Science.gov

Sample records for nothofagus dombeyi seedlings

  1. Low temperature responses of Nothofagus dombeyi and Nothofagus nitida, two evergreen species from south central Chile.

    PubMed

    Reyes-Díaz, M; Alberdi, M; Piper, F; Bravo, L A; Corcuera, L J

    2005-11-01

    Nothofagus dombeyi (Mirb.) Blume and Nothofagus nitida (Phil.) Krasser are closely related evergreen trees native to south central Chile. Nothofagus dombeyi is a pioneer in habitats subject to high daytime irradiances and nighttime freezing temperatures and has a wider altitudinal and latitudinal distribution than N. nitida, which is restricted to more oceanic climates. We postulated that N. dombeyi has a greater cold-acclimation capacity, expressed as a greater capacity to maintain a functional photosynthetic apparatus at low temperatures, than N. nitida. Because cold-acclimation may be related to the accumulation of cryoprotective substances, we investigated relationships between ice nucleation temperature (IN), freezing temperature (FT), and the temperature causing injury to 50% of the leaf tissues (LT(50)) on the one hand, and concentrations of total soluble carbohydrates (TSC), starch and proline on the other hand. Observations were made throughout a seasonal cycle in adults and seedlings in the field and in seedlings in the laboratory under cold-acclimation inductive and non-inductive conditions. In adults, LT(50) values were lower in N. dombeyi than in N. nitida, suggesting that N. dombeyi is the more frost tolerant species. Adults of both species tolerated freezing in autumn and winter but not in spring and summer. In the fall and winter, seedlings of N. dombeyi had a much lower LT(50) than those of N. nitida. Nothofagus nitida seedlings, in autumn and winter, exhibited freezing avoidance mechanisms. Although elevated TSC and proline concentrations may contribute to freezing tolerance in adults of both species, an increase in proline concentration is unlikely to be the dominant frost tolerance response in adults because proline concentrations were higher in N. nitida than in N. dombeyi. In seedlings, however, there were large differences in proline accumulation between species that may account for the difference between them in freezing tolerance. Starch

  2. Effect of ectomycorrhizal colonization and drought on reactive oxygen species metabolism of Nothofagus dombeyi roots.

    PubMed

    Alvarez, Maricel; Huygens, Dries; Fernandez, Carlos; Gacitúa, Yessy; Olivares, Erick; Saavedra, Isabel; Alberdi, Miren; Valenzuela, Eduardo

    2009-08-01

    Infection with ectomycorrhizal fungi can increase the ability of plants to resist drought stress through morphophysiological and biochemical mechanisms. However, the metabolism of antioxidative enzyme activities in the ectomycorrhizal symbiosis remains poorly understood. This study investigated biomass production, reactive oxygen metabolism (hydrogen peroxide and malondialdehyde concentration) and antioxidant enzyme activity (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase) in pure cultures of the ectomycorrhizal fungi Descolea antartica Sing. and Pisolithus tinctorius (Pers.) Coker & Couch, and non-mycorrhizal and mycorrhizal roots of Nothofagus dombeyi (Mirb.) roots under well-watered conditions and drought conditions (DC). The studied ectomycorrhizal fungi regulated their antioxidative enzyme metabolism differentially in response to drought, resulting in cellular damage in D. antartica but not in P. tinctorius. Ectomycorrhizal inoculation and water treatment had a significant effect on all parameters studied, including relative water content of the plant. As such, N. dombeyi plants in symbiosis experienced a lower oxidative stress effect than non-mycorrhizal plants under DC. Additionally, ectomycorrhizal N. dombeyi roots showed a greater antioxidant enzyme activity relative to non-mycorrhizal roots, an effect which was further expressed under DC. The association between the non-specific P. tinctorius and N. dombeyi had a more effective reactive oxygen species (ROS) metabolism than the specific D. antartica-N. dombeyi symbiosis. We conclude that the combination of effective ROS prevention and ROS detoxification by ectomycorrhizal plants resulted in reduced cellular damage and increased plant growth relative to non-mycorrhizal plants under drought. PMID:19483186

  3. Effect of ectomycorrhizal colonization and drought on reactive oxygen species metabolism of Nothofagus dombeyi roots.

    PubMed

    Alvarez, Maricel; Huygens, Dries; Fernandez, Carlos; Gacitúa, Yessy; Olivares, Erick; Saavedra, Isabel; Alberdi, Miren; Valenzuela, Eduardo

    2009-08-01

    Infection with ectomycorrhizal fungi can increase the ability of plants to resist drought stress through morphophysiological and biochemical mechanisms. However, the metabolism of antioxidative enzyme activities in the ectomycorrhizal symbiosis remains poorly understood. This study investigated biomass production, reactive oxygen metabolism (hydrogen peroxide and malondialdehyde concentration) and antioxidant enzyme activity (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase) in pure cultures of the ectomycorrhizal fungi Descolea antartica Sing. and Pisolithus tinctorius (Pers.) Coker & Couch, and non-mycorrhizal and mycorrhizal roots of Nothofagus dombeyi (Mirb.) roots under well-watered conditions and drought conditions (DC). The studied ectomycorrhizal fungi regulated their antioxidative enzyme metabolism differentially in response to drought, resulting in cellular damage in D. antartica but not in P. tinctorius. Ectomycorrhizal inoculation and water treatment had a significant effect on all parameters studied, including relative water content of the plant. As such, N. dombeyi plants in symbiosis experienced a lower oxidative stress effect than non-mycorrhizal plants under DC. Additionally, ectomycorrhizal N. dombeyi roots showed a greater antioxidant enzyme activity relative to non-mycorrhizal roots, an effect which was further expressed under DC. The association between the non-specific P. tinctorius and N. dombeyi had a more effective reactive oxygen species (ROS) metabolism than the specific D. antartica-N. dombeyi symbiosis. We conclude that the combination of effective ROS prevention and ROS detoxification by ectomycorrhizal plants resulted in reduced cellular damage and increased plant growth relative to non-mycorrhizal plants under drought.

  4. Ectomycorrhizal fungi enhance nitrogen and phosphorus nutrition of Nothofagus dombeyi under drought conditions by regulating assimilative enzyme activities.

    PubMed

    Alvarez, Maricel; Huygens, Dries; Olivares, Erick; Saavedra, Isabel; Alberdi, Miren; Valenzuela, Eduardo

    2009-08-01

    Drought stress conditions (DC) reduce plant growth and nutrition, restraining the sustainable reestablishment of Nothofagus dombeyi in temperate south Chilean forest ecosystems. Ectomycorrhizal symbioses have been documented to enhance plant nitrogen (N) and phosphorus (P) uptake under drought, but the regulation of involved assimilative enzymes remains unclear. We studied 1-year-old N. dombeyi (Mirb.) Oerst. plants in association with the ectomycorrhizal fungi Pisolithus tinctorius (Pers.) Coker & Couch. and Descolea antartica Sing. In greenhouse experiments, shoot and root dry weights, mycorrhizal colonization, foliar N and P concentrations, and root enzyme activities [glutamate synthase (glutamine oxoglutarate aminotransferase (GOGAT), EC 1.4.1.13-14), glutamine synthetase (GS, EC 6.3.1.2), glutamate dehydrogenase (GDH, EC 1.4.1.2-4), nitrate reductase (NR, EC 1.6.6.1), and acid phosphomonoesterase (PME, EC 3.1.3.1-2)] were determined as a function of soil-water content. Inoculation of N. dombeyi with P. tinctorius and D. antartica significantly stimulated plant growth and increased plant foliar N and P concentrations, especially under DC. Ectomycorrhizal inoculation increased the activity of all studied enzymes relative to non-mycorrhizal plants under drought. We speculate that GDH is a key enzyme involved in the enhancement of ectomycorrhizal carbon (C) availability by fuelling the tricarboxylic acid (TCA) cycle under conditions of drought-induced carbon deficit. All studied assimilative enzymes of the ectomycorrhizal associations, involved in C, N, and P transfers, are closely interlinked and interdependent. The up-regulation of assimilative enzyme activities by ectomycorrhizal fungal root colonizers acts as a functional mechanism to increase seedling endurance to drought. We insist upon incorporating ectomycorrhizal inoculation in existing Chilean afforestation programs. PMID:19470091

  5. Ectomycorrhizal fungi enhance nitrogen and phosphorus nutrition of Nothofagus dombeyi under drought conditions by regulating assimilative enzyme activities.

    PubMed

    Alvarez, Maricel; Huygens, Dries; Olivares, Erick; Saavedra, Isabel; Alberdi, Miren; Valenzuela, Eduardo

    2009-08-01

    Drought stress conditions (DC) reduce plant growth and nutrition, restraining the sustainable reestablishment of Nothofagus dombeyi in temperate south Chilean forest ecosystems. Ectomycorrhizal symbioses have been documented to enhance plant nitrogen (N) and phosphorus (P) uptake under drought, but the regulation of involved assimilative enzymes remains unclear. We studied 1-year-old N. dombeyi (Mirb.) Oerst. plants in association with the ectomycorrhizal fungi Pisolithus tinctorius (Pers.) Coker & Couch. and Descolea antartica Sing. In greenhouse experiments, shoot and root dry weights, mycorrhizal colonization, foliar N and P concentrations, and root enzyme activities [glutamate synthase (glutamine oxoglutarate aminotransferase (GOGAT), EC 1.4.1.13-14), glutamine synthetase (GS, EC 6.3.1.2), glutamate dehydrogenase (GDH, EC 1.4.1.2-4), nitrate reductase (NR, EC 1.6.6.1), and acid phosphomonoesterase (PME, EC 3.1.3.1-2)] were determined as a function of soil-water content. Inoculation of N. dombeyi with P. tinctorius and D. antartica significantly stimulated plant growth and increased plant foliar N and P concentrations, especially under DC. Ectomycorrhizal inoculation increased the activity of all studied enzymes relative to non-mycorrhizal plants under drought. We speculate that GDH is a key enzyme involved in the enhancement of ectomycorrhizal carbon (C) availability by fuelling the tricarboxylic acid (TCA) cycle under conditions of drought-induced carbon deficit. All studied assimilative enzymes of the ectomycorrhizal associations, involved in C, N, and P transfers, are closely interlinked and interdependent. The up-regulation of assimilative enzyme activities by ectomycorrhizal fungal root colonizers acts as a functional mechanism to increase seedling endurance to drought. We insist upon incorporating ectomycorrhizal inoculation in existing Chilean afforestation programs.

  6. Differential hypogeous sporocarp production from Nothofagus dombeyi and N. pumilio forests in southern Argentina.

    PubMed

    Nouhra, Eduardo R; Urcelay, Carlos; Longo, M Silvana; Fontenla, Sonia

    2012-01-01

    Mycorrhizal fungi that form hypogeous sporocarps are an important component of the temperate forest soil community. In many regions, such as the Nothofagus forest in the Patagonian Andes, this group of fungi has been poorly studied. Here we examined the spring and autumn community composition of "sequestrate fungi", based on sporocarp production in pure forests of Nothofagus dombeyi (evergreen) and N. pumilio (deciduous). We investigated the possible relationships between these communities and environmental factors over 2 y. The rarefaction curves and the minimal richness estimates converged at nearly the same level for each forest type, and the asymptotes suggested that the sampling effort was sufficient to capture most of the hypogeous sporocarp richness in these forest stands. In total 27 species were recovered. Basidiomycota, Ascomycota and Glomeromycota respectively accounted for nine, two and one genera. Species richness of hypogeous sporocarps varied in relation to forest type but not to season (fall and spring), whereas sporocarp biomass varied according to an interaction between season and forest type. Species richness and sporocarp biomass were positively correlated with rainfall and negatively correlated with altitude. In addition sporocarp species richness was positively related to number of trees per transect. We found that two different forest stands, each dominated by different species of Nothofagus, exhibited different hypogeous sporocarp communities. PMID:21914828

  7. Differential hypogeous sporocarp production from Nothofagus dombeyi and N. pumilio forests in southern Argentina.

    PubMed

    Nouhra, Eduardo R; Urcelay, Carlos; Longo, M Silvana; Fontenla, Sonia

    2012-01-01

    Mycorrhizal fungi that form hypogeous sporocarps are an important component of the temperate forest soil community. In many regions, such as the Nothofagus forest in the Patagonian Andes, this group of fungi has been poorly studied. Here we examined the spring and autumn community composition of "sequestrate fungi", based on sporocarp production in pure forests of Nothofagus dombeyi (evergreen) and N. pumilio (deciduous). We investigated the possible relationships between these communities and environmental factors over 2 y. The rarefaction curves and the minimal richness estimates converged at nearly the same level for each forest type, and the asymptotes suggested that the sampling effort was sufficient to capture most of the hypogeous sporocarp richness in these forest stands. In total 27 species were recovered. Basidiomycota, Ascomycota and Glomeromycota respectively accounted for nine, two and one genera. Species richness of hypogeous sporocarps varied in relation to forest type but not to season (fall and spring), whereas sporocarp biomass varied according to an interaction between season and forest type. Species richness and sporocarp biomass were positively correlated with rainfall and negatively correlated with altitude. In addition sporocarp species richness was positively related to number of trees per transect. We found that two different forest stands, each dominated by different species of Nothofagus, exhibited different hypogeous sporocarp communities.

  8. Using Genome-Wide SNP Discovery and Genotyping to Reveal the Main Source of Population Differentiation in Nothofagus dombeyi (Mirb.) Oerst. in Chile

    PubMed Central

    González, Jorge; Fuentes, Glenda; Alarcón, Diego; Ruiz, Eduardo

    2016-01-01

    Within a woody plant species, environmental heterogeneity has the potential to influence the distribution of genetic variation among populations through several evolutionary processes. In some species, a relationship between environmental characteristics and the distribution of genotypes can be detected, showing the importance of natural selection as the main source of differentiation. Nothofagus dombeyi (Mirb.) Oerst. (Nothofagaceae) is an endemic tree species occurring both in Chile and in Argentina temperate forests. Postglacial history has been studied with chloroplast DNA and evolutionary forces shaping genetic variation patterns have been analysed with isozymes but fine-scale genetic diversity studies are needed. The study of demographic and selection histories in Nothofagus dombeyi requires more informative markers such as single nucleotide polymorphisms (SNP). Genotyping-by-Sequencing tools now allow studying thousands of SNP markers at reasonable prices in nonmodel species. We investigated more than 10 K SNP loci for signatures of local adaptation and showed that interrogation of genomic resources can identify shifts in genetic diversity and putative adaptive signals in this nonmodel woody species. PMID:27446942

  9. Using Genome-Wide SNP Discovery and Genotyping to Reveal the Main Source of Population Differentiation in Nothofagus dombeyi (Mirb.) Oerst. in Chile.

    PubMed

    Hasbún, Rodrigo; González, Jorge; Iturra, Carolina; Fuentes, Glenda; Alarcón, Diego; Ruiz, Eduardo

    2016-01-01

    Within a woody plant species, environmental heterogeneity has the potential to influence the distribution of genetic variation among populations through several evolutionary processes. In some species, a relationship between environmental characteristics and the distribution of genotypes can be detected, showing the importance of natural selection as the main source of differentiation. Nothofagus dombeyi (Mirb.) Oerst. (Nothofagaceae) is an endemic tree species occurring both in Chile and in Argentina temperate forests. Postglacial history has been studied with chloroplast DNA and evolutionary forces shaping genetic variation patterns have been analysed with isozymes but fine-scale genetic diversity studies are needed. The study of demographic and selection histories in Nothofagus dombeyi requires more informative markers such as single nucleotide polymorphisms (SNP). Genotyping-by-Sequencing tools now allow studying thousands of SNP markers at reasonable prices in nonmodel species. We investigated more than 10 K SNP loci for signatures of local adaptation and showed that interrogation of genomic resources can identify shifts in genetic diversity and putative adaptive signals in this nonmodel woody species. PMID:27446942

  10. Foliar anatomical and morphological variation in Nothofagus pumilio seedlings under controlled irradiance and soil moisture levels.

    PubMed

    Ivancich, Horacio S; Lencinas, María V; Pastur, Guillermo J Martínez; Esteban, Rosina M Soler; Hernández, Luis; Lindstrom, Ivone

    2012-05-01

    Foliar anatomy and morphology are strongly related to physiological performance; therefore, phenotypic plasticity in leaves to variations in environmental conditions, such as irradiance and soil moisture availability, can be related to growth rate and survivorship, mainly during critical growth phases, such as establishment. The aim of this work was to analyze changes in the foliar internal anatomy (tissue proportions and cell dimensions) and external morphology (leaf length, width and area) of Nothofagus pumilio (Poepp. et Endl.) Krasser seedlings growing in a greenhouse under controlled irradiance (three levels) and soil moisture (two levels) during one growing season (measured three times), and to relate them to physiological traits. Three irradiance levels (4, 26 and 64% of the natural incident light) and two soil moisture levels (40 and 80% soil capacity) were evaluated during November, January and March. Internal foliar anatomy of seedlings was analyzed using digital photographs of histological cuttings, while leaf gross morphology was measured using digital calipers and image analysis software. Most internal anatomical variables presented significant differences under different irradiance levels during the growing season, but differences were not detected between soil moisture levels. Palisade parenchyma was the tissue most sensitive to irradiance levels, and high irradiance levels (64% natural incident light) produced greater values in most of the internal anatomical variables than lower irradiance levels (4-24% natural incident light). Complementarily, larger leaves were observed in medium and low irradiance levels, as well as under low soil moisture levels (40% soil capacity). The relationship of main results with some eco-physiological traits was discussed. Foliar internal anatomical and external morphological plasticity allows quick acclimation of seedlings to environmental changes (e.g., during harvesting). These results can be used to propose new

  11. Establishment of ectomycorrhizal fungal community on isolated Nothofagus cunninghamii seedlings regenerating on dead wood in Australian wet temperate forests: does fruit-body type matter?

    PubMed

    Tedersoo, Leho; Gates, Genevieve; Dunk, Chris W; Lebel, Teresa; May, Tom W; Kõljalg, Urmas; Jairus, Teele

    2009-08-01

    Decaying wood provides an important habitat for animals and forms a seed bed for many shade-intolerant, small-seeded plants, particularly Nothofagus. Using morphotyping and rDNA sequence analysis, we compared the ectomycorrhizal fungal community of isolated N. cunninghamii seedlings regenerating in decayed wood against that of mature tree roots in the forest floor soil. The /cortinarius, /russula-lactarius, and /laccaria were the most species-rich and abundant lineages in forest floor soil in Australian sites at Yarra, Victoria and Warra, Tasmania. On root tips of seedlings in dead wood, a subset of the forest floor taxa were prevalent among them species of /laccaria, /tomentella-thelephora, and /descolea, but other forest floor dominants were rare. Statistical analyses suggested that the fungal community differs between forest floor soil and dead wood at the level of both species and phylogenetic lineage. The fungal species colonizing isolated seedlings on decayed wood in austral forests were taxonomically dissimilar to the species dominating in similar habitats in Europe. We conclude that formation of a resupinate fruit body type on the underside of decayed wood is not necessarily related to preferential root colonization in decayed wood. Rather, biogeographic factors as well as differential dispersal and competitive abilities of fungal taxa are likely to play a key role in structuring the ectomycorrhizal fungal community on isolated seedlings in decaying wood. PMID:19377891

  12. Agrobacterium rhizogenes vs auxinic induction for in vitro rhizogenesis of Prosopis chilensis and Nothofagus alpina.

    PubMed

    Caro, Luis A; Santecchia, Natalia; Marinangeli, Pablo A; Curvetto, Néstor R; Hernández, Luis F

    2003-12-01

    The induction and improvement of in vitro rhizogenesis of microshoots of Prosopis chilensis (Mol.) Stuntz and Nothofagus alpina (Poep. et Endl. Oerst.) were compared using Agrobacterium rhizogenes (Ar) versus indole-3-butyric acid (IBA) in the culture media. Microshoots of P. chilensis (1-2 cm length), coming from in vitro grown seedlings, were cultivated in a modified Broadleaved Tree Medium (BTMm) containing half salt concentration of macronutrients and 0.05 mg x L(-1) benzilaminopurine (BAP). After 30 days, microshoots with 2-4 leaves were selected and cultured in BTMm-agar in presence or abscense of Ar and in combination with IBA. For N. alpina, the apical shoots with the first 2 true leaves, from 5 weeks old seedlings, were cultured in the abovementioned medium, but with 0.15 mg x L(-1) of BAP. After 2 months, microshoots with 2-3 leaves were selected and cultured in BTMm-agar, supplemented with 5 mg x L(-1) IBA or in liquid BTMm on perlite and, in the presence or absence of A. rhizogenes (Ar) and in combination with 3 mg x L(-1) IBA. Rooting in P. chilensis reached 100.0% when Ar infection was produced in the presence of IBA, increasing both, the number and dry weight of roots. In N. alpina, 90.0% of rooting efficiency was obtained when Ar infection was produced in liquid culture and in the absence of auxin. PMID:15002748

  13. Relaxed molecular clock provides evidence for long-distance dispersal of Nothofagus (southern beech).

    PubMed

    Knapp, Michael; Stöckler, Karen; Havell, David; Delsuc, Frédéric; Sebastiani, Federico; Lockhart, Peter J

    2005-01-01

    Nothofagus (southern beech), with an 80-million-year-old fossil record, has become iconic as a plant genus whose ancient Gondwanan relationships reach back into the Cretaceous era. Closely associated with Wegener's theory of "Kontinentaldrift", Nothofagus has been regarded as the "key genus in plant biogeography". This paradigm has the New Zealand species as passengers on a Moa's Ark that rafted away from other landmasses following the breakup of Gondwana. An alternative explanation for the current transoceanic distribution of species seems almost inconceivable given that Nothofagus seeds are generally thought to be poorly suited for dispersal across large distances or oceans. Here we test the Moa's Ark hypothesis using relaxed molecular clock methods in the analysis of a 7.2-kb fragment of the chloroplast genome. Our analyses provide the first unequivocal molecular clock evidence that, whilst some Nothofagus transoceanic distributions are consistent with vicariance, trans-Tasman Sea distributions can only be explained by long-distance dispersal. Thus, our analyses support the interpretation of an absence of Lophozonia and Fuscospora pollen types in the New Zealand Cretaceous fossil record as evidence for Tertiary dispersals of Nothofagus to New Zealand. Our findings contradict those from recent cladistic analyses of biogeographic data that have concluded transoceanic Nothofagus distributions can only be explained by vicariance events and subsequent extinction. They indicate that the biogeographic history of Nothofagus is more complex than envisaged under opposing polarised views expressed in the ongoing controversy over the relevance of dispersal and vicariance for explaining plant biodiversity. They provide motivation and justification for developing more complex hypotheses that seek to explain the origins of Southern Hemisphere biota. PMID:15660155

  14. Relaxed molecular clock provides evidence for long-distance dispersal of Nothofagus (southern beech).

    PubMed

    Knapp, Michael; Stöckler, Karen; Havell, David; Delsuc, Frédéric; Sebastiani, Federico; Lockhart, Peter J

    2005-01-01

    Nothofagus (southern beech), with an 80-million-year-old fossil record, has become iconic as a plant genus whose ancient Gondwanan relationships reach back into the Cretaceous era. Closely associated with Wegener's theory of "Kontinentaldrift", Nothofagus has been regarded as the "key genus in plant biogeography". This paradigm has the New Zealand species as passengers on a Moa's Ark that rafted away from other landmasses following the breakup of Gondwana. An alternative explanation for the current transoceanic distribution of species seems almost inconceivable given that Nothofagus seeds are generally thought to be poorly suited for dispersal across large distances or oceans. Here we test the Moa's Ark hypothesis using relaxed molecular clock methods in the analysis of a 7.2-kb fragment of the chloroplast genome. Our analyses provide the first unequivocal molecular clock evidence that, whilst some Nothofagus transoceanic distributions are consistent with vicariance, trans-Tasman Sea distributions can only be explained by long-distance dispersal. Thus, our analyses support the interpretation of an absence of Lophozonia and Fuscospora pollen types in the New Zealand Cretaceous fossil record as evidence for Tertiary dispersals of Nothofagus to New Zealand. Our findings contradict those from recent cladistic analyses of biogeographic data that have concluded transoceanic Nothofagus distributions can only be explained by vicariance events and subsequent extinction. They indicate that the biogeographic history of Nothofagus is more complex than envisaged under opposing polarised views expressed in the ongoing controversy over the relevance of dispersal and vicariance for explaining plant biodiversity. They provide motivation and justification for developing more complex hypotheses that seek to explain the origins of Southern Hemisphere biota.

  15. Effectiveness of fencing and hunting to control Lama guanicoe browsing damage: Implications for Nothofagus pumilio regeneration in harvested forests.

    PubMed

    Martínez Pastur, Guillermo; Soler, Rosina; Ivancich, Horacio; Lencinas, María V; Bahamonde, Héctor; Peri, Pablo L

    2016-03-01

    Browsing damage by native ungulates is often to be considered one of the reasons of regeneration failure in Nothofagus pumilio silvicultural systems. Fencing and hunting in forests at regeneration phase have been proposed to mitigate browsing effects. This study aims to determine effectiveness of these control methods in harvested forests, evaluating browsing damage over regeneration, as well as climate-related constraints (freezing or desiccation). Forest structure and regeneration plots were established in two exclosures against native ungulates (Lama guanicoe) by wire fences in the Chilean portion of Tierra del Fuego island, where tree regeneration density, growth, abiotic damage and quality (multi-stems and base/stem deformation) were assessed. Exclosures did not influence regeneration density (at the initial stage with < 1.3 m high, and at the advanced stage with >1.3 m high). However, sapling height at 10-years old was significantly lower outside (40-50 cm high) than inside exclosures (80-100 cm), and also increased their annual height growth, probably as a hunting effect. Likewise, quality was better inside exclosures. Alongside browsing, abiotic conditions negatively influenced sapling quality in the regeneration phase (20%-28% of all seedlings), but greatly to taller plants (as those from inside exclosure). This highlights the importance of considering climatic factors when analysing browsing effects. For best results, control of guanaco in recently harvested areas by fencing should be applied in combination with a reduction of guanaco density through continuous hunting. The benefits of mitigation actions (fencing and hunting) on regeneration growth may shorten the regeneration phase period in shelterwood cutting forests (30-50% less time), but incremental costs must be analysed in the framework of management planning by means of long-term studies. PMID:26708647

  16. Effectiveness of fencing and hunting to control Lama guanicoe browsing damage: Implications for Nothofagus pumilio regeneration in harvested forests.

    PubMed

    Martínez Pastur, Guillermo; Soler, Rosina; Ivancich, Horacio; Lencinas, María V; Bahamonde, Héctor; Peri, Pablo L

    2016-03-01

    Browsing damage by native ungulates is often to be considered one of the reasons of regeneration failure in Nothofagus pumilio silvicultural systems. Fencing and hunting in forests at regeneration phase have been proposed to mitigate browsing effects. This study aims to determine effectiveness of these control methods in harvested forests, evaluating browsing damage over regeneration, as well as climate-related constraints (freezing or desiccation). Forest structure and regeneration plots were established in two exclosures against native ungulates (Lama guanicoe) by wire fences in the Chilean portion of Tierra del Fuego island, where tree regeneration density, growth, abiotic damage and quality (multi-stems and base/stem deformation) were assessed. Exclosures did not influence regeneration density (at the initial stage with < 1.3 m high, and at the advanced stage with >1.3 m high). However, sapling height at 10-years old was significantly lower outside (40-50 cm high) than inside exclosures (80-100 cm), and also increased their annual height growth, probably as a hunting effect. Likewise, quality was better inside exclosures. Alongside browsing, abiotic conditions negatively influenced sapling quality in the regeneration phase (20%-28% of all seedlings), but greatly to taller plants (as those from inside exclosure). This highlights the importance of considering climatic factors when analysing browsing effects. For best results, control of guanaco in recently harvested areas by fencing should be applied in combination with a reduction of guanaco density through continuous hunting. The benefits of mitigation actions (fencing and hunting) on regeneration growth may shorten the regeneration phase period in shelterwood cutting forests (30-50% less time), but incremental costs must be analysed in the framework of management planning by means of long-term studies.

  17. Gymnopanella nothofagi, a new genus and species of gymnopoid fungi (Omphalotaceae) from Chilean Nothofagus forest.

    PubMed

    Sandoval-Leiva, Pablo Andrés; McDonald, Jennifer V; Thorn, R Greg

    2016-01-01

    A novel, lignicolous agaric from Nothofagus forests of southern Chile is described as a new genus and species, Gymnopanella nothofagi This taxon falls within the family Omphalotaceae as a sister group to Gymnopus in phylogenetic analyses based on sequences spanning the internal transcribed spacer region and D1/D2 region of nuclear 28S rDNA. Morphologically it is characterized by convex to flabellate basidiomata with distinctly gelatinized trama, pileipellis in the form of a cutis with erect fascicles of cylindrical, spirally incrusted hyphae and nonamyloid, broadly ellipsoid basidiospores. This combination of features, in particular the lack of a rameales structure, serve to distinguish Gymnopanella from Gymnopus, Marasmiellus and other similar genera of the Omphalotaceae or Marasmiaceae. The new taxon is known only from Chilean Nothofagus forests at approximately 45-46° south latitude, but concerted searching in similar habitats in surrounding areas or in New Zealand may extend the known range considerably. PMID:27055572

  18. Early Miocene Nothofagus in Antarctica based on fossil leaves from the Transantarctic Mountains

    NASA Astrophysics Data System (ADS)

    Wrobleski, S. A.; Ashworth, A. C.; Lewis, A. R.

    2014-12-01

    Nothofagus (Southern Beech) is the most widely reported plant from Cenozoic Antarctic fossil assemblages. Most of the fossils are of pollen morphotypes and it is assumed that the plants the pollen represents were growing on the continent. However, because of the uncertainties with systematics, long-distance dispersal, and reworking, it has been difficult to interpret the assemblages in terms of paleoenvironments and paleoclimate. Here, we report an in situ assemblage of Nothofagus leaves and pollen from the Friis Hills (77⁰ 45'S, 161⁰ 28'E). The leaves are preserved as carbonaceous impressions in brown, fissile shales that represent the deposits of a lake occupying a glacial valley. The leaves most probably accumulated from deciduous shrubs. Based on the stratigraphic relationship to a tephra with a 40 Ar/39 Ar age of c. 20 Ma, the leaf assemblage is of early Miocene age. Nothofagus pollen from the shale suggests that at least 3 species were represented. A total of 227 leaves were examined and lengths, widths, and areas recorded. The preservation is generally good but only a few of the specimens represent complete leaves; the spectrum is 30-100%. Plots of the measurements of the leaves provide a summary of size variation but were otherwise not useful for separating out different taxa . The most useful characters for establishing differences between the leaves were the leaf margins, of which three or four types were distinguished: 1. margins entire or finely serrate between ribs; 2. margins with one or two convex lobes between the ribs; 3. margins with convex lobes over the ribs. The leaf study indicates that three or possibly four species were co-inhabiting the valley in the early Miocene and were part of a dynamic vegetation that colonized the valley with each deglaciation. A possible analog today would be at low elevations in Tierra del Fuego where three species of Nothofagus coexist. The stem diameters of abundant wood preserved in adjacent facies indicates

  19. Evidence of Pliocene Nothofagus in Antarctica from Pliocene marine sedimentary deposits (DSDP Site 274)

    USGS Publications Warehouse

    Fleming, R.F.; Barron, J.A.

    1996-01-01

    Microfossil assemblages in Pliocene sediments from DSDP Site 274 (68??59.81???S, 173??25.64???E) provide data on the age of the sediments and suggest the presence of Nothofagus (southern beech) in Antarctica during the Pliocene. A suite of 17 samples was collected in an interval from Samples 28-274-6R-1, 83-87 cm to 28-274-11R-4, 73-77 cm (48.33-100.29 mbsf). Biostratigraphic study of the abundant diatom assemblages combined with published radiolarian data indicates that the sample interval ranges in age from 5.0 to 2.2 Ma, with an apparent unconformity between about 3.8 and 3.2 Ma. Nothofagidites (the genus for fossil pollen referable to Nothofagus) occurs throughout the interval, as well as pollen and spores with known stratigraphic ranges that unequivocally indicate reworking from older rocks. Species of Nothofagidites recovered include N. asperus, N. brachyspinulosus, N. flemingii, N. senectus, and N. sp. cf. N. lachlaniae; the latter form is previously known from the Sirius Group in the Transantarctic Mountains. Abundant palynomorphs were recovered in only three of the samples from Site 274 (Samples 28-274-9R-2, 15-19 cm; 28-274-9R-2, 48-52 cm; and 28-274-9R-2, 65-69 cm). Based on the diatom and radiolarian biostratigraphic data, the ages of these samples range from 3.00 to 3.01 Ma. The relative abundance of N. sp. cf. N. lachlaniae in the three samples is an order of magnitude higher than relative abundances for the other species of Nothofagidites in the same samples. The significantly higher relative abundance of N. sp. cf. N. lachlaniae suggests that this pollen was derived from trees of Nothofagus that were living in Antarctica during the mid Pliocene. Diatom assemblages from these three samples indicate that sediments in this interval were rapidly deposited as biogenic oozes in an open-ocean setting relatively free of sea ice, thus decreasing the possibility of reworking from a single source bed rich in N. sp. cf. N. lachlaniae. Clearly, more detailed

  20. Regeneration of Nothofagus pumilio [Poepp. et Endl.] Krasser forests after five years of seed tree cutting.

    PubMed

    Rosenfeld, J M; Navarro Cerrillo, R M; Guzman Alvarez, J R

    2006-01-01

    Nothofagus pumilio [Poepp. et Endl.] Krasser is a deciduous tree species that grows in Chile and adjacent Argentina between 36 and 56 degrees S, often forming the Andean tree line. Silvicultural systems proposed for this species integrate both regeneration and intermediate level operations in an orderly process for managing forest stands. The seed-tree method of regeneration has been used to manage even-aged stands of this species. This paper investigates the effect of seed tree cuttings on the regeneration of Nothofagus pumilio [Poepp. et Endl.] Krasser forest located in the Magallanes region (Chile). The studied forest was managed on an even-aged basis using a seed tree silvicultural system for regeneration with an intensity of cutting of 65-70% of the basal area and a minimum of 15 dominant lenga trees per hectare retained. A regeneration inventory sampling was used to quantify regeneration attributes in the study area. Regeneration was found to be significantly affected by the seed tree cuttings. In fact, the number of established individuals rose from 0.39 to 26.7 plants m(-2) pre-harvest to 9.2-21.5 plants m(-2) post-harvest, depending on the particular development stage. Total regeneration ranged from 9.5 to 48.2 plants m(-2). The number of plants established over the period 1992-1997 was related to the residual basal area, coverage and number of trees. However, mean tree height was not significantly related to any regeneration variable. Significant variables were used to establish a regeneration prediction model using single and multiple linear equations (R2<0.418). Consequently, the seed tree method of regeneration can be considered feasible for commercially valuable lenga forests, although this method, in its strictest application, will create many large, irregularly shaped, even-aged groups.

  1. Seed dormancy responses to temperature relate to Nothofagus species distribution and determine temporal patterns of germination across altitudes in Patagonia.

    PubMed

    Arana, María V; Gonzalez-Polo, Marina; Martinez-Meier, Alejandro; Gallo, Leonardo A; Benech-Arnold, Roberto L; Sánchez, Rodolfo A; Batlla, Diego

    2016-01-01

    Seeds integrate environmental cues that modulate their dormancy and germination. Although many mechanisms have been identified in laboratory experiments, their contribution to germination dynamics in existing communities and their involvement in defining species habitats remain elusive. By coupling mathematical models with ecological data we investigated the contribution of seed temperature responses to the dynamics of germination of three Nothofagus species that are sharply distributed across different altitudes in the Patagonian Andes. Seed responsiveness to temperature of the three Nothofagus species was linked to the thermal characteristics of their preferred ecological niche. In their natural distribution range, there was overlap in the timing of germination of the species, which was restricted to mid-spring. By contrast, outside their species distribution range, germination was temporally uncoupled with altitude. This phenomenon was described mathematically by the interplay between interspecific differences in seed population thermal parameters and the range in soil thermic environments across different altitudes. The observed interspecific variations in seed responsiveness to temperature and its environmental regulation, constitute a major determinant of the dynamics of Nothofagus germination across elevations. This phenomenon likely contributes to the maintenance of patterns of species abundance across altitude by placing germinated seeds in a favorable environment for plant growth.

  2. Surface-bound phosphatase activity in living hyphae of ectomycorrhizal fungi of Nothofagus obliqua.

    PubMed

    Alvarez, Maricel; Godoy, Roberto; Heyser, Wolfgang; Härtel, Steffen

    2004-01-01

    We determined the location and the activity of surface-bound phosphomonoesterase (SBP) of five ectomycorrhizal (EM) fungi of Nothofagus oblique. EM fungal mycelium of Paxillus involutus, Austropaxillus boletinoides, Descolea antartica, Cenococcum geophilum and Pisolithus tinctorius was grown in media with varying concentrations of dissolved phosphorus. SBP activity was detected at different pH values (3-7) under each growth regimen. SBP activity was assessed using a colorimetric method based on the hydrolysis of p-nitrophenyl phosphate (pNPP) to p-nitrophenol phosphate (pNP) + P. A new technique involving confocal laser-scanning microscopy (LSM) was used to locate and quantify SBP activity on the hyphal surface. EM fungi showed two fundamentally different patterns of SBP activity in relation to varying environmental conditions (P-concentrations and pH). In the cases of D. antartica, A. boletinoides and C. geophilum, changes in SBP activity were induced primarily by changes in the number of SBP-active centers on the hyphae. In the cases of P. tinctorius and P. involutus, the number of SBP-active centers per μm hyphal length changed much less than the intensity of the SBP-active centers on the hyphae. Our findings not only contribute to the discussion about the role of SBP-active centers in EM fungi but also introduce LSM as a valuable method for studying EM fungi. PMID:21148871

  3. Surface-bound phosphatase activity in living hyphae of ectomycorrhizal fungi of Nothofagus obliqua.

    PubMed

    Alvarez, Maricel; Godoy, Roberto; Heyser, Wolfgang; Härtel, Steffen

    2004-01-01

    We determined the location and the activity of surface-bound phosphomonoesterase (SBP) of five ectomycorrhizal (EM) fungi of Nothofagus oblique. EM fungal mycelium of Paxillus involutus, Austropaxillus boletinoides, Descolea antartica, Cenococcum geophilum and Pisolithus tinctorius was grown in media with varying concentrations of dissolved phosphorus. SBP activity was detected at different pH values (3-7) under each growth regimen. SBP activity was assessed using a colorimetric method based on the hydrolysis of p-nitrophenyl phosphate (pNPP) to p-nitrophenol phosphate (pNP) + P. A new technique involving confocal laser-scanning microscopy (LSM) was used to locate and quantify SBP activity on the hyphal surface. EM fungi showed two fundamentally different patterns of SBP activity in relation to varying environmental conditions (P-concentrations and pH). In the cases of D. antartica, A. boletinoides and C. geophilum, changes in SBP activity were induced primarily by changes in the number of SBP-active centers on the hyphae. In the cases of P. tinctorius and P. involutus, the number of SBP-active centers per μm hyphal length changed much less than the intensity of the SBP-active centers on the hyphae. Our findings not only contribute to the discussion about the role of SBP-active centers in EM fungi but also introduce LSM as a valuable method for studying EM fungi.

  4. Chemical and Antioxidant Properties of Wild Edible Mushrooms from Native Nothofagus spp. Forest, Argentina.

    PubMed

    Toledo, Carolina V; Barroetaveña, Carolina; Fernandes, Ângela; Barros, Lillian; Ferreira, Isabel C F R

    2016-01-01

    This study addresses issues regarding chemical and bioactive properties of nine wild edible mushrooms from native Nothofagus forest from Patagonia, Argentina. Macronutrients, sugars, fatty acids, tocopherols, organic acids, phenolic compounds and antioxidant properties were determined. Protein was found in high levels and varied between 3.35 g/100 g dw in Cyttaria hariotii and 22.29 g/100 g dw in Lepista nuda. All of them presented mannitol and trehalose as main sugars. Mannitol was significantly higher in Ramaria patagonica, although absent in Fistulina endoxantha, whereas trehalose predominated in Aleurodiscus vitellinus, Hydropus dusenii, Cortinarius magellanicus, C. hariotii, Grifola gargal and L. nuda, ranging from 1.15 to 10.26 g/100 g dw; it was absent in R. patagonica. The major fatty acid found was linoleic acid, followed by oleic acid and palmitic acid. All species presented oxalic and fumaric acids, while some also had malic, quinic and citric acids. Tocopherols composition was variable. Cortinarius magellanicus presented significantly higher contents of both α-tocopherol and β-tocopherol. R. patagonica presented the best results in all the antioxidant activity assays (EC50 values ≤ 1 mg/mL) and the highest content of phenolic compounds presenting gallic, p-hydroxybenzoic, p-coumaric and cinnamic acids. This study constitutes the first report on chemical composition and nutritional value of most of these edible mushroom species. Furthermore, it provides important information necessary to characterize and define the use of these species as gastronomic delicacies, functional foods and sources of bioactive compounds. PMID:27617993

  5. Solar radiation transmission in and around canopy gaps in an uneven-aged Nothofagus betuloides forest.

    PubMed

    Promis, Alvaro; Schindler, Dirk; Reif, Albert; Cruz, Gustavo

    2009-07-01

    The transmission of direct, diffuse and global solar radiation in and around canopy gaps occurring in an uneven-aged, evergreen Nothofagus betuloides forest during the growing season (October 2006-March 2007) was estimated by means of hemispherical photographs. The transmission of solar radiation into the forest was affected not only by a high level of horizontal and vertical heterogeneity of the forest canopy, but also by low angles of the sun's path. The below-canopy direct solar radiation appeared to be variable in space and time. On average, the highest amount of transmitted direct solar radiation was estimated below the undisturbed canopy at the southeast of the gap centre. The transmitted diffuse and global solar radiation above the forest floor exhibited lower variability and, on average, both were higher at the centre of the canopy gaps. Canopy structure and stand parameters were also measured to explain the variation in the below-canopy solar radiation in the forest. The model that best fit the transmitted below-canopy direct solar radiation was a growth model, using plant area index with an ellipsoidal angle distribution as the independent variable (R (2) = 0.263). Both diffuse and global solar radiation were very sensitive to canopy openness, and for both cases a quadratic model provided the best fit for these data (R (2) = 0.963 and 0.833, respectively). As much as 75% and 73% of the variation in the diffuse and global solar radiation, respectively, were explained by a combination of stand parameters, namely basal area, crown projection, crown volume, stem volume, and average equivalent crown radius.

  6. Size-specific tree mortality varies with neighbourhood crowding and disturbance in a Montane Nothofagus forest.

    PubMed

    Hurst, Jennifer M; Allen, Robert B; Coomes, David A; Duncan, Richard P

    2011-01-01

    Tree mortality is a fundamental process governing forest dynamics, but understanding tree mortality patterns is challenging because large, long-term datasets are required. Describing size-specific mortality patterns can be especially difficult, due to few trees in larger size classes. We used permanent plot data from Nothofagus solandri var. cliffortioides (mountain beech) forest on the eastern slopes of the Southern Alps, New Zealand, where the fates of trees on 250 plots of 0.04 ha were followed, to examine: (1) patterns of size-specific mortality over three consecutive periods spanning 30 years, each characterised by different disturbance, and (2) the strength and direction of neighbourhood crowding effects on size-specific mortality rates. We found that the size-specific mortality function was U-shaped over the 30-year period as well as within two shorter periods characterised by small-scale pinhole beetle and windthrow disturbance. During a third period, characterised by earthquake disturbance, tree mortality was less size dependent. Small trees (<20 cm in diameter) were more likely to die, in all three periods, if surrounded by a high basal area of larger neighbours, suggesting that size-asymmetric competition for light was a major cause of mortality. In contrast, large trees (≥ 20 cm in diameter) were more likely to die in the first period if they had few neighbours, indicating that positive crowding effects were sometimes important for survival of large trees. Overall our results suggest that temporal variability in size-specific mortality patterns, and positive interactions between large trees, may sometimes need to be incorporated into models of forest dynamics.

  7. Testing the impact of calibration on molecular divergence times using a fossil-rich group: the case of Nothofagus (Fagales).

    PubMed

    Sauquet, Hervé; Ho, Simon Y W; Gandolfo, Maria A; Jordan, Gregory J; Wilf, Peter; Cantrill, David J; Bayly, Michael J; Bromham, Lindell; Brown, Gillian K; Carpenter, Raymond J; Lee, Daphne M; Murphy, Daniel J; Sniderman, J M Kale; Udovicic, Frank

    2012-03-01

    Although temporal calibration is widely recognized as critical for obtaining accurate divergence-time estimates using molecular dating methods, few studies have evaluated the variation resulting from different calibration strategies. Depending on the information available, researchers have often used primary calibrations from the fossil record or secondary calibrations from previous molecular dating studies. In analyses of flowering plants, primary calibration data can be obtained from macro- and mesofossils (e.g., leaves, flowers, and fruits) or microfossils (e.g., pollen). Fossil data can vary substantially in accuracy and precision, presenting a difficult choice when selecting appropriate calibrations. Here, we test the impact of eight plausible calibration scenarios for Nothofagus (Nothofagaceae, Fagales), a plant genus with a particularly rich and well-studied fossil record. To do so, we reviewed the phylogenetic placement and geochronology of 38 fossil taxa of Nothofagus and other Fagales, and we identified minimum age constraints for up to 18 nodes of the phylogeny of Fagales. Molecular dating analyses were conducted for each scenario using maximum likelihood (RAxML + r8s) and Bayesian (BEAST) approaches on sequence data from six regions of the chloroplast and nuclear genomes. Using either ingroup or outgroup constraints, or both, led to similar age estimates, except near strongly influential calibration nodes. Using "early but risky" fossil constraints in addition to "safe but late" constraints, or using assumptions of vicariance instead of fossil constraints, led to older age estimates. In contrast, using secondary calibration points yielded drastically younger age estimates. This empirical study highlights the critical influence of calibration on molecular dating analyses. Even in a best-case situation, with many thoroughly vetted fossils available, substantial uncertainties can remain in the estimates of divergence times. For example, our estimates for

  8. Preformation and distribution of staminate and pistillate flowers in growth units of Nothofagus alpina and N. obliqua (Nothofagaceae)

    PubMed Central

    Puntieri, Javier G.; Grosfeld, Javier E.; Heuret, Patrick

    2009-01-01

    Background and Aims The distribution and differentiation times of flowers in monoecious wind-pollinated plants are fundamental for the understanding of their mating patterns and evolution. Two closely related South American Nothofagus species were compared with regard to the differentiation times and positions of staminate and pistillate flowers along their parent growth units (GUs) by quantitative means. Methods Two samples of GUs that had extended in the 2004–2005 growing season were taken in 2005 and 2006 from trees in the Lanín National Park, Patagonia, Argentina. For the first sample, axillary buds of the parent GUs were dissected and the leaf, bud and flower primordia of these buds were identified. The second sample included all branches derived from the parent GUs in the 2005–2006 growing season. Key Results Both species developed flowering GUs with staminate and/or pistillate flowers; GUs with both flower types were the most common. The position of staminate flowers along GUs was similar between species and close to the proximal end of the GUs. Pistillate flowers were developed more distally along the GUs in N. alpina than in N. obliqua. In N. alpina, the nodes bearing staminate and pistillate flowers were separated by one to several nodes with axillary buds, something not observed in N. obliqua. Markovian models supported this between-species difference. Flowering GUs, including all of their leaves and flowers were entirely preformed in the winter buds. Conclusions Staminate and pistillate flowers of N. alpina and N. obliqua are differentiated at precise locations on GUs in the growing season preceding that of their antheses. The differences between N. alpina and N. obliqua (and other South American Nothofagus species) regarding flower distribution might relate to the time of anthesis of each flower type and, in turn, to the probabilities of self-pollination at the GU level. PMID:19033286

  9. Hydraulic differences along the water transport system of South American Nothofagus species: do leaves protect the stem functionality?

    PubMed

    Bucci, Sandra J; Scholz, Fabian G; Campanello, Paula I; Montti, Lia; Jimenez-Castillo, Mylthon; Rockwell, Fulton A; Manna, Ludmila La; Guerra, Pedro; Bernal, Pablo Lopez; Troncoso, Oscar; Enricci, Juan; Holbrook, Michele N; Goldstein, Guillermo

    2012-07-01

    Hydraulic traits were studied for six Nothofagus species from South America (Argentina and Chile), and for three of these species two populations were studied. The main goal was to determine if properties of the water conductive pathway in stems and leaves are functionally coordinated and to assess if leaves are more vulnerable to cavitation than stems, consistent with the theory of hydraulic segmentation along the vascular system of trees in ecosystems subject to seasonal drought. Vulnerability to cavitation, hydraulic conductivity of stems and leaves, leaf water potential, wood density and leaf water relations were examined. Large variations in vulnerability to cavitation of stems and leaves were observed across populations and species, but leaves were consistently more vulnerable than stems. Water potential at 50% loss of maximum hydraulic efficiency (P(50)) ranged from -0.94 to -2.44 MPa in leaves and from -2.6 to -5.3 MPa in stems across species and populations. Populations in the driest sites had sapwood and leaves more vulnerable to cavitation than those grown in the wettest sites. Stronger diurnal down-regulation in leaf hydraulic conductance compared with stem hydraulic conductivity apparently has the function to slow down potential water loss in stems and protect stem hydraulics from cavitation. Species-specific differences in wood density and leaf hydraulic conductance (K(Leaf)) were observed. Both traits were functionally related: species with higher wood density had lower K(Leaf). Other stem and leaf hydraulic traits were functionally coordinated, resulting in Nothofagus species with an efficient delivery of water to the leaves. The integrity of the more expensive woody portion of the water transport pathway can thus be maintained at the expense of the replaceable portion (leaves) of the stem-leaf continuum under prolonged drought. Compensatory adjustments between hydraulic traits may help to decrease the rate of embolism formation in the trees more

  10. The southernmost Andean Mountain soils: a toposequence from Nothofagus Forest to Sub Antarctic Tundra at Ushuaia, Tierra del Fuego

    NASA Astrophysics Data System (ADS)

    Firme Sá, Mariana M.; Schaefer, Carlos E.; Loureiro, Diego C.; Simas, Felipe N.; Francelino, Marcio R.; Senra, Eduardo O.

    2015-04-01

    Located at the southern tip of the Fuegian Andes Cordilhera, the Martial glacier witnessed a rapid process of retreat in the last century. Up to now little is known about the development and genesis of soils of this region. A toposequence of six soils, ranging from 430-925 m a.s.l, was investigated, with emphasis on genesis, chemical and mineralogical properties. The highest, youngest soil is located just below the Martial Glacier Martial Sur sector, and the lowest soils occur on sloping moraines under Nothofagus pumilio forests. Based on chemical, physical and mineralogical characteristics, the soils were classified according to the Soil taxonomy, being keyed out as Inceptisols and Entisols. Soil parent material of the soil is basically moraines, in which the predominant lithic components dominated by metamorphic rocks, with allochthonous contributions of wind-blown materials (very small fragments of volcanic glass) observed by hand lens in all horizons, except the highest profile under Tundra. In Nothofagus Deciduous Forests at the lowest part of the toposequence, poorly developed Inceptisols occur with Folistic horizons, with mixed "andic" and "spodic" characters, but with a predominance of andosolization (Andic Drystrocryepts). Under Tundra vegetation, Inceptisols are formed under hydromorphism and andosolization processes (Oxiaquic Dystrocrepts and Typic Dystrocrepts). On highland periglacial environments, soils without B horizon with strong evidence of cryoturbation and cryogenesis occur, without present-day permafrost down to 2 meters (Typic Cryorthents and Lithic Haploturbels). The mountain soils of Martial glacier generalize young, stony and rich in organic matter, with the exception of barely vegetated Tundra soils at higher altitudes. The forest soils are more acidic and have higher Al3+activity. All soils are dystrophic, except for the highest profile of the local periglacial environment. The organic carbon amounts are higher in forest soils and

  11. Genetic Diversity in Nothofagus alessandrii (Fagaceae), an Endangered Endemic Tree Species of the Coastal Maulino Forest of Central Chile

    PubMed Central

    Torres-Díaz, Cristian; Ruiz, Eduardo; González, Fidelina; Fuentes, Glenda; Cavieres, Lohengrin A.

    2007-01-01

    Background and Aims The endemic tree Nothofagus alessandrii (Fagaceae) has been historically restricted to the coastal range of Region VII of central Chile, and its forests have been increasingly destroyed and fragmented since the end of the 19th century. In this study, the patterns of within- and among-population genetic diversity in seven fragments of this endangered narrowly endemic tree were examined. Methods Allozyme electrophoresis of seven loci of N. alessandrii was used to estimate genetic diversity, genetic structure and gene flow. Key Results High levels of genetic diversity were found as shown by mean expected heterozygosity (He = 0·182 ± 0·034), percentage of polymorphic loci (Pp = 61·2 %), mean number of alleles per locus (A = 1·8) and mean number of alleles per polymorphic locus (Ap = 2·3). Genetic differentiation was also high (GST = 0·257 and Nm = 0·7). These values are high compared with more widespread congeneric species. Conclusions Despite its endemic status and restricted geographical range N. alessandrii showed high levels of genetic diversity. The observed patterns of diversity are explained in part by historical processes and more recent human fragmentation. PMID:17513870

  12. Yeast and yeast-like fungi associated with dry indehiscent fruits of Nothofagus nervosa in Patagonia, Argentina.

    PubMed

    Fernández, Natalia V; Mestre, M Cecilia; Marchelli, Paula; Fontenla, Sonia B

    2012-04-01

    Nothofagus nervosa (Raulí) is a native tree species that yields valuable timber. It was overexploited in the past and is currently included in domestication and conservation programs. Several research programs have focused on the characterization of epiphytic microorganisms because it has been demonstrated that they can affect plant-pathogen interactions and/or promote plant growth. Although the microbial ecology of leaves has been well studied, less is known about microorganisms occurring on seeds and noncommercial fruits. In this work, we analyzed the yeast and yeast-like fungi present on N. nervosa fruits destined for the propagation of this species, as well as the effects of fruit preservation and seed dormancy-breaking processes on fungal diversity. Morphological and molecular methods were used, and differences between fungal communities were analyzed using a similarity index. A total of 171 isolates corresponding to 17 species were recovered, most of which belong to the phylum Ascomycota. The majority of the species develop mycelia, produce pigments and mycosporines, and these adaptation strategies are discussed. It was observed that the preservation process considerably reduced yeast and yeast-like fungal diversity. This is the first study concerning microbial communities associated with this ecologically and economically important species, and the information presented is relevant to domestication programs.

  13. Are the oxygen isotopic compositions of Fitzroya cupressoides and Nothofagus pumilio cellulose promising proxies for climate reconstructions in northern Patagonia?

    NASA Astrophysics Data System (ADS)

    Lavergne, Aliénor; Daux, Valérie; Villalba, Ricardo; Pierre, Monique; Stievenard, Michel; Vimeux, Françoise; Srur, Ana Marina

    2016-03-01

    Tree ring δ18O chronologies from two native species (Fitzroya cupressoides and Nothofagus pumilio) in northern Patagonia were developed to assess their potential for paleoclimate reconstructions. The five annually resolved cellulose δ18O chronologies (two for F. cupressoides and three for N. pumilio) are located on the Andes along the steep west-to-east precipitation gradient. Over the common 60 years long interval, the five site-δ18Ocell chronologies exhibit a strong common signal as indicated by the significant mean intercorrelation (r = 0.61, p < 0.05) and the high percentage (65%) of total variance explained by the first empirical orthogonal function. Although correlation analyses reveal that the two mean species-δ18Ocell chronologies are mainly modulated by December-May temperature, the N. pumilio chronology shows a greater sensitivity to record temperature variations (r = 0.57, p < 0.05). The δ18Ocell of N. pumilio contains a regional temperature signal representative of a large area in southern South America under the influence of the Southern Annular Mode. This study indicates that δ18Ocell in N. pumilio is a promising proxy to reconstruct past variations in temperature in South America south of 38°S.

  14. Multi-stemmed trees of Nothofagus pumilio second-growth forest in Patagonia are formed by highly related individuals

    PubMed Central

    Till-Bottraud, Irène; Fajardo, Alex; Rioux, Delphine

    2012-01-01

    Background and Aims Multi-stemmed trees (tree clusters) in Nothofagus pumilio, a dominant tree species in Patagonia, are very uncommon and are restricted to the edge of second-growth forests following human-provoked fires. No vegetative reproduction has been reported so far. The genetic structure of multi-stemmed trees of this species was investigated and it was hypothesized that genets within a cluster were more closely related than average in the population. Methods Fifteen clusters (composed of at least three purported stems) and 15 single trees were sampled at the edge of a second-growth forest and genotyped using two amplified fragment length polymorphism (AFLP) primer pairs. We obtained 119 polymorphic markers that allowed clonality to be determined, together with sibship structure and relatedness among samples. Key Results Clonality was detected in seven clusters but all clusters had at least two different genotypes. Full sibs were found exclusively within clusters and in all clusters. Within a cluster, stems that were not identified as full sibs were often half sibs. Relatedness values for the full sibs and half sibs were higher than the theoretical values of 0·5 and 0·25 but the relatedness between clusters was very low. Conclusions Tree clusters that are merged at the edge of the second-growth forest of N. pumilio are composed of stems of the same genotype and of other genotypes that are highly related (but not always). It is suggested that this peculiar genetic structure results from a combination of several causes, including selection for merging of related individuals. PMID:22782238

  15. Genetic differentiation in spite of high gene flow in the dominant rainforest tree of southeastern Australia, Nothofagus cunninghamii.

    PubMed

    Duncan, C J; Worth, J R P; Jordan, G J; Jones, R C; Vaillancourt, R E

    2016-01-01

    Nothofagus cunninghamii is a long-lived, wind-pollinated tree species that dominates the cool temperate rainforests of southeastern Australia. The species' distribution is more or less continuous in western Tasmania but is fragmented elsewhere. However, it is unknown whether this fragmentation has affected the species' genetic architecture. Thus, we examined N. cunninghamii using 12 nuclear microsatellites and 633 individuals from 18 populations spanning the species' natural range. Typical of wind-pollinated trees, there was low range-wide genetic structure (FST=0.04) consistent with significant gene flow across most of the species' range. However, gene flow was not high enough to overcome the effects of drift across some disjunctions. Victorian populations (separated from Tasmania by the 240 km wide Bass Strait) formed a genetic group distinct from Tasmanian populations, had lower diversity (mean allelic richness (Ar)=5.4 in Victoria versus 6.9 in Tasmania) and were significantly more differentiated from one another than those in Tasmania (FST=0.045 in Victoria versus 0.012 in Tasmania). Evidence for bottlenecking was found in small populations that were at least 20 km from other populations. Interestingly, we found little divergence in microsatellite markers between the extremes of genetically based morphological and physiological altitudinal clines suggesting adaptive differentiation is strongly driven by selection because it is likely to be occurring in the presence of gene flow. Even though the cool temperate rainforests of Australia are highly relictual, the species is relatively robust to population fragmentation due to high levels of genetic diversity and gene flow, especially in Tasmania.

  16. No evidence of carbon limitation with tree age and height in Nothofagus pumilio under Mediterranean and temperate climate conditions

    PubMed Central

    Piper, Frida I.; Fajardo, Alex

    2011-01-01

    Background and Aims Trees universally decrease their growth with age. Most explanations for this trend so far support the hypothesis that carbon (C) gain becomes limited with age; though very few studies have directly assessed the relative reductions of C gain and C demand with tree age. It has also been suggested that drought enhances the effect of C gain limitation in trees. Here tests were carried out to determine whether C gain limitation is causing the growth decay with tree age, and whether drought accentuates its effect. Methods The balance between C gain and C demand across tree age and height ranges was estimated. For this, the concentration of non-structural carbohydrates (NSCs) in stems and roots of trees of different ages and heights was measured in the deciduous temperate species Nothofagus pumilio. An ontogenetic decrease in NSCs indicates support for C limitation. Furthermore, the importance of drought in altering the C balance with ontogeny was assessed by sampling the same species in Mediterranean and humid climate locations in the southern Andes of Chile. Wood density (WD) and stable carbon isotope ratios (δ13C) were also determined to examine drought constraints on C gain. Key Results At both locations, it was effectively found that tree growth ultimately decreased with tree age and height. It was found, however, that NSC concentrations did not decrease with tree age or height when WD was considered, suggesting that C limitation is not the ultimate mechanism causing the age/height-related declining tree growth. δ13C decreased with tree age/height at the Mediterranean site only; drought effect increased with tree age/height, but this pattern was not mirrored by the levels of NSCs. Conclusions The results indicate that concentrations of C storage in N. pumilio trees do not decrease with tree age or height, and that reduced C assimilation due to summer drought does not alter this pattern. PMID:21852277

  17. Tree-Ring Stable Isotopes Reveal Twentieth-Century Increases in Water-Use Efficiency of Fagus sylvatica and Nothofagus spp. in Italian and Chilean Mountains

    PubMed Central

    Tognetti, Roberto; Lombardi, Fabio; Lasserre, Bruno; Cherubini, Paolo; Marchetti, Marco

    2014-01-01

    Changes in intrinsic water use efficiency (iWUE) were investigated in Fagus sylvatica and Nothofagus spp. over the last century. We combined dendrochronological methods with dual-isotope analysis to investigate whether atmospheric changes enhanced iWUE of Fagus and Nothofagus and tree growth (basal area increment, BAI) along latitudinal gradients in Italy and Chile. Post-maturation phases of the trees presented different patterns in δ13C, Δ13C, δ18O, Ci (internal CO2 concentration), iWUE, and BAI. A continuous enhancement in isotope-derived iWUE was observed throughout the twentieth century, which was common to all sites and related to changes in Ca (ambient CO2 concentration) and secondarily to increases in temperature. In contrast to other studies, we observed a general increasing trend of BAI, with the exception of F. sylvatica in Aspromonte. Both iWUE and BAI were uncoupled with the estimated drought index, which is in agreement with the absence of enduring decline in tree growth. In general, δ13C and δ18O showed a weak relationship, suggesting the major influence of photosynthetic rate on Ci and δ13C, and the minor contribution of the regulation of stomatal conductance to iWUE. The substantial warming observed during the twentieth century did not result in a clear pattern of increased drought stress along these latitudinal transects, because of the variability in temporal trends of precipitation and in specific responses of populations. PMID:25398040

  18. Seedling Germination: Seedlings Follow Sunshine and Fresh Air.

    PubMed

    Potuschak, Thomas; Bachmair, Andreas

    2015-06-29

    The journey from seedling to plant requires guidance in the dark to establish which directions the roots and shoots should grow. A new study shows that, after germinating in darkness, plant seedlings sense the oxygen content of the surrounding airspace to guide further development. PMID:26126283

  19. Invertases in Oat Seedlings

    PubMed Central

    Pressey, Russell; Avants, Jimmy K.

    1980-01-01

    The soluble invertase activity in etiolated Avena seedlings was highest at the apex of the coleoptile and much lower in the primary leaf, mesocotyl, and root. The activity in all parts of the seedling consisted of two invertases (I and II) which were separated by chromatography on diethylaminoethylcellulose. Both enzymes appeared to be acid invertases, but they differed in molecular size, pH optimum, and the kinetic parameters Km and Vmax of their action on sucrose, raffinose, and stachyose. Invertase II had low stability at pH 3.5 and below, and exhibited high sensitivity to Hg2+, with complete inhibition by 2 micromolar HgCl2. Segments of coleoptiles incubated in water lost about two-thirds of the total invertase activity after 16 hours. The loss of activity was due primarily to a decrease in the level of invertase II. The loss of invertase was decreased by indoleacetic acid, 2,4-dichlorophenoxyacetic acid, and α-naphthaleneacetic acid but not by β-naphthaleneacetic acid and p-chlorophenoxyisobutyric acid. Conditions that inhibited auxin-induced growth of the segments (20 millimolar CaCl2 and 200 millimolar mannitol) also blocked the auxin effect on invertase loss. PMID:16661129

  20. Space Station Live: Seedling Growth

    NASA Video Gallery

    Public Affairs Officer Lori Meggs talks with Carol Jacobs, payload operations director at the Marshall Space Flight Center's POIC, about the Seedling Growth experiment talking place aboard the Inte...

  1. Study on tissue culture for Gelidium seedling

    NASA Astrophysics Data System (ADS)

    Pei, Lu-Qing; Luo, Qi-Jun; Fei, Zhi-Qing; Ma, Bin

    1996-06-01

    As seedling culture is a crucial factor for successful cultivation of Gelidium, the authors researched tissue culture technology for producing seedlings. The morphogeny and experimental ecology were observed and studied fully in 2 5 mm isolated tissue fragments. Regeneration, appearance of branching creepers and attaching structure and new erect seedlings production and development were studied. Fragments were sown on bamboo slice and vinylon rope. The seedlings were cultured 20 30 days indoor, then cultured in the sea, where the density of erect seedlings was 3 19 seedlings/cm2, growth rate was 3.84% day. The frond arising from seedlings directly was up to 10 cm per year. The ecological conditions for regenerated seedlings are similar to the natural ones. The regenerated seedlings are suitable for raft culture in various sea areas.

  2. The Importance of the Nothofagus Forest on Snowmelt Process linked to floods in Mountain Basins of Tierra del Fuego, Argentina as Input for Land Use Policies.

    NASA Astrophysics Data System (ADS)

    Iturraspe, R. J.; Urciuolo, A. B.; Lofiego, R.

    2007-05-01

    The conception and application of policies and best practices for the appropriate land use from the view point of extreme floods attenuation, must be based on scientist acknowledge of the basin response, reaching each one of the hydrological cycle's components. That condition is necessary as a start point for an integrated intersectoral management of water and forest resources at the basin scale, especially when forest logging or forest urbanization appear as land use alternatives with socioeconomic importance, confronting the natural roll of the forest in the basin. Within this framework, this article analyzes the forest importance on the seasonal snow-pack and snow-melting process in the mountain basin environment of Tierra del Fuego Island, Argentina, where a mixed rain-snow hydrological regimen and a canopy of native Nothofagus forest are basic features considered. Extreme floods events are related to heavy rain and snow-melting combination. In theory, the worst scenario is the exceptional rain occurrence at the moment of the maximum snow storage, air temperature higher than 0ºC in the whole basin, and previous wet conditions. On this scenario we analyze aspects that indicate forest influences on the snow pack distribution and evolution which are favorable to the attenuation of the intensity of melting process which are induced by rain and temperate air mass. Results were obtained in the context of the EPIC FORCE (EU) Project.

  3. Dynamic light use and protection from excess light in upper canopy and coppice leaves of Nothofagus cunninghamii in an old growth, cool temperate rainforest in Victoria, Australia.

    PubMed

    Tausz, Michael; Warren, Charles R; Adams, Mark A

    2005-01-01

    Responses to simulated sunflecks were examined in upper canopy and coppice leaves of Nothofagus cunninghamii growing in an old-growth rainforest gully in Victoria, Australia. Shaded leaves were exposed to a sudden increase in irradiance from 20 to 1500 micromol m(-2) s(-1). Gas exchange and chlorophyll fluorescence were measured during a 10 min simulated sunfleck and, in the ensuing dark treatment, we examined the recovery of PS II efficiency and the conversion state of xanthophyll cycle pigments. Photosynthetic induction was rapid compared with tropical and northern hemisphere species. Stomatal conductance was relatively high in the shade and stomata did not directly control photosynthetic induction under these conditions. During simulated sunflecks, zeaxanthin was formed rapidly and photochemical efficiency was reduced. These processes were reversed within 30 min in coppice leaves, but this took longer in upper canopy leaves. Poor drought tolerance and achieving a positive carbon balance in a shaded canopy may be functionally related to high stomatal conductance in the shade in N. cunninghamii. The more persistent reduction in photochemical efficiency of upper canopy leaves, which means less efficient light use in subsequent shade periods, but stronger protection from high light, may be related to the generally higher irradiance and longer duration of sunflecks in the upper canopy, but potentially reduces carbon gain during shade periods by 30%.

  4. Living on the edge: adaptive and plastic responses of the tree Nothofagus pumilio to a long-term transplant experiment predict rear-edge upward expansion.

    PubMed

    Mathiasen, Paula; Premoli, Andrea C

    2016-06-01

    Current climate change affects the competitive ability and reproductive success of many species, leading to local extinctions, adjustment to novel local conditions by phenotypic plasticity or rapid adaptation, or tracking their optima through range shifts. However, many species have limited ability to expand to suitable areas. Altitudinal gradients, with abrupt changes in abiotic conditions over short distances, represent "natural experiments" for the evaluation of ecological and evolutionary responses under scenarios of climate change. Nothofagus pumilio is the tree species which dominates as pure stands the montane forests of Patagonia. We evaluated the adaptive value of variation in quantitative traits of N. pumilio under contrasting conditions of the altitudinal gradient with a long-term reciprocal transplant experimental design. While high-elevation plants show little response in plant, leaf, and phenological traits to the experimental trials, low-elevation ones show greater plasticity in their responses to changing environments, particularly at high elevation. Our results suggest a relatively reduced potential for evolutionary adaptation of high-elevation genotypes, and a greater evolutionary potential of low-elevation ones. Under global warming scenarios of forest upslope migration, high-elevation variants may be outperformed by low-elevation ones during this process, leading to the local extinction and/or replacement of these genotypes. These results challenge previous models and predictions expected under global warming for altitudinal gradients, on which the leading edge is considered to be the upper treeline forests. PMID:26868524

  5. Intraspecific Relationships among Wood Density, Leaf Structural Traits and Environment in Four Co-Occurring Species of Nothofagus in New Zealand

    PubMed Central

    Richardson, Sarah J.; Allen, Robert B.; Buxton, Rowan P.; Easdale, Tomás A.; Hurst, Jennifer M.; Morse, Christopher W.; Smissen, Rob D.; Peltzer, Duane A.

    2013-01-01

    Plant functional traits capture important variation in plant strategy and function. Recent literature has revealed that within-species variation in traits is greater than previously supposed. However, we still have a poor understanding of how intraspecific variation is coordinated among different traits, and how it is driven by environment. We quantified intraspecific variation in wood density and five leaf traits underpinning the leaf economics spectrum (leaf dry matter content, leaf mass per unit area, size, thickness and density) within and among four widespread Nothofagus tree species in southern New Zealand. We tested whether intraspecific relationships between wood density and leaf traits followed widely reported interspecific relationships, and whether variation in these traits was coordinated through shared responses to environmental factors. Sample sites varied widely in environmental variables, including soil fertility (25–900 mg kg–1 total P), precipitation (668–4875 mm yr–1), temperature (5.2–12.4 °C mean annual temperature) and latitude (41–46 °S). Leaf traits were strongly correlated with one another within species, but not with wood density. There was some evidence for a positive relationship between wood density and leaf tissue density and dry matter content, but no evidence that leaf mass or leaf size were correlated with wood density; this highlights that leaf mass per unit area cannot be used as a surrogate for component leaf traits such as tissue density. Trait variation was predicted by environmental factors, but not consistently among different traits; e.g., only leaf thickness and leaf density responded to the same environmental cues as wood density. We conclude that although intraspecific variation in wood density and leaf traits is strongly driven by environmental factors, these responses are not strongly coordinated among functional traits even across co-occurring, closely-related plant species. PMID:23527041

  6. Population genetic structure, genetic diversity, and natural history of the South American species of Nothofagus subgenus Lophozonia (Nothofagaceae) inferred from nuclear microsatellite data

    PubMed Central

    Vergara, Rodrigo; Gitzendanner, Matthew A; Soltis, Douglas E; Soltis, Pamela S

    2014-01-01

    The effect of glaciation on the levels and patterns of genetic variation has been well studied in the Northern Hemisphere. However, although glaciation has undoubtedly shaped the genetic structure of plants in the Southern Hemisphere, fewer studies have characterized the effect, and almost none of them using microsatellites. Particularly, complex patterns of genetic structure might be expected in areas such as the Andes, where both latitudinal and altitudinal glacial advance and retreat have molded modern plant communities. We therefore studied the population genetics of three closely related, hybridizing species of Nothofagus (N. obliqua, N. alpina, and N. glauca, all of subgenus Lophozonia; Nothofagaceae) from Chile. To estimate population genetic parameters and infer the influence of the last ice age on the spatial and genetic distribution of these species, we examined and analyzed genetic variability at seven polymorphic microsatellite DNA loci in 640 individuals from 40 populations covering most of the ranges of these species in Chile. Populations showed no significant inbreeding and exhibited relatively high levels of genetic diversity (HE = 0.502–0.662) and slight, but significant, genetic structure (RST = 8.7–16.0%). However, in N. obliqua, the small amount of genetic structure was spatially organized into three well-defined latitudinal groups. Our data may also suggest some introgression of N. alpina genes into N. obliqua in the northern populations. These results allowed us to reconstruct the influence of the last ice age on the genetic structure of these species, suggesting several centers of genetic diversity for N. obliqua and N. alpina, in agreement with the multiple refugia hypothesis. PMID:25360279

  7. Tree size and light availability increase photochemical instead of non-photochemical capacities of Nothofagus nitida trees growing in an evergreen temperate rain forest.

    PubMed

    Coopman, Rafael E; Briceño, Verónica F; Corcuera, Luis J; Reyes-Díaz, Marjorie; Alvarez, Daniela; Sáez, Katherine; García-Plazaola, José I; Alberdi, Miren; Bravo, León A

    2011-10-01

    Nothofagus nitida (Phil.) Krasser (Nothofagaceae) regenerates under the canopy in microsites protected from high light. Nonetheless, it is common to find older saplings in clear areas and adults as emergent trees of the Chilean evergreen forest. We hypothesized that this shade to sun transition in N. nitida is supported by an increase in photochemical and non-photochemical energy dissipation capacities of both photosystems in parallel with the increase in plant size and light availability. To dissect the relative contribution of light environment and plant developmental stage to these physiological responses, the photosynthetic performance of both photosystems was studied from the morpho-anatomical to the biochemical level in current-year leaves of N. nitida plants of different heights (ranging from 0.1 to 7 m) growing under contrasting light environments (integrated quantum flux (IQF) 5-40 mol m(-2). Tree height (TH) and light environment (IQF) independently increased the saturated electron transport rates of both photosystems, as well as leaf and palisade thickness, but non-photochemical energy flux, photoinhibition susceptibility, state transition capacity, and the contents of D1 and PsbS proteins were not affected by IQF and TH. Spongy mesophyll thickness and palisade cell diameter decreased with IQF and TH. A(max), light compensation and saturation points, Rubisco and nitrogen content (area basis) only increased with light environment (IQF), whereas dark respiration (R(d)) decreased slightly and relative chlorophyll content was higher in taller trees. Overall, the independent effects of more illuminated environment and tree height mainly increased the photochemical instead of the non-photochemical energy flux. Regardless of the photochemical increase with TH, carbon assimilation only significantly improved with higher IQF. Therefore it seems that mainly acclimation to the light environment supports the phenotypic transition of N. nitida from shade to

  8. Hordeum vulgare Seedlings Amine Oxidase

    PubMed Central

    Cogoni, Antonina; Piras, Carla; Farci, Raffaele; Melis, Antonello; Floris, Giovanni

    1990-01-01

    Although no amine oxidase could be detected in crude extracts, the enzyme has been purified to apparent homogeneity from Hordeum vulgare seedlings using ammonium sulfate precipitation and chromatography on DEAE cellulose, Hydroxylapatite, and Sephadex G200 columns. Gel filtration experiments indicate a molecular weight of about 150,000. The pH optimum of the enzyme was found to be 7.5 in potassium phosphate buffer. The spectrum of ultraviolet and visible regions were similar to Cuamine oxidase from Leguminosae. PMID:16667542

  9. Ostryopsis davidiana seedlings inoculated with ectomycorrhizal fungi facilitate formation of mycorrhizae on Pinus tabulaeformis seedlings.

    PubMed

    Bai, Shu-Lan; Li, Guo-Lei; Liu, Yong; Kasten Dumroese, R; Lv, Rui-Heng

    2009-08-01

    Reforestation in China is important for reversing anthropogenic activities that degrade the environment. Pinus tabulaeformis is desired for these activities, but survival and growth of seedlings can be hampered by lack of ectomycorrhizae. When outplanted in association with Ostryopsis davidiana plants on reforestation sites, P. tabulaeformis seedlings become mycorrhizal and survival and growth are enhanced; without O. davidiana, pines often remain without mycorrhizae and performance is poorer. To better understand this relationship, we initiated an experiment using rhizoboxes that restricted root and tested the hypothesis that O. davidiana seedlings facilitated ectomycorrhizae formation on P. tabulaeformis seedlings through hyphal contact. We found that without O. davidiana seedlings, inocula of five indigenous ectomycorrhizal fungi were unable to grow and associate with P. tabulaeformis seedlings. Inocula placed alongside O. davidiana seedlings, however, resulted in enhanced growth and nutritional status of O. davidiana and P. tabulaeformis seedlings, and also altered rhizosphere pH and phosphatase activity. We speculate that these species form a common mycorrhizal network and this association enhances outplanting performance of P. tabulaeformis seedlings used for forest restoration.

  10. Clinorotation affects soybean seedling morphology

    NASA Technical Reports Server (NTRS)

    Hilaire, Emmanuel; Guikema, James A.; Brown, Christopher S.

    1995-01-01

    Although spaceflight does not appear to significantly affect seed germination, it can influence subsequent plant growth. On STS-3 and SL-2, decreased growth (measured as plant length, fresh weight, and dry weight) was noted for pine, oat, and mung bean. In the CHROMEX-01 and 02 experiments with Haplopappus and in the CHROMEX-03 experiment with Arabidopsis, enhanced root growth was noted in the space-grown plants. In the CHROMEX-04 experiments with wheat, both leaf fresh weight and leaf area were diminished in the space-grown plants but there was no difference in total plant height (CS Brown, HG Levine, and AD Krikorian, unpublished data). These data suggest that microgravity impacts growth by whole plant partitioning of the assimilates. The objective of the present study was to determine the influence of clinorotation on the growth and the morphology of soybean seedlings grown in the Biological Research In Canister (BRIC) flight hardware. This experiment provided baseline data for a spaceflight experiment (BRIC-3) flown on STS-63 (February 3-11, 1995).

  11. Genetically improved ponderosa pine seedlings outgrow nursery-run seedlings with and without competition -- Early findings

    SciTech Connect

    McDonald, P.M.; Fiddler, G.O. ); Kitzmiller, J.H. . Chico Tree Improvement Center)

    1994-04-01

    Three classes of ponderosa pine (Pinus ponderosa) seedlings (nursery-run, wind-pollinated, control-pollinated) were evaluated for stem height and diameter at the USDA Forest Service's Placerville Nursery and the Georgetown Range District in northern California. Pines in all three classes were grown with competing vegetation or maintained in a free-to-grow condition. Control-pollinated seedlings were statistically taller than nursery-run counterparts when outplanted, and after 1 and 2 growing seasons in the field with and without competition. They also had significantly larger diameters when outplanted and after 2 growing seasons in the field when free to grow. Wind-pollinated seedlings grew taller than nursery-run seedlings when free to grow. A large amount of competing vegetation [bearclover (Chamaebatia foliolosa)--29,490 plants per acre; herbaceous vegetation--11,500; hardwood sprouts--233; and whiteleaf manzanita (Arctostaphylos viscida) seedlings--100] ensure that future pine development will be tested rigorously.

  12. Anaerobic metabolism in Brassica seedlings

    NASA Astrophysics Data System (ADS)

    Park, Myoung-Ryoul; Hasenstein, Karl H.

    Germination typically depends on oxidative respiration. The lack of convection under space conditions may create hypoxic or conditions during seed germination. We investigated the effect of reduced oxygen on seed germination and metabolism to understand how metabolic constraints affect seed growth and responsiveness to reorientation. Germination was completely inhibited when seeds were imbibed in the absence of oxygen; germination occurred at 5% oxygen and higher levels. Adding oxygen after 72 h resulted in immediate germination (protrusion of the radicle). Hypoxia typically activates alcohol dehydrogenase (ADH, EC 1.1.1.1) and lactate dehydrogenase (LDH, EC 1.1.1.27) which produce ethanol and/or L-lactate, respectively. We report on the expression of ADH1 and LDH1, and changes in total soluble sugars, starch, pH, and L-lactate in seedlings grown at 28°C in 0, 2.5, 5, 10% and ambient (21%) oxygen conditions as controls. The highest consumption (lowest level) of sugars was seen at 0% oxygen but the lowest level of starch occurred 24 h after imbibition under ambient condition. Expression levels of ADH1 in ambient oxygen condition increased within 24 h but increased threefold under hypoxic conditions; LDH1 increased up to 8-fold under hypoxia compared to controls but ADH1 and LDH1 were less expressed as the oxygen levels increased. The intracellular pH of seeds decreased as the content of L-lactate increased for all oxygen concentrations. These results indicate that germination of Brassica is sensitive to oxygen levels and that oxygen availability during germination is an important factor for metabolic activities. (Supported by NASA grant NNX10AP91G)

  13. Seedling growth and development on space shuttle

    NASA Technical Reports Server (NTRS)

    Cowles, J.; Lemay, R.; Jahns, G.

    1994-01-01

    Young pine seedlings, and mung bean and oat seeds were flown on shuttle flights, STS-3 and STS-51F, in March, 1982 and July/August, 1985, respectively. The plant growth units built to support the two experiments functioned mechanically as anticipated and provided the necessary support data. Pine seedlings exposed to the microgravity environment of the space shuttle for 8 days continued to grow at a rate similar to ground controls. Pine stems in flight seedlings, however, averaged 10 to 12% less lignin than controls. Flight mung beans grew slower than control beans and their stems contained about 25% less lignin than control seedlings. Reduced mung bean growth in microgravity was partly due to slower germination rate. Lignin also was reduced in flight oats as compared to controls. Oats and mung beans exhibited upward growing roots which were not observed in control seedlings. Chlorophyll A/B ratios were lower in flight tissues than controls. The sealed PGCs exhibited large variations in atmospheric gas composition but the changes were similar between flight and ground controls. Ethylene was present in low concentrations in all chambers.

  14. Seedling growth and development on space shuttle.

    PubMed

    Cowles, J; LeMay, R; Jahns, G

    1994-11-01

    Young pine seedlings, and mung bean and oat seeds were flown on shuttle flights, STS-3 and STS-51F, in March, 1982 and July/August, 1985, respectively. The plant growth units built to support the two experiments functioned mechanically as anticipated and provided the necessary support data. Pine seedlings exposed to the microgravity environment of the space shuttle for 8 days continued to grow at a rate similar to ground controls. Pine stems in flight seedlings, however, averaged 10 to 12% less lignin than controls. Flight mung beans grew slower than control beans and their stems contained about 25% less lignin than control seedlings. Reduced mung bean growth in microgravity was partly due to slower germination rate. Lignin also was reduced in flight oats as compared to controls. Oats and mung beans exhibited upward growing roots which were not observed in control seedlings. Chlorophyll A/B ratios were lower in flight tissues than controls. The sealed PGCs exhibited large variations in atmospheric gas composition but the changes were similar between flight and ground controls. Ethylene was present in low concentrations in all chambers.

  15. Seedling growth and development on space shuttle

    NASA Astrophysics Data System (ADS)

    Cowles, J.; Lemay, R.; Jahns, G.

    1994-11-01

    Young pine seedlings, and mung bean and oat seeds were flown on shuttle flights, STS-3 and STS-51F, in March, 1982 and July/August, 1985, respectively. The plant growth units built to support the two experiments functioned mechanically as anticipated and provided the necessary support data. Pine seedlings exposed to the microgravity environment of the space shuttle for 8 days continued to grow at a rate similar to ground controls. Pine stems in flight seedlings, however, averaged 10 to 12% less lignin than controls. Flight mung beans grew slower than control beans and their stems contained about 25% less lignin than control seedlings. Reduced mung bean growth in microgravity was partly due to slower germination rate. Lignin also was reduced in flight oats as compared to controls. Oats and mung beans exhibited upward growing roots which were not observed in control seedlings. Chlorophll A/B ratios were lower in flight tissues than controls. The sealed PGCs exhibited large variations in atmospheric gas composition but the changes were similar between flight and ground controls. Ethylene was present in low concentrations in all chambers.

  16. Changes of nucleic acids of wheat seedlings under spaceflight conditions

    NASA Technical Reports Server (NTRS)

    Sytnyk, K. M.; Musatenko, L. I.

    1983-01-01

    The effects of space flight on the growth of wheat seedlings and their nucleic acid content were studied. It was shown that both space and ground seedlings have almost the same appearance, dry weight and nucleic acid content in the root, coleoptile and leaves. The only difference found is in the RNA and DNA content, which is twice as much in the ground seedling apices as in the space-grown seedlings.

  17. Analysis for an environmental friendly seedling breeding system

    NASA Astrophysics Data System (ADS)

    Qu, Y. H.; Wei, X. M.; Hou, Y. F.; Chen, B.; Chen, G. Q.; Lin, C.

    2009-04-01

    Most seedlings of crops are produced in solar greenhouse or nursery, from which some problems about energy waste and environment pollution arise. This study aims at investigating the characteristics and effect of an environmental friendly type seedling breeding system. The results demonstrate that crops can grow with a short period and little pollution in the new seedling breeding system with total manpower controllable environment that is not influenced by geography, climate and other natural conditions. By multilayer, nonplanar seedling breeding and annual batches arrangement, utilization ratio of unit area land and seedlings yield can be improved for several times and even more than 10 times. Conclusions can be obtained from the tomato seedling breeding experiments: (1) each growth index of tomato seedlings that are under the conditions of 291 μmol/m2 s artificial illumination intensity is remarkably better than those produced in greenhouse with natural lights. (2) The environment of the seedling breeding system can be accurately controlled. The segmented temperature changed management can be applied according to the photosynthetic characteristics of plants, and not affected by the outside environment, which makes each growth index of tomato seedling constant in different seasons. The seedlings thus grow strong and can achieve the level of commodity seedlings after 20-30 days. (3) The temperature and humidity environment of the seedling breeding system can be accurately controlled according to plants growth demands.

  18. Rhizoctonia seedling damping-off in sugar beet in Michigan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia solani is an important seedling pathogen of sugar beet, causing damping-off following seedling emergence. Anastomosis group (AG)-4 has been the primary seedling pathogen reported on sugar beet, however, recent screening has found high incidence of infection by AG-2-2. Isolations of R. so...

  19. [Influence of seedling assortment on Panax notoginseng growth and yield].

    PubMed

    Cui, X; Wang, C; Chen, Z

    1998-02-01

    Making Panax notoginseng seedling assortment according to seedling size before transplanting, the result shows that the influence is better, the yield of root tuber and fruit is higher. Culturing good seedling is the fundamental measure to increase yield of P. notoginseng.

  20. Seed Mucilage Improves Seedling Emergence of a Sand Desert Shrub

    PubMed Central

    Yang, Xuejun; Baskin, Carol C.; Baskin, Jerry M.; Liu, Guangzheng; Huang, Zhenying

    2012-01-01

    The success of seedling establishment of desert plants is determined by seedling emergence response to an unpredictable precipitation regime. Sand burial is a crucial and frequent environmental stress that impacts seedling establishment on sand dunes. However, little is known about the ecological role of seed mucilage in seedling emergence in arid sandy environments. We hypothesized that seed mucilage enhances seedling emergence in a low precipitation regime and under conditions of sand burial. In a greenhouse experiment, two types of Artemisia sphaerocephala achenes (intact and demucilaged) were exposed to different combinations of burial depth (0, 5, 10, 20, 40 and 60 mm) and irrigation regimes (low, medium and high, which simulated the precipitation amount and frequency in May, June and July in the natural habitat, respectively). Seedling emergence increased with increasing irrigation. It was highest at 5 mm sand burial depth and ceased at burial depths greater than 20 mm in all irrigation regimes. Mucilage significantly enhanced seedling emergence at 0, 5 and 10 mm burial depths in low irrigation, at 0 and 5 mm burial depths in medium irrigation and at 0 and 10 mm burial depths in high irrigation. Seed mucilage also reduced seedling mortality at the shallow sand burial depths. Moreover, mucilage significantly affected seedling emergence time and quiescence and dormancy percentages. Our findings suggest that seed mucilage plays an ecologically important role in successful seedling establishment of A. sphaerocephala by improving seedling emergence and reducing seedling mortality in stressful habitats of the sandy desert environment. PMID:22511952

  1. Rhizoctonia seedling disease on sugar beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia seedling damping-off can cause losses in sugar beet as well as providing inoculum for later root rot. The disease is caused by Rhizoctonia solani. The pathogen has several subgroups, anastomosis groups (AG), of which AG-4 has historically been associated with damping-off, while AG-2-2 is...

  2. On the biomechanics of seedling anchorage

    NASA Astrophysics Data System (ADS)

    Crouzy, Benoît; Edmaier, Katharina; Perona, Paolo

    2014-05-01

    We propose a minimal model for the response of vegetation to pullout constraints at early development stage. We try to capture both the average mechanical properties of the root system and the stochastic component of the uprooting process of seedlings. We identify a minimal set of relevant physical components in the purpose of quantifying the uprooting process: length of the root fibres, elastic response of the fibres and adhesion between the roots and the soil matrix. We present for validation a dataset extracted from Edmaier et al. (under revision), accounting for 98 uprooting experiments using Avena sativa L. seedlings (common oat), growing in non-cohesive sediment under controlled conditions. The corresponding root system has a very simple architecture, with three root fibres of different lengths. The response of the system to the constraint is however complex: the stress-strain signal presents sudden jumps followed by partial elastic recoveries. The analysis of the jumps and partial recoveries gives an insight into the resilience of the system. The anchorage of less mature seedlings rapidly collapses after the peak force has been reached, while more mature seedlings usually recover from partial failures. We explore this crossover with our validation dataset. The type of seedlings we study has been used in flume experiments investigating the feedbacks between the vegetation and the river morphodynamics (see for example Perona et al. (2012)). An understanding of the characteristics of the uprooting curve (maximal uprooting force and total uprooting work) of such vegetation reveals the ability of seedlings to withstand environmental constraints in terms of duration or intensity (see Edmaier et al., under revision), and is therefore helpful for planning future experiments. REFERENCES - P. Perona, P. Molnar, B. Crouzy, E. Perucca, Z. Jiang, S. McLelland, D. Wüthrich, K. Edmaier, R. Francis, C. Camporeale, et al., Biomass selection by floods and related timescales

  3. Seedling emergence on Sonoran desert dunes

    USGS Publications Warehouse

    Bowers, Janice E.

    1996-01-01

    Seedling emergence of psammophiles (plants restricted to active dunes) was examined with germination experiments and with field observations at the Algodones Dunes, California, U.S.A., and the Sierra del Rosario Dunes, Sonora, Mexico. In the field, perennial psammophiles germinated in response to smaller rainfall triggers (??? 10mm) than other woody desert plants (??? 16mm). In germination experiments, seedlings of three perennial psammophiles, Astragalus magdalenae var. peirsonii, Helianthus niveus subsp. tephrodes, and Palafoxia arida var. gigantea, emerged in larger numbers from greater soil depths than those of three nonpsammophiles, Cercidium microphyllum, Fouquieria splendens, and Palafoxia arida var. arida. Seed size for these six species did not correlate in any consistent fashion with emergence depth, suggesting that food reserves are not the only variable that ensures emergence of deeply buried psammophile seeds.

  4. Early events in geotropism of seedling shoots

    NASA Technical Reports Server (NTRS)

    Pickard, B. G.

    1985-01-01

    Developments during the first ten minutes of geotropic stimulation in plant seedling shoots are reviewed. Topics include induction and curvature; early processes; the relationship between auxin, electric field, calcium, and differential growth; gravity reception leading to Went-Cholodny transport; and comparison of root and shoot. Early processes reviewed are sedimentation of amyloplasts, release of ethylene, rise of electrical and auxin asymmetry, redistribution of calcium, asymmetric vascular transport, increase in tendency to deposit callose, and simulation of putative exocytotic voltage transients.

  5. Enhancement of American chestnut somatic seedling production.

    PubMed

    Andrade, G M; Merkle, S A

    2005-08-01

    Somatic embryogenesis holds promise for mass propagation of American chestnut trees bred or genetically engineered for resistance to chestnut blight. However, low germination frequency of chestnut somatic embryos has limited somatic seedling production for this forest tree. We tested the effects of culture regime (semi-solid versus liquid), cold treatment, AC and somatic embryo morphology (i.e., cotyledon number) on germination and conversion of the somatic embryos. Cold treatment for 12 weeks was critical for conversion of chestnut somatic embryos to somatic seedlings, raising conversion frequencies for one line to 47%, compared to 7% with no cold treatment. AC improved germination and conversion frequency for one line to 77% and 59%, respectively, and kept roots from darkening. For two lines that produced embryos with one, two or three-plus cotyledons, cotyledon number did not affect germination or conversion frequency. We also established embryogenic American chestnut suspension cultures and adapted a fractionation/plating system that allowed us to produce populations of relatively synchronous somatic embryos for multiple lines. Embryos derived from suspension cultures of two lines tested had higher conversion frequencies (46% and 48%) than those from cultures maintained on semi-solid medium (7% and 30%). The improvements in manipulation of American chestnut embryogenic cultures described in this study have allowed over a 100-fold increase in somatic seedling production efficiency over what we reported previously and thus constitute a substantial advance toward the application of somatic embryogenesis for mass clonal propagation of the tree.

  6. [Adaptability of mangrove Kandelia obovata seedlings to salinity-waterlogging].

    PubMed

    You, Hui-ming

    2015-03-01

    A laboratory test on the effects of 12 salinity-waterlogging stresses on the growth of Kandelia obovata seedlings was conducted. Nine growth indexes including seedling height, stem height, basal diameter, node number, leaf number, root biomass, stem biomass, leaf biomass and total biomass were measured. The results showed that salinity and salinity-waterlogging stresses had significant effects on the growth of K. obovata seedlings, while waterlogging stress had no significant effects on the seedling height, stem height, basal diameter, node number and leaf number, but had significant effects on root biomass, stem biomass, leaf biomass and total biomass. The growth and biomass of K. obovata seedlings decreased with increasing the salinity and waterlogging time. The principal components analysis showed that K. obovata seedlings would grow best under the 7 per thousand salinity+2 h waterlogging stress, while the 21per thousand+8 h combination was a critical stress.

  7. Nutrient partitioning and seedling development in the genus Leucaena

    SciTech Connect

    Dovel, R.L.

    1987-01-01

    Slow establishment of the genus Leucaena from seed has been attributed to law seedling vigor and late nodulation. Observation of early seedling growth indicated that partitioning of a large proportion of resources to the root of young Leucaena seedlings could account, in part, for the slow initial shoot growth observed in this genus. Therefore, a series of experiments were conducted to examine the partitioning of stored seed reserves, photosynthate, and nitrogen in developing Leucaena seedlings. The effects of nodulation and nitrogen fertilization on partitioning of nutrients in the seedling were also examined. Seed reserves were initially used for radicle growth in dark grown seedlings; however, partitioning soon shifted to the hypocotyl. By four days after imbibition, hypocotyl weight exceeded radicle weight in both species tested (L. leucocephala and L. retusa), at all temperatures above 20/sup 0/C. Two experiments were conducted examining the carbon partitioning of L. leucocephala cultivar K-8 using /sup 14/CO/sub 2/ pulse labeling techniques.

  8. [Adaptability of mangrove Kandelia obovata seedlings to salinity-waterlogging].

    PubMed

    You, Hui-ming

    2015-03-01

    A laboratory test on the effects of 12 salinity-waterlogging stresses on the growth of Kandelia obovata seedlings was conducted. Nine growth indexes including seedling height, stem height, basal diameter, node number, leaf number, root biomass, stem biomass, leaf biomass and total biomass were measured. The results showed that salinity and salinity-waterlogging stresses had significant effects on the growth of K. obovata seedlings, while waterlogging stress had no significant effects on the seedling height, stem height, basal diameter, node number and leaf number, but had significant effects on root biomass, stem biomass, leaf biomass and total biomass. The growth and biomass of K. obovata seedlings decreased with increasing the salinity and waterlogging time. The principal components analysis showed that K. obovata seedlings would grow best under the 7 per thousand salinity+2 h waterlogging stress, while the 21per thousand+8 h combination was a critical stress. PMID:26211047

  9. Sod cutting and soil biota effects on seedling performance

    NASA Astrophysics Data System (ADS)

    Weijtmans, Kim; Jongejans, Eelke; van Ruijven, Jasper

    2009-09-01

    Sod cutting (i.e. top soil removal) is a restoration management option for enhancing seedling establishment and for lowering the nutrient concentration in eutrophicated soils of nutrient-poor species-rich grasslands. Removal of the upper soil changes not only abiotic soil properties but may also affect the resident soil community. We investigated the effects of sod cutting on the establishment and performance of two endangered plant species ( Cirsium dissectum and Succisa pratensis) while simultaneously manipulating the interaction between seedlings and soil biota. In intact grassland and sod-cut areas at two localities, seedlings were grown in plastic tubes. Half of the tubes had a filter that excluded roots but allowed entry of fungal hyphae and soil microorganisms. The other tubes were closed (i.e. no contact with the surrounding soil). In a greenhouse experiment we studied the effect of soil solutions (with or without fungal tissue) from three grasslands and three sod-cut areas on seedling growth. Sod cutting had a positive net effect on seedling growth for S. pratensis. Access to (mycorrhizal) fungi and other soil biota resulted in a negative impact on seedling growth of both plant species, both in grassland and sod-cut areas. The greenhouse experiment confirmed that the soil biota in these meadows reduced seedling growth. Although sod cutting did not mitigate negative plant-soil feedback, it enhanced seedling growth, presumably by decreasing competition for light. Sod cutting is therefore very useful when seedling establishment needs to be stimulated.

  10. Habitat-related variation in seedling recruitment of Gentiana pannonica

    NASA Astrophysics Data System (ADS)

    Ekrtová, Ester; Košnar, Jan

    2012-11-01

    Differences in seedling recruitment of Gentiana pannonica were investigated between the primary (relict) and the secondary (semi-natural) forest-free habitats of the Bohemian Forest (870-1200 m a.s.l.) and of the Alps (1045-1935 m a.s.l.) to understand the factors promoting the seedling recruitment of G. pannonica and their importance for species distribution, population structure, and conservation. In the communities with adult plants of G. pannonica, we recorded environmental variables (the slope, the altitude, and the covers of bare ground, litter, and rocks), estimated parameters of the vegetation (the covers of herbs, bryophytes, and dwarf shrubs), and counted the seedlings of G. pannonica. In a field experiment, we investigated seedling survival under different soil moisture regimes. We also observed seasonal dynamics of seedling recruitment in permanent plots over the course of three years. In the primary habitats of both regions, G. pannonica grew in a relatively wide range of communities, and its seedlings occurred in each area. In the secondary habitats of the Bohemian Forest, a very low frequency of the seedlings was recorded. The number of seedlings increased with the covers of the moss layer and of bare soil and decreased with the cover of the herb layer, especially of graminoids. The seedling mortality was significantly lower in the plots with higher soil moistures, and the emergence of new-born seedlings was concentrated in the spring season, when the soil received a high water supply due to melting of snow. For the successful generative reproduction of G. pannonica, our findings highlight the critical importance of the microsites with low levels of competition and of sufficient soil moisture G. pannonica. It seems that because of the long-term lack of grazing disturbances, the structures of the secondary habitats of G. pannonica in the Bohemian Forest have become unfavourable for seedling establishment and generative reproduction of this threatened

  11. Seedlings Finally Get Their Due: Book Review of Seedling Ecology and Evolution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Book Review of: Seedling Ecology and Evolution. Ed. Leck, Mary Allessio, Parker, V. Thomas and Simpson, Robert L. Cambridge University Press, Cambridge, UK. 2008. Many plant demographers find themselves, at some point, staring at a dataset full of detailed information on juvenile and adult plants,...

  12. Radiation effects on Brassica seeds and seedlings

    NASA Astrophysics Data System (ADS)

    Deoli, Naresh; Hasenstein, Karl H.

    2016-07-01

    Space radiation consists of high energy charged particles and affects biological systems, but because of its stochastic, non-directional nature is difficult to replicate on Earth. Radiation damages biological systems acutely at high doses or cumulatively at low doses through progressive changes in DNA organization. These damages lead to death or cause of mutations. While radiation biology typically focuses on mammalian or human systems, little is known as to how radiation affects plants. In addition, energetic ion beams are widely used to generate new mutants in plants considering their high-LET (Linear Energy Transfer) as compared to gamma rays and X-rays. Understanding the effect of ionizing radiation on plant provides a basis for studying effects of radiation on biological systems and will help mitigate (space) radiation damage in plants. We exposed dry and imbibed Brassica rapa seeds and seedling roots to proton beams of varying qualities and compared the theoretical penetration range of different energy levels with observable growth response. We used 1, 2 and 3 MeV protons in air at the varying fluences to investigate the effect of direct irradiation on the seeds (1012 - 1015 ions/cm2) and seedlings (1013 ions/cm2). The range of protons in the tissue was calculated using Monte-Carlo based SRIM (Stopping and Range of Ions in Matter) software. The simulation and biological results indicate that ions did not penetrate the tissue of dry or hydrated seeds at all used ion energies. Therefore the entire energy was transferred to the treated tissue. Irradiated seeds were germinated vertically under dim light and roots growth was observed for two days after imbibition. The LD50 of the germination was about 2×1014 ions/cm2 and about 5×1014 ions/cm2 for imbibed and dry seeds, respectively. Since seedlings are most sensitive to gravity, the change in gravitropic behavior is a convenient means to assess radiation damage on physiological responses other than direct tissue

  13. Chilling stress response of post-emergent cotton seedlings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    • Early season development of cotton is often impaired by sudden episodes of chilling temperature. We determined the chilling response specific to post-emergent 13-d-old cotton seedlings. • Seedlings were gradually chilled during the dark period and rewarmed during the night-to-day transition. Fo...

  14. Seedling diseases of sugar beet – diversity and host interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seedling diseases cause loss of plant stand due to pre- and post-emergence damping-off and weakened plants due to root or hypocotyl infection. Several pathogens cause seedling disease of sugar beet, including Rhizoctonia solani, Aphanomyces cochlioides, Pythium species, and Fusarium species. Differe...

  15. Evaluation of Promalin to promote growth of young mangosteen seedlings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A major impediment to the development of a mangosteen (Garcinia mangostana L.) industry is the long pre-bearing stage that seedlings take to produce fruits. A field study was conducted to determine the effect of Promalin on the growth of mangosteen seedlings. Promalin was applied as a foliar spray...

  16. Ectomycorrhizal networks and seedling establishment during early primary succession.

    PubMed

    Nara, Kazuhide

    2006-01-01

    Ectomycorrhizal (ECM) fungal mycelia are the main organs for nutrient uptake in many woody plants, and often connect seedlings to mature trees. While it is known that resources are shared among connected plants via common mycorrhizal networks (CMNs), the net effects of CMNs on seedling performance in the field are almost unknown. CMNs of individual ECM fungal species were produced in an early succession volcanic desert by transplanting current-year seedlings of Salix reinii with ECM mother trees that had been inoculated with one of 11 dominant ECM fungal species. Most seedlings were connected to individual CMNs without being infected by other ECM fungi. Although control seedlings showed poor growth under severe nutrient competition with larger nonmycorrhizal mother trees, nutrient acquisition and growth of seedlings connected to CMNs were improved with most fungal species. The positive effects of CMNs on seedling performance were significantly different among ECM fungal species; for example, the maximum difference in seedling nitrogen acquisition was 1 : 5.9. The net effects of individual CMNs in the field and interspecific variation among ECM fungal species are shown. PMID:16390428

  17. Coumarin pretreatment alleviates salinity stress in wheat seedlings.

    PubMed

    Saleh, Ahmed Mahmoud; Madany, M M Y

    2015-03-01

    The potentiality of COU to improve plant tolerance to salinity was investigated. Wheat grains were primed with COU (50 ppm) and then grown under different levels of NaCl (50, 100, 150 mM) for two weeks. COU pretreatment improved the growth of wheat seedling under salinity, relative to COU-untreated seedlings, due to the accumulation of osmolytes such as soluble sugars and proline. Moreover, COU treatment significantly improved K(+)/Na(+) ratio in the shoots of both salt stressed and un-stressed seedlings. However, in the roots, this ratio increased only under non-salinity. In consistent with phenylalanine ammonia lyase (PAL), phenolics and flavonoids were accumulated in COU-pretreated seedlings under the higher doses of salinity, relative to COU-untreated seedlings. COU primed seedlings showed higher content of the coumarin derivative, scopoletin, and salicylic, chlorogenic, syringic, vanillic, gallic and ferulic acids, under both salinity and non-salinity conditions. Salinity stress significantly improved the activity of peroxidase (POD) in COU-pretreated seedlings. However, the effect of COU on the total antioxidant capacity (TAC) was only obtained at the highest dose of NaCl (150 mM). The present results suggest that COU pretreatment could alleviate the adverse effect of salinity on the growth of wheat seedlings through enhancing, at least partly, the osmoregulation process and antioxidant defense system.

  18. Evolutionary history and distance dependence control survival of dipterocarp seedlings.

    PubMed

    Bagchi, Robert; Press, Malcolm C; Scholes, Julie D

    2010-01-01

    One important hypothesis to explain tree-species coexistence in tropical forests suggests that increased attack by natural enemies near conspecific trees gives locally rare species a competitive advantage. Host ranges of natural enemies generally encompass several closely related plant taxa suggesting that seedlings should also do poorly around adults of closely related species. We investigated the effects of adult Parashorea malaanonan on seedling survival in a Bornean rain forest. Survival of P. malaanonan seedlings was highest at intermediate distances from parent trees while heterospecific seedlings were unaffected by distance. Leaf herbivores did not drive this relationship. Survival of seedlings was lowest for P. malaanonan, and increased with phylogenetic dissimilarity from this species, suggesting that survival of close relatives of common species is reduced. This study suggests that distance dependence contributes to species coexistence and highlights the need for further investigation into the role of shared plant enemies in community dynamics. PMID:19849708

  19. Dose-Response Curves for Radish Seedling Phototropism 12

    PubMed Central

    Everett, Marylee

    1974-01-01

    Radish seedlings (Raphanus sativus L.) were grown for 4 days in complete darkness, or in white light, or for 3 days in darkness followed by 1 day of red light. Phototropic dose-response curves for the seedlings grown in these three ways were determined with 460-nm light. The dark-grown and red light-treated seedlings responded with positive curvatures of no more than 10° to energy doses in the first positive range and with larger positive curvatures in the second positive dose range. No indifferent or negative curvature was seen with the light intensity used. White light-grown seedlings did not respond to first positive energy doses, but responded as strongly to second positive doses as the other types of seedlings. PMID:16658864

  20. Enantioselective Phytotoxicity of Imazamox Against Maize Seedlings.

    PubMed

    Wei, Jing; Zhang, Xiaoxiao; Li, Xuesheng; Zeng, Dongqiang; Tan, Huihua

    2016-02-01

    There is increasing concern about the enantioselective effects of chiral herbicides. To study the enantioselective toxicity of the chiral herbicide imazamox on maize, maize seedlings (Zhengda 619, Zea mays L.) were exposed to imazamox racemate and enantiomers in hydroponic experiments. The results showed that imazamox enantiomers selectively affected maize. The effective concentration of Rac-, S- and R-imazamox that caused 50 % inhibition after 5 days treatments (EC50,5d) were 0.4212, 1.2142 and 0.2460 mg L(-1), respectively, for maize root length; 0.0002, 0.1005, 0.0032 mg L(-1), respectively, for maize root fresh weight; 0.7114, 1.4056 and 0.4530 mg L(-1), respectively, for maize shoot height; 0.6220, 1.5418, 0.2286 mg L(-1), respectively, for maize shoot fresh weight; and 0.1100, 0.3306, 0.0307 mg L(-1), respectively, for the total chlorophyll content of leaves. The root morphological parameters and root activity reflected the toxicity effects in the order R-imazamox > Rac-imazamox > S-imazamox. Maize roots were more sensitive to imazamox than maize shoots. The chiral herbicide imazamox poses enantioselective phytotoxicity on maize seedlings: the order of toxicity is R-imazamox > Rac-imazamox > S-imazamox. PMID:26508428

  1. Process-based modeling of temperature and water profiles in the seedling recruitment zone: Part II. Seedling emergence timing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Predictions of seedling emergence timing for spring wheat are facilitated by process-based modeling of the microsite environment in the shallow seedling recruitment zone. Hourly temperature and water profiles within the recruitment zone for 60 days after planting were simulated from the process-base...

  2. Effects of flooding regime and seedling treatment on early survival and growth of nuttall oak

    USGS Publications Warehouse

    Burkett, V.R.; Draugelis-Dale, R.O.; Williams, H.M.; Schoenholtz, S.H.

    2005-01-01

    Effects of flooding on survival and growth of three different types of Nuttall oak (Quercus texana Buckl.) seedlings were observed at the end of third and fifth growing seasons at Yazoo National Wildlife Refuge, Mississippi, U.S.A. Three types of seedlings were planted in January 1995 in a split-plot design, with four replications at each of two elevations on floodprone, former cropland in Sharkey clay soil. The lower of the two planting elevations was inundated for 21 days during the first growing season, whereas the higher elevation did not flood during the 5-year period of this study. The three types of 1-0 seedlings were bareroot seedlings, seedlings grown in containers (3.8 ?? 21a??cm plastic seedling cones), and container-grown seedlings inoculated with vegetative mycelia of Pisolithus tinctorius (Pers.) Coker. Survival of all the three seedling types was greatest at the lower, intermittently flooded elevation, indicating that drought and related effects on plant competition were more limiting to seedling survival than flooding. At the lower elevation, survival of mycorrhizal-inoculated container seedlings was greater than that of noninoculated container seedlings. Survival among bareroot seedlings and inoculated container seedlings was not significantly different at either elevation. At the higher, nonflooded elevation, however, bareroot seedling survival was greater than the survival of container seedlings without inoculation. Differences were significant among the inoculated and the noninoculated container seedlings, with higher survival of inoculated seedlings at both elevations, though differences were only significant in year 3. At the end of the fifth year, height of bareroot seedlings was significantly greater than the heights of both types of container-grown seedlings at both planting elevations. Because seedlings grown in the plastic seedlings cones did not survive better than the bareroot seedlings at either planting elevation, the bareroot stock

  3. Asymmetric distribution of acetylcholinesterase in gravistimulated maize seedlings.

    PubMed

    Momonoki, Y S

    1997-05-01

    Acetylcholinesterase (AChE) activity has previously been studied by this laboratory and shown to occur at the interface between the stele and cortex of the mesocotyl of maize (Zea mays L.) seedlings. In this work we studied the distribution of AChE activity in 5-d-old maize seedlings following a gravity stimulus. After the stimulus, we found an asymmetric distribution of the enzyme in the coleoptile, the coleoptile node, and the mesocotyl of the stimulated seedlings using both histochemical and colorimetric methods for measuring the hydrolysis of acetylthiocholine. The hydrolytic capability of the esterase was greater on the lower side of the horizontally placed seedlings. Using the histochemical method, we localized the hydrolytic capability in the cortical cells around the vascular stele of the tissues. The hydrolytic activity was inhibited 80 to 90% by neostigmine, an inhibitor of AChE. When neostigmine was applied to the corn kernel, the gravity response of the seedling was inhibited and no enzyme-positive spots appeared in the gravity-stimulated seedlings. We believe these results indicate a role for AChE in the gravity response of maize seedlings. PMID:11536808

  4. Flow and scour constraints on uprooting of pioneer woody seedlings

    NASA Astrophysics Data System (ADS)

    Bywater-Reyes, Sharon; Wilcox, Andrew C.; Stella, John C.; Lightbody, Anne F.

    2015-11-01

    Scour and uprooting during flood events is a major disturbance agent that affects plant mortality rates and subsequent vegetation composition and density, setting the trajectory of physical-biological interactions in rivers. During flood events, riparian plants may be uprooted if they are subjected to hydraulic drag forces greater than their resisting force. We measured the resisting force of woody seedlings established on river bars with in situ lateral pull tests that simulated flood flows with and without substrate scour. We quantified the influence of seedling size, species (Populus and Tamarix), water-table depth, and scour depth on resisting force. Seedling size and resisting force were positively related with scour depth and water-table depth—a proxy for root length—exerting strong and opposing controls on resisting force. Populus required less force to uproot than Tamarix, but displayed a greater increase in uprooting force with seedling size. Further, we found that calculated mean velocities required to uproot seedlings were greater than modeled flood velocities under most conditions. Only when plants were either shallowly rooted or subjected to substrate scour (≥0.3 m) did the calculated velocities required for uprooting decrease to within the range of modeled flood velocities, indicating that drag forces alone are unlikely to uproot seedlings in the absence of extreme events or bar-scale sediment transport. Seedlings on river bars are most resilient to uprooting when they are large, deeply rooted, and unlikely to experience substrate scour, which has implications for ecogeomorphic evolution and river management.

  5. Phytochrome-Mediated Phototropism in De-Etiolated Seedlings 1

    PubMed Central

    Ballaré, Carlos L.; Scopel, Ana L.; Radosevich, Steven R.; Kendrick, Richard E.

    1992-01-01

    Phototropic responses to broadband far red (FR) radiation were investigated in fully de-etiolated seedlings of a long-hypocotyl mutant (lh) of cucumber (Cucumis sativus L.), which is deficient in phytochrome-B, and its near isogenic wild type (WT). Continuous unilateral FR light provided against a background of white light induced negative curvatures (i.e. bending away from the FR light source) in hypocotyls of WT seedlings. This response was fluence-rate dependent and was absent in the lh mutant, even at very high fluence rates of FR. The phototropic effect of FR light on WT seedlings was triggered in the hypocotyls and occurred over a range of fluence rates in which FR was very effective in promoting hypocotyl elongation. FR light had no effect on elongation of lh-mutant hypocotyls. Seedlings grown in the field showed negative phototropic responses to the proximity of neighboring plants that absorbed blue (B) and red light and back-reflected FR radiation. The bending response was significantly larger in WT than in lh seedlings. Responses of WT and lh seedlings to lateral B light were very similar; however, elimination of the lateral B light gradients created by the proximity of plant neighbors abolished the negative curvature only in the case of lh seedlings. More than 40% of the total hypocotyl curvature induced in WT seedlings by the presence of neighboring plants was present after equilibrating the fluence rates of B light received by opposite sides of the hypocotyl. These results suggest that: (a) phytochrome functions as a phototropic sensor in de-etiolated plants, and (b) in patchy canopy environments, young seedlings actively project new leaves into light gaps via stem bending responses elicited by the B-absorbing photoreceptor(s) and phytochrome. PMID:16652942

  6. Growth of ponderosa pine seedlings as affected by air pollution

    NASA Astrophysics Data System (ADS)

    Momen, B.; Anderson, P. D.; Houpis, J. L. J.; Helms, J. A.

    The effect of air pollution on seedling survival and competitive ability is important to natural and artificial regeneration of forest trees. Although biochemical and physiological processes are sensitive indicators of pollution stress, the cumulative effects of air pollutants on seedling vigor and competitive ability may be assessed directly from whole-plant growth characteristics such as diameter, height, and photosynthetic area. A few studies that have examined intraspecific variation in seedling response to air pollution indicate that genotypic differences are important in assessing potential effects of air pollution on forest regeneration. Here, we studied the effects of acid rain (no-rain, pH 5.1 rain, pH 3.0 rain) and ozone (filtered, ambient, twice-ambient) in the field on height, diameter, volume, the height:diameter ratio, maximum needle length, and time to reach maximum needle length in seedlings of three families of ponderosa pine ( Pinus ponderosa Dougl. ex Laws). Seedling diameter, height, volume, and height:diameter ratio related significantly to their pre-treatment values. Twice-ambient ozone decreased seedling diameter compared with ozone-filtered air. A significant family-by-ozone interaction was detected for seedling height, as the height of only one of the three families was decreased by twice-ambient ozone compared with the ambient level. Seedling diameter was larger and the height:diameter ratio was smaller under pH 3.0 rain compared to either the no-rain or the pH 5.1-rain treatment. This suggests greater seedling vigor, perhaps due to a foliar fertilization effect of the pH 3.0 rain.

  7. Boron nutrition affects the carbon metabolism of silver birch seedlings.

    PubMed

    Ruuhola, Teija; Keinänen, Markku; Keski-Saari, Sarita; Lehto, Tarja

    2011-11-01

    Boron (B) is an essential micronutrient whose deficiency is common both in agriculture and in silviculture. Boron deficiency impairs the growth of plants and affects many metabolic processes like carbohydrate metabolism. Boron deficiency and also excess B may decrease the sink demand by decreasing the growth and sugar transport which may lead to the accumulation of carbohydrates and down-regulation of photosynthesis. In this study, we investigated the effects of B nutrition on the soluble and storage carbohydrate concentrations of summer leaves and autumn buds in a deciduous tree species, Betula pendula Roth. In addition, we investigated the changes in the pools of condensed tannins between summer and autumn harvests. One-year-old birch seedlings were fertilized with a complete nutrient solution containing three different levels of B: 0, 30 and 100% of the standard level for complete nutrient solution. Half of the seedlings were harvested after summer period and another half when leaves abscised. The highest B fertilization level (B100) caused an accumulation of starch and a decrease in the concentrations of hexoses (glucose and fructose) in summer leaves, whereas in the B0 seedlings, hexoses (mainly glucose) accumulated and starch decreased. These changes in carbohydrate concentrations might be related to the changes in the sink demand since the autumn growth was the smallest for the B100 seedlings and largest for the B30 seedlings that did not accumulate carbohydrates. The autumn buds of B30 seedlings contained the lowest levels of glucose, glycerol, raffinose and total polyols, which was probably due to the dilution effect of the deposition of other substances like phenols. Condensed tannins accumulated in high amounts in the birch stems during the hardening of seedlings and the largest accumulation was detected in the B30 treatment. Our results suggest that B nutrition of birch seedlings affects the carbohydrate and phenol metabolism and may play an important

  8. Photomodulation of strigolactone biosynthesis and accumulation during sunflower seedling growth.

    PubMed

    Bharti, Niharika; Tripathi, Smita; Bhatla, Satish Chander

    2015-01-01

    Present investigations report the presence of strigolactones (SLs) and photomodulation of their biosynthesis in sunflower seedlings (roots, cotyledons and first pair of leaves) during early phase of seedling development. Qualitative analyses and characterization by HPLC, ESI-MS and FT-IR revealed the presence of more than one type of SLs. Orobanchyl acetate was detected both in roots and leaves. Five-deoxystrigol, sorgolactone and orobanchol were exclusively detected in seedling roots. Sorgomol was detectable only in leaves. HPLC eluted fraction from seedling roots and leaves co-chromatographing with GR24 (a synthetic SL) could also bring about germination in Orobanche cernua (a weed) seeds, which are established to exhibit SL - mediated germination, thereby indicating the SL identity of the eluates using this bioassay. SLs accumulation was always more in the roots of light-grown seedlings, it being maximum at 4 d stage. Although significant activity of carotenoid cleavage dioxygenase (CCD, the enzyme critical for SL biosynthesis) was detected in 2 d old seedling roots, SLs remained undetectable in cotyledons at all stages of development and also in the roots of 2 d old light and dark-grown seedlings. Roots of light-grown seedlings showed maximum CCD activity during early (2 d) stage of development, thereby confirming photomodulation of enzyme activity. These observations indicate the migration of a probable light-sensitized signaling molecule (yet to be identified) or a SL precursor from light exposed aerial parts to the seedling roots maintained in dark. Thus, a photomodulation and migration of SL precursor/s is evident from the present work. PMID:26252191

  9. BIM LAU-PE: Seedlings in Microgravity

    NASA Astrophysics Data System (ADS)

    Gass, S.; Pennese, R.; Chapuis, D.; Dainesi, P.; Nebuloni, S.; Garcia, M.; Oriol, A.

    2015-09-01

    The effect of gravity on plant roots is an intensive subject of research. Sounding rockets represent a costeffective platform to study this effect under microgravity conditions. As part of the upcoming MASER 13 sounding rocket campaign, two experiments on Arabidopsis thaliana seedlings have been devised: GRAMAT and SPARC. These experiments are aimed at studying (1) the genes that are specifically switched on or off during microgravity, and (2) the position of auxin-transporting proteins during microgravity. To perform these experiments, RUAG Space Switzerland site of Nyon, in collaboration with the Swedish Space Corporation (SSC) and the University of Freiburg, has developed the BIM LAU-PE (Biolology In Microgravity Late Access Unit Plant Experiment). In the following an overview of the BIM LAU-PE design is presented, highlighting specific module design features and verifications performed. A particular emphasis is placed on the parabolic flight experiments, including results of the micro-g injection system validation.

  10. Arborescent palm seed morphology and seedling distribution.

    PubMed

    Salm, Rodolfo

    2005-11-01

    This study examines how the seed morphology of two large arborescent palms, Attalea maripa (Aubl.) Mart. and Astrocaryum aculeatum G. Mey, may affect their seed shadow in a seasonally dry Amazonian forest. In addition to being smaller and produced in larger numbers than those of A. aculeatum, A. maripa seeds also presented a substantially lower amount of nutritional reserves available for the embryo. However, A. maripa seedlings were found in much higher numbers than those of A. aculeatum. The results suggest that, within the spatial scale considered, the seed rain of A. maripa is more restricted to the area surrounding around reproductive conspecifics than that of A. aculeatum. Furthermore, in comparison with those of A. aculeatum, the smaller seeds of A. maripa might be less attractive to scatterhoarding rodents (e.g. Dasyprocta aguti). The pattern observed emphasizes the importance of scatterhoarding rodents as dispersers of large-seeded plant species in Neotropical forests. PMID:16532195

  11. Storage oil hydrolysis during early seedling growth.

    PubMed

    Quettier, Anne-Laure; Eastmond, Peter J

    2009-06-01

    Storage oil breakdown plays an important role in the life cycle of many plants by providing the carbon skeletons that support seedling growth immediately following germination. This metabolic process is initiated by lipases (EC: 3.1.1.3), which catalyze the hydrolysis of triacylglycerols (TAGs) to release free fatty acids and glycerol. A number of lipases have been purified to near homogeneity from seed tissues and analysed for their in vitro activities. Furthermore, several genes encoding lipases have been cloned and characterised from plants. However, only recently has data been presented to establish the molecular identity of a lipase that has been shown to be required for TAG breakdown in seeds. In this review we briefly outline the processes of TAG synthesis and breakdown. We then discuss some of the biochemical literature on seed lipases and describe the cloning and characterisation of a lipase called SUGAR-DEPENDENT1, which is required for TAG breakdown in Arabidopsis thaliana seeds.

  12. Substrate influences ecophysiological performance of tree seedlings.

    PubMed

    Pröll, Gisela; Hietz, Peter; Delaney, Christina M; Katzensteiner, Klaus

    2016-01-01

    Unfavourable soil conditions frequently limit tree regeneration in mountain forests on calcareous bedrock. Rocky, shallow organic soils on dolomite pose a particular problem for tree regeneration due to commonly restricted water and nutrient supplies. Moreover, an often dense layer of understorey vegetation competes for the limited resources available. Hence, an array of interacting factors impairs tree seedlings' performance on dolomite, but there is little information on the ecophysiological mechanisms. We studied the effects of substrate, competing vegetation and foliar nutrient concentrations on the photosynthetic rate (A), stomatal conductance (gs) and leaf water potentials (ψ) of sycamore (Acer pseudoplatanus L.), beech (Fagus sylvatica L.), spruce [Picea abies (L.) Karst.] and larch (Larix decidua Mill.) under controlled (well-watered/drought-stressed) conditions and under prevailing field conditions. While A and gs of well-watered spruce in the pot experiment were reduced by the mineral substrate, the organic dolomite substrate with dense competing vegetation reduced gs and ψ of sycamore, spruce and larch under drought-stressed conditions in the field. For sycamore and spruce, A and gs were strongly correlated with foliar nitrogen (N) and potassium (K) concentrations in the pot experiment. In contrast, soil water primarily affected beech and larch. Finally, dense competing vegetation negatively affected A and gs of spruce and A of larch on dolomite. Our results highlight the critical role of N, K and water availability for tree seedlings in shallow soils on calcareous bedrock. On these sites, natural tree regeneration is at particular risk from episodic drought, a likely consequence of climate change.

  13. Substrate influences ecophysiological performance of tree seedlings.

    PubMed

    Pröll, Gisela; Hietz, Peter; Delaney, Christina M; Katzensteiner, Klaus

    2016-01-01

    Unfavourable soil conditions frequently limit tree regeneration in mountain forests on calcareous bedrock. Rocky, shallow organic soils on dolomite pose a particular problem for tree regeneration due to commonly restricted water and nutrient supplies. Moreover, an often dense layer of understorey vegetation competes for the limited resources available. Hence, an array of interacting factors impairs tree seedlings' performance on dolomite, but there is little information on the ecophysiological mechanisms. We studied the effects of substrate, competing vegetation and foliar nutrient concentrations on the photosynthetic rate (A), stomatal conductance (gs) and leaf water potentials (ψ) of sycamore (Acer pseudoplatanus L.), beech (Fagus sylvatica L.), spruce [Picea abies (L.) Karst.] and larch (Larix decidua Mill.) under controlled (well-watered/drought-stressed) conditions and under prevailing field conditions. While A and gs of well-watered spruce in the pot experiment were reduced by the mineral substrate, the organic dolomite substrate with dense competing vegetation reduced gs and ψ of sycamore, spruce and larch under drought-stressed conditions in the field. For sycamore and spruce, A and gs were strongly correlated with foliar nitrogen (N) and potassium (K) concentrations in the pot experiment. In contrast, soil water primarily affected beech and larch. Finally, dense competing vegetation negatively affected A and gs of spruce and A of larch on dolomite. Our results highlight the critical role of N, K and water availability for tree seedlings in shallow soils on calcareous bedrock. On these sites, natural tree regeneration is at particular risk from episodic drought, a likely consequence of climate change. PMID:26446268

  14. Identification of chromosome regions associated with seedling vigor in rice.

    PubMed

    Huang, Zheng; Yu, Ting; Su, Li; Yu, Si-Bin; Zhang, Zhi-Hong; Zhu, Ying-Guo

    2004-06-01

    Seedling vigor is important for optimum stand establishment in rice cropping. In this paper,a set of 264 F12 recombinant inbred lines (RILs) derived by single seed descent from a cross between Lemont (japonica) and Teqing (indica) was phenotyped for three seedling vigor related traits, including seed germination rate (GR), seedling shoot length and dry weight by the rolled paper towel tests. The phenotype data and a linkage map consisting of 198 DNA markers were combined to map quantitative trait loci (QTL) for seedling vigor by using a computer program QTLMapper1.0. A total of 13 putative main-effect QTL were detected. All of these QTL had much smaller effects on the traits with a mean R2 of 6.2%, ranging from 2.9% to 12.7%. As for digenic interaction, 18 pairs of epistatic loci with R2 > or = 5% were resolved with a mean R2 of 6.9% ,ranging from 5.1% to 11.8%, which was slightly larger than that of the main-effect QTL identified for the traits. The majority of the main-effect and epistatic loci detected for seedling vigor related traits were clustered in a few chromosome regions. Together, seven such chromosome regions (CRs), each with three or more seedling vigor main-effect and epistatic loci, were found to be highly associated with seedling vigor. These CRs can be classified into three types, i.e. M-CRs, E-CRs and ME-CRs. For some CRs just like CR(SV-6), the QTL within one CR were found to interact simultaneously with QTL within more than one other CRs to affect different seedling vigor related traits. The above results revealed that seedling vigor in rice is controlled by many loci, most of which have relatively small effects. Comparatively, epistasis as a genetic factor would be more important than main-effects of QTL for seedling vigor in rice. Nevertheless, the effects of the QTL are still large enough to be detected and in fact several chromosome regions were found to be highly associated with seedling vigor in very different populations as compared with

  15. ARC EMCS Experiments (Seedling Growth-2) Experiment Status

    NASA Technical Reports Server (NTRS)

    Heathcote, David; Steele, Marianne

    2015-01-01

    Presentation of the status of the ARC ISS (International Space Station) Experiment, Seedling Growth-2 to the Payload Operations Investigator Working Group meeting at MSFC, Huntsville AL. The experiment employs the European Modular Cultivation System (ECMS).

  16. Actin of Beta vulgaris seedlings under the clinorotation

    NASA Astrophysics Data System (ADS)

    Kozeko, L. Ye.

    We study the influence of altered gravity on actin expression in roots of Beta vulguris seedlings grown on the horizontal clinostat (2 rpm) from seed germination for three days. It is shown that the total actin quantity was not influenced. Three actin isoforms are revealed; a relative protein quantity of these isoforms was similar both in clinorotated seedlings and in ones grown in norm. This point to stable expression of actin under the altered gravity conditions.

  17. Eucalyptus obliqua seedling growth in organic vs. mineral soil horizons

    PubMed Central

    Barry, Karen M.; Janos, David P.; Nichols, Scott; Bowman, David M. J. S.

    2015-01-01

    Eucalyptus obliqua, the most widespread timber tree in Tasmania, is a pioneer after fire which can eliminate the organic layer of forest soil, exposing the underlying mineral soil. We compared seedling growth, mycorrhiza formation, and mineral nutrient limitation in organic layer vs. mineral soil. We grew E. obliqua seedlings separately in pots of organic layer and mineral soil in a glasshouse. Additional treatments of organic soil only, involved fully crossed methyl-bromide fumigation and fertilization. Fertilization comprised chelated iron for 121 days after transplant (DAT) followed by soluble phosphorus. At 357 DAT, whole plant dry weight was three times greater in ambient organic than in mineral soil. In organic soil, fumigation halved ectomycorrhiza abundance and reduced seedling growth at 149 DAT, but by 357 DAT when negative effects of fumigation on seedling growth had disappeared, neither fumigation nor fertilization affected mycorrhiza abundance. Iron fertilization diminished seedling growth, but subsequent phosphorus fertilization improved it. E. obliqua seedlings grow much better in organic layer soil than in mineral soil, although phosphorus remains limiting. The prevalent forestry practice of burning to mineral soil after timber harvest exposes a poor growth medium likely only partially compensated by fire-induced mineral soil alterations. PMID:25750650

  18. Eucalyptus obliqua seedling growth in organic vs. mineral soil horizons.

    PubMed

    Barry, Karen M; Janos, David P; Nichols, Scott; Bowman, David M J S

    2015-01-01

    Eucalyptus obliqua, the most widespread timber tree in Tasmania, is a pioneer after fire which can eliminate the organic layer of forest soil, exposing the underlying mineral soil. We compared seedling growth, mycorrhiza formation, and mineral nutrient limitation in organic layer vs. mineral soil. We grew E. obliqua seedlings separately in pots of organic layer and mineral soil in a glasshouse. Additional treatments of organic soil only, involved fully crossed methyl-bromide fumigation and fertilization. Fertilization comprised chelated iron for 121 days after transplant (DAT) followed by soluble phosphorus. At 357 DAT, whole plant dry weight was three times greater in ambient organic than in mineral soil. In organic soil, fumigation halved ectomycorrhiza abundance and reduced seedling growth at 149 DAT, but by 357 DAT when negative effects of fumigation on seedling growth had disappeared, neither fumigation nor fertilization affected mycorrhiza abundance. Iron fertilization diminished seedling growth, but subsequent phosphorus fertilization improved it. E. obliqua seedlings grow much better in organic layer soil than in mineral soil, although phosphorus remains limiting. The prevalent forestry practice of burning to mineral soil after timber harvest exposes a poor growth medium likely only partially compensated by fire-induced mineral soil alterations.

  19. Molecular biology of Ganoderma pathogenicity and diagnosis in coconut seedlings.

    PubMed

    Kandan, A; Radjacommare, R; Ramanathan, A; Raguchander, T; Balasubramanian, P; Samiyappan, R

    2009-01-01

    The pathogenicity of Ganoderma boninense was tested on coconut seedlings under greenhouse conditions and infection confirmed by using immunological and molecular diagnostic tools. Desiccation of older leaves and the emergence of sporophores were observed from pathogen-inoculated seedlings, whereas a control seedling does not show any pathogenic symptoms. Mature sporophores were formed within 10-13 weeks after inoculation. Polyclonal antibodies raised against mycelial proteins of Ganoderma were used for detection of Ganoderma in infected field palm and seedlings through indirect enzyme-linked immunosorbent assay technique. We adopted dot-immunobinding assay for the detection of Ganoderma from greenhouse and field samples. Under nucleic-acid-based diagnosis, G. boninense (167 bp) was detected from artificially inoculated seedlings and infected field palms by polymerase chain reaction. Apart from these, histopathological studies also support the Ganoderma pathogenicity in coconut seedlings. The pathogenicity test and combination of all the three diagnostic methods for Ganoderma could be highly reliable, rapid, sensitive and effective screening of resistance in planting material in the future. PMID:19418253

  20. Eucalyptus obliqua seedling growth in organic vs. mineral soil horizons.

    PubMed

    Barry, Karen M; Janos, David P; Nichols, Scott; Bowman, David M J S

    2015-01-01

    Eucalyptus obliqua, the most widespread timber tree in Tasmania, is a pioneer after fire which can eliminate the organic layer of forest soil, exposing the underlying mineral soil. We compared seedling growth, mycorrhiza formation, and mineral nutrient limitation in organic layer vs. mineral soil. We grew E. obliqua seedlings separately in pots of organic layer and mineral soil in a glasshouse. Additional treatments of organic soil only, involved fully crossed methyl-bromide fumigation and fertilization. Fertilization comprised chelated iron for 121 days after transplant (DAT) followed by soluble phosphorus. At 357 DAT, whole plant dry weight was three times greater in ambient organic than in mineral soil. In organic soil, fumigation halved ectomycorrhiza abundance and reduced seedling growth at 149 DAT, but by 357 DAT when negative effects of fumigation on seedling growth had disappeared, neither fumigation nor fertilization affected mycorrhiza abundance. Iron fertilization diminished seedling growth, but subsequent phosphorus fertilization improved it. E. obliqua seedlings grow much better in organic layer soil than in mineral soil, although phosphorus remains limiting. The prevalent forestry practice of burning to mineral soil after timber harvest exposes a poor growth medium likely only partially compensated by fire-induced mineral soil alterations. PMID:25750650

  1. Lignification in young plant seedlings grown on earth and aboard the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Cowles, Joe R.; Lemay, R.; Jahns, G.; Scheld, W. H.; Peterson, C.

    1989-01-01

    The Space Shuttle era has provided an opportunity for investigators to conduct experiments in a microgravity environment. Two Shuttle flights, STS-3 and STS-51F, each contained an experiment designed principally to determine whether young plant seedlings exposed to microgravity had reduced lignin content in comparison to seedlings grown at one gravity. Three different plant species, pine, oats, and mung beans, were exposed for eight days to the microgravity environment of the Shuttle. The lignin content of in-flight seedlings was less than the control seedlings in all seven sets of seedlings included in these two experiments. In five sets of seedlings, the reduction in lignin content in flight seedlings ranged from 6 to 24 percent and was statistically significant. In addition, the activity of two enzymes involved in lignin synthesis, phenylalanine ammonia lyase and peroxidase, were significantly reduced in pine seedlings. It was therefore concluded that microgravity, as perceived by young plant seedlings, results in reduced lignin synthesis.

  2. The Vibration Ring. Phase 1; [Seedling Fund

    NASA Technical Reports Server (NTRS)

    Asnani, Vivake M.; Krantz, Timothy L.; Delap, Damon C.; Stringer, David B.

    2014-01-01

    The vibration ring was conceived as a driveline damping device to prevent structure-borne noise in machines. It has the appearance of a metal ring, and can be installed between any two driveline components like an ordinary mechanical spacer. Damping is achieved using a ring-shaped piezoelectric stack that is poled in the axial direction and connected to an electrical shunt circuit. Surrounding the stack is a metal structure, called the compression cage, which squeezes the stack along its poled axis when excited by radial driveline forces. The stack in turn generates electrical energy, which is either dissipated or harvested using the shunt circuit. Removing energy from the system creates a net damping effect. The vibration ring is much stiffer than traditional damping devices, which allows it to be used in a driveline without disrupting normal operation. In phase 1 of this NASA Seedling Fund project, a combination of design and analysis was used to examine the feasibility of this concept. Several designs were evaluated using solid modeling, finite element analysis, and by creating prototype hardware. Then an analytical model representing the coupled electromechanical response was formulated in closed form. The model was exercised parametrically to examine the stiffness and loss factor spectra of the vibration ring, as well as simulate its damping effect in the context of a simplified driveline model. The results of this work showed that this is a viable mechanism for driveline damping, and provided several lessons for continued development.

  3. Forest tree seedlings may suffer from predicted future winters

    NASA Astrophysics Data System (ADS)

    Domisch, Timo; Repo, Tapani; Martz, Françoise; Rautio, Pasi

    2016-04-01

    Future climate scenarios predict increased precipitation and air temperatures, particularly at high latitudes, and especially so during winter, spring and autumn. However, soil temperatures are more difficult to predict, since they depend strongly on the insulating snow cover. Warm periods during winter can lead to thaw-freeze cycles and flooding, which again can result in the formation of ice layers, affecting soil properties, soil gas concentrations and the survival of tree seedlings. We conducted two laboratory experiments of 20 weeks duration each, simulating winter, spring and early summer, and imposed Scots pine (Pinus sylvestris L.) or downy birch (Betula pubescens Ehrh.) seedlings to four different winter scenarios: (1) ambient snow cover, (2) compressed snow and ice encasement, (3) frozen flood and (4) no snow. We estimated the stress that the seedlings experienced by means of gas exchange, chlorophyll fluorescence and determining above- and belowground biomass and carbohydrate contents, as well as measuring soil oxygen and carbon dioxide concentrations. The seedlings in the snow and compressed snow treatments survived until the end of the experiments, although only those covered with an ambient snow cover showed normal height growth and typical carbohydrate contents. The seedlings in the other treatments showed symptoms of dieback already during early spring and had almost completely died at the end of the experiment. Our results suggest the crucial significance of the protective snow cover, and that a missing soil cover or soil hypoxia and anoxia during winter can be lethal for seedlings, and that respiratory losses and winter desiccation of aboveground organs can further lead to the death of tree seedlings.

  4. Gene Expression in Plant Lipid Metabolism in Arabidopsis Seedlings

    PubMed Central

    Hsiao, An-Shan; Haslam, Richard P.; Michaelson, Louise V.; Liao, Pan; Napier, Johnathan A.; Chye, Mee-Len

    2014-01-01

    Events in plant lipid metabolism are important during seedling establishment. As it has not been experimentally verified whether lipid metabolism in 2- and 5-day-old Arabidopsis thaliana seedlings is diurnally-controlled, quantitative real-time PCR analysis was used to investigate the expression of target genes in acyl-lipid transfer, β-oxidation and triacylglycerol (TAG) synthesis and hydrolysis in wild-type Arabidopsis WS and Col-0. In both WS and Col-0, ACYL-COA-BINDING PROTEIN3 (ACBP3), DIACYLGLYCEROL ACYLTRANSFERASE1 (DGAT1) and DGAT3 showed diurnal control in 2- and 5-day-old seedlings. Also, COMATOSE (CTS) was diurnally regulated in 2-day-old seedlings and LONG-CHAIN ACYL-COA SYNTHETASE6 (LACS6) in 5-day-old seedlings in both WS and Col-0. Subsequently, the effect of CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) from the core clock system was examined using the cca1lhy mutant and CCA1-overexpressing (CCA1-OX) lines versus wild-type WS and Col-0, respectively. Results revealed differential gene expression in lipid metabolism between 2- and 5-day-old mutant and wild-type WS seedlings, as well as between CCA1-OX and wild-type Col-0. Of the ACBPs, ACBP3 displayed the most significant changes between cca1lhy and WS and between CCA1-OX and Col-0, consistent with previous reports that ACBP3 is greatly affected by light/dark cycling. Evidence of oil body retention in 4- and 5-day-old seedlings of the cca1lhy mutant in comparison to WS indicated the effect of cca1lhy on storage lipid reserve mobilization. Lipid profiling revealed differences in primary lipid metabolism, namely in TAG, fatty acid methyl ester and acyl-CoA contents amongst cca1lhy, CCA1-OX, and wild-type seedlings. Taken together, this study demonstrates that lipid metabolism is subject to diurnal regulation in the early stages of seedling development in Arabidopsis. PMID:25264899

  5. Assessing Posidonia oceanica Seedling Substrate Preference: An Experimental Determination of Seedling Anchorage Success in Rocky vs. Sandy Substrates

    PubMed Central

    Alagna, Adriana; Fernández, Tomás Vega; Anna, Giovanni D; Magliola, Carlo; Mazzola, Salvatore; Badalamenti, Fabio

    2015-01-01

    In the last decades the growing awareness of the ecological importance of seagrass meadows has prompted increasing efforts to protect existing beds and restore degraded habitats. An in-depth knowledge of factors acting as major drivers of propagule settlement and recruitment is required in order to understand patterns of seagrass colonization and recovery and to inform appropriate management and conservation strategies. In this work Posidonia oceanica seedlings were reared for five months in a land-based culture facility under simulated natural hydrodynamic conditions to identify suitable substrates for seedling anchorage. Two main substrate features were investigated: firmness (i.e., sand vs. rock) and complexity (i.e., size of interstitial spaces between rocks). Seedlings were successfully grown in culture tanks, obtaining overall seedling survival of 93%. Anchorage was strongly influenced by substrate firmness and took place only on rocks, where it was as high as 89%. Anchorage occurred through adhesion by sticky root hairs. The minimum force required to dislodge plantlets attached to rocky substrates reached 23.830 N (equivalent to 2.43 kg), which would potentially allow many plantlets to overcome winter storms in the field. The ability of rocky substrates to retain seedlings increased with their complexity. The interstitial spaces between rocks provided appropriate microsites for seedling settlement, as seeds were successfully retained, and a suitable substrate for anchorage was available. In conclusion P. oceanica juveniles showed a clear-cut preference for hard substrates over the sandy one, due to the root system adhesive properties. In particular, firm and complex substrates allowed for propagule early and strong anchorage, enhancing persistence and establishment probabilities. Seedling substrate preference documented here leads to expect a more successful sexual recruitment on hard bottoms compared with soft ones. This feature could have influenced P

  6. Rhizotoxic effects of silver in cowpea seedlings.

    PubMed

    Blamey, F Pax C; Kopittke, Peter M; Wehr, J Bernhard; Kinraide, Thomas B; Menzies, Neal W

    2010-09-01

    Silver (Ag) is highly toxic to aquatic organisms, including algae, invertebrate animals, and fish, but little information exists on Ag rhizotoxicity in higher plants. In two solution culture experiments with approximately 1,000 microM Ca(NO3)2 and 5 microM H3BO3 (pH 5.4), 20 to 80% of added Ag (< or =2 microM) was lost from solution within approximately 30 min, with a further decrease after 48 h root growth. Using measured Ag concentrations at the start of the experiments, the median effective concentration (EC50) for root elongation rate of cowpea (Vigna unguiculata [L.] Walp. cv. Caloona) was 0.010 microM Ag in the first 4 h of exposure (0.021 microM in the first 8 h). This demonstrates that Ag (as Ag+) is rapidly rhizotoxic to cowpea seedlings at concentrations similar to those that are toxic to freshwater biota. Rupturing of rhizodermal and outer cortical layers was evident after 48 h with 0.13 to 0.57 microM Ag initially in solution, being most severe at 0.13 or 0.25 microM Ag. An additional experiment showed that ruptures were first evident after 20 h exposure to 0.17 microM Ag, with increased severity of rupturing over time. The rhizotoxic effects of Ag are similar to those of some other trace metals (e.g., Cu, Al, La) that bind strongly to hard ligands and weakly to soft ligands. The similarity of rupturing effects, despite the difference in strong binding to soft ligands by Ag and to hard ligands by the other metals, suggests a distinctive metabolic effect of Ag that binds only weakly to hard ligands.

  7. Seedling mortality from litterfall increases with decreasing latitude.

    PubMed

    Gillman, Len N

    2016-02-01

    Global patterns in ecology need to be identified and interpreted if macroecological processes are to be fully understood. Facilitating effects on seedlings such as that of nurse plants and competitive effects such as allelopathy have been well recognized but the importance of plants acting as killers through physical damage by the litterfall they produce has received relatively little attention. Here I examine latitudinal patterns of physical disturbance to seedlings (microdisturbance) due to litterfall and discuss the macroecological implications in light of current research. Analyses of results from published studies show that both the risk of litterfall disturbance, as measured using artificial model seedlings, and the proportion of seedling mortalities due to litterfall decrease significantly with increasing latitude. Patterns of microdisturbance appear to be driven by the dynamic interaction between macro-litterfall, safe sites with protective overhead vegetation, topography, and animal activity. However, we are informed on this subject by few studies. There is evidence, again from a limited number of studies, for considerable spatial heterogeneity in microdisturbance intensity and for seedling resilience to litterfall damage to differ substantially among species. Therefore, differential survival among microsites may produce regeneration niche diversity. However, more focused studies are required across a range of forest types and latitudes before these results can be generalized. Therefore, there is fertile ground for researchers to use comparable multifactorial methods to investigate the implications of microdisturbance at macro-ecological scales. PMID:27145626

  8. Degraded dryland rehabilitation: boosting seedling survival using zeolitic tuff

    NASA Astrophysics Data System (ADS)

    Alhamad, Mohammad Noor; Alrbabah, Mohammad; Athamneh, Hana

    2016-04-01

    More than 90% of Jordan is broadly defined as rangelands. Most rangelands are located within the arid zone of the country. Extensive grazing occurs across much of the natural pastures resulting in serious environmental degradation of natural resources in these rangelands. Several programs were carried out for rangeland conservation and rehabilitation in the country. However, these programs face a major challenge of the low survival rate of transplanted shrub seedlings. Seeking innovative approaches to assure healthy establishment of seedling is a big challenge to achieve successful rehabilitation programs. Drought is considered one of the major problems in rehabilitation. Promoting survival and growth, using zeolitic tuff added to planting holes is suggested to be a possible solution. The experiment was conducted on a factorial arrangement within RCBD design. Two shrub species (Atriplex halimus, Atriplex nummularia) were transplanted into holes prepared with three levels of tuff treatments (mulching, mixing and control) under rainfed condition. The result showed insignificant effect of tuff on seedling survival percentage, when mixing tuff with plantation soil or adding tuff as mulch. Also, the two species showed similar survival percentages over two measured dates. However, mixing tuff with soil during hole preparation significantly enhanced seedling heights. Furthers, The Australian atriplex (Atriplex nummularia) species significantly grow higher than Atriplex halimus. The study results suggested that mixing zeoltic tuff with soil during transplantation of seedling is promising in improving the success of rangeland rehabilitation in dry areas in Jordan.

  9. Seedling mortality from litterfall increases with decreasing latitude.

    PubMed

    Gillman, Len N

    2016-02-01

    Global patterns in ecology need to be identified and interpreted if macroecological processes are to be fully understood. Facilitating effects on seedlings such as that of nurse plants and competitive effects such as allelopathy have been well recognized but the importance of plants acting as killers through physical damage by the litterfall they produce has received relatively little attention. Here I examine latitudinal patterns of physical disturbance to seedlings (microdisturbance) due to litterfall and discuss the macroecological implications in light of current research. Analyses of results from published studies show that both the risk of litterfall disturbance, as measured using artificial model seedlings, and the proportion of seedling mortalities due to litterfall decrease significantly with increasing latitude. Patterns of microdisturbance appear to be driven by the dynamic interaction between macro-litterfall, safe sites with protective overhead vegetation, topography, and animal activity. However, we are informed on this subject by few studies. There is evidence, again from a limited number of studies, for considerable spatial heterogeneity in microdisturbance intensity and for seedling resilience to litterfall damage to differ substantially among species. Therefore, differential survival among microsites may produce regeneration niche diversity. However, more focused studies are required across a range of forest types and latitudes before these results can be generalized. Therefore, there is fertile ground for researchers to use comparable multifactorial methods to investigate the implications of microdisturbance at macro-ecological scales.

  10. Why are there few seedlings beneath the myrmecophyte Triplaris americana?

    NASA Astrophysics Data System (ADS)

    Larrea-Alcázar, Daniel M.; Simonetti, Javier A.

    2007-07-01

    We compared the relative importance of chemical alellopathy, pruning behaviour of resident ants and other non-related agents to ant-plant mutualism for seedling establishment beneath Triplaris americana L. (Polygonaceae), a myrmecophyte plant. We also included a preliminary analysis of effects of fragmentation on these ecological processes. Seeds and seedlings of Theobroma cacao L. (Sterculiaceae) were used as the target species in all experiments. Leaf-tissue extracts of the myrmecophyte plant did not inhibit germination of cacao seeds. Resident Pseudomyrmex triplarinus Weddell (Pseudomyrmecinae) ants did not remove seeds under the canopy of their host plants. The main seed consumer was the leaf-cutting ant Atta sexdens L. (Myrmicinae). Leaves of cacao seedlings were partially or totally pruned by Pseudomyrmex ants mainly in forest fragments studied. We offer evidence pointing to the possibility that the absence of seedlings beneath Triplaris may result from effects of both ant species. We discuss the benefits of pruning behaviour for the resident ant colony and the effects of ant-ant interactions on seedling establishment beneath this ant-plant system.

  11. Effects of Simulated Microgravity on Thermotolerance of Pea Seedlings

    NASA Astrophysics Data System (ADS)

    Kozeko, L.

    2008-06-01

    A coordinated plant response to simulated microgravity (clinorotation) and heat stress was analyzed. 5-d pea seedlings grown on a horizontal clinostat or in the stationary conditions were exposed to different heat treatments (mild, severe and severe after pretreatment). Temperature-dependent quantitative changes in the heat stress response were revealed in the clinorotated seedlings comparatively to the stationary grown ones: less growth activity, an increase in the production of high levels of heat shock proteins Hsp70 and Hsp90, a higher extent of the membrane damage. Thus, clinorotated seedlings were more sensitive to heat stress. The data suggest that clinorotation may influence distinct functions, including Hsps synthesis and protection of membrane integrity, that affect plant growth activity and thermotolerance as a result.

  12. Nitrogen ion utilization by tulip poplar (Liriodendron tulipifera L. ) seedlings

    SciTech Connect

    Mann, L.K.

    1982-01-01

    Growth responses of one-year-old tulip poplar seedlings were determined for different nitrogen sources (HN/sub 4/NO/sub 3/, NH+/sub 4/, NO-/sub 3/, no nitrogen) at 336 ppm N in nutrient culture. At the end of three months, there were no significant differences in growth observed among treatments in terms of stem elongation, leaf area, and leaf size. After four months, however, seedlings of the NH/sub 4/NO/sub 3/ treatment exhibited significantly (P<0.05) greater growth (final weight gain and stem elongation) than all other nitrogen sorces. Growth was slightly less for the NO-/sub 3/ treatment plants, but compared with NH+/sub 4/ and no nitrogen treatment, both NH/sub 4/NO/sub 3/ and NO-/sub 3/ treatments exhibited significantly greater growth responses. NO-/sub 3/ is recommended as the sole nitrogen source, especially for small seedlings of tulip poplar.

  13. Effect of soil bulk density on forest tree seedlings

    NASA Astrophysics Data System (ADS)

    Kormanek, Mariusz; Banach, Jacek; Sowa, Paweł

    2015-01-01

    The paper presents the results of an analysis of the influence of soil bulk density in a forest nursery plot on the growth and quality parameters of Scots pine and European beech seedlings. Particular density variants were obtained using a tractor device exerting controlled pressure on the soil, while field examinations were performed on an area of `Kłaj' forest nursery in Niepołomice Forest District. Three series of plots were prepared for each species, applying a unit pressure of the values of 50, 100, 150, 200, 250 kPa, corresponding to the dry bulk density in the range of 1.03-1.19 g cm-3, and control plots without the pressure. Seeds of the examined species were sown on the prepared plots, and after 6 months of growth the seedlings were subjected to biometric analysis determining differentiation in root neck diameter, length of the above-ground part and root system, as well as dry mass of particular parts of the plant. The quality of the seedlings was also determined using the method of Schmidt-Vogt. The results obtained show that the change in dry bulk density soil significantly affected most of the growth parameters of the examined seedlings. Especially high negative correlations were obtained for the length and dry mass of the root system. A significant influence of dry bulk density variant on all growth parameters of Scots pine seedlings, and on some parameters of European beech was demonstrated. An increase in soil bulk density clearly caused also a deterioration of European beech seedlings quality

  14. Germination and seedling establishment in orchids: a complex of requirements

    PubMed Central

    Rasmussen, Hanne N.; Dixon, Kingsley W.; Jersáková, Jana; Těšitelová, Tamara

    2015-01-01

    Background Seedling recruitment is essential to the sustainability of any plant population. Due to the minute nature of seeds and early-stage seedlings, orchid germination in situ was for a long time practically impossible to observe, creating an obstacle towards understanding seedling site requirements and fluctuations in orchid populations. The introduction of seed packet techniques for sowing and retrieval in natural sites has brought with it important insights, but many aspects of orchid seed and germination biology remain largely unexplored. Key Considerations The germination niche for orchids is extremely complex, because it is defined by requirements not only for seed lodging and germination, but also for presence of a fungal host and its substrate. A mycobiont that the seedling can parasitize is considered an essential element, and a great diversity of Basidiomycota and Ascomycota have now been identified for their role in orchid seed germination, with fungi identifiable as imperfect Rhizoctonia species predominating. Specificity patterns vary from orchid species employing a single fungal lineage to species associating individually with a limited selection of distantly related fungi. A suitable organic carbon source for the mycobiont constitutes another key requirement. Orchid germination also relies on factors that generally influence the success of plant seeds, both abiotic, such as light/shade, moisture, substrate chemistry and texture, and biotic, such as competitors and antagonists. Complexity is furthermore increased when these factors influence seeds/seedling, fungi and fungal substrate differentially. Conclusions A better understanding of germination and seedling establishment is needed for conservation of orchid populations. Due to the obligate association with a mycobiont, the germination niches in orchid species are extremely complex and varied. Microsites suitable for germination can be small and transient, and direct observation is difficult

  15. Chromosome doubling of haploid maize seedlings by various in vitro treatments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A two-year study was conducted on methods for doubling haploid maize plants with elite temperate backgrounds following various seed treatments. Seedlings were treated with colchicine or other chemicals by 1) injecting plants and 2) a soak method using various seedling treatments. Treated seedlings...

  16. UV-B response of greening barley seedlings.

    PubMed

    Fedina, Ivanka; Velitchkova, Maya; Georgieva, Katya; Nedeva, Dimitrina; Çakirlar, H

    2009-06-01

    The relationship between the greening stage of barley seedlings and their response to UV-B irradiation was studied. Etiolated barley seedlings ( Hordeum vulgare L., cv. Alfa) greened 12, 24 and 48 h were exposed to UV-B irradiation (312 nm) for 5 h. As a result of UV-B treatment the rate of CO(2) fixation and chlorophyll contents decreased but flavonoids, UV-B-induced compounds and carotenoids increased. The inhibition of photosynthesis in green plants was lower in comparison to greening ones. The 12 h greening plants were more sensitive to UV-B treatment than the plants greening 24 h and particularly 48 h, estimated by the quantum efficiency of PSII photochemistry and the oxygen production rate. The levels of flavonoids and UV-B induced compounds enhanced with increasing the greening time. Activity of antioxidant enzymes catalase, peroxidase and superoxide dismutase increased during the seedlings greening and as a result of UV-B irradiation, but the pattern of isoforms remained similar to those found in the controls. UV-B preferentially induced Cu,Zn-superoxide dismutase. Increase of UVB induced synthesis of antioxidant enzymes is in line with their important role in the plant response to UV-B stress. Data presented show that the response of barley seedlings to UV-B irradiation is related to the development stage of photosynthetic apparatus.

  17. Identification of seedling cabbages and weeds using hyperspectral imaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Target detectionis one of research focues for precision chemical application. This study developed a method to identify seedling cabbages and weeds using hyperspectral spectral imaging. In processing the image data, with ENVI software, after dimension reduction, noise reduction, de-correlation for h...

  18. Soybean seedlings tolerate abrasion from air-propelled grit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New tools for controlling weeds would be useful for soybean production in organic systems. Air-propelled abrasive grit is one such tool that performs well for in-row weed control in corn, but crop safety in soybean is unknown. We examined responses to abrasion by corn-cob grit of soybean seedlings a...

  19. [Characterization of growth-promoting rhizobacteria in Eucalyptus nitens seedlings].

    PubMed

    Angulo, Violeta C; Sanfuentes, Eugenio A; Rodríguez, Francisco; Sossa, Katherine E

    2014-01-01

    Rhizospheric and endophytic bacteria were isolated from the rizosphere and root tissue of Eucalyptus nitens. The objective of this work was to evaluate their capacity to promote growth in seedlings of the same species under greenhouse conditions. The isolates that improved seedling growth were identified and characterized by their capacity to produce indoleacetic acid (IAA), solubilize phosphates and increase 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. One hundred and five morphologically different strains were isolated, 15 of which promoted E. nitens seedling growth, significantly increasing the height (50%), root length (45%) as well as the aerial and root dry weight (142% and 135% respectively) of the plants. Bacteria belonged to the genus Arthrobacter, Lysinibacillus, Rahnella and Bacillus. Isolates A. phenanthrenivorans 21 and B. cereus 113 improved 3.15 times the emergence of E. nitens after 12 days, compared to control samples. Among isolated R. aquatilis, 78 showed the highest production of IAA (97.5±2.87 μg/ml) in the presence of tryptophan and the highest solubilizer index (2.4) for phosphorus, while B. amyloliquefaciens 60 isolate was positive for ACC deaminase activity. Our results reveal the potential of the studied rhizobacteria as promoters of emergence and seedling growth of E. nitens, and their possible use as PGPR inoculants, since they have more than one mechanism associated with plant growth promotion.

  20. Heat Stress Screening of Peanut Seedlings for Acquired Thermotolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to develop a user-friendly and medium throughput laboratory protocol using acquired thermotolerance (ATT) in peanut seedlings as a measure of one mechanism of heat stress tolerance. Sixteen genotypes, including selected accessions of the U.S. peanut min...

  1. Utilization of Amygdalin during Seedling Development of Prunus serotina.

    PubMed

    Swain, E.; Poulton, J. E.

    1994-10-01

    Cotyledons of mature black cherry (Prunus serotina Ehrh.) seeds contain the cyanogenic diglucoside (R)-amygdalin. The levels of amygdalin, its corresponding monoglucoside (R)-prunasin, and the enzymes that metabolize these cyanoglycosides were measured during the course of seedling development. During the first 3 weeks following imbibition, cotyledonary amygdalin levels declined by more than 80%, but free hydrogen cyanide was not released to the atmosphere. Concomitantly, prunasin, which was not present in mature, ungerminated seeds, accumulated in the seedling epicotyls, hypocotyls, and cotyledons to levels approaching 4 [mu]mol per seedling. Whether this prunasin resulted from amygdalin hydrolysis remains unclear, however, because these organs also possess UDPG:mandelonitrile glucosyltransferase, which catalyzes de novo prunasin biosynthesis. The reduction in amygdalin levels was paralleled by declines in the levels of amygdalin hydrolase (AH), prunasin hydrolase (PH), mandelonitrile lyase (MDL), and [beta]-cyanoalanine synthase. At all stages of seedling development, AH and PH were localized by immunocytochemistry within the vascular tissues. In contrast, MDL occurred mostly in the cotyledonary parenchyma cells but was also present in the vascular tissues. Soon after imbibition, AH, PH, and MDL were found within protein bodies but were later detected in vacuoles derived from these organelles. PMID:12232341

  2. Burst of ethylene upon horizontal placement of tomato seedlings

    NASA Technical Reports Server (NTRS)

    Harrison, M.; Pickard, B. G.

    1984-01-01

    Seedlings of Lycopersicon esculentum Mill. cv Rutgers emit a pulse of ethylene during the first 2 to 4 minutes following horizontal placement. Because this burst appears too rapid and brief to be mediated by increase in net activity of 1-aminocyclopropane-1-carboxylic acid synthase, it might result form accelerated transformation of vacuolar 1-aminocyclopropane-1-carboxylic acid to ethylene.

  3. Characterization of Rhizobacteria Associated with Weed Seedlings

    PubMed Central

    Kremer, Robert J.; Begonia, Maria Fatima T.; Stanley, Lynn; Lanham, Eric T.

    1990-01-01

    Rhizobacteria were isolated from seedlings of seven economically important weeds and characterized for potential phytopathogenicity, effects on seedling growth, and antibiosis to assess the possibility of developing deleterious rhizobacteria as biological control agents. The abundance and composition of rhizobacteria varied among the different weed species. For example, fluorescent pseudomonads represented from 11 to 42% of the total rhizobacterial populations from jimsonweed and lambsquarters, respectively. Other bacteria frequently isolated were nonfluorescent pseudomonads, Erwinia herbicola, Alcaligenes spp., and Flavobacterium spp. Only 18% of all isolates were potentially phytopathogenic, based on an Escherichia coli indicator bioassay. However, the proportion of isolates that inhibited growth in seedling assays ranged from 35 to 65% depending on the weed host. Antibiosis was most prevalent among isolates of fluorescent Pseudomonas spp., the activity of which was due to siderophore production in over 75% of these isolates. Overall, rhizobacterial isolates exhibited a complex array of properties that were inconsistent with accepted definitions for plant growth-promoting and deleterious rhizobacteria. It is suggested that for development of effective biological control agents for weed control, deleterious rhizobacteria must be screened directly on host seedlings and must possess several properties including high colonizing ability, specific phytotoxin production, and resistance or tolerance to antibiotics produced by other rhizosphere microorganisms, and they must either synthesize or utilize other bacterial siderophores. PMID:16348208

  4. Starch bioengineering affects cereal grain germination and seedling establishment

    PubMed Central

    Hebelstrup, Kim H.; Blennow, Andreas

    2014-01-01

    Cereal grain germination is central for plant early development, and efficient germination has a major role in crop propagation and malting. Endosperm starch is the prime energy reserve in germination and seedling establishment. In this study, it was hypothesized that optimized starch granule structure, and not only the endosperm starch content per se, is important for germination and seedling establishment. For that purpose, wild-type (WT), and specifically engineered degradable hyperphosphorylated (HP) starch and more resistant amylose-only (AO) starch barley lines were used. The transgenics showed no severe phenotypes and the WT and HP lines degraded the starch similarly, having 30% residual starch after 12 d of germination. However, the AO line showed significant resistance to degradation, having 57% residual starch. Interestingly, protein and β-glucan (BG) degradation was stimulated for both HP and AO lines as compared with the WT. At late seedling establishment stages, specific sugars were rapidly consumed in the AO line. α-Amylase activity was distinctly suppressed in both the HP and the AO lines. Pre-germination β-amylase deposition was low in the AO grains and β-amylase was generally suppressed in both HP and AO lines throughout germination. As further supported by scanning electron microscopy and histochemical analyses on grain and seedlings, it was concluded that inadequate starch granule deposition in combination with the suppressed hydrolase activity leads to temporal and compensating re-direction of starch, sugar, and protein catabolism important to maintain metabolic dynamics during grain germination and seedling establishment. PMID:24642850

  5. Oxygen Sensing Coordinates Photomorphogenesis to Facilitate Seedling Survival

    PubMed Central

    Abbas, Mohamad; Berckhan, Sophie; Rooney, Daniel J.; Gibbs, Daniel J.; Vicente Conde, Jorge; Sousa Correia, Cristina; Bassel, George W.; Marín-de la Rosa, Nora; León, José; Alabadí, David; Blázquez, Miguel A.; Holdsworth, Michael J.

    2015-01-01

    Summary Successful emergence from the soil is essential for plant establishment in natural and farmed systems. It has been assumed that the absence of light in the soil is the preeminent signal perceived during early seedling development, leading to a distinct morphogenic plan (skotomorphogenesis) [1], characterized by traits providing an adaptive advantage until emergence and photomorphogenesis. These traits include suppressed chlorophyll synthesis, promotion of hypocotyl elongation, and formation of a closed apical hook that protects the stem cell niche from damage [2, 3]. However, absence of light by itself is not a sufficient environmental signal for early seedling development [4, 5]. Reduced oxygen levels (hypoxia) can occur in water-logged soils [6–8]. We therefore hypothesized that below-ground hypoxia may be an important, but thus far undiscovered, ecological component regulating seedling development. Here, we show that survival and establishment of seedlings following darkness depend on their ability to sense hypoxia, through enhanced stability of group VII Ethylene Response Factor (ERFVII) transcription factors. Hypoxia is perceived as a positive environmental component in diverse taxa of flowering plants, promoting maintenance of skotomorphogenic traits. Hypoxia greatly enhances survival once light is perceived, while oxygen is necessary for the subsequent effective completion of photomorphogenesis. Together with light perception, oxygen sensing therefore allows an integrated response to the complex and changing physical microenvironment encountered during early seedling growth. We propose that plants monitor the soil’s gaseous environment after germination, using hypoxia as a key external cue to protect the stem cell niche, thus ensuring successful rapid establishment upon emergence above ground. PMID:25981794

  6. Oxygen sensing coordinates photomorphogenesis to facilitate seedling survival.

    PubMed

    Abbas, Mohamad; Berckhan, Sophie; Rooney, Daniel J; Gibbs, Daniel J; Vicente Conde, Jorge; Sousa Correia, Cristina; Bassel, George W; Marín-de la Rosa, Nora; León, José; Alabadí, David; Blázquez, Miguel A; Holdsworth, Michael J

    2015-06-01

    Successful emergence from the soil is essential for plant establishment in natural and farmed systems. It has been assumed that the absence of light in the soil is the preeminent signal perceived during early seedling development, leading to a distinct morphogenic plan (skotomorphogenesis) [1], characterized by traits providing an adaptive advantage until emergence and photomorphogenesis. These traits include suppressed chlorophyll synthesis, promotion of hypocotyl elongation, and formation of a closed apical hook that protects the stem cell niche from damage [2, 3]. However, absence of light by itself is not a sufficient environmental signal for early seedling development [4, 5]. Reduced oxygen levels (hypoxia) can occur in water-logged soils [6-8]. We therefore hypothesized that below-ground hypoxia may be an important, but thus far undiscovered, ecological component regulating seedling development. Here, we show that survival and establishment of seedlings following darkness depend on their ability to sense hypoxia, through enhanced stability of group VII Ethylene Response Factor (ERFVII) transcription factors. Hypoxia is perceived as a positive environmental component in diverse taxa of flowering plants, promoting maintenance of skotomorphogenic traits. Hypoxia greatly enhances survival once light is perceived, while oxygen is necessary for the subsequent effective completion of photomorphogenesis. Together with light perception, oxygen sensing therefore allows an integrated response to the complex and changing physical microenvironment encountered during early seedling growth. We propose that plants monitor the soil's gaseous environment after germination, using hypoxia as a key external cue to protect the stem cell niche, thus ensuring successful rapid establishment upon emergence above ground.

  7. Effects of seed traits variation on seedling performance of the invasive weed, Ambrosia artemisiifolia L.

    NASA Astrophysics Data System (ADS)

    Ortmans, William; Mahy, Grégory; Monty, Arnaud

    2016-02-01

    Seedling performance can determine the survival of a juvenile plant and impact adult plant performance. Understanding the factors that may impact seedling performance is thus critical, especially for annuals, opportunists or invasive plant species. Seedling performance can vary among mothers or populations in response to environmental conditions or under the influence of seed traits. However, very few studies have investigated seed traits variations and their consequences on seedling performance. Specifically, the following questions have been addressed by this work: 1) How the seed traits of the invasive Ambrosia artemisiifolia L. vary among mothers and populations, as well as along the latitude; 2) How do seed traits influence seedling performance; 3) Is the influence on seedlings temperature dependent. With seeds from nine Western Europe ruderal populations, seed traits that can influence seedling development were measured. The seeds were sown into growth chambers with warmer or colder temperature treatments. During seedling growth, performance-related traits were measured. A high variability in seed traits was highlighted. Variation was determined by the mother identity and population, but not latitude. Together, the temperature, population and the identity of the mother had an effect on seedling performance. Seed traits had a relative impact on seedling performance, but this did not appear to be temperature dependent. Seedling performance exhibited a strong plastic response to the temperature, was shaped by the identity of the mother and the population, and was influenced by a number of seed traits.

  8. First year survival of barefoot and containerized hardwood tree seedlings planted in northeast Texas lignite minesoils

    SciTech Connect

    Wood, J.; Denman, J.; Waxler, M.; Huber, D.A.

    1997-12-31

    Successful regeneration of hardwood tree seedlings is critical to the reclamation of quality wildlife habitat and commercial forests on lignite mines in northeast Texas. Because bareroot hardwood seedlings survival rates have often been lower than desired, the survival of containerized and bareroot hardwood tree seedlings was compared. Seven hardwood species, including six species of oaks, were planted in lignite minesoils on sites classified as bottomland, slope and upland. Three species were planted per site. Containerized seedlings were planted during the fall and winter, whereas bareroot seedlings were planted in the winter only. Survival was determined at the end of the first growing season. Results across all sites indicate that winter-planted containerized seedlings (74%) or bareroot seedlings (76%). Within the sites, the only significant difference was on upland sites where survival of winter-planted containerized seedlings (60%) was lower than bareroot seedlings (77%). Survival among species was not significantly different. There was no significant survival benefit from using more expensive containerized hardwood seedlings. The results also question the practice of planting containerized hardwood seedlings during the typical winter planting season for optimum survival.

  9. Biological seed priming mitigates the effects of water stress in sunflower seedlings.

    PubMed

    Singh, Narsingh Bahadur; Singh, Deepmala; Singh, Amit

    2015-04-01

    The sunflower (Helianthus annuus L. cv. PAC 36) seedlings were inoculated with plant growth promoting rhizobacteria (PGPR), viz. Azotobacter chroococcum (A+), Bacillus polymyxa (B+), separately and in combination of the two (AB+). Relative water content and seedling growth were maximum in AB+ seedlings under control. Water stress significantly decreased the RWC, growth and dry mass of non-inoculated seedlings. However, inoculated seedlings maintained higher growth even under water stress. Pigments and protein contents decreased under water stress, but higher amount of the same was observed in stressed AB+ seedlings. Enhanced activity of nitrate reductase was recorded in AB+ seedlings with maximum in control. Water stress significantly decreased the nitrate reductase activity. A significant increase in the activity of superoxide dismutase (SOD) in leaves was recorded under water stress except in B+ with maximum increase in non-inoculated seedlings. Catalase (CAT) activity decreased in stressed non-inoculated seedlings while increased in the leaves of A+ and AB+ seedlings. Almost similar trends were recorded for both leaves and cotyledons. PGPR improved the water status in stressed seedlings and thereby physiological and biochemical parameters and thus ameliorated the severe effects of water stress.

  10. Why Seedlings Die: Linking Carbon and Water Limitations to Mechanisms of Mortality During Establishment in Conifer Seedlings

    NASA Astrophysics Data System (ADS)

    Reinhardt, K.; Germino, M. J.; Kueppers, L. M.; Mitton, J.; Castanha, C.

    2012-12-01

    BACKGROUND Recent ecophysiological studies aimed at explaining adult tree mortality during drought have examined the carbon (C)-exhaustion compared to the hydraulic-failure hypotheses for death. Prolonged drought leads to durations of stomatal closure (and thus limited C gain), which could result in long periods of negative C balance and fatal reductions in whole-plant C reserves (i.e., available non-structural carbohydrates ["NSC"]). Alternatively, C reserves may not decrease much but could become increasingly inaccessible to sink tissues in long dry-periods due to impediments to translocation of photosynthate (e.g., through disruption of hydrostatic pressure flow in phloem). As C reserves decline or become inaccessible, continued maintenance respiration has been hypothesized to lead to exhaustion of NSC after extended durations of drought, especially in isohydric plant species. On the other hand, hydraulic failure (e.g., catastrophic xylem embolisms) during drought may be the proximate cause of death, occurring before true C starvation occurs. Few studies have investigated specifically the mechanism(s) of tree death, and no published studies that we know of have quantified changes in NSC during mortality. EXPERIMENTAL DESIGN AND HYPOTHESES We conducted two studies that investigated whole-tree and tissue-specific C relations (photosynthetic C gain, respiration, dry-mass gain, and NSC pools) in Pinus flexilis seedlings during the initial establishment phase, which is characterized by progressive drought during summer. We measured survival, growth and biomass allocation, and C-balance physiology (photosynthetic C-gain and chlorophyll fluorescence, respiration C-use, and NSC concentrations) from germination to mortality. We hypothesized that 1) stomatal and biochemical limitations to C gain would constrain seedling survival (through inadequate seasonal C-balance), as has been shown for conifer seedlings near alpine treeline; 2) hydraulic constraints (embolisms and

  11. Seedling mortality in Hawaiian rain forest: The role of small-scale physical disturbance

    USGS Publications Warehouse

    Drake, D.R.; Pratt, L.W.

    2001-01-01

    Most montane rain forests on the island of Hawaii consist of a closed canopy formed by Cibotium spp. tree ferns beneath an open canopy of emergent Metrosideros polymorpha trees. We used artificial seedlings to assess the extent to which physical disturbance caused by the senescing fronds of tree ferns and the activities of feral pigs might limit tree regeneration. Artificial seedlings were established terrestrially (N = 300) or epiphytically (N = 300) on tree fern stems. Half of the seedlings on each substrate were in an exclosure lacking feral pigs and half were in forest with pigs present. After one year, the percentage of seedlings damaged was significantly greater among terrestrial seedlings (25.7%) than epiphytic seedlings (11.3%). Significantly more terrestrial seedlings were damaged in the presence of pigs (31.3%) than in the absence of pigs (20.0%). Senescing fronds of tree ferns were responsible for 60.3 percent of the damaged seedlings. Physical disturbance is potentially a major cause of seedling mortality and may reduce the expected half-life of a seedling cohort to less than two years.

  12. Implications of seed size for seedling survival in Carnegiea gigantea and Ferocactus wislizeni (Cactaceae)

    USGS Publications Warehouse

    Bowers, Janice E.; Pierson, E.A.

    2001-01-01

    Larger seeds have been shown to convey benefits for seedling survival but the mechanisms of this process are not well understood. In this study, seed size and seedling survival were compared for 2 sympatric cactus species, Carnegiea gigantea (Engelm.) Britt. & Rose and Ferocactus wislizeni (Engelm.) Britt. & Rose, in laboratory and field experiments in the northern Sonoran Desert. Both species have small seeds, but Ferocactus seeds are nearly twice as long and 3 times as heavy as those of Carnegiea. The difference in size is perpetuated after germination: new Ferocactus seedlings have 4 times the estimated volume of new Carnegiea seedlings. In an outdoor experiment, annual survivorship of both species was low but was 6 times higher for Ferocactus (6 seedlings, 8.1%) than Carnegiea (1 seedling, 1.4%). The pattern of seedling mortality in relation to temperature and rain suggests that, after the initial flush of seed and seedling predation, drought and heat took a greater toll on Carnegiea than Ferocactus seedlings, probably because the larger seedling volume of Ferocactus conferred greater drought tolerance. In addition, F. wislizeni could become established without benefit of nurse plants whereas C. gigantea could not; this might reflect differential tolerance to high soil temperatures.

  13. The role of genetic and chemical variation of Pinus sylvestris seedlings in influencing slug herbivory.

    PubMed

    O'Reilly-Wapstra, Julianne M; Iason, Glenn R; Thoss, Vera

    2007-05-01

    This study investigated the genetic and chemical basis of resistance of Pinus sylvestris seedlings to herbivory by a generalist mollusc, Arion ater. Using feeding trials with captive animals, we examined selective herbivory by A. ater of young P. sylvestris seedlings of different genotypes and correlated preferences with seedling monoterpene levels. We also investigated the feeding responses of A. ater to artificial diets laced with two monoterpenes, Delta(3)-carene and alpha-pinene. Logistic regression indicated that two factors were the best predictors of whether seedlings in the trial would be consumed. Individual slug variation (replicates) was the most significant factor in the model; however, alpha-pinene concentration (also representing beta-pinene, Delta(3)-carene and total monoterpenes due to multicollinearity) of needles was also a significant factor. While A. ater did not select seedlings on the basis of family, seedlings not eaten were significantly higher in levels of alpha-pinene compared to seedlings that were consumed. We also demonstrated significant genetic variation in alpha-pinene concentration of seedlings between different families of P. sylvestris. Nitrogen and three morphological seedling characteristics (stem length, needle length and stem diameter) also showed significant genetic variation between P. sylvestris families. Artificial diets laced with high (5 mg g(-1) dry matter) quantities of either Delta(3)-carene or alpha-pinene, were eaten significantly less than control diets with no added monoterpenes, supporting the results of the seedling feeding trial. This study demonstrates that A. ater selectively feed on P. sylvestris seedlings and that this selection is based, in part, on the monoterpene concentration of seedlings. These results, coupled with significant genetic variation in alpha-pinene concentration of seedlings and evidence that slug herbivory is detrimental to P. sylvestris fitness, are discussed as possible evidence for A

  14. Relationship between seedling and mature vegetation on the hilly-gullied Loess Plateau.

    PubMed

    Jia, Yan-Feng; Jiao, Ju-Ying; Wang, Ning

    2013-01-01

    Seedling is an indispensable stage in plant cycle life, and seedling survival is important during natural vegetation restoration, especially on the Loess Plateau. In 2007, we selected 4 plots of Artemisia scoparia communities (ASC) and 4 plots of Artemisia gmelinii + Artemisia giraldii communities (AGC), examined seedling richness, diversity during the rainy season, and examined mature vegetation richness, coverage, and frequency in August. The results showed that seedlings density of ASC were 29 n m(-2), 33 n m(-2), 20 n m(-2) and 31 n m(-2) in July to October respectively, and that of AGC were 14 n m(-2), 12 n m(-2), 6 n m(-2) and 9 n m(-2) respectively; A. scoparia seedlings represented 53.2% of the total seedlings in ASC, the dominant species in AGC only account for less than 5% of the total seedlings. Most of the seedlings found were belonged to Compositae, Leguminoseae and Gramineae; 80% of seedlings in ASC were mainly comprised of A. scoparia and Lespedeza davurica, while in AGC that consisted of more than 6 species, such as L. davurica, Sophora viciifolia, Dracocephalum moldavicaand, A. gmelinii, Patrinia heterophylla, Heteropappus altaicus so on. Sørensen similarity index between monthly seedlings was approximately 0.47 in ASC and 0.35 in AGC; Sørensen similarity index between seedlings and mature vegetation ranged from 0.18 to 0.34 in ASC, and varied from 0.26 to 0.39 in AGC. These results suggested that seedling establishment would be a bottleneck for natural vegetation restoration when seed supply and seedling emergence were possible. PMID:24701385

  15. Growth Distribution during Phototropism of Arabidopsis thaliana Seedlings.

    PubMed Central

    Orbovic, V.; Poff, K. L.

    1993-01-01

    The elongation rates of two opposite sides of hypocotyls of Arabidopsis thaliana seedlings were measured during phototropism by using an infrared imaging system. In first positive phototropism, second positive phototropism, and red light-enhanced first positive phototropism, curvature toward the light source was the result of an increase in the rate of elongation of the shaded side and a decrease in the rate of elongation of the lighted side of the seedlings. The phase of straightening that followed maximum curvature resulted from a decrease in the elongation rate of the shaded side and an increase in the elongation rate of the lighted side. These data for the three types of blue light-induced phototropism tested in this study and for the phase of straightening are all clearly consistent with the growth rate changes predicted by the Cholodny-Went theory. PMID:12231922

  16. Clinorotation affects mesophyll photosynthetic cells in leaves of pea seedlings.

    PubMed

    Adamchuk, N I

    1998-07-01

    Experiments with autotrophs in altered gravity condition have a grate significant for development of space biology. The main results of investigation in the photosynthetic apparatus state under microgravity condition have based on the experiments with maturity plants and their differentiated cells. The structural and functional organization of photosynthetic cells in seedlings is poor understandable still. Along with chloroplasts preserving a native membrane system in palisade parenchyma cells of the 29-day pea plant leaves in microgravity, chloroplasts with fribly packed or damaged granae, whose thylakoids appeared as vesicles with an electrontransparent content, were also observed. The investigation of preceding process induced these effects have a sense. That is why, the goal of our experiments was to perform the study of a structural organization of the photosynthetic cells of 3-d pair of pea seedlings leaves under the influence of clinorotation.

  17. A technique for collection of exudate from pea seedlings

    NASA Technical Reports Server (NTRS)

    Hanson, S. D.; Cohen, J. D.; Bandurski, R. S. (Principal Investigator)

    1985-01-01

    Ethylenediaminetetraacetic acid (EDTA), at concentrations higher than 1.0 millimolar, is phytotoxic to etiolated seedlings of Pisum sativum. Substantial vascular exudation from pea epicotyls could be obtained without tissue damage at 0.5 millimolar EDTA if the solution was buffered at pH 7.5 with sodium N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid. Treated seedlings exuded 950 micrograms (leucine equivalents) of ninhydrin-positive material per day and 870 micrograms (glucose equivalents) of anthrone-positive material per day. Amino acid analysis showed the exudate to have glutamine as the major amido nitrogen containing compound and sucrose was shown to be the major sugar. Radiolabeled tryptophan and sucrose applied to cotyledons were transferred through the epicotyl and into the collection medium. The pH profile for exudation shows half maximal exudation at pH 7.2, indicating the promotion of exudation by EDTA is probably not due simply to Ca2+ chelation.

  18. Ethylene-Induced Leaf Abscission in Cotton Seedlings 1

    PubMed Central

    Suttle, Jeffrey C.; Hultstrand, Julie F.

    1991-01-01

    The speed of ethylene-induced leaf abscission in cotton (Gossypium hirsutum L. cv LG-102) seedlings is dependent on leaf position (i.e. physiological age). Fumigation of intact seedlings for 18 hours with 10 microliters per liter of ethylene resulted in 40% abscission of the still-expanding third true (3°) leaves but had no effect on the fully expanded first true (1°) leaves. After 42 hours of fumigation with 50 microliters per liter of ethylene, total abscission of the 3° leaves occurred while <50% abscission of the 1° leaves was observed. On a leaf basis, endogenous levels of free IAA in 1° leaves were approximately twice those of 3° leaves. Free IAA levels were reduced equally (approximately 55%) in both leaf types after 18 hours of ethylene (10 microliters per liter) treatment. Ethylene treatment of intact seedlings inhibited the basipetal movement of [14C]IAA in petiole segments isolated from both leaf types in a dose-dependent manner. The auxin transport inhibitor N-1-naphthylphthalamic acid increased the rate and extent of ethylene-induced leaf abscission at both leaf positions but did not alter the relative pattern of abscission. Abscission-zone explants prepared from 3° leaves abscised faster than 1° leaf explants when exposed to ethylene. Ethyleneinduced abscission of 3° explants was not appreciably inhibited by exogenous IAA while 1° explants exhibited a pronounced and protracted inhibition. The synthetic auxins 2,4-D and 1-naphthaleneacetic acid completely inhibited ethylene-induced abscission of both 1° and 3° explants for 40 hours. It is proposed that the differential abscission response of cotton seedling leaves is primarily a result of the limited abscission-inhibiting effects of IAA in the abscission zone of the younger leaves. PMID:16667967

  19. WRI1 is required for seed germination and seedling establishment.

    PubMed

    Cernac, Alex; Andre, Carl; Hoffmann-Benning, Susanne; Benning, Christoph

    2006-06-01

    Storage compound accumulation during seed development prepares the next generation of plants for survival. Therefore, processes involved in the regulation and synthesis of storage compound accumulation during seed development bear relevance to germination and seedling establishment. The wrinkled1 (wri1) mutant of Arabidopsis (Arabidopsis thaliana) is impaired in seed oil accumulation. The WRI1 gene encodes an APETALA2/ethylene-responsive element-binding protein transcription factor involved in the control of metabolism, particularly glycolysis, in the developing seeds. Here we investigate the role of this regulatory factor in seed germination and seedling establishment by comparing the wri1-1 mutant, transgenic lines expressing the WRI1 wild-type cDNA in the wri1-1 mutant background, and the wild type. Plants altered in the expression of the WRI1 gene showed different germination responses to the growth factor abscisic acid (ABA), sugars, and fatty acids provided in the medium. Germination of the mutant was more sensitive to ABA, sugars, and osmolites, an effect that was alleviated by increased WRI1 expression in transgenic lines. The expression of ABA-responsive genes AtEM6 and ABA-insensitive 3 (ABI3) was increased in the wri1-1 mutant. Double-mutant analysis between abi3-3 and wri1-1 suggested that WRI1 and ABI3, a transcription factor mediating ABA responses in seeds, act in parallel pathways. Addition of 2-deoxyglucose inhibited seed germination, but did so less in lines overexpressing WRI1. Seedling establishment was decreased in the wri1-1 mutant but could be alleviated by sucrose. Apart from a possible signaling role in germination, sugars in the medium were required as building blocks and energy supply during wri1-1 seedling establishment.

  20. Comparison of Gibberellins in Normal and Slender Barley Seedlings

    PubMed Central

    Croker, Stephen J.; Hedden, Peter; Lenton, John R.; Stoddart, John L.

    1990-01-01

    Gibberellins A1, A3, A8, A19, A20, and A29 were identified by full scan gas chromatography-mass spectrometry in leaf sheath segments of 7-day-old barley (Hordeum vulgare L. cv Golden Promise) seedlings grown at 20°C under long days. In a segregating population of barley, cv Herta (Cb 3014), containing the recessive slender allele, (sln 1) the concentration of GA1 and GA3 was reduced by 10-fold and 6-fold, respectively, in rapidly growing homozygous slender, compared with normal, leaf sheath segments. However, the concentration of the C20 precursor, GA19, was nearly 2-fold greater in slender than in normal seedlings. There was little difference in the ABA content of sheath segments between the two genotypes. The gibberellin biosynthesis inhibitor, paclobutrazol, reduced the final sheath length of normal segregants (50% inhibition at 15 micromolar) but had no effect on the growth of slender seedlings at concentrations below 100 micromolar. There was a 15-fold and 4-fold reduction in GA1 and GA3, respectively, in sheath segments of 8-day-old normal seedlings following application of 10 micromolar paclobutrazol. The same treatment also reduced the already low concentrations of these gibberellins in slender segregants. The results show that the pool sizes of gibberellins A1 and A3 are small in slender barley and that leaf sheath extension in this genotype appears to be gibberellin-independent. The relationship between gibberellin status and tissue growth-rate in slender barley is contrasted with other gibberellin nonresponsive, but dwarf, mutants of wheat (Triticum aestivum) and maize (Zea mays). PMID:16667686

  1. Chloroplasts in seeds and dark-grown seedlings of lotus.

    PubMed

    Ushimaru, Takashi; Hasegawa, Takahiro; Amano, Toyoki; Katayama, Masao; Tanaka, Shigeyasu; Tsuji, Hideo

    2003-03-01

    In most higher plants, mature dry seeds have no chloroplasts but etioplasts. Here we show that in a hydrophyte, lotus (Nelumbo nucifera), young chloroplasts already exist in shoots of mature dry seeds and that they give rise to mature chloroplasts during germination, even in darkness. These shoots contain chlorophyll and chlorophyll-binding proteins CP1 and LHCP. The unique features of chloroplast formation in N. nucifera suggest a unique adaptive strategy for seedling development correlated with the plant's habitat.

  2. ATAF2 integrates Arabidopsis brassinosteroid inactivation and seedling photomorphogenesis.

    PubMed

    Peng, Hao; Zhao, Jianfei; Neff, Michael M

    2015-12-01

    The Arabidopsis thaliana hypocotyl is a robust system for studying the interplay of light and plant hormones, such as brassinosteroids (BRs), in the regulation of plant growth and development. Since BRs cannot be transported between plant tissues, their cellular levels must be appropriate for given developmental fates. BR homeostasis is maintained in part by transcriptional feedback regulation loops that control the expression of key metabolic enzymes, including the BR-inactivating enzymes BAS1 (CYP734A1, formerly CYP72B1) and SOB7 (CYP72C1). Here, we find that the NAC transcription factor (TF) ATAF2 binds the promoters of BAS1 and SOB7 to suppress their expression. ATAF2 restricts the tissue-specific expression of BAS1 and SOB7 in planta. ATAF2 loss- and gain-of-function seedlings have opposite BR-response phenotypes for hypocotyl elongation. ATAF2 modulates hypocotyl growth in a light-dependent manner, with the photoreceptor phytochrome A playing a major role. The photomorphogenic phenotypes of ATAF2 loss- and gain-of-function seedlings are suppressed by treatment with the BR biosynthesis inhibitor brassinazole. Moreover, the disruption of BAS1 and SOB7 abolishes the short-hypocotyl phenotype of ATAF2 loss-of-function seedlings in low fluence rate white light, demonstrating an ATAF2-mediated connection between BR catabolism and photomorphogenesis. ATAF2 expression is suppressed by both BRs and light, which demonstrates the existence of an ATAF2-BAS1/SOB7-BR-ATAF2 feedback regulation loop, as well as a light-ATAF2-BAS1/SOB7-BR-photomorphogenesis pathway. ATAF2 also modulates root growth by regulating BR catabolism. As it is known to regulate plant defense and auxin biosynthesis, ATAF2 therefore acts as a central regulator of plant defense, hormone metabolism and light-mediated seedling development.

  3. ATAF2 integrates Arabidopsis brassinosteroid inactivation and seedling photomorphogenesis.

    PubMed

    Peng, Hao; Zhao, Jianfei; Neff, Michael M

    2015-12-01

    The Arabidopsis thaliana hypocotyl is a robust system for studying the interplay of light and plant hormones, such as brassinosteroids (BRs), in the regulation of plant growth and development. Since BRs cannot be transported between plant tissues, their cellular levels must be appropriate for given developmental fates. BR homeostasis is maintained in part by transcriptional feedback regulation loops that control the expression of key metabolic enzymes, including the BR-inactivating enzymes BAS1 (CYP734A1, formerly CYP72B1) and SOB7 (CYP72C1). Here, we find that the NAC transcription factor (TF) ATAF2 binds the promoters of BAS1 and SOB7 to suppress their expression. ATAF2 restricts the tissue-specific expression of BAS1 and SOB7 in planta. ATAF2 loss- and gain-of-function seedlings have opposite BR-response phenotypes for hypocotyl elongation. ATAF2 modulates hypocotyl growth in a light-dependent manner, with the photoreceptor phytochrome A playing a major role. The photomorphogenic phenotypes of ATAF2 loss- and gain-of-function seedlings are suppressed by treatment with the BR biosynthesis inhibitor brassinazole. Moreover, the disruption of BAS1 and SOB7 abolishes the short-hypocotyl phenotype of ATAF2 loss-of-function seedlings in low fluence rate white light, demonstrating an ATAF2-mediated connection between BR catabolism and photomorphogenesis. ATAF2 expression is suppressed by both BRs and light, which demonstrates the existence of an ATAF2-BAS1/SOB7-BR-ATAF2 feedback regulation loop, as well as a light-ATAF2-BAS1/SOB7-BR-photomorphogenesis pathway. ATAF2 also modulates root growth by regulating BR catabolism. As it is known to regulate plant defense and auxin biosynthesis, ATAF2 therefore acts as a central regulator of plant defense, hormone metabolism and light-mediated seedling development. PMID:26493403

  4. The significance of glucosinolates for sulfur storage in Brassicaceae seedlings.

    PubMed

    Aghajanzadeh, Tahereh; Hawkesford, Malcolm J; De Kok, Luit J

    2014-01-01

    Brassica juncea seedlings contained a twofold higher glucosinolate content than B. rapa and these secondary sulfur compounds accounted for up to 30% of the organic sulfur fraction. The glucosinolate content was not affected by H2S and SO2 exposure, demonstrating that these sulfur compounds did not form a sink for excessive atmospheric supplied sulfur. Upon sulfate deprivation, the foliarly absorbed H2S and SO2 replaced sulfate as the sulfur source for growth of B. juncea and B. rapa seedlings. The glucosinolate content was decreased in sulfate-deprived plants, though its proportion of organic sulfur fraction was higher than that of sulfate-sufficient plants, both in absence and presence of H2S and SO2. The significance of myrosinase in the in situ turnover in these secondary sulfur compounds needs to be questioned, since there was no direct co-regulation between the content of glucosinolates and the transcript level and activity of myrosinase. Evidently, glucosinolates cannot be considered as sulfur storage compounds upon exposure to excessive atmospheric sulfur and are unlikely to be involved in the re-distribution of sulfur in B. juncea and B. rapa seedlings upon sulfate deprivation.

  5. Phytotoxicity of arsenic compounds on crop plant seedlings.

    PubMed

    Yoon, Youngdae; Lee, Woo-Mi; An, Youn-Joo

    2015-07-01

    The effects of inorganic and organic arsenic on the germination and seedling growth of 10 crop plants were investigated to elucidate the relationship between toxicity and the arsenic chemical states. Two types of soils, soil A and B, were also tested to determine how physicochemical properties of soils were related to toxicity of arsenic and the sensitivity of the plants. All tested plant species, except mung bean and cucumber, showed inhibition of germination by two types of inorganic arsenic, arsenite, and arsenate, while the organic arsenic compound, dimethylarsinic acid (DMA), had no inhibitory effects on plants in soil A. In contrast, the growth of seedlings of all 10 plant species was sensitive to the presence of arsenic. The sensitivity of the plants toward inorganic arsenic compounds showed similar trends but differed for DMA. Overall, seedling growth was a more sensitive endpoint to arsenic toxicity than germination, and the relative toxicity of arsenic compounds on plants was arsenite > DMA > arsenate. Interestingly, the sensitivity of wheat varied significantly when the soil was changed, and the DMA was most toxic rather than arsenite in soil B. Thus, the systematic study employed here provides insights into the mechanisms of arsenic toxicity in different plant species and the role of physicochemical properties of soils.

  6. Effects of gravel mulch on emergency of galleta grass seedlings

    SciTech Connect

    Winkel, V.K.; Medrano, J.C.; Stanley, C.; Walo, M.D.

    1993-02-01

    Gravel mulches show promise as effective material on the US Dept. of Energy Nevada Test Site for stabilizing erosive soils and aiding plant establishment by conserving soil water. A greenhouse study was implemented to determine the effects of gravel mulch on seedling emergence and soil water, and optimal depths of gravel for various native plant species. Greenhouse flats were sown with seeds of nine species of native grasses, forbs, and shrubs. The flats were then treated with a variety of mulch treatments including, no mulch, a 1-cm layer of soil over seeds, and 2 to 3-cm and 4 to 5-cm layers of 3 to 25-mm mixed gravel. Superimposed over these treatments were 3 irrigation treatments. Seedling density data was collected daily, and soil water was monitored daily with the gravimetric method. This study showed that under a variety of soil water conditions, a 2--3 cm gravel layer may aid emergence of galleta grass. Results from this study also demonstrated that a deeper layer of gravel (4--5 cm) prohibits emergence, probably because it acts as a physical barrier to the seedlings. Galleta grass emergence can be used as a model for how other species might respond to these seedbed and irrigation treatments, provided they have adequate germination and are exposed to similar environmental conditions.

  7. Antioxidant responses of rice seedling to Ce⁴+ under hydroponic cultures.

    PubMed

    Xu, Qiu-Man; Chen, Hong

    2011-09-01

    Since the 1980s, rare earth elements have been commonly used in China because of their enriched fertilizers. To understand the potential benefits or damages of Ce(4+) on rice, the antioxidant responses (superoxide dismutase, ascorbate peroxidase, catalase activities, and ascorbate and glutathione contents) of rice seedling to Ce(4+) under hydroponic cultures were investigated. The results showed that Ce(4+) induced H(2)O(2) and O(2)(-) production of rice seedling. The inhibition studies with diphenylene iodonium suggested that the key enzyme responsible for oxidative bursts was primarily NADPH oxidase. Ce(4+) (0.02 mM) increased the antioxidant capacity of reduced ascorbate and glutathione and the levels of superoxide dismutase, ascorbate peroxidase, and catalase. However, antioxidant enzymes and antioxidant capacity of rice seedling were decreased by 0.2mM Ce(4+) treatment, indicating that higher content of Ce(4+) damaged the mechanism of defense responses and emerged the peroxidation of membrane lipids. These results will help us to understand the mechanism of Ce(4+) on rice and concern about its environmental impact in agriculture.

  8. Gluconeogenesis from storage wax in the cotyledons of jojoba seedlings.

    PubMed

    Moreau, R A; Huang, A H

    1977-08-01

    The cotyledons of jojoba (Simmondsia chinensis) seeds contained 50 to 60% of their weight as intracellular wax esters. During germination there was a gradual decrease in the wax content with a concomitant rise in soluble carbohydrates, suggesting that the wax played the role of a food reserve. Thin layer chromatography revealed that both the fatty alcohol and fatty acid were metabolized. The disappearance of wax was matched with an increase of catalase, a marker enzyme of the gluconeogenic process in other fatty seedlings. Subcellular organelles were isolated by sucrose gradient centrifugation from the cotyledons at the peak stage of germination. The enzymes of the beta oxidation of fatty acid and of the glyoxylate cycle were localized in the glyoxysomes but not in the mitochondria. The glyoxysomes had specific activities of individual enzymes similar to those of the castor bean glyoxysomes. An active alkaline lipase was detected in the wax bodies at the peak stage of germination but not in the ungerminated seeds. No lipase was detected in glyoxysomes or mitochondria. After the wax in the wax bodies had been extracted with diethyl ether, the organelle membrane was isolated and it still retained the alkaline lipase. The gluconeogenesis from wax in the jojoba seedling appears to be similar, but with modification, to that from triglyceride in other fatty seedlings.

  9. The significance of glucosinolates for sulfur storage in Brassicaceae seedlings

    PubMed Central

    Aghajanzadeh, Tahereh; Hawkesford, Malcolm J.; De Kok, Luit J.

    2014-01-01

    Brassica juncea seedlings contained a twofold higher glucosinolate content than B. rapa and these secondary sulfur compounds accounted for up to 30% of the organic sulfur fraction. The glucosinolate content was not affected by H2S and SO2 exposure, demonstrating that these sulfur compounds did not form a sink for excessive atmospheric supplied sulfur. Upon sulfate deprivation, the foliarly absorbed H2S and SO2 replaced sulfate as the sulfur source for growth of B. juncea and B. rapa seedlings. The glucosinolate content was decreased in sulfate-deprived plants, though its proportion of organic sulfur fraction was higher than that of sulfate-sufficient plants, both in absence and presence of H2S and SO2. The significance of myrosinase in the in situ turnover in these secondary sulfur compounds needs to be questioned, since there was no direct co-regulation between the content of glucosinolates and the transcript level and activity of myrosinase. Evidently, glucosinolates cannot be considered as sulfur storage compounds upon exposure to excessive atmospheric sulfur and are unlikely to be involved in the re-distribution of sulfur in B. juncea and B. rapa seedlings upon sulfate deprivation. PMID:25566279

  10. [Salt-alkaline tolerance of sorghum germplasm at seedling stage].

    PubMed

    Gao, Jian-Ming; Xia, Bu-Xian; Yuan, Qing-Hua; Luo, Feng; Han, Yun; Gui, Zhi; Pei, Zhong-You; Sun, Shou-Jun

    2012-05-01

    A sand culture experiment with Hoagland solution plus NaCl and Na2CO3 was conducted to study the responses of sorghum seedlings to salt-alkaline stress. An assessment method for identifying the salt-alkaline tolerance of sorghum at seedling stage was established, and the salt-alkaline tolerance of 66 sorghum genotypes was evaluated. At the salt concentrations 8.0-12.5 g x L(-1), there was a great difference in the salt-alkaline tolerance between tolerant genotype 'TS-185' and susceptive 'Tx-622B', suggesting that this range of salt concentrations was an appropriate one to evaluate the salt-alkaline tolerance of sorghum at seedling stage. At the salt concentrations 10.0 and 12.5 g x L(-1), there existed significant differences in the relative livability, relative fresh mass, and relative height among the 66 genotypes, indicating a great difference in the salt-alkaline tolerance among these genotypes. The genotype 'Sanchisan' was highly tolerant, 16 genotypes such as 'MN-2735' were tolerant, 32 genotypes such as 'EARLY HONEY' were mild tolerant, 16 genotypes such as 'Tx-622B' were susceptive, and genotype 'MN-4588' was highly susceptive to salt-alkaline stress. Most of the sorghum genotypes belonging to Sudangrasses possessed a high salt-alkaline tolerance, while the sorghum genotypes belonging to maintainer lines were in adverse. PMID:22919841

  11. Organic Matter Loading Affects Lodgepole Pine Seedling Growth

    NASA Astrophysics Data System (ADS)

    Wei, Xiaohua; Li, Qinglin; Waterhouse, M. J.; Armleder, H. M.

    2012-06-01

    Organic matter plays important roles in returning nutrients to the soil, maintaining forest productivity and creating habitats in forest ecosystems. Forest biomass is in increasing demand for energy production, and organic matter has been considered as a potential supply. Thus, an important management question is how much organic matter should be retained after forest harvesting to maintain forest productivity. To address this question, an experimental trial was established in 1996 to evaluate the responses of lodgepole pine seedling growth to organic matter loading treatments. Four organic matter loading treatments were randomly assigned to each of four homogeneous pine sites: removal of all organic matter on the forest floor, organic matter loading quantity similar to whole-tree-harvesting residuals left on site, organic matter loading quantity similar to stem-only-harvesting residuals, and organic matter loading quantity more similar to what would be found in disease- or insect-killed stands. Our 10-year data showed that height and diameter had 29 and 35 % increase, respectively, comparing the treatment with the most organic matter loading to the treatment with the least organic matter loading. The positive response of seedling growth to organic matter loading may be associated with nutrients and/or microclimate change caused by organic matter, and requires further study. The dynamic response of seedling growth to organic matter loading treatments highlights the importance of long-term studies. Implications of those results on organic matter management are discussed in the context of forest productivity sustainability.

  12. Turnover of dhurrin in green sorghum seedlings. [Sorghum bicolor

    SciTech Connect

    Adewusi, S.R.A. )

    1990-11-01

    The turnover of dhurrin in green seedlings of Sorghum bicolor (Linn) Moench var Redland x Greenleaf, Sudan 70 has been investigated using glyphosate and pulse-labeling studies with {sup 14}C-tyrosine and ({sup 14}C)shikimic acid. The rate of dhurrin breakdown was 4.8 nanomoles per hour in the shoot and 1.4 nanomoles per hour in the root. The rate of dhurrin accumulation in the shoot of 4- to 5-day-old seedlings was high but decreased with age until at the peak period of dhurrin accumulation, the rates of dhurrin synthesis and breakdown were equal. Using a first order equation (an approximation) the rate of dhurrin synthesis (which equals accumulation plus breakdown rates) was 17.4 nanomoles per hour in the shoot and 4.1 nanomoles per hour in the root. In both tissues, the breakdown rate was between 27 and 34% of their synthetic capacity within the experimental period. Dhurrin synthesis in green sorghum seedlings occurred in both the light and dark photoperiods but was faster in the dark period. The result is discussed in relation to the possible metabolic roles of the turnover.

  13. Salt pretreatment enhance salt tolerance in Zea mays L. seedlings.

    PubMed

    Tajdoost, S; Farboodnia, T; Heidari, R

    2007-06-15

    Recent molecular studies show that genetic factors of salt tolerance in halophytes exist in glycophytes too, but they are not active. If these plants expose to low level salt stress these factors may become active and cause plants acclimation to higher salt stresses. So because of the importance of these findings in this research the effect of salt pretreatment has been examined in Zea mays seedlings. To do the experiment four day old Zea mays seedlings (Var. single cross 704) pretreated with 50 mM NaCl for the period of 20 h. Then they were transferred to 200 and 300 mM NaCl for 48 h. At the end of treatment roots and shoots of seedlings were harvested separately. The changes of K+ -leakage, the amount of malondialdehyde, proline, soluble sugars and the Hill reaction rate were analyzed. The results indicated that the amount of K+ -leakage and malondialdehyde (MDA) have been increased because of salt-induced lipid peroxidation and membrane unstability. Soluble sugars and proline as osmoregulators has been increased in stress condition and in pretreated plants with NaCl were the highest. The rate of Hill reaction was reduced significantly in stressed plants. Therefore we concluded that salt stress causes serious physiological and biochemical damages in plants and salt pretreatment enhances tolerance mechanisms of plants and help them to tolerate salt stress and grow on salty environments. PMID:19093451

  14. Root graviresponsiveness and columella cell structure in carotenoid-deficient seedlings of Zea mays

    NASA Technical Reports Server (NTRS)

    Moore, R.; McClelen, C. E.

    1985-01-01

    Root graviresponsiveness in normal and carotenoid-deficient mutant seedlings of Zea mays was not significantly different. Columella cells in roots of mutant seedlings were characterized by fewer, smaller, and a reduced relative volume of plastids as compared to columella cells of normal seedlings. Plastids in columella cells of mutant seedlings possessed reduced amounts of starch. Although approximately 10 per cent of the columella cells in mutant seedlings lacked starch, their plastids were located at the bottom of the cell. These results suggest that (i) carotenoids are not necessary for root gravitropism, (ii) graviresponsiveness is not necessarily proportional to the size, number, or relative volume of plastids in columella cells, and (iii) sedimentation of plastids in columella cells may not result directly from their increased density due to starch content. Plastids in columella cells of normal and mutant seedlings were associated with bands of microtubule-like structures, suggesting that these structures may be involved in 'positioning' plastids in the cell.

  15. Machine vision system for quality control assessment of bareroot pine seedlings

    NASA Astrophysics Data System (ADS)

    Wilhoit, John H.; Kutz, L. J.; Vandiver, W. A.

    1995-01-01

    A PC-based machine vision system was used at a forest nursery for two months to make quality control measurements of bareroot pine seedlings. In tests conducted during the lifting season, there was close agreement between machine vision and manual measurement distribution results for seedling samples for both root collar diameter and tap root length. During a second set of tests conducted after adding a bud tip height measurement routine, measurement distribution results for seedling samples were in close agreement for root collar diameter, tap root length, and bud tip height. Machine vision measurements of root collar diameter and tap root length also correlated well with manual measurements on a seedling-to- seedling basis for the second test. With the machine vision system, seedling samples could be measured by one person in approximately the same amount of time that it took two people to measure them manually.

  16. Kinetics for Phototropic Curvature by Etiolated Seedlings of Arabidopsis thaliana 1

    PubMed Central

    Orbović, Vladimir; Poff, Kenneth L.

    1991-01-01

    An infrared-imaging system has been used to study the influence of gravity on the kinetics of first positive phototropism. The development of phototropic curvature of etiolated seedlings of Arabidopsis thaliana was measured in the absence of visible radiation. Following a pulse of blue light, stationary seedlings curved to a maximum of approximately 16° about 80 minutes after stimulation. The seedlings then curved upward again or straightened by about 6° during the subsequent 100 minutes. Seedlings rotated on a clinostat reached a similar maximum curvature following photostimulation. These seedlings maintained that curvature for 30 to 40 minutes before subsequently straightening to the same extent as the stationary seedlings. It is concluded that straightening is not a consequence of gravitropism, although gravity has some effect on the phototropism kinetics. PMID:11538373

  17. Photosynthesis and transpiration of loblolly pine seedlings as influenced by moisture-stress conditioning

    SciTech Connect

    Seiler, J.R.; Johnson, J.D.

    1985-01-01

    One-yr-old seedlings were exposed to 8 wk of moisture stress conditioning (MSC); seedlings were watered only when pre-dawn needle water potential fell below -1.4 MPa. Water was then withheld and photosynthesis and transpiration rates recorded. Photosynthesis in well-watered controls and MSC seedlings was reduced to zero in 12 and 17 days respectively. Seedlings were harvested and water use efficiency calculated using photosynthesis and transpiration data; it was expressed as mg of CO/sub 2/ fixed per g of water lost. Seedlings exposed to MSC continued to photosynthesize to much lower needle water potentials. This response is at least partly attributed to the significant decrease (0.45 MPa) in needle osmotic potential found in MSC seedlings, which were able to maintain turgor to lower needle water potentials. Transpiration rate decreased 30% and water use efficiency increased 67% as a result of MSC. 26 references.

  18. Influence of Merosesquiterpenoids from Marine Sponges on Seedling Root Growth of Agricultural Plants.

    PubMed

    Chaikina, Elena L; Utkina, Natalia K; Anisimov, Mikhail M

    2016-01-01

    The impact of the merosesquiterpenoids avarol (1), avarone (2), 18-methylaminoavarone (3), melemeleone A (4), isospongiaquinone (5), ilimaquinone (6), and smenoquinone (7), isolated from marine sponges of the Dictyoceratida order, was studied on the root growth of seedlings of buckwheat (Fagopyrumesculentum Moench), wheat (Triticumaestivum L.), soy (Glycine max (L.) Merr.), and barley (Hordeumvulgare L.). Compounds 2and 6 were effective for the root growth of wheat seedlings, compound 3 stimulated the root growth of seedlings of buckwheat and soy, compound 4 affected the roots of barley seedlings, and compound 5 stimulated the root growth of seedlings of buckwheat and barley. Compounds 1 and 7 showed no activity on the root growth of the seedlings of any of the studied plants. The stimulatory effect depends on the chemical structure of the compounds and the type of crop plant.

  19. Survival of planted tupelo seedlings in F- and H-Area tree-kill zones

    SciTech Connect

    Nelson, E.A.; Rogers, V.A.

    1995-01-01

    Swamp tupelo seedlings were planted in four areas which experienced previous tree mortality at the seeplines of the F- and H-Area Seepage Basins. The sites represented a range in severity of impact and stage of recovery. Seedlings were planted in February of 1994 and followed through the first growing season in the field. Survival on all sites through the first growing season was excellent, with greater than 92% of the seedlings still alive. Most seedlings appeared healthy with few external signs of stress. The performance of the seedlings will be followed in subsequent years to determine the physical state of the soil environment on seedling growth. Hopefully, the results will indicate that artificial reforestation can begin on similarly impacted sites prior to the beginning of natural revegetation of the site.

  20. Effect of Simulated Acid Rain on Bursaphelenchus xylophilus Infection of Pine Seedlings.

    PubMed

    Bolla, R I; Fitzsimmons, K

    1988-10-01

    White, Scots, and Austrian 3-year-old pine seedlings were treated with conditions simulating acid rain and inoculated with the white pine specific pathotype of Bursaphelenchus xylophilus, VPSt-1. Oleoresin concentration increased slightly and carbohydrate concentration decreased in all seedlings treated with simulated acid rain (SAR). The changes were significantly increased after inoculation of SAR-treated white and Scots pine seedlings with VPSt-1. Wilting was delayed and nematode reproduction decreased in SAR-treated white pine seedlings inoculated with VPSt-1. SAR-treated Austrian pine seedlings were resistant to VPSt-1, but SAR-treated Scots pine seedlings lost tolerance to VPSt-1 and wilted 50-60 days after inoculation.

  1. Comparison of the responses to flooding of seedlings and cuttings of Gmelina.

    PubMed

    Osonubi, O; Osundina, M A

    1987-06-01

    The effects of flooding on Gmelina arborea Roxb. seedlings and cuttings of the same parent stock were compared to determine their suitability as transplanting stock. Flooding caused reductions in stomatal conductance, xylem pressure potential and dry matter accumulation in both groups of plants. In seedlings, flooding induced formation of hypertrophied lenticels, stem hypertrophy and production of short, thick, adventitious roots in seedlings, whereas in cuttings, only thin roots and numerous smaller lenticels were induced. For 8 days after the flooding treatment ended, the flooded seedlings grew faster than control seedlings, whereas in cuttings, post-flooding growth was similar to that of control plants. It is suggested that seedlings may perform better than cuttings in very wet or saturated soil. PMID:14975827

  2. Influence of Merosesquiterpenoids from Marine Sponges on Seedling Root Growth of Agricultural Plants.

    PubMed

    Chaikina, Elena L; Utkina, Natalia K; Anisimov, Mikhail M

    2016-01-01

    The impact of the merosesquiterpenoids avarol (1), avarone (2), 18-methylaminoavarone (3), melemeleone A (4), isospongiaquinone (5), ilimaquinone (6), and smenoquinone (7), isolated from marine sponges of the Dictyoceratida order, was studied on the root growth of seedlings of buckwheat (Fagopyrumesculentum Moench), wheat (Triticumaestivum L.), soy (Glycine max (L.) Merr.), and barley (Hordeumvulgare L.). Compounds 2and 6 were effective for the root growth of wheat seedlings, compound 3 stimulated the root growth of seedlings of buckwheat and soy, compound 4 affected the roots of barley seedlings, and compound 5 stimulated the root growth of seedlings of buckwheat and barley. Compounds 1 and 7 showed no activity on the root growth of the seedlings of any of the studied plants. The stimulatory effect depends on the chemical structure of the compounds and the type of crop plant. PMID:26996006

  3. Tree fern trunks facilitate seedling regeneration in a productive lowland temperate rain forest.

    PubMed

    Gaxiola, Aurora; Burrows, Larry E; Coomes, David A

    2008-03-01

    Seedling regeneration on forest floors is often impaired by competition with established plants. In some lowland temperate rain forests, tree fern trunks provide safe sites on which tree species establish, and grow large enough to take root in the ground and persist. Here we explore the competitive and facilitative effects of two tree fern species, Cyathea smithii and Dicksonia squarrosa, on the epiphytic regeneration of tree species in nutrient-rich alluvial forests in New Zealand. The difficulties that seedlings have in establishing on vertical tree fern trunks were indicated by the following observations. First, seedling abundance was greatest on the oldest sections of tree fern trunks, near the base, suggesting that trunks gradually recruited more and more seedlings over time, but many sections of trunk were devoid of seedlings, indicating the difficulty of establishment on a vertical surface. Second, most seedlings were from small-seeded species, presumably because smaller seeds can easily lodge on tree fern trunks. Deer browsing damage was observed on 73% of epiphytic seedlings growing within 2 m of the ground, whereas few seedlings above that height were browsed. This suggests that tree ferns provide refugia from introduced deer, and may slow the decline in population size of deer-preferred species. We reasoned that tree ferns would compete with epiphytic seedlings for light, because below the tree fern canopy photosynthetically active radiation (PAR) was about 1% of above-canopy PAR. Frond removal almost tripled %PAR on the forest floor, leading to a significant increase in the height growth rate (HGR) of seedlings planted on the forest floor, but having no effects on the HGRs of epiphytic seedlings. Our study shows evidence of direct facilitative interactions by tree ferns during seedling establishment in plant communities associated with nutrient-rich soils.

  4. Controlling herbaceous competition in pasture planted with loblolly pine seedlings. Forest Service research note

    SciTech Connect

    Haywood, J.D.

    1995-09-01

    Three treatments designed to control herbaceous vegetation competing with loblolly pine (Pinus taeda L.) seedlings planted in grazed and ungrazed pasture were tested. Effects of the treatments on seedling survival and growth during the first 3 years after planting were determined. The treatments were directed application of herbicides (glyphosate in the first 2 years and hexazinone in the third year), rotary mowing, and mulching with pine straw around individual pine seedlings.

  5. Effects of cryopreservation of recalcitrant Amaryllis belladonna zygotic embryos on vigor of recovered seedlings: a case of stress 'hangover'?

    PubMed

    Berjak, Patricia; Pammenter, Norman W

    2010-06-01

    Cryopreservation is the most promising long-term storage option for recalcitrant (i.e. desiccation-sensitive) seed germplasm; however, its effects on the vigor of recovered seedlings are unclear. This study looked at the vigor of seedlings recovered from partially dried (D) and cryopreserved (C) recalcitrant zygotic embryos (ZEs) of Amaryllis belladonna. Seedlings recovered from fresh (F), D- and C-embryos were regenerated in vitro, hardened-off ex vitro and then exposed to 12 days of watering (W) or 8 days of water deficit (S), followed by 3 days of re-watering. Seedling vigor was assessed in terms of physiological and growth responses to the imposed water stress. Compared with F-embryos, partial dehydration and cryopreservation reduced the number of embryos that produced seedlings, as well as the subsequent in vitro biomass of these seedlings. DW- and CW-seedlings (i.e. seedlings recovered from dried and cryopreserved ZEs that were watered for 12 days) exhibited lower CO(2)-assimilation rates and abnormal root growth. Stomatal density was also lower in C-seedlings. DS- and CS-seedlings were exposed to persistent low leaf water and pressure potentials and unlike FS-seedlings, displayed signs of having incurred damage to their photosynthetic machinery. CS-seedlings were less efficient at adjusting leaf water potential to meet transpirational demands and more susceptible to persistent turgor loss than DS- and FS-seedlings. DS-seedlings performed slightly better than CS-seedlings but drought-induced seedling mortality in both these treatments was higher than FS-seedlings. These results suggest that seedlings recovered from partially dried and cryopreserved embryos were less vigorous and more susceptible to hydraulic failure than those from fresh ZEs.

  6. Ames Research Center views of Oats, Slash-Pine and Mung bean seedlings STS-3

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Young oat seedlings are shown in a ground laboratory after being flown into space aboard the Space Shuttle Columbia on STS-3 in March of 1982. All plants were part of the experimental Plant Growth Unit. They appear to have grown to look similar to the control seedlings on earth. A few small roots can be seen growing upward from the soil (33915); Young slash-pine seedlings are shown upon returning from the STS-3 mission (33916); Mung bean seedlings are shown after their return from space aboard the STS-3 (37917).

  7. Seasonal Pattern of Tomato Mosaic Tobamovirus Infection and Concentration in Red Spruce Seedlings

    PubMed Central

    Bachand, George D.; Castello, John D.

    1998-01-01

    Tomato mosaic tobamovirus (ToMV) infects red spruce (Picea rubens) and causes significant changes in its growth and physiology. The mechanism of infection and the pattern of virus concentration in seedling roots and needles were investigated. One-year-old red spruce seedlings were obtained from the nursery in April and June 1995 and August 1996 and tested for ToMV using enzyme-linked immunosorbent assay (ELISA). Virus-free seedlings were divided into three treatments: control, root inoculated, and needle inoculated. Two control, five root-inoculated, and five needle-inoculated seedlings were sampled destructively at biweekly intervals for 3 months and then tested for ToMV by ELISA. ToMV was transmitted to seedlings by root but not by needle inoculation. The virus was detected in 67 to 100% of roots but in less than 7% of needles of root-inoculated seedlings. The percent infection of root-inoculated seedlings differed significantly between the April and June and between the April and August inoculation periods. Virus concentration in infected seedling roots increased initially, peaked within 4 weeks postinoculation, and steadily declined thereafter. Significant differences in ToMV concentrations in roots also were detected among inoculation periods and sampling dates. Early spring may represent the optimal time for infection of seedlings, as well as for assaying roots for ToMV. PMID:16349546

  8. Piriformospora indica rescues growth diminution of rice seedlings during high salt stress

    PubMed Central

    Jogawat, Abhimanyu; Saha, Shreya; Bakshi, Madhunita; Dayaman, Vikram; Kumar, Manoj; Dua, Meenakshi; Varma, Ajit; Oelmüller, Ralf; Tuteja, Narendra; Johri, Atul Kumar

    2013-01-01

    Piriformospora indica association has been reported to increase biotic as well as abiotic stress tolerance of its host plants. We analyzed the beneficial effect of P. indica association on rice seedlings during high salt stress conditions (200 and 300 mM NaCl). The growth parameters of rice seedlings such as root and shoot lengths or fresh and dry weights were found to be enhanced in P. indica-inoculated rice seedlings as compared with non-inoculated control seedlings, irrespective of whether they are exposed to salt stress or not. However, salt-stressed seedlings performed much better in the presence of the fungus compared with non-inoculated control seedlings. The photosynthetic pigment content [chlorophyll (Chl) a, Chl b, and carotenoids] was significantly higher in P. indica-inoculated rice seedlings under high salt stress conditions as compared with salt-treated non-inoculated rice seedlings, in which these pigments were found to be decreased. Proline accumulation was also observed during P. indica colonization, which may help the inoculated plants to become salt tolerant. Taken together, P. indica rescues growth diminution of rice seedlings under salt stress.

  9. Community-Wide Spatial and Temporal Discordances of Seed-Seedling Shadows in a Tropical Rainforest

    PubMed Central

    Rother, Débora Cristina; Pizo, Marco Aurélio; Siqueira, Tadeu; Rodrigues, Ricardo Ribeiro; Jordano, Pedro

    2015-01-01

    Several factors decrease plant survival throughout their lifecycles. Among them, seed dispersal limitation may play a major role by resulting in highly aggregated (contagious) seed and seedling distributions entailing increased mortality. The arrival of seeds, furthermore, may not match suitable environments for seed survival and, consequently, for seedling establishment. In this study, we investigated spatio-temporal patterns of seed and seedling distribution in contrasting microhabitats (bamboo and non-bamboo stands) from the Brazilian Atlantic Forest. Spatial distribution patterns, spatial concordance between seed rain and seedling recruitment between subsequent years in two fruiting seasons (2004–2005 and 2007–2009), and the relation between seeds and seedlings with environmental factors were examined within a spatially-explicit framework. Density and species richness of both seeds and seedlings were randomly distributed in non-bamboo stands, but showed significant clustering in bamboo stands. Seed and seedling distributions showed across-year inconsistency, suggesting a marked spatial decoupling of the seed and seedling stages. Generalized linear mixed effects models indicated that only seed density and seed species richness differed between stand types while accounting for variation in soil characteristics. Our analyses provide evidence of marked recruitment limitation as a result of the interplay between biotic and abiotic factors. Because bamboo stands promote heterogeneity in the forest, they are important components of the landscape. However, at high densities, bamboos may limit recruitment for the plant community by imposing marked discordances of seed arrival and early seedling recruitment. PMID:25856393

  10. Monitoring Acacia seedlings establishment and survival for a geo-spatial analysis model

    NASA Astrophysics Data System (ADS)

    Isaacson, Sivan; Winters, Gidon; Blumberg, Dan G.; Rachmilevitch, shimon; Ephrath, Jhonathan E.

    2016-04-01

    Seedlings are considered the stage most vulnerable to environmental conditions in the life cycle of plants. For plants in general but even more so for desert plants, seedling survival during the first years is crucial to the longevity of the population. Within the study area, Arava valley, southern Israeli Negev desert, flood events have been known to induce germination of seedlings, with only a small percentage (if any) of such seedlings surviving the dry summer. Following the floods of the 2013 winter (Jan-April 2013), we identified a 50 x 50 m section within the Gidron Wadi (Ephemeral river), in which we located and marked some 50 acacia (Acacia tortilis and Acacia raddiana) seedlings. We monitored the seedlings survival, growth and trunk diameter over the period of three years as well as taking periodical thermal and near infra-red (NIR) photographs. In order to better understand the geohydrology conditions we created a digital elevation model of the Wadi segment that includes the seedlings location, using total station theodolite. The survey will enable us to locate and map hotspots in the Wadi, which have high potential for seedling establishment and survival. Understanding the conditions (micro-topographic, radiative, plant competition) effect on seedling germination and establishment, can be translated into a spatial rule set of recruitment probability for population dynamic spatial models.

  11. Adventitious roots, leaf abscission and nutrient status of flooded Gmelina and Tectona seedlings.

    PubMed

    Osundina, M A; Osonubi, O

    1989-12-01

    When flooded, seedlings of Gmelina arborea Roxb. produced more adventitious roots, had lower foliar Mn concentrations and lost fewer leaves than seedlings of Tectona grandis L.f. Severing the adventitious roots produced by flooded Gmelina seedlings increased leaf Mn concentration and leaf abscission and reduced whole-plant dry matter production. Flooded Gmelina cuttings, which do not produce adventitious roots, abscised few leaves until foliar concentrations of Mn and Fe had risen substantially above those of unflooded cuttings, at which time most leaves were shed. The results indicate that the development of adventitious roots in flooded seedlings of Gmelina suppressed uptake of Mn thereby minimizing leaf abscission. PMID:14972970

  12. Community-wide spatial and temporal discordances of seed-seedling shadows in a tropical rainforest.

    PubMed

    Rother, Débora Cristina; Pizo, Marco Aurélio; Siqueira, Tadeu; Rodrigues, Ricardo Ribeiro; Jordano, Pedro

    2015-01-01

    Several factors decrease plant survival throughout their lifecycles. Among them, seed dispersal limitation may play a major role by resulting in highly aggregated (contagious) seed and seedling distributions entailing increased mortality. The arrival of seeds, furthermore, may not match suitable environments for seed survival and, consequently, for seedling establishment. In this study, we investigated spatio-temporal patterns of seed and seedling distribution in contrasting microhabitats (bamboo and non-bamboo stands) from the Brazilian Atlantic Forest. Spatial distribution patterns, spatial concordance between seed rain and seedling recruitment between subsequent years in two fruiting seasons (2004-2005 and 2007-2009), and the relation between seeds and seedlings with environmental factors were examined within a spatially-explicit framework. Density and species richness of both seeds and seedlings were randomly distributed in non-bamboo stands, but showed significant clustering in bamboo stands. Seed and seedling distributions showed across-year inconsistency, suggesting a marked spatial decoupling of the seed and seedling stages. Generalized linear mixed effects models indicated that only seed density and seed species richness differed between stand types while accounting for variation in soil characteristics. Our analyses provide evidence of marked recruitment limitation as a result of the interplay between biotic and abiotic factors. Because bamboo stands promote heterogeneity in the forest, they are important components of the landscape. However, at high densities, bamboos may limit recruitment for the plant community by imposing marked discordances of seed arrival and early seedling recruitment. PMID:25856393

  13. Community-wide spatial and temporal discordances of seed-seedling shadows in a tropical rainforest.

    PubMed

    Rother, Débora Cristina; Pizo, Marco Aurélio; Siqueira, Tadeu; Rodrigues, Ricardo Ribeiro; Jordano, Pedro

    2015-01-01

    Several factors decrease plant survival throughout their lifecycles. Among them, seed dispersal limitation may play a major role by resulting in highly aggregated (contagious) seed and seedling distributions entailing increased mortality. The arrival of seeds, furthermore, may not match suitable environments for seed survival and, consequently, for seedling establishment. In this study, we investigated spatio-temporal patterns of seed and seedling distribution in contrasting microhabitats (bamboo and non-bamboo stands) from the Brazilian Atlantic Forest. Spatial distribution patterns, spatial concordance between seed rain and seedling recruitment between subsequent years in two fruiting seasons (2004-2005 and 2007-2009), and the relation between seeds and seedlings with environmental factors were examined within a spatially-explicit framework. Density and species richness of both seeds and seedlings were randomly distributed in non-bamboo stands, but showed significant clustering in bamboo stands. Seed and seedling distributions showed across-year inconsistency, suggesting a marked spatial decoupling of the seed and seedling stages. Generalized linear mixed effects models indicated that only seed density and seed species richness differed between stand types while accounting for variation in soil characteristics. Our analyses provide evidence of marked recruitment limitation as a result of the interplay between biotic and abiotic factors. Because bamboo stands promote heterogeneity in the forest, they are important components of the landscape. However, at high densities, bamboos may limit recruitment for the plant community by imposing marked discordances of seed arrival and early seedling recruitment.

  14. [Seedling establishment of Fagus engleriana, a dominant in mountain deciduous forests].

    PubMed

    Guo, Ke

    2003-02-01

    The survival and growth of Fagus engleriana seedlings in three light levels, and with and without supplying additional fertilizer (F1 and F0, respectively) for each light level were studied. The three light levels were to simulate the light regimes in the understorey, small gaps and clearings (L1, L2 and L3 about 1%, 18% and 100% of full sunlight, respectively). The seedling development in L1 was severely inhibited by low light intensity. Seedling mortality was remarkably higher in L1 than in L2 and L3, and in F1 than in F0. The death of the seedlings seemed to result from attack of fungal pathogens. Although seedling survival and growth were significantly improved as light intensities increased from L1 to L2, seedlings in L3 developed similarly as those in L2. It is suggested that the young seedlings could not tolerate the shade of closed forest canopy, and fertile patches on the forest floor might not improve seedling establishment. Successful regeneration of the species in the forests needs better light conditions such as those in gaps than those under the closed forest canopy, at least during the phase of seedling establishment.

  15. Role of Oxygen Fixation in Hydroxyproline Biosynthesis by Etiolated Seedlings 1

    PubMed Central

    Stout, Ernest R.; Fritz, George J.

    1966-01-01

    Etiolated maize and soybean seedlings were grown for several days in atmospheres enriched with O18. Hydroxyproline subsequently isolated from the seedlings by column and thin-layer chromatography was labeled with excess O18, but proline was not. Control experiments in which seedlings were grown in H2O18 and unlabeled atmospheres demonstrated that neither proline nor hydroxyproline was labeled with excess O18. It was concluded that oxygen fixation is an essential feature of hydroxyproline biosynthesis in these seedlings, and that the hydroxyl oxygen atom in hydroxyproline is derived from molecular oxygen and not from water; similar results have been reported previously for sycamore cell suspensions. PMID:16656240

  16. [Effects of grafting on physiological characteristics of melon (Cucumis melo) seedlings under copper stress].

    PubMed

    Tan, Ming-min; Zhang, Xin-ying; Fu, Qiu-shi; He, Zhong-qun; Wang, Huai-song

    2014-12-01

    The effects of grafting on physiological characters of melon (Cucumis melo) seedlings under copper stress were investigated with Pumpkin Jingxinzhen No. 3 as stock and oriental melon IVF09 as scion. The results showed that the physiological characters of melon seedlings were inhibited significantly under copper stress. Compared with self-rooted seedlings, the biomass, the contents of photosynthetic pigment, glucose and fructose, the photosynthetic parameters, the activities of sucrose phosphate synthase, neutral invertase and acid invertase in the leaves of the grafted seedlings were increased significantly. The uptake of nutrients was improved with the contents of K, P, Na increased and the content of Cu decreased. When the concentration of Cu2+ stress was 800 micromol L(-1), the contents of Cu in the leaves and roots of the grafted seedlings were decreased by 31.3% and 15.2%, respectively. Endogenous hormone balance of seedlings was improved by grafting. In the grafted seedlings, the content of IAA and peroxidase activity were higher, whereas the contents of ABA, maleicdialdehyde, the activities of superoxide dismutase and catalase were lower than that in the control. It was concluded that the copper stress on the physiological characters of melon seedlings was relieved by grafting which improved the resistance of the grafted seedlings. PMID:25876409

  17. Analysis of peg formation in cucumber seedlings grown on clinostats and in a microgravity (space) environment

    NASA Technical Reports Server (NTRS)

    Link, B. M.; Cosgrove, D. J.

    1999-01-01

    In young cucumber seedlings, the peg is a polar out-growth of tissue that functions by snagging the seed coat, thereby freeing the cotyledons. Previous studies have indicated that peg formation is gravity dependent. In this study we analyzed peg formation in cucumber seedlings (Cucumis sativus L. cv Burpee Hybrid II) grown under conditions of normal gravity, microgravity, and simulated microgravity (clinostat rotation). Seeds were germinated on the ground, in clinostats and on board the space shuttle (STS 95) for 1-2 days, frozen and subsequently examined for their stage of development, degree of hook formation, number of pegs formed, and peg morphology. The frequency of peg formation in space grown seedlings was found to be nearly identical to that of clinostat grown seedlings and to differ from that of seedlings germinated under normal gravity only in a minority of cases; approximately 6% of the seedlings formed two pegs and nearly 2% of the seedlings lacked pegs, whereas such abnormalities did not occur in ground controls. The degree of hook formation was found to be less pronounced for space grown seedlings, compared to clinostat grown seedlings, indicating a greater degree of decoupling between peg formation and hook formation in space. Nonetheless, in all seedlings having single pegs and a hook, the peg was found to be positioned correctly on the inside of the hook, showing that there is coordinate development even in microgravity environments. Peg morphologies were altered in space grown samples, with the pegs having a blunt appearance and many pegs showing alterations in expansion, with the peg extending out over the edges of the seed coat and downwards. These phenotypes were not observed in clinostat or ground grown seedlings.

  18. [Regeneration characteristics of woody plant seedlings in typical secondary forests in Qinling Mountains].

    PubMed

    Kang, Bing; Liu, Shi-Rong; Wang, De-Xiang; Zhang, Ying; Liu, Hong-Ru; Du, Yan-Ling

    2011-12-01

    By using sampling plot method, an investigation was conducted on the regeneration characteristics of woody plant seedlings in five kinds of typical secondary forests (Pinus tabulaeformis, Quercus valiena var. acuteserrata, Betula albo-sinensis, Picea asperata, and Pinus armandii) in Qinling Mountains. There was an obvious species differentiation of woody plant seedlings and saplings in the forests. Except for Q. valiena var. acuteserrata and P. armandii forests, the similarity coefficient of the seedlings and saplings species in the forests was lower. The seedlings and saplings quantity, species richness index, Simpson dominance index, and evenness index were higher in P. tabulaeformis and Q. valiena var. acuteserrata forests, the lowest in B. albo-sinensis forest, and basically the same in P. asperata and P. armandii forests. The percentages of the seedlings and saplings in the five forests had significant differences (P < 0.05). Except in B. albo-sinensis forest where the percentage of the saplings was higher, the percentage of the seedlings in the other stands was larger, and in the order of P. asperata forest > P. tabulaeformis forest > Q. valiena var. acuteserrata forest > P. armandii forest, respectively. The sprouting percentage of the seedlings in different forests had significant difference (P < 0.05), and was in the sequence of P. armandii forest > P. asperata forest > B. albo-sinensis forest > Q. valiena var. acuteserrata forest > P. tabulaeformis forest. In Q. valiena var. acuteserrata and P. tabulaeformis forests, the percentage of tree seedlings was the highest, occupying 68% and 51.4% of the total number of woody seedlings, respectively, and their communities were in the medium succession period, with a stronger persistent regeneration capability; in P. asperata and P. armandii forests, the percentage of tree seedlings was 40% and 15%, respectively, and their communities were in the late succession period, with a rather poor regeneration capability

  19. Fuel reduction at a Spanish heathland by prescribed fire and mechanical shredding: effects on seedling emergence.

    PubMed

    Fernández, Cristina; Vega, José A; Fonturbel, Teresa

    2013-11-15

    Traditional heathland burning has declined in Spain, leading to fuel accumulation and fuel reduction treatments have become common for severe wildfire hazard reduction. These methods need to maintain the botanical composition of those shrub communities. Prescribed fire has been widely used in the past, but we need to compare mechanical fuel reduction with prescribed fire because it is easier and safer to carry out in a wide range of weather conditions. This information could be particularly useful in flammable ecosystems all over the world where traditional anthropogenic burning has declined. In this study, we compared the effects of prescribed burning and mechanical shredding on the seedling emergence and its relation to the mature vegetation in a fire-prone heathland dominated by Erica australis L. and Pterospartum tridentatum (L.) Willk., in Galicia (NW Spain). We combined a greenhouse experiment with periodic field inventories of seedling emergence. In the greenhouse study, the seedling emergence was significantly higher in the soil samples after burning (383 seedlings m(-2)) than in samples before burning (242 seedlings m(-2)). In contrast, there was no significant difference in seedling density before and after mechanical shredding (243 compared with 261 seedlings m(-2)). Also, the number of seedlings that emerged after burning was significantly higher than that emerged after mechanical shredding. The maximum temperatures at the soil organic layer surface during burning were significantly and positively related to the density of Halimium lasianthum ssp. alyssoides and P. tridentatum seedlings. In the field study, the observed seedling density was very low both after prescribed burning and mechanical shredding. There was a high degree of similarity between emerged seedlings and mature vegetation in both the treated and in the untreated soils, which was probably a consequence of the dominance of resprouting species. Some consequences for the management of

  20. Drought-Induced Leaf Proteome Changes in Switchgrass Seedlings

    PubMed Central

    Ye, Zhujia; Sangireddy, Sasikiran; Okekeogbu, Ikenna; Zhou, Suping; Yu, Chih-Li; Hui, Dafeng; Howe, Kevin J.; Fish, Tara; Thannhauser, Theodore W.

    2016-01-01

    Switchgrass (Panicum virgatum) is a perennial crop producing deep roots and thus highly tolerant to soil water deficit conditions. However, seedling establishment in the field is very susceptible to prolonged and periodic drought stress. In this study, a “sandwich” system simulating a gradual water deletion process was developed. Switchgrass seedlings were subjected to a 20-day gradual drought treatment process when soil water tension was increased to 0.05 MPa (moderate drought stress) and leaf physiological properties had expressed significant alteration. Drought-induced changes in leaf proteomes were identified using the isobaric tags for relative and absolute quantitation (iTRAQ) labeling method followed by nano-scale liquid chromatography mass spectrometry (nano-LC-MS/MS) analysis. Additionally, total leaf proteins were processed using a combinatorial library of peptide ligands to enrich for lower abundance proteins. Both total proteins and those enriched samples were analyzed to increase the coverage of the quantitative proteomics analysis. A total of 7006 leaf proteins were identified, and 257 (4% of the leaf proteome) expressed a significant difference (p < 0.05, fold change <0.6 or >1.7) from the non-treated control to drought-treated conditions. These proteins are involved in the regulation of transcription and translation, cell division, cell wall modification, phyto-hormone metabolism and signaling transduction pathways, and metabolic pathways of carbohydrates, amino acids, and fatty acids. A scheme of abscisic acid (ABA)-biosynthesis and ABA responsive signal transduction pathway was reconstructed using these drought-induced significant proteins, showing systemic regulation at protein level to deploy the respective mechanism. Results from this study, in addition to revealing molecular responses to drought stress, provide a large number of proteins (candidate genes) that can be employed to improve switchgrass seedling growth and establishment under

  1. Physiological effects of NaCl on Apocynum venetum seedlings

    NASA Astrophysics Data System (ADS)

    Han, Wei; Cao, Ling

    2016-04-01

    The physiological effects of NaCl on the Apocynum venetum seedlings were investigated, including the chlorophyll a fluorescence, leaf potential and growth rate, etc. The findings indicated that along with hardness index increasing, the leaf sample's chlorophyll content assumed the fluctuation condition which dropped firstly elevated again; the leaf water potential maintained stable basically; the energy of light absorption, the assignment and the dissipation balanced at 10 g/L and the growth rate presented the maximum value 9.8 mm/d; Along with the stress extension, the greatest quantum yield Fv/Fm dropped, metallic ion's absorption increased. In the 21st day, non-photochemical quenching coefficient NPQ presented the maximum value, absorbed energy proportion parameter Y(II) dropped firstly restored again, 3 kind of energy absorptions, the assignment dissipation parameter proportion stabilized in 10 g/L at Y(II):Y(NO):Y(NPQ) = 65%:20%:15%.The results suggested that in the A. venetum nursery process in the southern edge of Taklimakan Desert, phased tending should be adopted according to the seedling stage: 5-10 g/L salinity water should be used in irrigation in the seedling stage to maintain a more high leaf water potential which could prevent the decomposition of chlorophyll in which higher proportion of photochemical energy conversion could be stable using 10 g/L salt water irrigation to give A. venetum a full play of stronger salt adaptability to the southern margin of the Taklimakan Desert Oasis-Desert Ecotone in its restoration and construction. Key words: saline water irrigation; leaf water potential; energy allocation strategies; growth rate

  2. Drought-Induced Leaf Proteome Changes in Switchgrass Seedlings.

    PubMed

    Ye, Zhujia; Sangireddy, Sasikiran; Okekeogbu, Ikenna; Zhou, Suping; Yu, Chih-Li; Hui, Dafeng; Howe, Kevin J; Fish, Tara; Thannhauser, Theodore W

    2016-01-01

    Switchgrass (Panicum virgatum) is a perennial crop producing deep roots and thus highly tolerant to soil water deficit conditions. However, seedling establishment in the field is very susceptible to prolonged and periodic drought stress. In this study, a "sandwich" system simulating a gradual water deletion process was developed. Switchgrass seedlings were subjected to a 20-day gradual drought treatment process when soil water tension was increased to 0.05 MPa (moderate drought stress) and leaf physiological properties had expressed significant alteration. Drought-induced changes in leaf proteomes were identified using the isobaric tags for relative and absolute quantitation (iTRAQ) labeling method followed by nano-scale liquid chromatography mass spectrometry (nano-LC-MS/MS) analysis. Additionally, total leaf proteins were processed using a combinatorial library of peptide ligands to enrich for lower abundance proteins. Both total proteins and those enriched samples were analyzed to increase the coverage of the quantitative proteomics analysis. A total of 7006 leaf proteins were identified, and 257 (4% of the leaf proteome) expressed a significant difference (p < 0.05, fold change <0.6 or >1.7) from the non-treated control to drought-treated conditions. These proteins are involved in the regulation of transcription and translation, cell division, cell wall modification, phyto-hormone metabolism and signaling transduction pathways, and metabolic pathways of carbohydrates, amino acids, and fatty acids. A scheme of abscisic acid (ABA)-biosynthesis and ABA responsive signal transduction pathway was reconstructed using these drought-induced significant proteins, showing systemic regulation at protein level to deploy the respective mechanism. Results from this study, in addition to revealing molecular responses to drought stress, provide a large number of proteins (candidate genes) that can be employed to improve switchgrass seedling growth and establishment under soil

  3. Drought-Induced Leaf Proteome Changes in Switchgrass Seedlings.

    PubMed

    Ye, Zhujia; Sangireddy, Sasikiran; Okekeogbu, Ikenna; Zhou, Suping; Yu, Chih-Li; Hui, Dafeng; Howe, Kevin J; Fish, Tara; Thannhauser, Theodore W

    2016-01-01

    Switchgrass (Panicum virgatum) is a perennial crop producing deep roots and thus highly tolerant to soil water deficit conditions. However, seedling establishment in the field is very susceptible to prolonged and periodic drought stress. In this study, a "sandwich" system simulating a gradual water deletion process was developed. Switchgrass seedlings were subjected to a 20-day gradual drought treatment process when soil water tension was increased to 0.05 MPa (moderate drought stress) and leaf physiological properties had expressed significant alteration. Drought-induced changes in leaf proteomes were identified using the isobaric tags for relative and absolute quantitation (iTRAQ) labeling method followed by nano-scale liquid chromatography mass spectrometry (nano-LC-MS/MS) analysis. Additionally, total leaf proteins were processed using a combinatorial library of peptide ligands to enrich for lower abundance proteins. Both total proteins and those enriched samples were analyzed to increase the coverage of the quantitative proteomics analysis. A total of 7006 leaf proteins were identified, and 257 (4% of the leaf proteome) expressed a significant difference (p < 0.05, fold change <0.6 or >1.7) from the non-treated control to drought-treated conditions. These proteins are involved in the regulation of transcription and translation, cell division, cell wall modification, phyto-hormone metabolism and signaling transduction pathways, and metabolic pathways of carbohydrates, amino acids, and fatty acids. A scheme of abscisic acid (ABA)-biosynthesis and ABA responsive signal transduction pathway was reconstructed using these drought-induced significant proteins, showing systemic regulation at protein level to deploy the respective mechanism. Results from this study, in addition to revealing molecular responses to drought stress, provide a large number of proteins (candidate genes) that can be employed to improve switchgrass seedling growth and establishment under soil

  4. Enhancing seedling production of native species to restore gypsum habitats.

    PubMed

    Cañadas, E M; Ballesteros, M; Foronda, A; Navarro, F B; Jiménez, M N; Lorite, J

    2015-11-01

    Gypsum habitats are widespread globally and are important for biological conservation. Nevertheless, they are often affected by human disturbances and thus require restoration. Sowing and planting have shown positive results, but these actions are usually limited by the lack of native plant material in commercial nurseries, and very little information is available on the propagation of these species. We address this issue from the hypothesis that gypsum added to a standard nursery growing medium (peat) can improve seedling performance of gypsum species and, therefore, optimise the seedling production for outplanting purposes. We test the effect of gypsum on emergence, survival, and growth of nine native plant species, including gypsophiles (exclusive to gypsum) and gypsovags (non-exclusive to gypsum). We used four treatments according to the proportions, in weight, of gypsum:standard peat (G:S), i.e. high-g (50G:50S), medium-g (25G:75S), low-g (10G:90S), and standard-p (0G:100S). Our results showed that the gypsum treatments especially benefited the emergence stage, gypsophiles as group, and Ononis tridentata as a taxon. In particular, the gypsum treatments enhanced emergence of seven species, survival of three species, and growth of two gypsophiles, while the use of the standard peat favoured only the emergence or growth of three gypsovags. Improving emergence and survival at the nursery can provide a reduction of costs associated with seed harvesting, watering, and space, while enlarging seedlings can favour the establishment of individuals after outplanting. Thus, we suggest adding gypsum to standard peat for propagating seedlings in species from gypsum habitats, thereby potentially cutting the costs of restoring such habitats. Our assessment enables us to provide particular advice by species. In general, we recommend using between 25 and 50% of gypsum to propagate gypsophiles, and between 0 and 10% for gypsovags. The results can benefit not only the production

  5. Enhancing seedling production of native species to restore gypsum habitats.

    PubMed

    Cañadas, E M; Ballesteros, M; Foronda, A; Navarro, F B; Jiménez, M N; Lorite, J

    2015-11-01

    Gypsum habitats are widespread globally and are important for biological conservation. Nevertheless, they are often affected by human disturbances and thus require restoration. Sowing and planting have shown positive results, but these actions are usually limited by the lack of native plant material in commercial nurseries, and very little information is available on the propagation of these species. We address this issue from the hypothesis that gypsum added to a standard nursery growing medium (peat) can improve seedling performance of gypsum species and, therefore, optimise the seedling production for outplanting purposes. We test the effect of gypsum on emergence, survival, and growth of nine native plant species, including gypsophiles (exclusive to gypsum) and gypsovags (non-exclusive to gypsum). We used four treatments according to the proportions, in weight, of gypsum:standard peat (G:S), i.e. high-g (50G:50S), medium-g (25G:75S), low-g (10G:90S), and standard-p (0G:100S). Our results showed that the gypsum treatments especially benefited the emergence stage, gypsophiles as group, and Ononis tridentata as a taxon. In particular, the gypsum treatments enhanced emergence of seven species, survival of three species, and growth of two gypsophiles, while the use of the standard peat favoured only the emergence or growth of three gypsovags. Improving emergence and survival at the nursery can provide a reduction of costs associated with seed harvesting, watering, and space, while enlarging seedlings can favour the establishment of individuals after outplanting. Thus, we suggest adding gypsum to standard peat for propagating seedlings in species from gypsum habitats, thereby potentially cutting the costs of restoring such habitats. Our assessment enables us to provide particular advice by species. In general, we recommend using between 25 and 50% of gypsum to propagate gypsophiles, and between 0 and 10% for gypsovags. The results can benefit not only the production

  6. CROWN GALL INCIDENCE: SEEDLING PARADOX WALNUT ROOTSTOCK VERSUS OWN-ROOTED ENGLISH WALNUT TREES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seedling Paradox (Juglans hindsii x J. regia) has been the rootstock of choice for English walnut in California because of its vigor and greater tolerance of wet soil conditions. However, seedling Paradox rootstock is highly susceptible to crown gall, a disease caused by the soil-borne bacterium Agr...

  7. FOLIAR N RESPONSE OF PONDEROSA PINE SEEDLINGS TO ELEVATED CO2 AND O3

    EPA Science Inventory

    Interactions between needle N status and exposure to combined CO2 and O3 stresses were studied in Pinus ponderosa seedlings. The seedlings were grown for three years (April 1998 through March 2001) in outdoor chambers in native soils from eastern Oregon, and exposed to ambient ...

  8. Maize white seedling 3 results from disruption of homogentisate solanesyl transferase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize white seedling 3 (w3) has served as a model albino-seedling mutant since its discovery in 1923. We show here that the w3 phenotype is caused by disruptions in homogentisate solanesyl transferase (HST), an enzyme that catalyzes the committed step in plastoquinone-9 (PQ9) biosynthesis. This re...

  9. Energy biomass tree seedling production study. Fuels from woody biomass. Progress report, September 1978-January 1980

    SciTech Connect

    Foote, K.R.

    1980-03-01

    The research to date has centered around the establishment of baseline growing conditions for a number of species of tree seedlings, primarily deciduous hardwoods. As these baseline conditions were established for each specie, the shoot and root environments were manipulated in an attempt to establish techniques to increase seedling growth and reduce production times. Seedlings were outplanted in an attempt to establish baseline survival rates for seedlings grown in totally controlled environments. Studies to determine the optimum container for tree seedling production have been run and will continue as other containers are identified and made available. The most significant of the research results has been in the maximization of seedling growth. Seedling production times have been decreased in some species by as much as 50% under the baseline production times. Controlled environment production techniques provide for plant densities as high as 144 seedlings per square foot of growing space. Investigations of growing media indicate a significant species specific responses. Preliminary results of outplanting indicate survival rates as high as 90% plus.

  10. Characterization of Rhizoctonia isolates associated with damping-off and crown rot of rooibos seedlings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizoctonia species were reported to be an important component of the complex involved in damping-off of rooibos (Aspalathus linearis) seedlings and cause severe crown rot of seedlings in nurseries. However, no information is available on the anastomosis groups (AGs) of Rhizoctonia associated with d...

  11. Root carbon reserve dynamics in aspen seedlings: does simulated drought induce reserve limitation?

    PubMed

    Galvez, David A; Landhäusser, S M; Tyree, M T

    2011-03-01

    In a greenhouse study we quantified the gradual change of gas exchange, water relations and root reserves of aspen (Populus tremuloides Michx.) seedlings growing over a 3-month period of severe water stress. The aim of the study was to quantify the complex interrelationship between growth, water and gas exchange, and root carbon (C) dynamics. Various growth, gas exchange and water relations variables in combination with root reserves were measured periodically on seedlings that had been exposed to a continuous drought treatment over a 12-week period and compared with well-watered seedlings. Although gas exchange and water relations parameters significantly decreased over the drought period in aspen seedlings, root reserves did not mirror this trend. During the course of the experiment roots of aspen seedlings growing under severe water stress showed a two orders of magnitude increase in sugar and starch content, and roots of these seedlings contained more starch relative to sugar than those in non-droughted seedlings. Drought resulted in a switch from growth to root reserves storage which indicates a close interrelationship between growth and physiological variables and the accumulation of root carbohydrate reserves. Although a severe 3-month drought period created physiological symptoms of C limitation, there was no indication of a depletion of root C reserve in aspen seedlings.

  12. Seed and seedling ecology research as the foundation for enhancing restoration outcomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The success of restoration in arid and semiarid rangelands is severely limited by deficiencies in our understanding of seedling ecology and seedling recruitment. This is significant because rangelands provide sustenance for roughly one-third of the global population, and evolving challenges such as...

  13. Wheat Seedlings as Food Supplement to Combat Free Radicals: An In Vitro Approach

    PubMed Central

    Ravikumar, P.; Shalini, G.; Jeyam, M.

    2015-01-01

    The present study was designed to evaluate the antioxidant activity of 5 organic solvent extracts (petroleum ether, n-hexane, chloroform, ethyl acetate and methanol) of wheat grains, 3, 5 and 7 days old wheat seedlings. To determine the antioxidant activity of five extracts of four different samples, 1,1-diphenyl-2-picrylhydrazyl and 2,2’-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activity, total phenolic content and ferrous reducing power ability were carried out. 1,1-Diphenyl-2-picrylhydrazyl radical scavenging effect of chloroform and ethyl acetate extracts of 3 days old wheat seedlings was higher than wheat grains. Chloroform, ethyl acetate and methanol extracts of 3 days old wheat seedlings exhibited higher 2,2’-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging effcet than extracts of other samples. The phenolic content was high in chloroform, ethyl acetate and methanol extract of 5 days old wheat seedlings. When compared with wheat grain, reducing power ability was high in chloroform, ethyl acetate and methanol extract of wheat seedlings, especially in 3 and 5 days old wheat seedlings. From the above results, it was concluded that chloroform, ethyl acetate and methanol extract of 3, 5 and 7 days old wheat seedlings showed better antioxidant activity than the wheat grain extracts. Hence, the results of the present study suggest the intake of wheat seedlings as a food supplement to combat the diseases caused by free radicals. PMID:26798175

  14. [Relationships between seed size and seedling growth strategy of herbaceous plant: a review].

    PubMed

    Wu, Gao-lin; Du, Guo-zhen

    2008-01-01

    Seed size and seedling recruitment strategy are of importance in the life-history strategy of plant. In this paper, the current ecological researches at home and aboard on the relationships between seed size and seedling growth were reviewed from the aspects of the effects of seed size on seed germination and seedling emergence, the relationships between seed size and seedling growth traits, and the relationships between seed size and seedling survival and competition ability. Some suggestions on future researches in this field were put forward. There were likely different relationships between seed size and seedling growth in different microenvironments and vegetation types, and the effects of seed size on seedling growth could result in different contributions of different seed-size species to the seedling recruitment of vegetation. The large-scale community level and the small-scale intra- and inter-species level researches on this issue should be strengthened, which would have significance for the recruitment and renewing of natural vegetation.

  15. Young restored forests increase seedling recruitment in abandoned pastures in the Southern Atlantic rainforest.

    PubMed

    Leitão, Flora H M; Marques, Marcia C M; Ceccon, Eliane

    2010-12-01

    Planting seedlings is a common technique for abandoned pastures restoration in the tropics, supposedly by increasing the seedling recruitment and accelerating succession. In this study we evaluated the role of a young restored forest (one year old) in enhancing seedling establishment from two sources (seed rain and seed bank), in the Atlantic Rainforest region in Southern Brazil. We compared abandoned pasture, young restored forest and old-growth forest with respect to the seedlings recruited from different sources, by monitoring 40 permanent plots (0.5 m x 0.5 m) over 20 months. From the three studied areas a total of 392 seedlings of 53 species were recruited. Species were mainly herbaceous (85%), pioneers (88%), zoochorous (51%) and small-seeded species (60%). Seedling recruitment from the seed bank (density and species richness) was higher and dominated by herbaceous species in the abandoned pasture and in the young restored forest; on the other hand, the recruitment of woody species from seed rain was more pronounced in the old-growth forest. The young restored forest increased the species richness of woody seedlings recruitment from the seed bank (two-fold) and from seed rain (three-fold) compared to the abandoned pasture. Also, the seedling density in young restored forest was still higher than abandoned pastures (seed bank: four times; seed rain: ten times). Our results show that even young restored areas enhance the establishment of woody species and should be considered an important step for pasture restoration. PMID:21246991

  16. Effects of seed-caching desert rodents on seedling survival of Indian ricegrass (Achnatherum hymenoides)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In addition to consuming seeds, many small mammals also cache seeds in shallowly buried scatterhoards, and seeds of many plant species germinate and establish aggregated clusters of seedlings from these caches. Scatterhoards made by desert heteromyid rodents provide the primary source of seedling re...

  17. Phosphorus limits Eucalyptus grandis seedling growth in an unburnt rain forest soil

    PubMed Central

    Tng, David Y. P.; Janos, David P.; Jordan, Gregory J.; Weber, Ellen; Bowman, David M. J. S.

    2014-01-01

    Although rain forest is characterized as pyrophobic, pyrophilic giant eucalypts grow as rain forest emergents in both temperate and tropical Australia. In temperate Australia, such eucalypts depend on extensive, infrequent fires to produce conditions suitable for seedling growth. Little is known, however, about constraints on seedlings of tropical giant eucalypts. We tested whether seedlings of Eucalyptus grandis experience edaphic constraints similar to their temperate counterparts. We hypothesized that phosphorous addition would alleviate edaphic constraints. We grew seedlings in a factorial experiment combining fumigation (to simulate nutrient release and soil pasteurization by fire), soil type (E. grandis forest versus rain forest soil) and phosphorus addition as factors. We found that phosphorus was the principal factor limiting E. grandis seedling survival and growth in rain forest soil, and that fumigation enhanced survival of seedlings in both E. grandis forest and rain forest soil. We conclude that similar to edaphic constraints on temperate giant eucalypts, mineral nutrient and biotic attributes of a tropical rain forest soil may hamper E. grandis seedling establishment. In rain forest soil, E. grandis seedlings benefited from conditions akin to a fire-generated ashbed (i.e., an “ashbed effect”). PMID:25339968

  18. Negative Associations Between Seedlings and Adult Plants In Two Alpine Plant Communities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant species’ requirements at seed and seedling stages are critical in determining their distributions. Proximity to adult plants, as well as the presence of litter or rocks on the soil surface can influence seedling success. By comparing the microsite characteristics of points occupied by naturall...

  19. Defoliation by pastoralists affects savanna tree seedling dynamics by limiting the facilitative role of canopy cover.

    PubMed

    Bufford, Jennifer L; Gaoue, Orou G

    2015-07-01

    Recurrent tree defoliation by pastoralists, akin to herbivory, can negatively affect plant reproduction and population dynamics. However, our understanding of the indirect role of defoliation in seedling recruitment and tree-grass dynamics in tropical savanna is limited. In West African savanna, Fulani pastoralists frequently defoliate several fodder tree species to feed livestock in the dry season. We investigated the direct and indirect effects of recurrent defoliation of African mahogany (Khaya senegalensis) by Fulani people on seedling (< 2 cm basal diameter) and sapling dynamics in West Africa using four years of demographic data on seedling and sapling density, growth, and survival, coupled with fruit production and microhabitat data over the same time period. Tree canopy cover facilitated seedlings but had negative effects on sapling growth possibly via intraspecific competition with adult plants. Interspecific competition with grasses strongly reduced seedling survival but had a weak effect on sapling growth. Fire reduced seedling survival and weakly reduced growth of seedlings and saplings, but did not affect sapling survival. These results indicate that the effect of fire on seedlings and saplings is distinct, a mechanism suitable for an episodic recruitment of seedlings into the sapling stage and consistent with predictions from the demographic bottleneck model. Defoliation affected seedling density and sapling growth through changes in canopy cover, but had no effect on seedling growth and sapling survival. In the moist region, sapling density was higher in sites with low-intensity defoliation, indicating that defoliation may strengthen the tree recruitment bottleneck. Our study suggests that large-scale defoliation can alter the facilitative role of nurse trees on seedling dynamics and tree-sapling competition. Given that tree defoliation by local people is a widespread activity throughout savanna-forest systems in West Africa, it has the potential to

  20. Cryptic coloration of Macaranga bancana seedlings: A unique strategy for a pioneer species.

    PubMed

    Fadzly, Nik; Zuharah, Wan Fatma; Mansor, Asyraf; Zakaria, Rahmad

    2016-07-01

    Macaranga bancana is considered as a successful pioneer plant species. Usually found in disturbed and open areas, most of the current research focused on its relations with ants. One of the unique feature of the plants is that the seedling leaves are red, resembling and almost matching the background. Using a portable spectrometer, we measured the color reflectance of M. bancana seedlings (less than 20 cm in height). We also measured the leaf litter reflectance, adult M. bancana leaves and also seedlings of several other species found in the vicinity of M. bancana seedlings. The reflectances of M. bancana seedlings are very similar to that of the leaf litter background. We suggest that this cryptic coloration is crucial during the early stages of the plant when it still cannot rely on the protection of ants. PMID:27315145

  1. Mixed heavy metals tolerance and radial oxygen loss in mangrove seedlings.

    PubMed

    Liu, Y; Tam, N F Y; Yang, J X; Pi, N; Wong, M H; Ye, Z H

    2009-12-01

    The effects of a mixture of heavy metals (Pb, Zn and Cu) on growth, radial oxygen loss (ROL) and the spatial pattern of ROL were investigated in mangrove seedlings of three species: Aegiceras corniculatum, Avicennia marina and Bruguiera gymnorrhiza. Heavy metals inhibited the growth of seedlings and led to decreased ROL and changes in the "tight" barrier spatial pattern of ROL. There was a significant positive correlation between the amount of ROL from the roots of seedlings and metal tolerance. The species with the highest ROL amount, B. gymnorrhiza, were also the most tolerant to heavy metals. The "tight" barrier spatial ROL pattern was also related to metal tolerance in the seedlings. Therefore, we conclude that both ROL amount and "tight" barrier spatial ROL pattern in the roots of the mangrove seedlings play an important role in resistance to heavy metal toxicity. PMID:19692098

  2. Effects of Kinetin, IAA, and Gibberellin on Ethylene Production, and Their Interactions in Growth of Seedlings.

    PubMed

    Fuchs, Y; Lieberman, M

    1968-12-01

    Kinetin in concentrations of 10(-8) to 10(-4)m, stimulated ethylene production in 3 and 4-day old etiolated seedlings of Alaska pea (Pisum sativum L. var. Alaska). Seedlings of other species responded similarly. The response to kinetin depended on the age of the seedlings.Kinetin alone did not influence ethylene production in 6-day old stem sections, but it greatly increased the enhancing effect of IAA.Gibberellic acid had no effect on ethylene production by pea seedlings during the first 6 days of growth. Ethylene and gibberellic acid are antagonistic in their effects on growth of the seedlings; ethylene interfered severely with the action of gibberellic acid but did not completely suppress it.The inhibitors cycloheximide, cupferron, and N-ethylmaleimide, caused considerable inhibition of kinetin-induced ethylene production but were much less effective in the endogenous ethylene-forming system. PMID:16657004

  3. Phytotoxicity and Transport of Gallium (Ga) in Rice Seedlings for 2-Day of Exposure.

    PubMed

    Yu, Xiao-Zhang; Feng, Xing-Hui; Feng, Yu-Xi

    2015-07-01

    Hydroponic experiments were conducted with rice seedlings to investigate the accumulation and phytotoxicity of gallium nitrate. A linear decrease in relative growth rate, transpiration rate and water use efficiency was observed in rice seedlings with increasing Ga concentrations. However, inhibition of these selected parameters was noted different at different Ga treatments. Relative growth rate was more sensitive towards Ga treatments. Phyto-transport of Ga was apparent, but recovery of Ga in different parts of rice seedlings varied significantly: roots were dominant site for Ga accumulation. The total accumulation rates of Ga were positively correlated to Ga concentrations. Results indicated that the addition of Ga did not cause deleterious effects on plant physiological functions over a 2-day exposure period. Large amounts of Ga were removed from the hydroponic solution through rice seedlings. Accumulation of Ga in plant tissues resulted in growth inhibition of rice seedlings.

  4. Tension wood fibers are related to gravitropic movement of red mangrove (Rhizophora mangle) seedlings.

    PubMed

    Fisher, Jack B; Tomlinson, P Barry

    2002-02-01

    Freshly collected viviparous seedlings (propagules) were collected from wild plants of Rhizophora mangle and planted in vertical or horizontal positions. A total of 80 seedlings were examined anatomically at various ages and orientations. After rooting, seedlings reoriented from horizontal to vertical by extreme bending in the hook region of the hypocotyl directly above the basal 1 cm where roots formed. Hypocotyl bending occurred over many months. Trends in position and relative abundance of tension fibers (also called gelatinous fibers) over time were followed. The erection of the seedling was related to increased secondary xylem and the number of tension wood fibers on the upper side of the hook region. However, linear regressions had low coefficient of determination (r(2)) values, presumably related to seedlings with high variability. PMID:12884047

  5. Saponin accumulation in the seedling root of Panax notoginseng

    PubMed Central

    2011-01-01

    Background Panax notoginseng is an important Chinese medicinal plant. Dammarene-type triterpenoid saponins are main pharmacologically effective compounds in P. notoginseng. This study aims to investigate the formation and accumulation of saponins in P. notoginseng roots during germination and juvenile stage. Methods P. notoginseng seeds were collected and stored in wet sand. After germination, the seedlings were transplanted into a soil nursery bed and cultivated for one year. During this period, samples were collected every month and the concentrations of ginsengnosides Rg1, Re, Rb1, Rd and notoginsengnoside R1 were determined by HPLC. Results There was little saponin in the P. notoginseng seed. The chemical composition of seed was different from that of root. After germination, Rb1, Rg1, Re, Rd and R1 appeared successively in the seedling root. And in the five-month-old root, all these five main saponins came into existence. The accumulation of saponins in P. notoginseng root was affected by seasons. Conclusion The accumulation of saponins showed a time-dependent increase after germination of P. notoginseng. PMID:21255468

  6. [Allelopathy of different plants on wheat, cucumber and radish seedlings].

    PubMed

    Shen, Huimin; Guo, Hongru; Huang, Gaobao

    2005-04-01

    By means of bioassay in laboratory and field, this paper studied the allelopathy of 18 kinds of plants in Gansu Province on the seedlings of wheat, cucumber and radish. The results showed that the aqueous extract of the stems and leaves of Artemisia annua, Solanum nigrum and Datura stramonium had the strongest allelopathy on test receptor plants, and their synthetic inhibitory effect (SE) was 47.66%, 32.89% and 26.63%, respectively. The SE of Xanthium sibiricum, Portulaca oleraca, Cephalanoplos segetum, and Chenopodium album was 21.71%, 20.93%, 20.83% and 20.2%, respectively, while Vicia amoena (SE 3.5%), Setaria viridis (SE 2.2%), and Cymamchum chinense (SE 1.97%) had a weaker allelopathy. Chenopodium ambrosioides (SE - 1.03%), Polygonum caespitosum (SE - 1.63%) and Avena fatua (SE 5.33%) had no evident allelopathy, but Artemisia annua affected the seedling height and fresh weight of radish, cucumber, wheat and maize, with the SE being 54.07%, 38.46%, 33.35% and 20.88%, respectively. Artemisia annua had a 44.70% of SE on wheat growth, and thus, had a certain value to develop and use.

  7. Proteomics analysis of compatibility and incompatibility in grafted cucumber seedlings.

    PubMed

    Xu, Qing; Guo, Shi-Rong; Li, Lin; An, Ya-Hong; Shu, Sheng; Sun, Jin

    2016-08-01

    Graft compatibility between rootstock and scion is the most important factor influencing the survival of grafted plants. In this study, we used two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF MS) to investigate differences in leaf proteomes of graft-compatible and graft-incompatible cucumber (Cucumis sativus L.)/pumpkin (Cucurbita L.) combinations. Cucumber seedlings were used as the scions and two pumpkin cultivars with strongly contrasting grafting compatibilities were used as the rootstocks. Non-grafted and self-grafted cucumber seedlings served as control groups. An average of approximately 500 detectable spots were observed on each 2-DE gel. A total of 50 proteins were differentially expressed in response to self-grafting, compatible-rootstock grafting, and incompatible-rootstock grafting and were all successfully identified by MALDI-TOF/TOF MS. The regulation of Calvin cycle, photosynthetic apparatus, glycolytic pathway, energy metabolism, protein biosynthesis and degradation, and reactive oxygen metabolism will probably contribute to intensify the biomass and photosynthetic capacity in graft-compatible combinations. The improved physiological and growth characteristics of compatible-rootstock grafting plants are the result of the higher expressions of proteins involved in photosynthesis, carbohydrate and energy metabolism, and protein metabolism. At the same time, the compatible-rootstock grafting regulation of stress defense, amino acid metabolism, and other metabolic functions also plays important roles in improvement of plant growth. PMID:27070289

  8. [Auxin-mediated response of cucumber seedlings to gravity].

    PubMed

    Fujii, Nobuharu; Takahashi, Hideyuki

    2003-08-01

    Gravity regulates peg formation because cucumber seedlings grown in a horizontal position develop a peg on the lower side of the transition zone (TR zone) but not on the upper side. Studies on peg formation have suggested the regulation of peg formation by gravity as follows. Cucumber seedlings potentially develop a peg on both the lower and upper sides of the TR zone. The development of the peg on upper side of the TR zone is suppressed in response to gravity. A phytohormone, auxin, induces peg formation. Upon gravistimulation the auxin concentration on the upper side of the TR zone is reduced to a level below the threshold value necessary for peg formation. The unequally distributed auxin across TR zone is caused by a change in accumulation of auxin influx carrier (CsAUX1) protein and auxin efflux carrier (CsPIN1) protein in response to gravity. In addition, TR zone before peg initiation expresses both CsARF2 (putative activator of auxin response factor) and CsIAA1 (putative repressor of auxin-inducible gene expression), by which TR zone could respond the auxin gradient regulated by gravity.

  9. Arsenic toxicity in soybean seedlings and their attenuation mechanisms.

    PubMed

    Armendariz, Ana L; Talano, Melina A; Travaglia, Claudia; Reinoso, Herminda; Wevar Oller, Ana L; Agostini, Elizabeth

    2016-01-01

    Even though vast areas contaminated with arsenic (As) are under soybean (Glycine max) cultivation, little is known about the growth and intrinsic antioxidant metabolism of soybean in response to As exposure. Thus, an evaluation was carried out of plant growth, root anatomy, antioxidant system and photosynthetic pigment content under arsenate (As(V)) and arsenite (As(III)) treatment. Soybean seedling growth was significantly affected at 25 μM or higher concentrations of As(V) or As(III), and the toxic effect on root growth was associated with cell death of root tips. Microscopic analysis of cross-sections of As-treated root showed a reduction in the cortex area, dark deposits in cortex cells and broken cells in the outer layer. Similarly, in the vascular cylinder, dark deposits within xylem vessel elements and phloem cell walls were observed. In all the analyzed parameters, the deleterious effect was more evident under As(III) than As(V) treatment. Arsenic-treated soybean seedlings showed increased activity of antioxidant enzymes [total peroxidases (Px) and superoxide dismutase (SOD)] in root and shoot harvested after 2 and 5 d of treatment. However, a reduction in chlorophyll content and an increase in membrane lipids peroxidation were observed. It is suggested that root structural alterations induced by As, such as the particular pattern of dark depositions in the vascular system, could be associated with an adaptation or detoxification mechanism to prevent As translocation to the aboveground tissues.

  10. Nitrogen uptake over entire root systems of tree seedlings.

    PubMed

    Hawkins, B J; Robbins, S; Porter, R B

    2014-04-01

    Uptake of nitrogen (N) by sequential root regions in six tree species was measured in roots of 16- to 26-month-old seedlings at 50 and 1500 µM NH4NO3 concentration, at the cell level using oscillating microelectrodes and at the root region level using enriched (15)N application. Our objective was to determine the root regions making the greatest contribution to total N uptake in each species as measured by the two contrasting techniques. White and condensed tannin zones were the regions with the smallest surface area in all species, but these zones often had the highest net flux of NH4(+) and NO3(-). For most species, little variation was found among root regions in N flux calculated using a (15)N mass balance approach, but where significant differences existed, high N flux was observed in white, cork or woody zones. When N fluxes measured by each of the two methods were multiplied by the estimated surface area or biomass of each root region, the effect of root region size had the greatest influence on regional N uptake. Root regions of greatest overall N uptake were the cork and woody zones, on average. Total N uptake may thus be greatest in older regions of tree seedling roots, despite low rates of uptake per unit area. PMID:24591287

  11. Developmental Reaction Norms for Water Stressed Seedlings of Succulent Cacti

    PubMed Central

    Rosas, Ulises; Zhou, Royce W.; Castillo, Guillermo; Collazo-Ortega, Margarita

    2012-01-01

    Succulent cacti are remarkable plants with capabilities to withstand long periods of drought. However, their adult success is contingent on the early seedling stages, when plants are highly susceptible to the environment. To better understand their early coping strategies in a challenging environment, two developmental aspects (anatomy and morphology) in Polaskia chichipe and Echinocactus platyacanthus were studied in the context of developmental reaction norms under drought conditions. The morphology was evaluated using landmark based morphometrics and Principal Component Analysis, which gave three main trends of the variation in each species. The anatomy was quantified as number and area of xylem vessels. The quantitative relationship between morphology and anatomy in early stages of development, as a response to drought was revealed in these two species. Qualitatively, collapsible cells and collapsible parenchyma tissue were observed in seedlings of both species, more often in those subjected to water stress. These tissues were located inside the epidermis, resembling a web of collapsible-cell groups surrounding turgid cells, vascular bundles, and spanned across the pith. Occasionally the groups formed a continuum stretching from the epidermis towards the vasculature. Integrating the morphology and the anatomy in a developmental context as a response to environmental conditions provides a better understanding of the organism's dynamics, adaptation, and plasticity. PMID:22479481

  12. Effects of topsoil removal on seedling emergence and species diversity

    SciTech Connect

    Winkel, V.K.; Ostler, W.K.

    1994-02-01

    Approximately 800 hectares on the US Department of Energy Nevada Test Site and vicinity are contaminated with Plutonium. As part of a cleanup effort, both the vegetation and the top 5--10 cm of soil may be removed. A study was developed to determine the effects of topsoil removal on seedling emergence and plant species diversity. Trial plots were prepared by removing 5, 10, or 20 cm of topsoil, seeding a mix of nine native species, mulching with straw, and then anchoring the straw with erosion netting. Additional plots (0 topsoil removal treatment) were lightly bladed to remove existing vegetation and then treated as above. Approximately 85 mm of supplemental irrigation was applied to help initiate germination during early spring. Seedling density data of seeded and nonseeded species was collected following emergence, and species diversity was calculated with the Shannon diversity index for the nonseeded species. Densities of seeded species either were unaffected by or increased with increased depth of topsoil removal. In general, densities of nonseeded species decreased with increased depth of topsoil removal. The number of species, species diversity and evenness also decreased with increased depth of topsoil removal. Initial emergence of seeded species is apparently unaffected by topsoil removal at this site.

  13. Lipoxygenase and Hydroperoxide Lyase in Germinating Watermelon Seedlings 1

    PubMed Central

    Vick, Brady A.; Zimmerman, Don C.

    1976-01-01

    Lipoxygenase (EC 1.13.1.13) was found in seedlings of Citrullus lanatus (Thunb.) Matsum. and Nakai (watermelon). The enzyme has pH optima of 4.4 and 5.5 and is inhibited by 0.2 mM nordihydroguaiaretic acid. It is present in two functional units with estimated molecular weights of 120,000 and 240,000, respectively. A new enzyme, tentatively termed hydroperoxide lyase, has been partially purified from watermelon seedlings. The enzyme, located principally in the region of the hypocotyl-root junction, catalyzes the conversion of 13-l-hydroperoxy-cis-9-trans-11-octadecadienoic acid to 12-oxo-trans-10-dodecenoic acid and hexanal. The hydroperoxide lyase enzyme from watermelon has a molecular weight in excess of 250,000, a pH optimum in the range of 6 to 6.5, and is inhibited by p-chloromercuribenzoic acid. Its presence has also been demonstrated in other cucurbits. The maximum activity of both enzymes occurs on the 6th day of germination. The identification of the products of the hydroperoxide lyase reaction suggests that lipoxygenase and hydroperoxide lyase may be involved in the conversion of certain polyunsaturated fatty acids to traumatic acid (trans-2-dodecenedioic acid). PMID:16659569

  14. Root dipping of conifer seedlings shows little benefit in the northern Rocky Mountains. Forest Service research paper

    SciTech Connect

    Sloan, J.P.

    1994-07-01

    In the growth chamber, in the greenhouse, and in field studies, root dipping of bareroot lodgepole pine, ponderosa pine, Douglas-fir, and Engelmann spruce seedlings did not improve seedling survival, shoot growth, or root growth under dry soil conditions. Seedling root growth varied with tree species, soil type, and type of rood dip.

  15. Linking carbon and water relations to drought-induced mortality in Pinus flexilis seedlings.

    PubMed

    Reinhardt, Keith; Germino, Matthew J; Kueppers, Lara M; Domec, Jean-Christophe; Mitton, Jeffry

    2015-07-01

    Survival of tree seedlings at high elevations has been shown to be limited by thermal constraints on carbon balance, but it is unknown if carbon relations also limit seedling survival at lower elevations, where water relations may be more important. We measured and modeled carbon fluxes and water relations in first-year Pinus flexilis seedlings in garden plots just beyond the warm edge of their natural range, and compared these with dry-mass gain and survival across two summers. We hypothesized that mortality in these seedlings would be associated with declines in water relations, more so than with carbon-balance limitations. Rather than gradual declines in survivorship across growing seasons, we observed sharp, large-scale mortality episodes that occurred once volumetric soil-moisture content dropped below 10%. By this point, seedling water potentials had decreased below -5 MPa, seedling hydraulic conductivity had decreased by 90% and seedling hydraulic resistance had increased by >900%. Additionally, non-structural carbohydrates accumulated in aboveground tissues at the end of both summers, suggesting impairments in phloem-transport from needles to roots. This resulted in low carbohydrate concentrations in roots, which likely impaired root growth and water uptake at the time of critically low soil moisture. While photosynthesis and respiration on a leaf area basis remained high until critical hydraulic thresholds were exceeded, modeled seedling gross primary productivity declined steadily throughout the summers. At the time of mortality, modeled productivity was insufficient to support seedling biomass-gain rates, metabolism and secondary costs. Thus the large-scale mortality events that we observed near the end of each summer were most directly linked with acute, episodic declines in plant hydraulic function that were linked with important changes in whole-seedling carbon relations.

  16. Interannual variation in rainfall, drought stress and seedling mortality may mediate monodominance in tropical flooded forests.

    PubMed

    Lopez, Omar R; Kursar, Thomas A

    2007-11-01

    Flood tolerance is commonly regarded as the main factor explaining low diversity and monodominance in tropical swamps. In this study we examined seedling mortality in relation to seasonality, i.e., flooding versus drought, of the dominant tree species (Prioria copaifera), and three associated species (Pterocarpus officinalis, Carapa guianensis and Pentaclethra macroloba), in seasonally flooded forests (SFF) in Darien, Panama. Seedling mortality differed among species, years and seasons. Prioria seedlings experienced the lowest overall mortality, and after 3 years many more Prioria seedlings remained alive than those of any of the associated species. In general, within species, larger seedlings had greater survival. Seed size, which can vary by close to 2 orders of magnitude in Prioria, had a confounding effect with that of topography. Large-seeded Prioria seedlings experienced 1.5 times greater mortality than small-seeded seedlings, as large-seeded Prioria seedlings were more likely to be located in depressions. This finding suggests that seed size, plant size and topography are important in understanding SFF regeneration. For all species, seedling mortality was consistently greater during the dry season than during flooding. For Prioria, dry season seedling mortality was correlated with drought stress, that is, high mortality during the long El Niño dry season of 1998 and the normal dry season of 2000, but very low dry season mortality during the mild dry season of 1999. Prioria's ability to dominate in seasonally flooded forest of Central America is partly explained by its low drought-related mortality in comparison to associated species.

  17. Linking carbon and water limitations to drought-induced mortality of Pinus flexilis seedlings

    USGS Publications Warehouse

    Reinhardt, Keith; Germino, Matthew J.; Kueppers, Lara M.; Domec, Jean-Christophe; Mitton, Jeffry

    2015-01-01

    Survival of tree seedlings at high elevations has been shown to be limited by thermal constraints on carbon balance, but it is unknown if carbon relations also limit seedling survival at lower elevations, where water relations may be more important. We measured and modeled carbon fluxes and water relations in first-year Pinus flexilis seedlings in garden plots just beyond the warm edge of their natural range, and compared these with dry-mass gain and survival across two summers. We hypothesized that mortality in these seedlings would be associated with declines in water relations, more so than with carbon-balance limitations. Rather than gradual declines in survivorship across growing seasons, we observed sharp, large-scale mortality episodes that occurred once volumetric soil-moisture content dropped below 10%. By this point, seedling water potentials had decreased below −5 MPa, seedling hydraulic conductivity had decreased by 90% and seedling hydraulic resistance had increased by >900%. Additionally, non-structural carbohydrates accumulated in aboveground tissues at the end of both summers, suggesting impairments in phloem-transport from needles to roots. This resulted in low carbohydrate concentrations in roots, which likely impaired root growth and water uptake at the time of critically low soil moisture. While photosynthesis and respiration on a leaf area basis remained high until critical hydraulic thresholds were exceeded, modeled seedling gross primary productivity declined steadily throughout the summers. At the time of mortality, modeled productivity was insufficient to support seedling biomass-gain rates, metabolism and secondary costs. Thus the large-scale mortality events that we observed near the end of each summer were most directly linked with acute, episodic declines in plant hydraulic function that were linked with important changes in whole-seedling carbon relations.

  18. Species-specific effects of woody litter on seedling emergence and growth of herbaceous plants.

    PubMed

    Koorem, Kadri; Price, Jodi N; Moora, Mari

    2011-01-01

    The effect of litter on seedling establishment can influence species richness in plant communities. The effect of litter depends on amount, and also on litter type, but relatively little is known about the species-specific effects of litter. We conducted a factorial greenhouse experiment to examine the effect of litter type, using two woody species that commonly co-occur in boreonemoral forest--evergreen spruce (Picea abies), deciduous hazel (Corylus avellana), and a mixture of the two species--and litter amount--shallow (4 mm), deep (12 mm) and leachate--on seedling emergence and biomass of three understorey species. The effect of litter amount on seedling emergence was highly dependent on litter type; while spruce needle litter had a significant negative effect that increased with depth, seedling emergence in the presence of hazel broadleaf litter did not differ from control pots containing no litter. Mixed litter of both species also had a negative effect on seedling emergence that was intermediate compared to the single-species treatments. Spruce litter had a marginally positive (shallow) or neutral effect (deep) on seedling biomass, while hazel and mixed litter treatments had significant positive effects on biomass that increased with depth. We found non-additive effects of litter mixtures on seedling biomass indicating that high quality hazel litter can reduce the negative effects of spruce. Hazel litter does not inhibit seedling emergence; it increases seedling growth, and creates better conditions for seedling growth in mixtures by reducing the suppressive effect of spruce litter, having a positive effect on understorey species richness.

  19. [Growth, survival and herbivory of seedlings in Brosimum alicastrum (Moraceae), a species from the Neotropical undergrowth].

    PubMed

    Ballina-Gómez, H S; Iriarte-Vivar, S; Orellana, R; Santiago, L S

    2008-12-01

    Growth responses, survival, and herbivory, on seedlings of Brosimum alicastrum were studied in a neotropical Mexican forest. We selected 122 seedlings and divided them into three groups assigned to defoliation treatments: control or 0 (n=21), 50 (n=51) and 90% (n=50). Every 4 months during two years we measured seedling growth (in terms of relative growth rate in biomass, leaf area growth, produced leaves and height growth) and survival. In addition, we evaluated every 12 months pathogen damage and insect herbivory using a 2 mm(-2) grid. Separately, we estimated mammal herbivory in 3-month old seedlings that were selected within a plot of 500 m x 10 m (N=1095). Pathogen damage and insect herbivory were evaluated within the same plot in 113 seedlings. We found that 50% defoliated seedlings showed compensatory responses in all growth parameters. Relative growth rate and height growth also had a compensatory response in seedlings at 90% defoliation. Relative growth rate and leaf area growth gradually decreased with time although height growth seedling showed an opposite pattern. Leaves produced were not affected by time. Estimated seedling survival probability increased with defoliation to a maximum of 97%, decreasing at 24 month to 37%. Mammal herbivory was more frequent and severe than herbivory caused by pathogens and insects. In some cases, mammal herbivory produced total defoliation. Compensatory growth in leaf area growth, produced leaves and height growth seedling suggest a synergic compensatory mechanism expressed in a whole-plant growth biomass (relative growth rate). Compensation and survival results suggest trade-offs at the leaf level, such as leaf area growth and produced leaves versus chemical defenses, respectively.

  20. Can NPK fertilizers enhance seedling growth and mycorrhizal status of Tuber melanosporum-inoculated Quercus ilex seedlings?

    PubMed

    Suz, Laura M; Martín, María P; Fischer, Christine R; Bonet, José A; Colinas, Carlos

    2010-06-01

    Although successful cultivation of the black truffle (Tuber melanosporum) has inspired the establishment of widespread truffle orchards in agricultural lands throughout the world, there are many unknowns involved in proper management of orchards during the 6-10 years prior to truffle production, and there are conflicting results reported for fertilizer treatments. Here, we systematically evaluate the combined effects of nitrogen, phosphorous, and potassium with different doses of each element, applied to either foliage or roots, on plant growth parameters and the mycorrhizal status of outplanted 3-year-old seedlings in five experimental Quercus ilex-T. melanosporum orchards. Fertilization did not significantly improve seedling aboveground growth, but the plants treated with the fertilizer 12-7-7 applied to the roots (HNr) displayed longer field-developed roots. Only the fertilizer with the highest dose of K (10-6-28) applied to the foliage (HKf) increased the probability of fine root tip colonization by T. melanosporum in field-developed roots. However, the plants treated with the same fertilizer applied to the soil (HKr) presented the highest probability for colonization by other competing mycorrhizal soil fungi. Potassium seems to have an important role in mycorrhizal development in these soils. Apart from T. melanosporum, we found 14 ectomycorrhizal morphotypes, from which seven were identified to species level, three to genus, two to family, and two remained unidentified by their morphological characteristics and DNA analyses.

  1. Retention of cotyledons is crucial for resprouting of clipped oak seedlings

    PubMed Central

    Yi, Xianfeng; Liu, Changqu

    2014-01-01

    Although resprouting plays an important role in facilitating persistence of damaged seedlings, the functional attributes of cotyledons and taproots during resprouting of 1-year oak seedlings are not well explored. In this study, cotyledons were removed from Quercus mongolica seedlings to explore resprouting in response to simulated disturbance as a function of shoot clipping, and to examine the resprouting ability in relation to timing of clipping and cotyledon removal. Isotope labeling experiments were also performed to evaluate contribution of the cotyledons and taproots to resprouting. Regardless of timing of shoot clipping, seedlings successfully resprouted provided their cotyledons were not detached. Clipped seedlings were less likely to resprout when cotyledons were removed. Seedlings clipped at earlier development stage exhibited higher resprouting capacity than those clipped at later stage. Cotyledon removal, more than timing of clipping, decreased the dry masses of newly-resprouted shoots. However, no significant influences of cotyledon removal and timing of clipping were found on the dry masses of roots, suggesting the importance of cotyledons for resprouting. Roots became functional and accumulated more soil nitrogen after shoot clipping and cotyledon removal, representing a double security-based strategy for the clipped seedlings to resprout despite the importance of cotyledons. PMID:24888417

  2. N2-fixation and seedling growth promotion of lodgepole pine by endophytic Paenibacillus polymyxa.

    PubMed

    Anand, Richa; Grayston, Susan; Chanway, Christopher

    2013-08-01

    We inoculated lodgepole pine (Pinus contorta var. latifolia (Dougl.) Engelm.) with Paenibacillus polymyxa P2b-2R, a diazotrophic bacterium previously isolated from internal stem tissue of a naturally regenerating pine seedling to evaluate biological nitrogen fixation and seedling growth promotion by this microorganism. Seedlings generated from pine seed inoculated with strain P2b-2R were grown for up to 13 months in a N-limited soil mix containing 0.7 mM available N labeled as Ca((15)NO3)2 to facilitate detection of N2-fixation. Strain P2b-2R developed a persistent endophytic population comprising 10(2)-10(6) cfu g(-1) plant tissue inside pine roots, stems, and needles during the experiment. At the end of the growth period, P2b-2R had reduced seedling mortality by 14 % and (15)N foliar N abundance 79 % and doubled foliar N concentration and seedling biomass compared to controls. Our results suggest that N2-fixation by P. polymyxa enhanced growth of pine seedlings and support the hypothesis that plant-associated diazotrophs capable of endophytic colonization can satisfy a significant proportion of the N required by tree seedlings growing under N-limited conditions. PMID:23420205

  3. Establishment of Ulmus pumila seedlings on steppe slopes of the northern Mongolian mountain taiga

    NASA Astrophysics Data System (ADS)

    Dulamsuren, Choimaa; Hauck, Markus; Nyambayar, Suran; Osokhjargal, Dalaikhuu; Leuschner, Christoph

    2009-09-01

    The potential of Siberian elm ( Ulmus pumila) to regenerate from seeds was experimentally studied on south-facing slopes in the northern Mongolian mountain taiga. These slopes are covered with a vegetation mosaic of different steppe communities and small, savanna-like, U. pumila open woodlands. The hypothesis is tested that the xeric microclimate and high herbivore densities limit the success of seedling establishment in U. pumila and thereby prevent elm from complete encroachment of the grassland-dominated slopes. Seeds were sown and 2-yr-old seedlings were planted prior to the growing season. The water supply was manipulated by irrigation, as was the feeding pressure by caterpillars with an insecticide. Large herbivores were excluded by fencing. Seeds germinated throughout the summer, but the emerged seedlings did not survive for more than 2 or 3 weeks. Germination rates increased with increasing soil water content and decreasing soil temperatures. Many seeds were consumed by granivores. Most planted 2-yr-old seedlings survived the two growing seasons covered by the study. However, the seedlings suffered from feeding damage by insects (gypsy moth, grasshoppers) and small mammals, from nitrogen deficiency and, to a lesser degree, from drought. The results suggest that high susceptibility of newly emerged seedlings to environmental stresses is a serious bottle neck for U. pumila that prevents them from the formation of closed forests on northern Mongolia's steppe slopes, whereas the probability for seedling survival after this early stage is high.

  4. 90sr uptake by 'pinus ponderosa' and 'pinus radiata' seedlings inoculated with ectomycorrhizal fungi

    SciTech Connect

    Entry, J.A.; Rygiewicz, P.T.; Emmingham, W.H.

    1994-01-01

    In the study, the authors inoculated P. ponderosa and P. radiata seedlings with one of five isolates of ectomycorrhizal fungi; inoculated and nonincoculated (control) seedlings were compared for their ability to remove Sr90 from an organic growth medium. Seedlings were grown for 3 months in a growth chamber in glass tubes containing 165 cu cm of sphagnum peat moss and perlite and, except in the controls, the fungal inoculum. After 3 months, 5978 Bq of Sr90 in 1 ml of sterile, distilled, deionized water was added. Seedlings were grown for an additional month and then harvested. P. ponderosa seedlings that were inoculated with ectomycorrhizal fungi accumulated 3.0-6.0% of the Sr90; bioconcentration ratios ranged from 98-162. Inoculated P. radiata seedlings accumulated 6.0-6.9% of the Sr90; bioconcentration ratios ranged from 88-133. Noninoculated P. ponderosa and P. radiata seedlings accumulated only 0.6 and 0.7% of the Sr90 and had bioconcentration ratios of 28 and 27, respectively.

  5. Mycorrhizal networks counteract competitive effects of canopy trees on seedling survival.

    PubMed

    Booth, Michael G; Hoeksema, Jason D

    2010-08-01

    The dynamics of forest ecosystems depend largely on the survival of seedlings in their understories, but seedling survival is known to be limited by preemption of light and soil resources by overstory trees. It has been hypothesized that "common mycorrhizal networks," wherein roots of seedlings are linked to overstory trees by symbiotic mycorrhizal fungi, offset some or all of the negative effects of trees on seedlings. Here we report the results of an unambiguous experimental test of this hypothesis in a monodominant Pinus radiata forest. We also tested the hypothesis that adaptive differentiation among plant populations causes local plant genotypes to respond more positively to mycorrhizal networks than nonlocal plant genotypes. Our results demonstrate large positive effects of overstory mycorrhizal networks on seedling survival, along with simultaneous negative effects of tree roots, regardless of whether plant genotypes were locally derived. Physiological and leaf-chemistry measurements suggest that seedlings connected to common mycorrhizal networks benefited from increased access to soil water. The similar magnitude of the positive and negative overstory effects on seedlings and the ubiquity of mycorrhizal networks in forests suggest that mycorrhizal networks fundamentally influence the demographic and community dynamics of forest trees. PMID:20836451

  6. Herbivory and seedling performance in a fragmented temperate forest of Chile

    NASA Astrophysics Data System (ADS)

    Simonetti, Javier A.; Grez, Audrey A.; Celis-Diez, Juan L.; Bustamante, Ramiro O.

    2007-11-01

    Forest fragmentation alters plant-animal interactions, including herbivory. Relying manipulative experiments, we test if the reduction in insect herbivory associated with forest fragmentation translates into increased seedling growth and survival of three tree common species ( Aristotelia chilensis, Cryptocarya alba and Persea lingue) in forest fragments and continuous forests in coastal Maulino forest, central Chile. Furthermore, we test if after protecting seedlings from herbivorous insects, plant performance is increased regardless of forest fragmentation. Nursery grown seedlings were transplanted into four forest fragments and a continuous forest during 2002. Insects, important herbivores in this forest, were excluded from half the seedlings by repeated applications of insecticides. Compared to continuous forests, in forest fragments, herbivory was reduced in all three species, seedling growth was greater in A. chilensis and C. alba but not in P. lingue, and survivorship was unaffected by herbivory or fragmentation in all three species. Protecting seedlings from insects reduced herbivory in the continuous forest to similar levels attained in the forest fragments. No change in herbivory results from by protecting seedlings in forest fragments. These results confirm that insects are important herbivores in the Maulino forest and also support the hypothesis that fragmentation can have strong indirect effects on plant communities as mediated through trophic interactions.

  7. Association of growth related seedling traits in Acacia senegal under arid environment of western Rajasthan.

    PubMed

    Pancholy, Anjly; Jindal, S K; Singh, S K; Pathak, Rakesh

    2015-07-01

    Climatic models and predictions indicate increase in aridity world over due to global warming. Arid environments occupy about one third land area of the world. A. senegal is the most important dryland resource of western Rajasthan desert ecosystem. The seeds of 13 low and high seed yielding exotic and indigenous provenances were evaluated for diversity and interrelationship among growth related seedling traits targeting establishment and end use of this species. Under the present study most of the growth related seedling traits varied within and amongst provenances. Highly significant correlation of dry biomass per plant of more than 72% with root length (73.3%), collar diameter (72.2%), shoot dryweight (99.7%), root dry weight (95.7%) and seedling length (79.9%) under the present study may be used for early selection. Similarly, highly significant positive correlation of seedling length with seven out of 12 growth related seedling traits validate strong inherent association of these traits under strong genetic control and are amenable for selection. Significant negative correlation in number of nodules per plant with root/shoot length ratio (-57.6%) and no correlation with 10 out of 12 growth related seedling traits tested advocate emphasis on other growth related seedling traits in selection of elite A. senegal genotypes for afforestation. The non significant associations suggest that per cent germination was independent of other characters and could be selected separately.

  8. Light-hormone interaction in the red-light-induced suppression of photomorphogenesis in rice seedlings.

    PubMed

    Roy, Ansuman; Sahoo, Dinabandhu; Tripathy, Baishnab C

    2016-03-01

    Red light perceived by the shoot bottom suppresses photomorphogenesis in rice seedlings mediated by phytochrome A. Shoots of these seedlings grown in red light having their shoot bottom exposed were deficient in chlorophyll and accumulated high concentration of trans-zeatin riboside. However, reduced presence of isopentynyl adenosine, dihydrozeatin riboside was observed in shoots of red-light-grown non-green seedlings in comparison to green seedling. The message abundance of cytokinin receptor (OsHK5), transporters (OsENT1, OsENT2), and response regulators (OsRR4, OsRR10) was downregulated in these red-light-grown non-green seedlings. Attenuation of greening process was reversed by application of exogenous cytokinin analogue, benzyladenine, or supplementing red light with blue light. In the same vein, the suppression of gene expression of cytokinin receptor, transporters, and type-A response regulators was reversed in red-light-grown seedlings treated with benzyladenine suggesting that the disarrayed cytokinin (CK) signaling cascade is responsible for non-greening of seedlings grown in red light. The reversal of red-light-induced suppression of photomorphogenesis by blue light and benzyladenine demonstrates the interaction of light and cytokinin signaling cascades in the regulation of photomorphogenesis. Partial reversal of greening process by exogenous application of benzyladenine suggests, apart from CKs perception, transportation and responsiveness, other factors are also involved in modulation of suppression of photomorphogenesis by red light.

  9. Sharing rotting wood in the shade: ectomycorrhizal communities of co-occurring birch and hemlock seedlings.

    PubMed

    Poznanovic, Sarah K; Lilleskov, Erik A; Webster, Christopher R

    2015-02-01

    Coarse woody debris (CWD) is an important nursery environment for many tree species. Understanding the communities of ectomycorrhizal fungi (ECMF)and the effect of ECMF species on tree seedling condition in CWD will elucidate the potential for ECMF-mediated effects on seedling dynamics. In hemlock-dominated stands, we characterized ECMF communities associated with eastern hemlock (Tsuga canadensis (L.) Carr) and yellow birch (Betula alleghaniensis Britt) seedling pairs growing on CWD. Seedling foliage and CWD were analyzed chemically, and seedling growth, canopy cover, and canopy species determined. Thirteen fungal taxa, 12 associated with birch, and 6 with hemlock, were identified based on morphology and ITS sequencing. Five species were shared by co-occurring birch and hemlock, representing 75% of ectomycorrhizal root tips. Rarified ECMF taxon richness per seedling was higher on birch than hemlock. Nonmetric multidimensional scaling revealed significant correlations between ordination axes, the mutually exclusive ECMF Tomentella and Lactarius spp., foliar N and K, CWD pH, and exchangeable Ca and Mg. Seedlings colonized by Lactarius and T. sublilacina differed significantly in foliar K and N, and CWD differed in exchangeable Ca and Mg. CWD pH and nutrient concentrations were low but foliar macro-nutrient concentrations were not. We hypothesize that the dominant ECMF are adapted to low root carbohydrate availability typical in shaded environments but differ in their relative supply of different nutrients.

  10. Varying impacts of cervid, hare and vole browsing on growth and survival of boreal tree seedlings.

    PubMed

    Lyly, Mari; Klemola, Tero; Koivisto, Elina; Huitu, Otso; Oksanen, Lauri; Korpimäki, Erkki

    2014-01-01

    The negative impacts of mammalian herbivores on plants have been studied quite extensively, but typically with only a single herbivore species at a time. We conducted a novel comparison of the browsing effects of voles, hares and cervids upon the growth and survival of boreal tree seedlings. This was done by excluding varying assemblages of these key mammalian herbivores from silver birch, Scots pine and Norway spruce seedlings for 3 years. We hypothesised that the pooled impacts of the herbivores would be greater than that of any individual group, while the cervids would be the group with the strongest impact. Growth of birch seedlings advanced when cervids were excluded whereas growth of seedlings accessible to cervids was hindered. Survival of all seedlings was lowest when they were accessible to voles and voles plus hares, whereas cervids seemed not to influence seedling survival. Our results show that the impact of herbivores upon woody plants can be potent in the boreal forests, but the mechanism and strength of this link depends on the tree and herbivore species in question. Risk of abated stand regeneration appears highest for the deciduous birch, though there is need for seedling protection also in coniferous stands. The clear cervid-mediated growth limitation of birch also indicates potential for a trophic cascade effect by mammalian top predators, currently returning to boreal ecosystems.

  11. Association of growth related seedling traits in Acacia senegal under arid environment of western Rajasthan.

    PubMed

    Pancholy, Anjly; Jindal, S K; Singh, S K; Pathak, Rakesh

    2015-07-01

    Climatic models and predictions indicate increase in aridity world over due to global warming. Arid environments occupy about one third land area of the world. A. senegal is the most important dryland resource of western Rajasthan desert ecosystem. The seeds of 13 low and high seed yielding exotic and indigenous provenances were evaluated for diversity and interrelationship among growth related seedling traits targeting establishment and end use of this species. Under the present study most of the growth related seedling traits varied within and amongst provenances. Highly significant correlation of dry biomass per plant of more than 72% with root length (73.3%), collar diameter (72.2%), shoot dryweight (99.7%), root dry weight (95.7%) and seedling length (79.9%) under the present study may be used for early selection. Similarly, highly significant positive correlation of seedling length with seven out of 12 growth related seedling traits validate strong inherent association of these traits under strong genetic control and are amenable for selection. Significant negative correlation in number of nodules per plant with root/shoot length ratio (-57.6%) and no correlation with 10 out of 12 growth related seedling traits tested advocate emphasis on other growth related seedling traits in selection of elite A. senegal genotypes for afforestation. The non significant associations suggest that per cent germination was independent of other characters and could be selected separately. PMID:26364473

  12. Effects of seed mass on seedling success in Artocarpus heterophyllus L., a tropical tree species of north-east India

    NASA Astrophysics Data System (ADS)

    Khan, M. L.

    2004-03-01

    I examined the effects of seed mass on performance of seedlings of Artocarpus heterophyllus L. (Moraceae), a large evergreen late successional shade-tolerant tree species in three contrasting light conditions. Seed mass varied many fold from 1.5 to 14 g in A. heterophyllus. Germination and germination time showed a significant correlation with seed mass. Germination differed significantly among three light regimes (50%, 25% and 3%). Seed mass and light level significantly affected seedling survival. The seedlings that emerged from large seeds survived better than those from small seeds under all light regimes. Survival of seedlings was maximum in 25% light regime for all seed mass classes but did not differ significantly from that at 50% light regime. Survival was significantly lower in 3% light as compared to 50% and 25% light regimes. Seedling vigor (expressed in terms of seedling height, leaf area and dry weight) was also significantly affected by seed mass and light regimes. Seedlings that emerged from larger seeds and grew under 50% light regime produced the heaviest seedlings, while those resulting from smaller seeds and grown under 3% light regime produced the lightest seedlings. Resprouting capacity of seedlings after clipping was significantly affected by seed mass and light regime. Seedlings emerging from larger seeds were capable of resprouting several times successively. Resprouting was more pronounced under 50% and 25% light regimes as compared to 3% light. Success of A. heterophyllus regeneration appears to be regulated by an interactive effect of seed mass and light regime.

  13. Seasonal differences in needle gas exchange between mature branches and seedlings of Pinus ponderosa

    SciTech Connect

    Houpis, J.L.J.; Anderson, P.D. )

    1991-05-01

    In 1990, an interactive study was initiated to understand the differing physiological and morphological response of mature tissue and seedling tissue to stress. The study was conducted at the Air Pollution and Climate Change Exposure Facility in a Pinus ponderosa seed production orchard at the US Forest Service Tree Improvement Center in Chico, CA. The orchard consists of clonal trees and the authors have planted half-sibling seedlings which correspond to the mature clones which were measured. Both the mature trees and seedlings were regularly irrigated and fertilized. The result is that they have minimized the genetic and environmental differences that might otherwise influence the physiological differences between mature and seedling tissue. One of the physiological parameters which was measured was seasonal and diurnal gas exchange using a LICOR 6200. They measured gas exchange in November 1989, March, July, and October 1990. They found that throughout the year, all gas exchange components (eg. photosynthesis, transpiration, stomatal conductance) were significantly greater for seedling tissue. Photosynthetic differences were greater during early October, with diurnal mean rates of 1.1 {mu}mol m{sup {minus}2}s{sup {minus}1} and 0.5 {mu}mol m{sup {minus}2}s{sup {minus}1} for seedling and mature tissue, respectively. Transpiration differences were greater during early October, with diurnal mean rates of 2.2 mmol m{sup {minus}2}2{sup {minus}1} and 1.2 mmol m{sup {minus}2}s{sup {minus}1} for seedling and mature tissue, respectively. Finally, gas exchange differences between seedling and mature tissue were greater for current needles than one-year old needles. The results of this study demonstrate that gas exchange differences between seedling and mature tissue observed in the field may be the result of inherent physiological differences, and not merely genetic and environmental differences.

  14. Germination requirements and seedling responses to water availability and soil type in four eucalypt species

    NASA Astrophysics Data System (ADS)

    Schütz, Wolfgang; Milberg, Per; Lamont, Byron B.

    2002-03-01

    We conducted experiments on seed germination, seedling survival and seedling growth of four Eucalyptus species to identify factors that might explain why they are restricted to the two major soil types in southwestern Australia, deep sands ( E. macrocarpa, E. tetragona) and lateritic loam ( E. loxophleba, E. wandoo). At high temperatures (28 °C), germination in darkness was lower for the two 'loam species' than for the 'sand species', while there were no differences in light or at low temperatures (10 °C). Germination commenced earlier, and was faster in the sand species than in the loam species, but was almost inhibited in all species by -1.0 MPa. E. tetragona proved the most drought-tolerant in terms of germination level and seedling survival. Seedlings of the sand species had much longer roots two weeks after germination in the absence of water stress, and the roots of more seedlings continued to elongate under moderate water stress (-1.0 MPa), than the two loam species. Roots were longer in all species, except E. macrocarpa, at -0.5 MPa than at -0.1 MPa, despite seedlings having a smaller mass and hypocotyl length. As water availability declined, there was a tendency for the sand species to survive longer on sand than on loam while soil type had no effect on the loam species. Pattern and duration of seedling survival of the loam species was similar to that of the sand species despite their smaller seeds. We conclude that seedlings from the large-seeded sand species are able to penetrate the soil profile faster and deeper, but that they are not less prone to drying soils than seedlings from the small-seeded loam species. Instead, seed size and germination speed are important prerequisites to cope successfully with unstable soil surfaces and to exploit the rapidly descending water in deep sands.

  15. Interactions between seedlings of Agave deserti and the nurse plant Hilaria rigida

    SciTech Connect

    Franco, A.C.; Nobel, P.S. )

    1988-12-01

    Seedlings of the succulent crassulacean acid metabolism (CAM) plant Agave deserti in the northwestern Sonoran Desert were found only in sheltered microhabitats, nearly all occurring under the canopy of a desert bunchgrass, Hilaria rigida. Apparently because soil surface temperatures can reach 71{degree}C in exposed areas, seedlings were generally located near the center or on the northern side of this nurse plant. Both species have shallow root systems, about half of the roots of H. rigida and all those for seedlings of A. deserti occurring above soil depths of 0.08 m. To examine competition for water between the nurse plant and an associated seedling, a three-dimensional model for root water uptake was developed. Predicted pre-dawn soil water potentials at the mean root depth and total shoot transpiration agreed well with field measurements. Simulated annual water uptake by a seedling of A. deserti was reduced {approx}50% when the seedling was moved from an exposed location to the center of the nurse plant. Shading by the nurse plant reduced total daily photosynthetically active radiation (PAR) by up to 74% compared with an exposed seedling. On the other hand, soil nitrogen under the canopy of H rigida was 60% higher than in exposed locations. Assuming that the effects of nitrogen, temperature, PAR, and soil water on net CO{sub 2} uptake are multiplicative, the predicted net CO{sub 2} uptake by a seedling of A. deserti under the nurse plant was only {approx}45% of that for an exposed seedling.

  16. Organic nitrogen uptake of Scots pine seedlings is independent of current carbohydrate supply.

    PubMed

    Gruffman, Linda; Palmroth, Sari; Näsholm, Torgny

    2013-06-01

    In boreal forests, seedling establishment is limited by various factors including soil nitrogen (N) availability. Seedlings may absorb N from soil in a variety of inorganic and organic forms; however, the energy and thus carbohydrate requirements for uptake and assimilation of N vary with N source. We studied the importance of current photoassimilates for the acquisition and allocation of different N sources by Scots pine (Pinus sylvestris (L.)) seedlings. Girdling was used as a tool to impair phloem transport of photoassimilates, and hence gradually deprive roots of carbohydrates. Seedlings were cultivated in a greenhouse on equimolar N concentrations of one of the N sources-arginine, ammonium or nitrate-and then girdled prior to a pulse-chase uptake experiment with isotopically labeled N sources. Girdling proved to be efficient in decreasing levels of soluble sugars and starch in the roots. Uptake rate of arginine N was highest, intermediate for ammonium N and lowest for nitrate N. Moreover, the uptake of arginine N was unaffected by girdling, while the uptake of the two inorganic N sources decreased to 45-56% of the ungirdled controls. In arginine-treated seedlings, 95-96% of the acquired arginine N resided in the roots, whereas a significant shift in the N distribution toward the shoot was evident in girdled seedlings treated with inorganic N. This spatial shift was especially pronounced in nitrate-treated seedlings suggesting that the reduction and following incorporation into roots was limited by the availability of current photoassimilates. These results suggest that there are energetic benefits for seedlings to utilize organic N sources, particularly under circumstances where carbohydrate supply is limited. Hence, these putative benefits might be of importance for the survival and growth of seedlings when carbohydrate reserves are depleted in early growing season, or in light-limited environments, such as those sustained by continuous cover forestry systems

  17. Light limitation and litter of an invasive clonal plant, Wedelia trilobata, inhibit its seedling recruitment

    PubMed Central

    Qi, Shan-Shan; Dai, Zhi-Cong; Miao, Shi-Li; Zhai, De-Li; Si, Chun-Can; Huang, Ping; Wang, Rui-Ping; Du, Dao-Lin

    2014-01-01

    Background and Aims Invasive clonal plants have two reproduction patterns, namely sexual and vegetative propagation. However, seedling recruitment of invasive clonal plants can decline as the invasion process proceeds. For example, although the invasive clonal Wedelia trilobata (Asteraceae) produces numerous seeds, few seedlings emerge under its dense population canopy in the field. In this study it is hypothesized that light limitation and the presence of a thick layer of its own litter may be the primary factors causing the failure of seedling recruitment for this invasive weed in the field. Methods A field survey was conducted to determine the allocation of resources to sexual reproduction and seedling recruitment in W. trilobata. Seed germination was also determined in the field. Effects of light and W. trilobata leaf extracts on seed germination and seedling growth were tested in the laboratory. Key Results Wedelia trilobata blooms profusely and produces copious viable seeds in the field. However, seedlings of W. trilobata were not detected under mother ramets and few emerged seedlings were found in the bare ground near to populations. In laboratory experiments, low light significantly inhibited seed germination. Leaf extracts also decreased seed germination and inhibited seedling growth, and significant interactions were found between low light and leaf extracts on seed germination. However, seeds were found to germinate in an invaded field after removal of the W. trilobata plant canopy. Conclusions The results indicate that lack of light and the presence of its own litter might be two major factors responsible for the low numbers of W. trilobata seedlings found in the field. New populations will establish from seeds once the limiting factors are eliminated, and seeds can be the agents of long-distance dispersal; therefore, prevention of seed production remains an important component in controlling the spread of this invasive clonal plant. PMID:24825293

  18. The structure of the stem endodermis in etiolated pea seedlings

    NASA Technical Reports Server (NTRS)

    Sack, F. D.

    1987-01-01

    Differentiation of the endodermis was examined in third internodes of etiolated Pisum sativum L. cv. Alaska seedlings. The endodermis in young internodes contains large, sedimented amyloplasts; in older internodes, a casparian strip differentiates and the endodermis becomes depleted of starch except for the proximal region of the stem, which retains sedimented amyloplasts and remains graviresponsive. Sedimentation occurs in the hook but does not occur consistently until cells reach the base of the hook, where the axis becomes vertical, rapid cell elongation starts, and amyloplast diameter increases substantially. Contact between endoplasmic reticulum and amyloplasts was observed. Endoplasmic reticulum is not distributed polarly with respect to gravity. No symplastic or apoplastic blockages exist in the endodermis at the level of the stem where lateral gradients may be established during tropic curvature.

  19. Growth responses and adaptations of Fraxinus pennsylvanica seedlings to flooding

    SciTech Connect

    Sena Gomes, A.R.; Kozlowski, T.T.

    1980-01-01

    Flooding induced several physiological and morphological changes in Fraxinus pennsylvanica seedlings, with stomatal closure among the earliest responses. Subsequent changes included: reduction in dry weight increment of roots, stems, and leaves; formation of hypertrophied lenticles and production of adventitious roots on submerged portions of the stem above the soil line; leaf necrosis; and leaf abscission. After 15 days of stomatal closure as a results of flooding, stomata began to reopen progressively until stomata aperture was similar in flooded and unflooded plants. Adventitious roots began to form at about the time stomatal reopening began. As more adventitious roots formed, elongated, and branched, the stomata opened further. The formation of adventitious roots was in important adaptation for flooding tolerance as shown by the high efficiency of adventitious roots in absorption of water and in high correlation between the production of adventitious roots and stomatal reopening. 6 figures, 2 tables.

  20. Biosynthesis of trigonelline from nicotinate mononucleotide in mungbean seedlings.

    PubMed

    Zheng, Xin-Qiang; Matsui, Ayu; Ashihara, Hiroshi

    2008-01-01

    To determine the biosynthetic pathway to trigonelline, the metabolism of [carboxyl-(14)C]nicotinate mononucleotide (NaMN) and [carboxyl-(14)C]nicotinate riboside (NaR) in protein extracts and tissues of embryonic axes from germinating mungbeans (Phaseolus aureus) was investigated. In crude cell-free protein extracts, in the presence of S-adenosyl-L-methionine, radioactivity from [(14)C]NaMN was incorporated into NaR, nicotinate and trigonelline. Activities of NaMN nucleotidase, NaR nucleosidase and trigonelline synthase were also observed in the extracts. Exogenously supplied [(14)C]NaR, taken up by embryonic axes segments, was readily converted to nicotinate and trigonelline. It is concluded that the NaMN-->NaR-->nicotinate-->trigonelline pathway is operative in the embryonic axes of mungbean seedlings. This result suggests that trigonelline is synthesised not only from NAD but also via the de novo biosynthetic pathway of pyridine nucleotides. PMID:17888466

  1. Measurement of seedling growth rate by machine vision

    NASA Astrophysics Data System (ADS)

    Howarth, M. Scott; Stanwood, Phillip C.

    1993-05-01

    Seed vigor and germination tests have traditionally been used to determine deterioration of seed samples. Vigor tests describe the seed potential to emerge and produce a mature crop under certain field conditions and one measure is seedling growth rate. A machine vision system was developed to measure root growth rate over the entire germination period. The machine vision measurement technique was compared to the manual growth rate technique. The vision system provided similar growth rate measurements as compared to the manual growth rate technique. The average error between the system and a manual measurement was -0.13 for the lettuce test and -0.07 for the sorghum test. This technique also provided an accurate representation of the growth rate as well as percent germination.

  2. Correlations between polyamine ratios and growth patterns in seedling roots

    NASA Technical Reports Server (NTRS)

    Shen, H. J.; Galston, A. W.

    1985-01-01

    The levels of putrescine, cadaverine, spermidine and spermine were determined in seedling roots of pea, tomato, millet and corn, as well as in corn coleoptiles and pea internodes. In all roots, putrescine content increased as elongation progressed, and the putrescine/spermine ratio closely paralleled the sigmoid growth curve up until the time of lateral root initiation. Spermidine and spermine were most abundant near the apices and declined progressively with increasing age of the cells. In the zone of differentiation of root hairs in pea roots, putrescine rose progressively with increasing age, while cadaverine declined. In both pea internodes and corn coleoptiles, the putrescine/spermidine ratio rises with increasing age and elongation. Thus, a block in the conversion of the diamine putrescine to the triamine spermidine may be an important step in the change from cell division to cell elongation.

  3. How do riparian woody seedlings survive seasonal drought?

    PubMed

    Stella, John C; Battles, John J

    2010-11-01

    In semi-arid regions, a major population limitation for riparian trees is seedling desiccation during the dry season that follows annual spring floods. We investigated the stress response of first-year pioneer riparian seedlings to experimental water table declines (0, 1 and 3 cm day(-1)), focusing on the three dominant cottonwood and willows (family Salicaceae) in California's San Joaquin Basin. We analyzed growth and belowground allocation response to water stress, and used logistic regression to determine if these traits had an influence on individual survival. The models indicate that high root growth (>3 mm day(-1)) and low shoot:root ratios (<1.5 g g(-1)) strongly predicted survival, but there was no evidence that plants increased belowground allocation in response to drawdown. Leaf δ(13)C values shifted most for the best-surviving species (net change of +3.5 per mil from -30.0 ± 0.3 control values for Goodding's willow, Salix gooddingii), implying an important role of increased water-use efficiency for surviving water stress. Both S. gooddingii and sandbar willow (S. exigua) reduced leaf size from controls, whereas Fremont cottonwood (Populus fremontii) sustained a 29% reduction in specific leaf area (from 13.4 to 9.6 m(2) kg(-1)). The functional responses exhibited by Goodding's willow, the more drought-tolerant species, may play a role in its greater relative abundance in dry regions such as the San Joaquin Basin. This study highlights the potential for a shift in riparian forest composition. Under a future drier climate regime or under reduced regulated river flows, our results suggest that willow establishment will be favored over cottonwood.

  4. Sexual expression in container-grown jack pine seedlings.

    PubMed

    Fogal, W. H.; Lopushanski, S. M.; Coleman, S. J.; Schooley, H. O.; Wolynetz, M. S.

    1995-01-01

    We assessed the effects of nitrogen, drought and gibberellin A(4/7) on sexual expression of 2- and 3-year-old jack pine (Pinus banksiana L.) seedlings grown in either a 1/3 peat/sand mix or a 3/1 peat/perlite mix. The seedlings were either watered daily (well-watered treatment) or droughted by withholding water from July 13 to August 24 (drought treatment). Half of the plants in each irrigation treatment were sprayed with 200 mg l(-1)gibberellin A(4/7) at weekly intervals from June 28 to August 24; the remaining plants were not sprayed. Each gibberellin treatment was split into three subplots, and each subplot was supplied with nitrogen in the nutrient solution at 3, 100 or 300 mg l(-1) from June 27 to September 11. The drought treatment increased pollen strobilus production, whereas seed strobilus production was higher in well-watered trees than in drought-treated trees in the first year after treatment, but not in the subsequent year. Gibberellin A(4/7) promoted seed strobilus production but not pollen strobilus production in the first year after treatment but had no effect in the second year. Among the nitrogen treatments, the largest proportion of trees bearing pollen strobili was in the 3 mg l(-1) N treatment. Nitrogen supply did not affect seed strobilus production in the first year after treatment, but in the following year, the proportion of trees with seed strobili was higher in the 3 mg l(-1) N treatment than in the 100 and 300 mg l(-1) N treatments. Growing medium had no detectable effect on pollen strobilus production, but in the year following treatment, more trees produced seed strobili in peat/sand than in peat/perlite. PMID:14965925

  5. Low Temperature Affects Stem Cell Maintenance in Brassica oleracea Seedlings

    PubMed Central

    de Jonge, Jennifer; Kodde, Jan; Severing, Edouard I.; Bonnema, Guusje; Angenent, Gerco C.; Immink, Richard G. H.; Groot, Steven P. C.

    2016-01-01

    Most of the above ground tissues in higher plants originate from stem cells located in the shoot apical meristem (SAM). Several plant species can suffer from spontaneous stem cell arrest resulting in lack of further shoot development. In Brassica oleracea this SAM arrest is known as blindness and occurs in an unpredictable manner leading to considerable economic losses for plant raisers and farmers. Detailed analyses of seedlings showed that stem cell arrest is triggered by low temperatures during germination. To induce this arrest reproducibly and to study the effect of the environment, an assay was developed. The role of genetic variation on the susceptibility to develop blind seedlings was analyzed by a quantitative genetic mapping approach, using seeds from a double haploid population from a cross between broccoli and Chinese kale, produced at three locations. The analysis revealed, besides an effect of the seed production location, a region on linkage group C3 associated with blindness sensitivity. A subsequent dynamic genome-wide transcriptome analysis resulted in the identification of around 3000 differentially expressed genes early after blindness induction. A large number of cell cycle genes were en masse induced early during the development of blindness, whereas shortly after, all were down-regulated. This miss-regulation of core cell cycle genes is accompanied with a strong reduction of cells reaching the DNA replication phase. From the differentially expressed genes, 90 were located in the QTL region C3. Among them are two genes belonging to the MINICHROMOSOMAL MAINTENANCE gene family, known to be involved in DNA replication, a RETINOBLASTOMA-RELATED gene, a key regulator for cell cycle initiation, and several MutS homologs genes, involved in DNA repair. These genes are potential candidates for being involved in the development of blindness in Brassica oleracea sensitive genotypes. PMID:27375654

  6. Transpiration modulates phosphorus acquisition in tropical tree seedlings.

    PubMed

    Cernusak, Lucas A; Winter, Klaus; Turner, Benjamin L

    2011-08-01

    Several experiments were conducted with tropical tree and liana seedlings in which transpiration ratio and leaf phosphorus to carbon ratio (P:C) were measured. Transpiration ratio was expressed as kg H(2)O transpired g(-1) C incorporated into plant biomass, and leaf P:C as mg P g(-1) C. Leaf P:C was positively correlated with transpiration ratio across 19 species for plants grown under similar conditions (R(2) = 0.35, P < 0.01, n = 19). For five species in the dataset, multiple treatments were imposed to cause intra-specific variation in transpiration ratio. Within four of these five species, leaf P:C correlated positively with transpiration ratio. The slope and strength of the correlation varied among species. In one experiment, whole-plant P:C was measured in addition to leaf P:C. Patterns of correlation between whole-plant P:C and transpiration ratio were similar to those between leaf P:C and transpiration ratio. Together, these observations suggest that transpiration can influence the rate of P uptake from soil in tropical tree and liana seedlings. We suggest that this occurs through transport of inorganic phosphate and organic P compounds to root surfaces by transpiration-induced mass flow of the soil solution. The positive correlation between leaf P:C and transpiration ratio suggests that leaf P:C could decline in tropical forests as atmospheric CO(2) concentration rises, due to decreasing transpiration ratios.

  7. Interaction between hydrotropism and gravitropism in seedling roots

    NASA Astrophysics Data System (ADS)

    Kobayashi, A.; Takahashi, A.; Yamazaki, Y.; Kakimoto, Y.; Higashitani, A.; Fujii, N.; Takahashi, H.

    Roots display positive hydrotropism in response to a moisture gradient, which could play a role in avoiding drought stress. Because roots also respond to other stimuli such as gravity, touch and light and exhibit gravitropism, thigmotropism and phototropism, respectively, their growth orientation is determined by interaction among those tropisms. We have demonstrated the interaction between hydrotropism and gravitropism. For example, 1) agravitropic roots of pea mutant strongly respond to a moisture gradient and show positive hydrotropism by overcoming gravitropism, 2) in wild type pea roots hydrotropism is weak but pronounced when rotated on clinostat, 3) cucumber roots are positively gravitropic on the ground but become hydrotropic in microgravity, and 4) maize roots change their growth direction depending on the intensities of both gravistimulation and hydrostimulation. Here we found that Arabidopsis roots could display strong hydrotropism by overcoming gravitropism. It was discovered that amyloplasts in the columella cells are rapidly degraded upon exposure to a moisture gradient. Thus, degradation of amyloplasts could reduce the responsiveness to gravity, which could pronounce the hydrotropic response. In hydrotropically stimulated roots of pea seedlings, however, we could not observe a rapid degradation of amyloplasts in the columella cells. These results suggest that mechanism underlying the interaction between hydrotropism and gravitropism differs among plant species. To further study the molecular mechanism of hydrotropism and its interaction with gravitropism, we isolated unique mutants of Arabidopsis of which roots showed either ahydrotropism, reduced hydrotropism or negative hydrotropic response and examined their gravitropism, phototropism, waving response, amyloplast degradation and elongation growth. Based on the characterization of hydrotropic mutants, we will attempt to compare the mechanisms of the two tropisms and to clarify their cross talk for

  8. Low Temperature Affects Stem Cell Maintenance in Brassica oleracea Seedlings.

    PubMed

    de Jonge, Jennifer; Kodde, Jan; Severing, Edouard I; Bonnema, Guusje; Angenent, Gerco C; Immink, Richard G H; Groot, Steven P C

    2016-01-01

    Most of the above ground tissues in higher plants originate from stem cells located in the shoot apical meristem (SAM). Several plant species can suffer from spontaneous stem cell arrest resulting in lack of further shoot development. In Brassica oleracea this SAM arrest is known as blindness and occurs in an unpredictable manner leading to considerable economic losses for plant raisers and farmers. Detailed analyses of seedlings showed that stem cell arrest is triggered by low temperatures during germination. To induce this arrest reproducibly and to study the effect of the environment, an assay was developed. The role of genetic variation on the susceptibility to develop blind seedlings was analyzed by a quantitative genetic mapping approach, using seeds from a double haploid population from a cross between broccoli and Chinese kale, produced at three locations. The analysis revealed, besides an effect of the seed production location, a region on linkage group C3 associated with blindness sensitivity. A subsequent dynamic genome-wide transcriptome analysis resulted in the identification of around 3000 differentially expressed genes early after blindness induction. A large number of cell cycle genes were en masse induced early during the development of blindness, whereas shortly after, all were down-regulated. This miss-regulation of core cell cycle genes is accompanied with a strong reduction of cells reaching the DNA replication phase. From the differentially expressed genes, 90 were located in the QTL region C3. Among them are two genes belonging to the MINICHROMOSOMAL MAINTENANCE gene family, known to be involved in DNA replication, a RETINOBLASTOMA-RELATED gene, a key regulator for cell cycle initiation, and several MutS homologs genes, involved in DNA repair. These genes are potential candidates for being involved in the development of blindness in Brassica oleracea sensitive genotypes. PMID:27375654

  9. Ribosomal Changes during Induction of Cold Hardiness in Black Locust Seedlings.

    PubMed

    Bixby, J A; Brown, G N

    1975-11-01

    Protein synthesis has been implicated in the cold-hardening process. Ribosomes from cold hardy and nonhardy black locust (Robinia pseudoacacia L.) seedlings were compared to determine if cold acclimation is related to alteration of ribosomal structure. Ribosomal structure, as indicated by thermal melting profiles, appears to be altered during induction of hardiness. Two-dimensional polyacrylamide gel electrophoresis of ribosomal proteins indicates at least 17 proteins from hardy seedlings that are different from those of nonhardy seedlings. These different proteins may be partially responsible for the different thermal melting profiles observed. PMID:16659356

  10. Microsite abundance and distribution of woody seedlings in a South Carolina cypress-tupelo swamp

    SciTech Connect

    Huenneke, L.F.; Sharitz, R.R.

    1986-05-01

    At least 16 types of microsites or substrates for vascular plant seedlings can be distinguished in bald cypress-water tupelo (Taxodium distichum-Nyssa aquatica) swamps. We measured the relative abundances of these microsite types, and the distribution of woody seedlings on them, in two riverine swamp forests on the Savannah River floodplain, South Carolina. Microsite abundances in a little disturbed forest differed significantly from those in a more open stand which had experienced much recent sediment deposition from upstream erosion, as well as higher water temperatures. Woody seedlings were distributed nonrandomly among microsite types (i.e., not in proportion to the abundance of a given microsite type). There were significant differences in microsite distribution patterns among growth forms (tree spp. vs. shrubs vs. vines) and among species within growth form. Many human activities may alter substrate nature and abundance in a wetland, thus indirectly altering the abundance and species composition of seedling recruitment.

  11. Use of TREGRO to simulate the effects of ozone on the growth of red spruce seedlings

    SciTech Connect

    Laurence, J.A.; Kohut, R.J.; Amundson, R.G. )

    1993-08-01

    TREGRO, a model developed to simulate the growth of sapling red spruce (Picea rubens Sarg.), was parameterized to grow 2- to 3-yr-old seedlings. Results of the simulation compared favorably to actual growth of seedlings used in a field study of the effects of ozone and acidic precipitation on tree physiology and development. Furthermore, a 10-yr simulation produced a modeled tree that corresponded to saplings used in another field experiment. Additional simulations were conducted to compare predicted effects of ozone on seedling growth to those measured in controlled experiments. Based on the performance of the model, we believe TREGRO can be used effectively to simulate both seedling and sapling red spruce growth, and the potential effects of ozone on the development of the trees. 11 refs., 6 figs., 3 tabs.

  12. Hydroperoxide lyase products, hexanal, hexenal and nonenal, inhibit soybean seedling growth

    SciTech Connect

    Gardner, H.W.; Dornbos, D.L. Jr. )

    1989-04-01

    Hexanal, a product of hydroperoxide lyase, inhibited the germination and growth of soybean seeds. Hexanal was continuously delivered to germinating seeds as a vapor dissolved in air with a flow-through system (100 ml/min). Only 0.8 {mu}g hexanal/ml air was required to inhibit seedling growth by 50%; nearly 100% inhibition occurred with a dose of 1.8 {mu}g hexanal/ml air. In the absence of hexanal brown spots were often visible on the seedlings, but at sublethal doses of hexanal, the seedlings were largely devoid of these spots. The relative toxicity of three hydroperoxide lyase products, hexanal, trans-2-hexanal and trans-2-nonenal, were compared with a Petri-dish bioassay. The order of toxicity against seedling growth was hexenal>hexanal>nonenal.

  13. [Effects of NO3- stress on cucumber seedling growth and magnesium absorbing under suboptimal temperature].

    PubMed

    Yang, Quan-yong; Wang, Xiu-feng; Han, Yu-rui; Yang, Jing-jing; Wei, Min; Yang, Feng-juan; Shi, Qing-hua; Li, Yan

    2015-05-01

    The effects of NO3- stress on the growth and the magnesium absorption of cucumber seedlings were investigated after 1 and 14 d of suboptimal temperature [18 °C/12 °C (day/night)] treatment. The results indicated that the growth, net photosynthetic rate, transpiration rate, Fv/Fm and ΦPSII of cucumber seedlings were significantly inhibited by NO3- stress under suboptimal temperature. The magnesium content of cucumber seedlings was also significantly decreased compared with control treatment, especially in the IV treatment (suboptimal temperature +140 mmol · L(-1) NO3- + 1 mmol · L(-1) Mg2+), and the antagonistic impact of magnesium ion absorption on the absorption of potassium and calcium ion was observed. The magnesium deficiency symptom of cucumber seedlings could be partly alleviated by increasing the concentration of magnesium ion in the nutrient solution.

  14. Response of transgenic rice at germination and early seedling growth under salt stress.

    PubMed

    Jamil, Muhammad; Rha, Eui Shik

    2007-12-01

    The response of germination and early seedling growth of different transgenic rice lines (T-99, T-112, T-115 and T-121) were examined in different levels of salinity (0, 50, 100 and 150 mM NaCl). Final germination, germination rate (1/t50, where t50 is the time to 50% of germination) and early seedling growth were assessed. Final germination percentage was inhibited with increasing salt concentrations. The required time for germination also increased with increasing salinity levels. The seedling growth was also reduced by salt concentrations, particularly at 150 mM. Root and shoot lengths, root/shoot ratio, fresh weights of root and shoot were also decreased with increasing salt stress. T-99 and T-112 had shown greater performance at germination and early seedling growth as compared to other transgenic lines.

  15. Amelioration of Cd toxicity by pretreatment of salicylic acid in Cicer arietinum L. seedlings.

    PubMed

    Canakci, Songül; Dursun, Bahar

    2013-11-01

    In this study, the ameliorating effect of salicylic acid (SA), serving as a mediator for protecting plants, against cadmium (Cd) toxicity in Cicer arietinum was investigated. The seedlings of Cicer arietinum treated with increasing Cd concentrations (0, 25, 50, 100 microM ) inhibited seedling length, reduced fresh and dry weight, total chlorophyll, carotenoid content and fatty acid methyl ester content. Furthermore, the level of some important parameters like MDA, proline and GSH content related to oxidative stress increased in Cd treated seedlings. Leaves of seedlings pretreated with salicylic acid (0.5 mM), alleviated the toxic effects of Cd by increasing the growth parameters, photosynthetic pigments, GSH and FAME content and decreasing proline and MDA content respectively. The result of the present study reveals the protective role of salicylic acid against Cd toxicity in C. arietinum.

  16. [Effects of NO3- stress on cucumber seedling growth and magnesium absorbing under suboptimal temperature].

    PubMed

    Yang, Quan-yong; Wang, Xiu-feng; Han, Yu-rui; Yang, Jing-jing; Wei, Min; Yang, Feng-juan; Shi, Qing-hua; Li, Yan

    2015-05-01

    The effects of NO3- stress on the growth and the magnesium absorption of cucumber seedlings were investigated after 1 and 14 d of suboptimal temperature [18 °C/12 °C (day/night)] treatment. The results indicated that the growth, net photosynthetic rate, transpiration rate, Fv/Fm and ΦPSII of cucumber seedlings were significantly inhibited by NO3- stress under suboptimal temperature. The magnesium content of cucumber seedlings was also significantly decreased compared with control treatment, especially in the IV treatment (suboptimal temperature +140 mmol · L(-1) NO3- + 1 mmol · L(-1) Mg2+), and the antagonistic impact of magnesium ion absorption on the absorption of potassium and calcium ion was observed. The magnesium deficiency symptom of cucumber seedlings could be partly alleviated by increasing the concentration of magnesium ion in the nutrient solution. PMID:26571650

  17. Nitrogen Assimilation and Protein Synthesis in Wheat Seedlings as Affected by Mineral Nutrition. II. Micronutrients 1

    PubMed Central

    Harper, James E.; Paulsen, Gary M.

    1969-01-01

    Activity of nitrate reductase from Triticum aestivum L. seedlings was decreased by deficiencies of molybdenum, zinc, and chlorine. Nitrate accumulated in molybdenum-deficient seedlings, declined in zinc-deficient seedlings, and was unaffected by the other micronutrient treatments. Glutamic acid dehydrogenase activity was decreased by deficiency of molybdenum, the only nutrient that affected the enzyme. Glutamine synthetase activity was decreased only by copper deficiency, and glutamic-oxaloacetic transaminase was not affected by any micronutrient deficiencies. Incorporation of 14C-leucine into protein by wheat seedlings was increased by molybdenum deficiency, apparently because of decreased inhibition from endogenous amino acids, and was decreased by copper deficiency. Protein content was not affected significantly by the micronutrient treatments. PMID:16657114

  18. Improvement of the zygote utilization and reduction of the seedling loss in the early stage of seedling production of Sargassum thunbergii (Fucales, Phaeophyta)

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Wu, Haiyi; Liu, Mengxia; Duan, Delin

    2016-05-01

    Artificial seedling production of Sargassum thunbergii is an effective way to relieve pressure on natural resources. In order to improve the utilization of zygotes and reduce the loss of seedlings, studies on the characteristic of the zygotes release, the development of rhizoids, the attachment of germlings, and the influence of jet washing were conducted. Results show that the percent of zygotes released was increased with time in the first 60 h. The capacity of germlings attached to the substratum was significantly increased, especially coincident with the time of the new rhizoids emerged and elongated. The detachment rate of germlings significantly decreased with the delay of starting time of jet washing or the reduction of jet washing velocity. However, the jet washing at any level applied in the experiment could cause considerable loss of germlings within the 20 days after the attachment. Our study provided some parameters to optimize the operation in the early stage of seedling production.

  19. Effect of long-term drought on carbon allocation and nitrogen uptake of Pinus sylvestris seedlings

    NASA Astrophysics Data System (ADS)

    Pumpanen, Jukka; Aaltonen, Heidi; Lindén, Aki; Köster, Kajar; Biasi, Christina; Heinonsalo, Jussi

    2015-04-01

    Weather extremes such as drought events are expected to increase in the future as a result of climate change. The drought affects the allocation of carbon assimilated by plants e.g. by modifying the root to shoot ratio, amount of fine roots and the amount of mycorrhizal fungal hyphae. We studied the effect of long term drought on the allocation of carbon in a common garden experiment with 4-year-old Pinus sylvestris seedlings. Half of the seedlings were exposed to long-term drought by setting the soil water content close to wilting point for over two growing seasons whereas the other half was grown in soil close to field capacity. We conducted a pulse labelling with 13CO2 in the end of the study by injecting a known amount of 13C enriched CO2 to the seedlings and measuring the CO2 uptake and distribution of 13C to the biomass of the seedlings and to the root and rhizosphere respiration. In addition, we studied the effect of drought on the decomposition of needle litter and uptake of nitrogen by 15N labelled needles buried in the soil in litter bags. The litterbags were collected and harvested in the end of the experiment and the changes in microbial community in the litterbags were studied from the phospholipid fatty acid (PLFA) composition. We also determined the 15N isotope concentrations from the needles of the seedlings to study the effect of drought on the nitrogen uptake of the seedlings. Our results indicate that the drought had a significant effect both on the biomass allocation of the seedlings and on the microbial species composition. The amount of carbon allocated belowground was much higher in the seedlings exposed to drought compared to the control seedlings. The seedlings seemed to adapt their carbon allocation to long-term drought to sustain adequate needle biomass and water uptake. The seedlings also adapted their osmotic potential and photosynthesis capacity to sustain the long-term drought as was indicated by the measurements of osmotic potential

  20. Propagule size and predispersal damage by insects affect establishment and early growth of mangrove seedlings.

    PubMed

    Sousa, Wayne P; Kennedy, Peter G; Mitchell, Betsy J

    2003-05-01

    Variation in rates of seedling recruitment, growth, and survival can strongly influence the rate and course of forest regeneration following disturbance. Using a combination of field sampling and shadehouse experiments, we investigated the influence of propagule size and predispersal insect damage on the establishment and early growth of the three common mangrove species on the Caribbean coast of Panama: Avicennia germinans, Laguncularia racemosa, and Rhizophora mangle. In our field samples, all three species exhibited considerable intraspecific variation in mature propagule size, and suffered moderate to high levels of predispersal attack by larval insects. Rates of insect attack were largely independent of propagule size both within and among trees. Our experimental studies using undamaged mature propagules showed that, for all three species, seedlings established at high rates regardless of propagule size. However, propagule size did have a marked effect on early seedling growth: seedlings that developed from larger propagules grew more rapidly. Predispersal insect infestations that had destroyed or removed a substantial amount of tissue, particularly if that tissue was meristematic or conductive, reduced the establishment of propagules of all three species. The effect of sublethal tissue damage or loss on the subsequent growth of established seedlings varied among the three mangrove species. For Avicennia, the growth response was graded: for a propagule of a given size, the more tissue lost, the slower the growth of the seedling. For Laguncularia, the response to insect attack appeared to be all-or-none. If the boring insect penetrated the outer spongy seed coat and reached the developing embryo, it usually caused sufficient damage to prevent a seedling from developing. On the other hand, if the insect damaged but did not penetrate the seed coat, a completely healthy seedling developed and its growth rate was indistinguishable from a seedling developing from an

  1. A Predictive Coexpression Network Identifies Novel Genes Controlling the Seed-to-Seedling Phase Transition in Arabidopsis thaliana1[OPEN

    PubMed Central

    Silva, Anderson Tadeu; Ribone, Pamela A.

    2016-01-01

    The transition from a quiescent dry seed to an actively growing photoautotrophic seedling is a complex and crucial trait for plant propagation. This study provides a detailed description of global gene expression in seven successive developmental stages of seedling establishment in Arabidopsis (Arabidopsis thaliana). Using the transcriptome signature from these developmental stages, we obtained a coexpression gene network that highlights interactions between known regulators of the seed-to-seedling transition and predicts the functions of uncharacterized genes in seedling establishment. The coexpressed gene data sets together with the transcriptional module indicate biological functions related to seedling establishment. Characterization of the homeodomain leucine zipper I transcription factor AtHB13, which is expressed during the seed-to-seedling transition, demonstrated that this gene regulates some of the network nodes and affects late seedling establishment. Knockout mutants for athb13 showed increased primary root length as compared with wild-type (Columbia-0) seedlings, suggesting that this transcription factor is a negative regulator of early root growth, possibly repressing cell division and/or cell elongation or the length of time that cells elongate. The signal transduction pathways present during the early phases of the seed-to-seedling transition anticipate the control of important events for a vigorous seedling, such as root growth. This study demonstrates that a gene coexpression network together with transcriptional modules can provide insights that are not derived from comparative transcript profiling alone. PMID:26888061

  2. Modeling of genetic gain for single traits from marker-assisted seedling selection in clonally propagated crops

    PubMed Central

    Ru, Sushan; Hardner, Craig; Carter, Patrick A; Evans, Kate; Main, Dorrie; Peace, Cameron

    2016-01-01

    Seedling selection identifies superior seedlings as candidate cultivars based on predicted genetic potential for traits of interest. Traditionally, genetic potential is determined by phenotypic evaluation. With the availability of DNA tests for some agronomically important traits, breeders have the opportunity to include DNA information in their seedling selection operations—known as marker-assisted seedling selection. A major challenge in deploying marker-assisted seedling selection in clonally propagated crops is a lack of knowledge in genetic gain achievable from alternative strategies. Existing models based on additive effects considering seed-propagated crops are not directly relevant for seedling selection of clonally propagated crops, as clonal propagation captures all genetic effects, not just additive. This study modeled genetic gain from traditional and various marker-based seedling selection strategies on a single trait basis through analytical derivation and stochastic simulation, based on a generalized seedling selection scheme of clonally propagated crops. Various trait-test scenarios with a range of broad-sense heritability and proportion of genotypic variance explained by DNA markers were simulated for two populations with different segregation patterns. Both derived and simulated results indicated that marker-based strategies tended to achieve higher genetic gain than phenotypic seedling selection for a trait where the proportion of genotypic variance explained by marker information was greater than the broad-sense heritability. Results from this study provides guidance in optimizing genetic gain from seedling selection for single traits where DNA tests providing marker information are available. PMID:27148453

  3. Differential regulation of alanine aminotransferase homologues by abiotic stresses in wheat (Triticum aestivum L.) seedlings.

    PubMed

    Kendziorek, Maria; Paszkowski, Andrzej; Zagdańska, Barbara

    2012-06-01

    Wheat (Triticum aestivum L.) seedlings contain four alanine aminotransferase (AlaAT) homologues. Two of them encode AlaAT enzymes, whereas two homologues act as glumate:glyoxylate aminotransferase (GGAT). To address the function of the distinct AlaAT homologues a comparative examination of the changes in transcript level together with the enzyme activity and alanine and glutamate content in wheat seedlings subjected to low oxygen availability, nitrogen and light deficiency has been studied. Shoots of wheat seedlings were more tolerant to hypoxia than the roots as judging on the basis of enzyme activity and transcript level. Hypoxia induced AlaAT1 earlier in roots than in shoots, while AlaAT2 and GGAT were unaffected. The increase in AlaAT activity lagged behind the increase in alanine content. Nitrogen deficiency has little effect on the activity of GGAT. In contrast, lower activity of AlaAT and the level of mRNA for AlaAT1 and AlaAT2 in wheat seedlings growing on a nitrogen-free medium seems to indicate that AlaAT is regulated by the availability of nitrogen. Both AlaAT and GGAT activities were present in etiolated wheat seedlings but their activity was half of that observed in light-grown seedlings. Exposure of etiolated seedlings to light caused an increase in enzyme activities and up-regulated GGAT1. It is proposed that hypoxia-induced AlaAT1 and light-induced peroxisomal GGAT1 appears to be crucial for the regulation of energy availability in plants grown under unfavourable environmental conditions. Key message In young wheat seedlings, both AlaAT and GGAT are down-regulated by nitrogen deficiency, whereas AlaAT1 is upregulated by hypoxia and GGAT1 by light.

  4. [Influence of γ-Irradiated Seeds on the Enzyme Activity in Barley Seedlings].

    PubMed

    Volkova, P Yu; Churyukin, R S; Geras'kin, S A

    2016-01-01

    Influence of γ-irradiation of barley seeds (Nur variety) at the doses of 8-50 Gy on catalase, pyruvate kinase, glucose-6-phosphate dehydrogenase, and guaiacol peroxidase activities was studied in the seedlings on the 3, 5 and 7 days after germination. It has been shown that activities of the studied enzymes increase in the dose range that causes the growth stimulation in the seedlings (16-20 Gy). PMID:27534070

  5. Seedling establishment in a dynamic sedimentary environment: a conceptual framework using mangroves

    PubMed Central

    Balke, Thorsten; Webb, Edward L; van den Elzen, Eva; Galli, Demis; Herman, Peter M J; Bouma, Tjeerd J

    2013-01-01

    1. Vegetated biogeomorphic systems (e.g. mangroves, salt marshes, dunes, riparian vegetation) have been intensively studied for the impact of the biota on sediment transport processes and the resulting self-organization of such landscapes. However, there is a lack of understanding of physical disturbance mechanisms that limit primary colonization in active sedimentary environments. 2. This study elucidates the effect of sediment disturbance during the seedling stage of pioneer vegetation, using mangroves as a model system. We performed mesocosm experiments that mimicked sediment disturbance as (i) accretion/burial of plants and (ii) erosion/excavation of plants of different magnitudes and temporal distribution in combination with water movement and inundation stress. 3. Cumulative sediment disturbance reduced seedling survival, with the faster-growing Avicennia alba showing less mortality than the slower-growing Sonneratia alba. The presence of the additional stressors (inundation and water movement) predominantly reduced the survival of S. alba. 4. Non-lethal accretion treatments increased shoot biomass of the seedlings, whereas non-lethal erosion treatments increased root biomass allocation. This morphological plasticity in combination with the abiotic disturbance history determined how much maximum erosion the seedlings were able to withstand. 5. Synthesis and applications. Seedling survival in dynamic sedimentary environments is determined by the frequency and magnitude of sediment accretion or erosion events, with non-lethal events causing feedbacks to seedling stability. Managers attempting restoration of mangroves, salt marshes, dunes and riparian vegetation should recognize sediment dynamics as a main bottleneck to primary colonization. The temporal distribution of erosion and accretion events has to be evaluated against the ability of the seedlings to outgrow or adjust to disturbances. Our results suggest that selecting fast-growing pioneer species and

  6. Methyl Jasmonate- and Light-Induced Glucosinolate and Anthocyanin Biosynthesis in Radish Seedlings.

    PubMed

    Al-Dhabi, Naif Abdullah; Arasu, Mariadhas Valan; Kim, Sun Ju; RomijUddin, Md; Park, Woo Tae; Lee, Sook Young; Park, Sang Un

    2015-07-01

    Radish sprouts and young seedlings are considered important dietary vegetables in Asian countries. In this study, we investigated the levels of glucosinolate and anthocyanin accumulation in radish seedlings in response to light and methyl jasmonate (MeJA) treatments. MeJA facilitated the accumulation of glucosinolate and anthocyanins under light conditions. The glucosinolate and anthocyanin contents in the radish seedlings that were exposed to light after MeJA treatment were higher than those of the seedlings that were grown in the dark without MeJA. At a concentration of 100 μM, MeJA led to the greatest accumulation of the most glucosinolates under both light and dark conditions. Under light conditions, the levels of glucoraphenin, glucoerucin, and glucotropaeolin accumulation were 1.53-, 1.60-, and 1.30-fold higher, respectively, than those of the control. Remarkable accumulations of glucobrassicin were observed under light conditions (4.4-, 6.7-, and 7.8-fold higher than that of the control following the application of 100, 300, and 500 μM MeJA, respectively). The level of cyanidin in the 300 μM MeJA-treated seedlings was double of that in the control without MeJA treatment. The highest level of pelargonidin was observed after treatment with 500 μM MeJA under light conditions; this level was 1.73 times higher than that in the control. A similar trend of anthocyaninaccumulation was observed in the radish seedlings following MeJA treatment under dark conditions, but the levels of anthocyanins were considerably lower in the seedlings that were grown in the dark. Our findings suggest that light and low concentrations of MeJA enhance the accumulations of glucosinolates and anthocyanins during the development of radish seedlings.

  7. Seedling establishment in a dynamic sedimentary environment: a conceptual framework using mangroves.

    PubMed

    Balke, Thorsten; Webb, Edward L; van den Elzen, Eva; Galli, Demis; Herman, Peter M J; Bouma, Tjeerd J

    2013-06-01

    1. Vegetated biogeomorphic systems (e.g. mangroves, salt marshes, dunes, riparian vegetation) have been intensively studied for the impact of the biota on sediment transport processes and the resulting self-organization of such landscapes. However, there is a lack of understanding of physical disturbance mechanisms that limit primary colonization in active sedimentary environments. 2. This study elucidates the effect of sediment disturbance during the seedling stage of pioneer vegetation, using mangroves as a model system. We performed mesocosm experiments that mimicked sediment disturbance as (i) accretion/burial of plants and (ii) erosion/excavation of plants of different magnitudes and temporal distribution in combination with water movement and inundation stress. 3. Cumulative sediment disturbance reduced seedling survival, with the faster-growing Avicennia alba showing less mortality than the slower-growing Sonneratia alba. The presence of the additional stressors (inundation and water movement) predominantly reduced the survival of S. alba. 4. Non-lethal accretion treatments increased shoot biomass of the seedlings, whereas non-lethal erosion treatments increased root biomass allocation. This morphological plasticity in combination with the abiotic disturbance history determined how much maximum erosion the seedlings were able to withstand. 5.Synthesis and applications. Seedling survival in dynamic sedimentary environments is determined by the frequency and magnitude of sediment accretion or erosion events, with non-lethal events causing feedbacks to seedling stability. Managers attempting restoration of mangroves, salt marshes, dunes and riparian vegetation should recognize sediment dynamics as a main bottleneck to primary colonization. The temporal distribution of erosion and accretion events has to be evaluated against the ability of the seedlings to outgrow or adjust to disturbances. Our results suggest that selecting fast-growing pioneer species and

  8. Heat shock protein Hsp90-2 expression in the Arabidopsis thaliana seedlings under clinorotation

    NASA Astrophysics Data System (ADS)

    Kozeko, Liudmyla

    Heat shock proteins 90 kDa (Hsp90) are abundant under normal conditions and induced by stress. This family is distinguished from other chaperones in that most of its substrates are signal transduction proteins. Previously, we determined some time-dependent increase in the Hsp90 level in pea seedlings in response to simulated microgravity that indicated a stress-reaction. However, expression of the individual members of the Hsp90 family have specific pattern. The purpose of this study was to investigate possible alterations in the gene expression pattern of cytosolic Hsp90-2 in Arabidopsis thaliana seedlings under 2D-clinorotation. To obtain detailed expression pattern of the HSP90-2 genes we used seeds that provides a resource of loss-of-function mutations gene expression patterns via translational fusions with the reporter gene, GUS (a line N 166718, NASC). There were two variants of the experiment: 1) seedlings grew under clinorotation for 10, 12, 14 d; 2) seedlings grew in the stationary conditions for 10 d followed by clinorotation for 3 h -at 22o C and 16h light cycle. The seedlings grown in the stationary conditions were used as a control. GUS staining showed that HSP90-2 expression was regulated during seedling development and affected by clinorotation in the heterozygous mutant plants. In the homozygous for the mutation plants, HSP90-2 expression was stable during seedling development and not affected by clinorotation. GUS staining was observed in cotyledons, leaves and hypocotyls of the seedlings (especially intense in vascular bundles), indicating intensive cellular processes with participation of this chaperone. Possible pathways of influence of clinorotation on HSP90-2 expression are discussed.

  9. Primate extirpation from rainforest fragments does not appear to influence seedling recruitment.

    PubMed

    Chaves, Oscarm M; Arroyo-Rodríguez, Víctor; Martínez-Ramos, Miguel; Stoner, Kathryne E

    2015-04-01

    Primates are important seed dispersers, especially of large-seeded tree species, but the impact that these animals have on seedling recruitment is unclear. Evidence suggests that forest regeneration might be disrupted in forest fragments in which primates were extirpated. We tested this hypothesis by assessing seedling recruitment in 3 forest fragments occupied (OF) by primates, 3 fragments unoccupied (UF) by primates, and 3 areas within a continuous forest (CF) in the Lacandona rainforest, Mexico. Species and stem densities of tree, palm and liana seedlings were recorded over 16 months. Individuals were classified according to dispersal mode: large-seeded animal-dispersed (LS), small- and medium-seeded animal-dispersed (SS), and abiotically-dispersed species (AD). We assessed the influence of primate presence, adult tree assemblage, and fragment spatial metrics (size, age, distance to nearest fragment, and distance to continuous forest) on seedling assemblages. We recorded 6879 seedlings belonging to 90 species, and 59 genera in 405 1-m(2) plots. Both seedlings and adults showed similar differences in species and stem densities of LS, SS and AD species among forest types, suggesting that seedling assemblages were strongly influenced by the adult assemblages. The recruitment of each LS species varied among study sites, but evidence supporting higher recruitment enhancement of these species in continuous forest and occupied fragments was weak. Distance to continuous forest was the unique fragment spatial metric related (negatively) to the recruitment of LS species. Thus, primate extirpation does not appear to disrupt seedling assemblages in the Lancandona rainforest. Nevertheless, we cannot reject the hypothesis that certain LS species such as Spondias radlkoferi may be affected by the extirpation of primates. PMID:25556633

  10. Primate extirpation from rainforest fragments does not appear to influence seedling recruitment.

    PubMed

    Chaves, Oscarm M; Arroyo-Rodríguez, Víctor; Martínez-Ramos, Miguel; Stoner, Kathryne E

    2015-04-01

    Primates are important seed dispersers, especially of large-seeded tree species, but the impact that these animals have on seedling recruitment is unclear. Evidence suggests that forest regeneration might be disrupted in forest fragments in which primates were extirpated. We tested this hypothesis by assessing seedling recruitment in 3 forest fragments occupied (OF) by primates, 3 fragments unoccupied (UF) by primates, and 3 areas within a continuous forest (CF) in the Lacandona rainforest, Mexico. Species and stem densities of tree, palm and liana seedlings were recorded over 16 months. Individuals were classified according to dispersal mode: large-seeded animal-dispersed (LS), small- and medium-seeded animal-dispersed (SS), and abiotically-dispersed species (AD). We assessed the influence of primate presence, adult tree assemblage, and fragment spatial metrics (size, age, distance to nearest fragment, and distance to continuous forest) on seedling assemblages. We recorded 6879 seedlings belonging to 90 species, and 59 genera in 405 1-m(2) plots. Both seedlings and adults showed similar differences in species and stem densities of LS, SS and AD species among forest types, suggesting that seedling assemblages were strongly influenced by the adult assemblages. The recruitment of each LS species varied among study sites, but evidence supporting higher recruitment enhancement of these species in continuous forest and occupied fragments was weak. Distance to continuous forest was the unique fragment spatial metric related (negatively) to the recruitment of LS species. Thus, primate extirpation does not appear to disrupt seedling assemblages in the Lancandona rainforest. Nevertheless, we cannot reject the hypothesis that certain LS species such as Spondias radlkoferi may be affected by the extirpation of primates.

  11. Magnetic field can alleviate toxicological effect induced by cadmium in mungbean seedlings.

    PubMed

    Chen, Yi-ping; Li, Ran; He, Jun-Min

    2011-06-01

    To alleviate toxicological effect induced by cadmium in mungbean seedlings, seeds were divided into four groups: The controls groups (CK, without treatment), magnetic field treated groups (MF), cadmium treated groups (CS), and magnetic field treated followed by cadmium treated groups (MF + CS).The results showed: (i) Compared with the controls, cadmium stress resulted in enhancing in the concentration of malondialdehyde, H(2)O(2) and O(2-), and the conductivity of electrolyte leakage while decreasing in the nitrice oxide synthase (NOS) activity, the concentration of nitrice oxide (NO), chlorophyll and total carbon and nitrogen, the net photosynthetic rate, the stomatal conductance, the transpiration rate, the water use efficiency, the lateral number and seedlings growth except for intercellular CO(2) concentration increase. However, the seedlings treated with 600 mT magnetic field followed by cadmium stress the concentration of malondialdehyde, H(2)O(2) and O(2-), and the conductivity of electrolyte leakage decreased, while the above mentioned NO concentration, NOS activity, photosynthesis and growth parameters increased compared to cadmium stress alone. (ii) Compared with the cadmium stress (CS), the seedling growth were inhibited when the seeds were treated with NO scavenger (hemoglobin, HB) and inhibition of NO generating enzyme (sodium tungstate, ST), conversely, the seedling growth were improved by the NO donor sodium nitroprusside (SNP) and CaCl(2). In the case of the HB and ST treatment followed by magnetic field and then the seedling subjected to CS, the seedlings growth was better than that of hemoglobin (HB) followed by CS and ST followed by CS. The seeds were treated with SNP and CaCl(2) followed by MF, and then subjected to CS, the seedlings growth were better than that of SNP followed by CS, and CaCl(2) followed by CS. These results suggested that magnetic field compensates for the toxicological effects of cadmium exposure are related to NO signal.

  12. Influence of microhabitat on seedling survival and growth of the mediterranean seagrass posidonia oceanica (l.) Delile

    NASA Astrophysics Data System (ADS)

    Alagna, Adriana; Fernández, Tomás Vega; Terlizzi, Antonio; Badalamenti, Fabio

    2013-03-01

    Early life history phases are crucial stages limiting species distribution and abundance, thus influencing assemblage composition in marine benthic environments. In seagrass systems the period between seed germination and establishment is one of the most vulnerable phases for plant development. This study analyzes the influence of microhabitat structure, in terms of substrate nature and algal canopy, on the persistence and growth over two years of seedlings of Posidonia oceanica, the dominant Mediterranean seagrass. Long time persistence of seedlings only occurred on microhabitats providing vegetated rocky substrates, with a maximum value of 81% on rock covered by Cystoseira spp. No seedling was found on unvegetated sand and gravel after the first year. Seedling growth resulted increased on rock covered by Halopteris spp. and Dilophus spp. than on rock covered by Cystoseira spp. Results suggest that high canopy onto a stable substrate enhances seedling persistence, probably because these allow the best anchorage by roots while hampering water flow. In contrast, turf algal cover promotes better seedling growth, possibly through higher light irradiance and nutrient availability. Our findings support the view that the understanding of the factors controlling early life processes is a necessary prerequisite for the comprehension of seagrass species distribution patterns, colonization and recovery potentials, which, in turn, can guide sound strategies for seagrass management and restoration.

  13. Identification of embryo proteins associated with seed germination and seedling establishment in germinating rice seeds.

    PubMed

    Liu, Shu-Jun; Xu, Heng-Heng; Wang, Wei-Qing; Li, Ni; Wang, Wei-Ping; Lu, Zhuang; Møller, Ian Max; Song, Song-Quan

    2016-06-01

    Seed germination is a critical phase in the plant life cycle, but the mechanism of seed germination is still poorly understood. In the present study, rice (Oryza sativa L. cv. Peiai 64S) seeds were sampled individually when they reached different germination stages, quiescent, germinated sensu stricto, germinated completely and seedling, and were used to study the changes in the embryo proteome. A total of 88 protein spots showed a significant change in abundance during germination in water, and the results showed an activation of metabolic processes. Cell division, cell wall synthesis, and secondary metabolism were activated at late seed germination and during preparation for subsequent seedling establishment. Cycloheximide (CHX) at 70μM inhibited seedling establishment without an apparent negative effect on seed germination, while CHX at 500μM completely blocked seed germination. We used this observation to identify the potentially important proteins involved in seed germination (coleoptile protrusion) and seedling establishment (coleoptile and radicle protrusion). Twenty-six protein spots, mainly associated with sugar/polysaccharide metabolism and energy production, showed a significant difference in abundance during seed germination. Forty-nine protein spots, mainly involved in cell wall biosynthesis, proteolysis as well as cell defense and rescue, were required for seedling establishment. The results help improve our understanding of the key events (proteins) involved in germination and seedling development.

  14. Growth and lignification in seedlings exposed to eight days of microgravity

    NASA Technical Reports Server (NTRS)

    Cowles, J. R.; Scheld, H. W.; Lemay, R.; Peterson, C.

    1984-01-01

    Four-day-old pine seedlings and mung bean and oat seeds were prepared for flight on the third Space Transport System Mission (STS-3). The seedlings and seeds were planted in six mini-growth chambers (two chambers per species) which were placed in a plant growth unit (PGU). Another set of seedlings and seeds was prepared and placed in another PGU as the 1 g control. The flight PGU was positioned in the orbiter mid-deck locker area about 11 h prior to launch. The pine seedlings and germinating mung bean and oat seeds were exposed to 194 h of microgravity. The PGU was received at a temporary laboratory about 75 min post-landing. Plants were observed, photographed and the atmospheric gases analyzed at the landing site. The plants were then brought to our Houston laboratory where they were measured and analyzed for lignin and protein content and for phenylalanine ammonia-lyase (PAL) and peroxidase activities. Flight seedlings were shorter than the controls in all three species. Twenty-five to 40 per cent of the mung bean and oat roots were growing upward, and the mung beans showed signs of disorientation. Flight mung beans showed a significant reduction in lignin content in comparison to the controls, and PAL and peroxidase activities were reduced in flight pine seedlings. The results generally support the postulate that lignin synthesis is reduced in near-weightlessness and show other interesting findings.

  15. Temporal variations in cold sensitivity of root growth in cold-stored white spruce seedlings.

    PubMed

    Camm, E L; Harper, G J

    1991-10-01

    We examined effects of soil temperature on the number of roots produced by white spruce (Picea glauca (Moench.) Voss) seedlings during the first month of growth following 0-30 weeks of storage in darkness at -2 degrees C. After storage, seedlings were planted in pots and placed in a controlled-environment chamber with a constant air temperature of 11 degrees C and a 16-h photoperiod. Water baths were used to keep soil temperature at 3, 7 or 11 degrees C. The number of long roots (> 10 mm) produced was strongly dependent on soil temperature. At soil temperatures of 3 or 7 degrees C, the number of long roots produced was only 11 to 30% that at 11 degrees C. Seedlings that had been stored for 14 weeks and then planted in soil at 11 degrees C produced the greatest number of long roots. For seedlings planted in soil at 11 degrees C, the number of long roots increased with time of storage up to 14-18 weeks and then declined progressively with length of storage. No increase in number of long roots with length of storage up to 18 weeks was evident in seedlings planted in soil at 3 or 7 degrees C. The maximum number of short roots (5-10 mm) was observed in seedlings that had been stored for 17 weeks and then planted in soil at 7 or 11 degrees C. PMID:14972852

  16. The Potential for Cereal Rye Cover Crops to Host Corn Seedling Pathogens.

    PubMed

    Bakker, Matthew G; Acharya, Jyotsna; Moorman, Thomas B; Robertson, Alison E; Kaspar, Thomas C

    2016-06-01

    Cover cropping is a prevalent conservation practice that offers substantial benefits to soil and water quality. However, winter cereal cover crops preceding corn may diminish beneficial rotation effects because two grass species are grown in succession. Here, we show that rye cover crops host pathogens capable of causing corn seedling disease. We isolated Fusarium graminearum, F. oxysporum, Pythium sylvaticum, and P. torulosum from roots of rye and demonstrate their pathogenicity on corn seedlings. Over 2 years, we quantified the densities of these organisms in rye roots from several field experiments and at various intervals of time after rye cover crops were terminated. Pathogen load in rye roots differed among fields and among years for particular fields. Each of the four pathogen species increased in density over time on roots of herbicide-terminated rye in at least one field site, suggesting the broad potential for rye cover crops to elevate corn seedling pathogen densities. The radicles of corn seedlings planted following a rye cover crop had higher pathogen densities compared with seedlings following a winter fallow. Management practices that limit seedling disease may be required to allow corn yields to respond positively to improvements in soil quality brought about by cover cropping.

  17. Acorn cotyledons are larger than their seedlings' need: evidence from artificial cutting experiments.

    PubMed

    Yi, Xianfeng; Wang, Zhenyu; Liu, Changqu; Liu, Guoqiang; Zhang, Mingming

    2015-01-29

    Although the consequences of cotyledon removal have been widely studied in oaks producing large acorns, we have little knowledge of at what level cotyledons can be removed without affecting acorn survival and seedling development. In this study, we aimed to test the hypothesis that the amount of energy reserves in cotyledons is more than the demands of seedlings and that large acorns can tolerate seed predation and/or attract seed predators for seed dispersal. Acorn germination rates were not affected even when 60% of cotyledons were cut off at the basal end, suggesting that the energy reserves contained in cotyledons are not essential for acorn survival. Post-cut acorn mass, more than initial acorn mass, appear to be a better predictor of seedling performance, indicating that the energy reserves in cotyledons are sufficient for seedlings. Acorns with large masses sustained cotyledon damage better than small ones with respect to seedling performance. Large acorns were more likely to be dispersed and cached by animals, implying that producing large acorns is more important for oaks to manipulate seed predators and dispersers rather than provide a seedling with cotyledonary reserves.

  18. Multi-Stage Metering Mechanism for Transplanting of Vegetable Seedlings in Paper Pots

    NASA Astrophysics Data System (ADS)

    Nandede, B. M.; Raheman, H.

    2015-12-01

    A multi-stage rotating cup type metering mechanism was developed for transplanting of vegetable seedlings of tomato, brinjal and chili raised in paper pots. The developed setup consisted of a seedling feeding wheel, metering wheel, fixed slotted plate, seedling delivery tube, furrow opener, furrow closer and a power transmission system. Its evaluation was carried out with pot seedlings of tomato, brinjal and chili of 8-11 cm height at five forward speeds (0.6, 0.9, 1.2, 2.2 and 3.2 km/h) and two plant spacings (45 and 60 cm) in controlled soil bin condition. The mean values of feeding efficiency, conveying efficiency, planting efficiency and overall efficiency of the multistage metering unit were observed to be higher than 90 % for forward speeds of 0.6 to 2.2 km/h. With further increase in speed to 3.2 km/h, the feeding and conveying efficiency were observed to be higher than 90 %, whereas, the planting efficiency drastically reduced to around 50 % due to the problem in getting the pot seedlings vertically in the furrow. Also the seedlings were falling into the furrow at an angle greater than 70° to the vertical, hence not suitable for transplanting.

  19. Physiology and morphology of Douglas-fir rooted cuttings compared to seedlings and transplants.

    PubMed

    Ritchie, G A; Tanaka, Y; Duke, S D

    1992-03-01

    Cuttings of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) from three open-pollinated families were rooted in two types of tray, and then grown for 1.5 years in a bareroot nursery. During their second winter they were sampled periodically and tested for cold hardiness, dormancy status, root growth potential and various morphological characteristics. Two-year-old seedlings and transplants were tested concurrently for comparison. Rooted cuttings, seedlings and transplants cold hardened at similar rates during early winter, achieving the same level of midwinter hardiness (LT(50) = -18 degrees C) in early January. However, rooted cuttings remained hardier later into the spring than did seedlings or transplants. Rooted cuttings exhibited deeper dormancy in early winter than seedlings or transplants but these differences disappeared after January. Root growth potentials of all three stock types remained above threshold values established for transplants throughout winter. Rooted cuttings had greater stem diameter, higher stem diameter to height ratio, and greater root weight than either seedlings or transplants. This may reflect lower growing densities for the rooted cuttings. Root/shoot ratios of rooted cuttings were greater than for seedlings and similar to those of transplants. Rooted cuttings also had deeper and coarser root systems, which probably reflects lack of wrenching at the nursery.

  20. Acorn cotyledons are larger than their seedlings' need: evidence from artificial cutting experiments

    PubMed Central

    Yi, Xianfeng; Wang, Zhenyu; Liu, Changqu; Liu, Guoqiang; Zhang, Mingming

    2015-01-01

    Although the consequences of cotyledon removal have been widely studied in oaks producing large acorns, we have little knowledge of at what level cotyledons can be removed without affecting acorn survival and seedling development. In this study, we aimed to test the hypothesis that the amount of energy reserves in cotyledons is more than the demands of seedlings and that large acorns can tolerate seed predation and/or attract seed predators for seed dispersal. Acorn germination rates were not affected even when 60% of cotyledons were cut off at the basal end, suggesting that the energy reserves contained in cotyledons are not essential for acorn survival. Post-cut acorn mass, more than initial acorn mass, appear to be a better predictor of seedling performance, indicating that the energy reserves in cotyledons are sufficient for seedlings. Acorns with large masses sustained cotyledon damage better than small ones with respect to seedling performance. Large acorns were more likely to be dispersed and cached by animals, implying that producing large acorns is more important for oaks to manipulate seed predators and dispersers rather than provide a seedling with cotyledonary reserves. PMID:25630843

  1. Identification of embryo proteins associated with seed germination and seedling establishment in germinating rice seeds.

    PubMed

    Liu, Shu-Jun; Xu, Heng-Heng; Wang, Wei-Qing; Li, Ni; Wang, Wei-Ping; Lu, Zhuang; Møller, Ian Max; Song, Song-Quan

    2016-06-01

    Seed germination is a critical phase in the plant life cycle, but the mechanism of seed germination is still poorly understood. In the present study, rice (Oryza sativa L. cv. Peiai 64S) seeds were sampled individually when they reached different germination stages, quiescent, germinated sensu stricto, germinated completely and seedling, and were used to study the changes in the embryo proteome. A total of 88 protein spots showed a significant change in abundance during germination in water, and the results showed an activation of metabolic processes. Cell division, cell wall synthesis, and secondary metabolism were activated at late seed germination and during preparation for subsequent seedling establishment. Cycloheximide (CHX) at 70μM inhibited seedling establishment without an apparent negative effect on seed germination, while CHX at 500μM completely blocked seed germination. We used this observation to identify the potentially important proteins involved in seed germination (coleoptile protrusion) and seedling establishment (coleoptile and radicle protrusion). Twenty-six protein spots, mainly associated with sugar/polysaccharide metabolism and energy production, showed a significant difference in abundance during seed germination. Forty-nine protein spots, mainly involved in cell wall biosynthesis, proteolysis as well as cell defense and rescue, were required for seedling establishment. The results help improve our understanding of the key events (proteins) involved in germination and seedling development. PMID:27085178

  2. The Potential for Cereal Rye Cover Crops to Host Corn Seedling Pathogens.

    PubMed

    Bakker, Matthew G; Acharya, Jyotsna; Moorman, Thomas B; Robertson, Alison E; Kaspar, Thomas C

    2016-06-01

    Cover cropping is a prevalent conservation practice that offers substantial benefits to soil and water quality. However, winter cereal cover crops preceding corn may diminish beneficial rotation effects because two grass species are grown in succession. Here, we show that rye cover crops host pathogens capable of causing corn seedling disease. We isolated Fusarium graminearum, F. oxysporum, Pythium sylvaticum, and P. torulosum from roots of rye and demonstrate their pathogenicity on corn seedlings. Over 2 years, we quantified the densities of these organisms in rye roots from several field experiments and at various intervals of time after rye cover crops were terminated. Pathogen load in rye roots differed among fields and among years for particular fields. Each of the four pathogen species increased in density over time on roots of herbicide-terminated rye in at least one field site, suggesting the broad potential for rye cover crops to elevate corn seedling pathogen densities. The radicles of corn seedlings planted following a rye cover crop had higher pathogen densities compared with seedlings following a winter fallow. Management practices that limit seedling disease may be required to allow corn yields to respond positively to improvements in soil quality brought about by cover cropping. PMID:26926485

  3. [Response of leaf anatomical characteristics of Cyclobalanopsis gilva seedlings to drought stress].

    PubMed

    Wu, Li-jun; Li, Zhi-hui; Yang, Mo-hua; Wang, Pei-lan

    2015-12-01

    In this study, the leaf anatomical characteristics and transpiration rate of one-year-old seedlings from three study areas including Qingyuan of Zhejiang Province, Dongkou and Jingzhou of Hunan Province were investigated using a pot planting experiment in which relative soil water content was kept as 75%-80% (control), 55%-60% (mild drought stress), 45%-50% (moderate drought stress), 30%-35% (severe drought stress), respectively. The results showed that drought stress significantly reduced the total thickness of the seedling leaves, the thickness of their upper and lower epidermis and the thickness of palisade tissue. The ratio of the palisade tissue to spongy tissue, stomatal length and width also decreased significantly, while the stomatal density increased significantly as the drought stress became more intense. The treatments of drought stress had no significant effect on the thickness of the main veins of the leaves although their xylem thickness varied depending on the seedlings from the different study sites. The change of leaf structure caused the change of physiological function. As drought stress was intensified, the transpiration rate of C. gilva seedlings decreased significantly. The ratio of the palisade tissue to spongy tissue, the thickness of the lower epidermis and stomatal density of the seedlings from Dongkou of Hunan Province were significantly greater, while the transpiration rate was significantly lower than those from other two study sites for all the drought stress treatments, implying that the C. gilva seedlings from Dongkou of Hunan Province had a stronger drought-resistance ability. PMID:27111997

  4. Resource availability and repeated defoliation mediate compensatory growth in trembling aspen (Populus tremuloides) seedlings

    PubMed Central

    Galvez, David A.; Zhang, Bin; Najar, Ahmed

    2014-01-01

    Plant ecologists have debated the mechanisms used by plants to cope with the impact of herbivore damage. While plant resistance mechanisms have received much attention, plant compensatory growth as a type of plant tolerance mechanisms has been less studied. We conducted a greenhouse experiment to evaluate compensatory growth for trembling aspen (Populus tremuloides) seedlings under varying intensities and frequencies of simulated defoliation, with or without nutrient enriched media. For the purpose of this study, changes in biomass production and non-structural carbohydrate concentrations (NSC) of roots and leaves were considered compensatory responses. All defoliated seedlings showed biomass accumulation under low defoliation intensity and frequency, regardless of resource availability; however, as defoliation intensity and frequency increased, compensatory growth of seedlings was altered depending on resource availability. Seedlings in a resource-rich environment showed complete compensation, in contrast responses ranged from undercompensation to complete compensation in a resource-limited environment. Furthermore, at the highest defoliation intensity and frequency, NSC concentrations in leaves and roots were similar between defoliated and non-defoliated seedlings in a resource-rich environment; in contrast, defoliated seedlings with limited resources sustained the most biomass loss, had lower amounts of stored NSC. Using these results, we developed a new predictive framework incorporating the interactions between frequency and intensity of defoliation and resource availability as modulators of plant compensatory responses. PMID:25083352

  5. Long-distance dispersal helps germinating mahogany seedlings escape defoliation by a specialist caterpillar.

    PubMed

    Norghauer, Julian M; Grogan, James; Malcolm, Jay R; Felfili, Jeanine M

    2010-02-01

    Herbivores and pathogens with acute host specificity may promote high tree diversity in tropical forests by causing distance- and density-dependent mortality of seedlings, but evidence is scarce. Although Lepidoptera larvae are the most abundant and host-specific guild of herbivores in these forests, their impact upon seedling distributions remains largely unknown. A firm test of the mechanism underpinning the Janzen-Connell hypothesis is difficult, even for a single tree species, because it requires more than just manipulating seeds and seedlings and recording their fates. Experimental tests require: (1) an insect herbivore that is identified and highly specialised, (2) linkage to an in situ measure (or prevention) of herbivory, and (3) evaluation and confirmation among many conspecific adult trees across years. Here we present experimental evidence for a spatially explicit interaction between newly germinating seedlings of a Neotropical emergent tree, big-leaf mahogany (Swietenia macrophylla, Meliaceae), and caterpillars of a noctuid moth (Steniscadia poliophaea). In the understory of a southeastern Amazon forest, the proportion of attacks, leaf area lost, and seedling mortality due to this specialised herbivore peaked near Swietenia trees, but declined significantly with increasing distance from mature fruiting trees, as predicted by the Janzen-Connell hypothesis. We conclude that long-distance dispersal events (>50 m) provided an early survival advantage for Swietenia seedlings, and propose that the role of larval Lepidoptera as Janzen-Connell vectors may be underappreciated in tropical forests. PMID:19885680

  6. Stress-induced accumulation of wheat germ agglutinin and abscisic acid in roots of wheat seedlings

    SciTech Connect

    Cammue, B.P.A.; Broekaert, W.F.; Kellens, J.T.C.; Peumans, W.J. ); Raikhel, N.V. )

    1989-12-01

    Wheat germ agglutinin (WGA) levels in roots of 2-day-old wheat seedlings increased up to three-fold when stressed by air-drying. Similar results were obtained when seedling roots were incubated either in 0.5 molar mannitol or 180 grams per liter polyethylene glycol 6,000, with a peak level of WGA after 5 hours of stress. Longer periods of osmotic treatment resulted in a gradual decline of WGA in the roots. Since excised wheat roots incorporate more ({sup 35}S)cysteine into WGA under stress conditions, the observed increase of lectin levels is due to de novo synthesis. Measurement of abscisic acid (ABA) levels in roots of control and stressed seedlings indicated a 10-fold increase upon air-drying. Similarly, a five- and seven-fold increase of ABA content of seedling roots was found after 2 hours of osmotic stress by polyethylene glycol 6,000 and mannitol, respectively. Finally, the stress-induced increase of WGA in wheat roots could be inhibited by growing seedlings in the presence of fluridone, an inhibitor of ABA synthesis. These results indicate that roots of water-stressed wheat seedlings (a) contain more WGA as a result of an increased de novo synthesis of this lectin, and (b) exhibit higher ABA levels. The stress-induced increase of lectin accumulation seems to be under control of ABA.

  7. On hybridising lettuce seedlings with nanoparticles and the resultant effects on the organisms' electrical characteristics.

    PubMed

    Gizzie, Nina; Mayne, Richard; Patton, David; Kendrick, Paul; Adamatzky, Andrew

    2016-09-01

    Lettuce seedlings are attracting interest in the computing world due to their capacity to become hybrid circuit components, more specifically, in the creation of living 'wires'. Previous studies have shown that seedlings can be hybridised with gold nanoparticles and withstand mild electrical currents. In this study, lettuce seedlings were hybridised with a variety of metallic and non-metallic nanomaterials: carbon nanotubes, graphene oxide, aluminium oxide and calcium phosphate. Toxic effects and the following electrical properties were monitored: mean potential, resistance and capacitance. Macroscopic observations revealed only slight deleterious health effects after administration with one variety of particle, aluminium oxide. Mean potential in calcium phosphate-hybridised seedlings showed a considerable increase when compared with the control, whereas those administered with graphene oxide showed a small decrease; there were no notable variations across the remaining treatments. Electrical resistance decreased substantially in graphene oxide-treated seedlings whereas slight increases were shown following calcium phosphate and carbon nanotubes applications. Capacitance showed no considerable variation across treated seedlings. These results demonstrate that use of some nanomaterials, specifically graphene oxide and calcium phosphate, may be towards biohybridisation purposes including the generation of living 'wires'. PMID:27424022

  8. Properties of Plasma Membrane from Pea Root Seedlings under Altered Gravity

    NASA Astrophysics Data System (ADS)

    Klymchuk, D.; Baranenko, V.; Vorobyova, T. V.; Kurylenko, I.; Chyzhykova, O.; Dubovoy, V.

    In this study, the properties of pea (Pisum sativum L.) plasma membrane were examined to determine how the membrane structure and functions are regulated in response to clinorotation (2 rev/min) conditions. Membrane preparations enriched by plasma membrane vesicles were obtained by aqueous two-phase partitioning from 6-day seedling roots. The specific characteristics of H^+-ATPase, lípid composition and peroxidation intensity as well as fluidity of lipid bilayer were analysed. ATP hydrolytic activity was inhibited by ortovanadate and was insensitive to aside and nitrate in sealed plasma membrane vesicles isolated from both clinorotated and control seedlings. Plasma membrane vesicles from clinorotated seedlings in comparison to controls were characterised by increase in the total lipid/protein ratio, ATP hydrolytic activity and intensifying of lipid peroxidation. Sitosterol and campesterol were the predominant free sterol species. Clinorotated seedlings contained a slightly higher level of unsaturated fatty acid than controls. Plasma membrane vesicles were labelled with pyrene and fluorescence originating from monomeric (I_M) molecules and excimeric (I_E) aggregates were measured. The calculated I_E/I_M values were higher in clinorotated seedlings compared with controls reflecting the reduction in membrane microviscosity. The involvement of the changes in plasma membrane lipid content and composition, fluidity and H^+-ATPase activity in response of pea seedlings to altered gravity is discussed.

  9. Seed Priming with Selenium: Consequences for Emergence, Seedling Growth, and Biochemical Attributes of Rice.

    PubMed

    Khaliq, Abdul; Aslam, Farhena; Matloob, Amar; Hussain, Saddam; Geng, Mingjian; Wahid, Abdul; ur Rehman, Hafeez

    2015-08-01

    The present study was undertaken to appraise the role of selenium priming for improving emergence and seedling growth of basmati rice. Seeds of two fine rice cultivars (Super and Shaheen Basmati) were primed with concentrations of 15, 30, 45, 60, 75, 90, and 105 μmol L(-1) selenium. Untreated dry- and hydro-primed seeds were maintained as the control and positive control, respectively. Selenium priming resulted in early commencement of emergence, triggered seedling growth irrespective of rice cultivar over untreated control, and was more effective than hydro-priming except at higher concentrations. Lower electrical conductivity of seed leachates, reduced lipid peroxidation, greater α-amylase activity, higher soluble sugars, and enhanced activities of enzymatic antioxidants (superoxide dismutase (SOD), peroxidase (POX), catalase (CAT), and glutathione peroxidase (GPX)) were observed in seeds primed with selenium. Rice seedlings derived from selenium-primed seeds exhibited more chlorophyll contents, while total phenolics were comparable with those of the control seedlings. The improved starch metabolism, greater membrane stability, and increased activity of antioxidants were considered as possible mechanisms responsible for such improvements in emergence and seedling vigor of rice mediated by selenium priming. Priming with selenium (15-60 μmol L(-1)) favored rice emergence and seedling growth. Nevertheless, soaking seeds in relatively concentrated (90 and 105 μmol L(-1)) selenium solution had overall detrimental effects.

  10. Higher-order interaction between molluscs and sheep affecting seedling numbers in grassland

    NASA Astrophysics Data System (ADS)

    Clear Hill, B. H.; Silvertown, J.

    Vertebrate and invertebrate herbivores are both important in mesotrophic grasslands and these two different classes of herbivore potentially interact in their effect upon plant populations. We used two field experiments to test for higher order interactions (HOIs) among sheep, slugs and seedlings, using the mechanistic definition that an HOI occurs when the presence of one species modifies the interaction between two others. In each experiment slug addition and slug-removal treatments were nested inside treatments that altered sheep grazing intensity and timing, and the emergence, of seedlings from experimentally sown seeds was monitored. In Experiment 1, seedling numbers of Cerastium fontanum were increased by intense summer grazing by sheep in both slug-addition and slugremoval treatment, but winter grazing by sheep only increased seedling emergence if slugs were removed. In Experiment 2, winter grazing by sheep significantly reduced total seedling emergence of four species sown ( Lotus corniculatus, Plantago lanceolata, Leucanthemum vulgare, Achillea millefolium), but the effect was only seen where slugs were removed. Though the experimental system is a relatively simple one with only four components (sheep, slugs, seedlings and the matrix vegetation), higher order interactions, a combination of direct and indirect effects and possible switching behaviour by slugs are all suggested by our results.

  11. Maternal influences on seed mass effect and initial seedling growth in four Quercus species

    NASA Astrophysics Data System (ADS)

    González-Rodríguez, Victoria; Villar, Rafael; Navarro-Cerrillo, Rafael M.

    2011-01-01

    Seed mass represents the reserves available for growth in the first stages of plant establishment. Variation in seed mass is an important trait which may have consequences for growth and survival of seedlings. Three mechanisms have been proposed to explain how seed mass influences seedling development: the reserve use effect, the metabolic effect and the seedling-size effect. Few studies have evaluated at the same time the three hypotheses within species and none have evaluated the effect of the mother trees. We studied four Quercus species by selecting five mother trees per species. Seeds were sown in a glasshouse and the use of seed reserves, seedling growth and morphology were measured. Considering all mothers of the same species together, we did not find the reserve effect for any species, the metabolic effect was observed in all species except for Quercus suber, and the seedling-size effect was matched for all the species. Within species, maternal origin modified the studied relationships and thus the studied mechanisms as we did not observe seed mass effects on all mothers from each species. Moreover, the metabolic effect was not found in any mother of Quercus ilex and Quercus faginea. We concluded that a maternal effect can change seed mass relationships with traits related to seedling establishment. The conservation of this high intra-specific variability must be considered to guarantee species performance in heterogeneous environments and in particular in the current context of climate change.

  12. Soil pathogens and spatial patterns of seedling mortality in a temperate tree.

    PubMed

    Packer, A; Clay, K

    2000-03-16

    The Janzen-Connell hypothesis proposes that host-specific, distance- and/or density-dependent predators and herbivores maintain high tree diversity in tropical forests. Negative feedback between plant and soil communities could be a more effective mechanism promoting species coexistence because soil pathogens can increase rapidly in the presence of their host, causing conditions unfavourable for local conspecific recruitment. Here we show that a soil pathogen leads to patterns of seedling mortality in a temperate tree (Prunus serotina) as predicted by the Janzen-Connell hypothesis. In the field, the mean distance to parent of seedling cohorts shifted away from maternal trees over a period of 3 years. Seedlings were grown in soil collected 0-5 m or 25-30 m from Prunus trees. Sterilization of soil collected beneath trees improved seedling survival relative to unsterilized soil, whereas sterilization of distant soil did not affect survival. Pythium spp., isolated from roots of dying seedlings and used to inoculate healthy seedlings, decreased survival by 65% relative to controls. Our results provide the most complete evidence that native pathogens influence tree distributions, as predicted by the Janzen-Connell hypothesis, and suggest that similar ecological mechanisms operate in tropical and temperate forests. PMID:10749209

  13. Studies on the methods of identification of irradiated food I. Seedling growth test

    NASA Astrophysics Data System (ADS)

    Qiongying, Liu; Yanhua, Kuang; Yuemei, Zheng

    1993-07-01

    A seedling growth test for the identification of gamma irradiated edible vegetable seeds was described. The identification of gamma irradiated grape and the other seeds has been investigated. The purpose of this study was to develop an easy, rapid and practical technique for the identification of irradiated edible vegetable seeds. Seven different irradiated edible vegetable seeds as: rice ( Oryza sativa), peanut ( Arachis hypogaea), maize ( Zeamays), soybean ( Glycine max), red bean ( Phaseolus angularis), mung bean ( Phaseolus aureus) and catjang cowpea ( Vigna cylindrica) were tested by using the method of seedling growth. All of the edible vegetable seeds were exposed to gamma radiation on different doses, O(CK), 0.5, 1.0, 1.5, 2.0, 3.0, 5.0 kGy. After treatment with above 1.0 kGy dose to the seeds, the seedling rate was less than 50% compared with the control. Although the seedling rate of rice seeds can reached 58%, the seedling growth was not normal and the seedling leaves appeared deformed. The results by this method were helpful to identify gamma treatment of the edible vegetable seeds with above 1.0 kGy dose.

  14. [Response of leaf anatomical characteristics of Cyclobalanopsis gilva seedlings to drought stress].

    PubMed

    Wu, Li-jun; Li, Zhi-hui; Yang, Mo-hua; Wang, Pei-lan

    2015-12-01

    In this study, the leaf anatomical characteristics and transpiration rate of one-year-old seedlings from three study areas including Qingyuan of Zhejiang Province, Dongkou and Jingzhou of Hunan Province were investigated using a pot planting experiment in which relative soil water content was kept as 75%-80% (control), 55%-60% (mild drought stress), 45%-50% (moderate drought stress), 30%-35% (severe drought stress), respectively. The results showed that drought stress significantly reduced the total thickness of the seedling leaves, the thickness of their upper and lower epidermis and the thickness of palisade tissue. The ratio of the palisade tissue to spongy tissue, stomatal length and width also decreased significantly, while the stomatal density increased significantly as the drought stress became more intense. The treatments of drought stress had no significant effect on the thickness of the main veins of the leaves although their xylem thickness varied depending on the seedlings from the different study sites. The change of leaf structure caused the change of physiological function. As drought stress was intensified, the transpiration rate of C. gilva seedlings decreased significantly. The ratio of the palisade tissue to spongy tissue, the thickness of the lower epidermis and stomatal density of the seedlings from Dongkou of Hunan Province were significantly greater, while the transpiration rate was significantly lower than those from other two study sites for all the drought stress treatments, implying that the C. gilva seedlings from Dongkou of Hunan Province had a stronger drought-resistance ability.

  15. [Absorption and distribution of K, Na and Mg in Avicennia marina seedlings under cadmium stress].

    PubMed

    Lu, Zhi-qiang; Chen, Chang-xu; Ma, Li; Zheng, Wen-jiao

    2015-05-01

    In this paper, mangrove seedlings Avicennia marina were treated with various contents of cadmium (0, 0.5, 5, 25, 50, 100, 150 mg · L(-1)). These seedlings were cultivated by man-made seawater with a salinity of 15 in sand for 90 days in a greenhouse. The absorption and distribution of elements contents (K, Na and Mg) under cadmium stress were investigated at 45th and 90th day, respectively. The results showed that the enrichment of cadmium in the different components of seedlings increased with the increasing cadmium stress level and exposure time. The cadmium contents in roots and cotyledons were relatively higher than in the other components, accounting for 66.9% and 16.3% of cadmium in the seedlings under the 150 mg · L(-1) cadmium stress, respectively. The fall of cotyledons could reduce the damage of cadmium stress to the whole seedlings. The Na contents increased in roots and stems and decreased in leaves and cotyledons after cadmium stress for 90 days. The K content decreased in roots and cotyledons, while had no significant change in stems and leaves. The Mg content in roots, stems, leaves and cotyledons of seedlings treated with cadmium for 90 days were lower than those of the control, and were negatively related to the cadmium content. PMID:26571646

  16. [Soil nutrient status of pure birch and larch plantations based on their seedlings bioassay].

    PubMed

    Liu, Zhong-ling; Wang, Qing-cheng; Sun, Xin-xin

    2011-08-01

    One-year-old birch (Betula platyphylla) and larch (Larix olgensis) seedlings were respectively planted in pots with the soils taken from 35-year-old pure birch and larch plantations, and the seedlings growth, biomass increment, foliar nutrient content, and soil nutrient status were monitored, aimed to evaluate the fertility levels of the two soils and the possible interspecific interaction in mixed larch-birch forest. Birch soil had significantly higher contents of total N and available N than larch soil, while larch soil had significantly higher contents of total P, available P, and total K than birch soil (P < 0.05). In the first growth season, the height and collar diameter growth and the biomass accumulation of birch seedlings growing on birch soil were 69%, 52%, and 65% (P < 0.05) higher than those growing on larch soil, and the larch seedlings also had 12%, 8%, and 37% gains of the indices, respectively. The foliar N concentration of both larch and birch seedlings growing on birch soil was higher than that on larch soil, while the foliar P concentration was higher when the seedlings were growing on larch soil than on birch soil. The birch soil had higher content of available N because of the higher litterfall, while the larch soil had greater available P because of the higher P mobilizing effect. It was predicted that in mixed birch-larch forest, the complementary interaction of soil N and P could benefit the growth of the two tree species.

  17. The effects of host defence elicitors on betacyanin accumulation in Amaranthus mangostanus seedlings.

    PubMed

    Cao, Shifeng; Liu, Ting; Jiang, Yueming; He, Shenggen; Harrison, Dion K; Joyce, Daryl C

    2012-10-15

    The effect of elicitors associated with host defence on betacyanin accumulation in Amaranthus mangostanus seedlings was investigated. Under the conditions of the experiments, betacyanin accumulation was generally enhanced by light. Methyl jasmonate (MeJA) treatment increased betacyanin synthesis in a concentration-dependent response. Seedlings treated with ethylene as 5mM Ethephon also had elevated levels of betacyanin. In contrast, salicylic acid (SA) and H(2)O(2) treatments had no influence on betacyanin contents in light or dark. Combined MeJA with Ethephon or H(2)O(2) had an additive effect on betacyanin accumulation in dark-grown seedlings. However, a decline was recorded in light-grown seedlings. Moreover, an antagonistic effect on betacyanin synthesis was found when MeJA and SA were added simultaneously. Our results indicate that betacyanin content in A. mangostanus seedlings can be upregulated by MeJA and ethylene. Both additive and antagonistic effects in regulating betacyanin synthesis in A. mangostanus seedlings were observed between MeJA and other elicitors.

  18. [Coupling effects of water and fertilizer on the biomass of Populus tomentosa seedlings].

    PubMed

    Dong, Wen-yi; Zhao, Yan; Zhang, Zhi-yi; Li, Ji-yue; Nie, Li-shui

    2010-09-01

    Water and fertilizer are the two main factors promoting the fast growth and high-yielding of Populus tomentosa, and thus, to study their coupling effects on the biomass of P. tomentosa seedlings has important practical significance. Taking the P. tomentosa clone 87 seedlings as test materials, a pot experiment with rotary combination design of square regression of three factors with five levels was conducted in the nursery of Beijing Forestry University from March to October 2008 to study the coupling effects of water, fertilizer N, and fertilizer P on the biomass of the seedlings, and a related regressive mathematical model was established. The results showed that water was the main factor affecting the biomass of P. tomentosa seedlings, followed by fertilizer N, and fertilizer P. With the increasing input of the three factors, the biomass of the seedlings increased, but when the input was beyond a certain level, the biomass began to decrease. There was a significant positive interactive effect between water and fertilizer N, but a less interactive effect between fertilizer N and fertilizer P and between water and fertilizer P. In our case, the optimal combination of water and fertilizer was 73.37% of field capacity + 4.14 g x plant(-1) of N fertilization + 1.41 g x plant(-1) of P fertilization, under which, the biomass of P. tomentosa seedlings achieved 68.30 g x plant(-1).

  19. Experimental simulation of pollinator decline causes community-wide reductions in seedling diversity and abundance.

    PubMed

    Lundgren, Rebekka; Totland, Ørjan; Lázaro, Amparo

    2016-06-01

    Pollinator decline can disrupt the mutualistic interactions between plants and pollinators and potentially affect the maintenance of plant populations. However, there is still little knowledge on how changes in pollinator abundance can affect seedling recruitment, which is essential for population persistence. We experimentally simulated a community-wide reduction in pollinator availability during four years to examine its effects on seedling recruitment in 10 perennial herbs in a Norwegian hay meadow. Our experimental reduction in pollinator availability significantly reduced community-wide seedling diversity. Overall seedling abundance was also consistently lower under reduced pollinator availability, although this effect was only significant when the most abundant plant species in the community was excluded from the analysis. Despite an overall negative effect on seedling abundance, the experimental reduction in pollinator availability had contrasting effects on individual plant species. This tended to cause a larger change in seedling species composition in the experimental than in the control plots after the four study years. Our study demonstrates for the first time a direct causal link between reduced pollinator availability and reduced plant diversity and abundance. PMID:27459773

  20. Ozone treatment affects pigment precursor metabolism in pine seedlings.

    PubMed

    Shamay, Y.; Raskin, V. I.; Brandis, A. S.; Steinberger, H. E.; Marder, J. B.; Schwartz, A.

    2001-06-01

    Five-week-old seedlings of Pinus halepensis Mill. and Pinus brutia Ten. were exposed to air polluted with ozone (O3) (250 nl l-1, 12 h day-1 for 4 days) or to ambient air containing ca 10-20 nl l-1 O3, in the light (180 &mgr;mol m-2 s-1 photosynthetic photon flux density [PPFD], 12 h day-1) and then fed for 24 h in the light (100 &mgr;mol m-2 s-1 PPFD) with various radioactive precursors of chlorophyll (Chl) and carotene biosynthesis: 5-[4-14C]-aminolevulinic acid (14C-ALA), L-[14C(U)]-glutamic acid (14C-Glu), or D,L-[2-14C]-mevalonic acid (14C-MVA). Pigments were then extracted from cotyledons and fully expanded needles. Chl a and carotene were separated by thin-layer chromatography and high-performance liquid chromatography and their specific activities were determined. 14C-ALA and 14C-Glu labels were incorporated into Chl a and carotene. Exposure to O3 did not inhibit incorporation of 14C-ALA into Chl a molecules, but hydrolysis of Chl a showed that O3 inhibited phytol labelling of Chl a. Labelling of carotene was also inhibited by O3, but not when 14C-MVA was used as the label. These data suggest that O3 treatment inhibits (directly or indirectly) the biosynthesis of isoprenoids from products of ALA and Glu metabolism in the plastid, but not from MVA in the cytosol. This inhibition was more prominent when 14C-ALA was used as the label than when 14C-Glu was the labelling precursor. A significant increase in pheophorbide a, a tetrapyrrole component of Chl a labelling, and a concomitant decrease in phytol labelling was observed following incubation of O3-treated pine seedlings with 14C-ALA and 14C-Glu. Stronger inhibition of carotene biosynthesis and activation of Chl a tetrapyrrole labelling by 14C-ALA (in comparison with 14C-Glu) indicated that exposure to O3 inhibits the conversion of ALA to Glu as the first step in ALA catabolism. These results also suggested a more intensive Glu metabolism (in comparison with ALA) for carotene biosynthesis in the cytosol, as

  1. Hunting alters seedling functional trait composition in a Neotropical forest.

    PubMed

    Kurten, Erin L; Wright, S Joseph; Carson, Walter P

    2015-07-01

    Defaunation alters trophic interactions between plants and vertebrates, whichmay disrupt trophic cascades, thereby favoring a subset of plant species and reducing diversity. If particular functional traits characterize the favored plant species,.then defaunation may alter community-wide patterns of functional trait composition. Changes in plant functional traits occurring with defaunation may help identify the species interactions affected by defaunation and the potential for other cascading effects of defaunation. We tested the hypotheses that defaunation would (1) disrupt seed dispersal, thereby favoring species whose dispersal agents are not affected (e.g., small birds, bats, and abiotic agents), (2) reduce seed predation, thereby favoring larger-seeded species, and (3) reduce herbivory, thereby favoring species with lower leaf mass per area (LMA), leaf toughness, and wood density. We examined how these six traits responded to vertebrate defaunation caused by hunters or by experimental exclosures among more than-30 000 woody seedlings in a lowland tropical moist forest. Exclosures reduced terrestrial frugivores, granivores, and herbivores, while hunters also reduced volant and arboreal frugivores and granivores. The comparison of exclosures and hunting allowed us to parse the impacts of arboreal and volant species (reduced by hunters only) and terrestrial species (reduced by both hunters and exclosures). The loss of terrestrial vertebrates alone had limited effects on plant trait composition. The additional loss of volant and arboreal vertebrates caused significant shifts in plant species composition towards communities with more species dispersed abiotically, including lianas and low wood-density tree species, and fewer species dispersed by large vertebrates. In contrast to previous studies, community seed mass did not decline significantly in hunted sites. Our exclosure results suggest this is because reducing seed predators disproportionately benefits large

  2. Genetic Analysis of Gravity Signal Transduction in Arabidopsis thaliana Seedlings

    NASA Astrophysics Data System (ADS)

    Boonsirichai, K.; Harrison, B.; Stanga, J.; Young, L.-S.; Neal, C.; Sabat, G.; Murthy, N.; Harms, A.; Sedbrook, J.; Masson, P.

    The primary roots of Arabidopsis thaliana seedlings respond to gravity stimulation by developing a tip curvature that results from differential cellular elongation on opposite flanks of the elongation zone. This curvature appears modulated by a lateral gradient of auxin that originates in the gravity-perceiving cells (statocytes) of the root cap through an apparent lateral repositioning of a component the auxin efflux carrier complex within these cells (Friml et al, 2002, Nature 415: 806-809). Unfortunately, little is known about the molecular mechanisms that govern early phases of gravity perception and signal transduction within the root-cap statocytes. We have used a molecular genetic approach to uncover some of these mechanisms. Mutations in the Arabidopsis ARG1 and ARL2 genes, which encode J-domain proteins, resulted in specific alterations in root and hypocotyl gravitropism, without pleiotropic phenotypes. Interestingly, ARG1 and ARL2 appear to function in the same genetic pathway. A combination of molecular genetic, biochemical and cell-biological approaches were used to demonstrate that ARG1 functions in early phases of gravity signal transduction within the root and hypocotyl statocytes, and is needed for efficient lateral auxin transport within the cap. The ARG1 protein is associated with components of the secretory and/or endosomal pathways, suggesting its role in the recycling of components of the auxin efflux carrier complex between plasma membrane and endosome (Boonsirichai et al, 2003, Plant Cell 15:2612-2625). Genetic modifiers of arg1-2 were isolated and shown to enhance the gravitropic defect of arg1-2, while resulting in little or no gravitropic defects in a wild type ARG1 background. A slight tendency for arg1-2;mar1-1 and arg1-2;mar2-1 double-mutant organs to display an opposite gravitropic response compared to wild type suggests that all three genes contribute to the interpretation of the gravity-vector information by seedling organs. The

  3. Ozone treatment affects pigment precursor metabolism in pine seedlings.

    PubMed

    Shamay, Y.; Raskin, V. I.; Brandis, A. S.; Steinberger, H. E.; Marder, J. B.; Schwartz, A.

    2001-06-01

    Five-week-old seedlings of Pinus halepensis Mill. and Pinus brutia Ten. were exposed to air polluted with ozone (O3) (250 nl l-1, 12 h day-1 for 4 days) or to ambient air containing ca 10-20 nl l-1 O3, in the light (180 &mgr;mol m-2 s-1 photosynthetic photon flux density [PPFD], 12 h day-1) and then fed for 24 h in the light (100 &mgr;mol m-2 s-1 PPFD) with various radioactive precursors of chlorophyll (Chl) and carotene biosynthesis: 5-[4-14C]-aminolevulinic acid (14C-ALA), L-[14C(U)]-glutamic acid (14C-Glu), or D,L-[2-14C]-mevalonic acid (14C-MVA). Pigments were then extracted from cotyledons and fully expanded needles. Chl a and carotene were separated by thin-layer chromatography and high-performance liquid chromatography and their specific activities were determined. 14C-ALA and 14C-Glu labels were incorporated into Chl a and carotene. Exposure to O3 did not inhibit incorporation of 14C-ALA into Chl a molecules, but hydrolysis of Chl a showed that O3 inhibited phytol labelling of Chl a. Labelling of carotene was also inhibited by O3, but not when 14C-MVA was used as the label. These data suggest that O3 treatment inhibits (directly or indirectly) the biosynthesis of isoprenoids from products of ALA and Glu metabolism in the plastid, but not from MVA in the cytosol. This inhibition was more prominent when 14C-ALA was used as the label than when 14C-Glu was the labelling precursor. A significant increase in pheophorbide a, a tetrapyrrole component of Chl a labelling, and a concomitant decrease in phytol labelling was observed following incubation of O3-treated pine seedlings with 14C-ALA and 14C-Glu. Stronger inhibition of carotene biosynthesis and activation of Chl a tetrapyrrole labelling by 14C-ALA (in comparison with 14C-Glu) indicated that exposure to O3 inhibits the conversion of ALA to Glu as the first step in ALA catabolism. These results also suggested a more intensive Glu metabolism (in comparison with ALA) for carotene biosynthesis in the cytosol, as

  4. There's no place like home: seedling mortality contributes to the habitat specialisation of tree species across Amazonia.

    PubMed

    Fortunel, Claire; Paine, C E Timothy; Fine, Paul V A; Mesones, Italo; Goret, Jean-Yves; Burban, Benoit; Cazal, Jocelyn; Baraloto, Christopher

    2016-10-01

    Understanding the mechanisms generating species distributions remains a challenge, especially in hyperdiverse tropical forests. We evaluated the role of rainfall variation, soil gradients and herbivory on seedling mortality, and how variation in seedling performance along these gradients contributes to habitat specialisation. In a 4-year experiment, replicated at the two extremes of the Amazon basin, we reciprocally transplanted 4638 tree seedlings of 41 habitat-specialist species from seven phylogenetic lineages among the three most important forest habitats of lowland Amazonia. Rainfall variation, flooding and soil gradients strongly influenced seedling mortality, whereas herbivory had negligible impact. Seedling mortality varied strongly among habitats, consistent with predictions for habitat specialists in most lineages. This suggests that seedling performance is a primary determinant of the habitat associations of adult trees across Amazonia. It further suggests that tree diversity, currently mostly harboured in terra firme forests, may be strongly impacted by the predicted climate changes in Amazonia. PMID:27600657

  5. Seedling establishment at the alpine tree line - Can there be too much winter protection?

    NASA Astrophysics Data System (ADS)

    Lett, S.; Wardle, D.; Nilsson, M. C.; Dorrepaal, E.

    2014-12-01

    Alpine and arctic tree line expansion relies on tree seedling survival above the tree line, where the environment is harsh and protection by snow during winter is essential. Above the tree line, bryophytes are dominant; they may act as thermal insulators but their insulating ability differs between species. Apart from these positive effects, both snow and bryophytes may have negative effects on seedlings via shortening of the growing season or competition, respectively. Snow depth and duration are expected to change due to climate change, leading in some places to more snow and in others to less. What is the role of bryophytes insulating properties for seedling establishment under changing winter conditions at the alpine tree line? We hypothesized that protecting effects of snow and bryophytes would be more important for seedling survival in harsh climate (high elevation) than in milder climate (low elevation) (interactions: bryophyte*elevation and snow*elevation) and that negative effects of less snow would be ameliorated by well-insulating bryophytes (interaction: bryophyte*snow). To test this, we transplanted cores of three bryophyte species of differing insulation capacity and bare soil (control) from the subarctic tree line (~600m asl.) to 700 and 350 m asl. We transplanted 10 seedlings of two common tree line tree species (Betula pubescens and Pinus sylvestris) into each core in late summer. Cores were subjected to one of three snow treatments: autumn and spring snow removal or addition, or no manipulation. After the winter we scored seedling survival. The snow treatments had different effects at the two elevations (elevation* snow: P<0.0001) whereas bryophytes did not (elevation*bryophyte: n.s). In the harsh climate, snow addition generally enhanced seedling survival. In contrast, at the milder climate site, snow addition only increased survival in the bare soil treatment but decreased survival of seedlings in the bryophyte cores (bryophyte*snow: P=0

  6. Two Novel Techniques to Screen Abies Seedlings for Resistance to the Balsam Woolly Adelgid, Adelges piceae

    PubMed Central

    Newton, Leslie; Frampton, John; Monahan, John; Goldfarb, Barry; Hain, Fred

    2011-01-01

    Since its introduction into the Southern Appalachians in the 1950s, the balsam woolly adelgid, Adelges piceae Ratzeburg (Hemiptera: Adelgidae), has devastated native populations of Fraser fir, Abies fraseri (Pursh) Poir. (Pinales: Pinaceae), and has become a major pest in Christmas tree plantations requiring expensive chemical treatments. Adelges piceae—resistant Fraser fir trees would lessen costs for the Christmas tree industry and assist in the restoration of native stands. Resistance screening is an important step in this process. Here, four studies directed toward the development of time— and cost—efficient techniques for screening are reported. In the first study, three methods to artificially infest seedlings of different ages were evaluated in a shade—covered greenhouse. Two—year—old seedlings had much lower infestation levels than 7 year—old seedlings. Placing infested bark at the base of the seedling was less effective than tying infested bark to the seedling or suspending infested bolts above the seedling. Although the two latter techniques resulted in similar densities on the seedlings, they each have positive and negative considerations. Attaching bark to uninfested trees is effective, but very time consuming. The suspended bolt method mimics natural infestation and is more economical than attaching bark, but care must be taken to ensure an even distribution of crawlers falling onto the seedlings. The second study focused on the density and distribution of crawlers falling from suspended bolts onto paper gridded into 7.6 × 7.6 cm cells. Crawler density in a 30 cm band under and to each side of the suspended bolt ranged from 400 to over 3000 crawlers per cell (1 to 55 crawlers per cm2). In the third study, excised branches from 4 year—old A. fraseri and A. vetchii seedlings were artificially infested with A. piceae to determine whether this technique may be useful for early resistance screening. The excised A. fraseri branches supported

  7. Urban environment of New York City promotes growth in northern red oak seedlings.

    PubMed

    Searle, Stephanie Y; Turnbull, Matthew H; Boelman, Natalie T; Schuster, William S F; Yakir, Dan; Griffin, Kevin L

    2012-04-01

    Urbanization is accelerating across the globe, elevating the importance of studying urban ecology. Urban environments exhibit several factors affecting plant growth and function, including high temperatures (particularly at night), CO(2) concentrations and atmospheric nitrogen deposition. We investigated the effects of urban environments on growth in Quercus rubra L. seedlings. We grew seedlings from acorns for one season at four sites along an urban-rural transect from Central Park in New York City to the Catskill Mountains in upstate New York (difference in average maximum temperatures of 2.4 °C; difference in minimum temperatures of 4.6 °C). In addition, we grew Q. rubra seedlings in growth cabinets (GCs) mimicking the seasonal differential between the city and rural sites (based on a 5-year average). In the field experiment, we found an eightfold increase in biomass in urban-grown seedlings relative to those grown at rural sites. This difference was primarily related to changes in growth allocation. Urban-grown seedlings and seedlings grown at urban temperatures in the GCs exhibited a lower root: shoot ratio (urban ~0.8, rural/remote ~1.5), reducing below-ground carbon costs associated with construction and maintenance. These urban seedlings instead allocated more growth to leaves than did rural-grown seedlings, resulting in 10-fold greater photosynthetic area but no difference in photosynthetic capacity of foliage per unit area. Seedlings grown at urban temperatures in both the field and GC experiments had higher leaf nitrogen concentrations per unit area than those grown at cooler temperatures (increases of 23% in field, 32% in GC). Lastly, we measured threefold greater (13)C enrichment of respired CO(2) (relative to substrate) in urban-grown leaves than at other sites, which may suggest greater allocation of respiratory function to growth over maintenance. It also shows that lack of differences in total R flux in response to environmental conditions may

  8. Variation in experimental flood impacts and ecogeomorphic feedbacks among native and exotic riparian tree seedlings

    NASA Astrophysics Data System (ADS)

    Kui, L.; Stella, J. C.; Skorko, K.; Lightbody, A.; Wilcox, A. C.; Bywater-Reyes, S.

    2012-12-01

    Flooding interacts with riparian plants on a variety of scales, resulting in coevolution of geomorphic surfaces with plant vegetation communities. Our research aims to develop a mechanistic understanding of riparian seedling damage from small floods, with a focus on differential responses among species (native and non-native), ecogeomorphic feedbacks, and implications for riparian restoration. We tested the effects of controlled flood events on cottonwood (Populus fremontii) and tamarisk (Tamarix spp.) seedlings in an experimental meandering stream channel. We hypothesized that seedling dislodgement and burial would be influenced by individual plant height, species-specific morphology, patch density, and differences in hydraulic forces (as a function of location on the bar). Four experimental floods were tested, with different combinations of plant species and seedling densities. For each flood run, rooted seedlings were installed within a 1.5-m-wide sandbar during low flow conditions and stream discharge was increased to a constant flood level for approximately 8 hours, after which seedling response was assessed. Seedling damage was analyzed within a logistic regression framework that predicted the probability of dislodgement or burial as a function of the explanatory variables. Plant dislodgement depended on root length and the location on the sandbar, whereas burial depended on plant height, species-specific morphology, and location. For every centimeter increase in plant height, the odds of plant burial decreased by 10 percent, illustrating the rate at which plants developed flood resistance as they grow taller. With every meter closer to the thalweg, plant dislodgement was four times more likely, and plant burial was 2.6 times more likely. The probability of burial was twice as great for tamarisk seedlings as for cottonwood. The increased sedimentation within tamarisk patches was associated with a denser foliage and a more compact crown for this species. The

  9. Two novel techniques to screen Abies seedlings for resistance to the balsam woolly adelgid, Adelges piceae.

    PubMed

    Newton, Leslie; Frampton, John; Monahan, John; Goldfarb, Barry; Hain, Fred

    2011-01-01

    Since its introduction into the Southern Appalachians in the 1950s, the balsam woolly adelgid, Adelges piceae Ratzeburg (Hemiptera: Adelgidae), has devastated native populations of Fraser fir, Abies fraseri (Pursh) Poir. (Pinales: Pinaceae), and has become a major pest in Christmas tree plantations requiring expensive chemical treatments. Adelges piceae-resistant Fraser fir trees would lessen costs for the Christmas tree industry and assist in the restoration of native stands. Resistance screening is an important step in this process. Here, four studies directed toward the development of time- and cost-efficient techniques for screening are reported. In the first study, three methods to artificially infest seedlings of different ages were evaluated in a shade-covered greenhouse. Two-year-old seedlings had much lower infestation levels than 7 year-old seedlings. Placing infested bark at the base of the seedling was less effective than tying infested bark to the seedling or suspending infested bolts above the seedling. Although the two latter techniques resulted in similar densities on the seedlings, they each have positive and negative considerations. Attaching bark to uninfested trees is effective, but very time consuming. The suspended bolt method mimics natural infestation and is more economical than attaching bark, but care must be taken to ensure an even distribution of crawlers falling onto the seedlings. The second study focused on the density and distribution of crawlers falling from suspended bolts onto paper gridded into 7.6 × 7.6 cm cells. Crawler density in a 30 cm band under and to each side of the suspended bolt ranged from 400 to over 3000 crawlers per cell (1 to 55 crawlers per cm²). In the third study, excised branches from 4 year-old A. fraseri and A. vetchii seedlings were artificially infested with A. piceae to determine whether this technique may be useful for early resistance screening. The excised A. fraseri branches supported complete

  10. Prosopis pubescens (screw bean mesquite) seedlings are hyperaccumulators of copper.

    PubMed

    Zappala, Marian N; Ellzey, Joanne T; Bader, Julia; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge

    2013-08-01

    Due to health reasons, toxic metals must be removed from soils contaminated by mine tailings and smelter activities. The phytoremediation potential of Prosopis pubescens (screw bean mesquite) was examined by use of inductively-coupled plasma optical emission spectroscopy. Transmission electron microscopy was used to observe ultrastructural changes of parenchymal cells of leaves in the presence of copper. Elemental analysis was used to localize copper within leaves. A 600-ppm copper sulfate exposure to seedlings for 24 days resulted in 31,000 ppm copper in roots, 17,000 ppm in stems, 11,000 in cotyledons and 20 ppm in the true leaves. For a plant to be considered a hyperaccumulator, the plant must accumulate a leaf-to-root ratio <1. Screw bean mesquite exposed to copper had a leaf-to-root ratio of 0.355 when cotyledons were included. We showed that P. pubescens grown in soil is a hyperaccumulator of copper. We recommend that this plant should be field tested. PMID:23612918

  11. Clinorotation affects morphology and ethylene production in soybean seedlings

    NASA Technical Reports Server (NTRS)

    Hilaire, E.; Peterson, B. V.; Guikema, J. A.; Brown, C. S.; Sager, J. C. (Principal Investigator)

    1996-01-01

    The microgravity environment of spaceflight influences growth, morphology and metabolism in etiolated germinating soybean. To determine if clinorotation will similarly impact these processes, we conducted ground-based studies in conjunction with two space experiment opportunities. Soybean (Glycine max [L.] Merr.) seeds were planted within BRIC (Biological Research In Canister) canisters and grown for seven days at 20 degrees C under clinorotation (1 rpm) conditions or in a stationary upright mode. Gas samples were taken daily and plants were harvested after seven days for measurement of growth and morphology. Compared to the stationary upright controls, plants exposed to clinorotation exhibited increased root length (125% greater) and fresh weight (42% greater), whereas shoot length and fresh weight decreased by 33% and 16% respectively. Plants grown under clinorotation produced twice as much ethylene as the stationary controls. Seedlings treated with triiodo benzoic acid (TIBA), an auxin transport inhibitor, under clinorotation produced 50% less ethylene than the untreated control subjected to the same gravity treatment, whereas a treatment with 2,4-D increased ethylene by five-fold in the clinorotated plants. These data suggest that slow clinorotation influences biomass partitioning and ethylene production in etiolated soybean plants.

  12. Effect of spaceflight on isoflavonoid accumulation in etiolated soybean seedlings

    NASA Technical Reports Server (NTRS)

    Levine, L. H.; Levine, H. G.; Stryjewski, E. C.; Prima, V.; Piastuch, W. C.; Sager, J. S. (Principal Investigator)

    2001-01-01

    In order to explore the potential impact of microgravity on flavonoid biosynthesis, we examined isoflavonoid levels in soybean (Glycine max) tissues generated under both spaceflight and clinorotation conditions. A 6-day Space Shuttle-based microgravity exposure resulted in enhanced accumulation of isoflavone glycosides (daidzin, 6"-O-malonyl-7-O-glucosyl daidzein, genistin, 6"-O-malonyl-7-O-glucosyl genistein) in hypocotyl and root tissues, but reduced levels in cotyledons (relative to 1g controls on Earth). Soybean seedlings grown on a horizontally rotating clinostat for 3, 4 and 5 days exhibited (relative to a vertical clinorotation control) an isoflavonoid accumulation pattern similar to the space-grown tissues. Elevated isoflavonoid levels attributable to the clinorotation treatment were transient, with the greatest increase observed in the three-day-treated tissues and smaller increases in the four- and five-day-treated tissues. Differences between stresses presented by spaceflight and clinorotation and the resulting biochemical adaptations are discussed, as is whether the increase in isoflavonoid concentrations were due to differential rates of development under the "gravity" treatments employed. Results suggest that spaceflight exposure does not impair isoflavonoid accumulation in developing soybean tissues and that isoflavonoids respond positively to microgravity as a biochemical strategy of adaptation.

  13. Tocopherols in Sunflower Seedlings under Light and Dark Conditions.

    PubMed

    del Moral, Lidia; Pérez-Vich, Begoña; Velasco, Leonardo

    2015-01-01

    The objective of this study was to evaluate the dynamics of tocopherols in cotyledons and radicles from sunflower seeds with high and low total tocopherol content, mainly in the α-tocopherol form, and from seeds with increased proportions of β-, γ-, and δ-tocopherol, both under dark and light conditions. Tocopherol content was measured every 24 h from 1 to 12 days after sowing. In all cases, the content of individual tocopherol forms in the cotyledons and radicles was reduced along the sampling period, which was more pronounced under light conditions. The presence of light had a slightly greater effect on α- and γ-tocopherol than on β- and δ-tocopherol. A marked light effect was also observed on total tocopherol content, with light promoting the reduction of tocopherol content in cotyledons and radicles. The study revealed only slight differences in the patterns of tocopherol losses in lines with different tocopherol profiles, both under dark and light conditions, which suggested that the partial replacement of α-tocopherol by other tocopherol forms had no great impact on the protection against oxidative damage in seedlings.

  14. Cadmium exposure affects iron acquisition in barley (Hordeum vulgare) seedlings.

    PubMed

    Astolfi, Stefania; Ortolani, Maria R; Catarcione, Giulio; Paolacci, Anna R; Cesco, Stefano; Pinton, Roberto; Ciaffi, Mario

    2014-12-01

    This study addresses the question of the interference between iron (Fe) nutrition and cadmium (Cd) toxicity at the level of growth performance, phytosiderophores (PS) release, micronutrient accumulation and expression of genes involved in Fe homeostasis in barley seedlings, a plant with strategy II-based response to Fe shortage. Cd exposure induced responses similar to those of genuine Fe deficiency also in Fe-sufficient plants. Most genes involved in PS biosynthesis and secretion (HvNAS3, HvNAS4, HvNAS6, HvNAS7, HvNAAT-A, HvDMAS1 and HvTOM1) induced by Fe deprivation were also significantly upregulated in the presence of Cd under Fe sufficient conditions. Accordingly, the enhanced expression of these genes in roots under Cd exposure was accompanied by an increase of PS release. However, induced expression of HvIRO2 and the downregulation of HvIDEF1 and HvIRT1, after Cd exposure, suggested the presence of a pathway that induces HvIRO2-mediated PS biosynthesis under Cd stress, which probably is not simply caused by Fe deficiency. The downregulation of HvIRT1 and HvNramp5 may represent a protective mechanism at transcriptional level against further Cd uptake by these transporters. These results likely indicate that Cd itself may be able to activate Fe acquisition mechanism in an Fe-independent manner.

  15. Savanna Tree Seedlings are Physiologically Tolerant to Nighttime Freeze Events

    PubMed Central

    O’Keefe, Kimberly; Nippert, Jesse B.; Swemmer, Anthony M.

    2016-01-01

    Freeze events can be important disturbances in savanna ecosystems, yet the interactive effect of freezing with other environmental drivers on plant functioning is unknown. Here, we investigated physiological responses of South African tree seedlings to interactions of water availability and freezing temperatures. We grew widely distributed South African tree species (Colophospermum mopane, Combretum apiculatum, Acacia nigrescens, and Cassia abbreviata) under well-watered and water-limited conditions and exposed individuals to nighttime freeze events. Of the four species studied here, C. mopane was the most tolerant of lower water availability. However, all species were similarly tolerant to nighttime freezing and recovered within one week following the last freezing event. We also show that water limitation somewhat increased freezing tolerance in one of the species (C. mopane). Therefore, water limitation, but not freezing temperatures, may restrict the distribution of these species, although the interactions of these stressors may have species-specific impacts on plant physiology. Ultimately, we show that unique physiologies can exist among dominant species within communities and that combined stresses may play a currently unidentified role in driving the function of certain species within southern Africa. PMID:26870065

  16. Cell-Specific Expression of Mitochondrial Transcripts in Maize Seedlings.

    PubMed Central

    Li, X. Q.; Zhang, M.; Brown, G. G.

    1996-01-01

    Although mitochondria are thought to assume crucial and possibly novel physiological functions during male gametogenesis, it is not known to what extent mitochondrial function is necessary for other aspects of plant development or to what degree the expression of plant mitochondrial genes is subject to cell-specific regulation, particularly during vegetative growth. We have used in situ hybridization to show that extensive differences exist in the levels of mitochondrial RNAs (mtRNAs) among different tissues and among different individual cell types within the same organ of maize seedlings. The expression of all examined mtRNAs is enhanced in vascular bundles, particularly in procambium- and xylem-forming cells. Mitochondrial transcript levels correlated highly with cell division activity. For example, in roots, the transcripts are abundant in the dividing cells of the meristem but drop to very low levels in the nondividing cells of the root cap and the meristem quiescent center. By comparison, levels of functional mitochondria, as assessed by rhodamine-123 fluorescence, did not vary greatly among the same group of cells. In shoots, in situ hybridization and blot hybridization revealed differences in the patterns of localization among different mtRNAs. The results indicate that during vegetative growth, mitochondrial gene expression at the transcript level is subject to an unexpected degree of cell-specific regulation and that different controls may operate on different trancripts. PMID:12239371

  17. Inheritance of autumn frost hardiness in Pinus sylvestris L. seedlings.

    PubMed

    Norell, L; Eriksson, G; Ekberg, I; Dormling, I

    1986-07-01

    Inheritance of frost hardiness was analysed making use of a 12×12 incomplete factorial mating design. Owing to space limitations only 59 families could be tested in four experiments. To link the four experiments, some families were common to two or more experiments. The seedlings were grown in climate chambers under conditions inducing autumn hardening. The plants were exposed to a freezing temperature of -10 °C for three hours at night lengths of 11-13 h. A statistical model was developed for analyses of variance of our data. The genetic variation and the variation due to the cultivation regimes during autumn hardening were of the same magnitude. The additive effects were the most important ones for induction of frost damage. No interaction following long-distance crossing was noted. Mixed model equations were used for ranking of the parents. The results obtained support a polygenic inheritance of frost hardiness. The large within-population variation offers good opportunities for hardiness breeding. PMID:24248015

  18. Isolation and characterization of a neutral phosphatase from wheat seedlings

    SciTech Connect

    Cheng, H.F.

    1988-01-01

    A neutral phosphatase was purified to homogeneity from wheat seedlings. The enzyme was a monomeric glycoprotein exhibiting a molecular weight of 35,000, frictional ratio of 1.22, Stokes' radius of 26 A, and sedimentation coefficient of 3.2 S. That the enzyme was a glycoprotein was surmised from its chromatographic property on Concanavalin A-Sepharose column. The phosphatase activity was assayed using either fructose-2,6-bisphosphate or p-nitrophenyl phosphate as substrate. The phosphatase activity was not affected by high concentrations of chelating agents and did not require the addition of Mg{sup +2} or Ca{sup +2} for its activity. Molybdate, orthovanadate, Zn{sup +2}, and Hg{sup +2} were all potent inhibitors of the phosphatase activity. The inhibition by Hg{sup +2} was reversed by dithiothreitol. The enzyme activity was stimulated by Mn{sup +2} about 2-fold. On the other hand, 3-phosphoglycerate, fructose-6-P and Pi as well as polyamines inhibited the enzyme activity. The ability of the neutral phosphatase to dephosphorylate protein phosphotyrosine was also investigated. The phosphotyrosyl-substrates, such as ({sup 32}P) phosphotyrosyl-poly(Glu, Tyr)n, -alkylated bovine serum albumin, -angiotensin-1, and -band 3 of erythrocytes, were all substrates of the phosphatase. On the other hand, the enzyme had no activity toward protein phosphoserine and protein phosphothreonine.

  19. Germination and seedling development of Trapa bispinosa Roxb.

    PubMed

    Mirani, O Ima; Harah, Z Muta; Sidik, B Japar

    2012-07-01

    Trapa bispinosa is a freshwater macrophyte occurring in stagnant or slow moving water streams. Information on assessment of seeds storage and germination of Trapa bispinosa is less available in literature. Dependence on fresh seeds abundance only from natural environment for plant propagation or cultivation may lead to insufficient supply of seeds due to various biotic and abiotic factors. This study evaluated the viability and germination of Trapa bispinosa seeds stored in zip-lock plastic bag at low temperature of 7 degrees C for six months and fresh seeds. In addition germinating seeds progressive development to juvenile plants was recorded and described. Experiments were conducted where stored and fresh seeds were soaked in 62 x 45 x 54 cm glass tanks filled with aged tap water to the level of 15 cm depth. Stored seeds showed low percentage germination of 2.82% compared to fresh seeds which was 71.19%. Eight distinct developmental stages were identified from germinating seeds to juvenile plants. Both stored and fresh seeds produced plants of similar morphology but stored seeds progressive development from germination, seedling to juvenile plants needed longer duration to achieve. The storage of seed at low temperature at 7 degrees C for six months showed reduced viability and also vigorousity. Improved methods should be developed for Trapa seeds storage taking into account of the seeds' endurance to dryness and moisture levels in order to maintained seeds viability for future uses either for production, research purposes or even conservation and restoration programs.

  20. Blue Light-Induced Proteomic Changes in Etiolated Arabidopsis Seedlings

    PubMed Central

    2015-01-01

    Plants adapt to environmental light conditions by photoreceptor-mediated physiological responses, but the mechanism by which photoreceptors perceive and transduce the signals is still unresolved. Here, we used 2D difference gel electrophoresis (2D DIGE) and mass spectrometry to characterize early molecular events induced by short blue light exposures in etiolated Arabidopsis seedlings. We observed the phosphorylation of phototropin 1 (phot1) and accumulation of weak chloroplast movement under blue light 1 (WEB1) in the membrane fraction after blue light irradiation. Over 50 spots could be observed for the two rows of phot1 spots in the 2-DE gels, and eight novel phosphorylated Ser/Thr sites were identified in the N-terminus and Hinge 1 regions of phot1 in vivo. Blue light caused ubiquitination of phot1, and K526 of phot1 was identified as a putative ubiquitination site. Our study indicates that post-translational modification of phot1 is more complex than previously reported. PMID:24712693

  1. Cell wall proteins in seedling cotyledons of Prosopis chilensis.

    PubMed

    Rodríguez, J G; Cardemil, L

    1994-01-01

    Four cell wall proteins of cotyledons of Prosopis chilensis seedlings were characterized by PAGE and Western analyses using a polyclonal antibody, generated against soybean seed coat extensin. These proteins had M(r)s of 180,000, 126,000, 107,000 and 63,000, as determined by SDS-PAGE. The proteins exhibited a fluorescent positive reaction with dansylhydrazine suggesting that they are glycoproteins; they did not show peroxidase activity. The cell wall proteins were also characterized by their amino acid composition and by their amino-terminal sequence. These analyses revealed that there are two groups of related cell wall proteins in the cotyledons. The first group comprises the proteins of M(r)s 180,000, 126,000, 107,000 which are rich in glutamic acid/glutamine and aspartic acid/asparagine and they have almost identical NH2-terminal sequences. The second group comprises the M(r) 63,000 protein which is rich in proline, glycine, valine and tyrosine, with an NH2-terminal sequence which was very similar to that of soybean proline-rich proteins.

  2. Prosopis pubescens (screw bean mesquite) seedlings are hyperaccumulators of copper.

    PubMed

    Zappala, Marian N; Ellzey, Joanne T; Bader, Julia; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge

    2013-08-01

    Due to health reasons, toxic metals must be removed from soils contaminated by mine tailings and smelter activities. The phytoremediation potential of Prosopis pubescens (screw bean mesquite) was examined by use of inductively-coupled plasma optical emission spectroscopy. Transmission electron microscopy was used to observe ultrastructural changes of parenchymal cells of leaves in the presence of copper. Elemental analysis was used to localize copper within leaves. A 600-ppm copper sulfate exposure to seedlings for 24 days resulted in 31,000 ppm copper in roots, 17,000 ppm in stems, 11,000 in cotyledons and 20 ppm in the true leaves. For a plant to be considered a hyperaccumulator, the plant must accumulate a leaf-to-root ratio <1. Screw bean mesquite exposed to copper had a leaf-to-root ratio of 0.355 when cotyledons were included. We showed that P. pubescens grown in soil is a hyperaccumulator of copper. We recommend that this plant should be field tested.

  3. Savanna Tree Seedlings are Physiologically Tolerant to Nighttime Freeze Events.

    PubMed

    O'Keefe, Kimberly; Nippert, Jesse B; Swemmer, Anthony M

    2016-01-01

    Freeze events can be important disturbances in savanna ecosystems, yet the interactive effect of freezing with other environmental drivers on plant functioning is unknown. Here, we investigated physiological responses of South African tree seedlings to interactions of water availability and freezing temperatures. We grew widely distributed South African tree species (Colophospermum mopane, Combretum apiculatum, Acacia nigrescens, and Cassia abbreviata) under well-watered and water-limited conditions and exposed individuals to nighttime freeze events. Of the four species studied here, C. mopane was the most tolerant of lower water availability. However, all species were similarly tolerant to nighttime freezing and recovered within one week following the last freezing event. We also show that water limitation somewhat increased freezing tolerance in one of the species (C. mopane). Therefore, water limitation, but not freezing temperatures, may restrict the distribution of these species, although the interactions of these stressors may have species-specific impacts on plant physiology. Ultimately, we show that unique physiologies can exist among dominant species within communities and that combined stresses may play a currently unidentified role in driving the function of certain species within southern Africa. PMID:26870065

  4. Effects of a 60 Hz magnetic field on photosynthetic CO2 uptake and early growth of radish seedlings.

    PubMed

    Yano, Akira; Ohashi, Yoshiaki; Hirasaki, Tomoyuki; Fujiwara, Kazuhiro

    2004-12-01

    Photosynthetic CO2 uptake rate and early growth parameters of radish Raphanus sativus L. seedlings exposed to an extremely low frequency magnetic field (ELF MF) were investigated. Radish seedlings were exposed to a 60 Hz, 50 microT(rms) (root mean square) sinusoidal magnetic field (MF) and a parallel 48 microT static MF for 6 or 15 d immediately after germination. Control seedlings were exposed to the ambient MF but not the ELF MF. The CO2 uptake rate of ELF MF exposed seedlings on day 5 and later was lower than that of the control seedlings. The dry weight and the cotyledon area of ELF MF exposed seedlings on day 6 and the fresh weight, the dry weight and the leaf area of ELF MF exposed seedlings on day 15 were significantly lower than those of the control seedlings, respectively. In another experiment, radish seedlings were grown without ELF MF exposure for 14 d immediately after germination, and then exposed to the ELF MF for about 2 h, and the photosynthetic CO2 uptake rate was measured during the short-term ELF MF exposure. The CO2 uptake rate of the same seedlings was subsequently measured in the ambient MF (control) without the ELF MF. There was no difference in the CO2 uptake rate of seedlings exposed to the ELF MF or the ambient MF. These results indicate that continuous exposure to 60 Hz, 50 microT(rms) sinusoidal MF with a parallel 48 microT static MF affects the early growth of radish seedlings, but the effect is not so severe that modification of photosynthetic CO2 uptake can observed during short-term MF exposure.

  5. Light Affects the Chloroplast Ultrastructure and Post-Storage Photosynthetic Performance of Watermelon (Citrullus lanatus) Plug Seedlings

    PubMed Central

    Duan, Qingqing; Jiang, Wu; Ding, Ming; Lin, Ye; Huang, Danfeng

    2014-01-01

    Watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai] plug seedlings were stored at 15°C in the light at a photosynthetic photon flux density of 15 µmol·m−2·s−1 or in darkness for 6 days, to evaluate their chloroplast ultrastructure, and associated photosynthetic characteristics. Storage in the dark caused swelling, disordered granal arrangement, and starch grain disappearance in the chloroplasts. In contrast, the chloroplasts stored in the light were relatively normal. As a result, the light-stored seedlings had a significantly higher chlorophyll content, Fv/Fm, and Pn than did dark-stored seedlings. Regardless of whether the seedlings were stored in light or darkness, the Gs and Ls of the seedlings significantly decreased, while the Ci obviously increased when the Pn decreased after 6 days of storage. This result suggests that the decreased Pn is not solely a stomatal effect, as the effects on the chloroplasts contributed to this photosynthetic inhibition. Six days after transplanting, seedlings that were stored in the light or darkness for 2 or 4 days showed complete recovery of chloroplast ultrastructure, chlorophyll content, Fv/Fm, Gs and Pn. When the storage period increased to 6 days, the dark-stored seedlings had a significantly lower Fv/Fm and Pn than the light-stored and control seedlings 6 days after transplanting, which was mainly ascribed to incomplete recovery of chloroplast ultrastructure. Furthermore, the light-stored seedlings exhibited a significantly higher shoot dry weight during storage and a higher percentage dry weight increase after transplanting than the dark-stored seedlings. These effects were enhanced by prolonged storage (4 to 6 days). This study demonstrated that dim light during storage is beneficial for maintaining chloroplast ultrastructure as well as photosynthetic efficiency in watermelon seedlings, thus contributing to the rapid recovery of post-storage photosynthetic performance, which ensures the transplant quality

  6. Light affects the chloroplast ultrastructure and post-storage photosynthetic performance of watermelon (Citrullus lanatus) plug seedlings.

    PubMed

    Duan, Qingqing; Jiang, Wu; Ding, Ming; Lin, Ye; Huang, Danfeng

    2014-01-01

    Watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai] plug seedlings were stored at 15°C in the light at a photosynthetic photon flux density of 15 µmol·m(-2)·s(-1) or in darkness for 6 days, to evaluate their chloroplast ultrastructure, and associated photosynthetic characteristics. Storage in the dark caused swelling, disordered granal arrangement, and starch grain disappearance in the chloroplasts. In contrast, the chloroplasts stored in the light were relatively normal. As a result, the light-stored seedlings had a significantly higher chlorophyll content, Fv/Fm, and Pn than did dark-stored seedlings. Regardless of whether the seedlings were stored in light or darkness, the Gs and Ls of the seedlings significantly decreased, while the Ci obviously increased when the Pn decreased after 6 days of storage. This result suggests that the decreased Pn is not solely a stomatal effect, as the effects on the chloroplasts contributed to this photosynthetic inhibition. Six days after transplanting, seedlings that were stored in the light or darkness for 2 or 4 days showed complete recovery of chloroplast ultrastructure, chlorophyll content, Fv/Fm, Gs and Pn. When the storage period increased to 6 days, the dark-stored seedlings had a significantly lower Fv/Fm and Pn than the light-stored and control seedlings 6 days after transplanting, which was mainly ascribed to incomplete recovery of chloroplast ultrastructure. Furthermore, the light-stored seedlings exhibited a significantly higher shoot dry weight during storage and a higher percentage dry weight increase after transplanting than the dark-stored seedlings. These effects were enhanced by prolonged storage (4 to 6 days). This study demonstrated that dim light during storage is beneficial for maintaining chloroplast ultrastructure as well as photosynthetic efficiency in watermelon seedlings, thus contributing to the rapid recovery of post-storage photosynthetic performance, which ensures the transplant quality

  7. Induced defenses change the chemical composition of pine seedlings and influence meal properties of the pine weevil Hylobius abietis.

    PubMed

    Lundborg, Lina; Fedderwitz, Frauke; Björklund, Niklas; Nordlander, Göran; Borg-Karlson, Anna-Karin

    2016-10-01

    The defense of conifers against phytophagous insects relies to a large extent on induced chemical defenses. However, it is not clear how induced changes in chemical composition influence the meal properties of phytophagous insects (and thus damage rates). The defense can be induced experimentally with methyl jasmonate (MeJA), which is a substance that is produced naturally when a plant is attacked. Here we used MeJA to investigate how the volatile contents of Scots pine (Pinus sylvestris L.) tissues influence the meal properties of the pine weevil (Hylobius abietis (L.)). Phloem and needles (both weevil target tissues) from MeJA-treated and control seedlings were extracted by n-hexane and analyzed by two-dimensional gas chromatography-mass spectrometry (2D GC-MS). The feeding of pine weevils on MeJA-treated and control seedlings were video-recorded to determine meal properties. Multivariate statistical analyses showed that phloem and needle contents of MeJA-treated seedlings had different volatile compositions compared to control seedlings. Levels of the pine weevil attractant (+)-α-pinene were particularly high in phloem of control seedlings with feeding damage. The antifeedant substance 2-phenylethanol occurred at higher levels in the phloem of MeJA-treated than in control seedlings. Accordingly, pine weevils fed slower and had shorter meals on MeJA-seedlings. The chemical compositions of phloem and needle tissues were clearly different in control seedlings but not in the MeJA-treated seedlings. Consequently, meal durations of mixed meals, i.e. both needles and phloem, were longer than phloem meals on control seedlings, while meal durations on MeJA seedlings did not differ between these meal contents. The meal duration influences the risk of girdling and plant death. Thus our results suggest a mechanism by which MeJA treatment may protect conifer seedlings against pine weevils. PMID:27417987

  8. Effect of co-inoculations of native PGPR with nitrogen fixing bacteria on seedling traits in Prosopis cineraria.

    PubMed

    Singh, S K; Pancholy, Anjly; Jindal, S K; Pathak, Rakesh

    2014-09-01

    Prosopis cineraria significantly contribute to sand dune stabilization, soil fertility rejuvenation and is an integral component of agro-forestry systems in arid regions of India. Effect of different rhizobacterial seed treatments on seed germination and seedling traits in two genotypes of P. cineraria (HPY-1) and (FG-1) were tested. Observations on seed germination (%) and seedling traits viz., root length (cm), shoot length (cm), seedling weight (g) and seedling length of different treatments were recorded. Whereas, germination index (GI), seedling vigour index (SVI) and root/shoot length ratio were derived from the observed data. The scarification treatment with sulphuric acid for 10 minutes substantially enhanced germination from < 20% to 80-82% in control treatments. Treatments with co-inoculations of Bacillus licheniformis and Sinorhizobium kostiense or S. saheli supported the maximum seed germination and seedling growth and vigour. The maximum germination per cent (92.5%), seedling length (10.94 cm), seedling vigour index (10.12) and germination index (7.97) were recorded with treatment (V2T6) wherein seeds of high pod yielding genotype were co-inoculated with Bacillus licheniformis and S. kostiense. The higher positive correlations of seedling length v/s shoot length followed by SVI v/s seedling length, SVI v/s root length and seedling length v/s root length is a fair indicative of inter dependency of these characteristics. Higher R2 values of root length v/s shoot length followed by that of SVI v/s GI indicates that a regression line fits the data well and future outcomes of observed seedling traits are likely to be predicted by the model.

  9. Ectomycorrhizal fungi mediate indirect effects of a bark beetle outbreak on secondary chemistry and establishment of pine seedlings.

    PubMed

    Karst, Justine; Erbilgin, Nadir; Pec, Gregory J; Cigan, Paul W; Najar, Ahmed; Simard, Suzanne W; Cahill, James F

    2015-11-01

    Dendroctonus ponderosae has killed millions of Pinus contorta in western North America with subsequent effects on stand conditions, including changes in light intensity, needle deposition, and the composition of fungal community mutualists, namely ectomycorrhizal fungi. It is unknown whether these changes in stand conditions will have cascading consequences for the next generation of pine seedlings. To test for transgenerational cascades on pine seedlings, we tested the effects of fungal inoculum origin (beetle-killed or undisturbed stands), light intensity and litter (origin and presence) on seedling secondary chemistry and growth in a glasshouse. We also tracked survival of seedlings over two growing seasons in the same stands from which fungi and litter were collected. Fungal communities differed by inoculum origin. Seedlings grown with fungi collected from beetle-killed stands had lower monoterpene concentrations and fewer monoterpene compounds present compared with seedlings grown with fungi collected from undisturbed stands. Litter affected neither monoterpenes nor seedling growth. Seedling survival in the field was lower in beetle-killed than in undisturbed stands. We demonstrate that stand mortality caused by prior beetle attacks of mature pines have cascading effects on seedling secondary chemistry, growth and survival, probably mediated through effects on below-ground mutualisms. PMID:26033270

  10. Infrared light-emitting diode radiation causes gravitropic and morphological effects in dark-grown oat seedlings

    NASA Technical Reports Server (NTRS)

    Johnson, C. F.; Brown, C. S.; Wheeler, R. M.; Sager, J. C.; Chapman, D. K.; Deitzer, G. F.

    1996-01-01

    Oat (Avena sativa cv Seger) seedlings were irradiated with IR light-emitting diode (LED) radiation passed through a visible-light-blocking filter. Infrared LED irradiated seedlings exhibited differences in growth and gravitropic response when compared to seedlings grown in darkness at the same temperature. Thus, the oat seedlings in this study were able to detect IR LED radiation. These findings call into question the use of IR LED as a safe-light for some photosensitive plant response experiments. These findings also expand the defined range of wavelengths involved in radiation-gravity (light-gravity) interactions to include wavelengths in the IR region of the spectrum.

  11. Summer drought impedes beech seedling performance more in a sub-Mediterranean forest understory than in small gaps.

    PubMed

    Robson, T Matthew; Rodríguez-Calcerrada, Jesús; Sánchez-Gómez, David; Aranda, Ismael

    2009-02-01

    Refugia of mixed beech forest persist in the central mountains of the Iberian Peninsula at the south-western limit of European beech (Fagus sylvatica L.) distribution. The lack of beech regeneration is a concern in this region that has experienced reduced rainfall and higher temperatures over the past 30 years. Beech is considered especially susceptible to climate change because of its conservative shade-tolerant growth strategy; hence seedling responses to drought stress in gaps and in the understory are of particular interest. During the summer of 2007, a watering treatment raised the soil water content by up to 5% in gap and understory plots of beech seedlings in a mixed beech forest. Root-collar diameter was increased by our watering treatment in understory seedlings. Neither drought-avoidance through stomatal closure nor physiological drought-tolerance mechanisms were able to mitigate the effects of water stress in the understory seedlings, whereas osmotic adjustment enhanced the ability of the gap seedlings to tolerate water stress. Overall, high photosynthetic rates in the gaps, despite the photoinhibitory effects of high radiation, allowed gap seedlings to survive and grow better than the understory seedlings irrespective of water availability. Our results indicate that further intensification of summer drought, predicted for the Iberian Peninsula, will hinder the establishment of a beech seedling bank in the understory because of the conflicting seedling trait responses to simultaneously withstand water stress and to tolerate shade. PMID:19203950

  12. Spatio-temporal changes in endogenous abscisic acid contents during etiolated growth and photomorphogenesis in tomato seedlings

    PubMed Central

    Humplík, Jan F; Turečková, Veronika; Fellner, Martin; Bergougnoux, Véronique

    2015-01-01

    The role of abscisic acid (ABA) during early development was investigated in tomato seedlings. The endogenous content of ABA in particular organs was analyzed in seedlings grown in the dark and under blue light. Our results showed that in dark-grown seedlings, the ABA accumulation was maximal in the cotyledons and elongation zone of hypocotyl, whereas under blue-light, the ABA content was distinctly reduced. Our data are consistent with the conclusion that ABA promotes the growth of etiolated seedlings and the results suggest that ABA plays an inhibitory role in de-etiolation and photomorphogenesis in tomato. PMID:26322576

  13. Ectomycorrhizal fungi mediate indirect effects of a bark beetle outbreak on secondary chemistry and establishment of pine seedlings.

    PubMed

    Karst, Justine; Erbilgin, Nadir; Pec, Gregory J; Cigan, Paul W; Najar, Ahmed; Simard, Suzanne W; Cahill, James F

    2015-11-01

    Dendroctonus ponderosae has killed millions of Pinus contorta in western North America with subsequent effects on stand conditions, including changes in light intensity, needle deposition, and the composition of fungal community mutualists, namely ectomycorrhizal fungi. It is unknown whether these changes in stand conditions will have cascading consequences for the next generation of pine seedlings. To test for transgenerational cascades on pine seedlings, we tested the effects of fungal inoculum origin (beetle-killed or undisturbed stands), light intensity and litter (origin and presence) on seedling secondary chemistry and growth in a glasshouse. We also tracked survival of seedlings over two growing seasons in the same stands from which fungi and litter were collected. Fungal communities differed by inoculum origin. Seedlings grown with fungi collected from beetle-killed stands had lower monoterpene concentrations and fewer monoterpene compounds present compared with seedlings grown with fungi collected from undisturbed stands. Litter affected neither monoterpenes nor seedling growth. Seedling survival in the field was lower in beetle-killed than in undisturbed stands. We demonstrate that stand mortality caused by prior beetle attacks of mature pines have cascading effects on seedling secondary chemistry, growth and survival, probably mediated through effects on below-ground mutualisms.

  14. Drivers of seedling survival in a temperate forest and their relative importance at three stages of succession.

    PubMed

    Yan, Yan; Zhang, Chunyu; Wang, Yuxi; Zhao, Xiuhai; von Gadow, Klaus

    2015-10-01

    Negative density dependence (NDD) and niche partitioning have been perceived as important mechanisms for the maintenance of species diversity. However, little is known about their relative contributions to seedling survival. We examined the effects of biotic and abiotic neighborhoods and the variations of biotic neighborhoods among species using survival data for 7503 seedlings belonging to 22 woody species over a period of 2 years in three different forest types, a half-mature forest (HF), a mature forest (MF), and an old-growth forest (OGF), each of these representing a specific successional stage in a temperate forest ecosystem in northeastern China. We found a convincing evidence for the existence of NDD in temperate forest ecosystems. The biotic and abiotic variables affecting seedlings survival change with successional stage, seedling size, and age. The strength of NDD for the smaller (<20 cm in height) and younger seedlings (1-2 years) as well as all seedlings combined varies significantly among species. We found no evidence that a community compensatory trend (CCT) existed in our study area. The results of this study demonstrate that the relative importance of NDD and habitat niche partitioning in driving seedling survival varies with seedling size and age and that the biotic and abiotic factors affecting seedlings survival change with successional stage. PMID:26664679

  15. Root growth, secondary root formation and root gravitropism in carotenoid-deficient seedlings of Zea mays L

    NASA Technical Reports Server (NTRS)

    Ng, Y. K.; Moore, R.

    1985-01-01

    The effect of ABA on root growth, secondary-root formation and root gravitropism in seedlings of Zea mays was investigated by using Fluridone-treated seedlings and a viviparous mutant, both of which lack carotenoids and ABA. Primary roots of seedlings grown in the presence of Fluridone grew significantly slower than those of control (i.e. untreated) roots. Elongation of Fluridone-treated roots was inhibited significantly by the exogenous application of 1 mM ABA. Exogenous application of 1 micromole and 1 nmole ABA had either no effect or only a slight stimulatory effect on root elongation, depending on the method of application. The absence of ABA in Fluridone-treated plants was not an important factor in secondary-root formation in seedlings less than 9-10 d old. However, ABA may suppress secondary-root formation in older seedlings, since 11-d-old control seedlings had significantly fewer secondary roots than Fluridone-treated seedlings. Roots of Fluridone-treated and control seedlings were graviresponsive. Similar data were obtained for vp-9 mutants of Z. mays, which are phenotypically identical to Fluridone-treated seedlings. These results indicate that ABA is necessary for neither secondary-root formation nor for positive gravitropism by primary roots.

  16. Development of ectomycorrhizae on containerized sweet birch and European alder seedlings for planting on low quality sites

    SciTech Connect

    Walker, R.F.; West, D.C.; McLaughlin, S.B.

    1982-01-01

    A study was initiated to assess the potential of Pisolithus tinctorius as an ectomycorrhizal associate of containerized sweet birch (Betula lenta) and European alder (Alnus glutinosa) seedlings and to determine the effect of this fungal symbiont on seedling growth. In a test of sweet birch and European alder grown in Leach tubes, P. tinctorius formed abundant ectomycorrhizae on sweet birch when introduced via a vegetative mycelial inoculum. Cenococcum geophilum, originating from sclerotia present in the potting medium, and Thelephora terrestris, introduced via wind-borne propagules, formed ectomycorrhizae on the sweet birch seedlings inoculated with P. tinctorius and on the sweet birch control seedlings. C. geophilum also formed ectomycorrhizae on the inoculated and control European alder seedlings, but an inoculation with P. tinctorius did not result in the formation of P. tinctorius ectomycorrhizae on this host. Sweet birch seedlings infected with P. tinctorius had a greater dry weight, height, root collar diameter, and volume and a lower shoot/root ratio than the sweet birch control seedlings, and European alder seedlings with abundant C. geophilum ectomycorrhizae exhibited a similar improvement in growth in comparison with European alder with lesser C. geophilum infections. The inoculation of containerized sweet birch and European alder seedlings in the nursery with the appropriate ectomycorrhizal symbiont may facilitate the establishment of these species on harsh sites such as surface mine spoils. 57 references, 3 tables.

  17. The role of seedling recruitment from juvenile populations of Carex brevicuspis (Cyperaceae) at the Dongting Lake wetlands, China.

    PubMed

    Deng, Zheng-miao; Chen, Xin-sheng; Xie, Yong-hong; Xie, Ya-jun; Hou, Zhi-yong; Li, Feng

    2015-03-02

    Seedlings and vegetative ramets may contribute differentially to the recruitment of clonal populations in different growth phases, but this has rarely been investigated. In this study, we quantified the number and survivorship of seedlings and vegetative ramets monthly in juvenile and mature populations of Carex brevicuspis. During the first growing season after flooding (from October to January), 9 seedlings m(-2) (13% of all established shoots) were found in juvenile populations, while no seedlings were found in mature populations. During the second growing season before flooding (from February to May), no new seedling recruits were found either in juvenile or in mature populations. All shoots of seedlings were withered during the dormant season (January and February), but 62.5% seedlings could produce vegetative ramets in the following growing season. During the dormant season, all the early emerging ramets (sprouted in October) withered, but the later emerging ones (sprouted in November and December) survived in both mature and juvenile populations. These results indicated that seedling recruitment was only apparent in juvenile populations of C. brevicuspis. The genetic diversity in mature C. brevicuspis populations may be established in juvenile populations by seedling recruitment, and sustained in mature populations by vegetative reproduction.

  18. Involvement of gibberellins in expression of a cysteine proteinase (SH-EP) in cotyledons of Vigna mungo seedlings.

    PubMed

    Taneyama, M; Okamoto, T; Yamane, H; Minamikawa, T

    2001-11-01

    The expression of a papain-type proteinase, designated SH-EP, in cotyledons of Vigna mungo seedlings has been shown to require some factors in the embryonic axes. Gibberellin A1 (GA(1)) and GA(20) were identified by GC-MS in embryonic axes of V. mungo seedlings. The level of accumulation of SH-EP in cotyledons of V. mungo seedlings was greatly reduced by treatment of the seeds with uniconazole-P, an inhibitor for GA biosynthesis. The reduced level of accumulation of SH-EP in cotyledons by uniconazole-P was recovered by exogenous application of GA(1) and GA(20) to the seedlings.

  19. Basal transcription factor 3 plays an important role in seed germination and seedling growth of rice.

    PubMed

    Wang, Wenyi; Xu, Mengyun; Wang, Ya; Jamil, Muhammad

    2014-01-01

    BTF3 has been recognized to be involved in plant growth and development. But its function remains mostly unknown during seed germination and seedling stage. Here, we have analyzed OsBTF3-related sequences in Oryza sativa L. subspecies, japonica, which resembles with the conserved domain of a nascent polypeptide associated complex (NAC) with different homologs of OsBTF3 and human BTF3. Inhibition of Osj10gBTF3 has led to considerable morphological changes during seed germination and seedling growth. Germination percentage was not influenced by the application of GA3, ABA, and NaCl but all concentrations caused wild-type (WT) seeds to germinate more rapidly than the RNAi (Osj10gBTF3 (Ri)) transgenic lines. Seedling inhibition was more severe in the Osj10gBTF3 (Ri) seedlings compared with their WT especially when treated with 100 or 200 μM GA3; 50% reduction in shoots was observed in Osj10gBTF3 (Ri) seedlings. The expression of Osj3g1BTF3, Osj3g2BTF3 and Osj10gBTF3 was primarily constitutive and generally modulated by NaCl, ABA, and GA3 stresses in both Osj10gBTF3 (Ri) lines and WT at the early seedling stage, suggesting that Osj3g1BTF3 and Osj10gBTF3 are much similar but different from Osj3g2BTF3 in biological function. These results show that OsBTF3 plays an important role in seed germination and seedling growth gives a new perception demonstrating that more multifaceted regulatory functions are linked with BTF3 in plants.

  20. Salinity and light interactively affect neotropical mangrove seedlings at the leaf and whole plant levels.

    PubMed

    López-Hoffman, Laura; Anten, Niels P R; Martínez-Ramos, Miguel; Ackerly, David D

    2007-01-01

    We have studied the interactive effects of salinity and light on Avicennia germinans mangrove seedlings in greenhouse and field experiments. We hypothesized that net photosynthesis, growth, and survivorship rates should increase more with an increase in light availability for plants growing at low salinity than for those growing at high salinity. This hypothesis was supported by our results for net photosynthesis and growth. Net daily photosynthesis did increase more with increasing light for low-salinity plants than for high-salinity plants. Stomatal conductance, leaf-level transpiration, and internal CO(2) concentrations were lower at high than at low salinity. At high light, the ratio of leaf respiration to assimilation was 2.5 times greater at high than at low salinity. Stomatal limitations and increased respiratory costs may explain why, at high salinity, seedlings did not respond to increased light availability with increased net photosynthesis. Seedling mass and growth rates increased more with increasing light availability at low than at high salinity. Ratios of root mass to leaf mass were higher at high salinity, suggesting that either water or nutrient limitations may have limited seedling growth at high salinity in response to increasing light. The interactive effects of salinity and light on seedling size and growth rates observed in the greenhouse were robust in the field, despite the presence of other factors in the field--such as inundation, nutrient gradients, and herbivory. In the field, seedling survivorship was higher at low than at high salinity and increased with light availability. Interestingly, the positive effect of light on seedling survivorship was stronger at high salinity, indicating that growth and survivorship rates are decoupled. In general, this study demonstrates that environmental effects at the leaf-level also influence whole plant growth in mangroves.

  1. Sensitivity of cold acclimation to elevated autumn temperature in field-grown Pinus strobus seedlings

    PubMed Central

    Chang, Christine Y.; Unda, Faride; Zubilewich, Alexandra; Mansfield, Shawn D.; Ensminger, Ingo

    2015-01-01

    Climate change will increase autumn air temperature, while photoperiod decrease will remain unaffected. We assessed the effect of increased autumn air temperature on timing and development of cold acclimation and freezing resistance in Eastern white pine (EWP, Pinus strobus) under field conditions. For this purpose we simulated projected warmer temperatures for southern Ontario in a Temperature Free-Air-Controlled Enhancement (T-FACE) experiment and exposed EWP seedlings to ambient (Control) or elevated temperature (ET, +1.5°C/+3°C during day/night). Photosynthetic gas exchange, chlorophyll fluorescence, photoprotective pigments, leaf non-structural carbohydrates (NSC), and cold hardiness were assessed over two consecutive autumns. Nighttime temperature below 10°C and photoperiod below 12 h initiated downregulation of assimilation in both treatments. When temperature further decreased to 0°C and photoperiod became shorter than 10 h, downregulation of the light reactions and upregulation of photoprotective mechanisms occurred in both treatments. While ET seedlings did not delay the timing of the downregulation of assimilation, stomatal conductance in ET seedlings was decreased by 20–30% between August and early October. In both treatments leaf NSC composition changed considerably during autumn but differences between Control and ET seedlings were not significant. Similarly, development of freezing resistance was induced by exposure to low temperature during autumn, but the timing was not delayed in ET seedlings compared to Control seedlings. Our results indicate that EWP is most sensitive to temperature changes during October and November when downregulation of photosynthesis, enhancement of photoprotection, synthesis of cold-associated NSCs and development of freezing resistance occur. However, we also conclude that the timing of the development of freezing resistance in EWP seedlings is not affected by moderate temperature increases used in our field

  2. Hydrogen sulphide improves adaptation of Zea mays seedlings to iron deficiency.

    PubMed

    Chen, Juan; Wu, Fei-Hua; Shang, Yu-Ting; Wang, Wen-Hua; Hu, Wen-Jun; Simon, Martin; Liu, Xiang; Shangguan, Zhou-Ping; Zheng, Hai-Lei

    2015-11-01

    Hydrogen sulphide (H2S) is emerging as a potential molecule involved in physiological regulation in plants. However, whether H2S regulates iron-shortage responses in plants is largely unknown. Here, the role of H2S in modulating iron availability in maize (Zea mays L. cv Canner) seedlings grown in iron-deficient culture solution is reported. The main results are as follows: Firstly, NaHS, a donor of H2S, completely prevented leaf interveinal chlorosis in maize seedlings grown in iron-deficient culture solution. Secondly, electron micrographs of mesophyll cells from iron-deficient maize seedlings revealed plastids with few photosynthetic lamellae and rudimentary grana. On the contrary, mesophyll chloroplasts appeared completely developed in H2S-treated maize seedlings. Thirdly, H2S treatment increased iron accumulation in maize seedlings by changing the expression levels of iron homeostasis- and sulphur metabolism-related genes. Fourthly, phytosiderophore (PS) accumulation and secretion were enhanced by H2S treatment in seedlings grown in iron-deficient solution. Indeed, the gene expression of ferric-phytosiderophore transporter (ZmYS1) was specifically induced by iron deficiency in maize leaves and roots, whereas their abundance was decreased by NaHS treatment. Lastly, H2S significantly enhanced photosynthesis through promoting the protein expression of ribulose-1,5-bisphosphate carboxylase large subunit (RuBISCO LSU) and phosphoenolpyruvate carboxylase (PEPC) and the expression of genes encoding RuBISCO large subunit (RBCL), small subunit (RBCS), D1 protein (psbA), and PEPC in maize seedlings grown in iron-deficient solution. These results indicate that H2S is closely related to iron uptake, transport, and accumulation, and consequently increases chlorophyll biosynthesis, chloroplast development, and photosynthesis in plants.

  3. Early selection of black spruce seedlings and global change: Which genotypes should we favor

    SciTech Connect

    Wang, Z.M.; Lechowicz, M.J.; Potvin, C. )

    1994-08-01

    The effects of both soil fertility and predicted changes in climate on growth of different families of black spruce, Picea mariana (Mill.) B.S.P., during the first growing season was studied. The results were used to examine whether reforestation programs should consider changing their preferred family lines in anticipation of altered performance given global climate change. We grew seedlings of 16 open-pollinated maternal families of black spruce under phytotron conditions simulating present and mid-21st century climatic conditions during the growing season. The realistic, simulated future climate included both elevated CO[sub 2] levels and seasonally appropriate increases in mean daily temperature. To explore the dependence of climatic responses on site quality, seedlings were irrigated with solutions having either 5 or 100 mg/L of nitrogen. The lower nitrogen level represents a poor site for black spruce growth and survival, but the higher level provides ample nitrogen. We also recorded seed size for each seedling to evaluate the degree to which maternal investments might buffer responses to future climate and fertility during the first year on the seedbed. Seedling survival and growth increase both under the future climate regime and with nitrogen fertilization. The two factors interacted synergistically, with nitrogen enrichment significantly enhancing the positive effects of the future climate regime. Nitrogen-poor conditions, however, did not preclude a positive seedling response to the future climate. Our results indicate that seedling survival and height growth are highly dependent upon initial seed mass, seed germination, and seedling, survival and growth, but their relative performances did not vary significantly among the treatments. These results suggest that black spruce families selected for rapid growth under present conditions will also do well in the future, at least in terms of early establishment and performance on sites regenerated by seeding.

  4. [Effects of eutrophic nitrogen nutrition on carbon balance capacity of Liquidambar formosana seedlings under low light].

    PubMed

    Wang, Chuan-Hua; Li, Jun-Qing; Yang, Ying

    2011-12-01

    To investigate the effects of atmospheric nitrogen deposition on the seedlings regeneration of Liquidambar formosana, a greenhouse experiment was conducted, in which, the low light- and nitrogen supplies were controlled similar to those in typical L. formosana secondary forests, with the effects of different light- and nitrogen supply on the L. formosana seedlings survival, leaf functional traits, biomass allocation, and gas exchange studied. The whole plant light compensation point (LCP(whoIe-plant)) of the seedlings was estimated with a whole plant carbon balance model, and then compared with the understory photosynthetic active radiance (PAR) of the typical secondary forests. Under 3.0% and 6.0% of full sunlight, eutrophic nitrogen supply led to a decrease of seedlings survival (shade tolerance) and specific leaf area (SLA), but had no obvious effects on the seedlings biomass allocation. At eutrophic nitrogen supply, light intensity had significant effects on the leaf area based maximum assimilation rate, whereas increasing nitrogen supply under low light induced the increase of leaf mass based dark respiration rate. Both light intensity and nitrogen supply had significant effects on the mass based leaf respiration rate, and the interaction of light and nitrogen had significant effects on the mass based stem respiration rate. Increasing nitrogen supply increased the LCP(wholeplant), under 3.0%, 6.0%, and 12.0% of full sunlight, but decreased the LCP(whoIe-plant) under 25.0% of full sunlight. The decrease of the seedlings shade tolerance induced by the increasing nitrogen supply under low light was correlated with the variations of the seedlings carbon balance capacity. Under the background of elevated atmospheric nitrogen deposition, the maintenance of L. formosana populations in China would more depend on disturbances and gap regeneration, and the population dynamics would be deeply affected.

  5. Seedling establishment in a masting desert shrub parallels the pattern for forest trees

    NASA Astrophysics Data System (ADS)

    Meyer, Susan E.; Pendleton, Burton K.

    2015-05-01

    The masting phenomenon along with its accompanying suite of seedling adaptive traits has been well studied in forest trees but has rarely been examined in desert shrubs. Blackbrush (Coleogyne ramosissima) is a regionally dominant North American desert shrub whose seeds are produced in mast events and scatter-hoarded by rodents. We followed the fate of seedlings in intact stands vs. small-scale disturbances at four contrasting sites for nine growing seasons following emergence after a mast year. The primary cause of first-year mortality was post-emergence cache excavation and seedling predation, with contrasting impacts at sites with different heteromyid rodent seed predators. Long-term establishment patterns were strongly affected by rodent activity in the weeks following emergence. Survivorship curves generally showed decreased mortality risk with age but differed among sites even after the first year. There were no detectable effects of inter-annual precipitation variability or site climatic differences on survival. Intraspecific competition from conspecific adults had strong impacts on survival and growth, both of which were higher on small-scale disturbances, but similar in openings and under shrub crowns in intact stands. This suggests that adult plants preempted soil resources in the interspaces. Aside from effects on seedling predation, there was little evidence for facilitation or interference beneath adult plant crowns. Plants in intact stands were still small and clearly juvenile after nine years, showing that blackbrush forms cohorts of suppressed plants similar to the seedling banks of closed forests. Seedling banks function in the absence of a persistent seed bank in replacement after adult plant death (gap formation), which is temporally uncoupled from masting and associated recruitment events. This study demonstrates that the seedling establishment syndrome associated with masting has evolved in desert shrublands as well as in forests.

  6. Hydrogen sulphide improves adaptation of Zea mays seedlings to iron deficiency

    PubMed Central

    Chen, Juan; Wu, Fei-Hua; Shang, Yu-Ting; Wang, Wen-Hua; Hu, Wen-Jun; Simon, Martin; Liu, Xiang; Shangguan, Zhou-Ping; Zheng, Hai-Lei

    2015-01-01

    Hydrogen sulphide (H2S) is emerging as a potential molecule involved in physiological regulation in plants. However, whether H2S regulates iron-shortage responses in plants is largely unknown. Here, the role of H2S in modulating iron availability in maize (Zea mays L. cv Canner) seedlings grown in iron-deficient culture solution is reported. The main results are as follows: Firstly, NaHS, a donor of H2S, completely prevented leaf interveinal chlorosis in maize seedlings grown in iron-deficient culture solution. Secondly, electron micrographs of mesophyll cells from iron-deficient maize seedlings revealed plastids with few photosynthetic lamellae and rudimentary grana. On the contrary, mesophyll chloroplasts appeared completely developed in H2S-treated maize seedlings. Thirdly, H2S treatment increased iron accumulation in maize seedlings by changing the expression levels of iron homeostasis- and sulphur metabolism-related genes. Fourthly, phytosiderophore (PS) accumulation and secretion were enhanced by H2S treatment in seedlings grown in iron-deficient solution. Indeed, the gene expression of ferric-phytosiderophore transporter (ZmYS1) was specifically induced by iron deficiency in maize leaves and roots, whereas their abundance was decreased by NaHS treatment. Lastly, H2S significantly enhanced photosynthesis through promoting the protein expression of ribulose-1,5-bisphosphate carboxylase large subunit (RuBISCO LSU) and phosphoenolpyruvate carboxylase (PEPC) and the expression of genes encoding RuBISCO large subunit (RBCL), small subunit (RBCS), D1 protein (psbA), and PEPC in maize seedlings grown in iron-deficient solution. These results indicate that H2S is closely related to iron uptake, transport, and accumulation, and consequently increases chlorophyll biosynthesis, chloroplast development, and photosynthesis in plants. PMID:26208645

  7. Effects of methyl jasmonate on accumulation of flavonoids in seedlings of common buckwheat (Fagopyrum esculentum Moench).

    PubMed

    Horbowicz, M; Wiczkowski, W; Koczkodaj, Danuta; Saniewski, M

    2011-09-01

    The jasmonates, which include jasmonic acid and its methyl ester (MJ), play a central role in regulating the biosynthesis of many secondary metabolites, including flavonoids, and also are signaling molecules in environmental stresses. Synthesis of anthocyanins pigments is a final part of flavonoids pathway route. Accumulation of the pigments in young seedlings is stimulated by various environmental stresses, such as high-intensity light, wounding, pathogen attack, drought, sugar and nutrient deficiency. The anthocyanins take part in defense system against excess of light and UV-B light, and therefore it is probably main reason why young plant tissues accumulate enlarged levels of the pigments. The effects of exogenously applied MJ on level of anthocyanins, glycosides of apigenin, luteolin, quercetin and proanthocyanidins in seedlings of common buckwheat (Fagopyrum esculentum Moench) were studied. MJ decreased contents of all the found cyanidin glycosides and its aglycone in hypocotyls of buckwheat seedlings. However contents of particular anthocyanins in cotyledons of buckwheat seedlings treated with the plant hormone were not significantly different from the control. Applied doses of MJ did not affect levels of quercetin, apigenin and luteolin glycosides in the analyzed parts of buckwheat seedlings: cotyledons and hypocotyls. On the other hand, treatment of buckwheat seedlings with MJ clearly stimulated of proanthocyanidins biosynthesis in hypocotyls. We suggest that methyl jasmonate induces in hypocotyls of buckwheat seedlings the leucocyanidin reductase or anthocyanidin reductase, possible enzymes in proanthocyanidins synthesis, and/or inhibits anthocyanidin synthase, which transforms leucocyanidin into cyanidin. According to our knowledge this is the first report regarding the effect of methyl jasmonate on enhancing the accumulation of proanthocyanidins in cultivated plants.

  8. Physiology, morphology, and ozone uptake of leaves of black cherry seedlings, saplings, and canopy trees.

    PubMed

    Fredericksen, T S; Joyce, B J; Skelly, J M; Steiner, K C; Kolb, T E; Kouterick, K B; Savage, J E; Snyder, K R

    1995-01-01

    Patterns of ozone uptake were related to physiological, morphological, and phenological characteristics of different-sized black cherry trees (Prunus serotina Ehrh.) at a site in central Pennsylvania. Calculated ozone uptake differed among open-grown seedlings, forest gap saplings, and canopy trees and between leaves in the upper and lower crown of saplings and canopy trees. On an instantaneous basis, seedling leaves had the greatest ozone uptake rates of all tree size classes due to greater stomatal conductance and higher concentrations of ozone in their local environment. A pattern of higher stomatal conductance of seedlings was consistent with higher incident photosynthetically-active radiation, stomatal density, and predawn xylem water potentials for seedlings relative to larger trees. However, seedlings displayed an indeterminate pattern of shoot growth, with the majority of their leaves produced after shoot growth had ceased for canopy and sapling trees. Full leaf expansion occurred by mid-June for sapling and canopy trees. Because many of their leaves were exposed to ozone for only part of the growing season, seedlings had a lower relative exposure over the course of the growing season, and subsequently lower cumulative uptake, of ozone than canopy trees and a level of uptake similar to upper canopy leaves of saplings. Visible injury symptoms were not always correlated with patterns in ozone uptake. Visible symptoms were more apparent on seedling leaves in concurrence with their high instantaneous uptake rates. However, visible injury was more prevalent on leaves in the lower versus upper crown of canopy trees and saplings, even though lower crown leaves had less ozone uptake. Lower crown leaves may be more sensitive to ozone per unit uptake than upper crown leaves because of their morphology. In addition, the lower net carbon uptake of lower crown leaves may limit repair and anti-oxidant defense processes. PMID:15091517

  9. Growth, water relations and photosynthesis of seedlings and resprouts after fire

    NASA Astrophysics Data System (ADS)

    Clemente, Adelaide S.; Rego, Francisco C.; Correia, Otília A.

    2005-05-01

    Seasonal patterns of growth, water relations, photosynthesis and leaf characteristics were compared between obligate seeders ( Cistus monspeliensis and Cistus ladanifer) and resprouters ( Arbutus unedo and Pistacia lentiscus) from the first to the second year after fire. We hypothesized that seedlings would be more water-limited than resprouts due to their shallower root systems. Regarding water use strategies, Cistus species are drought semi-deciduous and A. unedo and P. lentiscus are evergreen sclerophylls, therefore, comparisons were based on the relative deviation from mature conspecific plants. Seedlings and resprouts had higher shoot elongation and leaf production than mature plants, and over an extended period. Differences from mature plants were larger in resprouts, with two-fold transpiration, leaf conductance and photosynthesis in late spring/early summer. Seedlings of C. monspeliensis exhibited higher transpiration and leaf conductance than mature plants, while those of C. ladanifer only exhibited higher water potential. Growth increments and ameliorated water relations and photosynthesis after fire were attributed to an increase in water and nutrient availability. The small differences in water relations and photosynthesis between seedlings and mature conspecifics are in accordance with the prediction of seedlings experiencing higher water limitation than resprouts. We attribute these results to differences in root systems: resprouters benefited from an increase in root/shoot ratios and the presence of deep roots whereas Cistus seedlings relied on very shallow roots, which cannot provide assess to deep water during summer. Nevertheless, seedlings did not show evidence of experiencing a more severe water limitation than mature conspecifics, which we attributed to the presence of efficient mechanisms of avoiding and tolerating water stress. The results are discussed in relation to post-fire demography of seeders and resprouters in Mediterranean

  10. Fertility-dependent effects of ectomycorrhizal fungal communities on white spruce seedling nutrition.

    PubMed

    Smith, Alistair J H; Potvin, Lynette R; Lilleskov, Erik A

    2015-11-01

    Ectomycorrhizal fungi (EcMF) typically colonize nursery seedlings, but nutritional and growth effects of these communities are only partly understood. To examine these effects, Picea glauca seedlings collected from a tree nursery naturally colonized by three dominant EcMF were divided between fertilized and unfertilized treatments. After one growing season seedlings were harvested, ectomycorrhizas identified using DNA sequencing, and seedlings analyzed for leaf nutrient concentration and content, and biomass parameters. EcMF community structure-nutrient interactions were tested using nonmetric multidimensional scaling (NMDS) combined with vector analysis of foliar nutrients and biomass. We identified three dominant species: Amphinema sp., Atheliaceae sp., and Thelephora terrestris. NMDS + envfit revealed significant community effects on seedling nutrition that differed with fertilization treatment. PERMANOVA and regression analyses uncovered significant species effects on host nutrient concentration, content, and stoichiometry. Amphinema sp. had a significant positive effect on phosphorus (P), calcium and zinc concentration, and P content; in contrast, T. terrestris had a negative effect on P concentration. In the unfertilized treatment, percent abundance of the Amphinema sp. negatively affected foliar nitrogen (N) concentration but not content, and reduced foliar N/P. In fertilized seedlings, Amphinema sp. was positively related to foliar concentrations of N, magnesium, and boron, and both concentration and content of manganese, and Atheliaceae sp. had a negative relationship with P content. Findings shed light on the community and species effects on seedling condition, revealing clear functional differences among dominants. The approach used should be scalable to explore function in more complex communities composed of unculturable EcMF. PMID:25904341

  11. Recruitment dynamics in a rainforest seedling community: context-independent impact of a keystone consumer.

    PubMed

    Green, Peter T; O'Dowd, Dennis J; Lake, P S

    2008-05-01

    The influence of keystone consumers on community structure is frequently context-dependent; the same species plays a central organising role in some situations, but not others. On Christmas Island, in the Indian Ocean, a single species of omnivorous land crab, Gecarcoidea natalis, dominates the forest floor across intact rainforest. We hypothesised that this consumer plays a key role in regulating seedling recruitment and in controlling litter dynamics on the island, independent of the type of vegetation in which it occurred. To test this hypothesis, we conducted crab exclusion experiments in two forest types on the island and followed the dynamics of seedling recruitment and litter processing for six years. To determine if these effects were likely to be general across the island, we compared land crab densities and seedling abundance and diversity at ten sites across island rainforest. Surveys across island rainforest showed that seedlings of species susceptible to predation by land crabs are consistently rare. Abundance and diversity of these species were negatively correlated to red crab abundance. Although red land crabs may be important determinants of seedling recruitment to the overstorey, differences in overstorey and seedling composition at the sites suggests that recruitment of vulnerable trees still occurs at a temporal scale exceeding that of this study. These "windows" of recruitment may be related to infrequent events that reduce the effects of land crabs. Our results suggest that unlike the context dependence of most keystone consumers in continental systems, a single consumer, the red land crab, consistently controls the dynamics of seedling recruitment across this island rainforest. PMID:18320231

  12. Short dry spells in the wet season increase mortality of tropical pioneer seedlings.

    PubMed

    Engelbrecht, Bettina M J; Dalling, James W; Pearson, Timothy R H; Wolf, Robert L; Gálvez, David A; Koehler, Tobias; Tyree, Melvin T; Kursar, Thomas A

    2006-06-01

    Variation in plant species performance in response to water availability offers a potential axis for temporal and spatial habitat partitioning and may therefore affect community composition in tropical forests. We hypothesized that short dry spells during the wet season are a significant source of mortality for the newly emerging seedlings of pioneer species that recruit in treefall gaps in tropical forests. An analysis of a 49-year rainfall record for three forests across a rainfall gradient in central Panama confirmed that dry spells of > or = 10 days during the wet season occur on average once a year in a deciduous forest, and once every other year in a semi-deciduous moist and an evergreen wet forest. The effect of wet season dry spells on the recruitment of pioneers was investigated by comparing seedling survival in rain-protected dry plots and irrigated control plots in four large artificially created treefall gaps in a semi-deciduous tropical forest. In rain-protected plots surface soil layers dried rapidly, leading to a strong gradient in water potential within the upper 10 cm of soil. Seedling survival for six pioneer species was significantly lower in rain-protected than in irrigated control plots after only 4 days. The strength of the irrigation effect differed among species, and first became apparent 3-10 days after treatments started. Root allocation patterns were significantly, or marginally significantly, different between species and between two groups of larger and smaller seeded species. However, they were not correlated with seedling drought sensitivity, suggesting allocation is not a key trait for drought sensitivity in pioneer seedlings. Our data provide strong evidence that short dry spells in the wet season differentially affect seedling survivorship of pioneer species, and may therefore have important implications to seedling demography and community dynamics.

  13. Recruitment dynamics in a rainforest seedling community: context-independent impact of a keystone consumer.

    PubMed

    Green, Peter T; O'Dowd, Dennis J; Lake, P S

    2008-05-01

    The influence of keystone consumers on community structure is frequently context-dependent; the same species plays a central organising role in some situations, but not others. On Christmas Island, in the Indian Ocean, a single species of omnivorous land crab, Gecarcoidea natalis, dominates the forest floor across intact rainforest. We hypothesised that this consumer plays a key role in regulating seedling recruitment and in controlling litter dynamics on the island, independent of the type of vegetation in which it occurred. To test this hypothesis, we conducted crab exclusion experiments in two forest types on the island and followed the dynamics of seedling recruitment and litter processing for six years. To determine if these effects were likely to be general across the island, we compared land crab densities and seedling abundance and diversity at ten sites across island rainforest. Surveys across island rainforest showed that seedlings of species susceptible to predation by land crabs are consistently rare. Abundance and diversity of these species were negatively correlated to red crab abundance. Although red land crabs may be important determinants of seedling recruitment to the overstorey, differences in overstorey and seedling composition at the sites suggests that recruitment of vulnerable trees still occurs at a temporal scale exceeding that of this study. These "windows" of recruitment may be related to infrequent events that reduce the effects of land crabs. Our results suggest that unlike the context dependence of most keystone consumers in continental systems, a single consumer, the red land crab, consistently controls the dynamics of seedling recruitment across this island rainforest.

  14. Salt stress-induced seedling growth inhibition coincides with differential distribution of serotonin and melatonin in sunflower seedling roots and cotyledons.

    PubMed

    Mukherjee, Soumya; David, Anisha; Yadav, Sunita; Baluška, František; Bhatla, Satish Chander

    2014-12-01

    Indoleamines regulate a variety of physiological functions during the growth, morphogenesis and stress-induced responses in plants. Present investigations report the effect of NaCl stress on endogenous serotonin and melatonin accumulation and their differential spatial distribution in sunflower (Helianthus annuus) seedling roots and cotyledons using HPLC and immunohistochemical techniques, respectively. Exogenous serotonin and melatonin treatments lead to variable effect on hypocotyl elongation and root growth under NaCl stress. NaCl stress for 48 h increases endogenous serotonin and melatonin content in roots and cotyledons, thus indicating their involvement in salt-induced long distance signaling from roots to cotyledons. Salt stress-induced accumulation of serotonin and melatonin exhibits differential distribution in the vascular bundles and cortex in the differentiating zones of the primary roots, suggesting their compartmentalization in the growing region of roots. Serotonin and melatonin accumulation in oil body rich cells of salt-treated seedling cotyledons correlates with longer retention of oil bodies in the cotyledons. Present investigations indicate the possible role of serotonin and melatonin in regulating root growth during salt stress in sunflower. Effect of exogenous serotonin and melatonin treatments (15 μM) on sunflower seedlings grown in the absence or presence of 120 mM NaCl substantiates their role on seedling growth. Auxin and serotonin biosynthesis are coupled to the common precursor tryptophan. Salt stress-induced root growth inhibition, thus pertains to partial impairment of auxin functions caused by increased serotonin biosynthesis. In seedling cotyledons, NaCl stress modulates the activity of N-acetylserotonin O-methyltransferase (HIOMT; EC 2.1.1.4), the enzyme responsible for melatonin biosynthesis from N-acetylserotonin.

  15. Endoreduplication in the germinating embryo and young seedling is related to the type of seedling establishment but is not coupled with superoxide radical accumulation.

    PubMed

    Rewers, Monika; Sliwinska, Elwira

    2014-08-01

    During germination, the embryo axis elongates and the radicle emerges through the surrounding structures of the seed. However, this elongation is not even along the axis, and it has been suggested that the region responsible for radicle protrusion is related to the type of subsequent seedling establishment. Eleven epigeal- and five hypogeal-type species were selected to study endoreduplication, a process coupled with cell elongation, in the radicle, hypocotyl-radicle transition zone, hypocotyl, and cotyledons of dry and germinating seeds, and in seedlings after radicle protrusion. Flow cytometry was used to establish the proportions of nuclei with different DNA contents, the mean C-value, and the (Σ>2C)/2C ratio. Additionally, a nitroblue tetrazolium chloride test was applied to the embryos/seedlings in the dry state and during and after germination to localize superoxide radical (O2(•-)) accumulation, which has been suggested to play a role in cell elongation. Endoreduplication intensity varied in different species, in the embryo/seedling regions, and with the type of seedling establishment. In most of the cases, it was highest in the transition zone of epigeal species and in the hypocotyl in hypogeal species. O2(•-) was invariably produced during germination in the radicle, and additionally in the transition zone at the time of radicle protrusion; thus, it was not coupled with endoreduplication, and most probably played a role in defence against biotic and abiotic environmental stresses. These results provide information to aid in the selection of the most suitable plant material for molecular research on germination and for monitoring seed priming.

  16. Development of Enzymes in the Cotyledons of Watermelon Seedlings 1

    PubMed Central

    Kagawa, T.; McGregor, D. I.; Beevers, Harry

    1973-01-01

    Changes in hypocotyl length, cotyledon weight, lipid content, chlorophyll content, and capacity for photosynthesis have been described in seedlings of Citrullus vulgaris, Schrad. (watermelon) growing at 30 C under various light treatments. Corresponding changes in the levels of 19 enzymes in the cotyledons are described, with particular emphasis on enzymes of microbodies, since during normal greening, enzymes of the glyoxysomes are lost and those of leaf peroxisomes appear. In complete darkness enzymes of the glyoxysomes reach a peak at 4 days and decline as the fat is depleted. Enzymes of mitochondria and of glycolytic pathways also peak at 4 to 5 days and either remain unchanged or decline to a lesser extent. Exposure to light at 4 days, when the cotyledons emerge, results in a selectively greater destruction of enzymes of the glyoxylate cycle; chlorophyll synthesis and capacity for photosynthesis increase in parallel, and there is a striking increase in the activities of chloroplast enzymes and in those of the leaf peroxisomes, hydroxypyruvate reductase and glycolate oxidase. The reciprocal changes in enzymes of the glyoxysomes and of leaf peroxisomes can be temporally dissociated, since even after 10 days in darkness, when malate synthetase and isocitrate lyase have reached very low levels, hydroxypyruvate reductase and glycolate oxidase increase strikingly on exposure to light and the cotyledons become photosynthetic. Furthermore, the parallel development of enzymes of leaf peroxisomes and functional chloroplasts is not immutable, since hydroxypyruvate reductase and glycolate oxidase activity can be elicited in darkness following a 5-minute exposure to light at day 4 while chlorophyll does not develop under these conditions. PMID:16658299

  17. Seedling Growth Strategies in Bauhinia Species: Comparing Lianas and Trees

    PubMed Central

    Cai, Zhi-Quan; Poorter, Lourens; Cao, Kun-Fang; Bongers, Frans

    2007-01-01

    Background and Aims Lianas are expected to differ from trees in their growth strategies. As a result these two groups of woody species will have different spatial distributions: lianas are more common in high light environments. This study determines the differences in growth patterns, biomass allocation and leaf traits in five closely related liana and tree species of the genus Bauhinia. Methods Seedlings of two light-demanding lianas (Bauhinia tenuiflora and B. claviflora), one shade-tolerant liana (B. aurea), and two light-demanding trees (B. purpurea and B. monandra) were grown in a shadehouse at 25 % of full sunlight. A range of physiological, morphological and biomass parameters at the leaf and whole plant level were compared among these five species. Key Results The two light-demanding liana species had higher relative growth rate (RGR), allocated more biomass to leaf production [higher leaf mass fraction (LMF) and higher leaf area ratio (LAR)] and stem mass fraction (SMF), and less biomass to the roots [root mass fraction (RMF)] than the two tree species. The shade-tolerant liana had the lowest RGR of all five species, and had a higher RMF, lower SMF and similar LMF than the two light-demanding liana species. The two light-demanding lianas had lower photosynthetic rates per unit area (Aarea) and similar photosynthetic rates per unit mass (Amass) than the trees. Across species, RGR was positively related to SLA, but not to LAR and Aarea. Conclusions It is concluded that the faster growth of light-demanding lianas compared with light-demanding trees is based on morphological parameters (SLA, LMF and LAR), and cannot be attributed to higher photosynthetic rates at the leaf level. The shade-tolerant liana exhibited a slow-growth strategy, compared with the light-demanding species. PMID:17720978

  18. Effects of O/sub 2/ concentration on rice seedlings

    SciTech Connect

    Alpi, A.; Beevers, H.

    1983-01-01

    The ability of rice, wheat, and oat seedlings to germinate and grow as the O/sub 2/ concentration was lowered to zero was compared. The germination of rice was completely unaffected by O/sub 2/ supply, whereas that of oats and wheat was strongly retarded at levels below 5% O/sub 2/. In contrast to the coleoptiles of oats and wheat and to roots of all three species where growth was progressively diminished as the O/sub 2/ concentration was lowered, that of the rice coleoptile was progressively increased. However, the dry weight and content of protein, sugars, and cellulose were all depressed in the rice coleoptile in anoxia, and the levels of several respiratory enzymes, particularly those of mitochondria, were also much lower than those of the coleoptiles grown in air. In 1% O/sub 2/, the growth of the rice coleoptile was similar to that in air. The effect of ethanol concentration on germination and growth of rice was measured. Coleoptile growth was reduced when the ethanol concentration exceeded 40 millimolarity, and root growth was somewhat more sensitive. Coleoptiles of all three species grown in air were transferred to N/sub 2/ and ethanol accumulation was measured over 24 hours. The rate of ethanol accumulation in oats was close to that in rice, and in all three species the amounts of ethanol lost to the surrounding medium were those expected from simple diffusion from the tissue. The ability of the rice coleoptile to grow in anoxia is apparently not due to a particularly low rate of ethanol formation or to unusual ethanol tolerance. Any explanation of the success of rice in anoxia must encompass the much lower rate of ATP synthesis than that in air and account for the biochemical deficiencies of the coleoptile.

  19. [Effects of sand burial on growth and physiological process of Agriophyllum squarrosum seedlings in Horqin Sand Land of Inner Mongolia, North China].

    PubMed

    Zhao, Ha-Lin; Qu, Hao; Zhou, Rui-Lian; Wang, Jin; Li, Jin; Yun, Jian-Ying

    2013-12-01

    In 2010-2011, a sand burial experiment was conducted on the Horqin Sand Land of Inner Mongolia to study the growth characteristics and physiological properties of Agriophyllum squarrosum seedlings under different depths of sand burial. The A. squarrosum seedlings had stronger tolerance against sand burial. The seedling growth could be severely inhibited when the burial depth exceeded seedling height, but some seedlings could still be survived when the burial depth exceeded 1.66 times of seedling height. When the burial depth did not exceed the seedling height, the seedling MDA content and membrane permeability had no significant change, but the lipid peroxidation was aggravated and the cell membrane was damaged with increasing burial depth. Under sand burial stress, the seedling SOD and POD activities and proline content increased significantly, while the seedling CAT activity and soluble sugar content deceased. Sand burial decreased the leaf photosynthetic area and damaged cell membrane, inducing the increase of seedling mortality and the inhibition of seedling growth. The increase of SOD and POD activities and proline content played a definite role in reducing the sand burial damage to A. squarrosum seedlings.

  20. Tolerance to Cadmium of Agave lechuguilla (Agavaceae) Seeds and Seedlings from Sites Contaminated with Heavy Metals

    PubMed Central

    Méndez-Hurtado, Alejandra; Rangel-Méndez, René; Flores, Joel

    2013-01-01

    We investigated if seeds of Agave lechuguilla from contaminated sites with heavy metals were more tolerant to Cd ions than seeds from noncontaminated sites. Seeds from a highly contaminated site (Villa de la Paz) and from a noncontaminated site (Villa de Zaragoza) were evaluated. We tested the effect of Cd concentrations on several ecophysiological, morphological, genetical, and anatomical responses. Seed viability, seed germination, seedling biomass, and radicle length were higher for the non-polluted site than for the contaminated one. The leaves of seedlings from the contaminated place had more cadmium and showed peaks attributed to chemical functional groups such as amines, amides, carboxyl, and alkenes that tended to disappear due to increasing the concentration of cadmium than those from Villa de Zaragoza. Malformed cells in the parenchyma surrounding the vascular bundles were found in seedlings grown with Cd from both sites. The leaves from the contaminated place showed a higher metallothioneins expression in seedlings from the control group than that of seedlings at different Cd concentrations. Most of our results fitted into the hypothesis that plants from metal-contaminated places do not tolerate more pollution, because of the accumulative effect that cadmium might have on them. PMID:24453802

  1. Carbon and nitrogen gain during the growth of orchid seedlings in nature.

    PubMed

    Stöckel, Marcus; Těšitelová, Tamara; Jersáková, Jana; Bidartondo, Martin I; Gebauer, Gerhard

    2014-04-01

    For germination and establishment, orchids depend on carbon (C) and nutrients supplied by mycorrhizal fungi. As adults, the majority of orchids then appear to become autotrophic. To compare the proportional C and nitrogen (N) gain from fungi in mycoheterotrophic seedlings and in adults, here we examined in the field C and N stable isotope compositions in seedlings and adults of orchids associated with ectomycorrhizal and saprotrophic fungi. Using a new highly sensitive approach, we measured the isotope compositions of seedlings and adults of four orchid species belonging to different functional groups: fully and partially mycoheterotrophic orchids associated with narrow or broad sets of ectomycorrhizal fungi, and two adult putatively autotrophic orchids associated exclusively with saprotrophic fungi. Seedlings of orchids associated with ectomycorrhizal fungi were enriched in (13) C and (15) N similarly to fully mycoheterotrophic adults. Seedlings of saprotroph-associated orchids were also enriched in (13) C and (15) N, but unexpectedly their enrichment was significantly lower, making them hardly distinguishable from their respective adult stages and neighbouring autotrophic plants. We conclude that partial mycoheterotrophy among saprotroph-associated orchids cannot be identified unequivocally based on C and N isotope compositions alone. Thus, partial mycoheterotrophy may be much more widely distributed among orchids than hitherto assumed. PMID:24444001

  2. Phloem transport velocity varies over time and among vascular bundles during early cucumber seedling development.

    PubMed

    Savage, Jessica A; Zwieniecki, Maciej A; Holbrook, N Michele

    2013-11-01

    We use a novel dye-tracing technique to measure in vivo phloem transport velocity in cucumber (Cucumis sativus) plants during early seedling development. We focus on seedlings because of their importance in plant establishment and because they provide a simple source and sink model of phloem transport. The dye-tracing method uses a photodiode to track the movement of a bleach front of fluorescent dye traveling in the phloem from the cotyledons (source) to the roots (sink). During early seedling development, phloem transport velocity in this direction can change 2-fold depending on vascular connectivity and the number of actively growing sinks. Prior to leaf expansion, vascular bundles attached to the first developing leaf demonstrate a decline in basipetal phloem transport that can be alleviated by the leaf's removal. At this stage, seedlings appear carbon limited and phloem transport velocity is correlated with cotyledon area, a pattern that is apparent both during cotyledon expansion and after source area manipulation. When the first leaf transitions to a carbon source, seedling growth rate increases and basipetal phloem transport velocity becomes more stable. Because bundles appear to operate autonomously, transport velocity can differ among vascular bundles. Together, these results demonstrate the dynamic and heterogeneous nature of phloem transport and underline the need for a better understanding of how changes in phloem physiology impact growth and allocation at this critical stage of development.

  3. Effects of tropospheric ozone on loblolly pine seedlings inoculated with root infecting ophiostomatoid fungi.

    PubMed

    Chieppa, Jeff; Chappelka, Art; Eckhardt, Lori

    2015-12-01

    Seedlings from four loblolly pine (Pinus taeda L.) families were exposed in open-top chambers to charcoal-filtered air (CF), non-filtered air (NF) or air amended with ozone to 2 times ambient (2×). Two of the families used were selected for their tolerance to fungi associated with Southern Pine Decline while two were selected for their susceptibility. Seedlings were treated with five inoculation treatments: no wound (NW), wound only (W), wound + media (WM), Grosmannia huntii (GH) and Leptographium terebrantis (LT). After 118 days of exposure (AOT40 = 31 ppm-hr(-1) for 2× ozone) seedling volume, dry matter, chlorophyll content, water potential and lesions were measured and analyzed using ANOVA procedures. Our results indicate that seedlings selected for their susceptibility to root infecting ophiostomatoid fungi were also more sensitive to ozone. Overall lesion length was greater on seedlings exposed to elevated ozone concentrations but was not specific to either root infecting ophiostomatoid fungi.

  4. Low root reserve accumulation during drought may lead to winter mortality in poplar seedlings.

    PubMed

    Galvez, David A; Landhäusser, S M; Tyree, M T

    2013-04-01

    Climate models suggest that more frequent drought events of greater severity and length, associated with climate change, can be expected in the coming decades. Although drought-induced tree mortality has been recognized as an important factor modulating forest demography at the global scale, the mechanisms underlying drought-induced tree mortality remain contentious. Above- and below-ground growth, gas exchange, water relations and carbon reserve accumulation dynamics at the organ and whole-plant scale were quantified in Populus tremuloides and P. balsamifera seedlings in response to severe drought. Seedlings were maintained in drought conditions over one growing and one dormant winter season. Our experiment presents a detailed description of the effect of severe drought on growth and physiological variables, leading to seedling mortality after an extended period of drought and dormancy. After re-watering following the dormant period, drought-exposed seedlings did not re-flush, showing that the root system had died off. The results of this study suggest a complex series of physiological feedbacks between the measured variables in both Populus species. Further, they reveal that reduced reserve accumulation in the root system during drought decreases the conversion of starch to soluble sugars in roots, which may contribute to the root death of drought-exposed seedlings during the dormant season by compromising the frost tolerance of the root system.

  5. Optimizing the calcium content of a copolymer acrylamide gel matrix for dark-grown seedlings

    NASA Technical Reports Server (NTRS)

    Myers, P. N.; Mitchell, C. A.

    1998-01-01

    A copolymer acrylamide acrylate gel was investigated as the sole root matrix for dark-grown seedlings of soybean (Glycine max Merr. 'Century 84'). Increasing Ca2+ in the hydrating solution of the hydrogel from 1 to 10 mM decreased its water-holding capacity from 97 to 46 mL g-1, yet water potential of the medium remained high, sufficient for normal plant growth at all Ca2+ concentrations tested. Elongation rate of dark-grown soybean seedlings over a 54-hour period was 0.9, 1.5, and 1.8 mm h-1 with 1.0, 2.5, or 5.0 mM Ca2+, respectively, but did not increase with further increases in Ca2+ concentration. Further study revealed that Na+ was released from the hydrogel medium and was taken up by the seedlings as Ca2+ increased in the medium. In dry hypocotyl tissue, sodium content correlated negatively with calcium content. Despite the presence of Na+ in the hydrogel, seedling growth was normal when adequate Ca2+ was added in the hydrating solution. Acrylamide hydrogels hold good potential as a sole growth matrix for short-term experiments with dark-grown seedlings without irrigation.

  6. Node Detection and Internode Length Estimation of Tomato Seedlings Based on Image Analysis and Machine Learning.

    PubMed

    Yamamoto, Kyosuke; Guo, Wei; Ninomiya, Seishi

    2016-01-01

    Seedling vigor in tomatoes determines the quality and growth of fruits and total plant productivity. It is well known that the salient effects of environmental stresses appear on the internode length; the length between adjoining main stem node (henceforth called node). In this study, we develop a method for internode length estimation using image processing technology. The proposed method consists of three steps: node detection, node order estimation, and internode length estimation. This method has two main advantages: (i) as it uses machine learning approaches for node detection, it does not require adjustment of threshold values even though seedlings are imaged under varying timings and lighting conditions with complex backgrounds; and (ii) as it uses affinity propagation for node order estimation, it can be applied to seedlings with different numbers of nodes without prior provision of the node number as a parameter. Our node detection results show that the proposed method can detect 72% of the 358 nodes in time-series imaging of three seedlings (recall = 0.72, precision = 0.78). In particular, the application of a general object recognition approach, Bag of Visual Words (BoVWs), enabled the elimination of many false positives on leaves occurring in the image segmentation based on pixel color, significantly improving the precision. The internode length estimation results had a relative error of below 15.4%. These results demonstrate that our method has the ability to evaluate the vigor of tomato seedlings quickly and accurately.

  7. Effects of photochemical smog and mineral nutrition on ponderosa pine seedlings.

    PubMed

    Bytnerowicz, A; Poth, M; Takemoto, B K

    1990-01-01

    Two-year-old seedlings of ponderosa pine (Pinus ponderosa Dougl. ex Laws) were exposed to ambient concentrations of photochemical smog (AA) and clean air (CA) during a single field season at Tanbark Flat of the San Gabriel Mountains in the Los Angeles Basin. The seedlings were grown in a perlite-vermiculite medium with full supply of nutrients (based on modified Hoagland solution); reduced to 50% supply of N; reduced to 50% supply of Mg; and reduced to 50% supply of N+Mg. No significant effects of air pollution exposures on injury development, stem growth and concentrations of plant pigments were determined. The seedlings in the AA treatment had decreased N concentration in current year needles compared with CA seedlings; however, the needle concentrations of other elements did not change. Reduction of N supply in the growing medium caused decreased N, P, Ca, K and chlorophyll a concentrations in needles. Stem growth of the seedlings with reduced N supply was significantly decreased as well. No changes in stem growth or chemical composition of plants with reduced Mg supply were noted. Reduction of supply of nutrients did not change responses of trees to the air pollution exposures. PMID:15092211

  8. Females make tough neighbors: sex-specific competitive effects in seedlings of a dioecious grass.

    PubMed

    Eppley, Sarah M

    2006-01-01

    If males and females of a species differ in their effect on intraspecific competition then this can have significant ecological and evolutionary consequences because it can lead to size and mortality disparities between the sexes, and thus cause biased population sex ratios. If the degree of sexual dimorphism of competitive effect varies across environments then this variation can generate sex ratio variation within and between populations. In a California population of Distichlis spicata, a dioecious grass species exhibiting extreme within-population sex ratio variation (spatial segregation of the sexes), I evaluated the intraspecific competitive effects of male and female D. spicata seedlings in three soil types. The sex of seedlings was determined using a RAPD-PCR marker co-segregating with female phenotype. Distichlis spicata seedlings, regardless of sex, were six times larger when grown with male versus female conspecific seedlings in soil from microsites where the majority of D. spicata plants are female, and this sexual dimorphism of competitive effect was weaker or did not occur in other soil types. This study suggests that it is not just the higher costs of female versus male reproduction itself that cause spatial segregation of the sexes in D. spicata, but that differences in competitive abilities between the sexes--which occur as early as the seedling stage--can generate sex ratio variation.

  9. Protection of the Photosynthetic Apparatus from Extreme Dehydration and Oxidative Stress in Seedlings of Transgenic Tobacco

    PubMed Central

    Personat, José-María; Tejedor-Cano, Javier; Lindahl, Marika; Diaz-Espejo, Antonio; Jordano, Juan

    2012-01-01

    A genetic program that in sunflower seeds is activated by Heat Shock transcription Factor A9 (HaHSFA9) has been analyzed in transgenic tobacco seedlings. The ectopic overexpression of the HSFA9 program protected photosynthetic membranes, which resisted extreme dehydration and oxidative stress conditions. In contrast, heat acclimation of seedlings induced thermotolerance but not resistance to the harsh stress conditions employed. The HSFA9 program was found to include the expression of plastidial small Heat Shock Proteins that accumulate only at lower abundance in heat-stressed vegetative organs. Photosystem II (PSII) maximum quantum yield was higher for transgenic seedlings than for non-transgenic seedlings, after either stress treatment. Furthermore, protection of both PSII and Photosystem I (PSI) membrane protein complexes was observed in the transgenic seedlings, leading to their survival after the stress treatments. It was also shown that the plastidial D1 protein, a labile component of the PSII reaction center, and the PSI core protein PsaB were shielded from oxidative damage and degradation. We infer that natural expression of the HSFA9 program during embryogenesis may protect seed pro-plastids from developmental desiccation. PMID:23227265

  10. Combined effects of lead and acid rain on photosynthesis in soybean seedlings.

    PubMed

    Hu, Huiqing; Wang, Lihong; Liao, Chenyu; Fan, Caixia; Zhou, Qing; Huang, Xiaohua

    2014-10-01

    To explore how lead (Pb) and acid rain simultaneously affect plants, the combined effects of Pb and acid rain on the chlorophyll content, chlorophyll fluorescence reaction, Hill reaction rate, and Mg(2+)-ATPase activity in soybean seedlings were investigated. The results indicated that, when soybean seedlings were treated with Pb or acid rain alone, the chlorophyll content, Hill reaction rate, Mg(2+)-ATPase activity, and maximal photochemical efficiency (F(v)/F(m)) were decreased, while the initial fluorescence (F 0) and maximum quantum yield (Y) were increased, compared with those of the control. The combined treatment with Pb and acid rain decreased the chlorophyll content, Hill reaction rate, Mg(2+)-ATPase activity, F(v)/F(m), and Y and increased F 0 in soybean seedlings. Under the combined treatment with Pb and acid rain, the two factors showed additive effects on the chlorophyll content in soybean seedlings and exhibited antagonistic effects on the Hill reaction rate. Under the combined treatment with high-concentration Pb and acid rain, the two factors exhibited synergistic effects on the Mg(2+)-ATPase activity, F 0, F v/F m, as well as Y. In summary, the inhibition of the photosynthetic process is an important physiological basis for the simultaneous actions of Pb and acid rain in soybean seedlings.

  11. Expression of stress-related genes in zebrawood (Astronium fraxinifolium, Anacardiaceae) seedlings following germination in microgravity.

    PubMed

    Inglis, Peter W; Ciampi, Ana Y; Salomão, Antonieta N; Costa, Tânia da S A; Azevedo, Vânia C R

    2014-03-01

    Seeds of a tropical tree species from Brazil, Astronium fraxinifolium, or zebrawood, were germinated, for the first time in microgravity, aboard the International Space Station for nine days. Following three days of subsequent growth under normal terrestrial gravitational conditions, greater root length and numbers of secondary roots was observed in the microgravity-treated seedlings compared to terrestrially germinated controls. Suppression subtractive hybridization of cDNA and EST analysis were used to detect differential gene expression in the microgravity-treated seedlings in comparison to those initially grown in normal gravity (forward subtraction). Despite their return to, and growth in normal gravity, the subtracted library derived from microgravity-treated seedlings was enriched in known microgravity stress-related ESTs, corresponding to large and small heat shock proteins, 14-3-3-like protein, polyubiquitin, and proteins involved in glutathione metabolism. In contrast, the reverse-subtracted library contained a comparatively greater variety of general metabolism-related ESTs, but was also enriched for peroxidase, possibly indicating the suppression of this protein in the microgravity-treated seedlings. Following continued growth for 30 days, higher concentrations of total chlorophyll were detected in the microgravity-exposed seedlings.

  12. Effect of a longitudinally applied voltage upon the growth of Zea mays seedlings.

    PubMed

    Desrosiers, M F; Bandurski, R S

    1988-01-01

    The electrical parameters that affect young seedling growth were investigated. Voltages ranging from 5 to 40 volts were applied longitudinally along the mesocotyl region of 4-day old Zea mays L. (cv Silver Queen) seedlings for periods of 3 or 4 hours. It was determined that: (a) making the tips of the seedlings electrically positive relative to the base strongly inhibited shoot growth at 5 volts, whereas the reverse polarity had no effect; (b) at higher voltages, making the tip of the seedlings negative caused less growth inhibition than the reverse polarity at each voltage level; (c) the higher the applied voltage the greater the degree of inhibition; and, (d) the more growth inhibition experienced by the plants the poorer, and slower, their recovery. Previous observations of a relationship between the amount of free indole-3-acetic acid in the mesocotyl cortex and the growth rate of the mesocotyl and of gravitropism-induced movement of labeled indole-3-acetic acid from the seed to the shoot lead to the prediction of a voltage-dependent gating of the movement of indole-3-acetic acid from the stele to the cortex. This provided the basis for attempting to alter the growth rate of seedlings by means of an applied voltage.

  13. Growth and survival response of potted Cupressus sempervirens seedlings to different soils.

    PubMed

    Tabari, Masoud; Saeidi, Hamid Reza; Alavi-Panah, Kazem; Basiri, Reza; Poormadjidian, Mohammad Reza

    2007-04-15

    In February 2001, one-year bareroot cypress (Cupressus sempervirens var. horizontalis) seedlings were replanted in plastic pot in a lowland nursery located in southern coast of the Caspian Sea (north of Iran). Soils of pots consisted of 1:1 sand:clay (A), pure sand (B), 2:1 sand:clay (C), 1:1:1 sand:clay:organic matter (D), 1:1:2 sand:clay:organic matter (E). In each soil treatment a high value of survival and growth was appeared in July and progressively decreased till November. In each month the seedlings grown on rich soils (D and E) had mostly greater growth and survival than on infertile soils. At the end of the first growing season seedling vitality differed significantly among the soils but did not differed notably in soil A with those in other soils. Survival rate was highest in the rich soils (D and E). Stem length as well as collar diameter performed the least growth on the poor soils (B and C). Like other characteristics measured, survival responded better to soils containing organic matter (D and E). It is concluded that generally characteristics of cypress seedling are suited by adding organic matter to sandy soils. This is while that poor nutrient available soil such as soil A produces a proper growth for cypress seedling, too.

  14. Femtosecond laser-fabricated biochip for studying symbiosis between Phormidium and seedling root

    NASA Astrophysics Data System (ADS)

    Ishikawa, Nobuaki; Hanada, Yasutaka; Ishikawa, Ikuko; Sugioka, Koji; Midorikawa, Katsumi

    2015-06-01

    We present the fabrication of a waveguide-like structure in a polydimethylsiloxane (PDMS) polymer substrate using a femtosecond laser to study the mechanism of symbiosis between filamentous cyanobacteria, Phormidium, and a seedling root. While symbiosis occurring underground promotes the growth of vegetable seedlings, the details of the mechanism remain unclear. Understanding the mechanisms of Phormidium gliding to the seedling root will facilitate improving the mat formation of Phormidium, which will lead to increased vegetable production. We assumed a symbiosis mechanism in which sunlight propagates through the seedling root and is scattered underground to guide the Phormidium gliding. Once attached to the root, Phormidium uses the scattered light for photosynthesis. Photosynthetic products, in turn, promote an increase in Phormidium mat formation and vegetable growth. To verify this assumption, the optical characteristics of the seedling root were investigated. A waveguide-like structure with the same optical characteristics of the root was subsequently fabricated by femtosecond laser in PDMS polymer to assess the light illumination effect on Phormidium behavior.

  15. Carbon and nitrogen gain during the growth of orchid seedlings in nature.

    PubMed

    Stöckel, Marcus; Těšitelová, Tamara; Jersáková, Jana; Bidartondo, Martin I; Gebauer, Gerhard

    2014-04-01

    For germination and establishment, orchids depend on carbon (C) and nutrients supplied by mycorrhizal fungi. As adults, the majority of orchids then appear to become autotrophic. To compare the proportional C and nitrogen (N) gain from fungi in mycoheterotrophic seedlings and in adults, here we examined in the field C and N stable isotope compositions in seedlings and adults of orchids associated with ectomycorrhizal and saprotrophic fungi. Using a new highly sensitive approach, we measured the isotope compositions of seedlings and adults of four orchid species belonging to different functional groups: fully and partially mycoheterotrophic orchids associated with narrow or broad sets of ectomycorrhizal fungi, and two adult putatively autotrophic orchids associated exclusively with saprotrophic fungi. Seedlings of orchids associated with ectomycorrhizal fungi were enriched in (13) C and (15) N similarly to fully mycoheterotrophic adults. Seedlings of saprotroph-associated orchids were also enriched in (13) C and (15) N, but unexpectedly their enrichment was significantly lower, making them hardly distinguishable from their respective adult stages and neighbouring autotrophic plants. We conclude that partial mycoheterotrophy among saprotroph-associated orchids cannot be identified unequivocally based on C and N isotope compositions alone. Thus, partial mycoheterotrophy may be much more widely distributed among orchids than hitherto assumed.

  16. Evaluation of nitrogen content in cabbage seedlings using hyper-spectral images

    NASA Astrophysics Data System (ADS)

    Chen, Suming; Chen, Chia-Tseng; Wang, Ching-Yin; Yang, I.-Chang; Hsiao, Shih-Chieh

    2007-09-01

    Monitoring of nutrient status of crops is essential for better management of crop production. Nitrogen is one of the most important elements in fertilizer for the growth and yield of vegetable crops. In this study, nitrogen content of cabbage seedlings was evaluated using hyper-spectral images. Cabbage seedlings, cultured at five nitrogen fertilization levels, were planted in the 128-cell plug trays and grown in a phytotron at National Taiwan University. The images, ranged from 410 to 1090 nm, of cabbage seedlings were analyzed by a hyper-spectral imaging system consisting of CCD cameras with liquid crystal tunable filters (LCTF), which was developed in this study. The digital images of seedling canopies were processed including image segmentation, gray level calibration and absorbance conversion. Models including modified partial least square regression (MPLSR), step-wise multi-linear regression (SMLR) and artificial neural network with cross-learning strategy (ANN-CL) were developed for the determination of the nitrogen content in cabbage seedlings. The three significant wavelengths derived from SMLR model are 470, 710, and 1080; and the best result is obtained by ANN-CL model, in which r c=0.89, SEC=6.41 mg/g, r v=0.87, and SEV=6.96 mg/g. The ANN-CL model is more suitable for the remote sensing in precision agriculture applications because not only its model accuracy but also only 3 wavelengths are needed.

  17. Non-destructive high-throughput DNA extraction and genotyping methods for cotton seeds and seedlings.

    PubMed

    Zheng, Xiuting; Hoegenauer, Kevin A; Maeda, Andrea B V; Wang, Fei; Stelly, David M; Nichols, Robert L; Jones, Don C

    2015-05-01

    Extensive use of targeted PCR-based genotyping is precluded for many plant research laboratories by the cost and time required for DNA extraction. Using cotton (Gossypium hirsutum) as a model for plants with medium-sized seeds, we report here manual procedures for inexpensive non-destructive high-throughput extraction of DNA suitable for PCR-based genotyping of large numbers of individual seeds and seedlings. By sampling only small amounts of cotyledon tissue of ungerminated seed or young seedlings, damage is minimized, and viability is not discernibly affected. The yield of DNA from each seed or seedling is typically sufficient for 1000 or 500 PCR reactions, respectively. For seeds, the tissue sampling procedure relies on a modified 96-well plate that is used subsequently for seed storage. For seeds and seedlings, the DNA is extracted in a strongly basic DNA buffer that is later neutralized and diluted. Extracts can be used directly for high-throughput PCR-based genotyping. Any laboratory can thus extract DNA from thousands of individual seeds/seedlings per person-day at a very modest cost for consumables (~$0.05 per sample). Being non-destructive, our approach enables a wide variety of time- and resource-saving applications, such as marker-assisted selection (MAS), before planting, transplanting, and flowering.

  18. Optimizing the calcium content of a copolymer acrylamide gel matrix for dark-grown seedlings.

    PubMed

    Myers, P N; Mitchell, C A

    1998-11-01

    A copolymer acrylamide acrylate gel was investigated as the sole root matrix for dark-grown seedlings of soybean (Glycine max Merr. 'Century 84'). Increasing Ca2+ in the hydrating solution of the hydrogel from 1 to 10 mM decreased its water-holding capacity from 97 to 46 mL g-1, yet water potential of the medium remained high, sufficient for normal plant growth at all Ca2+ concentrations tested. Elongation rate of dark-grown soybean seedlings over a 54-hour period was 0.9, 1.5, and 1.8 mm h-1 with 1.0, 2.5, or 5.0 mM Ca2+, respectively, but did not increase with further increases in Ca2+ concentration. Further study revealed that Na+ was released from the hydrogel medium and was taken up by the seedlings as Ca2+ increased in the medium. In dry hypocotyl tissue, sodium content correlated negatively with calcium content. Despite the presence of Na+ in the hydrogel, seedling growth was normal when adequate Ca2+ was added in the hydrating solution. Acrylamide hydrogels hold good potential as a sole growth matrix for short-term experiments with dark-grown seedlings without irrigation. PMID:11542673

  19. Tolerance to cadmium of Agave lechuguilla (Agavaceae) seeds and seedlings from sites contaminated with heavy metals.

    PubMed

    Méndez-Hurtado, Alejandra; Rangel-Méndez, René; Yáñez-Espinosa, Laura; Flores, Joel

    2013-01-01

    We investigated if seeds of Agave lechuguilla from contaminated sites with heavy metals were more tolerant to Cd ions than seeds from noncontaminated sites. Seeds from a highly contaminated site (Villa de la Paz) and from a noncontaminated site (Villa de Zaragoza) were evaluated. We tested the effect of Cd concentrations on several ecophysiological, morphological, genetical, and anatomical responses. Seed viability, seed germination, seedling biomass, and radicle length were higher for the non-polluted site than for the contaminated one. The leaves of seedlings from the contaminated place had more cadmium and showed peaks attributed to chemical functional groups such as amines, amides, carboxyl, and alkenes that tended to disappear due to increasing the concentration of cadmium than those from Villa de Zaragoza. Malformed cells in the parenchyma surrounding the vascular bundles were found in seedlings grown with Cd from both sites. The leaves from the contaminated place showed a higher metallothioneins expression in seedlings from the control group than that of seedlings at different Cd concentrations. Most of our results fitted into the hypothesis that plants from metal-contaminated places do not tolerate more pollution, because of the accumulative effect that cadmium might have on them. PMID:24453802

  20. Diversity of endophytic bacteria from Eucalyptus species seeds and colonization of seedlings by Pantoea agglomerans.

    PubMed

    Ferreira, Anderson; Quecine, Maria Carolina; Lacava, Paulo Teixeira; Oda, Shinitiro; Azevedo, João Lúcio; Araújo, Welington Luiz

    2008-10-01

    The diversity and beneficial characteristics of endophytic microorganisms have been studied in several host plants. However, information regarding naturally occurring seed-associated endophytes and vertical transmission among different life-history stages of hosts is limited. Endophytic bacteria were isolated from seeds and seedlings of 10 Eucalyptus species and two hybrids. The results showed that endophytic bacteria, such as Bacillus, Enterococcus, Paenibacillus and Methylobacterium, are vertically transferred from seeds to seedlings. In addition, the endophytic bacterium Pantoea agglomerans was tagged with the gfp gene, inoculated into seeds and further reisolated from seedlings. These results suggested a novel approach to change the profile of the plants, where the bacterium is a delivery vehicle for desired traits. This is the first report of an endophytic bacterial community residing in Eucalyptus seeds and the transmission of these bacteria from seeds to seedlings. The bacterial species reported in this work have been described as providing benefits to host plants. Therefore, we suggest that endophytic bacteria can be transmitted vertically from seeds to seedlings, assuring the support of the bacterial community in the host plant. PMID:18710397

  1. The gravitropic setpoint angle of dark-grown rye seedlings and the role of ethylene.

    PubMed

    Edelmann, Hans G; Gudi, Gennadi; Kühnemann, Frank

    2002-07-01

    The orientation growth of coleoptiles of dark-grown seedlings of rye (Secale cereale L. cv. Marder II), when grown under various conditions, was analysed with respect to the gravivector ('gravitropic setpoint angle', GSA). Coleoptiles growing through moist vermiculite attain and maintain a GSA with an average of about 180 degrees, i.e. a vertical orientation. Seedlings growing uncovered either on the surface of vermiculite or positionally fixed on filter paper attain and maintain a GSA of 140-150 degrees (i.e. deviating from the vertical by an average of 30-40 degrees ). Changing the position of the embryo relative to the horizontally fixed seed kernel or of the angle of the seed with respect to gravity during germination (+/-40 degrees relative to the horizontal) had no significant effect on the subsequent GSA of both covered and uncovered seedlings. The GSA of uncovered coleoptiles could be restored close to 180 degrees by treatment of the seedlings with ethylene, either applied via ethephon or 1-aminocyclopropane-1-carboxylic acid (ACC) as well as by fruit-released ethylene. The results are discussed with respect to the mechanism of the regulation of gravitropic growth of grass seedlings.

  2. Drought and shade deplete nonstructural carbohydrate reserves in seedlings of five temperate tree species.

    PubMed

    Maguire, Andrea J; Kobe, Richard K

    2015-12-01

    Plants that store nonstructural carbohydrates (NSC) may rely on carbon reserves to survive carbon-limiting stress, assuming that reserves can be mobilized. We asked whether carbon reserves decrease in resource stressed seedlings, and if NSC allocation is related to species' relative stress tolerances. We tested the effects of stress (shade, drought, and defoliation) on NSC in seedlings of five temperate tree species (Acer rubrum Marsh., Betula papyrifera Marsh., Fraxinus americana L ., Quercus rubra L., and Quercus velutina Lam.). In a greenhouse experiment, seedlings were subjected to combinations of shade, drought, and defoliation. We harvested seedlings over 32-97 days and measured biomass and NSC concentrations in stems and roots to estimate depletion rates. For all species and treatments, except for defoliation, seedling growth and NSC accumulation ceased. Shade and drought combined caused total NSC decreases in all species. For shade or drought alone, only some species experienced decreases. Starch followed similar patterns as total NSC, but soluble sugars increased under drought for drought-tolerant species. These results provide evidence that species deplete stored carbon in response to carbon limiting stress and that species differences in NSC response may be important for understanding carbon depletion as a buffer against shade- and drought-induced mortality.

  3. The impact of the herbicide atrazine on growth and photosynthesis of seagrass, Zostera marina (L.), seedlings.

    PubMed

    Gao, Yaping; Fang, Jianguang; Zhang, Jihong; Ren, Lihua; Mao, Yuze; Li, Bin; Zhang, Mingliang; Liu, Dinghai; Du, Meirong

    2011-08-01

    The impact of the widely used herbicide atrazine on seedling growth and photosynthesis of eelgrass was determined. The long-term impact of the herbicide atrazine (1, 10 and 100 μg/L) on growth of eelgrass Zostera marina (L.) seedlings, maintained in outdoor aquaria, was monitored over 4 weeks. Exposure to 10 μg/L atrazine resulted in significantly lower plant fresh weight and total chlorophyll concentration and up to 86.67% mortality at the 100 μg/L concentration. Short-term photosynthetic stress on eelgrass seedlings was determined and compared with adult eelgrass using chlorophyll fluorescence. The effective quantum yield in eelgrass seedlings was significantly depressed at all atrazine concentrations (2, 4, 8, 16, 32 and 64 μg/L) even within 2 h and remained at a lower level than for adult plants for each concentration. These results indicate that atrazine presents a potential threat to seagrass seedling functioning and that the impact is much higher than for adult plants.

  4. Tolerance to cadmium of Agave lechuguilla (Agavaceae) seeds and seedlings from sites contaminated with heavy metals.

    PubMed

    Méndez-Hurtado, Alejandra; Rangel-Méndez, René; Yáñez-Espinosa, Laura; Flores, Joel

    2013-01-01

    We investigated if seeds of Agave lechuguilla from contaminated sites with heavy metals were more tolerant to Cd ions than seeds from noncontaminated sites. Seeds from a highly contaminated site (Villa de la Paz) and from a noncontaminated site (Villa de Zaragoza) were evaluated. We tested the effect of Cd concentrations on several ecophysiological, morphological, genetical, and anatomical responses. Seed viability, seed germination, seedling biomass, and radicle length were higher for the non-polluted site than for the contaminated one. The leaves of seedlings from the contaminated place had more cadmium and showed peaks attributed to chemical functional groups such as amines, amides, carboxyl, and alkenes that tended to disappear due to increasing the concentration of cadmium than those from Villa de Zaragoza. Malformed cells in the parenchyma surrounding the vascular bundles were found in seedlings grown with Cd from both sites. The leaves from the contaminated place showed a higher metallothioneins expression in seedlings from the control group than that of seedlings at different Cd concentrations. Most of our results fitted into the hypothesis that plants from metal-contaminated places do not tolerate more pollution, because of the accumulative effect that cadmium might have on them.

  5. Seedling development and evaluation of genetic stability of cryopreserved Dendrobium hybrid mature seeds.

    PubMed

    Galdiano, Renato Fernandes; de Macedo Lemos, Eliana Gertrudes; de Faria, Ricardo Tadeu; Vendrame, Wagner Aparecido

    2014-03-01

    Vitrification, a simple, fast, and recommended cryopreservation method for orchid germplasm conservation, was evaluated for Dendrobium hybrid "Dong Yai" mature seeds. The genetic stability of regenerated seedlings was also evaluated using flow cytometry. Mature seeds from this hybrid were submitted to plant vitrification solution (PVS2) for 0, 0.5, 1, 2, 3, 4, 5, or 6 h at 0 °C. Subsequently, they were plunged into liquid nitrogen (LN) at -196 °C for 1 h and recovered in half-strength Murashige and Skoog culture medium (1/2 MS), and seed germination was evaluated after 30 days. Seeds directly submitted to LN did not germinate after cryopreservation. Seeds treated with PVS2 between 1 and 3 h presented the best germination (between 51 and 58%), although longer exposure to PVS2 returned moderated germination (39%). Germinated seeds were further subcultured in P-723 culture medium and developed whole seedlings in vitro after 180 days, with no abnormal characteristics, diseases, or nutritional deficiencies. Seedlings were successfully acclimatized under greenhouse conditions with over 80% survival. Flow cytometry analysis revealed no chromosomal changes on vitrified seedlings, as well as seedlings germinated from the control treatment (direct exposure to LN). These findings indicate that vitrification is a feasible and safe germplasm cryopreservation method for commercial Dendrobium orchid hybrid conservation.

  6. Combined effects of lead and acid rain on photosynthesis in soybean seedlings.

    PubMed

    Hu, Huiqing; Wang, Lihong; Liao, Chenyu; Fan, Caixia; Zhou, Qing; Huang, Xiaohua

    2014-10-01

    To explore how lead (Pb) and acid rain simultaneously affect plants, the combined effects of Pb and acid rain on the chlorophyll content, chlorophyll fluorescence reaction, Hill reaction rate, and Mg(2+)-ATPase activity in soybean seedlings were investigated. The results indicated that, when soybean seedlings were treated with Pb or acid rain alone, the chlorophyll content, Hill reaction rate, Mg(2+)-ATPase activity, and maximal photochemical efficiency (F(v)/F(m)) were decreased, while the initial fluorescence (F 0) and maximum quantum yield (Y) were increased, compared with those of the control. The combined treatment with Pb and acid rain decreased the chlorophyll content, Hill reaction rate, Mg(2+)-ATPase activity, F(v)/F(m), and Y and increased F 0 in soybean seedlings. Under the combined treatment with Pb and acid rain, the two factors showed additive effects on the chlorophyll content in soybean seedlings and exhibited antagonistic effects on the Hill reaction rate. Under the combined treatment with high-concentration Pb and acid rain, the two factors exhibited synergistic effects on the Mg(2+)-ATPase activity, F 0, F v/F m, as well as Y. In summary, the inhibition of the photosynthetic process is an important physiological basis for the simultaneous actions of Pb and acid rain in soybean seedlings. PMID:25069575

  7. Damping-off in conifer seedling nurseries in Noshahr and Kelardasht.

    PubMed

    Zad, S J; Koshnevice, M

    2001-01-01

    To study the damping-off of conifer seedlings, we have collected samples from the roots of conifer seedlings (Pinus nigra, Picea excelsa, Abieces spp, Cupressus arizonica, Cupressus sempervirens) from nurseries in the south of Iran (Noshahr and Kelardasht). After disinfecting the samples, we have used standard media like PDA, MA and CLA. The following fungi were identified: Fusarium solani, Fusarium oxysporum, Fusarium sambucinum, Clamydosporium, Rhizoctonia solani, Cylindrocarpon spp., Alternaria spp, Macrophomina phaseoli. Amongst the above mentioned fungi, Fusarium spp. were the commonest ones. Pathogenecity tests of Fusarium spp. and Rhizoctonia solani on seedlings were done. Isolated fungal colonies were purified using single mycelium and single spore methods. Fungal isolates were identified after subculturing on PDA and CLA media by Nelson method. These isolates were Fusarium solani, F. oxysporium, F. sambucinum and F. clamydosporum. Other fungal isolates were Rhizoctonia spp. In order to determine the infectivity of Fusarium on their hosts, seeds of Pinus nigra, Cupressus arizonica and Cupressus sempervirens var. horizontalis were cultured in four repetitions each containing 2 seedlings. After a seasonal growth, seedlings were inoculated with a suspension of Fusarium spores (4.5 +/- 0.3 x 1016 spore/ml). Infection of P. nigra, Cupressus arizonica and Cupressus sempervirens var. horizontalis with F. solani and Pinus nigra and Cupressus semperivirens var. horizontalis with F. oxysporum was high whereas that of Cupressus arizonica with F. sambucinum, F. mondiforme and F. clamydosporum was moderate.

  8. Effect of a longitudinally applied voltage upon the growth of Zea mays seedlings

    NASA Technical Reports Server (NTRS)

    Desrosiers, M. F.; Bandurski, R. S.

    1988-01-01

    The electrical parameters that affect young seedling growth were investigated. Voltages ranging from 5 to 40 volts were applied longitudinally along the mesocotyl region of 4-day old Zea mays L. (cv Silver Queen) seedlings for periods of 3 or 4 hours. It was determined that: (a) making the tips of the seedlings electrically positive relative to the base strongly inhibited shoot growth at 5 volts, whereas the reverse polarity had no effect; (b) at higher voltages, making the tip of the seedlings negative caused less growth inhibition than the reverse polarity at each voltage level; (c) the higher the applied voltage the greater the degree of inhibition; and, (d) the more growth inhibition experienced by the plants the poorer, and slower, their recovery. Previous observations of a relationship between the amount of free indole-3-acetic acid in the mesocotyl cortex and the growth rate of the mesocotyl and of gravitropism-induced movement of labeled indole-3-acetic acid from the seed to the shoot lead to the prediction of a voltage-dependent gating of the movement of indole-3-acetic acid from the stele to the cortex. This provided the basis for attempting to alter the growth rate of seedlings by means of an applied voltage.

  9. Exploring the natural variation for seedling traits and their link with seed dimensions in tomato.

    PubMed

    Khan, Noorullah; Kazmi, Rashid H; Willems, Leo A J; van Heusden, Adriaan W; Ligterink, Wilco; Hilhorst, Henk W M

    2012-01-01

    The success of germination, growth and final yield of every crop depends to a large extent on the quality of the seeds used to grow the crop. Seed quality is defined as the viability and vigor attribute of a seed that enables the emergence and establishment of normal seedlings under a wide range of environments. We attempt to dissect the mechanisms involved in the acquisition of seed quality, through a combined approach of physiology and genetics. To achieve this goal we explored the genetic variation found in a RIL population of Solanum lycopersicum (cv. Moneymaker) x Solanum pimpinellifolium through extensive phenotyping of seed and seedling traits under both normal and nutrient stress conditions and root system architecture (RSA) traits under optimal conditions. We have identified 62 major QTLs on 21 different positions for seed, seedling and RSA traits in this population. We identified QTLs that were common across both conditions, as well as specific to stress conditions. Most of the QTLs identified for seedling traits co-located with seed size and seed weight QTLs and the positive alleles were mostly contributed by the S. lycopersicum parent. Co-location of QTLs for different traits might suggest that the same locus has pleiotropic effects on multiple traits due to a common mechanistic basis. We show that seed weight has a strong effect on seedling vigor and these results are of great importance for the isolation of the corresponding genes and elucidation of the underlying mechanisms.

  10. Seed deposition patterns and the survival of seeds and seedlings of the palm Euterpe edulis

    NASA Astrophysics Data System (ADS)

    Pizo, Marco A.; Simão, Isaac

    2001-08-01

    The seed deposition pattern created by a seed disperser is one of the components of the efficiency of a species as seed disperser, and ultimately may influence the recruitment of a plant species. In this study, we used the seeds of a bird-dispersed forest palm, Euterpe edulis, to investigate the effects of two distinct seed deposition patterns created by birds that defecate (clumped pattern) and regurgitate seeds (loose-clumped pattern) on the survival of seeds experimentally set in an E. edulis-rich site, and of seedlings grown under shade-house conditions. The study was conducted in the lowland forest of Parque Estadual Intervales, SE Brazil. Clumped and loose-clumped seeds were equally preyed upon by rodents and insects. Although clumped and isolated seedlings had the same root weight after 1 year, the isolated seedlings survived better and presented more developed shoots, suggesting intraspecific competition among clumped seedlings. Our results indicate that animals that deposit E. edulis seeds in faecal clumps (e.g. cracids, tapirs) are less efficient seed dispersers than those that regurgitate seeds individually (e.g. trogons, toucans). Intraspecific competition among seedlings growing from faecal clumps is a likely process preventing the occurrence of clumps of adult palms.

  11. Node Detection and Internode Length Estimation of Tomato Seedlings Based on Image Analysis and Machine Learning

    PubMed Central

    Yamamoto, Kyosuke; Guo, Wei; Ninomiya, Seishi

    2016-01-01

    Seedling vigor in tomatoes determines the quality and growth of fruits and total plant productivity. It is well known that the salient effects of environmental stresses appear on the internode length; the length between adjoining main stem node (henceforth called node). In this study, we develop a method for internode length estimation using image processing technology. The proposed method consists of three steps: node detection, node order estimation, and internode length estimation. This method has two main advantages: (i) as it uses machine learning approaches for node detection, it does not require adjustment of threshold values even though seedlings are imaged under varying timings and lighting conditions with complex backgrounds; and (ii) as it uses affinity propagation for node order estimation, it can be applied to seedlings with different numbers of nodes without prior provision of the node number as a parameter. Our node detection results show that the proposed method can detect 72% of the 358 nodes in time-series imaging of three seedlings (recall = 0.72, precision = 0.78). In particular, the application of a general object recognition approach, Bag of Visual Words (BoVWs), enabled the elimination of many false positives on leaves occurring in the image segmentation based on pixel color, significantly improving the precision. The internode length estimation results had a relative error of below 15.4%. These results demonstrate that our method has the ability to evaluate the vigor of tomato seedlings quickly and accurately. PMID:27399708

  12. [Effects of cold-shock on the growth and flower bud differentiation of tomato seedlings under high temperature stress].

    PubMed

    Li, Sheng-li; Xia, Ya-zhen; Sun, Zhi-qiang

    2016-02-01

    In order to explore the effects of cold-shock on the growth and flower bud differentiation of tomato seedlings under high temperature, tomato seedlings were subjected to cold-shock treat- ments every day with 10 °C for 10 minutes in. an artificial climate chamber. Tomato seedlings were treated with cold-shock at the first true leaf stage and the treatment lasted for 15 days. Tomato seed- lings without cold-shock were used as control. At the fourth true leaf period of tomato seedlings, five plants were randomly sampled and the growth characteristics and the ultrastructure changes of meso- phyll cell of tomato seedlings were examined. The flower bud differentiation process of tomato seed- lings was observed at the periods of the second, fourth and sixth true leaves respectively. Flowering and fruiting of tomato seedlings were also investigated after transplanting. The results showed that the stem diameter and health index of tomato seedlings with cold-shock were enhanced by 7.2% and 55.5% compared with seedlings without cold-shock. Mesophyll cells of the seedlings with cold-shock arranged loosely and various organelles such as chloroplasts and mitochondria were morphologically integrated, while chloroplasts and mitochondria of seedlings mesophyll cells without cold-shock swelled up and thylakoids vacuolized apparently. The flower bud differentiation process of seedlings with cold-shock could be advanced significantly at the early seedling stage compared with the control and the advancement was weakened with the seedling growing. Fruit set number and percentage on the first and second inflorescence of tomato plants transplanted by seedlings with cold-shock were enhanced significantly compared with those of the control. These results indicated that the injury of membrane structure of various organelles, especially chloroplast and mitochondria could be allevia- ted by cold-shock treatment under high temperature tress. Cold-shock treatment could not only im- prove the

  13. [Effects of cold-shock on the growth and flower bud differentiation of tomato seedlings under high temperature stress].

    PubMed

    Li, Sheng-li; Xia, Ya-zhen; Sun, Zhi-qiang

    2016-02-01

    In order to explore the effects of cold-shock on the growth and flower bud differentiation of tomato seedlings under high temperature, tomato seedlings were subjected to cold-shock treat- ments every day with 10 °C for 10 minutes in. an artificial climate chamber. Tomato seedlings were treated with cold-shock at the first true leaf stage and the treatment lasted for 15 days. Tomato seed- lings without cold-shock were used as control. At the fourth true leaf period of tomato seedlings, five plants were randomly sampled and the growth characteristics and the ultrastructure changes of meso- phyll cell of tomato seedlings were examined. The flower bud differentiation process of tomato seed- lings was observed at the periods of the second, fourth and sixth true leaves respectively. Flowering and fruiting of tomato seedlings were also investigated after transplanting. The results showed that the stem diameter and health index of tomato seedlings with cold-shock were enhanced by 7.2% and 55.5% compared with seedlings without cold-shock. Mesophyll cells of the seedlings with cold-shock arranged loosely and various organelles such as chloroplasts and mitochondria were morphologically integrated, while chloroplasts and mitochondria of seedlings mesophyll cells without cold-shock swelled up and thylakoids vacuolized apparently. The flower bud differentiation process of seedlings with cold-shock could be advanced significantly at the early seedling stage compared with the control and the advancement was weakened with the seedling growing. Fruit set number and percentage on the first and second inflorescence of tomato plants transplanted by seedlings with cold-shock were enhanced significantly compared with those of the control. These results indicated that the injury of membrane structure of various organelles, especially chloroplast and mitochondria could be allevia- ted by cold-shock treatment under high temperature tress. Cold-shock treatment could not only im- prove the

  14. Effect of Canopy Position on Germination and Seedling Survival of Epiphytic Bromeliads in a Mexican Humid Montane Forest

    PubMed Central

    WINKLER, MANUELA; HÜLBER, KARL; HIETZ, PETER

    2005-01-01

    • Background and Aims Seeds of epiphytes must land on branches with suitable substrates and microclimates to germinate and for the resulting seedlings to survive. It is important to understand the fate of seeds and seedlings in order to model populations, but this is often neglected when only established plants are included in analyses. • Methods The seeds of five bromeliad species were exposed to different canopy positions in a Mexican montane forest, and germination and early seedling survival were recorded. Additionally, the survival of naturally dispersed seedlings was monitored in a census over 2·5 years. Survival analysis, a procedure rarely used in plant ecology, was used to study the influence of branch characteristics and light on germination and seedling survival in natural and experimental populations. • Key Results Experimental germination percentages ranged from 7·2 % in Tillandsia deppeana to 33·7 % in T. juncea, but the seeds of T. multicaulis largely failed to germinate. Twenty months after exposure between 3·5 and 9·4 % of the seedlings were still alive. There was no evidence that canopy position affected the probability of germination, but time to germination was shorter in less exposed canopy positions indicating that higher humidity accelerates germination. More experimental seedlings survived when canopy openness was high, whereas survival in census-seedlings was influenced by moss cover. While mortality decreased steadily with age in juveniles of the atmospheric Tillandsia, in the more mesomorphic Catopsis sessiliflora mortality increased dramatically in the dry season. • Conclusions Seedling mortality, rather than the failure to germinate, accounts for the differential distribution of epiphytes within the canopy studied. With few safe sites to germinate and high seedling mortality, changes of local climate may affect epiphyte populations primarily through their seedling stage. PMID:15767270

  15. Evaluation of growth potential of Crimean juniper (Juniperus excelsa Bieb.) seedlings for the first growing season under Tekir forest nursery conditions in Kahramanmaras, Turkey.

    PubMed

    Avsar, Mahmut D; Tonguc, Fatih

    2003-04-01

    In this study, growth potential of Crimean juniper (Juniperus excelsa Bieb.) seedlings for the first growing season under Tekir Forest Nursery conditions in Kahramanmaras was evaluated. The height growth of Crimean juniper seedlings was relatively close to that of Lebanon cedar (Cedrus libani A. Rich.) seedlings produced in the same nursery, but their root collar diameters were fairly lower than that of Lebanon cedar seedlings. According to coniferous seedling standards of Turkish Standards Institute, the height growth of Crimean juniper seedlings was fairly good, but their root collar diameters were slightly small. In this respect, that 2+0 or 1+1 Crimean juniper seedlings are used in reforestation activities in the region would be more useful than 1+0 seedlings.

  16. Phytotoxicity of zinc and manganese to seedlings grown in soil contaminated by zinc smelting.

    PubMed

    Beyer, W N; Green, C E; Beyer, M; Chaney, R L

    2013-08-01

    Historic emissions from two zinc smelters have injured the forest on Blue Mountain near Palmerton, Pennsylvania, USA. Seedlings of soybeans and five tree species were grown in a greenhouse in a series of mixtures of smelter-contaminated and reference soils and then phytotoxic thresholds were calculated. As little as 10% Palmerton soil mixed with reference soil killed or greatly stunted seedlings of most species. Zinc was the principal cause of the phytotoxicity to the tree seedlings, although Mn and Cd may also have been phytotoxic in the most contaminated soil mixtures. Calcium deficiency seemed to play a role in the observed phytotoxicity. Exposed soybeans showed symptoms of Mn toxicity. A test of the effect of liming on remediation of the Zn and Mn phytotoxicity caused a striking decrease in Sr-nitrate extractable metals in soils and demonstrated that liming was critical to remediation and restoration.

  17. Relationships between xanthoxin, phototropism, and elongation growth in the sunflower seedling Helianthus annuus L.

    PubMed

    Franssen, J M; Bruinsma, J

    1981-04-01

    For phototropic curvature of a green sunflower seedling, only the hypocotyl has to be illuminated; the tip and cotyledons are not involved in stimulus perception. The etiolated seedling is phototropically insensitive, illumination of only the hypocotyl renders it sensitive. It is concluded that the photoreceptor is located within the responding organ. In curving seedlings, the endogenous indoleacetic acid (IAA) remains evenly distributed. However, the inhibitor, xanthoxin (Xa), accumulates on the illuminated side. The degree of phototropic response is generally related to the concentration of Xa. The amount of phototropic curvature is independent of the rate of elongation growth, the former can be changed without affecting the latter, and vice versa. The data conflict with the Cholodny-Went theory, whereas they support the hypothesis of Blaauw that the phototropic reaction is caused by the local accumulation of a growth-inhibiting substance on the irradiated side.

  18. The Effect of Increased Sediment Accretion on the Survival and Growth of Rhizophora apiculataSeedlings

    NASA Astrophysics Data System (ADS)

    Terrados, J.; Thampanya, U.; Srichai, N.; Kheowvongsri, P.; Geertz-Hansen, O.; Boromthanarath, S.; Panapitukkul, N.; Duarte, C. M.

    1997-11-01

    The effects of experimental sediment accretion on the survival and growth ofRhizophora apiculataseedlings planted on an expanding mud flat in Pak Phanang Bay (south-east Thailand) were assessed. Seedling mortality rates increased linearly (R2=0·87,F=75·9,P<0·0001) with increasing sediment accretion, at a rate of 3% per cm of sediment deposited, and implied a 96% increase in mortality at the highest sediment accretion applied (32 cm). Similarly, seedling growth declined linearly with increasing sediment accretion (r=-0·95,P<0·01) with the seedlings receiving 32 cm of sediment showing no significant growth. These results clearly show thatRhizophora apiculataseedlings will not be efficient colonizers of coastal areas exposed to sudden events of high (>4 cm) sediment accretion and, therefore, afforestation programmes based on this species are unlikely to be successful in such areas.

  19. Effects of hydrogen fluoride on water relations and photosynthesis in White Pine (Pinus strobus) seedlings

    SciTech Connect

    Rakowski, K.J.; Zwiazek, J.J. )

    1991-05-01

    Transpiration, photosynthesis, water potential components and tissue fluoride concentrations were determined in mildly drought stressed 9-week-old seedlings fumigated with HF. Only those seedlings which showed no visible signs of fluoride injury were selected for the measurements. Photosynthesis decreased after 1 and 7 days of fumigation with 2, 4 and 20 ppb HF. A decrease in the transpiration rates has been observed after 2, 7 and 22 days of 0.5 ppb HF treatment and after 2 days of 2 ppb HF treatment. The same treatments which reduced transpiration rates resulted in an increase in osmotic potentials and water potentials. Possible mechanism of HF-induced alterations in seedling water relations by altering stomatal movements is discussed.

  20. A comparative field study of growth and survival of Sierran conifer seedlings

    SciTech Connect

    Kern, R.A.

    1996-12-31

    This study is a comparison of seedling growth and survival of seven species of conifers that make up the mid-elevation Sierra Nevada mixed conifer forest--Abies concolor, Abies magnifica, Calocedrus decurrens, Pinus jeffreyi, Pinus lambertiana, Pinus ponderosa, and Sequoiadendron giganteum. The field experiment was designed to test the hypothesis that seedling demography is affected by the study species` relatively shade and drought tolerances. Six discrete treatments were created in the first experiment by using three elevations (1,600 m, 1,900, m, and 2,200 m) and two natural light levels (closed canopy shade and open gap sun) at each elevation. One or two-year old seedlings were planted in the ground in replicate plots in each treatment and followed for two growing seasons. Four responses were analyzed--survival, height growth, diameter growth, and mass growth (total mass as well as root mass and shoot mass separately).

  1. [Effects of light quality on photosynthetic pigment contents and photosynthetic characteristics of peanut seedling leaves].

    PubMed

    Yan, Meng-Meng; Wang, Ming-Lun; Wang, Hong-Bo; Wang, Yue-Fu; Zhao, Chang-Xing

    2014-02-01

    This study explored the effects of different light quality on photosynthetic pigment contents and photosynthetic characteristics of peanut (Qinhua 6) seedling leaves. The results showed that, compared with natural light, blue light (445-470 nm) could significantly improve the specific leaf area (SLA), chlorophyll a/b value and carotenoid content of peanut seedlings. Meanwhile, the net photosynthetic rate, stomatal conductance, and transpiration rate were higher, the intercellular CO2 content was lower, and the photosynthetic efficiency was improved significantly under blue light. Red light (610-660 nm) could improve the chlorophyll content significantly, and reduce SLA, chlorophyll a/b value and carotenoid content, with a lower photosynthetic efficiency than natural light. Green light (515-520 nm) and yellow light (590-595 nm) were not conducive to photosynthetic pigment accumulation of leaves, and significantly inhibited leaf photosynthesis of peanut seedlings.

  2. Effect of Paclobutrazol on Water Stress-Induced Abscisic Acid in Apple Seedling Leaves

    PubMed Central

    Wang, Shiow Y.; Sun, Tung; Ji, Zuo L.; Faust, Miklos

    1987-01-01

    Abscisic acid (ABA) was quantitated by enzyme-linked immunosorbent assay (ELISA) in water-stressed leaves from control apple seedlings, and also from apple seedlings treated for 28 days with paclobutrazol ([2RS, 3RS]-1-[4-chlorophenyl]-4,4-dimethyl-2-[1,2,4-triazol-1-yl] pentan-3-ol). The ELISA quantitative estimates were also validated by gas chromatography-electron capture detector and lettuce seed germination inhibition bioassay. Paclobutrazol treatment reduced endogenous ABA levels by about one-third, and prevented the marked accumulation of water-stress-induced ABA that occurred in untreated seedlings. The presence of ABA in the apple leaf extracts was confirmed by gas chromatography-mass spectrometry. PMID:16665559

  3. Climate Change Alters Seedling Emergence and Establishment in an Old-Field Ecosystem

    SciTech Connect

    Classen, Aimee T; Norby, Richard J; Campany, Courtney E; Sides, Katherine E; Weltzin, Jake

    2010-01-01

    In shaping how ecosystems respond to climatic change, ecosystem structure can dominate over physiological responses of individuals, especially under conditions of multiple, simultaneous changes in environmental factors. Ecological succession drives large-scale changes in ecosystem structure over time, but the mechanisms whereby climatic change alters succession remain unresolved. Here, we investigate effects of atmospheric and climatic change on seedling establishment, recognizing that small shifts in seedling establishment of different species may have long-term repercussions on the transition of fields to forests in the future. Our 4-year experiment in an old-field ecosystem revealed that response of seedling emergence to different combinations of atmospheric CO2 concentration, air temperature, and soil moisture depends on seed phenology, the timing of seed arrival into an ecosystem. We conclude that seed phenology is an important plant trait that can shape, and help predict, the trajectories of ecosystems under climatic change.

  4. Interactive effects of cadmium and acid rain on photosynthetic light reaction in soybean seedlings.

    PubMed

    Sun, Zhaoguo; Wang, Lihong; Chen, Minmin; Wang, Lei; Liang, Chanjuan; Zhou, Qing; Huang, Xiaohua

    2012-05-01

    Interactive effects of cadmium (Cd(2+)) and acid rain on photosynthetic light reaction in soybean seedlings were investigated under hydroponic conditions. Single treatment with Cd(2+) or acid rain and the combined treatment decreased the content of chlorophyll, Hill reaction rate, the activity of Mg(2+)-ATPase, maximal photochemical efficiency and maximal quantum yield, increased initial fluorescence and damaged the chloroplast structure in soybean seedlings. In the combined treatment, the change in the photosynthetic parameters and the damage of chloroplast structure were stronger than those of any single pollution. Meanwhile, Cd(2+) and acid rain had the interactive effects on the test indices in soybean seedlings. The results indicated that the combined pollution of Cd(2+) and acid rain aggravated the toxic effect of the single pollution of Cd(2+) or acid rain on the photosynthetic parameters due to the serious damage to the chloroplast structure.

  5. Phytotoxicity of zinc and manganese to seedlings grown in soil contaminated by zinc smelting

    USGS Publications Warehouse

    Beyer, W.N.; Green, C.E.; Beyer, M.; Chaney, R.L.

    2013-01-01

    Historic emissions from two zinc smelters have injured the forest on Blue Mountain near Palmerton, Pennsylvania, USA. Seedlings of soybeans and five tree species were grown in a greenhouse in a series of mixtures of smelter-contaminated and reference soils and then phytotoxic thresholds were calculated. As little as 10% Palmerton soil mixed with reference soil killed or greatly stunted seedlings of most species. Zinc was the principal cause of the phytotoxicity to the tree seedlings, although Mn and Cd may also have been phytotoxic in the most contaminated soil mixtures. Calcium deficiency seemed to play a role in the observed phytotoxicity. Exposed soybeans showed symptoms of Mn toxicity. A test of the effect of liming on remediation of the Zn and Mn phytotoxicity caused a striking decrease in Sr-nitrate extractable metals in soils and demonstrated that liming was critical to remediation and restoration.

  6. Nitrogen Assimilation and Protein Synthesis in Wheat Seedlings As Affected by Mineral Nutrition. I. Macronutrients 1

    PubMed Central

    Harper, James E.; Paulsen, Gary M.

    1969-01-01

    Deficiencies of each macronutrient (N, P, K, Ca. Mg, S, and Fe) decreased the specific activity of nitrate reductase from Triticum aestivum L. seedlings. Nitrate content was decreased by N, P, K, Ca, and Mg deficiencies and unaffected by S and Fe deficiencies. Glutamic acid dehydrogenase activity was decreased by N, P, and S deficiencies, unchanged by K deficiency, and increased by Ca, Mg, and Fe deficiencies. Glutamine synthetase activity closely paralleled nitrate reductase activity and was decreased by deficiencies of N, P, K, Ca, Mg, and S. Glutamic-oxaloacetic transaminase was not sensitive to macronutrient deficiencies. High 14C-leucine incorporation into tissue sections of N-, P-, K-, Ca-, and S-deficient seedlings did not appear indicative of protein synthesis rates in intact seedlings. Nutritional deficiencies apparently depleted endogenous amino acid pools and caused less inhibition of exogenous 14C-leucine incorporation into protein. PMID:16657034

  7. Mechanism of artemisinin phytotoxicity action: induction of reactive oxygen species and cell death in lettuce seedlings.

    PubMed

    Yan, Zhi-Qiang; Wang, Dan-Dan; Ding, Lan; Cui, Hai-Yan; Jin, Hui; Yang, Xiao-Yan; Yang, Jian-She; Qin, Bo

    2015-03-01

    Artemisinin has been recognized as an allelochemical that inhibits growth of several plant species. However, its mode of action is not well clarified. In this study, the mechanism of artemisinin phytotoxicity on lettuce seedlings was investigated. Root and shoot elongation of lettuce seedlings were inhibited by artemisinin in a concentration-dependent manner. The compound effectively arrested cell division and caused loss of cell viability in root tips of lettuce. Overproduction of reactive oxygen species (ROS) was induced by artemisinin. Lipid peroxidation, proline overproduction and reduction of chlorophyll content in lettuce seedlings were found after treatments. These results suggested that artemisinin could induce ROS overproduction, which caused membrane lipids peroxidation and cell death, and impacted mitosis and physiological processes, resulting in growth inhibition of receptor plants. PMID:25658194

  8. Evaluation of Parkia pendula lectin mRNA differentially expressed in seedlings.

    PubMed

    Rêgo, M J B M; Santos, P B; Carvalho-Junior, L B; Stirling, J; Beltrão, E I C

    2014-05-01

    Parkia pendula (Willd.) Walp. (Fabaceae) is a neotropical species of the genus Parkia more abundantly distributed in Central to South America. From the seeds of P. pendula a glucose/mannose specific lectin (PpeL) was isolated that has been characterised and used as a biotechnological tool but until now this is the first manuscript to analyse P. pendula mRNA expression in seedlings. For this porpoise a Differential display reverse transcription polimerase chain reaction (DDRT-PCR) was used to evaluate the expression of P. pendula lectin mRNAs in non-rooted seedlings. No bands were observed in the agarose gel, indicating the absence of mRNA of PpeL seedlings. our findings confirm that lectins mRNAs are differently regulated among species even if they are grouped in the same class. PMID:25166336

  9. Modelling changes in leaf shape prior to phyllode acquisition in Acacia mangium Willd. seedlings.

    PubMed

    Leroy, Céline; Heuret, Patrick

    2008-02-01

    The aim of this study was to characterise changes in leaf shape prior to phyllode acquisition along the axes of Acacia mangium seedlings. The study area was located in North Lampung (South Sumatra, Indonesia), where these trees belong to a naturally regenerated stand. A total of 173 seedlings, less than three months old, were described node by node. Leaf shape and leaf length were recorded and the way in which one leaf type succeeded another was modelled using a hidden semi-Markov chain composed of seven states. The phyllotactical pattern was studied using another sample of forty 6-month-old seedlings. The results indicate (i) the existence of successive zones characterised by one or a combination of leaf types, and (ii) that phyllode acquisition seems to be accompanied by a change in the phyllotactical pattern. The concepts of juvenility and heteroblasty, as well as potential applications for taxonomy are discussed. PMID:18241805

  10. A high-throughput imaging system to quantitatively analyze the growth dynamics of plant seedlings.

    PubMed

    Men, Yongfan; Yu, Qiang; Chen, Zitian; Wang, Jianbin; Huang, Yanyi; Guo, Hongwei

    2012-08-01

    Most current methods for analyzing the growth rate of plant seedlings are limited to low-throughput experimental configurations. We have developed an automatic system to investigate the dynamics of the growth of hypocotyls using Arabidopsis as model. This system is able to capture time-lapse infrared images of 24 seedlings automatically, with a spatial resolution of 2 μm per pixel and temporal interval of 5 min. Seedling length is rapidly calculated using automated geometric image-processing algorithms. With this high-throughput platform, we have investigated the genotype dependent difference of growth patterns, as well as the response to plant hormone - ethylene. Our analyses suggest that cytoskeleton function is not required in ethylene-induced hypocotyl inhibition. This novel integrative method can be applied to large-scale dynamic screening of plants, as well as any other image-based biological studies related to dynamic growth.

  11. Short term signaling responses in roots of young soybean seedlings exposed to cadmium stress.

    PubMed

    Chmielowska-Bąk, Jagna; Lefèvre, Isabelle; Lutts, Stanley; Deckert, Joanna

    2013-12-15

    In the present study, the expression of fourteen genes involved in various signal transduction pathways was examined in young soybean (Glycine max) seedlings exposed to cadmium at two concentrations (10 mg L(-1) and 25 mg L(-1)) for short time periods (3, 6 and 24 h). The results show that cadmium causes induction of genes encoding proteins involved in ethylene and polyamines metabolism, nitric oxide generation, MAPK cascades and regulation of other genes' expression. The bioinformatic analysis of promoter sequences of Cd-inducible genes revealed that their promoters possess several regulative motifs associated with the plant response to stress factors and abscisic acid and ethylene signaling. The involvement of ethylene in the response of soybean seedlings to cadmium stress was further confirmed by the real-time analysis of ethylene production during 24 h of CdCl2 treatment. The role of the described signaling elements in transduction of the cadmium signal in young soybean seedlings is discussed.

  12. Mechanism of artemisinin phytotoxicity action: induction of reactive oxygen species and cell death in lettuce seedlings.

    PubMed

    Yan, Zhi-Qiang; Wang, Dan-Dan; Ding, Lan; Cui, Hai-Yan; Jin, Hui; Yang, Xiao-Yan; Yang, Jian-She; Qin, Bo

    2015-03-01

    Artemisinin has been recognized as an allelochemical that inhibits growth of several plant species. However, its mode of action is not well clarified. In this study, the mechanism of artemisinin phytotoxicity on lettuce seedlings was investigated. Root and shoot elongation of lettuce seedlings were inhibited by artemisinin in a concentration-dependent manner. The compound effectively arrested cell division and caused loss of cell viability in root tips of lettuce. Overproduction of reactive oxygen species (ROS) was induced by artemisinin. Lipid peroxidation, proline overproduction and reduction of chlorophyll content in lettuce seedlings were found after treatments. These results suggested that artemisinin could induce ROS overproduction, which caused membrane lipids peroxidation and cell death, and impacted mitosis and physiological processes, resulting in growth inhibition of receptor plants.

  13. Philodryas chamissonis (Reptilia: Squamata: Colubridae) preys on the arboreal marsupial Dromiciops gliroides (Mammalia: Microbiotheria: Microbiotheriidae).

    PubMed

    Muñoz-Leal, S; Ardiles, K; Figueroa, R A; González-Acuña, D

    2013-02-01

    Philodryas chamissonis, the Chilean long-tailed snake, is a diurnal predator mainly of Liolaemus lizards, but also of amphibians, birds, rodents and juvenile rabbits. Dromiciops gliroides (Colocolo opossum) is an arboreal marsupial endemic of temperate rainforest of southern South America. Little information is available about this marsupial's biology and ecology. Here we report the predation of one Colocolo opossum by an adult female P. chamissonis in a mixed Nothofagus forest, composed mainly by N. dombeyi, N. glauca and N. alpina trees, in the "Huemules de Niblinto" National Reserve, Nevados de Chillán, Chile. Since these two species have different activity and habitat use patterns, we discuss how this encounter may have occurred. Although it could just have been an opportunistic event, this finding provides insights into the different components of food chains in forest ecosystems of Chile.

  14. Mycorrhizal fungi and ectomycorrhiza associated bacteria isolated from an industrial desert soil protect pine seedlings against Cd(II) impact.

    PubMed

    Kozdrój, Jacek; Piotrowska-Seget, Zofia; Krupa, Piotr

    2007-08-01

    Effects of mycorrhization with Amanita rubescens or Hebeloma sinapizans and dual inoculation with the fungi and ectomycorrhiza associated bacteria (EMAB) Pseudomonas putida or Bacillus cereus on seedling growth and accumulation of Cd(II) in Pinus sylvestris were studied. Both fungal and bacterial species were isolated from roots of pines growing in an industrial area polluted with high concentrations of heavy metals. During mycorrhization, A. rubescens colonized higher number of pine seedlings than H. sinapizans, especially when EMAB were co-inoculated. In addition, the seedling biometric characteristics (i.e. root and shoot lengths and biomass) were stimulated by treatment with the fungal species alone and dual inoculation with the fungi and EMAB. Amanita rubescens was more efficient in this stimulation than H. sinapizans. The increased growth of pine seedlings was especially seen for co-inoculation with P. putida. Furthermore, elevated accumulation of Cd(II), ranging from 56 microg g(-1) to 72 microg g(-1) dry weight, in underground parts of the inoculated seedlings was found. The seedlings treated with A. rubescens accumulated higher concentrations of the metal than those inoculated with H. sinapizans. Additional treatment of pine seedlings with P. putida resulted in the higher accumulation of Cd(II) in the roots as compared with those inoculated with B. cereus. The results suggest that the growth of pine seedlings in Cd(II)-polluted soil may depend on fungal species forming ectomycorrhizae, species-specific co-inoculation with EMAB and specificity of fungal-EMAB interactions. PMID:17541824

  15. Development of red oak seedlings using plastic shelters on hardwood sites in West Virginia. Forest Service research paper (Final)

    SciTech Connect

    Smith, H.C.

    1993-04-01

    Plastic shelters were used to grow red oak seedlings on good-to-excellent Appalachian hardwood growing sites in north central West Virginia. Preliminary results indicate that shelters have the potential to stimulate development of red oak seedlingheight growth, especially if height growth continues once the seedling tops are above the 5-foot-tall shelters.

  16. Calcium Supplementation Improves Na(+)/K(+) Ratio, Antioxidant Defense and Glyoxalase Systems in Salt-Stressed Rice Seedlings.

    PubMed

    Rahman, Anisur; Nahar, Kamrun; Hasanuzzaman, Mirza; Fujita, Masayuki

    2016-01-01

    The present study investigates the regulatory role of exogenous calcium (Ca) in developing salt stress tolerance in rice seedlings. Hydroponically grown 13-day-old rice (Oryza sativa L. cv. BRRI dhan47) seedlings were exposed to 200 mM NaCl alone and combined with 2 mM CaCl2 and 2 mM ethylene glycol tetraacetic acid (EGTA, a Ca scavenger) for 3 days. The salt stress caused growth inhibition, chlorosis and water shortage in the rice seedlings. The salt-induced stress disrupted ion homeostasis through Na(+) influx and K(+) efflux, and decreased other mineral nutrient uptake. Salt stress caused oxidative stress in seedlings through lipid peroxidation, loss of plasma membrane integrity, higher reactive oxygen species (ROS) production and methylglyoxal (MG) formation. The salt-stressed seedlings supplemented with exogenous Ca recovered from water loss, chlorosis and growth inhibition. Calcium supplementation in the salt-stressed rice seedlings improved ion homeostasis by inhibition of Na(+) influx and K(+) leakage. Exogenous Ca also improved ROS and MG detoxification by improving the antioxidant defense and glyoxalase systems, respectively. On the other hand, applying EGTA along with salt and Ca again negatively affected the seedlings as EGTA negated Ca activity. It confirms that, the positive responses in salt-stressed rice seedlings to exogenous Ca were for Ca mediated improvement of ion homeostasis, antioxidant defense and glyoxalase system. PMID:27242816

  17. Phytochrome signaling in green Arabidopsis seedlings: impact assessment of a mutually-negative phyB-PIF feedback loop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The reversibly red (R)-far-red (FR)-light-responsive phytochrome (phy) photosensory system initiates both the deetiolation process in dark-germinated seedlings upon first exposure to light, and the shade-avoidance process in fully-deetiolated seedlings upon exposure to vegetational shade. The intra...

  18. Influence of warming on soil water potential controls seedling mortality in perennial but not annual species in a temperate grassland.

    PubMed

    Hovenden, Mark J; Newton, Paul C D; Wills, Karen E; Janes, Jasmine K; Williams, Amity L; Vander Schoor, Jacqueline K; Nolan, Michaela J

    2008-01-01

    In a water-limited system, the following hypotheses are proposed: warming will increase seedling mortality; elevated atmospheric CO2 will reduce seedling mortality by reducing transpiration, thereby increasing soil water availability; and longevity (i.e. whether a species is annual or perennial) will affect the response of a species to global changes. Here, these three hypotheses are tested by assessing the impact of elevated CO2 (550 micromol mol(-1) and warming (+2 degrees C) on seedling emergence, survivorship and establishment in an Australian temperate grassland from autumn 2004 to autumn 2007. Warming impacts on seedling survivorship were dependent upon species longevity. Warming reduced seedling survivorship of perennials through its effects on soil water potential but the seedling survivorship of annuals was reduced to a greater extent than could be accounted for by treatment effects on soil water potential. Elevated CO2 did not significantly affect seedling survivorship in annuals or perennials. These results show that warming will alter recruitment of perennial species by changing soil water potential but will reduce recruitment of annual species independent of any effects on soil moisture. The results also show that exposure to elevated CO2 does not make seedlings more resistant to dry soils.

  19. Persistence of fipronil residues in Eucalyptus seedlings and its concentration in the insecticide solution after treatment in the nursery.

    PubMed

    dos Santos, Alexandre; Zanetti, Ronald; dos Santos, Juliana Cristina; Biagiotti, Gabriel; Evangelista, André Luís; Serrão, José Eduardo; Zanuncio, José Cola

    2016-05-01

    Eucalyptus seedlings are normally protected from underground termites (Isoptera: Termitidae) by immersing them in insecticide solutions. Fipronil (phenylpyrazole) is the most frequently used product to protect seedlings in the field for up to 6 months after application. This is performed just prior to planting. However, the persistence of this product in seedlings that are treated and subjected to irrigation several days prior to planting has not yet been evaluated. This study aims to quantify the fipronil concentration in the substratum and roots of the seedlings treated and subjected to irrigation for up to 56 days prior to planting and to quantify this insecticide concentration in the solutions, without continuous stirring, for 120 min. The quantitative determination of fipronil in the seedlings and in the insecticide solution was done by high-performance liquid chromatography (HPLC) with an ultraviolet (UV) detector. It was found that irrigation up to 56 days, performed in the nurseries, did not decrease the fipronil concentration in the seedlings. The absence of stirring reduced the fipronil concentration in the insecticide solution, necessitating a homogenization system to maintain the recommended concentration of this product, to effectively treat the eucalyptus seedlings. The seedling treatment with fipronil can be conducted strictly in the nursery, reducing cost and environmental risks. PMID:27126439

  20. Calcium Supplementation Improves Na+/K+ Ratio, Antioxidant Defense and Glyoxalase Systems in Salt-Stressed Rice Seedlings

    PubMed Central

    Rahman, Anisur; Nahar, Kamrun; Hasanuzzaman, Mirza; Fujita, Masayuki

    2016-01-01

    The present study investigates the regulatory role of exogenous calcium (Ca) in developing salt stress tolerance in rice seedlings. Hydroponically grown 13-day-old rice (Oryza sativa L. cv. BRRI dhan47) seedlings were exposed to 200 mM NaCl alone and combined with 2 mM CaCl2 and 2 mM ethylene glycol tetraacetic acid (EGTA, a Ca scavenger) for 3 days. The salt stress caused growth inhibition, chlorosis and water shortage in the rice seedlings. The salt-induced stress disrupted ion homeostasis through Na+ influx and K+ efflux, and decreased other mineral nutrient uptake. Salt stress caused oxidative stress in seedlings through lipid peroxidation, loss of plasma membrane integrity, higher reactive oxygen species (ROS) production and methylglyoxal (MG) formation. The salt-stressed seedlings supplemented with exogenous Ca recovered from water loss, chlorosis and growth inhibition. Calcium supplementation in the salt-stressed rice seedlings improved ion homeostasis by inhibition of Na+ influx and K+ leakage. Exogenous Ca also improved ROS and MG detoxification by improving the antioxidant defense and glyoxalase systems, respectively. On the other hand, applying EGTA along with salt and Ca again negatively affected the seedlings as EGTA negated Ca activity. It confirms that, the positive responses in salt-stressed rice seedlings to exogenous Ca were for Ca mediated improvement of ion homeostasis, antioxidant defense and glyoxalase system. PMID:27242816

  1. Effects of Roads on Castanopsis carlesii Seedlings and Their Leaf Herbivory in a Subtropical Forest in China

    PubMed Central

    Dai, Xiao-Hua; Xu, Jia-Sheng; Cai, Lu-Rong

    2014-01-01

    The effects of a forest road on Castanopsis carlesii (Hemsley) Hayata (Fagales: Fagaceae) seedlings and their leaf herbivory were investigated in a subtropical forest at Jiulianshan National Nature Reserve, Jiangxi, China. A total of 1124 seedlings, 33949 leaves, 468 leaf mines, and 205 leaf galls were found. Generally, individual numbers, tree heights, and leaf numbers of C. carlesii seedlings became lower with increasing distances from the road. These results might indicate that old seedlings were fewer and survival rate of seedlings was lower in forest interiors. Leaf miners preferred the seedlings close to the forest road, while leaf gallers preferred the seedlings about 2 m from the road. Species diversity of leaf miners was higher in the forest interior area, while species diversity of leaf gallers was higher near the road. However, both leaf miners and leaf gallers decreased in general from the road to the interior forest. There were interspecific differences in the effects of roads on leaf miner species and leaf galler species. The effects of the road on seedlings and insects could be explained by varying microhabitat conditions and different ecological strategies. PMID:25373164

  2. Seed-caching by heteromyid rodents enhances seedling survival of a desert grass, Indian ricegrass (Achnatherum hymenoides)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seeds of many plant species germinate and establish aggregated clusters of seedlings from shallowly buried seed caches (i.e., scatterhoards) made by granivorous animals. Scatterhoarding by desert heteromyid rodents facilitates the vast majority of seedling recruitment in Indian ricegrass (Achnatheru...

  3. Maize seed coatings and seedling sprayings with chitosan and hydrogen peroxide: their influence on some phenological and biochemical behaviors

    PubMed Central

    Lizárraga-Paulín, Eva-Guadalupe; Miranda-Castro, Susana-Patricia; Moreno-Martínez, Ernesto; Lara-Sagahón, Alma-Virginia; Torres-Pacheco, Irineo

    2013-01-01

    Objective: To evaluate the effect of chitosan (CH) and hydrogen peroxide (H2O2) seed coatings and seedling sprinklings on two different maize varieties by measuring their phenology, the H2O2 presence, the catalase (CAT) activity, and the protein quantity. Methods: Seven groups of ten seeds for each maize variety were treated with CH (2% (20 g/L) and 0.2% (2 g/L)) or H2O2 (8 mmol/L) by coating, sprinkling, or both. Germination and seedling growth were measured. One month after germination, the presence of H2O2 in seedlings in the coated seed treatments was evaluated. Protein content and CAT activity were determined under all treatments. Results: H2O2 seed coating enhanced the germination rate and increased seedling and stem length in the quality protein maize (QPM) variety. Seedlings had a higher emergence velocity under this treatment in both varieties. CH and H2O2 sprinklings did not have an effect on seedling phenology. Exogenous application of H2O2 promoted an increase of endogenous H2O2. CH and H2O2 seedling sprinkling increased the protein content in both maize varieties, while there was no significant effect on the CAT activity of treated seeds and seedlings. Conclusions: CH and H2O2 enhance some phenological and biochemical features of maize depending on their method of application. PMID:23365007

  4. Taxonomic scale-dependence of habitat niche partitioning and biotic neighbourhood on survival of tropical tree seedlings

    PubMed Central

    Queenborough, Simon A.; Burslem, David F. R. P.; Garwood, Nancy C.; Valencia, Renato

    2009-01-01

    In order to differentiate between mechanisms of species coexistence, we examined the relative importance of local biotic neighbourhood, abiotic habitat factors and species differences as factors influencing the survival of 2330 spatially mapped tropical tree seedlings of 15 species of Myristicaceae in two separate analyses in which individuals were identified first to species and then to genus. Using likelihood methods, we selected the most parsimonious candidate models as predictors of 3 year seedling survival in both sets of analyses. We found evidence for differential effects of abiotic niche and neighbourhood processes on individual survival between analyses at the genus and species levels. Niche partitioning (defined as an interaction of taxonomic identity and abiotic neighbourhood) was significant in analyses at the genus level, but did not differentiate among species in models of individual seedling survival. By contrast, conspecific and congeneric seedling and adult density were retained in the minimum adequate models of seedling survival at species and genus levels, respectively. We conclude that abiotic niche effects express differences in seedling survival among genera but not among species, and that, within genera, community and/or local variation in adult and seedling abundance drives variation in seedling survival. These data suggest that different mechanisms of coexistence among tropical tree taxa may function at different taxonomic or phylogenetic scales. This perspective helps to reconcile perceived differences of importance in the various non-mutually exclusive mechanisms of species coexistence in hyper-diverse tropical forests. PMID:19740886

  5. Organ-coordinated response of early post-germination mahogany seedlings to drought.

    PubMed

    Horta, Lívia P; Braga, Márcia R; Lemos-Filho, José P; Modolo, Luzia V

    2014-04-01

    Water deficit tolerance during post-germination stages is critical for seedling recruitment. In this work, we studied the effect of water deficit on morphological and biochemical responses in different organs of newly germinated mahogany (Swietenia macrophylla King) seedlings, a woody species that occurs in the Amazon rainforest. The root : shoot ratio increased under water deficit. The leaf number and water potential were not altered, although reductions in leaf area and stomatal conductance were observed. Osmotic potential became more negative in leaves of seedlings under severe stress. Water deficit increased fructose, glucose, sucrose and myo-inositol levels in leaves. Stems accumulated fructose, glucose and l-proline. Nitric oxide (NO) levels increased in the vascular cylinder of roots under severe stress while superoxide anion levels decreased due to augmented superoxide dismutase activity in this organ. Water deficit induced glutathione reductase activity in both roots and stems. Upon moderate or severe stress, catalase activity decreased in leaves and remained unaffected in the other seedling organs, allowing for an increase of hydrogen peroxide (H2O2) levels in leaves. Overall, the increase of signaling molecules in distinct organs-NO in roots, l-proline in stems and H2O2 and myo-inositol in leaves-contributed to the response of mahogany seedlings to water deficit by triggering biochemical processes that resulted in the attenuation of oxidative stress and the establishment of osmotic adjustment. Therefore, this body of evidence reveals that the development of newly germinated mahogany seedlings may occur in both natural habitats and crop fields even when water availability is greatly limited. PMID:24690672

  6. [Effects of La on the growth of kidney bean seedling under Cd stress].

    PubMed

    Zhou, Qing; Zhang, Hui; Huang, Xiaohua; Lu, Ganchao; Liang, Chanjuan; Lu, Tianhong

    2003-07-01

    In this study, kidney bean (Phaseolus vulgaris) was used as experiment-material, and effects of lanthanum on growth and metabolism of kidney bean seedling under cadmium stress was studied by water culture. The results showed that kidney bean seedling was chronically harmed by 30 mumol.L-1 Cd2+, however, its height and main root were reduced about 31.1% and 39.2%, meanwhile, leaf area, fresh and dry weight of leaf, stem and root were decreased 48.0%, 42.7%, 29.6%, 61.3% and 49.4% respectively. With acute damage of 50 mumol.L-1 Cd2+, physiological and biochemical characteristics of seedling changed greatly, e.g., chlorophyll content and root activity were decreased about 23.5% and 28.7%, cell membrane permeability, the malonydialdehyde (MDA) content, activities of catalase (CAT) and peroxidase (POD) were increased 5.58%, 28.6%, 0.6% and 7.0% respectively. And with longer treatment time, the damage became more serious. When 10 mg.L-1 La was used to spray on kidney bean seedling under cadmium stress one time, growth and metabolism of seedling was obviously reconditioned and the damage of Cd pollution was reduced. It is proved, by the experiment, that La can improve chlorophyll content(30.0%) and reduce cell membrane permeability (0.87%) and content of MDA(9.5%), and keep the activities of CAT (0.1%) and POD(1.6%) of kidney bean seedling.

  7. Natural populations of Arabidopsis thaliana differ in seedling responses to high-temperature stress

    PubMed Central

    Zhang, Nana; Belsterling, Brian; Raszewski, Jesse; Tonsor, Stephen J.

    2015-01-01

    Little is known about adaptive within-species variation in thermotolerance in wild plants despite its likely role in both functional adaptation at range limits and in predicting response to climate change. Heat shock protein Hsp101, rapidly heat induced in Arabidopsis thaliana, plays a central role in thermotolerance in laboratory studies, yet little is known about variation in its expression in natural populations. We explored variation in thermotolerance and Hsp101 expression in seedlings from 16 natural populations of A. thaliana sampled along an elevation and climate gradient. We tested both naive controls (maintained at 22 °C until heat stress) and thermally pre-acclimated plants (exposed to a 38 °C 3-h acclimation treatment). After acclimation, seedlings were exposed to one of two heat stresses: 42 or 45 °C. Thermotolerance was measured as post-stress seedling survival and root growth. When stressed at 45 °C, both thermotolerance and Hsp101 expression were significantly increased by pre-acclimation. However, thermotolerance did not differ between pre-acclimation and control when followed by a 42 °C stress. Immediately after heat stress, pre-acclimated seedlings contained significantly more Hsp101 than control seedlings. At 45 °C, Hsp101 expression was positively associated with survival (r2 = 0.37) and post-stress root growth (r2 = 0.15). Importantly, seedling survival, post-stress root growth at 45 °C and Hsp101 expression at 42 °C were significantly correlated with the home sites' first principal component of climate variation. This climate gradient mainly reflects a temperature and precipitation gradient. Thus, the extent of Hsp101 expression modulation and thermotolerance appear to be interrelated and to evolve adaptively in natural populations of A. thaliana. PMID:26286225

  8. The role of onion-associated fungi in bulb mite infestation and damage to onion seedlings.

    PubMed

    Ofek, Tal; Gal, Shira; Inbar, Moshe; Lebiush-Mordechai, Sara; Tsror, Leah; Palevsky, Eric

    2014-04-01

    In Israel Rhizoglyphus robini is considered to be a pest in its own right, even though the mite is usually found in association with fungal pathogens. Plant protection recommendations are therefore to treat germinating onions seedlings, clearly a crucial phase in crop production, when mites are discovered. The aim of this study was to determine the role of fungi in bulb mite infestation and damage to germinating onion seedlings. Accordingly we (1) evaluated the effect of the mite on onion seedling germination and survival without fungi, (2) compared the attraction of the mite to species and isolates of various fungi, (3) assessed the effect of a relatively non-pathogenic isolate of Fusarium oxysporum on mite fecundity, and (4) determined the effects of the mite and of F. oxysporum separately and together, on onion seedling germination and sprout development. A significant reduction of seedling survival was recorded only in the 1,000 mites/pot treatment, after 4 weeks. Mites were attracted to 6 out of 7 collected fungi isolates. Mite fecundity on onion sprouts infested with F. oxysporum was higher than on non-infested sprouts. Survival of seedlings was affected by mites, fungi, and their combination. Sprouts on Petri dishes after 5 days were significantly longer in the control and mite treatments than both fungi treatments. During the 5-day experiment more mites were always found on the fungi-infected sprouts than on the non-infected sprouts. Future research using suppressive soils to suppress soil pathogens and subsequent mite damage is proposed.

  9. Morphometric analyses of petioles of seedlings grown in a spaceflight experiment.

    PubMed

    Johnson, Christina M; Subramanian, Aswati; Edelmann, Richard E; Kiss, John Z

    2015-11-01

    Gravity is a constant unidirectional stimulus on Earth, and gravitropism in plants involves three phases: perception, transduction, and response. In shoots, perception takes place within the endodermis. To investigate the cellular machinery of perception in microgravity, we conducted a spaceflight study with Arabidopsis thaliana seedlings, which were grown in microgravity in darkness using the Biological Research in Canisters (BRIC) hardware during space shuttle mission STS-131. In the 14-day-old etiolated plants, we studied seedling development and the morphological parameters of the endodermal cells in the petiole. Seedlings from the spaceflight experiment (FL) were compared to a ground control (GC), which both were in the BRIC flight hardware. In addition, to assay any potential effects from growth in spaceflight hardware, we performed another control by growing seedlings in Petri dishes in standard laboratory conditions (termed the hardware control, HC). Seed germination was significantly lower in samples grown in flight hardware (FL, GC) compared to the HC. In terms of cellular parameters of endodermal cells, the greatest differences also were between seedlings grown in spaceflight hardware (FL, GC) compared to those grown outside of this hardware (HC). Specifically, the endodermal cells were significantly smaller in seedlings grown in the BRIC system compared to those in the HC. However, a change in the shape of the cell, suggesting alterations in the cell wall, was one parameter that appears to be a true microgravity effect. Taken together, our results suggest that caution must be taken when interpreting results from the increasingly utilized BRIC spaceflight hardware system and that it is important to perform additional ground controls to aid in the analysis of spaceflight experiments. PMID:26376793

  10. Enhancement of Seedling Emergence in Sweet Corn by Marker-Assisted Backcrossing of Beneficial QTL.

    PubMed

    Yousef, Gad G.; Juvik, John A.

    2002-01-01

    Seedling emergence is an important trait that can limit commercialization of sweet corn hybrids. This study was designed to test what effect beneficial QTL alleles that enhance seedling emergence exert when introgressed, using marker-assisted backcrossing, into sweet corn commercial germplasm. Three RFLP marker alleles linked to QTL that enhanced seedling emergence were identified in an F(2:3) sweet corn mapping population. A recombinant inbred line (RIL, F(8)) derived from this population was used as a donor parent to backcross the marker-QTL alleles into three elite commercial sweet corn inbreds. Plants in the three segregating BC(2) populations were crossed to the non-recurrent commercial inbreds to produce three BC(2)F(1) populations with families either segregating or lacking the marker donor allele(s). These three populations were evaluated for seedling emergence under field conditions in two successive years. Across the three populations, BC(2)F(1) families segregating for the donor QTL allele linked to the marker umc139 (on chromosome 2), bnl9.08 (on chromosome 8), or php200689 (on chromosome 1) displayed 40.8, 30.2, and 28.2% increases in seedling emergence, respectively, over the unmodified F(1)s. The introgressed QTL alleles were observed to enhance seedling emergence in the BC(2)F(1) generation as was observed in the original F(2:3) mapping population. Marker-QTL associated effects were reproducible across generations and populations indicating that QTL identified in one population can exert similar effects in different genetic backgrounds. Results suggest that using DNA marker technology can help to identify and introgress beneficial QTL alleles, shortening the time and resources required to develop improved germplasm. PMID:11756259

  11. [Effect of 5-aminolevulinic acid on photosynthetic characteristics of tomato seedlings under NaCl stress].

    PubMed

    Zhao, Yan-Yan; Yan, Fei; Hu, Li-Pan; Zhou, Xiao-Ting; Zou, Zhi-Rong

    2014-10-01

    In this research, the possibility of exogenous application of 5-aminolevulinic acid (ALA) on photosynthetic characteristics of tomato seedlings under NaCl stress was investigated. Five leaves seedlings of tomato (Solanum lycopersicum cv. Jinpeng No. 1) were used as starting materials, applied with 50 mg · L(-1) ALA by foliage spray or 10 mg · L(-1) ALA by root soaking to study the changes in their photosynthesis and fluorescence parameters under 100 mmol · L(-1) NaCl. The result showed that, photosynthetic gas exchange parameters (net photosynthetic rate P,, stomata conductance g(s), intercellular CO2 concentration Ci, transpiration Tr) and chlorophyll fluorescence parameters (Fv'/Fm', Fm', ΦPS II, ETR, qP, Pc) were severely reduced under NaCl treatment and ALA application by foliage spray or root soaking with proper concentrations exerted positive influences on tomato seedlings under salt stress, while there were some differences between foliage spray and root soaking in the influence on chlorophyll content, photosynthesis and chlorophyll fluorescence. Both foliage spray with 50 mg · L(-1) ALA and root soaking with 10 mg L(-1) ALA significantly increased Pn, Ci, g(s) and Tr of tomato seedlings under NaCl stress, alleviated photosynthetic inhibition. Root application of ALA had a better effect on the chlorophyll content than foliage application. However, the photosynthetic parameters showed that foliage application of ALA had a better effect than root application, and both treatments had no difference in the influence on chlorophyll fluorescence parameters of tomato seedlings. It could be deduced that the regulating effect of ALA on enhancing salt tolerance of tomato seedlings is attributed to its effect on improving chlorophyll biosynthesis and metabolism, increasing stomatal conductance and reducing stomatal limitation, thus, enhancing the photosynthetic capacity and PS II photochemical efficiency of tomato leaves under NaCl stress. PMID:25796901

  12. [Effect of 5-aminolevulinic acid on photosynthetic characteristics of tomato seedlings under NaCl stress].

    PubMed

    Zhao, Yan-Yan; Yan, Fei; Hu, Li-Pan; Zhou, Xiao-Ting; Zou, Zhi-Rong

    2014-10-01

    In this research, the possibility of exogenous application of 5-aminolevulinic acid (ALA) on photosynthetic characteristics of tomato seedlings under NaCl stress was investigated. Five leaves seedlings of tomato (Solanum lycopersicum cv. Jinpeng No. 1) were used as starting materials, applied with 50 mg · L(-1) ALA by foliage spray or 10 mg · L(-1) ALA by root soaking to study the changes in their photosynthesis and fluorescence parameters under 100 mmol · L(-1) NaCl. The result showed that, photosynthetic gas exchange parameters (net photosynthetic rate P,, stomata conductance g(s), intercellular CO2 concentration Ci, transpiration Tr) and chlorophyll fluorescence parameters (Fv'/Fm', Fm', ΦPS II, ETR, qP, Pc) were severely reduced under NaCl treatment and ALA application by foliage spray or root soaking with proper concentrations exerted positive influences on tomato seedlings under salt stress, while there were some differences between foliage spray and root soaking in the influence on chlorophyll content, photosynthesis and chlorophyll fluorescence. Both foliage spray with 50 mg · L(-1) ALA and root soaking with 10 mg L(-1) ALA significantly increased Pn, Ci, g(s) and Tr of tomato seedlings under NaCl stress, alleviated photosynthetic inhibition. Root application of ALA had a better effect on the chlorophyll content than foliage application. However, the photosynthetic parameters showed that foliage application of ALA had a better effect than root application, and both treatments had no difference in the influence on chlorophyll fluorescence parameters of tomato seedlings. It could be deduced that the regulating effect of ALA on enhancing salt tolerance of tomato seedlings is attributed to its effect on improving chlorophyll biosynthesis and metabolism, increasing stomatal conductance and reducing stomatal limitation, thus, enhancing the photosynthetic capacity and PS II photochemical efficiency of tomato leaves under NaCl stress.

  13. Lianas suppress seedling growth and survival of 14 tree species in a Panamanian tropical forest.

    PubMed

    Martínez-Izquierdo, Laura; García, María M; Powers, Jennifer S; Schnitzer, Stefan A

    2016-01-01

    Lianas are a common plant growth form in tropical forests, where they compete intensely with trees, decreasing tree recruitment, growth, and survival. If the detrimental effects of lianas vary significantly with tree species identity, as is often assumed, then lianas may influence tree species diversity and community composition. Furthermore, recent studies have shown that liana abundance and biomass are increasing relative to trees in neotropical forests, which will likely magnify the detrimental effects of lianas and may ultimately alter tree species diversity, relative abundances, and community composition. Few studies, however, have tested the responses of multiple tree species to the presence of lianas in robust, well-replicated experiments. We tested the hypotheses that lianas reduce tree seedling growth and survival, and that the effect of lianas varies with tree species identity. We used a large-scale liana removal experiment in Central Panama in which we planted 14 replicate seedlings of 14 different tree species that varied in shade tolerance in each of 16 80 x 80 m plots (eight liana-removal and eight unmanipulated controls; 3136 total seedlings). Over a nearly two-yr period, we found that tree seedlings survived 75% more, grew 300% taller, and had twice the aboveground biomass in liana-removal plots than seedlings in control plots, consistent with strong competition between lianas and tree seedlings. There were no significant differences in the response of tree species to liana competition (i.e., there was no species by treatment interaction), indicating that lianas had a similar negative effect on all 14 tree species. Furthermore, the effect of lianas did not vary with tree species shade tolerance classification, suggesting that the liana effect was not solely based on light. Based on these findings, recently observed increases in liana abundance in neotropical forests will substantially reduce tree regeneration, but will not significantly alter

  14. [Effects of grafting on photosynthesis of sweet pepper seedlings under low temperature and weak light intensity].

    PubMed

    Zheng, Nan; Wang, Mei-ling; Wang, Hong-tao; Ai, Xi-zhen

    2009-03-01

    Sweet pepper 'Chifengtexuan' seedlings were grafted onto 'Weishi' and 'Buyeding' rootstocks, treated with low temperature (8 degrees C/ 5 degrees C) and weak light intensity (100 micromol x m(-2) s(-1)) for 7 days, and then recovered under normal conditions (25 degrees C/ 18 degrees C, PFD 550-600 micromol x s(-1)) for 3 days to study the variations of their gas exchange parameters, carboxylation efficiency, and fluorescence parameters, with the own-rooted 'Chifengtexuan' seedlings as the control. The results showed that on the 3rd day of low temperature and weak light intensity stress, the photosynthetic rate (Pn), stomatal conductance (Gs), and carboxylation efficiency (CE) of both own-rooted and grafted seedling leaves decreased more than 50%, and after then, the Pn and Gs tended to stable while CE decreased continually. The intercellular CO2 concentration (Ci) declined first, but enhanced after the 4th day of the stress. Low temperature and weak light intensity decreased the maximal photochemical efficiency of PS II in darkness (Fv/Fm), actual photochemical efficiency of PS II during illumination (phi (PS II)) and electron transport rate (ETR), but increased the initial fluorescence (Fo), which implied that the stress caused definite damage of photosynthetic apparatus. However, the damage diminished after 3 days of recovery. Comparing with those of own-rooted seedlings, the Pn, Gs, CE, phi(PS II), and Fv/Fm of grafted seedlings increased to various degrees, and Fo decreased markedly during the stress. It was concluded that grafting could promote the photosynthetic function, and alleviate the effects of low temperature and weak light intensity on the photosynthesis of sweet pepper seedlings.

  15. Temperature and saline stress on seedlings of Swietenia macrophylla: a comparative study.

    PubMed

    Rahman, M Siddiqur; Akter, S; Al-Amin, M

    2013-12-01

    Physical responses of plants to change in climatic factors like temperature, precipitation and abiotic factors like salinity intrusion may lead positive or negative effects. Some factor may promulgate growth while other may stunts their vigour. Present study seeks growth of a plantation species at its early stage of life towards elevated temperature and saline water stresses. Growth records of Swietenia macrophylla seedlings were enumerated by measuring height, collar diameter and leaf number development of the replicates growing at an environment-controlled plant growth chamber. One experimented with merely elevated temperature while other tries to find results of combined effect of elevated temperature (30, 32 and 34 degrees C) and saline (0.5, 1.5 and 2.5 g L(-1) NaCl) to said species seedlings. Seedling replicates showed diverse response to elevated temperature and saline irrigation at height, collar diameter and leaf number development. Results depict that elevated temperature alone might be positive for S. macrophylla seedlings, rather most favourable for its growth in height, however, collar diameter and leaf number may remain unaffected. Saline treatment along with higher temperature stresses may lead seedlings toward stunted or very low growth. As saline intensity increases, species growth tends to decrease proportionally. Elevated temperature aided with higher salinity may direct further under development of S. macrophylla seedlings which is distressing to plantation establishment of this species in sites which are vulnerable to salinity intrusion due to climate change. However, S. macrophylla may be a promising plantation species in drier part of the globe in near future.

  16. Natural populations of Arabidopsis thaliana differ in seedling responses to high-temperature stress.

    PubMed

    Zhang, Nana; Belsterling, Brian; Raszewski, Jesse; Tonsor, Stephen J

    2015-01-01

    Little is known about adaptive within-species variation in thermotolerance in wild plants despite its likely role in both functional adaptation at range limits and in predicting response to climate change. Heat shock protein Hsp101, rapidly heat induced in Arabidopsis thaliana, plays a central role in thermotolerance in laboratory studies, yet little is known about variation in its expression in natural populations. We explored variation in thermotolerance and Hsp101 expression in seedlings from 16 natural populations of A. thaliana sampled along an elevation and climate gradient. We tested both naive controls (maintained at 22 °C until heat stress) and thermally pre-acclimated plants (exposed to a 38 °C 3-h acclimation treatment). After acclimation, seedlings were exposed to one of two heat stresses: 42 or 45 °C. Thermotolerance was measured as post-stress seedling survival and root growth. When stressed at 45 °C, both thermotolerance and Hsp101 expression were significantly increased by pre-acclimation. However, thermotolerance did not differ between pre-acclimation and control when followed by a 42 °C stress. Immediately after heat stress, pre-acclimated seedlings contained significantly more Hsp101 than control seedlings. At 45 °C, Hsp101 expression was positively associated with survival (r(2) = 0.37) and post-stress root growth (r(2) = 0.15). Importantly, seedling survival, post-stress root growth at 45 °C and Hsp101 expression at 42 °C were significantly correlated with the home sites' first principal component of climate variation. This climate gradient mainly reflects a temperature and precipitation gradient. Thus, the extent of Hsp101 expression modulation and thermotolerance appear to be interrelated and to evolve adaptively in natural populations of A. thaliana. PMID:26286225

  17. Expression analysis of a sucrose carrier in the germinating seedling of Ricinus communis.

    PubMed

    Bick, J A; Neelam, A; Smith, E; Nelson, S J; Hall, J L; Williams, L E

    1998-10-01

    This study describes the expression of a sucrose carrier at various developmental stages in Ricinus communis. A partial-length cDNA clone, RcSUT1, was isolated by RT-PCR from Ricinus seedling RNA. This is almost identical to a sucrose carrier cDNA, Rscr1, which has previously been isolated by library screening. However, we have observed a very different expression pattern in the seedling to that previously reported. Northern analysis, with RcSUT1 as a probe, revealed high expression of a 2 kb transcript in the cotyledons of the germinating seedling; transcript levels were similar in cotyledons harvested 3-6 days after germination. A much lower level of this transcript was detected in the root, hypocotyl and endosperm RNA of the seedling and very low levels were also present in the sink and source leaves of the mature plant. This pattern of expression was also reflected at the protein level with an antipeptide antibody raised to part of the RcSUT1 deduced amino acid sequence. Tissue print hybridisation analysis of the hypocotyl revealed that the sucrose carrier transcripts were localised to the phloem cells of the vascular bundles. A more detailed analysis of sucrose carrier gene expression in the cotyledons of the germinating seedling was carried out by in situ hybridisation; the strongest signals were observed from the lower epidermal layer and the phloem, consistent with an active loading role for these cells. An ultrastructural study of the cells in the lower epidermis showed that they have wall ingrowths which are characteristic of transfer cells. The results are discussed in relation to the physiological role of the sucrose carrier in the Ricinus seedling and to the pathways of sucrose movement from endosperm to the sieve elements in the cotyledons.

  18. Leaf display and photosynthesis of tree seedlings in a cool-temperate deciduous broadleaf forest understorey.

    PubMed

    Muraoka, Hiroyuki; Koizumi, Hiroshi; Pearcy, Robert W

    2003-05-01

    To examine a possible convergence in leaf photosynthetic characteristics and leaf display responses to light environment in seedlings of three canopy and two shrub tree species in understorey of cool-temperate deciduous broadleaf forest, relationships between light environment, leaf orientation and leaf light-photosynthetic response were measured. Light capture of the seedlings (17-24 individuals with 2-12 leaves for each species) was assessed with a three dimensional geometric modeling program Y-plant. Leaf photosynthetic characteristics of the five species were found to have acclimated to the understorey light environment, i.e., low light compensation point and high apparent quantum yield. In addition, light-saturated photosynthetic rates were higher in seedlings inhabiting microsites with higher light availability. Efficiencies of light capture and carbon gain of the leaf display were evaluated by simulating the directionalities of light capture and daily photosynthesis for each seedling using hemispherical canopy photography. The results showed that most of the seedlings orientated their leaves in a way to increase the daily photosynthesis during the direct light periods (sunflecks) rather than maximize daily photosynthesis by diffuse light. Simulations also showed that daily photosynthesis would increase only 10% of that on actual leaf display when the leaves orientated to maximize the diffuse light interception. Simulations in which leaf orientations were varied showed that when the leaf display fully maximized direct light interception, the time that leaves were exposed to excessive photon flux density of >800 mumol photons m(-2) s(-1) were doubled. The understorey seedlings studied responded to the given light environments in a way to maximize the efficiency of acquisition and use of light during their short (approximately 3 month) seasonal growth period.

  19. Lianas suppress seedling growth and survival of 14 tree species in a Panamanian tropical forest.

    PubMed

    Martínez-Izquierdo, Laura; García, María M; Powers, Jennifer S; Schnitzer, Stefan A

    2016-01-01

    Lianas are a common plant growth form in tropical forests, where they compete intensely with trees, decreasing tree recruitment, growth, and survival. If the detrimental effects of lianas vary significantly with tree species identity, as is often assumed, then lianas may influence tree species diversity and community composition. Furthermore, recent studies have shown that liana abundance and biomass are increasing relative to trees in neotropical forests, which will likely magnify the detrimental effects of lianas and may ultimately alter tree species diversity, relative abundances, and community composition. Few studies, however, have tested the responses of multiple tree species to the presence of lianas in robust, well-replicated experiments. We tested the hypotheses that lianas reduce tree seedling growth and survival, and that the effect of lianas varies with tree species identity. We used a large-scale liana removal experiment in Central Panama in which we planted 14 replicate seedlings of 14 different tree species that varied in shade tolerance in each of 16 80 x 80 m plots (eight liana-removal and eight unmanipulated controls; 3136 total seedlings). Over a nearly two-yr period, we found that tree seedlings survived 75% more, grew 300% taller, and had twice the aboveground biomass in liana-removal plots than seedlings in control plots, consistent with strong competition between lianas and tree seedlings. There were no significant differences in the response of tree species to liana competition (i.e., there was no species by treatment interaction), indicating that lianas had a similar negative effect on all 14 tree species. Furthermore, the effect of lianas did not vary with tree species shade tolerance classification, suggesting that the liana effect was not solely based on light. Based on these findings, recently observed increases in liana abundance in neotropical forests will substantially reduce tree regeneration, but will not significantly alter

  20. Dying piece by piece: carbohydrate dynamics in aspen seedlings under severe carbon stress and starvation

    NASA Astrophysics Data System (ADS)

    Wiley, Erin; Chow, Pak; Landhäusser, Simon

    2016-04-01

    Carbon stress and starvation remain poorly understood in trees, despite their potential role in mortality from a variety of agents. To explore the effects of carbon stress on nonstructural carbohydrate (NSC) dynamics and recovery potential and to examine the process of starvation, we grew aspen seedlings under one of three levels of shade: 40% (light shade), 8% (medium shade), and 4% (dark shade) of full sunlight. We then exposed seedlings to 24 hours darkness at either 20° or 28° C until trees had died. Periodically, seedlings were harvested for NSC analysis and to measure stem and root respiration. In addition, some seedlings were moved back into the light to determine if recovery was possible at certain points during starvation. Specifically, we sought to address the following questions: 1) Do NSC concentrations or mass influence tree survival under carbon stress? 2) At what carbohydrate levels do trees fail to recover and starve? 3) Does temperature affect the NSC level at which trees starve? Increasing shade reduced growth, but surprisingly did not reduce NSC levels, except in a portion of deep shade seedlings that experienced dieback. Once in darkness, leaves died first, with final NSC levels ranging from ~4% (Medium shade, 28 degrees) to 7.5% (Light shade). Stem death generally occurred gradually down the stem. Stem tissues retained ~1-2% NSC when dead. Recovery was still possible when only the upper half of the stem had died; at this point, seedlings had relatively high root NSC levels in their remaining roots (7-10%), with 1-3% starch. No trees recovered after the whole stem had died, at which point, some trees root systems were completely dead. However, most retained substantial amounts of live roots, averaging 5-6% NSC, with 0.25-1.5% starch. Despite the initially similar NSC concentrations, light shade seedlings took longer to reach half stem and whole stem death than seedlings from medium and dark shade. Longer survival times were associated with

  1. Analysis of vegetable seedlings grown in contact with Apollo 14 lunar surface fines.

    NASA Technical Reports Server (NTRS)

    Walkinshaw, C. H.; Johnson, P. H.

    1971-01-01

    Study of plant seedlings treated with lunar material, grown for 14 to 21 days, and then subjected to chemical analyses and other measurements. The purpose of the study was to determine whether plants growing in contact with lunar-surface fines contained a different elemental composition compared with untreated seedlings. The results indicate a direct interaction between germfree plants and lunar material. Treated plants dissolved and absorbed significant quantities of Al, Fe, and Ti from the lunar fines. Cabbage and Brussel sprouts were particularly efficient in the dissolution and absorption of Mn.

  2. Increased acidification in the rhizosphere of cactus seedlings induced by Azospirillum brasilense

    NASA Astrophysics Data System (ADS)

    Carrillo, Angel; Li, Ching; Bashan, Yoav

    2002-08-01

    Acidification of the rhizosphere of cactus seedlings (giant cardon, Pachycereus pringlei) after inoculation with the plant growth-promoting bacterium Azospirillum brasilense Cd, in the presence or absence of ammonium and nitrate, was studied to understand how to increase growth of cardon seedlings in poor desert soils. While ammonium enhanced rhizosphere and liquid culture acidification, inoculation with the bacteria enhanced it further. On the other hand, nitrate increased pH of the rhizosphere, but combined with the bacterial inoculation, increase in pH was significantly smaller. Bacterial inoculation with ammonium enhanced plant growth.

  3. Clinorotation effect on the transformation from etyoplasts to chloroplasts for barley seedlings

    NASA Astrophysics Data System (ADS)

    Adamchuk-Chala, N. I.

    The clinorotation effect on the plastide substructure characteristics of greening barley seedlings of the variety "Zorianyi" is investigated. A comparison analysis of dynamic changes in clinorotated greening seedlings and in control ones showed the following: the volume of plastides decreased, the developing of prolamellar body and shorting of lamellae length under greening during 1 h and 3 h take place. Chloroplasts were formed only in the cells of the control variant on greening for 6 h. Possible mechanisms of the delay of transformation from etyoplasts and etyochloroplasts are discussed.

  4. Interactive effects of land use history and natural disturbance on seedling dynamics in a subtropical forest.

    PubMed

    Comita, Liza S; Thompson, Jill; Uriarte, Maria; Jonckheere, Inge; Canham, Charles D; Zimmerman, Jess K

    2010-07-01

    Human-impacted forests are increasing in extent due to widespread regrowth of secondary forests on abandoned lands. The degree and speed of recovery from human disturbance in these forests will determine their value in terms of biodiversity conservation and ecosystem function. In areas subject to periodic, severe natural disturbances, such as hurricanes, it has been hypothesized that human and natural disturbance may interact to either erase or preserve land use legacies. To increase understanding of how interactions between human and natural disturbance influence forest regeneration and recovery, we monitored seedlings in a human- and hurricane-impacted forest in northeastern Puerto Rico over a approximately 10-yr period and compared seedling composition and dynamics in areas that had experienced high- and low-intensity human disturbance during the first half of the 20th century. We found that land use history significantly affected the composition and diversity of the seedling layer and altered patterns of canopy openness and seedling dynamics following hurricane disturbance. The area that had been subject to high-intensity land use supported a higher density, but lower diversity, of species. In both land use history categories, the seedling layer was dominated by the same two species, Prestoea acuminata var. montana and Guarea guidonia. However, seedlings of secondary-successional species tended to be more abundant in the high-intensity land use area, while late-successional species were more abundant in the low-intensity area, consistent with patterns of adult tree distributions. Seedlings of secondary-forest species showed greater increases in growth and survival following hurricane disturbance compared to late-successional species, providing support for the hypothesis that hurricanes help preserve the signature of land use history. However, the increased performance of secondary-forest species occurred predominantly in the low-intensity land use area

  5. [Effects of cold-shock on tomato seedlings under high temperature stress].

    PubMed

    Li, Sheng-Li; Xia, Ya-Zhen; Liu, Jin; Shi, Xiao-Dan; Sun, Zhi-Qiang

    2014-10-01

    High temperature stress (HTS) is one of the major limiting factors that affect the quality of intensively cultured seedlings in protected facilitates during hot season. Increasing the cross adaptive response of plant induced by temperature stress is an effective way to improve plant stress resistance. In order to explore the alleviating effect of cold-shock intensity on tomato seedlings under HTS, tomato seedlings were subjected to cold-shock treatments every day with 5 °C, 10 °C, and 15 °C for 10 min, 20 min, and 30 min, respectively, in an artificial climate chamber. The effect of single appropriate cold-shock on the gene expression of small heat shock proteins LeHSP 23.8 and CaHSP18 was investigated. The results showed that hypocotyl elongation and plant height of tomato seedlings were restrained by cold-shock treatment before HTS was met. The alleviating effect of tomato seedlings under HTS by cold-shock varied greatly with levels and durations of temperature. The membrane lipids in the leaf of tomato seedlings were subjected to peroxidation injury in the cold-shock treatment at 5 °C, in which the penetration of cell membrane was increased and the activities of antioxidant enzyme was inhibited. The alleviating effect to HTS by cold-shock was decreased with the increasing cold-shock duration at 10 °C, however, a reverse change was found at 15 °C. The results indicated that cross adaptive response of tomato seedling could be induced with a moderate cold-shock temperature for a proper duration before HTS was met. The optimum cold-shock treatment was at 10 °C for 10 min per day, under which, the dry mass, healthy index, activities of protective enzymes (including SOD, POD and CAT) in leaves of tomato seedlings were significantly increased, the contents of proline and soluble protein were enhanced, relative conductivity and malondialdehyde concentration were significantly decreased, and the expression levels of Le-HSP23.8 and CaHSP18 were increased compared

  6. Blue and green light-induced phototropism in Arabidopsis thaliana and Lactuca sativa L. seedlings

    SciTech Connect

    Steinitz, B.; Ren, Z.; Poff, K.L.

    1985-01-01

    Exposure time-response curves for blue and green light-induced phototropic bending in hypocotyls of Arabidopsis thaliana (L.) Heynh. and Lactuca sativa L. seedlings are presented. These seedlings show significant phototropic sensitivity up to 540 to 550 nanometers. Since wavelengths longer than 560 nanometers do not induce phototropic bending, it is suggested that the response to 510 to 550 nanometers light is mediated by the specific blue light photoreceptor of phototropism. The authors advise care in the use of green safelights for studies of phototropism.

  7. [Usefulness of the Centrifuge Accommodation Module for analyzing gravity responses in plant seedlings].

    PubMed

    Hoson, T

    2001-10-01

    Onboard centrifuges are indispensable tools for clarifying the effects of microgravity on various physiological processes in plant seedlings. Centrifuges are basically attached to the incubators designed for the International Space Station (ISS). However, because of the limitation in size, that loaded to the Cell Biology Experiment Facility (CBEF) is usable only to some small seedlings such as Arabidopsis. The Centrifuge Accommodation Module (CAM) has great advantages in the size and the amounts of plant materials feasible to load, the quality of acceleration produced, and the easiness of operation on it. The CAM is an apparatus that characterizes the ISS most and its construction on schedule is highly expected.

  8. Phytotoxic action of naphthoquinone juglone demonstrated on lettuce seedling roots.

    PubMed

    Babula, Petr; Vaverkova, Veronika; Poborilova, Zuzana; Ballova, Ludmila; Masarik, Michal; Provaznik, Ivo

    2014-11-01

    Juglone, 5-hydroxy-1,4-naphthoquinone, is the plant secondary metabolite with allelopathic properties, which was isolated especially from the plant species belonging to family Juglandaceae A. Rich. ex Kunth (walnut family). The mechanism of phytotoxic action of juglone was investigated on lettuce seedlings Lactuca sativa L. var. capitata L. cv. Merkurion by determining its effect at different levels. We have found that juglone inhibits mitosis (mitotic index 8.5 ± 0.6% for control versus 2.2 ± 0.9% for 250 μM juglone), changes mitotic phase index with accumulation of the cells in prophase (56.5 ± 2.6% for control versus 85.3 ± 5.0% for 250 μM juglone), and decreases meristematic activity in lettuce root tips (51.07 ± 3.62% for control versus 5.27 ± 2.29% for 250 μM juglone). In addition, juglone induced creation of reactive oxygen species and changed levels of reactive nitrogen species. Amount of malondialdehyde, a product of lipid peroxidation, increased from 24.0 ± 4.0 ng g(-1) FW for control to 55.5 ± 5.4 ng g(-1) FW for 250 μM juglone. We observed also changes in cellular structure, especially changes in the morphology of endoplasmic reticulum. Reactive oxygen species induced damage of plasma membrane. All these changes resulted in the disruption of the mitochondrial membrane potential, increase in free intracellular calcium ions, and DNA fragmentation and programmed cell death that was revealed by two methods, TUNEL test and DNA electrophoresis. The portion of TUNEL-positive cells increase from 0.96 ± 0.5% for control to 7.66 ± 1.5% for 250 μM juglone. Results of the study indicate complex mechanism of phytotoxic effect of juglone in lettuce root tips and may indicate mechanism of allelopathic activity of this compound. PMID:25240266

  9. Responses of plant seedlings to hypergravity: cellular and molecular aspects

    NASA Astrophysics Data System (ADS)

    Hoson, T.; Yoshioka, R.; Soga, K.; Wakabayashi, K.; Takeba, G.

    Hypergravity produced by centrifugation has been used to analyze the responses of plant seedlings to gravity stimulus. Elongation growth of stem organs is suppressed by hypergravity, which can be recognized as a way for plants to resist gravitational force. The mechanisms inducing growth suppression under hypergravity conditions were analyzed at cellular and molecular levels. When growth was suppressed by hypergravity, a decrease in the cell wall extensibility was brought about in various plants. Hypergravity also induced a cell wall thickening and an increase in the molecular mass of the certain hemicellulosic polysaccharides. Both a decrease in the activities hydrolyzing such polysaccharides and an increase in the apoplast pH were involved in such changes in the cell wall constituents. Thus, the cell wall metabolism is greatly modified under hypergravity conditions, which causes a decrease in the cell wall extensibility, thereby inhibiting elongation growth in stem organs. On the other hand, to identify genes involved in hypergravity-induced growth suppression, changes in gene expression by hypergravity treatment were analyzed in Arabidopsis hypocotyls by differential display method. Sixty-two genes were expressed differentially: expression levels of 39 genes increased, whereas those of 23 genes decreased under hypergravity conditions. The expression of these genes was further analyzed using RT-PCR. One of genes upregulated by hypergravity encoded hydroxymethylglutaryl-CoA reductase (HMGR), which catalyzes a reaction producing mevalonic acid, a key precursor of hormones such as gibberellic acid and abscisic acid. The expression of HMGR gene increased within several hours after hypergravity treatment. Also, compactin, an inhibitor of HMGR activity, prevented hypergravity-induced growth suppression, suggesting that HMGR is involved in suppression of Arabidopsis hypocotyl growth by hypergravity. In addition, hypergravity increased the expression levels of CCR1 and

  10. Involvement of an antioxidant defense system in the adaptive response to cadmium in maize seedlings (Zea mays L.).

    PubMed

    Xu, Xianghua; Liu, Cuiying; Zhao, Xiaoyan; Li, Renying; Deng, Wenjing

    2014-11-01

    Chemical and biological analyses were used to investigate the growth response and antioxidant defense mechanism of maize seedlings (Zea mays L.) grown in soils with 0-100 mg kg(-1) Cd. Results showed that maize seedlings have strong abilities to accumulate and tolerate high concentrations of Cd. For soil with 50 mg kg(-1) Cd, the Cd contents in roots and shoots of maize seedlings are as large as 295.6 and 153.0 mg kg(-1) DW, respectively, without visible symptoms of toxicity. Lower soil Cd concentrations lead to a decrease in reduced glutathione (GSH) content in leaves of maize seedlings, whereas higher soil Cd concentrations resulted in an increase in the activities of superoxide dismutase, guaiacol peroxidase, catalase, and ascorbate peroxidase. Maize seedlings have strong capacities to adapt to low concentrations of Cd by consuming GSH and to develop an antioxidative enzyme system to defend against high-Cd stress.

  11. On the role of a Lipid-Transfer Protein. Arabidopsis ltp3 mutant is compromised in germination and seedling growth.

    PubMed

    Pagnussat, Luciana A; Oyarburo, Natalia; Cimmino, Carlos; Pinedo, Marcela L; de la Canal, Laura

    2015-01-01

    Plant Lipid-Transfer Proteins (LTPs) exhibit the ability to reversibly bind/transport lipids in vitro. LTPs have been involved in diverse physiological processes but conclusive evidence on their role has only been presented for a few members, none of them related to seed physiology. Arabidopsis seeds rely on storage oil breakdown to supply carbon skeletons and energy for seedling growth. Here, Arabidopsis ltp3 mutant was analyzed for its ability to germinate and for seedling establishment. Ltp3 showed delayed germination and reduced germination frequency. Seedling growth appeared reduced in the mutant but this growth restriction was rescued by the addition of an exogenous carbon supply, suggesting a defective oil mobilization. Lipid breakdown analysis during seedling growth revealed a differential profile in the mutant compared to the wild type. The involvement of LTP3 in germination and seedling growth and its relationship with the lipid transfer ability of this protein is discussed.

  12. On the role of a Lipid-Transfer Protein. Arabidopsis ltp3 mutant is compromised in germination and seedling growth.

    PubMed Central

    Pagnussat, Luciana A; Oyarburo, Natalia; Cimmino, Carlos; Pinedo, Marcela L; de la Canal, Laura

    2015-01-01

    Plant Lipid-Transfer Proteins (LTPs) exhibit the ability to reversibly bind/transport lipids in vitro. LTPs have been involved in diverse physiological processes but conclusive evidence on their role has only been presented for a few members, none of them related to seed physiology. Arabidopsis seeds rely on storage oil breakdown to supply carbon skeletons and energy for seedling growth. Here, Arabidopsis ltp3 mutant was analyzed for its ability to germinate and for seedling establishment. Ltp3 showed delayed germination and reduced germination frequency. Seedling growth appeared reduced in the mutant but this growth restriction was rescued by the addition of an exogenous carbon supply, suggesting a defective oil mobilization. Lipid breakdown analysis during seedling growth revealed a differential profile in the mutant compared to the wild type. The involvement of LTP3 in germination and seedling growth and its relationship with the lipid transfer ability of this protein is discussed. PMID:26479260

  13. Growth of mycorrhizal jack pine (Pinus banksiana) and white spruce (Picea glauca) seedlings planted in oil sands reclaimed areas.

    PubMed

    Onwuchekwa, Nnenna E; Zwiazek, Janusz J; Quoreshi, Ali; Khasa, Damase P

    2014-08-01

    The effectiveness of ectomycorrhizal inoculation at the tree nursery seedling production stage on growth and survival was examined in jack pine (Pinus banksiana) and white spruce (Picea glauca) planted in oil sands reclamation sites. The seedlings were inoculated with Hebeloma crustuliniforme strain # UAMH 5247, Suillus tomentosus strain # UAMH 6252, and Laccaria bicolor strain # UAMH 8232, as individual pure cultures and in combinations. These treatments were demonstrated to improve salinity resistance and water uptake in conifer seedlings. The field responses of seedlings to ectomycorrhizal inoculation varied between plant species, inoculation treatments, and measured parameters. Seedling inoculation resulted in higher ectomycorrhizal colonization rates compared with non-inoculated control, which had also a relatively small proportion of roots colonized by the nursery contaminant fungi identified as Amphinema byssoides and Thelephora americana. Seedling inoculation had overall a greater effect on relative height growth rates, dry biomass, and stem volumes in jack pine compared with white spruce. However, when examined after two growing seasons, inoculated white spruce seedlings showed up to 75% higher survival rates than non-inoculated controls. The persistence of inoculated fungi in roots of planted seedlings was examined at the end of the second growing season. Although the inoculation with H. crustuliniforme triggered growth responses, the fungus was not found in the roots of seedlings at the end of the second growing season suggesting a possibility that the observed growth-promoting effect of H. crustuliniforme may be transient. The results suggest that the inoculation of conifer seedlings with ectomycorrhizal fungi could potentially be carried out on a large scale in tree nurseries to benefit postplanting performance in oil sands reclamation sites. However, these practices should take into consideration the differences in responses between the different

  14. A review of precipitation and temperature control on seedling emergence and establishment for ponderosa and lodgepole pine forest regeneration

    USGS Publications Warehouse

    Petrie, Matthew; Wildeman, A.M.; Bradford, John B.; Hubbard, R.M.; Lauenroth, W.K.

    2016-01-01

    The persistence of ponderosa pine and lodgepole pine forests in the 21st century depends to a large extent on how seedling emergence and establishment are influenced by driving climate and environmental variables, which largely govern forest regeneration. We surveyed the literature, and identified 96 publications that reported data on dependent variables of seedling emergence and/or establishment and one or more independent variables of air temperature, soil temperature, precipitation and moisture availability. Our review suggests that seedling emergence and establishment for both species is highest at intermediate temperatures (20 to 25 °C), and higher precipitation and higher moisture availability support a higher percentage of seedling emergence and establishment at daily, monthly and annual timescales. We found that ponderosa pine seedlings may be more sensitive to temperature fluctuations whereas lodgepole pine seedlings may be more sensitive to moisture fluctuations. In a changing climate, increasing temperatures and declining moisture availability may hinder forest persistence by limiting seedling processes. Yet, only 23 studies in our review investigated the effects of driving climate and environmental variables directly. Furthermore, 74 studies occurred in a laboratory or greenhouse, which do not often replicate the conditions experienced by tree seedlings in a field setting. It is therefore difficult to provide strong conclusions on how sensitive emergence and establishment in ponderosa and lodgepole pine are to these specific driving variables, or to investigate their potential aggregate effects. Thus, the effects of many driving variables on seedling processes remain largely inconclusive. Our review stresses the need for additional field and laboratory studies to better elucidate the effects of driving climate and environmental variables on seedling emergence and establishment for ponderosa and lodgepole pine.

  15. Leaf life span spectrum of tropical woody seedlings: effects of light and ontogeny and consequences for survival

    PubMed Central

    Kitajima, Kaoru; Cordero, Roberto A.; Wright, S. Joseph

    2013-01-01

    Background and Aims Leaf life span is widely recognized as a key life history trait associated with herbivory resistance, but rigorous comparative data are rare for seedlings. The goal of this study was to examine how light environment affects leaf life span, and how ontogenetic development during the first year may influence leaf fracture toughness, lamina density and stem density that are relevant for herbivory resistance, leaf life span and seedling survival. Methods Data from three experiments encompassing 104 neotropical woody species were combined. Leaf life span, lamina and vein fracture toughness, leaf and stem tissue density and seedling survival were quantified for the first-year seedlings at standardized ontogenetic stages in shade houses and common gardens established in gaps and shaded understorey in a moist tropical forest in Panama. Mortality of naturally recruited seedlings till 1 year later was quantified in 800 1-m2 plots from 1994 to 2011. Key Results Median leaf life span ranged widely among species, always greater in shade (ranging from 151 to >1790 d in the understorey and shade houses) than in gaps (115–867 d), but with strong correlation between gaps and shade. Leaf and stem tissue density increased with seedling age, whereas leaf fracture toughness showed only a weak increase. All these traits were positively correlated with leaf life span. Leaf life span and stem density were negatively correlated with seedling mortality in shade, while gap mortality showed no correlation with these traits. Conclusions The wide spectrum of leaf life span and associated functional traits reflects variation in shade tolerance of first-year seedlings among coexisting trees, shrubs and lianas in this neotropical forest. High leaf tissue density is important in enhancing leaf toughness, a known physical defence, and leaf life span. Both seedling leaf life span and stem density should be considered as key functional traits that contribute to seedling survival

  16. Effect of water deficit on carbohydrate status and enzymes of carbohydrate metabolism in seedlings of wheat cultivars.

    PubMed

    Kaur, Kamaljit; Gupta, Anil K; Kaur, Narinder

    2007-08-01

    The effect of water deficit on carbohydrate status and enzymes of carbohydrate metabolism (alpha and beta amylases, sucrose phosphate synthase, sucrose synthase, acid and alkaline invertases) in wheat (Triticum aestivum L.) was investigated in the seedlings of drought-sensitive (PBW 343) and drought-tolerant (C 306) cultivars. The water deficit was induced by adding 6% mannitol (water potential -0.815 Mpa) in the growth medium. The water deficit reduced starch content in the shoots of tolerant seedlings as compared to the sensitive ones, but increased sucrose content in the shoots and roots of tolerant seedlings, indicating their protective role during stress conditions. It also decreased the alpha-amylase activity in the endosperm of seedlings of both the cultivars, but increased alpha and beta amylase activities in the shoots of tolerant ones. Sucrose phosphate synthase (SPS) activity showed a significant increase at 6 days of seedling growth (DSG) in the shoots of stressed seedlings of tolerant cultivar. However, SPS activity in the roots of stressed seedlings of sensitive cultivar was very low at 4 DSG and appeared significantly only at day 6. Sucrose synthase (SS) activity was lower in the shoots and roots of stressed seedlings of tolerant cultivar than sensitive ones at early stage of seedling growth. Higher acid invertase activity in the shoots of seedlings of tolerant cultivar appeared to be a unique characteristic of this cultivar for stress tolerance. Alkaline invertase activity, although affected under water deficit conditions, but was too low as compared to acid invertase activity to cause any significant affect on sucrose hydrolysis. In conclusion, higher sucrose content with high SPS and low acid invertase and SS activities in the roots under water deficit conditions could be responsible for drought tolerance of C 306.

  17. The Role of Reproductive Phenology, Seedling Emergence and Establishment of Perennial Salix gordejevii in Active Sand Dune Fields

    PubMed Central

    Yan, Qiaoling; Liu, Zhimin; Ma, Junling; Jiang, Deming

    2007-01-01

    Background and Aims The function of sexual reproduction of perennials in restoration of vegetation of active dune fields frequently has been underestimated. The objective of this study was to evaluate the role of sexual reproduction of the perennial Salix gordejevii in the revegetation of active dunes. Methods Seedling emergence and establishment of S. gordejevii were examined both in controlled experiments (germination at different burial depths with different watering regimes) and in field observations in three dune slacks. The reproductive phenology and soil seed bank of S. gordejevii, the dynamics of soil moisture, the groundwater table and the landform level of three dune slacks were monitored. Key Results Seeds of S. gordejevii began maturation on 1 May, and seed dispersal lasted from 8 May to 20 May. Seeds on the soil surface germinated significantly faster than those buried in soil (P<0·05). Seedling emergence was negatively correlated with landform level. When most seedlings emerged, there was a significantly positive correlation between soil moisture and seedling emergence (P<0·01). Rainfall was negatively correlated with seedling emergence. Seedling establishment was significantly and positively correlated with seedling emergence (P<0·05), and 72·3 % of the emergent seedlings were established at the end of the growing season. These results indicated that (a) seeds matured and dispersed before the rainy season; (b) seeds germinated as soon as they contacted a moist surface and relied more on soil moisture than on rainfall; and (c) more seedlings emerged at lower sampling points in dune slacks. Conclusions In natural conditions, restoration of active sand dune fields generally commences with revegetation of dune slacks where sexual reproduction of perennials contributes greatly to species encroachment and colonization and hence plays an important role in restoration of active dune fields. Furthermore, aeolian erosion in dune slacks, leading to good

  18. Agriculture--Forestry Seedlings. Kit No. 53. Instructor's Manual [and] Student Learning Activity Guide.

    ERIC Educational Resources Information Center

    Walker, Larkin V., Jr.

    An instructor's manual and student activity guide on forestry seedlings are provided in this set of prevocational education materials which focuses on the vocational area of agriculture. (This set of materials is one of ninety-two prevocational education sets arranged around a cluster of seven vocational offerings: agriculture, home economics,…

  19. Comparative Transcriptional Profiling of Primed and Non-primed Rice Seedlings under Submergence Stress

    PubMed Central

    Hussain, Saddam; Yin, Hanqi; Peng, Shaobing; Khan, Faheem A.; Khan, Fahad; Sameeullah, Muhammad; Hussain, Hafiz A.; Huang, Jianliang; Cui, Kehui; Nie, Lixiao

    2016-01-01

    Submergence stress is a limiting factor for direct-seeded rice systems in rainfed lowlands and flood-prone areas of South and Southeast Asia. The present study demonstrated that submergence stress severely hampered the germination and seedling growth of rice, however, seed priming alleviated the detrimental effects of submergence stress. To elucidate the molecular basis of seed priming-induced submergence tolerance, transcriptome analyses were performed using 4-day-old primed (selenium-Se and salicylic acid-SA priming) and non-primed rice seedlings under submergence stress. Genomewide transcriptomic profiling identified 2371 and 2405 transcripts with Se- and SA-priming, respectively, that were differentially expressed in rice compared with non-priming treatment under submergence. Pathway and gene ontology term enrichment analyses revealed that genes involved in regulation of secondary metabolism, development, cell, transport, protein, and metal handling were over-represented after Se- or SA-priming. These coordinated factors might have enhanced the submergence tolerance and maintained the better germination and vigorous seedling growth of primed rice seedlings. It was also found that many genes involved in cellular and metabolic processes such as carbohydrate metabolism, cellular, and metabolic biosynthesis, nitrogen compound metabolic process, transcription, and response to oxidative stress were induced and overlapped in seed priming treatments, a finding which reveals the common mechanism of seed priming-induced submergence tolerance. Taken together, these results may provide new avenues for understanding and advancing priming-induced responses to submergence tolerance in crop plants. PMID:27516766

  20. In Vivo Effects of Barbituates on Seed Germination and Seedling Growth.

    ERIC Educational Resources Information Center

    Kordan, H. A.

    1984-01-01

    A simple, low-cost experimental system can be used to demonstrate the "in vivo" effects of barbituates on seed germination and seedling growth behavior in different plant species. Lipid solubility and concentration of individual barbituates both affect the response. List of materials needed, procedures used, and typical results obtained are…

  1. Winter-injury following horticultural treatments to overcome juvenility in citrus seedlings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Citrus seedling juvenility delays new hybrid evaluation, slows cultivar release, and slows introgression of new traits. A horticultural program reported to overcome citrus juvenility was tested at the Whitmore Citrus Research Foundation farm (Lake County), using replicated Hirado Buntan x Clementine...

  2. STS-42 Payload Specialist Bondar works with oak seedlings in IML-1 glovebox

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-42 Payload Specialist Roberta L. Bondar works with oak seedlings using the glovebox located in International Microgravity Laboratory 1 (IML-1) Rack 5. The five young plants are part of the Gravitational Plant Physiology Facility (GPPF) experiment. IML-1 is located in Discovery's, Orbiter Vehicle (OV) 103's, payload bay (PLB) and is connected to the crew compartment with a tunnel.

  3. Lipid utilization in radish seedlings as affected by weak horizontal extremely low frequency magnetic field.

    PubMed

    Novitskii, Yurii I; Novitskaya, Galina V; Serdyukov, Yurii A

    2014-02-01

    Composition and content of lipids were studied in 5-day-old radish seedlings (Raphanus sativus L. var. radicula DC.) grown in lowlight and darkness in an extremely low frequency (ELF) magnetic field characterized by 50 Hz frequency and ∼500 µT flux density. The control seedlings were grown under the same conditions, but without exposure to the magnetic field. The products of lipid metabolism were compared with lipid composition in seeds. In control seedlings, reserve neutral lipids, mostly triacylglycerides, were utilized for the formation of polar lipids (PL). As a result, the amount of the latter doubled, particularly due to glycolipids (GL) and phospholipids (PhL) compared to their content in seeds. At 20-22 °C in light, magnetic field exposure increased the production of PL by threefold specifically, GL content increased fourfold and PhL content rose 2.5 times, compared to seeds. In darkness, the effect of magnetic field on lipids was weaker. At the lower temperature of 13-16 °C in light, the effect of the magnetic field was weak, but in the darkness, no magnetic field action was recorded. It is concluded that ELF magnetic field stimulated lipid synthesis in chloroplast, mitochondrial, and other cell membranes in radish seedlings grown in light at 20-22 °C and 13-16 °C. PMID:24123065

  4. Field validation of a metabolically based dynamic cotton seedling emergence model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A model for cotton seedling emergence based upon enzyme kinetics of malate synthase (MaGi) was evaluated in the field. Cotton (Gossyptim hirsuitum) cvars. FM958, DP 444, FM 800, and PM 2145 were planted weekly at a depth of 5 cm in fields at Big Spring and Lubbock TX. Soil temperatures at seed depth...

  5. Effects of GA3 Pregerminative Treatment on Gentiana lutea L. var. aurantiaca Germination and Seedlings Morphology

    PubMed Central

    González-López, Óscar; Casquero, Pedro A.

    2014-01-01

    Gentiana lutea L. is widely used in bitter beverages and in medicine; Gentianae Radix is the pharmaceutical name of the root of G. lutea. These uses have generated a high demand. The wild populations of Gentiana lutea var. aurantiaca (M. Laínz) M. Laínz have been decimated; it is necessary to establish guidelines for its cultivation. Gentian as most alpine species has dormant seeds. Dormancy can be removed by cold and by means of a gibberellic acid (GA3) treatment. However, cold treatments produce low germination percentages and GA3 treatments may produce off-type seedlings. So, the objective was to determine, for the first time, the presowing treatments that allow high germination rate and good seedling morphology. The best pregerminative doses of GA3 to break seed dormancy were 100, 500, and 1000 ppm, while the best doses to optimize the seedling habit were 50 and 100 ppm. This study provides, for the first time, a 100 ppm GA3 dose that led to a high germination rate and good seedling morphology, as the starting point for gentian regular cultivation. PMID:25105167

  6. Nitric oxide induces the alternative oxidase pathway in Arabidopsis seedlings deprived of inorganic phosphate.

    PubMed

    Royo, Beatriz; Moran, Jose F; Ratcliffe, R George; Gupta, Kapuganti J

    2015-10-01

    Phosphate starvation compromises electron flow through the cytochrome pathway of the mitochondrial electron transport chain, and plants commonly respond to phosphate deprivation by increasing flow through the alternative oxidase (AOX). To test whether this response is linked to the increase in nitric oxide (NO) production that also increases under phosphate starvation, Arabidopsis thaliana seedlings were grown for 15 d on media containing either 0 or 1mM inorganic phosphate. The effects of the phosphate supply on growth, the production of NO, respiration, the AOX level and the production of superoxide were compared for wild-type (WT) seedlings and the nitrate reductase double mutant nia. Phosphate deprivation increased NO production in WT roots, and the AOX level and the capacity of the alternative pathway to consume electrons in WT seedlings; whereas the same treatment failed to stimulate NO production and AOX expression in the nia mutant, and the plants had an altered growth phenotype. The NO donor S-nitrosoglutathione rescued the growth phenotype of the nia mutants under phosphate deprivation to some extent, and it also increased the respiratory capacity of AOX. It is concluded that NO is required for the induction of the AOX pathway when seedlings are grown under phosphate-limiting conditions. PMID:26163703

  7. Extruded seed pellets: a novel approach to enhancing sagebrush seedling emergence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    1. To sustain North America’s sagebrush biome novel seeding methods are required that can restore degraded landscapes after a disturbance. Seeds need to be planted at an optimal depth where moisture resources are available for seed germination yet not too deep that seedling emergence is impaired. Du...

  8. [Effects of selenite addition on selenium absorption, root morphology and physiological characteristics of rape seedlings].

    PubMed

    Liu, Xin-wei; Wang, Qiao-lan; Duan, Bi-hui; Lin, Ya-meng; Zhao, Xiao-hu; Hu, Cheng-xiao; Zhao, Zhu-qing

    2015-07-01

    Abstract: The rape (Brassica napus L. cv. Xiangnongyou 571) was chosen as the experimental material to undergo solution cultivation at seedling stage to investigate the effects of selenite addition on the selenium (Se) absorption and distribution, root morphology and physiological characteristics of rape seedlings. The results showed that the bioaccumulation ability of Se decreased significantly with increasing the Se application rate, but the Se distribution coefficient remained around 0.9 with no significant influence. The application of 10 µmol . L-1 selenite stimulated the growth of rape seedlings through improving the root physiological characteristics and root morphology significantly, including significantly increasing the production of superoxide radical (O2∙-) rate and the activities of superoxide dismutase (SOD), peroxidase (POD) and fungal catalase (CAT) in the root system, which resulted in a reduction of the lipids peroxidation (MDA) content as much as 26.0%, consequently increasing the root activity as much as 17.4%. The promoting degrees of selenite on root morphological parameters were from strong to weak in such a tendency: root volume > total surface area > number of root forks > total root length > number of root tips > average diameter. However, such positive effects had no significant difference with those in treatment with 1 µmol . L-1 selenite, indicating that small amounts (≤ 10 Lmol . L-1) of selenite were able to increase the activity of antioxidant enzymes and reduce the content of MDA in root system, which could increase root activity and improve root morphology, hence increased the biomass of rape seedlings.

  9. Growth profile of Chamaedorea cataractarum (Cascade Palm)seedlings with different colored plastic mulch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to determine the effects of colored plastic mulch on the growth of Chamaedorea cataractarum Mart. (Cascade Palm). The seedlings placed in soil were compared with those placed in red and blue mulch. The plant growth was monitored for plant height, thickness at the base ...

  10. Antioxidant activity of seedling growth in selected soybean genotypes (Glycine max (L.) Merrill) responses of submergence

    NASA Astrophysics Data System (ADS)

    Damanik, R. I.; Marbun, P.; Sihombing, L.

    2016-08-01

    In order to better understand the physiological and biochemical responses relating to direct seeding establishment in soybeans, the plant growth rate and antioxidative defense responses of seedlings in seven Indonesian soybean genotypes (Anjasmoro, Detam-1, Detam-2, Dieng, Grobogan, Tanggamus, and Willis) at different submergence periods (4, and 8 days) were examined. Twelve-day old seedlings were hydroponically grown in limited oxygen conditions. The results showed that the chlorophyll content in soybean seedlings was reduced beginning as early as 4 d under submerged condition, except for Detam-1, Detam-2, and Grobogan genotypes. The dry weight and protein concentration of seedlings were significantly higher at control condition (0 d) than those in submerged condition. The activities of superoxide dismutase (SOD) increased linearly until 8 d submerged for all genotypes. On the other hand, our results showed that catalase (CAT) and ascorbate peroxidase (APX) activities did not work together, meaning that CAT is activated and APX deactivated, or vice versa, in response to submergence conditions, except for Grobogan and Tanggamus genotypes which had an effect on both CAT and APX activities. Submergence stress led to a significant increase in glutathione reductase (GR) together with APX activity for Detam-2 and Dieng genotypes at 8 d submerged.

  11. The effect of elevation, light and water availability on the growth of Sierran conifer seedlings

    SciTech Connect

    Kern, R.A.; Dale, V.H.; Beauchamp, J.J. Oak Ridge National Lab., TN )

    1994-06-01

    The composition of many plant communities will be altered with global change, and this will depend on individual species' abilities to reproduce and to survive under new climate conditions. Two experiments are underday to test the hypothesis that seedling demography is affected by the relative drought and shade tolerances of seven co-occurring species of Sierran conifers. The first experiment is being conducted at three sites in Sequoia National Park, California, elevations 1600 m, 1900 m and 2200 m. At each site, closed canopy [open quotes]shade[close quotes] plots and open canopy [open quotes]gap[close quotes] plots are being used. Seedling growth of each species is compared between light levels and elevations. The second experiment also measures seedling growth in low and high levels, but with four levels of water availability at one elevation (1900 m). Microenvironmental monitoring (soil and air temperature, relative humidity, radiation, and soil moisture) by surrounding mature trees are also being measured in order to develop a mechanistic model of seedling growth and survival.

  12. Determination of zinc oxide nanoparticles toxicity in root growth in wheat (Triticum aestivum L.) seedlings.

    PubMed

    Prakash, Meppaloor G; Chung, Ill Min

    2016-09-01

    The effect of zinc oxide nanoparticles (ZnONPs) was studied in wheat (Triticum aestivum L.) seedlings under in vitro exposure conditions. To avoid precipitation of nanoparticles, the seedlings were grown in half strength semisolid Murashige and Skoog medium containing 0, 50, 100, 200, 400 and 500 mg L(-1) of ZnONPs. Analysis of zinc (Zn) content showed significant increase in roots. In vivo detection using fluorescent probe Zynpyr-1 indicated accumulation of Zn in primary and lateral root tips. All concentrations of ZnONPs significantly reduced root growth. However, significant decrease in shoot growth was observed only after exposure to 400 and 500 mg L(-1) of ZnONPs. The reactive oxygen species and lipid peroxidation levels significantly increased in roots. Significant increase in cell-wall bound peroxidase activity was observed after exposure to 500 mg L(-1) of ZnONPs. Histochemical staining with phloroglucinol-HCl showed lignification of root cells upon exposure to 500 mg L(-1) of ZnONPs. Treatment with propidium iodide indicated loss of cell viability in root tips of wheat seedlings. These results suggest that redox imbalances, lignification and cell death has resulted in reduction of root growth in wheat seedlings exposed to ZnONPs nanoparticles. PMID:27630051

  13. Tree seedling richness, but not neighborhood composition, influences insect herbivory in a temperate deciduous forest community.

    PubMed

    Murphy, Stephen J; Xu, Kaiyang; Comita, Liza S

    2016-09-01

    Insect herbivores can serve as important regulators of plant dynamics, but their impacts in temperate forest understories have received minimal attention at local scales. Here, we test several related hypotheses about the influence of plant neighborhood composition on insect leaf damage in southwestern Pennsylvania, USA. Using data on seedlings and adult trees sampled at 36 sites over an approximately 900 ha area, we tested for the effects of total plant density, rarefied species richness (i.e., resource concentration and dietary-mixing hypotheses), conspecific density (i.e., Janzen-Connell hypothesis), and heterospecific density (i.e., herd-immunity hypothesis), on the proportion of leaf tissue removed from 290 seedlings of 20 species. We also tested for the effects of generic- and familial-level neighborhoods. Our results showed that the proportion of leaf tissue removed ranged from zero to just under 50% across individuals, but was generally quite low (<2%). Using linear mixed models, we found a significant negative relationship between insect damage and rarefied species richness, but no relationship with neighborhood density or composition. In addition, leaf damage had no significant effect on subsequent seedling growth or survival, likely due to the low levels of damage experienced by most individuals. Our results provide some support for the resource concentration hypothesis, but suggest a limited role for insect herbivores in driving local-scale seedling dynamics in temperate forest understories.

  14. Lunisolar tidal synchronism with biophoton emission during intercontinental wheat-seedling germination tests

    PubMed Central

    Gallep, Cristiano M; Moraes, Thiago A; Červinková, Kateřina; Cifra, Michal; Katsumata, Masakazu; Barlow, Peter W

    2014-01-01

    Synchronic measurements of spontaneous ultra-weak light emission from germinating wheat seedlings both in Brazil and after transportation to Japan, and with a simultaneous series of germinations with local seedlings in the Czech Republic, are presented. A series of tests was also performed with samples returned from Japan to Brazil and results compared with those from undisturbed Brazilian seedlings. Native seedlings presented semi-circadian rhythms of emission which correlated with the gravimetric tidal acceleration at their locality, as did seeds which had been transported from Brazil to Japan, and then returned to Brazil. Here, however, there were very small disturbances within the periodicity of emissions, perhaps as a result of similar tidal profiles at locations whose longitudes are 180° apart, as in this case, different from previous results obtained in Brazil–Germany tests with other longitude shift. This feature of the Brazil and Japan locations may have minimized the requirement for the acclimatization of the transported seed to their new location. PMID:24714075

  15. Hexaconazole-Cu complex improves the salt tolerance of Triticum aestivum seedlings.

    PubMed

    Li, Jie; Sun, Cuiyu; Yu, Nan; Wang, Chen; Zhang, Tongtong; Bu, Huaiyu

    2016-02-01

    Hexaconazole is one of the triazole complexes that are broadly used as systemic fungicides with non-traditional plant growth regulator properties. Hexaconazole-Cu complex (Hex-Cu) is a new triazole derivative, and the biological effect of Hex-Cu has been rarely studied. In this work, we investigated the functions of Hex-Cu in regulating growth and the response to salt stress in the seedlings of Triticum aestivum. Pretreated with 60μmolL(-1) Hex-Cu, the seedling plants got increased root/shoot ratio by 42.0%, and the contents of chlorophyll and soluble protein were also increased by 38.1% and 27.9%, respectively. Furthermore, Hex-Cu alleviated the growth inhibition caused by salt stress, enabled the seedlings to maintain a higher proline content and lower malondialdehyde accumulation. The functions of Hex-Cu in regulating the expression of proline synthetase (P5CS and P5CR) genes were investigated by quantitative real-time PCR (qPCR). Under 100mmolL(-1) NaCl stress, the expression of P5CS and P5CR in the seedlings by Hex-Cu pretreatment were significantly up-regulated. It attributed to the enhanced salt tolerance in plants.

  16. Effects of bisphenol A on growth and nitrogen nutrition of roots of soybean seedlings.

    PubMed

    Sun, Hai; Wang, Lihong; Zhou, Qing

    2013-01-01

    Bisphenol A (BPA) is an environmental endocrine disruptor that seriously threatens ecological systems. Plants are the primary producers in ecological systems, but little information is available concerning the toxic effect of BPA on plants. In the present study, the effects of BPA on the growth and nitrogen nutrition of roots of soybean seedlings were investigated by using a root automatic scan apparatus and biochemical methods. It was found that when soybean seedlings were treated with 1.5 mg/L BPA, the growth of roots was improved, the content of nitrate in roots was increased, the content of ammonium in roots was decreased, and the activities of nitrate reductase and nitrite reductase in roots were not changed. The opposite effects were observed in roots treated with 17.2 mg/L and 50.0 mg/L BPA, except for an increase in the content of nitrate in roots treated with 17.2 mg/L BPA and a decrease in the activities of nitrate reductase and nitrite reductase in roots of soybeans seedlings. Statistical analysis indicated that the change in the nitrogen nutrition of roots of soybean seedlings treated with BPA was one reason why the growth of roots was changed. The authors suggest that the potential environmental and ecological risk of BPA to plants should receive more consideration.

  17. Effects of the ionic liquid 1-hexyl-3-methylimidazolium bromide on root gravitropism in Arabidopsis seedlings.

    PubMed

    Zhang, Liang; Wang, Tianqi; Zheng, Fengxia; Ma, Lingyu; Li, Jingyuan

    2016-03-01

    The toxic effects of ionic liquids (ILs) have attracted increasing attention in recent years. However, the knowledge about the toxic effects of ILs on tropism in organisms remains quite limited. In this study, the effects of 1-hexyl-3-methylimidazolium