to the nature of the boundary layer, as indicated by large changes with boundary trips. The maximum side force caries considerably with Reynolds number and tends to decrease with increasing Mach number. The direction of the side force is sensitive to the body geometry near the nose. The angle of attack of onset of side force is not strongly influenced by Reynolds number or Mach number but varies with forebody shape. Maximum normal force often occurs at angles of attack near 60 deg. The effect of the elliptic cross section is to reduce the angle of onset by about 10 deg compared to that of an equivalent circular forebody with the same fineness ratio. The short afterbody reduces the angle of onset by about 5 deg.
Measurements of Supersonic Wing Tip Vortices
NASA Technical Reports Server (NTRS)
Smart, Michael K.; Kalkhoran, Iraj M.; Benston, James
1994-01-01
An experimental survey of supersonic wing tip vortices has been conducted at Mach 2.5 using small performed 2.25 chords down-stream of a semi-span rectangular wing at angle of attack of 5 and 10 degrees. The main objective of the experiments was to determine the Mach number, flow angularity and total pressure distribution in the core region of supersonic wing tip vortices. A secondary aim was to demonstrate the feasibility of using cone probes calibrated with a numerical flow solver to measure flow characteristics at supersonic speeds. Results showed that the numerically generated calibration curves can be used for 4-hole cone probes, but were not sufficiently accurate for conventional 5-hole probes due to nose bluntness effects. Combination of 4-hole cone probe measurements with independent pitot pressure measurements indicated a significant Mach number and total pressure deficit in the core regions of supersonic wing tip vortices, combined with an asymmetric 'Burger like' swirl distribution.
NASA Technical Reports Server (NTRS)
Miller, C. G.; Micol, J. R.; Gnoffo, P. A.; Wilder, S. E.
1983-01-01
Laminar heat transfer rates were measured on spherically blunted, 13 deg/7 deg on axis and bent biconics (fore cone bent 7 deg upward relative to aft cone) at hypersonic hypervelocity flow conditions in the Langley Expansion Tube. Freestream velocities from 4.5 to 6.9 km/sec and Mach numbers from 6 to 9 were generated using helium, nitrogen, air, and carbon dioxide test gases, resulting in normal shock density ratios from 4 to 19. Angle of attack, referenced to the axis of the aft cone, was varied from 0 to 20 deg in 4 deg increments. The effect of nose bend, angle of attack, and real gas phenomena on heating distributions are presented along with comparisons of measurement to prediction from a code which solves the three dimensional parabolized Navier-Stokes equations.
NASA Technical Reports Server (NTRS)
Choudhari, Meelan M.; Tokugawa, Naoko; Li, Fei; Chang, Chau-Lyan; White, Jeffery A.; Ishikawa, Hiroaki; Ueda, Yoshine; Atobe, Takashi; Fujii, Keisuke
2012-01-01
Boundary layer transition over axisymmetric bodies at non-zero angle of attack in supersonic flow is numerically investigated as part of joint research between the National Aeronautics and Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA). Transition over four axisymmetric bodies (namely, Sears-Haack body, semi-Sears-Haack body, 5-degree straight cone and flared cone) with different axial pressure gradients has been studied at Mach 2 in order to understand the effect of axial pressure gradient on instability amplification along the leeward symmetry plane and in the region of nonzero crossflow away from it. Comparisons are made with measured transition data in Mach 2 facilities as well as with predicted and measured transition characteristics for a 5-degree straight cone in a Mach 3.5 low disturbance tunnel. Limitations of using linear stability correlations for predicting transition over axisymmetric bodies at angle of attack are pointed out.
Computation of Stability Derivatives of an oscillating cone for specific heat ratio = 1.66
NASA Astrophysics Data System (ADS)
Shabana, Aysha; Monis, Renita Sharon; Crasta, Asha; Khan, S. A.
2018-05-01
In this paper the expressions for stiffness and Damping derivatives are obtained in a closed form for perfect gas where the flow is quasi-steady and axi-axisymmetric, and the nose semi angle of the cone is such that the Mach number M 2 behind the shock M 2 ≥ 2.5. Results are presented for an oscillating cone for gas with = 1.666, at different Mach numbers and semi cone angles. The Stiffness derivative decreases with pivot position and also with semi vertex angle, there is substantial change in the stiffness derivative when semi-vertex has been increased from 5 degrees to ten degrees, further increase in the semi-vertex angle results in marginal change in the stiffness derivative. Due the marginal change in the Mach number level there is marginal increase in the magnitude of the stability and with further increase in the inertia level the stability derivative conform to the Mach number independence principle. The present theory for Oscillating cone is restricted to quasi-steady case. Viscous effects have been neglected. The expressions so obtained for stability derivative in pitch are valid for a slender ogive which often approximates to the whole fuselage of an aircraft.
Receptivity of Hypersonic Boundary Layers to Acoustic and Vortical Disturbances (Invited)
NASA Technical Reports Server (NTRS)
Balakumar, P.
2015-01-01
Boundary-layer receptivity to two-dimensional acoustic and vortical disturbances for hypersonic flows over two-dimensional and axi-symmetric geometries were numerically investigated. The role of bluntness, wall cooling, and pressure gradients on the receptivity and stability were analyzed and compared with the sharp nose cases. It was found that for flows over sharp nose geometries in adiabatic wall conditions the instability waves are generated in the leading-edge region and that the boundary layer is much more receptive to slow acoustic waves as compared to the fast waves. The computations confirmed the stabilizing effect of nose bluntness and the role of the entropy layer in the delay of boundary layer transition. The receptivity coefficients in flows over blunt bodies are orders of magnitude smaller than that for the sharp cone cases. Wall cooling stabilizes the first mode strongly and destabilizes the second mode. However, the receptivity coefficients are also much smaller compared to the adiabatic case. The adverse pressure gradients increased the unstable second mode regions.
NASA Technical Reports Server (NTRS)
Moskovitz, Cary A.; Hall, Robert M.; Dejarnette, F. R.
1990-01-01
An exploratory experimental investigation of a new device to control the asymmetric flowfield on forebodies at large angles of attack has been conducted. The device is a rotatable forebody tip, which varies in cross section from circular at its base to elliptic at its tip. The device itself extends over a small portion of the aircraft or missile forebody. The device provides two important improvements. First, it replaced the normally random behavior of the nose side force as a function of nose tip orientation with a predictable and generally sinusoidal distribution and, second, the device showed promise for use as part of a vehicle control system, to be deflected in a prescribed manner to provide additional directional control for the vehicle. The device was tested on a cone/cylinder model having a 10 deg semiapex angle and on a 3.0 caliber tangent ogive model, each with a base diameter of 3.5 in, for angles of attack from 30 to 60 deg. Data were taken from 3 circumferential rows of pressure taps on each model at a Reynolds number of 84,000 based on cylinder diameter and by a helium-bubble flow visualization technique at a Reynolds number of 24,000.
NASA Technical Reports Server (NTRS)
1989-01-01
Pressure effects on the pump-fed Liquid Rocket Booster (LRB) of the Space Transportation System are examined. Results from the buckling tests; bending moments tests; barrel, propellant tanks, frame XB1513, nose cone, and intertank tests; and finite element examination of forward and aft skirts are presented.
1958-05-28
On May 28, 1958, Jupiter Intermediate Range Ballistic Missile provided by U.S. Army team in Huntsville, Alabama, launched a nose cone carrying Baker, a South American squirrel monkey and Able, an American-born rhesus monkey. Baker, pictured here and commonly known as "Miss Baker", was later given a home at the U.S. Space and Rocket Center until her death on November 29, 1984. Able died in 1958. (Photo - Courtesy of Huntsville/Madison County Public Library)
Jim Newman and Bob McDonald attach an M2-F2 lifting body model to the "Mothership"
1968-06-26
A photo of model airplane builders James B. Newman and Robert L. McDonald preparing for a flight with models of the M2-F2 and a “Mothership”. In 1968 a test flight was made on the Rosamond dry lakebed, Rosamond, California. The original idea of lifting bodies was conceived about 1957 by Dr. Alfred J. Eggers, Jr., then the assistant director for Research and Development Analysis and Planning at the National Advisory Committee for Aeronautics' Ames Aeronautical Laboratory, Moffett Field, California. Nose cone studies led to the design known as the M-2, a modified half-cone, rounded on the bottom and flat on top, with a blunt, rounded nose and twin tail fins. To gather flight data on this configuration, models were found to be an effective method. A special twin-engined, 14-foot model “mothership” was used for carrying the M2-F2 model to altitude and a launch, much as was being done with the B-52 for the full-scale lifting bodies. Jim (on the left) will fly the “mothership” and Bob will take control of the M2-F2 at launch and fly it to a landing on the lakebed.
A numerical study of hypersonic stagnation heat transfer predictions at a coordinate singularity
NASA Technical Reports Server (NTRS)
Grasso, Francesco; Gnoffo, Peter A.
1990-01-01
The problem of grid induced errors associated with a coordinate singularity on heating predictions in the stagnation region of a three-dimensional body in hypersonic flow is examined. The test problem is for Mach 10 flow over an Aeroassist Flight Experiment configuration. This configuration is composed of an elliptic nose, a raked elliptic cone, and a circular shoulder. Irregularities in the heating predictions in the vicinity of the coordinate singularity, located at the axis of the elliptic nose near the stagnation point, are examined with respect to grid refinement and grid restructuring. The algorithm is derived using a finite-volume formulation. An upwind-biased total-variation diminishing scheme is employed for the inviscid flux contribution, and central differences are used for the viscous terms.
STS-35 crew and NASA management inspect OV-102 after landing at EAFB, Calif
NASA Technical Reports Server (NTRS)
1990-01-01
STS-35 NASA JSC Flight Crew Operations Directorate (FCOD) Director Donald R. Puddy (center) joins the STS-35 crewmembers in a post landing walk-around inspection of Columbia, Orbiter Vehicle (OV) 102, at Edwards Air Force Base (EAFB), California. Crewmembers, wearing launch and entry suits (LESs), include (left to right) Commander Vance D. Brand, Mission Specialist (MS) John M. Lounge, Payload Specialist Ronald A. Parise, Pilot Guy S. Gardner, and MS Jeffrey A. Hoffman. NASA Associate Administrator for Space Flight Dr. William B. Lenoir is at far left in the background. OV-102 landed on concrete runway 22 at EAFB at 9:54:09 pm (Pacific Standard Time (PST)). OV-102's nose cone and nose landing gear (NLG) door are visible at the left corner of the frame.
Subsonic Dynamics of Stardust Sample Return Capsule
NASA Technical Reports Server (NTRS)
Mitcheltree, Robert A.; Fremaux, Charles M.
1997-01-01
Subsonic dynamic stability tests performed in the NASA Langley 20-Foot Vertical Spin-Tunnel on a 0.238 scale model of the Stardust Sample Return Capsule are discussed. The tests reveal that the blunted 60 degree half-angle cone capsule is dynamically unstable at low subsonic conditions due to the aft location of the center-of-gravity (0.351 body diameters back from the nose). The divergent behavior of the capsule continued when the center-of-gravity was moved to 0.337 and 0.313 body diameters back from the nose. When the center-of-gravity was moved further forward to 0.290 body diameters back from the nose, the vehicle established itself in a limit cycle with amplitude around 10 degrees. Two afterbody modifications were examined which proved unsuccessful in alleviating the instability of the original design. Finally, the addition of different sized parachutes was examined as a means to stabilize the vehicle. The parachute tests indicate that a parachute with equivalent full scale drag area of at least 2.24 ft. is necessary to assure large perturbations are damped.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Qi, Yafei; Huang, Wei; Gao, Yubo
2017-01-01
The investigation on free-surface impact of projectiles has last for more than one hundred years due to its noticeable significance on improving defensive weapon technology. Laboratory-scaled water entry experiments for trajectory stability had been performed with four kinds of projectiles at a speed range of 20˜200 m/s. The nose shapes of the cylindrical projectiles were designed into flat, ogive, hemi-sphere and cone to make comparisons on the trajectory deviation when they were launched into water at a certain angle of 0˜20°. Two high-speed cameras positioned orthogonal to each other and normal to the water tank were employed to capture the entire process of projectiles' penetration. From the experimental results, the consecutive images in two planes were presented to display the general process of the trajectory deviation. Compared with the effect of impact velocities and nose shape on trajectory deviation, it merited conclude that flat projectiles had a better trajectory stability, while ogival projectiles experienced the largest attitude change. The characteristics of pressure waves were also investigated.
2005-12-07
KENNEDY SPACE CENTER, FLA. -- In NASA Kennedy Space Center’s Orbiter Processing Facility Bay 1, installation of the forward reaction control system on Atlantis is complete. The control system fits just behind the nose cone and provides the thrust for attitude (rotational) maneuvers (pitch, yaw and roll) and for small velocity changes along the orbiter axis (translation maneuvers). Processing of Atlantis is under way for mission STS-115, the 19th flight to the International Space Station.
2005-12-07
KENNEDY SPACE CENTER, FLA. -- In NASA Kennedy Space Center’s Orbiter Processing Facility Bay 1, workers are installing the forward reaction control system on Atlantis. The control system fits just behind the nose cone and provides the thrust for attitude (rotational) maneuvers (pitch, yaw and roll) and for small velocity changes along the orbiter axis (translation maneuvers). Processing of Atlantis is under way for mission STS-115, the 19th flight to the International Space Station.
2005-12-07
KENNEDY SPACE CENTER, FLA. -- In NASA Kennedy Space Center’s Orbiter Processing Facility Bay 1, workers are installing the forward reaction control system on Atlantis. The control system fits just behind the nose cone and provides the thrust for attitude (rotational) maneuvers (pitch, yaw and roll) and for small velocity changes along the orbiter axis (translation maneuvers). Processing of Atlantis is under way for mission STS-115, the 19th flight to the International Space Station.
21 CFR 868.5375 - Heat and moisture condenser (artificial nose).
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Heat and moisture condenser (artificial nose). 868.5375 Section 868.5375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... moisture condenser (artificial nose). (a) Identification. A heat and moisture condenser (artificial nose...
21 CFR 868.5375 - Heat and moisture condenser (artificial nose).
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Heat and moisture condenser (artificial nose). 868.5375 Section 868.5375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... moisture condenser (artificial nose). (a) Identification. A heat and moisture condenser (artificial nose...
21 CFR 868.5375 - Heat and moisture condenser (artificial nose).
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Heat and moisture condenser (artificial nose). 868.5375 Section 868.5375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... moisture condenser (artificial nose). (a) Identification. A heat and moisture condenser (artificial nose...
2012-07-13
CAPE CANAVERAL, Fla. - Inside the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida, technicians use a lift to inspect the nose cone fairing for the Radiation Belt Storm Probes, or RBSP, spacecraft. The nose faring will house and protect the RBSP during liftoff aboard an Atlas V rocket. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Charisse Nahser
2012-07-12
CAPE CANAVERAL, Fla. - Inside the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida, technicians offload and prepare to uncover the nose cone fairing for the Radiation Belt Storm Probes, or RBSP, spacecraft. The nose faring will house and protect the RBSP during liftoff aboard an Atlas V rocket. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Charisse Nahser
2012-07-12
CAPE CANAVERAL, Fla. - Inside the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida, technicians uncrate, offload and prepare to uncover the nose cone fairing for the Radiation Belt Storm Probes, or RBSP, spacecraft. The nose faring will house and protect the RBSP during liftoff aboard an Atlas V rocket. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Charisse Nahser
2012-07-12
CAPE CANAVERAL, Fla. - Inside the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida, technicians open the shipping crate containing the nose cone fairing for the Radiation Belt Storm Probes, or RBSP, spacecraft. The nose faring will house and protect the RBSP during liftoff aboard an Atlas V rocket. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Charisse Nahser
2012-07-12
CAPE CANAVERAL, Fla. - Inside the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida, technicians open the shipping crate containing the nose cone fairing for the Radiation Belt Storm Probes, or RBSP, spacecraft. The nose faring will house and protect the RBSP during liftoff aboard an Atlas V rocket. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Charisse Nahser
2012-07-12
CAPE CANAVERAL, Fla. - Inside the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida, technicians offload and prepare to uncover the nose cone fairing for the Radiation Belt Storm Probes, or RBSP, spacecraft. The nose faring will house and protect the RBSP during liftoff aboard an Atlas V rocket. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Charisse Nahser
2012-07-13
CAPE CANAVERAL, Fla. - Inside the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida, technicians uncover and inspect the nose cone fairing for the Radiation Belt Storm Probes, or RBSP, spacecraft. The nose faring will house and protect the RBSP during liftoff aboard an Atlas V rocket. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Charisse Nahser
2012-07-12
CAPE CANAVERAL, Fla. - Inside the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida, technicians uncrate and prepare to uncover the nose cone fairing for the Radiation Belt Storm Probes, or RBSP, spacecraft. The nose faring will house and protect the RBSP during liftoff aboard an Atlas V rocket. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Charisse Nahser
2012-07-12
CAPE CANAVERAL, Fla. - Inside the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida, technicians uncrate and prepare to uncover the nose cone fairing for the Radiation Belt Storm Probes, or RBSP, spacecraft. The nose faring will house and protect the RBSP during liftoff aboard an Atlas V rocket. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Charisse Nahser
2012-07-12
CAPE CANAVERAL, Fla. - Inside the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida, technicians offload, inspect and prepare to uncover the nose cone fairing for the Radiation Belt Storm Probes, or RBSP, spacecraft. The nose faring will house and protect the RBSP during liftoff aboard an Atlas V rocket. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Charisse Nahser
2012-07-13
CAPE CANAVERAL, Fla. - Inside the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida, technicians inspect and prepare to uncover the nose cone fairing for the Radiation Belt Storm Probes, or RBSP, spacecraft. The nose faring will house and protect the RBSP during liftoff aboard an Atlas V rocket. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Charisse Nahser
2012-07-12
CAPE CANAVERAL, Fla. - Inside the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida, technicians offload, inspect and prepare to uncover the nose cone fairing for the Radiation Belt Storm Probes, or RBSP, spacecraft. The nose faring will house and protect the RBSP during liftoff aboard an Atlas V rocket. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Charisse Nahser
2012-07-12
CAPE CANAVERAL, Fla. - Inside the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida, technicians uncrate and prepare to uncover the nose cone fairing for the Radiation Belt Storm Probes, or RBSP, spacecraft. The nose faring will house and protect the RBSP during liftoff aboard an Atlas V rocket. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Charisse Nahser
2012-07-12
CAPE CANAVERAL, Fla. - Inside the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida, technicians open the shipping crate containing the nose cone fairing for the Radiation Belt Storm Probes, or RBSP, spacecraft. The nose faring will house and protect the RBSP during liftoff aboard an Atlas V rocket. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Charisse Nahser
2012-07-13
CAPE CANAVERAL, Fla. - Inside the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida, the nose cone fairing for the Radiation Belt Storm Probes, or RBSP, spacecraft is being uncovered for inspection. The nose faring will house and protect the RBSP during liftoff aboard an Atlas V rocket. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Charisse Nahser
2012-07-12
CAPE CANAVERAL, Fla. - Inside the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida, technicians offload and prepare to uncover the nose cone fairing for the Radiation Belt Storm Probes, or RBSP, spacecraft. The nose faring will house and protect the RBSP during liftoff aboard an Atlas V rocket. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Charisse Nahser
2012-07-13
CAPE CANAVERAL, Fla. - Inside the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida, technicians use a lift to inspect the nose cone fairing for the Radiation Belt Storm Probes, or RBSP, spacecraft. The nose faring will house and protect the RBSP during liftoff aboard an Atlas V rocket. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Charisse Nahser
2012-07-12
CAPE CANAVERAL, Fla. - Inside the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida, technicians uncrate and prepare to uncover the nose cone fairing for the Radiation Belt Storm Probes, or RBSP, spacecraft. The nose faring will house and protect the RBSP during liftoff aboard an Atlas V rocket. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Charisse Nahser
2012-07-12
CAPE CANAVERAL, Fla. - Inside the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida, technicians uncrate, inspect and prepare to uncover the nose cone fairing for the Radiation Belt Storm Probes, or RBSP, spacecraft. The nose faring will house and protect the RBSP during liftoff aboard an Atlas V rocket. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Charisse Nahser
2012-07-12
CAPE CANAVERAL, Fla. - Inside the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida, technicians uncrate, inspect and prepare to uncover the nose cone fairing for the Radiation Belt Storm Probes, or RBSP, spacecraft. The nose faring will house and protect the RBSP during liftoff aboard an Atlas V rocket. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Charisse Nahser
2012-07-12
CAPE CANAVERAL, Fla. - Inside the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida, technicians use a lift to inspect the nose cone fairing for the Radiation Belt Storm Probes, or RBSP, spacecraft. The nose faring will house and protect the RBSP during liftoff aboard an Atlas V rocket. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Charisse Nahser
2012-07-12
CAPE CANAVERAL, Fla. - Inside the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida, technicians offload, inspect and prepare to uncover the nose cone fairing for the Radiation Belt Storm Probes, or RBSP, spacecraft. The nose faring will house and protect the RBSP during liftoff aboard an Atlas V rocket. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Charisse Nahser
2012-07-13
CAPE CANAVERAL, Fla. - Inside the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida, technicians use a lift to inspect the nose cone fairing for the Radiation Belt Storm Probes, or RBSP, spacecraft. The nose faring will house and protect the RBSP during liftoff aboard an Atlas V rocket. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Charisse Nahser
2012-07-12
CAPE CANAVERAL, Fla. - Inside the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida, technicians offload, inspect and prepare to uncover the nose cone fairing for the Radiation Belt Storm Probes, or RBSP, spacecraft. The nose faring will house and protect the RBSP during liftoff aboard an Atlas V rocket. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Charisse Nahser
2012-07-12
CAPE CANAVERAL, Fla. - Inside the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida, technicians use a lift to inspect the nose cone fairing for the Radiation Belt Storm Probes, or RBSP, spacecraft. The nose faring will house and protect the RBSP during liftoff aboard an Atlas V rocket. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Charisse Nahser
21 CFR 874.4500 - Ear, nose, and throat microsurgical carbon dioxide laser.
Code of Federal Regulations, 2011 CFR
2011-04-01
... laser. 874.4500 Section 874.4500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND..., nose, and throat microsurgical carbon dioxide laser. (a) Identification. An ear, nose, and throat microsurgical carbon dioxide laser is a device intended for the surgical excision of tissue from the ear, nose...
21 CFR 874.4500 - Ear, nose, and throat microsurgical carbon dioxide laser.
Code of Federal Regulations, 2010 CFR
2010-04-01
... laser. 874.4500 Section 874.4500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND..., nose, and throat microsurgical carbon dioxide laser. (a) Identification. An ear, nose, and throat microsurgical carbon dioxide laser is a device intended for the surgical excision of tissue from the ear, nose...
21 CFR 874.4500 - Ear, nose, and throat microsurgical carbon dioxide laser.
Code of Federal Regulations, 2013 CFR
2013-04-01
... laser. 874.4500 Section 874.4500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND..., nose, and throat microsurgical carbon dioxide laser. (a) Identification. An ear, nose, and throat microsurgical carbon dioxide laser is a device intended for the surgical excision of tissue from the ear, nose...
21 CFR 874.4500 - Ear, nose, and throat microsurgical carbon dioxide laser.
Code of Federal Regulations, 2012 CFR
2012-04-01
... laser. 874.4500 Section 874.4500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND..., nose, and throat microsurgical carbon dioxide laser. (a) Identification. An ear, nose, and throat microsurgical carbon dioxide laser is a device intended for the surgical excision of tissue from the ear, nose...
21 CFR 874.4500 - Ear, nose, and throat microsurgical carbon dioxide laser.
Code of Federal Regulations, 2014 CFR
2014-04-01
... laser. 874.4500 Section 874.4500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND..., nose, and throat microsurgical carbon dioxide laser. (a) Identification. An ear, nose, and throat microsurgical carbon dioxide laser is a device intended for the surgical excision of tissue from the ear, nose...
21 CFR 874.5220 - Ear, nose, and throat drug administration device.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ear, nose, and throat drug administration device. 874.5220 Section 874.5220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Therapeutic Devices § 874.5220 Ear, nose...
21 CFR 874.5220 - Ear, nose, and throat drug administration device.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ear, nose, and throat drug administration device. 874.5220 Section 874.5220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Therapeutic Devices § 874.5220 Ear, nose...
21 CFR 874.5220 - Ear, nose, and throat drug administration device.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ear, nose, and throat drug administration device. 874.5220 Section 874.5220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Therapeutic Devices § 874.5220 Ear, nose...
21 CFR 874.5220 - Ear, nose, and throat drug administration device.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ear, nose, and throat drug administration device. 874.5220 Section 874.5220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Therapeutic Devices § 874.5220 Ear, nose...
21 CFR 874.5220 - Ear, nose, and throat drug administration device.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ear, nose, and throat drug administration device. 874.5220 Section 874.5220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Therapeutic Devices § 874.5220 Ear, nose...
2005-12-07
KENNEDY SPACE CENTER, FLA. -- In NASA Kennedy Space Center’s Orbiter Processing Facility Bay 1, technicians check details for the installation of the forward reaction control system on Atlantis (behind them). The control system fits just behind the nose cone and provides the thrust for attitude (rotational) maneuvers (pitch, yaw and roll) and for small velocity changes along the orbiter axis (translation maneuvers). Processing of Atlantis is under way for mission STS-115, the 19th flight to the International Space Station.
2005-12-07
KENNEDY SPACE CENTER, FLA. -- In NASA Kennedy Space Center’s Orbiter Processing Facility Bay 1, a technician inspects a point of installation of the forward reaction control system on Atlantis. The control system fits just behind the nose cone and provides the thrust for attitude (rotational) maneuvers (pitch, yaw and roll) and for small velocity changes along the orbiter axis (translation maneuvers). Processing of Atlantis is under way for mission STS-115, the 19th flight to the International Space Station.
Mechanism-Based Design for High-Temperature, High-Performance Composites. Book 2
1997-09-01
Sei. Eng. 1994, A188, 107 2 Lu, T.J. and Hutchinson, J.W. /. Am. Ceram. Soc. 1995,78, 261 3 Carlsson, L.A., Gillespie, J.W. and Pipes , R.B. J. Compos...Douglas Technologies Inc. (MDTI). It has potential commercial applications in jet engine exhaust ducts, leading edges, nose cones, and other hot...measured using the Archimedes principle in deionized water. Specimens were ground, polished, and ther- mally etched to reveal grain boundaries
Passively cooled direct drive wind turbine
Costin, Daniel P [Chelsea, VT
2008-03-18
A wind turbine is provided that passively cools an electrical generator. The wind turbine includes a plurality of fins arranged peripherally around a generator house. Each of the fins being oriented at an angle greater than zero degrees to allow parallel flow of air over the fin. The fin is further tapered to allow a constant portion of the fin to extend beyond the air stream boundary layer. Turbulence initiators on the nose cone further enhance heat transfer at the fins.
Spin Forming of Aluminum Metal Matrix Composites
NASA Technical Reports Server (NTRS)
Lee, Jonathan A.; Munafo, Paul M. (Technical Monitor)
2001-01-01
An exploratory effort between NASA-Marshall Space Flight Center (MSFC) and SpinCraft, Inc., to experimentally spin form cylinders and concentric parts from small and thin sheets of aluminum Metal Matrix Composites (MMC), successfully yielded good microstructure data and forming parameters. MSFC and SpinCraft will collaborate on the recent technical findings and develop strategy to implement this technology for NASA's advanced propulsion and airframe applications such as pressure bulkheads, combustion liner assemblies, propellant tank domes, and nose cone assemblies.
A novel approach to scavenging anesthetic gases in rodent surgery.
Nesbitt, Jeffrey C; Krageschmidt, Dale A; Blanco, Michael C
2013-01-01
Laboratory animal procedures using gas anesthetics may amass elevated waste gas concentrations in operating rooms if controls are not implemented for capturing and removing the vapors. Area sampling using an infrared analyzer indicated isoflurane concentrations likely to exceed occupational exposure guidelines. Our study showed environmental concentrations of oxygen as high as 40% and isoflurane concentrations >100 ppm when no controls or merely passive controls were utilized. These extraneous isoflurane emissions were determined to be originating from the pre-procedural induction process as well as the gas delivery nose cone. A novel waste gas collection cylinder was designed to enclose the gas delivery nose cone and animal head during the administration of anesthetic gases. The vented cylinder utilized a house vacuum to remove the waste anesthetic gases from the surgical field. A commercially available induction chamber designed to be actively and externally exhausted was used to lower concentrations during the induction process. With implementation of local exhaust ventilation controls, waste anesthetic gas concentrations decreased to below recommended occupational exposure levels. In vitro (sham) testing compared favorably to in vivo measurements validating the reduction capability of active ventilation during rodent anesthetic administration. In vivo isoflurane reductions for the induction chamber emissions, the operating room, and the surgeon's breathing zone were 95%, 60%, and 53%, respectively. The same measurements for an in vitro procedure were 98%, 84%, and 87%, respectively.
NASA Astrophysics Data System (ADS)
Wu, N.; Wang, J. H.; Shen, L.
2017-03-01
This paper presents a numerical investigation on the three-dimensional interaction between two bow shock waves in two environments, i.e. ground high-enthalpy wind tunnel test and real space flight, using Fluent 15.0. The first bow shock wave, also called induced shock wave, which is generated by the leading edge of a hypersonic vehicle. The other bow shock wave can be deemed objective shock wave, which is generated by the cowl clip of hypersonic inlet, and in this paper the inlet is represented by a wedge shaped nose cone. The interaction performances including flow field structures, aerodynamic pressure and heating are analyzed and compared between the ground test and the real space flight. Through the analysis and comparison, we can find the following important phenomena: 1) Three-dimensional complicated flow structures appear in both cases, but only in the real space flight condition, a local two-dimensional type IV interaction appears; 2) The heat flux and pressure in the interaction region are much larger than those in the no-interaction region in both cases, but the peak values of the heat flux and pressure in real space flight are smaller than those in ground test. 3) The interaction region on the objective surface are different in the two cases, and there is a peak value displacement of 3 mm along the stagnation line.
2012-07-13
CAPE CANAVERAL, Fla. - Inside the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida, technicians use a lift to uncover and inspect the nose cone fairing for the Radiation Belt Storm Probes, or RBSP, spacecraft. The nose faring will house and protect the RBSP during liftoff aboard an Atlas V rocket. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Charisse Nahser
2012-07-13
CAPE CANAVERAL, Fla. - Inside the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida, the nose cone fairing for the Radiation Belt Storm Probes, or RBSP, spacecraft includes an artistic depiction of the probe’s mission. The nose faring will house and protect the RBSP during liftoff aboard an Atlas V rocket. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Charisse Nahser
2012-07-13
CAPE CANAVERAL, Fla. - Inside the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida, technicians use a lift to uncover and inspect the nose cone fairing for the Radiation Belt Storm Probes, or RBSP, spacecraft. The nose faring will house and protect the RBSP during liftoff aboard an Atlas V rocket.rocket. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Charisse Nahser
2012-07-13
CAPE CANAVERAL, Fla. - Inside the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida, technicians use a lift to uncover and inspect the nose cone fairing for the Radiation Belt Storm Probes, or RBSP, spacecraft. The nose faring will house and protect the RBSP during liftoff aboard an Atlas V rocket. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Charisse Nahser
2012-07-13
CAPE CANAVERAL, Fla. - Inside the Astrotech payload processing facility near NASA’s Kennedy Space Center in Florida, technicians use a lift to inspect and uncover the nose cone fairing for the Radiation Belt Storm Probes, or RBSP, spacecraft. The nose faring will house and protect the RBSP during liftoff aboard an Atlas V rocket. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Charisse Nahser
NASA Technical Reports Server (NTRS)
Seal, Ellis C. (Inventor); Biggs, Jr., Robert William (Inventor); Bodepudi, Venu Prasad (Inventor); Cranston, John A. (Inventor)
2003-01-01
A novel materials technology has been developed and demonstrated for providing a high modulus composite material for use to 1000.degree. F. and above. This material can be produced at 5-20% of the cost of refractory materials, and has higher structural properties. This technology successfully resolves the problem of thermal shock or ply lift, which limits traditional high temperature laminates (such as graphite/polyimide and graphite/phenolic) to temperatures of 550-650.degree. F. in thicker (0.25 and above) laminates. The technology disclosed herein is an enabling technology for the nose for the External Tank (ET) of the Space Shuttle, and has been shown to be capable of withstanding the severe environments encountered by the nose cone through wind tunnel testing, high temperature subcomponent testing, and full scale structural, dynamic, acoustic, and damage tolerance testing.
Crooked fingers and sparse hair: an interesting case of trichorhinophalangeal syndrome type 1.
Narayanan, Ramakrishna; Chennareddy, Srinivasa
2015-01-27
Trichorhinophalangeal syndrome type 1 is a rare skeletal dysplasia of autosomal-dominant inheritance due to defects in the TRPS-1 gene. The syndrome is characterised by sparse slow-growing hair, a bulbous pear-shaped nose, cone-shaped epiphyses and deformities of the interphalangeal joints resembling those in rheumatoid arthritis. We present a case of trichorhinophalangeal syndrome in a 23-year-old man who presented with symmetrical painless progressive deformity of the fingers in both hands. 2015 BMJ Publishing Group Ltd.
1961-01-01
This is a comparison illustration of the Redstone, Jupiter-C, and Mercury Redstone launch vehicles. The Redstone ballistic missile was a high-accuracy, liquid-propelled, surface-to-surface missile. Originally developed as a nose cone re-entry test vehicle for the Jupiter intermediate range ballistic missile, the Jupiter-C was a modification of the Redstone missile and successfully launched the first American Satellite, Explorer-1, in orbit on January 31, 1958. The Mercury Redstone lifted off carrying the first American, astronaut Alan Shepard, in his Mercury spacecraft Freedom 7, on May 5, 1961.
System Measures Pressures Aboard A Compressor Rotor
NASA Technical Reports Server (NTRS)
Freedman, Robert J.; Senyitko, Richard G.; Blumenthal, Philip Z.
1994-01-01
Rotating pressure-measuring instrumentation includes on-board calibration standard. Computer-controlled, multichannel instrumentation system acquires pressure measurements from sensors mounted in 1.52-m-diameter rotor of compressor. Includes 5 miniature, electronically scanned pressure (ESP) modules, each containing 48 piezoresistive pressure sensors, pneumatic calibration valve, and electronic circuits for addressing and amplifying output of each sensor. Modules mounted on centerline of rotor, on instrumentation tower located inside nose cone of rotor. Subsystem designed to convert analog signal to distinct frequency without significantly affecting accuracy.
Brittle Materials Design, High Temperature Gas Turbine
1981-03-01
slides and core pins which formed the outer diameter and the hollow struts. Inner inserts were used to form the inside surface of the nose cone...ceramic component development. Figure 1 illustrates this by showing, in turn, ready removal in the test cell of a ceramic regenerator core , combusior...objective. This Executive Summary briefly reviews the highlights of the program. VII ■■■ *»W*w»«»^il»^.3«£*a;-^ -,Al^».t, „ . Regenerator Core Removal
Mapping Sequence performed during the STS-135 R-Bar Pitch Maneuver
2011-07-10
ISS028-E-015093 (10 July 2011) --- This nose cone view is one of a series of images showing various parts of the space shuttle Atlantis in Earth orbit as photographed by one of the six crewmembers on the International Space Station as the shuttle “posed” for photo and visual surveys and performed a back-flip for the rendezvous pitch maneuver (RPM). An 800 millimeter lens was used to capture this particular series of images.
Mapping Sequence performed during the STS-118 R-Bar Pitch Maneuver
2007-08-10
ISS015-E-21344 (10 Aug. 2007) --- This is one of a series of images photographed with a digital still camera using an 800mm focal length featuring the different areas of the Space Shuttle Endeavour as it approached the International Space Station and performed a back-flip to accommodate close scrutiny by eyeballs and cameras. This image shows the nose cone of Endeavour and surrounding area. Distance between the station and shuttle at this time was approximately 600 feet.
1967-11-01
Workmen at the Kennedy Space Center position the nose cone for the 204LM-1, an unmanned Apollo mission that tested the Apollo Lunar Module (LM) in Earth orbit. Also known as Apollo 5, the spacecraft was launched on the fourth Saturn IBC launch vehicle. Developed by the Marshall Space Flight Center (MSFC) as an interim vehicle in MSFC's "building block" approach to the Saturn rocket development, the Saturn IBC utilized Saturn I technology to further develop and refine a larger booster and the Apollo spacecraft capabilities required for the manned lunar missions.
NASA Astrophysics Data System (ADS)
Hogan, B.; Stone, W.; Bramall, N. E.; Siegel, V.; Lelievre, S.; Rothhammer, B.; Richmond, K.; Flesher, C.
2016-12-01
Subsurface exploration of icy ocean worlds requires an efficient method of penetrating ice to significant depths under extreme environment conditions. Searching for extant life dictates descent to a depth which is habitable or where biomarkers can survive and allow detection. It's anticipated that several meters to 10s of meters of shielding is required to prevent cosmic background radiation and other energetic particles from destroying biomarker evidence. We have devised, developed and demonstrated an entirely novel ice penetrating technology utilizing laser light carried by an optical fiber tether and emitted from a probe's optical nose cone and radiated directly into the volume of ice preceding the penetrator. We have termed it a "Direct Laser Penetrator" or DLP. We present design details, modeling, and test data from preliminary proof-of-concept experiments conducted at Stone Aerospace with results exceeding expectations and achieving the fastest reported thermal probe descent rate to date (> 12 m / hr). DLP has critical benefits over conventional "hot point" melt probes, which must generate large temperature gradients to force heat by conduction through the nose cone, and layers of ice and water. Additionally, hot point melt probes tested under vacuum have shown extreme difficulty initiating penetration, as virtually no thermal contact exists between the probe nose and rough ice surface. The ice simply sublimates and any transferred heat is quickly dissipated due to the low power density and extreme cold. DLP requires NO thermal contact between the probe nose and the ice surface since the laser energy is radiated directly into the volume (vs. surface) of ice preceding the penetrator. A proposed key element of the DLP is the fiber optic tether, coupled with a dedicated sensor fiber, enables "optical access" to the subsurface environment by a lander's shared or DLP dedicated on-board instruments (Raman / Fluorescence / fiber / UV / VIS / NIR spectroscopy, etc). These sensors can search for extant life by detecting biomarkers as well as characterizing the radiation / light environment for subsurface habitability. The combination of a laser penetrator w/ integrated fiber coupled instruments could be an important tool for an icy ocean worlds lander. (Supported by NASA funded SAS projects VALKYRIE and SPINDLE)
21 CFR 878.3680 - Nose prosthesis.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nose prosthesis. 878.3680 Section 878.3680 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3680 Nose prosthesis. (a...
21 CFR 878.3680 - Nose prosthesis.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nose prosthesis. 878.3680 Section 878.3680 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3680 Nose prosthesis. (a...
21 CFR 878.3680 - Nose prosthesis.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nose prosthesis. 878.3680 Section 878.3680 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3680 Nose prosthesis. (a...
21 CFR 878.3680 - Nose prosthesis.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nose prosthesis. 878.3680 Section 878.3680 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3680 Nose prosthesis. (a...
21 CFR 878.3680 - Nose prosthesis.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nose prosthesis. 878.3680 Section 878.3680 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Prosthetic Devices § 878.3680 Nose prosthesis. (a...
A replacement for methoxyflurane (Metofane) in open-circuit anaesthesia.
Itah, Refael; Gitelman, Inna; Davis, Claytus
2004-07-01
Methoxyflurane (Metofane) has been widely used as an open-circuit anaesthetic in small laboratory animals for several decades. Its low vapour pressure and high blood solubility have permitted its use in convenient and simple drop-chamber/nose-cone setups. Recently, following the decision by the primary manufacturer to discontinue production, it has become increasingly difficult to obtain methoxyflurane. We describe here a simple and effective adaptation of isoflurane, an excellent inhalation anaesthetic, to open-circuit drop-chamber/nose-cone anaesthesia. It was found that the vapour concentration of isoflurane could be continuously varied by dissolving the anaesthetic in propylene glycol and that a 20% solution produced effective anaesthesia such that in adult mice, 2 ml of 20% isoflurane in propylene glycol induced anaesthesia within 2 min in a one-litre drop chamber. Furthermore, anaesthesia maintenance with 20% isoflurane was tested in two sets of mice. In one set, surgical plane anaesthesia was maintained for 10 min in a head chamber. After removal of the chamber, the animals awoke within one minute and recovered without any indication of post-anaesthetic distress. The second set contained pregnant mice; here anaesthesia was maintained for between 10 and 12 min, during which laparotomy, exposure of one uterine horn, intrauterine injection and wound closure were completed. The recovery from anaesthesia was also within a minute and with no signs of distress. Healthy litters were delivered after a normal gestation. This isoflurane/propylene glycol procedure is simple, effective and humane, and is a good substitute for methoxyflurane.
NASA Technical Reports Server (NTRS)
Malcolm, G. N.; Schiff, L. B.
1985-01-01
Two rotary balance apparatuses were developed for testing airplane models in a coning motion. A large scale apparatus, developed for use in the 12-Foot Pressure Wind tunnel primarily to permit testing at high Reynolds numbers, was recently used to investigate the aerodynamics of 0.05-scale model of the F-15 fighter aircraft. Effects of Reynolds number, spin rate parameter, model attitude, presence of a nose boom, and model/sting mounting angle were investigated. A smaller apparatus, which investigates the aerodynamics of bodies of revolution in a coning motion, was used in the 6-by-6 foot Supersonic Wind Tunnel to investigate the aerodynamic behavior of a simple representation of a modern fighter, the Standard Dynamic Model (SDM). Effects of spin rate parameter and model attitude were investigated. A description of the two rigs and a discussion of some of the results obtained in the respective test are presented.
NASA Technical Reports Server (NTRS)
Fisher, David F.; Delfrate, John H.; Richwine, David M.
1991-01-01
Surface and off-surface flow visualization techniques were used to visualize the 3-D separated flows on the NASA F-18 high alpha research vehicle at high angles of attack. Results near the alpha = 25 to 26 deg and alpha = 45 to 49 deg are presented. Both the forebody and leading edge extension (LEX) vortex cores and breakdown locations were visualized using smoke. Forebody and LEX vortex separation lines on the surface were defined using an emitted fluid technique. A laminar separation bubble was also detected on the nose cone using the emitted fluid technique and was similar to that observed in the wind tunnel test, but not as extensive. Regions of attached, separated, and vortical flow were noted on the wing and the leading edge flap using tufts and flow cones, and compared well with limited wind tunnel results.
Grain-resolved analysis of localized deformation in nickel-titanium wire under tensile load.
Sedmák, P; Pilch, J; Heller, L; Kopeček, J; Wright, J; Sedlák, P; Frost, M; Šittner, P
2016-08-05
The stress-induced martensitic transformation in tensioned nickel-titanium shape-memory alloys proceeds by propagation of macroscopic fronts of localized deformation. We used three-dimensional synchrotron x-ray diffraction to image at micrometer-scale resolution the grain-resolved elastic strains and stresses in austenite around one such front in a prestrained nickel-titanium wire. We found that the local stresses in austenite grains are modified ahead of the nose cone-shaped buried interface where the martensitic transformation begins. Elevated shear stresses at the cone interface explain why the martensitic transformation proceeds in a localized manner. We established the crossover from stresses in individual grains to a continuum macroscopic internal stress field in the wire and rationalized the experimentally observed internal stress field and the topology of the macroscopic front by means of finite element simulations of the localized deformation. Copyright © 2016, American Association for the Advancement of Science.
NASA Technical Reports Server (NTRS)
Henderson, Arthur, Jr.; Johnston, Patrick J.
1959-01-01
The fluid-dynamic characteristics of flat plates, 5 deg and 10 deg wedges, and 5 deg and 10 deg cones have been investigated at Mach numbers from 16.3 to 23.9 in helium flow. The flat-plate results are for a leading-edge Reynolds number range of 584 to 19,500 and show that the induced pressure distribution is essentially linear with the hypersonic viscous interaction parameter bar X within the scope of this investigation. It is also shown that the rate at which the induced pressure varies with bar X is a linear function of the leading-edge Reynolds number. The wedge and cone results show that as the flow-deflection angle increases, the induced-pressure effects decrease and the measured pressures approach those predicted by inviscid shock theory.
NASA Technical Reports Server (NTRS)
Schiff, L. B.
1974-01-01
Concepts from the theory of functionals are used to develop nonlinear formulations of the aerodynamic force and moment systems acting on bodies in large-amplitude, arbitrary motions. The analysis, which proceeds formally once the functional dependence of the aerodynamic reactions upon the motion variables is established, ensures the inclusion, within the resulting formulation, of pertinent aerodynamic terms that normally are excluded in the classical treatment. Applied to the large-amplitude, slowly varying, nonplanar motion of a body, the formulation suggests that the aerodynamic moment can be compounded of the moments acting on the body in four basic motions: steady angle of attack, pitch oscillations, either roll or yaw oscillations, and coning motion. Coning, where the nose of the body describes a circle around the velocity vector, characterizes the nonplanar nature of the general motion.
NASA Technical Reports Server (NTRS)
Rathjen, K. A.; Burk, H. O.
1983-01-01
The computer code CAVE (Conduction Analysis via Eigenvalues) is a convenient and efficient computer code for predicting two dimensional temperature histories within thermal protection systems for hypersonic vehicles. The capabilities of CAVE were enhanced by incorporation of the following features into the code: real gas effects in the aerodynamic heating predictions, geometry and aerodynamic heating package for analyses of cone shaped bodies, input option to change from laminar to turbulent heating predictions on leading edges, modification to account for reduction in adiabatic wall temperature with increase in leading sweep, geometry package for two dimensional scramjet engine sidewall, with an option for heat transfer to external and internal surfaces, print out modification to provide tables of select temperatures for plotting and storage, and modifications to the radiation calculation procedure to eliminate temperature oscillations induced by high heating rates. These new features are described.
Acoustic rhinometry of the Indian and Anglo-Saxon nose.
Gurr, P; Diver, J; Morgan, N; MacGregor, F; Lund, V
1996-09-01
The internal and external geometry of the nose has previously been shown to differ between Anglo-Saxon, Chinese, and Negro noses. It is therefore important to define the normal geometric nasal parameters of a given race, so as to detect the abnormal nose. We present acoustic rhinometric data, with height-adjusted figures, examining the nasal minimum cross-sectional area (MCA), the distance to the nostril from the MCA, and the MCA between 0-6 cm. These data show no significant differences between Indian and Anglo-Saxon noses.
2008-09-30
new source section and by mounting nose arrays. Unicorn will have a single nose array while Caribou with the dual array. The new configurations are...Nose array Figure 1: New Configurations of the MIT BF21 AUVs Unicorn and Caribou. Both are being equipped
14 CFR 25.499 - Nose-wheel yaw and steering.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Nose-wheel yaw and steering. 25.499 Section 25.499 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... inertia forces. (d) For other than the nose gear, its attaching structure, and the forward fuselage...
Code of Federal Regulations, 2011 CFR
2011-01-01
... reactions in paragraph (b) of this section, on the nose wheel tire, except as provided in paragraphs (b)(2) and (b)(3) of this section. (b) The applicable ground reactions for nose wheel tires are as follows: (1) The static ground reaction for the tire corresponding to the most critical combination of...
Code of Federal Regulations, 2010 CFR
2010-01-01
... reactions in paragraph (b) of this section, on the nose wheel tire, except as provided in paragraphs (b)(2) and (b)(3) of this section. (b) The applicable ground reactions for nose wheel tires are as follows: (1) The static ground reaction for the tire corresponding to the most critical combination of...
21 CFR 874.4250 - Ear, nose, and throat electric or pneumatic surgical drill.
Code of Federal Regulations, 2010 CFR
2010-04-01
... surgical drill. 874.4250 Section 874.4250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH....4250 Ear, nose, and throat electric or pneumatic surgical drill. (a) Identification. An ear, nose, and throat electric or pneumatic surgical drill is a rotating drilling device, including the handpiece, that...
21 CFR 874.3620 - Ear, nose, and throat synthetic polymer material.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ear, nose, and throat synthetic polymer material. 874.3620 Section 874.3620 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN..., and throat synthetic polymer material. (a) Identification. Ear, nose, and throat synthetic polymer...
33 CFR 110.71 - Jacobs Nose Cove, Elk River, Md.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Jacobs Nose Cove, Elk River, Md. 110.71 Section 110.71 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.71 Jacobs Nose Cove, Elk River, Md. The water...
33 CFR 110.71 - Jacobs Nose Cove, Elk River, Md.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Jacobs Nose Cove, Elk River, Md. 110.71 Section 110.71 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.71 Jacobs Nose Cove, Elk River, Md. The water...
33 CFR 110.71 - Jacobs Nose Cove, Elk River, Md.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Jacobs Nose Cove, Elk River, Md. 110.71 Section 110.71 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.71 Jacobs Nose Cove, Elk River, Md. The water...
33 CFR 110.71 - Jacobs Nose Cove, Elk River, Md.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Jacobs Nose Cove, Elk River, Md. 110.71 Section 110.71 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.71 Jacobs Nose Cove, Elk River, Md. The water...
33 CFR 110.71 - Jacobs Nose Cove, Elk River, Md.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Jacobs Nose Cove, Elk River, Md. 110.71 Section 110.71 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.71 Jacobs Nose Cove, Elk River, Md. The water...
21 CFR 874.3620 - Ear, nose, and throat synthetic polymer material.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ear, nose, and throat synthetic polymer material. 874.3620 Section 874.3620 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN..., and throat synthetic polymer material. (a) Identification. Ear, nose, and throat synthetic polymer...
21 CFR 874.3620 - Ear, nose, and throat synthetic polymer material.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ear, nose, and throat synthetic polymer material. 874.3620 Section 874.3620 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN..., and throat synthetic polymer material. (a) Identification. Ear, nose, and throat synthetic polymer...
21 CFR 874.3620 - Ear, nose, and throat synthetic polymer material.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ear, nose, and throat synthetic polymer material. 874.3620 Section 874.3620 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN..., and throat synthetic polymer material. (a) Identification. Ear, nose, and throat synthetic polymer...
21 CFR 874.3620 - Ear, nose, and throat synthetic polymer material.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ear, nose, and throat synthetic polymer material. 874.3620 Section 874.3620 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN..., and throat synthetic polymer material. (a) Identification. Ear, nose, and throat synthetic polymer...
21 CFR 874.5300 - Ear, nose, and throat examination and treatment unit.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ear, nose, and throat examination and treatment unit. 874.5300 Section 874.5300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Therapeutic Devices § 874.5300...
21 CFR 874.5300 - Ear, nose, and throat examination and treatment unit.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ear, nose, and throat examination and treatment unit. 874.5300 Section 874.5300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Therapeutic Devices § 874.5300...
21 CFR 874.5300 - Ear, nose, and throat examination and treatment unit.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ear, nose, and throat examination and treatment unit. 874.5300 Section 874.5300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Therapeutic Devices § 874.5300...
Superfluid-helium-cooled rocket-borne far-infrared radiometer.
Blair, A G; Edeskuty, F; Hiebert, R D; Jones, D M; Shipley, J P; Williamson, K D
1971-05-01
A far-infrared radiometer, cooled to 1.6 K by superfluid helium, has been flown in a Terrier-Sandhawk rocket. The instrument was designed to measure night-sky radiation in three wavelength passbands between 6 mm and 0.1 mm at altitudes between 120 km and 350 km. A failure in the rocket nose cone separation system prevented the measurement of this radiation, but the performance of the instrument during flight was generally satisfactory. Design features and operational characteristics of the cryogenic, optical, detection, and electronic systems are presented.
Missile Aerodynamics for Ascent and Re-entry
NASA Technical Reports Server (NTRS)
Watts, Gaines L.; McCarter, James W.
2012-01-01
Aerodynamic force and moment equations are developed for 6-DOF missile simulations of both the ascent phase of flight and a tumbling re-entry. The missile coordinate frame (M frame) and a frame parallel to the M frame were used for formulating the aerodynamic equations. The missile configuration chosen as an example is a cylinder with fixed fins and a nose cone. The equations include both the static aerodynamic coefficients and the aerodynamic damping derivatives. The inclusion of aerodynamic damping is essential for simulating a tumbling re-entry. Appended information provides insight into aerodynamic damping.
2007-05-09
KENNEDY SPACE CENTER, FLA. -- In NASA Kennedy Space Center's Vehicle Assembly Building, technicians observe the sander used to repair hail damage on Atlantis' nose cone. In late February, Atlantis' external tank received hail damage during a severe thunderstorm that passed through the Kennedy Space Center Launch Complex 39 area. The hail caused visible divots in the giant tank's foam insulation as well as minor surface damage to about 26 heat shield tiles on the shuttle's left wing. The launch of Space Shuttle Atlantis on mission STS-117 now is targeted for June 8. Photo credit: NASA/Jack Pfaller
2007-05-09
KENNEDY SPACE CENTER, FLA. -- In NASA Kennedy Space Center's Vehicle Assembly Building, technicians adjust the sander used to repair hail damage on Atlantis' nose cone. In late February, Atlantis' external tank received hail damage during a severe thunderstorm that passed through the Kennedy Space Center Launch Complex 39 area. The hail caused visible divots in the giant tank's foam insulation as well as minor surface damage to about 26 heat shield tiles on the shuttle's left wing. The launch of Space Shuttle Atlantis on mission STS-117 now is targeted for June 8. Photo credit: NASA/Jack Pfaller
2013-11-25
reaction time, the core of the flow was sampled through a small orifice in a rounded nose cone, while the bulk of the gas was pumped by an oil free...than rebound for the latter. Calculations were performed with the OW quantum number J equal to 0, 3, and 6 to investigate the effect of OH-rotational...have little dependence on J. Possible effects on the atomistic mechanisms were investigated for the S(N)2 pathway and the probability of the direct
2006-07-17
KENNEDY SPACE CENTER, FLA. - During the traditional post-flight walk-around after the landing of an orbiter, Mission Specialist Lisa Nowak gets a close look at the nose cone. Discovery's smooth and perfect landing was on time at 9:14 a.m. EDT on Runway 15 of NASA's Shuttle Landing Facility after traveling 5.3 million miles on 202 orbits. Mission elapsed time was 12 days, 18 hours, 37 minutes and 54 seconds. The landing is the 62nd at Kennedy Space Center and the 32nd for Discovery. Photo credit: NASA/Kim Shiflett
Modeling of Hall Thruster Lifetime and Erosion Mechanisms (Preprint)
2007-09-01
Hall thruster plasma discharge has been upgraded to simulate the erosion of the thruster acceleration channel, the degradation of which is the main life-limiting factor of the propulsion system. Evolution of the thruster geometry as a result of material removal due to sputtering is modeled by calculating wall erosion rates, stepping the grid boundary by a chosen time step and altering the computational mesh between simulation runs. The code is first tuned to predict the nose cone erosion of a 200 W Busek Hall thruster , the BHT-200. Simulated erosion
Evaluation of EXPLOSAFE. Explosion Suppression System for Aircraft Fuel Tank Protection
1980-07-01
between the Baffles,4 after Test 142 66 Test 2: Batt at Mouth of Tail Cone Rotated 3 Degrees 143 67 Test 2: No Rotation of Sealant Anchored Batts in Nose...Data 85 16 One "G" Drop Test Data 87 17 Vent Icing Test Data 911 18 Slosh Rig Transducer Calibration 103 19 Slosh Rig Test Data - Dry Run without Test...airborne applications. xxix Even though the dry weight of the material is somewhat greater d than that of other e,.:plosion suppressant materials
Geometerial description for a proposed aeroassist flight experiment vehicle
NASA Technical Reports Server (NTRS)
Cheatwood, F. M.; Dejarnette, F. J.; Hamilton, H. H., II
1986-01-01
One geometry currently under consideration for the Aeroassist Flight Experiment (AFE) vehicle is composed of several segments of simple general conics: an ellipsoidal nose tangent to an elliptical cone and a base skirt with the base plane raked relative to the body axis. An analytic representation for the body coordinates and first and second partial derivatives of this configuration has been developed. Equations are given which define the body radius and partial derivatives for a prescribed axial and circumferential position on the vehicle. The results for a sample case are tabulated and presented graphically.
NASA Technical Reports Server (NTRS)
Kelly, T. C.
1980-01-01
Pressure and load distributions for a related group of simulated launch vehicle configurations are presented. The configurations were selected so that the nose cone and interstage transition flare components were relatively close to one another and subject to mutual interference effects. Tests extended over a Mach number range from 0.40 to 1.20 at angles of attack from 0 deg to about 10 deg. The test Reynolds numbers, based on main stage diameter, were of the order of 0.00000098.
Flight motor set 360L002 (STS-27R). Volume 5: Nozzle component
NASA Technical Reports Server (NTRS)
Meyer, S. A.
1990-01-01
A review of the performance and post-flight condition of the STS-27 Redesigned Solid Rocket Motor (RSRM) nozzles is presented. Thermal/Structural instrumentation data is reviewed, and applicable Discrepancy Reports (DRs) and Process Departures (PDs) are presented. The Nozzle Component Program Team (NCPT) performance evaluation and the Redesign Program Review Board (RPRB) assessment is included. The STS-27 nozzle assemblies were flown on the RSRM Second Flight (Space Shuttle Atlantis) on 2 December 1988. The nozzles were a partially submerged convergent and/or divergent movable design with an aft pivot point flexible bearing. The nozzle assemblies incorporated the following features: RSRM forward exit cone with snubber assembly, RSRM fixed housing, Structural backup Outer Boot Ring (OBR), RSRM cowl ring, RSRM nose inlet assembly, RSRM throat assembly, RSRM aft exit cone assembly with Linear-Shaped Charge (LSC), RTV backfill in Joints 1, 3, and 4, Use of EA913 NA adhesive in place of EA913 adhesive, Redesigned nozzle plug, and Carbon Cloth Phenolic (CCP) with 750 ppm sodium content. The CCP material usage for the STS-27 forward nozzle and aft exit cone assemblies is shown.
NASA Technical Reports Server (NTRS)
Carroll, H. R.
1977-01-01
A .0275 scale forebody model of the new baseline configuration of the space shuttle external tank vent cap configuration was tested to determine the flow field due to the double cone configuration. The tests were conducted in a 3.5 foot hypersonic wind tunnel at alpha = -5 deg, -4.59 deg, 0 deg, 5 deg, and 10 deg; beta = 0 deg, -3 deg, -5.51 deg, -6 deg, -9 deg, and +6 deg; nominal freestream Reynolds numbers per foot of 1.5 x 1 million, 3.0 x 1 million, and 5.0 x 1 million; and a nominal Mach number of 5. Separation and reattached flow from thermocouple data, shadowgraphs, and oil flows indicate that separation begins about 80% from the tip of the 10 deg cone, then reattaches on the vent cap and produces fully turbulent flow over most of the model forebody. The hardware disturbs the flow over a much larger area than present TPS application has assumed. A correction to the flow disturbance was experimentally suggested from the results of an additional test run.
Film cooling effectiveness on a large angle blunt cone flying at hypersonic speed
NASA Astrophysics Data System (ADS)
Sahoo, Niranjan; Kulkarni, Vinayak; Saravanan, S.; Jagadeesh, G.; Reddy, K. P. J.
2005-03-01
Effectiveness of film cooling technique to reduce convective heating rates for a large angle blunt cone flying at hypersonic Mach number and its effect on the aerodynamic characteristics is investigated experimentally by measuring surface heat-transfer rates and aerodynamic drag coefficient simultaneously. The test model is a 60° apex-angle blunt cone with an internally mounted accelerometer balance system for measuring aerodynamic drag and an array of surface mounted platinum thin film gauges for measuring heat-transfer rates. The coolant gas (air, carbon dioxide, and/or helium) is injected into the hypersonic flow at the nose of the test model. The experiments are performed at a flow free stream Mach number of 5.75 and 0° angle of attack for stagnation enthalpies of 1.16MJ/kg and 1.6MJ/kg with and without gas injection. About 30%-45% overall reduction in heat-transfer rates is observed with helium as coolant gas except at stagnation regions. With all other coolants, the reduction in surface heat-transfer rate is between 10%-25%. The aerodynamic drag coefficient is found to increase by 12% with helium injection whereas with other gases this increase is about 27%.
Design of a ram accelerator mass launch system
NASA Technical Reports Server (NTRS)
Aarnio, Michael; Armerding, Calvin; Berschauer, Andrew; Christofferson, Erik; Clement, Paul; Gohd, Robin; Neely, Bret; Reed, David; Rodriguez, Carlos; Swanstrom, Fredrick
1988-01-01
The ram accelerator mass launch system has been proposed to greatly reduce the costs of placing acceleration-insensitive payloads into low earth orbit. The ram accelerator is a chemically propelled, impulsive mass launch system capable of efficiently accelerating relatively large masses from velocities of 0.7 km/sec to 10 km/sec. The principles of propulsion are based on those of a conventional supersonic air-breathing ramjet; however the device operates in a somewhat different manner. The payload carrying vehicle resembles the center-body of the ramjet and accelerates through a stationary tube which acts as the outer cowling. The tube is filled with premixed gaseous fuel and oxidizer mixtures that burn in the vicinity of the vehicle's base, producing a thrust which accelerates the vehicle through the tube. This study examines the requirement for placing a 2000 kg vehicle into a 500 km circular orbit with a minimum amount of on-board rocket propellant for orbital maneuvers. The goal is to achieve a 50 pct payload mass fraction. The proposed design requirements have several self-imposed constraints that define the vehicle and tube configurations. Structural considerations on the vehicle and tube wall dictate an upper acceleration limit of 1000 g's and a tube inside diameter of 1.0 m. In-tube propulsive requirements and vehicle structural constraints result in a vehicle diameter of 0.76 m, a total length of 7.5 m and a nose-cone half angle of 7 degrees. An ablating nose-cone constructed from carbon-carbon composite serves as the thermal protection mechanism for atmospheric transit.
Free-Flight Test of a Technique for Inflating an NASA 12-Foot-Diameter Sphere at High Altitudes
NASA Technical Reports Server (NTRS)
Kehlet, Alan B.; Patterson, Herbert G.
1959-01-01
A free-flight test has been conducted to check a technique for inflating an NASA 12-foot-diameter inflatable sphere at high altitudes. Flight records indicated that the nose section was successfully separated from the booster rocket, that the sphere was ejected, and that the nose section was jettisoned from the fully inflated sphere. On the basis of preflight and flight records, it is believed that the sphere was fully inflated by the time of peak altitude (239,000 feet). Calculations showed that during descent, jettison of the nose section occurred above an altitude of 150,000 feet. The inflatable sphere was estimated to start to deform during descent at an altitude of about 120,000 feet.
21 CFR 874.4350 - Ear, nose, and throat fiberoptic light source and carrier.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ear, nose, and throat fiberoptic light source and carrier. 874.4350 Section 874.4350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... of plastic fibers and that is intended to provide illumination at the tip of an ear, nose, or throat...
Calculation of linearized supersonic flow over slender cones of arbitrary cross section
NASA Technical Reports Server (NTRS)
Mascitti, V. R.
1972-01-01
Supersonic linearized conical-flow theory is used to determine the flow over slender pointed cones having horizontal and vertical planes of symmetry. The geometry of the cone cross sections and surface velocities are expanded in Fourier series. The symmetry condition permits the uncoupling of lifting and nonlifting solutions. The present method reduces to Ward's theory for flow over a cone of elliptic cross section. Results are also presented for other shapes. Results by this method diverge for cross-sectional shapes where the maximum thickness is large compared with the minimum thickness. However, even for these slender-body shapes, lower order solutions are good approximations to the complete solution.
Hypersonic Wind-Tunnel Measurements of Boundary-Layer Pressure Fluctuations
2009-08-01
experiments. The third and fourth sections of the cone are designed to hold the instrumentation. The model can be run as a 0.102-m base-diameter cone...using the third section only, or 28 Figure 3.10. Glow-perturber section the fourth section can be added to increase the cone base diameter to 0.127 m...the second sensor. The third sensor shows an increase in frequency components above 15 kHz as well as a rise in lower frequencies. As transition
2006-10-05
KENNEDY SPACE CENTER, FLA. - In the Vehicle Assembly Building, the solid rocket boosters (SRBs) are being stacked for the orbiter Discovery and mission STS-116. Seen here are the nose cones on top of the SRBs. Discovery will be rolling over to the VAB in early November to be stacked with the SRBs and external tank for launch. STS-116 will be mission number 20 to the International Space Station and construction flight 12A.1. The mission payload is the SPACEHAB module, the P5 integrated truss structure and other key components. Launch is scheduled for no earlier than Dec. 7. Photo credit: NASA/Jack Pfaller
Melt-Infiltration Process For SiC Ceramics And Composites
NASA Technical Reports Server (NTRS)
Behrendt, Donald R.; Singh, Mrityunjay
1994-01-01
Reactive melt infiltration produces silicon carbide-based ceramics and composites faster and more economically than do such processes as chemical vapor infiltration (CVI), reaction sintering, pressureless sintering, hot pressing, and hot isostatic pressing. Process yields dense, strong materials at relatively low cost. Silicon carbide ceramics and composites made by reactive melt infiltration used in combustor liners of jet engines and in nose cones and leading edges of high-speed aircraft and returning spacecraft. In energy industry, materials used in radiant-heater tubes, heat exchangers, heat recuperators, and turbine parts. Materials also well suited to demands of advanced automobile engines.
2007-05-09
KENNEDY SPACE CENTER, FLA. -- In NASA Kennedy Space Center's Vehicle Assembly Building, technicians place a piece of foam on the side of Atlantis' nose cone to rest the sander while they make adjustments. In late February, Atlantis' external tank received hail damage during a severe thunderstorm that passed through the Kennedy Space Center Launch Complex 39 area. The hail caused visible divots in the giant tank's foam insulation as well as minor surface damage to about 26 heat shield tiles on the shuttle's left wing. The launch of Space Shuttle Atlantis on mission STS-117 now is targeted for June 8. Photo credit: NASA/Jack Pfaller
2007-05-09
KENNEDY SPACE CENTER, FLA. -- In NASA Kennedy Space Center's Vehicle Assembly Building, one technician adjusts the sander while another observes as they work on repairing the hail damage to Atlantis' nose cone. In late February, Atlantis' external tank received hail damage during a severe thunderstorm that passed through the Kennedy Space Center Launch Complex 39 area. The hail caused visible divots in the giant tank's foam insulation as well as minor surface damage to about 26 heat shield tiles on the shuttle's left wing. The launch of Space Shuttle Atlantis on mission STS-117 now is targeted for June 8. Photo credit: NASA/Jack Pfaller
2006-07-17
KENNEDY SPACE CENTER, FLA. - During the traditional post-flight walk-around after the landing of an orbiter, Mission Specialists Piers Sellers, Michael Fossum and Stephanie Wilson get a close look at the nose cone, behind them. Discovery's smooth and perfect landing was on time at 9:14 a.m. EDT on Runway 15 of NASA's Shuttle Landing Facility after traveling 5.3 million miles on 202 orbits. Mission elapsed time was 12 days, 18 hours, 37 minutes and 54 seconds. The landing is the 62nd at Kennedy Space Center and the 32nd for Discovery. Photo credit: NASA/Kim Shiflett
1967-08-02
Developed by the Marshall Space Flight Center (MSFC) as an interim vehicle in MSFC’s “building block” approach to the Saturn rocket development, the Saturn IB utilized Saturn I technology to further develop and refine the larger boosters and the Apollo spacecraft capabilities required for the manned lunar missions. The Saturn IB vehicle was a two-stage rocket and had a payload capability about 50 percent greater than the Saturn I vehicle. The first stage, S-IB stage, was a redesigned first stage of the Saturn I. This photograph is of the S-IB nose cone #3 during assembly in building 4752.
Gee, Carole T
2013-11-01
As an alternative to conventional thin-sectioning, which destroys fossil material, high-resolution X-ray computed tomography (also called microtomography or microCT) integrated with scientific visualization, three-dimensional (3D) image segmentation, size analysis, and computer animation is explored as a nondestructive method of imaging the internal anatomy of 150-million-year-old conifer seed cones from the Late Jurassic Morrison Formation, USA, and of recent and other fossil cones. • MicroCT was carried out on cones using a General Electric phoenix v|tome|x s 240D, and resulting projections were processed with visualization software to produce image stacks of serial single sections for two-dimensional (2D) visualization, 3D segmented reconstructions with targeted structures in color, and computer animations. • If preserved in differing densities, microCT produced images of internal fossil tissues that showed important characters such as seed phyllotaxy or number of seeds per cone scale. Color segmentation of deeply embedded seeds highlighted the arrangement of seeds in spirals. MicroCT of recent cones was even more effective. • This is the first paper on microCT integrated with 3D segmentation and computer animation applied to silicified seed cones, which resulted in excellent 2D serial sections and segmented 3D reconstructions, revealing features requisite to cone identification and understanding of strobilus construction.
Lessons learned from the recovered heatshield of the USERS REV capsule
NASA Astrophysics Data System (ADS)
Yamada, Tetsuya; Matsuda, Seiji; Okuyama, Keiichi; Ishii, Nobuaki
2008-01-01
The USERS Reentry Vehicle (REV) capsule carried out reentry flight from the low earth orbit and was successfully recovered on the sea in May, 2003. This paper presents the post-flight analysis of the recovered heatshield of REV capsule and summarizes the lessons learned. REV capsule, totally about 670 kg, has the combined shape of the nose hemisphere and the rear cone part, and its size is about 1.5 m in diameter and 1.9 m in length. REV is thermally protected against the aerodynamic heating by the carbon phenolic ablator heatshield. The recovered REV heatshield was scrutinized based on the outside aspect and the cross-sections. In general, the temperature profiles of the heatshield have been compared between the flight data and the prediction. The origin of the surface shallow cracks and slight delamination observed in the heatshield have been investigated based on the flight data and taking account of the ablator internal pyrolysis gas pressure, the thermal stress, and the allowable stress. The heatshield has proven to satisfy thermal protection requirements, and the validity of the designing has been confirmed.
Three-dimensional changes in nose and upper lip volume after orthognathic surgery.
van Loon, B; van Heerbeek, N; Bierenbroodspot, F; Verhamme, L; Xi, T; de Koning, M J J; Ingels, K J A O; Bergé, S J; Maal, T J J
2015-01-01
Orthognathic surgery aims to improve both the function and facial appearance of the patient. Translation of the maxillomandibular complex for correction of malocclusion is always followed by changes to the covering soft tissues, especially the nose and lips. The purpose of this study was to evaluate the changes in the nasal region and upper lip due to orthognathic surgery using combined cone beam computed tomography (CBCT) and three-dimensional (3D) stereophotogrammetry datasets. Patients who underwent a Le Fort I osteotomy, with or without a bilateral sagittal split osteotomy, were included in this study. Pre- and postoperative documentation consisted of 3D stereophotogrammetry and CBCT scans. 3D measurements were performed on the combined datasets and analyzed. Anterior translation and clockwise pitching of the maxilla led to a significant volume increase in the lip. Cranial translation of the maxilla led to an increase in the alar width. The combination of CBCT DICOM data and 3D stereophotogrammetry proved to be useful in the 3D analysis of the maxillary hard tissue changes, as well as changes in the soft tissues. Measurements could be acquired and compared to investigate the influence of maxillary movement on the soft tissues of the nose and the upper lip. Copyright © 2014 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Wilder, M. C.; Bogdanoff, D. W.
2005-01-01
A research effort to advance techniques for determining transition location and measuring surface temperatures on graphite-tipped projectiles in hypersonic flight in a ballistic range is described. Projectiles were launched at muzzle velocities of approx. 4.7 km/sec into air at pressures of 190-570 Torr. Most launches had maximum pitch and yaw angles of 2.5-5 degrees at pressures of 380 Torr and above and 3-6 degrees at pressures of 190-380 Torr. Arcjet-ablated and machined, bead-blasted projectiles were launched; special cleaning techniques had to be developed for the latter class of projectiles. Improved methods of using helium to remove the radiating gas cap around the projectiles at the locations where ICCD (intensified charge coupled device) camera images were taken are described. Two ICCD cameras with a wavelength sensitivity range of 480-870 nm have been used in this program for several years to obtain images. In the last year, a third camera, with a wavelength sensitivity range of 1.5-5 microns [in the infrared (IR)], has been added. ICCD and IR camera images of hemisphere nose and 70 degree sphere-cone nose projectiles at velocities of 4.0-4.7 km/sec are presented. The ICCD images clearly show a region of steep temperature rise indicative of transition from laminar to turbulent flow. Preliminary temperature data for the graphite projectile noses are presented.
Receptivity of Hypersonic Boundary Layers Due to Acoustic Disturbances over Blunt Cone
NASA Technical Reports Server (NTRS)
Kara, K.; Balakumar, P.; Kandil, O. A.
2007-01-01
The transition process induced by the interaction of acoustic disturbances in the free-stream with boundary layers over a 5-degree straight cone and a wedge with blunt tips is numerically investigated at a free-stream Mach number of 6.0. To compute the shock and the interaction of shock with the instability waves the Navier-Stokes equations are solved in axisymmetric coordinates. The governing equations are solved using the 5th -order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using third-order total-variation-diminishing (TVD) Runge-Kutta scheme for time integration. After the mean flow field is computed, acoustic disturbances are introduced at the outer boundary of the computational domain and unsteady simulations are performed. Generation and evolution of instability waves and the receptivity of boundary layer to slow and fast acoustic waves are investigated. The mean flow data are compared with the experimental results. The results show that the instability waves are generated near the leading edge and the non-parallel effects are stronger near the nose region for the flow over the cone than that over a wedge. It is also found that the boundary layer is much more receptive to slow acoustic wave (by almost a factor of 67) as compared to the fast wave.
Haines, S.S.; Pidlisecky, Adam; Knight, R.
2009-01-01
With the goal of improving the understanding of the subsurface structure beneath the Harkins Slough recharge pond in Pajaro Valley, California, USA, we have undertaken a multimodal approach to develop a robust velocity model to yield an accurate seismic reflection section. Our shear-wave reflection section helps us identify and map an important and previously unknown flow barrier at depth; it also helps us map other relevant structure within the surficial aquifer. Development of an accurate velocity model is essential for depth conversion and interpretation of the reflection section. We incorporate information provided by shear-wave seismic methods along with cone penetrometer testing and seismic cone penetrometer testing measurements. One velocity model is based on reflected and refracted arrivals and provides reliable velocity estimates for the full depth range of interest when anchored on interface depths determined from cone data and borehole drillers' logs. A second velocity model is based on seismic cone penetrometer testing data that provide higher-resolution ID velocity columns with error estimates within the depth range of the cone penetrometer testing. Comparison of the reflection/refraction model with the seismic cone penetrometer testing model also suggests that the mass of the cone truck can influence velocity with the equivalent effect of approximately one metre of extra overburden stress. Together, these velocity models and the depth-converted reflection section result in a better constrained hydrologic model of the subsurface and illustrate the pivotal role that cone data can provide in the reflection processing workflow. ?? 2009 European Association of Geoscientists & Engineers.
Gee, Carole T.
2013-01-01
• Premise of the study: As an alternative to conventional thin-sectioning, which destroys fossil material, high-resolution X-ray computed tomography (also called microtomography or microCT) integrated with scientific visualization, three-dimensional (3D) image segmentation, size analysis, and computer animation is explored as a nondestructive method of imaging the internal anatomy of 150-million-year-old conifer seed cones from the Late Jurassic Morrison Formation, USA, and of recent and other fossil cones. • Methods: MicroCT was carried out on cones using a General Electric phoenix v|tome|x s 240D, and resulting projections were processed with visualization software to produce image stacks of serial single sections for two-dimensional (2D) visualization, 3D segmented reconstructions with targeted structures in color, and computer animations. • Results: If preserved in differing densities, microCT produced images of internal fossil tissues that showed important characters such as seed phyllotaxy or number of seeds per cone scale. Color segmentation of deeply embedded seeds highlighted the arrangement of seeds in spirals. MicroCT of recent cones was even more effective. • Conclusions: This is the first paper on microCT integrated with 3D segmentation and computer animation applied to silicified seed cones, which resulted in excellent 2D serial sections and segmented 3D reconstructions, revealing features requisite to cone identification and understanding of strobilus construction. PMID:25202495
NASA Technical Reports Server (NTRS)
Parker, Hermon M
1953-01-01
An analysis is made of the transient heat-conduction effects in three simple semi-infinite bodies: the flat insulated plate, the conical shell, and the slender solid cone. The bodies are assumed to have constant initial temperatures and, at zero time, to begin to move at a constant speed and zero angle of attack through a homogeneous atmosphere. The heat input is taken as that through a laminar boundary layer. Radiation heat transfer and transverse temperature gradients are assumed to be zero. The appropriate heat-conduction equations are solved by an iteration method, the zeroeth-order terms describing the situation in the limit of small time. The method is presented and the solutions are calculated to three orders which are sufficient to give reasonably accurate results when the forward edge has attained one-half the total temperature rise (nose half-rise time). Flight Mach number and air properties occur as parameters in the result. Approximate expressions for the extent of the conduction region and nose half-rise times as functions of the parameters of the problem are presented. (author)
TPS design for aerobraking at Earth and Mars
NASA Astrophysics Data System (ADS)
Williams, S. D.; Gietzel, M. M.; Rochelle, W. C.; Curry, D. M.
1991-08-01
An investigation was made to determine the feasibility of using an aerobrake system for manned and unmanned missions to Mars, and to Earth from Mars and lunar orbits. A preliminary thermal protection system (TPS) was examined for five unmanned small nose radius, straight bi-conic vehicles and a scaled up Aeroassist Flight Experiment (AFE) vehicle aerocapturing at Mars. Analyses were also conducted for the scaled up AFE and an unmanned Sample Return Cannister (SRC) returning from Mars and aerocapturing into Earth orbit. Also analyzed were three different classes of lunar transfer vehicles (LTV's): an expendable scaled up modified Apollo Command Module (CM), a raked cone (modified AFT), and three large nose radius domed cylinders. The LTV's would be used to transport personnel and supplies between Earth and the moon in order to establish a manned base on the lunar surface. The TPS for all vehicles analyzed is shown to have an advantage over an all-propulsive velocity reduction for orbit insertion. Results indicate that TPS weight penalties of less than 28 percent can be achieved using current material technology, and slightly less than the most favorable LTV using advanced material technology.
JAE: A Jupiter Atmospheric Entry Probe Heating Code
NASA Technical Reports Server (NTRS)
Wercinski, Paul F.; Tauber, Michael E.; Yang, Lily
1997-01-01
The strong gravitational attraction of Jupiter on probes approaching the planet results in very high atmospheric entry velocities. The values relative to the rotating atmosphere can vary from about 47 to 60 km/sec, depending on the latitude of the entry. Therefore, the peak heating rates and heat shield mass fractions exceed those for any other atmospheric entries. For example, the Galileo probe's heat shield mass fraction was 50%, of which 45% was devoted to the forebody. Although the Galileo probe's mission was very successful, many more scientific questions about the Jovian atmosphere remain to be answered and additional probe missions are being planned. Recent developments in microelectronics have raised the possibility of building smaller and less expensive probes than Galileo. Therefore, it was desirable to develop a code that could quickly compute the forebody entry heating environments when performing parametric probe sizing studies. The Jupiter Atmospheric Entry (JAE) code was developed to meet this requirement. The body geometry consists of a blunt-nosed conical shape of arbitrary nose and base radius and cone angles up to about 65 deg at zero angle of attack.
Fukunaka, Yasushi; Sawada, Susumu S; Nishiura, Chihiro; Noguchi, Jun; Tsukamoto, Koji; Otsuji, Yutaka; Marui, Eiji
2013-01-01
This study was a cross-sectional survey of Japanese workers regarding the relationship between touching the eyes or nose and susceptibility to URTI in workers. The survey respondents were 4,663 Japanese workers. Subjects were surveyed via a self-administered questionnaire regarding their susceptibility to URTI and how often they touched their eyes or nose. In addition, subjects were surveyed regarding their preventive behaviors and routine behaviors thought to be associated with URTIs. A multiple logistic regression model was used to assess the relationship between susceptibility to URTI and how often the eyes or nose are touched. Responses from 3,663 individuals who answered the self-administered questionnaire were analyzed. There were 1,590 individuals (42.9%) with a "frequent incidence of URTIs", defined as URTIs more than once a year. In terms of how often the eyes or nose are touched, the odds ratios (95% CI) for a frequent incidence of URTIs among the groups responding "sometimes" and "often" were 1.41 (1.21-1.63) and 1.96 (1.59-2.42) (trend test: p<0.001) compared with the groups responding "never" and "almost never". Multivariate-adjusted odds ratios adjusted for confounding factors, i.e., behaviors to prevent URTIs, routine behaviors associated with URTIs, age, sex and BMI, were 1.33 (1.14-1.54) and 1.69 (1.36-2.09) (trend test: p<0.001). The present cross-sectional study indicates that susceptibility to URTI and how often the eyes or nose are touched are significantly associated in Japanese workers, independent of preventive behaviors and routine behaviors associated with URTIs
Zhang, Rosaline S; Lin, Lawrence O; Hoppe, Ian C; Jackson, Oksana A; Low, David W; Bartlett, Scott P; Swanson, Jordan W; Taylor, Jesse A
2018-01-01
To characterize the epidemiology and risk factors for nasal obstruction among subjects with cleft lip and/or cleft palate (CL/P) utilizing the well-validated Nasal Obstruction Symptom Evaluation (NOSE) survey. Retrospective cross-sectional study. Cleft Lip and Palate Program, Children's Hospital of Philadelphia. Patients, Subjects: One thousand twenty-eight surveys obtained from 456 subjects (mean age: 10.10 (4.48) years) with CL/P evaluated between January 2015 and August 2017 with at least 1 completed NOSE survey. Nasal Obstruction Symptom Evaluation surveys completed at each annual visit. Composite NOSE and individual symptom scores. Sixty-seven percent of subjects had nasal obstruction at some point during the study period, with 49% reporting nasal obstruction at latest follow-up. subjects aged 14 years and older reported the most severe symptoms ( P = .002). Subjects with cleft lip and alveolus (CL+A) and unilateral cleft lip and palate (CLP) reported more severe nasal blockage than other phenotypes ( P = .021). subjects with a history of either posterior pharyngeal flap (PPF) or sphincter pharyngoplasty (SP) had significantly higher NOSE scores than subjects with no history of speech surgery ( P = .006). There was no significant difference ( P > .050) in NOSE scores with regard to history of primary tip rhinoplasty, nasal stent use, or nasoalveolar molding. There are more severe nasal obstructive symptoms among subjects older than 14 years of age, with CL+A or unilateral CLP, and with a history of PPF or SP. Future studies utilizing the NOSE are needed to evaluate and address this prevalent morbidity in the CLP population.
NASA Technical Reports Server (NTRS)
Davies, C. B.; Park, C.
1983-01-01
A method was developed to generate the surface coordinates of body shapes suitable for aeroassisted, orbital-transfer vehicles (AOTVs) by extending bent biconic geometries. Lift, drag, and longitudinal moments were calculated for the bodies using Newtonian flow theory. These techniques were applied to symmetric and asymmetric aerobraking vehicles, and to an aeromaneuvering vehicle with high L/D. Results for aerobraking applications indicate that a 70 deg, fore half cone angle with a spherically blunted nose, rounded edges, and a slight asymmetry would be appropriate. Moreover, results show that an aeromaneuvering vehicle with L/D 2.0, and with sufficient stability, is feasible.
NASA Technical Reports Server (NTRS)
Micol, John R.
1989-01-01
The Aeroassisted Flight Experiment vehicle for whose scale model pressure and heat-transfer rate distributions have been measured in air at Mach 10 is a 60-deg elliptic cone, raked off at a 73-percent angle, with an ellipsoid nose and a skirt added to the base of the rake plane to reduce heating. The predictions of both an inviscid flow-field code and a Navier-Stokes solver are compared with measured values. Good agreement is obtained in the case of pressure distributions; the effect of Reynolds number on heat-transfer distributions is noted to be small.
Repairing the damage to Atlantis' External Tank
2007-03-07
Technicians in the Vehicle Assembly Building prepare materials that will be used during repair of the nose cone on Atlantis' external tank. A severe thunderstorm with golf ball-sized hail caused visible divots in the giant tank's foam insulation and minor surface damage to about 26 heat shield tiles on the shuttle's left wing. Further evaluation of the tank is necessary to get an accurate accounting of foam damage and determine the type of repair required and the time needed for that work. A new target launch date has not been determined, but teams will focus on preparing Atlantis for liftoff in late April on mission STS-117.
Design and fabrication of nosecone for WB-57F aircraft fitted with APQ-102A side looking radar
NASA Technical Reports Server (NTRS)
1977-01-01
The design, fabrication, and testing of a nose cone which included a radome for a NASA WB-57F high altitude natural resources mapping aircraft was reviewed. The plane was fitted with a APQ-102A side looking radar operating at 9.6 GHz. The radar is directed normally to the direction of the flight and downward by a changeable angle, and it is assumed that the axis of the plane will not deviate from this direction by more than + or - 6 deg. The radome is required to subtend an angle of 160 deg centered 30 deg below the left horizon.
Phase-measuring laser holographic interferometer for use in high speed flows
NASA Astrophysics Data System (ADS)
Yanta, William J.; Spring, W. Charles, III; Gross, Kimberly Uhrich; McArthur, J. Craig
Phase-measurement techniques have been applied to a dual-plate laser holographic interferometer (LHI). This interferometer has been used to determine the flowfield densities in a variety of two-dimensional and axisymmetric flows. In particular, LHI has been applied in three different experiments: flowfield measurements inside a two-dimensional scramjet inlet, flow over a blunt cone, and flow over an indented nose shape. Comparisons of experimentally determined densities with computational results indicate that, when phase-measurement techniques are used in conjunction with state-of-the-art image-processing instrumentation, holographic interferometry can be a diagnostic tool with high resolution, high accuracy, and rapid data retrieval.
2007-07-01
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, workers complete encapsulation of the fairing around NASA's Dawn spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch 4.5 billion years ago by investigating in detail two of the largest asteroids, Ceres and Vesta. They reside between Mars and Jupiter in the asteroid belt. Launch is scheduled for July 8. Photo credit: NASA/Amanda Diller
2009-05-15
CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., technicians closely watch as the fairing halves move together to enclose NASA's Lunar Reconnaissance Orbiter, or LRO, and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller
2009-05-15
CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., technicians closely watch the joining of the fairing halves around NASA's Lunar Reconnaissance Orbiter, or LRO, and and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller
2009-05-15
CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., the fairing halves are moved together for another attempt at installation around NASA's Lunar Reconnaissance Orbiter, or LRO, and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller
2009-05-15
CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., technicians move the first half of the fairing toward NASA's Lunar Reconnaissance Orbiter, or LRO, with NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS, for installation. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller
2009-05-15
CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., the fairing halves are moved apart for another attempt at installation around NASA's Lunar Reconnaissance Orbiter, or LRO, and and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller
2009-05-15
CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., technicians observe NASA's Lunar Reconnaissance Orbiter, or LRO, with and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS, during installation of the fairing. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller
2009-05-15
CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., technicians closely watch as the fairing halves come together around NASA's Lunar Reconnaissance Orbiter, or LRO, and and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent.The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller
2009-05-15
CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., the fairing halves have been joined to enclose NASA's Lunar Reconnaissance Orbiter, or LRO, and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller
2009-05-15
CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., technicians closely watch as the fairing halves move together to enclose NASA's Lunar Reconnaissance Orbiter, or LRO, and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller
1981-03-01
i I.L 08~z oi-z ok oi 06-z oiL oi’L 0#lp t o HH OJO.4... oil sump walls. Oil level is readily discerned through the translucent plastic nose cone. 334 got H ) I aNZ 9j(OL) ’f(OL) =U) I auc90 = U1 UNZ V~dI...o D 00 0 (W0U I LL Z( < U. a) 00 - 4. 210 LU C 337U C W LUV I - z 0- zz D0 CVJ 0< -IL ~ Z 0ui I - fcic zL caz - < - < < <cjj CA00 > I ccn > -/ -L - o
2012-09-20
CAPE CANAVERAL, Fla. – Inside Orbiter Processing Facility-2 at NASA’s Kennedy Space Center in Florida, a view of space shuttle Atlantis’ nose cone is shown as the payload bay doors are closed for the final time. The orbiter is undergoing final preparations for its transfer to the Kennedy Space Center Visitor complex targeted for November. The work is part of Transition and Retirement of the remaining shuttle. Atlantis is being prepared for public display at the visitor complex. Over the course of its 26-year career, Atlantis spent 293 days in space during 33 missions. For more information, visit http://www.nasa.gov/transition. Photo credit: NASA/Jim Grossmann
2012-09-20
CAPE CANAVERAL, Fla. – Inside Orbiter Processing Facility-2 at NASA’s Kennedy Space Center in Florida, a view of space shuttle Atlantis’ nose cone is shown as the payload bay doors are closed for the final time. The orbiter is undergoing final preparations for its transfer to the Kennedy Space Center Visitor complex targeted for November. The work is part of Transition and Retirement of the remaining shuttle. Atlantis is being prepared for public display at the visitor complex. Over the course of its 26-year career, Atlantis spent 293 days in space during 33 missions. For more information, visit http://www.nasa.gov/transition. Photo credit: NASA/Jim Grossmann
A Thermoelastic Damping Model for the Cone Microcantilever Resonator with Circular Cross-section
NASA Astrophysics Data System (ADS)
Li, Pu; Zhou, Hongyue
2017-07-01
Microbeams with variable cross-section have been applied in Microelectromechanical Systems (MEMS) resonators. Quality factor (Q-factor) is an important factor evaluating the performance of MEMS resonators, and high Q-factor stands for the excellent performance. Thermoelastic damping (TED), which has been verified as a fundamental energy lost mechanism for microresonators, determines the upper limit of Q-factor. TED can be calculated by the Zener’s model and Lifshits and Roukes (LR) model. However, for microbeam resonators with variable cross-sections, these two models become invalid in some cases. In this work, we derived the TED model for cone microcantilever with circular cross-section that is a representative non-uniform microbeam. The comparison of results obtained by the present model and Finite Element Method (FEM) model proves that the present model is valid for predicting TED value for cone microcantilever with circular cross-section. The results suggest that the first-order natural frequencies and TED values of cone microcantilever are larger than those of uniform microbeam for large aspect ratios (l/r 0). In addition, the Debye peak value of a uniform microcantilever is equal to 0.5ΔE, while that of cone microcantilever is about 0.438ΔE.
Regional deposition of nasal sprays in adults: A wide ranging computational study.
Kiaee, Milad; Wachtel, Herbert; Noga, Michelle L; Martin, Andrew R; Finlay, Warren H
2018-05-01
The present work examines regional deposition within the nose for nasal sprays over a large and wide ranging parameter space by using numerical simulation. A set of 7 realistic adult nasal airway geometries was defined based on computed tomography images. Deposition in 6 regions of each nasal airway geometry (the vestibule, valve, anterior turbinate, posterior turbinate, olfactory, and nasopharynx) was determined for varying particle diameter, spray cone angle, spray release direction, particle injection speed, and particle injection location. Penetration of nasal spray particles through the airway geometries represented unintended lung exposure. Penetration was found to be relatively insensitive to injection velocity, but highly sensitive to particle size. Penetration remained at or above 30% for particles exceeding 10 μm in diameter for several airway geometries studied. Deposition in the turbinates, viewed as desirable for both local and systemic nasal drug delivery, was on average maximized for particles ranging from ~20 to 30 μm in diameter, and for low to zero injection velocity. Similar values of particle diameter and injection velocity were found to maximize deposition in the olfactory region, a potential target for nose-to-brain drug delivery. However, olfactory deposition was highly variable between airway geometries, with maximum olfactory deposition ranging over 2 orders of magnitude between geometries. This variability is an obstacle to overcome if consistent dosing between subjects is to be achieved for nose-to-brain drug delivery. Copyright © 2018 John Wiley & Sons, Ltd.
14 CFR 23.499 - Supplementary conditions for nose wheels.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Supplementary conditions for nose wheels. 23.499 Section 23.499 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... their static positions, the following conditions must be met: (a) For aft loads, the limit force...
14 CFR 23.499 - Supplementary conditions for nose wheels.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Supplementary conditions for nose wheels. 23.499 Section 23.499 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... their static positions, the following conditions must be met: (a) For aft loads, the limit force...
Effect of Body Nose Shape on the Propulsive Efficiency of a Propeller
NASA Technical Reports Server (NTRS)
Stickle, George W; Crigler, John L; Naiman, Irven
1941-01-01
Report presents the results of an investigation of the propulsive efficiency of three adjustable propellers of 10-foot diameter operated in front of four body nose shapes, varying from streamline nose that continued through the propeller plane in the form of a large spinner to a conventional open-nose radial-engine cowling. One propeller had airfoil sections close to the hub, the second had conventional round blade shanks, and the third differed from the second only in pitch distribution. The blade-angle settings ranged from 20 degrees to 55 degrees at the 0.75 radius. The effect of the body nose shape on propulsive efficiency may be divided into two parts: (1) the change in the body drag due to the propeller slipstream and (2) the change in propeller load distribution due to the change in velocity caused by the body. For the nose shape tested in the report, the first effect is shown to be very small; therefore, the chief emphasis of the report is confined to the second effect.
Martins, Luciana Flaquer; Vigorito, Julio Wilson
2013-01-01
To determine the characteristics of facial soft tissues at rest and wide smile, and their possible relation to the facial type. We analyzed a sample of forty-eight young female adults, aged between 19.10 and 40 years old, with a mean age of 30.9 years, who had balanced profile and passive lip seal. Cone beam computed tomographies were performed at rest and wide smile postures on the entire sample which was divided into three groups according to individual facial types. Soft tissue features analysis of the lips, nose, zygoma and chin were done in sagittal, axial and frontal axis tomographic views. No differences were observed in any of the facial type variables for the static analysis of facial structures at both rest and wide smile postures. Dynamic analysis showed that brachifacial types are more sensitive to movement, presenting greater sagittal lip contraction. However, the lip movement produced by this type of face results in a narrow smile, with smaller tooth exposure area when compared with other facial types. Findings pointed out that the position of the upper lip should be ahead of the lower lip, and the latter, ahead of the pogonion. It was also found that the facial type does not impact the positioning of these structures. Additionally, the use of cone beam computed tomography may be a valuable method to study craniofacial features.
Wu, Min-Kai; de Groot, Sjoerd D; van der Sluis, Luc W M; Wesselink, Paul R
2003-09-01
We sought to measure and calculate the percentage of the gutta-percha-filled area in the apical root canal after the use of a standardized or inverted master cone in cold lateral compaction.Study design Two groups of extracted mandibular premolars with a single canal were instrumented with instruments of the same size; furthermore, they were obturated with laterally compacted gutta-percha cones with AH26 used as a sealer. In the first group, a standardized master cone was used with its narrow end in an apical position, whereas in the other group, an inverted master cone was used with its wide end in an apical position. The 2 master cones had the same apical diameter and fit in the apical canal. After lateral compaction, horizontal sections were cut at a level 3 and 5 mm from the apex of each filled tooth. Photographs of the sections were taken by using a microscope equipped with a digital camera; the photos were then scanned as tagged-image file format images. The cross-sectional area of the canal and the gutta-percha were measured by using an image-analysis program. The percentage of gutta-percha-filled area was calculated. At both levels, the inverted master cone produced a significantly higher percentage, statistically, of gutta-percha-filled area than did the standardized master cone (P =.001 at 3 mm; P =.012 at 5 mm). The use of an inverted master cone in cold lateral compaction may facilitate the apical placement of accessory cones, significantly increasing the volume of gutta-percha while reducing the volume of sealer in the apical root canal.
Closeup view of the reinforced carboncarbon nose on the forward ...
Close-up view of the reinforced carbon-carbon nose on the forward section of the Orbiter Discovery's in the Vehicle Assembly Building at NASA's Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Afterbody Heating Predictions for a Mars Science Laboratory Entry Vehicle
NASA Technical Reports Server (NTRS)
Edquist, Karl T.
2005-01-01
The Mars Science Laboratory mission intends to deliver a large rover to the Martian surface within 10 km of its target site. One candidate entry vehicle aeroshell consists of a 3.75-m diameter, 70-deg sphere-cone forebody and a biconic afterbody similar to that of Viking. This paper presents computational fluid dynamics predictions of laminar afterbody heating rates for this configuration and a 2010 arrival at Mars. Computational solutions at flight conditions used an 8-species Mars gas model in chemical and thermal non-equilibrium. A grid resolution study examined the effects of mesh spacing on afterbody heating rates and resulted in grids used for heating predictions on a reference entry trajectory. Afterbody heating rate reaches its maximum value near 0.6 W/sq cm on the first windward afterbody cone at the time of peak freestream dynamic pressure. Predicted afterbody heating rates generally are below 3% of the forebody laminar nose cap heating rate throughout the design trajectory. The heating rates integrated over time provide total heat load during entry, which drives thermal protection material thickness.
NASA Technical Reports Server (NTRS)
Reed, T. D.
1981-01-01
The distribution of Preston tube pressures within turbulent boundary layers along the surface of a sharp-nosed, ten degree cone was correlated with theoretical values of turbulent skin friction for freestream Mach numbers less than one. The mini-basic computer code, the Wu and Lock computer code, and the STAN-5 computer code were used to analyze the data and to solve the boundary layer conservation equations. The skin friction which results from using Preston tube pressures in the correlation equation, has a rms error of 1.125 percent. It was found that the effective center of the probe is not a constant but increases as the surface distance increases. For a specified unit Reynolds number, the effective center of the probe decreases as the Mach number increases. The variation of the fluid (air) properties across the face of the probe may be neglected for subsonic flows. The possible transverse errors caused by the use of the concept of a virtual origin for the turbulent boundary layer were investigated and found to be negligible.
The Indian nose: An anthropometric analysis.
Mehta, Nikhil; Srivastava, Rakesh K
2017-10-01
Anthropometric measurements of the nose are of great importance in planning aesthetic nasal surgery. Abundant literature is available on anthropometric analysis of Caucasians and Orientals, without similar references on the Indian nose and its regional differences. Thus, we conducted a descriptive cross-sectional epidemiological study of 1000 volunteers, with equal number of subjects derived from five geographic groups, namely North, Central, West, South, and the Himalayan region, to determine differences in nasal morphology of Indian population and among its various regions. The objective was to establish a standard Indian data for guidance in nasal surgery. All measurements were deduced using photographic analysis. The mean nasal height and width of our study population was 50.48 and 36.59 mm, respectively. Nasal profile varied among all five regions of the country. North Indians had the longest (52.69 mm nasal height) but the narrowest nose (35.01 mm width), thus having a leptorrhine nose with Caucasoid features. South Indians had the broadest nose (nasal width = 38.66 mm), whereas subjects from the Himalayan region had the shortest nose (nasal height = 47.2 mm). Indians on average had a mesorrhine nose as compared to Caucasians and Orientals who have a leptorrhine nose and Africans who have a platyrrhine nose. We thus conclude that the Indian nose should be considered a different entity in comparison to the nose of Caucasian, Oriental, and African populations. There are obvious differences in the facial architecture of people from different regions within the country. Therefore, appropriate adjustments need to be made according to different racial descents during nasal surgeries so as to give patients results that blend harmoniously with other facial features. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Buschman, Albert J., Jr.; Pittman, Claud M.
1961-01-01
Radiation-interchange configuration factors are derived for axisymmetrical sections of cylinders, cones, and hemispheres radiating internally to annular and circular sections of their bases and to other axisymmetrical sections. The general procedure of obtaining configuration factors is outlined and the results are presented in the form of equations, tables, and figures.
NASA Technical Reports Server (NTRS)
Boyd, John W
1951-01-01
The results of an experimental investigation of the load distribution over two triangular wings in sideslip at Mach numbers from 1.20 to 1.79 are presented and compared with theory. The two wings tested have identical plan form, 45 degrees sweepback of the leading edge, and an aspect ratio of 4.0. One model was composed of round-nose airfoil sections and the other of sharp-nose, biconvex sections. For both wings the maximum thickness of streamwise sections was 6 percent and was located at the 30-percent chord.
Tables for Supersonic Flow Around Right Circular Cones at Small Angle of Attack
NASA Technical Reports Server (NTRS)
Sims, Joseph L.
1964-01-01
The solution of supersonic flow fields by the method of characteristics requires that starting conditions be known. Ferri, in reference 1, developed a method-of-characteristics solution for axially symmetric bodies of revolution at small angles of attack. With computing machinery that is now available, this has become a feasible method for computing the aerodynamic characteristics of bodies near zero angle of attack. For sharp-nosed bodies of revolution, the required starting line may be obtained by computing the flow field about a cone at a small angle of attack. This calculation is readily performed using Stone's theory in reference 2. Some solutions of this theory are available in reference 3. However, the manner in which these results are presented, namely in a wind-fixed coordinate system, makes their use somewhat cumbersome. Additionally, as pointed out in reference 4, the flow component perpendicular to the meridian planes was computed incorrectly. The results contained herein have been computed in the same basic manner as those of reference 3 with the correct velocity normal to the meridian planes. Also, all results have been transferred into the body-fixed coordinate system. Therefore, the values tabulated herein may be used, in conjunction with the respective zero-angle-of-attack results of reference 5, as starting conditions for the method-of-characteristics solution of the flow field about axially symmetric bodies of revolution at small angles of attack. As in the zero-angle-of-attack case (ref. 5) the present results have been computed using the ideal gas value of 1.4 for the ratio of the specific heats of air. Solutions are given for cone angles from 2.5 deg to 30 deg in increments of 2.5 deg. For each cone angle, results were computed for a constant series of free-stream Mach numbers from 1.5 to 20. In addition, a solution was computed which yielded the minimum free-stream Mach number for a completely supersonic conical flow field. For cone angles of 27.5 deg and 30 deg, this minimum free-stream Mach number was above 1.5. Consequently, solutions at this Mach number were not computed for these two cone angles.
The Effect of Nose Shape on the Drag of Bodies of Revolution at Zero Angle of Attack
NASA Technical Reports Server (NTRS)
Seiff, Alvin; Sandahl, Carl A.
1951-01-01
The subject of this paper is the drag of the nose section of bodies of revolution at zero angle of attack. The magnitude of the nose drag in relation to the total drag is very distinctly a function of the body design and the Mach number. It can range from a very small fraction of the total drag of the order of 10 percent to a very large fraction as high as 80 percent. The natural objective of nose design is to minimize the drag, but this objective is not always the primary one. Sometimes other factors overshadow the desire for minimum drag. The most conspicuous example of this is the proposal of guidance engineers that large-diameter spheres and other very blunt shapes be used at the nose tip. This paper will attempt to discuss both phases of the problem, noses for minimum drag and noses with very blunt tips. The state of the theory will also be reviewed and recent theoretical developments described, since the theory still remains a very valuable tool for assaying the effects of compromises in design and departure from shapes for which experimental data are available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, T.T.; Rose, B.R.; O'Farrell, T.P.
1987-09-01
The distribution, abundance, and habitat use of the endangered blunt-nosed leopard lizard, Gambelia silus, was studied on and adjacent to Naval Petroleum Reserves No. 1 (NPR-1, Elk Hills), and No. 2 (NPR-2, Buena Vista), Kern County, CAlifornia. A total of 262 blunt-nosed leopard lizards were seen over 8 years (1979-1987) in 28 sections of NPR-1, 15 sections of NPR-2, and 10 sections adjacent to the petroleum reserves. All but one were in areas of gentle or flat relief with sparse annual ground cover. Home range size and overlap, activity patterns, and habitat use were determined from monitoring blunt-nosed leopard lizardsmore » fitted with miniature radiocollars on two study sites. Mean home range size estimated by the minimum polygon method was 2.7 acres for female blunt-nosed leopard lizards, which was significantly smaller than the 5.4 acres mean home range size for males inhabiting a major wash. The structure of the habitat affected significantly the lizards' activity and burrow use. Lizards inhabiting the wash study site were more frequently seen on the surface not associated with a burrow than lizards in the more sparsely vegetated grassland study site (63% compared with 48% of their sightings); 51.5% of the sightings for lizards in the grassland study site were associated with burrows, compared with 37.1% for lizards in the wash study site. Burrows were not shared and some burrows were used more than once (30% of burrows and 62% of burrow sightings).« less
14 CFR 25.255 - Out-of-trim characteristics.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Out-of-trim characteristics. 25.255 Section...-trim characteristics. (a) From an initial condition with the airplane trimmed at cruise speeds up to... of out-of-trim in both the airplane nose-up and nose-down directions, which results from the greater...
Exploring Conics: Why Does B Squared - 4AC Matter?
ERIC Educational Resources Information Center
Herman, Marlena
2012-01-01
The Ancient Greeks studied conic sections from a geometric point of view--by cutting a cone with a plane. Later, Apollonius (ca. 262-190 BCE) obtained the conic sections from one right double cone. The modern approach to the study of conics can be considered "analytic geometry," in which conic sections are defined in terms of distance…
Tricho-rhino-phalangeal syndrome type I in a Belgian family.
Verbruggen, L A; Van Laere, C; Lamoureux, J; Van Tiggelen, R
1987-06-01
We report three cases of tricho-rhino-phalangeal syndrome (TRPS) type I in a Belgian family. They presented typical characteristics such as a pear-shaped nose, and short, deformed fingers with cone-shaped epiphyses of some middle phalanges of the hands. Hair growth was practically normal in our patients, except for some narrowing of the lateral part of the eyebrows. Perthes-like hip dysplasia was documented in two of our cases. The proband presented at the age of 31 with Kienböch's disease of the right wrist. Blood and urine analysis showed no clear anomalies. In this patient, echography revealed a renal cyst containing a stone. The relationship of these findings to TRPS is discussed.
Aerobraking orbital transfer vehicle
NASA Technical Reports Server (NTRS)
Scott, Carl D. (Inventor); Nagy, Kornel (Inventor); Roberts, Barney B. (Inventor); Ried, Robert C. (Inventor); Kroll, Kenneth R. (Inventor); Gamble, Joe (Inventor)
1989-01-01
An aerobraking orbital transfer vehicle which includes an aerobraking device which also serves as a heat shield in the shape of a raked-off elliptic or circular cone with a circular or elliptical base, and with an ellipsoid or other blunt shape nose. The aerobraking device is fitted with a toroid-like skirt and is integral with the support structure of the propulsion system and other systems of the space vehicle. The vehicle is intended to be transported in components to a space station in lower earth orbit where it is assembled for use as a transportation system from low earth orbit to geosynchronous earth orbit and return. Conventional guidance means are included for autonomous flight.
Repairing the damage to Atlantis' External Tank
2007-03-07
On an upper level of high bay 1 of the Vehicle Assembly Building, technicians prepare the area around the nose cone (left) of Atlantis' external tank that will undergo repair for hail damage. A severe thunderstorm with golf ball-sized hail caused visible divots in the giant tank's foam insulation and minor surface damage to about 26 heat shield tiles on the shuttle's left wing. Further evaluation of the tank is necessary to get an accurate accounting of foam damage and determine the type of repair required and the time needed for that work. A new target launch date has not been determined, but teams will focus on preparing Atlantis for liftoff in late April on mission STS-117.
2007-03-07
KENNEDY SPACE CENTER, FLA. -- Technicians in the Vehicle Assembly Building prepare materials that will be used during repair of the nose cone on Atlantis' external tank. A severe thunderstorm with golf ball-sized hail caused visible divots in the giant tank's foam insulation and minor surface damage to about 26 heat shield tiles on the shuttle's left wing. Further evaluation of the tank is necessary to get an accurate accounting of foam damage and determine the type of repair required and the time needed for that work. A new target launch date has not been determined, but teams will focus on preparing Atlantis for liftoff in late April on mission STS-117. Photo credit: NASA/George Shelton
Repairing the damage to Atlantis' External Tank
2007-03-07
On an upper level of high bay 1 of the Vehicle Assembly Building, technicians prepare the area around the nose cone (foreground) of Atlantis' external tank that will undergo repair for hail damage. A severe thunderstorm with golf ball-sized hail caused visible divots in the giant tank's foam insulation and minor surface damage to about 26 heat shield tiles on the shuttle's left wing. Further evaluation of the tank is necessary to get an accurate accounting of foam damage and determine the type of repair required and the time needed for that work. A new target launch date has not been determined, but teams will focus on preparing Atlantis for liftoff in late April on mission STS-117.
Dual-hologram shearing interference technique with regulated sensitivity
NASA Astrophysics Data System (ADS)
Toker, Gregory R.; Levin, Daniel
1998-06-01
A novel optical diagnostic technique,namely, a dual hologram shearing interferometry with regulated sensitivity, is proposed for visualization and measuring the density gradients of compressible flows in wind tunnels. It has advantages over conventional shearing interferometry in both accuracy and sensitivity. The method is especially useful for strong turbulent or unsteady regions of the flows including shock flows. The interferometer proved to be insensitive to mechanical vibrations and allowed to record holograms during the noisy wind tunnel run. The proposed approach was demonstrated by its application to a supersonic flow over spherically blunted and sharp nose cone/cylinder models. It is believed that the technique will become an effective tool for receiving optical data in many flow facilities.
Dual-hologram shearing interferometry with regulated sensitivity
NASA Astrophysics Data System (ADS)
Toker, Gregory R.; Levin, Daniel
1998-07-01
A novel optical diagnostic technique, namely, a dual hologram shearing interferometry with regulated sensitivity, is proposed for visualization and measuring the density gradients of compressible flows in wind tunnels. It has advantages over conventional shearing interferometry in both accuracy and sensitivity. The method is especially useful for strong turbulent or unsteady regions of the flows including shock flows. The interferometer proved to be insensitive to mechanical vibrations and allowed to record holograms during the noisy wind tunnel run. The proposed approach was demonstrated by its application to a supersonic flow over spherically blunted and sharp nose cone/cylinder models. It is believed that the technique will become an effective tool for receiving optical data in many flow facilities.
2007-07-01
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, the first half of the fairing is lifted into the mobile service tower for encapsulation around NASA's Dawn spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch 4.5 billion years ago by investigating in detail two of the largest asteroids, Ceres and Vesta. They reside between Mars and Jupiter in the asteroid belt. Launch is scheduled for July 8. Photo credit: NASA/Amanda Diller
2007-07-01
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, workers prepare the first half of the fairing for encapsulation around NASA's Dawn spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch 4.5 billion years ago by investigating in detail two of the largest asteroids, Ceres and Vesta. They reside between Mars and Jupiter in the asteroid belt. Launch is scheduled for July 8. Photo credit: NASA/Amanda Diller
2007-07-01
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, a worker oversees the movement of the first half of the fairing toward NASA's Dawn spacecraft for encapsulation. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch 4.5 billion years ago by investigating in detail two of the largest asteroids, Ceres and Vesta. They reside between Mars and Jupiter in the asteroid belt. Launch is scheduled for July 8. Photo credit: NASA/Amanda Diller
2007-07-01
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, the second half of the fairing moves toward NASA's Dawn spacecraft to complete encapsulation. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch 4.5 billion years ago by investigating in detail two of the largest asteroids, Ceres and Vesta. They reside between Mars and Jupiter in the asteroid belt. Launch is scheduled for July 8. Photo credit: NASA/Amanda Diller
2007-07-01
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, workers supervise the movement of the first half of the fairing toward NASA's Dawn spacecraft for encapsulation. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch 4.5 billion years ago by investigating in detail two of the largest asteroids, Ceres and Vesta. They reside between Mars and Jupiter in the asteroid belt. Launch is scheduled for July 8. Photo credit: NASA/Amanda Diller
2007-07-01
KENNEDY SPACE CENTER, FLA. -- NASA's Dawn spacecraft waits for fairing encapsulation in the mobile service tower of Launch Pad 17-B at Cape Canaveral Air Force Station in Florida. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch 4.5 billion years ago by investigating in detail two of the largest asteroids, Ceres and Vesta. They reside between Mars and Jupiter in the asteroid belt. Launch is scheduled for July 8. Photo credit: NASA/Amanda Diller
2007-07-01
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, the first half of the fairing moves toward NASA's Dawn spacecraft for encapsulation. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch 4.5 billion years ago by investigating in detail two of the largest asteroids, Ceres and Vesta. They reside between Mars and Jupiter in the asteroid belt. Launch is scheduled for July 8. Photo credit: NASA/Amanda Diller
2007-07-01
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, workers supervise the movement of the first half of the fairing toward NASA's Dawn spacecraft for encapsulation. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch 4.5 billion years ago by investigating in detail two of the largest asteroids, Ceres and Vesta. They reside between Mars and Jupiter in the asteroid belt. Launch is scheduled for July 8. Photo credit: NASA/Amanda Diller
2009-05-15
CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., NASA's Lunar Reconnaissance Orbiter, or LRO, and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS,wait for fairing installation. The fairing halves are on left and right of the spacecraft. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller
Aerodynamic Effects of a 24-Foot, Multisegmented Telescoping Nose Boom on an F-15B Airplane
NASA Technical Reports Server (NTRS)
Cumming, Stephen B.; Smith, Mark S.; Frederick, Michael A.
2007-01-01
An experimental multisegmented telescoping nose boom has been installed on an F-15B airplane to be tested in a flight environment. The experimental nose boom is representative of one that could be used to tailor the sonic boom signature of an airplane such as a supersonic business jet. The nose boom consists of multiple sections and could be extended during flight to a length of 24 ft. The preliminary analyses indicated that the addition of the experimental nose boom could adversely affect vehicle flight characteristics and air data systems. Before the boom was added, a series of flights was flown to update the aerodynamic model and characterize the air data systems of the baseline airplane. The baseline results have been used in conjunction with estimates of the nose boom s influence to prepare for a series of research flights conducted with the nose boom installed. Data from these flights indicate that the presence of the experimental boom reduced the static pitch and yaw stability of the airplane. The boom also adversely affected the static-position error of the airplane but did not significantly affect angle-of-attack or angle-of-sideslip measurements. The research flight series has been successfully completed.
Aerodynamic Effects of a 24-foot Multisegmented Telescoping Nose Boom on an F-15B Airplane
NASA Technical Reports Server (NTRS)
Cumming, Stephen B.; Smith, Mark S.; Frederick, Michael A.
2008-01-01
An experimental multisegmented telescoping nose boom has been installed on an F-15B airplane to be tested in a flight environment. The experimental nose boom is representative of one that could be used to tailor the sonic boom signature of an airplane such as a supersonic business jet. The nose boom consists of multiple sections and could be extended during flight to a length of 24 ft. The preliminary analyses indicate that the addition of the experimental nose boom could adversely affect vehicle flight characteristics and air data systems. Before the boom was added, a series of flights was conducted to update the aerodynamic model and characterize the air data systems of the baseline airplane. The baseline results have been used in conjunction with estimates of the nose boom's influence to prepare for a series of research flights conducted with the nose boom installed. Data from these flights indicate that the presence of the experimental boom reduced the static pitch and yaw stability of the airplane. The boom also adversely affected the static-position error of the airplane but did not significantly affect angle-of-attack or angle-of-sideslip measurements. The research flight series has been successfully completed.
Secondary instabilities of hypersonic stationary crossflow waves
NASA Astrophysics Data System (ADS)
Edelman, Joshua B.
A sharp, circular 7° half-angle cone was tested in the Boeing/AFOSR Mach-6 Quiet Tunnel at 6° angle of attack. Using a variety of roughness configurations, measurements were made using temperature-sensitive paint (TSP) and fast pressure sensors. High-frequency secondary instabilities of the stationary crossflow waves were detected near the aft end of the cone, from 110° to 163° from the windward ray. At least two frequency bands of the secondary instabilities were measured. The secondary instabilities have high coherence between upstream and downstream sensor pairs. In addition, the amplitudes of the instabilities increase with the addition of roughness elements near the nose of the cone. Two of the measured instabilities were captured over a range of axial Reynolds numbers of about 1 - 2 million, with amplitudes ranging from low to turbulent breakdown. For these instabilities, the wave speed and amplitude growth can be calculated. The wave speeds were all near the edge velocity. Measured growth before breakdown for the two instabilities are between e3 and e4 from background noise levels. The initial linear growth rates for the instabilities are near 50 /m. Simultaneous measurement of two frequency bands of the secondary instabilities was made during a single run. It was found that each mode was spatially confined within a small azimuthal region, and that the regions of peak amplitude for one mode correspond to regions of minimal amplitude for the other.
Theseus Nose and Pod Cones Being Unloaded
NASA Technical Reports Server (NTRS)
1996-01-01
Crew members are seen here unloading the nose and pod cones of the Theseus prototype research aircraft at NASA's Dryden Flight Research Center, Edwards, California, in May of 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental change measurements. Dryden's Project Manager was John Del Frate.
Drag and heat flux reduction mechanism of blunted cone with aerodisks
NASA Astrophysics Data System (ADS)
Huang, Wei; Li, Lang-quan; Yan, Li; Zhang, Tian-tian
2017-09-01
The major challenge among a number of design requirements for hypersonic vehicles is the reduction of drag and aerodynamic heating. Of all these techniques of drag and heat flux reduction, application of forward facing aerospike conceived in 1950s is an effective and simpler technique to reduce the drag as well as the heat transfer rate for blunt nosed bodies at hypersonic Mach numbers. In this paper, the flow fields around a blunt cone with and without aerodisk flying at hypersonic Mach numbers are computed numerically, and the numerical simulations are conducted by specifying the freestream velocity, static pressure and static temperatures at the inlet of the computational domain with a three-dimensional, steady, Reynolds-averaged Navier-Stokes equation. An aerodisk is attached to the tip of the rod to reduce the drag and heat flux further. The influences of the length of rod and the diameter of aerodisk on the drag and heat flux reduction mechanism are analyzed comprehensively, and eight configurations are taken into consideration in the current study. The obtained results show that for all aerodisks, the reduction in drag of the blunt body is proportional to the extent of the recirculation dead air region. For long rods, the aerodisk is found not that beneficial in reducing the drag, and an aerodisk is more effective than an aerospike. The spike produces a region of recirculation separated flow that shields the blunt-nosed body from the incoming flow, and the recirculation region is formed around the root of the spike up to the reattachment point of the flow at the shoulder of the blunt body. The dynamic pressure in the recirculation area is highly reduced and thus leads to the decrease in drag and heat load on the surface of the blunt body. Because of the reattachment of the shear layer on the shoulder of the blunt body, the pressure near that point becomes large.
Geometric Effects on the Amplification of First Mode Instability Waves
NASA Technical Reports Server (NTRS)
Kirk, Lindsay C.; Candler, Graham V.
2013-01-01
The effects of geometric changes on the amplification of first mode instability waves in an external supersonic boundary layer were investigated using numerical techniques. Boundary layer stability was analyzed at Mach 6 conditions similar to freestream conditions obtained in quiet ground test facilities so that results obtained in this study may be applied to future test article design to measure first mode instability waves. The DAKOTA optimization software package was used to optimize an axisymmetric geometry to maximize the amplification of the waves at first mode frequencies as computed by the 2D STABL hypersonic boundary layer stability analysis tool. First, geometric parameters such as nose radius, cone half angle, vehicle length, and surface curvature were examined separately to determine the individual effects on the first mode amplification. Finally, all geometric parameters were allowed to vary to produce a shape optimized to maximize the amplification of first mode instability waves while minimizing the amplification of second mode instability waves. Since first mode waves are known to be most unstable in the form of oblique wave, the geometries were optimized using a broad range of wave frequencies as well as a wide range of oblique wave angles to determine the geometry that most amplifies the first mode waves. Since first mode waves are seen most often in flows with low Mach numbers at the edge of the boundary layer, the edge Mach number for each geometry was recorded to determine any relationship between edge Mach number and the stability of first mode waves. Results indicate that an axisymmetric cone with a sharp nose and a slight flare at the aft end under the Mach 6 freestream conditions used here will lower the Mach number at the edge of the boundary layer to less than 4, and the corresponding stability analysis showed maximum first mode N factors of 3.
NASA Astrophysics Data System (ADS)
Iqraoun, E.; Sali, A.; Rezzouk, A.; Feddi, E.; Dujardin, F.; Mora-Ramos, M. E.; Duque, C. A.
2017-06-01
The donor impurity-related electron states in GaAs cone-like quantum dots under the influence of an externally applied static electric field are theoretically investigated. Calculations are performed within the effective mass and parabolic band approximations, using the variational procedure to include the electron-impurity correlation effects. The uncorrelated Schrödinger-like electron states are obtained in quasi-analytical form and the entire electron-impurity correlated states are used to calculate the photoionisation cross section. Results for the electron state energies and the photoionisation cross section are reported as functions of the main geometrical parameters of the cone-like structures as well as of the electric field strength.
Experimental and raytrace results for throat-to-throat compound parabolic concentrators
NASA Technical Reports Server (NTRS)
Leviton, D. B.; Leitch, J. W.
1986-01-01
Compound parabolic concentrators are nonimaging cone-shaped optics with useful angular transmission characteristics. Two cones used throat-to-throat accept radiant flux within one well-defined acceptance angle and redistribute it into another. If the entrance cone is fed with Lambertian flux, the exit cone produces a beam whose half-angle is the exit cone's acceptance angle and whose cross section shows uniform irradiance from near the exit mouth to infinity. (The pair is a beam angle transformer). The design of one pair of cones is discussed, also an experiment to map the irradiance of the emergent beam, and a raytracing program which models the cones fed by Lambertian flux. Experimental results compare favorably with raytrace results.
Second-order small-disturbance solutions for hypersonic flow over power-law bodies
NASA Technical Reports Server (NTRS)
Townsend, J. C.
1975-01-01
Similarity solutions were found which give the adiabatic flow of an ideal gas about two-dimensional and axisymmetric power-law bodies at infinite Mach number to second order in the body slenderness parameter. The flow variables were expressed as a sum of zero-order and perturbation similarity functions for which the axial variations in the flow equations separated out. The resulting similarity equations were integrated numerically. The solutions, which are universal functions, are presented in graphic and tabular form. To avoid a singularity in the calculations, the results are limited to body power-law exponents greater than about 0.85 for the two-dimensional case and 0.75 for the axisymmetric case. Because of the entropy layer induced by the nose bluntness (for power-law bodies other than cones and wedges), only the pressure function is valid at the body surface. The similarity results give excellent agreement with the exact solutions for inviscid flow over wedges and cones having half-angles up to about 20 deg. They give good agreement with experimental shock-wave shapes and surface-pressure distributions for 3/4-power axisymmetric bodies, considering that Mach number and boundary-layer displacement effects are not included in the theory.
2009-01-27
VANDENBERG AIR FORCE BASE, Calif. -- The first half of the fairing is moved into place around the NOAA-N Prime spacecraft in the launch service tower on Space Launch Complex 2 at Vandenberg Air Force Base in California. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. NOAA-N Prime is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. It is built by Lockheed Martin and similar to NOAA-N that was launched on May 20, 2005. Launch of NOAA-N Prime aboard a Delta II rocket is scheduled for Feb. 4. Photo credit: NASA
2009-01-27
VANDENBERG AIR FORCE BASE, Calif. -- The first half of the fairing is moved into place around the NOAA-N Prime spacecraft in the launch service tower on Space Launch Complex 2 at Vandenberg Air Force Base in California. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. NOAA-N Prime is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. It is built by Lockheed Martin and similar to NOAA-N that was launched on May 20, 2005. Launch of NOAA-N Prime aboard a Delta II rocket is scheduled for Feb. 4. Photo credit: NASA
2009-01-27
VANDENBERG AIR FORCE BASE, Calif. -- The first half of the fairing is moved into place around the NOAA-N Prime spacecraft in the launch service tower on Space Launch Complex 2 at Vandenberg Air Force Base in California. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. NOAA-N Prime is the latest polar-orbiting operational environmental weather satellite developed by NASA for the National Oceanic and Atmospheric Administration. It is built by Lockheed Martin and similar to NOAA-N that was launched on May 20, 2005. Launch of NOAA-N Prime aboard a Delta II rocket is scheduled for Feb. 4. Photo credit: NASA
The qualification of the shuttle booster separation motors
NASA Technical Reports Server (NTRS)
Chase, C. A.; Fisher, K. M.; Eoff, W.
1978-01-01
Four booster separation motors (BSM) located at each end of every solid rocket booster (SRB) provide the needed side force to separate the boosters from the external tank at booster burnout. Four BSMs at the top of the SRB are located in a box pattern in the nose cone frustum. The four BSMs at the aft end of the SRB are arranged side-by-side on the SRB aft skirt. Aspects of BSM design and performance are considered, taking into account a motor design/performance summary, the case design, the insulation, the grain design, the nozzle/aft closure design, the ignition system, the propellant, and the motor assembly. Details of motor testing are also discussed, giving attention to development testing, qualification testing, and flight testing.
NASA Technical Reports Server (NTRS)
Chen, Fang-Jeng (Frank); Berry, Scott A.
2010-01-01
HyBoLT was a Hypersonic Boundary Layer Transition flight experiment funded by the Hypersonics Project of the Fundamental Aeronautics Program in NASA's Aeronautics Research Mission Directorate. The HyBoLT test article mounted on the top of the ALV X-1 rocket was launched from Virginia's Wallops Island on August 22, 2008. Unfortunately a problem in the rocket's flight control system caused the vehicle to veer off the designed flight course. Launch officials activated a self-destruct mechanism in the rocket's nose cone after 20 seconds into flight. This report is a closeout document about the HyBoLT flight experiment. Details are provided of the objectives and approach associated with this experimental program as well as the 20 seconds flight data acquired before the vehicle was destroyed.
2009-05-15
CAPE CANAVERAL, Fla. – At Astrotech Space Operations Facility in Titusville, Fla., technicians closely watch as the first half of the fairing is moved into place for installation around NASA's Lunar Reconnaissance Orbiter, or LRO, and and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS. At right is the second half. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The LRO includes five instruments: DIVINER, LAMP, LEND, LOLA and LROC. They will be launched aboard an Atlas V/Centaur rocket no earlier than June 17 from Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller
Thermal mathematical modeling and system simulation of Space Shuttle less subsystem
NASA Technical Reports Server (NTRS)
Chao, D. C.; Battley, H. H.; Gallegos, J. J.; Curry, D. M.
1984-01-01
Applications, validation tests, and upgrades of the two- and three-dimensional system level thermal mathematical system simulation models (TMSSM) used for thermal protection system (TPS) analyses are described. The TMSSM were developed as an aid to predicting the performance requirements and configurations of the Shuttle wing leading edge (WLE) and nose cone (NC) TPS tiles. The WLE and its structure were subjected to acoustic, thermal/vacuum, and air loads tests to simulate launch, on-orbit, and re-entry behavior. STS-1, -2 and -5 flight data led to recalibration of on-board instruments and raised estimates of the thermal shock at the NC and WLE. Baseline heating data are now available for the design of future TPS.
A directional microphone array for acoustic studies of wind tunnel models
NASA Technical Reports Server (NTRS)
Soderman, P. T.; Noble, S. C.
1974-01-01
An end-fire microphone array that utilizes a digital time delay system has been designed and evaluated for measuring noise in wind tunnels. The directional response of both a four- and eight-element linear array of microphones has enabled substantial rejection of background noise and reverberations in the NASA Ames 40- by 80-foot wind tunnel. In addition, it is estimated that four- and eight-element arrays reject 6 and 9 dB, respectively, of microphone wind noise, as compared with a conventional omnidirectional microphone with nose cone. Array response to two types of jet engine models in the wind tunnel is presented. Comparisons of array response to loudspeakers in the wind tunnel and in free field are made.
Advanced designs for non-imaging submillimeter-wave Winston cone concentrators
NASA Astrophysics Data System (ADS)
Nelson, A. O.; Grossman, E. N.
2014-05-01
We describe the design and simulation of several non-imaging concentrators designed to couple submillimeter wavelength radiation from free space into highly overmoded, rectangular, WR-10 waveguide. Previous designs are altered to improve the uniformity of efficiency rather than the efficiency itself. The concentrators are intended for use as adapters between instruments using overmoded WR-10 waveguide as input or output and sources propagating through free space. Previous simulation and measurement have shown that the angular response is primarily determined by the Winston cone and is well predicted by geometric optics theory while the efficiencies are primarily determined by the transition section. Additionally, previous work has shown insensitivity to polarization, orientation and beam size. Several separate concentrator designs are studied, all of which use a Winston cone (also known as a compound parabolic concentrator) with an input diameter ranging from 4 mm to 16 mm, and "throat" diameters of less than 0.5 mm to 4 mm as the initial interface. The use of various length adiabatic circular-to-rectangular transition sections is investigated, along with the effect of an additional, 25 mm waveguide section designed to model the internal waveguide of the power meter. Adapters without a transition section and a rectangular Winston cone throat aperture and double cone configurations are also studied. Adapters are analyzed in simulation for consistent efficiency across the opening aperture.
Stages of rootless cone formation observed within the Raudhólar cone group, Iceland
NASA Astrophysics Data System (ADS)
Fitch, E. P.; Hamilton, C.; Fagents, S. A.; Thordarson, T.
2013-12-01
Secondary (rootless) cones form when lava interacts explosively with water contained in the substrate, and represent a largely degassed, end-member system that can elucidate mechanisms of magma-water interactions in the absence of primary degassing-induced fragmentation. Rootless cones are well documented in Iceland. The Raudhólar rootless cone group, located within the ~5200-year-old Ellidaá lava flow on the south-eastern outskirts of Reykjavík, was extensively quarried during the Second World War and now provides excellent cross-sections through the tephra sequences. Taking advantage of this exposure, we performed detailed stratigraphic, grain-size, and componentry analyses, which suggest that the energetics of rootless explosions vary substantially during cone formation. The lower unit contains the most substrate sediment and is characterized by dilute pyroclastic density current deposits. The middle unit is dominated by a succession of bed-pairs, each containing a finer-grained lower layer and coarser-grained upper layer. In the upper unit, the succession grades into a welded section that caps the cone. The abundance of substrate sediment generally decreases upwards within the cone, which suggests that the efficiency of lava-substrate mixing decreased with time. In addition, clast size generally increases upwards within the cone, implying that the fragmentation energy also decreased as the rootless eruption progressed. Both lines of evidence suggest that the explosions decreased in intensity with time, likely due to the depletion of available groundwater. However, alternating fine- and coarse-grained beds imply cycles of increased and decreased fragmentation efficiency, which we attribute to groundwater recharge and depletion during the event. Therefore, this study presents a detailed look at rootless cone formation and provides the foundation for future work on this important, yet understudied, system.
2013-06-14
MOJAVE DESERT, Calif. – In the Mojave Desert in California, students install the nose cone on the Garvey Spacecraft Corporation's Prospector P-18D rocket. The work is in preparation for the June 15 launch on a high-altitude, suborbital flight. The rocket will carry four satellites made from four-inch cube sections. Collectively known as CubeSats, the satellites will record shock, vibrations and heat inside the rocket. They will not be released during the test flight, but the results will be used to prove or strengthen their designs before they are carried into orbit in 2014 on a much larger rocket. A new, lightweight carrier is also being tested for use on future missions to deploy the small spacecraft. The flight also is being watched closely as a model for trying out new or off-the-shelf technologies quickly before putting them in the pipeline for use on NASA's largest launchers. Built by several different organizations, including a university, a NASA field center and a high school, the spacecraft are four-inch cubes designed to fly on their own eventually, but will remain firmly attached to the rocket during the upcoming mission. For more information, visit http://www.nasa.gov/mission_pages/smallsats/elana/cubesatlaunchpreview.html Photo credit: NASA/Dimitri Gerondidakis
2013-06-14
MOJAVE DESERT, Calif. – In the Mojave Desert in California, students install the nose cone on the Garvey Spacecraft Corporation's Prospector P-18D rocket. The work is in preparation for the June 15 launch on a high-altitude, suborbital flight. The rocket will carry four satellites made from four-inch cube sections. Collectively known as CubeSats, the satellites will record shock, vibrations and heat inside the rocket. They will not be released during the test flight, but the results will be used to prove or strengthen their designs before they are carried into orbit in 2014 on a much larger rocket. A new, lightweight carrier is also being tested for use on future missions to deploy the small spacecraft. The flight also is being watched closely as a model for trying out new or off-the-shelf technologies quickly before putting them in the pipeline for use on NASA's largest launchers. Built by several different organizations, including a university, a NASA field center and a high school, the spacecraft are four-inch cubes designed to fly on their own eventually, but will remain firmly attached to the rocket during the upcoming mission. For more information, visit http://www.nasa.gov/mission_pages/smallsats/elana/cubesatlaunchpreview.html Photo credit: NASA/Dimitri Gerondidakis
Implementation Challenges for Ceramic Matrix Composites in High Temperature Applications
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay
2004-01-01
Ceramic matrix composites are leading candidate materials for a number of applications in aeronautics, space, energy, electronics, nuclear, and transportation industries. In the aeronautics and space exploration systems, these materials are being considered for applications in hot sections of jet engines such as the combustor liner, nozzle components, nose cones, leading edges of reentry vehicles and space propulsion components. Applications in the energy and environmental industries include radiant heater tubes, heat exchangers, heat recuperators, gas and diesel particulate filters (DPFs), and components for land based turbines for power generation. These materials are also being considered for use in the first wall and blanket components of fusion reactors. There are a number of critical issues and challenges related to successful implementation of composite materials. Fabrication of net and complex shape components with high density and tailorable matrix properties is quite expensive, and even then various desirable properties are not achievable. In this presentation, microstructure and thermomechanical properties of composites fabricated by two techniques (chemical vapor infiltration and melt infiltration), will be presented. In addition, critical need for robust joining and assembly technologies in successful implementation of these systems will be discussed. Other implementation issues will be discussed along with advantages and benefits of using these materials for various components in high temperature applications.
An Ellipse Morphs to a Cosine Graph!
ERIC Educational Resources Information Center
King, L .R.
2013-01-01
We produce a continuum of curves all of the same length, beginning with an ellipse and ending with a cosine graph. The curves in the continuum are made by cutting and unrolling circular cones whose section is the ellipse; the initial cone is degenerate (it is the plane of the ellipse); the final cone is a circular cylinder. The curves of the…
Thermoelastic Damping in Cone Microcantilever Resonator
NASA Astrophysics Data System (ADS)
Li, Pu; Zhou, Hongyue
2017-07-01
Microbeams with continuous or discontinuous variable cross-section have been applied in Microelectromechanical Systems (MEMS) resonators, such as tapered microbeam, torsion microbeam and stepped microbeam. Thermoelastic damping (TED), which is verified as a fundamental energy lost mechanism for microresonators, is calculated by the Zener’s model and Lifshits and Roukes’s (LR) model in general. However, for non-uniform microbeam resonators, these two classical models are not suitable in some cases. On the basis of Zener’s theory, a TED model for cone microcantilever with rectangular cross-section has been derived in this study. The comparison of results obtained by the present model and Finite Element Method (FEM) model proves that the proposed model is able to predict TED value for cone microcantilever. In addition, TED in cone microcantilever is nearly same as TED in wedge microcantilever. The results show that quality factors (Q-factors) of cone microcantilever and wedge microcantilever are larger than Q-factor of uniform microbeam at low frequencies. The Debye peak value of a uniform microcantilever is equal to 0.5Δ E , while those of cone microcantilever and wedge microcantilever are about 0.438ΔE and 0.428ΔE, respectively.
Deshpande, Sudesh; Dhote, Deepak; Thakur, Kalpna; Pawar, Amol; Kumar, Rajesh; Kumar, Munish; Kulkarni, M. S.; Sharma, S. D.; Kannan, V.
2016-01-01
The objective of this work was to measure patient eye lens dose for different cone-beam computed tomography (CBCT) acquisition protocols of Varian's On-Board Imaging (OBI) system using optically stimulated luminescence dosimeter (OSLD) and to study the variation in eye lens dose with patient geometry and distance of isocenter to the eye lens. During the experimental measurements, OSLD was placed on the patient between the eyebrows of both eyes in line of nose during CBCT image acquisition to measure eye lens doses. The eye lens dose measurements were carried out for three different cone-beam acquisition protocols (standard dose head, low-dose head [LDH], and high-quality head [HQH]) of Varian OBI. Measured doses were correlated with patient geometry and distance between isocenter and eye lens. Measured eye lens doses for standard head and HQH protocols were in the range of 1.8–3.2 mGy and 4.5–9.9 mGy, respectively. However, the measured eye lens dose for the LDH protocol was in the range of 0.3–0.7 mGy. The measured data indicate that eye lens dose to patient depends on the selected imaging protocol. It was also observed that eye lens dose does not depend on patient geometry but strongly depends on distance between eye lens and treatment field isocenter. However, undoubted advantages of imaging system should not be counterbalanced by inappropriate selection of imaging protocol, especially for very intense imaging protocol. PMID:27651564
NASA Technical Reports Server (NTRS)
Johnson, Charles B.; Stainback, P. Calvin; Wicker, Kathleen C.; Boney, Lillian R.
1972-01-01
A flight experiment, designated Reentry F, was conducted to measure heat-transfer rates for laminar, transitional, and turbulent boundary layers on a 5 deg half-angle cone 3.962 m (13 ft) long with a preflight nose radius of 2.54 mm (0.10 in.). Data were obtained over an altitude range from 36.58 to 18.29 km (120 000 to 60 000 ft) at a flight velocity of about 6.096 km/sec (20 000 ft/sec). The nominal values of the free-stream total enthalpy, sharp-cone Mach number, and the wall-to-total enthalpy ratio were 18 MJ/kg (8000 Btu/lb), 15, and 0.03, respectively. Calculated boundary-layer edge conditions that account for effects of the entropy layer and corresponding local transition Reynolds numbers are reported in the present paper. Fully developed turbulent flow occurred with essentially constant boundary-layer edge conditions near the sharp-cone values. Transition data were obtained with local edge Mach numbers ranging from about 5.55 to 15. Transition Reynolds numbers, based on local condition, were as high as 6.6 x 10(exp 7) with an edge Mach number of about 14.4 at an altitude of 24.38 km (80 000 ft). The transition could be correlated with previous flight data taken over a Mach number range from 3 to 12 in terms of parameters including the effects of local unit Reynolds number, boundary-layer wall-to-edge enthalpy ratio, and local Mach number.
NASA Technical Reports Server (NTRS)
Re, Richard, J.; Capone, Francis J.
1998-01-01
An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine boundary-reflected disturbance lengths at low supersonic Mach numbers in the octagonally shaped test section. A body of revolution that had a nose designed to produce a bow shock and flow field similar to that about the nose of a supersonic transport configuration was used. The impingement of reflected disturbances on the model was determined from static pressures measured on the surface of the model. Test variables included Mach number (0.90 to 1.25), model angle of attack (nominally -10, 0, and 10), and model roll angle.
Effects of Wall Cooling on Hypersonic Boundary Layer Receptivity Over a Cone
NASA Technical Reports Server (NTRS)
Kara, K.; Balakumar, P.; Kandil, O. A.
2008-01-01
Effects of wall cooling on the receptivity process induced by the interaction of slow acoustic disturbances in the free-stream are numerically investigated for a boundary layer flow over a 5-degrees straight cone. The free-stream Mach number is 6.0 and the Reynolds number is 7.8x10(exp 6)/ft. Both the steady and unsteady solutions are obtained by solving the full Navier-Stokes equations using 5th-order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using 3rd-order total variation diminishing (T VD) Runge-K utta scheme for time integration. Computations are performed for a cone with nose radius of 0.001 inch for adiabatic wall temperature (T(sub aw)), 0.75*T(sub aw), 0.5*T(sub aw), 0.40*T(sub aw), 0.30*T(sub aw), and 0.20*T(sub aw). Once the mean flow field is computed, disturbances are introduced at the upstream end of the computational domain. Generation of instability waves from leading edge region and receptivity of boundary layer to slow acoustic waves are investigated. Computations showed that wall cooling has strong stabilization effect on the first mode disturbances as was observed in the experiments. T ransition location moved to upstream when wall cooling was applied It is also found that the boundary layer is much more receptive to fast acoustic wave (by almost a factor of 50). When simulations performed using the same forcing frequency growth of the second mode disturbances are delayed with wall cooling and they attained values two times higher than that of adiabatic case. In 0.20*T(sub aw) case the transition Reynolds number is doubled compared to adiabatic conditions. The receptivity coefficient for adiabatic wall case (804 R) is 1.5225 and for highly cooled cones (241, and 161 R); they are in the order of 10(exp -3).
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Farrell, T.P.; Kato, T.
1980-11-01
The objectives of this study were to (1) determine the distribution and relative abundance of blunt-nosed leopard lizards, Crotaphytus silus, on three sections of BLM land impacted by light to moderate petroleum developments; (2) correlate relative density estimates with absolute density estimates, characteristics of the dominant vegetation associations, density of animal burrows, percent open space, and level of oil field development; and (3) determine the radius of movement for the species. Relative densities of lizards in each section were measured by counting all lizards seen during four surveys conducted between May and July 1980.
Measurement of Atomic Oxygen in Diffuse Aurora and Ion Density in the E-Region
NASA Technical Reports Server (NTRS)
Sharp, William E.
1997-01-01
An ion mass spectrometer (IMS) was refurbished, calibrated and supplied to the University of Colorado payload (Dr. Charles Barth, P.I.) which was launched from White Sands in September of 1993 as NASA 33.062. The nose cone failed to deploy and their were problems with the ACS so the mission was declared a failure. However, the door covering the IMS deployed and the instrument obtained data. The launch occurred shortly after a payload carrying solar x-ray detectors was launched. Thus a small portion of the Colorado payload science was salvaged; namely, the NO(+)/O2(+) ratio to compare with the measured x-ray flux. Figure I shows the NO(+) to O2(+) ratio vs. altitude. The behavior is typical of the E-region.
High temperature penetrator assembly with bayonet plug and ramp-activated lock
NASA Technical Reports Server (NTRS)
Wood, K. E. (Inventor)
1982-01-01
A penetration apparatus, for very high temperature applications in which a base plug is inserted into an opening through a bulkhead is described. The base plug has a head shape and is seated against the highest temperature surface of the bulkhead, which may be the skin of the nose cone or other part of a space vehicle intended for nondestructive atmospheric reentry. From the second side of the bulkhead at which the less severe environment is extant, a bayonet plug is inserted into the base plug and engages an internal shoulder at about 90 deg rotation. The bayonet plug has an integral flanged portion and a pair of ramping washers which are located between the flange and the second bulkhead surface with a spacing washer as necessary.
1978-09-01
This photograph shows the left side of the solid rocket booster (SRB) segment as it awaits being mated to the nose cone and forward skirt in the Dynamic Test Stand at the east test area of the Marshall Space Flight Center (MSFC). The SRB would be attached to the external tank (ET) and then the orbiter later for the Mated Vertical Ground Vibration Test (MVGVT), that resumed in October 1978. The stacking of a complete Shuttle in the Dynamic Test Stand allowed test engineers to perform ground vibration testing on the Shuttle in its liftoff configuration. The purpose of the MVGVT was to verify that the Space Shuttle would perform as predicted during launch. The platforms inside the Dynamic Test Stand were modified to accommodate two SRB's to which the ET was attached.
1978-09-01
Workmen in the Dynamic Test Stand lowered the nose cone into place to complete stacking of the left side of the solid rocket booster (SRB) in the Dynamic Test Stand at the east test area of the Marshall Space Flight Center (MSFC). The SRB would be attached to the external tank (ET) and then the orbiter later for the Mated Vertical Ground Vibration Test (MVGVT), that resumed in October 1978. The stacking of a complete Shuttle in the Dynamic Test Stand allowed test engineers to perform ground vibration testing on the Shuttle in its liftoff configuration. The purpose of the MVGVT was to verify that the Space Shuttle would perform as predicted during launch. The platforms inside the Dynamic Test Stand were modified to accommodate two SRB'S to which the ET was attached.
The Effect of a Planetary Surface Penetrator on the Soil Column Surrounding the Impacting Body
NASA Technical Reports Server (NTRS)
Blanchard, Maxwell B.; Shade, Harry D.
1975-01-01
A prototype penetrator instrument was impacted into a dry lake bed. Laboratory studies of the soil surrounding the penetrator revealed that the soil was contaminated by paint and metal from the penetrator's casing. Paint pigment rich in titanium and sulfur was found in the adjacent soil. The highly mobile paint pigment migrated onto viewing ports in the penetrator's exterior. Bulk analysis of the soil adjacent to the impactor showed a significant increase in both elements, as well as the presence of metal chips from the casing and nose cone. It is recommended that great care be taken in the use of coating materials and the metal alloys selected for the penetrator's exterior, or the accuracy of any experiment requiring an uncontaminated in situ sample may be adversely affected.
Heat shield characterization: Outer planet atmospheric entry probe
NASA Technical Reports Server (NTRS)
Mezines, S. A.; Rusert, E. L.; Disser, E. F.
1976-01-01
A full scale carbon phenolic heat shield was fabricated for the Outer Planet Probe in order to demonstrate the feasibility of molding large carbon phenolic parts with a new fabrication processing method (multistep). The sphere-cone heat shield was molded as an integral unit with the nose cap plies configured into a double inverse chevron shape to achieve the desired ply orientation. The fabrication activity was successful and the feasibility of the multistep processing technology was established. Delaminations or unbonded plies were visible on the heat shield and resulted from excessive loss of resin and lack of sufficient pressure applied on the part during the curing cycle. A comprehensive heat shield characterization test program was conducted, including: nondestructive tests with the full scale heat shield and thermal and mechanical property tests with small test specimen.
One-loop corrections to light cone wave functions: The dipole picture DIS cross section
NASA Astrophysics Data System (ADS)
Hänninen, H.; Lappi, T.; Paatelainen, R.
2018-06-01
We develop methods to perform loop calculations in light cone perturbation theory using a helicity basis, refining the method introduced in our earlier work. In particular this includes implementing a consistent way to contract the four-dimensional tensor structures from the helicity vectors with d-dimensional tensors arising from loop integrals, in a way that can be fully automatized. We demonstrate this explicitly by calculating the one-loop correction to the virtual photon to quark-antiquark dipole light cone wave function. This allows us to calculate the deep inelastic scattering cross section in the dipole formalism to next-to-leading order accuracy. Our results, obtained using the four dimensional helicity scheme, agree with the recent calculation by Beuf using conventional dimensional regularization, confirming the regularization scheme independence of this cross section.
Supersonic flow around circular cones at angles of attack
NASA Technical Reports Server (NTRS)
Ferri, Antonio
1951-01-01
The properties of conical flow without axial symmetry are analyzed. The flow around cones of circular cross section at small angles of attack is determined by correctly considering the effect of the entropy gradients in the flow.
Inflammatory Asthma Phenotype Discrimination Using an Electronic Nose Breath Analyzer.
Plaza, V; Crespo, A; Giner, J; Merino, J L; Ramos-Barbón, D; Mateus, E F; Torrego, A; Cosio, B G; Agustí, A; Sibila, O
2015-01-01
Patients with persistent asthma have different inflammatory phenotypes. The electronic nose is a new technology capable of distinguishing volatile organic compound (VOC) breath-prints in exhaled breath. The aim of the study was to investigate the capacity of electronic nose breath-print analysis to discriminate between different inflammatory asthma phenotypes (eosinophilic, neutrophilic, paucigranulocytic) determined by induced sputum in patients with persistent asthma. Fifty-two patients with persistent asthma were consecutively included in a cross-sectional proof-of-concept study. Inflammatory asthma phenotypes (eosinophilic, neutrophilic and paucigranulocytic) were recognized by inflammatory cell counts in induced sputum. VOC breath-prints were analyzed using the electronic nose Cyranose 320 and assessed by discriminant analysis on principal component reduction, resulting in cross-validated accuracy values. Receiver operating characteristic (ROC) curves were calculated. VOC breath-prints were different in eosinophilic asthmatics compared with both neutrophilic asthmatics (accuracy 73%; P=.008; area under ROC, 0.92) and paucigranulocytic asthmatics (accuracy 74%; P=.004; area under ROC, 0.79). Likewise, neutrophilic and paucigranulocytic breath-prints were also different (accuracy 89%; P=.001; area under ROC, 0.88). An electronic nose can discriminate inflammatory phenotypes in patients with persistent asthma in a regular clinical setting. ClinicalTrials.gov identifier: NCT02026336.
Anderson, K J; Henneberg, M; Norris, R M
2008-01-01
There is a lack in the understanding of the variation within the thickness of the soft tissue structures (muscle, skin and fat) overlying the cartilaginous skeleton of the nose and their relationship to the dorsum shape. We examined such relationships by dissecting noses of six adult female and six adult male cadavers, comparing the internal anatomical structures to the external nasal profile. We found that the soft tissue structures differ in thickness along the dorsum and that these differences are individualized. Specifically, continuous presence of subcutaneous fat from root to tip was found in half the sample, one nose had fat only on the tip, another one only on the root, the four others at both positions. The nasalis muscle was identifiable in nine of the 12 noses, transversing the nose in half the sample, and in the remaining three, only the lateral section of the muscle was identified. The superior border of the septal cartilage does not form a linear extension of the profile contour of the nasal bones but angles downwards. The actual profile contour of the dorsum does not follow the profile of the nasal bones or the septal cartilage. These results may influence the current use of nasal guidelines in forensic facial approximation. PMID:19172735
Santos-Folgar, Myriam; Otero-Agra, Martín; Fernández-Méndez, Felipe; Hermo-Gonzalo, María Teresa; Barcala-Furelos, Roberto; Rodríguez-Núñez, Antonio
2018-02-08
It has been observed that health professionals have difficulty performing quality cardiopulmonary resuscitation (CPR). The aim of this study was to compare the quality of ventilations performed by Nursing students on an infant model using different methods (mouth-to-mouth-and-nose or bag-valve-mask). A quasi-experimental cross-sectional study was performed that included 46 second-year Nursing students. Two quantitative 4-minute tests of paediatric CPR were performed: a) mouth-to-mouth-and-nose ventilations, and b) ventilations with bag-valve-mask. A Resusci Baby QCPR Wireless SkillReporter® mannequin from Laerdal was used. The proportion of ventilations with adequate, excessive, and insufficient volume was recorded and analysed, as well as the overall quality of the CPR (ventilations and chest compressions). The students were able to give a higher number of ventilations with adequate volume using the mouth-to-mouth-and-nose method (55±22%) than with the bag-valve-mask (28±16%, P<.001). The overall quality of the CPR was also significantly higher when using the mouth-to-mouth-and-nose method (60±19 vs. 48±16%, P<.001). Mouth-to-mouth-and-nose ventilation method is more efficient than bag-valve-mask ventilations in CPR performed by nursing students with a simulated infant model. Copyright © 2018. Publicado por Elsevier España, S.L.U.
Review of Flight Tests of NACA C and D Cowlings on the XP-42 Airplane
NASA Technical Reports Server (NTRS)
Johnston, J Ford
1943-01-01
Results of flight tests of the performance and cooling characteristics of three NACA D cowlings and of a conventional NACA D cowling on the XP-42 airplane are summarized and compared. The D cowling is, in general, characterized by the use of an annular inlet and diffuser section for the engine-cooling air. The D cowlings tested were a long-nose high-inlet-velocity cowling, a short-nose high-inlet-velocity cowling, and a short-nose low inlet-velocity cowling. The use of wide-chord propeller cuffs or an axial-flow fan with the D cowlings increased the cooling pressure recoveries in the climb condition at the expense of some of the improvement in speed.
Dual-Code Solution Strategy for Chemically-Reacting Hypersonic Flows
NASA Technical Reports Server (NTRS)
Wood, William A.; Eberhardt, Scott
1995-01-01
A new procedure seeks to combine the thin-layer Navier-Stokes solver LAURA with the parabolized Navier-Stokes solver UPS for the aerothermodynamic solution of chemically-reacting air flow fields. The interface protocol is presented and the method is applied to two slender, blunted shapes. Both axisymmetric and three-dimensional solutions are included with surface pressure and heat transfer comparisons between the present method and previously published results. The case of Mach 25 flow over an axisymmetric six degree sphere-cone with a non-catalytic wall is considered to 100 nose radii. A stability bound on the marching step size was observed with this case and is attributed to chemistry effects resulting from the non-catalytic wall boundary condition. A second case with Mach 28 flow over a sphere-cone-cylinder-flare configuration is computed at both two and five degree angles of attack with a fully-catalytic wall. Surface pressures are seen to be within five percent with the present method compared to the baseline LAURA solution and heat transfers are within 10 percent. The effect of grid resolution is investigated in both the radial and streamwise directions. The procedure demonstrates significant, order of magnitude reductions in solution time and required memory for the three-dimensional case in comparison to an all thin-layer Navier-Stokes solution.
NASA Technical Reports Server (NTRS)
Micol, John R.; Wells, William L.
1993-01-01
Hypersonic lateral and directional stability characteristics measured on a 60 deg half-angle elliptical cone, which was raked at an angle of 73 deg from the cone centerline and with an ellipsoid nose (ellipticity equal to 2.0 in the symmetry plane), are presented for angles of attack from -10 to 10 deg. The high normal-shock density ratio of a real gas was simulated by tests at a Mach number of 6 in air and CF4 (density ratio equal to 5.25 and 12.0, respectively). Tests were conducted in air at Mach 6 and 10 and in CF4 at Mach 6 to examine the effects of Mach number, Reynolds number, and normal-shock density ratio. Changes in Mach number from 6 to 10 in air or in Reynolds number by a factor of 4 at Mach 6 had a negligible effect on lateral and directional stability characteristics. Variations in normal-shock density ratio had a measurable effect on lateral and directional aerodynamic coefficients, but no significant effect on lateral and directional stability characteristics. Tests in air and CF4 indicated that the configuration was laterally and directionally stable through the test range of angle of attack.
Grützenmacher, S; Robinson, D M; Sevecke, J; Mlynski, G; Beule, A G
2011-03-01
Knowledge of airflow in animal noses is sparse. Such knowledge could be important for selection of animal models used in environmental studies. From the phylogenetic and ontogenetic point of view, a comparison between the animal and human nose is interesting. Nose models of 5 even-toed ungulate species (he-goat, sheep, cow, roebuck, wild boar) and two humans (new born infant and adult) were examined. Anatomical and physiological features of the nasal cavities of all species were compared. All models were rinsed with water and the flow was visualized for observation. Geometric and rhinoresistometric measurements were then performed. Even-toed ungulates have two turbinates directly in the main part of the nasal airflow (respiratory turbinates) and a different number of turbinates in a so-called dead space of the nasal airflow above the nasopharyngeal duct (ethmoidal turbinates). The latter correspond with the upper and middle turbinate in analogy to the human nose. Respiratory turbinates of even-toed ungulates insert immediately behind the external nasal ostium. Thus, the whole nasal cavity acts as a functional area with the exception of a small area acting as dead space only detectable in ruminants, possibly indicating a small evolutionary progress from suinae to bovidae. The shape of the animal nasal cavity is stretched and flat. The airflow runs nearly completely turbulent through the nose. The nasal cavity in the adult human is relatively short and high. The area between the external nasal ostium and the head of the inferior turbinate is called inflow area. It distributes the airflow over the whole nasal cross section and generates a turbulent flow. So the airflow is prepared to contact the mucosa in the functional area (turbinate area). The morphology of the inflow area is approximately formed by the shape of the external nose. The nasal cavity of a newborn child is also stretched and flat and more similar to the nasal shape of the investigated animals. The inflow area in the newborn nose is not yet developed and corresponds with the growing external newborn nose. One can hypothesize that the inflow area in human noses is a morphological adaptation in the changed length-height-ratio of the nasal cavity.
Litts, Katie M; Messinger, Jeffrey D; Freund, K Bailey; Zhang, Yuhua; Curcio, Christine A
2015-04-01
To quantify impressions of mitochondrial translocation in degenerating cones and to determine the nature of accumulated material in the subretinal space with apparent inner segment (IS)-like features by examining cone IS ultrastructure. Human donor eyes with advanced age-related macular degeneration (AMD) were screened for outer retinal tubulation (ORT) in macula-wide, high-resolution digital sections. Degenerating cones inside ORT (ORT cones) and outside ORT (non-ORT cones) from AMD eyes and unaffected cones in age-matched control eyes were imaged using transmission electron microscopy. The distances of mitochondria to the external limiting membrane (ELM), cone IS length, and cone IS width at the ELM were measured. Outer retinal tubulation and non-ORT cones lose outer segments (OS), followed by shortening of IS and mitochondria. In non-ORT cones, IS broaden. Outer retinal tubulation and non-ORT cone IS myoids become undetectable due to mitochondria redistribution toward the nucleus. Some ORT cones were found lacking IS and containing mitochondria in the outer fiber (between soma and ELM). Unlike long, thin IS mitochondria in control cones, ORT and non-ORT IS mitochondria are ovoid or reniform. Shed IS, some containing mitochondria, were found in the subretinal space. In AMD, macula cones exhibit loss of detectable myoid due to IS shortening in addition to OS loss, as described. Mitochondria shrink and translocate toward the nucleus. As reflectivity sources, translocating mitochondria may be detectable using in vivo imaging to monitor photoreceptor degeneration in retinal disorders. These results improve the knowledge basis for interpreting high-resolution clinical retinal imaging.
NASA Technical Reports Server (NTRS)
Townsend, J. C.; Howell, D. T.; Collins, I. K.; Hayes, C.
1979-01-01
Tabulated surface pressure data for a series of four forebodies which have analytically defined cross sections and which are based on a parabolic arc profile having a 20 deg half angle at the nose are presented without analysis. The first forebody has a circular cross section, and the second has a cross section which is an ellipse with an axis ratio of 2/1. The third has a cross section defined by a lobed analytic curve. The fourth forebody has cross sections which develop smoothly from circular at the pointed nose through the lobed analytic curve and back to circular at the aft end. The data generally cover angles of attack from -5 deg to 20 deg at angles of sideslip from 0 deg to 5 deg for Mach numbers of 1.70, 2.50, 3.95, and 4.50 at a constant Reynolds number.
The NLO jet vertex in the small-cone approximation for kt and cone algorithms
NASA Astrophysics Data System (ADS)
Colferai, D.; Niccoli, A.
2015-04-01
We determine the jet vertex for Mueller-Navelet jets and forward jets in the small-cone approximation for two particular choices of jet algoritms: the kt algorithm and the cone algorithm. These choices are motivated by the extensive use of such algorithms in the phenomenology of jets. The differences with the original calculations of the small-cone jet vertex by Ivanov and Papa, which is found to be equivalent to a formerly algorithm proposed by Furman, are shown at both analytic and numerical level, and turn out to be sizeable. A detailed numerical study of the error introduced by the small-cone approximation is also presented, for various observables of phenomenological interest. For values of the jet "radius" R = 0 .5, the use of the small-cone approximation amounts to an error of about 5% at the level of cross section, while it reduces to less than 2% for ratios of distributions such as those involved in the measure of the azimuthal decorrelation of dijets.
NASA Technical Reports Server (NTRS)
Jorgensen, L. H.; Nelson, E. R.
1976-01-01
An experimental investigation was conducted by wind tunnel to measure the static aerodynamic characteristics for bodies of circular and elliptic cross section with various thin flat plate wings and a thin tail consisting of horizontal and vertical parts. The wings had aspect ratios of 4 and taper ratios of about 0, 0.25, and 0.5. Two additional wings, which had taper ratios near 0.25 and aspect ratios of about 3 and 5, were also tested in combination with the bodies and tail. All wings had about the same planform area. The exposed area of the horizontal portion of the tail was about 33 to 36 percent of the exposed area of the wings. The exposed area of the vertical tail fin was about 22 to 24 percent of the exposed area of the wings. The elliptic body, with an a/b = 2 cross section, had the same length and axial distribution of cross sectional area as the circular body. The circular body had a cylindrical aftersection of fineness ratio 7, and it was tested with the wings and tail in combination with tangent ogive noses that had fineness ratios of 2.5, 3.0, 3.5, and 5.0. In addition, an ogive nose with a rounded tip and an ogive nose with two different nose strake arrangements were used. Nineteen configuration combinations were tested at Mach numbers of 0.6, 0.9, 1.5, and 2.0 at angles of attack from 0 to 58 deg. The Reynolds numbers, based on body base diameter, were about 4.3 X 100,000.
Stabilization of Hypersonic Boundary Layers by Linear and Nonlinear Optimal Perturbations
NASA Technical Reports Server (NTRS)
Paredes, Pedro; Choudhari, Meelan M.; Li, Fei
2017-01-01
The effect of stationary, finite-amplitude, linear and nonlinear optimal perturbations on the modal disturbance growth in a Mach 6 axisymmetric flow over a 7 deg. half-angle cone with 0:126 mm nose radius and 0:305 m length is investigated. The freestream parameters (M = 6, Re(exp 1) = 18 x 10(exp. 6) /m) are selected to match the flow conditions of a previous experiment in the VKI H3 hypersonic tunnel. Plane-marching parabolized stability equations are used in conjunction with a partial-differential equation based planar eigenvalue analysis to characterize the boundary layer instability in the presence of azimuthally periodic streaks. The streaks are observed to stabilize nominally planar Mack mode instabilities, although oblique Mack mode and first-mode disturbances are destabilized. Experimentally measured transition onset in the absence of any streaks correlates with an amplification factor of N = 6 for the planar Mack modes. For high enough streak amplitudes, the transition threshold of N = 6 is not reached by the Mack mode instabilities within the length of the cone; however, subharmonic first-mode instabilities, which are destabilized by the presence of the streaks, do reach N = 6 near the end of the cone. The highest stabilization is observed at streak amplitudes of approximately 20 percent of the freestream velocity. Because the use of initial disturbance profiles based on linear optimal growth theory may yield suboptimal control in the context of nonlinear streaks, the computational predictions are extended to nonlinear optimal growth theory. Results show that by using nonlinearly optimal perturbation leads to slightly enhanced stabilization of plane Mack mode disturbances as well as reduced destabilization of subharmonic first-mode disturbances.
NASA Technical Reports Server (NTRS)
Champman, A. J.
1972-01-01
Spherically blunted 0.44-radian (25 deg) half-angle conical models coated with elastomeric ablative materials were tested in supersonic arc-heated wind tunnels to evaluate performance of the ablators over a range of conditions typical of lifting entry. Four test conditions were combinations of stagnation point-heat transfer rates of 2.3 and 4.5 MW/m2 and stagnation pressures of 20 and 2kN/m2. Afterbody values of heat transfer rate and pressure were 0.05 to 0.20 of stagnation point values. Stagnation enthalpy varied from 4.4 to 25 MJ/kg (1900 to 11000 Btu/lbm) and free-stream Mach number was in a range from 3.5 to 4. Ablative materials retained the spherical nose shape throughout tests at the lower heat transfer level, but receded, assuming a flattened nose shape, during tests at the high heat transfer level. The residue layer that formed on the conical after-body was weak, friable, and extensively cracked. The reference ablative material, which contained phenolic microspheres, generally retained the conical shape on the model afterbody. However, a modified ablator, in which phenolic microspheres were replaced with silica microspheres, deformed and separated from the undegraded material, and thereby produced a very uneven surface. Substrate temperatures and ablator recession were in good agreement with values computed by a numerical analysis.
Ultrasonic fluid flow measurement method and apparatus
Kronberg, J.W.
1993-10-12
An apparatus for measuring the flow of a fluid in a pipe using ultrasonic waves. The apparatus comprises an ultrasonic generator, a lens for focusing the sound energy produced by the generator, and means for directing the focused energy into the side of the pipe through an opening and in a direction close to parallel to the long axis of the pipe. A cone carries the sound energy to the lens from the generator. Depending on the choice of materials, there may be a quarter-wave, acoustic impedance matching section between the generator and the cone to reduce the reflections of energy at the cone boundary. The lens material has an acoustic impedance similar to that of the cone material but a different sonic velocity so that the lens can converge the sound waves in the fluid. A transition section between the lens and the fluid helps to couple the energy to the fluid and assures it is directed as close to parallel to the fluid flow direction as possible. 3 figures.
Ultrasonic fluid flow measurement method and apparatus
Kronberg, James W.
1993-01-01
An apparatus for measuring the flow of a fluid in a pipe using ultrasonic waves. The apparatus comprises an ultrasonic generator, a lens for focusing the sound energy produced by the generator, and means for directing the focused energy into the side of the pipe through an opening and in a direction close to parallel to the long axis of the pipe. A cone carries the sound energy to the lens from the generator. Depending on the choice of materials, there may be a quarter-wave, acoustic impedance matching section between the generator and the cone to reduce the reflections of energy at the cone boundary. The lens material has an acoustic impedance similar to that of the cone material but a different sonic velocity so that the lens can converge the sound waves in the fluid. A transition section between the lens and the fluid helps to couple the energy to the fluid and assures it is directed as close to parallel to the fluid flow direction as possible.
Szél, A; Röhlich, P
1985-01-01
Frozen semithin sections and unembedded retinal pieces were investigated by immunocytochemistry using two antibodies produced against visual pigments in our laboratory. One was a polyclonal serum (AO) raised against bovine rhodopsin, while the other one was a monoclonal antibody (COS-1) produced against an epitope present in a cone visual pigment. AO stained, as expected, rod outer segments; in addition it also recognized a single cone characterized by a deep yellow oil droplet as well as another single cone with a yellowish green oil droplet. In contrast, COS-1 labelled both members of the double cones; the principal member having a yellowish-green oil droplet and the accessory member. COS-1 also stained a single cone type exhibiting a large red oil droplet.
Rods and cones contain antigenically distinctive S-antigens.
Nork, T M; Mangini, N J; Millecchia, L L
1993-09-01
S-antigen (48 kDa protein or arrestin) is known to be present in rod photoreceptors. Its localization in cones is less clear with several conflicting reports among various species examined. This study employed three different anti-S-antigen antibodies (a48K, a polyclonal antiserum and two monoclonal antibodies, MAb A9-C6 and MAb 5c6.47) and examined their localization in rods and cones of human and cat retinas. To identify the respective cone types, an enzyme histochemical technique for carbonic anhydrase (CA) was employed to distinguish blue cones (CA-negative) from red or green cones (CA-positive). S-antigen localization was then examined by immunocytochemical staining of adjacent sections. In human retinas, a similar labeling pattern was seen with both a48K and MAb A9-C6, i.e., the rods and blue-sensitive cones were strongly positive, whereas the red- or green-sensitive cones showed little immunoreactivity. All human photoreceptors showed reactivity to MAb 5c6.47. In the cat retina, only CA-positive cones could be found. As in the human retina, both rods and cones of the cat were positive for MAb 5c6.47. A difference from the labeling pattern in human retina was noted for the other S-antigen antibodies; a48K labeled rods and all of the cones, whereas MAb A9-C6 reacted strongly with the rods but showed no cone staining. These results suggest that both rods and cones contain S-antigen but that they are antigenically distinctive.
Laminar-turbulent transition on a blunted ogive-conical body at hypersonic speeds
NASA Astrophysics Data System (ADS)
Vaganov, A. V.; Noev, A. Yu.; Plyashechnik, V. I.; Radchenko, V. N.; Skuratov, A. S.; Shustov, A. A.
2016-10-01
Influence of flow parameters and nose radius on laminar-turbulent transition location is under investigation. Experiments were conducted in shock tunnel at Mach number 6. Transition location was diagnosed by heat transfer rate distribution determined with aid of luminescent temperature converters. Model used was ogive-conical body of revolution having half angle about 9°. Through obtained Reynolds number range (up to Re∞,R = 3.44×105) no transition reversal was observed. Present data are in accordance with the hypothesis that transition reversal is due to formation of turbulence wedges in nosetip region. Highest observed transition onset Reynolds number was about Re∞,Xt ≈ 1.4×107 which is anomaly higher than conventional wind tunnel data for sharp cone at this Mach number range and lies in flight data region.
Traveling wave linear accelerator with RF power flow outside of accelerating cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolgashev, Valery A.
A high power RF traveling wave accelerator structure includes a symmetric RF feed, an input matching cell coupled to the symmetric RF feed, a sequence of regular accelerating cavities coupled to the input matching cell at an input beam pipe end of the sequence, one or more waveguides parallel to and coupled to the sequence of regular accelerating cavities, an output matching cell coupled to the sequence of regular accelerating cavities at an output beam pipe end of the sequence, and output waveguide circuit or RF loads coupled to the output matching cell. Each of the regular accelerating cavities hasmore » a nose cone that cuts off field propagating into the beam pipe and therefore all power flows in a traveling wave along the structure in the waveguide.« less
2007-07-27
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A at Cape Canaveral Air Force Station, the first half of the fairing is moved toward the Phoenix Mars Lander for installation. Phoenix is targeted for launch on Aug. 3 aboard a Delta II rocket. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. NASA/George Shelton
2007-07-27
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A at Cape Canaveral Air Force Station, the second half of the fairing (in the foreground) moves toward the Phoenix Mars Lander for installation. Phoenix is targeted for launch on Aug. 3 aboard a Delta II rocket. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. NASA/George Shelton
2007-07-27
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A at Cape Canaveral Air Force Station, the first half of the fairing is moved into place around the Phoenix Mars Lander for installation. Phoenix is targeted for launch on Aug. 3 aboard a Delta II rocket. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. NASA/George Shelton
Advanced Ceramic Matrix Composites (CMCs) for High Temperature Applications
NASA Technical Reports Server (NTRS)
Singh, M.
2005-01-01
Advanced ceramic matrix composites (CMCs) are enabling materials for a number of demanding applications in aerospace, energy, and nuclear industries. In the aerospace systems, these materials are being considered for applications in hot sections of jet engines such as the combustor liner, vanes, nozzle components, nose cones, leading edges of reentry vehicles, and space propulsion components. Applications in the energy and environmental industries include radiant heater tubes, heat exchangers, heat recuperators, gas and diesel particulate filters, and components for land based turbines for power generation. These materials are also being considered for use in the first wall and blanket components of fusion reactors. In the last few years, a number of CMC components have been developed and successfully tested for various aerospace and ground based applications. However, a number of challenges still remain slowing the wide scale implementation of these materials. They include robust fabrication and manufacturing, assembly and integration, coatings, property modeling and life prediction, design codes and databases, repair and refurbishment, and cost. Fabrication of net and complex shape components with high density and tailorable matrix properties is quite expensive, and even then various desirable properties are not achievable. In this presentation, a number of examples of successful CMC component development and testing will be provided. In addition, critical need for robust manufacturing, joining and assembly technologies in successful implementation of these systems will be discussed.
Computational algebraic geometry for statistical modeling FY09Q2 progress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, David C.; Rojas, Joseph Maurice; Pebay, Philippe Pierre
2009-03-01
This is a progress report on polynomial system solving for statistical modeling. This is a progress report on polynomial system solving for statistical modeling. This quarter we have developed our first model of shock response data and an algorithm for identifying the chamber cone containing a polynomial system in n variables with n+k terms within polynomial time - a significant improvement over previous algorithms, all having exponential worst-case complexity. We have implemented and verified the chamber cone algorithm for n+3 and are working to extend the implementation to handle arbitrary k. Later sections of this report explain chamber cones inmore » more detail; the next section provides an overview of the project and how the current progress fits into it.« less
NASA Technical Reports Server (NTRS)
Letko, W; Denaci, H. G.; Freed, C
1943-01-01
Hinge-moment, lift, and pressure-distribution measurements were made in the two-dimensional test section of the NACA stability tunnel on a blunt-nose balance-type aileron on an NACA 66,2-216 airfoil at speeds up to 360 miles per hour corresponding to a Mach number of 0.475. The tests were made primarily to determine the effect of speed on the action of this type of aileron. The balance-nose radii of the aileron were varied from 0 to 0.02 of the airfoil chord and the gap width was varied from 0.0005 to 0.0107 of the airfoil chord. Tests were also made with the gap sealed.
STS-31 Discovery, Orbiter Vehicle (OV) 103, lands on EAFB concrete runway 22
NASA Technical Reports Server (NTRS)
1990-01-01
STS-31 Discovery, Orbiter Vehicle (OV) 103, rolls along concrete runway 22 at Edwards Air Force Base (EAFB), California, after nose landing gear (NLG) and main landing gear (MLG) touchdown. This view looks down OV-103's port side from the space shuttle main engines (SSMEs) to the nose section. The SSMEs are gimbaled to their descent position and the rudder/speedbrake is deployed on the vertical stabilizer. Wheel stop occurred at 6:51 am (Pacific Daylight Time (PDT)). In the distance EAFB facilities are visible.
Liu, Guangmao; Zhou, Jianye; Sun, Hansong; Zhang, Yan; Chen, Haibo; Hu, Shengshou
2017-04-05
BACKGROUND Cannula shape and connection style influence the risk of thrombus formation in the blood pump by varying the blood flow characteristics inside the pump. Inlet cannulas should be designed based on the need for anatomical fit and reducing the risk of thrombus generation in the blood pump. The effects on thrombus formation of the cone-shaped bend inlet cannulas of axial blood pumps should be studied. MATERIAL AND METHODS The cannulas were designed as cone-shaped, with 1 bent section connecting 2 straight sections. Both the silicone tube and novel cone-shaped cannula were simulated for comparison. The flow fields of a blood pump with inlet cannula were simulated by computational fluid dynamics (CFD) at flows of 2.0, 2.5, and 3.0 liters per minute (lpm), with pump rotational speeds of 7500, 8000, and 8500 rpm, respectively. Then, 6 two-dimensional (2D) particle image velocimetry (PIV) tests were conducted and the velocity distributions were analyzed. RESULTS A low-velocity region was located inside the pump entrance when a soft silicone tube was used. At 8500 rpm and 3.0 lpm working condition, the minimum velocity inside the pump with cone-shaped cannulas was 2.5×10^-1 m/s. The cone-shaped cannulas eliminated the low-velocity region inside the pump. Both CFD and PIV results showed that the low-velocity region did not spread to the entrance of the blood pump within the flow range from 2.0 lpm to 7.0 lpm. CONCLUSIONS The designed cone-shaped bent cannulas can eliminate the low-velocity region inside the blood pump and reduce the risk of thrombus formation in the blood pump.
NASA Technical Reports Server (NTRS)
Jorgensen, L. H.; Nelson, E. R.
1975-01-01
An experimental investigation was conducted to measure the static aerodynamic characteristics for two bodies of elliptic cross section and for their equivalent body of revolution. The equivalent body of revolution had the same length and axial distribution of cross-sectional area as the elliptic bodies. It consisted of a tangent ogive nose of fineness ratio 3 followed by a cylinder with a fineness ratio of 7. All bodies were tested at Mach numbers of 0.6, 0.9, 1.2, 1.5, and 2.0 at angles of attack from 0 deg to 58 deg. The data demonstrate that the aerodynamic characteristics can be significantly altered by changing the body cross section from circular to elliptic and by rolling the body from 0 deg to 90 deg. For example, the first elliptic body (with a constant cross-sectional axis ratio of 2) developed at zero roll about twice the normal force developed by the equivalent body of revolution. At some angles of attack greater than about 25 deg, side forces and yawing moments were measured in spite of the fact that the bodies were tested at zero angle of sideslip. The side-force and yawing-moment coefficients decreased with an increase in Mach number and essentially disappeared for all the bodies at Mach numbers greater than 1.2. From the standpoint of reducing undesirable side forces at high angles of attack, it is best to have the flattest side of the nose of the elliptic bodies pitching against the stream crossflow. The effect of Reynolds number was also the least significant for both elliptic bodies when the flattest side of the nose was pitched against the stream crossflow.
Transition From Ideal To Viscous Mach Cones In A Partonic Transport Model
NASA Astrophysics Data System (ADS)
Bouras, I.; El, A.; Fochler, O.; Niemi, H.; Xu, Z.; Greiner, C.
2013-09-01
Using a partonic transport model we investigate the evolution of conical structures in ultrarelativistic matter. Using two different source terms and varying the transport properties of the matter we study the formation of Mach Cones. Furthermore, in an additional study we extract the two-particle correlations from the numerical calculations and compare them to an analytical approximation. The influence of the viscosity to the shape of Mach Cones and the corresponding two-particle correlations is studied by adjusting the cross section of the medium.
Lukáts, Akos; Dkhissi-Benyahya, Ouria; Szepessy, Zsuzsanna; Röhlich, Pál; Vígh, Béla; Bennett, Nigel C; Cooper, Howard M; Szél, Agoston
2002-07-01
To decide whether the identical topography of short- and middle-wavelength cone photoreceptors in two species of rodents reflects the presence of both opsins in all cone cells. Double-label immunocytochemistry using antibodies directed against short-wavelength (S)-and middle- to long-wavelength (M/L)-sensitive opsin were used to determine the presence of visual pigments in cones of two species of rodents, the Siberian hamster (Phodopus sungorus) and the pouched mouse (Saccostomus campestris) from South Africa. Topographical distribution was determined from retinal whole-mounts, and the colocalization of visual pigments was examined using confocal laser scanning microscopy. Opsin colocalization was also confirmed in consecutive semithin tangential sections. The immunocytochemical results demonstrate that in both the Siberian hamster and the pouched mouse all retinal cones contain two visual pigments. No dorsoventral gradient in the differential expression of the two opsins is observed. The retina of the Siberian hamster and the pouched mouse is the first example to show a uniform coexpression of M and S cone opsins in all cones, without any topographical gradient in opsin expression. This finding makes these two species good models for the study of molecular control mechanisms in opsin coexpression in rodents, and renders them suitable as sources of dual cones for future investigations on the role and neural connections of this cone type.
Microcomputed tomography and shock microdeformation studies on shatter cones
NASA Astrophysics Data System (ADS)
Zaag, Patrice Tristan; Reimold, Wolf Uwe; Hipsley, Christy Anna
2016-08-01
One of the aspects of impact cratering that are still not fully understood is the formation of shatter cones and related fracturing phenomena. Yet, shatter cones have been applied as an impact-diagnostic criterion for decades without the role of shock waves and target rock defects in their formation having been elucidated ever. We have tested the application of the nondestructive microcomputed tomography (μCT) method to visualize the interior of shatter cones in order to possibly resolve links between fracture patterns and shatter cone surface features (striations and intervening "valleys"). Shatter-coned samples from different impact sites and in different lithologies were investigated for their μCT suitability, with a shatter cone in sandstone from the Serra da Cangalha impact structure (Brazil) remaining as the most promising candidate because of the fracture resolution achieved. To validate the obtained CT data, the scanned specimen was cut into three orthogonal sets of thin sections. Scans with 13 μm resolution were obtained. μCT scans and microscopic analysis unraveled an orientation of subplanar fractures and related fluid inclusion trails, and planar fracture (PF) orientations in the interior of shatter cones. Planar deformation features (PDF) were observed predominantly near the shatter cone surface. Previously undescribed varieties of feather features (FF), in the form of lamellae emanating from curviplanar and curved fractures, as well as an "arrowhead"-like FF development with microlamellae originating from both sides of a PF, were observed. The timing of shatter cone formation was investigated by establishing temporal relations to the generation of various shock microscopic effects. Shatter cones are, thus, generated post- or syn-formation of PF, FF, subplanar fractures, and PDF. The earliest possible time for shatter cone formation is during the late stage of the compressional phase, that is, shock wave passage, of an impact event.
Ortín-Martínez, Arturo; Valiente-Soriano, Francisco Javier; García-Ayuso, Diego; Alarcón-Martínez, Luis; Jiménez-López, Manuel; Bernal-Garro, José Manuel; Nieto-López, Leticia; Nadal-Nicolás, Francisco Manuel; Villegas-Pérez, María Paz; Wheeler, Larry A; Vidal-Sanz, Manuel
2014-01-01
We have investigated the effects of light-emitting diode (LED)-induced phototoxicity (LIP) on cone-photoreceptors and their protection with brimonidine (BMD), brain-derived neurotrophic factor (BDNF), pigment epithelium-derived factor (PEDF), ciliary neurotrophic factor (CNTF) or basic fibroblast growth factor (bFGF). In anesthetized, dark adapted, adult albino rats a blue (400 nm) LED was placed perpendicular to the cornea (10 sec, 200 lux) and the effects were investigated using Spectral Domain Optical Coherence Tomography (SD-OCT) and/or analysing the retina in oriented cross-sections or wholemounts immune-labelled for L- and S-opsin and counterstained with the nuclear stain DAPI. The effects of topical BMD (1%) or, intravitreally injected BDNF (5 µg), PEDF (2 µg), CNTF (0.4 µg) or bFGF (1 µg) after LIP were examined on wholemounts at 7 days. SD-OCT showed damage in a circular region of the superotemporal retina, whose diameter varied from 1,842.4±84.5 µm (at 24 hours) to 1,407.7±52.8 µm (at 7 days). This region had a progressive thickness diminution from 183.4±5 µm (at 12 h) to 114.6±6 µm (at 7 d). Oriented cross-sections showed within the light-damaged region of the retina massive loss of rods and cone-photoreceptors. Wholemounts documented a circular region containing lower numbers of L- and S-cones. Within a circular area (1 mm or 1.3 mm radius, respectively) in the left and in its corresponding region of the contralateral-fellow-retina, total L- or S-cones were 7,118±842 or 661±125 for the LED exposed retinas (n = 7) and 14,040±1,860 or 2,255±193 for the fellow retinas (n = 7), respectively. BMD, BDNF, PEDF and bFGF but not CNTF showed significant neuroprotective effects on L- or S-cones. We conclude that LIP results in rod and cone-photoreceptor loss, and is a reliable, quantifiable model to study cone-photoreceptor degeneration. Intravitreal BDNF, PEDF or bFGF, or topical BMD afford significant cone neuroprotection in this model.
The Smithsonian Earth Physics Satellite (SEPS) definition study, volumes 1 through 4
NASA Technical Reports Server (NTRS)
1971-01-01
A limited Phase B study was undertaken to determine the merit and feasibility of launching a proposed earth physics satellite with Apollo-type hardware. The study revealed that it would be feasible to launch this satellite using a S-IB stage, a S-IVB with restart capability, an instrument unit, a SLA for the satellite shroud, and a nose cone (AS-204 configuration). A definition of the proposed satellite is provided, which is specifically designed to satisfy the fundamental requirement of providing an orbiting benchmark of maximum accuracy. The satellite is a completely passive, solid 3628-kg sphere of 38.1-cm radius and very high mass-to-area ratio (7980 kg sq mi). In the suggested orbit of 55 degrees inclination, 3720 km altitude, and low eccentricity, the orbital lifetime is extremely long, so many decades of operation can be expected.
Kantaputra, Piranit N
2002-09-01
A Thai man and his sister affected with a newly recognized syndrome of proportionate primordial short stature are reported. The patients had severe intrauterine and postnatal growth retardation, prominent nose and nasal bridge, small pinnae, large sella turcica, areas of hypo- and hyperpigmentation of skin, dry and thin scalp hair, and long and straight clavicles. Ivory epiphyses and cone-shaped epiphyses of the hands were found when they were young, but most of them disappeared as they grew up. Scaphoid and trapezium had angular appearance. The second toes were unusually long. Distal symphalangism of toes and barchymesophalangy of fingers were noted. The findings that appear to distinguish this syndrome from the previously reported syndromes are long second toes, opalescent and rootless teeth, severe microdontia, severely hypoplastic alveolar process, and unerupted tooth. The mode of inheritance is suspected to be autosomal recessive. Copyright 2002 Wiley-Liss, Inc.
The STS-98 crew poses for group photo near top of FSS
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- The STS-98 crew poses for a group photo on the 215-foot level of the Fixed Service Structure at Launch Pad 39A. Dressed in their orange launch and entry suits are (left to right) Commander Ken Cockrell, Mission Specialist Marsha Ivins, Pilot Mark Polansky and Mission Specialists Robert Curbeam and Thomas Jones. Behind them can be seen the white nose cone of a solid rocket booster and the orange external tank on Space Shuttle Atlantis. The crew is taking part in emergency egress training and a simulated launch countdown as part of Terminal Countdown Demonstration Test activities. STS-98 is the seventh construction flight to the International Space Station, carrying as payload the U.S. Lab Destiny, a key element in the construction of the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m. EST.
High-Temperature Graphite/Phenolic Composite
NASA Technical Reports Server (NTRS)
Seal, Ellis C.; Bodepudi, Venu P.; Biggs, Robert W., Jr.; Cranston, John A.
1995-01-01
Graphite-fiber/phenolic-resin composite material retains relatively high strength and modulus of elasticity at temperatures as high as 1,000 degrees F. Costs only 5 to 20 percent as much as refractory materials. Fabrication composite includes curing process in which application of full autoclave pressure delayed until after phenolic resin gels. Curing process allows moisture to escape, so when composite subsequently heated in service, much less expansion of absorbed moisture and much less tendency toward delamination. Developed for nose cone of external fuel tank of Space Shuttle. Other potential aerospace applications for material include leading edges, parts of nozzles, parts of aircraft engines, and heat shields. Terrestrial and aerospace applications include structural firewalls and secondary structures in aircraft, spacecraft, and ships. Modified curing process adapted to composites of phenolic with other fiber reinforcements like glass or quartz. Useful as high-temperature circuit boards and electrical insulators.
Whistler mode plasma waves observed on Electron Echo 2
NASA Technical Reports Server (NTRS)
Monson, S. J.; Kellogg, P. J.; Cartwright, D. G.
1976-01-01
Observations of whistler-mode waves associated with beams of electrons injected into the ionosphere are reported. The measurements are from the plasma-wave experiments carried on the Electron Echo 2 sounding rocket launched on September 24, 1972. Over 2000 electron injections were made with durations of 8 ms and 64 ms and pitch angles from 0 to 180 deg. The electric field receivers carried on the ejected nose cone observed strong whistler waves in the range from less than 100 kHz up to the electron cyclotron frequency of 1400 kHz. The whistler characteristics fall into four distinct types depending on pitch angle and gun energy. Both frequency and amplitude showed strong dependence on time from the start of the pulse and pitch angle. Cases of enhancement at the leading edge of a gun pulse, growth during a pulse, and echoes after the end of a pulse were all observed.
Artist's Concept of the Atlas V-401 Rocket
2018-01-25
Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, is scheduled to launch from Vandenberg Air Force Base on California's Pacific coast between May 5 and June 8, 2018. The lander will launch to Mars aboard an Atlas V-401 launch vehicle, one of the biggest rockets available for interplanetary flight. It stands 188 feet (57.3 meters) tall, or about as tall as a 19-story building. Fully stacked, with the spacecraft, the Atlas V-401 weighs about 730,000 pounds (333,000 kilograms). That's about 14 big rigs, fully loaded with cargo! The three numbers in the 401 designation signify: 4: a payload fairing -- or nose cone -- that is about 13 feet (4 meters) in diameter 0: solid-rocket boosters supplementing the main booster 1: the upper stage, which has one engine https://photojournal.jpl.nasa.gov/catalog/PIA22231
NASA Technical Reports Server (NTRS)
Ramsey, P. E.
1976-01-01
An aerodynamic investigation was conducted in the MSFC High Reynolds Number Wind Tunnel to determine the pressure distribution over the foresection of the current 146 inch diameter shuttle SRB. The test model consisted of a 0.0137 scale version of the SRB nose cone and a forward portion of the cylindrical body which was approximately 2.7 calibers in length. The pressure distributions are plotted as a function of longitudinal station ratioed to body diameter and circumferential location for each angle of attack and Mach number. A Reynolds number variation study was made for Mach numbers of 0.4 and 0.6 at an angle of attack of 270 deg and roll angle of 180 deg.
2009-02-09
VANDENBERG AIR FORCE BASE, Calif. -- The second half of the fairing is prepared for installation around NASA's Orbiting Carbon Observatory, or OCO, at Vandenberg Air Force Base in California. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The spacecraft is scheduled for launch aboard Orbital Sciences' Taurus XL rocket on Feb. 23 from Vandenberg. The spacecraft will collect precise global measurements of carbon dioxide (CO2) in the Earth's atmosphere. Scientists will analyze OCO data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. This improved understanding will enable more reliable forecasts of future changes in the abundance and distribution of CO2 in the atmosphere and the effect that these changes may have on the Earth's climate. Photo credit: NASA/Robert Hargreaves Jr., VAFB
2009-02-09
VANDENBERG AIR FORCE BASE, Calif. -- The first half of the fairing is placed around NASA's Orbiting Carbon Observatory, or OCO, at Vandenberg Air Force Base in California. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The spacecraft is scheduled for launch aboard Orbital Sciences' Taurus XL rocket on Feb. 23 from Vandenberg. The spacecraft will collect precise global measurements of carbon dioxide (CO2) in the Earth's atmosphere. Scientists will analyze OCO data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. This improved understanding will enable more reliable forecasts of future changes in the abundance and distribution of CO2 in the atmosphere and the effect that these changes may have on the Earth's climate. Photo credit: NASA/Robert Hargreaves Jr., VAFB
2008-05-27
CAPE CANAVERAL, Fla. -- Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, NASA's Gamma-Ray Large Area Space Telescope, or GLAST, is ready for encapsulation in the payload fairing. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. The launch date is targeted no earlier than June 3. Photo credit: NASA/Jim Grossmann
2008-05-27
CAPE CANAVERAL, Fla. -- Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, NASA's Gamma-Ray Large Area Space Telescope, or GLAST, is ready for encapsulation in the payload fairing. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. GLAST is a powerful space observatory that will explore the Universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our Universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. The launch date is targeted no earlier than June 3. Photo credit: NASA/Jim Grossmann
2009-09-12
CAPE CANAVERAL, Fla. – Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, workers check the progress of the fairing being moved toward the Space Tracking and Surveillance System – Demonstrator spacecraft for encapsulation. The fairing is a two-part molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detection, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-4934 (09-22-09) Photo credit: NASA/Cory Huston
2009-09-12
CAPE CANAVERAL, Fla. – Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, the Space Tracking and Surveillance System – Demonstrator spacecraft (foreground) is waiting for encapsulation in the fairing, behind it at left. The fairing is a two-part molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detection, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-4934 (09-22-09) Photo credit: NASA/Cory Huston
2009-09-12
CAPE CANAVERAL, Fla. – Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, workers help guide the fairing (at right) into place around the Space Tracking and Surveillance System – Demonstrator spacecraft for encapsulation. The fairing is a two-part molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detection, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-4934 (09-22-09) Photo credit: NASA/Cory Huston
2009-09-12
CAPE CANAVERAL, Fla. – Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, the second half of the fairing is being moved toward the Space Tracking and Surveillance System – Demonstrator spacecraft. The fairing is a two-part molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detection, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-4934 (09-22-09) Photo credit: NASA/Cory Huston
2009-09-12
CAPE CANAVERAL, Fla. – Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, the first half of the two-part fairing is in place around the Space Tracking and Surveillance System – Demonstrator spacecraft. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detection, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-4934 (09-22-09) Photo credit: NASA/Cory Huston
2009-09-12
CAPE CANAVERAL, Fla. – Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, the Space Tracking and Surveillance System – Demonstrator spacecraft is waiting for encapsulation in the fairing. The fairing is a two-part molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detection, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-4934 (09-22-09) Photo credit: NASA/Cory Huston
2007-07-27
KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-A at Cape Canaveral Air Force Station, the second half of the fairing (in the foreground) moves closer to the Phoenix Mars Lander for installation toward the first half. Phoenix is targeted for launch on Aug. 3 aboard a Delta II rocket. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. Phoenix will land in icy soils near the north polar, permanent ice cap of Mars and explore the history of the water in these soils and any associated rocks, while monitoring polar climate. Landing on Mars is planned in May 2008 on arctic ground where a mission currently in orbit, Mars Odyssey, has detected high concentrations of ice just beneath the top layer of soil. NASA/George Shelton
2007-06-07
KENNEDY SPACE CENTER, FLA. -- The "pencil sharpener" tool designed to trim the hand-sprayed foam repairs on the STS-117 external tank is on display for the media at the NASA News Center. This portable tool was designed in just 10 days specifically for this task by Lockheed Martin engineer Glenn Lapeyronnie at the Michoud external tank manufacturing facility in New Orleans. The pencil sharpener tool fits over the external tank nose cone spike at the top of the tank and extends down to where the hand-sprayed foam was used to repair the hail-damaged areas. The hail damage was incurred Feb. 28 while Space Shuttle Atlantis was on the launch pad for a March 15 launch. The shuttle returned to the Vehicle Assembly Building so that repairs could be made. Mission STS-117 is scheduled to launch at 7:38 p.m. EDT on June 8. Photo credit: NASA/Jack Pfaller
2007-06-07
KENNEDY SPACE CENTER, FLA. -- The "pencil sharpener" tool designed to trim the hand-sprayed foam repairs on the STS-117 external tank is on display for the media at the NASA News Center. This portable tool was designed in just 10 days specifically for this task by Lockheed Martin engineer Glenn Lapeyronnie at the Michoud external tank manufacturing facility in New Orleans. The pencil sharpener tool fits over the external tank nose cone spike at the top of the tank and extends down to where the hand-sprayed foam was used to repair the hail-damaged areas. The hail damage was incurred Feb. 28 while Space Shuttle Atlantis was on the launch pad for a March 15 launch. The shuttle returned to the Vehicle Assembly Building so that repairs could be made. Mission STS-117 is scheduled to launch at 7:38 p.m. EDT on June 8. Photo credit: NASA/Jack Pfaller
2007-06-07
KENNEDY SPACE CENTER, FLA. -- The "pencil sharpener" tool designed to trim the hand-sprayed foam repairs on the STS-117 external tank is on display for the media at the NASA News Center. This portable tool was designed in just 10 days specifically for this task by Lockheed Martin engineer Glenn Lapeyronnie at the Michoud external tank manufacturing facility in New Orleans. The pencil sharpener tool fits over the external tank nose cone spike at the top of the tank and extends down to where the hand-sprayed foam was used to repair the hail-damaged areas. The hail damage was incurred Feb. 28 while Space Shuttle Atlantis was on the launch pad for a March 15 launch. The shuttle returned to the Vehicle Assembly Building so that repairs could be made. Mission STS-117 is scheduled to launch at 7:38 p.m. EDT on June 8. Photo credit: NASA/Jack Pfaller
2007-06-07
KENNEDY SPACE CENTER, FLA. -- The "pencil sharpener" tool designed to trim the hand-sprayed foam repairs on the STS-117 external tank is on display for the media at the NASA News Center. This portable tool was designed in just 10 days specifically for this task by Lockheed Martin engineer Glenn Lapeyronnie at the Michoud external tank manufacturing facility in New Orleans. The pencil sharpener tool fits over the external tank nose cone spike at the top of the tank and extends down to where the hand-sprayed foam was used to repair the hail-damaged areas. The hail damage was incurred Feb. 28 while Space Shuttle Atlantis was on the launch pad for a March 15 launch. The shuttle returned to the Vehicle Assembly Building so that repairs could be made. Mission STS-117 is scheduled to launch at 7:38 p.m. EDT on June 8. Photo credit: NASA/Jack Pfaller
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swain, M.R.
The following report is divided into two sections. The first section describes the results of ignitability tests of high pressure hydrogen and natural gas leaks. The volume of ignitable gases formed by leaking hydrogen or natural gas were measured. Leaking high pressure hydrogen produced a cone of ignitable gases with 28{degrees} included angle. Leaking high pressure methane produced a cone of ignitable gases with 20{degrees} included angle. Ignition of hydrogen produced larger overpressures than did natural gas. The largest overpressures produced by hydrogen were the same as overpressures produced by inflating a 11 inch child`s balloon until it burst.
SHARK: Flight Results of an UHTC-Based Nose Related to USV Hot Structures
NASA Astrophysics Data System (ADS)
Gardi, R.; Del Vecchio, A.; Russo, G.; Marino, G.
2011-05-01
In the frame of USV program, CIRA is developing different projects aimed to develop new technologies for the future hypersonic vehicles. One of these technological projects is Sharp Hot Structures (SHS) and it is aimed to the realization of innovative thermo- structures, based on innovative material solution, able to sustain the heat loads generated during the hypersonic flight. Because the slender configuration of the USV program vehicles, SHS is focused on sharp geometries, like sharp leading edges and sharp nose cones. CIRA, for many years, is investigating the effectiveness of ultra high temperature ceramic materials (UHTC) by means of numerical simulations, ground testing in plasma torch and in SCIROCCO, the 70MW plasma wind tunnel (PWT) facility at CIRA. More recently CIRA is moving the experimentation in real flight environment, boarding UHTC components on the re-entering space capsules EXPERT and SHARK. The former is a European experimental test bed boarding a couple of UHTC fins, already qualified and integrated on the vehicle. SHARK is a 20kg capsule launched on March the 26th 2010 from Kiruna with the European sounding rocker Maxus-8. During the ascent parabola, the capsule was released and successfully executed its 15 minutes ballistic flight and then re-entered in the atmosphere from a 700km altitude. The capsule has been recovered on July the 1st and all data have been acquired. All the instrumentation worked nicely and the data acquisition continued even after the landing, confirming the robustness of the design.
A breath test for malignant mesothelioma using an electronic nose.
Chapman, Eleanor A; Thomas, Paul S; Stone, Emily; Lewis, Craig; Yates, Deborah H
2012-08-01
Malignant mesothelioma (MM) is a rare tumour which is difficult to diagnose in its early stages. Earlier detection of MM could potentially improve survival. Exhaled breath sampling of volatile organic compounds (VOCs) using a carbon polymer array (CPA) electronic nose recognises specific breath profiles characteristic of different diseases, and can distinguish between patients with lung cancer and controls. With MM, the potential confounding effect of other asbestos-related diseases (ARDs) needs to be considered. We hypothesised that as CPA electronic nose would distinguish patients with MM, patients with benign ARDs, and controls with high sensitivity and specificity. 20 MM, 18 ARD and 42 control subjects participated in a cross-sectional, case-control study. Breath samples were analysed using the Cyranose 320 (Smiths Detection, Pasadena, CA, USA), using canonical discriminant analysis and principal component reduction. 10 MM subjects created the training set. Smell prints from 10 new MM patients were distinguished from control subjects with an accuracy of 95%. Patients with MM, ARDs and control subjects were correctly identified in 88% of cases. Exhaled breath VOC profiling can accurately distinguish between patients with MM, ARDs and controls using a CPA electronic nose. This could eventually translate into a screening tool for high-risk populations.
An electronic nose in the discrimination of patients with non-small cell lung cancer and COPD.
Dragonieri, Silvano; Annema, Jouke T; Schot, Robert; van der Schee, Marc P C; Spanevello, Antonio; Carratú, Pierluigi; Resta, Onofrio; Rabe, Klaus F; Sterk, Peter J
2009-05-01
Exhaled breath contains thousands of gaseous volatile organic compounds (VOCs) that may be used as non-invasive markers of lung disease. The electronic nose analyzes VOCs by composite nano-sensor arrays with learning algorithms. It has been shown that an electronic nose can distinguish the VOCs pattern in exhaled breath of lung cancer patients from healthy controls. We hypothesized that an electronic nose can discriminate patients with lung cancer from COPD patients and healthy controls by analyzing the VOC-profile in exhaled breath. 30 subjects participated in a cross-sectional study: 10 patients with non-small cell lung cancer (NSCLC, [age 66.4+/-9.0, FEV(1) 86.3+/-20.7]), 10 patients with COPD (age 61.4+/-5.5, FEV(1) 70.0+/-14.8) and 10 healthy controls (age 58.3+/-8.1, FEV(1) 108.9+/-14.6). After 5 min tidal breathing through a non-rebreathing valve with inspiratory VOC-filter, subjects performed a single vital capacity maneuver to collect dried exhaled air into a Tedlar bag. The bag was connected to the electronic nose (Cyranose 320) within 10 min, with VOC-filtered room air as baseline. The smellprints were analyzed by onboard statistical software. Smellprints from NSCLC patients clustered distinctly from those of COPD subjects (cross validation value [CVV]: 85%; M-distance: 3.73). NSCLC patients could also be discriminated from healthy controls in duplicate measurements (CVV: 90% and 80%, respectively; M-distance: 2.96 and 2.26). VOC-patterns of exhaled breath discriminates patients with lung cancer from COPD patients as well as healthy controls. The electronic nose may qualify as a non-invasive diagnostic tool for lung cancer in the future.
Closeup view of the nose and landing gear on the ...
Close-up view of the nose and landing gear on the forward section of the Orbiter Discovery in the Orbiter Processing Facility at Kennedy Space Center. The Orbiter is being supported by jack stands in the left and right portion of the view. The jack stands attach to the Orbiter at the four hoist attach points, two located on the forward fuselage and two on the aft fuselage. Note the access platforms that surround and nearly touch the orbiter. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
NASA Technical Reports Server (NTRS)
Selna, James; Schlaff, Bernard A
1951-01-01
The drag and pressure recovery of an NACA submerged-inlet model and an NACA series I nose-inlet model were investigated in the transonic flight range. The tests were conducted over a mass-flow-ratio range of 0.4 to 0.8 and a Mach number range of about 0.8 to 1.10 employing large-scale recoverable free-fall models. The results indicate that the Mach number of drag divergence of the inlet models was about the same as that of a basic model without inlets. The external drag coefficients of the nose-inlet model were less than those of the submerged-inlet model throughout the test range. The difference in drag coefficient based on the maximum cross-sectional area of the models was about 0.02 at supersonic speeds and about 0.015 at subsonic speeds. For a hypothetical airplane with a ratio of maximum fuselage cross-sectional area to wing area of 0.06, the difference in airplane drag coefficient would be relatively small, about 0.0012 at supersonic speeds and about 0.0009 at subsonic speeds. Additional drag comparisons between the two inlet models are made considering inlet incremental and additive drag.
Acetic Acid Detection Threshold in Synthetic Wine Samples of a Portable Electronic Nose
Macías, Miguel Macías; Manso, Antonio García; Orellana, Carlos Javier García; Velasco, Horacio Manuel González; Caballero, Ramón Gallardo; Chamizo, Juan Carlos Peguero
2013-01-01
Wine quality is related to its intrinsic visual, taste, or aroma characteristics and is reflected in the price paid for that wine. One of the most important wine faults is the excessive concentration of acetic acid which can cause a wine to take on vinegar aromas and reduce its varietal character. Thereby it is very important for the wine industry to have methods, like electronic noses, for real-time monitoring the excessive concentration of acetic acid in wines. However, aroma characterization of alcoholic beverages with sensor array electronic noses is a difficult challenge due to the masking effect of ethanol. In this work, in order to detect the presence of acetic acid in synthetic wine samples (aqueous ethanol solution at 10% v/v) we use a detection unit which consists of a commercial electronic nose and a HSS32 auto sampler, in combination with a neural network classifier (MLP). To find the characteristic vector representative of the sample that we want to classify, first we select the sensors, and the section of the sensors response curves, where the probability of detecting the presence of acetic acid will be higher, and then we apply Principal Component Analysis (PCA) such that each sensor response curve is represented by the coefficients of its first principal components. Results show that the PEN3 electronic nose is able to detect and discriminate wine samples doped with acetic acid in concentrations equal or greater than 2 g/L. PMID:23262483
Cone-Probe Rake Design and Calibration for Supersonic Wind Tunnel Models
NASA Technical Reports Server (NTRS)
Won, Mark J.
1999-01-01
A series of experimental investigations were conducted at the NASA Langley Unitary Plan Wind Tunnel (UPWT) to calibrate cone-probe rakes designed to measure the flow field on 1-2% scale, high-speed wind tunnel models from Mach 2.15 to 2.4. The rakes were developed from a previous design that exhibited unfavorable measurement characteristics caused by a high probe spatial density and flow blockage from the rake body. Calibration parameters included Mach number, total pressure recovery, and flow angularity. Reference conditions were determined from a localized UPWT test section flow survey using a 10deg supersonic wedge probe. Test section Mach number and total pressure were determined using a novel iterative technique that accounted for boundary layer effects on the wedge surface. Cone-probe measurements were correlated to the surveyed flow conditions using analytical functions and recursive algorithms that resolved Mach number, pressure recovery, and flow angle to within +/-0.01, +/-1% and +/-0.1deg , respectively, for angles of attack and sideslip between +/-8deg. Uncertainty estimates indicated the overall cone-probe calibration accuracy was strongly influenced by the propagation of measurement error into the calculated results.
Histologic development of the human fovea from midgestation to maturity.
Hendrickson, Anita; Possin, Daniel; Vajzovic, Lejla; Toth, Cynthia A
2012-11-01
To describe the histologic development of the human central retina from fetal week (Fwk) 22 to 13 years. Retrospective observational case series. Retinal layers and neuronal substructures were delineated on foveal sections of fixed tissue stained in azure II-methylene blue and on frozen sections immunolabeled for cone, rod, or glial proteins. Postmortem tissue was from 11 eyes at Fwk 20-27; 8 eyes at Fwk 28-37; 6 eyes at postnatal 1 day to 6 weeks; 3 eyes at 9 to 15 months; and 5 eyes at 28 months to 13 years. At Fwk 20-22 the fovea could be identified by the presence of a single layer of cones in the outer nuclear layer. Immunolabeling detected synaptic proteins, cone and rod opsins, and Müller glial processes separating the photoreceptors. The foveal pit appeared at Fwk 25, involving progressive peripheral displacement of ganglion cell, inner plexiform, and inner nuclear layers. The pit became wider and shallower after birth, and appeared mature by 15 months. Between Fwk 25 and Fwk 38, all photoreceptors developed more distinct inner and outer segments, but these were longer on peripheral than foveal cones. After birth the foveal outer nuclear layer became much thicker as cone packing occurred. Cone packing and neuronal migration during pit formation combined to form long central photoreceptor axons, which changed the outer plexiform layer from a thin sheet of synaptic pedicles into the thickest layer in the central retina by 15 months. Foveal inner and outer segment length matched peripheral cones by 15 months and was 4 times longer by 13 years. These data are necessary to understand the marked changes in human retina from late gestation to early adulthood. They provide qualitative and quantitative morphologic information required to interpret the changes in hyper- and hyporeflexive bands in pediatric spectral-domain optical coherence tomography images at the same ages. Copyright © 2012 Elsevier Inc. All rights reserved.
Litts, Katie M.; Wang, Xiaolin; Clark, Mark E.; Owsley, Cynthia; Freund, K. Bailey; Curcio, Christine A.; Zhang, Yuhua
2016-01-01
Purpose To investigate the microscopic structure of outer retinal tubulation (ORT) and optical properties of cone photoreceptors in vivo, we studied ORT appearance by multimodal imaging, including spectral domain optical coherence tomography (SD-OCT) and adaptive optics scanning laser ophthalmoscopy (AOSLO). Methods Four eyes of 4 subjects with advanced AMD underwent color fundus photography, infrared reflectance imaging, SD-OCT, and AOSLO with a high-resolution research instrument. ORT was identified in closely spaced (11 μm) SD-OCT volume scans. Results ORT in cross-sectional and en face SD-OCT was a hyporeflective area representing a lumen surrounded by a hyperreflective border consisting of cone photoreceptor mitochondria and external limiting membrane, per previous histology. In contrast, ORT by AOSLO was a hyporeflective structure of the same shape as in en face SD-OCT but lacking visualizable cone photoreceptors. Conclusion Lack of ORT cone reflectivity by AOSLO indicates that cones have lost their normal directionality and waveguiding property due to loss of outer segments and subsequent retinal remodeling. Reflective ORT cones by SD-OCT, in contrast, may depend partly on mitochondria as light scatterers within inner segments of these degenerating cells, a phenomenon enhanced by coherent imaging. Multimodal imaging of ORT provides insight into cone degeneration and reflectivity sources in OCT. PMID:27584549
Jin, Biao; Tang, Liang; Lu, Yan; Wang, Di; Zhang, Min; Ma, Jiuxia
2012-01-01
Metasequoia glyptostroboides, a famous relic species of conifer that survived in China, has been successfully planted in large numbers across the world. However, limited information on male cone development in the species is available. In this study, we observed the morphological and anatomical changes that occur during male cone development in M. glyptostroboides using semi-thin sections and scanning electron microscopy. The male cones were borne oppositely on one-year-old twigs that were mainly located around the outer and sunlit parts of crown. Male cones were initiated from early September and shed pollen in the following February. Each cone consisted of spirally arranged microsporophylls subtended by decussate sterile scales, and each microsporophyll commonly consisted of three microsporangia and a phylloclade. The microsporangial wall was composed of an epidermis, endothecium, and tapetum. In mid-February, the endothecium and tapetum layers disintegrated, and in the epidermal layer the cell walls were thickened with inner protrusions. Subsequently, dehiscence of the microsporangia occurred through rupturing of the microsporangial wall along the dehiscence line. These results suggest that the structure, morphology, architecture and arrangement of male cones of M. glyptostroboides are mainly associated with the production, protection and dispersal of pollen for optimization of wind pollination. PMID:23221679
Jin, Biao; Tang, Liang; Lu, Yan; Wang, Di; Zhang, Min; Ma, Jiuxia
2012-12-01
Metasequoia glyptostroboides, a famous relic species of conifer that survived in China, has been successfully planted in large numbers across the world. However, limited information on male cone development in the species is available. In this study, we observed the morphological and anatomical changes that occur during male cone development in M. glyptostroboides using semi-thin sections and scanning electron microscopy. The male cones were borne oppositely on one-year-old twigs that were mainly located around the outer and sunlit parts of crown. Male cones were initiated from early September and shed pollen in the following February. Each cone consisted of spirally arranged microsporophylls subtended by decussate sterile scales, and each microsporophyll commonly consisted of three microsporangia and a phylloclade. The microsporangial wall was composed of an epidermis, endothecium, and tapetum. In mid-February, the endothecium and tapetum layers disintegrated, and in the epidermal layer the cell walls were thickened with inner protrusions. Subsequently, dehiscence of the microsporangia occurred through rupturing of the microsporangial wall along the dehiscence line. These results suggest that the structure, morphology, architecture and arrangement of male cones of M. glyptostroboides are mainly associated with the production, protection and dispersal of pollen for optimization of wind pollination.
García-Ayuso, Diego; Alarcón-Martínez, Luis; Jiménez-López, Manuel; Bernal-Garro, José Manuel; Nieto-López, Leticia; Nadal-Nicolás, Francisco Manuel; Villegas-Pérez, María Paz; Wheeler, Larry A.; Vidal-Sanz, Manuel
2014-01-01
We have investigated the effects of light-emitting diode (LED)-induced phototoxicity (LIP) on cone-photoreceptors and their protection with brimonidine (BMD), brain-derived neurotrophic factor (BDNF), pigment epithelium-derived factor (PEDF), ciliary neurotrophic factor (CNTF) or basic fibroblast growth factor (bFGF). In anesthetized, dark adapted, adult albino rats a blue (400 nm) LED was placed perpendicular to the cornea (10 sec, 200 lux) and the effects were investigated using Spectral Domain Optical Coherence Tomography (SD-OCT) and/or analysing the retina in oriented cross-sections or wholemounts immune-labelled for L- and S-opsin and counterstained with the nuclear stain DAPI. The effects of topical BMD (1%) or, intravitreally injected BDNF (5 µg), PEDF (2 µg), CNTF (0.4 µg) or bFGF (1 µg) after LIP were examined on wholemounts at 7 days. SD-OCT showed damage in a circular region of the superotemporal retina, whose diameter varied from 1,842.4±84.5 µm (at 24 hours) to 1,407.7±52.8 µm (at 7 days). This region had a progressive thickness diminution from 183.4±5 µm (at 12 h) to 114.6±6 µm (at 7 d). Oriented cross-sections showed within the light-damaged region of the retina massive loss of rods and cone-photoreceptors. Wholemounts documented a circular region containing lower numbers of L- and S-cones. Within a circular area (1 mm or 1.3 mm radius, respectively) in the left and in its corresponding region of the contralateral-fellow-retina, total L- or S-cones were 7,118±842 or 661±125 for the LED exposed retinas (n = 7) and 14,040±1,860 or 2,255±193 for the fellow retinas (n = 7), respectively. BMD, BDNF, PEDF and bFGF but not CNTF showed significant neuroprotective effects on L- or S-cones. We conclude that LIP results in rod and cone-photoreceptor loss, and is a reliable, quantifiable model to study cone-photoreceptor degeneration. Intravitreal BDNF, PEDF or bFGF, or topical BMD afford significant cone neuroprotection in this model. PMID:25464513
Fu, Jinling; Nagashima, Mikiko; Guo, Chuanyu; Raymond, Pamela A; Wei, Xiangyun
2018-01-01
Human Crb1 is implicated in some forms of retinal degeneration, suggesting a role in photoreceptor maintenance. Multiple Crumbs (Crb) polarity genes are expressed in vertebrate retina, although their functional roles are not well understood. To gain further insight into Crb and photoreceptor maintenance, we compared retinal cell densities between wild-type and Tg(RH2-2:Crb2b-sfEX/RH2-2:GFP)pt108b transgenic zebrafish, in which the extracellular domain of Crb2b-short form (Crb2b-sfEX) is expressed in the retina as a secreted protein, which disrupts the planar organization of RGB cones (red, green, and blue) by interfering with Crb2a/2b-based cone-cone adhesion. We used standard morphometric techniques to assess age-related changes in retinal cell densities in adult zebrafish (3 to 27 months old), and to assess effects of the Crb2b-sfEX transgene on retinal structure and photoreceptor densities. Linear cell densities were measured in all retinal layers in radial sections with JB4-Feulgen histology. Planar (surface) densities of cones were determined in retinal flat-mounts. Cell counts from wild-type and pt108b transgenic fish were compared with both a "photoreceptor maintenance index" and statistical analysis of cell counts. Age-related changes in retinal cell linear densities and cone photoreceptor planar densities in wild-type adult zebrafish provided a baseline for analysis. Expression of Crb2b-sfEX caused progressive and selective degeneration of RGB cones, but had no effect on ultraviolet-sensitive (UV) cones, and increased numbers of rod photoreceptors. These differential responses of RGB cones, UV cones, and rods to sustained exposure to Crb2b-sfEX suggest that Crb-based photoreceptor maintenance mechanisms are highly selective.
Cone Integrity in Glaucoma: An Adaptive-Optics Scanning Laser Ophthalmoscopy Study.
Hasegawa, Tomoko; Ooto, Sotaro; Takayama, Kohei; Makiyama, Yukiko; Akagi, Tadamichi; Ikeda, Hanako O; Nakanishi, Hideo; Suda, Kenji; Yamada, Hiroshi; Uji, Akihito; Yoshimura, Nagahisa
2016-11-01
To investigate photoreceptor changes in eyes with glaucoma. Cross-sectional study. The study included 35 eyes of 35 patients with primary open-angle glaucoma who had suffered parafoveal visual field loss at least 3 years previously, as well as 21 eyes of 21 normal subjects. Eyes with an axial length ≥26.0 mm were excluded. All subjects underwent a full ophthalmologic examination, including spectral-domain optical coherence tomography (SDOCT) and prototype adaptive-optics scanning laser ophthalmoscopy (AO-SLO) imaging. As determined using AO-SLO, eyes with glaucoma did not differ significantly from normal eyes in terms of either cone density (26 468 ± 3392 cones/m 2 vs 26 147 ± 2700 cones/m 2 , respectively; P = .77; measured 0.5 mm from the foveal center) or cone spatial organization (ratio of hexagonal Voronoi domain: 43.7% ± 4.4% vs 44.3% ± 4.9%; P = .76; measured 0.5 mm from the foveal center). Furthermore, SDOCT showed that the 2 groups did not differ significantly in terms of the photoreceptor-related layer thickness, and that the photoreceptor ellipsoid zone band was continuous in all normal and glaucoma eyes. In glaucoma eyes with vertically asymmetric severity, the more affected side did not significantly differ from the less affected side in terms of cone density, cone spatial organization, or photoreceptor-related layer thickness. In 8 eyes (22.9%) with glaucoma, dark, partition-like areas surrounded the cones on the AO-SLO. Both AO-SLO and SDOCT showed cone integrity in eyes with glaucoma, even in areas with visual field and nerve fiber loss. In AO-SLO, microcystic lesions in the inner nuclear layer may influence images of the cone mosaic. Copyright © 2016 Elsevier Inc. All rights reserved.
Combined LAURA-UPS solution procedure for chemically-reacting flows. M.S. Thesis
NASA Technical Reports Server (NTRS)
Wood, William A.
1994-01-01
A new procedure seeks to combine the thin-layer Navier-Stokes solver LAURA with the parabolized Navier-Stokes solver UPS for the aerothermodynamic solution of chemically-reacting air flowfields. The interface protocol is presented and the method is applied to two slender, blunted shapes. Both axisymmetric and three dimensional solutions are included with surface pressure and heat transfer comparisons between the present method and previously published results. The case of Mach 25 flow over an axisymmetric six degree sphere-cone with a noncatalytic wall is considered to 100 nose radii. A stability bound on the marching step size was observed with this case and is attributed to chemistry effects resulting from the noncatalytic wall boundary condition. A second case with Mach 28 flow over a sphere-cone-cylinder-flare configuration is computed at both two and five degree angles of attack with a fully-catalytic wall. Surface pressures are seen to be within five percent with the present method compared to the baseline LAURA solution and heat transfers are within 10 percent. The effect of grid resolution is investigated and the nonequilibrium results are compared with a perfect gas solution, showing that while the surface pressure is relatively unchanged by the inclusion of reacting chemistry the nonequilibrium heating is 25 percent higher. The procedure demonstrates significant, order of magnitude reductions in solution time and required memory for the three dimensional case over an all thin-layer Navier-Stokes solution.
From the Dance of the Foci to a Strophoid
ERIC Educational Resources Information Center
Jobbings, Andrew
2011-01-01
The intersection of a plane and a cone is a conic section and rotating the plane leads to a family of conics. What happens to the foci of these conics as the plane rotates? A classical result gives the locus of the foci as an oblique strophoid when the plane rotates about a tangent to the cone. The analogous curve when the plane intersects a…
2004-07-07
KENNEDY SPACE CENTER, FLA. - - Workers in the Orbiter Processing Facility complete the installation of the Reinforced Carbon-Carbon panel on Discovery. The chin panel is the smile-shaped section of RCC directly below the nose cap that provides a thermal barrier during re-entry. The nose cap, with chin panel, was removed from the vehicle in the summer of 2003 and returned to the vendor, where it underwent numerous forms of Non-Destructive Evaluation. These tests included X-ray, ultrasound and eddy current to ensure its structural integrity prior to reinstallation. Discovery is designated as the Return to Flight vehicle for mission STS-114, no earlier than March 2005.
2004-07-07
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility lift the Reinforced Carbon-Carbon (RCC) chin panel to install on Discovery. The chin panel is the smile-shaped section of RCC directly below the nose cap that provides a thermal barrier during re-entry. The nose cap, with chin panel, was removed from the vehicle in the summer of 2003 and returned to the vendor, where it underwent numerous forms of Non-Destructive Evaluation. These tests included X-ray, ultrasound and eddy current to ensure its structural integrity prior to reinstallation. Discovery is designated as the Return to Flight vehicle for mission STS-114, no earlier than March 2005.
2004-07-07
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility lift the Reinforced Carbon-Carbon (RCC) chin panel into place on Discovery. The chin panel is the smile-shaped section of RCC directly below the nose cap that provides a thermal barrier during re-entry. The nose cap, with chin panel, was removed from the vehicle in the summer of 2003 and returned to the vendor, where it underwent numerous forms of Non-Destructive Evaluation. These tests included X-ray, ultrasound and eddy current to ensure its structural integrity prior to reinstallation. Discovery is designated as the Return to Flight vehicle for mission STS-114, no earlier than March 2005.
2004-07-07
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility prepare the Reinforced Carbon-Carbon (RCC) chin panel to install on Discovery. The chin panel is the smile-shaped section of RCC directly below the nose cap that provides a thermal barrier during re-entry. The nose cap, with chin panel, was removed from the vehicle in the summer of 2003 and returned to the vendor, where it underwent numerous forms of Non-Destructive Evaluation. These tests included X-ray, ultrasound and eddy current to ensure its structural integrity prior to reinstallation. Discovery is designated as the Return to Flight vehicle for mission STS-114, no earlier than March 2005.
2004-07-07
KENNEDY SPACE CENTER, FLA. - - Workers in the Orbiter Processing Facility check the placement of the Reinforced Carbon-Carbon chin panel on Discovery. The chin panel is the smile-shaped section of RCC directly below the nose cap that provides a thermal barrier during re-entry. The nose cap, with chin panel, was removed from the vehicle in the summer of 2003 and returned to the vendor, where it underwent numerous forms of Non-Destructive Evaluation. These tests included X-ray, ultrasound and eddy current to ensure its structural integrity prior to reinstallation. Discovery is designated as the Return to Flight vehicle for mission STS-114, no earlier than March 2005.
2004-07-07
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility check the placement of the Reinforced Carbon-Carbon (RCC) chin panel on Discovery. . The chin panel is the smile-shaped section of RCC directly below the nose cap that provides a thermal barrier during re-entry. The nose cap, with chin panel, was removed from the vehicle in the summer of 2003 and returned to the vendor, where it underwent numerous forms of Non-Destructive Evaluation. These tests included X-ray, ultrasound and eddy current to ensure its structural integrity prior to reinstallation. Discovery is designated as the Return to Flight vehicle for mission STS-114, no earlier than March 2005.
Chotiyanonta, Jill S; DiNovo, Karyn M; McCulloch, Paul F
2013-01-01
The diving response is characterized by bradycardia, apnea, and increased peripheral resistance. This reflex response is initiated by immersing the nose in water. Because the anterior ethmoidal nerve (AEN) innervates the nose, our hypothesis was that intact AENs are essential for initiating the diving response in voluntarily diving rats. Heart rate (HR) and arterial blood pressure (BPa) were monitored using implanted biotransmitters. Sprague-Dawley rats were trained to voluntarily swim 5 m underwater. During diving, HR decreased from 480 ± 15 to 99 ± 5 bpm and BPa increased from 136 ± 2 to 187 ± 3 mmHg. Experimental rats (N = 9) then received bilateral AEN sectioning, while Sham rats (N = 8) did not. During diving in Experimental rats 7 days after AEN surgery, HR decreased from 478 ± 13 to 76 ± 4 bpm and BPa increased from 134 ± 3 to 186 ± 4 mmHg. Responses were similar in Sham rats. Then, during nasal stimulation with ammonia vapors in urethane-anesthetized Experimental rats, HR decreased from 368 ± 7 to 83 ± 4 bpm, and BPa increased from 126 ± 7 to 175 ± 4 mmHg. Responses were similar in Sham rats. Thus, 1 week after being sectioned the AENs are not essential for initiating a full cardiorespiratory response during both voluntary diving and nasal stimulation. We conclude that other nerve(s) innervating the nose are able to provide an afferent signal sufficient to initiate the diving response, although neuronal plasticity within the medullary dorsal horn may be necessary for this to occur. PMID:24400143
Eruption History of Cone D: Implications for Current and Future Activity at Okmok Caldera
NASA Astrophysics Data System (ADS)
Beget, J.; Almberg, L.; Faust-Larsen, J.; Neal, C.
2008-12-01
Cone B at Okmok Caldera erupted in 1817, and since then activity has beeen centered in and around Cone A in the SW part of Okmok Caldera. However, prior to 1817 at least a half dozen other eruptive centers were active at various times within the caldera. Cone D was active between ca. 2000-1500 yr BP., and underwent at least two separate intervals characterized by violent hydromagmatic explosions and surge production followed by the construction of extensive lava deltas in a 150-m-deep intra-caldera lake. Reconstructions of cone morphology indicate the hydromagmatic explosions occurred when lake levels were shallow or when the eruptive cones had grown to reach the surface of the intra-caldera lake. The effusion rate over this interval averaged several million cubic meters of lava per year, implying even higher outputs during the actual eruptive episodes. At least two dozen tephra deposits on the volcano flanks date to this interval, and record frequent explosive eruptions. The pyroclastic flows and surges from Cone D and nearby cones extend as far as 14 kilometers from the caldera rim, where dozens of such deposits are preserved in a section as much as 6 m thick at a distance of 8 km beyond the rim. A hydromagmatic explosive eruption at ca. 1500 yr BP generated very large floods and resulted in the draining of the caldera lake. The 2008 hydromagmatic explosive eruptions in the Cone D area caused by interactions with lake water resulted in the generation of surges, floods and lahars that are smaller but quite similar in style to the prehistoric eruptions at Cone E ca. 2000-1500 yr BP. The style and magnitude of future eruptions at vents around Cone D will depend strongly on the evolution of the intra-caldera lake system.
Ear, Nose and Throat Foreign Bodies Removed under General Anaesthesia: A Retrospective Study.
Shunyu, Neizekhotuo Brian; Akhtar, Hanifa; Karim, Habib Md Rezaul; Lyngdoh, Nari M; Yunus, Md; Jamil, Md
2017-02-01
For Otorhinolaryngologist, removal of Foreign Bodies (FB) from the ear, nose and throat is one of the common emergency procedures done. Most of the cases especially of the ear and nose can be managed without General Anaesthesia (GA). But in some cases GA may be needed. There are very few studies that address the scenario of ear, nose and throat foreign body that required GA for its removal and the complications associated with it. This study was conducted with the aim to study the patient's profile, types and distribution of FB removed under GA, and the associated complications. The present study is a hospital based retrospective, cross-sectional study conducted in the Department of Otorhinolaryngology in association with Department of Anaesthesiology and Critical Care in North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, Meghalaya, India from year 2009 to 2014. Information was collected from indoor patient file and operation record book. Those patients where foreign body was not found after examination under GA were excluded. A total of 112 cases of foreign body in ear, nose and throat removed under GA were selected. There was variation of age from youngest case being 11 months to 74 years with a slight male predominance. Two third of the patients belonged to paediatric age group. Most of the FB were inanimate with high number of inorganic type found in majority. Foreign body in food passage was found in most cases. Coin and meat bone were the common FB in children and adults respectively. We found no complications related to removal of foreign body from the food passage and nose. But some complications were seen in foreign body of ear and tracheo-bronchial tree. Ear, nose and throat FB that required GA were seen in all age groups. FB of food passage constitute the majority. Type of foreign body varies between children and adults. In children most common types were related to toys and their part and food materials. In adults, food materials were most common.
SU-C-213-06: Dosimetric Verification of 3D Printed Electron Bolus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasmussen, K; Corbett, M; Pelletier, C
2015-06-15
Purpose: To determine the dosimetric effect of 3D printed bolus in an anthropomorphic phantom. Methods: Conformable bolus material was generated for an anthropomorphic phantom from a DICOM volume. The bolus generated was a uniform expansion of 5mm applied to the nose region of the phantom, as this is a difficult area to uniformly apply bolus clinically. A Printrbot metal 3D Printer using PLA plastic generated the bolus. A 9MeV anterior beam with a 5cm cone was used to deliver dose to the nose of the phantom. TLD measurements were compared to predicted values at the phantom surface. Film planes weremore » analyzed for the printed bolus, a standard 5mm bolus sheet placed on the phantom, and the phantom with no bolus applied to determine depth and dose distributions. Results: TLDs measured within 2.5% of predicted value for the 3D bolus. Film demonstrated a more uniform dose distribution in the nostril region for the 3d printed bolus than the standard bolus. This difference is caused by the air gap created around the nostrils by the standard bolus, creating a secondary build-up region. Both demonstrated a 50% central axis dose shift of 5mm relative to the no bolus film. HU for the bolus calculated the PLA electron density to be ∼1.1g/cc. Physical density was measured to be 1.3g/cc overall. Conclusion: 3D printed PLA bolus demonstrates improved dosimetric performance to standard bolus for electron beams with complex phantom geometry.« less
NASA Astrophysics Data System (ADS)
Raskin, Boris
Scaled wind tunnel models are necessary for the development of aircraft and spacecraft to simulate aerodynamic behavior. This allows for testing multiple iterations of a design before more expensive full-scale aircraft and spacecraft are built. However, the cost of building wind tunnel models can still be high because they normally require costly subtractive manufacturing processes, such as machining, which can be time consuming and laborious due to the complex surfaces of aerodynamic models. Rapid prototyping, commonly known as 3D printing, can be utilized to save on wind tunnel model manufacturing costs. A rapid prototype multi-material wind tunnel model was manufactured for this thesis to investigate the possibility of using PolyJet 3D printing to create a model that exhibits aeroelastic behavior. The model is of NASA's Adaptable Deployable entry and Placement (ADEPT) aerodynamic decelerator, used to decelerate a spacecraft during reentry into a planet's atmosphere. It is a 60° cone with a spherically blunted nose that consists of a 12 flexible panels supported by a rigid structure of nose, ribs, and rim. The novel rapid prototype multi-material model was instrumented and tested in two flow conditions. Quantitative comparisons were made of the average forces and dynamic forces on the model, demonstrating that the model matched expected behavior for average drag, but not Strouhal number, indicating that there was no aeroelastic behavior in this particular case. It was also noted that the dynamic properties (e.g., resonant frequency) associated with the mounting scheme are very important and may dominate the measured dynamic response.
Detail view of the forward section, port side, of the ...
Detail view of the forward section, port side, of the Orbiter Discovery from an elevated platform in the Vehicle Assembly Building at NASA's Kennedy Space Center. Note the removal of the Forward Reaction Control System Module from the nose section, the ground-support window covers and the strongback attached to the payload bay door. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Intranasal oxytocin administration in relationship to social behaviour in domestic pigs.
Camerlink, Irene; Reimert, Inonge; Bolhuis, J Elizabeth
2016-09-01
Intranasal administration of oxytocin has been shown to alter positive and negative social behaviour. Positive social behaviour in pigs (Sus scrofa) may be expressed through gentle social nosing, and greater insight in the specific expression hereof might contribute to the current search for positive indicators of animal welfare. We investigated whether oxytocin alters social nosing and whether this is specific to nose-body or nose-nose contact. Sixty-four focal female pigs of 13weeks of age (out of 16 groups) were given oxytocin (24IU dose) and saline (placebo) intranasally once on two consecutive days. The frequency of nose-to-nose contact and nose-to-body contact was recorded upon pigs' return in the home pen after being for 10min located in a separate area near pen mates undergoing a positive or negative event or not. The effect of intranasal oxytocin depended on the social context in which pigs were studied. Control pigs, which were not exposed to positively or negatively aroused pen mates, gave and received less nose-nose contact after oxytocin administration than after saline administration. Pigs exposed to positively aroused pen mates also tended to give less nose contact when given oxytocin compared to saline, whereas pigs exposed to negatively aroused pen mates and administered oxytocin tended to receive more nose contact. Nose-body contact was lowest in groups of negative social context, suggesting an effect of emotional state on social nosing. In contrast to nose-nose contact, nose-body contact was unaffected by oxytocin treatment. The relationship between social nosing and oxytocin merits further research. Copyright © 2016 Elsevier Inc. All rights reserved.
Ontogenetic changes in color vision in the milkfish (Chanos chanos Forsskål, 1775).
Chang, Chia-Hao; Chiao, Chuan-Chin; Yan, Hong Young
2009-05-01
The milkfish (Chanos chanos Forsskål, 1775) is a euryhaline fish widely distributed in tropical and subtropical Indo-Pacific waters. It is unique in having in the cephalic region adipose eyelid tissue that begins to develop in the larval stage and is completely formed by the Juvenile stage. The formation of the adipose eyelids coincides with the onset of active swimming ability. Larval and juvenile milkfish have different dietary modes and habitats. This study was aimed to investigate ontogenetic changes in color perception ability with the use of microspectrophotometry (MSP). Larval milkfish had rod cells and red, green, blue, and violet cone cells, while juvenile milkfish lost the violet cone cells, and the blue cones shifted to shorter wavelengths. Histological sections showed the presence of cone cells of the single type (but no double or twin types) in the retina, which implies that the milkfish may not have polarized vision.
Spatiotemporal regulation of ATP and Ca2+ dynamics in vertebrate rod and cone ribbon synapses
Johnson, Jerry E.; Perkins, Guy A.; Giddabasappa, Anand; Chaney, Shawntay; Xiao, Weimin; White, Andrew D.; Brown, Joshua M.; Waggoner, Jenna; Ellisman, Mark H.
2007-01-01
Purpose In conventional neurons, Ca2+ enters presynaptic terminals during an action potential and its increased local concentration triggers transient exocytosis. In contrast, vertebrate photoreceptors are nonspiking neurons that maintain sustained depolarization and neurotransmitter release from ribbon synapses in darkness and produce light-dependent graded hyperpolarizing responses. Rods transmit single photon responses with high fidelity, whereas cones are less sensitive and exhibit faster response kinetics. These differences are likely due to variations in presynaptic Ca2+ dynamics. Metabolic coupling and cross-talk between mitochondria, endoplasmic reticulum (ER), plasma membrane Ca2+ ATPase (PMCA), and Na+-Ca2+ exchanger (NCX) coordinately control presynaptic ATP production and Ca2+ dynamics. The goal of our structural and functional studies was to determine the spatiotemporal regulation of ATP and Ca2+ dynamics in rod spherules and cone pedicles. Methods Central retina tissue from C57BL/6 mice was used. Laser scanning confocal microscopy (LSCM) experiments were conducted on fixed-frozen vertical sections. Primary antibodies were selected for their tissue/cellular specificity and ability to recognize single, multiple or all splice variants of selected isoforms. Electron microscopy (EM) and 3-D electron tomography (ET) studies used our standard procedures on thin- and thick-sectioned retinas, respectively. Calibrated fluo-3-Ca2+ imaging experiments of dark- and light-adapted rod and cone terminals in retinal slices were conducted. Results Confocal microscopy showed that mitochondria, ER, PMCA, and NCX1 exhibited distinct retinal lamination patterns and differential distribution in photoreceptor synapses. Antibodies for three distinct mitochondrial compartments differentially labeled retinal areas with high metabolic demand: rod and cone inner segments, previously undescribed cone juxtanuclear mitochondria and the two plexiform layers. Rod spherule membranes uniformly and intensely stained for PMCA, whereas the larger cone pedicles preferentially stained for NCX1 at their active zones and PMCA near their mitochondria. EM and ET revealed that mitochondria in rod spherules and cone pedicles differed markedly in their number, location, size, volume, and total cristae surface area, and cristae junction diameter. Rod spherules had one large ovoid mitochondrion located near its active zone, whereas cone pedicles averaged five medium-sized mitochondria clustered far from their active zones. Most spherules had one ribbon synapse, whereas pedicles contained numerous ribbon synapses. Fluo-3 imaging studies revealed that during darkness rod spherules maintained a lower [Ca2+] than cone pedicles, whereas during light adaptation pedicles rapidly lowered their [Ca2+] below that observed in spherules. Conclusions These findings indicate that ATP demand and mitochondrial ATP production are greater in cone pedicles than rod spherules. Rod spherules employ high affinity/low turnover PMCA and their mitochondrion to maintain a relatively low [Ca2+] in darkness, which increases their sensitivity and signal-to-noise ratio. In contrast, cone pedicles utilize low affinity/high turnover NCX to rapidly lower their high [Ca2+] during light adaptation, which increases their response kinetics. Spatiotemporal fluo-3-Ca2+ imaging results support our immunocytochemical results. The clustering of cone pedicle mitochondria likely provides increased protection from Ca2+ overload and permeability transition. In summary, these novel studies reveal that several integrated cellular and subcellular components interact to regulate ATP and Ca2+ dynamics in rod and cone synaptic terminals. These results should provide a greater understanding of in vivo photoreceptor synaptic terminal exocytosis/endocytosis, Ca2+ overload and therapies for retinal degenerations. PMID:17653034
Spatiotemporal regulation of ATP and Ca2+ dynamics in vertebrate rod and cone ribbon synapses.
Johnson, Jerry E; Perkins, Guy A; Giddabasappa, Anand; Chaney, Shawntay; Xiao, Weimin; White, Andrew D; Brown, Joshua M; Waggoner, Jenna; Ellisman, Mark H; Fox, Donald A
2007-06-15
In conventional neurons, Ca2+ enters presynaptic terminals during an action potential and its increased local concentration triggers transient exocytosis. In contrast, vertebrate photoreceptors are nonspiking neurons that maintain sustained depolarization and neurotransmitter release from ribbon synapses in darkness and produce light-dependent graded hyperpolarizing responses. Rods transmit single photon responses with high fidelity, whereas cones are less sensitive and exhibit faster response kinetics. These differences are likely due to variations in presynaptic Ca2+ dynamics. Metabolic coupling and cross-talk between mitochondria, endoplasmic reticulum (ER), plasma membrane Ca2+ ATPase (PMCA), and Na+-Ca2+ exchanger (NCX) coordinately control presynaptic ATP production and Ca2+ dynamics. The goal of our structural and functional studies was to determine the spatiotemporal regulation of ATP and Ca2+ dynamics in rod spherules and cone pedicles. Central retina tissue from C57BL/6 mice was used. Laser scanning confocal microscopy (LSCM) experiments were conducted on fixed-frozen vertical sections. Primary antibodies were selected for their tissue/cellular specificity and ability to recognize single, multiple or all splice variants of selected isoforms. Electron microscopy (EM) and 3-D electron tomography (ET) studies used our standard procedures on thin- and thick-sectioned retinas, respectively. Calibrated fluo-3-Ca2+ imaging experiments of dark- and light-adapted rod and cone terminals in retinal slices were conducted. Confocal microscopy showed that mitochondria, ER, PMCA, and NCX1 exhibited distinct retinal lamination patterns and differential distribution in photoreceptor synapses. Antibodies for three distinct mitochondrial compartments differentially labeled retinal areas with high metabolic demand: rod and cone inner segments, previously undescribed cone juxtanuclear mitochondria and the two plexiform layers. Rod spherule membranes uniformly and intensely stained for PMCA, whereas the larger cone pedicles preferentially stained for NCX1 at their active zones and PMCA near their mitochondria. EM and ET revealed that mitochondria in rod spherules and cone pedicles differed markedly in their number, location, size, volume, and total cristae surface area, and cristae junction diameter. Rod spherules had one large ovoid mitochondrion located near its active zone, whereas cone pedicles averaged five medium-sized mitochondria clustered far from their active zones. Most spherules had one ribbon synapse, whereas pedicles contained numerous ribbon synapses. Fluo-3 imaging studies revealed that during darkness rod spherules maintained a lower [Ca2+] than cone pedicles, whereas during light adaptation pedicles rapidly lowered their [Ca2+] below that observed in spherules. These findings indicate that ATP demand and mitochondrial ATP production are greater in cone pedicles than rod spherules. Rod spherules employ high affinity/low turnover PMCA and their mitochondrion to maintain a relatively low [Ca2+] in darkness, which increases their sensitivity and signal-to-noise ratio. In contrast, cone pedicles utilize low affinity/high turnover NCX to rapidly lower their high [Ca2+] during light adaptation, which increases their response kinetics. Spatiotemporal fluo-3-Ca2+ imaging results support our immunocytochemical results. The clustering of cone pedicle mitochondria likely provides increased protection from Ca2+ overload and permeability transition. In summary, these novel studies reveal that several integrated cellular and subcellular components interact to regulate ATP and Ca2+ dynamics in rod and cone synaptic terminals. These results should provide a greater understanding of in vivo photoreceptor synaptic terminal exocytosis/endocytosis, Ca2+ overload and therapies for retinal degenerations.
Out-of-plane aerodynamic forces on slender ogive-nosed cylinders
NASA Astrophysics Data System (ADS)
Lacey, M. R.
An ogive-nosed cylinder with a nose fineness of 3 and a body length equal to 12 diameters, has been tested at a constant crossflow Reynolds' number of 85000 and constant crossflow Mach number of 0.1 in the angle of incidence range 0° - 90°, A method of force measurement has been devised to determine the magnitude of the aerodynamic forces on the ogive cylinder and a statistical analysis was developed to predict its accuracy for any model configuration. It was found generally that the results of static loading tests lay well within the stipulated accuracy limits. The out-of-plane forest and moments measured generally agreed well with published data and predictions based on experimental results. Similar agreement was obtained for in-plane forces and moments. The results for the effect of model roll-orientation on the out-of-plane force indicated the existence of two distinct states of asymmetry in the wake, with an absence of any intermediate states. The out-of-plane forces showed no correlation with the position of model nose imperfections, supporting the findings of previous experimenters. Reducing the length of the cylindrical body section of the model served first to reduce the out-of-plane force but subsequently produced a recovery in its magnitude with further shortening. These results agreed well with the prediction method selected. Increased free stream turbulence tended to have less effect on the distribution of the out-of-plane force than previously reported; no flow unsteadiness was observed and no change in direction of roce was recorded. Increased nose tip radius generally reduced the out- of plane force and considerable directional instability was observed. This reduction was, however, not true for all incidence angles. The directional instability was due probably to the removal of the nose tip imperfections, resulting in an inability of the wake to establish a preferred direction of asymmetry throughout the range of incidence.
Quantification of Juniperus Ashei Pollen Production for the Development of Forecasting Models
NASA Technical Reports Server (NTRS)
Bunderson, L. D.; Levetin, E.
2010-01-01
Juniperus ashei pollen is considered one of the most allergenic species of Cupressaceae in North America. Juniperus ashei is distributed throughout central Texas, Northern Mexico, the Arbuckle Mountains of south central Oklahoma, and the Ozark Mountains of northern Arkansas and southwestern Missouri. The large amount of airborne pollen that J. ashei produces affects inhabitants of cities and towns adjacent to juniper woodland areas and because juniper pollen can be transported over long distances, it affects populations that are far away. In order to create a dynamic forecast system for allergy and asthma sufferers, pollen production must be estimated. Estimation of pollen production requires the estimation of male cone production. Two locations in the Arbuckle Mountains of Oklahoma and 4 locations in the Edwards Plateau region of Texas were chosen as sampling sites. Trees were measured to determine approximate size. Male to female ratio was determined and pollen cone production was estimated using a qualitative scale from 0 to 2. Cones were counted from harvested 1/8 sections of representative trees. The representative trees were measured and approximate surface area of the tree was calculated. Using the representative tree data, the number of cones per square meter was calculated for medium production (1) and high production (2) trees. These numbers were extrapolated to calculate cone production in other trees sampled. Calibration was achieved within each location's sub-plot by counting cones on 5 branches collected from 5 sides of both high production and medium production trees. The total area sampled in each location was 0.06 hectare and total cone production varied greatly from location to location. The highest production area produced 5.8 million cones while the lowest production area produced 72,000 cones. A single representative high production tree in the Arbuckle Mountains produced 1.38 million cones. The number of trees per location was relatively uniform, but the number of high cone production trees varied greatly. Although there is great diversity in the locations making it difficult to determine which factors are most important, cone production was well correlated with certain stand characteristics including trunk diameter.
Yamada, Toshihiro; Yamada, Mariko; Tsukagoshi, Minoru
2015-01-01
Pinus trifolia Miki 1939 (Pinaceae) was originally proposed based on seed cones from the upper Miocene of Aichi and Gifu Prefectures, central Japan. However, before the publication of P. trifolia, a different name (Pinus fujiii (Yasui) Miki) was given to a female cone with the same morphology. On the other hand, P. fujiii auct. non (Yasui) Miki has been used for seed cones with different morphologies from Yasui’s holotype, i.e., apophyses arranged in 5:8 parastichies and a perexcentromucronate slightly-pointed umbo. As a result of re-examination on the Miki and Yasui specimens, we concluded that P. trifolia was a synonym for P. fujiii and proposed here Pinus mikii sp. nov. for cones assigned to P. fujiii auct. non (Yasui) Miki. We also emended the diagnosis of P. fujiii based on these specimens. Pinus fujiii is characterized by a large female cone in which the apophyses with a centromucronate prickle-like umbo are arranged in 8:13 parastichies, and deciduous seed wings. These characters suggest that P. fujiii belongs to the section Trifoliae of the subgenus Pinus, which is now restricted to North and Central America and the Caribbean islands. Fossil data suggest that the P. fujiii lineage firstly appeared in Japan around the Eocene/Oligocene boundary. We speculate that the P. fujiii lineage might have moved southward to Japan from a refugium located elsewhere in high-latitude areas in response to the late Eocene cooling event, as occurred with other Trifoliae species in North America. PMID:26673795
1999-01-22
The cover is removed from the Stardust spacecraft in the Payload Hazardous Servicing Facility prior to a media presentation. Stardust is targeted for launch on Feb. 6 aboard a Boeing Delta II rocket from Launch Pad 17-A, Cape Canaveral Air Station. The spacecraft is destined for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule (the white-topped, blunt-nosed cone seen on the top of the spacecraft) to be jettisoned as Stardust swings by Earth in January 2006
Influence of flowfield and vehicle parameters on engineering aerothermal methods
NASA Technical Reports Server (NTRS)
Wurster, Kathryn E.; Zoby, E. Vincent; Thompson, Richard A.
1989-01-01
The reliability and flexibility of three engineering codes used in the aerosphace industry (AEROHEAT, INCHES, and MINIVER) were investigated by comparing the results of these codes with Reentry F flight data and ground-test heat-transfer data for a range of cone angles, and with the predictions obtained using the detailed VSL3D code; the engineering solutions were also compared. In particular, the impact of several vehicle and flow-field parameters on the heat transfer and the capability of the engineering codes to predict these results were determined. It was found that entropy, pressure gradient, nose bluntness, gas chemistry, and angle of attack all affect heating levels. A comparison of the results of the three engineering codes with Reentry F flight data and with the predictions obtained of the VSL3D code showed a very good agreement in the regions of the applicability of the codes. It is emphasized that the parameters used in this study can significantly influence the actual heating levels and the prediction capability of a code.
2009-02-26
CAPE CANAVERAL, Fla. – On Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, workers complete the mating of the two fairing segments around NASA's Kepler spacecraft for encapsulation. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The liftoff of Kepler aboard the Delta II rocket is currently targeted for launch in a window extending 10:49 to 10:52 p.m. EST March 6 from Pad 17-B. Kepler is designed to survey more than 100,000 stars in our galaxy to determine the number of sun-like stars that have Earth-size and larger planets, including those that lie in a star's "habitable zone," a region where liquid water, and perhaps life, could exist. If these Earth-size worlds do exist around stars like our sun, Kepler is expected to be the first to find them and the first to measure how common they are. Photo credit: NASA/Jack Pfaller
2009-02-26
CAPE CANAVERAL, Fla. – On Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, the second half of the fairing moves closer to the first half around NASA's Kepler spacecraft for encapsulation. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The liftoff of Kepler aboard the Delta II rocket is currently targeted for launch in a window extending 10:49 to 10:52 p.m. EST March 6 from Pad 17-B. Kepler is designed to survey more than 100,000 stars in our galaxy to determine the number of sun-like stars that have Earth-size and larger planets, including those that lie in a star's "habitable zone," a region where liquid water, and perhaps life, could exist. If these Earth-size worlds do exist around stars like our sun, Kepler is expected to be the first to find them and the first to measure how common they are. Photo credit: NASA/Jack Pfaller
2009-02-26
CAPE CANAVERAL, Fla. – On Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, NASA's Kepler spacecraft, atop the United Launch Alliance Delta II rocket, waits for encapsulation in the fairing. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The liftoff of Kepler aboard the Delta II rocket is currently targeted for launch in a window extending 10:49 to 10:52 p.m. EST March 6 from Pad 17-B. Kepler is designed to survey more than 100,000 stars in our galaxy to determine the number of sun-like stars that have Earth-size and larger planets, including those that lie in a star's "habitable zone," a region where liquid water, and perhaps life, could exist. If these Earth-size worlds do exist around stars like our sun, Kepler is expected to be the first to find them and the first to measure how common they are. Photo credit: NASA/Jack Pfaller
Technicians prepare the AIM spacecraft for fairing installation
2007-04-12
At Vandenberg Air Force Base in California, technicians prepare the AIM spacecraft for fairing installation. The fairing is a molded structure that fits around the spacecraft and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch. Launch will be from a Pegasus XL rocket, carried and released by Orbital Sciences L-1011 jet aircraft. AIM, which stands for Aeronomy of Ice in the Mesosphere, is being prepared for integrated testing and a flight simulation. The AIM spacecraft will fly three instruments designed to study polar mesospheric clouds located at the edge of space, 50 miles above the Earth's surface in the coldest part of the planet's atmosphere. The mission's primary goal is to explain why these clouds form and what has caused them to become brighter and more numerous and appear at lower latitudes in recent years. AIM's results will provide the basis for the study of long-term variability in the mesospheric climate and its relationship to global climate change. Launch is scheduled for April 25.
NASA Astrophysics Data System (ADS)
Sahoo, N.; Kulkarni, V.; Jagadeesh, G.; Reddy, K. P. J.
Effect of coolant gas injection in the stagnation region on the surface heat transfer rates and aerodynamic drag for a large angle blunt body flying at hypersonic Mach number is reported for two stagnation enthalpies. A 60° apex-angle blunt cone model is employed for this purpose with air injection at the nose through a hole of 2mm diameter. The convective surface heating rates and aerodynamic drag are measured simultaneously using surface mounted platinum thin film sensors and internally mounted accelerometer balance system, respectively. About 35-40% reduction in surface heating rates is observed in the vicinity of stagnation region whereas 15-25% reduction in surface heating rates is felt beyond the stagnation region at stagnation enthalpy of 1.6MJ/kg. The aerodynamic drag expressed in terms of drag coefficient is found to increase by 20% due to the air injection.
2009-02-09
VANDENBERG AIR FORCE BASE, Calif. -- Workers check the movement of the fairing at right toward NASA's Orbiting Carbon Observatory, or OCO, at left, to complete installation. The work is being done in Building 1032 of Vandenberg Air Force Base in California. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The spacecraft is scheduled for launch aboard Orbital Sciences' Taurus XL rocket on Feb. 23 from Vandenberg. The spacecraft will collect precise global measurements of carbon dioxide (CO2) in the Earth's atmosphere. Scientists will analyze OCO data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. This improved understanding will enable more reliable forecasts of future changes in the abundance and distribution of CO2 in the atmosphere and the effect that these changes may have on the Earth's climate. Photo credit: NASA/Robert Hargreaves Jr., VAFB
2009-02-09
VANDENBERG AIR FORCE BASE, Calif. -- Workers secure the installation of the fairing around NASA's Orbiting Carbon Observatory, or OCO. The work is being done in Building 1032 of Vandenberg Air Force Base in California. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The spacecraft is scheduled for launch aboard Orbital Sciences' Taurus XL rocket on Feb. 23 from Vandenberg. The spacecraft will collect precise global measurements of carbon dioxide (CO2) in the Earth's atmosphere. Scientists will analyze OCO data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. This improved understanding will enable more reliable forecasts of future changes in the abundance and distribution of CO2 in the atmosphere and the effect that these changes may have on the Earth's climate. Photo credit: NASA/Robert Hargreaves Jr., VAFB
2009-02-09
VANDENBERG AIR FORCE BASE, Calif. -- At left, the second half of the fairing is moved toward NASA's Orbiting Carbon Observatory, or OCO, at right, for installation. The work is being done in Building 1032 of Vandenberg Air Force Base in California. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The spacecraft is scheduled for launch aboard Orbital Sciences' Taurus XL rocket on Feb. 23 from Vandenberg. The spacecraft will collect precise global measurements of carbon dioxide (CO2) in the Earth's atmosphere. Scientists will analyze OCO data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. This improved understanding will enable more reliable forecasts of future changes in the abundance and distribution of CO2 in the atmosphere and the effect that these changes may have on the Earth's climate. Photo credit: NASA/Robert Hargreaves Jr., VAFB
2009-02-09
VANDENBERG AIR FORCE BASE, Calif. -- – Workers check the movement of the fairing at right toward NASA's Orbiting Carbon Observatory, or OCO, at left, to complete installation. The work is being done in Building 1032 of Vandenberg Air Force Base in California. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The spacecraft is scheduled for launch aboard Orbital Sciences' Taurus XL rocket on Feb. 23 from Vandenberg. The spacecraft will collect precise global measurements of carbon dioxide (CO2) in the Earth's atmosphere. Scientists will analyze OCO data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. This improved understanding will enable more reliable forecasts of future changes in the abundance and distribution of CO2 in the atmosphere and the effect that these changes may have on the Earth's climate. Photo credit: NASA/Robert Hargreaves Jr., VAFB
2009-02-09
VANDENBERG AIR FORCE BASE, Calif. -- The second half of the fairing, at right, is moved closer to NASA's Orbiting Carbon Observatory, or OCO, at left, to complete installation. The work is being done in Building 1032 of Vandenberg Air Force Base in California. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The spacecraft is scheduled for launch aboard Orbital Sciences' Taurus XL rocket on Feb. 23 from Vandenberg. The spacecraft will collect precise global measurements of carbon dioxide (CO2) in the Earth's atmosphere. Scientists will analyze OCO data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. This improved understanding will enable more reliable forecasts of future changes in the abundance and distribution of CO2 in the atmosphere and the effect that these changes may have on the Earth's climate. Photo credit: NASA/Robert Hargreaves Jr., VAFB
NASA Technical Reports Server (NTRS)
Grose, W. L.
1971-01-01
An approximate inverse solution is presented for the nonequilibrium flow in the inviscid shock layer about a vehicle in hypersonic flight. The method is based upon a thin-shock-layer approximation and has the advantage of being applicable to both subsonic and supersonic regions of the shock layer. The relative simplicity of the method makes it ideally suited for programming on a digital computer with a significant reduction in storage capacity and computing time required by other more exact methods. Comparison of nonequilibrium solutions for an air mixture obtained by the present method is made with solutions obtained by two other methods. Additional cases are presented for entry of spherical nose cones into representative Venusian and Martian atmospheres. A digital computer program written in FORTRAN language is presented that permits an arbitrary gas mixture to be employed in the solution. The effects of vibration, dissociation, recombination, electronic excitation, and ionization are included in the program.
2006-10-19
KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers secure the two halves of the fairing that enclose the STEREO spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The STEREO (Solar Terrestrial Relations Observatory) mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. Designed and built by the Applied Physics Laboratory (APL) , the STEREO mission is being managed by NASA Goddard Space Flight Center. APL will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
2006-10-19
KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers maneuver the second half of the fairing into place around the STEREO spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The STEREO (Solar Terrestrial Relations Observatory) mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. Designed and built by the Applied Physics Laboratory (APL) , the STEREO mission is being managed by NASA Goddard Space Flight Center. APL will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
2006-10-19
KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, the two fairing segments close in around the STEREO spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The STEREO (Solar Terrestrial Relations Observatory) mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. Designed and built by the Applied Physics Laboratory (APL) , the STEREO mission is being managed by NASA Goddard Space Flight Center. APL will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
2006-10-19
KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, the first half of the fairing is moved into place around the STEREO spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The STEREO (Solar Terrestrial Relations Observatory) mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. Designed and built by the Applied Physics Laboratory (APL) , the STEREO mission is being managed by NASA Goddard Space Flight Center. APL will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
2006-10-19
KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers help maneuver one segment of the fairing around the STEREO spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The STEREO (Solar Terrestrial Relations Observatory) mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. Designed and built by the Applied Physics Laboratory (APL) , the STEREO mission is being managed by NASA Goddard Space Flight Center. APL will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
2006-10-19
KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers check the placement of the first half of the fairing around the STEREO spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The STEREO (Solar Terrestrial Relations Observatory) mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. Designed and built by the Applied Physics Laboratory (APL) , the STEREO mission is being managed by NASA Goddard Space Flight Center. APL will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
2006-10-19
KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers (background) observe the lifting of the two fairing segments that will encapsulate the STEREO spacecraft (foreground). The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The STEREO (Solar Terrestrial Relations Observatory) mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. Designed and built by the Applied Physics Laboratory (APL) , the STEREO mission is being managed by NASA Goddard Space Flight Center. APL will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
2006-10-19
KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers prepare the twin observatories known as STEREO for encapsulation in the fairing. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The STEREO (Solar Terrestrial Relations Observatory) mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. Designed and built by the Applied Physics Laboratory (APL) , the STEREO mission is being managed by NASA Goddard Space Flight Center. APL will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
2006-10-19
KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers prepare the twin observatories known as STEREO for encapsulation in the fairing. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The STEREO (Solar Terrestrial Relations Observatory) mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. Designed and built by the Applied Physics Laboratory (APL) , the STEREO mission is being managed by NASA Goddard Space Flight Center. APL will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
2006-10-19
KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, one segment of the fairing is lifted toward the STEREO spacecraft in the foreground. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The STEREO (Solar Terrestrial Relations Observatory) mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. Designed and built by the Applied Physics Laboratory (APL) , the STEREO mission is being managed by NASA Goddard Space Flight Center. APL will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
2006-10-19
KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers help maneuver one segment of the fairing around the STEREO spacecraft. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The STEREO (Solar Terrestrial Relations Observatory) mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. Designed and built by the Applied Physics Laboratory (APL) , the STEREO mission is being managed by NASA Goddard Space Flight Center. APL will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
2006-10-19
KENNEDY SPACE CENTER, FLA. - Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station, workers prepare the twin observatories known as STEREO for encapsulation in the fairing. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. The STEREO (Solar Terrestrial Relations Observatory) mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. Designed and built by the Applied Physics Laboratory (APL) , the STEREO mission is being managed by NASA Goddard Space Flight Center. APL will maintain command and control of the observatories throughout the mission, while NASA tracks and receives the data, determines the orbit of the satellites, and coordinates the science results. STEREO is expected to lift off Oct. 25. Photo credit: NASA/George Shelton
NASA Technical Reports Server (NTRS)
Whitfield, C. E.
1977-01-01
An open rotor was considered as a process for converting an unsteady velocity inflow into sound radiation. With the aid of crude assumptions, aero-acoustic transfer functions were defined theoretically for both discrete frequency and broad band noise. A study of the validity of these transfer functions yielded results which show good agreement at discrete frequencies though slightly less good for broad band noise. Agreement in both cases holds over three or more decades of the relevant parameters. A rotating hot wire anemometry system consisting of a single hot wire probe mounted in the nose cone of the rotor was used to quantify fluctuations in the airflow onto a single rotor blade for the transfer function results. Further theoretical analysis revealed that the sound field can be expressed in terms of blade-to-blade correlations in the airflow, and results from two probes rotating simultaneously were modelled mathematically and inserted in the theory. Preliminary results snow encouraging agreement with experimental data.
F, Hyodo; S, Subramanian; N, Devasahayam; R, Murugesan; K, Matsumoto; JB, Mitchell; MC, Krishna
2008-01-01
Time-domain (TD) electron paramagnetic resonance (EPR) imaging at 300 MHz for in vivo applications requires resonators with recovery times less than 1 microsecond after pulsed excitation to reliably capture the rapidly decaying free induction decay (FID). In this study, we tested the suitability of the Litz foil coil resonator (LCR), commonly used in MRI, for in vivo EPR/EPRI applications in the TD mode and compared with parallel coil resonator (PCR). In TD mode, the sensitivity of LCR was lower than that of the PCR. However, in continuous wave (CW) mode, the LCR showed better sensitivity. The RF homogeneity was similar in both the resonators. The axis of the RF magnetic field is transverse to the cylindrical axis of the LCR, making the resonator and the magnet co-axial. Therefore, the loading of animals, and placing of the anesthesia nose cone and temperature monitors was more convenient in the LCR compared to the PCR whose axis is perpendicular to the magnet axis. PMID:18042414
The double LHPR system, a high speed micro- and macroplankton sampler
NASA Astrophysics Data System (ADS)
Williams, R.; Collins, N. R.; Conway, D. V. P.
1983-03-01
A double-net sampling system, consisting of two separate Longhurst-Hardy Plankton Recorders, capable of being towed at speeds up to 3 m s -1 and capturing plankton organisms such as copepod nauplii, with the minimum of damage is described. The systems are mounted in a Lowestoft sampler and connected to 53 and 280-μm mesh nets; both nets are fitted with doors opened by a variable timer unit. The system is suitable for neritic and oceanic deployment. The ratio of the area of the net mouth to the net open area ( R) for the 280-μm net is 9 and for the 53-μm net it is 14 to 121 depending on the nose cone used. The R values are considerably better than those of previous described systems. Examples are given showing how the instrument has been used to resolve spatially the vertical distribution of the nauplii and copepodite stages of Calanus helgolandicus.
Zhu, Xue-liang; Tan, Zhan-na; Li, Bo-ying; Wang, Jian-ling; Shi, Jing; Sun, Yan-hui; Li, Xiao- feng; Xu, Jing; Zhang, Xuan-ping; Zhang, Xin; Du, Yu-zhu; Jia, Chun-shieng
2014-09-01
To explore the specific efficacy of different moxibustion techniques in treatment of common diseases and clinical indications, and compare the specificity in clinical indications and efficacy among different moxibustion techniques so as to guide clinical practice better. The modern computerization and data mining technology were adopted to set up moxibustion literature database. The relevant literature of moxibustion techniques in recent 60 years were collected, screened, examined, extracted and analyzed statistically so as to explore the advantages of different moxibustion techniques in clinical treatment. (1) Of 2,516 literature, moxa stick, moxe cone and moxa device were used in the highest frequency in internal medicine department, for 730 times, 278 times and 102 times respectively. The warm needling technique was used in the highest frequency, for 70 times in the surgical department. (2) In the dermatology department, the curative rate with moxa cone was the highest, 75%. In the ear-nose-throat department, the warm needing technique and moxa device achieved the highest curative rate, 49% for both of them. In the internal medicine department and surgical department, the curative rate of warm needling technique was 53% and 58% respectively. In the gynecology department, the curative rate of moxa device was the highest, 59%. In the pediatrics department, the curative rate of moxa cone was the highest, 80%. (3) The numbers of priority disorders, frequency ≥20 times: 24 kinds of disease for moxa stick, five kinds of disease for moxa cone, 2 kinds of disease for warm needling technqiue and one disorder for moxa device. Facial paralysis, diarrhea, lumbar and leg pain and elbow and knee swelling pain were of the highest priority, treated with these 4 moxibustion techniques, with a certain of literature research values. (4) The warm needling technique achieved the better efficacy on elbow and knee swelling pain, lumbar and leg pain and diarrhea compared with the other three techniques and the curative rate was higher. The moxa device tecnique achieved the higher curative rate for facial paralysis compared with the other three techniques. Through the comparison of application frequency, curative rate, clinical application frequency in disorders and the efficacy of priority disorders in the treatment with different moxibustion techniques, it is found that moxa stick, moxa cone and moxa device are simple in manipulation, safe and effective. Hence, they can be extensively used in the treatment of common disorders in every department in clinic. The warm needling technique acts on the body by the co-work of needling and warming stimulation of mugwort. It achieves the particular effect on the disorders with complicated etiologies compared with the other three techniques. It can be chosen in priority for the disorders caused by blockage in meridian and collateral and stagnation of qi and blood.
Classification of human pathogen bacteria for early screening using electronic nose
NASA Astrophysics Data System (ADS)
Zulkifli, Syahida Amani; Mohamad, Che Wan Syarifah Robiah; Abdullah, Abu Hassan
2017-10-01
This paper present human pathogen bacteria for early screening using electronic nose. Electronic nose (E-nose) known as gas sensor array is a device that analyze the odor measurement give the fast response and less time consuming for clinical diagnosis. Many bacterial pathogens could lead to life threatening infections. Accurate and rapid diagnosis is crucial for the successful management of these infections disease. The conventional method need more time to detect the growth of bacterial. Alternatively, the bacteria are Pseudomonas aeruginosa and Shigella cultured on different media agar can be detected and classifies according to the volatile compound in shorter time using electronic nose (E-nose). Then, the data from electronic nose (E-nose) is processed using statistical method which is principal component analysis (PCA). The study shows the capability of electronic nose (E-nose) for early screening for bacterial infection in human stomach.
NASA Technical Reports Server (NTRS)
Jorgensen, L. H.
1977-01-01
An engineering-type method is presented for computing normal-force and pitching-moment coefficients for slender bodies of circular and noncircular cross section alone and with lifting surfaces. In this method, a semi-empirical term representing viscous-separation crossflow is added to a term representing potential-theory crossflow. For many bodies of revolution, computed aerodynamic characteristics are shown to agree with measured results for investigated free-stream Mach numbers from 0.6 to 2.9. The angles of attack extend from 0 deg to 180 deg for M = 2.9 from 0 deg to 60 deg for M = 0.6 to 2.0. For several bodies of elliptic cross section, measured results are also predicted reasonably well over the investigated Mach number range from 0.6 to 2.0 and at angles of attack from 0 deg to 60 deg. As for the bodies of revolution, the predictions are best for supersonic Mach numbers. For body-wing and body-wing-tail configurations with wings of aspect ratios 3 and 4, measured normal-force coefficients and centers are predicted reasonably well at the upper test Mach number of 2.0. Vapor-screen and oil-flow pictures are shown for many body, body-wing and body-wing-tail configurations. When spearation and vortex patterns are asymmetric, undesirable side forces are measured for the models even at zero sideslip angle. Generally, the side-force coefficients decrease or vanish with the following: increase in Mach number, decrease in nose fineness ratio, change from sharp to blunt nose, and flattening of body cross section (particularly the body nose).
A Comparative Study of a 1/4-Scale Gulfstream G550 Aircraft Nose Gear Model
NASA Technical Reports Server (NTRS)
Khorrami, Mehdi R.; Neuhart, Dan H.; Zawodny, Nikolas S.; Liu, Fei; Yardibi, Tarik; Cattafesta, Louis; Van de Ven, Thomas
2009-01-01
A series of fluid dynamic and aeroacoustic wind tunnel experiments are performed at the University of Florida Aeroacoustic Flow Facility and the NASA-Langley Basic Aerodynamic Research Tunnel Facility on a high-fidelity -scale model of Gulfstream G550 aircraft nose gear. The primary objectives of this study are to obtain a comprehensive aeroacoustic dataset for a nose landing gear and to provide a clearer understanding of landing gear contributions to overall airframe noise of commercial aircraft during landing configurations. Data measurement and analysis consist of mean and fluctuating model surface pressure, noise source localization maps using a large-aperture microphone directional array, and the determination of far field noise level spectra using a linear array of free field microphones. A total of 24 test runs are performed, consisting of four model assembly configurations, each of which is subjected to three test section speeds, in two different test section orientations. The different model assembly configurations vary in complexity from a fully-dressed to a partially-dressed geometry. The two model orientations provide flyover and sideline views from the perspective of a phased acoustic array for noise source localization via beamforming. Results show that the torque arm section of the model exhibits the highest rms pressures for all model configurations, which is also evidenced in the sideline view noise source maps for the partially-dressed model geometries. Analysis of acoustic spectra data from the linear array microphones shows a slight decrease in sound pressure levels at mid to high frequencies for the partially-dressed cavity open model configuration. In addition, far field sound pressure level spectra scale approximately with the 6th power of velocity and do not exhibit traditional Strouhal number scaling behavior.
Sensitivity of Space Launch System Buffet Forcing Functions to Buffet Mitigation Options
NASA Technical Reports Server (NTRS)
Piatak, David J.; Sekula, Martin K.; Rausch, Russ D.
2016-01-01
Time-varying buffet forcing functions arise from unsteady aerodynamic pressures and are one of many load environments, which contribute to the overall loading condition of a launch vehicle during ascent through the atmosphere. The buffet environment is typically highest at transonic conditions and can excite the vehicle dynamic modes of vibration. The vehicle response to these buffet forcing functions may cause high structural bending moments and vibratory environments, which can exceed the capabilities of the structure, or of vehicle components such as payloads and avionics. Vehicle configurations, protuberances, payload fairings, and large changes in stage diameter can trigger undesirable buffet environments. The Space Launch System (SLS) multi-body configuration and its structural dynamic characteristics presented challenges to the load cycle design process with respect to buffet-induced loads and responses. An initial wind-tunnel test of a 3-percent scale SLS rigid buffet model was conducted in 2012 and revealed high buffet environments behind the booster forward attachment protuberance, which contributed to reduced vehicle structural margins. Six buffet mitigation options were explored to alleviate the high buffet environments including modified booster nose cones and fences/strakes on the booster and core. These studies led to a second buffet test program that was conducted in 2014 to assess the ability of the buffet mitigation options to reduce buffet environments on the vehicle. This paper will present comparisons of buffet forcing functions from each of the buffet mitigation options tested, with a focus on sectional forcing function rms levels within regions of the vehicle prone to high buffet environments.
Real-time thickness measurement of MCC ablator material
NASA Technical Reports Server (NTRS)
Greenway, R. Bryan, Jr.
1994-01-01
One of the most favorable characteristics of the Space Shuttle Program is the reusability of two of its primary components: the orbiter itself and the Solid Rocket Boosters (SRB). The SRB's provide the primary source of propulsion for the Space Shuttle during take-off after which they are recovered for refurbishment and reuse. During refurbishment, the SRB's are stripped of all remaining ablative (heat resistant) coating. A new layer is applied to the appropriate sections (nose cone, frustum, forward skirt, and aft skirt). It is the process of applying the ablative coating which provided the impetus for this project. The thickness of this protective layer is considered to be of primary importance to the level of thermal protection provided. The objectives of this effort are to investigate possible techniques for measuring the thickness of MCC, and if possible to test the specific capabilities of those considered good candidates for implementation. The system would be able to take measurements in real-time as close to the spray gun as possible. This will allow the information to be used in the control of the process without an inordinate time delay between a measurement and its appropriate response. The thickness of the deposited material is to be measured with less than 0.100 in if uncertainty. This is the defined tolerance window for the ablator thickness. Finally, it must operate within the confines of the chamber which encloses the turntable, robot, and spray system, and therefore is required to be insensitive to, or at least maintainable in, that environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Farrell, T.P.; Sauls, M.L.
1982-07-01
The U.S. Department of Energy proposes to drill exploratory wells on two sections, 8B and 18H, within Naval Petroleum Reserve No. 2 in western Kern County, California. The proposed sites are thought to provide habitat for the endangered San Joaquin kit fox and blunt-nosed leopard lizard, as well as two sensitive species: the giant kangaroo rat and San Joaquin antelope ground squirrel. The objective was to assess the possible impacts of the exploratory drilling on these species and their essential habitats. Although 23 potential San Joaquin kit fox den sites were found during surveys of a total of 512 hamore » (1280 acres) surrounding both well sites, no burrows were closer than 30 m from proposed disturbance, and most were over 200 m away. Two blunt-nosed leopard lizards were observed on private land within 8B, one was observed on private land in 18H, and two were seen on DOE portions of 18H. No evidence of blunt-nosed leopard lizards was gathered in the immediate vicinity of either proposed well site. Although 5 ha of habitat will be disturbed, there is no evidence to indicate any of the species has burrows on-site that will be lost during land clearing. Loss of habitat will be mitigated during the cleanup and restoration phases when disturbed areas will be revegetated. Increased traffic, human activities, noise and ground vibration levels, as well as illumination throughout the night, may disturb the fauna. However, these species have adapted to intensive human disturbances on Elk Hills without obvious negative effects. The short duration of the project should allow any displaced animals to return to the sites after drilling ceases.« less
[Meta-analysis on common causes of paraesthesia pharyngis in China].
Ding, H L; Fang, P
2016-09-05
Objective: To evaluate the common causes of paraesthesia pharyngis in China. Method: By means of searching CBM,and VIP,CNKI,CSCD,WanFang Database,etiology of paraesthesia pharyngis cross-sectional studies published from January 2005 to December 2015.were chosen and R software was used for meta analysis. Result: Sixteen cross-sectional study were chosen with a total of 6 624 cases.Meta analysis results showed that the etiology ratio of non-organic disease,nose and throat inflammation,digestive system disease,thyroid disease,cervical vertebra disease (95% CI )were 17.07(10.06-27.49),55.37(45.86-64.50),15.36(11.95-19.52),1.38(0.89-2.11),1.40(0.89-2.21) respectively. Conclusion: Inflammation of the nose and throat is the most important cause of paraesthesia pharyngis in China,and non organic diseases,digestive system and thyroid,cervical disease are the common causes of paraesthesia pharyngis. Copyright© by the Editorial Department of Journal of Clinical Otorhinolaryngology Head and Neck Surgery.
Flowfield Effects of Launch on a Vertically-Launched Missile
1989-06-01
WINGSRE = 1.33 E+05 z Li -- _0 0 o o** _ 2 - 0 L_ LLJ -4- - WOA102 - WOA802 *NOSE I *N^S- 5 / -NOSE 2 ONOSE 6 a -6 NOSE 3 &NOSE 7 +NOSE 4 oNOSE 8 0...Orientation, NASA-TM 78533, September 1979. 20. Yongnian, Y., Xinzhi, Y., and Jianying , L., Active Control of Asymmetric Forces at High Incidence, Journal
Gál, József; Miyazaki, Taeko; Meyer-Rochow, Victor Benno
2007-01-21
In order to understand how a compound eye channels light to the retina and forms an image, one needs to know the refractive index distribution in the crystalline cones. Direct measurements of the refractive indices require sections of fresh, unfixed tissue and the use of an interference microscope, but frequently neither is available. Using the eye of the Antarctic krill Euphausia superba (the main food of baleen whales) we developed a computational method to predict a likely refractive index distribution non-invasively from sections of fixed material without the need of an interference microscope. We used a computer model of the eye and calculated the most realistic spatial distribution of the refractive index gradient in the crystalline cone that would enable the eye to produce a sharp image on the retina. The animals are known to see well and on the basis of our computations we predict that for the eyes of the adult a maximum refractive index of 1.45-1.50 in the centre of the cone yields a better angular sensitivity and light absorption in a target receptor of the retina than if N(max) were 1.55. In juveniles with a narrower spatial separation between dioptric structures and retina, however, an N(max) of 1.50-1.55 gives a superior result. Our method to determine the most likely refractive index distribution in the cone without the need of fresh material and an interference microscope could be useful in the study of other invertebrate eyes that are known to possess good resolving power, but for a variety of reasons are not suitable for or will not permit direct refractive index measurements of their dioptric tissues to be taken.
Analysis of the 2H-evaporator scale samples (HTF-17-56, -57)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hay, M.; Coleman, C.; Diprete, D.
Savannah River National Laboratory analyzed scale samples from both the wall and cone sections of the 242-16H Evaporator prior to chemical cleaning. The samples were analyzed for uranium and plutonium isotopes required for a Nuclear Criticality Safety Assessment of the scale removal process. The analysis of the scale samples found the material to contain crystalline nitrated cancrinite and clarkeite. Samples from both the wall and cone contain depleted uranium. Uranium concentrations of 16.8 wt% 4.76 wt% were measured in the wall and cone samples, respectively. The ratio of plutonium isotopes in both samples is ~85% Pu-239 and ~15% Pu-238 bymore » mass and shows approximately the same 3.5 times higher concentration in the wall sample versus the cone sample as observed in the uranium concentrations. The mercury concentrations measured in the scale samples were higher than previously reported values. The wall sample contains 19.4 wt% mercury and the cone scale sample 11.4 wt% mercury. The results from the current scales samples show reasonable agreement with previous 242-16H Evaporator scale sample analysis; however, the uranium concentration in the current wall sample is substantially higher than previous measurements.« less
NASA Technical Reports Server (NTRS)
Jaquet, Byron M.
1961-01-01
A wind-tunnel investigation was made at a Mach number of 3.10 (Reynolds number per foot of 16.3 x 10(exp 6) to 16.9 x 10(exp 6)) to determine the aerodynamic characteristics of various modifications of the payload section of the fourth stage of the Scout research vehicle. It was found that, for the combination of stages 3 and 4, increasing the size of the nose of the basic Scout to provide a cylindrical section of the same diameter as the third stage increased the normal-force slope by about 30 percent, the axial force by about 39 percent, and moved the center of pressure forward by about one fourth-stage base diameter. By reducing the diameter of the cylinder, at about one nose length behind the base of the enlarged nose frustum, to that of the basic Scout and thereafter retaining the shape of the basic Scout, the center of pressure was moved rearward by about one-half fourth-stage base diameter at the expense of an additional 19-percent increase in axial force. A spike-hemisphere configuration had the largest forces and moments and the most forward center-of-pressure location of the configurations considered. Except for the axial force and pitching-moment slope, the experimental trends or magnitudes could not be estimated with the desired accuracy by Newtonian or-slender body theory.
Xi, Jinxiang; Yuan, Jiayao Eddie; Zhang, Yu; Nevorski, Dannielle; Wang, Zhaoxuan; Zhou, Yue
2016-06-01
To compare drug deposition in the nose and olfactory region with different nasal devices and administration techniques. A Sar-Gel based colorimetry method will be developed to quantify local deposition rates. A sectional nasal airway cast was developed based on an MRI-based nasal airway model to visualize deposition patterns and measure regional dosages. Four nasal spray pumps and four nebulizers were tested with both standard and point-release administration techniques. Delivered dosages were measured using a high-precision scale. The colorimetry correlation for deposited mass was developed via image processing in Matlab and its performance was evaluated through comparison to experimental measurements. Results show that the majority of nasal spray droplets deposited in the anterior nose while only a small fraction (less than 4.6%) reached the olfactory region. For all nebulizers considered, more droplets went beyond the nasal valve, leading to distinct deposition patterns as a function of both the nebulizer type (droplet size and initial speed) and inhalation flow rate. With the point-release administration, up to 9.0% (±1.9%) of administered drugs were delivered to the olfactory region and 15.7 (±2.4%) to the upper nose using Pari Sinus. Standard nasal devices are inadequate to deliver clinically significant olfactory dosages without excess drug losses in other nasal epitheliums. The Sar-Gel based colorimetry method appears to provide a simple and practical approach to visualize and quantify regional deposition.
Tsukamoto, Yoshihiko; Omi, Naoko
2016-01-01
To date, 12 macaque bipolar cell types have been described. This list includes all morphology types first outlined by Polyak (1941) using the Golgi method in the primate retina and subsequently identified by other researchers using electron microscopy (EM) combined with the Golgi method, serial section transmission EM (SSTEM), and immunohistochemical imaging. We used SSTEM for the rod-dense perifoveal area of macaque retina, reconfirmed ON (cone) bipolar cells to be classified as invaginating midget bipolar (IMB), diffuse bipolar (DB)4, DB5, DB6, giant bipolar (GB), and blue bipolar (BB) types, and clarified their type-specific connectivity. DB4 cells made reciprocal synapses with a kind of ON-OFF lateral amacrine cell, similar to OFF DB2 cells. GB cells contacted rods and cones, similar to OFF DB3b cells. Retinal circuits formed by GB and DB3b cells are thought to substantiate the psychophysical finding of fast rod signals in mesopic vision. DB6 cell output synapses were directed to ON midget ganglion (MG) cells at 70% of ribbon contacts, similar to OFF DB1 cells that directed 60% of ribbon contacts to OFF MG cells. IMB cells contacted medium- or long-wavelength sensitive (M/L-) cones but not short-wavelength sensitive (S-) cones, while BB cells contacted S-cones but not M/L-cones. However, IMB and BB dendrites had similar morphological architectures, and a BB cell contacting a single S-cone resembled an IMB cell. Thus, both IMB and BB may be the ON bipolar counterparts of the OFF flat midget bipolar (FMB) type, likewise DB4 of DB2, DB5 of DB3a, DB6 of DB1, and GB of DB3b OFF bipolar type. The ON DB plus GB, and OFF DB cells predominantly contacted M/L-cones and their outputs were directed mainly to parasol ganglion (PG) cells but also moderately to MG cells. BB cells directed S-cone-driven outputs almost exclusively to small bistratified ganglion (SBG) cells. Some FMB cells predominantly contacted S-cones and their outputs were directed to OFF MG cells. Thus, two-step synaptic connections largely narrowed down the S-cone component to SBG and some OFF MG cells. The other OFF MG cells, ON MG cells, and ON and OFF PG cells constructed M/L-cone dominant pathways. PMID:27833534
State-of-the-art on cone beam CT imaging for preoperative planning of implant placement.
Guerrero, Maria Eugenia; Jacobs, Reinhilde; Loubele, Miet; Schutyser, Filip; Suetens, Paul; van Steenberghe, Daniel
2006-03-01
Orofacial diagnostic imaging has grown dramatically in recent years. As the use of endosseous implants has revolutionized oral rehabilitation, a specialized technique has become available for the preoperative planning of oral implant placement: cone beam computed tomography (CT). This imaging technology provides 3D and cross-sectional views of the jaws. It is obvious that this hardware is not in the same class as CT machines in cost, size, weight, complexity, and radiation dose. It is thus considered to be the examination of choice when making a risk-benefit assessment. The present review deals with imaging modalities available for preoperative planning purposes with a specific focus on the use of the cone beam CT and software for planning of oral implant surgery. It is apparent that cone beam CT is the medium of the future, thus, many changes will be performed to improve these. Any adaptation of the future systems should go hand in hand with a further dose optimalization.
Numerical simulation of steady and unsteady asymmetric vortical flow
NASA Technical Reports Server (NTRS)
Kandil, Osama A.; Wong, Tin-Chee; Liu, C. H.
1992-01-01
The unsteady, compressible, thin-layer, Navier-Stokes (NS) equations are solved to simulate steady and unsteady, asymmetric, vortical laminar flow around cones at high incidences and supersonic Mach numbers. The equations are solved by using an implicit, upwind, flux-difference splitting (FDS), finite-volume scheme. The locally conical flow assumption is used and the solutions are obtained by forcing the conserved components of the flowfield vector to be equal at two axial stations located at 0.95 and 1.0. Computational examples cover steady and unsteady asymmetric flows around a circular cone and its control using side strakes. The unsteady asymmetric flow solution around the circular cone has also been validated using the upwind, flux-vector splitting (FVS) scheme with the thin-layer NS equations and the upwind FDS with the full NS equations. The results are in excellent agreement with each other. Unsteady asymmetric flows are also presented for elliptic- and diamond-section cones, which model asymmetric vortex shedding around round- and sharp-edged delta winds.
Ion nose spectral structures observed by the Van Allen Probes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferradas, C. P.; Zhang, J. -C.; Spence, H. E.
Here, we present a statistical study of nose-like structures observed in energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet. Nose structures are spectral features named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. Using 22 months of observations from the Helium Oxygen Proton Electron (HOPE) instrument onboard Van Allen Probe A, we determine the number of noses observed, and the minimum L-shell reached and energy of each nose on each pass through the inner magnetosphere. We find that multiple noses occur more frequentlymore » in heavy ions than in H +, and are most often observed during quiet times. The heavy-ion noses penetrate to lower L shells than H + noses and there is an energy-magnetic local time (MLT) dependence in the nose locations and energies that is similar for all species. The observations are interpreted using a steady-state model of ion drift in the inner magnetosphere. The model is able to explain the energy and MLT dependence of the different types of nose structures. Different ion charge exchange lifetimes are the main cause for the deeper penetration of heavy-ion noses. The species dependence and preferred geomagnetic conditions of multiple-nose events indicate that they must be on long drift paths, leading to strong charge-exchange effects. The results provide important insight into the spatial distribution, species dependence, and geomagnetic conditions under which nose structures occur.« less
Ion nose spectral structures observed by the Van Allen Probes
Ferradas, C. P.; Zhang, J. -C.; Spence, H. E.; ...
2016-11-22
Here, we present a statistical study of nose-like structures observed in energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet. Nose structures are spectral features named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. Using 22 months of observations from the Helium Oxygen Proton Electron (HOPE) instrument onboard Van Allen Probe A, we determine the number of noses observed, and the minimum L-shell reached and energy of each nose on each pass through the inner magnetosphere. We find that multiple noses occur more frequentlymore » in heavy ions than in H +, and are most often observed during quiet times. The heavy-ion noses penetrate to lower L shells than H + noses and there is an energy-magnetic local time (MLT) dependence in the nose locations and energies that is similar for all species. The observations are interpreted using a steady-state model of ion drift in the inner magnetosphere. The model is able to explain the energy and MLT dependence of the different types of nose structures. Different ion charge exchange lifetimes are the main cause for the deeper penetration of heavy-ion noses. The species dependence and preferred geomagnetic conditions of multiple-nose events indicate that they must be on long drift paths, leading to strong charge-exchange effects. The results provide important insight into the spatial distribution, species dependence, and geomagnetic conditions under which nose structures occur.« less
Ion nose spectral structures observed by the Van Allen Probes
NASA Astrophysics Data System (ADS)
Ferradas, C. P.; Zhang, J.-C.; Spence, H. E.; Kistler, L. M.; Larsen, B. A.; Reeves, G.; Skoug, R.; Funsten, H.
2016-12-01
We present a statistical study of nose-like structures observed in energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet. Nose structures are spectral features named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. Using 22 months of observations from the Helium Oxygen Proton Electron instrument onboard Van Allen Probe A, we determine the number of noses observed, and the minimum L shell reached and energy of each nose on each pass through the inner magnetosphere. We find that multiple noses occur more frequently in heavy ions than in H+ and are most often observed during quiet times. The heavy-ion noses penetrate to lower L shells than H+ noses, and there is an energy-magnetic local time (MLT) dependence in the nose locations and energies that is similar for all species. The observations are interpreted by using a steady state model of ion drift in the inner magnetosphere. The model is able to explain the energy and MLT dependence of the different types of nose structures. Different ion charge-exchange lifetimes are the main cause for the deeper penetration of heavy-ion noses. The species dependence and preferred geomagnetic conditions of multiple-nose events indicate that they must be on long drift paths, leading to strong charge-exchange effects. The results provide important insight into the spatial distribution, species dependence, and geomagnetic conditions under which nose structures occur.
SU-C-BRC-07: Parametrized GPU Accelerated Electron Monte Carlo Second Check
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haywood, J
Purpose: I am presenting a parameterized 3D GPU accelerated electron Monte Carlo second check program. Method: I wrote the 3D grid dose calculation algorithm in CUDA and utilized an NVIDIA GeForce GTX 780 Ti to run all of the calculations. The electron path beyond the distal end of the cone is governed by four parameters: the amplitude of scattering (AMP), the mean and width of a Gaussian energy distribution (E and α), and the percentage of photons. In my code, I adjusted all parameters until the calculated PDD and profile fit the measured 10×10 open beam data within 1%/1mm. Imore » then wrote a user interface for reading the DICOM treatment plan and images in Python. In order to verify the algorithm, I calculated 3D dose distributions on a variety of phantoms and geometries, and compared them with the Eclipse eMC calculations. I also calculated several patient specific dose distributions, including a nose and an ear. Finally, I compared my algorithm’s computation times to Eclipse’s. Results: The calculated MU for all of the investigated geometries agree with the TPS within the TG-114 action level of 5%. The MU for the nose was < 0.5 % different while the MU for the ear at 105 SSD was ∼2 %. Calculation times for a 12MeV 10×10 open beam ranged from 1 second for a 2.5 mm grid resolution with ∼15 million particles to 33 seconds on a 1 mm grid with ∼460 million particles. Eclipse calculation runtimes distributed over 10 FAS workers were 9 seconds to 15 minutes respectively. Conclusion: The GPU accelerated second check allows quick MU verification while accounting for patient specific geometry and heterogeneity.« less
14 CFR 29.481 - Tail-down landing conditions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Tail-down landing conditions. 29.481 Section 29.481 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Tail-down landing conditions. (a) The rotorcraft is assumed to be in the maximum nose-up attitude...
14 CFR 27.481 - Tail-down landing conditions.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Tail-down landing conditions. 27.481 Section 27.481 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Tail-down landing conditions. (a) The rotorcraft is assumed to be in the maximum nose-up attitude...
21 CFR 874.5840 - Antistammering device.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Antistammering device. 874.5840 Section 874.5840 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Therapeutic Devices § 874.5840 Antistammering device. (a...
21 CFR 874.5840 - Antistammering device.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Antistammering device. 874.5840 Section 874.5840 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Therapeutic Devices § 874.5840 Antistammering device. (a...
21 CFR 874.5840 - Antistammering device.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Antistammering device. 874.5840 Section 874.5840 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Therapeutic Devices § 874.5840 Antistammering device. (a...
21 CFR 874.5840 - Antistammering device.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Antistammering device. 874.5840 Section 874.5840 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Therapeutic Devices § 874.5840 Antistammering device. (a...
NASA Ames Laminar Flow Supersonic Wind Tunnel (LFSWT) Tests of a 10 deg Cone at Mach 1.6
NASA Technical Reports Server (NTRS)
Wolf, Stephen W. D.; Laub, James A.
1997-01-01
This work is part of the ongoing qualification of the NASA Ames Laminar Flow Supersonic Wind Tunnel (LFSWT) as a low-disturbance (quiet) facility suitable for transition research. A 10 deg cone was tested over a range of unit Reynolds numbers (Re = 2.8 to 3.8 million per foot (9.2 to 12.5 million per meter)) and angles of incidence (O deg to 10 deg) at Mach 1.6. The location of boundary layer transition along the cone was measured primarily from surface temperature distributions, with oil flow interferometry and Schlieren flow visualization providing confirmation measurements. With the LFSWT in its normal quiet operating mode, no transition was detected on the cone in the test core, over the Reynolds number range tested at zero incidence and yaw. Increasing the pressure disturbance levels in the LFSWT test section by a factor of five caused transition onset on the cone within the test core, at zero incidence and yaw. When operating the LFSWT in its normal quiet mode, transition could only be detected in the test core when high angles of incidence (greater than 5 deg) for cones were set. Transition due to elevated pressure disturbances (Tollmien-Schlichting) and surface trips produced a skin temperature rise of order 4 F (2.2 C). Transition due to cross flows on the leeward side of the cone at incidence produced a smaller initial temperature rise of only order 2.5 F (1.4 C), which indicates a slower transition process. We can conclude that these cone tests add further proof that the LFSWT test core is normally low-disturbance (pressure fluctuations greater than 0.1%), as found by associated direct flow quality measurements discussed in this report. Furthermore, in a quiet test environment, the skin temperature rise is sensitive to the type of dominant instability causing transition. The testing of a cone in the LFSWT provides an excellent experiment for the development of advanced transition detection techniques.
A new Permian gnetalean cone as fossil evidence for supporting current molecular phylogeny.
Wang, Zi-Qiang
2004-08-01
The order Gnetales has been the central focus of controversy in seed plant phylogeny. Traditional treatment of morphology supports the anthophyte hypothesis with Gnetales sister to angiosperms but current molecular data reject this hypothesis. A new fossil gnetalean cone, Palaeognetaleana auspicia gen. et sp. nov., is reported from the Upper Permian in North China, and its phylogenic implications are considered. Samples of cones from the upper part of the Upper Permian redbeds of Baode section, northwestern Shanxi Province, China, were examined. The cone is characterized by its unusual nature of reproduction that combines features of post-Triassic gnetaleans and some of the Palaeozoic conifers. It is made up of a number of imbricate axillary units, each simply formed by an ovule and a subtending bract, which may be comparable with the axillary seed-scale complex of some of the Palaeozoic conifer cones. The cone exhibits at least a partially bisexual character that appears to have pollen sacs with monosulcate ribbed pollen grains and sessile, asymmetric, and radiospermic ovules. The ovule has an integument of three envelopes: an outer one of pointed scales; a middle sclerified one; and an inner cuticle that extends upward into a micropyle with an oblique tip. The new Permian cone has unequivocal affinity with the Gnetales. The fossil has considerably extended the divergence time of the Gnetales from 140 (210?) back to 270 myr ago and, therefore, provides the first significant fossil evidence to support the current conclusion based on molecular data of seed plants, i.e. monophyletic gymnosperms, comprising the Gnetales are closely related to conifers.
Noise Reduction Design of the Volute for a Centrifugal Compressor
NASA Astrophysics Data System (ADS)
Song, Zhen; Wen, Huabing; Hong, Liangxing; Jin, Yudong
2017-08-01
In order to effectively control the aerodynamic noise of a compressor, this paper takes into consideration a marine exhaust turbocharger compressor as a research object. According to the different design concept of volute section, tongue and exit cone, six different volute models were established. The finite volume method is used to calculate the flow field, whiles the finite element method is used for the acoustic calculation. Comparison and analysis of different structure designs from three aspects: noise level, isentropic efficiency and Static pressure recovery coefficient. The results showed that under the concept of volute section model 1 yielded the best result, under the concept of tongue analysis model 3 yielded the best result and finally under exit cone analysis model 6 yielded the best results.
Localization of antibody binding sites in ultrathin sections of unembedded frog retinal tissue.
Pease, D C; Nir, I; Clark, V; Hall, M
1983-01-01
Much ultrastructural detail is retained in tissue fixed only with aldehydes and subsequently air-dried after suspension in a polyvinyl acetate emulsion. The latter provides an external support only, but permits ultrathin sectioning; thus, an exposure of intracellular contents for potential immunocytochemical reactions is achieved. Sections of unembedded frog retina so prepared have been studied with success. The tissue was incubated first with a rabbit antiserum prepared against gradient purified bovine rod outer segments. Following incubation, reacted sites were labeled with ferritin-conjugated goat anti-rabbit IgG and stained with phosphotungstic acid. Intense labeling of the rod outer segments was clearly achieved, whereas the cone outer segments were without label. Other parts of the retina, including the ellipsoid region of both rods and cones, were also without significant label. These regions provided an intrinsic control for the specificity of the antiserum and established the validity of the general technique.
Mehdizadeh, Mojdeh; Ahmadi, Navid; Jamshidi, Mahsa
2014-11-01
Exact location of the inferior alveolar nerve (IAN) bundle is very important. The aim of this study is to evaluate the relationship between the mandibular third molar and the mandibular canal by cone-beam computed tomography. This was a cross-sectional study with convenience sampling. 94 mandibular CBCTs performed with CSANEX 3D machine (Soredex, Finland) and 3D system chosen. Vertical and horizontal relationship between the mandibular canal and the third molar depicted by 3D, panoramic reformat view of CBCT and cross-sectional view. Cross-sectional view was our gold standard and other view evaluated by it. There were significant differences between the vertical and horizontal relation of nerve and tooth in all views (p < 0.001). The results showed differences in the position of the inferior alveolar nerve with different views of CBCT, so CBCT images are not quite reliable and have possibility of error.
Electromagnetic retroreflection augmented by spherical and conical metasurfaces
NASA Astrophysics Data System (ADS)
Shang, Yuping; Shen, Zhongxiang
2017-11-01
The focus of this paper is on phase gradient metasurfaces conformal to spherical and conical bodies of revolution, with an aim of engineering retroreflections and therefore augmenting backscattering cross-sections of those three-dimensional geometries under the illumination of a plane electromagnetic wave. Based on the conducting sphere and cone, the effect of the geometric revolution property on the selection of the unit inclusion of metasurfaces is considered. The procedure for using the selected unit inclusion to implement the proper reflection phase gradient onto the illuminated surfaces of those objects is formulated in detail. Retroreflections resembling conducting plates under normal incidence are observed for both the conducting sphere and cone coated with conformal metasurfaces. As a result, the redirection-induced retroreflection effectively contributes to the backscattering cross-section enhancement. A good agreement between full-wave simulations and measurements demonstrates the validity and effectiveness of backscattering cross-section enhancement using spherical and conical metasurfaces.
The average Indian female nose.
Patil, Surendra B; Kale, Satish M; Jaiswal, Sumeet; Khare, Nishant; Math, Mahantesh
2011-12-01
This study aimed to delineate the anthropometric measurements of the noses of young women of an Indian population and to compare them with the published ideals and average measurements for white women. This anthropometric survey included a volunteer sample of 100 young Indian women ages 18 to 35 years with Indian parents and no history of previous surgery or trauma to the nose. Standardized frontal, lateral, oblique, and basal photographs of the subjects' noses were taken, and 12 standard anthropometric measurements of the nose were determined. The results were compared with published standards for North American white women. In addition, nine nasal indices were calculated and compared with the standards for North American white women. The nose of Indian women differs significantly from the white nose. All the nasal measurements for the Indian women were found to be significantly different from those for North American white women. Seven of the nine nasal indices also differed significantly. Anthropometric analysis suggests differences between the Indian female nose and the North American white nose. Thus, a single aesthetic ideal is inadequate. Noses of Indian women are smaller and wider, with a less projected and rounded tip than the noses of white women. This study established the nasal anthropometric norms for nasal parameters, which will serve as a guide for cosmetic and reconstructive surgery in Indian women.
21 CFR 868.5590 - Scavenging mask.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Scavenging mask. 868.5590 Section 868.5590 Food... DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5590 Scavenging mask. (a) Identification. A scavenging mask is a device positioned over a patient's nose to deliver anesthetic or analgesic gases to the...
21 CFR 874.3400 - Tinnitus masker.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tinnitus masker. 874.3400 Section 874.3400 Food... DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3400 Tinnitus masker. (a) Identification. A tinnitus masker is an electronic device intended to generate noise of sufficient intensity and bandwidth to...
21 CFR 874.3400 - Tinnitus masker.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Tinnitus masker. 874.3400 Section 874.3400 Food... DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3400 Tinnitus masker. (a) Identification. A tinnitus masker is an electronic device intended to generate noise of sufficient intensity and bandwidth to...
21 CFR 874.3400 - Tinnitus masker.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Tinnitus masker. 874.3400 Section 874.3400 Food... DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3400 Tinnitus masker. (a) Identification. A tinnitus masker is an electronic device intended to generate noise of sufficient intensity and bandwidth to...
21 CFR 874.3400 - Tinnitus masker.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Tinnitus masker. 874.3400 Section 874.3400 Food... DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3400 Tinnitus masker. (a) Identification. A tinnitus masker is an electronic device intended to generate noise of sufficient intensity and bandwidth to...
21 CFR 874.3400 - Tinnitus masker.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Tinnitus masker. 874.3400 Section 874.3400 Food... DEVICES EAR, NOSE, AND THROAT DEVICES Prosthetic Devices § 874.3400 Tinnitus masker. (a) Identification. A tinnitus masker is an electronic device intended to generate noise of sufficient intensity and bandwidth to...
21 CFR 868.5580 - Oxygen mask.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Oxygen mask. 868.5580 Section 868.5580 Food and... ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5580 Oxygen mask. (a) Identification. An oxygen mask is a device placed over a patient's nose, mouth, or tracheostomy to administer oxygen or aerosols. (b) Classification...
21 CFR 868.5580 - Oxygen mask.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Oxygen mask. 868.5580 Section 868.5580 Food and... ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5580 Oxygen mask. (a) Identification. An oxygen mask is a device placed over a patient's nose, mouth, or tracheostomy to administer oxygen or aerosols. (b) Classification...
21 CFR 868.5580 - Oxygen mask.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Oxygen mask. 868.5580 Section 868.5580 Food and... ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5580 Oxygen mask. (a) Identification. An oxygen mask is a device placed over a patient's nose, mouth, or tracheostomy to administer oxygen or aerosols. (b) Classification...
21 CFR 868.5580 - Oxygen mask.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Oxygen mask. 868.5580 Section 868.5580 Food and... ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5580 Oxygen mask. (a) Identification. An oxygen mask is a device placed over a patient's nose, mouth, or tracheostomy to administer oxygen or aerosols. (b) Classification...
21 CFR 868.5580 - Oxygen mask.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Oxygen mask. 868.5580 Section 868.5580 Food and... ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5580 Oxygen mask. (a) Identification. An oxygen mask is a device placed over a patient's nose, mouth, or tracheostomy to administer oxygen or aerosols. (b) Classification...
21 CFR 874.5370 - Tongs antichoke device.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Tongs antichoke device. 874.5370 Section 874.5370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Therapeutic Devices § 874.5370 Tongs antichoke device. (a...
21 CFR 874.5800 - External nasal splint.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false External nasal splint. 874.5800 Section 874.5800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Therapeutic Devices § 874.5800 External nasal splint. (a...
21 CFR 874.5350 - Suction antichoke device.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Suction antichoke device. 874.5350 Section 874.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Therapeutic Devices § 874.5350 Suction antichoke device. (a...
21 CFR 874.5350 - Suction antichoke device.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Suction antichoke device. 874.5350 Section 874.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Therapeutic Devices § 874.5350 Suction antichoke device. (a...
21 CFR 874.5350 - Suction antichoke device.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Suction antichoke device. 874.5350 Section 874.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Therapeutic Devices § 874.5350 Suction antichoke device. (a...
21 CFR 874.5370 - Tongs antichoke device.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tongs antichoke device. 874.5370 Section 874.5370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Therapeutic Devices § 874.5370 Tongs antichoke device. (a...
21 CFR 874.5350 - Suction antichoke device.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Suction antichoke device. 874.5350 Section 874.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Therapeutic Devices § 874.5350 Suction antichoke device. (a...
21 CFR 874.5800 - External nasal splint.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false External nasal splint. 874.5800 Section 874.5800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Therapeutic Devices § 874.5800 External nasal splint. (a...
21 CFR 874.5800 - External nasal splint.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false External nasal splint. 874.5800 Section 874.5800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Therapeutic Devices § 874.5800 External nasal splint. (a...
21 CFR 874.5350 - Suction antichoke device.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Suction antichoke device. 874.5350 Section 874.5350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Therapeutic Devices § 874.5350 Suction antichoke device. (a...
21 CFR 874.5370 - Tongs antichoke device.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Tongs antichoke device. 874.5370 Section 874.5370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Therapeutic Devices § 874.5370 Tongs antichoke device. (a...
21 CFR 874.5800 - External nasal splint.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false External nasal splint. 874.5800 Section 874.5800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Therapeutic Devices § 874.5800 External nasal splint. (a...
21 CFR 874.5800 - External nasal splint.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false External nasal splint. 874.5800 Section 874.5800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Therapeutic Devices § 874.5800 External nasal splint. (a...
21 CFR 874.5370 - Tongs antichoke device.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Tongs antichoke device. 874.5370 Section 874.5370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Therapeutic Devices § 874.5370 Tongs antichoke device. (a...
21 CFR 874.5370 - Tongs antichoke device.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Tongs antichoke device. 874.5370 Section 874.5370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Therapeutic Devices § 874.5370 Tongs antichoke device. (a...
Terminal Ballistics. A Preliminary Report
1941-01-01
In all of the above, it has been tacitly assumed that the projectile suffers no deformation on impact or during pen- etration. T, Levi - Civita ...dimensionless; 6. kr velocity coefficient in Levi - Civita A»; sec/ft; 16. k........material coefficient in de Giorgi formula; di- mensionless; 17. k...sectional area of projectile; in ; 6. A*.» effective area on Levi - Civita hypothesis; in2 ; 16. A(x).....area cross-section at distance x from nose
Future applications of electronic-nose technologies in healthcare and biomedicine
Alphus D. Wilson
2011-01-01
The development and utilization of many new electronic-nose (e-nose) applications in the healthcare and biomedical fields have continued to rapidly accelerate over the past 20 years. Innovative e-nose technologies are providing unique solutions to a diversity of complex problems in biomedicine that are now coming to fruition. A wide range of electronic-nose instrument...
Brekelmans, Marjolein P; Fens, Niki; Brinkman, Paul; Bos, Lieuwe D; Sterk, Peter J; Tak, Paul P; Gerlag, Daniëlle M
2016-01-01
To investigate whether exhaled breath analysis using an electronic nose can identify differences between inflammatory joint diseases and healthy controls. In a cross-sectional study, the exhaled breath of 21 rheumatoid arthritis (RA) and 18 psoriatic arthritis (PsA) patients with active disease was compared to 21 healthy controls using an electronic nose (Cyranose 320; Smiths Detection, Pasadena, CA, USA). Breathprints were analyzed with principal component analysis, discriminant analysis, and area under curve (AUC) of receiver operating characteristics (ROC) curves. Volatile organic compounds (VOCs) were identified by gas chromatography and mass spectrometry (GC-MS), and relationships between breathprints and markers of disease activity were explored. Breathprints of RA patients could be distinguished from controls with an accuracy of 71% (AUC 0.75, 95% CI 0.60-0.90, sensitivity 76%, specificity 67%). Breathprints from PsA patients were separated from controls with 69% accuracy (AUC 0.77, 95% CI 0.61-0.92, sensitivity 72%, specificity 71%). Distinction between exhaled breath of RA and PsA patients exhibited an accuracy of 69% (AUC 0.72, 95% CI 0.55-0.89, sensitivity 71%, specificity 72%). There was a positive correlation in RA patients of exhaled breathprints with disease activity score (DAS28) and number of painful joints. GC-MS identified seven key VOCs that significantly differed between the groups. Exhaled breath analysis by an electronic nose may play a role in differential diagnosis of inflammatory joint diseases. Data from this study warrant external validation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De, P.K.
1973-08-01
The Cherenkov radiation emitted by an oscillating dipole moving in a semi-infinite dielectric with a constant velocity along a straight line parallel to the conducting boundary is calculated by using Maxwell's equations. The wave nature of electromagnetic intensities reveals that waves propagate in two modes, and the radiation takes place in the form of two cones which are semicircular in section, the axes of the cones coinciding wiih the path of the dipole. Conditions for the existence of only one cone are given. The intensity of radiation fluctuates spatially. The conducting boundary acts as a promoter and plays an importantmore » role in the graduation of energy loss which is technically important for concentration of radiation. (RWR)« less
Perceptual mapping of chemesthetic stimuli in naïve assessors
Byrnes, Nadia; Nestrud, Michael A.; Hayes, John E.
2015-01-01
Chemesthetic compounds, responsible for sensations such as burning, cooling, and astringency, are difficult stimuli to work with, especially when the evaluation task requires retasting. Here, we developed a protocol by which chemesthetic compounds can be assessed using sorting. We compared the performance of two cohorts of untrained assessors on this task, one with nose clips and the other without. Similarity matrices were analyzed using multidimensional scaling (MDS) to produce perceptual maps for the two cohorts. Overall, the groupings from the nose open cohort tended to follow a biological basis, consistent with previous findings that suggest compounds that activate a common receptor will elicit similar sensations. The nose-open and nose-pinched cohorts generated significantly different maps. The nose-pinched cohort had a higher variance in the MDS solution than the nose-open group. While the nose-open cohort generated seven clusters, the nose-pinched cohort generated only two clusters, seemingly based on the ready identification of chemesthetic sensations or not. There was less consensus regarding the attributes used to describe the samples in the nose-pinched cohort than in the nose-open cohort as well, as this cohort collectively generated more attributes but fewer were significant in regression. PMID:26236421
NASA Technical Reports Server (NTRS)
Jorgensen, L. H.; Nelson, E. R.
1974-01-01
An experimental investigation was conducted to determine the effect of forebody geometry, a grit ring around the nose, Reynolds number, Mach number, and angle of attack on the aerodynamic characteristics of a body of revolution. Aerodynamic force and moment characteristics were measured for a cylindrical body with tangent ogive noses of fineness ratio 2.5, 3.0, 3.5, and 5.0. The cylindrical body was tested with an ogive nose having a rounded tip and an ogive nose with two different nose strake arrangements. Aerodynamic configurations were tested at various Mach numbers, angles of attack, and Reynolds numbers. The data demonstrate that the aerodynamic characteristics for a body of revolution can be significantly affected by changes in nose fineness ratio, nose bluntness, Reynolds number, Mach number, and, of course, angle of attack. Nose strakes increased the normal forces but had little effect on the side forces that developed at subsonic Mach numbers for alpha greater than about 25. A grit ring around the nose had little or no effect on the aerodynamic characteristics.
Electronic Noses and Tongues: Applications for the Food and Pharmaceutical Industries
Baldwin, Elizabeth A.; Bai, Jinhe; Plotto, Anne; Dea, Sharon
2011-01-01
The electronic nose (e-nose) is designed to crudely mimic the mammalian nose in that most contain sensors that non-selectively interact with odor molecules to produce some sort of signal that is then sent to a computer that uses multivariate statistics to determine patterns in the data. This pattern recognition is used to determine that one sample is similar or different from another based on headspace volatiles. There are different types of e-nose sensors including organic polymers, metal oxides, quartz crystal microbalance and even gas-chromatography (GC) or combined with mass spectroscopy (MS) can be used in a non-selective manner using chemical mass or patterns from a short GC column as an e-nose or “Z” nose. The electronic tongue reacts similarly to non-volatile compounds in a liquid. This review will concentrate on applications of e-nose and e-tongue technology for edible products and pharmaceutical uses. PMID:22163873
A lower Cretaceous (Valanginian) seed cone provides the earliest fossil record for Picea (Pinaceae).
Klymiuk, Ashley A; Stockey, Ruth A
2012-06-01
Sequence analyses for Pinaceae have suggested that extant genera diverged in the late Mesozoic. While the fossil record indicates that Pinaceae was highly diverse during the Cretaceous, there are few records of living genera. This description of an anatomically preserved seed cone extends the fossil record for Picea A. Dietrich (Pinaceae) by ∼75 Ma. The specimen was collected from the Apple Bay locality of Vancouver Island (Lower Cretaceous, Valanginian) and is described from anatomical sections prepared using cellulose acetate peels. Cladistic analyses of fossil and extant pinaceous seed cones employed parsimony ratchet searches of an anatomical and morphological matrix. This new seed cone has a combination of characters shared only with the genus Picea A. Dietr. and is thus described as Picea burtonii Klymiuk et Stockey sp. nov. Bisaccate pollen attributable to Picea is found in the micropyles of several ovules, corroborating the designation of this cone as an early spruce. Cladistic analyses place P. burtonii with extant Picea and an Oligocene representative of the genus. Furthermore, our analyses indicate that Picea is sister to Cathaya Chun et Kuang, and P. burtonii helps to establish a minimum date for this node in hypotheses of conifer phylogeny. As an early member of the extant genus Picea, this seed cone extends the fossil record of Picea to the Valanginian Stage of the Early Cretaceous, ca. 136 Ma, thereby resolving a ghost lineage predicted by molecular divergence analyses, and offers new insight into the evolution of Pinaceae.
C-arm Cone Beam Computed Tomography: A New Tool in the Interventional Suite.
Raj, Santhosh; Irani, Farah Gillan; Tay, Kiang Hiong; Tan, Bien Soo
2013-11-01
C-arm Cone Beam CT (CBCT) is a technology that is being integrated into many of the newer angiography systems in the interventional suite. Due to its ability to provide cross sectional imaging, it has opened a myriad of opportunities for creating new clinical applications. We review the technical aspects, current reported clinical applications and potential benefits of this technology. Searches were made via PubMed using the string "CBCT", "Cone Beam CT", "Cone Beam Computed Tomography" and "C-arm Cone Beam Computed Tomography". All relevant articles in the results were reviewed. CBCT clinical applications have been reported in both vascular and non-vascular interventions. They encompass many aspects of a procedure including preprocedural planning, intraprocedural guidance and postprocedural assessment. As a result, they have allowed the interventionalist to be safer and more accurate in performing image guided procedures. There are however several technical limitations. The quality of images produced is not comparable to conventional computed tomography (CT). Radiation doses are also difficult to quantify when compared to CT and fluoroscopy. CBCT technology in the interventional suite has contributed significant benefits to the patient despite its current limitations. It is a tool that will evolve and potentially become an integral part of imaging guidance for intervention.
Towards a Chemiresistive Sensor-Integrated Electronic Nose: A Review
Chiu, Shih-Wen; Tang, Kea-Tiong
2013-01-01
Electronic noses have potential applications in daily life, but are restricted by their bulky size and high price. This review focuses on the use of chemiresistive gas sensors, metal-oxide semiconductor gas sensors and conductive polymer gas sensors in an electronic nose for system integration to reduce size and cost. The review covers the system design considerations and the complementary metal-oxide-semiconductor integrated technology for a chemiresistive gas sensor electronic nose, including the integrated sensor array, its readout interface, and pattern recognition hardware. In addition, the state-of-the-art technology integrated in the electronic nose is also presented, such as the sensing front-end chip, electronic nose signal processing chip, and the electronic nose system-on-chip. PMID:24152879
Methodological Variability Using Electronic Nose Technology For Headspace Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knobloch, Henri; Turner, Claire; Spooner, Andrew
Since the idea of electronic noses was published, numerous electronic nose (e-nose) developments and applications have been used in analyzing solid, liquid and gaseous samples in the food and automotive industry or for medical purposes. However, little is known about methodological pitfalls that might be associated with e-nose technology. Some of the methodological variation caused by changes in ambient temperature, using different filters and changes in mass flow rates are described. Reasons for a lack of stability and reproducibility are given, explaining why methodological variation influences sensor responses and why e-nose technology may not always be sufficiently robust for headspacemore » analysis. However, the potential of e-nose technology is also discussed.« less
Bornstein, Michael M; Horner, Keith; Jacobs, Reinhilde
2017-02-01
Diagnostic radiology is an essential component of treatment planning in the field of implant dentistry. This narrative review will present current concepts for the use of cone beam computed tomography imaging, before and after implant placement, in daily clinical practice and research. Guidelines for the selection of three-dimensional imaging will be discussed, and limitations will be highlighted. Current concepts of radiation dose optimization, including novel imaging modalities using low-dose protocols, will be presented. For preoperative cross-sectional imaging, data are still not available which demonstrate that cone beam computed tomography results in fewer intraoperative complications such as nerve damage or bleeding incidents, or that implants inserted using preoperative cone beam computed tomography data sets for planning purposes will exhibit higher survival or success rates. The use of cone beam computed tomography following the insertion of dental implants should be restricted to specific postoperative complications, such as damage of neurovascular structures or postoperative infections in relation to the maxillary sinus. Regarding peri-implantitis, the diagnosis and severity of the disease should be evaluated primarily based on clinical parameters and on radiological findings based on periapical radiographs (two dimensional). The use of cone beam computed tomography scans in clinical research might not yield any evident beneficial effect for the patient included. As many of the cone beam computed tomography scans performed for research have no direct therapeutic consequence, dose optimization measures should be implemented by using appropriate exposure parameters and by reducing the field of view to the actual region of interest. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Thornton, D. E.
1976-01-01
Tests were conducted in a 14 foot transonic wind tunnel to examine the feasibility of the auxiliary aerodynamic data system (AADS) for determining angles of attack and sideslip during boost flight. The model used was a 0.07 scale replica of the external tank forebody consisting of the nose portion and a 60 inch (full scale) cylindrical section of the ogive cylinder tangency point. The model terminated in a blunt base with a 320.0 inch diameter at external tank (ET) station 1120.37. Pressure data were obtained from five pressure orifices (one total and four statics) on the nose probe, and sixteen surface static pressure orifices along the ET forebody.
NASA Technical Reports Server (NTRS)
Boswinkle, Robert W JR; Keith, Arvid L JR
1948-01-01
A method for calculating the flow fields of axially symmetric bodies from their pressure distributions is reported in NACA RM No. L8I17. In order to facilitate application of this method to the important case of the cowling-spinner combination, for use in the design of propellers, the present paper presents static-pressure distributions on the tops of 79 high-critical-speed NACA 1-series cowling-spinner combinations over wide ranges of inlet-velocity ratio at angles of attack of 0 degrees, 2 degrees, 4 degrees, and 6 degrees. Static-pressure distributions around the nose sections of several cowlings are given in greater detail to aid in estimating the pressures near the stagnation points and to show the effect of changes in the internal lip shape. The effects of the operation of a typical propeller on the surface pressures on the cowling are shown for one configuration. The pressure distributions over the nine NACA 1-series nose inlets used as the basic components of these combinations are also presented ro supplement the existing open-nose-cowling data of NACA ACR No. L5F30a which are applicable to the case of the rotating cowling.
Calculation method for laser radar cross sections of rotationally symmetric targets.
Cao, Yunhua; Du, Yongzhi; Bai, Lu; Wu, Zhensen; Li, Haiying; Li, Yanhui
2017-07-01
The laser radar cross section (LRCS) is a key parameter in the study of target scattering characteristics. In this paper, a practical method for calculating LRCSs of rotationally symmetric targets is presented. Monostatic LRCSs for four kinds of rotationally symmetric targets (cone, rotating ellipsoid, super ellipsoid, and blunt cone) are calculated, and the results verify the feasibility of the method. Compared with the results for the triangular patch method, the correctness of the method is verified, and several advantages of the method are highlighted. For instance, the method does not require geometric modeling and patch discretization. The method uses a generatrix model and double integral, and its calculation is concise and accurate. This work provides a theory analysis for the rapid calculation of LRCS for common basic targets.
... Staying Safe Videos for Educators Search English Español Why Does My Nose Run? KidsHealth / For Kids / Why Does My Nose Run? ... out the whole story. What's Running? To understand why your nose runs, you need to know what mucus (say: MYOO- ...